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Abstract
This paper compares the performances of Direct Sequence Code Division Multiple Access (CDMA)
and Frequency Hopping (FH) schemes in a cellular multiuser environment. Our multiuser channel
model incorporates the effects of propagation, frequency selective fading, and interference among
users in the presence of a constrained system bandwidth. This channel model is applicable for
cellular mobile communicat;'ons, as well as other forms of personal communications. The CDMA
and FH systems are compared using BPSK modulation. The main point of contrast between these
systems is that the orthogonal hopping patterns in a FH system result in a decreased additive
interference power, however, the frequency spreading nature of CDMA results in both the ability to
combat fading, and the ability to effectively use low rate codes. An information-theoretic analysis
is presented, and shows that the system capacity is larger for CDMA than for FH. Hence, with
sufficient coding the CDMA system can achieve a higher level of performance than the FH system.
However, it is unclear what level of complexity would be required to achieve such performance, and
what effect such complexity would have on the practicality of the system. Finally, through the use
of simulation, the performances of several simple coding schemes are measured and compared to the
theoretical limits. These simple coding schemes perform far below the theoretical limits and also
display a tradeoff in performance where the FH system performs better at high levels of traffic, and

the CDMA system performs better at low levels of traffic.
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1. Introduction

In this paper, we compare the performances of Direct Sequence Code Division Multiple Access
(CDMA) and Frequency Hopping (FH) in a cellular, multiuser environment. Currently, there is
much debate in this field as to what is the best access scheme to use. This problem is complicated
by the fact that the cellular.channel has many nonideal characteristics that make it difficult to model
mathematically. Irregularities in terrain, as well as the elements of an urban environment (such as
skyscrapers, bridges, and tunnels) produce a channe] with complex multipath fading and shadowing
characteristics. In this paper, we take a step back from this problem and attempt to approach it
from the point of view of simply comparing CDMA and FH systems. Rather that try to model all
the complicated characteristics of the cellular mobile channel, we adopt a rather simplified channel
model and analyze the problem from a more “academic” perspective as opposed to an industrial one.
The analysis includes many idealizations, and emphasis is placed on trying to find analytic solutions
whenever possible. Nevertheless, irrespective of whatever simplifying assumptions are made, these
assumptions are applied equally to the analysis of both the CDMA and FH systems. In this sense
we have maintained a fair comparison. While these results may not be directly applicable to system
engineers building cellular systems, we feel that this is a good theoretical background to the problem

and perhaps will give some additional insight into the problem.

We begin in chapter 2 by considering the uncoded performance of these systems in the absence
of fading. The geometrical structure of the system is taken to be a grid of hexagonal cells with each
cell divided into three 120° sectors. We assume that there is a fixed system’ bandwidth, B, and a
fixed data rate, R, at which each user communicates. Furthermore, we restrict our attention to the
reverse link performance (user to cell site) using Binary Phase Shift Keying (BPSK) modulation. In
the CDMA system users are assumed to have random, mutually independent, PN sequences. In the
FH system, on the other hand, hopping patterns are assumed to be orthogonal among the users in
a sector and otherwise random. We define the normalized traffic of a system, p, to be the number of
users per sector, N,, divided by the ratio of B to R. System performance is measured by computing

the probability of bit error as a function of the normalized traffic. We observe that, in the absence
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of fading and coding, each user of the FH system sees less interference power than in the CDMA
system. This is because of the orthogonality of users in each sector of the FH system. We also
observe that the distribution of the additive interference in the FH system is quite different in shape
from the Gaussian distribution in the CDMA system. This results in a tradeoff in performance; the
FH system performs better at higher levels of traffic with relatively high probability of bit error,
and the CDMA system pefforms better at lower levels of traffic with relatively low probability of

bit error.

Next, we focus our attention in chapter 3 on the nature of the frequency selective fading of the
channel. We develop a general channel model based on the model described in ([1], pg. 705). This
channel model is then applied to both the FH and CDMA systems, and the analysis of chapter 2, in
the absence of coding, is carried out accounting for these additional parameters. We find that the
FH system still sees less interference power than the CDMA system. However, it is susceptible to
frequency selective fades, whereas the wideband nature of CDMA offers a level of resistance to such
fading. Again, a tradeoff in performance exists where the FH system performs better at higher levels
of traffic with relatively high probability of bit error, and the CDMA system performs better at lower
levels of traffic with relatively low probability of bit error. We also observe that the distribution of
the additive interference in the FH system is considerably smoothed out by the fading and results
in a system performance not much different than if the additive noise had a Gaussian distribution

at the same power level.

In chapter 4, we consider the use of coding and show that using a code of rate rcode at a level of
normalized traffic p, each codeword symbol sees a channel similar to the uncoded channel, but with
an effective coded normalized traffic, p, given by p/rcode. In other words, if a rate 1/2 code were
used, each codeword symbol would see a channel that appears to have twice as many interfering
users than there actually are, and thus, a correspondingly higher level of interference power. For
the FH system, the requirement that the users in a sector maintain orthogonality restricts the value
of p to be less than one. For the CDMA system, however, there is no \corresponding restriction on

P. Assuming that there is no cooperation among the users in the system on the level of coding, we
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apply an information-theoretic analysis to the system models that we have developed. The capacity
of the system is defined to be the largest possible value of normalized traffic, p, for which each user in
the system can communicate reliably at rate R. The capacity of FH and CDMA are computed and -
we find that the CDMA system has a larger capacity. This is due to the fact that the requirement,
$ < 1, for the FH system does not allow for the effective use of very low code rates. It turns out that,
from an information—theoretic viewpoint, the ability of CDMA to use low rate codes is an advantage
over the lower interference power in the FH system. Having thus obtained this information-theoretic
channel model, we consider the effects on capacity of fading versus nonfading channels; soft decision

versus hard decision decoding; and BPSK versus multilevel modulation.

The information-theoretic results of the previous chapter give the best possible system perfor-
mance that can be achieved using arbitrarily complicated coding schemes. Unfortunately, arbitrarily
complex codes include arbitrarily long block lengths, and thus, arbitrarily long delays. In chapter 5,
we investigate the performance of specific coding schemes and the effects of a finite, controlled, delay
using interleaving. These results are obtained primarily through simulation. We begin by looking at
repetition codes and then consider binary block codes. For a specific code, it is possible to measure
the performance for infinite interleaving and zero interleaving. To evaluate the performance using
infinite interleaving, it is assumed that each codeword symbol sees independent channel statistics.
On the other hand, the performance using zero interleaving is evaluated by assuming that each
codeword symbol sees an identical, 100% correlated, channel. Finally, making some assumptions
about the vehicle speed and transmitter frequency, we evaluate performance using a finite amount
of interleaving delay by taking into account the actual amount of correlation among channel samples
as seen from one codeword symbol to the next. We have evaluated the performance of several rep-
etition codes as well as an (8,4) biorthogonal block code. These coding schemes perform far below
information-theoretic capacity, and yield performance curves for FH and CDMA that cross with
FH performing better at higher levels of traffic with relatively high probability of bit error, and the

CDMA performing better at lower levels of traffic with relatively low probability of bit error.

Chapter 6 is not closely related to the rest of this paper. Here we look at the information-
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theoretic problem of interference channels when there is no assumption that users do not cooperate
on the level of coding. Very few results in the area of multiuser information theory are known. Some
examples are shown of relatively simple two-user systems where the capacity region is currently
unknown.

In chapter 7, we try to see what conclusions one can reach from the results of the previous
sections. We have seen that ‘an information-theoretic capacity can by defined, and that using BPSK
in a fading environment CDMA has a larger capacity than FH. However, for the codes we have
simulated it is unclear which system performs better because the performance curves cross. We

conclude with some ideas on how this research can be further improved and expanded upon.
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2. Nonfading Channel
2.1 Introduction

In this chapter, we compute the average probability of bit error for FH and CDMA using Binary
Phase Shift Keying (BPSK) modulation over a nonfading channel. We assume that there is a fixed
system bandwidth, B, and a fixed data rate, R, at which each user communicates. A sectored
hexagonal cell system is used as shown in figure 2.1. Each cell is divided into 3 sectors labeled 0,1,
and 2 as shown. The 3-tuple (3, j, s) refers to sector s of cell (¢,5). In appendix A.l, some basic

properties of this cellular geometry are derived. We consider the reverse link, mobile to base.

Figure 2.1: Sectored hexagonal grid. The shaded sector is sector 1 of cell (3,-1).

We begin with some basic assumptions regarding system operation that apply to both FH and
CDMA throughout this paper.

(1) Power control is maintained such that each mobile is received at its corresponding base
station at the same power level. Without loss of generality, we assume that thié power
level is unity.

(2) R™* propagation loss in power.

(3) G(¢) = antenna gain at angle ¢.

(4) Uniformly distributed users.
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(5) Background noise is negligible and only interference from other users is considered.
(6) The effects of co-channel interference are not considered.
(7) Total system bandwidth > data rate at which each user communicates.
Next, we define some parameters that apply to both FH and CDMA throughout this paper. Let
B = Total system bandwidth (Hz),
R = Rate at which each user communicates (bps),
N, = Number of users per sector,

N = B/R is the total number of available frequency channels in a FH system and also the

spread factor, or processing gain, ([2], pg. 5) in a CDMA system,
p= N,/N is the normalized traffic,
Ty = 1/R is the bit time,
T. = 1/B is the chip time in a CDMA system.
A = (i, j, s) represents sector s of cell (3, j),
0= (0,0,0) represents sector 0 of cell (0,0).
Remark. For simplicity, we are assuming that a digital source at rate W (bps) can be transmitted

using BPSK in a bandwidth of W (Hz). However, since this is assumed for both the FH and CDMA

systems, there is no loss of generality from the standpoint of comparison between systems.

2.2 Analysis of FH System

We begin by computing the probability of bit error for a FH system and a nonfading channel. In
the FH system, the total system bandwidth, B, vis divided into N frequency channels, each having
bandwidth R. The frequency hopping is assumed to be slow in the sense that the time between
successive hops is larger than the bit time, T;. We assume random orthogonal hopping patterns
among the users in each sector. That is, on each hop the N(N —1)(N —2)...(N — N, +1) possible
assigniments of distinct frequency channels to the N, users in a sector are equally likely. Note that
inherent in this assumption is that synchronization of hopping times is maintained among the users

in a sector. Also note that the assumption of orthogonality implies N, < N, hence the normalized
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Figure 2.2: Equivalent BPSK system using FH for communication from a single user in sector 0
transmitting on a channel at frequency wy to the corresponding base-station receiver.

traffic satisfies

p<1. (2.1

Similar systems have been considered in [3] and [4].

Figure 2.2 shows a BPSK system for a single user in sector 0 transmitting on a channel at
frequency wg. Since hopping patterns are orthogonal within each sector, interference is due to the
users in other sectors. To analyze this system, it is useful to define the following random variables.

For each sector A, let

(A) = 1 if there is a user in sector A at wy (prob p),
X2/ 10 otherwise (prob 1 — p),

d(A) = data bit of user in sector A that is transmitting on the channel at frequency wp
(£1 equally likely),
6(A) = relative phase of user in sector A that is transmitting on the channel at frequency
wo (uniformly distributed on interval 0 to 27),
7(A) = random position uniformly distributed over sector A,
P(7(A)) = relative power received by antenna in sector 0 from an interfering user at position

¥ in sector A.

Consider the transmission of a single bit through the system. For t € (0, T3),

y(t) = V2d(0) cos(wot) + D _ x(A)v/ZP(F(A)) d(A) cos(wat + 6(A)). (2.2)

A#D
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The sample at the output of the receiver, rq, is thus given by

ro = d(0) + Y x(A)V/P(F(A))d(A) cos(6(A)), (2.3)
row A0 )

W
Thnoise

which is composed of a signal part due to the transmitted data bit, and a noise part due to other

interfering users in the system. The random variable ryojse, given by

Tnoise = ) X(A)V/P(7(A)) d(B) cos(6(A)), (24)

A#D

is a sum of independent random variables each having mean zero. Thus,

Mean(rnoise) = 0, (2.5)
Var(rnoise) = E{rﬁoise}’

= 3" BOG(A)) B{P(A))} Bleos?(0(8))],
e e’ N—————

A#£D b M
=23 EB(P(FQA)},
A#D
= %ap, (2.6)

where the interference parameter, a, is defined as

a=Y_ E{P(F(A))}. (2.7)

A#D

This parameter a is of central importance in our analysis. P(7(A)) is a function of the random
variable #(A). Thus, the expectation in equation (2.7) is over the probability distribution of #(A).
In appendix A.2, a is computed numerically for a uniform distribution on 7(A), and an antenna gain
G(¢) that is constant over a 120° beam width and 20db below this at other angles. We find a = 0.46.
Note that for non-uniform traffic, #(A) has a non-uniform distribution, and the expectation in (2.7)
is over an arbitrary probability distribution on #(A). Hence, it is straightforward to extend these
results to the case of non-uniform traffic. The value of a is a measure of interference inherent in the

system and plays an important role in the analysis of both FH and CDMA systems. Note that the



value of a depends on 4 things:

(1) cellular geometry (sectored hexagonal grid),

(2) propagation loss (R™*),

(3) antenna gain (constant over a 120° beam width and 20db below this at other angles),

(4) distribution of traffic (uniform).

The random variable fnoise, is a sum of a large number of independent random variables, but
unfortunately the random variables in this sum are not identically distributed. Thus, the Central
Limit Theorem cannot be applied here to conclude that rpeise is approximately Gaussian. If rpeise
were in fact Gaussian, since the mean and variance of rygise have been computed, we couid write

the marginal probability of bit error, P;, as

P;[No Fading, Gaussian] = %erfc (‘ / % ) . (2.8)

This is equivalent to the result given in ([1], pg. 717) for communication over a nonfading Gaussian
channel. Figure 2.3 shows plots of the probability of bit error versus the normalized traflic by
simulating the exact distl.;ibution of Tpoise and also the result of equation (2.8) for Gaussian noise.
We see that these curves differ by many orders of magnitude so that in general the additive noise
in the FH system in the absence of fading is very different from Gaussian and yields a much higher

probability of bit error.



10

1E-2

1E-3 ~

/ lt—— Simulation
1E—~4 :

— Gaussian

Il

1E-5

1E-6

Probability of Bit Error, P,

1E-7

1E-8

1E-9

1E-10

0.0 0.2 0.4 06 0.8 1.0

Normalized Traffic, p

Figure 2.3: Probability of bit error versus normalized traffic for FH system in a nonfading envi-
ronment. Curves are shown for the exact distribution of additive noise, determined by simulation,
and for Gaussian additive noise.
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2.3 Analysis of CDMA System

Next, we compute the probability of bit error for a CDMA system and a nonfading channel. Each of
the N, users in a sector are indexed by a number k € [0, N, — 1]. Figure 2.4 shows a CDMA system
for user 0 in sector 0. The transmitter multiplies the data signal by a pseudorandom (PN) sequence
and the result is used to modulate a sinusoidal carrier ([2], pg. 5). Since the PN sequence generates
a symbol every T. seconds, the signal of each user is spread over the entire system bandwidth,
B. 1t is assumed that each user has a random PN sequence, and that PN sequences are mutually
independent. Note that the CDMA spread factor, N = B/R, is equivalent to the number of available
frequency channels in the FH system, and is assumed to be large. To analyze this system, it is useful

to define the following random variables. For each user in the system, let
di(A) = data bit of user k € [0, N, — 1] in sector A (%1 equally likely),
ck(A,m) = mth chip (m € [0,N —1}) in PN sequence for user k in sector A (+1 equally
likely),
0x(A) = relative phase of user k in sector A (uniformly distributed on interval 0 to 27),
7x(A) = position of user £ in sector A,

P(7,(A)) = relative power received by antenna in sector 0 from an interfering user at position

7 In sector A.

t=1T,
do(ﬁ) m(t) y(1) z(t) : Ty (%) Q/< To

DATA
SOURCE

¢o(0,2) co(D,t)
V2 cos(wt) V2 cos(wgt)

Figure 2.4: Equivalent BPSK system using CDMA for communication from user 0 in sector 0 to
the corresponding base-station receiver. The value of wq is taken to be the center frequency of the
system bandwidth B.
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Consider the transmission of a single bit through the system. For ¢ € (0,T}), the PN sequences are
given by

ck(A,t) = cr(A,m), where mT, <t< (m+1)T.. (2.9)

The receiver input, y(1), is given by
y(t) = V2 do(0)eo(D, £) cos(wot) + Z V2P(7k(A)) dr(A)ex (A, t) cos(wot + x(A)). (2.10)
(8,k)#(0,0)

Performing the demodulation of y(t) by multiplication by v/2 cos(wot) and neglecting second har-
monics of wy gives

z(t) = do(0)co(0, 1) + Y V/P(Fk(B)) dr(A)er(A, ) cos(0:(A)). (2.11)

