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ABSTRACT
PART 1

By extension of the concept of a linear graph, as a
topological configuration of vertexes with lines (2-bonds)
connecting certain pairs of them, a nonlinear graph is de-
fined to include also associations of certain triplets of
the vertexes, or 3-bonds, representable by topological
""areas" of triangles; quadruplets, or 4-bonds, by '"volumes"
of tetrahedra; etc. The configurational part of the parti-
tion function, including nonadditivity‘effects or three-body
and higher interactions in the potential energy of a config-
uration of mbiecules, may be expanded as a sum of integrals
over products of cluster functions, corresponding to a sum
of nonlinear graphs. Certain special types of graphs,
called trees and stars, figure prominently in the combina-
torial analysis. The nth virial coefficient corresponds to
the sum of all stars on n vertexes. Since topologically
equivalent graphs correspond to integrals which yield the
same result upgn integration, the nth virial coefficient
corresponds also to the sum of all topologically distinct
- stars on n vertexes, each multiplied by the appropriate
combinatorial coefficient,

Development of the combinatorial theory for nonlinear

_graphs, trees, and stars proceeds similarly to that for ,
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linear graphs. An explicit formula for counting nonlinear
~graphs on distinguishable vertexes is obtained, and generat-
ing functions relate the numbers of graphs to the numbers

of corresponding nonlinear trees and stars. A novel term,
the eycle function, is defined; the triplet cycle function,
for 3-bonds, is derived; and cycle functions are used in
~generalizing Pélya's theorem to apply to nonlinear graphs
with more than one type of bond present. A theorem is thus
obtained which solves the problem of counting nonlinear
~graphs on indistinguishable vertexes, and a relationship
between generating functions permits the number of corre-
sponding trees to be calculated. All of these techniques
are extended to apply to multicomponent systems and to
rooted graphs and trees. Then the problem of counting stars
on indistinguishable or multicomponent vertexes is solved by
a systematic procedure. The numbers of such stars are also
closely approximated by a simple formula. Including 2- and
3—bonds only, the number of distinct stars on n = 3 indis-
tinguishable vertexes is'S; for n = 4, there are 72 topolog-
ically distinct stars; and for » = 5, 10,346,

Because of the rapidly increasing number and complex-
ity of the calculations, a practical limit for actual calcu-
lations involving any nonadditivity effects for a pure
substance is the fourth virial coefficient. For multicom-

ponent systems, the numbers of topologically distinct stars



are always greater than for systems of a single component;
hence even more compelling reasons would then be necessary
to justify calculation of the fourth virial coefficient

including three-body nonadditivity effects.

PART II

General thermodynamic expressions for partial deriv-
atives of extent of reaction with respect to external compo-
sition perturbations by a single species, for multicomponent,
multiple-reaction systems constrained to paths of chemical
equilibrium under various conditions, are obtained as the
solution of a set of simultaneous, linear algebraic equa-
tioﬁs. The corresponding heat and temperature effects fol-
low immediately. Derivatives of the extent of reaction are
evaluated for ideal solutions. For multicomponent composi-
tion perturbations, the derivatives result from a linear
combination of those for.perturbations by a single species,
each weighted by the net mole fraction of the given species
in the streams crossing the boundary. Possible applications
of the thermodynamic expressions include behavior of open
systems under externally introduced composition perturba-

tions, error analysis, and optimization of yield.
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PART I

COMBINATORIAL THEORY OF NONLINEAR GRAPHS,
APPLIED TO THE VIRIAL EQUATION OF STATE*

*Portions of Part I of this thesis have been pub-
lished as a paper by A. H. Larsen and C. J. Pings, "Counting
Graphs of Interest in Statistical Mechanics, Including
Nonadditivity Effects," J. Chem. Phys. 49, 72 (1968).
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A. INTRODUCTION

1. Intermolecular Potentials

The virial development of the equation of state for
imperfect gases has historically involved many-body integra-
tions over pairwise cluster functions. Extending the tech-

nique introduced by Ursell,(48) Mayer(30'32’34)

expressed
the coefficients in the density expansion of the compressi-
bility factor in terms of certain cluster integrals, each of
which may be represented by a sum of linear.graphs,(40’47)
in which the vertexes correspond to pérticles and the lines
to interactions of pairs of the particles. Clarifications
and‘generaliiations of the technique have been given by
Born,(8’9) Fuchs,cls) Husimi,(24) and Uhlenbeck and Ford.(47)
The Mayer procedure, for simplicity, assumes pairwise addi-
tivity of intermolecular potentials; that is, that the
potential energy of a configuration of molecules is equal

to the sum of the potentials of pairs of molecules in the
configuration. The cluster integrals are expressed succes-
sively in terms of certain "irreducible integrals," which
are related very simply to the virial coefficients, and
which correspond to the sum .of all linear graphs of a cer-
tain type.

The Mayer procedure is not the only means developed

for performing cluster expansions with the aid of linear
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graphs. For example, Ste11(46) has developed cluster expan-
sions by an alternative method of employing functional
differentiation with linear.graph theory. This work, how-
ever, involves the Mayer development.

The assumption of pairwise additivity of intermolec-
ular potentials usually permits experimental data to be
fitted fairly satisfactorily. Recently, however, evidence
has accumulated to show that the properties of dense gases
probably cannot be adequately expressed by pairwise addi-
tivity alone. Significant contributions to the intermolec-
ular potential may occur from three-bddy interactions.
Models to investigate the magnitude of a correction for
nonadditivity have been_given‘by a large number of investi-
~gators, including Axilrod and Teller,(2"4) Muto,(ss) Bade

and Kirkwood,cs) Kihara,(27) Kestner and Sinanoélu,(26)

(50) and Baxter.(7)

(33)

Hutchinson,(zs) Baer,(6) Williams et al.,
Several investigators, including Kihara and coworkers,

(43-45) and - Chan

Graben and Present,(l6’17) Sherwood et al.,
and Dalgarno,(lo) have calculated nonadditive corrections

to the third virial coefficient for some simple potentials
and compared the results with experimental data for a vari-

ety of substances.



2. Nonlinear Graph Theory

(13,14) in application to ionic solution

Friedman,
theory, has extended Mayer's graphical representation of
two-body interactions to include nonadditivity effects as
well, and Allnatt(l) has recently applied a similar repre-
sentation to point-defect interactions in solids. Just as
lines connecting pairs of vertexes of a graph correspond to
two-body interactions, three-body interactions may be repre-
sented by topological "areas" of triangles formed by trip-
lets of vertexes, four-body interactions by volumes of
tetrahedra, etc. In contrast to the linear graphs repre-
senting cluster integrals involving only pairwise additive
interactions, cluster integrals involving nonadditivity
effects correspond to what may be termed nonlinear graphs.:

Nonlinear as well as linear graphs may be classi-
fied according to topological type. Graphs of the same
type, indistinguisﬂable topologically, correspond to inte-
_grals which yield the same result upon integration. Hence
the virial coefficients are obtained by evaluating the inte-
_grals corresponding to different types of graphs and multi-
plying each by the appropriate coefficient, which is the
number of topologically indistinguishable‘graphs of the
~given type. The object of this work is to develop syétemat-

ic methods for obtaining the numbers of nonlinear graphs

corresponding to the virial coefficients.
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In Sec. B, a number of graph theoretical terms are
defined, including certain special types of graphs, called
trees and stars. The relationship between nonlinear graphs
and the integrals of cluster functions corresponding to the
virial coefficients is indicated. Due to the rapidly in-
creasing numbers of nonlinear graphs corresponding to the
successive virial coefficients, as well as their increasing
complexity, the associated combinatorial problems are for-
midable.

For the combinatorial analysis, techniques for
counting graphs, trees, and stars on distinguishable ver-
texes are developed in Sec., C. Then in Sec. D the more
difficult prbblem of counting:graphs and trees on indis-
tinguishable vertexes is considered. The general case, in
which the vertexes are distinguishable by '"species," is
treated in Sec. E. This generalization includes the special
cases for both distinguishable and indistinguishable ver-
texes, and applies to multicomponent systems. Sufficientiy
powerful methods are then available, in Sec. F, to count
stars on indistinguishable vertexes, the numbers ofbwhich

apply directly to the calculation of the virial coefficients.
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B. NONLINEAR GRAPHS AND CLUSTER FUNCTIONS

1. Graph Theory—Definitions

For correspondence with particles and interactions
between them, define a nonlinear graph as a set of vertexes
and a set of associations of certain pairs, triplets, quad-
ruplets, etc. of the vertexes. Denote the association of j
vertexes as a j-bond and consider bonds of different j as
bonds of different ¢ypes, which occur independently of each
other in a nonlinear graph. The vertexes may or may not be
distinguishable (labeled). In.general‘each J vertexes of a
_graph on n vertexes (j§ = 2, 3, ..., n) either may or may not
be associated by a j-bond. Two vertexes which are associ-

(19) Two ver-

ated by the same bond are said to be adjacent.
texes may therefore be adjacent by more than one type of
bond, or by two or more 3-bonds, 4-bonds, etc., but by no
more than one 2-bond. No bond connects a vertex to itself.
A j-bond may be represented geometrically as a regular poly-
hedron of j vertexes in j—l1 dimensions: a 2-bond by a line,
a 3-bond by the area of a triangle, a 4-bond by the volume
of a tetrahedron, etc. A graph on »n vertexes is said to
contain j-bonds (read j-set bonds) if j is a nonempty subset
of the integers 2, 3, .;., n corresponding to the types of

bonds in the graph. For a graph containing 2- and 3-bonds

only, j = 2, 3.
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A graph is disconnected (or disjoint) if it is pos-
sible to séparate the vertexes of the graph into two or more
subsets such that no two vertexes in different subsets are
adjacent. Otherwise the graph is connected and is termed
a tree. A vertex of a tree is termed a cut vertex (or ar-
ticulation point(40’47)) if it is possible to separate the
remaining vertexes into two or more subsets such that no two
vertexes in different subsets are adjacent. A star denotes
a tree with no cut vertexes. Considering two or more sets
of vertexes nonadjacent if no two vertexes in different sets
are adjacent, one may write the definifions of "tree" and
"star" in this parallel form:

Tree:

Star:} Can not separate the set of

vertexes of a graph
all vertexes but one of a tree

into two or more nonadjacent subsets.

A graph consisting of a single vertex will be considered a
tree but not a star. Any graph therefore consists of one
or more disjoint trees, and any tree consists of one or more
stars joined together at cut vertexes.
This generalization of linear trees and stars has

been selected for compactness of expression and applicabil-

ity to nonlinear graphs. . The given definitions are simpler
than the corresponding definitions of at-least-singly-

connected (ALSC) and at-least-doubly-connected (ALDC) graphs
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(14)

by Friedman and overcome the difficulty of applying the
usual definition of "articulation point”(40) to nonlinear
~graphs.

Define the symmetry number of a graph as the order
of the group of automorphisms (see Appendix B) of the
4graph.(47) If s is the symmetry number of a graph on n
vertexes, then there are n!/s permutations of the vertexes
which yield topologically equivalent graphs. Define the
complement of a graph containing j-bonds on »n vertexes as
the graph on the same vertexes, but containing all j-bonds
not in the original graph. It follows<that the complement
of a graph has the same symmetry number as the given graph.

Define a polygon as a linear star of »n 2-bonds
(forming a single cycle) on n vertexes, for n 2 3, or a
single 2-bond joining two vertexes, for n = 2. Polygons
therefore include lines, triangles, quadrilaterals, penta-

(20)

~gons, etc, Define-a cactus as a tree whose stars are

polygons. 1If only lines are permitted, the result is a

Cayley tree,(47)

4 (10,28,41)

or a '""tree'" as the term has been ordinarily
use
Define a compZéte star of j-bonds on n vertexes as a
star containing all possible j-bonds. A star cohtaining
more than one type of bond is complete if and only if it is
complete with respect to every type of bond present in the

star. The vertexes of a complete star are therefore all
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symmetric with respect to each other, and all pairs of the
vertexes are adjacent. A tree consisting of complete stars
will be termed a complete tree. Different stars in a com-
plete tree may themselves be complete with respect to
different types of bonds.

As an example of nonlinear graphs, all different
~graphs on three indistinguishable vertexes are shown in
Fig. 1. The coefficients given are the numbers of differ-
ent graphs of each type which would be obtained if the ver-
texes were distinguishable. The first two graphs shown on
the top line are disconnected, the third is a tree but not

a star, and all ‘the others are stars.

2. Cluster Functions

The potential energy of interaction of a configura-
tion of three molecules is the sum of three pairwise inter-
actions plus a small but nonnegligible correction term for

the three-body interaction:(14)

U(ry,r2,rs) = u(ri,r2) + u(ri,rs) + u(ry,rs)

+ u(rl 9r2’r3)9

where r. is the set of coordinates of molecule Z. This
defines the three-body interaction term u(r,,r2,rs).

Higher-order nonadditivity effects are defined similarly,
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FIGURE 1.—Nonlinear graphs on three indistinguishable

vertexes.
shaded areas, 3-bonds.
~give the number of different graphs which would be

obtained from the given graph if the vertexes were

The lines represent 2-bonds and the

distinguishable.

(1)

//

1)

~

/

(3)

- (3)

(3)

)

The integers in parentheses

(1)

(1
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by considering them as successive corrections to the sum of
all lower-order interaction terms. Denoting U(rl,rz,...,rm)

by Uy and u(ri,rj,...) by ugi...» one has in general

¢ ® 0

U, = ) u,. + ) Uy ¥ ) Usar, ¥ oaes
u pairs Y triplets ik fours tikL

* ulz...N' (1)

The correspondence of nonlinear graphs with cluster
integrals is based on the definition of the cluster func-

tion(14)

Fu
f(ri,rj,...) = fp = €Xp [— F%J -1, (2)

where m = i,'j, ... 1s the seﬁ of interacting molecules, k
is the Boltzmann constant, and T is the absolute tempera-
ture. If m is the number of molecules in the set m, the
cluster function fm corresponds to an m-bond of a nonlinear
~graph. For pairwise interactions only, m = 2 and Eq. (2)

defines the Mayer cluster function.(sl)

3, Virial Coefficients

The configuration integral for ¥ identical mole-

(22)

cules,

Uy
z(W,v,T) = [...| exp [— zﬁ]drl..idrﬂ, (3)
Vv vV
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may be expressed as the sum of integrals over products of
cluster functions corresponding to all graphs on ¥ distin-
~guishable vertexes. The virial coefficients may then be
obtained successively in terms of a sum of cluster'integrals
which may be represented by trees on distinguishable ver-

(14)

texes. Furthermore, the virial equation in terms of

the molar volume 7V may be expressed as

PV pt —1-
gp = 1+ 14,777, (4)
n=2
where the nth virial coefficient, A, (1) (n 2 2), for sys-
tems of a single species, is explicitly(14).
_ n-1

4,(1) = = (=108, (5
Here N _ is Avogadro's number, B, is given by

B, = T/%'T JJ s, dr;...dr_, | (6)

R4 4

and 5, is the sum of all cluster terms (products of cluster
functions) which correspond to stars on n distinguishable
vertexes. Neglecting surface effects, the integrations of
the cluster terms are performed over all space, strictly in
the limit as V + », The labeling of vertexes of the corre-
sponding stars is arbitrary. For a pure substance, only
topologically distinct stars on indistinguishable vertexes
correspond to different values of the integrals. Hence the

number of different graphs on distinguishable vertexes, and
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the number of these which could be formed from the same
~graph if the vertexes were indistinguishable, are desired.
For multicomponent systems, the vertexes are distinguishable
by species, and the numbers of topologically distinguishable
~graphs lie between those for indistinguishable vertexes and
those for distinguishable vertexes, and depend on the dis-
tribution of the species present among the vertexes of the
~graphs under consideration. The coefficients as well as

the numbers of inequivalent integrals increase rapidly with
n; therefore the solution of the combinatorial problems
associated with nonlinear graphs, treés, and stars 1s an
important part of the calculation of virial coefficients

including nonadditivity effects.

4, Multicomponent Systems

While the foregoing development has been given in a
form to apply only to pure substances, it may be easily

extended to the case of multicomponent systems. Instead of

Eq. (5), the nth virial coefficient is then(14)
‘ n-1 n
4,(1) = = (n=1)0, Iilx B> (7)

where

(8)

n=n1, 'nz, oo.’n
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(9)

X = X1y, T2, eeey xs’

¢ is the number of species in the system, % is the mole
fraction of species <, and
8
N
x" = W @ b (10)
7::‘1 T
The sum in Eq. (7) is over all [n+i_1] ordered parti-

(41)

tions of n into s elements, including zero elements, or

equivalently, over all n, and

1 {... '
s
nl = IT;ni!, (12)
’L:
s
no= ] n;.
=1

Then 54 corresponds to the sum of all stars on n vertexes
distinguishable by species only; that is, all stars on =

vertexes, of which n, are of species ¢ (¢ =1, 2, ..., 8).
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C. COUNTING OF NONLINEAR GRAPHS ON DISTINGUISHABLE VERTEXES

Uhlenbeck and Ford(47) review systematic techniques
for counting the number of linear graphs, trees, and stars
on n distinguishable vertexes. These counting techniques,
involving the use of generating functions, are extended

here to nonlinear graphs.

1. Formulas for Counting Graphs

Different types of bonds of a nonlinear graph are
independent of each other. The same four vertexes of a
~graph, for example, may involve any number from zero to six
2-bonds, from zero to four 3-bonds, and zero or one 4-bond
simultaneously in any combination. For a graph on n ver-

texes, define a bond set k(n) by

K(n) = 0, kyy Kypy euey K (13)

n’

where kj is the number of j-bonds in the graph, and k, = 0
by convention.

Vertexes of a linear graph are associated in pairs
only, by 2-bonds, with no more than one 2-bond connecting
any given pair of vertexes. The number N(n,k,) of such

~graphs of kz 2-bonds on n distinguishable vertexes is:given
by (47)
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where

o - 14

is the number of pairs of vertexes (or the maximum number
of 2-bonds) in a graph of n vertexes, and where

_nt > %
() - | o T (15)

0 n < k

is the binomial coefficient, the number of combinations of
n objects taken k at a time, n and k being nonnegative
integers. Equation (14) gives simply the number of ways of
distributing k, 2-bonds between B,(n) pairs of vertexes.

By generalization of Eq. (14), for graphs with

j-bonds only (4§ = 2, 3, ..., n), one has

B.(n)
N(n’kj) = i (§ = 2, 3, «ee, 77'): (16)

where Bj(n), the maximum number of j-bonds in a graph of =

vertexes, is given by

B,(n) = m A(,j ='z, 3, eees M), (17)

since each j vertexes in the graph may have at most one

J-bond associating them.



-17-
Since
n 14 n m
1+ )" = ] [,,,]t , (18)
m=0
the total number Nj(n) of possible graphs with j-bonds on =
distinguishable vertexes, upon setting ¢ = 1, is
W) = ] W(n,k)) =27 (4=2,3, ..., n).(19)
k =0 J
J
In general, several different types of bonds may be inde-
pendently present on the same graph; hence the total number
of graphs on n distinguishable vertexes, with k, 2-bonds,
k, 3-bonds, etc., is expressed by a product of terms of the

3

type given in Eq. (16), and may be written
B
710 = (3], | (20)

where the conventions

B =B,, By, «vv, B, (21)
n
B,
[i] - 1T 174, (22)
J=1 kj

have been adopted, and the Bj are understood to be functions
of n. In this notation Eq.b(ZO) for nonlinear graphs takes
the same form as Eq. (14) for linear graphs. Linear graphs
are therefore equivalent to nonlinear graphs for which the

number of 3-bonds and higher-order bonds is zero.
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The total possible number of graphs on n distin-
~guishable vertexes, using all combinations of different
types of bonds, follows from Eqs. (18) and (19), and is

N(n) = ﬁ N.(n) = 227°meY, (23)
g=2 Y

The total number of nonlinear graphs on »n vertexes is
readily seen to be 2""! times the square of the number of
~graphs on n—1 vertexes. It is apparent that the counting

of nonlinear graphs by inspection rapidly becomes over-

whelmingly cumbersome. The total numbers of graphs on

nA

n 10 distinguishable vertexes, from Eqs. (19) and (23),
are given in Table 1. Values of ¥(n,k) for 2- and 3-bonds
only onn = 3, 4, and 5 vertekes, calculated from Eq. (20),
are presented in Tables 2, 3, and 4, respectively, as the
values of p(n,k) for n = 1,1,...,1 (njelements of unity),

since if all vertexes are of different species, they are

all distinguishable.

2. Generating Functions for Counting Trees and Stars

(42)

Generating functions are useful in the combina-
torial theory of graphs, in simplifying operations involving
the coefficients. To obtain ‘the number of trees C(n,k) and
the number of stars S(n,k) with given k(n) on n distin-

. guishable vertexes, write the generating functions
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TABLE 1.—Total numbers of graphs on n distinguishable

vertexes,

" 2-bonds Only 3-bonds Only All Bonds
n,(n) v, (n) v (n)

1 1 1 1

2 2 1 2

3 8 2 16

4 64 16 2048

5 1024 1024 228

6 213 220 287

7 221 235 2120

8 228 256 22‘%7

9 236 284 2502

10 211»5 2120 21013
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TABLE 2.—Numbers of graphs, trees, and stars of k, 2-bonds
and k, 3-bonds on n vertexes, distinguishable by

species only, for n = 3,

n=1,1,1 n=1,2 n=>3
kasks | R R OR NoR O = =R
E & & E & & g & &
2 > o 2 = o 2 = o
,0 1 0 0 1 0 0 0
R 0 0 yA 0 0 1 0
s 3 0 2 2 0 1 0
, 1 1 1
) 1 1 1
s 3 2 1
, 3 2 g 1
s 1 1 1
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TABLE 3.—Numbers of graphs, trees, and stars of k, 2-bonds
and'k3 3-bonds on n vertexes, distinguishable by

species only, for n = 4,

n=1,1,1,1 n=1,1,2 n= 2,2 n=1,3 n =4
kooky
MYy ¢ w Y O W Y O U Y O U Y O
0,0 1 0 o0 1 0 0 1 0 0 1 0 o0 1 0 0
1,0 6 0 0 4 0 0 3 0 0 2 0 0 1 0 0
2,0 15 0 0 9 0 0 6 0 0 4 0 O 2 0 0
3,0 2016 0 12 9 0 8 6 0 6. 4 0 3 2 0
4,0 15 15 3 9 9 2 6 6 2 4 4 1 2 2 1
5,0 6 6 6 4 4 4 3 3 3 2 2 2 1 1 1
6,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0,1 4 0 0 3 0 0 2 0 0 2 0 0 1 0 0
1,1 24 12 0 14 7 0 8 4 0 6 3 0 2 1 0
2,1 60 48 12 33 26 7 18 14 4 13 10 3 4 3 1
3,1 80 76 40 44 41 22 24 22 12 18 16 9 6 5 3
4,1 60 60 48 33 33 26 18 18 14 13 13 10 4 4 {
5,1 24 14 8 6 2
6,1 4 3 2 2 1
0,2 6 4 3 2 1
1,2 36 20 12 8 3
2,2 90 48 27 18 6
3,2 120 64 36 24 8
4,2 90 i 48 27 18 6
5,2 36 20 - 12 8 3
6,2 6 4 3 2 1
0,3 4 3 2 2 1
1,3 24 14 8 6 2
2,3 60 33 18 13 4
3,3 80 44 24 18 6
4,3 60 33 18 13 4
5,3 24 14 8 6 2
6,3 4 3 2 2 1
0,4 1 1 1 1 1
1,4 6 4 3 2 1
2,4 15 9 6 4 2
3,4 20 12 8 6 3
4,4 15 9 6 4 2
5,4 -6 4 3 2 1
6,4 1 1 1 1 1
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S

N'(x,y) = Z Nnv %—,— = Z z -—-,—ZV(n k)xn k(n)
n=1 : n=1 )

Crey) = To - ] ) EMACN SEC AN eYS
n=1 "7 n=1 k(n)"
0 n [

51 (x, = g E_. = Lk k(n)

(z,y) nzl 0wl nzl k%n)——yS(n )z"y
where 2 and
Y = Yys Yo eeey Y, (25)

are arbitrary variables, k(n) takes on.all possible values
consistent with k¥, = 0, 0 = kj s Bj(n) d =2, 3, ..., n),
and

LIRS L (26)

Jg=1 d :

is a weight assigned to each graph, dependent on its bond
set only. This weight is equal to the product of the
weights assigned to~each of the trees which make up a graph,
or to each of the stars forming a tree. Since the coeffi-
cients N(n,k) for graphs are known by an explicit formula,
Eq. (20), relationships between the generating functions
(24) will permit the corresponding coefficients for trees
and stars to be obtained. The product theorem, as stated by
Uhlenbeck and Pord,(47) will Ee used to derive the desired

relationships between the generating functions.
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3. The Product Theorem

Because of its importance in graph combinatorial
theory, the product theorem will be stated and proved for
the case of one variable. The statement of the theorem and
a sketch of its proof are given by Uhlenbeck and Ford.(47)

Given two collections of graphs on distinguishable

vertexes, defined by the generating functions

©o n
X
g(z) = nzlgn T
h(z) = ] hy 7T
n=1

where g, and'hn are total weights assigned to all graphs on
n vertexes in the two collections, and where the weights are
independent of any labeling of the vertexes, a product col-

lection
- © . .xn

can be constructed, which consists of all graphs which can
be formed by selecting one graph from each collection. The
weight of a graph in the product collection is taken to be
the product of the weights of the two graphs forming it, and
H is the total weight of all graphs on n vertexes in the

product collection.

