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NUHKERICAL SOLUTION OF THE
SUPERFLUID HELIUM SHOCK JUMP CONDITIONS

ABSTRACT

The four fundamental conservation equations of superfluid mechanics inay
be integrated across a one-dimensional discontinuity (shock wave) propagating
into undisturbed helium II to yield a set of four algebraic equations ( jump condi-
tions) which, when supplemented by thermodynamic state information, estab-
lish the equilibrium flow state behind the shock wave for a given wave speed and
undisturbed flow state ahead of the shock. These jump conditions have been
solved numerically for 19 points on the helium II p-T diagram with upstream
Mach number as the independent parameter. Representative results of the cal-
culations are presented for pressure shocks, temperature raising shocks, and
temperature lowering shocks. The results are compared to previous analytical
approximate solutions to test the validity of those approximations. They are
also compared to experimental data for shock waves in helium II as a means of

testing the correctness of the full, nonlinear two-fluid equations.



EXPERIMENTAL INVESTIGATION OF THE
LIQUID HELIUH II - VAPOR INTERFACE

ABSTRACT

An apparatus was designed and constructed to measure the linear reflection
and transmission coefficients for weak seecond sound shocks impinging upon the
liquid-vapor interface of helium II. The measured reflection coefficients repro-
duce the work of previous authors, giving values which are roughly 20% higher
than those predicted by thermodynamic equilibrium theory. The transmitted
pressure wave speed was measured, and was found to be sonic within the limits
of experimental precision. Therefore strength could not be deduced from time
of flight measurements. Direct amplitude measurements of this weak wave were
prevented by the film which coats the sensors in the vapor. For these reasons,

the attempted transmission coefficient measurements were unsuccessful.
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PART I
NUMERICAL SOLUTION OF THE
SUPERFLUID SHOCK JUMP CONDITIONS



Chapter 1

INTRODUCTION

This work was undertaken as an attempt to shed light upon the implications
of data from experiments on shock waves in superfluid helium. The data pro-
vide a means of testing the correctness of the nonlinear two-fluid equations if
the shock jump conditions which follow from these equations can be solved. But
due to the complexity of these jump conditions and the associated superfluid
thermodynamics, closed form analytical solutions are not possible, and only
approximations for weak shocks have heretofore been obtained. The experi-
mental shock wave data in some cases show significant disagreement with these
approximations, and an important question then arises. Are the disagreements
a consequence of the weak wave approximation; or, more fundamentally, do
they indicate a failure of the two-fluid model? A natural approach to resolving
this question is to seek numerical solutions of the jump conditions which are

limited in quality only by the quality of existing helium II thermodynamic data.

Current limitations on the quality of helium II thermodynamics stem from
two sources. The pressure and temperature dependences of the state variables
are known from sound speed data to a precision of approximately 0.3%. More
importantly, dependence of the state variables on the counterflow velocity w
can only be approximated at this time by neglecting the w dependence of the
normal fluid fraction. The resulting leading order corrections for chemical

potential, entropy, and density are then valid only for the case of w small.



Comparison of the numerical results to pressure shock data shows good
agreement for experiments at temperatures below 1.88 °K. Disagreements above
1.88 °K are probably due to evaporative effects. Comparison to temperature
shock data shows agreement for low Mach numbers but significant disagreement
at higher Mach numbers. The higher Mach number temperature shock data can

possibly be used to improve the two-fluid thermodynamics.

Before discussing the shock jump conditions and their solutions, a brief
introduction is given on the physical properties of helium II which motivate a
two-fluid model and on the Landau equations which express this model
mathematically. Discussions then follow on linear wave propagation and shock
waves in helium II. The chapter concludes with a section describing previous

superfluid shock wave experiments.



1.1. Physical Basis for the Two-Fluid Model of Helium

At low temperatures, helium exhibits a number of remarkable properties and
behaviors which are unique among all substances encountered in nature. These
properties are all ultimately the consequences of two features of the *He atom —
a high degree of symmetry and a low atomic mass. The atom in its ground state
has the most stable and symmetric of electronic configurations. The two elec-
trons are spin paired in the 1s level. (Thermal excitations from the atomic
ground state can only be expected at temperatures exceeding 10°°K) As a
result the atom is very resistant to polarization, giving rise to exceedingly small
classical potential interactions (van der Waals’ forces) with any neighboring
atom. For this reason helium is the most difficult gas to liquefy. Its boiiing point
is 4.21%K at one atmosphere. Thinking in purely classical terms, one could say
the helium atom is nature's most perfect hard sphere -- the kinetic theorist's
dream. Quantum mechanically speaking however, the high degree of symmetry
plays a quite different role. The ground state is characterized by complete spin
pairing of the atom’s nucleons as well as its electrons. One can therefore say

from a quantum statistical viewpoint that among particles in nature which have

mass leads to a large deBroglie wavelength for the atom at low temperatures
(A=784 at 4.21%). Thus, observing a collection of *He atoms, one might
expect to see evidence of Bose attraction (the tendency of symmetric wave func-
tions to overlap) and ultimately Bose condensation as A becomes comparable to
the spacing between atoms. In fact as liquid helium is cooled along its vapor
pressure curve, it undergoes a second-order phase transition at 2.17%K to a dis-
tinct liquid phase (deemed helium II) which exhibits many remarkable proper-
ties, some of which are discussed below. This phase transition is called the
lambda transition, and although certainly a manifestation of wave function

overlap, it is dissimilar in many respects to the perfect gas Bose condensation of



point mass particles (see for example, Goodstein, Chapter 5).

Helium II is remarkable in that heat is reversibly transported in this liquid by
convection. As a result, temperature disturbances propagate as waves called
"second sound" The name second sound is intended to indicate a wavelike
behavior in addition to the ordinary acoustic one (called first sound in helium
II) associated with pressure disturbances. The helium II phase is sometimes
called superfluid, owing to its ability to flow through fine capillaries with no
pressure loss. This might lead one to conclude that helium II has zero viscosity.
However, a body moving through helium II will experience a viscous drag. For
example, a torsional pendulum consisting of an oscillating thin flat plate will be
damped in helium II, and the damping time will increase as the liquid tempera-
ture is decreased. This result seems to indicate a non-zero viscosity which
decreases with temperature. These apparently contradictory results of capillary
and torsional pendulum experiments led historically to the proposal of a two-
fiuid model for helium II. In this model the fluid is imagined to consist of two
components. One is responsible for viscous interactions and is called normal.
The other, called super, is able to flow inviscidly and is a macroscopic manifesta-
tion of a single quantum mechanical collective ground state. This ground state
is in some ways analagous to that occupied by the Bose condensate of perfect
gas of bosons. Since the super component represents a single microstate, it has
zero entropy. The experimental results are now resolved as follows. Within the
capillary, the normal fluid is clamped by viscosity, but the super component,
completely lacking viscosity, flows through freely. The pendulum on the other

hand is damped by interaction with the normal component only. The mass frac-

tions of super and normal fluids (%’— and ep'—‘-) vary with temperature but

always sum to unity. At the lambda transition p_;_ is unity and decreases

smoothly to zero at absolute zero. Thus the damping of the pendulum is weaker



at lower temperatures since less normal fluid is present.

One further property of liquid helium; also the result of high symmetry and
low atomic mass, should be mentioned. The liquid never freezes under its own
vapor pressure, not even at absolute zero. This results from the high zero point
energy which is inversely proportional to the atom's mass and the very small
interatomic attractions caused by electronic orbital symmetry. The solid phase
of *He can be reached by applying a pressure of approximately 25 atmospheres

to the liquid.

1.2. The Landau Equations for the Two-Fluid Model
The mathematical formulation of the two-fluid model was given by Landau in
1941 (Landau, 1941; Landau & Lifshitz, 1959). The total fluid density is taken to

be the sum of the super and normal component densities.

P =ps + pn (1-1)

Now p, represents the degree to which the liquid occupies a single quantum
mechanical ground state, and p, can therefore be identified as the density of
collective excitations out of that state. Thus these component densities do not
represent mass fractions in the sense of separable species. Separate velocity

flelds i, and i, are ascribed to the super and normal components respectively.

The super component’s density and velocity can be more precisely related to
the quantum mechanical ground state for the system by expressing the wave

function for this state as

WF.£) = [pgF .£)]T a'F0) (1-2)



Thus the superfluid density is directly related to the amplitude of the wave func-

tion since

Ps =YY (1-3)

Furthermore, the mass flux is given in terms of the current density established

by the wave function’s gradient.

I 2 S ]
pats = o4V 4~ 97 3] (1-2)
It follows that
- A
Uy = —Vp (1-5)

where R denotes Planck’s constant divided by 27 and m the total mass of the
superfluid fraction. Thus as a consequence of a single, well-ordered ground

state, the macroscopic flow of the superfiuid is irrotational,

V xiig =0 (1-8)

and the phase of the wave function serves as the velocity potential.

Consider now the physical interpretation of the normal component mass flux
as an excitation flux. To an observer moving with the super component (i.e., with

velocity i,), this excitation flux is given by



;0 = pn'm (1'7)

where

D =y, i (1-8)

is the relative (or counterflow) velocity between the.two components. (The zero
subscript in this section is used to indicate the frame of reference in which the
superfluid is at rest.) Now since all velocities must transform according to

Galilean relativity, the mass flux in the lab-fixed frame is given by

7 =pit =p(ily + o) = pil + 7o (1-9)
From the physical meaning given to jg by equation (1-7), it follows from (1-9)
that

Pl = pyily + prily (1-10)

The concept embodied in (1-7) also requires the thermodynamic identity to
be extended to include the energy contribution from the excitations. In the

superfiuid frame

dUg = TdS — pdV + udM + ib-d(V 7o) (1-11)

where the extensive quantities are



Up = internal energy

S = entropy
V = volume
M = mass

-
V jo = momentum of excitations

and the intensive quantities are

T = temperature

P = pressure

4 = chemical potential per unit unit mass

W = velocity of excitations

Equation (1-11) can be looked upon as defining the excitation velocity 4, (@ in
the superfiuid frame) as the derivative of energy with respect to momentum. An

extended Gibbs-Duhem relation follows from (1-11).



