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ABSTRACT 

A Laser Doppler Velocimeter (LDV) system was developed to measure the 

instantaneous spanwise vorticity. - wz, in a turbulent shear layer. It 

was necessary to design and fabricate the LDV optics and processing 

electronics, as no commercially available LDV systems met the 

specifications of measuring the velocity at four closely spaced points 

to the requisite accuracy. Measurements were also made of the 

instantaneous u, v, u', v' and -u'v'. The instantaneous vorticity was 

processed to obtain an estimate of its probability density function, 

from which the mean and rms values were estimated. It was also 

possible to separate the irrotational fraction of the flow (-wz 111: O) 

from the rotational (intermittent) fraction of the flow (-wz ¢ O). The 

development of the intermi ttency profiles, based on vorticity, as a 

function of the downstream distance from the splitter plate was 

studied. A notable feature is that the vorticity is found to have 

values opposite the mean sense of rotation, i.e., -wz(t)<O, a 

significant fraction of the time. Additionally, a detailed study was 

performed to evaluate the approximation of -av/ax, in terms of various 

local temporal derivatives ov/u(y)at. The optimum choice for u(y) can 

be found and is influenced by the relative local convection velocities 

of the small and large scale structures. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

One of the most exciting recent developments in the field of fluid 

mechanics and turbulence in particular has been the realization that a 

turbulent flow field is not an isotropic random mess that can only be 

described in a stochastic sense. Experimental results in the last few 

years indicate that within the obvious randomness of turbulence there 

exist flow patterns and large scale structures that appear dominant in 

determining the overall characteristics of such flows. A notable 

example can be found in the discovery that the turbulent free shear 

layer is inhabited by a more or less organized vortical structure 

(Brown & Roshko 1971, Brown & Roshko 1974, Winant & Browand 1974, 

Roshko 1976, Dimotakis & Brown 1976, Konrad 1976, Browand & Weidman 

1976, and subsequently others). 

This discovery is responsible for a radical change of our 

conception of turbulence. Within what would classically have been 

considered the "turbulent region" of the flow we are now forced to 

differentiate between the large scale structures that drive the 

turbulence and a portion of the fluid that is irrotati onal and 

passively driven. This distinction is not new conceptually (Corrsin & 

Kistler 1955) and is presently reflected in measurements of the 
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"intermi ttency" of the flow. Such measurements are implemented, at 

present, by sensing some component of the velocity vector, computing a 

time derivative of the velocity signal, and generating an intermittency 

signal when the derivative exceeds a predefined trigger threshold. 

This technique has yielded valuable results to date, but the changing 

outlook of turbulent flow identifies serious shortcomings with this 

type of measurement. 

The prevailing view of turbulence (Tennekes & Lumley 1972, 

Townsend 1976) assumed the existence of a time and space varying 

interface boundary that separates a relatively simply connected 

turbulent region from the outer irrotational flow. The velocity 

fluctuations were considered to be essentially confined within the 

region enclosed by this turbulent - non turbulent interface boundary. 

It was, conceptually at least, a simple matter to recognize the passage 

of this boundary over a given point by placing a single hot wire 

anemometer at that point and identifying the interior of the turbulent 

region with the presence of the velocity fluctuations. The difficulty 

arises because it appears that the interior of the turbulent region is 

considerably more complicated than earlier views may have led us to 

believe. It is safe to say that the incursions of irrotational fluid 

into the turbulent region ~ to be associated with the full spectrum 

of scales present in the flow. Such a picture would suggest that it 

may be inappropriate to speak of a turbulent - non turbulent interface 

that separates the outer irrotational flow from the inner turbulent 
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flow (Roshko 1976, Dimotakis & Brown 1976, Falco 1974, Willmarth & 

Bogar 1977, Dimotakis· et al. 1983). 

In addressing this difficulty, one is forced to re-examine whether 

intermi t tency is the proper tool for probing turbulent shear flows. 

The dynamics of turbulent shear flow appear to be determined by large 

scale flow structures, so an investigation of these flows requires a 

tool that is capable of probing the large scale flow structures. It 

appears that the structures in turbulent shear flow that have been 

identified or are suspected to exist are vortical and unsteady in 

nature. This suggests the use of the instantaneous vorticity as a 

quantity that is more closely coupled to the dynamics of the flow. In 

fact, the instantaneous vorticity can be used to determine which parts 

of the flow are irrotational and which parts are turbulent (vortical or 

intermittent). Consequently, it was decided to measure the 

instantaneous vorticity for what is perhaps the best understood shear 

flow, the two-dimensional shear layer. 

1.2 Attempts to Date 

At least 3 different techniques to measure one or more components 

of the instantaneous vorticity have been used in the past by various 

experimenters. These three methods are: 

1. A physical probe consisting of rotating vanes, 

2. A direct optical probe using a flow seeded with spherical 

particles having embedded reflectors, 
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3. Multipoint measurements using hot wires that estimate the 

circulation around a closed loop. 

Each method has its own set of advantages and disadvantages, but they 

all have problems that have prevented them from becoming general 

purpose tools. 

1.2.1 Rotating Vane Probe 

The simplest technique is a physical probe containing vanes that 

rotate with the vorticity (McCormak et al. 1968, Holdeman & Foss 1975, 

Wigeland et al. 1978). In the absence of bearing friction, the vanes 

should rotate with an angular velocity equal to 1/2 the component of 

vorticity parallel to the axis of rotation. The angular rotation of 

the vanes can be detected by an optical detector, or in the work of 

Wigeland et al. ( 1978), by using a hot wire probe downstream of the 

vanes to detect the passage of the wakes from the vanes. Operational 

difficulties include nonlinear response, requiring calibration, and 

finite response time. The most serious limitation, however, is the 

requirement that the probe be placed parallel to the flow, limiting the 

measurement to the streamwise component of vort!ci ty. In the case of 

the shear layer, the spanwise component of vorticity is of greater 

fundamental interest, especially before the transition to 3-dimensional 

turbulence. 
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1.2.2 Direct Optical Probe 

The direct optical probe involves seeding a flow with small 

spherical particles that have small mirrors embedded in them and using 

a laser beam as the probe (Frish & Webb 1981). The small spherical 

particles will rotate with an angular velocity equal to 1 /2 the local 

vorticity vector. A particle containing an imbedded mirror will 

reflect the laser beam when the particle passes through it. While the 

particle rotates within the laser beam, the angle of the reflected beam 

will change at twice the rotation rate of the particle. A major 

limitation of this technique is the requirement that the indices of 

refraction for the fluid and the particles must be matched in order to 

avoid refraction at the fluid/particle interface. Since the particles 

have an index of refraction of 1. 49, this eliminates the use of water 

as the working fluid. The second major limitation is the relatively 

low sampling rate. Only about 4% of the reflections from the particles 

are intercepted by the detection optics, necessitating a very high 

seeding density (several percent by volume) to obtain an adequate data 

rate. The high seeding density restricts the extent to which a laser 

beam can propagate in the flow and limits the technique to flows near a 

surface, such as the boundary layer, as opposed to the shear layer. 
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1.2.3 Multiple Hot Wires 

One method for measuring a time resolved component of the 

vorticity is to measure the velocities for at least three non-collinear 

(but coplanar) points and estimating the circulation of the area 

enclosed by the points by the method of finite differences. Prior 

attempts have been made to measure the time resolved vorticity using 

hot wires. The first effort was by Kovasznay (195~) using a Wheatstone 

bridge of four hot wire probes. A theoretical analysis using hot wire 

probes was made by Wyngaard (1969). Other attempts were made by Foss 

(1976), Kastrinakis et al. (1979), Foss (1979), Foss (1981), and 
,., ,,. 

Vukoslavcevic & Wallace (1981). These prior efforts, based on hot 

wires, have had limited success due, in part, to mutual interference 

effects between the probes. Good spatial resolution requires close 

spacing of the probes, but close spacing of the probes causes the flow 

seen by the downstream probes to be disturbed by the upstream probe 

wakes. A second difficulty is associated with the resolution that a 

heat transfer gauge (hot wire) can measure a selected velocity 

component in fully developed turbulent flow. These methods require 

that the difference in velocity, as measured by different hot wire 

probes, be statistically significant, a specification that in practice, 

in view of the resolution limitations, restricts the potential or such 

techniques. 



-7-

1.3 The Laser Doppler Method 

It was decided to use the method of measuring the velocities of at 

least 3 non-collinear (but coplanar) points and estimating the 

circulation, since this method is the most general and gives the 

instantaneous u and v velocities as a side benefit. It order to avoid 

the problem of probe wakes, it was decided to use a non-intrusive means 

of measurement, specifically, the laser Doppler velocimeter (LDV), 

which a careful feasibility analysis had indicated was also capable of 

overcoming the velocity measurement resolution restrictions of heat 

transfer gauge systems. 

It was decided to use a four point measurement volume (rather than 

a three point measurement volume) because the transmit ting and 

receiving optics are simpler for the four point measurement volume. 

The four point measurement volume also simplifies mathematical analysis 

and improves accuracy over a three point measurement volume. The 

geometry of the measurement volume is shown in Figure 1.1. The 

vorticity is obtained by the following approximation: 

( 1.1) 

The spacing between the focal volumes, h, could be varied from 1 mm to 

4 mm and was set to approximately 1.9 mm for the measurements reported 

here. Shown also in Figure 1. 1 , superimposed on the measurement 

geometry, is the outline of the silicon quadrant detector used to 

detect the scattered light collected from the focal volumes by the 
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receiving optics (one quadrant per focal volume). 

The random sampling nature of the laser Doppler velocimeter was 

overcome by using a sampling rate that was high compared to the 

reciprocal of the flow transit time through the measurement volume 

't-1 » ( 1 • 2) 

The average time between measurements is 't, and the local mean velocity 

of the flow is u ( u = ( u1 + u2 ) /2 ) • Finally, data were uniformly 

sampled in time and then digitally filtered by convolving the uniformly 

sampled data with a Gaussian filter kernel having a full width at the 

1 /e points of h/u. Note that the full width of the Gaussian filter 

kernel is large compared to the uniform sampling interval. The 

algorithm is slightly modified from the one used by Koochesfahani et 

al. ( 1979) to give greater accuracy at low data rates and to avoid 

having to subtract the mean from the data before filtering. This 

perm! ts an optimization of the incoming data rate with respect to the 

desired signal-to-noise ratio of the measured velocity components and 

also permits a graceful solution to the problem of evaluating the four 

velocities at the same instants in time for the purposes of estimating 

the vorticity with the aid of equation 1.1. See Appendix F for a more 

detailed discussion of the algorithms used for the data reduction. 
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CHAPTER 2 

EXPERIMENTAL FACILITY AND INSTRUMENTATION 

This research was conducted in the Free Surface Water Tunnel 

(FSWT) of the Hydrodynamics Lab at Caltech. Figure 2.1 shows an 

overview of the experimental setup including: 

1. Free Surface Water Tunnel (FSWT) test section 

2. Shear layer insert 

3. Laser Doppler Velocimeter optical system 

4. Signal processing electronics 

5. Data acquisition system. 

2.1 Free Surface Water Tunnel 

The GALCIT Free Surface Water Tunnel (FSWT) was used for the 

experiment because it provides a large test section (20" wide by 20" 

deep by 8 feet long) and a steady continuous flow. Figure 2. 2 (Ward 

1976) shows a diagram of the entire facility, of which only the initial 

contraction (nozzle) and test section (working section) are visible in 

Figure 2.1. Figure 2.3 (Ward 1976) shows the test section in greater 

detail. Note that the boundary layer skimmer was removed for this 

experiment, since it interfered with the shear layer insert. The 

boundary layer from the upper surf ace of the Free Surface Water Tunnel 

was not important since it was well separated from the mixing layer 

region. The walls of the test section are made out of lucite 



-10-

(plexiglas), allowing access to the test section using Laser Doppler 

Velocimeter techniques. The test section has a pair of air bearing 

surfaces at the top of the vertical lucite walls. The air bearing 

surfaces allow even a heavy apparatus (1000 lbs.) equipped with air 

bearings to be easily moved along the length of the test section (in 

the streamwise direction). 

The facility can be operated at velocities ranging from below a 

centimeter per second to 7. 6 meters per second. It is also equipped 

with a continuously running filter that removes debris and algae from 

the water. It was necessary initially to filter the water completely 

and then turn the filter off for the duration of each run, adding a 

seeding agent (3µm Al2o3 ) in order to have sufficient scattering 

particles of approximately uniform size for the laser Doppler velocity 

measurements. 

2.2 Shear Layer Insert 

The Free Surface Water Tunnel (FSWT) generates a highly uniform 

flow throughout the test section away from the wall boundary layers. 

recent velocity survey of the tunnel by H. Gaebler and Dr. 

A 

M. 

Koochesfahani is shown in Figure 2.~. Since the object of the present 

research involved the study of a shear layer, an insert was designed 

and placed in the upstream portion of the test section (see diagram in 

Figure 2.5 and photograph in Figure 2.6). In order to avoid the 

instantaneous streamwise velocity reversal that has been documented to 
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occur in high velocity ratio shear layers (Dimotakis et al. 1981), a 

new insert was designed and built by Dr. M. Koochesf ahani with a 

design velocity ratio of the order of 2 to 1 • The insert follows the 

design of Dimotakis & Brown (1976) and occupies the first 30 inches of 

the test section, leaving 66 inches of the test section downstream of 

the splitter plate for the resulting shear layer to develop. It should 

be noted that while an instantaneous streamwise velocity component 

reversal could be accommodated by Bragg cell shifting all four pairs of 

beams of .the LDV system (see discussion below), it was decided to 

utilize a 2:1 shear layer in the interest of simplifying the LDV system 

for this first set of vorticity measurements. 