(8,k)#(0,0)
The sample at the output of the receiver, rg, is thus given by

N-1

" _ T, _
ro = d%(’o‘% +£A’IC)Z#;’/0‘)P(7~;G(A)) dip(A) cos(ek(A)),E ngo cr(A, m) cx (D, m)l, (2.12)

~

Tnoise

which, like the corresponding sample in the FH system given by equation (2.3), is composed of a
signal part due to the transmitted data bit, and a noise part due to other interfering users in the

system. The random variable rpige is given by

N-1
racise = 3 V/P(ra(A)) cos(6x (A)) %— S di(A) ck(A, m) cx(3, m). (2.13)
(A,k)#(5,0) b m=0
Let
be(a,m) = BB A M AOm +T {(1) P o (2.19)
and
N-1
Bi(A) = bi(A,m). (2.15)

m=0

The random variables Bi(A) are i.i.d. Binomial random variables ([5], pg. 223) with mean = N/2

and variance = N/4. Now we can express rppise as

N-1
Frose= 3 3 V/PERB) cos(Bu(A)) 3 (2hu(A,m) 1),

(8,k)%(5,0) m=0

= ¥ 2@ eos(u(a) (Bid)- 7). (2.16)

(&,k)#(0,0)



13
The random variable rpeise 15 @ sum of independent random variables each having mean zero similar

to the corresponding random variable in the FH system given by equation (2.4). Thus,

Mean(rpoise) = 0, (2.17)
Var(rnoise) = E{rioise}’

2
- Z %P(ﬁ(A)) E {cos®(fx(A))} E { <B" (&)= %{) }’

(8,5)£(0,0) 5 N g .
=5 Y P(A)),
(A,5)#(0,0)
1 [N, -1 ) N,-1
= |3 PEO+ Y Y P(fk(A»] ,
| k=1 A#D k=0
= 5 | = 1)+ N, Y B(PGHAN) |,
i A#D
~ %(a +1)p. (2.18)

The interference parameter, a, is defined by equation (2.7). Note that the assumption of power
control implies P(7(0)) = 1 for each user in sector 0. We have also made use of the fact that since

the users in each sector are uniformly distributed,
N,-1
> P(A)) = N.E{P(FA))) (2.19)
k=0
where #(A) is a random position uniformly distributed over sector A. For the CDMA system, the
additive noise, rpeise, is in fact well approximated using a Gaussian distribution. Thus, having

computed the mean and variance of rpeise, We can write the marginal probability of bit error as

P,[No Fading] = %erfc (\ /(7+1_1)13 ) . (2.20)

Remark. For the FH system, the additive noise given by equation (2.4) is due to at most one user
in each sector. Thus, the total interference is due to a relatively small number of other users in
the neighboring sectors. On the other hand, for the CDMA system the additive interference given
by equation (2.13) is due to all other users in every sector. Thus, the additive interference in the

CDMA system is effectively smoothed out over each cell in the system, making the distribution look
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more like a Gaussian. Further justification for the Gaussian assumption in the CDMA system can
be found in [6] and ([2], pg. 9).
2.4 Nonfading Channel Results
With respect to equations (2.3) and (2.12), both the FH and CDMA systems produce a receiver
output, Y, of the form

Y=X+2, (2.21)

where

X = =41 data bit transmitted,

Z = zero-mean additive noise.

Equations (2.6) and (2.18) imply that the variance of the additive noise, Z, is

%ap for FH,

Var(2) = { La+1)p for CDMA. (2.22)

Figure 2.5 shows a plot of the average probability of bit error versus the normalized traffic for FH and
CDMA systems. Thé FH performance curve was found by simulating the additive noise statistics
of equation (2.4). The CDMA performance curve is given by equation (2.20). The performance
curve for the FH system if the noise is Gaussian, given by equation (2.8), is also shown. We see
that the simulated FH curve and the CDMA curve cross with CDMA performing better at lower
levels of traffic and FH performing better at higher levels of traffic. At higher levels of traffic the
FH simulation curve gets close to the FH Gaussian curve, which is always below the CDMA curve
because of the fact that there is less interference power in the FH system. Since a ~ 1/2, about
2/3 of the interference power seen by the CDMA system is from users in the same sector, while
the orthogonal hopping patterns in the FH system ensure that no interference power is seen from
the same sector. Thus, it seems that the better performance of FH at higher levels of traffic is due
to the fact that there is less interference power in the FH system. On the other hand, the better
performance of CDMA at lower levels of traffic must be related to the fact that the FH noise becomes

significantly different from a Gaussian at low levels of traffic. Figure 2.5 does not, however, show
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the main advantage of a CDMA system which is its ability to perform in a frequency selective fading
environment. In chapter 3, the methods of analysis applied in this chapter are extended to treat a

frequency selective fading channel.
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Figure 2.5: Probability of bit error versus normalized traffic for FH and CDMA systems in a
nonfading environment. For the FH system, curves are shown for the exact distribution of additive
noise, determined by simulation, and for Gaussian additive noise.
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3. Fading Channel
3.1 Rayleigh Fading Channel Model

In this chapter, we compute the average probability of bit error for FH and CDMA using Binary
Phase Shift Keying (BPSK) modulation over a frequency selective Rayleigh fading channel. We
begin by developing a general channel model that can be used for both FH and CDMA systems.

Figure 3.1 shows the transmission of a complex baseband signal, u(t), over a fading channel.

ejwot e—j wot

m(t)

Fading Channel y(t) z(t)
h(T;t)

u(t)

Figure 3.1: Transmission of complex baseband signal, u(t), over a fading channel.

The channel is described by a time-variant impulse response, h(7;t), which is the response of
the channel at time ¢ to an impulse at time ¢ — 7. The channel response, h(7;t), is modelled as a
zero-mean complex-valued Gaussian random process ([1], pg. 705). The following assumptions are
made regarding the characteristics of the fading channel.

(1) Channel response is due to uncorrelated scattering.

(2) Multipath delay spread, T, satisfies 15, < T3.

(3) Coherence time of the channel is sufficiently slow so that the channel parameters,

Aw (n,wo;t), remain constant over many bits and can be measured by the receiver.

If the midband signal, m(t), has bandwidth W (Hz), the baseband signal, u(t), must be ban-
dlimited to W/2. Hence, the function u(t—7) can be expressed as a sampling expansion ([7], pg. 522)
in the variable 7, sampled at rate W (samples/sec). This gives

o

ult—7r)= Z © (t - —an) sinc(n — Wr), (3.1)

n=-—00
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 where the sinc function is defined as

sinc(z) = Sing’”). (3.2)

The baseband received signal, z(t), is then given by
z(t) = e~ 7“0 [h(r;t) * (u(t)el?Y)],
. e 'y
= ¢TIwol [/ h(r;Du(t — T)e""“(‘_’) d-r] ,

= / h(r;t)u(t — 7)e~3“° dr,

= i w(t=) / " h(r;t)sinc(n — Wr)e~wo" dr,
=°;°° -00
= Z u (t - “an) Aw (n,wo;t), (3.3)

where the channel parameters, Aw (n,wp;t), are defined as
Aw (n,wq;t) = / h(r;t)sinc(n — Wr)e™39°7 dr. (3.4

Since the channel response, h(7;t), is taken to be a complex Gaussian random process, the channel
parameters, Aw (n,wo;t), are also complex Gaussian random processes. Let the magnitude and
phase of Aw (n,wq;t) be given by
Aw (n,wo;t) = |Aw (n,we; t)], (3.5)
éw (n,wo;t) = Arg (Aw (n,wo;t)) . (3.6)
Then, Aw (n,wo;t) and ¢w(n,wo;t) are independent, Aw (n,wp;t) is Rayleigh distributed, and
éw (n,wo; t) is uniformly distributed on (0, 27).
The fading process is assumed to undergo uncorrelated scattering. This means that, for 7, # 75,

the responses of the channel at time ¢ to impulses at times ¢ — 71 and ¢ — 7» respectively are

uncorrelated ([1], pg. 706). Mathematically, this is expressed as
E {h*(11;t1)h(7252)} = ¢e(1)g(t2 — 11)6(72 — 11). (3.7

The function ¢.(7) is the multipath-intensity profile of the channel, and is assumed to be normalized

such that

/_oo ¢c(r)dr = 1. (3.8)
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The multipath delay spread, T;n, is defined to be the range of values over which ¢.(7) is essentially
nonzero ([1], pg. 707). The function g(At) characterizes the manner in which the channel response,
h(r;t), is changing as a function of time, and thus depends on the vehicle speed and the frequency
at which the mobile transmits. It is shown in ([8], pg. 26) that if the power received from the mobile

is transmitted uniformly in all directions, then
_ VW
9(At) = Jo (—c At) , (3.9)

where Jy is the Bessel function of order zero, v is the mobile’s velocity, wq is the transmitted
frequency, and c¢ is the speed of light.
The channel parameters Aw (n,wo;t) and Aw (m,wq;t) are, in general, not uncorrelated. Co-

variances among the channel parameters can be computed using (3.4). This gives

Prnm = E {A*W(n,wo; t)-AW(m,wo; t)} ,
=E {/ / h(y;t)h"(72;t)sinc(n — W) sine(m — Wrp)dry de} ’
= / / #¢(11)9(0)é(m2 — 1) sinc(n — W) sinc(m — Wrp) dry dre,

= _/_‘: ¢c(7)sinc(n — Wr)sine(m — Wr)dr. (3.10)

Note that the mean square values of the Rayleigh distributed random variables Aw (n,wo;t) are

given by
Pnn = / ¢c(7)sinc®(n — Wr)dr. (3.11)

We next show that the p,,’s sum to unity. For fixed values of W and 7, consider the function
sinc(t — Wr). This is a bandlimited function of ¢ and thus can be expressed in terms of a sampling

exXpansion as

sinc(t — Wr) = Z sinc(n — W) sinc(t — n). (3.12)

n=——0

Since this is true for all values of ¢, if we let t = W1 we have

[o.e]

Z sinc?(n — Wr) = L. (3.13)

Nn=—o0
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Using equations (3.11) and (3.13) and the fact the ¢.(r) satisfies equation (3.8), we conclude that

i pnn=1. (3.14)

3.2 Analysis of FH System

We proceed with an analysis of the FH system in the presence of a fading channel. Figure 3.2 shows
a single user in sector 0 transmitting over a fading channel at frequency wg. Since this frequency
channel has bandwidth R, the corresponding channel parameters are obtained by setting W = R in

equation (3.4). This gives
Ar(n,wo;t) = / h(7;1)sinc (n - —-—) e IveT dr. (3.15)
—o0 Ty

Since Tr, < T3, the mean square magnitude of these parameters, given by pnn in equation (3.11), are
all essentially zero except for n = 0, for which pgg = 1. Furthermore, since the channel parameters are
assumed to vary sufficiently slowly so that they remain constant over many bits, each bit transmitted
through the FH system sees only a single sample of the random process Ag(0,wg;t). Thus, fading
in the FH system is produced by multiplication by a complex Gaussian random variable having a
mean square magnitude of unity. Consider the transmission of a single bit through the system. For

each sector A, let

A(A) = amplitude fade between interfering user in sector A and base station in sector 0.

a0) - mlt)

t1=T;
y(?)
e A0 {JTE

z(1) T, |rO r
% 7 e
interference

V2 cos(wyt) V2 cos(wqt)

Figure 3.2: Equivalent BPSK system using FH for communication from a single user in sector 0
transmitting over a fading channel at frequency wo to the corresponding base-station receiver.
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The random variable A(A) is Rayleigh distributed with mean square value one, and thus has prob-

ability density function

plaa) = 24T A >0 (16)
For this distribution,
E{A(A)’} =1, and E{A(A)}=+7/2. (3.17)

For t € (0,T}),

y(t) = V2A(0)d(D) cos(wot) + Z x(A)V2P(F(A))A(A)(A) cos(wt + B(A)). (3.18)

A#£D

The sample at the output of the receiver, rp, is thus given by

ro = AQD)d(0)+ 3 x(A)V/B(HA)A(A)A(A) cos(6(A)), (3.19)
N et

Tsignal \A¢O L,

. p—

Tnoise

which, like the corresponding sample in the nonfading system given by equation (2.3), is composed
of a signal part and a noise part. Note that the signal part is the product of the transmitted data
bit and the fading parameter, A(0), which is assumed to be known to the receiver. The noise part
is due to other interfering users in the system and is given by
Tnoise = _ X(A)V/P(F(A))A(A)d(A) cos(6(A)). (3.20)
A#D

The random variable rpise is a sum of independent random variables each having mean zero. Thus,
Mean(rpoise) = 0, (3.21)

Var(rnoise) = E{rrzloise}’

= 3 BOC(A)) B{P(F(A)) E{AA)?) E{cos'(0(A))),

A#D

P 1

N

1
= sap. (3.22)

The interference parameter, a, is defined by equation (2.7). Note that the mean and variance of
Tnoise are identical with or without fading. Using geometrical properties of the hexagonal grid, under

the conditions of power control and R~* propagation loss in power, the probability distribution of



22
the random variable rpeise 1s computed in appendix A.3. With the results of appendix A.3, the

probability of bit error can be determined as follows. Assuming that d(0) = +1,
Pb(A(G), rnoise) = Pr {A(ﬁ) + rnoise < 0} . (3.23)

We express roise as in equation (A.20) where W is a zero-mean, unity variance, Gaussian random
variable, and V is the random variable defined by equation (A.19). Note that the distribution of V

has been computed numerically in appendix A.3, and also that E{V?} = ap. Thus, we have

Py(A(0), W, V) =Pr {A((‘J) + % < 0} . (3.24)

Averaging over the Gaussian statistics of W gives

Py(A(0),V) = -;-erfc (\/égﬁ ) . (3.25)

Next, averaging over the Rayleigh statistics of A(0) gives

+00 ~ _ N
Py(V) = /_ p(AD)P(A®B), V) dA(D),

(o0}
© 1 e
= /0 2464 Zerfe (\/ Y/—z) dA. (3.26)

Integration by parts yields

Pb(V) = —;— [l - \/_V———Zl?l—] . (3.27)

Finally, the probability of bit error can be computed numerically using the probability density

function of V, pv(v), which has been computed numerically in appendix A.3. Thus,

. 1 1
Py[Fad Exact] = ] = ——
»[Fading, Exact] /u;pv(v)2 [1 = 1] dv. (3.28)

For the purpose of comparison, we compute the probability of bit error where the additive
noise term, rnoise, is approximated with a zero-mean Gaussian distribution with variance given by
equation (3.22). In this case, we take V' = ,/ap in equation (3.24), and average over A(0) and W.

This gives

Py[Fading, Gaussian] = —;— [1 - ] . (3.29)
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Note that since T}, < T}, each frequency channel has a bandwidth that is < 1/T},, and equation

(3.29) is identical to BPSK signaling over a slowly-varying frequency non-selective fading channel ([1],

pg. 717).

Finally, we show that P;[Fading, Exact] < Py[Fading, Gaussian]. Equation (3.28) expresses the
exact probability of bit error as the expected value of a function of V2. Let X = V2, and consider

the function

fz) = % [1 - ﬁ] . (3.30)

The function f(z) is a convex N function of z because
1 3 -5
f'(z) = ——8-(:1: +1)72 <0. (3.31)

Thus, by Jensen’s Inequality ([9], pg. 153)

E{f()} < f(E{z}). (3.32)
This gives
Py[Fading, Exact] < 1 1— S
srecme, MRS | T VRV A1)

N PR S

) Vap+1]’

= Py[Fading, Gaussian], (3.33)
as desired.

3.3 Analysis of CDMA System

Next, we consider the performance of a direct sequence CDMA system and a fading channel using an
ideal RAKE receiver ([2], pg. 48; [1], pg. 732). For the purpose of theoretical analysis, the number
of tap coefficients in the RAKE receiver, L, is taken to be arbitrarily large. This is approximated
in practice by a finite number of taps satisfying L > Tpn /Te ([2], pg. 45). Figure 3.3 shows a CDMA
system for user ( in sector 0. Since the CDMA signal is spread over the entire system bandwidth,
B, the corresponding channel parameters are obtained by setting W = B in equation (3.4). This
gives

oo

Ap(n,wg;t) = /

-0

h(r;t)sinc (n - TL) e~IwoT dr. (3.34)

c
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Figure 3.3: Equivalent BPSK system using CDMA for communication from user 0 in sector 0 over
a fading channel to the corresponding base-station receiver.
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Figure 3.4: Ideal CDMA RAKE receiver with L taps.