Theorem: H(z) = g(x)h(zx).
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Proof: From the above definitions,

_ n
Hn - Z [nl)gnlhn-nl’

where the factor [Z ] accounts for the number of ways
1
the n vertexes can be distributed between the two
~graphs of » and n-n, vertexes, respectively, from

the two collections. Let n, =n —mn,. Then

oo _xnl
g(x)h(x) = [”12 gnlg—T]{nz

oo n,+tn
= Z z 7! .’X:l 2
n,ln, |l n !
n=2 n,+n,=n 1 "2 M1 Ny 7
© n-1 n
AP @
, _ ;
n=2 n =1 ny}9n, n-n, n
© n
- -
= LB, o7 =E@),
n=2

which establishes the theorem,

- Corollary 1: For two collections of graphs on indistin-

. guishable vertexes, defined by the generating functions

i
Ho~1 8
)

S
8

g(z)

~1 8

"
>
8

A J

h(x)

the product collection H(x) is given by
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H(z) = oi Ha" = g(z)h(x).

Proof: Since the vertexes are indistinguishable,
the factorials in the proof of the product theorem

are omitted, and the corollary follows directly.

Corollary 2 (Product Property):(47) The generating function

H(x) for the number of pairs of graphs from two independent

collections, counted by g(x) and A(x), is given by

H(z) = g(z)h(=).

gzggiz The weights g, hn, and Hn in the generating
functions of Corollary 1 are the total numbers of
~graphs on n vertexes in g(x), h(x), and H(zx),
respectively. The vertexes may be either distin-

'~ guishable or indistinguishable, but since the two
collections of graphs are independent, the vertexes
in the collection of pairs may be distributed between
the two graphs of the pair in only the given way.
Hence no factorials appear, and the corollary follows

directly.

Corollary 1 is original with this work, and Corollary
2 is termed the Product Property, and is stated but not

proved, by Uhlenbeck and Ford.(47)
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4, Application to Counting Trees

Write the generating function for nonlinear graphs

on distinguishable vertexes in the form
N'(x,y) = tZ ni(x,y),
=1

where Né(m,y) is the generating function for all graphs

which consist of exactly ¢ trees on distinguishable ver-
texes. Since any graph of ¢ trees can be constructed by
selecting a tree from each of ¢ collections of all trees;

it follows from the product theorem that
! (e,y) = 20! (z,y)}°
£\EY T Lyy s

where the ¢! must be inserted since the ¢ parts are really
chosen from the same collection of trees, and any permuta-

tion of the ¢ trees leads to the same graph. Then

W' (z,y) tzl%_r{c'cx,y)}.t
= exp'{C’(x,y)} -1,
or
c'(x,y) = &n’ {'1'+N'(:x:,y)}, (27)

which relates the generating functions for trees and graphs.

Equation (27) is a straightforward extension to nonlinear

~graphs of the corresponding theorem for linearigraphs.(47)
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By expanding the logarithm of Eq. (27), then substi-

tuting Eqs. (17) and (20) and equating coefficients of
n . k(n)

xy » there results, in direct analogy to the result for
1inear.graphs,(47)
n . m+1
-1) - nl{K
¢(n,k) = L_____a, ' { } (28)
’ me1 m c%n)n! kj?

where the second summation is over all 2"7! compositions
(ordered partitions)(zg) of n into n,, n,, ..., . such that

n, =1, 2, ..., nm+l1 (¢ =1, 2, .e., m), and

m
n! = J| ni!,
i=1

m (29)
K. = 7}

The combinatorial convention for {i} is that of/Eq. (18).
For 4 = 1, the contribution to the product is unity, since
k, = 0; hence the value of X, is immaterial. Equation (28)
is derived in Appendix A, and numerical values of C(n,k),
calculated from Eq. (28) for 2- and 3-bonds only on n = 3,
4, and 5 vertexes, are given in Tables 2, 3, and 5, respec-

tively, as y(n,k) for n = 1,1,...,1 (n elements of unity).
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5. Application to Counting Stars

Consider topologically distinct stars on indistin-
~guishable vertexes as stars of different types. Assign a
weight yki to a star of type 7 in a tree, where ki is the
bond set for a star of type <. The total weight of the tree
depends only on the bond set of the tree, and is equal to
the product of the weights assigned to the stars of which
the tree is formed. To each tree on n distinguishable ver-
texes there correspond n rooted trees, in which one vertex,
the root, is given a special designation., If the generating
function for rooted trees on distinguishable vertexes is
denoted by a.superscript degree sign instead of a prime, it
follows that

nC(n,k) n k(n)

= Eﬂlliﬁhjﬁl. (30)

Co(xQY)

[
He~18

In a rooted tree, call the stars which have the root vertex
in common trunks, and let C;(x,y) be the generating function
for rooted trees withlexactly m trunks. Then
oo
cle,y) = 1 Cple,y),

with

!
8

cq(x,y)
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Now a rooted tree with m trunks can be constructed by
selecting m rooted trees with one trunk and joining them

all at the root. From the product theorem it follows that
C;(x,y) =:%j{0§(x,y)/x}m,

since ¢} (z,y)/x is the generating function for rooted trees
with one trunk, in which the root vertex is removed; the
factor x accounts for the root, and the m! is needed since

the m root vertexes are identical. Hence
C°(x,y) = « exp {CJ(x,y)/x}. (31)

To obtain ¢](x,y), hang rooted trees on the vertexes of the
trunk, other than the root. Then from the product theorem,

there results

N

C5(a,y) = o ) <=yl o,y M, (32)
1 71

where the trunk is a star of type ¢, having n. vertexes.
The factor x accounts for the root; the factor yki accounts
for the weight of the trunk; the factor n. is the number of
ways the root vertex can be selected; and the factor 8.5 the
symmetry number of a star of type <, is the number of equiv-
alent arrangements of root and rooted trees on the trunk
because of its symmetry. To distinguish between the differ-

ent types of stars which can be the trunk of the rooted tree

with one trunk, it is necessary to sum over all star types.
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Since there are ni!/si stars of type 7 on n. distin-
guishable vertexes, by summing over all the types of stars
instead of over the number of vertexes of the stars, from

Eq. (24) there results

1 ny k.
CROI I
i °1
Then
) oN"s k.,
51(c°,y) = ] £=(c°) iy 2,
7 71
and
° n. k. ne-1
3s ' (¢ ,Y) = z__iy 1,(00) 1
EYoid i 8z
= C?/x
= &n (C€°/x), (33)

from Eqs. (31) and (32). Equations (30) and (33), analogous
to equations given by Uhlenbeck and Ford for linear

_graphs, (47)

relate the generating functions C¢'(x,y) and
8'(x,y). Upon substituting Eqs. (24) and (30) into Eq. (33),
and expanding the logarithm in the same manner as for Eq.

(28) (see Appendix A), there results

L5 _c:;;___{ : _______} G54
= n=1 *
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By expanding and equating coefficients of like powers of «,
the following relationships between the successive Cn and

Sn are obtained:

¢, -8, =1 (¢, =1),
Cz—$2=0’
C, — 8, = 20,8, + C3,
c, — 5, = 60,5, + 3,8, + 30,0, — 203,
. ] , N ,
¢, — 5, = 12¢,5, + 12(c,+c%)s, + 4c, 8, + 4c,C,
2 2~ 4 ’ ’
+ 3¢3 — 1203¢, + 60y,
Ce — S, = 200,85, + 30(c,+2¢2)5, + 20(C,+3C,C,)8,

+ 5¢,58, + 5¢,c, + 1l0c,c, — 20Cic,
-30c,c%2 + 60Cc3c, — 24C;,

= 2 3
¢, —8, =30C,8, + 60(c,+3¢3)s, + 60(C, +6C,C +2C3)8
+ 30(Cs+40,0,+3C3)S5, + 6C S, + 6C,C,
+ 15¢,¢, — 30c3c, + 120c3c, — 120c,c,C,
+ 2002 = 7205C, + 270C%¢2 — 30C3 +-120C5.

y

From Egqs. (24), with C(n,k) known from Eq. (28), one may
obtain S(n,k) succegsively. An explicit expression for
S(n,k), such as Eq. (28), is not possible because x and y
are involved in power series inside the summations on both
sides of Eq. (34). Numerical values of S(n,k) are given in
Tables 2{ 3, and 6 as o(n,k) for n = 1,1,...,1 (n elements

of unity).
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D. COUNTING OF GRAPHS AND TREES ON
INDISTINGUISHABLE VERTEXES

While the counting of nonlinear graphs, trees, and
stars on distinguishable vertexes has been solved by expli-
cit formulas or in terms of generating functions for the
coefficients, the corresponding problem for graphs on indis-
tinguishable vertexes is of much greater difficulty, and

more powerful methods are necessary for the solution.

1. Generating Functions

To determine the numbers of topologically distinct
nonlinear graphs, trees, and stars on indistinguishable ver-
texes, u(n,k), y(n,k), and o(n,k), respectively, begin with

the generating functions

wiey) = Tl = ] IR ey (),
n=1 . on=1 k n)

Y (x,y) = OZO y z" = OZO % Y (n, 102y X ) (35)
n=1 " n=1 k(n

o' (x,y) = E cnxn = Z Y - o(n, k)xnyk(n);
n=t n=1 k(n)

Use of the product theorem with the generating functions for
graphs on distinguishable vertexes requires 1/n! in the

definition of the generating functions (24). Since the
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vertexes of the graphs are now indistinguishable, there is

no 1/n! in Eqs. (35).

2, Pblya's Theorem

Basic to combinatorial theory for graphs on indis-
tinguishable vertexes is a powerful counting theorem devel-

(35)

oped by Pélya. Various statements and proofs of the

theorem are given by Harary,(19’21) Uhlenbeck and Ford,(47)

(41,42) and de Bruijn.(ll) Since some concepts of

Riordan,
~group theory are required, Appendix B 6r Hall's book(18)
may be helpful. Polya's theorem may be stated briefly in
the following way: |

Let there be a collection of "figures," each with an
assigned weight, or "content," defined by a figure generat-
ing function. Define a "configuration" by placing figures
from the collection on a set S of »n "points," one figure to
a point, repetitions of the figures allowed. Define a
cycle index 7%2(G) of the group G of permutations of the set
S by |

2(6) = — ] £2, (36)
|GlgeG |

where |G| is the order of the group, the summation is over
all elements of the group, f is a set of arbitrary func-

tions fi’ fb'follows the convention of Eq. (39) below, and
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bi is the number of cycles of length 7 in the permutation

of S corresponding to g.

- Theorem: The configuration generating function is obtained
by substituting the figure generating function, with its
arbitrary variables each raised to the <th power, for fi in

z(G).

In this work the theorem is generalized to apply to
nonlinear graphs with more than one type of bond present.
A proof will be given for this special case, following the

development of the necessary definitions and terminology.

3. Definitions of Terms for P6lya's Theorem

It is necessary to define the terms given above in
quotation marks for Pélya's theorem as they apply specifi-
cally to counting nonlinear graphs. The "figures" for
Pélya's theorem are j nonadjacent vertexes and 4§ vertexes
adjacent by a gj-bond (4 = 2, 3, ...). The figure collection
for j-bonds then consists of two figures, with "contents" 0
and 1, respectively, and the figure collections for differ-
ent types of bonds are independent of each other. The
figure generating function f(yj) for j-bonds is. then given
by

f(yj) =1 + Y; (d

[}

N
-

w
-

°

L ]

*
-
-

(37)
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where the coefficient of the kjth power of yj is the number

of "figures'" of kj J-bonds in the collection (kj = 0,1).

The corresponding set of "points'" for Pélya's theorem is the
set of the.[g] J's of vertexes for graphs on n vertexes, for
each g = 2, 3, .;., n. The term "point" is reserved exclu-

sively for this usage with P8lya's theorem, so as not to be

confused with a "vertex" of a graph, as may occur with

Uhlenbeck and Ford's terminology.(47)

The sets of points
are independent for different j. A configuration is ob-
tained by placing figures from the figure collection for
j-bonds on the corresponding points, one figure to a point,
for each ;. The.group Gj of P6lya's theorem is the group
of permutations of the [?] points induced by the symmetric
group Sn of permutations of the vertexes. The group Gj is

of dégree "

a11 7. (18,47)

and order n!, and is isomorphic to S, , for

4. The Cycle Function

For convenience a number of graph-theoretical and
combinatorial terms will be introduced.(4l) The novel term
"cycle function" is basic to the extension of Pélya's
theorem to nonlinear graphs. .

A partition of a positive integer n is a subdivision
of the integer into a number k of positive integers (k = 1,

2, «.., n), the sum of which equals n. Define the partition



-47-
get p(n) by
p(n) FPys Pops esey P, (38)

where p, is the number of times the integer < occurs in the

corresponding partition of n. It follows that

e~

ip, = n.
1plL

7

A permutation of numbered elements may be described
completely by a cycle notation,(41) in which each element
in a cycle is replaced by the next element in the cycle,
the last element in the cycle being replaced by the first.
Thus the permutation taking the elements 12345 into 25431
may be represented uniquely by (125)(34). The length of a
cycle is the number of elements in the cycle. In this
example there is one cycle of length 3 and one cycle of.
length 2.

Define the chZe funetion Fj(n,p) for j-bonds on »n

vertexes by
F.(n,p) = £ =TT 17, (39)

where f is a set of arbitrary functions i) (z =1, 2, ...)
and b, is the number of cycles of length ¢ in the element

of Gj corresponding to the permutation of Sn consisting of

p..

i cycles ofylength i =1, 2, ..., n. Term G, the vertex
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pair group, F,(n,p) the pair cycle function; G, the vertex

triplet_grdub, F,(n,p) the triplet cycle function; etc.
The pair cycle function, for 2-bonds, has been ob-

tained previously,(47) and may be eXpressed in the compact

form

7::_.1 7:<j m(i’J)

n .I
[(5-1)/21+(P)i4p, . p.d(i,q
7, p) - TT fiz[(z 1)/21+(Pg)itp,, T £ (,4)

)

(40)
where the square bracket indicates the integral part of the
term contained within it, and where m(<,J) and d(Z<,J) are
the least common multiple and greatest common divisor,

respectively, of 7 and 4. It follows that
m(i,4)d(Z,5) = 4. (41)

By convention, Py = 0 if k& > n.

To obtain the triplet cycle function, for S-bbnds,
it is necessary to distinguish three cases, in which ver-
texes of the triplet occur in the same cycle, in two differ-
ent cycles, or in three different cycles of the permutation
in the vertex triplet group, G,:

(1) If the vertexes occur in the same cycle, of
length 7, of the permutation in the triplet group, in each
case the total number of triﬁlets is [g}. After 7 cyclic
permutations they will repeat themselves, and hence will

induce cycles of length ¢ in the triplet group. Therefore

the triplets are divided into cycles of length 7 as far as
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possible. Then for { not divisible by 3, there result
%(igl] cycles of 1ength'@ in the triplet group; for < divi-
sible by 3, there are [%{i;;]} cycles of length < plus one
cycle of length /3.

(2) If the three vertexes occur in two different
cycles of equal length <, there are.(é] combinations of ver-
texes possible in the cycle containing two vertexes. After
i cyclic permutations the cycles will repeat themselves,
hence will induce [é} cycles of length 7 in the triplet
_group.

If the two cycles are of unequal length, say < con-
taining one vertex and j§ two vertexes (¢ # ), again calcu-
late the total number of triplets in each case, the length
of the cycles, and then the number of cycles. The number of
pairs of vertexes in J is [g]. Each of these may be com-
bined with each element of the cycle of length %, to yield
i[%] triplets in all. After at most m(Z,J) permutations,
the cycles will repeat themselves. From Eq. (41), 4/d(%,d)
is even if and only if ¢ is a factor of m(<,4)/2. There are
cycles of length m(Z,4)/2 if both the cycles of < and j re-
peat themselves after m(Z,7)/2 permutations. This can hap-
pen only if Z is a factor of m(Z,4)/2; that is, if 5/d(i,4)
is even. Therefore if j/d(Z,4) is odd, there will be
exactly i[g}/m(i,j) = (§-1)d(Z,4)/2 cycles of length m(<,4).
If j/d(Z,4) is even, then j is even, and there will then be

d(Z,4) cycles of length m(<,4)/2, corresponding to the
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different combinations of the added cycle in the pair group
with the single other vertex to form the triplet group. The
number of cycles of length m(<,J) is then (J/2 — 1)d(Z,4).

(3) If the three vertexes occur in three different
cycles, of lengths 7, j, and k, the total number of differ-
ent triplets is Zjk. The length of the cycles is m(<,4,k),
since after m(<,j,k) permutations, the cycles will repeat
themselves. Because of their independence, no cycles will
repeat themselves with fewer than m(<,j,k) permutations.
Therefore there result ijk/m(<,j,k) cycles of length m(<,d,k)
in the triplet group. |

Combination of these results for the triplet cycle

function yields, from Eq. (39),

" 1(2=1 n P2 .

p.[+(*;1)] D, (°£) (%)

Py = ] £ F 1AL
=1 .

i=3,6,9,., t/34=1 ©

- 'H' p'ipj(j"l)d(i’j)/z
i .
i#g  m(Z,d)

d/d odd
p;p;(d/2-1)d(%,5) p,p.d(Z,d)
itg  m(i,q) m(z,4)/2
Jj/d even
. PP Py tdk/m(i, g, k)

. (42)
t,d,k m(Z,7,k)

In the first product, there are p; cycles of length < in the
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symmetric group of the vertexes, and for each of these
there result‘{%{i;l]] cycles of length < in the triplet
group. The sgcond product represents the added cycle of
length 2/3 for 7 divisible by 3. In the third product,
there are two cycles of equal length < out of p; total cy-
cles of length <, giving (gi]combinations. The factor 2

is needed since the cycle containing two vertexes and the
cycle containing one vertex may be interchanged, giving
twice as many combinations. For each of these, there are
then inducedA[gl cycles in the triplet group. In the fourth
and fifth products, for two cycles of unequal lengths < and
J, there are PP different combinations. A factor of 2
does not occur here because the cycle of length j in each
case is the one containing two vertexes. Each of these
combinations gives rise to (j-1)d(Z,4)/2 cycles of length
m(i,4) if /d(Z,4) is odd, and (j/2 — 1)d(<,4) cycles of
length m(<,4) plus d(<,4) cycles of length m(<,4)/2 if
d/d(i,5) is even. In the sixth product, there is no re-
striction on equality or inequality of <, 4, and k.  Upon

algebraic manipulation, Eq. (42) becomes
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fr fpi[g-(i:)]n(ii) )+ (35 iy,

.

F3(n:P) =

p;p;(psi+p;3-2)d(i,4)/2

i<j m(i,j)

pipjpkijk/m(i’j’k)o

1<j<k m(<,d,k)

. TT -p%pqd(iyj)/z piéjé(i;j)’ (43)
i#J m(<,q) m(<,d)/2
jld even

which is the complete expression for the triplet cycle
function,

A number of relationships may be obtained which will
simplify higher cycle functions. For n-bonds on n vertexes,
the only possibilities are »n unconnected vertexes or one
n-bond. In each pgrmutation of Gn there is only one cycle

of length 1, hence from Eq. (39) there results
Fo(n,p) = £2 = FlIFlft = f (n=2, 3, Lo, (44)
n ,p 1 2... n 1 : ’ » LB S

for all partition sets of n. If Gj is the symmetric group
of degree n, then b = p(n). This will be the case only if
one has the symmetric group bf the bonds as well as the
vertexes, which occurs for 4 =.n-1, since there is then one
vertex nof involved with each j-bond, and the numbers of

J-bonds and vertexes correspond exactly. Hence



P mp) == [[ 5P =3, 4, ... (45)

Similarly, corresponding to every j-bond in a graph on =
vertexes, there are ﬁ—j other vertexes in the graph, not
connected By this j-bond. Considering this one-to-one
correspondence, the number of.graphs.of (n—j)-bonds is equal
to the number of graphs of j-bonds, both dn n vertexes.,

Hence Gn—j = Gj’ and

Fn-j(n’p) = Fj(nap) (d = 2, 3, .0y n—2). (46)

A1l cycle functions for a single type of bond to and includ-
ing n = 5 may therefore be obtained by using only the pair
cycle functibn, Eq. (40), with Eqs. (44) through (46),vand
those for n = 6 and » = 7 using in addition only the triplet
cycle function, Eq. (43). Since the nth virial coefficient
depends only on graphs on n vertexes, the above cycle func-
tions are sufficient to obtain in principle the combinato-
rial factors for all the virial coefficients to and including
the seventh, including all nonadditivity effects. In Table
7 are given the cycle functions for 2- and 3-bonds on n £ 7
vertexes, for all partitions of =,
Since cycles of different lengths and different types
of bonds are independent of each other, by the product prop-
erty the cycle function for any combination of bonds on the

same vertexes is the product of the cycle functions of the
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TABLE 7.—Cycle functions for nonlinear graphs on »n vertexes.

partition p(n) F, (n,p) F, (n,p)
1,1 2,0 ) -~
2 0,1 . - -
1,1,1 3,0,0 £ .
1,2 1,1,0 .t i
3 0,0,1, f, .

