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Abstract

The Richtmyer-Meshkov instability occurring when a planar shock wave passes through a
sinusoidal region of continuous density gradient is studied numerically. Models are used to
calculate the propagation of the shock through the inhomogeneity and to determine the late
time behavior of the shocked fluid layer. The results from the models are compared with
computations of the nonlinear Euler equations to determine ranges of validity. The models
enjoy some success for problems involving weak incident shocks. As the Mach number is
increased, however, the complex interactions between the transmitted and reflected fronts
and the shocked density layer play an increasingly important role in the development of the
flow and cause the models to fail.

The popular impulse approximation is applied to the continuously stratified fluid con-
figuration through the use of a model due to Saffman and Meiron. The predictions of
the late time growth rate of the interface and interfacial circulation from the model are
compared with calculations from the nonlinear Euler equations. It is shown that for weak
incident shocks the model is a very accurate prediction of the asymptotic behavior of the
interface for a wide range of problems including those with interfaces of finite amplitude
and thickness. For stronger shocks, post-shock values for Atwood ratio, amplitude and layer
thickness are used in the model to obtain accurate predictions of late time growth rate for
high Atwood ratio configurations. Poor agreement is seen for low Atwood ratios. Compar-
isons between circulation calculations and pointwise values of vorticity between the model
and Euler simulations reveal that the impulse model does not predict the correct vorticity
distribution for high or low Atwood ratios. A numerical implementation of the Biot-Savart
law is used to calculate the growth rate strictly from the vorticity field in the compress-
ible Euler simulations. The good agreement between the compressible and incompressible
growth rates, as well as direct measurement of the discrete divergence in the flow, indicates
that compressible effects are only important in the initialization of the instability and that
the subsequent evolution is determined from the vorticity distribution. The vorticity gen-

erated by subsequent oscillations of the transmitted and reflected shocks is shown to have



vi
a non-negligible effect on the interfacial growth rate. It is conjectured that the success of
the impulse approximation in predicting the asymptotic growth rate for problems involv-
ing moderate to strong shocks and high Atwood ratios is simply the result of fortuitous
cancellation between regions of vorticity not computed accurately by the model.

The theory of Geometrical Shock Dynamics is used to propagate the shock through
the region of density inhomogeneity and beyond. An important feature of the model is
the neglect of interactions between the shock and the flow behind. A procedure for com-
puting circulation in the entire flow from Geometrical Shock Dynamics is developed and
implemented. For low to moderate Mach numbers, the initial circulation deposited on the
layer is calculated with reasonable accuracy. At late times, however, the shape of the shock
front does not agree with Euler calculations, resulting in incorrect calculation of the time
evolution of total circulation of the flow. The agreement between the model and Euler
simulations becomes poorer with increasing incident shock strength. By performing com-
parisons of local shock strength between the method and Euler simulation, it is shown that
the method of Geometrical Shock Dynamics does not perform as well for problems involving
nonuniform sound speed as had previously been believed. This suggests that the nonuniform
flow conditions behind the shock, characterized by the vorticity baroclinically deposited on
the interface during the shock refraction phase, plays a significant role in determining the

evolution of the transmitted shock front.
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Chapter 1

Introduction

1.1 Background

When a shock wave passes through a region of non-uniform density, vorticity is created if
the density gradient of the ambient fluid is not normal to the shock wave. An equation iden-
tifying the underlying mechanism for this creation can be derived from the two-dimensional,
compressible Euler equations in the absence of body forces:

5)-25m
This equation states that vorticity is generated whenever a pressure gradient and density
gradient are misaligned. This is referred to as baroclinic generation of vorticity and happens
in the above scenario because there is a pressure gradient across the shock.

Richtmyer [41] was the first to study the interaction between a shock wave and a si-
nusoidal interface of zero thickness separating two perfect gases of different densities. As-
suming a small amplitude to wavelength ratio, Richtmyer linearized the Euler equations
and solved them numerically for three cases. He found that the amplitude of the interface
grew linearly with time after the initial collision. To predict the constant growth rate that
the interface attained at late times, he proposed a model which has become known in the
literature simply as the impulsive model. Richtmyer used the analysis of Rayleigh [40] and
Taylor [59] for the motion of an interface separating two incompressible fluids of different
densities under a body force and represented the effect of the shock on the interface as an
impulsive force. This formulation produced an expression for the constant growth rate in
terms of the wavelength of perturbation, initial amplitude, densities of the fluids and the
constant velocity of the shocked interface. The amplitude of perturbation and densities on
either side of the interface change discontinuously under the action of the impulsive force,

and Richtmyer realized there was some ambiguity regarding which values to use. He found
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that the use of post-shock values in his model resulted in growth rate predictions which
agreed well with those obtained from his numerical solutions of the compressible linearized
Euler equations. The use of post-shock quantities was viewed as a way of accounting for
compressible effects in the incompressible impulse theory and this approach subsequently
became known as Richtmyer’s model.

Nine years later, Meshkov [26] was the first to experimentally measure growth rates of
an interface hit with a shock wave. He also observed a period of linear growth but with
growth rates lower than those predicted by Richtmyer by roughly a factor of two. Meyer
and Blewett [27] were the first to do numerical simulations of the full nonlinear Euler
equations and found good agreement between their calculations and Richtmyer’s linear
theory. Whereas Richtmyer only considered situations where a shock was reflected back
when the incident shock struck the interface, Meyer and Blewett also studied cases when
a rarefaction was reflected. To obtain good agreement between the impulse model and the
growth rates recorded from their simulations for the reflected rarefaction case, however,
they needed to use the average of the pre-shock and post-shock amplitudes as the effective
amplitude in Richtmyer’s expression.

Meyer and Blewett chose the parameters in their simulations to model Meshkov’s ex-
periments. Meshkov had feared the discrepancy between his results and Richtmyer’s was
due to the fact that the initial amplitude of the interface in his experiments was not small
compared to the wavelength, thus outside the range of validity of Richtmyer’s model. Meyer
and Blewett’s computations produced growth rates which agreed with Richtmyer, however,
indicating that nonlinearity was not the cause of the discrepancy. While they felt that the
neglect of viscosity in Richtmyer’s formula and their simulations might have been respon-
sible for the disagreement with Meshkov’s measurements, they were unable to provide an
adequate explanation for the discrepancies. Since that time the Richtmyer-Meshkov insta-
bility has grown into a research field in its own right. Much of the interest is due to the
detrimental effect this instability has on the efficient burn of capsules in inertial confine-
ment fusion experiments [24]. In general, growth rates measured in experiments still do
not agree with those obtained from simulation and effort is directed towards developing a
predictive capability and a firm understanding of the instability itself. These discrepancies
have prompted much debate [47] over the importance of experimental factors such as mem-

branes (used to keep the gases separate prior to arrival of the shock), wall vortices, and
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the effects of Schlieren imaging though the boundary layers, all of which are unaccounted
for in theories. Recent observations by Vetter and Sturtevant [63] have indicated that the
membranes used in experiments of the Richtmyer-Meshkov instability lower the growth rate
by a significant amount. It is possible that these membranes may be responsible for the
disagreement in growth rates between experiments and theory.

Experiments of the Richtmyer-Meshkov instability that do not utilize membranes have
been performed by Brouillette and Sturtevant [5, 6] and by Peyser et al. [34]. In the
Brouillette-Sturtevant experiments, for example, the “interface” is, in fact, a layer of finite
thickness where the two gases have begun to diffuse into each other. Growth rates can be
calculated and, in principle, compared with theory. It is the aim of this thesis to examine the
accuracy of some existing models for the Richtmyer-Meshkov instability occurring in diffuse
layers by comparing their predictions against simulations of the nonlinear Euler equations.
Once ranges of validity have been established, these theories could be used to compare with
membraneless experiments, thus eliminating one possible source of discrepancies in growth
rates of Richtmyer-Meshkov instabilities.

When performing numerical simulations, care must always be taken to ensure sufficient
resolution of shocks and vortex sheets. Recently, techniques such as front tracking meth-
ods [20], adaptive mesh refinement [2], and parallel processing [54] have proved valuable in
performing full nonlinear simulations of the Euler equations.

While Euler simulations have typically been performed for perfect gases, Samtaney and
Meiron [54] have recently studied Richtmyer-Meshkov instabilities initiated by strong shock
waves using the Ideal Dissociating Gas model to account for real gas effects. Attempts
at the three-dimensional Richtmyer-Meshkov problem have been made, but computational
limits on available resolution have kept these studies from being widely pursued.

Analytical theories and models do not suffer from computational issues but are often-
times restricted to the linear (small amplitude) regime. The first rigorous theoretical work
was performed by Fraley [15] who solved the linearized compressible Euler equations via
Laplace transforms. He obtained an expression for the asymptotic growth rate of a shocked
sinusoidal interface in the weak shock limit and outlined a procedure for calculating the
growth for problems involving shocks of arbitrary strength. While the results in the weak
shock limit agreed with Richtmyer’s model, the results for stronger shocks, in general, did

not. Because of the complexity of Fraley’s solution, however, the impulse approximation
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remained a popular way of modeling the instability. Several researchers [6, 28, 29, 30, 49, 54]
have used the idea of modeling the effect of the incident shock on the interface as an im-
pulsive force to develop their own models. Other researchers have developed expressions
for the growth rate using theories such as incompressible vortex models [52] and Padé
approximation [72].

Recently interest in Richtymer’s impulse model has been rekindled as examples of in-
correct predictions of growth rate have been found. Yang et al. [69] compared simulations
of the linearized Euler equations with Richtmyer’s model and identified parameter ranges
where the model gives incorrect results for the growth rate. Mikaelian [31, 32] has shown
cases where the model predicts no growth of the shocked interface (the so called “freeze-
out” phenomenon) but simulations show definite growth. Conversely, situations where the
model predicts growth when simulations show none can be found. Velikovich [62] devel-
oped an analytical theory for the reflected rarefaction case. He also pointed out that the
Richtmyer-Meshkov instability occurs for general Riemann problems not involving shocks
or density gradients, and used this to argue that the use of the impulsive approximation
to model Richtmyer-Meshkov instability as a “shock-excited Rayleigh-Taylor instability” is
incorrect. Most recently, Wouchuk and Nishihara [68] have shown that the impulsive ap-
proximation is not needed to obtain the correct growth rate in the weak shock limit. They
have also pointed out that the existence of vorticity in the fluid away from the interface
violates the assumption of irrotational flow implicit in the Richtmyer model. By taking this
extra vorticity into consideration, and assuming incompressible flow, they have obtained
an approximate expression for the late time growth rate for problems involving shocks of
arbitrary strength.

Relatively little work has been done to study the Richtmyer-Meshkov instability for the
case of diffuse interfaces with a continuous density distribution. Brouillette and Sturte-
vant [5, 6] have performed experiments for diffuse interfaces and found the finite thickness
of the interface to drastically reduce the growth rate. Some theory has been developed and
simulations have been carried out for the Richtmyer-Meshkov instability occurring in contin-
uously stratified fluids [6, 30, 36, 49]. However, the models have not been tested throughly.
The development of analytical theories is complicated by the fact that no complete solution
of the one-dimensional problem of shock propagation into a region of continuous density

gradient exists, although an approximate theory has been developed by Chisnell [10]. De-



Figure 1.1: Richtmyer-Meshkov problem for a diffuse sinusoidal interface.

velopment of an analytic theory of small amplitude Richtmyer-Meshkov instability for the
case of a diffuse interface by linearizing about the one-dimensional problem, as is typically
done for the classical problem, is not feasible. This work seeks to extend and verify existing
models so they may be used to compare with experiments, such as those done by Brouillette
and Sturtevant. In comparing simplified models against simulations of the Euler equations,

a better understanding of what effects are important in the instability can be achieved.

1.2 Development and Characteristics of the Instability

A schematic of the problem in its initial state is shown in figure 1.1. The picture is a
computer generated Schlieren-type image where high density gradients are visualized as dark
regions. A description of the algorithm used to create these Schlieren images is presented
in Appendix B. The problem consists of half a sinusoidal layer of large density gradient
at rest with a planar shock wave incident from the left. The boundaries along the top
and bottom of the domain are reflecting, slip boundaries. These act as solid walls (with
no boundary layers) or lines of symmetry in the fully periodic problem. The density layer
has a characteristic thickness length scale of L and is a region of continuous, non-negligible
density gradient whose mid-line is a cosine wave with initial amplitude ag and wavelength
A =27

The fluid ahead of the incident shock is a perfect gas of uniform pressure and ratio of
specific heats. Recent work [54] has shown that inclusion of real gas effects in simulations

of hypervelocity Richtmyer-Meshkov instabilities does not alter the values of diagnostic
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quantities of the flow (such as interfacial growth rate and circulation) significantly. The
density field ahead of the shock is continuous and asymptotes to p; to the left of the layer
and py to the right. The problem is determined by four parameters: the Mach number of
the incident shock, M7, the ratio of initial amplitude to wavelength, ag/A, the ratio of layer
thickness to wavelength, L/\, and the Atwood ratio across the diffuse interface, At, defined
as:

At =P2— 11 (1.2)
p2 + p1

The state of the fluid ahead of the shock is specified by the uniform pressure, p = 1, the

uniform ratio of specific heats, v = 1.4, zero flow velocity and a density field of

T —zq —Lao COS@))J : (1.3)

plz,y) = % {1 + At tanh <
where zq) is the z-coordinate about which the mid-line of the layer is centered.

The time evolution of the instability is depicted in a sequence of pictures in figure 1.2. As
the incident shock moves through the density layer, part of the shock wave is transmitted
and a wave is reflected back. The reflected wave can be either another shock wave, as
shown in this picture, or a rarefaction. When the ratio of specific heats, +, is constant, the
condition for reflected rarefaction is At < 0 (shock moving into less dense media) and that
for reflected shock is At > 0. When + is not constant the character of the reflected wave is
not determined strictly by the Atwood ratio [69]. Certain parameter ranges can even lead
to complete transmission of the shock with no reflected wave generated.

The pressure gradient across the incident shock and density gradient across the layer
interact to create vorticity in the layer as described by equation (1.1). This misalignment
of pressure and density gradients is often referred to as “baroclinic generation” of vorticity.

In figure 1.2 both the transmitted and reflected shocks undergo Mach reflection from
the top and bottom boundaries. The reflected shock of each Mach system sweeps across
the shocked layer as the flow evolves. Vortex sheets are always present at each three-shock
intersection — the so-called “triple-points” — and are sources of additional vorticity in the
flow field. Shocks are super-stable structures and the transmitted and reflected shocks

oscillate in a damped fashion to reduce their perturbations [42]. This oscillation creates



Figure 1.2: Time evolution of the Richtmyer-Meshkov instability. (Continued on next page.
M; =4, At =0.8,a90=1, L =0.1)



Figure 1.2 continued.



Figure 1.3: Phase reversal of interface for negative Atwood ratio. A rarefaction is reflected
from the density layer. (M; =2, At = —0.2, a9 =1, L = 0.1)

pressure waves in the flow behind the shocks and modifies the growth of the interface [41].
Even as the transmitted and reflected shocks move away from the layer, they continue to
modify the vorticity distribution on it through additional Vp X Vp interactions resulting
from the pressure perturbations and reflected shock waves from triple points striking the
layer. At late times the interface begins to roll up due to the vorticity on it.

When the Atwood ratio is negative, and the shock moves from a region of more dense
fluid into that of less dense, a rarefaction is reflected from the layer rather than a shock.
In addition, the shocked layer changes phase, as shown in figure 1.3. In the first Schlieren
image of the sequence, the transmitted shock has greater velocity than the incident shock,
due to the greater sound speed to the right of the layer, and moves ahead of the incident
shock below it. The shock emerges from the layer with the peak along the top boundary
and trough along the bottom, in contrast to the shock shown in figure 1.2 for a positive
Atwood ratio. The amplitude of the interface decreases to zero and continues its motion,
causing the interface to undergo phase reversal. The amplitude then continues to increase

without bound. The phase reversal of the interface is due to the action of vorticity. In the
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Figure 1.4: Growth rate for two problems differing only in their initial amplitudes. The run
with larger amplitude does not have a period of linear growth. (M; = 2, At = 0.2, L = 0.1,
and (a) ap = 0.01 and (b) ap = 1)

problem shown in figure 1.3 the interaction between the incident shock and density layer
has deposited negative vorticity in the layer, in contrast to the positive vorticity created in
the problem shown in figure 1.2 for a positive Atwood ratio.

The initial amplitude affects both the magnitude and time evolution of the growth rate.
Richtmyer [41] showed that for small amplitudes the growth of the amplitude is linear
in time. For large amplitudes, the growth rate is not constant but decreases with time
because much of the kinetic energy of the flow is used to distort the interface (to create
roll-up structures, for example) rather than simply increase the amplitude. A comparison of
growth rate for two problems, differing only in their initial amplitude, is shown in figure 1.4,
using the scaling parameters (3.15) to non-dimensionalize the growth rates and times. The
initial amplitude also determines the magnitude of vorticity deposited in the layer through
equation (1.1). The larger the amplitude, the greater the angle between the pressure and
density gradients. Note the differing order of magnitude of the values of growth rate in
figure 1.4.

The initial amplitude, Atwood ratio, and Mach number also determine whether shocks
are reflected back towards the shocked density layer. A comparison of Schlieren images
between two problems differing only in Atwood ratio is shown in figure 1.5. The reflected
shock in the At = 0.2 case is undergoing regular reflection but the reflected portion of that

front is quite weak. In the At = 0.8 case the reflected shock undergoes Mach reflection from
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(a) | o | (b)

Figure 1.5: Secondary shock waves can form in the region between the primary shocks and
the density layer. (M; =4, a9 =1, L =0.1 and (a) At = 0.2 and (b) At = 0.8)

the bottom wall and the reflected shock from the Mach system intersects the layer. The
transmitted shock undergoes Mach reflection from the top wall in the At = 0.8 case, and
both the reflected shock and the vortex sheet from the triple point are clearly visible in the
figure. No reflection occurs along the transmitted shock in the At = 0.2 case. The initial
amplitude and incident shock Mach number will also determine what kind of reflection, if
any, the transmitted and reflected shocks undergo along the top and bottom walls. Shock
reflections do not typically occur for problems with small amplitude interfaces.