The insert contains a curved piece of lucite that accelerates the 

flow below it, and decelerates the flow above it. A perforated plate 

and a screen placed in the upper part of the flow is responsible for a 

head loss that matches the Bernoulli pressure drop in the lower part of 

the flow. This equalization is necessary to maintain the incoming 

dividing streamline approximately horizontal to avoid separation near 

the curved plate leading edge and produce a well-behaved dividing 

streamline at the splitter plate trailing edge (see also discussion in 

Dimotakis & Brown 1976). A splitter plate with a trailing angle of 6.5 

degrees is attached to the trailing edge of the curved piece of lucite. 

The angle on the high speed side is 2. O degrees, and the angle on the 

low speed side is 11.5 degrees. This choice of angles makes the V 

velocity components on the high and low speed sides just after the 
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splitter plate approximately equal and opposite. The resulting shear 

layer has a velocity ratio of between 2.0 to 1 and 2.1 to 1. The 

velocity ratio decreases slightly as the velocity is increased due to 

the weak Reynolds number dependence of the perforated plate and screen 

pressure coefficients. See Appendix A for additional details on the 

shear layer insert and the resulting flow quality. 

2.3 Three-axis Positioner and Overhead Assembly 

The LDV system is mounted on a overhead assembly that, in turn, is 

mounted on a three-axis posi tioner (see diagram in Figure 2. 7 and 

photograph in Figure 2.8). The three-axis positioner is mounted on top 

of the Free Surface Water Tunnel (FSWT) test section using a set of air 

bearings. 

2.3.1 Three-axis Positioner 

The three-axis positioner (manufactured by Mc. Bain Instruments, 

designed and supervised by Prof. D. Coles) allows movement of the 

entire overhead/LDV assembly in increments of .001 inches under either 

manual control or remote control from a computer (through an IEEE-488 

interface, designed and built by Mr. R. Morrison). The three-axis 

posi tioner has a range of movement of 18 inches in the x direction 

(streamwise), 12 inches in they direction (transverse, also across the 

shear layer), and 12 inches in the z direction (spanwise, across the 

tunnel). When a range of travel greater than 18 inches was needed in 
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the x direction, the air bearings allowed the three-axis positioner to 

be easily moved to a new x location. Mounting the positioner on top or 

the FSWT test section also has the advantage of minimizing positioning 

errors and vibrations of the assembly relative to the FSWT test 

section. An obstruction above the FSWT test section limited the 

measurement range in the x direction to a maximum or 39 inches 

downstream of the splitter plate. A pair or air cylinders on the 

three-axis positioner counter-balanced the static weight of the 

overhead assembly (250 pounds) for vertical movement. 

2.3.2 Overhead Assembly 

The overhead assembly has the shape of a capital Greek II and is 

attached to the three-axis posi tioner at the top center of 1 ts 

horizontal section. The two vertical arms of the overhead assembly 

straddle the FSWT test section. The bottom of one arm carries the 

receiving optics and photodetector assembly. The bottom or the other 

arm carries part of the transmitting optics. The laser is mounted 

approximately at the top center of the overhead assembly to place the 

weight of the laser as close to the center of mass of the 

overhead/three-axis posi ti oner assembly as practical. The first part 

or the transmitting optics is also placed on top or the overhead 

assembly in order to minimize·weight at the bottoms of the arms. This 

decreases the moment of inertia of the vertical arms and keeps the 

resonant frequencies high to maximize vibrational damping of the whole 

assembly. 
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The overhead assembly was made out of plywood because wood is 

fairly light, has a low thermal expansion coefficient, and has good 

damping properties. The crossbeam is made out of 3/4 inch thick 

plywood in the form of a square tube 13 inches on a side. The vertical 

arms are also 13 inches square, but use plywood 1 /2 inch thick. The 

crossbeam also incorporates an internal reinforcing bracket made out of 

aluminum at the point where the crossbeam attaches to the three-axis 

positioner. The wood was assembled using waterproof epoxy and then the 

entire structure was sealed using three coats of polyurethane to seal 

out moisture in order to avoid the dimensional sensitivity of wood to 

humidity. 

2.4 Laser Doppler Velocimeter System 

No commercially available Laser Doppler Velocimeter (LDV) system 

was capable of generating the four focal volumes needed for measuring 

vorticity so it was necessary to design and fabricate the LDV system to 

the requisite specifications. The need for a high signal-to-noise 

ratio dictated the use of a dual beam forward scattering optical 

system. Four pairs of beams are generated from an Argon Ion laser by a 

set of cube beam splitters and diffraction gratings. Each pair of 

beams is used to measure the velocity at one of the four points, as 

shown in Figure 1 • 1 • A quadrant detector is used to detect the light 

from the four focal volumes (one quadrant per focal volume). A pair of 

Bragg cells is used to shift the frequency of the beams used for the V 

velocity measurements, allowing measurement of the direction of the V 
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velocity as well as the magnitude. See Appendix B for more details on 

the laser, transmitting optics, and receiving optics. A phase locked 

loop frequency synthesizer. described in Appendix C, is used to 

generate the frequencies for the Bragg cells. 

2.5 LDV Signal Processing Electronics 

A block diagram of the LDV signal processing electronics is shown 

in Figure 2.9 and a photograph is shown in Figure 2.10. The output 

from each quadrant detector is amplified by a low noise amplifier. 

Since no standard photodiode amplifier provided a satisfactory 

signal-to-noise ratio, a low noise transimpedance amplifier was 

designed and built (see Appendix D.1). The signals are then high pass 

f 11 tered to remove the pedestals from the Doppler bursts, using 

standard Krohn-Hite model 3202 variable filters. The two U channels 

are then fed into an analog multiplexor. A considerable amount of 

electronics is saved by sharing one low-pass filter, analog processor, 

and digital processor with both U channels. Likewise, one set of 

electronics is shared by both V channels. The low-pass filters are 

also Krohn-Hite model 3202's. 

Figure 2.11 shows two photographs of the high- and low-pass 

filtered analog signals, showing the signal quality attainable (and 

necessary for vorticity measurements). The upper photograph shows 

individual traces of the u1 (upper trace) and u2 (lower trace) 

channels. The lower photograph shows ind! vi dual traces of the u1 
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(upper trace) and v1 (lower trace) channels (note the significantly 

higher frequency or the v channel). 

The high- and low-pass filtered signals are then sent to the 

analog signal processors. The main functions of the analog signal 

processors are to apply the analog validation tests to the incoming 

signal and convert the signal to a digital form for subsequent 

processing by the digital timing circuitry. The analog processor 

requires that the signal exceeds a certain level before it is accepted, 

and detects dropouts so that erroneous measurements are not made. The 

digital processor measures the elapsed time and number of cycles in the 

LDV burst. The digital processor also applies a cycle by cycle ratio 

test to the signal to provide an additional safeguard against erroneous 

measurements. The output of the digital processor is fed to a 

microcomputer controlled data acquisition system for subsequent 

recording and processing. The need to process four LDV channels with a 

data rate high compared to the large scale velocity fluctuations and 

provide extensive validation tests on the Doppler signal ruled out the 

use of commercial LDV processors. Additionally, experience with 

commercially available LDV processors suggests that the level of 

expected measurement accuracy per particle is of the order of 1-3% ; 

too high for the present application. The analog and digital 

processors were designed and fabricated and are described in greater 

detail in Appendices D.2 and D.3 respectively. 
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2.6 Free Stream Channel 

In addition to the four main LDV channels, there is a fifth 

channel that monitors the free stream velocity. This channel is used 

to remove the effect of slow variations in the velocity of the FSWT 

during the course of a run, which may last several hours, by 

normalizing the four main channel velocities by the concurrent running 

average of the free stream channel velocity. The fifth channel uses an 

avalanche photodiode, a transimpedance amplifier, a high-pass filter, 

and a low-pass filter like the other channels. Since only the mean 

velocity of the fifth channel is needed, a phase locked loop is used to 

track the Doppler frequency for the fifth channel. The output 

frequency of the phase locked loop is measured by a programmable 

counter in the microcomputer based data acquisition system. This 

provides the mean frequency (proportional to mean velocity) at two 

second intervals for use in normalizing the measurements from the four 

main channels. 

2.7 Data Acquisition 

A data acquisition system, based on a Digital Equipment 

Corporation (DEC) LSI-11/23 microcomputer, was used to record the LDV 

data, control the experiment, and perform preliminary data processing. 

A photograph of the data acquisition system is shown in Figure 2. 12. 

The DEC RT-11 operating system was used because 1 t is a single user 

operating system optimized for real time use. RT-11 allows on-line 

program development, high speed double buffered I/O (one buffer can be 
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filled with new data while the other buffer is written to disk), and 

contiguous disk files. 

The LDV digital processor is interfaced to a high speed (12 

megabytes/sec) I/O bus called the device bus. The device bus, in turn, 

is interfaced to the data acquisition system by a bi-directional DMA 

interface (Peri tek DMAL-11) that allows automatic setting of the LDV 

processor modes as well as regular data aaquisi tion. See Appendix E 

for more details on the data acquisition system and the device bus. 

An Andromeda PRTC-11 programmable real time cl oak card is used to 

measure the frequency of the phase locked loop utilized to monitor the 

free stream velocity component. 

A high speed Winchester disk (80 megabytes unformatted storage 

aapaci ty, 1.2 megabytes/second peak transfer rate) was used to record 

the data. A dual floppy disk drive was used to transfer the data from 

the LSI-11/23 to a PDP-11/44 based computer for subsequent data 

processing after the completion of a run. 

The LSI-11/23 microcomputer has a graphics terminal (Televideo 950 

with a Selanar graphics board) to allow display of the data in real 

time. This was used primarily to assure that everything was set up 

correctly, as final data processing was done on the PDP-11/44. A four 

color plotter (Hewlett Packard HP9872) connected to the LSI-11/23 by an 
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IEEE-488 interface allowed generation of hard copy plots during the 

course of the run for additional monitoring purposes. 
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CHAPTER 3 

MEAN PROFILE MEASUREMENTS 

Data were acquired for several different velocities and for both 

laminar and turbulent initial boundary layers on the high speed side of 

the splitter plate. For a turbulent boundary layer on the high speed 

side, the flow was tripped using a trip wire located 8.2 cm upstream of 

the trailing edge of the splitter plate on the high velocity side. The 

boundary layer on the low speed side was laminar for all the 

measurements. Data were acquired for the following runs (Runs 

through 6, in order): 

and, 

1. U1 a 41 cm/sec' laminar boundary layer. broad velocity defect 

on low speed side, 

2. u1 == 40 cm/sec, laminar boundary layer, shear layer insert 

modified to reduce velocity defect on low speed side for this 

and all subsequent runs, 

3. u1 = 40 cm/sec, laminar boundary layer, cover placed on top of 

free surface water tunnel for this and all subsequent runs, 

4. U 1 = 42 cm/ sec, turbulent boundary layer, 1 • 19 mm ( 3/64") 

diameter trip wire, 

5. u1 = 71 cm/sec, laminar boundary layer, 

6. u1 = 71 cm/sec, turbulent boundary layer, 0.79 mm (1/32"} 

diameter trip wire. 
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U1 is the free stream velocity on the high speed side of the shear 

layer and u2 is the free stream velocity on the low speed side of the 

shear layer. The larger diameter trip wire was necessary at the lower 

velocity ( U1 • .liO cm/sec ) in order to ensure reliable tripping of the 

high speed boundary layer. See Appendix F for details on the data 

processing algorithms. 

The data for the six runs can be presented in tabular form as 

shown below. 

Run U1 U2 e1 Xo de/dx Re0 (A) 

I cm/sec cm/sec cm cm xsa99cm 

1 .111 • -4 20.0 .073 -3.3 .0172 17,900 

2 39.9 19.2 .073 -37.5 .0096 13,500 

3 39.9 19.4 .073 -30.1 .0100 13' 100 

.Ii .112.2 20.3 .150 -21.2 .0093 12,700 

5 70.5 35.6 .056 -14.0 .0116 22,000 

6 71.-4 36.2 .107 -11.3 .0106 21,000 

The momentum thickness of the high speed side boundary layer is e1 , x 0 

is the x-coordinate of the virtual origin, and Re0 is the Reynolds 
(A) 

number based on the vorticity thickness, oU>. The growth rate of the 
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integral thickness, d0/dx, is based on the data at x = 30 or 33 cm and 

x = 99 cm. 

3.1 Growth of Shear Layer 

An integral thickness was used for comparing the growth rate of 

the shear layers. Canputing the integral thickness was complicated by 

the fact that u dips below u2 over part of the shear layer profile for 

the x positions located a short distance downstream of the splitter 

plate trailing edge (see Figures 3.3 through 3.8). The initial shear 

layer profile at the trailing edge of the splitter plate can be 

considered to be a superposition of an ideal shear layer profile and a 

wake from the splitter plate. A velocity profile downstream of the 

splitter plate trailing edge is considered to have a wake component if 

the minimum u velocity, Um, is less than the low speed free stream 

velocity, U2 • The integral thickness, 0, is given by the following 

integral 

e = Im [ ! - ( u - Ucm) 2 ] dy 
4 A Um 

Ym 

m U -u u-U 
c: rm ( 1 ) ( m ) dy 

~ A Um A Um 

where Ym is the y location for which u = Um, AUm = u1 - Um , and 

Ucm = ( u1 + Um )/2. There are two limiting cases for this integral 

thickness equation. The first case is when the wake component goes to 

zero, giving Um+ u2 , Ucm +Uc, AUm +AU, and Ym + -m. This gives the 

integral thickness equation for the conventional shear layer, defined 

by Winant & Browand (1974). The second case is when Um + O and 
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l1Um + u, , giving the well known momentum thickness equation for the 

boundary layer. 

Figure 3.1 shows the integral thickness as a function of distance 

downstream of the splitter plate for the 4 runs at u1 a 40 cm/sec. 