Since the channel parameters are assumed to vary sufficiently slowly so that they remain constant
over many bits, each bit transmitted through the system sees a single sample of these random

processes. Consider the transmission of a single bit through the system. Figure 3.4 shows a CDMA

RAKE receiver with L taps. Let

z(t; A, k) = component of z(t) due to user k in sector A,

B,(A, k) = component of B, due to user k in sector A,

r(A, k) = component of rg due to user k in sector A.
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First, consider the response of the receiver to user 0 in sector 0. Let
An = Ap(n,wo;t =0) (3.35)

denote the complex channel parameters between this user and the receiver in sector 0. These

parameters are assurned to be known by the receiver. Let
An = Ay (3.36)

which is a Rayleigh distributed random variable. For t € (0, T3), the baseband CDMA signal at the
transmitter is

u(t) = do(ﬁ)Co((),t). (337)

Inserting this into equation (3.3), the portion of the input to the RAKE receiver due to user 0 of

sector 0 is

2(;0,0) = > do(0)co(0, ¢ — nT.) An. (3.38)

Using this to compute 3, (0,0), we find

B(0,0) = Az eo(0,t — LT.)2(t ~ (L — ¢)T;0,0),

= A3 do(0)eo(D,t — LT.)eo(D,t — (L ~ g + n)T.) An,

= do(0)AZ + > do(0)eo(0,t — LT.)eo(0,¢ — (L — g + n)T.) A% An . (3.39)
n#g
self-;oise

Since we are primarily interested in performance where there is a large number of interfering users

and thus a low SIR, we neglect the terms due to self-noise ([1], pg. 733). Thus, we have
B4(0,0) = do(0)4;- (3.40)

Summing over all the taps in the RAKE receiver and performing the integration over the bit interval
gives

r(0,0) = do(0) D _ A2. (3.41)
q
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Next, consider the response of the receiver to the interfering user k in sector A. Let
Ar(A, ¢) = sample at time (t = 0) of complex channel parameters between user k in sector A
and receiver for user 0 in sector 0.

Using equation (3.3), the portion of the input to the RAKE receiver due to user k of sector A is

z(t;8,k) = VP(re(B)di(A) D (A, 1~ nTL)A(A, n). (3.42)
Using this to compute 8,(A, k), we find

Bo(A k) = A/ P(re(A))di(A) Z ce(A,t— (L — g+ n)Te)Ax(A, n)} Ajeo(0,t— LTe).  (3.43)
n
Summing over all the taps in the RAKE receiver and performing the integration over the bit interval

gives

N-1
r(A,k) = %\/P(rk(A))ZZ 3" bi(A, g, n,m)A(D, m) A cos ($(A,n, 0)), (3.44)

n m=

where
br(A,q,n,m) = dp(A)er(A,m— L+ q—n)eo(0,m— L) (3.45)
is (£1) equally likely, and
¢r(A,n, q) = arg(Ar(A, n)Ay) (3.46)
is uniformly distributed over the interval 0 to 27. Since the RAKE receiver has measurements of the
random variables A,, we wish to compute the probability of error conditioned on these measurements,
then average over the statistics of the A,’s. Treating the A,’s as constants, we can compute the
conditional mean and variance of (A, k), which is a weighted sum of independent zero-mean random

variables, as
Mean(r(A, k)) =0, (3.47)

Var(r(A, k)) = E{r*(A, k)},

N-1 ’
= PO AN} Y 3 B{AK(A, n) 42 B{cos? (44(A, ),
¢ n m=0 g ———

. 1
Pnn 3

= 2—]%—2—E{P(7’k(A))} zq: ; Pnn NAZ’

S —
1

= %E{P(rk(A))} zq:Ag. (3.48)
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The total noise, ryeise, is the sum of the contributions of all users except user 0 in sector 0. Since each
user is independent, rpoige is @ sum of independent random variables. Thus, its mean and variance

are given by the sum of the means and variances for each user. Therefore,

Tnoise = T(Ak), (3.49)
(A,k)#(0,0)
Mean(rpoise) = Z Mean(r(A, k) = 0, (3.50)
(A,F)#(5,0)

Var(rnoise) = Z Var(r(A, k))’

(4,k)#(0,0)
1
= ) SyEPCx(AN) 34 (3.51)
(A,k)#(0,0) g
Using equation (2.18), we find
1
Var(raoise) = 5(a+ 1)p (Eq: A§> : (3.52)

Thus, the receiver output, rg, is given by
ro = do(0) Y A2 + racise, (3.53)
q

where rnoise has variance given by equation (3.52). Since the A,’s are known to the receiver, ry can

be divided by /3" Ag to form a receiver output of the form

Y =do(0), [>_ A2+ 2, (3.54)

q

where

Var(Z) = %(a +1p. (3.55)

Note that the complex channel parameters, A,, are not independent and have a covariance

matrix given by equation (3.10) with W = B

Prm = /_oo @(7)sinc (n - %—) sinc (m - %-) dr. (3.56)

The receiver output given by equation (3.54) is dependent on the random variable

A= [> 4 (3.57)
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In appendix A.5, it is shown that for Ay = |.A4,|, where the A,’s are complex joint Gaussian random

variables with covariance matrix [pny,], the random variable A can equivalently be written as

A= /Z B, (3.58)

where the Bq ’s are independent Rayleigh distributed random variables with mean square values b,
given by the eigenvalues of the covariance matrix [pnm]. The probablility density function of A is

then given by ([1] pg. 734)

x - 42
p(A) = { 22k dEde v A>0, (3.59)
0 otherwise,
where
by
m =[] o (3.60)

£k

Since the trace of any matrix is equal to the sum of its eigenvalues, it follows that ) pnn = 3 bs.

Combining this with equation (3.14) gives

> k=1 (3.61)

Thus,
E{A’}=E {Z B,%} =) bo=1 (3.62)

Assuming Z has a Gaussian distribution, equations (3.54), (3.55), and (3.57) can be used to compute

the probability of bit error conditioned on the random variable A. This gives

1 A?
Py(A) = —2—erfc ( G+p ) . (3.63)

Averaging (3.63) over the random variable A, using the probability density function given by equation

. b
P;[Fading] = %;wk (1 = / m) . (3.64)

Remark. If the random variables A, are in fact independent, the covariance matrix is diagonal and

(3.59), gives ([1] pg. 735)

thus has eigenvalues by = prx = E{A2}. In this case, equation (3.64) reduces to the result shown

in ([1], pg. 735) and ([2], pg. 46) where the channel parameters are taken to be independent.
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3.4 Fading Channel Results
With respect to equations (3.19) and (3.54), both the FH and CDMA systems produce a receiver

output of the form

Y = AX + Z, (3.65)

where

X = 41 data bit transmitted,
A = multiplicative channel fade,

Z = zero-mean additive noise.

Equations (3.22) and (3.55) imply that the variance of the zero-mean additive noise, Z, is

lap for FH,

Var(2) = { L(a+1)p for CDMA. (3.66)

Equations (3.19) and (3.54) imply that the multiplicative fade, A, has the form

Rayleigh for FH,
{ o)

Square root of sum of Rayleigh-squared for CDMA.

Note that for both systems we have shown that the mean square value of A is one.
We wish to compare the performances of FH and CDMA with a specific fading channel model.
The channel is assumed to have an exponential multipath-intensity profile, which is typical for

cellular mobile communications ([8], pg. 50), and is given by

Lc"%ms 7> 0,
¢e(r) = { TRMS (3.68)
0

otherwise,

where mrus is the RMS delay spread of the channel. We will take Tryrs = 37, and for the CDMA
RAKE receiver use L = 12 taps. The covariances among the tap coefficients of the CDMA RAKE

receiver can be computed using equation (3.56). This gives

*® 1 - T T
— - — ) —
Prm /_ N 3Tce sinc (n Tc) sinc (m Tc) dr,

o0
= % / ¢~ 3 sin¢(n — z) sinc(m — z) dz. (3.69)
-0
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Table 3.1 shows the covariance matrix, [pnm], and its eigenvalues. The eigenvalues sum to 0.947
which is less than 1 as a consequence of using a finite number of taps in the RAKE receiver.

Figure 3.5 shows a plot of the average probability of bit error versus the normalized traffic
for FH and CDMA systems. The FH performance curve was found using the exact distribution of
additive noise found in appendix A.3. The CDMA performance curve is given by equation (3.64).
The performance curve for the FH system if the noise is Gaussian, given by equation (3.29), is also
shown. We observe that this is in fact an upper bound on the performance curve determined using
the exact distribution as predicted by equation (3.33). Again, we see that the FH and CDMA curves
cross with CDMA performing better at lower levels of traffic and FH performing better at higher
levels of traffic. We also see that in a fading environment the FH system performs almost exactly as
if the additive noise were Gaussian. Also, note that the degradation in performance due to fading,
compared to the nonfading channel, is much more severe to the FH system than to the CDMA

system.
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Covariance Matrix: [ppm]

0.1445 0.0479 -0.0290 0.0204 -0.0155 0.0123 -0.0101 0.0085 -0.0073 0.0064 -0.0057 0.0051
0.0479 0.2219 0.0100 -0.0067 0.0047 -0.0034 0.0025 -0.0019 0.0015 -0.0012 ©.0010 -0.0008
-0.0290 0.0100 0.1655 0.0033 -0.0020 0.0012 -0.0007 0.0003 -0.0001 -0.0000 0.0001 -0.0001
0.0204 -0.0067 0.0033 0.1209 0.0007 -0.0001 -0.0001 0.0003 -0.0005 0.0005 -0.0006 0.0006
-0.0155 0.0047 -0.0020 0.0007 0.0878 -0.0003 0.0006 -0.0007 0.0008 -0.0008 0.0008 -0.0008
0.0123 -0.0034 0.0012 -0.0001 -0.0003 0.0636 -0.0008 0.0009 -0.0009 0.0009 -0.0009 0.0009
-0.0101 0.0025 -0.0007 -0.0001 0.0006 -0.0008 0.0460 -0.0010 0.0010 -0.0009 0.0009 -0.0009
0.0085 -0.0019 0.0003 0.0003 -0.0007 0.0009 -0.0010 0.0333 -0.0010 0.0009 -0.0009 0.0009
-0.0073 0.0015 -0.0001 -0.0005 0.0008 -0.0009 0.0010 -0.0010 0.0241 -0.0009 0.0009 -0.0008
0.0064 -0.0012 -0.0000 0.0005 -0.0008 0.0009 -0.0009 0.0009 -0.0009 0.0175 -0.0008 0.0008
-0.0057 0.0010 0.0001 -0.0006 0.0008 -0.0009 0.0009 -0.0009 0.0009 -0.0008 0.0127 -0.0007
0.0051 -0.0008 -0.0001 0.0006 -0.0008 0.0009 -0.0009 0.0009 -0.0008 0.0008 -0.0007 0.0092

Eigenvalues: Products:

bo = 0.04410 o = 1.96328x10°
by =0.03234 m =-1.76491x10!
by = 0.02356 7y = 9.91937x103
bs = 0.01709 m3 =-3.33122x10%
by =0.01234 7y = 5.99353x10°
bs =0.00887 w5 =-4.30838x108
be = 0.05955 e =—1.37094x10?
b; =0.07933 w7 5.81716x10*
b =1.04437 75 =-1.44665x10°
by = 1.37538 Ty 2.08682x 102
bip = 0.18294 w0 =-1.64914x10?
b11 = 0.24522 711 = 5.56387x10}

P

wnnn

Table 3.1: Covariance matrix among complex tap coefficients in a CDMA RAKE receiver. The
eigenvalues of the covariance matrix and the product terms, 7y, are also shown.
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Figure 3.5: Probability of bit error versus normalized traffic for FH and CDMA systems in a fading
environment. For the FH system, curves are shown for the exact distribution of additive noise, and
also for Gaussian additive noise.
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4. Information Theory
4.1 Introduction

In this chapter, we apply information theory to the channel models developed in the previous chap-
ter. It is important to note that we are dealing with an extremely complicated multiuser channel.
Unfortunately, very little is known about multiuser information theory. For many simple chan-
nel models, determination of the multiuser capacity region is an unsolved problem ([10], pg. 384).
Chapter 6 investigates some properties of interference channels for which the determination of the
capacity region is unknown. Because of this, we will make some assumptions about how the channel
is used so that the problem is reduced to a single-user channel. Rather than attempting to compute
the ultimate capacity, we will compute the capacities when the system is constrained to use a specific
modulation for FH and CDMA.

The capacity, C, is defined to be the largest value of normalized traffic, p, such that it is possible
for each user in the system to communicate at the data rate, R, with an arbitrarily small probability
of bit error. We begin with some assumptions about how the channel is used.

(1) There is no cooperation among users on the level of coding. Interfering users use

binary codes that appear to be =1 equally likely. Note that cooperation on the level
of modulation is implicitly assumed in the FH system because of the fact that users
in a sector have orthogonal hopping patterns.

(2) The receiver has complete knowledge of the fade in the FH system, and of the optimal
tap coefficient values in the CDMA system.

(3) Each transmitted codeword symbol sees an independent channel. This can be approx-
imated in the FH system by using sufficient interleaving and hopping rate, and in a
CDMA system using sufficient interleaving.

4.2 Coded Channel Model
We begin by developing a channel model when coding is used. Let
reode = code rate.

Consider, first, the transmission of a single +1 codeword syrhbol through the FH system. If, for
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example, a rate 1/2 code is used, we note that the information bits generated at rate R produce
codeword symbols at rate 2R. We assume that the bandwidth of each FH channel remains R, but
that at a given time each user transmits simultaneously over 2 such channels to achieve the symbol
rate of 2R. Since the N, users in each sector remain orthogonal, the total number of FH channels in
use at a given time in a sector is 2N,. Thus, we must have 2N, < N, or equivalently, the normalized
traffic must satisfy 2p < 1. Furthermore, the p‘roba.bility that there is an interfering user in an
arbitrary sector A # 0 is 2N, /N = 2p. Thus, for the FH system, the additive noise at the receiver
output, rhise, is the same as that given by equation (3.20) with p replaced by 2p in the definition of
X(A). Similarly, for the CDMA system, each +1 codeword symbol is now spread by a factor of N/2.
Thus, analysis of the CDMA system simply requires replacing N by N/2 in equations (3.54) and
(3.55). Note that N appears only through the normalized traffic p = N, /N, so we can equivalently
replace p by 2p.

In general, for a code of rate reode, each user transmits, on average, over 1/rcode channels at a
time in the FH system. The assumption of orthogonality within a sector implies that N, /reoge < N.

This can be expressed in terms of the effective coded normalized traffic, p, as
p<1, (4.1)

where the effective coded normalized traffic is defined as

4

Tcode

p= (4.2)

The probability that there is an interfering user in an arbitrary sector A # 0 is then given by
(Ns/rcode)/N = p. Thus, for the FH system the additive noise at the receiver output is obtained
by replacing p by p in the uncoded system. Furthermore, for the CDMA system each 21 codeword
symbol is now spread by a factor of Nrcoge. With respect to equations (3.54) and (3.55), replacing
N by Nrcode is equivalent to replacing p by p. Thus, for both FH and CDMA, analysis of the coded
system is obtained by replacing p by 5 in the uncoded system.

Hence, with respect to equations (3.65), (3.66), and (3.67), for the transmission of a single +1

codeword symbol using a code of rate reoge, both the FH and CDMA systems produce a receiver
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output of the form

Y=AX+2Z, (4.3)
where

X = %1 codeword symbol transmitted,
A = multiplicative channel fade,

Z = zero-mean additive noise.

The variance of the additive noise, Z, is

%ap' for FH,

L ~ (4.4)
5(a+1)p for CDMA.

Var(Z2) = {
The multiplicative fade, however, remains the same as in the uncoded system, and is thus given by

(4.5)

Rayleigh for FH,
Square root of sum of Rayleigh-squared for CDMA.

4.3 Information-Theoretic Capacity

Note that the distribution of the additive noise, Z, in equation (4.3) is a function of p. Under the
assumption that A is known, for a specific distribution on the randor;l variable X, and a specific
value of p, we can compute (numerically) the conditional mutual information I(X;Y | A). For a
given value of p we pick the distribution on X that maximizes I(X;Y | A). The resulting maximum

is a function only of p and is denoted by
I(p) = maxI(X;Y | 4). (4.6)

This value corresponds to the information transfer of a single codeword symbol. If, for example, a
code of rate 1/2 were used, in an arbitrary time|interval there would be twice as many codeword
symbols as information bits. Thus, for reliable communication each codeword symbol must carry,
on average, at least 1/2 bit of mutual information. In general, for a code of rate roge, €ach code-

word symbol must carry, on average, at least rcoqe bits of mutual information. Thus, for reliable

communication at the data rate R, we require that

I(P) 2 reode- (4.7)
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Multiplying both sides of equation (4.7) by § and noting that precae = p, we see that reliable

communication is possible for values of normalized traffic that satisfy

p < pI(p). (4.8)

The capacity of the system, C, is defined to be the largest possible value of normalized traffic, p, for
which communication at the data rate, R, can be achieved with an arbitrarily small probability of

error. Therefore, the capacity of the system is given by

C = max{pI(p)}, (4.9)
pES
where ;
[0,1] for FH,

S =
[0,00) for CDMA.