Little work has been done to determine the effect which the characteristic length scale
of the thickness of the density layer, L, has on the development of the instability. Previous
work [6, 30, 36, 49] has shown that increasing the thickness of the layer reduces the growth
rate of the interface. The values L=0.01, 0.1, and 1 correspond to thin, medium, and very

thick interfaces as seen in figure 1.6.

1.3 One-Dimensional Shock-Contact Problem

In this section we examine the solution of the one-dimensional problem of shock-contact
interaction shown in figure 1.7. The solution will provide us with parameters needed in
future sections. A derivation of the general problem can be found in [69]. Here, we restrict
our analysis to the case of a reflected shock wave.

The analogous problem where the contact discontinuity is replaced by a layer of contin-
uous density gradient has been treated by Chisnell [10]. The solution is significantly more

complicated than that for the shock-contact problem due to the infinite set of wave reflec-
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Figure 1.6: Parameter L=0.01, 0.1 and 1 represents a thin, medium and very thick initial
density layer.

My, Uy
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Mg, Ug vV My, Uy
— e e

PL PR
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Figure 1.7: Schematic of the one-dimensional shock-contact problem. The contact discon-
tinuity is drawn with a dashed line.
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tions within the layer. At very large distances from the layer, the solution to that problem
closely approximates the solution to the shock-contact problem so we do not consider it
here. Interested readers are referred to the thesis of Pham [35] for a numerical solution
based on Chisnell’s technique.

As a shock of Mach number M with velocity Uy strikes a contact discontinuity, a shock
of strength My with velocity Ur is transmitted into the second fluid, the contact acquires
a constant velocity V', and a wave is reflected. In general, the reflected wave can be either
a shock or a rarefaction. The nature of the wave depends on the ratio of specific heats, =,
and initial densities on either side of the contact. The exact criteria have been given by
Yang et al. [69]. We restrict our attention to the case where the values of 4 for both fluids
are the same and a shock is reflected. The conditions for generation of a reflected shock
then simplify down to At > 0, where At is defined by equation (1.2), and we denote the
Mach number of the reflected shock by Mg and its velocity as Ur. Knowing the structure
of the solution allows us to solve the problem by matching the pressure and velocity at the
contact and using the Rankine-Hugoniot conditions at the shocks. The solution requires
finding the roots of a nonlinear equation which we perform numerically using the bisection
method.

The velocities of the transmitted and reflected shocks and the contact discontinuity are
plotted against the incident shock strength in figure 1.8 for two Atwood ratios. For weak
incident shocks the velocity imparted to the contact is very small. For stronger shocks, the
velocity of the contact is much closer in value to the transmitted shock than the reflected.
For incident shocks of weak and moderate strengths, the velocity of the reflected shock is
negative.

The Mach numbers of the transmitted and reflected shocks, M7 and Mpg respectively,
are plotted versus incident shock strength My in figure 1.9. The transmitted shock is much
stronger than the reflected shock for both Atwood ratios. While the increase in M is
nearly linear with My, the reflected shock strength Mg asymptotes to a constant value
(which depends on At and v) as M; — oc.

The densities of the fluids on either side of the shocked contact, p;, and pg, will differ
from their initial values, p; and p2, resulting in a change in Atwood ratio across the cont act.
The post-shock Atwood ratio, Atpest = (pr—pL)/(PR+pL), is plotted in figure 1.10 for b oth
an initial Atwood ratio of At = 0.2 and At = 0.8. The post-shock Atwood ratio is alw ays



14

Velocity
[}

Transmitted
Contact
Reflected

(a)
Figure 1.8:

3 4 5 6
Incident shock Mach number

Velocity

20

15 1

10

51

0F i Transmitted

Contact -

. Reflected
1 2 3 4 5 6 7

Incident shock Mach number

Velocities of shocks and contact discontinuity in the post-shock state of one-

dimensional shock-contact problem. (a) At = 0.2, (b) At =0.8

9
8 + Transmitted —— E
Reflected -

7r 4
g O 1
£
E 57 i
=
g 47 ]
]
= 3!

2k / 4

0 . : A . \ .

1 2 3 4 5 6 7 8

Figure 1.9: Mach numbers of the transmitted and reflected shocks, M and Mg respectively,

Incident shock Mach number

Mach number

(b)

-
N

-
n

-
o
T

@

Transmitted ———
Reflected

2 3 4 5 6 7
Incident shock Mach number

in the one-dimensional shock-contact problem. (a) At = 0.2, (b) At = 0.8



15

0.2 : . . . : 0.8 —~
N\, N
L ] 0.78 + ~
0.19 \ \\
2 N o | N\
T o018}t \ g 076 AN
3 \ g ;;
8 AN g 074r \
g o7y g N
< N < 0.72 - AN
x =€ AN
(3] 0.16 N B 3] N
3 N I} L ~ {
‘.c:@ 5 0.7 \
2 015 1 2 ~
L - £ 068 1
0.14 + \_ 0.66 | ]
0.13 : . . A . . 0.64 . . . . . .
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Incident shock Mach number Incident shock Mach number

(a) (b)

Figure 1.10: Post-shock Atwood ratios across the contact in the one-dimensional shock-
contact problem. (a) At = 0.2, (b) At =0.8

smaller than the pre-shock ratio with greater reduction occurring for stronger shocks. In

the weak shock limit, M; — 1, the post-shock Atwood ratio approaches the pre-shock value.

1.4 The Richtmyer Impulsive Model

The most popular model used in the field of Richtmyer-Meshkov instability was proposed
by Richtmyer himself in the very first paper on the subject [41] and has become known
in the literature simply as “the impulsive model.” The interaction between a shock and a
sinusoidal interface of zero thickness separating two perfect gases is modeled as an impulsive
force acting on the interface. The starting point of the model is the analysis of Rayleigh [40]
and Taylor [59] for two incompressible, irrotational fluids separated by a sinusoidal interface
of amplitude a(t) being acted upon by some force g(t) as shown in figure 1.11. Assuming the
amplitude of the interface to be small compared to the wavelength, ka < 1, and neglecting
viscosity and surface tension, the Euler equations are linearized about the unperturbed

state and a dynamic equation can be obtained for the amplitude:

i) = kg(t)a(t)At, (1.4)

with At given by equation (1.2) for the configuration shown in figure 1.11. If the force is

constant over time (i.e.: gravity), g(t) = go, this expression can be integrated once to obtain
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Figure 1.11: Configuration of Rayleigh-Taylor instability.

an expression for the growth rate of the interface:

a(t) = inage™, (1.5a)

n = —y/ -—gokAt. (15b)

The interface becomes unstable and grows exponentially if the less dense fluid is accelerated
into the more dense. If the more dense fluid is accelerated into the less dense, the inter-
face is stable and oscillates with fixed amplitude. This is the well-known Rayleigh-Taylor
instability.

Richtmyer’s idea was to consider the interaction between a shock wave and an interface
of small amplitude not under the influence of any body forces as a “shock excited Rayleigh-
Taylor” instability by using an impulsive force in the equation of motion of the interface.
Denoting the change in velocity of the undisturbed interface due to shock acceleration as
Av, the forcing term in equation (1.4) becomes g(t) = Avd(t) where §(¢) is the Dirac delta
distribution and ¢ = 0 is the time of collision. Using this in equation (1.4) and integrating

results in an expression for the time derivative of the amplitude:
aRicht = ka(0)AvAt(0). (1.6)

The result differs from the Rayleigh-Taylor growth rate in two important regards. The
first is that the growth rate is linear rather than exponential. The second is that while a
reduction in amplitude occurs initially when AvA¢(0) < 0, the amplitude decreases to zero
and then becomes negative, resulting in a phase reversal of the interface, as in figure 1.3.

The absolute value of the amplitude continues its constant growth until the linear theory
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is no longer valid. Thus, there is no stable configuration where the amplitude remains
bounded for all time as there is for the Rayleigh-Taylor instability, the case of constant
acceleration.

The impulsive approximation can be thought of as a way of computing the shock-
interface interaction without actually resolving the details of the shock refraction process.
The growth rate (1.6) is a prediction of the asymptotic value of the time dependent growth
rate when the transmitted and reflected fronts have moved far enough away from the in-
terface that they no longer play a significant role in its evolution and the resulting flow is
almost incompressible.

Richtmyer compared the predictions of the model to the growth rate obtained from
numerical simulation of the linearized Euler equations. This calculation utilized finite dif-
ferences in the fluid regions between the transmitted and reflected shocks and the interface.
Boundary conditions at the shocks were determined from the shock jump conditions and
those at the interface from continuity of pressure and normal velocity. Richtmyer only con-
sidered cases where a shock was reflected. Richtmyer realized there was some ambiguity
regarding the exact value of amplitude and Atwood ratio to use in equation (1.6). These
values change instantaneously at ¢ = 0 and it is not obvious what values to use. Performing
three runs by feeding data tapes into the first real computer, the MANIAC, and computing
until storage requirements for the simulation exceeded machine capacity, he found that use
of post-shock values for amplitude and Atwood ratio for a(0) and A¢(0) in (1.6) resulted in
a relative error in growth rate of only 5-10%. Use of pre-shock values resulted in predictions
off by roughly a factor of two. The post-shock Atwood ratio, Atpest, can be computed from
the solution to the one-dimensional shock-contact problem described in §1.3. Richtmyer
determined the post-shock amplitude from kinematic arguments with the assumption of

small amplitudes and obtained the expression

Av
P (1 _ 7}) , (1.7)

where Uy is the velocity of the incident shock and ag is the pre-shock amplitude. Similar
expressions were obtained for the post-shock amplitudes of the transmitted and reflected

shocks. Meyer and Blewett [27] later performed full nonlinear numerical simulations of

Richtmyer-Meshkov instability including cases where a rarefaction was reflected rather than
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a shock. They found in order to get good agreement between their growth rate results and
Richtmyer’s model, they had to use the average of the post-shock and pre-shock amplitudes
as a(0) in (1.6) when the reflected wave was a rarefaction.

The impulsive approximation became a standard tool of researchers in the field of
Richtmyer-Meshkov instability throughout the 1980s and into the 1990s. Recently, the
model has been the subject of new investigations [31, 32, 62, 69] revealing that its predic-
tions of growth rate can sometimes be inaccurate. In the weak incident shock limit, how-
ever, Fraley [15] has shown that (1.6) is the first order approximation to the true asymptotic
growth rate from the linearized Euler equations for cases when a shock is reflected. In the
weak limit, the pre-shock and post-shock values of amplitude and Atwood ratio are the
same so there is no ambiguity regarding which to use.

The model has been quite popular because of its simplicity, its accuracy in computing
growth rate for certain parameter ranges, and its intuitive explanation of the instability.
This explanation, however, has recently been called into question by Velikovich [62], who,
like Li et al. [23], has found interfacial instabilities that closely resemble the Richtmyer-
Meshkov instability resulting from expansion waves rather than shocks. Wouchuk and
Nishihara [68] have shown the impulsive approximation is not necessary to obtain the correct
growth rate in the weak shock limit, and, further, the assumption of irrotationality implicit
in the impulse model is not accurate for stronger shocks. Fraley has claimed the use of post-
shock values of amplitude and Atwood ratio in equation (1.6) results in accurate predictions
of the growth rate in some cases simply because the post-shock values are less than pre-shock
values (see equation (1.7) and figure 1.10). The true compressible growth rate obtained
from solutions of the linear Euler equations is typically less than the incompressible result
(equation (1.6) using pre-shock values) and this reduction sometimes matches up with the
reduction resulting from using postshock values.

Since Richtmyer’s paper, the impulsive approximation has been used by several different
researchers. Brouillette and Sturtevant [6] used the idea to adapt a model for Rayleigh-
Taylor instabilities with diffuse interfaces to the Richtmyer-Meshkov problem to allow com-
parison with their experiments. Mikaelian [28] used the impulsive approximation to obtain
results for amplitude growth for an arbitrary number of fluid layers subject to shock accel-
eration and, later, to continuous density profiles [30]. Mikaelian [29] also used the impulse

idea to adapt experimental results for Rayleigh-Taylor instabilities to developing an ana-
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lytical expression for the mix width of turbulence resulting from the Richtmyer-Meshkov
instability. The extension of the impulse model to flows with equilibrium dissociation chem-
istry has recently been done by Samtaney and Meiron [54]. Pham and Meiron [36] used an
impulse model due to Saffman and Meiron [49] to generate the initial condition for nonlinear
incompressible simulations of the instability. The Saffman-Meiron model will be discussed

in detail in §3.1.
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Chapter 2

Numerical Solution of the Compressible

Euler Equations

In this thesis, the accuracy of simplified models of the Richtmyer-Meshkov instability for
diffuse layers is judged by comparing results against those obtained from numerical solutions
of the full nonlinear Euler equations. This chapter discusses specifics of the numerical
methods used to perform the Euler simulations. It is assumed that the reader has some
familiarity with the basics of numerical solution of systems of nonlinear conservation laws
such as the material covered in the book by LeVeque [22]. This chapter discusses the specific
techniques used, details of, and warnings about numerical methods used to compute the
solutions. Euler simulations were performed using the new computational fluid dynamics

software package Amrita .

2.1 Details of Discretization

The compressible Euler equations of fluid dynamics in two dimensions are:

U: +F(U), + G(U), =0, (2.1)
[ ] | ]
uv= " FU-= pu+p cu)=| "
pv puv pv? +p
| E | (u(p + E) | v(p+ E))

where E is the total energy and is related to the pressure, p, by p = (y—1)(E— p(u®+v?)).
In a numerical solution the continuous problem is replaced with a discrete one by dividing
the spatial domain into small units called grid cells and by sampling the solution at a

finite number of specific instants of time. By replacing the continuous time coordinate by
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a discrete one, a one-dimensional ‘grid’ is effectively placed on that coordinate as well and
the intervals are named time steps. In choosing a grid cell and time step size, a balance
between achieving accurate answers and obtaining results within reasonable computational
limits must be struck. The Richtmyer-Meshkov problem, in particular, requires a grid with
a fine enough spatial resolution to resolve sharp features and a large enough spatial extent
to keep the transmitted and reflected fronts in the computational domain throughout the

simulation.

2.1.1 Spatial Resolution and Adaptive Mesh Refinement

Use of a uniformly fine grid over the entire computational region is not needed and is quite
wasteful. As seen in the numerical Schlieren images of §1.2, only a relatively small portion
of the entire flow domain needs to be resolved sharply. The technique of adaptive mesh
refinement has been used to obtain high resolution in areas which need it while keeping
computational costs reasonable. The particular algorithm used is due to Quirk [39], a brief
summary of which can be found in appendix A. Given appropriate refinement criteria, the
code will overlay specific cells of the computational mesh with finer ones, forming another
level of grids. The user is allowed to determine how many grid levels to construct as well
as the ratio of grid cell size across two consecutive levels.

Features of interest in the Richtmyer-Meshkov problem include shocks and regions of
strong density gradient. We have found the DensityGradient test included in the standard
distribution of Amritato be satisfactory. After each time step, each cell is tested and

flagged for refinement based on the following criteria:

if |pi+1,5 — pi,j| > 7 then flag; ; ; = 1 and flag, ; =1, (2.2a)

if |pij+1 — pij| > 7 then flag; ;. = 1 and flag; ; =1, (2.2b)
where the tolerance, 7, was chosen to be

(0.0025) min(py, p2) if My < 1.5,
S (2.2¢)

(0.1) min(p1, p2) if My > 1.5.

The densities p; and py are the asymptotic values of the initial density field as z — —o0
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and z — oo respectively and flag; ; identifies which cells are scheduled to be refined. The
minimum of p; and ps merely serves as a characteristic density by which to scale. For
weak incident shocks, a smaller coefficient is used in the test to ensure that the shock is
refined even though the density gradient across it is very small. A comparison between
the numerical Schlieren image of a simulation and the computational grid is shown in
figure 2.1. The grid structure consists of a coarse grid which covers the entire domain
and two additional levels containing finer cells in regions of strong density gradients. The
DensityGradient test has resulted in the barely-visible vortex sheet originating from the
triple point on the reflected shock being covered by the first additional grid level but not
the second.

Numerical results should strive to be converged and not depend on mesh spacing. Point-
wise convergence, however, is never achieved in shock capturing methods of computational
fluid dynamics. Due to numerical viscosity inherent in the schemes, discontinuities are
smeared out over several grid cells. This smearing out is a self-similar process: increases
in the grid resolution do not reduce the number of cells across which the discontinuity is
resolved over but do reduce the spatial extent. Shocks are an example of a flow feature that
never converges in a pointwise sense. We can, however, require that gross diagnostic values
of the flow, such as net circulation in the region or growth rate of the interface, do not vary
with increased mesh refinement. In this thesis, Euler simulations were always performed
with enough resolution that numerical data obtained did not change appreciably as the

mesh was refined. It is in this sense that we claim our results in this work are converged.

2.1.2 Time Stepping

At any point in the computation, the time step for a mesh patch, At, is automatically

determined by the program according to the two-dimensional CFL criterion:

At = min _AtAlL (2.3a)
AL 4 At
A
Ati = z and Atj = i (23b)
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Figure 2.1: Numerical Schlieren-type image and the corresponding computational grid.
Note regions of density gradients have been refined. These images show only a portion of
the entire flow of figure 1.2.
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where v and v are the fluid velocities in the # and y directions respectively and c is the
speed of sound. In all our Euler simulations, the computation was actually marched with a
time step half as large as that given by (2.3a) to ensure numerical stability, i.e., we specified
a CFL number of 0.5 in our program.