Note that Runs 2 & 3 differ only in that a cover was placed on top of 

the free surf ace water tunnel in contact with the water to eliminate 

the effect of free surface waves for Runs 3 on up. These data indicate 

that the cover had a fairly small effect. The non-tripped cases take 

longer to reach similar! ty, but, once similar! ty is reached, grow at 

the same rate as the tripped case. Figure 3.2 shows the results for 

the case of U1 ~ 71 cm/sec. Again, the tripped case reaches similarity 

sooner than the non-tripped case. Note also that the flow reaches 

similarity sooner for u1 a 71 cm/sec than for u1 = 40 cm/sec. 

Figures 3.3 through 3.8 show the u velocity profiles a short 

distance downstream of the splitter plate for the 6 runs. Note that 

the profile for Run 1 is 2.79 cm downstream of the splitter plate while 

the profiles for the other runs are 1.93 cm downstream of the splitter 

plate. The wake component is still visible for all these figures. The 

wake component for Run 1 is partially filled in due to the larger 

measurement distance used for Run 1 (2.79 cm vs. 1.93 cm). Run 1 

shows a broad (3 cm) velocity defect of approximately 5 cm/sec on the 

low speed side. This velocity defect was reduced by approximately 1 /2 

in both width and amplitude, as shown in Runs 2 through 6, by modifying 
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the insert as described in Appendix A. The wake component has 

completely disappeared from the u velocity profile at x = 15 cm 

downstream of the splitter plate and does not reappear farther 

downstream for Runs 2 through 6. The u velocity profile for Run 1 has 

a wake component at x c 2. 79 cm, x s:: 15 cm, and x = 30 cm but not at 

x = 61 cm or x = 99 cm. 

The rest of the thesis will concentrate on the results from Run 6 

because Run 6 exhibits a linear growth profile and space and time 

constraints preclude showing the results of all the runs. 

3.2 u Profile Measurements 

Figure 3.9 shows a u velocity profile CU1 = 40 cm/sec, tripped 

boundary layer) plotted in similarity coordinates. The circles 

represent the measuring point closest to the high speed side ( u1 

channel ) and the squares represent the measuring point closest to the 

low speed side ( u2 channel ) • The solid curve plotted through the 

points was obtained by applying a non-linear least squares fit to the 

data. The parametric form used is 

Yt < 0 (3.2a) 

u Yt > 0 (3.2b) 

(3.2c) 
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Yt ID Yh + B1 

Yh • Y + B7 for u1 

Yh a y - s7 for u2 

(3.2d) 

(3.2e) 

(3.2f) 

and tanh is the hyperbolic tangent. s1 through s10 are the adjustable 

parameters used by the non-linear least squares fit routine. The wake 

component, Uw, was only used for the first three x locations for Run 1 

and for the first x location (1.93 cm) for Runs 2 through 6, as the 

rest of the u data did not show a wake component. Note that the y 

separation between the u1 and u2 measuring points is h 11:1 2 87 and is 

determined to high accuracy from the non-linear least squares fit. The 

separation between v 1 and v2 is the same as the separation between u1 

and u2 to within a few percent as ensured by the grating that splits 

the two v channels and the grating that splits the two u channels both 

of which are scribed from the same master grating. The grating used in 

these experiments (150 lines/inch) gives a value for h of 1.9mm. 

Figure 3.1 O shows the root mean square (RMS) u velocity 

fluctuations for the same conditions as Figure 3.9. Again, the circles 

represent the u1 channel and the squares represent the u2 channel. The 

maximum RMS fluctuation is about o. 15 of AU. The error bars are 

derived by splitting the record into 8 equal time intervals and 

computing the RMS for each interval. See Appendix F .3 for additional 

details on computing the error bars. If the error bar is smaller than 

the symbol size, the error bar was not plotted. The error bar 
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computations were also carried out for Figure 3.9, but the error bars 

were always smaller than the symbol size for this case. 

3.3 v Profile Measurements 

Figure 3.11 shows the v velocity profile (same conditions as 

Figure 3.9) plotted in similarity coordinates. The squares represent 

the vl channel measuring points and the circles represent the v2 

channel measuring points. The solid curve is derived from the curve 

fitted to the u velocity profile (equation 3.2) and the time averaged 

continuity equation using the assumption of similarity. The similarity 

parameter is 

n = 
y -yo 
X - X0 

(3.3) 

where x0 ,y 0 is the virtual origin, as determined from the data. The 

points at x = 30 or 33 cm and x = 99 cm are used to determine the 

virtual origin (see Figure 3.1). The virtual origin for Run 6 is 

x0 = -11.3cm, y0 = 0.76cm. The time averaged continuity equation in 

similarity coordinates (assuming two-dimensionality) is 

-n du + dv 
dn dn = 

0 
' 

or (3.4} 

Integrating the continuity equation over n gives 

v = 
n -

J 
du 

n d dn 
-c:o n 

(3.5) 
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where V2 is the boundary condition as n + -m (v + v2 as n + -oo). The 

integral of the continuity equation fixes the velocity difference, 

J
oo du 

n 'ddn 
-m n 

(3.5a) 

but not the value of v2 • The value of v2 is determined by the 

requirement that the Reynolds stress integral approach zero as n + CID 

(see section 3.5 on the Reynolds stress). Once the value of v2 is 

known, the value of v1 follows from equation 3.5a. 

The V axis of the LDV system differed from the true V axis by 

about half a degree (- 0.01 radian). Consequently, it was necessary to 

apply a rotation to the measured V channel data in order to get the 

best fit between the measured V channel data and the solid line derived 

from the u profile and the continuity equation. 

v corr a v cosq, + u sinq, = v + uq, (3.6) 

In this equation, q, was obtained using a least squares fit between the 

measured data and the curve derived from the u profile. 

The error bars in Figure 3.11 are computed as described in 

Appendix F.3. This computation only accounts for the finite sample 

error (error due to a fin! te measurement time interval). For the v 

velocity data, there is another source of error caused by the 
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relatively low optical quality of the lucite walls used in the tunnel. 

This source of error was reduced as much as practical (see 

Appendix B.2), but could not be completely eliminated. The residual 

error causes some of the data points to miss the curve by more than the 

computed error bar size. 

Figure 3.12 shows the RMS v velocity fluctuations. Note that the 

RMS v velocity fluctuations are about 40% less than the RMS u velocity 

fluctuations at this location. 

3.4 Vorticity Profile Measurements 

Figures 4.18 through 4.22 show the mean vorticity profiles for 

different x locations for Run 6. The circles represent the measured 

data, with error bars plotted if the error bar size is greater than the 

symbol size. The solid line was derived from equations 1 .1 and 3. 2 

with the help of similarity. The squares, representing the rotational 

component of vorticity, will be explained in section 4.3. Expressing 

equation 1.1 in similarity coordinates and time averaging gives 

__ [du_ 
x - x0 dn 

(3.7) 

Multiplying by x- x0 and eliminating v by using the continuity 

equation (3.4) gives 

- Wz (x - x 0 ) ( 1 + n2 ) du 
dn 

du = -dn 
(3.8) 
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The n2 term can be ignored since n < .06 over the region of interest. 

The error caused by the relatively low optical quality of the 

lucite walls also appears in these data, causing some of the free 

stream data points to vary slightly from the zero value. See 

Chapter 3.3 and Appendix F.3 for more details. 

3.5 Reynolds Stress Profile Measurements 

Figures 3.13 through 3.16 show the Reynolds stress profiles for 

different distances downstream of the splitter plate for Run 6. The 

Reynolds stress is - u 'v' , where u' = u - u and v' c v - v. The Reynolds 

stress is normalized by 100/AU2 for these figures. The solid curve is 

obtained by integrating the time averaged momentum equation (assuming 

similarity). The time averaged (2-dimensional) momentum equations in 

similarity coordinates are 

x) d -2 -) d -- -) -n-(u +u' 2 +-(uv+u'v' 
dn dn 

(3.9a) 

y) d -- -- d -2 -) -n-(uv + u'v') + -( v + v' 2 

dn dn 
::: -~(.E.) 

dn p 
(3.9b) 

Combining equations 3.9a and 3.9b and eliminating the p/p terms gives 

Rearranging terms, we have 
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( n 2 
- 1 ) _5!_ UV + n ..!. Cu2 

- V2 
) + n ~ ( u' 2 - v' 2 ) (3 • 11) 

dn dn dn 

d­
-uv 
dn 

- dv - du 
= u-+v-

dn dn 

Ill 2nu du - 2 - dv 
dn nv dn 

(3.11a) 

(3.11b) 

Using the continuity equation to replace ~~ by n ~~ and combining terms 

gives 

( 1 - n2 
) _5!_ u' v' c: ( 1 + n2 )( nu - v ) du + n 1!.. [ u' 2 - v' 2 ] • (3. 12) 

dn dn dn 

Dividing by ( 1 - n2 ) and integrating over n then yields 

J
n 

1

1 + n2 - - du u'v' c: ( ) d n2 nu - v dn n 
-m 

+ 
n 

I __ n __ d_ [-u,-2 - -v,-2 ] dn + 
1 - n2 dn -m 

c (3.13) 

The constant C can be determined by noting that u' v' + 0 as n + -m. 

When integrating equation 3.13, v is obtained from equation 3.5. The 

boundary condition for equation 3.5, v2 , is adjusted to satisfy the 

boundary condition for equation 3.13, u' v' + 0 as n + +m. The 

contribution to u'v' by the [ u' 2 - v' 2 ] term in equation 3.13 can be 

seen to be less than 1 % of the total and was not included in the 

calculation of the solid line in Figures 3.13 through 3.16. 
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For Figure 3.13, the shear layer is not fully developed, and the 

measured Reynolds stress is somewhat low compared to the calculated 

Reynolds stress. For Figures 3.14 through 3.16 the agreement between 

the measured and calculated Reynolds stress is quite good except that 

one point in Figure 3.16 appears to be anomalously high. 
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CHAPTER 4 

VORTICITY MEASUREMENTS 

4 .1 Measurements of Vorticity !!..:.. !.!!!.! 

Figures 4.1 through 4.3 show plots of the four filtered velocity 

components Cu1, u2, v1, and v2) and the vorticity {-wz) as a function 

of time, for x m 76.2 cm downstream of the splitter plate. The data in 

Figure 4.1 were recorded on the low speed edge of the shear layer 

( n ia -.0464), the data in Figure 4.2 were recorded slightly closer to 

the centerline ( n == -.0319 ) , and the data in Figure 4.3 were recorded 

near the centerline ( n -= -.0087 ) • For the upper pair of lines, the 

solid line is the time trace of u1 while the line consisting of dashes 

and dots represents u2 • For the middle pair of lines, the dotted line 

represents v 1 and the dashed line represents v2 • For the lower pair 

of lines, the solid line represents the computed -wz and the straight 

dashed line is -wzo, the mean vorticity at the centerline of the shear 

layer. The following features can be seen in the data: 

1. The peak-to-peak fluctuation amplitude of the instantaneous 

vorticity is many times the mean vorticity. 

2. There are intervals of zero vorticity (irrotational flow) even 

during times when the four velocity components are 

fluctuating. 
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3. There are significant negative excursions in the instantaneous 

vorticity, -wz (many excursions last several times as long as 

the transit time through the measurement geometry). 

The first observation can also be inferred from the fact that the 

RMS vorticity is 1.2 to 2.8 times the mean vorticity (the ratio 

increasing as one goes downstream). See Figures Ji. 7 through ll.11 for 

RMS vorticity data and Figures ll.18 through 4.22 for mean vorticity 

data. At first glance, the existence of negative excursions in -wz may 

seem rather surprising. The mean vorticity, -wz• is greater than zero 

in the fully developed portion of the shear layer, but as can be seen 

in Figure ll.12, in the initial portion of the shear layer, -wz is less 

than zero on the low speed side due to the low speed boundary layer 

shed from the splitter plate. The low speed boundary layer can give 

rise to "cells" of negative vorticity that can persist for some 

distance into the shear layer. In other words, the flow downstream of 

the splitter plate can be viewed as the "superposition" of a pure wake 

and pure shear (see Chapter 3.1). The wake part contributes vorticity 

of both signs, which, from the study of wake flows, one could argue 

should persist for large distances downstream. In addition, there may 

be production of negative vorticity in the shear layer proper after the 

flow becomes three-dimensional. 
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Figures 4.4 through 4.6 show time traces of the vorticity, -wz, and the 

product, -u• v', tor the same locations as the data in Figures 4.1 

through 4. 3 respectively. The upper solid 11 ne represents -wz , the 

straight dashed line is -wz0 , and the lower solid line represents 

-u•v•. The following features can be seen in these data: 

1. The vorticity data are characterized by much higher 

frequencies than the -u•v• data. 

2. There are significant excursions in -u'v', even when -wz is 

nearly zero, and vice versa. 

3. There is no obvious simple relationship between the vorticity 

data and the -u•v• data. 

4.2 Vorticity Histograms 

The vorticity vs. time data were processed to generate histograms 

of the vorticity. The bin size of the histograms was chosen to be 

small compared to the measurement resolution of the vorticity data. 

Figure 4.13 shows a vorticity histogram for the low speed side free 

stream at x a 76.2cm downstream of the splitter plate. The width of 

the free stream histogram is a consequence of the finite resolution of 

the LDV measurement process. In order to reduce the effects of noise, 

the histograms were digitally filtered using a Gaussian filter envelope 

in a manner similar to the digital filtering of the velocity vs. time 

traces. The histograms were filtered using a filter width one-half the 

width of the unfiltered free stream histogram. A filter width of 
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one-half the width of the free stream data was chosen as a compromise 

between resolution and noise. The f 11 ter ing process decreases the 

amplitude and increases the width of the free stream histogram by a 

factor of 1.12, as shown in Figure 4.14. Note that the histogram has a 

very nearly Gaussian profile and is centered about zero. 