6 L
1,1,1,1 4,0,0,0 il £,
1,1,2 2,1,0,0 rire Fif,
2,2 0,2,0,0 fjjfj_ £
1,3 1,0,1,0 i Fifs
4 0,0,0,1 F,1 il
1,1,1,1,1 5,0,0,0,0 £1° r1°
1,1,1,2 - 3,1,0,0,0 e e
1,2,2 1,2,0,0,0 rif rir,
1,1,3 2,0,1,0,0 FLfe £ 73
2,3 . 0,1,1,0,0 f1f3fs flfafs
1,4 1,0,0,1,0 ER A
5 r2 r2

0,0,0,0,1




-55-

TABLE 7—Continued

partition p(n) F, (n,p) F, (n,p)
1,1,1,1,1,1 6,0,0,0,0,0 Fie F2e
1,1,1,1,2 4,1,0,0,0,0 Fifs Fof,
1,1,2,2 2,2,0,0,0,0 fff§ fifs
1,1,1,3 3,0,1,0,0,0 fffg rire
2,2,2 0,3,0,0,0,0 £ire 2
1,2,3 '1,1,1,0,0,0 W 0 N i i<
1,1,4 2,0,0,1,0,0 | .7 f,f? .

3,3 0,0,2,0,0,0 : rifs

2,4 0,1,0,1,0,0 f.f,f Fife
1,5 1,0,0,0,1,0 £ fa

6 0,0,0,0,0,1 f,r2 R
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TABLE 7-—Continued

partition p(n) F,(n,p) F,(n,p)
1,1,1,1,1,1,1 7,0,0,0,0,0,0 | f2* £is
1,1,1,1,1,2 5,1,0,0,0,0,0 | fl'f3 F1°7;0
1,1,1,2,2 3,2,0,0,0,0,0 fffg et
1,1,1,1,3 4,0,1,0,0,0,0 f§f§ £
1,2,2,2 1,3,0,0,0,0,0 | rif? £ir5°
1,1,2,3 2,1,1,0,0,0,0 | Firirir, fif,rifd
1,1,1,4 3,0,0,1,0,0,0 | £ir f? R i
2,2,3 0,2,1,0,0,0,0 f§f§f3f§ Fririre
1,3,3 1,0,2,0,0,0,0 | f7 r2rst
1,2,4 1,1,0,1,0,0,0 | f f2r) £ 3f7
1,1,5‘ 2,0,0,0,1,0,0 | £, ft ’

5,4 ¢,0,1,1,0,0,0 fzfsfuflz flfufsffz
2,5 0,1,0,0,1,0,0 flfgflo' Fife,
1,6 1,0,0,0,0,1,0 | £,f3 F,r,

7 0,0,0,0,0,0,1 | f3 ~§
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different types of bonds in the combination:

Fj(n,p) = TT Fj(n,p). (47)
J

In performing calculations, the arbitrary functions fi in
cycle functions for different types of bonds must be kept

distinct.

5.  The Cycle Index

From Eq. (36) and the foregoing definitions, the

cycle index of the group Gj is given by

1
2(G.) = I 9uF:(7,p), (48)

"pln)
where the summation is over all partition sets of »n, and 9%
is the number of elements of Gj which consist of bi cycles
of length ¢ (¢ =1, 2, ...). Since for nonlinear graphs on
n vertexes, the group Gj is of order »n! and is isomorphic to
the symmetric group S,.» for all 4, the cycle index may be

written

n
-p. -
2508 =k 3 A T e, - (49)

where
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The coefficient in braces in Eq. (49) is the number of ele-
ments of Sﬁ consisting of p; cycles of length 7 = 1, 2, ...,
n, and is the same as the number of elements of Gj consist-
ing of b, cycles of length i.(41’47)
For graphs on n £ 7 vertexes, containing only a
single type of bond, the cycle indexes can be obtained from
Eq. (49) and Table 7, and are given in Table 8. For combi-
nations of types of bonds on the same vertexes, the product

of the respective cycle functions is taken in each term.

For example,

= 1 (o6 u 0202 2 202 2
Zz,s(su) = g7(fg, * 67 F0,9, ¥ 3f1f2g2
* 8f2g.9, * 65,79,

where the f; corresponding to 3-bonds have been replaced by

g;» to keep the independent arbitrary functions distinct.

6. Theorem for Counting Nonlinear Graphs

With the above conventions, the generating function
for nonlinear graphs on » indistinguishable vertexes is ex-
pressed as a generalization of PSlya's theorem. The proof
presented below generally follows thqt.given for Pélya's

theorem by Uhlenbeck and Fordu(47)
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TABLE 8.—Cycle indexes Zj(Sn) for nonlinear graphs contain-

ing only j-bonds on n vertexes.

n J 'Zj(sn)

2 | 2| f,
3 2 .%T(fi * 3f1f2 * zfa)

3 fl

41 2 | 3r(% + 9282+ 8F% + 6F f)

i

3 qrlry + 6FIF, + 3FL ¢ 8FF, ¥ 6f)

4| f,
S| 2 | sTly” - 10758) ¢ 18PIr) ¢ 207,98 ¢ 20777,

+ 30f,F2 + 24f2)

3 Same as Zz(Ss)

ju-

4 §T(fi ¥ iofifz ¥ 15f1f: * ZOfffa * 2071,
* 30fF f, + 241)

517,
6 | 2 %T(fis + ISfo: + 60fifg + 40fif: + 120f1f2f§fs
+ 180F F,f% + 40f5 + 144f3 + 120f f2)

l .
S| Ot v 1SPIFE v ASPIFY ¢ 80F2FY ¢ 15710
+ 120F2F2F2 + Q0F% + Q0f2fY + 144f% + 120f,f3)

4 Same as ZZ(SB)
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TABLE 8—-Continued

2.(8,)

%T(ff + 1SF1f, + ASFIfL + 40F3F + 15F)
+ 120f1f2f3 + 90f2F, + 40f§ + 90f F,
+ l44flf‘5 + 120f6)

f'

1
1
T+ 261N ¢ 10583rL ¢ 7058rT ¢ 105637

2p2p3 0 .. 971ae3 By 2 p2 2
* 420f1f2f3f6 ¥ 210f1f2fu‘+ 210f1f2f3f6

7 2 ol Y
+ 280f3 + 630f1f2fl+ + 504f1f5 |

2 3 3

¥ 420f2f3f4f12 ¥ 504f1f5f10 ¥ 840f3fs ¥ 720'707)

-
FT(F3% + 21715710 + 1058710 4 70735}

* 10577710+ 420777, 7157 + 8407, £3f]
+ 210flf§f§f: + 280f§f;1 + 504f:
+

2 : 3 p2 5 5
420flf4f6f12 * 504f5f10 * 840f2f3fs * 720fv)
Same as 23(87)-

Same as 22(87)

g7+ 2188p, + 1057352 + T0Fr, + 105F £3

e 420737, F, + 210£3F, + 210F2F, + 280F f7
+ 630F ff, * 504fff5.+ 420f3fh + 504f f
+ 840F f_ + 720f))

5

i
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Theorem: w, = Zj{sn; f(yj)}, (50)

where Zj{Sn; f(yj)} is obtained from Zj(sn) by replacing fi

for j-bonds by 1+y; in Fj(n,p), for all j in j.

"~ Proof: The figure generating function for j-bonds
is given by Eq. (37). There are Bj points on which
J-bonds may be placed, and Gj is a (given) group of
permutations of these points. Repetitions of the
figures are allowed, but only one.figure may be
placed on each point. A configuration is a nonlinear

. graph on n vertexes. Two graphs are topologically
equivalent if there is a permutation of the vertexes
taking one into the other. The content of a config-
uration is the sum of the contents of its figures,
but the contents for different types of bonds are
not added together. Hence a "content set' which is
equal to the bond set k(n), from Eq. (13), may be
defined. Then u(n,k) is the number of inequivalent
configurations of content k(n) on »n vertexes, and
the configuration generating function is n,, defined
by Eq. (35). |
| Consider a particular permutation P of the
symmetric group Sn of n vertexes, and let Xk(P) be
the number of configurations of content k(x) which
are equivalent under P. Two equivalent configura-

tions consist of the same set of figures. Furthermore,
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if in P there is a cycle of length <, then all the
figures of each type of bond corresponding to the
points in the cycle must be the same. Since the
permutations are over the n vertexes of graphs on

n vertexes, the group of permutations of the points
in the cycle is isomorphic to Sn. The figures
corresponding to diffefent cycles may be different
and can be chosen independently. When the content
of a figure of j-bonds in a cycle of length < is kj’
then the content of all such figures together in the
cycle 1is ikj, since they are all the same. Their
~generating function will be therefore

i i
) =1 + y%.
f(yJ) Y ;

Since the different types of bonds present are inde-
pendent, the product property applies to the j

present. Hence

n
DRI T treby
k(n) J i=1
? b.
=TTTT 1+y'b) v (51)
J =1

Consider all configurations of content k(n)
and let @ be one of these. Find all permutations

of the vertexes which transform @ into configurations
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which are identical to @. The identity is one such
permutation, and if there are others, they form a
subgroup H of Sn’ say of order k., Divide Sn into

(18)

the cosets of the subgroup H:

S =H+PH+PH+ ,.. +PH
1 2 r

n L

with
r=nl/h — 1.

All permutations in the coset P.H will change the
configuration @ into an equivalent configuration Qi’
which is transformed into itself by a group of order
h. 1If therefore all configurations of confent k(n)
are ordered into groups which are equivalent by the

elements of Sn’ that is, if the sum
nl
PRACE
7=1

1s formed, then each configuration which is equiva-
lent to @ will occur in % terms of this sum. Since’
each configuration @ gives rise to n!/h equivalent
configurations, including ¢ itself, each set of con-
vfigurations which are equivalent to a particular one

contributes (n!/h)h = n! terms to the sum. Therefore

n!u(n,k) =) Xk(P)Yk(n)s
PeSn
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and from Eqs. (35) and (51),

be = ar L L Ry )
1 n i Pi
= LTTTT (1 + 4%)
P g i=1 J
1 nl L Py n N
= 1T T (1+y2) *, (52)
”_'rp(n){ﬁ-'rin% } 7 i=1( #3)

since the summation over P is the sum over all per-
mutations of the n vertexes, and corresponds to the
sum over all partition sets of »n, with the appro-
priate coefficients, as in Eq. (49). Hence on
substituting 1+y§ for f; in the Fj(n,p) in'Eq. (49),
Eq. (50) is obtained from Eq. (52), which establishes

the theorem.

With u, obtained from Eq. (50), then u(n,k) is the
coefficient of yk(n) in L from Eq. (35). Values of
u(n,k) for graphs of 2- and 3-bonds on n = 3, 4, and 5
indistinguishable vertexes are given in Tables 2, 3, and 4,

respectively, under u(n,k).for n = =,

7. Counting of Trees

A nonlinear graph consists of ¢ 2 1 trees. Any per-
mutation of the trees does not change the graph. Since

. graphs with different numbers of trees are independent,
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write

W (z,y) =y (=,y) + ! THERSR (53)
=2

where ué(m,y) is the generating function for nonlinear
~graphs consisting of exactly ¢ trees. For graphs consist-

ing of only one tree; it follows that
U{(W,Y) = v (x,y). (54)

To obtain the number of trees on indistinguishable vertexes,
y(n,k), P6lya's theorem may be used in a special form in
which the 'figures' are trees on indistinguishable vertexes,
and the figure generating function is a known funetion, even
though the coefficients y(n,k) are yet to be determined.

The group of P6lya's theorem is the symmetric group of
degree t, with cycle index

2(8,) =37 I {%’-f i-pi}fp. (55)
t) i=1

Then for nonlinear graphs consisting of ¢ trees, Pblya's

theorem yields
Ué(x’Y) = Z{St; Y'(x9Y)} (t =1, 2, ...),

where Z{St; v'(x,y)} is the function obtained from'Z(St) by
substituting y'(xi,y?)' for f; in Eq. (55). Hence from

Egqs. (53) and (54) there results
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u'(z,y) = RIS CRORS (56)
=1

Substitution of Eq. (55) into Eq. (56) yields

y I T ) AR ) R A AN L
u' (x,y) tZI’ET p%t){fﬂ-gjli }E{Y =",y )}
_ g 1yt )P 57
IR e e 57

Since ¢t ranges from 1 to «», so does <, and p; ranges from
0 to », Then every product of the form given in Eq. (57)

will occur in

T 3 1.{Y'(“%’Y1)}pi. (58)
Conversely, this product can be written in the form
2 3
;ER (1 + T, * T7 + I3 + cee)

and every term resulting from the expansion of the product

is different and is of the form
T %,
=1 T

where only a finite number (2 t) of the p; are not zero.
Hence the summation in Eq. (57) is over all partition sets

of all positive integers, and every term in (58) is
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represented by a term in Eq. (57), except for the unity
obtained for all p; = 0; since the summation over the parti-
tion sets of ¢ does not allow all p; = 0 simultaneously in
any term. Therefore there must be a one-to-one correspon-
dence between the right side of Eq. (57) and (58), except

- for the added unity; Hence Eq. (57) becomes

pi.l 7

ur(x;y) TT Z 1'JY (-’L‘ 4 )} -1
t=1p;s

- T ow {2} -,
or

.vaLiﬁéLXil = zn'{1+u’(¢,y)}. (59)
i=1
This equation is analogous to the corresponding result(19’47)
for linear graphs. The logarithm may be expanded in the
same manner as in Appendix A for Eq. (27). Then successive
relationships between the generating functions for graphs

and trees on indistinguishable vertexes may be obtained.

Write
v (=",y") = ﬁzlwtnYn;i
' (60)
- z z Y(n k)xtn tk(n)
n=1 k(n)

Then, from Eqs. (35) and (59), it follows that
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m+1 © m

Now from Eqs. (35) and (60), Yo =Y, for all »n, and
Hd

Yi.0 = y(1,k) = 1 for all <. Hence Eq. (61) becomes
2 .

nilx (n~,) = ﬂz %{ﬁi wi”Yn;i +'(—1)i[n§1x"un]?}.

Equating coefficients of like powers of x yields

=
I
-2
i
Il M3

l{ iip (—1)’4% T, }
7" 2'L n 1,7 e n),j=1 J

. . -1 P
where the second summation is over all 2" compositions of

n into < positive integers n (7 1, 2, ..., 2). If 7 does

not divide evenly into n, take Yn/i'iV= 0. Since
’

wo= w(l,k) = 1, there results

N . . 1 .. .

My =¥, = g v gy, ) -y,

Ug = Yy = M, ¥ (uz—l)(us—uz),

Mg =Yg = My * (1 +1)u' 2—(Y3 +u2 3}.12) + (zu +1)u

3‘('Y2 3 UZ 1) - uz,
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W, =Y, = K # (112—-1)115 U, - (2112-—1)(1124-11“)

2

+ (3u2—u§—1)u3 — uz,

From these successive equations, with M, known, the Y, and
hence the coefficients Y(n;k); can be obtained. Values of
y(n,k), for trees of 2- and 3-bonds on n = 3, 4, and 5
indistinguishable vertekes, are given in Tables 2, 3, and 5,.

respectively, under y(n,k) for n = #n.
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E. GRAPHS AND TREES FOR MULTICOMPONENT SYSTEMS

In this section the techniques for counting graphs
and trees are generalized for application to multicomponent
systems, and in Sec; F these results will be applied to the
counting of stars; which enters the combinatorial problem

for the virial coefficients from Eqs. (5) and (7).

1. Generating Functions

lThe numbers N¥(n,k), ¢(n,k), and S(n,k), for graphs,
trees, and stars, respectively, apply to multicomponent sys-
tems just as to systems of a single component, sihce the
vertexes are already distinguishable. If the vertexes are
indistinguishable but restricted to n (ni of species ¢ =1,
2, ..., s), the generating functions (35) may be generalized

to take into account the different species involved:

CR ) w X" = ) k%n)u(n xR ),

' (x, _ n _ 1) x™ k(n) 62
v (x,y) 121 Y X k%n)v(n )Xy (62)
o' (x,y) =) onxn =Y V7 o(n,k)x" k(n)

n n k(n)

The group of Pélya's theorem for j-bonds is now the group of

permutations of the l?] J's of vertexes induced by the
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(18,19)

direct product of the s symmetric groups of n, ver-

texes (¢ =1, 2, ..., 8). Let
S_ =8 x S X ese X Sn (63)

denote this direct-product group.

2. Cycle Functions

First determine the cycle function for j-bonds in
S > which may be indicated symbolically by Fj(n). This cy-
cle function is not equal to the product of the cycle func-
tions for the separate nis since the J§ vertexes under
consideration are not restricted to a single nis but may be
distributed among the symmetric groups in the direct pro-
duct. One must distinguish the cases in which the j ver-
texes all occur in the same ns and also the cases in which
the j vertexes are distributed between 2, 3, ..., k differ-
ent 7., where k is the minimum of j and‘s.

Consider the pair cycle function F,(n) for the direct

n. .. If the

product of two symmetric groups, so that n = nosn,

two vertexes of the pair both occur in Snl’ eithér in the
same cycle or in different cycles, the contribution to F (n)
will be F,(n ,p), where p = p{n,). Similarly for Snz, fhe
result ié F,(n,,p), where p = p(n,). There is no contribu-
tion for n; <-2 or n, <'2, and ohe may formally take

Fj(n,p) = 1 for n < j, from Eq. (39), since then all the
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exponents b, = 0. If one vertex occurs in S, and the other
1

in Sn , they are in different cycles. If the cycle in Sn
2 1

is of length < and the cycle in Sn is of length j, their
) .

permutations will induce d(Z,4) cycles of length m(Z,4) in
the pair group, whether or not 7 = 4§, Hence the contribu-

tion in this case will be

T FRLRFIRLICR

i=15=1 m(Z,J)

The pi(nl)pj(nz) occurs as an exponent since there are
pi(nl) different cycles of length 7 in S, and pj(”z) cycles
1

of length 4 in Sn , independently, and hence Pi(n1)Pj(nz)

2 A
different combinations of the two.

Combining these results, one obtains

n, n L d

1 2 p.(nl)p .(nz)dcﬂ’J)
, _ s 1 d
v z(nl,?’lz) = cmnl’p) 2(”2’p) =IJ=1fm(7:,j) .

o

By similar reasoning, consideration of all the possible

cases results in

_E.’z(nl’nz’ns) = Fz(nl’p)cmnz’P)cmnssp)'

T T (PR (1,)d(5,0) py(n))py (,)d (L)
- [IREANPSCE FE -
i=1j=1k=1 m(i,d) . m("/sk)

Pj(ﬂz)pk(ng)d(j,k)}
m(J,k) ’
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and, in general,

8 b (n,)p( hLICD)
cmn)={1EFz(ni’P)} T[- " el e

1<g r=ig=1 m(r 3)
(64)

It is possible to obtain F,(1,1,...,1,n) for s = m + 1
(m elements of unity) and » 2 2 either from Eq. (64) or by
replacing p, by p, + m in F,(n,p). In either case the
result is |

Fo(1,1 Ln) = $8gmp () ()

,(1,1,.0.,1, N ,(n,p).

m elements

Correspondence of results by the two methods is a strong
check on the calculations and on the validity of Eq. (64).

For the triplet cycle function F,(n, ,n,), the follow-
ing cases must be considered: |

(1) If all three vertexes occur in Sn1 or in Snz’
the result is F_ (n ,p) or F,(n,,p), respectively.

(2) If two vertexes are in Sn and one in Sn , the

1 2
two vertexes in Sn may be in either one cycle or in two

1
different cycles. Hence this case will be equivalent to
cases (2) and (3) of the derivation of Eq. (43). Upon
algebraic manipulation, the result may therefore be

expressed as
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p (n, )p (n, ){Jp (n, )-l}d(ﬂ,a)/z
Fa (1157532, 1) 'TT {.II n(i,q)

s (1,08 ;(n, )by (n,)$3K/m (4, 3,K)
J<k m('l:ujak)

TT [ "Pj(nl)Pi(nz)d(i’j) pj(n1)Pi(nz)d(iaj)}}
j/d even' m(Z,J) fm(i,j)/z ’

(3) If two vertexes are in S and one in Sn
2 1

result, F,(n,,n,;1,2), is the same as the right side of
Eq. (65), with n, and n, interchanged wherever they appear.

On combining these results, one obtains

F3 (nl’nz) = Fscnl ,p)F3 (nz,p)Fa (nl ,n2;2,1)F3 (nl ,nz;l’z)’
Similarly, it follows that

Fs (nl ,nz’ng) = Fa (n]_ ’p)Fg (nzﬁp)Fg (ng ’p)F3 (7’1-1 ’nz;zjl).
Fa(nysmy31,2)Fy(nyymny32,1)F3(ny,mqe31,2)0

Fo(n,,n,32,1)F, (n,,n,31,2)°

BT o )p 3 (n,)py (n, )igk/m(,d,k)
SININIE; :
i=1j=1k=1 m(Z ,J,k)
and, in general,
8
%W={WFWJﬂ“EmeJlNMﬂM1ﬂ

ng R

T WUW FRCRENCRENCH rot/m(e,e,t)

z<g<k p=1g=1t=1 m(r,s,%t)
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Just as for the pair cycle function, it is possible to ob-
tain F (1,1,...,1,n) for m elements of unity and = 23
either from the general equation, Eq. (66), or by replacing

p, by p, *m in Fa(n,p). The result, by either method, is

F3(1’1’°“Sl’n) = f]ggn)f(ng)p(n){Fz(n’p)}mF:; (nSP)’
| —
m elements

and provides a check on calculations and on the validity of
Eqs. (43) and (66).

Since different types of bonds are independent of
each other in graphs for multicomponent systems as well as
for indistinguishable vertexes, Eq. (47) can be extended to

multicomponent systems:
Fi(m) = T] F.(n).
J i 7

Values of pair and triplet cycle functions for all parti-

tions of n £ 5 are given in Table 9.