The particular flow solver used blended the first order Roe flux function with the second
order Lax-Wendroff flux function via a flux limiter. Details are presented in §2.3. Here, we
merely state that this solver is second order accurate in both time and space away from
discontinuities. To use the method (which was developed for one dimensional problems) in
two dimensions, the solution in each cell is updated by performing Roe’s method in one
coordinate direction and then in the other. That is,

Ut = £,L;U7 (2.4)

4,5

where the vector U is given in (2.1) and £; and £; are the Roe solver operators in one
dimension for the ¢-index and j-index directions, respectively. This approach is commonly
known as operator-splitting. An alternative approach is to compute the fluxes in each

direction and then use them simultaneously to update the flow solution:
+1 _
UZ]- = L;;U7;. (2.5)

This is often called the finite volume approach. The difference between equations (2.4)
and (2.5) is only in the order in which the fluxes are applied to U}, and £;; is not an
operator which solves a truly multidimensional Riemann problem. The advantage in using
operator splitting was shown by Strang [57]. If the operators £; and L; are each second
order accurate in time, then a splitting of the form:
+1  pAL/2 fAt pAL/2

U?;j = L; Ly UL, (2.6)

where £2t/2 indicates a half time step, results in a method that is second order accurate in

two dimensions. Each application of an £ operator is a computationally expensive operation

and one would like to limit the number of these operations per time step. Use of the update
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operator (2.6) to evolve the solution results in the following computation for UZ;H:

-1
Ut = L0 (pe)™ Y (2.7)

where U?,j denotes the initial condition. Except for the first two and the last operators,
this is equivalent to using time stepping scheme (2.4). In a typical simulation, thousands
of time steps are performed and the difference in the solutions resulting from using (2.4)
or (2.6) is insignificant. The time step sequence (2.4) is chosen over (2.6) because it requires
less operations.

It is a common practice among CFD researchers to use the sequence
+2 _ [ pAL pAL At pAL
Up? = (st (ot oy, (2.8)

combining the theoretical rigor of (2.6) with the computational cheapness of (2.4). However,
taking two time steps together results in grid refinement occurring half as many times as
if (2.4) was used instead and one runs the risk of a discontinuity running off the edge of a

fine mesh patch [39].

2.2 Removal of Startup Errors Created by the Shock

Shock capturing schemes smear a shock wave across several mesh cells because of numerical
diffusion. This smeared profile is determined purely by the numerical details of the simu-
lation and has no physical or mathematical meaning. The Mach number of the shock, the
CFL number used to determine the time step, and the specific flow solver used all dictate
the exact profile of the shock. The action of an initially discontinuous discrete shock smear-
ing out to its numerically determined profile causes disturbances to propagate back along
characteristics and particle paths. The density profile of an initially discontinuous Mach 2
shock propagating is shown in figure 2.2(a) where anomalies are visible.

One way to eliminate this problem is to first allow an initially discontinuous shock to
propagate long enough for it to settle down to its preferred profile and then use this smeared
profile as the new initial condition for a simulation. In practice, this is accomplished by
performing a simulation where the shock propagates into quiescent media with the same

computational parameters that will be used in the Richtmyer-Meshkov simulation until the
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Figure 2.2: Shock propagation illustrating startup errors. (a) Initially discontinuous shock,
(b) initially smeared profile.

startup errors are well behind the shock. These anomalies are erased by simply overwriting
them with the correct post-shock values of density, velocity and pressure. This smeared
numerical profile is then fed into the initial condition of the two-dimensional Richtmyer-
Meshkov problem. This new shock will propagate without generating any startup errors,
as shown in figure 2.2(b), since it is already at its numerically prescribed profile.

The examples shown in figure 2.2 were done without adaptive mesh refinement. Use of
adaptive mesh refinement on the shock propagation problem also reduces startup errors.
A density profile of an initially discontinuous shock, propagating with two finer grid levels
of refinement employed, is shown in figure 2.3. The startup errors are barely visible. We
believe this is because the shock lies within the fine-grid region and the startup errors seep
back into the underlying coarser grid. The anomalies are short wavelength disturbances on
the coarser mesh and are damped out by the numerical dissipation of the scheme. In all
Euler simulations we do in this work, we use the technique of using a correctly smeared

shock as the initial condition.

2.3 Flow Solvers and Flux Limiting

There exist a large number of shock capturing schemes for the Euler equations, each with
their own advantages and disadvantages. In choosing a flow solver, one must consider the

accuracy, robustness, dissipation and computational cost of each scheme. One must also be
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Figure 2.3: Shock wave propagation using an initially discontinuous shock with adaptive
mesh refinement.

on guard against numerical artifacts created by the solver. In comparing the performance
of several flow solvers on the Richtmyer-Meshkov problem, we have found some to suffer
from a failing we believe to be the “odd-even decoupling” first reported by Quirk [38]. A
comparison of numerical Schlieren images for simulations done with parameters M; = 10,
At = 0.2, ap = 0.5, and L = 0.01 and a variety of flow solvers is shown in figure 2.4. These
runs were performed on uniform grids of 400x400 cells with no adaptive mesh refinement.
The schemes employed for this comparison were basic first order schemes with no MUSCL
reconstruction [61] or flux limiting [58] used to achieve higher resolution and accuracy.
The images in figure 2.4 clearly show the Godunov-type method [60] and the Roe
scheme [44, 45] used have caused severe oscillations behind the shock. These oscillations
are most noticeable near the top and bottom of the domain where the transmitted shock is
closely aligned with the grid. The schemes known as EFM (37|, HLLE [14], and AUSM [25]
do not suffer from this failing. In general, these schemes tend to be somewhat more diffusive
at contact surfaces than the Godunov and Roe methods. The EFM and HLLE schemes, in
particular, cause an initially stationary density gradient to diffuse. This is in contrast to Rie-
mann solver-based methods which preserve the gradient until nonzero velocities are present
in the cells containing the non-uniform density region. The results of a simulation performed

with the addition of Harten’s [70] entropy fix* to the Roe solver is also shown. Comparison

*It is well known Roe’s method can compute nonphysical solutions such as expansion shocks. Several
modifications to Roe’s method have been proposed, Harten's being one of the most popular. The fix,
however, does not have any true justification and can be thought of simply as a convenient way of adding
extra dissipation to the scheme [38].
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with the basic Roe method reveals the additional viscosity added to the method from the
fix has resulted in suppression of the oscillation. All these observations are in agreement
with those of Quirk [38] for a failure of Riemann solvers he has named “odd-even decou-
pling.” We have noted this failure only occurs for Richtmyer-Meshkov problems involving
very strong shocks.

The oscillations seen in figure 2.4(a) have been observed by Samtaney [50] using an
independent code employing a Godunov-type method and in this work using an independent
code equipped with a hybrid Godunov-Roe-type flow solver devised by Jacobs [21]. This
evidence strongly suggests the numerical artifacts are due to shortcomings of the methods
rather than coding errors. The only instance we have found in the literature where this
failing has been mentioned is in the work of Samtaney and Meiron [54]. We believe this
is simply due to the relatively small amount of work done involving very strong incident
shocks. As more researchers investigate the Richtmyer-Meshkov instability generated by
very strong shocks, this failure may become more widespread.

We believe the judicious use of artificial viscosity, such as that added by Harten’s entropy
fix or that inherent in more diffusive schemes such as EFM, is necessary to suppress the
failing. Researchers at Lawrence Berkeley National Laboratory have found that a Godunov-
type method developed by Colella [11, 12] employing an artificial viscosity performs satis-
factorily in their simulations of hypervelocity Richtmyer-Meshkov instabilities [16].

We have chosen to use Roe’s method, with the addition of Harten’s entropy fix, in the
simulations with second order accuracy obtained through the use of a flux limiter. The
flux limiter blends the low order Roe flux with the higher order Lax-Wendroff flux in a
nonlinear way, such that the resulting method is second order accurate in time and space
away from sharp gradients in the discrete solution. Theory and implementation of flux
limiters is presented in [22] and [58]. We have experimented with the flux limiters known as
Superbee [46], van Leer [61], and minmod [43] and found Superbee to be the least dissipative
and minmod the most. This agrees with observations reported by Sweby [58] who compared
the performance of several flux limiters on several test problems. The highly compressive
Superbee limiter, however, was found to occasionally produce numerical artifacts in the
solution. Thus, we have restricted ourselves to the van Leer and minmod limiters in all the
simulations. In most simulations the minmod limiter was used and the larger dissipation

was compensated for with increased spatial resolution.
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Figure 2.4: Some solvers cause oscillations behind the shock for hypervelocity Richtmyer-
Meshkov problems: (a) Godunov’s method, (b) EFM, (c) HLLE, (d) AUSM, (e) Basic Roe’s
method, (f) Roe’s method with Harten entropy fix.
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Chapter 3
Impulse Model

After 37 years, the most popular and widely known model in the field of Richtmyer-Meshkov
instability is still Richtmyer’s [41] original impulse model (discussed in §1.4). The model
calculates an asymptotic value of the growth rate of a sharp, sinusoidal interface with a
small amplitude to wavelength ratio by modeling the initial interaction with the incident
shock as an impulsive force. The resulting expression, given by equation (1.6), provides a
quick and simple way to determine the growth rate. Richtmyer found it to be quite accu-
rate when compared to the growth rate computed from numerical solutions of the linearized
Euler equations for three test cases provided post-shock parameter values were used in the
model. Although Richtmyer only considered the case of a reflected shock wave, Meyer and
Blewett [27] later found that the impulse model gave accurate predictions for the case of
a reflected rarefaction if the average of the post-shock and pre-shock amplitudes was used
in the model. The impulse approximation has been valuable to researchers by providing
a means of modeling the instability without explicitly calculating the initial interaction
between the incident shock and the interface. Numerous researchers [6, 28, 29, 30, 49, 54]
have used the impulse approximation to develop other models for different problem config-
urations. Several researchers, however, have pointed out that the growth rate predicted by
Richtmyer’s model is not always accurate [15, 31, 32, 62, 68, 69].

The first experimental measurements of interfacial growth rates were performed by
Meshkov [26]. Comparing his results against the growth rates predicted by the Richtmyer
model, he found significant discrepancies. Meyer and Blewett [27] simulated Meshkov’s
experiments numerically and found disagreement between their nonlinear simulations and
Meshkov’s results. Since that time there have been numerous experimental and numerical
studies of the instability, but discrepancies in growth rates have yet to be adequately ex-
plained [47]. One possible reason for the lower growth rates measured from experiments
is the use of membranes to prevent mixing of the two gases on either side of the interface

before the arrival of the incident shock. Vetter and Sturtevant [63] have recently provided
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evidence that these membranes reduce the growth rate by an appreciable amount. It is pos-
sible that these membranes may be responsible for the disagreement in growth rates between
experiments and theory. This has prompted some researchers to study Richtmyer-Meshkov
instabilities experimentally in configurations not requiring membranes [5, 6, 34]. These
experiments could be compared with theories, thus eliminating a possible source of dis-
crepancies. It is in this spirit that we study the Richtmyer-Meshkov instability occurring in
continuously stratified fluids, such as in the experiments of Brouillette and Sturtevant [5, 6].

While impulse models have been proposed for the Richtmyer-Meshkov instability in
continuously stratified fluids by Brouillette and Sturtevant [6], Mikaelian [30], and Saffman
and Meiron [49], detailed comparisons against solutions of the Euler equations, such as
those done by Yang et al. [69] for sharp interfaces, have not yet been done. In this chapter
the accuracy of the Saffman-Meiron model, when compared to numerical simulations of
the nonlinear Euler equations, is examined for both weak and strong incident shocks. We
then investigate the compressibility and vorticity distribution of the flow calculated from
Euler simulations and consider their implications for the validity of the popular impulse

approximation.

3.1 Formulation of the Model and Numerical Implementa-
tion

The Saffman-Meiron impulse model computes the flow resulting from an impulsive force act-
ing on an incompressible stratified fluid. Starting from conservation of momentum governed

by the incompressible Euler equations,

u_ ou_ ou_ 1op
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(3.1a)

(3.1b)

the force which generates the instability is created by means of an impulsive pressure gra-
dient at t = 0. We write p(z,y,t) = P(z,y)0(t) where §(t) is the Dirac delta distribution.
The convective terms are eliminated through a dominant balance argument as follows. The
pressure gradient terms are singular at ¢ = 0 and other terms in equations (3.1a) and (3.1b)

need to be of similar order to balance the equation. If the velocities, u and v, also had delta
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distribution singularities at ¢ = 0, the time derivative terms would be even more singular.
Since no terms would be left to balance those more singular terms, this possibility cannot
be correct. It is the time derivative terms that balance the pressure gradients and the
convective terms are small enough to be ignored at ¢t = 0.

The equations simplify to:

ou  10p
ov 19p
i 2b
ot p Oy (3:2b)

Integrating, formulas for the velocities are obtained in terms of the unknown function

P(z,y):

1 0P

1 0P
= =T g, 3.3b
w=——-5 H() (3.30)

where H(t) is the Heaviside function and po(z,y) is a specified density field. It is here
that the assumption of incompressibility is used. Although a shock wave is an inherently
compressible phenomenon, the interaction with the flow is simulated as an impulsive force
acting on an incompressible fluid. The divergence-free condition of fluid velocity, V-u = 0,

coupled with equations (3.3a) and (3.3b), gives the following equation for the function
P(z,y):
o2 (ox) * oy () = 342
To apply this model to the Richtmyer-Meshkov problem, we let po(z,y) be the density
distribution given by equation (1.3) and choose zg = 0. The incident shock imparts a
constant velocity to the diffuse interface. The mean velocity of the layer is V, the velocity
of the contact surface in the analogous one-dimensional shock-contact problem described
in §1.3 which results from setting ap = 0 and L = 0. To simulate this behavior in the model,
the impulsive force is chosen such that the induced z-velocity field, ug, asymptotes to V far
from the density layer. The flow in the impulse model is infinite in extent in the z-direction

and periodic in y. As in the Euler simulations, only half a wavelength of the interface is
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simulated and y = 0 and y = A\/2 are considered to be reflecting wall boundaries. No flow
through the walls is allowed so vy = 0 along y = 0 and y = A/2. From equations (3.3a)
and (3.3b) the requirements placed on the velocity fields ug(z,y) and vo(z,y) correspond
to conditions on the function P(z,y):

or

— =0 =0,)/2 3.4b
ay I y Y /7 ( )
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where p; and py are the asymptotic values of po(z,y) as  — —oo and  — o0, respec-
tively. Equations (3.4a)-(3.4c) constitute an elliptic boundary value problem for the func-
tion P(z,y). This can be solved and the velocity field induced by the impulsive pressure
force computed from equations (3.3a) and (3.3b).

We now describe the numerical solution of this boundary value problem. Although the
boundary conditions in z are only satisfied in the limit as £ — 400, a numerical domain
must be finite in extent. Also, much higher grid resolution is required in the vicinity of
the interface, centered at x = 0, than in the rest of the domain. For these reasons, we
choose to solve equations (3.4a)-(3.4c) in a stretched coordinate system. Following Pham

and Meiron [36], the following change of variable from z to 1 is made:
0 2
n= tanh(*y:c), 9z = S~ dz = 7(1 -n )7 (35)

where the parameter v has been introduced to control the degree of stretching. As 7 is
increased, the density of grid lines near z = 0 is increased. The grid reverts back to uniform
spacing in the limit as ¥ — 0. An example of such a stretched grid with 50 points in the
71 direction and 20 in the y direction is shown superimposed on the numerical Schlieren
image of a small amplitude Richtmyer-Meshkov field in figure 3.1. Applying the change of

coordinates to equations (3.4a)-(3.4c), the boundary value problem becomes



Figure 3.1: Example of a 50x20 stretched grid (with v = 1) superimposed on numerical
Schlieren image of density layer with ag = 0.01 and L = 0.1.
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Note that the transformation has resulted in the infinite interval z € (—oo, 00) being mapped
to the finite range 7 € [—1,1]. From (3.6¢) it is seen that OP/On must become singular
as 7 — =*1 to give a nonzero boundary condition. To avoid numerical errors, the problem
must be reformulated to remove this singular behavior.

The full two-dimensional density distribution in front of the shock, po(z,y), is given by
equation (1.3). The corresponding one-dimensional density profile (with ag = 0) is denoted
by p(x) and the problem is reformulated in terms of density and pressure fluctuations,

p'(z,y) and p/'(z,y), where

po(z,y) = plx) + p'(z,y), (3.7)
Pz, y) :—v/ £)de + p'(z,y), (3.8)
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to obtain the following elliptic problem:

O (v(1—n*)dp'\ 0 (18 o (p
g 77)377( po  On Oy \ po Oy oz \ po (3-92)
op’
5y —% V0N (3.9b)
!/
g—f; — 0, n— x1. (3.9¢)

The fluid velocity is obtained through:

p 10y
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Equation (3.9a) is discretized using central differences at half grid points. A uniform
mesh in 77 and y is used with spacing An and Ay respectively. Dropping the subscript “0”

from the density field, the discretized equation is:
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p{i,j-—l = fij, (3.11)
where the function f(z,y) is the partial derivative f(z,y) = V(p(x)/po(z,y)), and i and
j are the grid indices in the n and y directions, respectively. The Neumann boundary
conditions are incorporated by modifying the stencil at the boundaries. For example, at
the left edge of the computational domain, pg_l’j is replaced with a value consistent with
the Neumann condition. From (3.9c) the boundary condition is zero normal derivative so

pg_l’j = p§+1,j to the order of the central difference formula.
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3.2 Calculation of Diagnostics of the Flow

Two important diagnostic quantities of the Richtmyer-Meshkov problem are the growth
rate of the interface and the net circulation. To determine the total circulation of the flow
at any point in time the line integral of fluid velocity along a closed circuit enclosing the
computational domain was computed numerically using the trapezoidal rule. To compute
the growth rate of the density layer, the interface was defined as the mid-line of the density
layer, 2(y) = ag cos(y) in the model. The growth rate was computed from the fluid velocities

at the peak and trough of the interface:
) 1
Qmodel — 5 [UO(ao, 0) - uo(—-ag, /\/2)] . (3.12)

In general, grid points do not lie exactly on the interface so the velocities are obtained from
linear interpolation using the two points straddling the interface along y = 0 and y = \/2.

