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ABSTRACT
PART 1

By extension of the concept of a linear graph, as a
topological configuration of vertexes with lines (2-bonds)
connecting certain pairs of them, a nonlinear graph is de-
fined to include also associations of certain triplets of
the vertexes, or 3-bonds, representable by topological
""areas" of triangles; quadruplets, or 4-bonds, by '"volumes"
of tetrahedra; etc. The configurational part of the parti-
tion function, including nonadditivity‘effects or three-body
and higher interactions in the potential energy of a config-
uration of mbiecules, may be expanded as a sum of integrals
over products of cluster functions, corresponding to a sum
of nonlinear graphs. Certain special types of graphs,
called trees and stars, figure prominently in the combina-
torial analysis. The nth virial coefficient corresponds to
the sum of all stars on n vertexes. Since topologically
equivalent graphs correspond to integrals which yield the
same result upgn integration, the nth virial coefficient
corresponds also to the sum of all topologically distinct
- stars on n vertexes, each multiplied by the appropriate
combinatorial coefficient,

Development of the combinatorial theory for nonlinear

_graphs, trees, and stars proceeds similarly to that for ,
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linear graphs. An explicit formula for counting nonlinear
~graphs on distinguishable vertexes is obtained, and generat-
ing functions relate the numbers of graphs to the numbers

of corresponding nonlinear trees and stars. A novel term,
the eycle function, is defined; the triplet cycle function,
for 3-bonds, is derived; and cycle functions are used in
~generalizing Pélya's theorem to apply to nonlinear graphs
with more than one type of bond present. A theorem is thus
obtained which solves the problem of counting nonlinear
~graphs on indistinguishable vertexes, and a relationship
between generating functions permits the number of corre-
sponding trees to be calculated. All of these techniques
are extended to apply to multicomponent systems and to
rooted graphs and trees. Then the problem of counting stars
on indistinguishable or multicomponent vertexes is solved by
a systematic procedure. The numbers of such stars are also
closely approximated by a simple formula. Including 2- and
3—bonds only, the number of distinct stars on n = 3 indis-
tinguishable vertexes is'S; for n = 4, there are 72 topolog-
ically distinct stars; and for » = 5, 10,346,

Because of the rapidly increasing number and complex-
ity of the calculations, a practical limit for actual calcu-
lations involving any nonadditivity effects for a pure
substance is the fourth virial coefficient. For multicom-

ponent systems, the numbers of topologically distinct stars



are always greater than for systems of a single component;
hence even more compelling reasons would then be necessary
to justify calculation of the fourth virial coefficient

including three-body nonadditivity effects.

PART II

General thermodynamic expressions for partial deriv-
atives of extent of reaction with respect to external compo-
sition perturbations by a single species, for multicomponent,
multiple-reaction systems constrained to paths of chemical
equilibrium under various conditions, are obtained as the
solution of a set of simultaneous, linear algebraic equa-
tioﬁs. The corresponding heat and temperature effects fol-
low immediately. Derivatives of the extent of reaction are
evaluated for ideal solutions. For multicomponent composi-
tion perturbations, the derivatives result from a linear
combination of those for.perturbations by a single species,
each weighted by the net mole fraction of the given species
in the streams crossing the boundary. Possible applications
of the thermodynamic expressions include behavior of open
systems under externally introduced composition perturba-

tions, error analysis, and optimization of yield.
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PART I

COMBINATORIAL THEORY OF NONLINEAR GRAPHS,
APPLIED TO THE VIRIAL EQUATION OF STATE*

*Portions of Part I of this thesis have been pub-
lished as a paper by A. H. Larsen and C. J. Pings, "Counting
Graphs of Interest in Statistical Mechanics, Including
Nonadditivity Effects," J. Chem. Phys. 49, 72 (1968).
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A. INTRODUCTION