Remark: Note the analogy between this information-theoretic analysis and that of the classical
single-user channel. In the classical problem, a single user wishes to communicate over a channel
with a fixed amount of noise. Information theory then predicts the maximum possible data rate at
which the user can communicate. For the multiuser channel model considered here, the data rate
for each user is fixed, and information theory is used to predict the maximum amount of interference
the system can tolerate while maintaining that data rate for each user. This maximum tolerable
interference corresponds directly to a maximum tolerable number of interfering users and thus to a
maximum traffic. In this respect, the multiuser channel analysis presented here is somewhat similar
to solving the classical single-user problem backwards.
4.4 BPSK Capacity

We now set up an expression for numerical computation of I(5) when BPSK modulation is used.
With respect to equation (4.3), let

pa(a) = probability density function of multiplicative fade, A,

pz(z) = probability density function of additive noise, Z,

px(z) = probability density function of transmitted codeword symbol, X,

py(y) = probability density function of receiver output, Y.
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By the symmetry of the problem, the optimal distribution for X is *1 equally likely. The corre-

sponding probability density function of X can be written in terms of delta functions as
1 1
px(z) = 56(:8 + 1)+ —2-6(:5 -1). (4.10)
The joint probability density function among all four random variables can be written as
Px,4,2Y (%, @,2,y) = px()pa(e)pz(2)6(y — az — z). (4.11)

Recall that I(p) is the mutual information I(X;Y | A), and thus is given by ([11], pg. 244)

16)= b {1es (”YL";.’Z(XV'@X))}- (.12)

The functions pyja x(y |, z) and py|a(y | @) are given by
py|ax(y|a, z) = pz(y — az), (4.13)

and

pyialyle) = %pz(y +a)+ %pz(y - a). (4.14)

Inserting these expressions into equation (4.12) gives

I(p) = ////PX(z)pA(a)pz(z)é(y—az—z) log, [%pz(y ichf;fpzz)(y_ a)] dydzdadz. (4.15)
(z,0,2,9) 2

Performing the integration over y and = gives

I A N p2() , pz(2)
I(p) = / / pa(@)pz(2); log, [%pz(z)+%pz(z—2a) %pz(z)+%pz(z+2a)]dzda. (4.16)

a=0z=—-00

Finally, using the fact that the additive noise distribution, pz(z), is an even function of z, I() can

be expressed as

1(p) = / / pa(@)pz(z)log, [(1 e )4(1+ - Z'(I-zot ):I dzdo. (4.17)
Pz(2)

a=02=0 pz(z)
Figure 4.1 show plots of I(p) versus p and of pI(p) versus p for the FH and CDMA systems.
These were computed numerically by using the Rayleigh distribution given by equation (3.16) for

pa(e) in the FH system, and using the square root of a sum of Rayleigh-squared distribution given



38
by equation (3.59) for pa(a) in the CDMA system. The additive noise was taken to be Gaussian in
the CDMA system and for the FH system the distribution derived in appendix A.3 was used. Note
that for both systems, pI(p) is a monotonically increasing functions of 5. For the FH system, the

maximum occurs at p = 1 and gives a capacity
‘Cru[BPSK, Soft Decision, Fading] = 0.729. (4.18)
For the CDMA system, it is shown in appendix A.7 that as p — oo the capacity is given by

Ccpma[BPSK, Soft Decision, Fading] = _loag% = 0.988. (4.19)

For the purpose of comparison, capacity results for a nonfading channel can be obtained by
setting pa(a) = 6(A—1) in equation (4.17) and inserting the appropriate additive noise distributions.

For the FH system this gives a capacity of
Cru[BPSK, Soft Decision, No Fading] = 0.896. (4.20)

It is also shown in appendix A.7 that the capacity of the CDMA system for a nonfading channel

remains the same as that of the fading channel. Thus,

Ccpmal[BPSK, Soft Decision, No Fading] = 1—3%(?- = 0.988. (4.21)

At this point we wish to extend these information-theoretic results a step further and consider
hard decision decoders. If the receiver makes a hard decision on each binary codeword symbol, the
probability that a codeword symbol is in error is given by replacing p by 5 in the expressions for
uncoded bit error probability in chapter 3. Thus, each codeword symbol sees a binary symmetric
channel ([11], pg. 161) with crossover probability, P;(5). The mutual information, I (P), is thus given
by

1() = 1 - H[P(5)]. (4.22)

For the FH system, pI(p) achieves its maximum value at p = 1 and gives

Cru[BPSK, Hard Decision, Fading] = 0.599. (4.23)
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Figure 4.1: Plots of the mutual information, I(p), and the product, pI(p), versus the effective
coded normalized traflic, p, for the FH and CDMA systems.

For the CDMA system, pI(p) achieves its maximum value as § — oo. This limit is computed

analytically in appendix A.8, and gives the result

2
Ccpma[BPSK, Hard Decision, Fading] = ;T"f%% (Z 5 \/bk) . (4.24)
k

For the channel model used in section 3.4 with an RMS delay spread of 3T, this gives a capacity of
0.575.
For the purpose of comparison, capacity results for a nonfading channel can be obtained for FH

and CDMA systems by using the corresponding expression for P, given in chapter 2. For the FH
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system, numerical computation gives

Cru[BPSK, Hard Decision, No Fading] = 0.836. (4.25)

For the CDMA system, capacity is achieved as p — oo. This limit is computed analytically in

appendix A.9, and gives the result

~—

log,(e

Ccpma[BPSK, Hard Decision, No Fading] = o

2
- = = 0.630. (4.26)

4.5 MASK Capacity

In this section, we attempt to extend these information-theoretic results to treat multilevel modu-
lation schemes. In the BPSK system considered up to this point, a &1 symbol is used £o modulate
a sinusoidal carrier. We will now consider an MASK system where a multilevel signal is used to
modulate a sinusoidal carrier. In particular, we will consider the limit as the number.of levels ap-
proaches infinity and the sinusoidal carrier is modulated by a continuously varying signal level. The
multipath fading characteristics of the channel remain the same and thus the statistical properties
of the multiplicative fade are identical to that of the corresponding BPSK system. Under the as-
sumption that power control is maintained, the mean and variance of the additive noise remain the
same as in the corresponding BPSK system. However, the actual distribution of the additive noise
is somewhat different because now each user can contribute a continuum of interference levels. In
fact, the actual distribution becomes extremely complicated because it depends on the continuous
probability density function with which each interfering user transmits. We will thus make the sim-
plifying assumption that the additive interference has a Gaussian distribution for both the FH and
CDMA systems and look for analytic solutions. Thus, equations (4.3), (4.4), and (4.5) for BPSK can
be modified, in accordance with the previous comments, for MASK. This resulting MASK system

mode] produces a receiver output of the form
Y=AX +Z, (4.27)
where

X = continuous level codeword symbol transmitted,
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A = multiplicative channe] fade,

Z = zero-mean additive noise.

The additive noise, Z, is Gaussian with variance given by

Lap for FH,

Var(2) = { 2

X i (4.28)
5(a+1)p for CDMA,

and the multiplicative fade is given by

Rayleigh for FH,
A= (4.29)
Square root of sum of Rayleigh-squared for CDMA.

It is assumed, without loss of generality, that under power control all users are received at power

level one. Thus,

E{X*} =1 (4.30)

We will first find the probability density function of X, px(z), that maximizes the mutual informa-

tion I(X;Y | A). This mutual information can be written as

I(X;Y |A) = ///pA xy(e,z,y)log, (pY'A xly| e, w)) dydz da,

py|ay| @)

= [ pata) [ / /,, pxyia(z,y|a)log, (%) dyda:] da

- / pa(@I(X;Y | A = a)da. (4.31)

If the exact value of A is known, say A = «, where a is a constant, then equation (4.27) is equivalent
to the classical additive Gaussian noise channel ([11], pg. 247). In this case, it is known that the

optimal choice for px(z) is a Gaussian distribution, for which
1 a?
I(X;YIA:a)=—2-log2 1+;§ ) (4.32)

where

o? = Var(Z2). (4.33)

Note that this choice of px (z) is independent of the value of «, and thus maximizes I(X;Y | A = «)
for all values of «, and hence is the maximizing distribution for I(X;Y | A). Thus, we will take

2

1 _ =2
px(z)=—\/5—;e 7. (4.34)
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The resulting mutual information is a function only of § and can thus be written as
_ 1 a?
1) = I(X;Y | 4) = / pa(a)log, |1+ 55| da. (4.35)

For the FH system, A has the Rayleigh probability density function given by equation (3.16). This
gives

(%] 2
I(5) = % fo 2ae~" log, [1+ %] da. (4.36)

Making a change of variables and integrating by parts gives

1(5) = Iﬂ%(fl [-e"in(—az)] , (4.37)

where Ei(z) is the Exponential integrating function defined by

Ei(z) = / i f’;dt. (4.38)

-0

Finally, inserting the expression for o2, from equation (4.28) for FH, gives

I(p) = lig;_("’-_) [—-e%“fEi(—%aﬁ)} : (4.39)

Again, it turns out that the function pI(5) is a monotonically increasing function of 5. Thus, on the

interval [0, 1], §I(p) achieves its maximum value at 5 = 1 giving a capacity of
. logz(e) 'y . a
Cru[MASK, Fading] = —g ¢* [—E1(—§)] = 1.010. (4.40)

For the CDMA system, A has the probability distribution of the square root of a sum of

Rayleigh-squared random variables, given by equation (3.59). This gives

_ R S P o?
I(p) = /0 Ek Pl log, [1 + ﬁ] da,
S ([T o?
= d . (/0 ae % log, [1 + 0_—2} da) . (4.41)
Making a change of variables and integrating by parts gives

1(5) = _1_0%_(5_) [Z rpe ST Ei <_:_2)] . (4.42)
k

k
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The definition of the Exponential integrating function, Ei(z), is given by equation (4.38). Finally,

inserting the expression for 02, given in equation (4.28) for CDMA, gives

k

Again, §(p) is a monotonically increasing function of p and thus achieves its maximum value as

P — oo. It is shown in appendix A.10 that as P — oo the capacity is given by

Ccpma[MASK, Fading] = k;—gi('? = 0.988. (4.44)

For the purpose of comparison, capacity results for a nonfading channel can be obtained by setting
A =1 in equation (4.27) and noting that this reduces to the classical additive Gaussian noise

channel. Thus, I(p) is given by ({11], pg. 247)
o1 1
I(p) = 5log, |1+ . (4.45)

For the FH system, we have
N 2
I(p) = =1 L+ — .
pI(p) = 7 log, [1 + ap] , (4.46)
which is a monotonically increasing function of §. Thus, it achieves its maximum value at p = 1

giving a capacity

Cru[MASK, No Fading] = —;—logz [1 + %] = 1.212. (4.47)

Similarly, for the CDMA system, we have

I 2
I(p) =2 14 ——r .
pI(p) = 5 log, [ g 1)13] ; (4.48)
which is also a monotonically increasing function of p. Taking the limit as § — oo gives
. log,(e)
Ccpma[MASK, No Fading] = —22—~ = (.988. (4.49)

a+1
4.6 Capacity Results

Table 4.1 summarizes the information-theoretic results of this chapter. We see that using BPSK

over a fading channel the CDMA system performs a little better than the FH system. The reason
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FH CDMA
BPSK
Soft Decision 0.896 loga(2) — 0.988
No Fading
BPSK ]
Soft Decision | 0.729 gale) — 0.988
Fading
BPSK
Hard Decision 0.836 21rloa 235 = 0.630
No Fading
BPSK 2
Hard Decision 0.599 wald (E mﬂ/z;> = 0.575
Fading k
MASK o8 (e
No Fading llog, [1+2] =121 loa(e) — 0.988
g’;‘fi‘isnlz o83(2) e [Ei(—£)] = 1.01 log2(®) — 0.988

Table 4.1: Summary of information-theoretic results.

for this is as follows. It is necessary to require that § < 1 in order to maintain orthogonality in the
FH system. Subsequently, if a low rate code were used, a relatively small number of users would use
up all the system bandwidth. However, the CDMA system does not have this restriction and allows
the use of codes with rates as low as 1/N. This is demonstrated by the fact that for each FH entry
in table 4.1, the éapacity is approached as p — 1; for each CDMA entry, the capacity is approached
as p — oo. The fact that CDMA capacity is approached’for P — oo agrees with the result in [12]
which says that in a multiuser Direct Sequence CDMA system, the performance improves as the
code rate decreases. Furthermore, we see that the capacity of CDMA is the same for fading and
nonfading channels using BPSK and MASK. This is due to the fact that the information-theoretic
analysis allows for arbitrarily complex codes at very low rates. Such codes allow the fading statistics
to be averaged over an arbitrarily large number of samples offering an infinite diversity to the fading

environment.
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5. Channel Simulation.
5.1 Introduction.

The information-theoretic results of the previous chapter give the best possible system performance
that can be achieved using arbitrarily complicated coding schemes. Unfortunately, arbitrarily com-
plex codes include arbitrarily long block lengths, and thus arbitrarily long delays. In this chapter,
we investigate the performance of specific coding schemes and the effects of a finite, controlled, delay
using interleaving. These results are obtained primarily through simulation. We begin by looking
at repetition codes and then consider an (8,4) biorthogonal block code. For a specific code, it is
possible to measure the performance for infinite interleaving and zero interleaving. To evaluate the
performance using infinite interleaving, it is assumed that each codeword symbol sees independent
channel statistics. On the other hand, the performance using zero interleaving is evaluated by assum-
ing that each codeword symbol sees an identical, 100% correlated, channel. Finally, making some
assumptions about the vehicle speed and transmitter frequency, we evaluate performance using a
finite amount of interleaving delay by taking into account the actual amount of correlation among
channel samples as seen from one codeword symbol to the next.

5.2 Repetition Codes.

In this section, we compute the average probability of bit error for FH and CDMA over a frequency
selective Rayleigh fading channel using D-fold repetition codes. Each data bit is transmitted D
times. Note that the code rate, reoge, is equal to 1/D. Thus, the effective coded normalized traffic,
P, is given by

p= Dp. (5.1)
We begin by considering the infinite interleaving performance where each of these D transmiséions
experiences independent channel statistics. Consider the transmission of a single codeword of D

symbols. A maximum likelihood receiver for this system consists of D simple BPSK receivers ([1],

pg. 721). With respect to equations (4.3), (4.4), and (4.5), each receiver output is of the form

Y. =AnX+ Z,, (m=1,2,...,D) (5.2)
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where

X = =1 data bit,
Ay, = multiplicative channel fade,

Zm = zero-mean additive noise.

The additive noise samples, Z,, are taken to be i.i.d. each having variance

3aDp for FH,
=9 (5.3)
5(a+1)Dp for CDMA.
The multiplicative fades, A,,, are also taken to be i.i.d. and of the form
Rayleigh for FH, (5.4)
™ Square root of sum of Rayleigh-squared for CDMA. '

The maximum likelihood receiver forms the decision variable Y as a weighted sum of the Y;,’s given

by
D D D
Y= An¥m=Y ALX+ Amim. (5.5)
m=1 m=1 m=1

Thus, the maximum likelihood receiver for a D-fold repetition code produces an output of the form

Y=AX+Z, (5.6)
where
D
m=1
and
D
Z=Y Amzm. (5.8)
m=1

The random variable Z thus has a variance, conditioned of the values of the A,,’s, given by

D
Var(ZlAl,Ag,...,AD)z (Z A,Zn) 0'2 =A0'2. (59)
m=1 .

For the FH system, the A,,’s are i.i.d. Rayleigh random variables. Each of the terms A2 can

then equivalently be expressed as the sum of two i.i.d. Gaussian random variables having mean
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zero and variance 1/2. Thus, A is has a chi-square distribution with 2D degrees of freedom. The

probability density function of A4 is then given by ([1], pg. 26)

p(4) = D= )AD “lem4, (A>0). (5.10)

At this point, the probability of bit error performance can be computed numerically using the FH
additive noise distribution found in appendix A.3. For the purpose of comparison, if the additive
noise term, Z, is approximated with a zero-mean Gaussian distribution with conditional variance
given by equation (5.9), the probability of bit error can be determined analytically as follows. This
approximation is justified by the fact that, for a fading channel, the performance curves using
the exact distribution and the Gaussian distribution are very similar as shown in figure 3.5. The

probability of bit error conditioned on the random variable A is given by

Py(A) = —erfc (\ /&%;3 ) . (5.11)

Averaging equation (5.11) over the probability distribution of A gives

_[7_1 p-1,-al [ A
Pb—/o (D—l)!A e 2erfc( aDp dA. (5.12)

Making use of the integration formula of appendix A.11, the probability of bit error, P;, can be

A= () B

“\/ = 5.14
l“'_ I+aDp’ (' )

Note that equation (5.13) is identical to BPSK signaling over a slowly-varying frequency non-selective

expressed as

a

where

fading channel with diversity D ([1], pg. 723).
For the CDMA system, the Ay,’s are i.i.d. random variables with the probability distribution
given by equation (3.59). Assuming the additive noise term, Z, has a Gaussian distribution with

conditional variance given by equation (5.9), the probability of bit error conditioned on the random

Py(4) = erfc (\ /(_ﬂ%”p_p ) . (5.15)

variable A is given by
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In appendix A.12, it is shown that for a RAKE receiver with L taps, averaging equation (5.15) over
the probability distribution of A gives
L-1 (D-k) (D=k-1) Dek—1 1
;ow EF( k)( ) ;0: ( | )( 5 ) (5.16)

where

— bq
=\ @+ 1)Dp+8,’

F(g,k)=(-1)* ) [I:—I (m’ +D1- 1) (Eqb_’—b)mj] : (5.18)

S(q,k)

(5.17)

Vd

S(q, k) = {(mo,ml, ...,mp-1) : m; = nonnegative integer ; Z mi=k;, m;=0p. (5.19)

The definition of 7, appears in equation (3.60).