Mdpy = —SdT + Vdp - V jo dib (1-12)

The thermodynamic equations (1-11) and (1-12) may be rewritten as

d(peo) = Td (ps) + udp + b-dj, (1-13)
- 1 pﬂ Y
diu = —sdT + 'p—'dp - —;—wdﬁ) (1-14)

where eg and s represent the specific internal energy and the specific entropy

respectively.

Equations (1-1),(1-8), and (1-10) may be combined to write

'17.,,, =% + -;— (1’15)
g, =4 - 22 (1-16)
b

Before discussing the conservation equations which govern the flow of helium
II, consider the quantities which specify an equilibrium (i.e., non-dissipative) flow
state. Upon inspection of equation (1-14) it is clear that pressure, temperature,
and magnitude of counterflow velocity may be chosen as the independent vari-
ables necessary to thermodynamically specify the state. Dynamically, the vec-
tors & and @ (or equivalently i, and i,) are required. Therefore two vector and

two scalar governing equations will be expected.
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Conservation of mass requires the continuity equation to be obeyed.

%g-w F=0 (1-17)

Conservation of momentum can be expressed generally as

g%-+v-ﬁ=o (1-18)

where the momentum flux density tensor f1is as yet unknown. Since only non-
dissipative flows are currently being considered, entropy must be conserved.

Thus

_(&_)_66: +V-F=0 (1-19)

where F represents the entropy flux. One further vector equation is provided by
recalling that the super component velocity field is irrotational. Thus the time
derivative of i, as well as i, itself may be expressed as the gradient of some

scalar function.

=~V

Or, since V x iy = 0, this can be written as

Oty 1 g _
3t +V fI’-l-zu.]—O (1-20)



«11 -

Equations (1-17) through (1-20) govern the fiow fleld but are only meaningful if
1.7, and & can be deduced. Landau accomplished this by requiring the conser-

vation of energy equation to be satisfied

8E > -
'52_—1-7 Q=0 (1-21)

and requiring all velocities to Galilean transform from the superfiuid rest frame
to the lab frame. From these two requirements, it can be shown after laborious

manipulation that

1 = pyiiydl, + ppinai, +p! (1-22a)

= it + %’-"-m +pt (1-22b)
F = psit, (1-22c)
=y (1-22d)
E = peg + %—-pu,z + pp b il (1-22e)
@ = (u+ udoi + psTihy + puita(dn-iD) (1-221)

and the mass flux (equation 1-10) is
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7 =pd = p,i, + ppily (1-22g)

The Landau two-fluid formulation is now complete. Conservation of mass (1-17),
momentum (1-18), and energy (1-21) together with the superfluid equation

(1-20) form the complete set of equations for superfluid dynamics. If the flow of
interest is dissipationless, the conservation of entropy equation (1-19) is
equivalent to and may be used in place of the equation for conservation of

energy.

The conservation equations are very compiex since as indicated by equation
(1-14) the thermodynamic state variables all depend on the counterflow speed
w. Although the exact dependence is not currently known, it can be derived for

the case of w small. In this limit, equation (1-14) implies

-

N 2 p
E@.Tw?)~ up,T) - -ué—f- (1-23)

where all quantities on the right hand side are functions of p and T only. The
tilde will henceforth be used over state variables to denote this second-order
dependence on the magnitude of the counterflow velocity. Entropy and density
are then found by differentiating (1-23) with respect to temperature and pres-

sure.

Slp,.Tw)~ s(p.T)+—"—é—2—5%,-[ef—] (1-24)

Brp &
Flp. Tw?) s plp,T) + %"—5%—[”,—;‘—-] (1-25)
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1.3. Sound Propagation in Helium II
The Landau equations predict the existence of the previously mentioned
linear wave modes of first and second sound. Upon linearizing equations (1-17)

through (1-20) we have

%qu-ﬁ=o (1-26)
m%%+Vp=0 4 (1-27)
Po%:"*'so%%"'!?osov'ﬁn =0 (1-28)
%7";—+v,4=o (1-29)

In this section, the zero subscript refers to the undisturded equilibrium state in
which ail veiocities are zero. Ail non-subscripted variables represent small per-
turbations to that state, and in equations {1-26) through (1-29) only the terms
which are linear in these perturbations have been retained. Combining the time
derivative of (1-268) with the divergence of (1-27) yields

62
5—;2—: V% (1-30)

Using equations (1-15),(1-18), and the linearized version of (1-14), equations
(1-28) and (1-29) may be combined to give
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3%s Pey e 2
—= 5§V T 1-31
atz Pno §g ( )

The propagation of small pressure-density disturbances (first sound) is
governed by the equation (1-30) while propagation of small temperature-entropy
disturbances (second sound) is governed by the wave equation (1-31). These two
linear wave modes are coupled to each other because the density will in general
vary with temperature as well as with pressure while the entropy will vary with
pressure as well as with temperature. This is to say coupling occurs through the
coefficient of thermal expansion # defined as

__1]a
- p[aTL

Conversely, two independent wave motions (with two associated wave speeds)
can be executed by the fluid in the approximation of zero thermal expansion.
This is in fact a good approximation for helium II except very close to the
lambda transition. From thermodynamics, lack of density variation with tem-

perature (i.e., § = 0) implies lack of entropy variation with pressure
as
Prushniy =0
[aP ]1’

and equivalence of constant pressure and constant volume specific heats.

It follows then that
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and that

Since in the linear wave equations the variations of quantities from equilibrium

are small enough to be taken as differentials, equations (1-30) and (1-31) can

now be written in the uncoupled approximation as

8? 2 g2
otz 1 VP
2

where the speed of pure first sound is identified as .

i
i ap .

and the speed of pure second sound is identified as

[p,szT ]%‘
@z = | ——
PnCp

(1-32)

(1-33)

(1-34)

(1-35)
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1.4. Shock Waves in Helium I

Suppose pressure or temperature disturbances introduced into the liquid are
of sufficient magnitude to invalidate the linear approximations made in the pre-
vious section. The neglected nonlinear terms in the dynamic and thermo-
dynamic equations provide for the occurrence of wave steepening. Consider the
propagation in one dimension (taken as the x-axis say) of a disturbance which
initially has a smooth shape which slowly varies with x. Owing to nonlinear
effects, the speed of propagation will be amplitude dependent. For example, it
will be shown that in helium II, regions of higher density in a pressure distur-
bance will travel faster than those of lower density. A slowly rising compressive
disturbance will therefore tend to steepen as it propagates and ultimately form
a discontinuity or shock wave. The tendency toward further steepening, that is
the overtaking of low density regions by higher density ones, is prevented by the
dissipative processes of viscosity and heat conduction which occur within the
shock. The shock wave therefore produces a very sharp {(almost discontinuous)
change of state across itself as it propagates into the fluid. The change is from
one equilibrium flow state ahead to another behind the wave, and although dissi-
pation occurs within the shock, the details of how it occurs need nst be con-
sidered if the governing differential equations are integrated across the discon-
tinuity to connect a peoint ahead of the shock to one behind it. That is, the Lan-
dau conservation equations of mass, momentum, superfiuid motion, and energy
(entropy is not conserved since the shock causes dissipation) should, when
integrated across the shock, give the jump from the unshocked to the shocked

flow state even though these equations contain no dissipative terms.

The integration of the differential equations is effected by transforming to a
steady coordinate systemn. Consider a one dimensional shock wave propagating
into undisturbed helium II with speed ¢. (see Figure 1-1a), and from this lab-

fixed coordinate system (denoted by t) transform to a system in which the shock
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Ug o
= C
Wp Ugg =0
Wor =0
p,T Po: To

U=C"Uf B

w=-

p,T

Figure 1-1a. Lab-Fixed Coordinates

e

Figure 1-1b. Shock-Fixed Coordinates

Ug =C
wo =0
DovTo
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is fixed (Figure 1-1b). In this section and hereafter, a zero subscript refers to
unshocked fluid. Note that the relative velocity w is invariant under this
transformation, and as a result, a conventionally positive relative velocity in lab-
fixed coordinates (i.e., toward the shock) will be negative in the shock-fixed
frame. Since the flow is steady in the shock-fixed frame, all time derivatives van-
ish. Integration of the equations for conservation of mass (1-17), momentum

(1-18), superfluid motion (1-20), and energy {1-21) across the shock then gives

Pu = poug (1-38)
P +patts + pauf = pg + pouf (1-37)
X+ }_u’z = g + _1_—,,,32 (1-38)
2 g 0
P'§ Ty + ppudw = posoToun, (1-39)

where the fluxes have been identified using equations (1-22). Using equations
(1-15) and (1-18) to eliminate u, and u, and then eliminating u by (1-38), we

arrive at the desired set of jump conditions.

PsPnW?
poPag

,1=2_-_ao.+[p%_1]ﬂz+

= =0 (1-40)
Polg p

- Z—M"’ =0 (1-41)
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§ Tw
ST _g|ge L2
PoSoTolg

2
gm0 ok + 2w =0 (1-42)
PoSoTolo | p A

The wave speed ¢ =ug has been expressed as the product of a shock Mach
number # and a generic upstream sound speed a@g. Generic because shock
waves in helium II are of two types which correspond to the linear wave modes of
first and second sound in the limit of vanishingly small wave strengths. Thus the
Mach number for a pressure (or first sound) shock which primarily jumps the
pressure, density, and total flow velocity u is based on first sound speed a, while
the Mach number for a temperature (or second sound) shock which primarily
jumps the temperature, entropy, and counterflow velocity w is based on the
second sound speed a;. For a given upstream thermodynamic state (specified by

Po and Tg) and a given wave speed ¢ = HMag, the three jump conditions (1-40)
through (1-42), supplemented by state equations for 2, § 5, and -e}‘—-. specify the
p

downstream state p,T, and w.