To make direct comparisons with the model, a definition of the interface in the Euler
simulations must also be made. The so-called “level set” formulation of interface tracking
of Mulder et al. [33] was implemented. This was done by adding a passive scalar function
¥(x,y) to the unknowns of the Euler equations (2.1). The new field is simply advected
along with the flow and does not interact with any of the other fields. Its purpose is
simply to identify specific fluid particles by “tagging” them with a specific value of ¥. The
Euler equations remain unchanged except for the addition of a fifth equation describing the

evolution of ¥ (z,y):

8(5’1/’) LV (o) = 0. (3.13)
t
At t =0, ¥(z,y) is initialized as:

W(z,y) = 2p(z,y) = p1] 1, (3.14)

P1 — P2

where p(z,y) is the quiescent Richtmyer-Meshkov density field given by equation (1.3) and
p1 and po are the asymptotic values of p(z,y) as £ — —oo and x — oo, respectively. This
tags all fluid particles on the mid-line of the initial density layer, z = zq; + ap cos(y) in

equation (1.3), with the value ¥ = 0. At any point in the simulation, the interface was
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defined as the locus of points satisfying ¢ (z,y) = 0. The instantaneous growth rate was
determined by subtracting interpolated u-velocities at the peak and trough of the interface.

It was assumed that these were located along the top and bottom boundaries of the domain.

3.3 Results for Weak Incident Shocks

The impulsive approximation is known to accurately predict the growth rate of an interface
of zero thickness and small amplitude when the Richtmyer-Meshkov instability is generated
by weak incident shocks [15]. The mean velocity imparted to the interface, V, by a weak
incident shock is small compared to the speed of the transmitted and reflected shocks. In
addition, the growth of the instability is small for weak incident shocks. The residence time
of the shocks in the vicinity of the interface, then, is small compared to the timescale of
the growth of the interface. The time interval during which the incident shock interacts
with a diffuse interface of finite amplitude will be larger and it is not clear whether the
impulse approximation is still accurate. Some justification for the approximation for layers
of finite thickness, L, was provided by Pham [35] who investigated the solution of the
one-dimensional shock-layer problem (setting ap = 0 in equation (1.3)) numerically using
Chisnell’s theory [10].

To determine the accuracy of the impulse model of Saffman and Meiron, growth rates
obtained from the impulsive model are compared with those obtained from full Euler sim-
ulations. The Euler equations are non-dimensionalized with the following characteristic

quantities:
u. =V, le=MA2=m, Pec = pL + PR, (3.15)

where p;, and pg are the post-shock densities and V, the speed of the contact surface in
the one-dimensional shock-contact problem discussed in §1.3. Because of the choice of u.,
the mean velocity of the shocked density layer in the Euler simulations will be 1. To make
direct comparisons against the model, the value of V specified in equation (3.9a) of the
model is chosen to be 1.

A second check of the accuracy of the impulse model is performed by comparing total

circulation in the entire computational domain computed from both simulations. In com-
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Table 3.1: Impulse model computational parameters for weak shocks.

ag At | L B Tlmax
0.01 | 2.0 | 0.9995
0.2]01 |1.00.999
1 0.2 109
0.01 0.01 | 2.0 | 0.9995
0.8 0.1 1.0 | 0.999
1 0.2 109
0.01 | 0.2 | 0.85
0.2 ]0.1 0.2 0.9
1 0.2 | 0.95
1 0.01 | 0.2 ] 0.85
0.8 0.1 0.2 ] 0.9
1 0.2 ] 0.95

paring the circulation in the domain from the impulse model with that obtained from Euler
simulations, the assumption is being made that any vorticity in the domain not located in
the shocked layer is negligible. We will oftentimes refer to such vorticity as being located
“in the bulk of the fluid,” a naming convention used by Wouchuk and Nishihara [68] to dif-
ferentiate this from vorticity on the interface. They show that the bulk vorticity is of second
order in shock strength for Richtmyer-Meshkov problems with sharp, sinusoidal interfaces
of infinitesimal amplitude. We make the assumption that this is true for thick interfaces of
finite amplitude as well and do not differentiate between interfacial and total circulation in
this section.

Numerical experiments demonstrated that the numerical solution of the impulse model,
as described in §3.1, required much higher resolution in the 7-dimension than the y-
dimension. The elliptic problem was solved using a banded LU solver. Convergence studies
indicated that a grid resolution of 6000x40 points was more than sufficient to obtain con-
verged results for the growth rate and circulation from the model. The arbitrary constant
in the solution (arising from use of Neumann boundary conditions on all sides) was fixed by
setting p’(6000,40) = 0 in the solution of the matrix problem. The asymptotic boundary
conditions in the 7n-direction were enforced at n = £nmax. Table 3.1 lists the computa-
tional parameters used in the numerical solution of the model. In this chapter only positive
Atwood ratio cases are considered simply to limit the number of cases studied.

Comparisons between results from Euler simulations and solutions of the impulse model
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are shown in figures 3.2-3.5. The incident shock strength used in the Euler simulations was
My =1.01. No Mach number need be specified in the model. The strength of the impulsive
pressure force is determined by the choice of V in (3.9a). Adaptive mesh refinement was
used in the Euler simulations to obtain converged growth rates and circulations in the
manner specified in §2.1.1. The coarsest grid level had a spatial resolution of 100 cells in
the y-direction. The z extent of the domain needed to ensure that the transmitted and
reflected shocks remained in the computational domain during the entire simulation was
calculated at run time using the solution of the equivalent one-dimensional shock-contact
problem described in §1.3. Requiring that Az = Ay, the number of cells in the z-direction
was determined autorha‘cically. Each additional grid level of refinement was composed of
cells whose Az and Ay were half as large as the next coarser grid. It was found that in
order to get converged results for the growth rate, three additional grid levels were needed
for simulations of problems with L = 0.01. Two levels were needed when L = 0.1 and no
additional levels were needed for L = 1 cases.

From figures 3.2-3.5 it is seen that the impulsive model of Saffman and Meiron accurately
predicts the limiting value of growth rate and circulation for almost every case, spanning a
wide range of Atwood ratios, initial amplitudes and layer thicknesses. Each figure displays
the growth rate (left column) and circulation (right column) calculations for a fixed Atwood
ratio and initial amplitude. Each row corresponds to a specific layer thickness.

In each plot of growth rate (left column of figures 3.2-3.5), the result from the Richtmyer
impulse model (see §1.4) for an equivalent interface of zero thickness is also shown. For small
amplitude interfaces (figures 3.2-3.3) the discrepancy between the Richtmyer result and the
Saffman-Meiron result is due to nonzero values of layer thickness, L. While the Saffman-
Meiron growth rates are very close to the Richtmyer predictions for L = 0.01 cases, the
reduction in growth rate seen for L = 1 layers (bottom rows in figures) is substantial. The
Saffman-Meiron model correctly calculates this reduction.

A sharp spike in the early time growth rate is seen in some of the plots. These are
artifacts resulting from the fact that the growth rates are computed using the discrete u-
velocities u; ; (see §3.2) and these spikes are not meaningful. The spikes occur when the
incident shock, which has a finite numerical thickness, passes through the point on the
interface (the curve ¢ = 0) at y = 0 (the “peak” of the interface). The numerical u-velocity

at the peak is not physical since the u; ; values within the thick shock are dictated purely
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Figure 3.3: Comparisons between models and Euler simulations for At = 0.8 and ag = 0.01.
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by numerical issues (see §2.2). Technically, this velocity should not be used to compute
the growth rate. Similarly, when the shock passes through the interface at y = A/2 (the
“trough”), a spike in the growth rate also occurs. This spike is not seen in the plots of
figures 3.2-3.5 because these spikes drive the growth rate below zero and the abscissa range
of the plots are restricted to positive numbers.

The oscillations in growth rates are real, however, and are the result of pressure per-
turbations bouncing between the transmitted and reflected shocks and the shocked density
layer [41]. These waves are generated by the corrugated shock fronts as they oscillate in
the process of stabilizing themselves [42]. Troughs along a shock strengthen as the front
propagates, sending compression waves back into the flow field. Similarly, peaks along a
shock front are expansive regions and weaken as the shock moves, sending expansive dis-
turbances back into the flow behind. The temporal oscillations in the growth rate about
the asymptotic value represent the interaction of these pressure waves with the interface.
A closer look at these interactions is delayed until §3.6.

For the large amplitude cases shown in figures 3.4 and 3.5, there is a discrepancy in
growth rate between the two impulsive models even for thin L = 0.01 interfaces. The
failure of the Richtmyer model to obtain the correct growth rate in these cases is due to
the assumption of a small amplitude to wavelength ratio inherent in the Rayleigh-Taylor
analysis used in the Richtmyer theory (see §1.4). The Saffman-Meiron model places no such
restrictions on the amplitude of the interface.

The growth rates predicted by the Saffman-Meiron model for the At = 0.8 case with
large initial amplitudes, ag = 1 (figure 3.5), show some disagreement with Euler simulations
for the L = 0.01 and L = 0.1 cases. This is not true of the corresponding At = 0.2 cases
shown in figure 3.4. Numerical Schlieren-type images of the flow for both At = 0.2 and
At = 0.8 cases with ap = 1 and L = 0.1 are shown in figure 3.6 for comparison. The
transmitted shock in the At = 0.8 case is undergoing regular reflection along the top of
the domain. The high Atwood ratio case contains significant secondary waves between the
transmitted shock and density layer. These waves modify the evolution of the interface in
ways not accounted for in the impulse model. We believe these waves are responsible for
the small disagreement in growth rate for the At = 0.8 cases.

The right column of figures 3.2-3.5 compares the calculations of total circulation. To

examine the variation of circulation with layer thickness, the estimate of initial circulation
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Figure 3.6: Schlieren images of two simulations with ap = 1 and L = 0.1 (Top: At = 0.2,
Bottom: At = 0.8). The At = 0.8 case has secondary waves affecting the evolution of the
density layer.

deposited on an equivalent interface of zero thickness computed from a method due to
Samtaney and Zabusky [51] has also been plotted in each graph. From the graphs it
is seen that although there is some difference between the Samtaney-Zabusky result for
L = 0 interfaces and the maximum value of circulation computed from Euler simulations
for interfaces with non-zero L (particularly the At = 0.8 cases), the reduction due to finite
thickness of the density layer is not nearly as pronounced as the corresponding reduction in
growth rate. This implies that it is not the total magnitude of circulation which is important
in determining the growth rate of the interface but the distribution of the vorticity and
its proximity to the interface. Note that while the Samtaney-Zabusky method produces
estimates of the initial circulation, the impulse model of Saffman and Meiron accurately
predicts the late time circulation which ultimately determines the asymptotic growth rate
of the diffuse interface.

For low Atwood ratio interfaces the total circulation calculated from Euler simulations
varies little with time after achieving its initial post-shock value. For high Atwood ratios the
circulation first attains a maximum value, then drops to a lower value before rising again to

oscillate about an asymptotic value. The initial drop in circulation is due to compression
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waves generated by the oscillations of the transmitted and reflected shocks modifying the
interfacial vorticity through secondary baroclinic interactions [52]. Note that these drops
correspond to the small decrease in the growth rates for the high Atwood ratio cases [52].
These pressure waves bouncing between the shocks and the layer continue to modify the
vorticity distribution in the layer as evidenced by the oscillation in circulation with time.
Thicker layers do not experience as great a vorticity modification as thinner layers do. We
believe this is because these waves reflect back towards the shocks after hitting the outer
edges of the thick layer. In effect, the majority of the vorticity deep inside the layer is better
insulated from pressure waves for thicker layers than thinner ones.

The results in this section show that the Saffman-Meiron model accurately models the
Richtmyer-Meshkov instability occurring in continuously stratified media. It correctly pre-
dicts the reduction in the growth rate due to non-zero values of L. With the use of any stan-
dard banded LU solver, it can be considered a simple method of simulating the Richtmyer-

Meshkov instability for weak incident shock waves.

3.4 Results for Stronger Incident Shocks

We now turn our attention to the case of stronger incident shocks. While the difference in
mean velocities of the transmitted (and reflected) shock and interface, Uy —V (and V —Uy,),
increases with M (see figure 1.8), the growth rate of the interface increases much faster.
In contrast to weak incident shock cases, then, the residence time of the shocks in the
vicinity of the interface is not necessarily small compared to the timescale of growth of the
interface for stronger incident shocks. Thus, the model of Richtmyer-Meshkov instability as
an impulsive force acting on an interface followed by passive evolution of an isolated layer
in an incompressible fluid is suspect. The transmitted and reflected shocks might modify
the evolution of the interface.

To obtain reasonable predictions, we found it necessary to use post-shock values of
interface parameters in the Saffman-Meiron model just as Richtmyer used in his. The input
to the model is the two-dimensional quiescent density distribution, po(z,y). We make the
assumption that the post-shock density field is still described by equation (1.3), just as the
pre-shock field was, but with new values of At, ag, and L.

The values of At and ap used were Atpesy and agppos; Whose calculation is explained
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in §1.4. In lieu of a formula, the determination of post-shock layer thickness, Lyost, was
done for each problem by manually determining an effective value for L. A one-dimensional
shock-layer problem was run and the post-shock density profile of the layer was compared
to that given by equation (1.3) with At = Atpest and a9 = 0. Parameter L (and zq) was
chosen so the two profiles overlapped. Although this procedure is admittedly crude, we
believe it is the most accurate way to obtain a value of L to use in the model. Although
Chisnell [10] considered the one-dimensional problem of shock propagation through a density
layer, his solution was not simple to obtain and only resulted in an approximate description
of the shocked density layer. Once a suitable value for Lpos was calculated in this manner,
the function po(z,y) input to the Saffman-Meiron model was given by equation (1.3) with
At = Atpost, G0 = Gopost; and L = L. Care was taken to calculate values of Lpost
immediately after passage of the shock to minimize errors resulting from the diffusion of
the layer due to numerical viscosity in the Euler simulations.

For Richtmyer-Meshkov problems involving strong shocks, not all the vorticity in the
flow is located within the shocked density layer. As the incident shock undergoes refraction
through the density layer, both a corrugated transmitted and reflected shock is generated.
These shocks oscillate as they propagate, leaving vorticity in their wake. For strong shocks,
this vorticity left in the bulk of the fluid can be non-negligible [68]. At this point, then,
a distinction between the circulation in the shocked layer, which we will call “interfacial
circulation,” and the total circulation in the entire flow field is made. We now define the
density layer precisely to avoid any ambiguities. The interfacial circulation is defined as the
area integral of vorticity over the region containing all points such that [¢(z,y)| < 0.99,
where 9(z,y) is the “level set” passive scalar field introduced in §3.2. In the Euler code,
this integral is calculated using the two-dimensional trapezoidal rule and central differences

to calculate wj j:

Zmax NGAl
Vi+lj — Vi—1,j  Uij4+1 — Ujj—1
Ting(t) = Z Az Ay Z Z { i ;Aw i=1,j _ 2ig A (2%
1=0 k=1 i ! b
flag; ;=0 (316)

|44,51<0.99

where lnax is the number of grid levels in the AMR grid hierarchy (see appendix A), NGA,
is the number of grid patches on level [, and flag; ; identifies which cells have been flagged

for refinement. The innermost summation loops over all i and j in mesh patch k of grid
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level [. If a computational cell (,7) in patch k of level | has been covered with finer cells
in a higher grid level, the adaptive mesh refinement machinery changes flag; ; from zero to
one. This indicates that the summation should not use the data in the cell on grid level [
but the data in the corresponding finer cells in grid level [ + 1. In this way the sum (3.16)
uses the most accurate data at any spatial location in the computational domain. The
interfacial circulation is much more important in determining the growth rate than the
total circulation. Comparison between the two will provide a measure of the amount of
vorticity deposited in the bulk of the fluids by the shocks.

Comparisons between models and Euler simulations are shown in figures 3.7-3.10. All
cases considered have the same small initial amplitude of ag = 0.01. This was done to ensure
that the interface grew with a constant growth rate. Richtmyer-Meshkov instabilities with
large amplitudes initiated by strong incident shocks do not have a constant limiting growth
rate because much of the energy in the flow goes into creation of vortex roll-up structures
(see figure 1.2) rather than pure increase in amplitude. The growth rate decays with time
(see figure 1.4) for large amplitude interfaces. The Saffman-Meiron model is not restricted
to cases with a small amplitude to wavelength ratio and could be used to calculate the
vorticity field resulting from the shock-layer interaction for interfaces of amplitude larger
than ap = 0.01. However, because the growth rate for these cases varies with time, the
impulse model, which does not contain a time variable, cannot be used by itself to compute
the growth of the interface. The vorticity field generated from the model could be used as
an initial condition of a time-dependent incompressible Euler simulation to compute the
growth rates for these cases. This approach has been followed by Pham and Meiron [36].
This does require a second code, however, and increases the amount of computational effort
needed to obtain a growth rate from the model. For simplicity, we restrict ourselves to small
amplitude interfaces, where the growth rate oscillates about a constant value, to assess the
accuracy of the impulsive approximation for strong shocks.

Each figure shows comparisons of the growth rate and circulation for a fixed interface
configuration specified by At and L. Each row corresponds to a specific incident shock
strength. Thin layer cases (L = 0.01) are not considered because the results were very
similar to the L = 0.1 cases. As in §3.3, two additional grid levels were used in the AMR
grid of the Euler simulations for L = 0.1 cases and no refinement was used for L = 0 cases.

Computational parameters used in numerical solution of the impulse model are shown
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Figure 3.10:
L =1. (Rows: (top to bottom) M; = 1.25, My = 2, M; = 4, and M = 8)

Comparisons between models and Euler simulations for At = 0.8, ag=0.01,
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Table 3.2: Impulse model computational parameters for strong shocks.