The zero interleaving performance of repetition codes turns out to be equivalent to that of
not using any coding. Each of the D codeword symbols is assumed to see exactly the same fade
Ap,. For the FH system, each user transmits simultaneously over D frequency channels. Assuming
that each channel sees the same fade is equivalent to assuming that the spacing among these D
channels is sufficiently small compared to the coherence bandwidth of the channel. Furthermore, it
is assumed that the interference seen in each of these D channels is due to independent users and
thus the additive noise terms are taken to be independent. For the CDMA system, assuming that
each codeword symbol sees the same fade is equivalent to assuming that the fading process is slow
compared to the bit time, T;. Also, since users in the CDMA system are assumed to have random,
mutually independent, PN sequences, the additive noise terms are taken to be independent in the
CDMA system as well. Thus, for each codeword symbol, both the FH and CDMA systems produce

an output of the form

Ymn=AX+ Z,,, (m=11,...,D) : (5.20)

where the Z,,,’s are independent and each have variance given by equation (5.3), and the multiplica-

tive fade A has a distribution given by equation (5.4). A maximum likelihood receiver then forms
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the decision variable Y as the average of the Yy,’s given by

m=1
=AX + , (521)
where
12
Z=5 > Zm. (5.22)
m=1
Note that since the Z,,’s are i.i.d., the variance of Z is given by
1
Var(Z) = 5 Var(Zp,), (5.23)
where Var(Zp,) is given by equation (5.3). This gives
%ap for FH,
Var{Z) = (5.24)
1(a+1)p for CDMA,

which is exactly the same as equation (3.66) for no coding. If the additive noise terms, Z,, are
taken to be Gaussian, then Z is also Gaussian. Thus, CDMA system performance is exactly the
same as that of no coding. Even if the additive noise terms, Z,,, are not taken to be Gaussian,
by the central limit theorem the random variable Z approaches a Gaussian for large D. Thus, FH
system performance will lie between the no coding performance using the exact distribution of the
additive noise derived in appendix A.3 and the performance using a Gaussian approximation for the
additive noise. Note, however, that the FH system is now restricted to values of normalized traffic
that satisfy p < 1/D.

Remark: The fact that for CDMA, the zero interleaving performance of repetition codes is exactly
the same as that of no coding is a tautology. Consider the uncoded CDMA transmitter shown in
figure 3.3. In each bit interval, the signal u(t) is the product of the data bit and the PN sequence.
If a repetition encoder were inserted into the system, each data bit would be repeated D times,
and the duration of each of these codeword symbols would be T;/D. Nevertheless, over a full bit

interval, the signal u(t) would still be the same product of the data bit and the PN sequence.
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5.3 Binary Block Codes

In this section, we will compare the performances of FH and CDMA systems over the frequency
selective Rayleigh fading channel using binary (n, k) block codes ([10], pg. 47). The performance
will be evaluated through simulation of an ideal soft decision decoder ([1], pg. 400). Binary, {0, 1},
codewords are changed to 1 codewords by changing 0 to —1. We begin by defining the parameters
of the code. Let |

n = number of 1 symbols per codeword,

k = number of information bits per codeword,

M = 2% = pumber of codewords in the code,
C;(m) = symbol m (£1) of codeword i, (m € [0,n—1],i€[0,M —1])
Crr(m) = symbol m (+1) of the transmitted codeword.

Note that the code rate, rcode, is equal to k/n. Thus, the effective coded normalized traffic, p, is
given by

n

p= 1P (5.25)

We begin by considering the infinite interleaving performance where each of the n symbols of a
codeword experience independent channel statistics. Consider the transmission of a single codeword.

With respect to equations (4.3), (4.4), and (4.5), each of these n codeword symbols is received as
Y = Am Crr(m) + Zps, (m=0,1,...,n-1) (5.26)
where

Ay, = multiplicative channel fade,

Zm = zero-mean additive noise.

The additive noise samples, Z,, are taken to be i.i.d., each having variance

R { Z-ap for FH,

s(a+1)p for CDMA, (5.27)

The multiplicative fades, A,,, are also taken to be i.i.d. and of the same form as with the use of

repetition codes given by equation (5.4). Soft decision decoding is performed by computing the M
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decision variables
n-1
D; = Z AmYmCi(m), (i=0,1,...,M =1) (5.28)

m=0

and choosing the codeword corresponding to the largest D;. For the zero interleaving performance,

each codeword symbol is received as
Ym = ACre(m) + Zmmy,  (m=0,1,...,n—1) (5.29)

where A is the channel fade having distribution given by equation (5.4), and the Z,, remain i.i.d.
zero-mean with variance given by equation (5.3). The decision variables are now

n—1

D; = Zymc,.(m), (i=0,1,...,M —1). (5.30)

m=0
At this point, the infinite interleaving and zero interleaving performance of a specific block code can
be evaluated for both FH and CDMA systems by simulating the transmission of a large number of
codewords using the appropriate channel statistics.

5.4 Channel Simulation Results

We wish to compare the performances of FH and CDMA using repetition codes and also using an

(8,4) biorthogonal block code with generator matrix

G= (5.31)

OO O
OO D
OO
-0 oo
et (D e
O e
s s O
= =

The performances of these systems were obtained by simulating the transmission of a large number
of random codewords and counting the number of bits in error. This simulation was iterated over
many values of the normalized traffic, p, to generate plots of bit error probability versus normalized
traffic. Figure 5.1 shows the performances of FH and CDMA for the cases of no coding, repeat coding
with diversity two, and the (8,4) code with infinite interleaving. The information-theoretic capacity
results from the previous chapter are also showln. We see that there is an increase in performance
when going from no coding to two-fold repetition coding and then to the (8,4) biorthogonal code.
Nevertheless, we also see that these performances are all far below the information-theoretic limits.

Figure 5.2 shows the performances of FH and CDMA with the (8,4) code for infinite interleaving,
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zero interleaving, and 20ms of interleaving. The simulation for 20ms of interleaving assumes a
transmit frequency of 880MHz, a vehicle speed of 30mph, a data rate, R, of 9600bps, and total
system bandwidth, B, of 1.23MHz. The value of N is thus, N = B/R = 128. The correlation
among channel parameters from one codeword symbol to the next was simulated according to the
Bessel function correlation of equation (3.9). For the FH system, a hopping rate of 100Hz (1 hop
every 10ms) was simulated. The simulation used random hopping over the 128 FH channels and
incorporated the effects of nonzero correlation among channels due to finite frequency separation.
The power delay profile of the channel was assumed to be exponential with RMS delay spread equal
to 37.. We see that 20ms of interleaving offers significant improvement over zero interleaving. We
also see that the effect of zero interleaving versus infinite interleaving is more drastic to the FH
system than to the CDMA system. As in the previous sections, the performance curves of both
systems cross, with the FH system better at larger levels of traffic, and the CDMA system better at

smaller levels of traffic.
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Figure 5.1: Probability of bit error versus normalized traffic, p, for FH and CDMA systems over a
fading channel using no code, repetition code with diversity two, and (8,4) block code with infinite
interleaving. The information-theoretic capacity curves are also shown.
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Figure 5.2: Probability of bit error versus normalized traflic,p, for FH and CDMA systems using

(8,4) block code. The performance for infinite interleaving, zero interleaving, and 20ms interleaving
are shown.
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6. Some Properties of Memoryless Multiterminal Interference Channels
6.1 Introduction

This chapter is not closely related to the rest of this paper. Here we look at the information-
theoretic problem of interference channels when there is no assumption that users do not cooperate
on the level of coding. Very few results in the area of multiuser information theory are known. A
general formula for the cap;city of such channels is presented, however, this formula does not easily
lend itself to computation. Alternatively, if the channel inputs are taken to be vectors of length N,
examining the mutual informations among the input and output N-vectors gives achievable points in
the capacity region. We examine the nature of these regions for small values of N. Two specific two-
user interference channels are considered: a Gaussian interference channel and a binary interference
channel. The Gaussian interference channel turns out to be a special case where the capacity region
is actually known. It is shown that certain probability distributions on the input achieve points on
the boundary of the capacity region for N = 2. For the binary interference channel, the capacity is
in general not known. Our numerical results suggest that the capacity region can be determined by
knowledge of the achievable region for N = 1. However, we have not been able to prove this result
and 1t thus remains a conjecture.

6.2 Information Theory

We begin by considering the two-user interference channel shown in figure 6.1. It is desired that
two independent users each communicate simultaneously with a single receiver. That is, source
one communicates with receiver one at rate R;, and source two communicates with receiver two
at rate Rz. The multiterminal channel takes inputs, z; and z3, from the channel input alphabet
and produces outputs, y1 and yz, from the channel output alphabet according to the conditional
probability distribution p(y1,y2|21,22). We assume that the channel outputs are independent

conditioned on the inputs. That is,

p(y1,v2 |21, 22) = p(un | 21, 22)p(y2 | 21, T2). (6.1)

We are interested in the capacity region, i.e., the set of all rates (Ri, Ry) for which it is possible to

communicate with an arbitrarily small probability of error.
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Figure 6.1: Two-user interference channel. Each user independently communicates with a single
receiver.

Theorem: The capacity region of the two-user interference channel is given by
°° 1 1
C = Closure {J\H LPJ R [ﬁl(xl;Yl), (X2 Yg)] } , (6.2)

where X, X5, Y1, Y5 are N-vectors, P is the set of all independent probability distributions on

X; and X, and

Rlz,y = {(R1,R) :0< Ry <z, and 0< Ry <y} (6.3)

Unfortunately, this capacity formula does not lend itself to computation because the union is
over all possible values of the vector size, N, from one to infinity. In general, given an arbitrary
two-user interference channel, it is currently not known how to compute the capacity region. An in-
teresting approach to this problem is to investigate the behavior of the mutual information functions

for specific values of the vector size, N. Consider the following achievable region

1 1
Av ={| |R|2I(X1; Y1), = I(X5; Y9)| b 6.4
N{l}J |15 Y0, 1 z)]} (6.4

where P is the set of all independent probability distributions on the N-vectors X; and X,. The full
capacity region is given by the union of the Ax’s as N varies from one to infinity. We are interested
in the behavior of the An’s for small values of N. This interest is motivated by the fact that for
a single-user memoryless channel, (1/N)sup[/(X;Y)] is independent of N (where X and Y are
N-vectors and the suprema is taken over all probability distributions on X). In other words, for the
single-user channel, the capacity can be determined by considering only N = 1 rather than having

to let N tend to infinity. Perhaps there is an analogous simplification for the multiuser channel.
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6.3 Additive Gaussian Interference Channel

For the additive Gaussian interference channel, the channel outputs, y; and y2, are given by

n=z1+z+ 2, (6.5)

Y2 =21+ T2 + 22, (6.6)

where z; and 2z are i.i.d. Gaussian random variables with mean zero and variance one. The inde-
pendent channel inputs, z; and z, are required to satisfy E{z?} < 1, and E{z3} < 1. Since y; and
yo are statistically equivalent, this multiterminal channel is a special case where the capacity region

is actually known [13]. The capacity region is

1
C= {(Rl,Rz)Z 0SR1<

1
<5 0<R; < 5 and R + Ry < 10g2(3)} (bits). (6.7)

We consider only a subset of the Ax’s where the channel inputs have zero-mean Gaussian
distributions. For N = 1, z; and z, are independent Gaussian random variables with variances o2
and o2 respectively. Letting o and o vary independently between zero and one, we obtain the
shaded region shown in figure 6.2. The boundary of the capacity region, given by equation (6.7), is
also shown in figure 6.2. We observe that the shaded region is in fact a subset of the capacity region
and also that it does not contain any points on the boundary of the capacity region (except for the

trivial points R; = 0, Rz = -;— and Ry = %, Ry =0). For N =2, let
X1 = [9311 1,'12], and Xz = [1321 222] . (68)

Here, X; and X, are each given joint Gaussian distributions. For X;, 1, and z12 are joint Gaussian
with variances o2, and 0%, respectively and correlation coefficient 7;. Similarly, the joint Gaussian
distribution for X, is characterized by ¢2;, ¢2,, and 7. Hence, there are six parameters to specify
in order to compute a single point in the A, region. By setting 0%, = 0%, = ¢, = 02, = 1 and
varying 71 and 73 independently between —1 and 1, we obtain the shaded region shown in figure 6.2.
In particular, we see that A, contains a nontrivial point on the boundary of the capacity region.

This point is achieved for (r; = 1,7 = —1) and also for (; = —1, 7, = 1). Thus, it appears that
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Figure 6.2: Some achievable points in A; and A, for the Gaussian interference channel.

the the expression for capacity given by equation (6.2) does not approach its limit “continuously”

as N tends to infinity because this boundary point is achieved for N = 2.

6.4 Binary Interference Channel

The binary interference channel is a discrete channel where the channel input symbols and channel
output symbols belong to the binary set {0,1}. This channel is described as follows. If 3 = 0, there
1s perfect transmission between z; and y;. That is, if £ = 0, then y; = x;. If 25 = 1, then z; and
y1 see a binary symmetric channel with crossover probability e. That is, if 23 = 1, then y; = 21
with probability 1 — € and y; # z; with probability €. This channel is also symmetric with respect
to each input-output pair. Thus, £; = 0 implies y» = 23, and z; = 1 implies a binary symmetric
channel with crossover probability € between z and y,. Table 6.1 gives a complete description of
the conditional probability function p(y;,y2 | %1, 22)-

There are two special cases, € = 0 and € = 1, for which the capacity region can be determined
exactly. For € = 0, there is no interference; y1 = 1 and y» = z3. Thus, the capacity region is the
entire square {(R3,Rz): 0 < R; <1, and 0 < R; < 1}, as shown in figure 6.3. For ¢ = 1, we

have y2 = y1 = z1 + 2 (mod 2). Since y; and y, are equal, the channel is reduced to a multiaccess
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z) T2 n Y2 P(y1, Y2 l Iy, 1’2)
0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1. 0 0 0

0 1 0 1 1—-¢
0 1 1 0 0

0 1 1 1 €

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1—¢
1 0 1 1 €

1 1 0 0 2

1 1 0 1 e(l—¢)
1 1 1 0 e(l1—¢)
1 1 1 1 (1 - 6)2

Table 6.1: Conditional probability function, p(y1y2 | £1z2), for the binary interference channel.
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channel, and the capacity region can be computed using the results of ([11], pg. 334). In this case,
the capacity region is given by {(R;, R2): 0 < R1, 0 < Ry, and R; + Rz < 1} which is also shown
in figure 6.3.
We proceed to compute Ay for N =1and N =2. For N = 1, let
po = Pr{z, =0}, go = Pr{z2 = 0},
(6.9)
p1 = Pr{z; =1}, q1=Pr{z, =1}.
Varying these four parameters under the constraints that po +p1 = 1 and g0+ ¢1 = 1, we obtain
the shadéd regions shown in figure 6.4 for € = 0.1 and € = 0.7. For N =2, let
poo = Pr{X, = [00]}, goo = Pr {X; = [00]},
po1 = Pr{X; = [01]}, go1 = Pr{X,; = [01]},
(6.10)
pio = Pr{X; = [10}}, q10 = Pr{X, = [10]},
p11 = Pr{X; = [11]}, g1 = Pr{X, = [11]}.
Varying these eight parameters under the constraints that poo + po1 +p1o +p11 =1 and goo + o1 +
q10 + q11 = 1, we obtain the shaded regions shown in figure 6.4 for ¢ = 0.1 and € = 0.7. For e = 0.1,
the regions A; and A, appear identical. We have not been able to prove this, but within the accuracy
and resolution of our numerical calculations and plots, the regions A; and Azlare indistinguishable.
For ¢ = 0.7, A; appears to be a rate % timesharing version of A;. That is, A, appears to be the
union of A; and all points halfway between two points in A;. A timesharing argument, similar to
the argument in [14], can be used to argue that all such points are in Ay, however, we have not been
able to prove that these are the only points in A;. With respect to these observations, we make the

following conjecture.