Figure 4.15 shows a filtered vorticity histogram on the low speed 

side part way into the shear layer, and is from the same record as the 

data shown in Figure 4.2 (Figure 4.2 shows only a small portion of the 

data; the record is about 20 seconds long). Note that the filter 

width is one-half the width of the unfiltered free stream histogram. 

Here, we see a large Gaussian spike centered about zero that represents 

the irrotational component of the flow. We also see a broader, but 

lower amplitude, non-Gaussian distribution, not centered about zero, 

that represents the rotational (vortical) component of the flow. 

Figure 4.16 shows a vorticity histogram near the centerline of the 

shear layer (same record as for Figure 4. 3). This is similar to 

Figure 4.15 except that the amplitude of the Gaussian spike 

(representing the irrotational flow) is much smaller, and the amplitude 

of the broader profile (representing the rotational flow) is much 

larger. Note that the width of the Gaussian spike representing the 

irrotational component of . the flow remains relatively constant 

throughout the shear layer. 
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4.3 Intermittency 

One item of interest is the intermittency factor, which is defined 

as the fraction of the time that the flow is turbulent. Most prior 

measurements of the intermittency factor (see Demetriades 1968, 

Wygnanski & Fiedler 1969, and Wygnanski & Fiedler 1970) used a time 

derivative of the velocity signal to establish the presence of 

turbulent flow. A typical derivative used is (a 2u•/at 2 ) 2 + Cau•/at) 2 to 

minimize the contribution of low frequency fluctuations caused by 

potential flow. The differentiated signal is fed to a Schmidt trigger 

with a fixed threshold. It is often necessary to vary the threshold as 

the probe is moved across the flow. 

Since it is now possible to measure instantaneous vorticity (as 

averaged over a small measurement volume}, an independent method of 

measuring the intermi t tency is available. The non-turbulent flow 

(irrotational) has zero vorticity, while the turbulent flow is 

characterized by a non-zero, fluctuating component of vorticity. This 

suggests the use of the fraction of the time that the flow has non-zero 

vorticity as a measure of intermittency. In the case of the vorticity 

histograms shown (Figures 4.14 - 4.16} this means separating the narrow 

Gaussian representing the irrotational flow from the rest of the 

histogram. It is important to note that only -wz is measured here, 

while, strictly speaking, irrotational flow requires that 

C&>x 2 + C&>y 2 + C&>z 2 = O • This limitation is overcome, in part, by using 

only the excess probability of -wz = o due to irrotational flow (see 
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Figure 4.17 and the next subsection). 

4.3.1 Determining the Irrotational Component of the Flow 

Since the narrow Gaussian representing the irrotational component 

of the flow has a sharp radius of curvature near the origin, it was 

decided to curve fit the second derivative of a Gaussian to the second 

derivative of the filtered vorticity histogram. This means that the 

curve representing the rotational component of the histogram {histogram 

minus the fitted Gaussian) will have a small second derivative in the 

vicinity of the origin, giving a smoothly varying curve. The second 

derivative of the filtered vorticity histogram was approximated by the 

method of finite differences. At first, the second derivative of the 

Gaussian was computed analytically. The curve representing the 

rotational component of the histogram was somewhat irregular in the 

vicinity of the origin, where the irrotational component {Gaussian) had 

been subtracted out. This irregularity was due to errors from 

estimating the second derivative of the histogram by the method of 

finite differences. Since the histogram consists of discrete points, 

it was not possible to compute the second derivative of the histogram 

analytically. The solution to this problem was to use the method of 

finite differences to estimate the second derivative of the Gaussian as 

well. Both the Gaussian and the histogram are evaluated at the same 

points so the errors resulting from the method of finite differences 

cancel to highest order. The result of the new procedure is a smooth 

curve for the rotational component of the vorticity in the vicinity of 
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the origin. 

The results of the curve fit procedure are shown in Figure 11.17. 

The solid line represents the filtered vorticity histogram. The dashed 

line represents the Gaussian that was fitted to the histogram using the 

second finite differences. The ratio of the area under this curve to 

the total area of the histogram provides an estimate of the fraction of 

the time that the flow is irrotational. The filtering process 

decreases the amplitude and increases the width of the spike 

representing the irrotational component of the flow by the same amount, 

so that the area under the curve is not changed. The dotted line 

represents the histogram minus the Gaussian. The ratio of the area of 

this curve to the total area of the histogram is an estimate of the 

fraction of the time that the flow is vortical, and gives a measure of 

the intermittency. 

Figure 4.21 shows the vorticity profile at x = 76.2 cm downstream 

of the splitter plate (fully developed shear layer). The circles 

represent the measured mean vorticity at each point. The solid line is 

the value of the vorticity computed from the mean U velocity profile 

using the oontinui ty equation and assuming similar! ty. The squares 

represent the mean of the rotational component of the vorticity 

histogram (mean vorticity of the rotational fluid). The triangles 

represent the mean of the irrotational component of the vorticity 

histogram (mean vorticity of the irrotational fluid). Note that the 
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mean vorticity or the rotational fluid is nearly constant throughout 

the shear layer and is approximately equal to the the maximum of the 

mean vorticity in the layer. Likewise, the mean vorticity of the 

irrotational fluid is nearly zero throughout the shear layer, as would 

be expected if the measurements and the decomposition of the vorticity 

histogram were error-free. 

Figure 4.26 shows the same vorticity profile normalized to unity. 

The circles and solid line are the same as in Figure ~.21. The pluses 

represent the intermi ttency obtained by di Viding the area of the 

rotational component of the histogram by the total area or the 

histogram. It is interesting that the intermittency follows the 

normalized vorticity quite closely. This indicates that, for a fully 

developed shear layer, the variation in the mean vorticity is almost 

entirely due to the variation in the probability of observing turbulent 

flow and not due to a variation in the average vorticity in the 

turbulent portions or the flow. 

4.3.2 Probability of Counter-rotating Flow 

The histogram in Figure 11 .17 shows that the instantaneous 

vorticity can have the opposite sign of the mean vorticity for a 

significant portion of the time. The rotational component of the 

vorticity histogram was integrated from -CD to O and normalized by the 

total area of the vorticity histogram to obtain the probability of flow 

counter-rotating to the predominant sense of rotation. Subtracting the 
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irrotational component from the histogram before integrating avoids 

including one-half the probability or irrotational flow in the 

probability or counter-rotating flow. The probability or 

counter-rotating flow is indicated in Figure 4.26 by the diamonds. The 

maximum probability or counter rotating flow is 0.30 and is observed at 

{y-y 0 ) I (x-x 0 ) = - • 02. The total intermi t tency at this location is 

o. 96' so the probability or irrotational flow is estimated by this 

procedure to be 0.04 and the probability or flow rotating in the 

predominant sense or rotation is 0.66. 

4.4 Variation of Intermittency with !. 

Figures 4.18 through 4.22 show the mean vorticity and the mean 

vorticity of the rotational fluid at x = 15 cm, 33 cm, 57 cm, 76 om, and 

99 cm downstream or the splitter plate, respect! vely. Figures 4. 23 

through 4.27 show the normalized mean vorticity, the probability of 

rotational flow ( intermi ttency), and the probability of 

counter-rotating flow for the same x locations. At x = 15 cm (Figure 

4.18), the mean vorticity or the rotational fluid (squares) is only 

slightly higher than the mean vorticity, and follows the mean vorticity 

fairly closely. As one goes farther downstream of the splitter plate, 

the curve representing the mean vorticity of the rotational fluid 

gradually flattens out, and becomes nearly independent of 

Tl= (y-y0 )/(x-x 0 ) at x = 76cm and 99 cm (Figures 4.21 and 4.22). 
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The first two x locations (Figures 4 .23 and 4. 24) show an excess 

in the intermittency (plus symbols). As one proceeds downstream, the 

excess intermittency gradually disappears, with the intermittency 

following the normalized mean vorticity very closely at x = 57 cm, 

76cm, and 99 cm (Figures 4.25 through 4.27). The variation of the mean 

vorticity of the rotational fluid and the excess intermittency at the 

first two x locations is due, at least in part, to vorticity from the 

high and low speed boundary layers and the resulting wake from the 

splitter plate. This effect is greatest on the low speed side, where 

approximately equal amounts of positive and negative vorticity can give 

rise to a large value of the intermi ttency and a nearly zero mean 

vorticity of the rotational fluid. The effect of the wake from the 

splitter plate is shown even more dramatically in the plots of the 

probability of counter-rotating flow (see Chapter 4.5). 

The finite spatial and temporal resolution of the measurement 

process may be an additional contributing factor to the variation of 

the mean vorticity of the rotational fluid and the excess intermittency 

at the first two x locations. Since h - 2 mm (see Figure 1.1), the 

measurement averages the vorticity over a region on the order of 2 mm 

by 2 mm. The temporal resolution is equivalent to a spatial resolution 

on the order of 2 mm since the filter width is equal to the mean 

transit time through the measurement volume, i.e., Tr= hi u. When the 

small scale is small compared to 2 mm, this will cause an excess in the 

measured intermi t tency because there will be times when the 2 mm 
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measurement volume will contain some vorticity whereas a smaller 

measurement volume would indicate irrotational fluid. Likewise, when 

the 2 mm measurement volume indicates rotational fluid, part of the 

fluid within the volume may actually be irrotational, giving a lower 

value for the mean vorticity of the rotational fluid. Doubling the 

filter width (approximately equivalent to increasing the length of the 

measurement volume to 4mm) will cause slightly more irrotational fluid 

to be averaged with rotational fluid, and should give rise to an 

increase in the observed intermittency. Figures 4.28 through 4.32 

represent the same set of data as Figures 4. 23 through 4. 27, except 

that the filter width has been increased by a factor of 2 to 

i:f = 2h/ u. At x c: 15 cm (Figure 4.28) there was a slight increase in 

the intermittency, but for x ~ 33 cm (Figures 4.29 through 4.32), there 

was no significant change. 

4.5 Variation of Counter-rotating Flow with.! 

Figures 4.23 through 4.27 show the probability of counter-rotating 

flow for x = 15cm, 33cm, 57cm, 76cm, and 99 cm, respectively. In 

Figure 4.23, the probability of counter-rotating flow reaches a peak of 

O. 29 on the low speed edge of the shear layer , while the maximum 

probability within the shear layer is only 0.22. This is caused by 

vortical fluid from the low speed boundary layer of the splitter plate 

(see Figure 4.12). As the shear layer develops, this counter-rotating 

fluid is gradually entrained within the shear layer, and the profile 

becomes symmetrical by x a 57cm (Run 6, Figure 4.25). This can be 
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contrasted with the u profile, which becomes symmetrical by x • 15 cm 

for Runs 2 through 6 (see Chapter 3 .1). The peak probability of 

countef'-rotating flow within the shear layer gradually rises until it 

reaches a similar! ty value of 0. 30 and remains at this level for the 

rest of the shear layer. Thus, it can be seen that the regions of 

counter-rotating flow persist throughout the shear layer even for the 

last x location (99cm, Figure 4.27) measured. 

Referring back to the in! tial velocity profile shown in 

Figure 4.12, it can be seen that the initial ratio of probabilities of 

fluid rotating with the predominant sense of rotation to fluid rotating 

against the predominant sense of rotation is approximately the same as 

the velocity ratio, u1 /U2 11: 2.0 • The current data (Figures 4.23 

through 4.27) suggest that the regions of counter-rotating flow do not 

decay significantly, or, at least, the decay is balanced by some sort 

of production term. The implications of this conclusion required a 

check to see if the regions of counter-rotating flow are not an 

artifact of the measurement process. 

It is possible for a small vortex just outside the measurement 

geometry to give a measurement of opposite sign to the vorticity of the 

vortex. A simulation was undertaken to estimate the magnitude of this 

error (see Appendix F .5) and shows that the errors are quite small 

given the chosen filter width ( -rf = h/ u) and the typical range of 

vortex sizes. The small residual error can be further reduced by 



-44-

choosing the filter width to be ~f a 2h/ u • This will also reduce the 

LDV measurement error by a factor of 1-:S • Figures 4.28 through 4.32 

represent the same set of data as Figures 4. 23 through 4. 27, except 

that the filter width was increased by a factor of 2 • The probability 

of counter-rotating flow was reduced from .30 - .31 to .28 - .30 for 

the last three x locations. The fact that increasing the filter width 

had such a small effect indicates that the majority of the negative 

excursions of vorticity extend over large spatial regions and are well 

above the measurement error. Increasing the filter width had a 

slightly larger effect for the first x locations, where the measured 

vorticity (positive and negative) has the largest amplitude. This 

indicates that the decrease in counter-rotating flow is due, in part, 

to the temporal averaging of legitimate vorticity fluctuations. 

One major question remaining is whether this persistence of 

counter-rotating flow holds for other velocities and initial 

conditions. Figures 4.33 through 4.37 show results for runs 1 through 

5. respectively (all for a velocity ratio of approximately 2 to 1). 