My At Atpos‘c 40,post L Lpost Y TImax
0.2 ] 0.19943 | 7.3017e-3 | 0.1 | 0.070 | 1.0 | 0.9990
1.25 1 0.670 | 0.3 | 0.9000

0.8 | 0.79861 | 8.4943e-3 | 0.1 | 0.065 | 1.0 | 0.9990
1 {0.600 | 0.3 | 0.9000
0.2 | 0.18807 | 4.3554e-3 | 0.1 | 0.045 | 1.5 | 0.9995
2 1 10.350 | 0.5 | 0.9900
0.8 | 0.77226 | 6.7625e-3 | 0.1 | 0.045 | 1.5 | 0.9995
1 ]0.300 | 0.5 | 0.9900
0.2 | 0.15360 | 2.8947e-3 | 0.1 | 0.038 | 1.5 | 0.9995
4 1 |0.220 | 0.8 | 0.9990
0.8 | 0.69627 | 5.7373e-3 | 0.1 | 0.045 | 1.5 | 0.9995
1 10.230 | 0.8 | 0.9990
0.2 | 0.13190 | 2.5153e-3 | 0.1 | 0.037 | 1.5 | 0.9995
8 1 ] 0.190 | 0.8 | 0.9990
0.8 | 0.64990 | 5.4192¢-3 | 0.1 | 0.045 | 1.5 | 0.9995
1 | 0.210 | 0.8 | 0.9990

in table 3.2. While the incident shock strength did not enter into the impulse model com-
putations for weak shocks, here the value is factored in indirectly through the post-shock
parameters Atpos, Gopost and Lpost. Parameters At, ap and L listed in the table are the
pre-shock values. All computations were performed on a 6000x40 grid.

The growth rate comparisons for At = 0.2 cases in figures 3.7 and 3.9 show the agree-
ment between the impulse approximation and the Euler simulations is not good. Even for
shocks as weak as M; = 1.25 the relative error is about 15%. Stronger shocks show worse
agreement. For At = 0.8 cases, however, the impulse model predicts the late time growth
rate much more accurately. Shocks as strong as M; = 8 show good agreement for both thin
(L = 0.1) and thick (L = 1) layers. These observations are similar to those communicated
by Yang et al. [69] who compared growth rates calculated from Richtmyer’s impulsive model
to solutions of linearized Euler equations for interfaces of zero thickness.

For the L = 1, At = 0.8 cases shown in figure 3.10, the growth rates computed from the
Saffman-Meiron model were in better agreement with Euler simulations than those from
the Richtmyer formula provided post-shock values of L were used. For example, using
Lyost = L =1 in the model for the M; = 8, At = 0.8, L = 1 case resulted in a growth rate

of dmodel = 0.0021 in contrast to the much more accurate émoqe = 0.0032 calculated using
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Lpost = 0.21.

The circulation comparisons in the right columns of figures 3.7 and 3.9 show that the
impulse model substantially under-predicts the interfacial circulation for low Atwood ratio
cases. This is not surprising in light of the fact that the model also under-predicts the
growth rate. Remarkably, the circulation from the model is quite close to the asymptotic
value of total circulation in the region with the exception of the M; = 8 cases. It is not
at all clear why the impulse model should capture this value. The initial drop in total
circulation for At = 0.2 cases is due to the creation of a large region of negative vorticity
by the oscillation of the transmitted shock. As the shock oscillates, it lays down patches
of vorticity in the flow behind of alternating sign. This is shown in the two pictures of
figure 3.11 where vorticity along the line y = A/4 is plotted for the M; = 2, L = 0.1 case.
In figure 3.11(a) the deposition of negative vorticity behind the transmitted shock (the
shock is the thin spike of vorticity — a numerical artifact resulting from the use of central
differencing to compute w; ; — located at « = 3.6) is seen. Later in the simulation, the shock
generates positive vorticity and then more negative vorticity as shown in figure 3.11(b). It
is this additional generation of vorticity that is responsible for the temporal oscillation of
the total circulation about an average value. Note that these oscillations are not, in general,
in phase with the oscillations of the interfacial circulation which are caused by the action
of pressure waves modifying the vorticity distribution in the layer. While it is tempting to
infer that the small difference between the impulse model circulation and the average value
of the total circulation from Euler simulations for At = 0.2 cases is meaningful, we do not
see how this is possible.

The plots of circulation for At = 0.8 cases (figures 3.8 and 3.10) show that, in general,
the model does not calculate the correct interfacial or total circulation. This is surprising in
light of the good agreement in growth rate for these cases. Had the impulse model correctly
calculated the vorticity distribution in the layer, the circulation from the model would
have agreed quite well with the average interfacial circulation from Euler simulations. It
would appear, on the basis of these results, that the impulse model has somehow calculated
a vorticity distribution which is not correct but which has the same net effect on the
interface growth rate as the true distribution. The difference between the interfacial and
total circulations from Euler simulations indicates the presence of substantial vorticity away

from the layer which is not accounted for in the impulse model.
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Figure 3.11: Vorticity along the line y = A\/4. As the transmitted shock propagates, it
deposits vorticity in the fluid behind it. (M; = 2, At = 0.2, a9 = 0.01, L = 0.1, (a) t = 2,
(b) t=4)

3.5 Assumptions of the Impulse Model

In light of the disagreement between the model and Euler simulations in the previous section,
it is clear we must take a closer look at the underlying assumptions of the impulse model.
The model simulates the growth of the shocked density layer as a band of vorticity evolving
under its own power in an incompressible fluid. Any vorticity in the surrounding flow is
ignored. The effects of compressibility are only accounted for by using post-shock values
of parameters in the model. The large difference between interfacial and total circulations
shown in figures 3.7-3.10 as well as the vorticity profiles in figure 3.11 reveal the actual flow
definitely contains vorticity in the bulk of the fluid. The effect this vorticity may have on
the growth rate of the interface is not clear and will be studied in this section. Before we
do this, the assumption of incompressibility is examined by calculating the divergence of
the fluid velocity in the Euler simulations.

We restrict our attention to the divergence along the interface, defined as the locus of
points such that ¢(z,y) = 0. To plot the time evolution, an average value of the divergence
along the interface, |V - u]ayg, is computed to obtain a single number at each time. The
discrete divergence in each cell is calculated using centered differences. To compute |V u|ayg,
a sweep through all the cells in the finest grid level is done to locate the cells which straddle
the curve ¥(z,y) = 0. Linear interpolation is done to compute values of |V - u| directly

on the curve. These values are summed and the result divided by the number of points



56

0.6 T T T T T T ‘ 0.5 T T —_

b 0.45 |
o5 o4 |
¢ i
& r
04 |1 0.35 i

8 1 g 03
5 1 & i
<] 03 }% o 025
o 3 ° <
> 3 > &
8 a 0.2 4
o2y %‘g 1 0.15 |
3
0.1} § - o1 r
0.05
o L 0 . ;
015 02 025 03 035 04 045 05 01 015 02 025 03 035 04 045 05
Time Time

(a) (b)

Figure 3.12: Time evolution of |V - u|avg (M7 =2, ap = 0.01, L = 0.1 and (a) At = 0.2, (b)
At = 0.8).

to obtain the average discrete divergence along the interface. It should be noted that the
discrete divergence does not converge at the numerically smeared shock. The shock is
smeared over a set number of grid cells by the flow solver regardless of the values of Az and
Ay for those cells. The numerical thickness of the shock is self-similar with grid spacing.
As the computational grid is refined, the discrete velocity differences (i.e.: uit1,; — ui—1;)
do not change much whereas the discrete spatial differences (i.e.: xjt1; — ®j—1,;) decrease
to zero.

The evolution of |V - ufay, for two problems with parameters M; = 2, ap = 0.01, and
L = 0.1 is shown in figure 3.12. Figures 3.7 and 3.8 have shown the impulse model predicts
the growth rate accurately for the A¢ = 0.8 case but not the At = 0.2 case. In figure 3.12 it
is seen that the interfacial divergence decays very rapidly for both Atwood ratios. Care was
taken to plot only the portion of each curve that converged with increasing grid resolution.
At times earlier than those shown in the graphs, the numerically smeared profile of the
shock affected the values of |V - uf,yg calculated. For both cases the divergence drops to
|V - ulavg = 0.01 as early as ¢ = 0.2. Comparing this time with the growth rate plots of
figures 3.7 and 3.8, it is seen that compressibility on the interface is restricted to very early
times. Mach numbers as high as M; = 8 were tested and |V - uf,ys was found to decay to
very small values well before the interface began the linear growth phase in all cases.

The plots in figure 3.12 track the divergence only on the ¢ = 0 curve. The divergence

was found to be very small throughout most of the flow field with non-negligible values



57
occurring only very near the transmitted and reflected shocks. As the shocks move away
from the interface, the divergence in the majority of the flow field dropped to values on the
order of |V -u| ~ 0.001. The assumption of incompressibility in the impulse model appears
to be quite accurate.

Since the flow is almost entirely incompressible except for a very small region around the
shocks, the evolution of the Richtmyer-Meshkov instability should be almost entirely driven
by vorticity. Impulse models assume this vorticity to lie entirely in the density layer, but it
has already been shown that this is not the case. We now seek to measure the influence of
the unaccounted for vorticity on the growth rate of the interface.

Under certain circumstances [48], the most important being that the flow is divergence
free, the fluid velocity is given uniquely by the sum of a solenoidal vector component and an
irrotational scalar component. The vector component, u = [u, v], is given by the Biot-Savart

law:

u—iv= Py / / w(z ,yx t_ L(g; ;y()y—_zy(lx); z)] dy'dz’. (3.17)

Or, rewriting the kernel with the complex variables z = z + iy and 2’ = z’ + iy/,

°°wzt )
—iv = y'dx'. 1
u—iv = 27”/ /oo —— x (3.18)

At any finite time, the vorticity field of the Richtmyer-Meshkov problem is finite in extent
in the z-direction (bounded by the transmitted and reflected shocks) but infinite in the
y-direction due to periodicity. To obtain a convergent integral, the integral over the infinite

interval in ¢’ is replaced with an infinite sum of finite integrals over one period:

“_”’_2m/ / (.9 (

The infinite sum can be rewritten as a cotangent [1]. Algebraic manipulation results in the

OO

1

n=-—oo

following, rewritten in terms of z and y:

[~]

s

: 2 ! . !
1 oo A sin | (y’ — y)| — isinh |ZF(z — ')
u—iv = - / / w(z' Yy t) A } [ A ] dy'dx’.
- cosh [

N

2m (g :r’)} — cos {’)\E(y/ - y)} (3.20)
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In principle, the growth rate could be calculated by subtracting velocities at the peak
and trough of the interface, evaluated using (3.20) if the vorticity field was known. Ignoring
the scalar irrotational component of the fluid velocity is equivalent to viewing the instability
in a frame of reference moving with the mean speed of the interface, V. Impulse models
can be thought of as a method to compute the vorticity field without explicitly computing
the shock refraction through the density layer.

The two-dimensional trapezoidal rule was used to numerically calculate the integral (3.20)
using the vorticity field in the Euler simulations. The vorticity in each grid cell was com-
puted using central differences. Although this may appear to be a circular exercise — using
the discrete velocities to calculate vorticity which is then used to calculate velocities through
the Biot-Savart law — this was done to determine if the growth rate could be calculated from
the Biot-Savart law which holds only if the flow is incompressible. We seek an answer to
the question: is it sufficient to describe the Richtmyer-Meshkov instability solely in terms
of a vorticity field?

One modification must be made to (3.20), however, to account for the fact that only
half a wavelength was simulated in the Euler simulations. The range of integration is
restricted to y’ € [0,A/2] and symmetry in the problem is used to account for the vorticity

iny € (A\/2,]]. Using w(z,y,t) = —w(z, A — y,t), the results are:

1 o >\/2 / / / /
U($,y) = 4_1/ 0 fu(xayax 'Y )dy dz b (321&)
1 e )\/2 / / / /
v(z,y) = Z/ /0 fo(z,y, 2,y )dy'da’, (3.21b)
—0Q
: 2w (! : 2 /
fulz,y, 2’ y) = w(@,y,t) - [—,\—(y —y)] s [T()‘ i —y)]
e 227 D(z,y,2'y)  Dl(my,a,A—y) [’
(3.21c)
ron o . 2_7'" o } { 1
folz,y,2',y") = w(z',y/,t) sinh { 3 (x — ) IERCRT)]
1
- D($7 Y, xlv A— yl) } ’ (321d)
2
D(x,y,z’,y') = cosh [2;(11 - :):')} — cos [; (' — y)} ) (3.21e)

The data on the finest grid at any location (z’,3') was used in the calculation of the
integrals in the same manner as in the calculation of 'y, in §3.4. Identifying the peak and

trough of the interface by (zp,y,) and (z,y:), respectively, the incompressible growth rate
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was computed using the following:

lmax NGAZ
abiot (t) = ; AnAy > D [ful@p, Yps @i vig) — Fulme, v, i, vig)]
=0 k=1 6]
flag, y=0 (3.22)

where [,y is the number of grid levels in the AMR grid hierarchy (see appendix A), NGA;
is the number of grid patches on level I, and flag; ; identifies which cells have been flagged
for refinement. The innermost summation loops over all 7 and 7 in mesh patch & of grid level
l. Note that in contrast to the well-known point vortex implementation of the Biot-Savart
law, the velocities are not evaluated at vortex nodes so it is not necessary to skip over any
vortex nodes in the sum to avoid the singularity in the integrand. The use of Richardson
extrapolation is a popular way to attain a high order of formal accuracy in point vortex
methods. We have chosen not to implement this since the use of weighting functions in
the sum which are functions of the computational indices of the vortex nodes would be
cumbersome to implement on the AMR grid. A high enough spatial resolution was used to
obtain converged results for ap;et(¢). The needed resolution was comparable to that needed
to compute the growth rate using velocities from the Euler code.

The calculation of the growth rate from the Biot-Savart law allows determination of
the contribution of bulk vorticity on the growth rate. This was accomplished simply by
placing a restriction on which vortex contributions to consider in the calculation of (3.22)
in the same manner as was done for calculation of T’y in §3.4. To compute the growth
rate using only interfacial vorticity, the restriction [t; ;| < 0.99 is added to the innermost
sum in (3.22). Any difference between the calculations with and without the |¢; ;| < 0.99
restriction is the result of neglect of the vorticity not in the layer.

Figure 3.13 compares the growth rates computed using velocities from the Euler simu-
lation (“Compressible”) as was done in figures 3.7-3.10, the incompressible formula (3.22)
(“Biot-Savart”), and the restricted Biot-Savart calculation over the region |¢(z,y)| < 0.99
(“Layer only”) for parameters M; = 2, ap = 0.01, and L = 0.1. At early times there is
clear disagreement between the compressible and incompressible results due to the influence
of the shocks on the interface. The asymptotic growth rate, however, is calculated quite
accurately from the Biot-Savart law for both Atwood ratios. This provides strong evidence

that the instability is vorticity-dominated at late times.
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Figure 3.13: Calculation of growth rate from compressible and incompressible calculations.
(M7 =2, ap=0.01, L=0.1, (a) At = 0.2, (b) At = 0.8)

Comparing the two incompressible results, it is seen that the vorticity away from the
layer plays a definite role in the determination of the growth rate, although a small one.
For both cases, the neglect of the off-layer vorticity by the “Layer only” calculation creates
an 8-9% over-prediction. The reduction in growth rate due to inclusion of bulk vorticity
is because the largest patch of vorticity away from the layer, and the one closest to the
interface, is one of negative vorticity laid down by the transmitted shock.

Temporal oscillations of the growth rate in the At = 0.8 case are present in the incom-
pressible calculations but are out of phase with those of the compressible results. These
oscillations are due to pressure perturbations in the fluids generated by the corrugated
shocks as they stabilize themselves. These pressure waves modify the velocities at the inter-
face both by modifying the vorticity distribution in the layer (see §3.6) through baroclinic
interactions and by creating pressure forces. We cannot offer an explanation for the time-lag
between oscillations of the compressible and incompressible growth rates and believe it to
be due to some secondary feature not accounted for in the incompressible theory. Increas-
ing the resolution of the Euler simulation, however, did not bring the two curves back into
phase and we are inclined to believe the phase lag is real.

Although the discussion in this section so far has focused on the case M; = 2, ag = 0.01,
and L = 0.1, similar results are obtained for thicker layers and stronger shocks. Increasing
the Mach number from M; = 2 to M; = 8 does not alter the fact that the asymptotic

value of the growth rate is dictated by the vorticity distribution. The results from the
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Figure 3.14: Calculation of growth rate from compressible and incompressible calculations.
(M; =8, a0=0.01, L=0.1, (a) At = 0.2, (b) At = 0.8)

My = 8 simulations are shown in figure 3.14. Neglect of the bulk vorticity, however, causes
larger errors. The relative error between asymptotic values of growth rate between the two
Biot-Savart calculations is about 20%. The results for a layer of initial thickness L = 1 are
given in figure 3.15.

The assumption of incompressibility made in impulse models is valid for the late time
growth of Richtmyer-Meshkov instabilities even if generated by very strong incident shocks.
The asymptotic growth rate of the Richtmyer-Meshkov instability for small amplitude in-
terfaces is determined by the vorticity distribution. However, the vorticity does not lie
entirely within the layer (as the model assumes) and neglect of vorticity in the bulk of the
fluid leads to incorrect calculations of the growth rate. This neglected vorticity, however, is
not responsible for the failure of the impulse model to accurately compute the growth rate
for At = 0.2 cases, as seen in §3.4. In fact, the influence of the negative vorticity outside
the layer decreases the discrepancy. We now turn our attention to the vorticity distribution

in the shocked layer before considering the case of large amplitude interfaces.