Conjecture: The capacity region of the binary interference channel defined by table 6.1 is
C = Convex Hull {A;}. (6.11)

The fact that Convex Hull {A;} C C follows from a timesharing argument. It only remains to be

proven that there are no points outside Convex Hull {A;} that are in C.
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Figure 6.4: The regions A; and A, of the binary interference channel are shown for ¢ = 0.1 and
e=0.7.
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7. Conclusions and Future Work

We have seen that an information-theoretic capacity can be defined, and that CDMA has a larger
capacity than FH when BPSK modulation is used in a fading environment. This theoretical ad-
vantage of CDMA is due to the fact that, unlike the FH system, by not requiring that the users
in a sector maintain orthogonality, it is possible for a large amount of traffic to communicate using
very low rate codes. Howe\;er, for the codes we have simulated it is unclear which system performs
better because the performance curves cross. There is a tradeoff in performance between the lower
interference power in the FH system and the ability to combat frequency selective fading in the
CDMA system. There are a number of different ways in which this work can be expanded upon.
Probably one of the most important is to try to incorporate the effects of shadowing into the anal-
ysis. Shadowing is a function of the actual geometry of the system, i.e., the locations of buildings,
mountains, etc. Furthermore, inasmuch as the geometry of a system is fixed and not changing in
time, the shadowing parameters are fixed for a given system. It thus seems reasonable to expect
that, for a given system, the information-theoretic capacity would be a function of these shadowing
parameters, and hence of its geometrical configuration. In this paper, we have solved the problem
where the geometry is “flat” so there is no shadowing. Perhaps, given an arbitrary geometrical
configuration, it is possible to compute an information-theoretic capacity. If this could be done,
then perhaps by considering a random distribution on the geometrical configuration of the system, a
probability distribution function could be found for the information-theoretic capacity. Another way
in which this work could be improved upon would be to consider other forms of modulation. Finally,
it would be interesting to try to simulate more complex codes to see how close the performance

curves come to the information-theoretic limits.
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A. Appendix
A.1 Geometrical Properties of a Hexagonal Grid
It is assumed without loss of generality that the dimensions of the hexagonal grid are normalized

such that the distance between the centers of adjacent cells is unity.

Figure A.1: Single cell in a normalized hexagonal grid.

Thus, each cell in the system has the following geometrical measurements:

1
Ty = §, (Al)
3
Y = 13[ (A.2)
Acent = Cell Area = _\2_'3_, (A.3)
Agec = Sector Area = ﬁ ! (A4)

6 2v3

Ifa rectangular coordinate system with origin at the center of cell (0, 0) is imposed on this geometry,

as shown in figure A.2, the center of cell (4, j) has coordinates (z;;,y:;) given by

1

Ti; = 14 5], (A5)
V3. :
Y%ij =57 (A.6)

The distance between the center of cell (0,0) and the center of cell (¢, j), denoted by R;;, is then
given by

R =cl+yf =477 +ij (A7)
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Figure A.2: Cellular geometry for computing the (z,y) coordinates
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A.2 Computation of Interference Parameter, a

In equation (2.7), the interference parameter, @, is defined as

a= Y E{P(F(A))}. (A.8)

A#D

Consider an interfering user at position 7 in an arbitrary sector A as shown in figure A.3. The
function P(7(A)) is the power received in sector 0 from this interfering user divided by the power

received in sector 0 from a user that is actually in sector 0.

Interfering User >€ i
Position T

sector A

Figure A.3: Interfering user at position 7 in an arbitrary sector A.

Let P; be the power transmitted by this user in sector A. Under the assumption of fourth power
propagation loss in power, the interference power received in sector 0 from this interfering user is
given by

Poe = kP, (}—12) "6@), (A.9)
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where k is some constant, and G(¢) is the antenna gain for the base station antenna in sector 0
in the direction of the interfering user. Since power control is maintained, the power received in
sector 0 from a user that is actually in sector 0 is equal to the power received in sector A from the

interfering user in sector A. This value is thus given by

Py = kP, (%)4, (A.10)
Thus,
P(F(A)) = 22 = (%)4G(¢). (A.11)

Since we are considering uniformly distributed traffic over each sector, the position ¥ is a random
variable and is uniformly distributed over sector A. The expected value of the random variable

P(7(A)) is thus given by

B{P(F(A))} = / / N AieCP(F)dF, (A.12)

where Agec is the area of a sector equal to \/?:/ 6 for a normalized hexagonal grid. For an antenna
gain, G(¢), that is equal to one if the position 7 is in the 120° beam width of sector 0 and 20dB
below this at other angles, numerical computation over a cluster of 2883 sectors gives the value

a = 0.46708.
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A .3 Characterization of Additive Noise in the FH System
In this appendix, we compute the exact distribution of the additive noise in the FH system. This

additive noise is given by equation (3.20) as

Z = Tnoise = 3 _ Xx(A)d(A)\/P(F(A))A(A) cos(B(A)). (A.13)

A#D
First, note that the product A(A) cos(6(A)) has a zero-mean Gaussian distribution. This is because
A(A) is Rayleigh distributed, 6(A) is uniformly distributed on (0,2), and these random variables

are independent. Thus, if we let

z(A) = A(A) cos(6(A)), (A.14)
then 2(A) has a Gaussian distributed with mean zero and variance

E(2(8)} = BU4*(@)) B{cos’(0)} = % (A.15)
1

[V

Thus, Z can be written as

Z = x(A)d(A)P(F(A))(A). (A.16)

A#D
Consider the distribution of Z conditioned on the random variables x(A), d(A), and P(7(A)). This

conditional random variable is then a sum of terms in which each term is a constant times an
independent Gaussian. Thus, the conditional distribution is Gaussian and has variance given by
Var[Z | x(A),d(A), P(RA))] = Y x*(A)d*(A)P(7(A)) Var(z(A)). (A.17)
A#D
Since d(A) is %1, d?(A) = 1, and also since x(A) is equal to zero or one, x*(A) = x(A). Equation
(A.17) thus simplifies to

Var 2| X(&),d(8), P(HA))] = 5 Y x(A)P((a)) = 2V, (A18)
A#D

where

V=Y x(A)PFA)). (A.19)
A#£D

It follows that there exists a Gaussian random variable, W, with mean zero and variance one such
that

Z=—VW. (A.20)

L
V2
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At this point, to characterize the distribution of Z, it only remains to characterize the distribution
of V, defined by equation (A.19). Consider the random variable u = /P(#(A)). In appendix
A.4, we show the rather unintuitive fact that it is possible to compute, admittedly complicated
but nevertheless analytic, expressions for the cumulative distribution function and the probability
density function of u, denoted Ha(u) and ha(u), respectively. Using this result, the probability

density function of the product, y = x(A)P(7(4A)), is
py(y) = pé(y) + (1 - p)ha(y). (A.21)

The probability density function of V' can be obtained by convolving these functions over sectors
A # 0. Figure A.4 shows the resulting cumulative distribution function of V for various values of
normalized traffic, p. The conditional probability density function of Z given V is Gaussian with

variance V?/2, and thus given by

1 3,2
pzv(z|v) = —=¢ 2/, (A.22)

Finally, having computed the probability density function of V, py(v), the probability density

function of Z can be written as

1

wv?

pz(2) = / pv(v) e 1" dv. (A.23)

Figure A.5 shows plots of the upper tail probabilities (one minus the cumulative distribution func-
tion) of Z for several values of normalized traffic, p. Each curve has been normalized by its standard
deviation, \/&;75. The corresponding curve for a Gaussian distribution is also shown. Note that
not only do these curves differ from Gaussian, the shape of the distribution change\s for different
values of normalized traffic, p. If each curve were simply a scaled version of a common underlying
distribution, then normalizing each to its variance would remove this scale factor and the normalized
curves would appear the same for all values of normalized traffic. This, however, is not the case as
observed in figure A.5. The tails of the distributions change shape rather significantly for different

values of normalized traffic, p.
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A .4 Probability distribution of \/P(F(A))

For an arbitrary sector, A, consider the random variable

U = /PGEQ)). (A.24)

In this appendix, we compute analytic expressions for the cumulative distribution function and the
probability density function of U. We begin by considering an arbitrary sector A = (3,4, s) that
lies in the 120° beam width of the antenna in sector 0, and thus sees an antenna gain G(¢) = 1.
Let u be a constant and consider the locus of points where the random variable U is equal to the
constant value u. Note that by the definition of P(#(A)), it only makes sense to consider values.

u < 1. Referring to figure A.3 and equation (A.11), we require that
— = u. (A.25)

If a rectangular coordinate system with origin at the center of cell (0,0) is imposed on this geometry,
d? and R? can be written as

R? = 2% 447, (A.26)
& = (zij — 2)* + (w5 — v)°, (A-27)

where (z;;, yij) are the coordinates of the center of cell (4, j) and given by equations (A.5) and (A.6).

Inserting equations (A.26) and (A.27) into equation (A.25) gives
(zij — 2)2 + (yij — y)2 =u(z?+ ). (A.28)
Expanding equation (A.28) and collecting terms gives
(1 - u)z® — (225)z + (1 — w)y® — (245)y + RY; =0, (A.29)

where R?j is given by equation (A.7). Finally, dividing through by (1 —u) and completing the square

gives the result

(525) (1) = [ wan
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This is an equation for a circle with a center and radius given by

_ % Y
Center = (————1 el — u) , (A.31)
Radius = drad = [(1—\-/_17;‘—] R,J (A32)

The distance from the center of cell (3, j) to the center of the circle U = u, dofset, is given by

2 2
Ti .. u
doﬁ‘set = \/(1 _‘Ju - xa‘j) + (13{_”“ - yij) = [1 — u} R:J (A33)

Figure A.6 shows some of these circles for different values of u. Note that in general these circles

have the following properties.

(1) For u = 0, the center is (z:j, yi;), the center of cell (3, j), and the radius is zero leaving
only the single point (z;j,y;;) where u = 0.

(2) As u increases, the radius increases and the center of the circle moves away from the
point (0,0) along the line joining the points (0,0) and (z;;,%:;). That is, the three
points (0,0), (zij,¥i;), and (z;;/(1 — u),3:;/(1 — u)) are collinear.

(3) As u — 1, we can refer back to equation (A.29) to see that this circle approaches the
line, (2z;;)z + (2%:;)y = RY;. This line passes through the point (24;/2, %5, 2) and is
perpendicular to the line joining the points (0,0) and (z;j, yi;).

(4) For distinct values, u; and ug, that satisfy u; < uz < 1, the circle U = uy encloses the
circle U = u;. This féct follows from the following argument.

a) The two circles can’t be disjoint because both enclose the point (z;;, ¥i;).

b) The circle U = u; can’t enclose the circle U = uy because it has a smaller radius.

¢) The circles can’t intersect because u; and uy are distinct and an intersection would
imply the existence of a point where U = u; = us.

d) The only remaining possibility is that the circle U = uy encloses the circle U = uy
as stated.

Using these facts and the fact that the traffic is uniformly distributed, we can state that Ha(u), the
probability that the random variable U satisfies U < u, is equal to the fraction of the area of sector

A that lies inside the circle U = u.



73

s el {0,0)

Figure A.6: Circles on which the the random variable, U, assumes a constant value.

Figure A.7: Division of each hexagonal cell into six equilateral triangles. For triangle k the angle
¢r is defined as shown.
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We proceed by breaking each cell into six equilateral triangles, numbered zero to five, as shown
in figure A.7. Each sector is composed of two such triangles, so it suffices to be able to compute the
area of an arbitrary one of these triangles that lies inside the circle U = u. We now view triangle k
of cell (7, j) by rotating the geometry such that the line joining the center of cell (0,0) and the center
of cell (7, j) is horizontal, and define the angle ¢; as shown in figure A.7. By the vertical symmetry
of the problem, the angles -;qb;c and ¢ are equivalent so we can take ¢ to be between zero and .

By applying a trigonometric analysis of this geometry, it can be shown that the ¢;’s are given by

cos(¢g) = — cos(¢3) = i;l—ii-j’ (A.34)

cos(¢1) = — cos(¢sg) = —;Izjj, (A.35)

cos(¢s) = — cos(¢s) = ‘22;:" (A.36)
i

Case 4

Figure A.8: Four possible cases to consider for each equilateral triangle.

For each equilateral triangle, there are four cases to consider as shown in figure A.8. Two
corners of the triangle are labeled A and B, as shown in the figure and, also, the parameter L is

defined as shown. By a geometrical analysis, the value of L is found to be
1 u
L= ol b R;j cos(¢r). (A.37)

To determine which case is applicable requires knowledge of whether or not point A is in the circle,

whether or not point B is in the circle, and whether or not point C lies between points A and B.
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These three conditions are determined by

point A in circle <= % - 1R'Jt; [R,J + cos(¢x) + sui(/(ék)jl <0, (A.38)
. .. 1 Riju _ sin(¢x)
point B in circle <= 3 1-w [R,J + cos(¢k) /3 ] <0, (A.39)
point C between A and B < % [COS(d)k) + sm\(/q?_ik)] R:J < Lcos(ér).  (A.40)

The determination of which case is applicable is then
Case 1 <= (L > draq) OR (point A NOT in circle AND point C' NOT between A and B),
Case 2 <= (L < draq) AND (point A NOT in circle) AND (point C between A and B),

Case 3 <= (point A in circle) AND (point B NOT in circle),
Case 4 <= (point A in circle) AND (point B in circle).

Having determined the applicable case, the area of the triangle that lies in the circle can be found

from a geometrical analysis. These areas can be used to find the cumulative distribution function.

To find the probability density function, these expressions are differentiated with respect to u. The

results are as follows.

For case 1,

-g +V3 <cosz(¢k) - %) u

R%u +sin~?! (\/ﬂsin (¢k + %)) —sin~? (\/ﬂsin (¢k - %))

=— .
Area(u) 30 - u)? o (¢k . %) \/u o (¢k N %> , (A4l

—sin (¢k - —g) \/u — u2sin? (qSk - g—) ]

[ Itu %-{- sin~! (\/'Es'in ((,6;c + -765))

2

~ sin~? (\/ﬂsin (¢k - %))
2

Area'(u) = %ﬂu—)g +v3 (cos2(¢k) - %) u : (A.42)

+ sin (¢k + —:—;—) \/u — u?sin? (qSk + %)

—sin <¢k— %) \/u»'uzsin2 (¢k - %)_

For case 2,

_{ Area(u) R}u af L L L\?
Area(u) = ( for case 1) - (1—u)? cos (-d_;;) - E 1- (drad) ’ (A.43)
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Area'(u) = ( t‘:];e:;.(sz)l) - R =P [(1 +u)cos” (did> + 2ﬂu - u(did>2 cos(qSk)] . (A44)

For case 3,
1 V3 2 .1 f S3 S3 _ ( S3 )2
Area(u) = 3~ [-4—5152 —dZq (sm (éd: 24 % , (A.45)
(5181 + S252)
4drad\/ 1- (G5)?
. . V3 Ss
Area'(u) = | — (51524 5251) [_ + ) A 46
(u) 4 8dagr/1 — (2_&_5'?‘:)2 ( )
(1+u)drad [ Ss .1 ( Ss3 ):I
- — 2dyaq 5in
2u(l —u 2dra.d
L. ( ) Jl ( rad o
where
V3 | Ryu _ Rhu (1 Ryu )2
Sy = < t1ioa sin(¢x) — oy~ (5 T cos(¢k) (A.47)

Sy = -1—3 - f:ﬂ; [cos (¢k + %) + \/—11; —sin (¢k + ) (A.48)

S3 = \/S% -+ S% — 515,, (A.49)

R;; sin(qSk) R2 + R;j cos(or) + 2(1 —u)dZ, sin®(¢x)

S = -, (A.50)
Y

(1-u) 2(1 — u)? \/(1 o -}—Z—Lcos(qﬁk))
4 = _R;,— cos (¢ :— -’65) B R;; + g_&,__ cos? (¢x + %) ‘ (A51)

(1-v) 2u(l - u)\/; —sin? (¢ + %)

Finally, for case 4,

Area(u) = ﬁ, (A.52)
Area’(u) = 0. (A.53)

Hence, given an arbitrary sector, A, the area of A that lies inside the circle U = u is obtained by
adding the Area(u) terms for the two equilateral triangles corresponding to sector A. The cumulative
distribution function of U, Ha(u), is then computed by dividing by the area of the entire sector
which, by equation (A.4), is 1/(2+/3). Similarly, ha(u) is computed by adding the Area’(u) terms

for the two equilateral triangles corresponding to sector A and dividing by the area of the entire
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sector. For sectors that are not in the 120° beam width of sector 0, these distribution functions are
modified by appropriate scaling. Furthermore, for the sectors that have only half their area in the
beam width of sector 0, this scaling is applied to only one of the equilateral triangles.
We have assumed throughout that there is an R~* propagation loss in power, but it is worth
noting that these results can be generalized for R=* propagation. This is done by noting that the

random variable U = U(®/4) has a cumulative distribution function given by
Py() = Ha(a®), (A.54)
and a probability density function given by
3) = 2059, (@@
ppla) = U ha(d ). (A.55)

Figure A.9 shows plots of the function ha(u) for the sectors in cells (0,1), (—~1,2), and (0,2).