1.5. Previous Experimental Work

As an experimental tool, shock waves offer a number of attractive advan-
tages. They impulsively create a well defined flow state in a deterministic way
since the amplitudes of jumps across the shock are uniquely related to the wave
speed. Wave speeds are precisely measurable and desired values may be gen-
erated in ways which repeat reliably. Additionally, shock waves create flow states
in the bulk liquid, alloﬁng bulk behavior to be studied in isolation from the

complication of boundary effects.
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Historically, temperature shocks in helium II were the first type to be investi-
gated. Osborne (1951) generated these by delivering a D.C. pulse to a fine wire.
Input powers ranged up to 3.8 W/ecm® A phosphor bronze resistance thermome-
ter was used to detect the resulting signal which was observed to arrive more
quickly as power input was increased. At temperatures close to the lambda tran-
sition, the pulse was steepened on the back. At lower temperatures it was front
steepened. Dessler and Fairbank (1956) using input powers up to 1.8 W/Am?
measured the amplitude dependence of second sound signals in liquid helium
between 0.936 °K and 2.045 °K. Within experimental error their results verified
an approximate analytical solution to the jummp conditions obtained by Khalatni-
kov (1952,1965). This approximation (the so called second order theory) will be
discussed in the next chapter:. Temperature shocks were observed optically by
Gulyaev (1967,1970) using Schlieren photography. The experiments were per-
formed at saturated vapor pressure. For heater powers on the order of 3 to 8
W/em?, Gulyaev concluded that boiling was seen at the heater surface. The
observations of Osborne and Gulyaev were extended quantitatively by Cum-
mings, Schmidt, and Wagner (1978) who used superconducting thin film sensors
to measure temperature shock speeds as a function of input heater power an
pulse width for various bath temperatures on the saturated vapor pressure
curve. They observed deviations from the Khalatnikov second order theory at
powers exceeding 5 W/cm?® Turner (1979) used the same type of sensor to
obtain temperature jump measurements across temperature shock waves as a
function of their wave speed. A departure from:' second order theory was
observed at roughly M= 1.04. Counterflow velocities of up to 3.67 m/sec at
T = 1.45 9K were generated by temperature shocks in Turner's experiments. This

represents the highest w ever attained outside of restricted geometries.

Cummings (1973,1976) simultaneously generated first and second sound

shocks in helium II by reflecting a gasdynamic shock from the saturated liquid-
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vapor interface. Carbon detectors were used in the gas and the liquid to meas-
ure arrival times. Qualitative agreement with the Khalatnikov approximations
was observed. The measurements of Cummings were refined and extended by
Wise (1979) who used superconducting thin films in addition to carbon detectors
to more accurately measure wave speeds in the liquid and vapor phases. For
strong pressure shocks in the liquid, Wise observed systematic deviations from

the Khalatnikov approximation.
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Chapter 2

SOLUTIONS OF THE JUMP CONDITIONS

2.1. The Khalatnikov Approximations

As mentioned previously, whether or not the experimental shock wave data
confirm the validity of Landau’s equations requires. comparison to solutions of
the jump conditions which follow from those equations. The solutions against
which authors have traditionally compared their results are actually approxima-
tions made by Khalatnikov (1952,1985) to the exact solutions. These solutions
are approximate in the sense that weak shock waves (i.e., ¥ =1 + &) are con-
sidered, in which case the jumps in all quantities across the shocks are small.
Jumps in temperature AT = T — Ty, pressure Ap = p — pg, and counterflow velo-
city w are chosen as the independent variables and each one is considered O(e).
Then all quantities which appear in the jump conditions (equations (1-40)
through (1-42)) are expanded as Taylor series in these variables, and only terms
through O(£?) are retained. As a further approximation, the coefficient of ther-

mal expansion is neglected (8 ~ 0). The results for pressure shocks are

(2-1a)

AT =0 (2-1b)
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w=0 (R-1c)

AT = —2U = 1) (2-2a)
[ a_, afcy
[Fi" T,
w=— {—95-—] AT (2-2b)
Pnlsz o
I 2.2
== PsPn - paz g p..L 2 _
op { P 2 ap[p”ow (2-2c)

He;e, as in equatioms (1-40) through (1-42), the coordinate system is shock-
fixed, and the zero subscript refers to the unshocked fluid. The denominator on
the right hand side of equation (2-1a) is always positive which means that only
compression shocks: are to be expected in helium II. High density regions in a
propagating pressure disturbance will therefore travel faster than those of low
density as was mentioned at the beginning of section 1.4. However the denomi-
nator on the right hand side of equation (2-2a) can be either positive or negative
depending on the 1oc;ation on the p-T diagram. On the saturated vapor pressure
curve it is positive for T < 0.5 °%K and for 0.95°K < T < 1.88 °K which means
that temperature raising shocks are formed within these regions. Outside of

these regions temperature lowering shocks are observed.
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2.2. Numerical Solutions

Although the Khalatnikov approximations provide valuable insight into what
types of shocks may be observed in helium II, the limitations of their applicabil-
ity and validity should be borne in mind. First of all they were developed for
weak shocks — only terms through second order were retained. Secondly, it is
not clear without examining thermodynamic data for helium II whether or not
neglecting the coefficient of thermal expansion is consistent with this second
order approximation. Owing to the complexity of the jump conditions, for any
more exact solutions one must resort to numerical methods. But even numeri-
cal solutions cannot be considered to be arbitrarily precise for their quality
depends directly on the quality of available experimental thermodynamic data
which provide the necessary state equations in a tabular fashion. In fact, the
best helium II data to date (Maynard, 19768) provide dependence of the state
variables {entropy, density, normal fluid fraction, ete.) on pressure and tem-
perature only. Dependence on counterflow velocity still must be approximated to
leading order (w?®) by equations (1-23) through (1-25). The solutions in this
thesis should therefore not be taken as 'the last word" but only as the best pos-

gible given the limitations of current thermodynamic data.

2.2.1. Solution Method. Newton's method in three variables may be used to
numerically solve the non-linear jump conditions as follows. For a fixed
upstream pressure pgy and temperature Ty (wg = 0 always) we seek solution vec-

tors

Z=(p,Tw) (2-3)

for the system
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Ff@E M=o (2-4)

where

F=(rurars) (2-5)

is given by equations (1-40) through (1-42). The shock Mach number ¥ is taken
as the independent parameter and is referenced to either the first or second
sound speed for pressure or temperature shocks respectively. For M slightly
greater than unity, the Khalatnikov approximations would be expected to give a
good first guess Zg. A better solution is then found by Newton's method. (See for

example, [saacson & Keller.)

2, =2,-31 fy (2-6)

J5! represents the inverse of the Jacobian at the zeroth value.
a7 ]
dg = [:é'J (2'7)
oz o

Iterations continue -

5v+1=§v”";l}v (3'8)

until each f; approaches zero to within a specified tolerance. At higher Mach
numbers, the Khalatnikov solution may be such a poor guess that at best a large
number of iterations are required for convergence or at worst no convergence

at all is obtained. In such cases, the previous solution 2% at Mach number M®
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may be extrapolated in # and used as the initial guess 2§ *?! for the current

Mach number #**!. This is effected by letting

2g+1l =304 [;’—f{-]a e+ s - e (2-9)
where
oz 1" _[[a7 V™" (a7 I* _ 1.0 [aF )
ol [T 3 - 3 o

If the solution vector Z changes rapidly with #, the Mach number increment on
the right hand side of equation (2-9) may be made very small to improve the

2a+l
0 .

quality of 2

2.2.2. Previous Implementation. Sturtevant (1976) used the above af:proach
to solve the jump conditions.. Tabular thermodynamic data from a variety of
sources existing at that time were used to provide state information. All partial
derivatives of the equations f with respect to Z and M were computed numeri-
cally by fitting a cubic polynomial through four points which bracketed the
current solution point (2,;#). The fitted polynomial was then differentiated. At
each point, the thermodynamic data tables were quadratically interpolated to
give the density, entropy, chemical potential, and normal fluid fraction at that
point. Due to internal inconsistencies within the thermodynamic data and lack
of precision resulting from tabular interpolation, several problems arose. In
many cases the numerical solutions did not approach the Khalatnikov approxi-
mations as M -+ 1. In fact, weak wave solutions were often non-convergent.
Another problem caused by the data was difficulty in getting back on to the p-T

diagram if the result of an iteration landed outside of one of the phase
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boundaries. Additionally, the second law of thermodynamics appeared to be

violated in some temperature shock cases:.

2.2.3. Current Implementation. The problems discussed above were elim-
inated by using the thermodynamic data:of Maynard (1978). These data show a
high degree of internal consistency since all quantities are constructed from
accurate sound speed measurements. Although Maynard tabulates all thermo-
dynamic variables as functions of pressure p, and temperature T, it was deter-
mined that interpolation and numerical differentiation of these tables provided
insufficient precision to produce reliable weak wave scolutions. Thus the actual
code which generated the tables (excepting chemical potential) was incor-
porated into the program (Baker, 1982). Construction of the chemical potential
required a somewhat different approach than the other thermodynamic quanti-
ties, and the details are given: in Appendix A. Within the thermodynamic code,
Maynard calculates all pressure and temperature partial derivatives using a sin-
gle increment of 107 bar and 1075 %K respectively. With derivatives taken on this
grain, the computer generated values for sound speeds match the experimental
data points. For this reason, pressure. and temperature partial derivatives
within the present shock program were taken in the same way. However, since
there are no corresponding natural increment sizes for counterflow velocity w
or Mach number M, those partials were computed using the analytical expres-

sions for the derivatives.
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Chapter 3

RESULTS

Calculations for shock waves of both the pressure and temperature type were
made for a number of upstream pressures py and temperatures Ty covering the

helium II p-T diagram. (See table 3-1.)

Table 3-1. Upstream States

Shock Type po{bar) Ta(XK)

pressure SVP 1.30 1.80 1.80 2.10
temperature 1.00 1.30 1.80 1.81 2.10
both 5.00 1.30 1.50 1.70 2.00
both 10.00 1.30 1.50 1.70 1.80
both 15.00 1.30 1.50 1.70 1.90
both 20.00 1.30 1.50 1.80 -

SVP = saturated vapor pressure

For each of these 38 cases (i.e., wave type, pg and Ty), shock induced flow states
were calculated using upstream Mach number as the independent parameter.
Ten plots were generated for each case with the following notation.

1. Trajectories (final states on the helium Il p-T diagram) are
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indicated by open circles for the numerical solution, and by small

dots for the Khalatnikov approximation.