3.6 Distribution of Vorticity

When the Richtmyer-Meshkov instability occurs in continuously stratified fluids the shocked
interface is a region of continuous, bounded vorticity rather than a vortex sheet as in

the classical problem. Samtaney and Pullin [53] have conjectured that the self-similar
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Figure 3.15: Calculation of growth rate from compressible and incompressible calculations.
(M; =8,a0=0.01, L=1, (a) At = 0.2, (b) At = 0.8)

Richtmyer-Meshkov problem does not converge to a weak solution of the Euler equations
as the computational mesh is refined because of the presence of the vortex sheet. In the
problem at hand, numerical convergence of pointwise values of vorticity in the layer can be
achieved and those values can be compared directly against the Saffman-Meiron model.
The spatial resolution required to obtain convergence of w; ; (calculated using central
differences) in the layer was found to be significantly more than that needed to obtain
convergence of the growth rate and circulation. Numerical viscosity in the Euler simulations
caused the shocked layer to decompress and diffuse after the passage of the shock. As the
layer spreads out, the magnitude of vorticity in the layer decreases. Pointwise convergence
of the vorticity field, then, is not a requirement to obtain accurate values of the growth rate
in the Euler simulations. In fact, this must be true for if pointwise convergence was required,
accurate calculation of the growth rate for the classical, sharp interface Richtmyer-Meshkov
problem would not be possible using shock capturing Euler codes. Accurate calculation
of the growth rate depends on computing an “effective vorticity distribution” correctly. It
was necessary to use a finest-grid-level resolution of A/3200 using the van Leer flux limiter
(see §2.3) to get pointwise convergence of vorticity for L = 0.1 layers. Adaptive mesh
refinement made these calculations feasible. Additional savings were realized by noting
that much less resolution was needed in the y direction. The numerical diffusion in any
cell depends on, among other factors, the density gradient across a cell face. For the small

amplitude cases considered here, the variation in the y-direction is quite small and high
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Figure 3.16: Slices of vorticity along mid line of domain. (M; = 2, ap = 0.01, L = 0.1 and
(a) At = 0.2, (b) At =0.8)

resolution in the y-direction was not required.

The vorticity distribution predicted from the Saffman-Meiron impulse model can be

calculated from V X [ug,vo] using equations (3.10a) and (3.10b):

Wmodel =

/ !/
1 <8poap Opo Op +V-%>. (3.23)

R \dzoy  oyoz oy

To compare the pointwise vorticity computed from the model and Euler simulations, slices
of the vorticity field along y = A\/4 were compared. These comparisons are shown in
figure 3.16 for M7 = 2, ap = 0.01, L = 0.1 and both Atwood ratios. The Euler profiles were
aligned with the impulse model profiles by shifting the data in the z-direction such that
the zero level set of 1)(z,y) passed through z = 0 at y = A/4. The data from the Euler
profiles in the figure was taken at ¢ = 2.88 in the At = 0.8 case and t = 2.7 in the At = 0.2
case — moments in the simulations where the Euler growth rate was close to its asymptotic
value. In both cases, the impulse model clearly under-predicts the vorticity. The At = 0.2
case shows worse agreement than the At = 0.8 case. This is consistent with the circulation
comparisons in figures 3.7 and 3.8 where the disagreement between interfacial and model
circulation was larger for At = 0.2 than At = 0.8.

Note the location of peak vorticity in figure 3.16 is not at x = 0 in the model or the
Euler simulation. The coordinate x = 0 in these figures corresponds to the intersection

of the interface with the line y = A\/4 and, so, the maximum values of vorticity do not
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Figure 3.17: Slices of vorticity along mid line of domain. (M; = 1.01, ap = 0.01, L = 0.1
and (a) At = 0.2, (b) At =0.8)

occur exactly on the interface curve. A “forward lean” in the Euler profiles can be seen in
the figure. The right edge of the layer is steeper than the left. We have noted that this
lean increased slightly with time in the Euler simulations. Fearing this to be a numerical
artifact, we performed the At = 0.8 simulation in both the “laboratory frame” (where the
shocked layer moves with mean velocity V') and a frame moving with the interface. The
vorticity profiles of both simulations had a lean. Changes in resolution also did not alter
the profile. We believe the departure from symmetry may be the result of the pressure
perturbations generated by the oscillating shocks. Because the transmitted shock is much
stronger than the reflected shock for this value of incident Mach number (see figure 1.9),
the waves generated from the transmitted shock may result in more compression occurring
on the right side of the layer than the left.

The M; = 1.01 cases corresponding to those in figure 3.16 (with M; = 2) are shown in
figure 3.17. The profiles from the Euler simulations are in excellent agreement with those
from the model throughout most of the layer. Note there is no forward lean to the Euler
profiles as there was in figure 3.16. For M; = 1.01 the strengths of the transmitted and
reflected shocks are comparable and we believe this provides some justification to the theory
that the lean in the M; = 2 cases is due to anisotropic compression of the density layer.
A numerical artifact is seen to the left of each profile, however. This error occurs at the
boundary between a coarse mesh patch and a fine mesh patch on the AMR grid. We found

that variations in the grid resolution used altered its shape. These artifacts occur only for
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Figure 3.18: Time evolution of vorticity along a curve in the layer (M; = 2, At = 0.8,
ap = 0.01, L =0.1)

the M; = 1.01 case and we believe they do not affect the simulation significantly. The
region of vorticity behind the A¢ = 0.8 layer appears to be related to the anomaly at the
coarse-fine grid boundary.

In general the vorticity in the layer changes little with time for the At = 0.2 cases. As
a result, the interfacial circulation varies little with time (see figures 3.7, and 3.9). The
vorticity in the high Atwood ratio case, however, does change in time due to the action
of pressure waves originating from the corrugated shocks. These pressure perturbations
modify the vorticity distribution through baroclinic interactions. In figure 3.18 the time
evolution of vorticity for the My = 2, At = 0.8 case is shown. Each plot is the distribution of
vorticity along the curve in the layer which passes through the point of maximum vorticity
for each y-coordinate. This curve is not coincident with the interface curve, as defined
in §3.2. While the graphs in figure 3.16 plotted vorticity as a function of = for a fixed value
of y, the graph in figure 3.18 plots vorticity along a nearly vertical curve lying in the layer.
At early times, the vorticity varies significantly with time. At late times, however, the

profiles oscillate slightly about an average profile. The curve computed from the impulsive
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model is shown for comparison. As seen in figure 3.16(b), the impulse model under-predicts
the vorticity.

The vorticity distribution in the layer is not computed accurately from the Saffman-
Meiron model using post-shock parameters for either low Atwood or high Atwood cases.
The success this model enjoys in predicting the asymptotic growth rate for large Atwood
ratios appears to be due to a beneficial cancellation between the excess positive vorticity
in the layer that the model does not calculate and the negative vorticity in the bulk of the
fluid. While these conclusions apply to the Saffman-Meiron model of Richtmyer-Meshkov
instability in continuously stratified fluids, we believe they carry over to Richtmyer’s model
for sharp interfaces as well. The small differences in growth rate between the Richtmyer
model and the Saffman-Meiron model for L = 0.1 interfaces seen in figures 3.7 and 3.8
indicate that giving the layer a small finite thickness does not change the character of the
instability much. We are inclined, therefore, to agree with Fraley [15] that the accurate
prediction of the growth rate from the use of post-shock parameters in impulse models is

not meaningful.

3.7 Large Amplitude Interfaces

Impulse models, by their very nature, contain no time variable and do not apply to large
amplitude Richtmyer-Meshkov instabilities where the growth rate decays with time (see
figure 1.4). The creation of vortex roll-up structures (as in figure 1.2) results in much of the
kinetic energy of the flow being used to deform the layer rather than increase the peak-to-
trough distance, thus, the growth rate does not have an asymptotic value. We now examine
the compressibility and vorticity distribution for larger amplitude cases without reference
to impulse models.

Growth rates for an interface of moderate amplitude, ag = 0.1, struck by a M; = 2
shock are shown in figure 3.19. The initial amplitude is ten times as large as the problem
shown in figure 3.13. The growth rate estimates from the Saffman-Meiron impulsive model
are plotted in figure 3.19 for reference. Again, the Biot-Savart law accurately calculates the
growth rate at late times indicating compressibility is only important in the initialization
of the instability. The growth rate for the high Atwood ratio case clearly shows decay with

time as nonlinearity begins to play a role in the evolution of the interface.
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Figure 3.19: Calculation of growth rate from compressible and incompressible theories.
(Mr=2,a0=0.1, L =0.1, and (a) At = 0.2, (b) At = 0.8)

The influence of off-layer vorticity is seen in the discrepancies between the full Biot-
Savart calculation and that restricted to vorticity contributions in the shocked layer for
the At = 0.2 case. The influence is not clear for the higher Atwood ratio case. Close
examination of the flow field revealed the existence of regions of positive vorticity near
but not within the layer, defined as the set of all points such that [¢(z,y)| < 0.99. This
unaccounted for positive vorticity cancels the effect of the negative vorticity deposited by
the transmitted shock. The excess positive vorticity could be included in the “Layer only”
calculation by increasing the cut-off value of .

We now increase the initial amplitude by another order of magnitude to ag = 1. The
growth rates for both Atwood ratios are shown in figure 3.20 where it is seen that the Biot-
Savart law captures the decay of the growth rate. Figure 3.21 contains numerical Schlieren
images of the two flows where a complex network of shocks and waves is clearly evident
in the At = 0.8 case. The evolution of the interface remains a vortex dominated process,
however, which incompressible theory models well.

The growth rate for problems with interfaces of large amplitude is determined primarily
by vorticity just as for small amplitudes. In theory, the Richtmyer-Meshkov problem could
be reduced to determining the correct vorticity distribution, which would then be used by
incompressible theories to track the evolution of the interface. Determining the vorticity
distribution a priori, however, is a daunting task. During the initial period where com-

pressibility is important (identified by the time interval in figure 3.20(b) where the growth
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Figure 3.20: Calculation of growth rate from compressible and incompressible theories.
(Mr=2,a0=1, L =0.1, and (a) At = 0.2, (b) At = 0.8)

Figure 3.21: Schlieren-type images of the flow fields from simulations presented in fig-
ure 3.20. (Top: At =0.2 at t = 4, Bottom: At = 0.8 at t = 3.2)
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rate differs with the predictions of the Biot-Savart law), the action of reflected shocks of
the triple points drastically alters the vorticity in the layer as shown in figure 3.22. Time
evolution of vorticity along the curve passing through points of maximum vorticity (as in
figure 3.18) is shown together with numerical Schlieren images of the flow. Secondary shocks
sweep across the interface and modify the vorticity through baroclinic interactions. After
the shocks have moved away and reflected shocks from triple points no longer intersect the
layer, the vorticity distribution will continue to change under action from pressure waves
and due to roll up of the interface.

We close by presenting the results of a Mach 8 shock striking an interface of initial am-
plitude ap = 1 and Atwood ratio of At = 0.8. The growth rate, plotted in figure 3.23, is well
predicted by incompressible theory at late times in spite of the complexity of the low shown
in the accompanying Schlieren image. We have demonstrated that the Richtmyer-Meshkov
growth rate can be obtained solely from the vorticity distribution regardless of incident
shock strength or initial amplitude. However, the correct distribution is not obtained from
popular impulsive models which neglect the effect of bulk vorticity on the interface. Further-
more, the interfacial vorticity distribution predicted by the impulsive model is only correct
for very weak shocks. The development of a model which computes an accurate vorticity
distribution will probably not be trivial due to the complexity of the Richtmyer-Meshkov

flow field, especially for interfaces of large amplitude.
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Figure 3.22: The compressible phase of the simulation of figure 3.20(b). Schlieren images
are taken at times ¢ = 0.34, ¢ = 0.51 and ¢ = 0.68 corresponding to profiles shown in the

graph. The growth rate is plotted in figure 3.20(b).
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Chapter 4

Geometrical Shock Dynamics

Geometrical Shock Dynamics is the name given to a method devised by Whitham in the
late 1950s [64, 65] to solve shock propagation problems in more than one space dimension.
Although the method is based on assumptions which are difficult to justify, the method has
enjoyed remarkable success on a wide variety of shock propagation problems when compared
with experiments and solutions of the Euler equations. The original derivation developed
the needed equations for propagation into uniform media. The extension to propagation
into media with varying sound speed, pressure, and ratio of specific heats was performed by
Collins and Chen [13]. Their expression contained errors in some coefficients, however, and
was later corrected by Catherasoo and Sturtevant [9]. Formulations of the method to deal
with propagation into uniform flow ahead of the shock was done by Whitham [66] and for
the case of nonuniform flow by Han and Yin [18] and Cates [8]. Best [3, 4] has shown how the
equations of Geometrical Shock Dynamics can be derived as a formal approximation to the
Euler equations and has developed a technique for deriving higher order corrections. The
method has been implemented numerically using Lagrangian methods [3, 19, 55], method
of characteristics [9, 71] and methods designed for the supersonic potential equation [8, 56].

In chapter 3 the impulsive approximation — which does not compute the shock refraction
phase or calculate the vorticity distribution outside the density layer — was shown to give
incorrect predictions for the growth rate of the interface and circulation in the layer. An
alternative approach is to model the instability by explicitly calculating the passage of the
shock through the layer and the subsequent propagation of the transmitted shock. The
deposition of vorticity both in the layer and in the bulk of the fluid can be computed
by calculating the vorticity generation at the shock front as it propagates. It is this idea
that is developed further in this chapter using Geometrical Shock Dynamics to compute the
motion of the shock. Some work of this nature has been done by Samtaney and Zabusky who
analytically computed the vorticity initially deposited on the interface [51] and used this in

incompressible vortex models to calculate the growth rate [52]. Their approach, however, is
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Figure 4.1: The method of Geometrical Shock Dynamics

only applicable to interfaces of zero thickness. Further, only the initial vorticity distribution
on the interface is computed while the additional vorticity laid down by the oscillating
transmitted and reflected waves, as well as modifications of the interfacial vorticity by
secondary interactions between the fronts and the interface, is not considered. We begin
by presenting the derivation of Geometrical Shock Dynamics for propagation into media of

varying sound speed.

4.1 Equations of Geometrical Shock Dynamics

The method of Geometrical Shock Dynamics is schematically depicted in figure 4.1. The
propagation of the shock from one instant to the next is computed by requiring points on
the shock to move along normals to the front. The strength of the shock in each ray tube
is updated using the solution to the problem of a shock moving into a channel of slowly
varying area, A, and sound speed, ¢y, as shown in the insert. We briefly outline the solution

for the one-dimensional channel problem below. The full derivation is presented in [67].
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The coordinate along the channel is n, with the datum n = 0 located at the start of the
nonuniform portion. The one-dimensional Euler equations are averaged over the height of

the channel to obtain:

— — —_— = 4.

5‘t+ 877+p077+ Aln) 0, (4.1a)
ou Ou 10p

op  Op (@ Gp) B

5 +u877 < 5 —f—ua = 0. (4.1c)

Before reaching n = 0 the shock propagates down a section of the channel with constant
area A; and ambient sound speed c¢p; with a Mach number of Mj. As the shock propagates
through the uniform region, the state behind the shock is labeled state 2 and that directly in
front is labeled state 1. The solution in state 2 can be calculated from state 1 and M; using
the Rankine-Hugoniot conditions (hereafter called “shock jump conditions”). At ¢ = 0 the
shock enters the nonuniform part of the channel where the area is A(n) and ambient sound
speed is ¢p(n). The Mach number of the shock as it propagates through this region is M
and the state behind is given by p, u, and p. The sound speed and channel area are assumed
to both vary slowly so linearization of the problem about state 2 can be done. Requiring

A'(n)/A < 1 and ¢{(n)/co < 1, the equations become:

9p ~Op  Ou A'(m) _
ou ou 1 0p
el e T 4.2
ot +U287]+,02677 0, ( b)
Op Op 5 (0p 6’9) _
5 + u25‘77 e (825 + u28n = 0. (4.2c)

These equations form a linear hyperbolic system. The equations can be placed into char-

acteristic form and integrated to give

C2U A —A
_ p2C3u2 (77) 1 + F(n — (uz + CQ)t)v

(p —p2) + paca(u — uz) =

Ug + Co A1
(4.3a)
cBuy A(n) — A
(p —p2) — paca(u —up) = — pacyuz Aln) = Ay + G(n — (ug — c2)t),
ug — C Al
4.3b)

(p—p2) — 3(p — p2) = H(n — ust). (4.3¢)
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The lines dn/dt = ua+cy and dn/dt = us—cy are the CT and C~ characteristics, respectively.
The functions F', G and H are the constants from integration along characteristic lines.
The function F in the equation for the CT characteristic can be determined by evaluating
equation (4.3a) at any place and time, n and ¢. For any n < 0, however, u = ug, p = p2, and
A = Aj so F = 0. Every C" characteristic line originates from the uniform section 7 < 0 in
n — t space so F(n — (uz + ¢2)t) = 0.

Both p and u at the shock can be related to the Mach number and upstream quantities.

Using Taylor series:

_ Op(M,~,po)

p=p+ 22| ar gy, (4.4a)
Ou(M,~, ou(M,~,

wmu+ ZELTO oy gy ¢ PRS0y, aa)

where p(M,~,po) and u(M,,cy) are obtained from the shock jump conditions. The ex-
pressions for p — ps and u — ug are substituted into equation (4.3a) to get an expression for

the shock Mach number in the nonuniform region, M:

M— M = -‘7‘1451;11 [Zl;(A A+ L e - cm)} , (4.52)
where
/\1=<1+i1_“%> <1+2m+—1—2>, (4.5b)
v+1 Mj
g1 =1+ %, (4.5¢)

2 (y—1)ME+2

i = . 4.5d
PoyME-(v-1) (4:5d)

This completes the solution to the one-dimensional channel problem.

The method of Geometrical Shock Dynamics requires that points on the shock move
along normals, effectively breaking the shock front into a series of stream-tubes down which
a locally planar shock propagates. Note that although the shock jump conditions require
that flow immediately behind the shock be normal, particle paths are not the same as rays.
As the distance from the shock increases, the deviation of particle motion from that normal

becomes larger. Thus, there is an approximation made here [67]. The assumption is made
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that the error involved in propagating points along normals is small. The channel problem,
however, is not immediately applicable to shock propagation down each stream-tube. In
the solution of the channel problem, an equation for the Mach number was obtained only
because the constant of integration in equation (4.3a), F, was identically zero. In the
two-dimensional problem, there is no uniform region for each shock segment to emerge
from so the solution to the channel problem cannot be used to update the solution in each
stream-tube.