3. Cycle Indexes

With the cycle functions for graphs corresponding to
multicomponent systems obtained by Eqs. (64) and (66), the

cycle index for j-bonds on n vertexes is given by

ey 1 g ng1 Ti -pg(ng)
Zj (Sn) -ﬁ—rp%n) ?;[rl {W}E k }Fj (n) s (67)
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TABLE 9.—Pair and triplet cycle functions for all parti-
tions of n £ 5. F,(n,p) is given by Eq. (40).
Asterisks indicate distinct partition sets, corres-

ponding to distinct species.

n n F,(n) Fy(n)
1 1 1 1
2 | 1,1 . 1
2 ) 1
30 1,1,1 hild il
1’2 . flfp(Z) ) fl‘
3 fp(3) .
4| 1,1,1,1 | f2 b
(
1,1,2 r2e2p(2) p2£P(2)
wr f2 ﬁ_ T?;r fp,l:(z)pa(z*)d(""j) fp(z)fpcz*)
’ Vi=rg=1 "m(Z,q)
1,3 2P (2) £, £2(5)
4 F,(4,p) £p (+)
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TABLE 9—Continued

n Fz(n) F3 (n)
1’1’1’191 fio
1,1,1,2 f‘;fap(z)
% PO
1,2,2% f ep (2) gp (2%) TZT -ﬁ- fpi(?—)Pj(?-f)d(%,J)
o 1 i=1g=1 7 m(E,9)
1,1,3 f1f3p(3)
2 3 p.(2)p.(s)d(i,q)
2,3 f1fp(3)TTT]'f7’. i ‘
' t=15=1"m(%,q)
1,4' F2(4,p)fp(l})
5 FZ(S:P)
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where
p(n) = p(n,), p(n,), ..., p(n), (68)

and n! follows from Eq. (12), since the order of the direct
product of a number of groups is the product of the orders
of the separate groups. One must sum over all partition
sets of the ni(i =1, 2, ..., ¢) separately, since the per-
mutation types of the direct product group Sn range over all
the partition sets for the various n. independently. Rather
than perform the sum over each element of the product group,
it is convenient to perform it over each permutation type.
The number of permutations corresponding to the partition
set p(ni) in'Sni is given by the quantity in braces in Eq.
(67). Hence the number of permutations of type p(n,)p(n,)e°-
p(ns) is the product of the quantity in braces over < = 1,
2, «ee, 8. Cycle indexes for 2- and 3-bonds separately on
n vertexes for n £ 5 are presented in Table 10. Cycle
indexes for graphs containing both 2- and 3-bonds are ob-
tained by taking the product of the separate cycle func-
tions, keeping the arbitrary functions for 2- and 3-bonds

distinct.

4, Graphs and Trees

With these conventions, instead of Eq. (50), Pélya's

theorem yields, symbolically,
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| Zj{sl’l; f(yJ)}s (69)

n

where Zj{Sn; f(yj)} is obtained from Zj(Sn) by replacing fi
for j-bonds by 1+y§ in Fj(n), for all 4 in j. Proof of
Eq. (69) is analogous to the proof given for Eq. (50). Then
p(n,k) is the coefficient of yk(n) in My, -

Likewise, Eq. (59), relating the generating functions
for graphs and trees, can also be generalized for multicom-

ponent systems:

© ’ ) 7 :
XL - (e (). (70)
1=1 .

Derivation of Eq. (70) parallels that of Eq. (59). With My
known from Eq. (69), u’(x,y) can be obtained from Eq. (62).
Then Eq. (70) can be expanded and the coefficients of 1like
powers of x equated to obtain the numbers of trees y(n,k)
for multicomponent systems. |

Write

vrxt,y®y = 1 x"y = ] % y(n, k) x Py tR @) 7y
n ’ n n

k

Substitution of Eqs. (62) and (71) into Eq. (70) yields
S 1 LN )" n n
Z;:_]ZIX’L Yo .. = Z ( ) {Z xun} .

Since vy 1. " Yp for all »n, and Yl;i =y, = 1 for all ©, one
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S

{g xinyn;i . (_1)i+1[2 Xnun]i}.

! xn(un—yn] i izz n

n

Equating coefficients of x™ results in

e.(n) 4

7
Tu, b 02
Z =t d

. .
'n " T " izzf{yn/i;i n ey z(

where the second summation is over all compositions (ordered

partitions) of n into < sets n_, n eesy N., such that
1 Z

2’

If all elements of n are not divisible by %, ¥y = 0, and

n/i;1
if © > n, at least one of the sets Doy, N, «v., B will be
empty, for which the corresponding My, = 0. With My known,

dJ

Y and hence y(n,k), can be obtained from Eqs. (62) and

n’
(72). Numerical values of u(n,k) and y(n,k) are given in
Tables 2 through 6 for n = 3, 4, and 5. If the vertexes
are all distinguishable, n = 1,1,...,1, and u(n,k) = ¥(n,k)
and y(n,k) = €¢(n,k), as indicated previously. On the other

hand, if the vertexes are all indistinguishable, n = n, and

the results are obtained by the techniques given in Sec. D.

5. Rooted Graphs and Trees

The coefficients for rooted graphs and trees are use-

ful for obtaining the coefficients for graphs corresponding
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to the integrals of radial distribution and correlation

functions.(14’47)

Define a rooted or multiply rooted graph
as one in which one or more vertexes are fixed and desig-
nated as roots; then in the corresponding integrals, inte-
~gration over the coordinates of the root vertexes is not
performed. The density expansion of the radial distribution
function results in integrals which correspond to doubly
rooted stars containing a 2-bond between the roots, from
which this 2-bond is then removed. For a pure substance,
coefficients for rooted and doubly rooted graphs and trees
can be obtained from Eqs. (62), (69), and (70) by taking
n = l;n—l and n = 2,n—2, respectively.

Correéponding results for rooted graphs for multicom-
ponent systems are obtained similarly. The root vertexes

are considered to be of different species than the remaining

vertexes. The group of P6lya's theorem is then Sn =

S, x§ ~x s xS , where n, (< 1, 2, ..., g) 1s the

Ny no p
number of vertexes of species <, excluding the roots, and

n, is the corresponding composition set for the roots. For
singly rooted graphs, n, = 1. For doubly rooted graphs,

n, = 2 if the roots are of the same species, and Sn =
r

S1 X S1 if the roots are of different species. For example,
considering binary systems on- four vertexes, two of each

x S2 if

species, the group of P6élya's theorem is S, = S,

both roots are of the same species, and Sn =5 x§ x§ x8§

1 1

if the roots are of different species. In this latter case,
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since the vertexes are all distinct, the desired coeffi-
cients are those obtained in Sec. C for graphs, trees, and
stars on distinguishable vertexes,

Rooted graphs consist of either one rooted tree or
one rooted tree and one or more nonrooted trees. Denoting
the generating functions for rooted graphs and trees by a
superscript degree sign instead of a prime, and making use

of the product property, it follows that

e (x,y) = v°(x,y) + 'YO(X’Y)U{(X’Y)

oyt (X, y)ug (x,y) + ...,

where ué(x,y) is the generating function for graphs which
consist of ekactly t trees, for multicomponent systems.
Then considering each variable to be a function of the same

(x,y), this equation, in shortened notation, becomes
pu = y° (1 + u'") (73)

from which the coefficients in the generating function y°
for rooted trees may be obtained successively. Similarly,

for doubly rooted trees,

PO = y%C 4+ yCful o+ yooul o+ L,

00 I G0 K TTEE SN G20 Ko TE A S

{y°° + (¥°)2%}(1 + u").

Substitution from Eq. (73) yields
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pee = y°° (1 + u') + p°y°, (74)

from which the coefficients in the generating function y°°

for doubly rooted trees for multicomponent systems may be

obtained. Defining u;, u;°, Y;, and Y;° for singly and
doubly rooted graphs and trees on n vertexes, respectively,
in the same manner as n, and Yn in Eqs. (62), there results

from Eqs. (73) and (74)

e =y =) ou.ve,

n D y§ap 1]

Hp = vp® = L (wyvse o+ ouivdd,
n n i+j=p 1] i'j

from which, with u; and U;° known, Y; and Y£° may be ob-

tained successively. The coefficients in u°, u°°, v°, and

v°° may also be obtained by linear combinations of the re-

sults for My and Y, to take into account all possible ways

of distributing the roots among the species involved.
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F. COUNTING OF STARS ON INDISTINGUISHABLE VERTEXES

The development of systematic procedures for counting
stars on indistinguishable vertexes has been deferred to
this point, since the difficﬁlty of this problem requires
for its solution many of the techniques developed in pre-
ceding sections for graphs, trees, and multicomponent sys-
tems. A number of authors(l7’20’40’47) have attempted
solutions to the star-counting problem for linear graphs

(21)

without success. Recently Harary reported that a solu-
tion to the star-counting problem for linear graphs had been
obtained by R. W. Robinson. Apparently this solution has
not yet been published. Harary states:(21) "His method in-
volves the computation of sums of cycle indexes, which leads
to a recurrence relation giving the cycle index sum for the
automorphism groups of the non-separable graphs [stars]."
There is no indication that such a technique has been ex-
tended to nonlineaf‘graphs. It is precisely the counting
of stars on indistinguishable vertexes and, for multicom-
ponent systems, on vertexes distinguishable by species only,
that is essential to the theoretical calculation of the
virial coefficients, from Eqs. (5) and (7).

The numbers o(n,k) of stars on indistinguishable ver-
texes have heretofore been obfained by inspection, for

linear.graphs.(47) For a given n, the correct values of

o(n,k) can be obtained from the coefficients y(n,k) by
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subtracting the numbers of topologically distinct trees con-
taining two or more stars each on n vertexes. A systematic
procedure for doing this is developed, following which a
simple formula to approximate very closely the numbers of

nonlinear stars on indistinguishable vertexes is presented.

{

1. Systematic Procedure for Counting Stars Exactly

In the same manner as for Eqs. (60) and (71), define

o_,.= 3 c(n,k)yik(n).'

75
037 1 n) (75)

Then vy, — o  is the sum of all trees consisting of two or

n
more stars each on n vertexes. With Yo known from Eq. (72),

by determining all trees of two or more stars each, one can
then obtain O and hence o(n,k) from Eq. (62).

To obtain Yp = O employ the following procedure:

n’

1. Obtain all partitions of (n+m—1) into m elements

m, (my m, = 2, 3, ..., n—1). Since these partitions are

7 7
equinumerous with those of n—1 into m 2 2 elements, unity
(41)

included, the number of these partitions is ‘the coeffi-

ntm-1

cient of ¢ in the expansion of

m . ’
TT (@ -7,
7=1

For n £ 7, these partitions are given in Table 11.
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TABLE 11.—Partitions of (n+m—l1) into m

v

elements m, 2 (m, m, = 2, 3,

n—1), for n £ 7,
n m partitions
1 - -
2 -- -
3 2 2,2
4 2 y3
3 32,2
5 2 ,4; 3,3
b4 ’3
2 ’2’2
6 2 2,5; 3,4
3. 2,2,4; 2,3,3
4 2,2,2,3
5 2,2,2,2,2
7 2 2,65 3,5; 4,4
3 2,2,5; 2,3,4; 3,3,3
4 2,2,2,4; 2,2,3,3
5 2,2,2,2,3
6 2,2,2,2,2,2
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2. For each partition, form all possible distribu-
tions of these m elements into topologically distinct com-
plete trees on n indistinguishable vertexes, for which m.
corresponds to a complete star on m, vertexes. The number
of these distributions can be obtained recursively by a
~generating-function technique described by Ford et aZ.(lz)
The trees may be represented by cacti (see Sec. B.1l) con-
sisting of lines and triangles if all m, £ 3, If one or
more m, 2 4, these trees do not correspond to cacti, since
all pairs of the vertexes of quadrilaterals, pentagons,
etc, are not adjacent. |

3. For each complete tree on n vertexes, consider
the corresponding topologically distinct complete trees on
n vertexes. The number of these is obtained systematically
by the theory of distributions, by a generating-function

(29) and described in

procedure developed by MacMahon
Appendix C.

4, Consider all possible distributions of bonds to
form stars on m. vertexes, for each element m. in each of
these trees. Denote the composition set of the m, vertexes
by m., where cut vertexes are considered to be of different
species than the remaining vertexes.,

The generating function for a tree consisting of
stars whose vertexes correspond to those of complete stars

which are topologically distinct in the tree, considering

the composition, is the product of the generating functions
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of the separate stars, since they are from independent sets.
The generating function for the numbers of stars correspond-

ing to complete star m. is o hence the generating func-

m;?
7

tion for all trees corresponding to a complete tree consist-

ing of m topologically distinct complete stars of composition

m. is simply
m
T o, ..
i=1 Mg

The product is more complicated if, in the complete tree,
there are two or more complete stars which are symmetric
with respect to each other, including the composition. In
such cases an interchange of the complete stars would yield
topologically equivalent trees, and this symmetry must be
taken into account. This may be done by an application of
P6lya's theorem. Consider o, @s the figure generating func-
tion. For k symmetric complete stars in a tree, the group

of P6lya's theorem is the symmetric group S Then the

k.
configuration generating function for the symmetric stars is

kK (0_..\P..
2Sion) = g 1 FmoT )T Sl (76)

k

which reduces to the ordinary product o,

for m = 1,1 or
m = 2, since there is only one star on two vertexes, regard-
less of composition. The first few examples of Eq. (76)

are the following:
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z(S,50,) = o

1
Z(Sz;cm) - 7(01?1 * cSm;Z)’
1
z(S,30,) = g(od + 30m; , * Zcm;s),
1
Z(Su;om) = 71(0% + 60;0m;2 + 30;;2
+ 80m0m;3 + 6cm;u).

Then, since Yo = © corresponds to all trees of two or more

n
stars each on n vertexes, and by the given procedure, these
are represented by the distributions of complete stars to
form trees consisting of two or more complete stars on n

vertexes, with each complete star on m, vertexes represent-

ing all stars on m, vertexes, it follows that
m*
-0 = T o (77)
Yn n ) =1 W’

where the sum is taken over all complete trees on n vertexes,
and the asterisk denotes that for k 2 2 symmetric complete
stars of three or more vertexes each, including the composi-
tion, the product of the Omi is replaced by Z(Sk;om) from

Eq. (76), where m is the composition set of each of the
symmetric complete stars. Since m, < n, the numbers of

stars on n vertexes may be obfained successively, from the
numbers of stars on n—1 and fewer vertexes in all composi-

tions.
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A useful example is given in Fig. 2. For the first
two trees shown under partition 2,2,5, the contribution to

2.0

Y, — 0, is ¢, ,0,, , where o,, is the generating function for

stars on two distinguishable vertexes, and o , is that for
stars on five vertexes, one distinguishable from the other
four. For the third tree, the contribution is 0?1023.

Similarly, for the four trees under partition 2,3,4, the

contributions to Y, —0,are o 0 0O o g

(e}
7 1 12 13° 11 111 13°?

o and 0, ,9,,0 respectively. The three trian-

91192 112? 112 138°
~gles in the first tree under partition 3,3,3 are symmetric,
hence the generating function for the numbers of trees cor-

responding to this complete tree is given by

) _ 1
Z(Ss’clz) - E(Uiz * 30,9, * 20;2;3)

For the remaining tree in Fig. 2, however, the three
triangles are not symmetric. Consider trees corresponding
to this complete tree. If the two end stars are identical,
the generating function for the center star is o,,» since
the two cut vertexes are then symmetric. If the end stars
are not identical, the two cut vertexes are not symmetric,
and the generating function for the center star is 0,,, in-

stead. Now the generating function for the combinations of

the two identical end stars is o as can be seen from

R4
122

Eq. (75). Hence the generating function for the required

numbers of trees is
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FIGURE 2.—Complete trees corresponding to the three parti-
tions of 9 into three eléments, unity excluded, as
~given in Table 11 for » = 7, The polygons represent
complete stars.

Partition
2,2,5 2,3,4 3,3,3

-
"
S ok
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O120;2-2 * {2(82;012) -9 (78)

A LI
; _ _ 12327 111

where the quantity in braces is the generating function for
the combinations of two nonidentical end stars. Now (78)

reduces to

1 2
7{0111612 * (2012_0111)012;2}’

which bears a resemblance to 2(82;012)’ but in which the

terms ofz and o are "weighted" by the factors ¢ = and

232 11

(20,,-9,,,), respectively.

The generating functions which are obtained by Eq.
(77) for Yg— ©

o2 for m £ 5, are presented in Table 12, and

numerical results for o, are given in Tables 2, 3, and 6.

2. Approximation Formula

It is possible to closely approximate the numbers . of
stars o(n,k) in a simple manner. Since S(n,k) is the number

of stars with bond set k(n) on n distinguishable vertexes,

one has(47)

o(n,k)
S(n,k) = 2 :’
=1 7

m|§

where s is the symmetry number of the star of type <
(=1, 2, ..., o(n,k)) with bond set k(n) on n vertexes.
The ratio S(n,k)/o(n,k) is then equal to n! times the aver-

age of the reciprocals of the symmetry numbers of the o(n,k)
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TABLE 12.—Generating functions for Y, — On» the number

n’

trees consisting of two or more stars each, on =

vertexes,

of

A

n n Yn = %n
30 1,1,1 302
1,2 20%
3 %(Uf1 11;2) B i:
4 1 1,1,1,1 120 0., + 1603,
1,1,2 (50, ,,%20, Jo  + 90%
252 2(0111+612)011 * 40?1 * Cfloz
1,3 (0111 2012)011 * 46:1
4 O‘126—11 cil * 0‘510‘2
5 1,1,1,1,1 | 200,,,,0,, * 1502  + 15001i10f1
| + 1250‘1*l |
1,1,1,2 (701111+60112]011 * 60?11 * 30111012
+ 9(80'111*-0'12)0‘51 * 670:1
1’2’2 2(0'111l+3‘0‘112)0'11 * 052

le 2
* 2(0111"'-012)0111 * 7(0111+0111;2)

2 [
+ 3(110,, +40 o2 + 370
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TABLE 12— Continued

-0
n Tn n
1,1,3 ( 4o +20 Jo o2
1111 112 137711 111
+ 30 o+ (220, +90__)o
111 1 111 127 711
+ 260"
11
2
+ +
2,3 (30112 613) 11 9111%2 912
lc o 2
+ = +
2(6111 111;2) 9(0111 012)011
L
+
15011
1,4 (0112 2013)011 0111 12
1e 2
+ +3
7(012 612;2) 2(2011 ° 2)011
+ 9o
11
1
5 o .0+ >(c? +05 ., ) + 30 o2
13 11 2Y712 T1232 12 11
+ 30
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stars, and similarly for C(xn,k)/vy(n,k) for trees and
v(n,k)/u(n,k) for graphs. If the proportion of stars is
small, the complements of most or all stars will be discon-
nected graphs, and, for a given (n,k), the ratio S/o will
be nearly equal to the ratio N/u. If the proportion of
stars is large, however, the complements of many (or most)
stars will be trees or stars themselves, and S/0 will gener-
ally be closer to C/y than to ¥/u. If S = 0, then o = 0,
and if § = ¥, 0 = p. Arbitrarily selecting S = N/2 as the
dividing line between these two cases, one may write

g =

{us/zv s sv/2,
(79)

vs/c - s > N/2,

where each variable is a function of the same (n,k). This
approximation will usually yield either the correct value

or a result very close to the correct value for o(n,k). For
example, all nonzero deviations from the correct values of
o(n,k) for n = 5, as calculated from Eq. (79), are given in
Table 13. Of 121 different bond sets possible, the exact
values are calculated by Eq. (79) in 92 cases (95 cases, for
n = 5). For the nonzero deviations, generally, with in-
creasing o(m,k), the absolute error from Eq. (79) increases

slowly, but the percentage error decreases markedly.
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TABLE 13.—Comparison of approximate values of o(n,k) from
Eq. (79) with exact values, for n = 5, for cases in

which a nonzero difference occurs.

n=1,1,1,2
o(n,k) Percentage
kz,k3 Difference Differen%e
' Exact From Eq. (79)
5,0 6 6.57 0.57 9.52
6,0 37 38.67 1.67 4.50
7,0 55 56.67 1.67 3.03
3,1 30 31.60 "1.60 5.33
4,1 231 234.43 3.43 1.48
5,1 618 622.86 4.86 0.79
6,1 811 815.95 4.95 - 0.61
7,1 586 589.87 " 3.87 0.66
1,2 30 32.40 2.40 8.00
2,2 324 327.60 3.60 1.11
3,2 1380 1386.00 6.00 0.43
4,2 3243 3251.25 - 8.25 0.25
5,2 4713 4719.73 6.73 0.14
6,2 4425 4431.01 6.01 0.14
7,2 2706 2710.40 . 4,40 0.16
1,3 520 524.07 4,07 0.78
2,3 2361 ° 2367 .07 6.07 - 0.26
3,3 6498 6506.06 8.06 0.12
4,3 11793 11806.27 13,27 0.11
5,3 14628 14638.59 10.59 0.07
6,3 12511 12519.70 8.70 0.07
7,3 7282 7287.29 5.29 0.07
1,4 1063 1065.60 2.60- 0.24
2,4 4716 4720.79 4.79 - 0.10
3,4 12561 12567.97 6.97 0.06
4,4 22038 22047 .84 9.84 0.04
5,4 26547 - 26554.52 7.52 0.03
6,4 22222 . 22227.34 5.34 0.02
7,4 12763 12765.86 2.86 0.02
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TABLE 13~Continued

n=1,2,2
o(n,k) Percenta
. ge
z,k Difference Difference
Exact From Eq. (79)
5,0 4 3.71 -0.29 -7.14
6,0 21 22.00 1.00 4.76
7,0 32 33.33 1.33 4,17
3,1 16 16.80 0.80 5.00
4,1 121 123.00 2.00 1.65
5,1 322 325.71 3.71 1.15
6,1 423 427 .22 4,22 1.00
7,1 310 313.60 '3.60 1.16
1,2 16 17.73 1.73 10.83
2,2 169 172.04 3.04 1.80
3,2 712 716.00 4,00 0.56
4,2 1658 1665.29 7.29 0.44
5,2 2409 2413.86 4,86 0.20
6,2 2265 2270.82 5.82 0.26
7,2 1396 1400.18 4,18 0.30
1,3 274 277.78 3.78 1.38
2,3 1216 1221.153 5.13 0.42
3,3 3314 3320.69 6.69 0.20
4,3 5988 5999.98 11.98 0.20
5,3 7422 7431.,63 9.63 0.13
6,3 6356 6364.32 - 8.32 0.13
7,3 3718 3723.20 5.20 0.14
1,4 555 557.56 2.56 0.46
2,4 2414 2418.64 4,64 0.19
3,4 6380 6386.74 6.74 0.11
4,4 11156 11165.62 9.62 0.09
5,4 13429 13436.35 7.35 0.05
6,4 11253 11258.28 5.28 0.05
7,4 6490.84 2.84 0.04

6488
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TABLE 13— Continued

n=1,1,3
o(n,k) Percenta
. ge
Difference Difference
Exact From Eq. (79)

5,0 2 2.57 0.57 28.57
6,0 14 15.67 1.67 11.90
7,0 22 24,17 2.17 9.85
3,1 10 11.65 1.65 16.50
4,1 81 84.64 3.64 4,50
5,1 218 222.86 4,86 2.23
6,1 288 292,86 4,86 1.69
7,1 213 217 .47 4,47 2.10
1,2 10 12.40 2.40 24.00
2,2 114 117.60 3.60 3.16°
3,2 480 486.00 6.00 1.25
4,2 1120 1127.67 7.67 0.68
5,2 1623 1629.73 6.73 0.41
6,2 1532 1537.85 5.85 0.38
7,2 946 - 950.40 4,40 0.47
1,3 187 191.67 4,67 2.50
2,3 821 827.07 6.07 0.74
3,3 2233 2240.91 7.91 0.35
4,3 4028 4042.41 14.41 0.36
5,3 4988 4998,59 10.59 0.21
6,3 4280 4288,66 8.66 0.20
7,3 2511 2516.94 - 5.94 0.24
1,4 380 383.26 3.26 0.86
2,4 1633 1637.76 4,76 0.29
3,4 4296 4302.95 6.95 0.16
4,4 7498 7509.15 11.15 0.15
5,4 9017 - 9024.52 7.52 0.08
6,4 7566 7571.34 5.34 0.07
7,4 4372 4375,52 3.52 0.08
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TABLE 13—Continued

n=2,3
o(n,k) Percenta
. ge
Difference Difference
Exact From Eq. (79)