2. The shock Hugoniot (locus of final states on the p-v diagram) is

plotted as a solid line for the numerical solution while the Khalat-

nikov approximation is indicated by a cross symbol. Pressure

change divided by upstream pressure (Ap/pg) is plotted on the

vertical axis and specific volume change over upstream specific

volume (Av A/p) is plotted on the horizontal axis.
The remaining eight plots show variation of downstream flow state variables with
upstream Mach number, #. In all plots of this type, the numerical solution is
shown as a solid line and the Khalatnikov solution as a dashed line. The vari-
ables plotted vs. # are:

3. pressure jump, Ap oy

4. temperature jump, AT/Tg

5. downstream flow velocity divided by downstream generic sound

speed, u/a

8. downstream counterflow velocity divided by downstream generic

sound speed, w4

7. entropy jump, As /fsq

8. entropy flux jump, Ass Asg

9. downstream normal fluid fraction, p, /8’

10. heat flux jump, Aq /4

3.1. Representative Pressure Shock Results
Figures 3-1a through 3-1j show the results for pressure shocks with upstream

state set at Ty = 1.80°K and py = saturated vapor pressure.

Figure 3-1a shows the pressure changes, Ap A¢ versus Mach number, M for

this case. The numerical solution and Khalatnikov approximation coincide as
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they should as #/ -+ 1, but for higher Mach numbers the Khalatnikov approxima-
tion underestimates the numerically calculated pressure jump. These same
qualitative features in Ap/po vs. M are seen in the 18 other pressure. shock

cases as well.

Figure 3-1b shows the changes in temperature (AT/Tqvs. M) for this case.
While Khalatnikov approximates pressure shocks .in helium Il as isothermal
processes, the full numerical solution indicates a temperature decrease, the
magnitude of which increases as the wave strength increases. This trend of con-
tinuously larger temperature decreases is not always seen. For example, for the
pressure shock case having upstream conditions set on the SVP curve at
To = 1.30°K, the temperature change is initially a decrease for low Mach

numbers, but for M greater than 1.13, AT across the shock becomes positive.

Trajectories for the representative case are shown in Figure 3-1¢c. The highest
pressure final state for the numerical solution corresponds to # =1.38. For
M = 1.39, the numerical solution for downstream pressure is above 25 bar which
is outside the range of Maynard's thermodynamics. The Hugoniot shown in Fig-
ure 3-1d is of the type most frequently seen in gasdynamics. The slope is nega-
tive which is the only possibility in a classical material while the curvature is

positive, indicating occurrence of compression shocks.

Figures 3-1e and 3-1f show respectively the flow and counterflow velocities
behind the shock divided by downstream first sound speed. Since the flow is
compressed through the shock to a higher density, the downstream flow velocity
% jumps to ever lower (increasingly subsonic) values as the upstream Mach
number increases. The same result is also observed for classical shocks where
u is the only flow velocity. For the counterflow velocity w produced by the pres-
sure shock, we see an interesting behavior. Within Khalatnikov's approxima-

tions, a pressure shock induces zero w. The full numerical solution shows that
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in this representative case, wis initially positive (away from the shock), goes
through zero at & =1.18 and becomes increasingly negative (toward the shock)
for higher Mach numbers. This is more or less a general trend for all the pres-
sure shock cases which were computed although the Mach number at which w
passes through zerc increases as the initial temperature Ty increases on any
given initial isobar. For those pressure shock cases close to the lambda line, w
is always positive since before:higher Mach numbers can be attained, the final

state has crossed the lambda line.

In discussing entropy change across a superfluid shock wave, account must
be taken of the transport of heat by convection with the normal fluid velocity.
For any general fluid flow through some fixed control volume V, the second law

of thermodynamics can be expressed as a nonconservation equation.

a - ra. gz (3-
dt{pst?. {T dA (3-1)

Here 4 is used for the closed surface bounding V, and the surface element nor-

mal vector is taken positive outward as is customary. The heat fiux vector at

the boundary is denoted by § and hence %—represents the entropy flux. In

words, expression (3-1) states that the rate of entropy increase in V exceeds or
equals the entropy flux into V. Since all entropy in helium II resides in the nor-
mal fluid fraction, heat flux in this liquid is given by (see Landau & Lifshitz,

1959)

§=psTi, | (3-2)

Applying equation (3-1) to the steady, one-dimensional flow through a fixed
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superfiuid shock gives the following:

g . 30 -
T T 0 (3-3a)
or, denoting entropy flux by ss-
Ass = O (3-3b)
or, using equation (3-2) for §
P& U —poSoun,= 0 . (3-3¢c)

By using equation {1-15) to replace u, in favor of u and w, this becomes :

S1Pu +ps w) ~Sopoug= 0 (3-4)

Conservation of mass as expressed by equation (1-38) can be used to write

£{1+£ﬁu—}—1eo. (3-5)
So Polg

Expression (3-5) is a generalization of the gasdynamic axiom: "Entropy must

expression (3-4) as

increase across a shock.” This statement is a proper consequence of the second
law of thermodynamics for the classical case where w = 0. However, due to the
presence of reversible, convective heat flux, the statement for helium II should
be generalized to: '"Entropy fluz must increase across a shock.” Positive w indi-

cates reversible extraction of heat from the flow behind the shock which results
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in the possibility of: the entropy itself decreasing. The normalized changes in
entropy As A4 and entropy flux Ass Asg are shown for the represent.ative pres-
sure shock case in figures 3-1g and 3-1h, respectively. Since the counterflow
velocity, w, is much smaller than the upstream velocity, ©g, the differences in
the two plots are insignificant. Such will not be the case for temperature shocks
when p,w fpoUg is large. From very general thermodynamic reasoning, the curve
for change in entropy flux should have zero slope and curvature as ¥ » 1. That
is, the entropy flux. change should be of order (M — 1) for very weak waves.
From figure 3-1h, the solid line which represents the numerical solution fulfills
these expectations. The plotted Khalatnikov entropy flux change (dashed line)
obviously does not. The reason can be seen from examining the energy equation

(1-39) rewritten below.

PET up + pp ufw = pg So ToUn, (3-6)

According to Khalatnikov's approximations for pressure shocks, T = Ty and
w = 0. Substituting these, together with continuity (1-368), and equation (1-15)

for u, gives simply

§p . Tow =0) = s¢(pe.To) (3-7)

Thus the energy equation is satisfied in the Khalatnikov pressure shock approxi-

Bs] = 0. This is equivalent to neglecting the coefficient of ther-

mation only if
d [ap T

mal expansion f§ since
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As mentioned before, the Khalatnikov formulas for the final state are arrived at
by taking § = 0. However, within the computer program, any final state regard-
less of whether it is calculated by the Khalatnikov approximation or found itera-
tively by Newton's method, is used as input to Maynard's thermodynamic sub-
routines to calculate all additional state variables (entropy, density, normal
fluid fraction, etc.). Since @ is in fact small and negative but not precisely zero
in the true thermodynamics, the dashed lines on plots of secondary quantities
(i.e., those which are not given explicitly in the six Khalatnikov equations) can
either be disregarded as inconsistent with the Khalatnikov approximation or
taken to show the error which results from neglecting the coefficient of thermal
expansion. For example, by equation (3-7), the dashed line in Figure 3-1g should
be horizontal, but since § < 0 the entropy will in fact increase with pressure as

indicated by the dashed line which is actually plotted.

Figures 3-1i and 3-1j show downstream normal fluid fraction and change in
heat flux, respectively. According to equation (3-2), the energy equation (3-8)

may be written in terms of the heat flux change across the shock directly.

Ag =g —go=—paulw (3-8)

Thus Ag should be of opposite sign to w. This is the case for the numerically cal-
culated Ag (solid line in Figure 3-1j), but the dashed line is not horizontal even
though w by Khalatnikov is zero here. The reason is the same as for the
entropy plots, that is, # # 0. In fact, note that since T = Ty by Khalatnikov that
this implies Ag /4o and Ass Asq are identical. The dashed lines in Figures 3-ih

and 3-1j are therefore the same curve.
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3.2. Representative Temperature Raising Shock Results

As was discussed in section 2.1, temperature shocks may either be tempera-
ture raising or temperature lowering processes depending on the sign of the
denominator on theright hand side of equation (2-2a). Figures 3-2a through
3-2j show the calculated results for the temperature shock case with upstream
state set at Ty = 1.60°K and pg = 1.00 bar. At this point on the p-T diagram, the
above mentioned denominator is positive which means that temperature shocks
should process this upstream state to a higher downstream temperature, at
least for weak shocks.

Figure 3-2b shows the temperature changes, %{—versus Mach number, # for
this case. As with the previously discussed pressure shock case, the numerical
solution (solid line) and Khalatnikov approximation (broken line) coincide as
M - 1. However, for higher Mach numbers, the Khalatnikov approximation

overestimates the numerically calculated temperature jump. In fact, the

numerical solution for AT is seen to pass through a maximum of

Tq
AT . AT .
A 0.07 at ¥ ~ 1.50. At Mach numbers higher than 1.50, -;— continu-
{40 Jmax fo

ously decreases. These same qualitative features for the numerically calculated

temperature jumps are seen in the 13 other temperature raising shock cases as
well. The behavior of the éT—z-vs. M curve for temperature raising shocks varies
o

negligibly as a function of upstream pressure pg, but it does vary somewhat as a

function of upstream temperature, Ty. For example, [%,—T} A (0.06 and occurs
08 Jmax

at ¥ ~ 1.26 when Tg = 1.81°K and pg = 1.00 bar.

Figure 3-2a shows the pressure jumps versus Mach number for the represen-

tative case. All temperature shocks in helium II, whether temperature raising or
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temperature lowering, are pressure lowering processes. Corresponding to the
smaller magnitude of temperature increase for the numerical solution, the mag-
nitude of the numerical pressure decrease across temperature raising shocks is

also seen to be smaller than that approximated by Khalatnikov.

The trajectories for this case are shown in Figure 3-2¢. The numerically com-
puted final states which are represented by open circles, lie so close together as
to overlap and appear as a short thick solid line. The Khalatnikov final state
(small dot) lying closest to the lambda line corresponds to M =1.75. For
M = 1.76, the Khalatnikov final states lie off the helium II p-T diagram for this

case.

Figure 3-2d shows the Hugoniot for this case. Remarkably, the Hugoniots for
temperature raising shocks have positive slope. The reason can be seen by com-
bining the equations of mass conservation (1-38) and momentum conservation

(1-37) which are written below.