Note that, by symmetry, sectors 1 and 2 of cell (—1,2) have the same distribution.
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Figure A.9: Plots of the probability density function, ha(u), are shown for the sectors of cells
(0,1), (-1,2), and (0,2).



79

A.5 Sum of Dependent Rayleigh-Squared Random Variables

In this appendix, we show that a sum of dependent Rayleigh-squared random variables can be

replaced by an equivalent independent sum.

Claim: Let

A= A (A.56)
An
be a vector of complex valued Gaussian random variables representing the channel barameters defined
by equations (3.34) and (3.35). Components of the covariance matrix are computed by equation
(3.56). Note that the covariance matrix, p, is a real valued symmetric matrix. We claim that there
exists a vector
B
B2
B=] . |, (A.57)
B,
with the following properties.
(1) The real and imaginary parts of each component of B are i.i.d. zero-mean Gaussian

random variables.

(2) The covariance matrix of B is given by
E{BB'} = A, (A.58)

where A is a diagonal matrix with the eigenvalues of the matrix p on the main diagonal.

(3) The vector B satisfies
A'A = BB, (A.59)
which shows that the sum of dependent Rayleigh-squared random variables in equation
(3.57) is equivalent to the independent sum shown in equation (3.58).

Note that X1 denotes the complex conjugate transpose of X.

Proof: From the definition of p, and the fact that it turns out to be real valued, we can write

E{A*AT} =E{AAT} =p. (A.60)
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Since p is real and symmetric, it can be expressed in terms of the real valued matrices M and A as

([15], pg. 102)

p=MTAM, (A.61)

where

MTM =1, (A.62)

and A is a diaginal matrix whose entries on the main diaginal are the eigenvalues of p. Let

4

Zy
z=|"7], (A.63)

Zn
be a vector of complex valued Gaussian random variables having the following properties.
(1) Each component of the vector Z is given by Z; = Z;g + jZi1.
(2) The 2n real valued random variables Z;r, Z;; are all i.i.d. Gaussian random variables
each having mean zero and variance 1/2.

Then, using the results of appendix A.6, if we write
A=MTA3Z, (A.64)

we have

E{AA'} =p, (A.65)

as desired. Furthermore, the results of appendix A.6 show that for such complex Gaussian random
variables, all the statistical properties can be expressed in terms of the covariance matrix p- In this

respect, this is a valid representation for the vector A. Next, if we let
B=MA=A%Z, ' (A.66)

then, using the results of appendix A.6, B is a vector of complex Gaussian random variables where
each component of B has a real and imaginary part that are i.i.d.. The covariance matrix of B is
then

E{BB'} = A. (A.67)
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That is, the components of B are independent complex Gaussian random variables having variances

given by the eigenvalues of the covariance matrix p. Finally, we observe that

B'B=ATMTMA = AtA. | (A.68)
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A6 Characterization of Complex Gaussian Random Variables

Claim 1: Let C be an (n x n) complex valued matrix, and let

Z

Zy
Z=1 .|, (A.69)

Z,
be a vector of complex valued Gaussian random variables having the following properties.
(1) Each component of the vector Z is given by Z; = Zir + jZi1.
(2) The 2n real valued random variables Z;g, Z;js are all i.i.d. Gaussian random variables
each having mean zero and variance 1/2.

If

W = CZ, (A.70)

then
(1) each component of the vector W, W;, has real and imaginary parts that are i.i.d.
zero-mean Gaussian random variables,
(2) the covariance matrix of W is given by R = cct,

(3) the joint probability density function of the components of W is given by

pwiw) = (—1—) Tﬁ(ﬁ)_le—W’R*W' (A.7T1)

m

The notation X1 denotes the complex conjugate transpose of X. Note that this is a generalization of
known results for real valued Gaussian variables in that the statistics of W are completely determined
by its covariance matrix.

Proof: We begin by writing the complex quantities W, Z, and C in terms of their real and imaginary

parts as

W =Wz + Wy, (A.72)
Z =Zg+jZr, (A.73)

C=Cr+jCr. (A.74)
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Next, we define the real valued quantities W, A , and C as

W= (vv‘:’,’;) ,  (2n vector) (A.75)
7= (23) . (2n vector) (A.76)
I
6= (‘é’: zi’) . (2n x 2n matrix) (A.77)
Since
W =z, (A.78)

the real and imaginary parts of W are given by
Wg =CrZgp - C1Zy, (A.7T9)

W1 = CrZs + CiZx. (A.80)

This can be expressed in terms of the real valued quantities as

W=0C2 (A.81)

Since, by assumption, the 2n components of Z are all i.i.d. zero-mean Gaussian random variables

each with variance 1/2, we have

capn 1
E{ZZ"} = S1an), (A.82)

where I(2,) is the identity matrix of size 2n. Furthermore, it also follows that the 2n components
of W are all zero-mean joint Gaussian random variables. The covariance matrix of W, R, can be
computed as

R=E{WWT} = B{CZ57CT) = %C”'C*T. (A.83)

Since W is a vector of real valued joint Gaussian random variables with covariance matrix R, the

probability density function of W can be written as ([1], pg. 32)

. 1\™ 1 _igrpeig
p(V) = (\/27) VIUR) R (4.84)

The covariance matrix, R, can be expressed in terms of the real and imaginary parts of C as

_1(Ck —CI\(CE CcF\_1(D -E
R—i(C] CR)(“& Clg)—_i(E D)’ (A.85)
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where the (n x n) matrices D and E are defined as
D = CrCE +C,CT, (A.86)

E = C1CE — CrCY. (A.87)

The covariance matrix, R, can also be expressed in terms of the real and imaginary parts of W as

- E{WrW%} E{WpWT7T}
— Ty _ R I
R=E{WWT} = ( BWowh) B(W.WH ) (A.88)
Equating the upper right blocks of equations (A.85) and (A.88), gives
1
E{WrW7T}= §(cRc}f - CiCE). (A.89)

Note that the matrix (CRCY — C;C%) is antisymmetric and thus all diagonal terms are zero. Hence,
E{Re(W;) Im(W;)} = 0, (i=1,2,...,n), (A.90)

so that the real and imaginary parts of each component of the vector W are uncorrelated joint
Gaussian and thus independent. Furthermore, equating the upper left blocks of equations (A.85)

and (A.88) and also the lower right blocks gives
1
E{WrWg} = E(CchTz +CiCT ) = E{W,/WT }. (A.91)

Thus,

E{Re(W;)’} = E{Im(W:)?}, (:=1,2,...,n). (A.92)

From equations (A.90) and (A.92) we conclude that the real and imaginary parts of each component
of the vector W are in fact i.i.d. Gaussian random variables. The complex covariance matrix of W

can be written as

R = E{WWT'} = E{CZZ!C"} = cC!. (A.93)

At this point, it only remains to write the probability density function of W in terms of W and R as

in equation (A.71). This is done in two steps. The first step is to show that WR~1W = 2WIR-1W,
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and the second step is to show that det(R) = 2~2"| det(R)|?. To show that WR™'W = 2W!'R-1W,

we begin by expressing R as
R =CC' = (Cr + jC1)(CR — jCT) = D + jE, (A.94)

where the matrices D and E are defined in equations (A.86) and (A.87). Next, let F' and G be the

real and imaginary parts of R ™1, so that R~! can be written as
R™!=F +jG. (A.95)
The product of R and R~! is thus
RR™' = (D+ jE)F + jG) = (DF — EG) + j(EF + DG), (A.96)
but this must be equal to the identity matrix of size n, I(n). Thus, we have that
DF - EG = Iy), (A9T)

EF + DG =0. (A.98)

Now consider the following matrix product using the expression for R given by equation (A.85)

F -G\|_ (D -E F -G\ _(DF-EG -DG-EF

R[2(G F)]“(E D)(G F>‘(EF+DG DF—EG)' (A.99)

Using equations (A.97) and (A.98), this can be written as
F -G\|_(Iny 0\ _
R [2 (G F )] = ( 0 I(,,)) = Iian). (A.100)
Thus, we have shown that the inverse of R is given by

- F -G

R1=2(G F) (A.101)

Now, using equations (A.75) and (A.101), we can compute the product
WTR'W =2 [WEFWgr - WRGW, + WIGWR + WTFW,]. (A.102)
Also, using equation (A.95), we can compute the real part of the product

Re(WIR™IW) = WEFWg ~ WEGW + WIGWg + WIFW;. (A.103)
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But WIR~!W must be a positive real number because
WIR-IW = wicch)—*w = (cTIw)(cIW). (A.104)
Since this quantity is real from equations (A.102) and (A.103), we can conclude that
WR'W = 2WIR'W. (A.105)

To show that det(R) = 272"| det(R)|?, we make use of claim 2 which also appears in this appendix

and states that since

R=D+jE, (A.106)
and
D —-F
2R = (E D ) , (A.107)

the determinants of these matrices are related by

det(2R) = | det(R)|?. (A.108)
Since R is a (2n x 2n) matrix,
det(2R) = 27" det(R). (A.109)
It thus follows that
det(R) = 272" det(R)|?, (A.110)

as advertised. Inserting equations (A.105) and (A.110) into equation (A.84) gives the desired result

rw(w) = (—1—) TJEEI(R_)IC—WTR—IW' [ | (A.111)

T

Claim 2: Let Z by an (n X n) complex valued matrix with real and imaginary parts X and Y

respectively, so that

Z=X+j3Y. (n x n complex matrix) (A.112)

Let M by the (2n x 2n) real valued matrix given by

M= (i,( —)3/) . (2n x 2n real matrix) (A.113)



Then,

det(M) = | det(2)|%.
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Proof: For any complex number z = z + jy, let [2] denote the real (2 x 2) matrix

=3 2)(

T2
Y2

1=

Observe that, for complex numbers z; = z; + jy; and 23 = z5 + jy2, we have the property

—Y2 = Z1Z2 —Y1Y2
Z3 Y1Z2+ T1Ya

T
y

)

—=Z1Y2 — Y1Z2
Z1T2 — Y1l

Hence, (2 x 2) matrices of this form have the following properties.

(1) [21}[22] = [22]1[21] for any complex numbers z; and 2.

(2) det[z] = Re(2)? + Im(z)? = |z|? for any complex number z.

)=Md.

(A.114)

(A.115)

(A.116)

(8) For any complex number z # 0, the matrix [2] is invertible, and its inverse is given by

[17* = [1/2].

‘We now proceed to evaluate the determinant of M,

Y X

det(M) = det (X _Y) = det

At this point, we alternately swap consecutive rows of the

z;; and y;; in the following manner

det(M) = (—1) det

where k is the number of times consecutive rows of the matrix are swapped.

Tni
Yn1

{311
21

Znl
Y1
Y2

\ y;1

12
Y12
22
Y22

Zn2
Yn2

Ti2
22

Zn2
Yi2
Y22

Yn2

Tin
Yin
Tan
Y2n

zﬂﬂ

Ynn

Lin
Ton

Tnn
Yin
Yan

Ynn

=¥
I

—¥Y¥21
23

—Uni
Tni

—Yi1

—Y21

—Yn1
T11

T21

Znl

—Y12

—Y22

~Yn2
T2

Z22

ZTn2

—Yin
—Y2n

—Unn
Tin
T2n

Zan /

(A.117)

matrix until each column alternates in

—Y12
12
—Y22
22

—Yn2
Tn2

—Yin
Zin
—Y2n
Ton

—Ynn

znn

(A.118)

Next, we perform
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exactly the same set of k swaps on the columns to express this determinant in the form

11 Y T2 —Yiz ... Zip  —Yin

Y1 T11 Yi2 Z12 ... Yin Lin
L21 —Yau1 T2 Y22 ... Tan —Yon
det(M) = (~1)%det | ¥21 221 Y22 222 --. Y Tom || (A.119)
Tni —Uni Tn2 ~Yn2 -.- Tupn —Ynn
Yni Znl Yn2 ZTn2 .- Ynn Znn

Thus, this can be expressed as the determinant of a block matrix of the form

[z11] [z12] --- [z1n]

det(M) = det 1[121]] |[222]} [[7.2,,]]

. . : (A.120)
o [enad - [zl

Since the (2 x 2) blocks in this matrix are all of the special form that they all commute and

their inverses commute, using row reduction techniques, this determinant can be expressed as the

determinant of a (2 x 2) matrix corresponding to the complex determinant of the (n x n) matrix Z.

That is,

det(M) = det[det(Z2)]. (A.121)

Finally, since the determinant of these (2 x 2) matrices gives the squared magnitude of the associated

complex number, we obtain the desired result, namely

det(M) = [det(2)]2. (A.122)
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A.7 Computation of Limit For Ccpma[BPSK, Soft Decision, Fading]

Claim: Let

I(p) = / /PA(a)PZ(Z) log, [ : dzda, (A.123)

(1+22255) (1+ 2285%)

where A is a random variable with mean square value one, and Z is a Gaussian random variable

a=—00 2=0

with variance given by equation (4.4) for CDMA. Thus, p4(«) satisfies

./w pa(a)a’da=1, (A.124)

==00

and pz(z) is given by

pz(z) = ﬁi—afe% (A.125)

where
o’ = %—(a + 1)p. (A.126)

Then
lim p1(p) = %(ii). (A.127)

Remark: In the CDMA analysis, the random variable A is the square root of a sum of Rayleigh-
squared random variables, and thus is a nonnegative random variable. Thus the probability density
function of A is zero for negative values so the region of integration in equation (4.17) is only over
positive values of A. THis is not required, however, for equation (A.127) to hold. It suffices to
assume that A has mean square value one. In this respect, this claim also treats the nonfading case
for which A is equal to the constant value one.

Proof: We begin by defining the random variable X which is a normalized Gaussian random variable.

Let
A
X =—. .
. (A.128)
The probability density function of X is then given by
1 -z
= 2, .
px(z) or (A.129)
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The mutual information I(p) can now be expressed as

1) = / / palelpx(z)los, [(1 + pz(oz—Za))4(1 + pz(ax+2a))] d da,

a=—00 £==0 pz(oT) pz(oz)
og(e) [ [ pal@px(@lo : dzd
a=—o0 =0 <1 +e -Lﬂ”?T)_-i—Sz_”")’_) (1 +e 1——2%%—)—*-&——)3)
= log,(e) / /pA(a)px(a:)ln — — dzda. (A.130)
L Lo |y )

Note that the function e* can be expressed as

1
ef=1+z+ 51*2 +o(z?), (A.131)
where o(z?) means
. o(z?)
inO 7 = 0. (A.132)

Using this fact, we can say

22 5-28) =14 [2:::% -2 (%)2] + % [2z% -2 (%)2] Cho ([%% -2 (%) 2] 2) )

o a\2 az\? 1
- 1+2z;—2(;) +2(7) +o<;). (A.133)
Similarly, we also have
e-208-22) 2102 9 (9—)2+2 (9‘-‘5)2+o L | (A.134)
o o o o2 )’ ’

The denominator of the argument of the logarithm in equation (A.130) can thus be expressed as

d(z,a,0) = ( 23%—2(%)2) (1+e—2z§_2(%)2
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Thus, I(p) can now be expressed as

D) = logo{e i (43 z)ln 1 r do
1(p) = logy(e) / /zu( px(z)l [1_2(%)2”%}2“(%) dz de. (A.136)

a=-o0 =0

Now, note the following property of the natural logarithm which follows directly from its Taylor

series expansion about the point £ = 1, namely that

In (1 i z) =z + o(x). (A.137)

Thus,

= AR C R CO R

Inserting equation (A.138) into equation (A.136) allows us to write I(p) as

1(5) = logy(e) 7 7 pa(@)px(z) [2 (%)2 - (%f)2 +o (;15)] dz da. (A.139)

a=—00 =0

With respect to equation (A.129), since px(z) is the probability density function of a mean zero

variance one Gaussian random variable, it follows that
px(z)dz = 3 and z°px(z)dz = 3 (A.140)
0 0

Applying these relations to equation (A.139) gives

1(5) = log,(e) 7 pa(@) [z’—j - g‘;f +o (%)] da,

= b_ggicl j pa(@) [-‘;‘; +o ((—715)] da. (A.141)

Using the fact that ps(a) is a probability density function and thus integrates to one and also the
fact that A has mean square value one so that equation (A.124) is satisfied, I(p) can be simplified

to
I(p) = “’—5;3@ +o (%) : (A.142)

Using the expression for o2, given by equation (A.126), note that

o(2)=o(2) e
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Therefore, we have

1) = 282(e). +o(%).

(a+1)p
Thus,
pI(p) = togi(g + (1‘1_’ ) .
()
Finally, letting § — oo gives the desired result,
Jim 71(7) = 22C).