1. Intermolecular Potentials

The virial development of the equation of state for
imperfect gases has historically involved many-body integra-
tions over pairwise cluster functions. Extending the tech-

nique introduced by Ursell,(48) Mayer(30'32’34)

expressed
the coefficients in the density expansion of the compressi-
bility factor in terms of certain cluster integrals, each of
which may be represented by a sum of linear.graphs,(40’47)
in which the vertexes correspond to pérticles and the lines
to interactions of pairs of the particles. Clarifications
and‘generaliiations of the technique have been given by
Born,(8’9) Fuchs,cls) Husimi,(24) and Uhlenbeck and Ford.(47)
The Mayer procedure, for simplicity, assumes pairwise addi-
tivity of intermolecular potentials; that is, that the
potential energy of a configuration of molecules is equal

to the sum of the potentials of pairs of molecules in the
configuration. The cluster integrals are expressed succes-
sively in terms of certain "irreducible integrals," which
are related very simply to the virial coefficients, and
which correspond to the sum .of all linear graphs of a cer-
tain type.

The Mayer procedure is not the only means developed

for performing cluster expansions with the aid of linear
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graphs. For example, Ste11(46) has developed cluster expan-
sions by an alternative method of employing functional
differentiation with linear.graph theory. This work, how-
ever, involves the Mayer development.

The assumption of pairwise additivity of intermolec-
ular potentials usually permits experimental data to be
fitted fairly satisfactorily. Recently, however, evidence
has accumulated to show that the properties of dense gases
probably cannot be adequately expressed by pairwise addi-
tivity alone. Significant contributions to the intermolec-
ular potential may occur from three-bddy interactions.
Models to investigate the magnitude of a correction for
nonadditivity have been_given‘by a large number of investi-
~gators, including Axilrod and Teller,(2"4) Muto,(ss) Bade

and Kirkwood,cs) Kihara,(27) Kestner and Sinanoélu,(26)

(50) and Baxter.(7)

(33)

Hutchinson,(zs) Baer,(6) Williams et al.,
Several investigators, including Kihara and coworkers,

(43-45) and - Chan

Graben and Present,(l6’17) Sherwood et al.,
and Dalgarno,(lo) have calculated nonadditive corrections

to the third virial coefficient for some simple potentials
and compared the results with experimental data for a vari-

ety of substances.



2. Nonlinear Graph Theory

(13,14) in application to ionic solution

Friedman,
theory, has extended Mayer's graphical representation of
two-body interactions to include nonadditivity effects as
well, and Allnatt(l) has recently applied a similar repre-
sentation to point-defect interactions in solids. Just as
lines connecting pairs of vertexes of a graph correspond to
two-body interactions, three-body interactions may be repre-
sented by topological "areas" of triangles formed by trip-
lets of vertexes, four-body interactions by volumes of
tetrahedra, etc. In contrast to the linear graphs repre-
senting cluster integrals involving only pairwise additive
interactions, cluster integrals involving nonadditivity
effects correspond to what may be termed nonlinear graphs.:

Nonlinear as well as linear graphs may be classi-
fied according to topological type. Graphs of the same
type, indistinguisﬂable topologically, correspond to inte-
_grals which yield the same result upon integration. Hence
the virial coefficients are obtained by evaluating the inte-
_grals corresponding to different types of graphs and multi-
plying each by the appropriate coefficient, which is the
number of topologically indistinguishable‘graphs of the
~given type. The object of this work is to develop syétemat-

ic methods for obtaining the numbers of nonlinear graphs

corresponding to the virial coefficients.
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In Sec. B, a number of graph theoretical terms are
defined, including certain special types of graphs, called
trees and stars. The relationship between nonlinear graphs
and the integrals of cluster functions corresponding to the
virial coefficients is indicated. Due to the rapidly in-
creasing numbers of nonlinear graphs corresponding to the
successive virial coefficients, as well as their increasing
complexity, the associated combinatorial problems are for-
midable.