J=pu =pguy (3-9)

P+ Ps U + pp u = pg + po uf (3-10)

Upon eliminating u, and u, in favor of u and w by equations (1-15) and (1-18)
and replacing the density with the specific volume (§'= 1 /77, equations (3-9)

and (3-10) may be combined to give

é£_= ~j2 - (vo + Au)p, pp w?

Av Av (3-11)

For classical fluids,'w =0, and the Hugoniot slope given by equation (3-11) is



- 47 -

therefore always negative. For pressure shocks in helium II, w & 0, and as seen

in the previous section, %‘:—mﬂ be negative for these cases also. However, for

temperature shocks, the mass flux is small, as are the jumps in pressure and
density across the shock. Thus, from equation (3-11) we have

Ap n - Y0Ps Pn w?

Av Av (3-12)

Since Ap < 0 for all temperature shocks, the sign of the Hugoniot slope is deter-
mined by the sign of Av (change in specific volume). Since pressure changes are
small, the density (i.e., inverse specific. volume) change across temperature
shocks is dominated by the temperature change. The negative coefficient of
thermal expansion for helium II implies a specific volume decrease upon a tem-
perature increase and visa-versa. Equation (3-12) thus correctly predicts a posi-
tive sloping Hugoniot for temperature raising shocks (AT > 0) and negative

slopes for temperature lowering shocks.

Figures 3-2e and 3-2f show the downstream velocity flelds normalized by the
downstream second sound speed. For this case, the numerically computed
downstream Mach number for flow velocity u/asz is virtually equal to the

upstream Mach number M =wug/az, The downstream counterflow velocity is

seen to be negative (toward the shock) which is an indication of heat addition

from the downstream region.

Plots of jumps in entropy and entropy flux for this case are shown in figures
3-2g and 3-2h, respectively. Since the relative velocity w is large for tempera-
ture shocks, the two plots are seen to differ substantially as would be expected

from equation (3-5).-
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Downstream normal fiuid fraction and heat flux jump are shown in figures
3-2i and 3-2j, respectively. Since the relative velocity is always negative for this

case, the heat flux jump is positive as dictated by equation (3-8).

3.3. Representative Temperature Lowering Shock Results

Figures 3-3a through 3-3j show the calculated results for the temperature
shock case with upstream state set at 73 =2.10°K and pg = 1.00 bar. At this
point on the p-T diagram, temperature shocks are of the temperature lowering

variety.

From figure 3-3b, it can be seen that the Khalatnikov approximation underes-
timates the magnitude of the temperature decrease across stronger shocks and,
correspondingly from figure 3-3a the magnitude of the pressure decrease as

given by Khalatnikov is also too small when compared to the exact solution.

The trajectories shown on figure 3-3¢ proceed from right to left as the Mach
number increases. The Khalatnikov final states (small dots) are for the most
part covered by the open circles representing the numerically calculated final
states. The Hugoniot shown in figure 3-3d now has a negative slope since the

superfluid volume increases with decreasing temperature.

Figure 3-3e shows that the numerically calculated downstream normalized
flow velocity for this case initially decreases to 0.92 at # = 1.55 and then begins
to increase for higher Mach numbers. As shown in flgure 3-3f, the relative velo-
city is positive (away from the shock) which indicates an extraction of heat from

the downstream region

As a consequence of this heat extraction, the entropy change across the
shock is negative as can be seen in figure 3-3g.  However, the entropy flux

increases (see figure 3-3h) as it must by the second law of thermodynamics.
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(See equation (3-5).)

The numerically calculated heat flux jump shown in figure 3-3j is negative as
it should be since w is positive. The heat flux change as calculated from the
Khalatnikov final states is initially negative but quickly becomes positive as ¥
increases. This does not represent a violation of energy conservation (equation
(3-8)) since as mentioned previously, the Khalatnikov results for such secondary
quantities as heat flux may be disregarded since the thermodynamics used to
calculate them is inconsistent with the approximation of zero coefficient of ther-

mal expansion.

3.4. Comparison of Numerical and Experimental Results

Data from the experiments of Wise (1979) may be compared to the numerical
results for pressure shocks. In these experiments, a first sound shock in the
liquid was produced by allowing a gasdynamic shock to refiect from the liquid
surface. Starting at seven different temperatures Ty on the SVP curve, Wise
measured velocities. of the incident and refiected gasdynamic shocks plus the

velocity of the transmitted pressure shock in the liquid.

Using the ideal gas shock jump conditions, with the two measured wave

speeds in the helium vapor, one may calculate the pressure jump on the vapor

side of the interface [éﬁ} . Similarly, the wave speed of the pressure shock in
0 Joas

the liquid, may be used to calculate the pressure jump on the liquid side of the

interface both numerically [%E-] and by Khalatnikov's approximation [%D—-} .
°)x

0w
The pressures across the interface should match. Table 3-2 shows these calcu-
lations with Mach number for the pressure shock in the liquid given in the right-

most column.
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Table 3-2. Pressure Jumps across Pressure Shocks

Exp't To(K) Pg (Ap fpg)cas (Ap Aoy (Ap o)k 4
a 1.522 SVP 1381. 133R2. 1128. 1.145
b 1.685 " 802.7 558.2 489.2 1.119
c 1.751 " 842.9 583.8 479.1 1.184
d 1.832 " 446.0 498.3 400.4 1.184
e 1.989 " 293.9 244.2 208.5 1.181
£ 2.031 " 298.9 202.0 178.7 1.155
_£ 2.095 " 315.7 283.0 228.0 1.241
Table 3-83. Temperature Jumps across Pressure Shocks
Exp't To(K) Po M [?,,Z o [%L (wa )y
x 10*
a 1.622 SVP 1.145 -.0079 -0117 -11.3
b 1.685 " 1.119 -.0128 -.0118 -.522
c 1.751 " 1.184 -.0200 -.0180 -2.90
d 1.832 a 1.184 -.0180 -.0212 -1.99
e 1.989 " 1.181 -.0241 -0191 4.88
£ 2.031 " 1.155 -.0291 -.0188 8.07
_g 2.085 . 1.241 -.0283 -.0377 8.22
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In all seven cases, the numerical result agrees more closely than the Khalat-
nikov approximation to the pressure jump in the gas. For the first four cases
(lower temperatures), the numerically calculated pressure jump in the liquid

varies from that in the gas by 7% on the average. This represents acceptable

agreement since the uncertainty in ﬁﬂ. is about 10%. For these same four
0 Jeas

cases, the Khalatnikov results differ by an average of 19% from the pressure
jumps in the vapor. The discrepancies for the three higher temperature cases
are more serious with the numerical and Khalatnikov results differing on aver-

age from the gas jumps by 20% and 33%, respectively.

The poorer agreement between experiment and theory for the higher tem-
perature cases may be the result of greater evaporation rates for these cases
than for the lower temperature cases.’ As can be seen from table 3-3, the
counterfiow velocity, w, induced by the liquid pressure shock in the three higher
temperature cases is positive, which here means toward the surface of the
liquid. This also means that the initial heat flux produced is toward the surface
in these cases. As a result, the temperature raising wave (which in these cases
will be a fan and not a shock since the denominator of equation (2-2a) is nega-
tive above 1.88 °K) following the pressure shock into the liquid has its net ability
to convect heat away from the hot surface degraded. The evaporation rates
should therefore be higher for these cases which will tend to strengthen the

reflected gasdynamic shock.

Table 3-3 compares the experimentally measured and the numerically calcu-
lated temperature jump across the transmitted liquid pressure shocks. The tem-
perature measurements were obtained with superconducting sensors in con-
junction with their static calibration curves. Also shown in the right- most

column are the calculated counterfiow velocities normalized by the upstream
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first sound speed.

Experimental data for temperature shocks (Torczynski, 1982) may also be
compared to the results from the shock program. Figure 3-4 shows the experi-
mentally measured and calculated temperature jumps AT/Ty as a function of
temperature shock Mach number ¥ for an initial state set at 7o = 1.609°K and
Po = SVP. At each data point (circle), 95% of the value (cross) is also plotted,
and it is apparent that up to # ~ 1.04 there is a constant 5% disagreement
between experiment and calculation. This is most likely the result of the cali-
bration procedure used for temperature sensor measurements of the second
sound shock amplitude. However, the experimental data for M > 1.04 start to
show significant disagreements with the numerical result. The data from this
region, where the counterflow velocity w is large, may be of use in improving the
therodynamics for helium II. Specifically, the second-order approximate equa-
tion (1-23) for the chemical potential follows from the exact differential relation
(1-14) on the assumption that for small w, the normal fluid fraction p,/ is
approximately independent of w. Thus, what is meant by an improved thermo-
dynamics is a better functional relation between the magnitude of w and p, /.
It may also be true that the data from higher Mach nuber temperature shocks
cannot be accounted for by the therodynamics alone, and that higher order w

terms in the fundamental conservation equations are also necessary.
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Figure 3-4. Temperature Jumps across Temperature Shocks
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Chapter 4

CONCLUSIONS

A computer program was developed to iteratively solve the shock jump condi-
tions which follow from the Landau equations for superfluidity. The quality of
thermodynamic state information used to supplement these equations allowed
convergent shock solutions to be obtained for shock Mach numbers as low as

1.001 for temperature shocks and 1.004 for pressure shocks.

Comparisons of the numerical results to the Khalatnikov approximations can
be summarized for the three basic cases: pressure shocks, temperature raising

shocks, and temperature lowering shocks.

For pressure shocks, the numerically computed pressure jump exceeds
Khalatnikov's approximation for stronger waves. Khalatnikov approximates
pressure shocks as isothermal processes while the numerical solution shows a
negative AT. The counterflow velocity w is zero by Khalatnikov, but actually is
away from the shock for low Mach numbers and toward it for higher Mach
numbers. The entropy and entropy flux jumps are virtually the same and both

positive,

Temperature raising shocks show a positive sloping Hugoniot since the
volume change is dominated by temperature change and not by compression.
The magnitudes of the temperature increase and the pressure decrease across
these shocks are smaller than the Khalatnikov values for strong waves. The
counterflow velocity of the shocked liquid is always directed toward the shock
and smaller in magnitude than the Khalatnikov value. The entropy and entropy

flux jumps are both positive.
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Temperature lowering shocks have temperature and pressure decreases
across them which exceed in magnitude those given by Khalatnikov. The
counterflow velocity of the shocked liquid is directed away from the shock, indi-
cating a reversible heat extraction in the shocked region. As a consequence, the
entropy decreases across such waves, but the entropy flux increases as it should

according to the second law of thermodynamics.