5,0 2 1.52 -0.48 -23.81
6,0 9 9.33 0.33 3,70
7,0 14 15.00 1.00 7.14
3,1 6 6.30 0.30 5.00
4,1 44 45.00 1.00 2.27
5,1 116 118.10 2.10 1.81
6,1 153 155.49 2.49 1.63
7,1 115 117.60 " 2.60 2.26
1,2 6 6.93 0.93 15.56
2,2 61 62.84 1.84 3,02
3,2 252 254.00 2.00 0.79
4,2 577 581.54 _ 4.54 0.79
5,2 838 840.61 2.61 0.31
6,2 790 793.82 ' 3.82 0.48
7,2 494 496.71 2,71 0.55
1,3 101 103.70 - 2.70 2.68
2,3 429 432,11 - 3.11 0.72
3,3 1149 1152.91 3,91 0.34
4,3 2058 2066.12 - 8.12 0.39
5,3 2546 2552.10 6.10 0.24
6,3 2187 ° 2192.40 5.40 0.25
7,3 1292 1295.76 . 3.76 0.29
1,4 201 203.02 2.02 1.00
2,4 842 845.04 3.04 0.36
3,4 2194 2198.41 4.41 0.20
4,4 3811 3817.99 6.99 0.18
5,4 4580 " 4584.,85 4.85 0.11
6,4 3847 3850.49 3.49 - 0.09
7,4 2235 2237.22 - 2.22 0.10
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TABLE 13—Continued

n =

o(n,k) Percenta
. ge
Difference Difference
Exact From Eq. (79)
5,0 1 0.86 -0.14 -14.29
6,0 5 5.67 0.67 13,33
7,0 8 9.17 1.17 14.58
3,1 3 3.45 0.45 15.00
4,1 23 24.21 1.21 5.28
5,1 59 62.86 3.86 6.54
6,1 79 81.52 2.52 3.19
7,1 62 64.40 2.40 3.87
1,2 3 3.87 0.87 28.89
2,2 32 33.60 1.60 5.00
3,2 131 133.00 2.00 1.53
4,2 298 301.75 3.75 1.26
5,2 432 434,43 2.43 0.56
6,2 409 412.12 3.12 0.76
7,2 258 260,09 2.09 0.81
1,3 54 56.48 2.48 4.60
2,3 223 225.56 2.56 1.15
3,3 592 595.20 3,20 0.54
4,3 1054 1061.13 7.13 - 0.68
5,3 1301 1305.82 4,82 0.37
6,3 1122 1126.12 4,12 0.37
7,3 668 671.25 - 3.25 0.49
1,4 107 108.94 1.94 1.81
2,4 436 438.32 2,32 0.53
3,4 1125 1128.35 3.35 0.30
4,4 1945 1951.11 6.11 0.31
5,4 2332 - 2335.68 3.68 0.16
6,4 1965 1967.63 2.63° 0.13
7,4 1148 1150.096 2.09 0.18
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TABLE 13— Continued

n=>5
o(n,k) Percenta
. ge
Difference Difference
Exact From Eq. (79)

5,0 1 0.29 -0.71 -71.453
7,0 3 3.33 0.33 11.11
3,1 1 0.90 -0.10 -10.00
5,1 15 15.24 0.24 1.59
6,1 20 20.38 0.38 ‘ 1.90
7,1 16 16.80 0.80 5.00
1,2 1 1.07 0.07 6.67
2,2 8 8.40 0.40 5.00
4,2 67 68.00 1.00 1.49
5,2 97 97.18 0.18 0.19
6,2 92 . 93.12 1.12 1.22
7,2 60 60.62 . 0.62 1.04
1,3 14 14.82 0.82 5.82
2,3 52 52.54 0.54 1.04
3,3 132 132.57 0.57 0.43
4,3 229 231.13 C2.13 0.93
5,3 281 282,29 1.29 0.46
6,3 244 245,23 1.23 0.51
7,3 149 150.16 1.16 0.78
1,4 26 - 26.74 0.74 2.84
2,4 98 -~ 98.72 0.72 0.73
3,4 244 245,04 1.04 0.42
4,4 415 417 .18 2,18 0.52
5,4 495 496,17 1.17 0.24
6,4 420 420.85 0.85 0.20
7,4 250 250.80 0.80 0.32
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3. Application to Virial Coefficients

The desired combinatorial factor for the integrals
corresponding to the nth virial coefficient for a pure sub-
stance is then, for each of the o(n,k) stars involved, the
number of stars on distinguishable vertexes which correspond
to the given star on indistinguishable vertexes, and is
equal to n! divided by the symmetry number for the star.

The sum of all these combinatorial fdctors for stars of bond
set k(n) on n vertexes is S(n,k). Hence by obtaining the
symmetry numbers, the combinatorial factors can be calcu-
lated.

The numbers of topologically different stars for
multicomponent systems are always greater than for systems
of a single component, as shown in Table 14, and are ob-
tained by Eq. (77) or may be closely approximated by Eq.
(79). The desired combinatorial factor for each of the
o(n,k) stars is theh the number of stars on distinguishablé
vertexes which corresponds to the given star on n vertexes
distinguishable by species only. This number is n! divided

by the symmetry number for the star.
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TABLE 14.—~—Total numbers of different graphs, trees, and

stars on n vertexes, using 2- and 3-bonds only.

n Graphs Trees Stars
1 1 1 1
1,1 2
2
1,1,1 16 12 9
52 12 7
8 5
1,1,1,1 1024 966 842
1,1,2 576 539 471
2,2 336 312 274
1,3 240 221 194
4 90 81 72
1,1,1,1,1 1048576 1043480 1023950
1,1,1,2 532480 529730 519557
1,2,2 271360 269862 264552
1,1,3 183056 181944 178323
2,3 93920 93332 91409
1,4 48400 48059 47022
5 10688 10592 10346
1,1,1,1,1,1 34359738638
6 48565952
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G. SUMMARY AND DISCUSSION

1. Summary and TImplications of This Work

This thesis develops the combinatorial theory of
nonlinear graphs for specific application to calculating the
virial coefficients. Definitions and terminology for non-
linear graphs and the relationship of the graphs to cluster
functions and to the virial coefficients are given. An
explicit formula for counting nonlinear graphs on distin-
_guishable vertexes, Eq. (20), is obtained, and generating
functions relate the numbers of_graphs'to the numbers of
nonlinear trees and stars, by Eqs. (27), (30), and (33).

The cyecle function is defined, and the tripletkcycle func-
tion, for 3-bonds on n vertexes, is derived in general, and
is given by Eq. (43). The problem of counting nonlinear
~graphs on indistinguishable vertexes is solved byvgeneral?
izing P6lya's theorem to apply to nonlinear graphs with more
than one type of bond present, in Eq. (50). Generating
functions for graphs and trees on indistinguishable'fertexes
are used to obtain Eq. (59), permitting the numbers of trees
to be calculated. All of these techniques are extended to
apply to multicomponent systems and to rooted graphs and
trees. Then with this entire  combinatorial development at
hand, the problem of counting stars on indistinguishable or

multicomponent vertexes is solved by a systematic procedure,
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which is symbolically represented by Eq. (77). A fortui-
tously simple but surprisingly accurate approximation for-
mula for stars, Eq. (79), permits close approximation to be
easily made before or instead of embarking on the detailed
procedure. Tables 2 through 6 give the numbers of all
~graphs, trees, and stars for 2- and 3-bonds on n = 3, 4, and
5 vertexes.,

The utility of the results obtained in this work is
primarily in the extension of systematic methods for count-
ing linear graphs to nonlinear graphs as well, and in a
solution of the formidable problem of counting stars, which
has immediate application to the theoretical development of
the virial coefficients including nonadditivity effects.

By comsidering only topologically diétinct stars instead of
all stars, and multiplying each by the appropriate combina-
torial coefficient, the calculation of the nth virial coef-
ficient is simplified by a reduction in the number of
distinct integrations, from the number of stars on #» .distin-
~guishable vertexes to the number of stars on » indistinguish-
able vertexes, for a system of a single component. For
example, considering 2- and 3-bonds only, for n = 4 the
number of integrals is reduced from 842 to 72; and for

n =5, from 1,023,950 to 10,346, as shown in Table 14.

With the development of high-speed computers, the
tables of calculated numbers of graphs, trees, and stars

will be useful in determining the feasibility of making
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particular calculations. At the present time, the practical
limit for calculations involving even the simplest nonaddi-
tivity effects is apparently at n = 4, for the fourth virial
coefficient. Compelling reasons, depending on the knowledge
of accurate two-body potentials, and to a lesser degree,
accurate three-body potentials, would be necessary to jus-
tify even the calculation of the 72 different integrals re-
quired for n = 4, for a pure substance. For multicomponent
systems, the number of distinct integrations is greater, so
that the practical limit for calculation of the integrals is
reduced from that for pure substances,.and even more com-
pelling reasons would be necessary to justify the calcula-
tion of the fourth virial coefficient including three-body

nonadditivity effects.

2. Suggestions for Future Research

This research uncovers a number of important problems
and topics for future investigation:

1. By suitable transformation of Mayer cluster func-
tions, Ree and Hoover(23’37_39) have been able to substan-
tially reduce the number of integrations required to calcu-
late virial coefficients assuming pairwise additivity. It
should be possible to perform corresponding transformations
when nonadditivity effects are included, but the transforma-

tions themselves may be considerably more complicated.
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2. As indicated in Sec. E.5, the radial distribution
function cofresponds to all doubly rooted stars containing
a 2-bond between the roots, from which this 2-bond is then
removed. Combinatorial theory to obtain the numbers of such
~graphs which are topologically distinct would be useful,
especially for cases in which nonadditivity effects are in-
cluded, which become too cumbersome to count by inspection
for stars on n 2 4 vertexes. Systematic procedures for
counting related types of graphs, corresponding to correla-

(7,14,49) yould likewise be of value.

tion functions,

3. With the use of suitably accurate potential func-
tions, the third and fourth virial coefficients, including
three-body nonadditivity effects, could be calculated and
compared to results from experimental data. A better
appraisal than is presently possible of the effect of vari-
ous approximations in potential functions and of the contri-
bution of nonadditivity effects could then be made.

4. Since the combinatorial results of this work have
been calculated manually, but the systematic procedures are
easily amenable to computer calculation, these results may
be extended to n 2 6, or special cases calculated as desired.
Particularly convenient estimates of the numbers of stars
may be made by Eq. (79), before obtaining the exact numbers

by the detailed procedure, since questions of feasibility

may be important, due to the large numbers of stars involved.
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During the past two decades, applications of graph
theory have increased rapidly in number and may well con-
tinue to do so. Wherever interrelationships or interactions
occur, whether of molecules, men, or machines, graph theory
may prove to be a useful analytical tool in studying the
interrelationships themselves. It is therefore by no means
unlikely that the combinatorial theory of nonlinear graphs,
developed in this work, can be applied in yet unforeseen
ways to help in gaining scientific understanding and in ex-

panding an increasingly sophisticated technology.
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NOMENCLATURE
nth virial coefficient in Eq. (4), defined by
Eq. (5) or Eq. (7)
Variable defined by Eq. (21)

Maximum number of j-bonds in a graph on =n ver-
texes, given by Eq. (17)

Number of cycles of length < in an element of
G in the cycle index Z(G)

Function defined by Eq. (24)

Number of trees of bond set k(w) on »n distin-
~guishable vertexes, defined by Eq. (24)

Generating function for trees on distinguishable
vertexes, defined by Eq. (24)

Greatest common divisor of < and j

Cycle function for j-bonds on n vertexes, de-
fined by Eq. (39)

Cycle function for j-bonds on Sn

Set of arbitrary functions, in Eq. (36)
Cluster function, defined by Eq. (2)

Group of permutations of elements of the set §

Permutation group for j-bonds on graphs of
vertexes

Number of elements of G; which consist of bi
cycles of length < (¢ =1, 2, ...)

Type of bond in a graph, associating J§ vertexes
Variable defined by Eqs. (29)
Boltzmann constant, in Eq. (2)

Bond set for a graph on n vertexes, defined by
Eq. (13)
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Bond set for a graph on n vertexes
Number of j-bonds in a graph

Least common multiple of Z and 4
Number of particles in a configuration
Avogadro's number

Number of graphs of bond set k(n) on » distin-
~guishable vertexes, given by Eq. (20)

"Total number of possible graphs with j-bonds on

n distinguishable vertexes, given by Eq. (19)

Total number of graphs on n distinguishable ver-
texes, using all combinations of different
types of bonds

Generating function for graphs on distinguish-
able vertexes, defined by Eq. (24)

Number of vertexes in a graph
Variable defined by Eq. (8)
Number of vertexes of species 7 in a graph

Composition set for root vertexes in a rooted
~graph

Pressure

Partition set of the integer n, defined by
Eq. (38)

Variable defined by Eq. (68)
Molar gas constant
Set of coordinates of particle <

Sum of all cluster terms which correspond to
stars on n distinguishable vertexes, in
Eq. (6)

Function defined by Eq. (24)
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Sum of all cluster terms which correspond to
stars on n vertexes distinguishable by species
only

Symmetric group of permutations of n elements

Direct product of s symmetric groups correspond-
ing to n, defined by Eq. (63)

Number of stars of bond set k(n) on »n distin-
~guishable vertexes

Generating function for stars on distinguishable
vertexes, defined by Eq. (24)

Number of species in a configuration
Symmetry number of a star of type <, in Eq. (32)
Absolute temperature

Potential energy of interaction of a configura-
tion of ¥ particles, given by Eq. (1)

Potential energy of interaction of the set m of
particles, in Eq. (2)

Volume

Molar volume

Arbitrary variable, in Eqs. (24)

Variable defined by Eq. (9)

Set of arbitrary variables, in Eqs. (62)

Mole fraction of species <, in Eq. (9)

Set of arbitrary variables, defined by Eq. (25)

Weight assigned to a graph with bond set k(n),
defined by Eq.. (26)

Configuration integraI; defined by Eq. (3)

Cycle index of the permutation group G, defined
by Eq. (36)

Cycle index of Gj,'given by Eq. (48)
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Cycle index for nonlinear graphs on n vertexes,
given by Eq. (49)

Cycle index for j-bonds on n vertexes, given by
Eq. (67) -

Variable defined by Eq. (6)
Variable defined by Eq. (11)
Number of trees of bond set k(n) on n vertexes

Generating function for trees, defined by
Eq. (62)

Function defined by Eq. (62)
Function defined by Eq. (71)
Number of graphs of bond set k(n) on n vertexes

Generating function for graphs, defined by
Eq. (62)

Generating function for graphs which consist of
exactly ¢t trees

Product operator
Summation operator
Number of stars of bond set k(n) on n vertexes

Generating function for stars, defined by
Eq. (62) ;

Function defined by Eq. (62)
Function defined by Eq. (75)

Denotes generating function for graphs, trees,
or stars ' '

Denotes generating function for rooted graphs,
trees, or stars

Denotes generating function for doubly rooted
~graphs, trees, or stars
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Conventions
n! Product of factorials of the elements n. of n,
: defined by Eq. (12)

x" Product of elements z; of x, raised to the
powers n; of m, respectively, defined by
Eq. (10)

[a] Denotes maximum integer not greater than a

(Z] Binomial coefficient, defined by Eq. (15)

[ﬁ} Product of binomial coefficients of respective

elements of B and k, defined by Eq. (22)
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APPENDIX A
DERIVATION OF EQUATION (28)

Equation (28) is an explicit formula for counting
nonlinear trees on distinguishable vertexes. The general
procedure for its derivation is to expand the logarithm of
Eq. (27), perform a number of algebraic manipulations, and

”yk(n) on both sides of the result-

equate coefficients of «x
ing equation.

Formally one may write

4mtl
)

4n (1 + x) = ) LZlﬁ——— z".
m=1
Hence Eq. (27) yields
oo ( )m+1
' (z,y) = ] {0 (z,y)}".

m=1

Substitution from Eﬁs, (24) results in

o n m+1 oo nym
Je, Sp- ] {_z_zv = (A1)

On the left side of Eq. (A.1), let n = n*. Then for m > n¥*,
all powers of z on the rlght w111 be greater than n*, and

*
none of these will correspond with " on the left. Hence

A

m & n*, and one may write
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oo .. n* n¥* . m+1 (n¥-mt1 nym
S ~1 L
L Cox wT = Z—(-——%—-—-{.Z lvnw} . (A.2)

n*:]_ * m:]_ n=1 ¢
The upper limit on the summation over » in Eq. (A.2) is
determined by the largest value of »n for which there will

*
be a term in a2 to correspond with the one on the left side
*

of the equation. The coefficient of «"  in the quantity in
braces is -

e(n*) ¢=1"7 ~ "1
where the summation is over all compositions (ordered parti-
tionsfzg) of n* into m nonzero elements nz (7 =1, 2, e,
m) such that-nz =1, 2, ..., n*—m+1l, Permutations of the
partitions (of the subscripts < in the n?) will yield iden-

tical contributions but must be considered separately in

the summation process. From Eqs. (20), (22), and (24), one

obtains
(5,01
N % = z ﬁ J n'L k(n’?)
T k(nk) j=1 k(n3)

*
The coefficient of «° on the right side of Eq. (A.2) then

becomes
no o mt m "% B.(n3)) 1 (na
A — I S ITTT N P ANV W
meio M em*) U g=g= k(ng) (kg (n3)

where the product over j and the summation over k(n?) have

been interchanged since their variables are independent.
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% (%
Now the coefficient of x” yk(n )

on the right side
of Eq. (A.2) is obtained, for each m and for each ordered

partition of n*, from those terms in (A.3) for which

o) | i),

1=1

or

kj(n*) = glkj(njz) (5= 2, 3, cou, n*). (A.4)

1

The maximum value of n* is n*. For 4 > »n%*, k.(n%) = B.,(n%*)
2 1’ gt Jgo 1
= 0 and only a factor of unity is contributed from the prod-
ucts in (A.3). Therefore the upper limit in the product
over j may be extended from n? to n*, and the products over
7 and j may be interchanged, since their ranges are then
independent. For a particular j, the summation over k(ni)

involves only that j. Hence one may write

n# , ’
m "1 ' [Bj(nﬁ)] _ n* m %, {Bj(nz) . A.5)
o . & . o
1=1g=1 k(ni) kj(ni) Jj=1i=1 kj n%) kj(ni)

where the primes indicate the condition‘(A.4). Writing

K, m B.(n.)
L+e)? =TT @a+e? *,

=1

where Kj is defined by Eq. (29), from Eq. (18) one has
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0 xy tkj(n#) & B;§”§) B (n%) tkj(ni).
ki(n*)=o kj(n*) i=1 RJ(n ) k()
k.(n*)
Equating coefficients of ¢ J , one obtains
' K. m B .(n%)
[ S =TT [ I ]. (A.6)
kj(nf) =1 kj(nﬁ) kj(nz)

Substituting Eqs. (A.5) and (A.6) into (A.3), and equating

n*yk(n*)

coefficients of x in Eq. (A.2), results in

eln* k() )} _ (—1)’"+1 o1 K
* Z )

nEr
! e ()M juy L (n%)

or, upon dropping the asterisks and making use of Eqs. (22)

and (29),

which is Eq. (28).
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APPENDIX B
CONCEPTS AND DEFINITIONS IN GROUP THEORY

A group may be defined as a set of elements and a
binary operation (denoted hereafter by *) on pairs of the
elements such that:

1. The operation performed on every ordered pair of
elements of the group yields a unique element of thevgroup;

2. The binary operation is associative (but not
necessarily commutative).

3. An identity element of the.group exists such
that the operation performed on any given element of the
~group and the identity element, in either order, yields the
~given element.

4, For every element of the group, there exists an
inverse element such that the operation performed on the
~given element and its inverse, in either order, yields the
identity element.

More briefly, a group is a set of elements, including
identity and all inverse elements, and a well defined;
associative binary operation on these elements.

A permutation is a one-to-one mapping of a set onto
itself. A set of permutations themselves may form a‘group;
termed a pérmutation group. The number of elements being
permuted (in each permutation) is the degree of the permu-

tation group, while the order of a permutation group is the
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number of permutations in the group. The order of any group
is the number of elements in the group. The group of all
permutations of a set of elements is called the symmetric
group. If there are n elements in the set, the symmetric
~group is designated by Sn.
If g is an element of the group G, write g ¢ G. A
one-to-one mapping of the elements of two groups onto each

other is termed an tsomorphism if, for g, € G, g, € G, and

1

h € H, h2 e H, whenever g, is mapped to h1 and g, to hz,

then g, T g, is mapped to hl + hz. Every group is isomor-
phic to a ﬁermutation.group of its own elements.

This work is concerned only with finite groups, that
is,Agroupé of finite order. For a finite group, an auto-
morphism 1s an isomorphism mapping the group onto itself.
Two graphs are said to be automorphic, or topologically
equivalent, if there is a one-to-one mapping of their ver-.
texes which preserves all adjacencies by bonds. The group
of a graph is the group of automorphisms of the graph.

The set of ordered pairs of elements of two groups,
G and H, form a new group, the direct product G x H, with

a group operation defined by
(g,>h) 1 (g,,h,) = (g,tg,,h th,),

where g, afld‘g2 are elements of G, and %, and h, are ele-

ments of H.
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A subgroup H of the group G is a subset of the ele-
ments of G, and itself forms a group with respect to the
binary operation defined for G. The identity element of
a subgroup must be the same as that of the whole group. A
nonempty subset of a group is a subgroup if the group opera-
tion performed on any two elements of the subset yields an
element of the subset, and the inverse of each element of
the subset is also in the subset.

The set of elements formed from the group operation
of all elements of a subgroup H of the group G, in turn
with a fixed element of G,is called a éoset of H. A coset
of H contains'the same number of elements as H, and any two
cosets of H are either disjoiht or identical subsets of the
elements of G.

The above terms utilized in group theory are employed
in this work. Only a brief description of them has been
~given here. For a more complete development, refer to the

book by M. Hall.(18)



-128-
APPENDIX C

CALCULATION OF THE NUMBER OF TOPOLOGICALLY DISTINCT
GRAPHS ON n VERTEXES CORRESPONDING TO A GIVEN
GRAPH ON »n INDISTINGUISHABLE VERTEXES

Define a similarity class(47) of vertexes as a subset
of the vertexes of a graph such that, if the vertexes were
labeled, interchangé of any vertexes within the subset would
result in a topologically equivalent graph. In general the
n vertexes of a graph are partitioned into a number of simi-
larity classes, which may be denoted by s. That is, there
are s, vertexes in class 1, s, in class 2, etc.