For the combinatorial analysis, techniques for
counting graphs, trees, and stars on distinguishable ver-
texes are developed in Sec., C. Then in Sec. D the more
difficult prbblem of counting:graphs and trees on indis-
tinguishable vertexes is considered. The general case, in
which the vertexes are distinguishable by '"species," is
treated in Sec. E. This generalization includes the special
cases for both distinguishable and indistinguishable ver-
texes, and applies to multicomponent systems. Sufficientiy
powerful methods are then available, in Sec. F, to count
stars on indistinguishable vertexes, the numbers ofbwhich

apply directly to the calculation of the virial coefficients.
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B. NONLINEAR GRAPHS AND CLUSTER FUNCTIONS

1. Graph Theory—Definitions

For correspondence with particles and interactions
between them, define a nonlinear graph as a set of vertexes
and a set of associations of certain pairs, triplets, quad-
ruplets, etc. of the vertexes. Denote the association of j
vertexes as a j-bond and consider bonds of different j as
bonds of different ¢ypes, which occur independently of each
other in a nonlinear graph. The vertexes may or may not be
distinguishable (labeled). In.general‘each J vertexes of a
_graph on n vertexes (j§ = 2, 3, ..., n) either may or may not
be associated by a j-bond. Two vertexes which are associ-

(19) Two ver-

ated by the same bond are said to be adjacent.
texes may therefore be adjacent by more than one type of
bond, or by two or more 3-bonds, 4-bonds, etc., but by no
more than one 2-bond. No bond connects a vertex to itself.
A j-bond may be represented geometrically as a regular poly-
hedron of j vertexes in j—l1 dimensions: a 2-bond by a line,
a 3-bond by the area of a triangle, a 4-bond by the volume
of a tetrahedron, etc. A graph on »n vertexes is said to
contain j-bonds (read j-set bonds) if j is a nonempty subset
of the integers 2, 3, .;., n corresponding to the types of

bonds in the graph. For a graph containing 2- and 3-bonds

only, j = 2, 3.
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A graph is disconnected (or disjoint) if it is pos-
sible to séparate the vertexes of the graph into two or more
subsets such that no two vertexes in different subsets are
adjacent. Otherwise the graph is connected and is termed
a tree. A vertex of a tree is termed a cut vertex (or ar-
ticulation point(40’47)) if it is possible to separate the
remaining vertexes into two or more subsets such that no two
vertexes in different subsets are adjacent. A star denotes
a tree with no cut vertexes. Considering two or more sets
of vertexes nonadjacent if no two vertexes in different sets
are adjacent, one may write the definifions of "tree" and
"star" in this parallel form:

Tree:

Star:} Can not separate the set of

vertexes of a graph
all vertexes but one of a tree

into two or more nonadjacent subsets.

A graph consisting of a single vertex will be considered a
tree but not a star. Any graph therefore consists of one
or more disjoint trees, and any tree consists of one or more
stars joined together at cut vertexes.
This generalization of linear trees and stars has

been selected for compactness of expression and applicabil-

ity to nonlinear graphs. . The given definitions are simpler
than the corresponding definitions of at-least-singly-

connected (ALSC) and at-least-doubly-connected (ALDC) graphs
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(14)

by Friedman and overcome the difficulty of applying the
usual definition of "articulation point”(40) to nonlinear
~graphs.

Define the symmetry number of a graph as the order
of the group of automorphisms (see Appendix B) of the
4graph.(47) If s is the symmetry number of a graph on n
vertexes, then there are n!/s permutations of the vertexes
which yield topologically equivalent graphs. Define the
complement of a graph containing j-bonds on »n vertexes as
the graph on the same vertexes, but containing all j-bonds
not in the original graph. It follows<that the complement
of a graph has the same symmetry number as the given graph.

Define a polygon as a linear star of »n 2-bonds
(forming a single cycle) on n vertexes, for n 2 3, or a
single 2-bond joining two vertexes, for n = 2. Polygons
therefore include lines, triangles, quadrilaterals, penta-

(20)

~gons, etc, Define-a cactus as a tree whose stars are

polygons. 1If only lines are permitted, the result is a

Cayley tree,(47)

4 (10,28,41)

or a '""tree'" as the term has been ordinarily
use
Define a compZéte star of j-bonds on n vertexes as a
star containing all possible j-bonds. A star cohtaining
more than one type of bond is complete if and only if it is
complete with respect to every type of bond present in the

star. The vertexes of a complete star are therefore all
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symmetric with respect to each other, and all pairs of the
vertexes are adjacent. A tree consisting of complete stars
will be termed a complete tree. Different stars in a com-
plete tree may themselves be complete with respect to
different types of bonds.