Comparisons of the calculations to experimental data for pressure shocks
reveal agreement superior to the Khalatnikov approximation in all cases. At
lower temperatures the numerical results differ from the data by 7% on average.
This represents acceptable agreement since the experimental precision is
approximately 10%. At temperatures closer to the lambda line, where w is
toward the liquid-vapor interface, the numerical results for Ap in the liquid are
on average 20% lower than those calculated from shock speed measurements in
the vapor. This is most likely the result of evaporative effects at the liquid sur-

face.

Comparisons of these results to temperature shock data show good agree-
ment for low Mach numbers. The data for higher Mach numbers show
significant disagreement with the current two-fluid system of dynamic and ther-
modynamic equations. These data can possibly be used, in conjunction with a
modified version of the superfluid shock wave program, to improve the two-fluid

model.



PART II
EXPERIMENTAL INVESTIGATION OF THE
LIQUID HELIUM II - VAPOR INTERFACE
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Chapter 1

INTRODUCTION

The formulation of a complete and correct set of macroscopic boundary con-
ditions for the liquid-vapor interface of helium II has been for some years and
continues to be the object of many experimental and theoretical research
efforts in low temperature physics. A particularly important problem for which
knowledge of these boundary conditions is necessary is that of reflection from
the liquid-vapor interface of a weak temperature shock wave. The z - diagram
for such a problem is shown in Figure 1-1. All of the waves are assumed
sufficiently weak sc:as to be considered linear; their speeds are therefore all
approximately sonic. Thus a;,as and a; represent the liquid first sound speed,
second sound speed, and the gas sound speed, respectively. The incident tem-
perature shock, processing the liquid from state 1 to state 2, produces three
subsequent waves as it impinges upon the liquid surface. Firstly, a pressure
wave is transmitted into the vapor due to evaporation from the surface, and it
processes the gas from state 0 to state 8. As the liquid evaporates, the interface
position (shown by the dashed line) recedes into the liquid with speed X. The
gas processed by the transmitted wave in the vapor (state 6), and that which has
evaporated from the liquid surface (state 5) are separated by a contact surface
indicated by the dotted line. Pressure and velocity are continous across this
surface but temperature, as will be shown, is not. .Secondly, the pressure rise
produced by the transmitted wave causes a pressure wave of equal strength to
reflect into the liquid, processing it from state 2 to state 3. Finally, the third
wave produced is a reflected temperature shock which processes the liquid from
state 3 to state 4. Importantly, the incident temperature wave does not change

sign upon reflection from the vapor boundary; i.e., the vapor appears thermally
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Figure 1-1. x-t Diagram for Weak Temperature Shock
Reflection from He II - Vapor Interface
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'hard” in analogy to an acoustically hard surface for pressure waves. Physically,
this can be traced to the analogy between heat flux for second sound (tempera-
ture waves) and mass flux for first sound (pressure waves). A mechanically
rigid, i.e., acoustically hard, surface sets a boundary condition of near zero mass
flux, and pressure waves reflect from such a surface without sign change. To
second sound, all boundaries appear thermally 'hard” because their only mode
of heat transport is conduction, and this is far inferior to helium II's convective

heat flux mode associated with its counterflow velocity.

For an incident linear temperature wave of known strength, the strengths of
the transmitted and reflected waves are desired. That is, given the initial undis-
turbed states in regions 0 and 1, and the state 2 produced by the incident wave,
we wish to calculate all of the subsequent states in regions 3 through 8. To
begin, conservation of mass, momentum, and energy require the fluxes of these
quantities to match in steady state. For times which are long compared to the
reflection time, the flow relative to the interface in regions 4 and 5 can be con-

sidered steady. Therefore, matching fluxes across the interface gives:

mass:

(pu)g = (pu)s = j

momentum:

pu® + E—’;plwz +p| =(pu? +p)s
4
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energy:

I
lj[h + -é—u.a] +pg sTw + [1 - ;—-—-—]wzpﬂu +'——-[wu + —-'-'wz]p,.'w

Linearization of these equations gives:

(pu)s = (pu)s = j
Dy =pPs
Jhe + (pgsTw), = jhg

or, upon transforming from interface coordinates to a fixed system

pa (g = X) = pslug — X) =3 (1-1)
Py =DPs (1-2)
JL = (pesTw), (1-3)

where L has been used for the latent heat of vaporization.
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L =h5-h4

The weak coupling between first and second sound will be neglected, and the fol-

lowing equalities will hold.

Pg =Py =P

DP3=Pe=Ps =DPg

Ug = Ug

The densities, temperatures, and pressures in regions 4 and 5 have been only

slightly perturbed from their equilibrium values, and these perturbations are

linearly related to the velocities as follows:

ug = %’Q‘ (1-4)
Ug = ~ ..(.'P_?..:._E_}.)_ (1_5)
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w, = [;,%]1{(7'2 = T1) = (T = Ta)| (1-6)

In equation (1-8) the thermal hardness of the vapor has been used to assign the
proper direction to the reflected counterflow velocity. Using equations (1-4)

through (1-8) to replace the velocities in equations (1-1) through (1-3), and let-

ting
Pe—pP1 =P’
Ps —Po =Py’
Ta=Ty =Ty
Te—Ty=T,
gives
P [- B%T' (| = po [;’Z{;';--ir} =3 (1-7)
P’ =py (1-8)

_|peps®T 1., ., §
JL= [—;;;—-]1 lT‘ T (1-9)
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Now the gas pressure perturbation p,'is related to the temperature perturba-

tion Ty' = Tg — T by the isentropic ideal gas relation.

?

by ¥ __Po
= 1-10
where v is the specific heat ratio in the vapor.

Substituting equation (1-8) into (1-7) and eliminating X gives

i=(1+%g) %ia (1-11)
g

where

- Eg/anx +1
P1/pg — 1

and is a small number since p;>> pg. Now, substituting equations (1-10) and
(1-11) into (1-9) and using pg = Py, Ty = T, gives

T, = Q(Ty - T,)) (1-12)

where

(1-13)

Equation (1-12) relates the strengths of the transmitted pressure wave and

reflected temperature wave, but further equations are required to give separate
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expressions for each.

If the evaporation proceeds very slowly, i.e., the mass flux is very small, then
thermodynamic equilibrium should exist between regions 4 and 5. This implies

equality of chemical potentials and temperatures.

Mg = [ (1-14)

Ty=Ts (1-15)

But even with reversible evaporation, the temperature in region 5 exceeds that

in region 8, which may be proved as follows.

§g =S¢

=L/T0 + 83

=85"S4+31,

Thus

Tg< Tg .

It is in the third step of the proof that reversibility has been used to express the

latent heat simply in terms of the entropy difference between the phases since



-89 -

Pe=ps and Ty = Ts. The temperature inequality follows immediately from the
entropy inequality since entropy is always a monotonically increasing function

of temperature. Letting

equations (1-14) and (1-15) may be written as

—s (T + ) + B — 5 (1, + 6,) + 2 (1-186)
P1 Po
T{' + Tr' = Tg' + eg (1’-17)

where use has been made in (1-16) of the identity du = — sdT + (14)dp. Using
equations (1-8) and (1-10), equations (1-16) and (1-17) may be combined to give

o PO y=1 L .o
T.! = e (T T 1-18
"= hi=po 7 pWHT) (1-18)

Combining equations (1-12) and (1-18) gives

(1-19)

where

R = T./Ty (1-20)

and
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Py = po)[s:1T, ®p @
‘ e (1-21)
pe | L Pn Gg

11
D-[1+z

An expression for the reflection coefficient has now been obtained, based on
the assumption that the interface is in approximate equilibrium. However, it is
of interest to note that, in contrast to the interface wave reflection problem for
a classical fluid, linearity in the helium II problem does not automatically imply
equilibrium. True equilibrium between phases exists if and only if the mass flux
J relative to the interface is negligible, i.e. zero within the linear approximation.
The linearized energy equation (1-3) shows this to be the case for the classical
fluid (w = 0), but for helium II, the heat: flux associated with counterflow is of
the same order as the mass flux. Thus the wave strength of the incident weak
second sound shock is of the same order as the evaporation rate which it pro-
duces. Therefore, by reducing the strength of the incident temperature shock,
one is by no means assured of more closely approaching an equilibrium inter-

face.

1.1. Previous Investigations

The experiments of Wise (1979) provided the original motivation for investi-
gating the effects of evaporation from the He Il interface. In these experiments,
a gasdynamic shock wave moving with velocity U, refiects from the liquid sur-
face, producing a reflected shock, transmitted pressure and temperature
shocks, and an interface velocity, X. (See Figure 1-2.) All wave velocities
U, Up, c,, and ¢ were measured as well as X. Upon computing the particle
velocity us behind the reflected shock from ideal gas jump conditions and ugin

the liquid from the program described in Part I, it is always found that
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Vapor He IL

Figure 1-2. x-t Diagram for Gasdynamic Shock
Reflection from He II - Vapor Interface
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'u.5<)'(<ue.

In fact, in some cases, ©y is negative (away from the liquid surface) whereas X is

always positive. (See Table 1-1.)

Table 1-1. Velocities Produced by Gasdynamic Shock
Reflection from He II - Vapor Interface

Exp't To(K) Do us(m/sec) X(m/sec) ug(m/sec)
a 1.522 SVP -59.0 10.8 18.2
b 1.885 ” 3.30 8.6 147
c 1.751 "’ -71.4 123 20.6
d 1.B32 * -14.85 898 23.2
e 1.989 " 1.05 i0.2 19.5
f 2.031 " -29.9 11.1 18.5
g 2.095 " -18.7 o112 29.0

This velocity discontinuity suggests an evaporating interface. Since the waves
measured by Wise are all strongly nonlinear, it was deemed desirable to experi-
mentally study evaporation induced by weak temperature shocks incident from
the liquid side of the interface rather than by strong shocks so as to isolate eva-

porative effects from nonlinear ones.