The number of topologically distinct graphs on n ver-
texes with s similarity classes of the vertexes, correspond-
ing to a given graph containing r similarity classes of =
vertexes, is obtained directly from the theory of distribu-

(29)

tions developed by MacMahon. This number is the coeffi-

cient of bp(n’s) iﬂ-Dp(n’n)cp(n’r), where

]
k)

p(k,k) is the partition set corresponding to the partition
k of k; (k) is the partition representation of a symmetric
~function of the elements of X, in general of the form

k. k
. 1 2 3
Z xi xj xk ey
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the summation being taken over the indexes < # j # k ...;

and Dy, is a Hammond obliteration operator,(zg) defined by
g o k
_ 1 d
Dy = ?T{.Z i1 aa.} ’
=1 7
where a. is the coefficient of ti in the expansion of
s |
(1 + a2, t)
e

and, from Pélya'é theorem, is given by

oo~ oo el

. D ‘
which is obtained from z(S,) by replacing fi% in £P by

It follows that

Dnicnb = (a/n,),

0 if m is not in n,

D, (n)

Dm(m) 1,

where (n/ni) represents (n) with the element ns deleted

(obliterated). For convenience of calculation, write

LRNUOR



-130-

where the sum is taken over all partitions (k) of %, and
D(k) is a partition-obliterating operator.

For ekample, suppose

n =3,
n=1,2,2,
r =1,1,3,

s = 1,1,1,2,

Then
p(s,n) p(s,r) _ 2 2
D *e 4 Dlpzclcs.

But
01 = (1)171‘:
c, = (3)b3 + (1,2)b1b2 + (1,1,1)bi,
Dy =Dy
b, = D(z) ¥ D(l,l)'

Hence ;

D ,Die2e, = D DE{(1)*(3)b2p, + (1)2(1,2)b}D,

+ (1)%(1,1,1)p]}

i

D2{2(1) (3)b%p,}

+ D2{2(1)(1,2) + (L*(2)Ipip,

+ D2{2(1)(1,1,1) + (1)%(1,1)}p]
p,{2(1)% + (1) + 2(2) + (2)}5,

+0,{2(1,1) + (1,1) + 2(1)2}bf

p,{3(1)% + 3(2)}plp,
+ D, {3(1,1) + 2(1)%}p}

3 5
6b1b2 + 2b].
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The coefficient of bP(®»5) - bibz is 6, which is the coeffi-
cient of 0 o  in Table 12 for n = 1,2,2,

In.géneral n; r, and s can be any three partitions
of n, and n and r may be interchanged if desired for conven-

ience. To calculate the total number of graphs without re-

~gard to s, take all bi = 1 and calculate Dp(n,n)cp(n,r)‘
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PART I1

CHEMICAL THERMODYNAMICS OF OPEN SYSTEMS*

%#Some results of Part II of this thesis have been

revised from part of a paper by A. H. Larsen, C. S. Lu, and
C. J. Pings, "Thermodynamics of Chemical Equilibrium—yV.

Multiple-Reaction and Open Systems,'" Chem. Eng. Sei. 23,
289 (1968). Previous papers in the series(g) considered

closed systems only.
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A. INTRODUCTION AND BACKGROUND

Classical thermodynamics is a phenomenological theory
relating certain macroscopic properties of mafter under
various conditions. It is usually limited to describing
the behavior of closed systems. Furthermore, it is most
often restricted to equilibrium or near-equilibrium condi-
tions, in that any two states of a system are assumed to be
associated by some reversible path, and the thermodynamic
properties of these states are rigorously defined only under

(3)

equilibrium conditions.,

1. Closed and Open Systems

While a closed system permits only an exchange of
energy with the surroundings, an open system permits a
transfer of both matter and energy across the boundary of
the system. In an bpen system, the thermodynamic properties
and the masses of the various constituents may be varied in
an arbitrary manner.

For closed systems, the first law of thermodynamics
establishes the existence of a state function E, called the
internal energy. Assume that this function exists also
when the cbmposition varies iﬁ an arbitrary ménner.(lo)

Similarly, the second law of thermodynamics establishes the

existence of a state function S, the entropy, for a closed



-134-

system. Assume that this function exists also for an open

system.

2. The First Law of Thermodynamics

For a closed system, the first law of thermodyna-

mics(7) may be written
dE = 8q — Sw,

where § is a variation operator used to indicate that g and
w are not state variables, but are path-dependent functions
instead. Here ¢ represents heat transferred to the system,
and » work done by the system;

Assume that F exists and is a state function for open
systems also. Define g to be the heat transferred to an
open system due to a temperature gradient, and w to be the
work done by the system in addition to that required to in-
troduce or remove material at the boundary.* Then material
crossing the boundary, either entering or leaving the sys-
tem, has an additional contribution to the differential

change in internal energy:

dF = 8q — 6w + ] 7an(®), (1)
k=1 :

*This definition of w for an open system differs from

the definition of work used by Sage,(lz) who includes the
work involved in transferring material across the boundary.
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where H is the partial molal enthalpy of species k enter-

=(e)
k
ing or leaving the system, and includes the work required to
transfer material across the boundary. Kinetic and poten-
tial energy changes are neglected. If the only work done by

the system is expansion work, one has
Sw + 6D = PAV, (2)

where 6Dv is the differential of viscous dissipation of
energy. Here the time derivative de/dt is the same quan-

tity as denoted by E, by Bird et aZ.(z)

3. Chemical Potential

From the definition of Gibbs (free) energy ¢ and the
first and second laws of thermodynamics for closed systems,
one has for open systems in the absence of external force
fieldsclo)

c .

d¢ = — sdr + vdp + ] wdn,, (3)

k=1

which is termed Gibbs' equation. The chemical potential Hy

is a state variable, and is defined by

a . .
u = (3] (#)
k ony T,P,n,

where the subscript n, means that the number of moles of
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each species except species k is held constant. Hence My
may be considered as either a function of temperature,
pressure, and composition, or a function of temperature,

volume, and composition, so that

c
dllk = — Sde + deP + zzlukzdnl (k = 1, 2" cees C)
(5)
or
. - c
duk = - Sde - Pde + Q‘Zluézdng (k =1, 2, ..., c),

(6)

since from Egqs. (3) and (4) and the definition of Helmholtz
energy 4, one obtains(lo)

r 3

jou

k _ =
0T JP,?’I. - Sk’ ; (7)
fau 3\
k — .
5T = Vis (8)
0P Jp,n k?
'Bu ) 4
k _ % ,
\'BI-T—J V,n = Sk’ (9)
2] P (10)
— = —P,.
oV b n k
Also g, and uéz are defined by
oy 2
K 3°G
k& gy T,P,n_ amgony T,P,n_ ’
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ou 2
Mig = [ﬁﬁﬁ} = [5%“%%“] ’ (12)
LT, Vyn kKT, V,n
m m

in which the subscript n, means that the number of moles of

all species except k and % is to be held constant, and §k

and ?k, defined bycg)
¢ 3
5, = |8 , (13)
. kJT,V,nQ
~ (9P )
Pr = oy , (14)
\ kKIT,V,n,

possess a formal similarity to partial molal quantities,

but at constant volume instead of constant pressure.

4, Material Balance

Consider differential changes occurring in a homo-
~geneous multicomponent open system. The differential change

dn, in the number of moles of species k consists of two

(Z)
k

k

parts: an internal part, dn due to chemical reaction,

’
and an external part, dnée), due to matter crossing the
boundary of the system. Suppose the system contains e
species involved in r independent chemical reactions, which

may be expressed in the form

c
Y Vohr = 0 (2 =1, 2, veuy, 7), (15)
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where Vg is the stoichiometric coefficient for species k
in reaction <, and Aé represents the chemical symbol for
species k. By convention Vg is taken to be positive for
products, negative for reactants, and zero for species not

contributing to reaction <. The internal contribution to

the differential change in the number of moles of species

k may then be written(lo)
(£) = 7§
dny izlvikdgi’

where Ei is termed the molar extent of reaction <. Hence

r
dny = Y ovode, v dn®) k=1, 2, L, 0). (16)
=1

This equation is the basic differential material balance
(conservation of mass) for an open system in which chemical

reactions occur.

5. Chemical Equilibrium in Open Systems

The behavior of the system will be constrained to

paths of chemical equilibrium, for which the necessary and

sufficient condition is, for each reaction,clo)

C
kzlvik“k = 0 (2 =1, 2, veu, 1) [eq] . (17)
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Details of the derivation for open systems are given in the

Appendix. Differentiating in general, Eq. (17) becomes

C
kZ v, du, = 0 (£ =1, 2, «v.y, 7) [eq]. (18)
=1
This differential form of the condition for chemical equilib-
rium is convenient since it is linear in the chemical po-
tentials, while an equivalent criterion, in terms of an
equilibrium constant, is nonlinear in the activities of the

species in the system.

6. Assumptions and Definitions

Certain assumptions and limitations are imposed when
extending classical thermodynamics to open systems. The
state functions E and §, established for closed systems, are
assumed to apply to open systems as well. This assumption
"is strictly applicable only when describing equilibrium
stafes. An equilibrium state can be rigorously maintained
in an open system during the transfer of material across the
boundary only if the material transferred 1is at the same
state as the system, or if the rate of transfer is infini-
tesimal. Assume therefore that a locus of equilibrium
states caﬂ be approached as closely as desired in an open

system.
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It is difficult to make an unambiguous distinction
between heat crossing the boundary due to a temperature
~gradient and that flowing with material, and also between
work done by the system to transfer material across the
boundary and other work done by the system.(4) In this the-
sis, by definition, the heat ¢ 1is festricted to that energy
crossing the boundary of the system due to a temperature
~gradient. The work w is considered to be limited to work
done by the system in addition to that required to transfer
material across the boundary under the same conditions as
in the system. Only '"simple systems"(s) will be considered,
for which the effect of external force fields, capillary
action, distortion of solid phases, and internal adiabatic
walls is neglected. If kinetic energy changes are also
neglected, the work done by the system is expansion work

only,

7. Scope of This Work

The independent relationships describing the behavior
of open systems constrained to paths of chemical equilibrium,
expressed by Eqs. (1), (5) or (6), (16), and (18), consti-
tute the framework from which the effect of externally
introduceékcomposition perturbations may be calculated.

General thermodynamic expressions will be obtained for the
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partial derivatives of the extent of chemical reaction with
respect to external composition perturbations by a single
species for multiple-reaction systems constrained to paths
of chemical equilibrium under various conditions. Consider-
ation will be given to heat and temperature effects, evalua-
tion of derivatives of the extent of reaction for ideal
solutions, and extension of the results to the general case

of multicomponent perturbations.
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B. ISOBARIC CONDITIONS

It is convenient to develop the composition deriva-
tives first for isobaric conditions, by use of Eq. (5), and
then similarly for isochoric conditions, using Eq. (6) in-
stead. In this section the desired derivatives for isobaric
conditions are derived, and the results are presented in

Tables 1 and 2.

1. Derivation of Equations

From the definitions of Gibbs energy and partial

molal quantities, one has

-5 =k "k

Substituting the resulting Eq. (5) into Eq. (18), the condi-
tion of chemical equilibrium, one obtains at constant pres-

sure

ukldnz} =0 (2 = 1; 2, veey P)
[P,eql. (19)

Then, using Eqs. (16) and (17), Eq. (19) results in

r ' (e) '(AH)h _
Lo VnaVighadts * L Vit = T 47
H

1k, 2
v (h =1, 2, «o., 1) [P,eq], (20)
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where (AH). is the molal "heat of reaction ¢," defined by(g)

c —
L voHye : (21)

(i =
=1

One may similarly define

(av) . = vika. ‘ (22)

te~0

k=1

The first law of thermodynamics, Eq. (1), in the absence of

viscous dissipation, from Eq. (2), becomes

dE = 8§q -~ PAV + % E(e)dn(e) [E. 1. (23)
k=1 K k vit

Now from the definition of enthalpy, at constant pressure,

Eq. (23) results in

A = 8q + g 7% an (e [P,E]. (24)

Considering the enthalpy as a function of temperature,

pressure, and composition, one has at constant pressure
" [P], (25)

where Cp é is the isobaric molal heat capacity of the system
>

at constant composition, defined by(7)



»
or P.on

’

ncC = { (26)

and » is the total number of moles present. Equating the
expressions for d# in Eqs. (24) and (25), and substituting
from Eqs. (16) and (21), one obtains

3

1 —7(%) }dn (©)

k

He~10

r
8q = nCP,ndT_+ iZI(AH)idEi +

[P,E,]. (27)

The independent equations, Eqs. (20) and (27), obtained

from the condition of‘chemical equilibrium and Gibbs' equa-
tion, and from the first law of thermodynamics for isobaric
conditions, respectively, may be divided by dnée), with only

species j crossing the boundary of the system, to yield

(3.
i’£,2vhkvi2”k£k;;;éT}n(e) * % Yuk¥ix
k
(AH) )
- — h{ 2 (h =1, 2, ooy 2) [Pyeal, (28)
Snj Jnée) :
9E .
6% T 7
= C + AH . __(—T
dn \© (e) " P’"{aniej] (e) ; ( )t[an.e ] (e)
J nk J nk J nk
= =(e)
+ H —.Hje [7,E,]. (29)

The summations over 7 are from 1 to », and those over k and
% are from 1 to e¢. The symbol 8q has been retained to

emphasize that it is not an exact differential.
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2. Results

The partial derivatives of gi, q, and T with respect
to n(e) under isothermal-isobaric or adiabatié—isobaric
conditions are obtained by solving Eqs. (28) and (29) simul-
taneously. The resulting equations for the derivatives of
the chemical reaction parameter Ei may be expressed in the

matrix form

Bz =y, (30)

where z is a column matrix, the elements of which are the
partial derivatives of &; (z =1, 2, «e., ). The set of

desired derivatives may be obtained by inversion:
z = B ly. (31)

The elements of B and y for various cases are given in
Table 1. Corresponding heat and temperature derivatives,
from Eq. (29), are presented in Table 2.

For a single reaction, at constant temperature and

pressure, Eq. (31) becomes

{ 9L - % ViMik o
= 32)
(e) ’ (
") p,ne) I VeVeHrs,
k )

where the subscripts % and ¢ pertaining to the reaction have
been dropped, since both these subscripts are equal to

unity. For two chemical reactions, one obtains
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TABLE 1.-—Partial derivatives of the chemical reaction

parameter Ei with respect to n§e) under various

constraints.

[q,P,Ev,is]
[r,v]
(T,V,is]
[T,V,pg]
[q,V,E,]

[q,V’Ev’is]

l¢,7,E,,pgl

I%* + K(Aﬂ)i
I'

*
I* + K1(Av)i

*
I* + szi

It o+ K'(AE)i

T* + K'(BE),

+‘K1(Av)i

I* + K'(AE)i

+ K V.
217

Constraints Bhi yhj
[T,P] I J
[T,P,is] I* J*
[q,P,F,] I+ K(AH) 7 - K718}

_ 7 gmle)y
J* — k{H . i }

)
J'
JE — K V.,
17
J*¥ — K

J! —'K'{E.—§§e)}
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Table 1—Continued

In each case z = B_ly, where z is the column ma-
trix of the set of derivatives of gi (=1, 2, v, 7)

with respect to n§e). The elements of B and y are

shown.
I = gzvhkmum J = "7% AT
I = kgz"hk"u“z@z It == % VikM ik
I*=§£7§X@'§l:£—yh\~)i J*=§2[\~’h_g‘hfi]
‘ k J
K = ;%%—% : K, = (M)h[g—ﬂf,n
k' o= ﬁéﬁgl% | | K, = gz *n

V,n
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TABLE 2.—Heat and temperature effects from composition

perturbations.*

S - § m).[_?%] 7. )
dnje T,P’";Ee) ee ' ane T’P’née) ’ ’

J k J 2"y
+ 7, ?-1'(.9)}
J dJd
8 z %t ~ —(e)
——%—T ‘ = ) (AE).[——T—T} + E, — HS
dn 5° r,v,n 8 P “long r,v,n%) o
T 1 % 9 7
—TT} il {.Z (88) ["’(’Tl
[ane q,V,née) ronli= ane q,V,née)
+ B, ﬁqe)}
dJd J

*Viscous dissipation is neglected.
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| 28 B y .—B_ y_ .
__TLT = 22 1J 12 2J [T,P] (33)
e B — B, B
an T,P,née) 11722 12721

% % mvzzpkmukzujm
3 2

[r,P], (34)

% lzm nvlkvszQnukﬁumn
3 ? H

where Dy, may be conveniently defined in determinant form by

v v
D = | . (35)
' v V

2k 28

The corresponding derivative of &, is given by a similar
expression, by interchanging the subscripts 1 and 2 wherever

they appear in Eqs. (33), (34), and (35).
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C. ISOCHORIC CONDITIONS

The development of the desired derivatives for iso-
choric conditions proceeds in a manner similaf to that for
isobaric conditions, but by using Eq. (6) instead of Eq. (5)
for the differential of the chemical potentials.

From the definition of Helmholtz energy and Eq. (13),

one may write

~ H
- Sk = _K_?__K’ (36)
where
~ _ [oE |
k Nplp v,n

L

Substitution of Eqs. (6) and (36) into Eq. (18), at constant

volume, results in

e W, — E e
k k , =
Zlvik{———fr—— dr + zzluézdnz} = 0

(2 =1, 2, «v., 7) [v]. (38)

Then from Eqs. (16) and (38), one obtains

yov, vl dE. + ) v ul = —
PRI DR A T Dl 7

(h =1, 2, «o., ») [V,eql, (39)

by the use of Eq. (17), wherecg)

E (40)

ile~10

WE); = L VirFxe
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(9)

Similarly, one may define

v., b, . | (41)

P, = L VirPr

~
ne~Q

Now considefing the internal energy E as a function
of temperature, volume, and composition, and using Eq. 377,

one has at constant volume

. e .

de = nCV’ndT + kz1Ekdnk [vl, (42)
where C, is the isochoric molal heat capacity of the sys-

b4
tem at constant composition, defined by(7)
_ | 9F
ey, = (35, - (43)
n .

’

From Eqs. (23) and (42), upon substitution of Eq. (16), one
obtains, at constant volume,

3 S 1z ()14, le)
§q = ch’nQT + iZICAE)idEi + kZI{Ek~Hk fdng

[V’Ev]' (44)

Now Eqs. (39) and (44) may be divided by dn§e), with
only species J crossing the boundary of the system, to ob-

tain .

5.
z '
) ”hkviz“éz{g;TzT} ¥ ; VurHik
n

14K, 4 J ée)
(AE .
_ S T)h B ) n=1, 2, e., #) [V,eql, (45)
Bnge) (e)
J nk
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'-—-”(—T‘S ‘ - ne. '—T—'B'T + § (AE) . —_.(_Tagi
dn \© (e) v, Bn.eT (e) =1 Ylan'® (e)
g Ing Jonyg i ‘ng
~ =(e) |
+ B, - Hje [v,B,1. (46)

The simultaneous solution of Eqs. (45) and (46), under
either isothermal-isochoric or adiabatic-isochoric condi-
tions, in much the same manner as for isobaric conditions,
yields solutions of the form of Eq. (31) for the derivatives
of Ei with respect to n§e). The solutions are given in

Table 1, with the corresponding heat and temperature effects

in Table 2.
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D. IDEAL SOLUTIONS

Explicit evaluation of several of these formulas for
a simple equation of state is informative. Define an ideal

solution(7) by

M, = uZ(T,p) + RT &0 =, [is], (47)

for species k, where uZ(T,P) is the chemical potential of
pure species k and is a function of temperature and pres-
sure alone, and @5 is the mole fraction of species k. Then

o]

duy ou |
du, = [ k]pdT + {__K]po + d(RT tn x,)  [is], (48)

oT oP
and
(9 4n xkW
u = RT
ki { 8n£ Jr,pn
= ol 1] o [is], (49)
\nk nJ ’
where 6k2 is the Kronecker delta function, defined by
1 kK = %,
S = (50)
kel 0 K # L.

Also, from Eq. (47), one obtains

1y, uy, | .
['@‘p“}T,n = {W]T [is].

Then Eq. (48) becomes, at constant temperature,
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du, = ’I7de + RTd n x, [T,is],
from Eq. (8). Hence

(3 an ) .

ul, = RT + V, P [is]

kL { ang Jo,v,n k™%
m
=RT’§—72&—1-\ + 7V P [is], (51)

o n k™ 2 ’

with the first term on the right side following in the same
manner as Eq. (49). Then by substituting Eqs. (49) and

(51) into the general terms B, and Ypio as given in

Table 1, one obtains the corresponding terms for ideal solu-
tions, whichvterms'are also shown in the table. In the case
of a single reaction at constant temperature and pressure,

Eq. (32) becomes
V.

A
d j .
[ %e)] T e o2 . ‘ [is],
R B
k=1"k
where v is given by
c
v =1 vy,

and for two reactions, one has from Eq. (33)
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. =
an JT,P,née)
v2
o - B - ) - o - B - )
~1 X . X ~2 ~2 X X ~i~2
J k J k k
v?2 v? VoV 2
X’lk — v z 2k v2l — 1k "2k v v
D Lg%y ~2 KD ~1~2
[is], (52)
where Vs is defined by
e
v, = Z Vg | (53)

The result for the derivatives of £, 1s obtained similarly,
~with the subScripts 1 and 2 interchanged wherever they

appear in Eq. (52). If an isochoric system also obeys the
perfect gas law, the solutions are simplified further, and

the results are given in Table 1.
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E. MULTICOMPONENT COMPOSITION PERTURBATIONS
1. Extent gﬁ'ReaCtion

These results may easily be extended to the case of
any number of species entering or leaving the system simul-

taneously. Let

(@) .4 _ §
J ’

e
n

—dt = .t
J-—l
and
(e)
NONNS,
J (e’

where mge) is defined as the net mole fraction of species jk
(e
d

in the mass crossing the boundary of the system, and n

is the molar rate of species J entering the system. Then

Under the constraint to paths of chemical equilibrium, for

example at constant temperature and pressure,

L] dg’ . | .
S B, 0, ) e
Hence
= : T,Pj,
HE—‘ jlegzggj}n(e)nJ [ :
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and
4 0E&. e 1 2E.
7 (e) 1
T =) @ ["’T)’] . (54)
[an € 7, P j=1 9 anje T,P,née)

Similar equations may be written for adiabatic-isobaric,
isothermal-isochoric, and adiabatic-isochoric conditions,
by simply replacing the subscripts T and P in Eq. (54) by

q and P, T and V, or‘q and V, respectively.

2. Heat and Temperature Effects

Heat and temperature effects from multicomponent
composition perturbations may also be expressed as the sum
of the effects from individual species, as in Table 2, each
weighted by the net mole fraction x§e) of that species in
the material crossing the boundary.

As an example, for isobaric conditions, dividing
Eq. (27) by dt, one has

(B 7148 [P,

r
g =ncp T+ Z (am) &, +
7=1 1

NG

X
0 ~10

(e)

Then dividing by = results in

o r dg . c o
Sy = ey * L 00y ¢ L s RS

n n =1 =)
[P]. (55)

At constant temperature and pressure, one has
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5 r “,BEi S (&)= =(e)
= (AH) . + H,—H .
dn%ei r.p i£1 zlaniei r.p kZ1xk { k Tk }

Then upon substituting from Eq. (54) and the first line of

Table 2, one obtains

sl - ) 2 ()24 (56)
dn ‘€ 7,p j=1 7 nje T,P,née)
Now from Eq. (55), one has also
(oo 1 ]2 9L,
1= = - (AH) ;1 —7
[an € ] nCP,n{izl 7’[371 € ]
q,P q,P
C
- kZ1x£e){Hk—H£e)}}'

Substitution from Eq. (54) for adiabatic-isobaric conditions

and from the second line of Table 2 results in

BTE ;_ (e)| arT
—7 = ‘2 x l . (57)
[Bn g T b q,7,n %)

Equations analogous to Eqs. (56) and (57), for isochoric
conditions, may be derived in a similar manner, by starting

with Eq. (44) instead of Eq. (27).