It is at this point that the second fundamental simplification in the method of Geo-
metrical Shock Dynamics is made: the solution to the channel problem will be used as
an approximation. By pretending that each piece of the shock front has emerged from a
uniform region, the influence of the flow behind on the shock is completely ignored. The
error that is made in doing this is not clear. However, it does allow us to obtain an equation
for the Mach number in each tube. The evolution equation for the local Mach number at

each point on the shock is the nonlinear analogue of equations (4.5a)-(4.5d):

A(M) = <1+;y-72r—11;”2> (1+2u+ #) (4.6b)
g(M) =1+ (—7% (4.6¢)
e G a0

where D /Dt is a derivative following a particle on the shock and 3 is a Lagrangian coordinate
along the shock that identifies specific particles. Whitham’s original derivation [64] did not
consider variable sound speed and he integrated equation (4.6a) to obtain an expression
directly relating A and M — the so-called “A-M relation.” Equation (4.6a) tells us how the
Mach number at each point along the shock varies due to changes in ambient sound speed
and local curvature of the shock front. Allowing for variation in downstream pressure and
ratio of specific heats results in additional forcing terms in equation (4.6a) as shown by
Collins and Chen [13]. Their coefficients of the Dp/Dt and D~/Dt terms contained errors
which were later corrected by Catherasoo and Sturtevant [9]. Along with the Mach number

relation, which specifies the dynamics, there is a kinematic equation which states each point
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moves along the normal to the shock:

DX = co(B,H)M(5,)A(5, 1) (47)
where 71(3,t) is the unit normal to the front.

Whitham noted that the A — M relation could be derived by using the shock jump
conditions, which only hold right at the shock, in the differential equation for the C™
characteristic of the Euler equations. Thus, equation (4.6a) could have been derived all in
one simple step. Whitham refers to this alternative derivation as the “characteristic rule.”
By comparing the exact C* equation with the characteristic rule, Whitham determined that

success of Geometrical Shock Dynamics relies on the following quantity being small when

evaluated at the shock:

(ch]\—/[— 2 _1|_ c) <% + pc%) . (4.8)
The first factor is simply a measure of the velocity difference between the shock and dis-
turbances propagating along the CT characteristic. Although the characteristic and shock
overlap in the weak shock limit, this factor is not small for even moderate Mach numbers,
quickly approaching its maximum value of 0.274 (for v = 1.4). The accuracy of the method,
however, is oftentimes much better than this, and it is because of the smallness of

1 Op ou
_—‘8p/8t (a + pca) , (4.9)

that the method works so well. This term is some measure of the nonuniformity behind
the shock. Although expression (4.9) is zero in the channel problem that forms the basis
of Geometrical Shock Dynamics, the reason why this quantity should be small for general
two-dimensional shock propagation problems is not clear at all. Indeed, Whitham himself
states “... no really satisfactory explanation of this was found.” [67] Thus, it must always
be remembered that this method is based on some approximations whose accuracy can-
not be assessed in advance. Comparison of solutions of Geometrical Shock Dynamics with
experiment and other theory has shown, however, that Geometrical Shock Dynamics pro-
duces accurate solutions to a wide range of shock propagation problems. For some problems

involving strong shocks propagating into uniform media Geometrical Shock Dynamics has
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produced amazingly accurate solutions, prompting some to theorize the effects of the flow
behind the shock are not strong enough to significantly modify the shock in those problems.

By neglecting the flow behind the shock, a problem in N-dimensional space is reduced
to one in (N — 1) dimensions, allowing the method to compute solutions cheaply when
implemented numerically. The simple form of (4.6a) can provide quantitative justification
to theoretical arguments as well. For example, it is well known that perturbations of a
planar shock decay as the shock propagates [42]. Looking at (4.6a) (and ignoring the
sound speed forcing term), troughs of the shock are regions where DA/Dn are negative,
leading to an increase in Mach number. Expansive regions of the shock slow down because
DM/Dt < 0 when DA/Dt > 0. With each oscillation, the bulge will spread out along the
shock, resulting in a reduction of the amplitude of perturbation [67]. Geometrical Shock
Dynamics is only an approximate theory, however, and does not damp sufficiently small
perturbations, allowing them to oscillate with fixed amplitude indefinitely instead [62]. An
analytic solution showing this behavior is derived in Appendix C.

An alternative form of the equations of Geometrical Shock Dynamics can be obtained
on an orthogonal system of coordinates (c, 3) where a(x) =constant are shock fronts and
[B=constant are the rays. Letting M and 6, the angle of ray inclination from horizontal, be
the unknowns, the equations of Geometrical Shock Dynamics can be written in the following

characteristic form [9]:

Mdcy ., Ag(M)dco
195 = ch Ba>da (4.10a)

M2 —1
=3\ >an
M Am)
w= /1 - 1dm. (4.10c)

These hyperbolic equations describe the propagation of waves along the front carrying

df £+ dw = — (

(4.10b)

changes in M and 6. The waves are nonlinear and disturbances carrying an increase in
Mach number will steepen and eventually form discontinuities in M and 6 with respect to
B. Whitham calls these shock-shocks [67] and has derived jump conditions for them. These
shock-shocks, in fact, signify the formation of a Mach stem along the shock. Similarly,
disturbances carrying a decrease in Mach number can form expansion fans (named shock-

expansions by Catherasoo and Sturtevant [9]). There are no walls in the Richtmyer-Meshkov
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problem (it is periodic on y € [0, 27]), so these waves are generated solely through gas non-

uniformities.

4.2 Numerical Implementation

For most problems of interest a numerical implementation is necessary to integrate the
equations. Some researchers have used the method of characteristics [9, 71]. It is also
possible to write the equations of Geometrical Shock Dynamics in the same form as the
supersonic potential equation, allowing numerical methods designed for that equation to be
used for Geometrical Shock Dynamics as well [8, 56]. We used a Lagrangian approach [3,
19, 55] to propagate points along the shock front and numerically integrate the differential
equations (4.6a) and (4.7) using the second order Runge-Kutta method commonly known as
Heun’s method (also known as the modified trapezoidal rule). Most earlier researchers have
used an integral form of the A-M relation and numerically inverted it to obtain the Mach
number. Periodic boundary conditions along the shock were used and one full wavelength
of perturbation was computed. The forcing term Dcy/Dt in (4.6a) is evaluated using the
expression for the density field in front of the shock, equation (1.3).

Lagrangian methods must deal with two issues. One is the clustering of points in com-
pressive regions of the front and dispersion in expansive portions, leading to a nonuniform
distribution of points along the front. Loss of resolution in shock-expansions and collision
of two points at a shock-shock, forcing the ray tube area between them to zero and causing
a singularity in equation (4.6a), are two detrimental effects of the nonuniform spacing. The
second issue is how to deal with the formation of shock-shocks. Calculation of geometrical
quantities, such as front normals, require differentiation along the shock and care needs to
be taken in the event of a discontinuous Mach number distribution along the front. We im-
plemented two different approaches to deal with these numerical issues and describe them
below. A comparison of the results obtained with both implementations was usually done

in order to ensure our results were not dependent on the numerical details of the solution.

4.2.1 Cubic Spline Approach

The first approach is to fit the points along the shock front to a cubic spline. Computing

derivatives along the front is trivial. The arclength along the front at time ¢ is denoted as
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s(t) with s(t) = 0 at the point located at y = 0. The normals to the shock are determined

from

as(t),1) = (s, - 250, (a.11)

Equation (4.6a) requires the calculation of (1/4)DA/Dt which must also be computed

from the local geometry. Best [3] gives a suitable expression:

LA st 00(5(0).1 [6"”22(('?) 2 82‘23}55?2’ 2 8y§;((?) 2 82223(5’;)2’”} |
(4.12)
None of the expressions require the derivative M (s(t),t)/ds(t) so sharp gradients in M
with respect to s(t) do not pose a problem. Derivatives along the front are calculated by
differentiating the cubic spline interpolating the points.
To maintain a uniform distribution of points along the front the refinement scheme of
Henshaw et al. [19] was used. The point spacing was checked after every time step and it
was required that

d< Asi (t)

S Ao <D foralli=2,... ,N (4.13)

where IV is the number of points along the shock, As;(t) = s;(t) — s;—1(t), and Asayg =
sn(t)/(N —1). The values d = 1/2 and D = 2 were found to work well. If two points
were too close together, one was deleted. To maintain the same number of points on the
front, a search was performed along the front to locate the largest gap between two existing
points and a new point was inserted halfway between the two existing points using cubic
spline interpolation. Similarly, if two points are too far apart, a point was inserted between
them and a corresponding point is deleted from the location of minimum As;(t). In this
way, instabilities arising from violations of a CFL criterion were avoided and regions of
shock-expansions were accurately resolved.

It was also necessary to employ the smoothing procedure of Henshaw et al. to reduce

high frequency errors in x. Every set number of time steps, ng, values of x were reassigned
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according to the following:
1
—2-(XZ'_1 -+ Xi—i—l) — X;. (414)

The interval, ns, was chosen on a per-problem basis and was typically in the range of 10-100

time steps.

4.2.2 Fourier Collocation Approach

The Richtmyer-Meshkov problem is periodic on y € [0, 2], allowing use of Fourier Collo-
cation to obtain spectral accuracy in space. Derivatives along the shock are done using the
Fast Fourier Transform (FFT). FFT routines require function values to be given at equally
spaced intervals in the independent variable, so the front was parameterized with respect
to the Lagrangian variable 3 rather than arclength. The value of 3 at each point on the
shock is fixed throughout the simulation and initialized as 3; = y; for each point i along the
shock at ¢t = 0. Note that y(5,¢) is not periodic so all dy(3,t)/08 terms were computed by
performing the Fourier transforms on y(8,t) — 3 rather than y(3,t). Fourier methods suffer
from the Gibbs phenomenon if the function is not sufficiently smooth so sharp gradients in
Mach number and position along the shock must be resolved over several points. To ensure
discontinuities do not form, a linear diffusion term with constant viscosity was added to

each equation:

D 02
B% _'Nz—‘—l/%z—, (4.153)
Dy 0%y

DM 0*M

Tt NM+ Va_ﬂz’ (415(3)

where N, N, and Ny are the nonlinear right-hand sides of equations (4.6a) and (4.7).
The viscous terms can be treated with exact integration via an integrating factor in Fourier
space and, so, have no effect on the formal order of accuracy™ or stability of the scheme [7].

Care was taken to use a small enough value of v in each simulation that the solution did

“Here accuracy refers to the error incurred in the numerical solution of equations (4.15a)-(4.15¢c). The
addition of viscous terms will have some effect on the difference between the numerical solution and the
true solution to the nonviscous equations of Geometrical Shock Dynamics, (4.6a) and (4.7). For example, a
coeflicient of viscosity, v, that is too large can smear shock-shocks out too much and erode extrema of M(3).
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not depend on its value. Geometrical quantities are obtained from the following:

A(B,t) = \/(2-2-)2 - <g—z>2, (4.16)

2RI
00 = Toxga (o5 a5 ) )

Both the cubic spline method and Fourier Collocation method have their advantages
and disadvantages. The Fourier method is restricted to problems with periodic boundary
conditions while the spline method is not. The Fourier method, however, features spectral
accuracy along the front. The cubic spline method is much better at maintaining adequate
resolution in expansive regions of the front because of its adaptive point refinement scheme.
The spline approach, however, requires the user to specify a maximum and minimum point
spacing, D and d, as well as a smoothing interval, ns. The Fourier method only requires a
coefficient of viscosity, v. In the majority of simulations presented in the next section, we
have used the Fourier Collocation implementation because of its superior accuracy in the
direction along the front. Checks were made against shock fronts computed using the cubic
spline method to ensure our results were not dictated by the particular implementation

used.

4.3 Results

4.3.1 Qualitative and Quantitative Comparison with Euler Simulations

The use of Geometrical Shock Dynamics to compute shock propagation into media of vary-
ing sound speed was popularized by Catherasoo and Sturtevant [9] and Schwendeman [55].
Using a Lagrangian implementation, Schwendeman computed the passage of a Mach 1.22
shock through a cylindrical inhomogeneity to compare with experiments done by Haas and
Sturtevant [17]. Later, Cates [8], using a numerical method designed for the supersonic
potential equation, re-did those comparisons in more detail. Both found good agreement
in the location of shock-shocks in Geometrical Shock Dynamics and corners of the shock

in experiments. In figure 4.2 the same problem is considered but Geometrical Shock Dy-
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namics results are compared against Euler simulations instead.* Only the top half of the
computational domain is shown in the figure since the bottom half is simply a mirror image.

Following Schwendeman, a sound speed distribution of:

1 ifr—R> Ry,
co(r) = 3 [(1 + cp2) + (1 — ¢p2) sin (W(;}%R))} if |r — R| < Ry, (4.19)
o2 ifr—-R<-—Ry,

was used where r is the distance from the center of the cylinder, R = 1 and R; = 0.01.
The sound speeds of cg2 = 0.53 and cgo = 2.32 were chosen to compare with experiments
of a shock propagating through a cylinder immersed in air containing freon and helium,
respectively. The difference in the ratio of specific heats, 7, of both gases were ignored
by Schwendeman and Cates. Both the Euler simulation and Geometrical Shock Dynamics
calculations shown in figure 4.2 were done for a uniform ratio of specific heats v = 1.4.
The cp2 = 0.53 case had an Atwood ratio of At = 0.56 across the cylinder interface and
the cpo = 2.32 case, a ratio of At = —0.69. The shock front slows down as it propagates
through the cylinder in the positive Atwood ratio case and speeds up in the negative Atwood
ratio case. The variation in sound speed along the front generates waves on the shock which
carry changes in local Mach number and angle of inclination according to equations (4.10a)-
(4.10c). These waves propagate along the front and cause the shape of the shock to change
during the course of the computation. This can readily be seen in figure 4.3 where successive
shock fronts from the Geometrical Shock Dynamics computations shown in figure 4.2 are
plotted. The mid-line of the interface, » = R, is plotted as a dashed line for reference. The
creation of both shock-shocks and shock-expansion regions along the fronts are observed in
these plots.

The agreement between shock fronts from the Euler simulations and Geometrical Shock
Dynamics computations appears to be quite good for both cases shown in figure 4.2. Close
examination of figure 4.2(a) shows that the shock position inside the cylinder computed with

Geometrical Shock Dynamics is slightly ahead of that computed from the Euler simulation.

*In creating the images in figure 4.2 a smaller value of the “exposure” parameter has been used in the
numerical Schlieren image routine (described in appendix B), resulting in a darker image than the other
Schlieren pictures in this thesis. This was done to create greater contrast between the white shock front and
the surrounding flow. This is purely for flow visualization purposes and the darkness of the image should
not be interpreted as indicating anything special about the flow.
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Yet the location of the corner along the front has been predicted extremely well. For the
co2 = 2.32 case, the four shock intersection seen in the image from the Euler simulation has
been replaced by two closely spaced shock-shocks in the Geometrical Shock Dynamics front.
These two shock-shocks of opposite families are needed by Geometrical Shock Dynamics to
approximate the regular reflection of the true shock which turns the shock without a large
increase in Mach number [8].

In these simulations the cubic spline method was used to compute the Geometrical
Shock Dynamics shock front rather than the Fourier Collocation method. The shock fronts
computed from the Fourier method differed from the ones shown in figure 4.2 in expansive
regions due to dispersion of points, increasing the numerical viscosity there. The cubic spline
method did not experience this problem because of the point refinement scheme employed.
The simulations shown in figure 4.2 are two of the very few occasions when any significant
difference between the cubic spline and Fourier methods was observed.

It is encouraging that Geometrical Shock Dynamics works so well for a problem featuring
such a highly curved, thin interface. However, the Mach number was M; = 1.22 and we
wish to use shocks of arbitrary strengths. As a second test Geometrical Shock Dynamics
was applied to the one-dimensional problem of propagation through a thin density layer.
The density profile of the layer is given by equation (1.3) with a9 = 0 and L = 0.01. A
quantitative comparison between the Geometrical Shock Dynamics and Euler simulations
was done by comparing pressure profiles. The pressure at the Geometrical Shock Dynamics
shock was calculated from the Mach number and the shock jump conditions. The theory
of Geometrical Shock Dynamics implicitly assumes uniform flow behind the shock so the
pressure profile consists of two constant states, pre-shock and post-shock, separated by a
discontinuity at the shock position. The results are seen in figures 4.4 for low Atwood
ratios and 4.5 for high Atwood ratios. For low Atwood ratios the agreement in shock
location and value of post-shock pressure between Geometrical Shock Dynamics and Euler
simulation is excellent. In the higher Atwood ratio problems, however, Geometrical Shock
Dynamics has over-predicted the pressure. The over-prediction in pressure is a result of over-
prediction in Mach number of the shock. This causes the velocity of the shock, coM, in the
Geometrical Shock Dynamics calculation to be larger than the velocity of the shock in the
Euler simulation, resulting in incorrect shock locations in figure 4.5. Four cases are shown

in the figure featuring strong shocks (M| = 8) propagating through thin layers (L = 0.01)
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Figure 4.3: Successive shock fronts from the same Geometrical Shock Dynamics computa-
tions shown in figure 4.2. The mid-line of the interface, r = R, is plotted as a dashed line

for reference.
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Figure 4.4: Comparison of pressure profiles from Geometrical Shock Dynamics (solid line)
and Euler code (diamond symbols) for a one-dimensional shock-layer problem with At =
+0.2, My = 8 and L = 0.01.

and shocks of more moderate strength (M; = 2) through thick (L = 1) layers. Geometrical
Shock Dynamics over-predicts the Mach number for all cases, indicating the inaccuracy is
not due to the assumption ¢{(n)/co(n) < 1 made in the derivation of Geometrical Shock
Dynamics.