These figures show similar results and even show a slightly higher 

probability of counter-rotating flow for most of the runs (around .33 

to • 35). It cannot be determined from these data if the ratio of 

co-rotating flow to counter-rotating flow is approximately the same as 

the velocity ratio for other velocity ratios. Even though the 

intermittency and the probability of counter-rotating flow did not seem 

to be sensitive to the initial conditions, the growth rate was 
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sensitive to the in! ti al conditions. Run 1 had a much higher growth 

rate than Runs 2 and 3 even though they had the same high speed 

boundary layer momentum thickness. Since Run 1 had a larger wake 

component (due to the increased low speed boundary layer momentum 

thickness), this suggests that the width of the wake at the trailing 

edge of the splitter plate may be as important in determining the 

downstream behavior of the shear layer as the initial high speed 

boundary layer momentum thickness (see Chapter 3.1). 
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CHAPTER 5 

SPATIAL VS. TIME DERIVATIVES OF V 

Most prior attempts to measure the vorticity have used hot wire 

probes (see Chapter 1.2). The term that gives the greatest difficulty 

is the - av/ax term in equation 1.1. The approximation of finite 

differences gives 

- av 
ax = (S.1) 

The method of finite differences cannot be used with hot wires because 

the wake of the upstream probe interferes with the flow as seen by the 

downstream probe. Most hot wire measurements approximate the - av/ax 

term by using the Taylor hypothesis (Taylor 1938) which states that the 

temporal variation of the flow at a stationary point can be considered 

to be due to the convection of a "frozen" spatial pattern past that 

point with a mean velocity, u. 

approximation gives 

or 

av - av 0 -+ u- == 
at ax 

av 
- - a: 

ax 
av 

uat 

Use of the "frozen" convection 

(S.2a) 

(5.2b) 
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Other approximations used by researchers are 

and 

- av 
ax QI 

- av a: 

ax 

av 
uat (5.2c) 

(5.2d) 

where u = ( ul + u2 )/2 and Uc a ( u1 + u2 )/2 (convection velocity of 

large structures). Uc has been used for mixing layers where U2 = 0 in 

order to avoid singularities when u or u = o. 

5.1 Derivatives of v vs. time 

For the first time, we have the ability to estimate the accuracy 

of the approximation in equation 5.2b by comparing av/uax with 

( v2 - v1 )/h from equation 5.1. We do not have the value of v at the 

center of the measurement geometry (see Figure 1.1) so it was necessary 

to generate v from v1 and v2 • Rather than taking v a ( v1 + v2 )/2 , 

the following equation was used: 

(5.3) 

where T is the transit time based on the mean u velocity, T a h/u. 

Figure 5.1 plots the spatial and temporal approximations as a 

function of time. The approximation of fin! te differences, 

( V2 - v1 )/h (equation 5.1), is shown by the upper solid line. The 

"frozen" convection approximation, av/ uax (equation 5.2b)' is shown by 
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the dashed line. These two lines appear fairly similar and have the 

same main features, but there are regions where the two lines are 

significantly different, especially when the signal is rapidly 

fluctuating. The lower solid line shows the difference, 

( V2 - V1 )/h - av/ uax, for better Visualization. 

Figure 5. 2 is the same as Figure 5.1 except that the dashed line 

uses the approximation av/u3x (equation 5.2c). Again, the lower solid 

line ShOWS the difference, ( V2 - V1 )/h - av/uat, for better 

visualization. The data for Figures 5.1 and 5. 2 are very similar, 

meaning that the effect of using u or u is small compared to other 

error terms in the "frozen" convection approximation for a 2 to 1 shear 

layer. 

5.2 Time Derivative Accuracy 

A quantitative measure of the accuracy of using av/uat in place of 

-av/ax can be derived by computing the root mean square (RMS) of 

( v2 - v1 )/h - av/uat normalized by the RMS of ( v2 - v1 )/h • This is 

plotted as a function of n -= (y-y 0 )/(x-x 0 ) in Figure 5.3 (shown by the 

squares). If the two signals were completely uncorrelated, the 

normalized RMS would be equal to 1.414 (upper plot limit). If the two 

signals were completely correlated, the normalized RMS would be equal 

to O (lower plot limit). The circles are similar, except that they 

show the RMS of ( v2 - v1 )/h - 3v/ uat normalized by the RMS of 

( v2 - v1 )/h • This shows that the difference in using u or u in the 
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"frozen" convection approximation is negligible for a 2 to 1 shear 

layer. 

The circles in Figure 5. 4 are the same as the circles in Figure 

5. 3. The diamonds show the result when Uc is used (equation 5. 2d) • 

Using the convection velocity of the large scale structures, Uc, gives 

significantly poorer results, especially in the outer regions of the 

shear layer (away from the centerline). 

5.3 Optimum U Velocity for Scaling 

Instead of using u or Uc in the "frozen" convection approximation 

(equations 5.2b and 5.2d, respectively), it is possible to make U a 

variable, and find the fixed value of U as a function of y that gives 

the best fit to Cv2 - v1 }/h (equation 5.1). The resulting value of U 

is called Uopt {note that Uopt is not a function of time). The root 

mean square {RMS) of C v2 - v1 }/h - av/Uoptat normalized by the RMS of 

( v2 - v1 }/h is indicated in Figure 5.4 by the triangles. For most of 

the points, the mean velocity ( u, indicated by the circles) works just 

as well as the optimum velocity, Uopt· 

Perhaps of greater interest is a plot of Uopt, shown in Figure 

5.5. The circles indicate the measured u1, while the squares indicate 

the measured u2 • The solid line is a curve {hyperbolic tangent) 

fitted to the measured data points using a nonlinear least squares fit. 

The corresponding values of Uopt are indicated by the triangles. The 
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optimum velocity follows the mean velocity fairly closely, but has a 

slightly lower slope in the central region of the shear layer. Note 

that U0 pt is a weighted measure of the average velocity of the 

structures (small and large). This means that the weighted average 

velocity of the structures is slightly less than the mean velocity, u, 
on the high speed side of the shear layer and slightly greater than the 

mean velocity on the low speed side of the shear layer. 

A particularly interesting feature is that Uopt approaches 

Uc a ( U1 + U2 )/2 just outside of the shear layer, then returns to u 

farther away from the shear layer. This effect can be explained by 

noting that the shear layer is composed or small scale structures that 

essentially move with an average velocity equal to the local mean, u, 

and large scale structures that move with an average velocity equal to 

Uc• In the central region of the shear layer, the small scale 

structures have somewhat smaller amplitudes and much higher spatial and 

temporal frequencies than the large scale structures. Consequently, 

the small scale structures contribute the dominant portion of the av/ax 

and av/at terms, causing uopt to be weighted towards the velocity or 

the small scale structures. The large scale structures still 

contribute a small portion of the av/ax and av/at terms, causing the 

slope of Uopt to be slightly lower than the slope or u in the central 

region or the shear layer. As one moves outside the shear layer, the 

induced velocities due to the small scale structures decay very 

rapidly. Since the induced velocities of the large scale structures 
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decay more slowly, the induced velocities of the large· scale structures 

become the dominant term just outside the shear layer. This causes 

Uopt to bend towards the large scale convection velocity, Uc, in this 

region. As one continues to move farther from the shear layer, the 

induced velocities of the large scale structures continue to decay, 

leaving the free stream turbulence as the dominant term in the velocity 

derivatives. The free stream turbulence convects with a velocity very 

nearly equal to u, so that, far away from the shear layer, Uopt 

approaches u once again. 

These results are quite different from the conclusions of Zaman 

and Hussain ( 1981), who concluded that Uc was the optimum velocity to 

use in the temporal approximation (equation 5.2d). Zaman and Hussain, 

however, used phase-averaged data from a forced flow. Phase averaging 

reconstructs the large scale structures as a function of space and time 

but averages out the small scale fluctuations. The phase-averaged data 

of Zaman and Hussain indicate that the large scale convection velocity, 

Uc, is the best velocity to use for the large scale data, which is 

consistent with the results presented here. The phase-averaged data, 

however, fail to take into account that the small scale structures 

dominate the magnitude of the spatial and temporal derivatives when the 

flow is turbulent. 
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CHAPTER 6 

CONCLUSIONS 

A new flow diagnostic tool, an instantaneous vorticity meter, 

based on the Laser Doppler Velocimeter (LDV). has been built and 

successfully demonstrated. The vorticity meter measures the velocity 

at the four corners of a right angle diamond and estimates the 

circulation of the flow enclosed by the diamond. The utility of the 

instrument is further enhanced by the instantaneous u, v, and -u'v' 

data provided along with the instantaneous spanwise component (Z 

component) of vorticity. 

The LDV vorticity meter was used to study what is perhaps the best 

understood shear flow, the two-dimensional shear layer. Despite the 

intensive prior research on the two-dimensional shear layer, the 

instantaneous vorticity data have revealed several new items that are 

crucial to a better understanding of the two-dimensional shear layer. 

A summary of the results is presented below. 

1. Use of the Laser Doppler Velocimeter avoids the probe 

interference effects and calibration problems that plague the 

users of hot wires. 

2. Interpolating between random LDV data points and digitally 
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filtering the data yields the continuous data necessary for 

further processing. 

3. It is possible to achieve a LDV signal of sufficiently high 

quality so that the vorticity can be computed with adequate 

precision even though the vorticity is computed from the 

difference of 4 large numbers. Achieving a sufficiently good 

LDV signal is mainly a matter of careful design and choosing 

the proper components for the optical subsystem and LDV signal 

processing electronics. 

4. A large initial low speed side velocity defect in the shear 

layer profile increases the growth rate of the shear layer. 

At the farthest downstream location measured, there was no 

reduction in the increased growth rate relative to the growth 

rate for a small initial low speed side velocity defect. 

5. Tripping the high speed boundary layer decreases the distance 

to establish similarity in the shear layer. Once similarity 

is reached, the growth rate appears to be the same for the 

tripped and non-tripped cases. 

6. Increasing the velocity also decreases the distance to reach 

similar! ty. 

7. The u, v, wz, and Reynolds stress profiles were plotted and 

shown to agree quite well with the results predicted using the 

u profile and similarity. The normalized Reynolds stress 
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profile was found to peak at about 0.010 to 0.013 for most of 

the data. 

8. Plotting the instantaneous vorticity as a function of time 

shows that there are long intervals of zero vorticity 

(irrotational flow) coupled with bursts of highly fluctuating 

vorticity. The bursts of highly fluctuating vorticity can 

have short intervals of zero vorticity and also have 

significant intervals of counter-rotating flow (vorticity 

opposite the prevailing sign). The highly fluctuating nature 

of the vorticity is further demonstrated by plots showing the 

RMS vorticity to be 2.0 to 2.5 times the mean vorticity. 

9. An investigation of the vorticity histograms shows that the 

histogram is composed of two parts: a relatively narrow 

Gaussian shaped peak due to the irrotational flow; and a low, 

but broader base due to the turbulent part of the flow. It is 

possible to separate the two components of the vorticity 

histogram by curve fit ting a Gaussian prof !le to the 

irrotational peak of the histogram. The fractional area of 

the low, but broad base gives a measure of the time that the 

flow is rotational (turbulent or intermittent). 

10. Plots of the intermittency and mean of the rotational 

(turbulent or intermittent) component of the vorticity 

histogram as a function of n show that, for a fully developed 

shear layer, the mean of the rotational component of the 
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histogram is nearly constant. The intermittency, on the other 

hand, follows the mean vorticity profile (normalized to unity) 

quite closely. This means that the variation in the mean 

vorticity is almost entirely due to the variation in the 

probability of observing turbulent flow and not due to a 

variation in the average vorticity in the turbulent portions 

or the flow. 

11. Plots of the probability of - U>z < O show that when the 

vorticity is not zero, there is a 1 /3 probability that the 

flow is rotating opposite to the mean rotation (for a 2 to 

shear layer). For the first downstream location, there is a 

considerable excess of counter-rotating flow on the low speed 

side of the shear layer. As one proceeds downstream, the 

counter-rotating fluid is entrained into the shear layer and 

becomes symmetrically distributed about the centerline. This 

counter-rotating flow persists to the farthest downstream 

location measured. 

12. The initial velocity profile just after the splitter plate 

generates vorticity of both signs in the same ratio as the 

initial velocity ratio; that is, the probability of -wz > O 

divided by the probability of -wz < O is equal to u11u2 • 

This ratio is seen to remain constant even to the farthest 

downstream location measured for a two to one shear layer, 

demonstrating that the initial wake component of the shear 
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layer affects the behavior of the entire shear layer. This 

may explain, in part, the observed sensitivity of the shear 

layer to the initial conditions. It is not known if the ratio 

or probabilities of co-rotating flow to counter-rotating flow 

is the same as the velocity ratio for velocity ratios other 

than 2 to 1. 

Many other researchers use the "frozen" convection 

approximation - av/ax = av/(Uat). where u can be any of 

several different velocities. To test the accuracy of this 

approximation, a comparison was made between the spatial and 

time derivatives of the v velocity component. The best 

agreement was obtained by using u or u for U, but even for 

these the agreement was only fair. 

14. The value of U that gave the best agreement between the 

spatial and time derivatives in the "frozen" convection 

approximation, Uopt• was plotted as a function of n along with 

u. The optimum velocity was found to follow the local mean 

velocity fairly closely in the center of the shear layer, to 

bend towards the convection velocity just outside of the shear 

layer, and to approach the local mean again far away from the 

shear layer. These results can be best interpreted by noting 

that the shear layer is composed of small structures that move 

at the local mean velocity, u, and large structures that move 

at the convection velocity, Uc. The small scale structures 
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dominate the derivative terms within the shear layer, while 

the large scale structures dominate just outside the shear 

layer, and free stream turbulence dominates far away from the 

shear layer. Since both the large and small structures are 

simultaneously present and have different propagation 

velocities, any velocity chosen for U in the "frozen" 

convection approximation is, at best, a compromise between the 

propagation velocities of the small and large scale 

structures. 
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APPENDIX A 

SHEAR LAYER INSERT 

The insert contains a curved piece of lucite that accelerates the 

flow below the curved piece of luci te, and decelerates the flow above 

it (see Figures 2.5 and 2.6). A curved perforated plate and a screen 

placed in the upper part of the flow equalizes the pressure drop above 

and below the curved lucite piece. The perforated plate is placed near 

the beginning of the expansion, just before the place where the flow 

would normally separate. The screen is placed just before the exit of 

the insert to help smooth out the flow. A splitter plate with a 

trailing angle of 6.5 degrees is attached to the trailing edge of the 

curved piece of lucite. The resulting shear layer has a velocity ratio 

of between 2.0 to 1 and 2.1 to 1 (the velocity ratio decreases slightly 

as the velocity is increased). Both the screen and the perforated 

plate were chosen to have an open area greater than 57% in order to 

avoid instability (jet coalescense, Loehrke & Nagib 1972) The 

perforated plate uses a hexagonal hole pattern with a hole diameter of 

3.97mm (5/32") and a hole spacing of 4.76 mm (3/16") for an open area 

of 62%. 