3. Vanishing of Reaction Derivatives

Now if



x§e)=x. G =1, 2, .uv, e), (58)

Eq. (54) becomes

= x . .
on € 7,p j=1 7 |on\® T,P,née)

The solutions of Eq. (31) for the derivatives in the sum-
mation of Eq. (59), at constant temperature and pressure,

may be written in the form

[ 3, } B (60)
an§ej T,P,née) |B| ’

where |B| is the determinant having elements B,;» which do
not depend on species j, and |Bé| is the substituted deter-
minant with the Zth column replaced by the elements yhj'
Each term in the numerator of Eq. (60) contains a single
factor of the Y type, which depends on species j. This
factor must be takén into account in performing the summa-

tion in Eq. (59), which then becomes

ST R e AL
= Yq » .
an \© i=in|B| k=1 hg'"hi

r,p 9

3

r (e

) [ } n.y .}IB".I (61)

n|B| n=1lj=1 7 hg)! ht'?

where |[B”.| is the cofactor of y, . in |B!|, and is the same
hi hg 7

as the cofactor of B, . in |B].
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Now considering the Gibbs energy G as a function of

temperature, pressure, and composition, one may writeclo)

fon
]
t~10

Differentiating with respect to = holding temperature,

Q/,
pressure, and the number of moles of all other species

constant, one obtaihs
<
kzlnkum =0 (=1, 2, ..., ), | (62)

which is a fundamental relationship between the derivatives
“of the chemical potential for any thermodynamic system, not
dependent on the laws of thermodynamics or on the condition
of chemical equilibrium.

Multiplying Ypj for isothermal-isobaric conditions

by nj and summing over all the species j, one obtains

Zanth = - zkn Vuhi (h =1, 2, ..., 1)
H
e
- kzl hkgz1n qu
=0 (h=1‘s 2, veuy P), (63)

from Eq. (62), by setting % ='j, and since “k@ = Moge

Now substitution of Eq. (63) into Eq. (61) yields
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under the condition of Eq. (58). This condition holds in
~general for a stream entering or leaving the system when
the stream has the same composition as the system. Under
conditions other than constant temperature and pressure,
stricter constraints are necessary in order that deriva-
tives of the form given on the left side of Eq. (54) vanish.
Constraints which are sufficient for this purpose may be
obtained in a manner similar to that given above for iso-

thermal-isobaric conditions and are given in Table 3.
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TABLE 3.—Constraints to assure the vanishing of the

()

derivatives of Ei with respect to n

Equation : Sufficient Constraints

agi =0 x(e) = (d 1, 2 e)
;TQTTP . j j J 9 3 e

n
1]

—3%27 = 0 x(e) = g (§ =1, 2 e)
: > 4 J J ’ 3 ey ’

c
z(e) _
(2,1, jzlnjHj = g

{ 2E.,
B I B T
n
q,V (AE), ¢
2 ~ _z(e)
[£,], —;:;7 jzlxj{Ej P }
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F. DISCUSSION

Possible applications of the derivatives of extent of
reaction with respect to external composition”perturbations
and the corresponding heat and temperature derivatives in-
clude (1) behavior of multicomponent systems in open tanks,
reservoirs, and reaction vessels; (2) error analysis for
composition of material entering or leaving the system; and
(3) correlation of yield data and optimization of yield.

The condition of chemical equilibrium in terms of an
equilibrium constant, while equivalent to Eq. (17), is non-
linear in the activities of the species in the system.
Equilibrium conditions appear as separate nonlinear con-
straints on the variables in the system. Implementation of

(6)

Lagrange multipliers or the method of gradients to obtain
a numerical result becomes tedious for complex reaction sys-
tems.

On the othef hand, the condition of chemical equilib-
rium in the form of Eq. (17) is linear in the chemical po-
tentials, hence the set of derivatives of extent of reaction
is obtained by simple matrix inversion, as Eq. (31). ’Since

the condition of chemical equilibrium is included in Eq;
(31), no separate constraints on the variables in the system
appear, and yield as a functi6n of input cOmpbsition may be
easily optimized numerically by the method ongradients;

It may be more convenient to make use of the
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fugacities fk than the derivatives Mg and uéz. For the

molal chemical potential, uk’ one has
Mg = Uz(T) + RT 2n fk’ (64)

where ui(T) is the chemical potential of species k at unit

(10) Hénce

fugacity and is a function of temperature alone.
Eqs. (11) and (12) become

BN

{5 2&n £y
U, o = RT |~ ,
kL Y
\ L JT,P,nm
fa Q,n ka
Ul , = RT | s,
kL - ’
. L Yr,v,n
_ m

which may then be obtained from PVT data.

Examination of Table 1 illustrates some features of
the various derivatives of Ei' The elements Bhi and yhj of
the determinants form the solutions for the derivatives.

The first terms of these elements, designated by I and J,
respectively, are similar for all four types of constraints.
In the case of ideal solutions, the dependence upon the
derivatives Hry of the chemical potential vanish, and the
first terms of the elements, I* and J%, are identical in all
four cases. The added terms, designated by X as factors,
depend upon the constraints on the system. In practice, a
system at constant pressure, for example, may be neither

isothermal nor adiabatic. By considering the X terms as
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perturbations upon the I and J terms, when this assumption
is justifiable, approximations to the derivatives of Ei may
be obtained for a range of conditions at chemical equilib-
rium, but not corresponding exactly to any of the four
types of constraints for which the derivatives are solved
explicitly.

A logical extension of this analysis would be to the
steady stéte. The general équilibrium criterion of maximum
entropy, with zero entropy production, may be replaced in
the steady state near equilibrium by the criterion of mini-
mum entropy production.(ll) Topics for future investigation
might include the corresponding analysis of steady-state
chemical systems under near-equilibrium conditions, the
effect of external composition perturbations in steady-state
chemical systems, the range of validity of linear phenomeno-
logical relations in the steady state, and the combination
of linearized kinetic expressionscg) with thermodynamic

relationships to describe perturbations of the steady state.
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NOMENCLATURE

- Total Helmholtz energy, E — TS

Chemical symbol for species k, in Eq. (15)
Affinity of reaction ¢, given by Eq. (A.12)

Matrix in Eq. (30), having elements given in
Table 1 :

Isobaric molal heat capacity of the system at
constant composition, defined by Eq. (26)

Isochoric molal heat capacity of the system at
constant composition, defined by Eq. (43)

Number of chemical species in the system
Variable defined by Eq. (35)

Viscous dissipation of energy
Differential operator

Total internal energy

Variable defined by Eq. (37)

Variable defined by Eq. (40)

Fugacity of species k, defined by Eq. (64)
Total Gibbs energy, # — TS

Total enthalpy

Partial molal enthalpy of species k

Molal "heat of reaction £," defined by Eq. (21)
Total number of moles in the system
Number of moles of species k
Pressure

Variable defined by Eq. (14)
Variable defined by Eq. (41)
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Energy crossing the boundary of the system due
to a temperature gradient
Molar gas constant

Number of independent chemical reactions occur-
ring in the system

Total entropy

Partial molal entropy of species k&
Variable defined by Eq. (13)
Absolute temperature

Time

Total volume

Partial molal volume of spécies k
Variable defined by Eq. (22)

Net work done by the system

Mole fraction of species k

Column matrix in Eq. (30), having elements given
in Table 1 ’

Column matrix of partial derivatives of £; with
respect to n§e) (=1, 2, ..., r)

Variation operator
Kronecker delta function, defined by Eq. (50)

Chemical potential of species k, defined by
Eq. (4) :

Variables defined by Eqs. (11) and (12)
Variable defined by Eq. (53)

Stoichiometric coefficient for species k in
reaction 7%

Molar extent of reaction <

Summation operator
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Subscripts

ﬁ,i Denote chemical reactions

irr Irreversible process

Jskslymyn Denote chemical species

n Constant number of moles of all species

née) Restriction to species j only, crossing the
boundary

P Constant pressure

Adiabatic conditions

T Constantbtemperature

14 Constant volume

Superscripts

(e) Denotes material crossing the boundary of the
system

() Denotes occurrence due to chemical species in
the system '

° Denotes pure species

- Denoteé‘partial molal quantities

- Denotes partial differentiation with respect to
Mo at constant temperature and Volumg

) Denotes differentiation with respect'to time

Brackets

[Ev] No viscous dissipation

[eq] x Constraint to paths of chemical equilibrium

[is] Ideal solution behavior

[P] Constant pressure process



[pgl
[q]
[T]
[V]
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Perfect gas behavior
Adiabatic process
Constant temperature process

Constant volume process
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APPENDIX
THE CONDITION FOR CHEMICAL EQUILIBRIUM

For an open system, the second law of thermodynamics

may be written
TdS = 8q + Td3£;% + TdS(e), (A.1)

where ds£ig and dS(e) are internal and external contribu-
tions to the differential change in the entropy of the sys-
tem, due to irreversible chemical reaction and viscous
dissipation, and to material entering or leaving under
different conditions than in the system. Assuming that a
state function S, established for closed systems, also
exists for open systems, dS is a perfect differential. The
internal entropy generation term dsfi) must be positive.

T

For the case of a single chemical reaction, write
(Z) . >
TdSirr = AdE + SDU 2 0, (A.2)

where A is called the affinity and df is the differential
extent of the reaction. 1In the absence of viscous dissipa-
tion, Eq. (A.2) is essentially a defining relationship for
the affinity A.

Define chemical equilibrium by the vanishing of the

5(2)

irr» independent of the exist-

chemical reaction part of d
ence of irreversibilities introduced by viscous dissipation

or by material entering or leaving the system. Then
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AdE = 0 [eq], (A.3)

where [eq] indicates constraint to paths of chemical equi-
librium. Since the variation d§ is arbitrary; the necessary

and sufficient condition for chemical equilibrium becomes
A=0 [eql, (A.4)

which means that the driving force for the reaction is zero.
If A # 0 even though no reaction occurs (d€ = 0), the sys-
tem is not at stable equilibrium. For example, a mixture of
hydrogen and oxygen at room temperature does not react at
any measurable rate, but may be made to do so by introducing
a spark or a suitable catalyst, such as spongy platinum.

The spontaneous reaction is highly irreversible, showing
that dsgig is positive or, from Eq. (A.2), that A # 0. The
unreactive mixture is not at true chemical equilibrium, but
its state is termed "metastable equilibrium"(s) or '"false

n (10)

equilibrium,

Now Egs. (A.1) and (A.2) result in
pds = 6q + Adg + 60 + 7ds (%), (A.5)

Substituting Eq. (1), the first law of thermodynamics for
an open system, Eq. (2), and Eq. (A.5) into the differen-

tial of Gibbs energy, one obtains

. ) <} ,
dg = — sdT + vdP — AdE + ) Eée)dnée) — ras() (a.6)
k=1
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Since dS(e) depends on material crossing the boundary, and

vanishes for dnée) =0 (=1, 2, ..., ¢), one has
190G
A=~ [——} (A.7)
0E T,P’n(e) ’

where the subscript n(e) indicates that the differentiation
is performed under the constraint of no material crossing
the boundary. Hence the affinity of a chemical reaction in
an open system is the same as that in a closed system., If
the Gibbs energy ¢ is considered to be a function of tem-
perature, pressure, and the numbers of moles of all species

present, Eq. (A.7) becomes

¢ (ac Bnk
E e [5——} . (A.8)
k= la "k n, ¢ Jr,p,n(e)
Now Eq. (16) for a single reaction is
dn, = v dg + dnl®), | (A.9)
so that
Bnk
3T ) (e) T V&’ - wa0

and substitution of Eqs. (4) and (A.lO) into Eq. (A.8)

results in

(A.11)
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Invoking the principle of microscopic reversibility,cls)

each reaction in a multiple-reaction system at chemical
equilibrium must be independently in equilibrium. Therefore

from Eqs. (A.4) and (A.11), it follows that

c
A, = - kzlvik“k =0 (i=1, 2, vav, 1) [eq],
(A.12)

from which one has Eq. (17), the condition of chemical
equilibrium, valid for open systems.
Using an alternate derivation, some authors(1’8’14’15)
imply that Eq. (17) is restricted to conditions of constant
temperature and pressure, and fail to indicate its general-
ity. From the above development, with the condition of
chemical equilibrium defined by Eq. (A.B), such a restric-
tion is unnecessary. In fact Eq. (17) is valid for arbitrary
thermal and mechanical variations in an open system.

Further information can now be obtained regarding the
nature of dS(e),'the contribution to dS due to material

crossing the boundary. Equating two independent expressions

for d¢, from Eqs. (3) and (A.6), one has

dn

H~1Q

i
wdn, = — Adg + ] Ban(®) _ pas(e),
1 k=1. :

k %

Substituting Eqs. (A.9) and (A.11) results in
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ras(e) - kzl{ﬁée)—ﬁk}dnée). (A.13)
Now

Wy, = 'fik - T‘S’k,
and

W& - ) T(é)gée),

where uée) and §£e) are the chemical potential and partial
molal entropy, respectively, of species k crossing the
boundary, and T(e) is the temperature of the material
crossing the boundary. Hence Eq. (A.13) becomes

Cej S = (e) S =) = (e)
7ds = 7 S.d — d
Z n + kzl{Hk . Hk} ny

¢

[\
| —
[l
S
X~
©
~—
+
i ~3

! k l{uée)““k}dnée)°
Therefore dS(e) inciudes a term to account for the differ-
ences between either partial molal enthalpies or chemical
potentials of the species crossing the boundarykand those in
the system, depending on whether the partial molal entropy
terms are described in terms of properties of the system or

of properties of the material crossing the boundary.
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PROPOSITIONS
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Proposition I

Equations involving arbitrary variable-volume and
flow-rate policies in isothermal stirred—tank‘chemical reac-
tors may be solved explicitly for the component concentra-
tions for any system of homogeneous first-order reactions,

however complex.

Elimination of the restriction to constant volume for
stirred-tank chemical reactors provides additional flexibil-
ity of approach for economic optimization. Constant mean
residence times, as in steady-state systems, are replaced by
variable pseudo residence times. Both batch and steady-state
reactors are special cases of the variable-volume problem.
Consider homogeneous reaction systems with negligible volume
change due to reaction. For first-order "non-coupled” reac-
tions, the concentrétions of reactive species, as a function
of time, may be explicitly obtained, either analytically in
closed form or in terms of numerically evaluated integrals.
For isothermal variable-volume reactors, by the technique of
matrix diagonalization, any system of first-order reactions
of arbitrary complexity may be transformed to one of simul-
taneous, independent, irrevergible first-order reactions,
for which the solution is immediate.

Consider a general stirred-tank chemical reactor, as
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shown in Fig. 1, with input and output volumetric flow rates
Q°(t) and @(t) and input and output molar concentrations
c}(t) and cj(t), respectively, of species j. These varia-
bles and the volume V(t) of the reacting mixture are in
~general functions of time. The volume and flow rates are
related by

e 214
Iz - ¢ "Q+['5‘E

]reactions

A set of R simultaneous chemical reactions involving

S species may be expressed by
s | |
Y v..A.,=0 (¢£=1, 2, ..., R),

where Aj represents the chemical symbol for species j, and
the stoichiometric coefficients vij are positive for prod-
ucts, negative for reactants, and zero for species not par-
ticipating in reaction <. A comﬁon form of rate dependence

for the forward and backward reactions 1is

L]
=
-
[3S)
A
-
®
L ]
-
=y
~
-

S oa
r. = k. ll e *Y (2
v Yig=1

and

respectively, where ki and ké are the rate constants, in



-180-

Q° (¢)
e’ (%)

IO NS— S

v(t) Q(¢)
e (%)

FIGURE 1.—Schematic diagram of a general
stirred-tank reactor, to illustrate

the nomenclature involved.
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~general functions of temperature and hence of time,vbut
independent of cj; and aij and Bij are experimentally deter-
mined constants, definedcl) as the orders of the forward and
backward < reactions, respectively, with respect to species
d. The equilibrium constant in terms of concentrations is
defined bycz)
2 v
K, =T-l_c_7"7 (¢ =1, 2, ..., R);
T jg=1 d

and from the principle of microscopic reversibility,:

= Pé (¢ =1, 2, ..., R),
and
kg
KC’ =7<'_£' (7/ = 1, 2, oo-,’ R).
T 7

If the order and the molecularity of the reactions coincide,

it follows that one may write without loss of generality
(1)

where a.. = |v..| for reactants, B.. = |v..| for products,
1J 1J 1d ()

and both are zero otherwise, since the stoichiometric

coefficients are arbitrary to within a multiplicative con-

stant. Then the "overall reaction rate" Rj may be expressed

as
R S O, S B
[ Tk
R.= Y v,..lk, TT e, =k TT e
J o2, T s, k 7 k=1 k
g =1, 2, «.., S), (2)



oT
R s |v.,] S v
k 1k
R.= Yv.. |k, TTe, ™ —k!TTe
J ie1 idl| T k=1 k T = k
Vir<? Vir”?®

and substitution from Eq. (1) results in

Eﬁ.:%.(c;—cj)—ﬁj-—vi—— ) (3)

Calay
t

]reactions
where Q°(c§—¢j)/v is the time rate of change of concentra-
tion due to flow, and the remaining terms on the right side

of Eq. (3) represent the change of concentration due to

reaction. Define a pseudo residence time 6(t) by

7 (¢)
Q°(t)

6(t) = . (4)

It follows that 6(¢) is equal to the mean residehce time for
absteady-state system. Make the following assumptions:
complete mixing (uniform € T); mixing time negligible in
comparison with 6 (£); negligible volume change due to reac-
tion; first-order "non—couplea" reactions, so fhat the rate
equation for species j does not involve unknown concentra-

tions of other species, and the equations can be solved
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independently, or at least successively. Then Eq. (3) be-

comes

l=d —d_p, (5)

R.=¢.e.+* Y., (6)

Here ¢j and wj are, in general, functions of time but not

of c e Upon multiplying Eq. (5) by the integrating factor

Fj = exp [ jt[% + ¢j]dt }, (7)

e;(#) = Fél[cjo ' ﬁ%‘i— ‘“j]Fjdt } (8

including the initial condition cj(O) = e, Examples of

Jor
the explicit solution, Eq. (8), are given in Table 1.

For a single irreversible reaction, Egs. (7) and (8)
are simplified to the usual results(z’s) for cl(t) under
special conditions: |

1. Isothermal batch reaction:.

k. t
1
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TABLE 1.~—Solutions for non-coupled first-order reaction

systems in a general stirred-tank reactor.

Reaction Equations J ¢j wj
Irreversible A1—£l+prod. 1 k, 0
kl
Pseudo A +4 ,—>prod.| 1 ke, 0
first-order
(cz(t) known)
Reversible A —£l+A 1 k +k! —k!'(e. +e_ )
’ 14— 2 1 1 1 10 20
constant
. t
total conc. 2 k1+k1 —kl(clo+320)
. k, k,
Consecutive 41""*A2"“*As, 1 k1 0
2 kz _— klcl
3 0 - kzcz
. k, )
Competing A A ——A 2 ke, 0
A\IA-A3—-7-<-—2-—>-,4LF L3 kzcl - klclcz
(e, (¢) known) 4 0 - k,e, e,
de. c}.— cj
= — . R. = .c . + .
dt ) RJ J ¢Jea pr
. i t‘cg.
) = F, . - Y. .|F.(t)dt
e (8) = T ()| o, fo[e RENE
o T 1
F.(t) = ex = + ¢ .|dt
(8) = exp Jo{e o)
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2. Steady-state reaction:

e 5o w],

=
it

The above analysis will yield solutions for any
stirred-tank reactor in which the given assumptions hold.
No restriction to constant input concentrations, constant
volume, or isothermal conditions is required. If the reac-
tions are coupled, however, the concentrations of all spe-
cies may still be obtained as a function of time, by using
matrix techniques. But the reaction must then be restricted
to isothermai conditions, or cases where temperature vafia-
tions are insignificant.

For a syétem of first-order reactions of arbitrary
complexity, write the input and output concentrations in

vector form as

o3 (¢)
co(t) = | i, (9)
HO
and
e, (£)
ct) = |+ |. (10)

cS(t)
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The overall reaction rate may be expressed as Kc(¢), where
'K is the S by S matrix of the rate constants, having ele-

ments given by

K’Ilj = - k'l:j (z # ),
g (11)
K., = ..
Jd izlktJ’
1#d

where kij is the rate constant for the reaction

k...
4. TN A, (B9 =1, 2, covy S5 4 # )
Then Eq. (5) becomes

~ C
Iz = — KC, (12)
which may be transformed to a characteristic system by the

similarity transformationcs)

where A is a diagonal matrix composed of the eigéhvalues of
K. Wei and‘Prater(4) have shown that the eigenvalues of K
are real and nonnegative, and that the corresponding eigen-
functions X; form a complete.set. The matrix X is formed
from the eigenfunctions X, written as column véctors.

If b(t) and b°(¢) are defined by

b(t) = X 'c(t), (13)
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and

bo(t) = X 'c°(%), (14)
Eq. (12) becomes

d b° — b

since

Ab = X 'KXb = X 'Kc.

In general the rate constants, and hence K and X, are func-
tions of temperature and therefore of time in nonisothermal
systems., If temperature variations are small enough that
they do not significantly affect K, X! may be considered

constant. Then Eq. (15) becomes

db _ b° — b v
& = 5= — b, (16)

which is completely analogous to the case of a single, irre-
versible first-order reaction. The solution of Eq. (16),

including the initial conditions, is then

o'
i}

F_l[ b(0) + jt[%Fb°}dt ],

0

where

+ri
i

exp [ Jt{%x'+ A]dt J - ‘(17)

]

is the integrating factor matrix and I is the unit matrix.
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Then, from Eq. (13), the desired concentration vector c(%)
is

c(t) = Xb(z).

Matrix techniques for the analysis of complex systems
of first-order chemical reactions are described by Wei.(s)
His analysis of non-steady-state systems is restricted to
those having fixed values of 6. The technique is extended
here to arbitrary variable-volume and flow-rate policies for
isothermal systems. The concentrations of all species are
obtained as explicit functions of time. For non-coupled
reaction systems, the restriction to isothermal conditions
may be removed, and explicit solutions for the concentra-
tions may be obtained by integrating factors. In certain
simple cases, the solutions are analytic; in even the most
complex cases, explicit solutions are expressed in terms of

numerically evaluated integrals.
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Nomenclature

A Chemical symbol for species 4

b(t) Vector defined by Eq. (13)

b° (z) Vector defined by Eq. (14)

e.(t) Molar concentration of species j in reaction
J vessel

c?(tj Input molar concentration of species j

c(t) - Concentration vector, deflned by Eq. (10)
c?(¢) Input concentration vector, defined by Eq. (9)

Fj Integrating factor, defined by Eq. (1)

F Integrating factor matrix, defined by Eq. (17)
I Unit matrix

K © Equilibrium constant based on concentratlons,i
¢ for reaction % '

K Rate constant matrix, defined by Eq. (11)

ki Rate constant for forward reaction’i |

k! Rate constant for backward reaction ¢

q(¢) Output volumetric flow rate

9° (%) Input volumetric flow rate

Rv | Number of simultaneous chemical reactions taking

place in reaction Vessel '

Rj Overall reaction rate, defined by Eq..(Z)

r, Forward rate of reaction ¢

r) Backward rate of reaction ¢

S . Number of chemical species presenf

t Time

v(t) Volume of reacting mixture



A
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X Modal matrix formed of X, as column vectors
X, Eigenfunctions corresponding to the eigenvalues
of K
o s Order of forward reaction ¢ with respect to
J species g
Bi“ Order of backward reaction ¢ with respect to
J species j
o(¢t) Pseudo residence time, defined by Eq. (4)
Diagonal matrix composed of Y
Ay Eigenvalue of K
\Zp Stoichiometric coefficient of species J in
J reaction <
¢j(t) Coefficient of cj in Rj’ from Eq. (6)
wj(t) Term independent of cj in Rj, from Eq. (6)
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Proposition II

The yield obtained with arbitrary periodic alternating
input and output; from a single, irreversible, first-order
reaction in an isothermal stirred-tank chemical reactor, is
calculated in terms of the corresponding steady-state resi-
dence time and the parameters defining the period. A

special case is considered in detail.