Chisnell [10] studied the shock-layer problem analytically and obtained the same re-
lation between variation in Mach number and ambient sound speed that Whitham did
(equation (4.6a) without the DA/Dt term) using an alternative derivation. For high At-
wood ratios the expression did, indeed, over-predict the strength of the transmitted shock
but, by considering the effect of the flow behind the shock, the estimate could be improved
substantially. Chisnell found it was enough to only consider the effect of “doubly-reflected
waves” — waves that were originally reflected backwards by the shock as it passed through
the layer and then reflected back towards the shock upon interaction with the nonuniform
density distribution in the wake of the shock. Cases with negative Atwood ratios were not
considered by Chisnell. Because the neglect of nonuniform flow behind the shock results
in inaccurate calculation of the strength of the transmitted shock in the one-dimensional
problem for high Atwood ratios, only lower ratios, At = £0.2, will be considered from here
on.

We start by considering a Mach 1.25 shock moving through the Richtmyer-Meshkov
density field given by (1.3). In figure 4.6 the results for a layer of thickness L = 0.01, an

Atwood ratio of At = 0.2 and an initial amplitude of ag = 2 are shown. The simulation has
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been run long enough for the shock to travel far beyond the layer. Only the flow field for
half a wavelength, 0 < y < 7, is shown. At early times, the shape and position of the two
shock fronts agree very well. However, at ¢t = 4 there is clearly a discrepancy. The portion
of the Geometrical Shock Dynamics shock front along the top of the image (y = m) leads
the shock in the Euler simulation. The Geometrical Shock Dynamics shock front also has
a feature not seen in the Euler shock: a small kink located near y = 7 /2. The shape of the
two shocks are quite different, however, the mean shock location and velocity are in good
agreement.

Previous researchers have not had the experimental data needed to assess the accuracy
of M(B,t) computed by Geometrical Shock Dynamics. Comparisons have been based on
features of the shock front such as location of discontinuities (see figure 4.2) and angles
of refraction at interfaces. Because Geometrical Shock Dynamics is compared with Euler
simulations, pressure profiles can be compared. In figure 4.7 the pressure as a function of
z along two fixed values of y is plotted. The data is taken from the simulation shown in
figure 4.6 at ¢t = 2 when the shock has just completely traversed the layer. The theory
of Geometrical Shock Dynamics assumes uniform flow behind the shock so its downstream
pressure profile is simply the value of the pressure at the shock front. The pressure at
the shock from both simulations is compared and it is seen that the pressure predicted by
Geometrical Shock Dynamics is a little larger than the correct value at y = m but quite
accurate at y = 0.

While plotting pressure profiles allows us to visualize the difference between the Geomet-
rical Shock Dynamics shock and that computed from Euler simulations, it is worthwhile
to introduce a measure of error in Mach number. Because the transmitted shock is not
planar, the Mach number at each point on the front differs from the Mach number of the
corresponding one-dimensional shock-contact problem, My, obtained by setting ag = 0
and L = 0. The value M7 can be calculated easily (see §1.3) and is useful as a rough
“average value” of M(f3,t) along the shock in the two-dimensional problem. The purpose
of performing a two-dimensional calculation like Geometrical Shock Dynamics is to obtain
information about the shape of and variation in Mach number along the shock. Therefore,
we will examine the error in M(,t) = M(8,t) — My rather than M((,t). Using the shock
jump conditions to relate values of pressure at the shock computed from Euler simulations,

DEuler; t0 Mach number, the following measure of relative error at any point along the shock
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Figure 4.7: Comparison of pressure profiles from Geometrical Shock Dynamics (solid line)
and Euler simulations (diamond symbols) for problem shown in figure 4.6 at t = 2: (a)

y=0,(b)y=m.

is obtained:

B ‘w/z’YMGSD — \/(’Y + 1)(pEuler - 1) + 27‘
MEuler \/(7 + 1)(pEuler - 1) +2v— v 27MT

Masp — MEuler

, (4.20)
where Mgsp = Mgsp — My, Meyer = Mpyier — M7, Mgsp is the Mach number calculated
from Geometrical Shock Dynamics and Mgyjer is the Mach number from the Euler simulation
(calculated from pgyler). We have used the fact that the pressure is equal to one in front of
the shock.

Returning to the comparison between Geometrical Shock Dynamics and Euler simula-
tion for My = 1.25 and At = 0.2 (figures 4.6 and 4.7), the peak value of pressure from the
Euler data shown in figure 4.7(b) was used as pgyler in equation (4.20). The relative error
in M(B3,t) at y = m and ¢t = 2 is 26.0%. It must be remembered that this error is much
larger than figure 4.7(b) suggests because M has been removed in the definition of M.
There is essentially no error along y = 0 for this same instant in time. It is unclear why the
error along y = 7 is larger than that at y = 0. One possibility is that the error only occurs
at a compressive portion of the shock. From figure 4.6 it is seen that the front is concave
(compressive) at y = 7 and convex (expansive) at y = 0. Another possibility is that the
error has developed over time and the error at y = 7 is larger simply because that portion of
the shock passed through the layer some time ago allowing more time for the Mach number

to deviate from its correct value. To investigate further, the same configuration with a
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negative Atwood ratio is considered next.

In figure 4.8 the time evolution of the At = —0.2 simulation is shown. In the first
picture of the figure, the agreement in the shock fronts is not that good near the interface.
The fact that the reflected shock is so weak that it has not triggered the refinement cri-
terion does not account for the discrepancy. The shock computed with the Euler code is
undergoing irregular refraction and has formed a kink away from the interface. The Geo-
metrical Shock Dynamics front is also undergoing irregular refraction. The transition from
regular to irregular refraction arises naturally in Geometrical Shock Dynamics for nonuni-
form media. Criteria for the transition were obtained by Catherasoo and Sturtevant [9]
by examining disturbances propagating along the characteristics of the Geometrical Shock
Dynamics equations. This is in contrast to Geometrical Shock Dynamics for uniform media,
where regular reflections off solid walls are not allowed [64].

For this combination of problem parameters, the angle between the undisturbed portion
of the incident shock and the interface is large enough for disturbances propagating along
the C~ characteristics of the equations of Geometrical Shock Dynamics to have formed a
shock-shock on the front to the left of the interface. The disturbances propagating along
the CT characteristics have created an expansive region on the transmitted portion of the
front. For this problem we used the cubic spline implementation of Geometrical Shock
Dynamics described in §4.2.1 rather than the Fourier Collocation method. There were
differences in the shock fronts computed using the two methods. A close examination of the
point distribution along the front in the two calculations revealed that the discrepancy was
due to a loss of resolution in the expansive region in the Fourier computation. The point
spacing was significantly larger in that portion of the front compared to the rest of the front
when computed with the Fourier Collocation approach, effectively increasing the numerical
viscosity there. The cubic spline calculation was considered to be the correct one.

As the Geometrical Shock Dynamics computation proceeds from ¢t = 2.16 to t = 2.52,
the shock-shock seen in the first picture of figure 4.8 collides with an equal and opposite one
(its “mirror-image”) at y = 0. The collision causes the shock-shock (and its mirror-image)
to propagate back along the front in the direction it came, as shown in the second and third
pictures of the figure. The Euler simulation experiences an analogous Mach reflection along
the bottom solid wall.

In computing the evolution of the Geometrical Shock Dynamics shock front, we found
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the Fourier Collocation method was unable to compute past the collision of the shock-
shocks unless a relatively large coefficient of viscosity v was used. The added diffusion
can be used to smear the shock-shocks into compression waves. Collision between two
continuous compressive disturbances did not pose a problem for our code. It was found,
however, that the amount of viscosity needed to smear the shock-shock into compression
waves was so large that it altered the entire shock front significantly. The resulting solution
was unacceptable. The cubic spline code was able to compute through the shock-shock
collision provided the smoothing procedure of Henshaw et al., (4.14), was used. We believe
the averaging done in (4.14) applies just enough diffusion at the moment of collision to
allow the calculation to continue.

The agreement in shock fronts from the Euler simulation and the Geometrical Shock
Dynamics calculation is quite poor at late times, as can be seen in the last picture of
figure 4.8. The location of the triple point in the Euler simulation does not agree with the
location of the shock-shock on the Geometrical Shock Dynamics front. Geometrical Shock
Dynamics has also under-predicted the Mach number at y = 7w which causes the front to
lag behind the shock in the Euler simulation. This is in contrast to the At = 0.2 case
where the theory over-predicted the Mach number along this line. An error in the Mach
number is incurred by Geometrical Shock Dynamics at y = 7 regardless of whether the
shock front is compressive or expansive there. This suggests that the error at y = 7 is
larger than at y = 0 after the shock passes through the entire layer simply because there
has been more time for errors to accumulate in that portion of the front. If we accept this,
it suggests that the nonuniform flow behind the transmitted portion of the shock may be
the cause of discrepancy. It is interesting to note that the Mach number at y = m computed
by Geometrical Shock Dynamics was over-predicted when positive vorticity lay behind the
shock and under-predicted for negative vorticity.

We now consider the case of a M; = 2 shock passing through an interface with ag = 2,
L =0.01, and At = 0.2. For problems of shock propagation into uniform media, Geometrical
Shock Dynamics has generally been considered more accurate for strong shocks than weak
ones. However, if nonuniformity behind the transmitted shock really is the reason for the
error in M from Geometrical Shock Dynamics calculations, we would see worse agreement
in the M7 = 2 case than in the M; = 1.25 case. This simulation was performed to compare

with the error in the M; = 1.25 case using the same interface parameters. The shock
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fronts for the M; = 2 simulation are displayed in figure 4.9 and pressure profiles are shown
in figure 4.10. Comparing the images in figure 4.9 with those in figure 4.6, we see that
increasing the Mach number from M; = 1.25 to M; = 2 has had a detrimental effect. At
t = 2 in the M; = 2 case the shock fronts computed from Geometrical Shock Dynamics
and Euler simulation look completely different. From the pressure profiles in figure 4.10,
it is seen that again the Mach number is obtained reasonably well at y = 0 right after
transmission while the portion of the front which has been in the second gas longer (y = )
has not. The relative error in M at y = = is 52.3%. Comparing with the error at y = 7
in the M; = 1.25 simulation (with At = 0.2), we note the relative error is larger: 52.3%
compared to 26.0%. The time required for the incident shock to completely traverse the
layer is 2ag/coM;. The error in M at y = 7, then, is not only larger but it occurs in less
time: At = 2ag/2co compared to At = 2a9/1.25¢.

Increasing the incident shock Mach number from M; = 1.25 to M; = 2 has two effects
which can explain the increased error in M. First, the magnitude of vorticity deposited in
the density layer is larger for the M = 2 case. Second, a comparison of the middle pictures
of figures 4.6 and 4.9 clearly shows the post-shock amplitude of the interface is smaller
for the stronger shock case. Along y = 7 there is less distance between the transmitted
shock and shocked layer for M; = 2. The interface, a region of significant vorticity (clearly
nonuniform flow), is closer to the transmitted shock for the M; = 2 case and could, in
principle, exert more influence on the evolution of the shock. For larger Mach numbers
the agreement between Geometrical Shock Dynamics and Euler simulations is worse and
clear differences in shock front shape are observed even before the shock completely passes
through the interface.

In figures 4.6 and 4.9 a shock-shock is visible along the Geometrical Shock Dynamics
shock fronts while no corresponding Mach stem occurs along the shock in the Euler sim-
ulations. For the relatively low Atwood ratio of A¢ = 0.2 it is necessary to use stronger
incident shocks and larger interface amplitudes to create enough variation in the Mach num-
ber along the transmitted shock that a corner will form on the shock. One such simulation
was performed to compare the location of the Geometrical Shock Dynamics shock-shock
with the corner of the Euler shock. In figure 4.11 the shock front comparison for a problem
with incident shock strength M; = 4, large initial amplitude ag = 3, At = 0.2 and L = 0.01

is shown. The agreement in shock front shape between Geometrical Shock Dynamics and
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Figure 4.10: Comparison of pressure profiles from Geometrical Shock Dynamics and Euler
simulation for simulation shown in figure 4.9 at t =1.3. (a) y =0, (b) y = 7.

Euler simulation is quite poor. The Geometrical Shock Dynamics front forms a shock-shock
even before the incident shock is halfway across the interface. At late times, the Geometrical

Shock Dynamics shock-shock is not close to the corner seen along the Euler shock.

4.3.2 Calculation of Circulation

In the previous subsection the accuracy of Geometrical Shock Dynamics was evaluated by
comparing the shape of transmitted shock fronts and local Mach numbers against data
from Euler simulations. However, the motivation for using Geometrical Shock Dynamics
was to calculate the vorticity generated by the shock as it passed through the density
layer and propagated through the second fluid. In this section we examine the accuracy
of Geometrical Shock Dynamics in computing the circulation in the entire flow. This is
more convenient than studying pointwise values of vorticity. The vorticity is the driving
mechanism of the instability and the circulation is a measure of the mixing. While Samtaney
and Zabusky [51] have developed methods to compute the initial circulation deposited on
a sharp interface separating two fluids as the shock passes through it, no such work has
been done for continuous interfaces. Further, the Samtaney-Zabusky theory provides no
information about the time evolution of the circulation as the transmitted and reflected
fronts deposit vorticity in the bulk of the fluid as they attempt to stabilize themselves.

At any point in the simulation, Geometrical Shock Dynamics only provides a description

of the flow at the shock front. To compute the total circulation in the entire flow field, a
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strategy was devised. Let I'(¢) denote the total circulation over half a period:

T(¢) = /_o; /Oww(:n, y,)dydz. (4.21)

Note while the integral in z is over an infinite interval, at any finite time the vorticity
is nonzero only in the finite region between the transmitted shock and reflected wave.
Throughout this section only positive Atwood ratios are considered to reduce the number
of parameters varied. The reflected wave, then, is always a shock. Two assumptions are
made to enable the calculation of I'(¢) from Geometrical Shock Dynamics. First, the vor-
ticity in the shocked layer is not significantly modified by secondary effects. That is, the
vorticity in the layer is determined solely from the initial baroclinic interaction between the
incident shock and the interface. Pressure perturbations bouncing between the transmitted
and reflected shocks and the interface do not affect the circulation and triple points (and
associated vortex sheets) do not form along the shocks. The small variation in interfacial cir-
culation with time in figures 3.7 and 3.9 indicates this assumption is reasonable. Second, the
time evolution of I'(t) (after the initial shock refraction phase) is assumed to be only due to
additional vorticity deposited in the fluid away from the interface by the transmitted shock.
This additional vorticity is generated by the oscillation of the curved transmitted shock as it
propagates. In the Richtmyer-Meshkov problem, the reflected shock also generates vorticity
as it propagates. A comparison of the strength of the transmitted and reflected shocks in
the one-dimensional shock-contact problem described in §1.3, M7 and Mg respectively, is
shown in figure 1.9(a). The values My and Mg are good estimates of a rough average value
of the local Mach numbers along the corrugated transmitted and reflected shocks in the
two-dimensional Richtmyer-Meshkov instability. Figure 1.9 indicates the reflected shock is
much weaker than the transmitted shock. This provides some justification for neglecting
the vorticity generated by the reflected shock in the circulation calculation.

Figure 4.12 illustrates the strategy in computing I'(¢) from Geometrical Shock Dynamics.
The circulation at any instant in the computation, I'(¢"1), is the total circulation at the
previous time step plus the line integral of fluid velocity around the region just swept out
by the shock, dI'. The line integral of velocity around the closed curve is equivalent to
the area integral of vorticity over the enclosed region by Stokes’ theorem. The strategy is

to compute the area integral (4.21) piece by piece in the z-direction. In what follows, the
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Figure 4.12: Calculation of the circulation in the region using Geometrical Shock Dynamics.

fluid velocity normal to the shock is denoted as v and transverse as v. Directly behind the
current shock front S?! there is no transverse flow. The line integral 6T, then, will be the
sum of contributions along y = 0, y = m, and along the previous shock front, S™. These
integrals are done numerically using the trapezoidal rule. The integrals along y = 0 and
y = 7 use only two pieces of data each: the values of u"*! on fronts S**! and S™. Velocities
at the current time step along front 8™ are obtained using Taylor series in time. Normal
velocities at the shock, u, are always computed from the shock jump conditions.
Expressions for Ou/0t, Ov/0t, and 0?v/0t? evaluated at a shock front are needed in
the Taylor series and can be obtained using the ideas of Best [3, 4]. A local coordinate
system is introduced at each point along the front with n the coordinate in the direction
of propagation (the normal to the front) and £ the coordinate along the shock. The two-
dimensional Euler equations are transformed to the new (n,&) coordinate system through
a simple rotation of @, the angle of inclination of the normal with respect to the z-axis.

Algebraic manipulations on the transformed Euler equations, coupled with the geometric
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relations [4]

00 1 DA

[ — . 2
o¢ A Dn’ (4.222)
lole) 1 M

on M 8¢’ (4.22b)

and the definition of a Lagrangian derivative for a point on the shock, D/Dt = 0, + coM 0y,
leads to expressions for du/Ot, Ov/0t, and 8*v/Ot?. Details can be found in Best’s work.

Here we simply state the results:

Ov _ M |u  4yM | OM (4.23)
ot oM —u|M (y+1)p| 0¢° ’
0%v  Oudv 2u0udM 1 OpOdp
W_EE{—'_COM ':Maa—f—‘—pj‘a—téz}, (4.24)

%% = [COI;Mg—f + (2 + u(coM — u))%:j + coMc2ui((:))}/ {02 — (coM — u)ﬂ ,
(4.25)
where
g—i = {COM%—? + pcoM (coM — u)% + coMpu(coM — u)zil((g))
— (@ — (oM — m%%} / (oM — u)(& — (coM —w)?)]. (4.26)

The Lagrangian derivatives Dp/Dt, Du/Dt, and Dp/Dt can be rewritten in terms of
DM/Dt and Dcy/Dt using the shock jump conditions. Best’s work only considered shock

propagation into uniform media so his expressions did not contain the Dcy/Dt terms.
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— malind 4.27
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