Hunter and Osborne (19689) measured the reflection coefficient R for second
sound for 1.0°K < Ty < 1.8°K. Heat pulses were generated in the liquid by sup-

plying current pulses to a thin metal film at the base of a tube 1 cm in diameter
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and of variable length (7 cm to 14 cm). The receiving sensor was a thin carbon
layer 2 mm wide and 4 mm long painted on the interior wall of the tube equidis-
tant from the heater at the base and the:open top end. The heater pulses were
of 400 us duration, were repeated at rates from 1 Hz to 4 Hz, and produced
heat fluxes of up to-1 W/cm?® For the temperatures investigated, they measured

R ~ 0.80.

Buchholz, Brandt, and Wiechert (1971) measured R for 1.26°K < Ty < 2.17°K.
The second sound wave was produced by exciting a carbon layer with 4 periods
of a 10 kHz alternating current. The heat flux produced was 150 mW/cm?. The
tube was 6 cm long and had a square cross sectional area of 1 ecm® The receiver
was a superconducting aluminum film 0.1 mm wide and 10 mm long. As with the
measurements of Hunter and Osborne, they found B & 0.80 for T < 2.0°K, but

above 2.0°K, R was found to rapidly decrease.

1.2. Objective of the Present Work

Because the reflection coefficient computed according to equations (1-19)
and (1-21) is roughly 20% below that measured by the above authors, much
effort has been devoted to developing models which explain this discrepancy.
(See, for example, Wiechert (1980).) The purpose of this effort was first to more
precisely measure K with newer techniques. However, the more important pur-
pose was to also measure the transmission coefficient T = Ty' /Ty . This would
provide a check on the fundamental equation (1-12) which does not contain any
assumptions about an equilibrium interface, but only requires linearity in the
conservation equations. Measurement of both R and T is equivalent to measur-

ing @ directly, and from equation (1-13)

o 21 pisfTE Ps_ Gy

? V4 Pl pn ap

(1-22)
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This same dimensionless grouping appears when one solves the complementary
problem of a sound wave incident from the vapor reflecting from the liquid sur-
face. With @ being given by (1-22), the wave amplitudes in this case are related

by the following equation.

er =(n -1 (1-23)

Here, T}' is the temperature perturbatidn produced by the transmitted second
sound wave. The directly measured values for & were then to be compared
against the expression given in (1-22) as well as values computed from Wise's

data via (1-23).
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Chapter 2
EXPERIMENTS

2.1. Apparatus Description

Figure 2-1 shows a cross sectional schematic of the apparatus which was con-
structed to measure the reflection and transmission coefficients. A brass tube,
5.2 inches high with a 1.25 inch inside diameter had clamped to its base a quartz
disc of 2.0 inch diameter. Centered on the top face of this disc was an eva-
porated nichrome film, 1000 A thick and 1.375 inches wide. Copper leads of
2000 & thickness were evaporated over the ends of the nichrome strip leaving
exposed a nichrome square having a 1.375 inch side. A bevelled ring of teflon
formed a seal between the nichrome film and the end of the brass tube. D.C.
current pulses through this film produced heat flux densities of 1.9 W/cm?®. The

pulses were of 250 us duration.

A brass piece was machined to fit within the tube and provide a mount for
three temperature sensors. The lowest sensor, shown immersed in the liquid,
was sidewall mounted and used to measure the incident and reflected second
sound shock strengths, T;' and 7;', respectively. The two upper sensors were
endwall mounted and used to measure the temperature perturbation produced
by the transmitted pressure wave and its time of flight between these two sta-
tions. The three sensors were approximately equally spaced vertically, being
separated by 1.5 inch intervals. They each consisted of a thin, superconducting
film evaporated onto a glass coverslip. The film itself was fabricated by eva-
porating 200 & of gold onto the glass followed by 800 & of tin onto the gold.
Films made in this way transition from normal to superconducting at approxi-

mately 2.0 °K in the absence of a magnetic field. A small electromagnet with a
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Figure 2-1. Experimental Apparatus
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core machined from Armco (50% nickel and 50% iron alloy) and wrapped with
several thousand turns of superconducting Niobium-Titanium wire was posi-
tioned behind the glass substrate of each sensor in order to adjust the sensor
transition temperature to the:operating temperature of the experiment. The
room temperature resistance of these sensors was approximately 300 chms, fal-
ling to approximately 50 ohms at 4 °K. Supplied with a 1 mA D.C. current, they
typically showed sensitivities of 0.3 V/°K. The apparatus was suspended within
the dewar and positioned relative to the interface by braided stainless steel
fishing line. Prior to being placed into the dewar, the entire apparatus was sur-

rounded by aluminum foil to shield it from room lights.

2.2. Experimental Procedure

Experiments were performed at three temperatures Ty, on the saturated
vapor pressure curve: 1.500, 1.765, and 1.989 °K. With all three sensors
immersed in the liquid, the distance between the upper two was accurately
determined with a method suggested and used previously by Turner (1979). The
speed with which a weak temperature shock propagates is linearly related to its
strength. In turn, the strength is proportional to V?, the square of the voltage
applied to the heater. Thus, if the inverse of the time of flight, (A £)™!, between
the two sensors is plotted versus V? , a straight line results. Extrapolating to
zero voltage gives the time taken to traverse the distance by a disturbance trav-
elling at the speed of second sound, a; . Since a; is rather accurately known
(see Maynard (1978)), the length is determined to comparable accuracy. A dis-
tance of 3.795 cm was established in this way and corresponds quite closely to
the measured room temperature length corrected for the thermal contraction

of brass.

Prior to taking data, the magnets were adjusted to give a voltage drop of

approximately 12 mv across each sensor. This was approximately one fourth of
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the voltage drop for the fully normal state at 4 °K; and provided an operating
point at the lower end of the most linear portion of the transition curve. For
each sensor, voltage drop as a function of saturated vapor pressure was then
plotted with an X-Y recorder to give calibration curves necessary to convert vol-
tage changes to temperature changes. All sensors were calibrated in the liquid
because calibrations done in the vapor showed a hysteresis, i.e., curves traced
out as the temperature rose showed different transition temperatures from

those obtained by pumping down slowly.

When taking data, the middle sensor was less than 3 mm above the liguid sur-
face and shocks were fired at approximately one minute intervals. The voltage
pulses resulting at the sensors upon arrival of the waves were amplified and
used as input to an oscilloscope and to counters, which recorded time elapsed
since the heater pulse. Photographs of the oscilloscope trace provided wave

amplitude records.

2.3. Results

Measurements of the length between the two upper sensors and arrival times
gave the wave speed of the pressure pulse in the vapor. The pressure perturba-
tion py' produced by this wave is related to the Mach number M by the ideal gas
jump condition

Py . 2Y (pe_ « .
Fyaaibo) (M2 - 1). (2-1)

Unfortunately, this pressure wave produced by evaporation was sufficiently
weak so as to travel sonically within the precision limitations of not only these
experiments but also of previous measurements of the sound speed in low tem-

perature helium vapor. (See, for example, McCarty (1980).) Time of flight
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measurements were therefore of no use in deducing the strength, p,'.

Table 2-1 shows the experimental results for the coefficients

Rexp = (T.'/ T\ gxp and Texp = (Ty'/ Ti) zxp based on amplitude measurements.

Table 2-1. Experimental Results

To(K) Rexp Trxp Qexp Qg
1.500 0.84 0.82 (middle sensor) 3.88 13.53
1.500 0.84 0.93 (upper sensor) 5.81 13.53
1.765 0.84 0.73 (middle sensor) 4.58 11.63
1.989 0.76 0.68 (middle sensor) 2.83 9.89

These measurements imply by equation (1-12) values for @ given by

Qexp = Texp /(1 — Rgxp) (2-2)

which may be compared to @ predicted by equation (1-13) as

Qry = (2-3)

1 ][7-1]pls? Tf pe oy
ive|| v | D1l  pp aq

The measured values of R should be reliable since they are obtained simply

as the ratio of the height of two oscilloscope traces for the same sensor (the
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lowest of the three), and sensar response and calibration in the liquid are highly

repeatable.

However, many questions arise about the reliability of measurements in the
vapor. As shown, the values of T measured at the upper and middle sensors in
the first experiment (75 = 1.5 °K) differ by 50%. At Tg = 1.989 °K, the upper sen-
sor would transition to its full normal state when its magnet was turned on, and
therefore could not be used at all. Table 2-1 also shows @y to exceed Qgxp by as
much as a factor of 3.5. One possible reason for this is the film of helium II
which coats the sensors in the vapor, and itself produces a liquid-vapor inter-
face through which the vapor pulse must pass. Reflection from the film surface
thus results in incomplete transmission to the sensor, which gives a spuriously
low value for T. Note that measurement of @ requires measurement of three
wave amplitudes: incident, reflected, and transmitted. Since @ is assumed the
same for the film as for the bulk liquid, it might be supposed that equations (1-
23) and (1-12) could be combined in a way which would allow determination of @
from the three amplitudes which can be measured. But this is not the case
because the three amplitudes:must refer to the same interface. The incident
and reflected waves measured by the submerged sensor come from interactions
at the bulk liquid-gas interface. The amplitude of the wave transmitted into the
gas toward the film' coated sensor in the vapor cannot be directly measured.
This wave becomes the incident wave for the gas-film interface, but its ampli-
tude is unknown. In fact, all that can be measured as a result of interactions at
this interface is the second sound wave amplitude which is transmitted to the
sensor. Thus, in the original problem, to which (1-12) applies, the equation con-
tains two unknowns, & and the transmitted wave strength. For the film prob-
lem, to which (1-23) applies, the equation contains three unknowns, @ and the
incident and reflected wave strengths. These observations, together with the

previously mentioned problem: of sensor calibration in the vapor, force one to
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conclude that these experiments failed to produce reliable values for the
transmission coefficient for second sound by either wave speed or amplitude
measurements. To the author’s knowledge, results for this coefficient have not

been published as of this writing.