The initial shear layer insert performed quite well, but there was 

a rather large velocity defect on the low speed side with a width of 

approximately 3 cm and an amplitude of approximately 5 cm/sec (see 
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Figure 3. 3). This is due to the effect of the boundary layer on the 

low speed side of the curved piece of lucite. Dye injection tests show 

that the flow remains attached on the low speed side throughout the 

range of velocities used in the experiment. Nevertheless, the 

unfavorable pressure gradient causes the boundary layer to grow rapidly 

on the low speed side, and the screen near the exit of the shear layer 

insert is insufficient to completely fill in the resulting velocity 

defect. 

The velocity defect on the low speed side was minimized by 

slightly enlarging the bot tom two rows of holes in the perforated 

plate. The results, after drilling out the bottom two rows of holes, 

are shown in Figures 3.4 through 3.8. Note that the data for run 1 

(Figure 3.3) is for an x location of 2. 79 cm after the splitter plate 

and that the wake from the splitter plate has completely filled in at 

this x location. The data for runs 2 through 6 (Figures 3. 4 through 

3.8) are for an x location of 1.93 cm after the splitter plate, so the 

wake from the splitter plate has not completely filled in for runs 2 

through 5. 
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APPENDIX B 

LDV OPTICAL SYSTEM 

B.1 Conventional LDV Systems and Performance 

Conventional LDV system accuracy in practice is 1j to 3%, i.e., in 

steady laminar flow du/u • .01 - .03 • This is the case for several 

reasons: 

1. Most lasers are intensity modulated by modal or plasma noise. 

2. Most commercially available LDV optical systems have an 

unnecessarily large number of components, which leads to 

wavefront and fringe fidelity degradation and also causes 

alignment difficulties. 

3. Photomultiplier tubes have relatively low quantum efficiencies 

and most photodiode amplifiers have excessive current noise 

which results in a low signal-to-noise ratio (see Appendix D). 

4. Conventional LDV processors do not have 

validation criteria, giving a high 

measurements (see Appendix D). 

adequate 

rate or 

particle 

erroneous 

The present work required accuracies approximately one order of 

magnitude higher, a fact which dictated substantial improvements in all 

of the problem areas listed above. 
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B.2 The Laser 

An important requirement· was a source of laser light with high 

spectral and spatial mode purity and sufficient intensity to give a 

good signal-to-noise ratio. From previous experience, about 5 mW per 

pair of beams was considered to be sufficient for a good 

signal-to-noise ratio at the operating velocities of interest here. 

Since there are 4 pairs of beams, this comes out to 20 mW total power 

at the focal volumes. To allow for losses in the transmitting optics 

(including the low efficiency amplitude gratings used) about 200 mW 

laser power was considered desirable. This power level dictated a low 

power argon ion laser. 

The frequency spacing between long! tudinal modes in a laser is 

f = c/21 and is typically several hundred MHz for commercial lasers. 

This frequency is well above the Doppler frequencies of interest, but 

there are normally more than 2 long! tudinal modes oscillating 

simultaneously. The frequency spacing between success! ve modes 

typically varies by 10-100 KHz. The resulting beat frequency between 

successive modes has been observed to amplitude modulate the output of 

He-Ne lasers, and causes interference with the desired Doppler signal. 

Consequently, a laser with an oven stabilized etalon was chosen. 

The laser used was a Lexel model 85 argon ion laser with a line 

selecting prism and a temperature stabilized etalon. The laser was 

operated single line (514.Snm), single mode, and produced a maximum of 
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300 mW under these conditions. At lower powers ( 1 ess than 50 mW) some 

noise due to plasma oscillations was observed. Fortunately, the 

amplitude of this noise decreased rapidly with increasing laser power, 

and was not observed at the 200 mW operating power. The laser was 

operated in the constant light mode (output stabilized by using 

feedback from a photodiode) to minimize low frequency amplitude 

fluctuations. 

B.3 LDV Transmitting Optics 

The primary goal of the transmitting optical system was to 

generate the necessary 4 pairs of beams (2 for the U velocity and 2 for 

the V velocity) with as few optical components as practical in order to 

simplify alignment and minimize degradation of optical beam quality and 

coherence. 

The first portion of the transmitting optics is located at the top 

of the overhead assembly and is enclosed in a lucite dust cover (see 

Figure B.3). The laser beam first passes through a long focal length 

collimating lens ( 1 meter focal length). The incoming beam is then 

split into 4 beams by a pair of cube beam splitters (see Figure B.1). 

The beam splitters are oriented so that the partially reflecting 

hypotenuse faces are parallel· to and slightly offset from the incoming 

(horizontal) laser beam. The hypotenuse or one beam splitter is 

rotated +45 degrees from the vertical about an axis parallel to the 

axis of the laser beam. The hypotenuse of the other beam splitter is 
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rotated -45 degrees from the vertical about the same axis. The 

polarization of the incoming laser beam is vertical so the beam 

splitters are also oriented 45 degrees with respect to the polarization 

vector. This configuration produces 4 parallel beams situated at the 4 

corners of a right angle diamond. Each beam of the vertical pair (to 

be used for the V velocity measurement) passes through a Bragg cell to 

shift its frequency. One Bragg cell generates a frequency shift of 

40 MHz while the other Bragg cell generates a frequency shift of 

40 MHz + ~f • ~f is typically on the order of a few hundred KHz. This 

allows measuring the direction as well as the magnitude of the V 

velocity. The 4 beams then pass through a set of 1 degree wedge prisms 

to allow fine adjustment of the orientation of the beams. The wedge 

prisms are also set to deflect the 4 beams up by approximately 

degree. This upward deflection is removed by the next component, a 

large mirror, that reflects the beams downward to the bottom of the arm 

(see Figure B.1) This upward bias was added to all the beams because it 

is very difficult to adjust a pair of wedge prisms to give a deflection 

that is small compared to the deflection of one prism (one degree). 

The rest of the transmitting optics is located at the bottom of 

the overhead arm (see Figures B.2 and B.3). This provides sufficient 

distance to allow masking out the undesired orders from the Bragg 

cells. The horizontal pair of beams passes through a horizontal set of 

Ronchi rulings (an amplitude transmission grating which was 

approximately 150 lines per inch in this experiment), and the vertical 
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pair of beams passes through a vertical set of otherwise identical 

Ronchi rulings. The beams are then reflected by a second mirror 

towards the test section perpendicular to the tunnel walls. Just 

before reaching the focusing lens, the zero, second, and higher order 

diffraction beams from the Ronchi rulings are masked out, leaving the 

desired first order beams. This generates two horizontal pairs of 

beams, each pair slightly divergent in the vertical direction, and 

gives rise to the two U velocity measuring locations separated by a 

vertical distance of approximately 2 mm as dictated by the Ranchi 

ruling line spacing. Likewise, the two vertical pairs of beams are 

slightly divergent in the horizontal direction, giving rise to the two 

V velocity measuring locations separated by the same distance. 

Finally, the beams pass through a corrected achromat lens and come to a 

focus in the mid-span of the test section. A corrected achromat was 

used to reduce spherical aberration (only the 514.5nm line was used). 

The laser was mounted parallel to the top of the overhead assembly 

so the polarization vector was perpendicular to the top of the overhead 

assembly. The cube beam splitters, however, are 45 degrees with 

respect to the top of the overhead assembly, so that the reflected beam 

undergoes a rotation of the polarization vector. The two vertical 

beams wound up with vertical polarization vectors. The horizontal 

beams wound up with polarization vectors 45 degrees from vertical and 

90 degrees with respect to each other. In order to avoid signal 

degradation, a mica half-wave plate was placed in one of the horizontal 
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beams to rotate the polarization vector of that beam parallel to the 

first beam. 

In analyzing the LDV data, a small amplitude vibration of around 

35Hz was noted. The corresponding amplitude was around 1 O µm. This 

frequency was too high to be in the main overhead structure. The 

transmitting optics were mounted on two aluminum plates, and the two 

mirrors were mounted near the edges of the plates. The small amplitude 

vibrations in the plates were being amplif led by the mirrors because 

the angle of the reflected beams change by twice the change in the 

angle of the mirror, and because the small angular displacement was 

magnified by the relatively long distances involved. The upper plate 

of 1/2 inch thick aluminum overhangs the end of the horizontal 

crossbeam by about 7 inches. A pair of aluminum reinforcing braces was 

added as shown in Figure 2. 4. The lower plate of 318 inch thick 

aluminum was replaced by two hollow aluminum tubes 1/8 inch thick and 2 

inches square. These changes decreased the moment of inertia, thereby 

raising the resonant frequencies, and eliminated the vibration problem 

by increasing the effective damping. 

One last problem had to do with the relatively low quality of the 

luci te windows available in the tunnel test section. The windows are 

4. 5 inches thick, and date from around 1950, and have their share of 

scratches and bulges. This resulted in a small scatter in the mean V 

velocity measurements (around 0.5%). Lucite has an index of refraction 
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of 1.49 while water has an index of refraction of 1.33. Consequently, 

the luci te/air interface is approximately 3 times as critical as the 

lucite/water interface. Problems at the luci te/air interface were 

minimized by placing a strip of 1 /8 inch thick photographic quality 

plate glass over the luci te at each x measuring location, and filling 

the gap with an index matching fluid (light machine oil was used). 

Each strip of plate glass was long enough to accommodate the full Y 

travel of the three-axis positioner. This reduced the scatter in the V 

velocity data by about a factor of 2. 

B.4 LDV Receiving Optics 

The arrangement for the receiving optics is shown in Figure B.4. 

A photograph is shown in Figure B.5 (note that the direction of the 

light is from right to left in Figure B.5). The scattered light from 

the four focal volumes is collected by a pair of back to back 

achromats. Again, achromats are used to reduce spherical aberration. 

The direct beams are blocked by beam stops. The first lens is used to 

collect the spherically expanding scattered light and collimate it. 

The second lens takes the collimated light and focuses it back down. 

At the focal plane a mask is used to block most of the stray light 

scattered from the walls and from parts of the flow away from the focal 

volumes. A small biconvex lens then refocuses the scattered light onto 

the surface of a quadrant detector (manufactured by Centronic). The 

quadrant detector is a round chip of silicon that has been scribed into 

four 90 degree segments, each segment forming an independent photodiode 
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with its own output. Each segment receives the light from one focal 

volume (see Figure 1.1). Finally, the quadrant detector is housed in a 

shielded enclosure in close proximity to four trans impedance 

amplifiers, one amplifier for each output of the quadrant detector. 
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APPENDIX C 

BRAGG CELL ELECTRONICS 

C.1 Phase Locked Loop Frequency Synthesizer 

The required frequency shift used for the V channels of the Laser 

Doppler Velocimeter was in the range of 100 KHz to 600 KHz depending on 

the flow velocity. The bias frequency was chosen so that the lowest V 

channel frequency was about 1.5 times the highest U channel frequency. 

This enabled removal of the residual crosstalk between the U and V 

channels (on the order of 1%) by electronic filtering. By nearly 

balancing the Bragg cell frequencies, a higher bias frequency was 

avoided since this would reduce the signal-to-noise ratio (the 

amplifier noise increases with frequency above 300 KHz) and would 

reduce the dynamic range of the V channel frequency. 

The two Bragg cells ( IntraAction Corp. model # ADM-40) for the V 

channels are optimized to operate around 40 MHz. The net bias 

frequency is the difference of the two Bragg cell frequencies. One 

Bragg cell was driven at a fixed frequency or 40 MHz by a crystal 

oscillator. The second Bragg cell was driven at a frequency of 

40 MHz + llf, where llf is the net bias frequency. A phase locked loop 

frequency synthesizer was built that has two inputs, 40 MHz from the 

crystal oscillator and Af from an external signal generator, and one 

output at 40 MHz + Af. Any drift in the 40 MHz signal appears on both 
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Bragg cell signals, and consequently cancels out when the scattered 

light from each of the two beams heterodynes on the detector. A 

Hewlett Packard 3325A Frequency Synthesizer/Function Generator was used 

to produce the ~f signal, which, as a consequence, was known to a high 

degree of accuracy. (The HP 3325A has digitally programmable 

frequencies and an oven controlled crystal timebase.) 

A diagram of the phase locked loop frequency synthesizer is shown 

in Figure C.1. A Voltage Controlled Oscillator (VCO) is used to 

generate a signal of frequency f out• This signal and the 40 MHz 

reference signal are fed into a digital mixer. The output of the 

digital mixer is the difference signal, f out - 40 MHz. The output of 

the digital mixer and the Af signal from the HP 3325A frequency 

synthesizer are fed into a phase comparator. The error output of the 

phase comparator is filtered by a low-pass filter, and then used to 

control the frequency of the VCO, closing the loop. This forces the 

two signals at the inputs of the phase comparator to be of the same 

frequency, f out - 40 MHz = Af, or f out = 40 MHz + Af. 

Finally, the two output signals ( 40 MHz and 40 MHz + Af) are fed to 

a pair of Electronic Navigation Industries (ENI) Model 300L broadband 

RF power amplifiers and amplified to a power level of 2 watts each to 

drive the Bragg cells. 