As an example of nonlinear graphs, all different
~graphs on three indistinguishable vertexes are shown in
Fig. 1. The coefficients given are the numbers of differ-
ent graphs of each type which would be obtained if the ver-
texes were distinguishable. The first two graphs shown on
the top line are disconnected, the third is a tree but not

a star, and all ‘the others are stars.

2. Cluster Functions

The potential energy of interaction of a configura-
tion of three molecules is the sum of three pairwise inter-
actions plus a small but nonnegligible correction term for

the three-body interaction:(14)

U(ry,r2,rs) = u(ri,r2) + u(ri,rs) + u(ry,rs)

+ u(rl 9r2’r3)9

where r. is the set of coordinates of molecule Z. This
defines the three-body interaction term u(r,,r2,rs).

Higher-order nonadditivity effects are defined similarly,
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FIGURE 1.—Nonlinear graphs on three indistinguishable

vertexes.
shaded areas, 3-bonds.
~give the number of different graphs which would be

obtained from the given graph if the vertexes were

The lines represent 2-bonds and the

distinguishable.

(1)

//

1)

~

/

(3)

- (3)

(3)

)

The integers in parentheses

(1)

(1
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by considering them as successive corrections to the sum of
all lower-order interaction terms. Denoting U(rl,rz,...,rm)

by Uy and u(ri,rj,...) by ugi...» one has in general

¢ ® 0

U, = ) u,. + ) Uy ¥ ) Usar, ¥ oaes
u pairs Y triplets ik fours tikL

* ulz...N' (1)

The correspondence of nonlinear graphs with cluster
integrals is based on the definition of the cluster func-

tion(14)

Fu
f(ri,rj,...) = fp = €Xp [— F%J -1, (2)

where m = i,'j, ... 1s the seﬁ of interacting molecules, k
is the Boltzmann constant, and T is the absolute tempera-
ture. If m is the number of molecules in the set m, the
cluster function fm corresponds to an m-bond of a nonlinear
~graph. For pairwise interactions only, m = 2 and Eq. (2)

defines the Mayer cluster function.(sl)

3, Virial Coefficients

The configuration integral for ¥ identical mole-

(22)

cules,

Uy
z(W,v,T) = [...| exp [— zﬁ]drl..idrﬂ, (3)
Vv vV
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may be expressed as the sum of integrals over products of
cluster functions corresponding to all graphs on ¥ distin-
~guishable vertexes. The virial coefficients may then be
obtained successively in terms of a sum of cluster'integrals
which may be represented by trees on distinguishable ver-

(14)

texes. Furthermore, the virial equation in terms of

the molar volume 7V may be expressed as

PV pt —1-
gp = 1+ 14,777, (4)
n=2
where the nth virial coefficient, A, (1) (n 2 2), for sys-
tems of a single species, is explicitly(14).
_ n-1

4,(1) = = (=108, (5
Here N _ is Avogadro's number, B, is given by

B, = T/%'T JJ s, dr;...dr_, | (6)

R4 4

and 5, is the sum of all cluster terms (products of cluster
functions) which correspond to stars on n distinguishable
vertexes. Neglecting surface effects, the integrations of
the cluster terms are performed over all space, strictly in
the limit as V + », The labeling of vertexes of the corre-
sponding stars is arbitrary. For a pure substance, only
topologically distinct stars on indistinguishable vertexes
correspond to different values of the integrals. Hence the

number of different graphs on distinguishable vertexes, and
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the number of these which could be formed from the same
~graph if the vertexes were indistinguishable, are desired.
For multicomponent systems, the vertexes are distinguishable
by species, and the numbers of topologically distinguishable
~graphs lie between those for indistinguishable vertexes and
those for distinguishable vertexes, and depend on the dis-
tribution of the species present among the vertexes of the
~graphs under consideration. The coefficients as well as

the numbers of inequivalent integrals increase rapidly with
n; therefore the solution of the combinatorial problems
associated with nonlinear graphs, treés, and stars 1s an
important part of the calculation of virial coefficients

including nonadditivity effects.