The measurements of F may be compared to previous work. The paper of
Hunter and Osborne (1969) gives R =0.78 at Ty =1.47 °K and R =0.80 at
To = 1.75 °K. Buchholz, Brandt, and Wiechert (1971) report £ = 0.78 at Ty =
147 °K, R = 0.77 at Tg = 1.75 °K, and R = 0.80 at Tg = 1.99 °K. The former
authors make no statement regarding the precision of £ measurements, while
the latter estimate. +0.05 in these temperature ranges. The estimate for this
work is also + 0.05 and these data thus reproduce the measurements of the pre-

vious authors,

The reflection coefficient as calculated from equilibrium theory by equations
(1-19) and (1-21) gives values of F which are roughly 20% lower than measured.
This discrepancy has yet to be explained by any physically reasonable model.

The evaporating, nonequilibrium superfluid interface is still not well understood.



-82-

Chapter 3

CONCLUSIONS

An apparatus was constructed to measure the linear reflection and transmis-
sion coefficients for second sound incident upon the free liquid surface: Meas-
urement of the transmitted wave amplitude failed due to precision limitations
on velocity measurements and the superfluid film which coats the sensors in the
vapor. Measurements of the reflection coefficient reproduced the work of previ-
ous authors. The high evaporation rate induced by second sound reflection pro-
duces a nonequilibrium interface, even for small amplitude waves. This none-

quilibrium behavior is not presently well understood on a physically sound basis.
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Appendix A

CHEMICAL POTENTIAL CONSTRUCTION

As mentioned at the close of Chapter 2, the chemical potential was treated
somewhat differently than the other thermodynamic variables since it requires
the most computer time to construct. This is because the Gibbs-Duhem relation

must be integrated from an established reference point, ug.

,u,-u(,:—fsd,T +fi—dp (A.1)

For reasons of speed, it is not practical during the iterative shock calculations
to integrate this relation from the same reference point each time. Thus, a
lookup table consisting of 442 values for u(p,T) was calculated for use as con-
stants of integration, as follows. Starting from u = — 1.489157x10% m®4ec® at
T =1.2°K and p =0 bar, nineteen additional points along the zero isobar were
calculated at intervals of 0.05°K. The integration of (A.1) to each successively
higher temperature was accomplished by subdividing each interval into 20 equal
parts and using Simpson’s rule. Then, starting from the established zero pres-
sure values, points were calculated along the isotherms (equally separated by
0.05°K) in increments of 1 bar up to the lambda line or melting line. Again, the
integration of (A.1) to each successively higher pressure was done by Simpson's
rule with the 1 bar increments divided into 20 equal subdivisions. The calcula-
tion was repeated in the same way along the isobars starting from T = 1.2°K up
to the lambda line in increments of 0.05°K. The results from the constant pres-
sure and constant temperature integrations (which differ at most by 1.2%) were

then averaged to give the points which comprise the lookup table used by the
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shock program. By using a value of g from this table closest to the pressure
and temperature of interest, the shock program calculates u(p,T) from (A.1) to
sufficient accuracy in only one application of Simpson's rule. The table given by
Maynard (19786) for u(p.T) contains roughly half as many points as this new one
given in Table A.1, and values of w at identical pressures and temperatures in
these two tables can differ by as much as 4.8%. The new table gives more reli-

able results during jump condition calculations for weak shock waves.



-88 -

p(bar)

T(K) 0 i 2 3 3
1.28 148%91.57 14267.18@ 13538.32 12848 .64 12197.54
1.23 14894.51 14216.85 13533.2% 12843.44 12268.59
1.38 14898.24 14213.82 13537.11 12867.51 122684.51
1.358 14963.08 14218.41 133941.935 12872.42 12289.51
1.48 14988.93 14224.59 13548.81 12878.958 12215.77
1.45 I 14916.27 14232.88 13555.32 128846.206 12223.52
1.58 I 14923.25 14241 .87 13344.71 12893.53 12233.48
1.55 149346.13 142352.87 13575.84 12984.83 12244 .49
1.48 14949.21 14245.27 13589.22 12926 .48 12258.28
1.465 14944.79 14281 .81 13465.15 129346.54 12274.69
1.78 14983.28 14299.48 13823.97 12935.44 12294.87
1.75 15884.81 14321.42 134446.85 12978.82 123146.78
1.886 156836.082 14344.87 13471 .88 13884.12 12343.26
1.85 15859.23 14376.38 13761.43 13834.34 12373.93
i.98 15892.97 14418.42 13736.88 13849.23 124089.36
1.95 15131.71 14449 .51 13775.62 13189.28 12449.92
2.68 15176.83 14494.25 13826.88 13155.14 124%4.45
2.83 15226.68 14345.33 13872.38 13267.57 12349.69
2.18 15284.24 14483.44 13931.49 13247 .48 12618.73
2.15 15358 .38 14478.55 13999.72

Table A.l. Chemical potential. Entries are -,u(p,T)(ma/seca)
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T(K) p(bar)
5 6 7 8 9
- — - —
1.28 11548.58 1888%.3%9 18243.463 ?4683.83 8%47.33
1.25 11343.467 18892.53 18244.83 ?46864.29 8%78.43
1.38 11547.47 188%94.48 18258.%8 7418.53 8974.%99
1.38 11352.78 16961.79 18254.28 94613.94 8938.53
1.48 11559.13 16968.29 18262.92 ?422.73 8987.48
1.43 11547.63 18916.34 18271.14 9631.13 8994.87
1.58 11574.48 18924.19 18281.1¢%9 ?441.39 ?884.548
1.35 11588.38 16938.160 18293.34 2453.88 ?819.23
1.68 11482.41 18952.3%9 18367.98 P448.63 9634.48
1.65 11419.8% 189469.37 18325.28 ?486.29 9852.48
1.78 11638.78 1698%9.41 18345.48 9787.88 PB73.48
1.75 11661.87 11812.88 18369.49 9731.42 ?898.41
1.88 11688.73 11848.21 18397.38 ?75%.74 9127.27
1.85 11719.89 11871.84 18429.49 97%2.52 ?168.567
1.96 11755.88 111688.33 168484.41 9836.286 7199.18
1.95 11797.84 11158.24 1858%9.23 9873.73 9243.43
Z.88 11844.38 11198.32 18588.17 9923.58 9294.31
2.83 11898.43 11233.42 184614.34 2988 .91 $352.93
2.18 11948 .64 113146.93
Table A.l. (Continued )
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p (bar)

T(K) 10 T 2 13 14
1.28 8334.36 7789.74 7887.44 6449 .21 3854.8%
1.25 833%.78 7713.21 7891 .08 4472.86 5858.43
1.38 8344.14 7717.76 7895.464 46477 .44 5843.54
1.35 8349.81 7723.957 7181.462 4483.76 384%9.82
1.48 8356.%93 7738.86 7189.89 4491 .43 3877 .49
1.45 8365.72 7739.87 7118.32 4588 .89 5887.41
1.50 8374.43 7738.83 7129.57 6312.43 5899.24
1.35 8389.41 7764.11 7143.14 6326.33 5913.49
1.48 84084.98 7779.93 71592.35 4342.92 5938 .49
1.45 8423.28 7798.73 7178.354 6362 .58 5958.43
1.78 8444.92 7828 .84 7261.13 4383.78 5974.29
1.75 8478.23 7846.48 7227.57 6612.71 60881 .94
1.88 8499.47 7876.73 7258.27 é&644.11 4634.688
1.85 8533.73 7911.51 7293.88 46486 .44 46871.28
1.986 8573.81 79951 .61 7334.79 6722.38 6114.24
1.95 8418.19 79972.74 7381.9% &778.72 41463.81
Z2.88 8678.14 8058.91 7436.43 46824 .61 4221.31
2.83 8738.19 8112.58

Table A.l. (Continued)
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T(K) | p(bar)
H 15 16 17 18 19

1.28 5244 .31 4437.31 4833.73 3433.51 2834.47
1.295 5248.14 4441.25 4437 .80 3437.47 2848.74
1.38 5253.19 4646.43 4843.13 3443.15 2844.39
1.38 5239.484 4453.84 464%9.93 3458.17 2853.62
1.48 3267.72 4461 .37 4858.59 3458.%97 2862.48
1.45 5277.78 4471.42 464%.64 3469.82 2873.83
1.56 528%.84 4484.18 4881 .84 3483.68 2887 .41
1.535 5384.44 46%99.18 4897 .27 3498.85 2963.72
1.48 5321.98 4717 .08 4115.463 3517.73 2923.14
1.45 9342.33 4738.14 4137.38 3548 .84 2944 .89
i.78 3366.78 4743.83 4162.98 3566.28 2973.846
1.75 5395.11 4792.688 4192.73 35%96.%2 3884.57
1.88 5428.84 4825.864 4227 .48 3432.348 3841.24
1.85 5446.17 4844.98 4267 .39 3473.98 3683.81
1.96 5518.23 4918.22 4314.12 3721.82 3133.268
1.95 5541.195 4962 .62 4348.14 3777 .48

Table A.l. (Continued)
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p(bar)

TK) ™70 21 22 23 24 25
1.28 2242.52 1451.58 18463.58 478.47 -{83.88 -483.24
1.25 2244.92 1656.11 1848.25 483,29 -%8.83 ~-478.12
1.38 2252.74 1882.11 1874.44 489 .46 -92.25 -471.33
1.35 2248.19 1649.88 1882.34 497.84 -83.81 -682,62
1.46 2246%9.953 1679.42 1892.29 368.89 -73.24 -831.71
1.45 2281.83 1691.27 1184.51 5208.69 ~-48 .24 -438,38
1.58 2295.608 1785.47 1119.35 335.9% -dd .44 ~-422.83
1.55 2311.78 1722.95 1137.16 554.35 -25.33 -482.51
1.48 2331.77 1743.53 1158.37 3748.21 -2.99 -579.27
1.45 £355.3¢9 1747 .84 1183.43 682.84 23.65 -351.79
1.78 2383.14 1796.43 1212.88 $32.42 54,99 ~319.45
1.75 2415.57 1829.85 1247.34 867 .98 ?1.72 -481.48
1.88 2453.35 1848.81 1287.54 7689.54 134.72 -43646,.%94
1.8% 2497.25 1914.15 1334.44 758.14 185.19 -384.34
1.98 2348.37 1947.13

Table A.l. (Continued)