-70-

APPENDIX D 

LDV SIGNAL PROCESSING ELECTRONICS 

D.1 Low Noise Trans1mpedance Amplifiers 

A silicon quadrant detector (Centronic model QD 50-2) was used to 

detect the scattered light from the ~ focal volumes, using one quadrant 

per focal volume (see Figure 1.1). The quadrant detector has a very 

high quantum efficiency of nearly 70% at 514.5nm. The disadvantage of 

the quadrant detector utilized is that there is no amplification in the 

detector, and, consequently, the first stage of amplification must be 

very low noise in order to avoid a system limited by amplifier noise 

rather than shot noise. 

The total input noise current, as a function of frequency. is 

given by the following equation for both amplifier circuits shown in 

Figure D.1. 

(D.1) 

it is the total noise current in Amps//Hz. The first term on the 

right-hand side is the square of the shot noise (in Amps//Hz), where qe 

is the electronic charge, IL is the leakage current of the photodiode, 

and Is is the photoelectrically induced signal current. ia is the 
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amplifier input noise current (in Amps//HZ). ea is the amplifier 

equivalent noise voltage (noise voltage at amplifier output with input 

shorted to ground divided by amplifier gain) in Volts/./HZ. The factor 

multiplying the ea squared term represents the reciprocal of the input 

impedance squared, where RL is the load resistance in ohms, oo is the 

frequency in radians/seconds, and C is the total input capacitance 

(photodiode +amplifier + stray capacitance). Finally, the 4kT/RL term 

is the square of the Johnson noise current (in Amps//HZ) of the load 

resistor, where k is the Boltzmann's constant, T is the absolute 

temperature, and RL is the load resistance in ohms (the dynamic 

resistance of the photodetector is assumed to be much greater than RL). 

The first amplifier circuit shown in Figure D.1 is a conventional 

amplifier circuit while the second circuit is called a transimpedance 

amplifier (note that for a trans impedance amplifier, the gain must be 

negative). The two circuits give identical signal-to-noise ratios for 

the same value of RL but the transimpedance configuration gives a much 

wider bandwidth. The bandwidth of the conventional amplifier is 

f = 1 /2'11'RLC while the bandwidth of the trans impedance amplifier is 

f = IGl12'11'RLC (-3db bandwidth). In the actual amplifier used, RL is 1 

megohm and the input capacitance is approximately .IJO picofarads (most 

of the input capacitance is the capacitance of the photodiode). The 

corresponding bandwidth is approximately lJ KHz for the conventional 

amplifier. For the transimpedance amplifier used, the measured 

bandwidth was 1.5MHz, an increase of nearly 400 times. 
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The contribution to the total noise current due to the photodiode 

leakage current is .057 picoamps/IHz for IL = 10 nanoamperes. The 

amplifier used a field effect transistor (FET) at the input so the 

input noise current of the amplifier was negligible. The measured 

input noise voltage of the amplifier is 1.5 nanovolts//Hz. Below 

f = 1/2nRLC (4KHz) the equivalent noise current is (dividing ea by RL) 

= .0015 picoamps//Hz. Above f = 1 /2nRLC the equivalent noise current 

is • ea2nfC or .00038 f picoamps//Hz where f is the frequency in KHz. 

At 1 MHz this becomes .38 picoamps//Hz. Finally, the Johnson noise 

current due to RL is • 13 picoamps//Hz. In the absence of any 

illumination on the photodiode, the dominant term is the Johnson noise 

current due to RL up to a frequency of about 350 KHz. Above 350 KHz, 

the ea2nfC term is the dominant term. 

The actual range of frequencies used in the experiment was from 

20 KHz to 600 KHz. The intensity of the Doppler signal was generally 

high enough so that the l2eig noise term (where Is is the photocurrent 

due to scattered light) was the dominant term (typically 2 to 3 times 

the total of all the other noise terms). Consequently, the amplifier 

was not the limiting factor in the overall signal-to-noise ratio. It 

should be noted that the resulting signal-to-noise ratio was also 

better than what could be achieved by a photomultiplier tube detector 

since the quantum efficiency of the photodiode at the laser wavelength 

(70%) is significantly better than the quantum efficiency of standard 

photomultiplier tubes (normally between 12% and 20%). 
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D.2 Analog Processor Subsystem 

The analog processor takes the filtered LDV signal, applies a set 

of analog validation tests to the signal, and converts the signal to a 

digital form for the digital processor. The analog processor can 

handle two independent LDV signals simultaneously, and by multiplexing 

upstream of the analog processor, 4 LDV signals can be accommodated 

(see Figure 2.9). 

The analog tests must detect signal dropouts and multiple zero 

crossings due to high frequency noise. This is accomplished by the use 

of a 3-level crossing scheme (see Figure D.2). There is a positive 

level of amplitude +VL and a symmetric negative level of amplitude -VL• 

where the voltage VL can be adjusted according to the signal strength 

and desired data rate. The third level, for the present measurements, 

was set to zero volts (zero crossing level). The zero crossing output 

signal (digital) is generated from the zero crossings of the analog 

input signal and is of opposite polarity. Note that the negative slope 

of the analog input signal (positive slope of the zero crossing signal) 

is used for timing purposes. In addition, a valid data output signal 

(digital) is generated along with the zero crossing output signal. The 

analog signal must first cross the negative level, then cross the 

positive level before asserting the valid data signal at the next 

negative zero crossing of the analog input signal. If the analog 

signal fails to cross these two levels, the valid data signal is 

negated at the next negative zero crossing transition. Note that the 
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digital processor considers the first cycle preceding the assertion of 

the valid data output signal to be valid, and the first cycle preceding 

the negation of the valid data output signal to be invalid. 

Consequently, the valid signal is the portion of the analog signal 

burst that crosses all the level crossings between the first and last 

negative zero crossings. 

A small amount of hysteresis (adjusted to 5% of VL) prevents 

multiple zero crossings at low signal frequencies by small amounts of 

high frequency noise present on the signal. Noise less than 5% of VL 

will be ignored, while noise in excess of this value will cause the 

valid data signal to go low. 

Finally, the analog processor implements a large particle 

rejection capability. If the signal crosses the level + Vmax » + VL , 

then a large particle rejection signal is generated. This feature is 

valuable for measurements in air, but was not necessary in this 

experiment because of the seed particle size uniformity. Particle lag 

was not a problem with the 3µm Al 2o3 particles used to seed the flow. 
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D.3 Digital Processor Subsystem 

The digital processor receives the digital LDV and valid data 

signals from the analog processor. The digital processor measures the 

period and number of cycles in each LDV burst, applies a zero crossing 

time interval ratio test validation scheme to the signal, and sends the 

validated results to the data acquisition computer. 

The digital processor contains two independent channels and is 

capable of simultaneous 2 channel measurements. For this experiment, 

however, the 4 LDV signals arise from 4 independent focal volumes. In 

the present experiments, the seed density was adjusted so that the 

probability of an acceptable scattering particle in a measuring volume 

was on the order of 5% to 10%. Consequently, since the probability of 

4 different particles being present in 4 different focal volumes is 

very small, the data rate must be sufficiently high to permit the time 

history in each of the four velocity channels to be reconstructed with 

sufficient accuracy and time resolution. Since simultaneity is not 

required, it is possible to multiplex each processor channel between 

two LDV signals within the constraint of a sufficiently high data rate. 

To help achieve this goal, an adapt! ve multiplexing scheme was used. 

After a processor channel has completed a measurement, 1 t switches to 

the other LDV channel. The processor then waits for the next 3 zero 

crossings. If the processor has not started processing a valid burst 

by then, it switches back to the first LDV channel and again waits for 

the next 3 zero crossings. In the absence of any valid signal, the 
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processor switches back and forth between the two LDV channels, seeking 

a valid burst. A test was carried out comparing the multiplexed and 

non-multiplexed data rates. The multiplexed data rate for one channel 

was found to be 62% of the non-multiplexed data rate for the same 

channel. The combined data rate for both channels of a multiplexed 

pair was 124% the data rate for a single non-multiplexed channel, 

giving an increase in net data rate of approximately 24% due to the 

adaptive multiplexing algorithm. Since there were two processors and 

each multiplexed between two signals, the total data rate for all 4 

channels was approximately 62% of the data rate that would have been 

achieved at the same threshold settings using 4 simultaneous 

processors. Building 4 simultaneous processors would have increased 

the cost and construction time of the processing electronics 

considerably. 

The processor measures the absolute time of each zero crossing 

( tn) and computes the elapsed time tn sz tn - tn-1 • The processor then 

applies a ratio test criterion on the elapsed time intervals Ctn) on a 

cycle by cycle basis. This can be done for Doppler frequencies up to 

12.5MHz. For Doppler frequencies above 12.5 MHz, which, however, were 

not encountered in the present experiments, pre-scalers permit the 

application of the ratio test every other cycle, or every third cycle, 

etc. 
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The ratio test criterion is I tn - tn-11 ~ £tn, where £ is equal to 

2-m, and where m is an integer that can be selected to be between 1 and 

8. For most of the data, m was set to either 3 or 4, giving a value of 

£ of 12.5% or 6.25%. If the ratio test fails on the nth zero crossing, 

the (n-1)th zero crossing is considered by the processor to be the last 

validated zero crossing. 

The processor generates a cumulative validation signal that is the 

logical "and" of all the individual validation signals (analog data 

valid, ratio test valid, and not analog large particle). When the 

cumulative validation signal becomes false, or when the number of 

validated cycles, N, exceeds a preset number, Nmax, then the 

measurement is terminated. If the number of validated cycles, N, is 

greater than or equal to Nmin (Nmin < Nmax> then the validated timing 

and cycle data for the burst are written into a First In First Out 

(FIFO) buff er. If the number of validated cycles is less than Nmin, 

then the measurement is discarded. In either case, the processor 

switches channels and starts looking for the next LDV signal. Nmin 

sets the minimum number of validated cycles needed for a measurement, 

while Nmax prevents the processor from staying on one channel for too 

long in the event of a long burst. 

The information written in the FIFO buffer includes: 

1. the starting time of the validated burst, 
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2. the ending time of the burst, 

3. the number of cycles in the burst, 

4. and the LDV channel number of the burst. 

The ending time of the burst has a sufficient number of digits (25 

binary digits) so that the probability of clock overflow between 

measurements is negligible under proper operating conditions. This 

also allows the reconstruction of the absolute time of each particle 

scattering event. 

Finally, a Direct Memory Access (DMA) interface reads the 

measurements from the FIFO buff er and writes it to the memory of an 

LSI-11/23 minicomputer. 
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APPENDIX E 

DATA ACQUISITION SYSTEM 

The data acquisition system is based on a Digital Equipment 

Corporation (DEC) LSI-11 /23 microcomputer. A photograph of the data 

acquisition system is shown in Figure 2.12. The DEC LSI-11 /2 

microcomputer was chosen after an extensive survey of the small 

computer systems available at the time (1978). The LSI-11/2 was chosen 

because of the excellent software and hardware available for it. When 

the LSI-11 /23 became available, the system was upgraded by a simple 

swap of the cpu boards. Most importantly, a wide selection of I/O 

devices from DEC and other manufacturers are available for the LSI-11 

bus. A block diagram of the data acquisition system is shown in Figure 

E.1. 

E.1 Operating System 

The DEC RT-11 operating system was chosen because it is a single 

user disk based operating system optimized for real time use. A large 

number of languages are available for RT-11 including Fortran, C, and 

Pascal. Most of the program development was done in Fortran, with a 

small amount of assembly language used to interface to the non-standard 

I/O devices on the system. 
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RT-11 allows high speed double buffered I/O (one buff er can be 

filled with new data while the other buffer is written to disk), and 

contiguous disk files. This allowed the continuous recording of up to 

120,000 points/record with each data point consisting of 4 words (2 

bytes/word). 

E.2 Unibus 

A bus converter from Able Computer Technology was added to 

generate the Unibus from the LSI-11 bus. Having the Unibus available 

increases the number of I/O options while maintaining software 

compatibility with devices on the LSI-11 bus. In addition, the Unibus 

has a significantly higher bandwidth than the LSI-11 Bus. Currently, 

the Winchester disk controller and the memory are placed on the Unibus. 

E.3 Device Bus 

The LSI-11 bus has a relatively low bandwidth of 1. 83 

Megabytes/second. When the LDV digital processor was designed, I 

decided to interface it to an I/O bus of my own design called the 

Device Bus. The Device Bus has a bandwidth of 12 Megabytes/second and 

is optimized for I/O devices. 

The central controller for the Device Bus performs interrupt 

arbitration and performs centralized DMA control for the Device Bus. 

When a slave device generates an interrupt, the controller services the 
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interrupt and performs any required DMA operations. Any DMA operations 

are to/from a second port on the controller, thus utilizing only one 

bus cycle per word transferred. In the case of the LDV processor, the 

controller reads the data from the LDV processor and writes it to the 

second port, which can be dual ported memory or another DMA interface. 

While the data transfer is proceeding, the controller can be 

arbitrating another interrupt request. 

A high bandwidth was not necessary for my thesis research because 

the highest data rates encountered were on the order of 4000 

points/second or 32, 000 bytes/second. For my thesis research, the 

second port of the Device Bus controller was connected to a 

bi-directional DMA interface on the LSI-11 bus (Peritek DMAL-11). The 

Peri tek DMA interface and the Device Bus controller also support a 

direct access mode from the LSI-11 bus to the Device Bus, allowing the 

LSI-11/23 cpu to manipulate the registers of devices on the Device Bus 

directly. 

As additional LDV channels are added, or as the velocities are 

increased, the bandwidth of the LSI-11 bus will be exceeded. In 

addition, Mr. D. 

converter using 

megasamples/sec. 

Kerns has designed and built a high speed AID 

a flash converter that operates up to 20 

The AID converter also interfaces to the Device Bus. 