4, Multicomponent Systems

While the foregoing development has been given in a
form to apply only to pure substances, it may be easily

extended to the case of multicomponent systems. Instead of

Eq. (5), the nth virial coefficient is then(14)
‘ n-1 n
4,(1) = = (n=1)0, Iilx B> (7)

where

(8)

n=n1, 'nz, oo.’n
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(9)

X = X1y, T2, eeey xs’

¢ is the number of species in the system, % is the mole
fraction of species <, and
8
N
x" = W @ b (10)
7::‘1 T
The sum in Eq. (7) is over all [n+i_1] ordered parti-

(41)

tions of n into s elements, including zero elements, or

equivalently, over all n, and

1 {... '
s
nl = IT;ni!, (12)
’L:
s
no= ] n;.
=1

Then 54 corresponds to the sum of all stars on n vertexes
distinguishable by species only; that is, all stars on =

vertexes, of which n, are of species ¢ (¢ =1, 2, ..., 8).
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C. COUNTING OF NONLINEAR GRAPHS ON DISTINGUISHABLE VERTEXES

Uhlenbeck and Ford(47) review systematic techniques
for counting the number of linear graphs, trees, and stars
on n distinguishable vertexes. These counting techniques,
involving the use of generating functions, are extended

here to nonlinear graphs.

1. Formulas for Counting Graphs

Different types of bonds of a nonlinear graph are
independent of each other. The same four vertexes of a
~graph, for example, may involve any number from zero to six
2-bonds, from zero to four 3-bonds, and zero or one 4-bond
simultaneously in any combination. For a graph on n ver-

texes, define a bond set k(n) by

K(n) = 0, kyy Kypy euey K (13)

n’

where kj is the number of j-bonds in the graph, and k, = 0
by convention.

Vertexes of a linear graph are associated in pairs
only, by 2-bonds, with no more than one 2-bond connecting
any given pair of vertexes. The number N(n,k,) of such

~graphs of kz 2-bonds on n distinguishable vertexes is:given
by (47)
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where

o - 14

is the number of pairs of vertexes (or the maximum number
of 2-bonds) in a graph of n vertexes, and where

_nt > %
() - | o T (15)

0 n < k

is the binomial coefficient, the number of combinations of
n objects taken k at a time, n and k being nonnegative
integers. Equation (14) gives simply the number of ways of
distributing k, 2-bonds between B,(n) pairs of vertexes.

By generalization of Eq. (14), for graphs with

j-bonds only (4§ = 2, 3, ..., n), one has

B.(n)
N(n’kj) = i (§ = 2, 3, «ee, 77'): (16)

where Bj(n), the maximum number of j-bonds in a graph of =

vertexes, is given by

B,(n) = m A(,j ='z, 3, eees M), (17)

since each j vertexes in the graph may have at most one

J-bond associating them.
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Since
n 14 n m
1+ )" = ] [,,,]t , (18)
m=0
the total number Nj(n) of possible graphs with j-bonds on =
distinguishable vertexes, upon setting ¢ = 1, is
W) = ] W(n,k)) =27 (4=2,3, ..., n).(19)
k =0 J
J
In general, several different types of bonds may be inde-
pendently present on the same graph; hence the total number
of graphs on n distinguishable vertexes, with k, 2-bonds,
k, 3-bonds, etc., is expressed by a product of terms of the

3

type given in Eq. (16), and may be written
B
710 = (3], | (20)

where the conventions

B =B,, By, «vv, B, (21)
n
B,
[i] - 1T 174, (22)
J=1 kj

have been adopted, and the Bj are understood to be functions
of n. In this notation Eq.b(ZO) for nonlinear graphs takes
the same form as Eq. (14) for linear graphs. Linear graphs
are therefore equivalent to nonlinear graphs for which the

number of 3-bonds and higher-order bonds is zero.
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The total possible number of graphs on n distin-
~guishable vertexes, using all combinations of different
types of bonds, follows from Eqs. (18) and (19), and is