For a given stirred-tank reactor, the equation to
calculate the ratio of the yield under periodic alternating
input and output conditions to that for steady-state opera-
tion is derived, and the results are shown graphically for
the special case of zero initial volume, equal input and
output times, and zero down time. In this special case, the
ratio of the yield with periodic operation to the steady-
state yield passes fhrough a maximum with respect to the

dimensionless steady-state residence time, T The value

ss*
of Tgg at which the maximum occurs depends on the filling-
time fraction of each period. In the limiting case, with
negligible filling, emptying, ahd down time, the maximum
yield is 29.8% greater than the steady-state yield, at
Tgs =.1.793.

Consider an isothermal stirred-tank reactor of fixed

maximum volume Vs as shown in Fig. 1, in which the
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- Max. Vol. Vm
) | ]

e ]

a(t)
o (t)

FIGURE 1.—Schematic diagram of an isothermal
stirred-tank chemical reactor, with
fixed maximum volume Vm and constant

input concentration of species 1.
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first-order reaction
kl
A — products

occurs. Assume that the time-average Voiumetric flow rate
Qs and the input molar concentration c: of species 1 are
constant, and that the volume change due to reaction is
negligible. Consider the case of periodic alternating input
and output, depicted in Fig. 2. The conditions during each
time interval within one period are given in Table 1. De-
fine a pseudo residence time 6(t) by

v (t)
]° (t)

8(t) = . (1)

For a single irreversible first-order reaction in which

volume changes due to the reaction are negligible, a mate-

rial balance on the reactor gives

or

Q

dc1 1 Z
Tt ke T (2)
Consider isothermal conditions. Then for the input time

interval, from Table 1, the integrating factor technique

applied tolEq. (2) yields
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“IGURE 2.—Graph of.periodic alternating input and output

volume policy for a stirred-tank chemical reactor.
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TABLE 1.—Conditions of alternating input and output for a

stirred-tank reactor, as shown in Fig. 2.

Time
<+s <+< L+2 <+<
Interval O"t‘tl tl‘t‘tz tz't‘ta ta‘t‘tu
Process filling reacting emptying down
Input flow Q° 0 0 0
rate ‘
Output flow 0 0 Q 0
rate
Volume V0+tQ° Vm' Vm——(t—tz)Q Vv,
Pseudo resi- 60+t % o o0
dence time :




) -kt e -kt
o 1 1 1
cl(t) = 5:—_—_[6103 + [1 - e J

where the subscripts 0 indicate initial conditions. For the
remainder of each period, the reciprocal of 6 is zero, so

that integration of Eq. (4) results in

e (8) = c (t)e (¢, ¢ £ ¢,). (3)

For periodic flow, where the volume and concentration pro-

files repeat themselves in each cycle, it follows that

v(t,) = V(t,) =V,
and

cl(t'-&) = c10

(v, # 0). 4

Then the volume conditions in Table 1 and Eq. (4) give
gt — %
- - (5)

Furthermore, Eqs. (6) and (8) yield

For v, = 0, the initial concentration e is taken equal to

10

the input concentration c?:
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- 3 —_ [e]
e , = 4im cl(t) = e,
t>o

Define the overall yield as the fraction of the feed

converted to the desired product.(l) For alternating input

and output, the yield is given by

t, o o t,
Q cldt - Qeldt

_ ‘0 Lo
np = tl )
J Q°eldt
) .
or
k,t ~k.t -k.t

ch(tl)e 1 l(e 1 z_e 1 3)
np = - QO Ok t ’

ek

where the subscript p indicates periodic alternating input

and output conditions. For steady-state operation, as in a

continuous stirred-tank reactor,cz) it is well known that

- o
e, = o1
1 ¥ .
1 less
Then
[+]
n - ¢, T %
SS °
¢,
1+ k.6 *
SS

From the conditions on volume in Table 1, it follows that
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Equating the average flow rates in the two cases, one ob-

tains

Define the dimensionless yield, n, as the ratio of
the periodic variable-volume yieid to that obtained under

steady-state conditions:

n o= B (6)

nSS

Define also the dimensionless variables

(7)

Making the necessary substitutions, straightforward manipu-

lations result in

R e L= | gl

SS S$S

(8)

which gives the dimensionless yield for an arbitrary periodic
alternating input and output policy under the assumptions

~given., If the initial volume is zero, it follows that
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T =T (v. = 0).

Consider the special case where the initial volume
is zero, the input and output flow rates are equal, and the
down time is zero, as shown in Fig. 3. Let o be the dimen-
sionless filling time (the filling-time fraction of each

period):

t
g=—L=_-1 (0%¢ &S
T 65

SS S

N =

). (9)

Then in this special case, Eq. (8) becomes

0 = [1 ! )[1 - [Si'fff:_l_)zewss}, (10)

Tss 9Tgs
with
oT 2
and
Ngs ~ T—QE%"—‘
SS

In Fig. 4, the yield in the periodic case, np, as calculated
from Eq. (11), is plotted with respect to Tos at values of ¢
in intervals of 0.1 throughout its range. For comparison,
the corresponding steady-state yield, from Eq. (7), is also
shown. Yields significantly greater than that obtained in
the steady-state case are possible for appropriate values of

o and Tege The dimensionless yield, n, from Eq. (10), is
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FIGURE 3.—Special case of periodic alternating input and

output policy for a stirred-tank chemical reactor.

Here ess — t2 = tl.
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plotted with respect to Tgg @t various values of ¢ in

Fig. 5. In each case there is a maximum yield efficiency
at some particular value of Tege These maxima occur within
the range of Tes from 1 to 10, for which the steady-state
yield is from 0.5 to 0.9. For negligible filling and
emptying time (o = 0), the maximum increase in yield occurs
for Tes =_1.793. Then np = 0.8336, which is 29.8% greater
than thé corresponding steady-state value Ngg = 0.6420.

The yield from a continuous, isothermal stirred?tank
reactor in which a single, irreversible, first-order reac-
tion occurs may be substantially improved by changing the
process to the periodic alternating input and output policy
of this special case, providéd the following conditions are
met: (1) complete mixing may be assumed; (2) the volume of
the reactor, the time-average flow rate, and the rate con-
stant are such that Tes is in the desired range; (3) the
filling (or emptying) time is a sufficiently small part of
each cycle (say o < 0.2); and (4) the effect of temperature
changes on the reaction rate in the periodic case is negli-
~gible. Without regard to condition (2), it is known that,
for o = 0, some improvement in yield occurs in the periodic
case, which is then simply an idealized batch reaction
scheme. Conversely, condition (2) insures that the im-
provementﬁwill be substantial under the appropriate condi-
tions, even while allowing for small fillingvand emptying‘

times. Figure 5 illustrates this feature vividly.
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v°T
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Changing a steady-state process to this special case of
periodic flow conditions would prove economically feasible
provided the value of the increased yield would more than
offset additional handling and storage costs in the periodic
case.

For an arbitrary alternating input and output policy
for an ispthermal stirred-fank reactor, Eq. (8) gives the
dimensionless yield in terms of Tos and the dimensionless
variables defining the period. If input and output occur
simultaneously during any part of the period, the equations
become more complicated, but the yield is not further im-
proved.

This analysis may be eXtended to an isothermal system
of first-order reactions of arbitrary complexity by matrix

diagonalization, as shown in Proposition I.
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Nomenclature

e, (t)

HO!

kl

e ()
Q° (¢)

6 (t)

s T

T,
7 )

Subscripts
0

SS

Molar concentration of reactive species in
reactor

Input molar concentration of reactive species
First-order reaction rate constant

Output volumetric flow rate

Input volumetric flow rate

Time

Times defining periodic conditions, given in
Fig. 2 (¢ =1, 2, 3, 4)

Volume of reacting mixture
Maximum volume of reacting mixture
Dimensionless yield, defined by Eq. (5)

Yield obtained under periodic alternating input
and output conditions, given by Eq. (4)

Yield obtained under steady-state condltlons,
~given by Eq. (5)

Pseudo residence time, defined by Eq. (1)
Dimensionless filling time, defined by Eq. (9)

Dimensionless variables defined by Eqs. (7)
(<=1, 2, 3, 4)

Initial conditions

Steady-state conditions
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Proposition III

An algebra of polynomial arrays reduces the problem
of algebraic operations on multivariable polynomials to one
of operations on arrays of the coefficients. In particular,
addition and multiplication of polynomials are thereby made

easily amenable to computer calculation,

Write the polynomial P(x) in » variables in the form
P(x) = § P x™
m 7

where

n
m_ T
X =

m.
x
=1 7
and P is a numerical coefficient. Any polynomial in n
variables Loy Ty eew, & CaN be expressed uniquely as a
finite n-dimensional array of its coefficients, such that
the coefficient of x™ is in position m in the -array; that
is, in position m. in dimension ¢ (¢ =1, 2, ..., n). Then
P in the array P for P(x) is the element in position m, and

the array extends in dimension < from position 0 to position p;-
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Addition of two polynomials P(x) and @(x) may be

written in the form

P(x) + @(x) = ] (P, + @ )x",
m

from which the corresponding operation on the coefficient

arrays is defined by

P+ @), =P+ Q. (1)

m m

The addition holds even if the arrays are of different size
or dimensionality, since elements for positions correspond-
ing to powers of the variables which do not occur in a par-
ticular polynomial may be taken equal to zero.

Similarly, multiplication of the two polynomials 1is

~given by

P(x)Q(x)

It
~1
o1
!
w
D
b
e

1}

oY P x™,
k mek k¥m-k

Therefore multiplication of the arrays can be defined by

1

"9
bt

La)
=

(Pa),

= z Pka"'k’ ‘ . (2)

where the sum over k £ m is taken over all values of the

elements of k up to and including the values of the elements
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of m; that is,

As an example, for two variables only, one has

i ,
PQ). . = § 2.0, . .
( Q)tg kZo = kﬁQz-k,g-R
= PooQij P01Qi,j—1 Foeee ¥ Ponio
PloQi-1,j * PllQi-l,j-l cee ¥ Plei-1,o
+ * o0
*PioQ; P oy toeee P

Since the product array P will in general be larger than
either P or ¢, some of the terms in this éxpansion will be
idéntically zero. Let p; and q9; be the highest values of
m. in P and @, respectively. Then the limits on the summa-

tions can be changed, so that

81 82
PR).. = P . .
( Q)zg ‘kzrlkzrz lez-k,g-z’
where
r = max (o0, i-qn),
s, = min (<, pn).

Let P, @, and R be any three members of the set of

all polynomial arrays. This set contains a zero member, an
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array in which all elements are zero; and a unity member, an
array in which the element Pm =1 form= 0,0,...,0 and all
other elements are zero. All zero members, of whatever size
or dimensionality, are equivalent, and similarly for all
unity members. For every member the set also contains a
negative member, an array every element of which is the nega-
tive of that in the given array. But since the values of
m. (¢ = 1;‘2, ..., n) are taken to be nonnegative integers,
no inverse members are defined.

Algebraic properties of the arrays are the following:

(1) Addition is obviously associative and commuta-

tive, since from Eq. (1), it follows that

[(P+@) + R]_ = (P*Q), * R

m

Pm+Qm+Rm

[

P+ (@*R)

[P + (@+R)]_,

and

[
v

+
O

P+ @),

@+ P).

(2) -Multiplication is associative and commutative:
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[P(@R)]y, = ] P;(ar),

i+j=m

= ) P. ) @R
i+j=m lkef=j K%

= P.g.R
i+k§£=m 17k L

= L PiQyR
jei=m i+k=j LK%

= (PQ) ;R
j+§=m Je

[ (PQ)R],

and

(Pa),,

(3) Multiplication is distributive with respect to

addition:

I

[P(@+R)], = )} Pi(@*R)_ 3

ksm

= Lk Fnotd

1]

kémPka-k * kémPkRm-k

I

(@), + (PR),.

The set of all polynomial arrays, the given defini-

tions of addition and multiplication, zero, unity and
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negative members of the set, and the above properties, to-
gether, are sufficient to define an algebra.(l’z)

In the case of polynomials of one or two variables
only, small arrays may be manipﬁlated by hand, and more
easily than the polynomials themselves. Even for polyno-
mials of several variables, the operations can be easily
performed by computer, by the use of Eqs. (1) and (2). As

an example, consider the following polynomials:

i}

P(ac,y) (x"'l)z(x"'y) = ¥ + xzy + 2x? + ny tx o toy,

Qx,y) = (2?+1) (y+2)? = x®y? + dx?y + 4a® + y?

+ 4 + 4,

To obtain the coefficient of z%y in P(x,y)[P(x,y) + Q(x,y)],
rather tedious but direct manipulation of the polynomials
~gives

Ple,y)[P(z,y) + @x,y)]

(2+1)2 (wty) [ (m+1) 2 (a+y) + (22+1) (y+2)?2]

i

(23 +x2y+2x2+ 20y +a+y) (23 +522y+6x 2+ 2xy +x+5y+a’y?

+y2+4)
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= x% + Sx’y + 6x° + 2xty + x% + Sxdy + xSy? + xy?
* 4z o+ oy + Sxty? + 6xty + 20%y? + aly + Sxly?
+ xtyd o+ x2?yd + dx?y + 225 + 10xty + 122" + 4xdy
+ 2% + 10x?y + 2x'y? + 2x%y? + 8x? + 2wy + 10x%y?
+ 12x%y + 4a?y? + 222y + 10xy? + 22x°%y% + 2y’
+ 8xy + x* + Sx’y + 6x% + 2x%y + x% + Sxy + x3y?
+ xy? + dx + x3y + Sx?y? + 6x%y + 2xy? + xy + 5y2

+x2y3 +y3 + 4y

= g% + 8x% + 6x%y + x3y? + ldx* + 20x"y + Tx'y?
+aty® o+ 122° + 28x%y + lda’y? + 223y + 9x?
+ 24x%y + 16x%y? + 2x?y® + 4x + lbxy + 13xy?2

* 2wy o+ Ay v Sy’ o+ oy,

from which the coefficient of z%y is 28. Array algebra alone

requires only the following:

P(P+qQ) = [0 12 1} [o 12 1} . [404
1210//{1210 40 4
101
=(0121)(4161 (3)
'[ 2 1 o] 5250
{Lo1o0
= (0 4 91214 8 1
4 14 24 28 20 6 0
51316 14 7 1 0
1 2 2 2 1 0 0
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in which, as can be readily seen, the element in row Z+1

and column j+1 is the coefficient of xiyj in the expansion
of P(z,y)[P(x,y) + Q(x,y)]. If only the single coefficient
of x3y is desired, it is not necessary to perform the final

multiplication, since from Eq. (3), Eq. (2) gives immediately

00 + 15 + 22 + 15 + 11 + 2<6
+ 11 + 0+<4

[P (P+)],

1

28,

The usefulness of this polynomial algebra appears in
two major ways:

(1) For manual calculations, by keeping track of the
variables‘by‘their position in the arrays, instead of by a
collection of products of variables raised to various powers,
the mind is free to concentrate on the actual computations
to be performed, rather than cluttered with a preponder-
ance of the variables themselves. For polynbmials of one
variable, this feature may be compared to synthetic division
in place of long division.

(2) A computer can be efficiently programmed to add
or multiply polynomials by manipulating the coefficient
arrays. Present methods for adding or multiplying polyno-

(3)

mials by computer, for which algorithms exist, use a
searchingftechnique with circularly linked lists to perform
the computations, and can not be easily adapted to obtaining

the coefficient of a single term without performing the
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entire set of calculations for a given product or sum of
polynomials. On the other hand, Eqs. (1) and (2) are ex-
pressed in terms of a single element of the sum or product

array, which element can then be obtained individually.
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Proposition IV

Explicit expressions for the effect of volume on the
chemical reaction parameter, for multiple—reaétion closed
systems at chemical equilibrium, are obtained as solutions
of a set of linear algebraic equations. Adiabatic as well
as isothermal conditions are considered, and simplifications

for the special case of perfect gases are indicated.

In his Ph.D. thesis, C. S. Lu(Z) obtained expressions
for the effect of pressure on the equilibrium displacement
of multiple-reaction closed systems. Corresponding expres-
sions for the effect of volume, including adiabatic condi-
tions, are derived here. All these results have recéntly
been published jointly.(l) For single-reaction systems,
expressions for the effect of pressure and volume have been
previously given byhPings.(S)

The notation here is simpler than that employed by
Lu(S) since this notation is given entirely in molar instead of
in mass form, does not require dividing the chemical poten-
tials by temperature before performing the derivations, and
does not involve differentiating with respect to an arbi-
trary variable. |

Consider ¢ chemical species involved in r independent

reactions in a closed system, where Vik‘is the stoichiometric
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coefficient for species k in reaction 7. The following
basic definitions and thermodynamic equations for closed
systems are employed. Constraints on equations are indi-

cated in brackets.

Helmholtz energy: 4 = F — TS, (1)
X : EY
Chemical potential: My T [—Z—} . (2)
' k T,V,n,
r
Material balance: dn, = izlvikdii. (3)
First law of thermodynamics: dE = 8q — P4V [Ev]‘ (4)
o . |
Gibbs' equation: d4 = — PAV — 54T + ) ukdnk. (5)
k=1

e
Chemical equilibrium: y VoM =0 (£ =1,2, «.., 1)

k=1
[eq]. (6)
The following quantities are introduced for convenience:(1’3)
By = {g_g__ E (7)
k T,V,nz
c
(AE), = kzlvikEk’ (8)
~ 3P
B, = [ (9)
K lr v,n,
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C
(P), = kzlvikpk, | (10)
Sy = {ES'J ; (11)
k T,V,n,
B, . = i YoV, V. HY (12)
ni T BT, L, VRKViaMke?
s
e B, -k, e
k& Mlp,v,m ongony T,V,n ong T,V,n
(13)
]
V. = V., . (14)
7 ke ik

Substitution of partial derivatives of Hy into duk, where
Wy = “k(T’V’€1’gz”"’£p) and the derivatives are obtained
by the use of Eqgs. (3), (5), (9), (11), and (13), with an
interchange in the order of differentiation, results in

du, = — §,dr — B av +

k k

II.M‘S
N e~10

lviz“ézd£i° (15)

=14

Combination of Eqs. (1), (2), (7), and‘(ll) giveé

- 73, . (16)

= By %

Mk
Then substitution of Eqs. (15) and (16) into the differen-

tial form of Eq. (6) and simplification by the use of Egs.

(8), (10), and (12) yields

’
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(AE)h r
7 dT — (AP),dV + RT;ZIBhidgi = 0

(h =1, 2, ..., r) [eq]. (17)

Hence
r (ag. (AE)
7 - n -
RT.Z Shz[’ﬁ"—] - T (7’2 = 1, 2, s s oy I’)
1=1 vV
[eq], (18)
r ok .
RT Y B .[——3] = (AP) (h =1, 2, vu., r)
Pi= hiladv 7 | h
[eq]. (19)

Since Egs. (18) and (19) are systems of linear equations in
the unknown derivatives of ;o they can each be solved simul-
taneously by'Cramer's rule'or‘by matrix inversion, giving
the derivatives of Ei with respect to temperature at con-
stant volume, and with respect to volume at constant temper-
ature, explicitly for 2 =1, 2, ..., »,

Considering £ = E(T,V,nl,nz,...,nc), making use of
Eqs. (1), (3), (4), (5), and (8), dividing by dv, and con-

straining the derivatives to adiabatic conditions, one

3L '
-
q

obtains

2T 9P 7
nc ] + [-—-—- Py

5
v,e(37),

r
e oo
=1
st [£,]. (20)

Now Eq. (17) yields



<

r agi

1 Bylay) — (AP),

= q

(h =1, 2, ..., 7) [eq]. (21)

Substitution of Eq. (21) into Eq. (20) therefore gives

r (AE), (AE) . . (AE)
) |8, RT + A ﬁ} = (aP) ____@[ap}
i=1 ht nCV,ET oV q h v,E oT V,E
(h =1, 2, ..., 7) [Ev’eq]’

from which the derivatives of Ei with respect to volume
under adiabatic conditions can be obtained explicitly. The
corresponding derivatives with respect to pressure can be
obtained in an analogous manner, and are presented in the
published paper(l) which is‘based in part on these results.

For a perfect gas, one has

nkRT

fk=~v » [pg]’

which, when substituted into Eq. (13), reduces Eq. (12) to

C ‘
ST N e ik ~[pel. (22)

"k

Also for a perfect gas, from Eq. (10), it follows that

R P P (AF)y,
o ncv’g[ﬁﬁ] e 7 n T o [pgl. (23)
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With the use of Eqs. (22) and (23), some simplifications can
be made in the terms of Eqgs. (18), (19), and (21) for sys-

tems which can be considered as perfect gases,
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Nomenclature
A Total Helmholtz energy, defined by Eq. (1)
CV,& Molar hegt.capacity at constant volume and
composition
e Number of species in the system
d Differential operator |
E Total internal energy
B, Variable defined by Eq. 150
(AE)i Variable defined by Eq. (8)
fk Fugacity of species k
n Total number of moles in the system
" Number of moles of species k in the system
P Pressure
ﬁk Variable defined by Eq. (9)
(AP)i Variable defined by Eq. (10)
Heat transferred to the system
R Molar gas constant
r Number of independent chemical reactions occur-
ring in the system '
S Total entropy
§k Variable defined by Eq. (11)
T Absolute temperature
4 Total volume
Brs - Variable defined by Eq. (12)
§ Variation operator

My,  Chemical potential of species k, defined by
Eq. (2)
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“ég Variable defined by Eq. (13)
Yok Stoichiqmetyic coefficient of species k in
reaction <
Vs Variable defined by Eq. (14)
) Summation operator
Ei Extent of reaction <, defined by Eq. (3)
Subscripts
h,< Denote chemical reactions
kKy&,m Denote chemical species in the system
no Denotes restriction to constant numbers of moles
of all species except species k
q Denotes adiabatic conditions
T Denotes constant temperature
14 Denotes constant volume
g Denotes constant composition
Brackets
[eq] Chemical equilibrium
[Ev] No viscous dissipation

[pgl Perfect gas behavior
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