In order to accommodate the higher bandwidths, it is planned to 

interface the Device Bus controller either to the Unibus or to a dual 
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ported memory. A Uni bus DMA interface will allow a maximum transfer 

rate to memory of 4 megabytes/sec or a maximum transfer rate to disk of 

approximately 900 kilobytes/sec (limited by the speed of the disk). 

E.4 IEEE-488 Bus 

A Digital Equipment Corporation (DEC) IBV11-A generates the 

IEEE-488 bus from the LSI-11 bus. The IEEE-488 bus allows interfacing 

to a number of laboratory instruments such as programmable power 

supplies and function generators. The most frequently used IEEE-488 

device is the HP-9872 four color plotter from Hewlett Packard. The 

three-axis positioner also has an IEEE-488 interface designed and built 

by Mr. R. Morrison, allowing direct computer control or the 

measurement location of the LDV optics. 

E.5 Disk Drives 

The data acquisition system currently has a Winchester disk drive 

and a dual floppy disk drive. The Winchester disk drive is a Control 

Data Corporation 9730-MMD (Mini-Module Drive) with an unformatted 

storage capacity of 80 megabytes (65 megabytes formatted). The peak 

transfer rate is 1.2 megabytes/second but formatting overhead and seek 

times limit the maximum average transfer rate to around 900 

kilobytes/second. The disk controller is a Mini-Computer Technology 

SMC-11, and interfaces to the Unibus. 
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The dual 8 inch floppy disk drive is an AED6200-FD from Advanced 

Electronic Design. The dual floppy disk drive has a formatted capacity 

of 1.2 megabytes per drive (2.5 times the capacity of the DEC RX-02). 

E.6 Other Peripherals 

and, 

Other peripherals included on the data acquisition system are: 

1. An Andromeda PRTC-11 programmable real time clock card, 

2. A four line serial interface to a terminal and printer, 

3. A Televideo 950 terminal with Selanar graphics board, 

~. A Datasouth DS-180 dot matrix printer (180 cps.), 

5. A Data Translation DT-2782 AID converter (125 KHz), 

6. A Data Translation DT-3362 AID converter (250 KHz). 

Additional peripherals can easily be added as the need arises due to 

the multiple bus structure of the data acquisition system. 
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APPENDIX F 

LDV DATA PROCESSING ALGORITHMS 

F.1 Initial Processing of Raw Data 

The raw data were recorded as a function of time for each of the 4 

channels: u1, u2, v1, and v2• The data were recorded in real time 

using a high speed Winchester disk. Enough data were recorded at each 

(x,y) location to represent a minimum of approximately 50 large 

structures in the flow. After the completion of a run, the data were 

moved by floppy disk to a PDP-11 /44 minicomputer running RSX-11M PLUS 

for data processing. 

The first pass through the data involved: 

1. calculating the absolute time of each Doppler burst, 

2. calculating the elapsed time of each Doppler burst, 

3. dividing the elapsed time by the number of cycles to get the 

frequency, 

4. correcting by the Bragg cell bias frequency for v1 and v2 , 

and, 

5. converting to velocity using the Doppler shift formula. 

The Doppler shift formula is 

V = i. "D (F .1) 

where V is the velocity, i. is the fringe spacing of the focal volume, 



-85-

and v0 is the Doppler frequency. The fringe spacing, 1, is given by 

1 = 
2 sin~ 

(F.2) 

where A is the wavelength of the laser light and a is the angle between 

the beams. 

F.2 Uniform Sampling and Filtering of the Data 

The raw data are randomly sampled in time, but, for processing 

purposes, it is simpler to deal with velocity data at uniform time 

intervals. The second pass through the data computed the velocity at 

uniform time intervals as follows. The raw data were converted to a 

continuous velocity versus time function by using a straight line 

(linear interpolation) to represent the velocity between the discrete 

raw data sample times. The raw velocity was integrated from 

Ctn-1 + tn)/2 to Ctn + tn+1 )/2 to get the uniformly sampled velocity 

for the nth point, where tn s:: n'ts and 'ts is the time between the 

uniform samples. 

After uniformly sampling the data in time, the data were filtered 

in time using a Gaussian filter profile. The filter width was chosen 

to be comparable to the resolution of the 4-point measurement geometry. 

Specifically, the full width of the filter profile at the 1 /e points 

was chosen to be equal to the average transit time through the 4-point 

measurement geometry; i.e., 



-86-

h 2h (F.3) 

where Tr is the filter width (equal to the average transit time) and u 

is the local mean velocity of the flow ( u = ( u1 + u2 ) /2 ) • 

F.3 Vorticity, Reynolds Stress, and Histograms 

Finally, the vorticity, -wz (from equation 1. 1) and the Reynolds 

stress, - u'v' 11: - Cu1 '+u2• )(v1 '+v2• )/4, were computed from u1 , u2 11 v1 , 

and v2 (all as a function of time). Each run of data contains at least 

50 large structures. For processing purp~ses, each run was split into 

8 equal time intervals containing at least 6 large structures each. 

For each time interval, the histograms (probability density functions) 

of the 4 velocities, the vorticity, and -u'v' were computed. For each 

time interval, the mean, the 2nd moment (mean square), the 3rd moment, 

and the 4th moment were computed from the histogram. Note that the 2nd 

through 4th moments are computed about the mean. The histogram and the 

first 4 moments for the entire run of data were computed by taking the 

mean of the results for the 8 individual time intervals 

-a = 
, a 
- l ai 8 i=1 

(F.4) 

The standard deviation of the first 4 moments was also computed 

from the values of the mome.nts for the 8 equal time intervals. The 

standard deviation of a moment is given by 

s = 
1 8 

[ 7 l ( ai - a )2 ]112 
1=1 

(F.5) 
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Since we want the standard deviation of the mean of the 8 samples 

rather than the standard deviation of the 8 samples themselves, we must 

di vi de the standard deviation of the individual samples by the square 

root of the number of samples 

(F.6) 

The standard deviation of the mean is given by sm· This process was 

carried out to obtain the mean and standard deviation of the mean for 

the first 4 moments of the 4 velocities, the vorticity, and - u'v'. 

All error bars plotted in the figures are ± one standard deviation of 

the mean in hight. 

F.4 Estimated LDV Error in Measuring Vorticity 

Of paramount importance is the expected error in the measured 

vorticity data, and the trade-off of spatial (and temporal) resolution 

vs. measurement accuracy. From equation 1.1 we have 

(F.7) 

Filtering the velocity data and using f to denote the filtered 

quantities gives 

(F.8) 

If we assume that the measurement errors are uncorrelated (a fairly 

good approximation since the 4 velocities are from individual focal 

volumes), then we obtain 
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(F.9) 

where owzr is the estimated z component vorticity measurement error, 

our is the u-component measurement error, and ov r is the v-component 

measurement error. Equation F. 9 can be further simplified by making 

the approximation our = ovr, giving 

4 2 
h2 (our> or (F. 10) 

At the shear layer centerline, we have wz g AU/ow, where ow is the 

vorticity thickness (as opposed to ow which is the error in vorticity). 

Dividing by wz to get the relative error of the vorticity at the 

centerline gives 

owzr 
QI 

Wz 

The error in the 

the raw velocity 

2 ( 6hlll )( ::r ) 
filtered velocity can be estimated from 

data, the average raw data 

( 
'[' ) 1 /2 

ou -
lf 

( ~ '[' )1 /2 ou --
h 

rate, and the 

(F.11) 

the error in 

f 11 ter width 

(F.12) 

where T is the average time between raw data points, and 'tf c: h/u is 

the filter width. Substituting equation F.12 for our in equation F.11 

gives 

(F.13) 

Finally, u r::s u :c.i Uc on the centerline and, for a 2 to 1 shear layer, 

Uc = 1 • 5 AU, giving 
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(F.14) 

The most important thing to notice is that the expected error is 

proportional to h to the -3/2 power, dictating a trade-off between 

accuracy and spatial resolution (temporal resolution is chosen to be 

equivalent to spatial resolution by the prior choice of ~f m h/u). 

A value of 6ulu in the range of 0.2% to 0.4% can be achieved with 

careful optics and signal processing. The value achieved is dictated 

by a compromise between 6u/u and the sampling rate, specifically, to 

minimize /'; 6ulu. At U1 = 70 cm/sec, a realistic compromise is 

6u/u a 0.3% and ~ = 0.7 milliseconds. If we select a location 

approximately midway between the first and last x locations surveyed, 

we get x - x0 = 50 cm • The approximate vorticity thickness can be 

obtained by the following empirical formula 

6(1) 
0.18 ( .!...::.£.) == x -xo 1 + r 

(F.15) 

where r = U2/U1 = 0.5 is the velocity ratio. Substituting in the 

numbers gives 6
00 

== 3 cm , and (Uc ~/6 00 ) 112 
== 0.11 • For this case, 

equation F.14 becomes 

(F.16) 

The chosen value of the focal volume separation, h, is 1. 9 mm which 

gives 600/h = 15.7 and 

0.063 or (F.16a) 
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This shows that the selected focal vol wne separation is a good 

compromise between accuracy and spatial resolution. An estimate of the 

accuracy can be obtained from the RMS vorticity of the free stream in 

Figure 4.11 • Using x = x 0 -= 110cm and ~Uc: 35cm/sec gives 

'5Wzf a 1 .0 Sec-1 for the low Speed Side and '5Wzf a 1. 7 sec-1 for the 

high speed side. 

F.5 Estimated Finite Difference Error in Measuring Vorticity 

Another source of error arises from the use of the method of 

finite differences (see equation 1.1) to approximate the derivatives of 

-wz. The velocity induced by a vortex is nonlinear, so if the core of 

a vortex is small compared to the spacing of the focal volumes, h, and 

very close to one of the focal volumes, the induced velocity in that 

focal volume is greater than the sum of the induced velocities in the 

other three focal volumes. If the vortex is adjacent to a focal 

volume, but just outside the measurement geometry, this will generate a 

vorticity measurement of the opposite sign of the vorticity within the 

vortex core. 

In order to determine the magnitude of this problem, some computer 

simulations were carried out of a line vortex parallel to the z axis 

crossing a measurement volume. The vortex used in the calculations has 

a circular core of uniform vorticity ( -wz = w0 ) • The calculations 

were carried out for trajectories parallel to the x axis and for y 

values in increments of 0.1 h , where h is the spacing between focal 
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volumes. The vortex moves with a constant velocity, U. The results 

for a vortex with a core diameter of d0 • O. 2 h are shown in 

Figure F.1. To ease interpretation of the results, the horizontal axis 

has been converted from time to the x position of the vortex by 

dividing by U. Note that the measured vorticity will be <&> 0 (d 0 /h)2 

when the vortex is in the center of the core (x = O,y = 0). As can be 

seen in the plot, the vorticity can overshoot and undershoot the 

central value by substantial amounts. 

Since the raw data are filtered before computing the vorticity, 

the same filtering algorithms were applied to the simulated vortex 

results from Figure F .1. Figure F. 2 shows the filtered vorticity 

profiles for the same vortex as Figure F .1 and for a filter width of 

Tr = hi u • The f 11 tered results show that all of the overshoot and 

most of the undershoot are removed by filtering. The results also show 

that the method of finite differences is fairly accurate in 

approximating the circulation within the measurement geometry. The 

areas of the five lower traces in Figure F.2 are nearly constant, the 

area of the trace at y/h = 0.5 (which cuts through the u1 focal volume) 

is approximately half that, and the areas of the upper traces are 

nearly zero. Figure F.3 shows the filtered vorticity results for the 

same vortex as Figures F. 1 and F. 2, but using a filter width of 

Tr = 2 h/ u • The longer f 11 ter width reduces the amount of undershoot 

even further. 
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Since many of the plots show vortices with core diameters 

comparable to or several times larger than the focal volume spacing, h, 

calculations were also carried out for vortex core diameters of 

d0 = 0.5 h and d 0 = 1.0 h • The results for d0 = 0.5 h are shown in 

F 1 gures F. !J through F. 6 and the results for d 0 = 1 • O h are shown in 

Figures F.7 through F.9. All three vortices have the same circulation, 

so the smallest vortex has 25 times the peak vorticity as the largest 

vortex. As can be seen in Figures F.4 through F.9, the size of the 

undershoots are reduced considerably for the larger vortices. 

In a normal flow, 1 t would be unrealistic for the small vortices 

to have the same circulation as the larger vortices. If the vortex 

with d 0 = 0.2 h has a vorticity of 2.5 times the vorticity of the 

vortex with d0 = 1 • 0 h, then the small er vortex will have only 1 /1 0 th 

the circulation of the larger vortex and the results for Figures 

F. 1 - F. 3 will have to be reduced by a factor of 1 O relative to the 

results of Figures F. 7 - F. 9. This makes the already fairly small 

errors present in Figure F.2 very small relative to the vorticity shown 

in Figure F .8. The end result is that the filter width chosen, 

'tf = h/ u , represents a good compromise between temporal resolution 

and vorticity measurement accuracy. 
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BEAM GEOMETRY 

Each Quadrant Detector Element Receives 
The Scattered Light From One Focal Volume. 

For The Vorticity We Have: 

-Wz: ..!Y_ - av 
ay ax 

C£( u,-hu2 )- ( v1 ~v2) 

Where I mm ;S h ~ 4mm 

Note : v - Channels Are Bragg-Cell Shifted. 

Figure 1.1 Beam Geometry 
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Figure 2.5 Diagram of Shear Layer Insert 
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Figure 2.6 Photo of Shear Layer Insert 
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Figure 2 .8 Photo of Overhead Assembly 
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SIGNAL PROCESSING BLOCK DIAGRAM 
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Figure 2.9 Signal Processing Block Diagram 
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Figure 2.11 Discrete LDV Signal Traces 
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Figure F .3 Vortex Simulation, Tf = 2 h/u, do = 0.2 h 
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