N(n) = ﬁ N.(n) = 227°meY, (23)
g=2 Y

The total number of nonlinear graphs on »n vertexes is
readily seen to be 2""! times the square of the number of
~graphs on n—1 vertexes. It is apparent that the counting

of nonlinear graphs by inspection rapidly becomes over-

whelmingly cumbersome. The total numbers of graphs on

nA

n 10 distinguishable vertexes, from Eqs. (19) and (23),
are given in Table 1. Values of ¥(n,k) for 2- and 3-bonds
only onn = 3, 4, and 5 vertekes, calculated from Eq. (20),
are presented in Tables 2, 3, and 4, respectively, as the
values of p(n,k) for n = 1,1,...,1 (njelements of unity),

since if all vertexes are of different species, they are

all distinguishable.

2. Generating Functions for Counting Trees and Stars

(42)

Generating functions are useful in the combina-
torial theory of graphs, in simplifying operations involving
the coefficients. To obtain ‘the number of trees C(n,k) and
the number of stars S(n,k) with given k(n) on n distin-

. guishable vertexes, write the generating functions
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TABLE 1.—Total numbers of graphs on n distinguishable

vertexes,

" 2-bonds Only 3-bonds Only All Bonds
n,(n) v, (n) v (n)

1 1 1 1

2 2 1 2

3 8 2 16

4 64 16 2048

5 1024 1024 228

6 213 220 287

7 221 235 2120

8 228 256 22‘%7

9 236 284 2502

10 211»5 2120 21013
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TABLE 2.—Numbers of graphs, trees, and stars of k, 2-bonds
and k, 3-bonds on n vertexes, distinguishable by

species only, for n = 3,

n=1,1,1 n=1,2 n=>3
kasks | R R OR NoR O = =R
E & & E & & g & &
2 > o 2 = o 2 = o
,0 1 0 0 1 0 0 0
R 0 0 yA 0 0 1 0
s 3 0 2 2 0 1 0
, 1 1 1
) 1 1 1
s 3 2 1
, 3 2 g 1
s 1 1 1




-21-

TABLE 3.—Numbers of graphs, trees, and stars of k, 2-bonds
and'k3 3-bonds on n vertexes, distinguishable by

species only, for n = 4,

n=1,1,1,1 n=1,1,2 n= 2,2 n=1,3 n =4
kooky
MYy ¢ w Y O W Y O U Y O U Y O
0,0 1 0 o0 1 0 0 1 0 0 1 0 o0 1 0 0
1,0 6 0 0 4 0 0 3 0 0 2 0 0 1 0 0
2,0 15 0 0 9 0 0 6 0 0 4 0 O 2 0 0
3,0 2016 0 12 9 0 8 6 0 6. 4 0 3 2 0
4,0 15 15 3 9 9 2 6 6 2 4 4 1 2 2 1
5,0 6 6 6 4 4 4 3 3 3 2 2 2 1 1 1
6,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0,1 4 0 0 3 0 0 2 0 0 2 0 0 1 0 0
1,1 24 12 0 14 7 0 8 4 0 6 3 0 2 1 0
2,1 60 48 12 33 26 7 18 14 4 13 10 3 4 3 1
3,1 80 76 40 44 41 22 24 22 12 18 16 9 6 5 3
4,1 60 60 48 33 33 26 18 18 14 13 13 10 4 4 {
5,1 24 14 8 6 2
6,1 4 3 2 2 1
0,2 6 4 3 2 1
1,2 36 20 12 8 3
2,2 90 48 27 18 6
3,2 120 64 36 24 8
4,2 90 i 48 27 18 6
5,2 36 20 - 12 8 3
6,2 6 4 3 2 1
0,3 4 3 2 2 1
1,3 24 14 8 6 2
2,3 60 33 18 13 4
3,3 80 44 24 18 6
4,3 60 33 18 13 4
5,3 24 14 8 6 2
6,3 4 3 2 2 1
0,4 1 1 1 1 1
1,4 6 4 3 2 1
2,4 15 9 6 4 2
3,4 20 12 8 6 3
4,4 15 9 6 4 2
5,4 -6 4 3 2 1
6,4 1 1 1 1 1
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