(A.144)

(A.145)

(A.146)
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A.8 Computation of Limit For Ccpma[BPSK, Hard Decision, Fading]

Pb(ﬁ)=’:122k:7"k (1"—”17—;:]_%:?)—5) ) (A.147)

Claim: Let

and
I(p) = 1 - H(P:(p)), (A.148)
where
T = ];{ bkb_’“ 5 (A.149)

and H(z) is the binary entropy function defined by

H(z) = zlog, (i-) +(1—2)log, ( : 1 z) . (A.150)
Then, )
Jim pI(p) = 21?52_561)) (Zk: ma/ﬁ) : | (A.151)
Proof: First, note that
ﬁl_i’rgo P(p) = % (A.152)

This is due to the fact that the 7x’s sum to one which is established in appendix A.10 by equation

(A.180). Also, note that the derivative of H(z) is given by

11—
H'(z) = logy(e)In ( p a:) . (A.153)
We begin by expressing the limit as

1— H(le(ﬁ)), (A.154)

Jim $7(5) = Jim 51~ H(Pu(F))] = lim

s

which is of the form 0/0. Applying L’Hospital’s Rule and making use of equation (A.153) gives

—In (3580 [#8 ) miv/Bilbe + (a+ 1572

lim pI(p) = lim I
Jim pI(p) = lim log,(e) - (A.155)
Rearranging equation (A.155) and noting that
- I —2
Jim ()2 [be + (a+1)p]"% = (a+ 1)7%, (A.156)
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gives

1-Py(p)
lim 51(5) = 282(8) L el o ln( i) (A.157)
p—oo 4/a+1  poeo pE ] ’
which is also of the form 0/0. Applying L’Hospital’s Rule again we find
(1082(9) 2ok ”k\/’;> %
4/a+1
lim $I(p) = g 1\ [a 3 A.158
Jim PI(7) (%) () [ BumevBile @0 Y] | A0
1Im -
p—oo _lﬁ—§
2

Finally, rearranging equation (A.158) and making use of equations (A.152) and (A.156), we conclude

that

2
lim pI(7) = 21(‘3%% (E m/b‘k) ' (A.159)
k
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A.9 Computation of Limit For Ccpma[BPSK, Hard Decision, No Fading)

Claim: Let

1 1 '
P = i 1
5(P) 5 erfe ( @)’ (A.160)
and
1(p) = 1 - H(P(P)), (A.161)
where H(z) is the binary entropy function defined by
H(z) = zlogy [ =) + (1= 2)] 1 A.162)
=zlogy | = z)logy | 777 ) - (A.
Then,
oy 2log,(e)
i 1) = S (r169
Proof: First, note that
_ 1
Jim P(7) = . (A.164)
Also, note that the derivatives of the functions erfc(z) and H(z) are given by
erfc(z) = ——2-6"”2 A.165
ST (A-169)
. 1-=z
H'(z) = logy(e) In el B (A.166)
We begin by expressing the limit as
o i e 1=H(Ps(p))
Jim pI(p) = lim p[1 —H(Py(p))] = lim ! : (A.167)

which is of the form 0/0. Applying L’Hospital’s Rule and making use of equations (A.165) and

(A.166) gives

- h] ﬂ@l 1 e'— ia-:l;i -—%
. oy . Py */a p
lim pI(5) = lim log,(e) (558) == Yot ] (A.168)
p—roo p—oo -5
Rearranging equation (A.168) and noting that
lim e~ @07 =1, (A.169)

p—oo
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log,(e) . In (1_—1%%7()@)

gives

lim pI(p) = -1 , A.170
sy ®) 2v/m/a+1 pmrco P ( )
which is also of the form 0/0. Applying L’Hospital’s Rule again we find
Py(p) .1 1 ~EIF -3
lim pI(p) = 10g2(0) _ im (1-3’»@)) ( Pf(ﬁ)) (2ﬁ7a_+“1) ¢ Trr e (A.171)
p—oo 2v/m/a+1 p—oo ~1p-% ) '

Finally, rearranging equation (A.171) and making use of equations (A.164) and (A.169), we conclude

that

Jim pI(p) = %E—Z—gf(%- 1 (A.172)
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A.10 Computation of Limit For Ccpma[MASK, Fading]

Claim: Let

1) = — 1082(6) [Zmu;; Ei (_(_“_2%)_1’)] (A.173)
k
where
E bk— e (A.174)

Ei(x) is the Exponential integrating function defined by

Ei(z) = / ) %tdt, (A.175)

-00

and the by’s are positive real numbers that satisfy

dobh=1 (A.176)
k
Then,
N log,(e)

Proof: First we establish an important property of the m’s. Consider the following partial fraction

expansion
1 o T TL-1
= e —— Al

(1+Sb0)(1+8b1)'-~(1+sbL_1) 1+ sbg + 14 sby + 1+ sbr_1 ( 78)
Differentiating this with respect to s gives

o be By . _ _Bbraa

Thsbo — T330 """ Tdabioy _ Mobo  mb  mp_ibry (A.179)
(14 sbo)(1+sby)---(1+sbp-1) 1+sby 1+sb 1+sbr_y’ ’

Now, setting s = 0 and letting L — co in equations (A.178) and (A.179) gives

Dom=1  and Y mb=) b=1 (A.180)
k k k

Note that we have made use of equation (A.176). We now proceed to compute the desired limit

L _ro _ logs(e) {etie (a+1)p
Jm p1(p) = =5 Zﬂk lim pe S Ei ik

10 e f!a-i-l?ﬁ T‘dt
gZ( )Ew b Jim e (A.181)

=e 2by
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This is of the form 0/0. Applying L’Hospital’s Rule gives
at1) — P g,

1082(3) 00 G+1)p
hm pI( p) = Zﬂ' lim TR ~r
P00 1.~ o, M 1 oy
pz 2b; 7
2bx

l032(6) (a+1)
Z“ o (13T

_ 1082(3)
- s

Finally, making use of equation (A.180) gives the desired result

oo logy(e)
Jim pI(p) = — 1 | (A.183)
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A.11 Integration Formula For Repetition Codes

The following integration formula is used in section 5.2 to analyze the probability of bit error
performance for both FH and CDMA systems when repetition coding is used.
Claim: Let
1 oo M _—t/ec 1

et erfc(vt) dt, (A.184)

0

4IM = MicMAT

where ¢ is a positive real number, and M is an integer, M > 0. Then

w()UECTE). o

[
p_,/cH. (A.186)

Proof: We will make use of the following integration formula. For any integer, n > 0, and real

where

number, p > 0,
oo 2n —px2 — (2”')1 _7E
/0 TP dz = e\ 7 (A.187)
This formula appears in [16] as formula 3.461.2. We begin by making the change of variables y = Vit

to rewrite equation (A.184) as

1 = 2M _—y?/c
IM_W/O ye erfe(y)y dy. (A.188)

Next, we proceed with a proof by induction on the variable M. For M = 0,
1 * —_ 2/6
Iy = - e~ ¥/ Cerfe(y)y dy. (A.189)
0

Performing integration by parts where u = erfc(y) and dv = ye"yzl ¢ gives

L=L_ /m RIECOF, A.190
[ 9 o -\/;f- y. ( . )
Note that we have made use of equation (A.165) for the derivative of the erfc function. Making
use of the integration formula given in equation (A.187) with n = 0 and p = (¢ + 1)/c, this can be

simplified to

1—
I = _.iﬁ (A.191)
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This agrees with equation (A.185) for M = 0. Thus, the claim holds for M = 0. Next, we assume
that the claim is true for some (M — 1), M > 1, and consider Ijs. Performing integration by parts

on equation (A.188), where u = y?>™ erfc(y) and dv = ye"y2/ °, gives

S TN RSP 1 /w L o —y2()
In = (1 = Tyic /0 y ey Perfe(y) dy — 4y M- dy.  (A.192)

-~

A § YR

Making use of the integration formula given in equation (A.187) with n = M and p = (¢+1)/c, this

can be simplified to

1 ey
M!icM 2M A 2M 97

Iy =1Ino1— (A.193)

Using the fact that p2/c = (1 — p)(1 + p), this expression can be rearranged as follows

w65
-3 () (5 ()"
- () (52 (49" (-2 ()™ (8"

i IM—1\[1—p
b= U T3

) (59

oM =1\ (1= \ M 14\ M !
= i o -1z A.194
()7 () (4199
n 2MN\ (1 —pu M+1 144 M
A M 2 2 i
By the inductive hypothesis, Ips_1 is given by
_(l-p MMl /M —1+1 1+p\
IM—I—(T> Z_‘;( : )(——2——) (A.195)
Making use of the combinatorial identity
M-1+4+1 M4+1 M-1+1
()= - (), (419

we can express Ips_1 as

e (5 E (8- () E ()

1=
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Replacing I by { + 1 in the second summation and using the fact that for any integer k, (_kl) =0,

L EE e .

&S &Y ] e

Rearranging this expression, Ips—1 can be expressed as

gives

M+1 M=2 1 ‘ M M-1
1—p M+N\{1+4p 2M -1\ (1-p 1+p
1= —_— —_ —_— . 1
Thas <2) g(l)(z)"L(M—l)(z 2 (A.199)
Combining equations (A.194) and (A.199), Ins is given by
- 1___’[ M+1]MZ—2 M+I 1+“ 1l
2 — { 2
M1 M-1
In = L (M- (e 1+e (A.200)
M-1 2 2
L (M (L=p M+l e\ M
3 M 2 2 i
Incorporating these terms into a single summation gives the result
M+1 M 1
_(l1—-p M+ [14+p
IM_< > ) I;( | )( > ) (A.201)

This completes the proof. J
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A .12 Performance of CDMA With Repetition Codes

In this appendix, we derive an expression for the probability density function of the fading parameter,
A, defined by equation (5.7) for the CDMA system using D-fold repetition coding. Next, we use
this distribution to compute the probablility of bit error by averaging the conditional probability of
bit error given by equation (5.15).

For a single Rayleigh fandom variable, B,, having mean square value b;, the random variable
Bg has a central chi-squared distribution with 2 degrees of freedom. Thus, it has a characteristic

function ([9], pg. 498) given by ([1], pg. 26)

$p3(s) = E{e/*Be} = ( - _;sbq). (A.202)

Since each of the A.,’s in equation (5.7) can be expressed as the square root of a sum of independent
Rayleigh-squared random variables as in equation (3.58), the characteristic function for A2 is

L-1 1

g=0
We are assuming that a CDMA RAKE receiver with L tap coeflicients is being used, and thus each
of the A2 ’s is taken to be a sum of L Rayleigh-squared random variables. Since the A4,,’s are all

i.i.d., the random variable A, given by equation (5.7), has characteristic function

pa(s) = Lﬂ—l (——1——)1) (A.204)

=0 1-—jsb,
Since the characteristic function is the Fourier transform (with s = —w where w is the standard
frequency domain variable) of the probability density function, we search for a function whose
transform is equation (A.204). Such a function is the probability density function of A. We will
let the symbol « denote the fact that two functions are related by the Fourier transform (with
s = —w). That is

#(s) ~ f(t) (A.205)

#(s) = /_ ” ft)el*t dt. (A.206)
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We begin by noting that for a single exponential,

(aq ijs) — e~ %t y(t), (A.207)

where a, is a constant, and «(t) is a unit step function equal to unity for positive values of ¢ and

equal to zero for negative values of t. Using a partial fraction expansion, it then follows that

L-1 1 L-1
—agt
1I (aq L) X Que ) (A.208)
where
1
Q. =1] , (A.209)
iz T M

and the a,’s are constants. At this point, we differentiate equation (A.208) with respect to each of

the a,’s (D — 1) times. This gives

L-1
(-1~ - DY I

q=0

1 D 3D_1 6D—1 8D_1 L—-1 .y
( ) - dad =1 daP? T 9aP-1 ZQqe etu(t). (A.210)

@g—Js L-1 g=0

We begin expanding the right hand side of equation (A.210) by considering the single term

or-1 = (D-1\ (& k-
k=0
Computing the derivatives of @, given by equation (A.209), with respect to a, gives
31:
5Q= 2 K] [(aj *aq)'(""'“)] : (A.212)
1 S(g,k) i#q

where

L-1

S(g, k) = {(mg, my,...,mr_1) : mj = nonnegative integer ; Z m; =k, my= 0} . (A.213)
j=0

For example, if L = 4, ¢ = 2, and k = 2, the set S has six elements of the form (mg, my, m2, m3),

and is given by § = {(2,0,0,0),(1,1,0,0),(1,0,0,1),(0,2,0,0),(0,1,0,1),(0,0,0,2)}. In this case,

equation (A.212) states that

2 e 2 () () (2
da’ 2—6a§ ag—as) \a1~az/\ag—as /|’

i (ao — a2)"3(a1 - az)_l(aa - (12)—1 + (ao — (12).-2((11 — az)_z(as — az)—l A

=2 | +(ao — a2)"%(a1 ~ a2) " (az — a2) "% + (ap — @3) " Y(a; — az)—3(03 —a3)"' . (A.214)

| +(ao — a2)" (a1 ~ a2)"%(a3 — a2) 72 + (ap — a2) (a1 — a3) " (az — az)"aj
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Note that, in general, the number of elements in the set S(g, k) is equal to the number of ways the
k+L-2
P )

integer k can be partitioned into L — 1 nonnegative pieces, which is (

Inserting equation (A.212) into equation (A.211), we have

aD _a D-1 L .
5aD~ —5=5(Qee™ %) = E( ) Z El H(GJ—G) —(mi+1) | (_)D-1-kgaqt (A.215)
k=0 S(e.k)  [i#e
Now, computing the partial derivatives with respect to the a;’s, where j # ¢, gives
aD—l 3D-—1 aD—l .
—ag A.216
5al T 0aD T Bal Tt (4.216)
D-1
_+(m;+D-1)! (s ek —a
> (5 PIL [I}(—D” B e ,+D>] ()P ikeaet
=0 J#q
Note that

(D—1>k,H(m,+D-1)' (D - 1)! k,n(mJ+D—1)'

1 ] Y ]
k i m;! k(D —-k-1) m;!
(2 nnr m; + D -1
= D-F- D] H 5 : (A.217)
Also note that
t)D -1- kH( l)D 1 ( 1)L(D 1)- kyD-1~k ( 1)L(D—-1)+ktD—1—-k. (A.218)
i#g
Inserting equations (A.217) and (A.218) into equation (A.216) gives
6D-1 aD—l aD—l - ‘
8aP~10aP~1  Hal- qu (A.219)
D-1
- H* L(D-1)+k mj + D —1 ~(m;+D) | ;D~1—k —
Z e i DN 11 § (S [ORTR ] P
k=0 S(q,k) J#e
Now, summing over ¢ and inserting this into equation (A.210) gives
1 D
(=1)P~(D - 1‘[ ( ) e (A.220)
L-1D-1
(D—l) L(D—1)+k mj+D -1 —(m;
SN A (M- N T (a5 — ag)~(mstD) | {D=1=ke=aaly (),
1 - q
g=0 k=0 (D—k~1)! S(q.k) |i#4e b-1
Dividing through by [(=1)P~1(D — 1)!}* then gives
L-1 1 D
H( . ) - (A.221)
g=0 aq—JS

(D k- 1)| Z [H (m]; Dl )(a_, - aq)‘(mj+D)] tD—l_ke—aqtu(t),



105

Now we set a, = 1/b, which gives

L [ [T () —u—)”‘]
I(=s) ~XX Sab it
g=0 1= jsbg g=0 k=0 [HL 'p ]

D1k e=t/bay(y),

(A.222)
Note that the left hand side of this equation is equal to the characteristic function of the fading
random variable, A, given bS{ equation (A.204). Thus, the right hand side must be the probability
density function of the random variable A. Making use of the definition of w, which appears in
equation (3.60), and performing some additional rearrangement, the probability density function of

A, pa(a), can be expressed as

L-1 D-1
1 k-
pale) = Zowf k}: e k_l)!b?_kF(q,k)aD 1-kg=albay(a), (A.223)
9= =

where

L-1 .y

4 D-1\/ b \™

k) = (-1)* i —d . .

FaB =D % [n( 22 ) (a.224)
8(g;k) L§=0

Since each element of S(g, k) has my = 0, the value of the product in equation (A.224) is not changed

by including the term for j = g¢.

The probability of bit error can now be found by computing

P, = /oo (a)lerfc 2 )4 | A.225)
b= ; PA ) (a+ l)Dp «. ( .
& 1 ®  pe1-k —afb, 1 [«
F —1-kg—afbg_ —_ (A,
qE_O g E (g, k) Dk )P /0 o e” %M erfc ( @7 10p ) da. (A.226)

Making the change of variables t = a/[(a + 1)Dp], we can rewrite this as

L-1 1 : 00 (a1
2 3 F(g,k) __ [ 4p-1-k, tLTL—erfc(\/- T)dt. (A.227)
P Z (D—k~1) (r—fraw,,)“/o

Finally, we make use of the integration formula in appendix A.11 with M = D~k —1and ¢ =

Thus,

by/[(a + 1)Dp}], and obtain the result

L-1

W WIC

gq=0

@-BYPED ko141 (14 g,
),

=0

Y S — A.229)
He= A\ a+ DDp+ by (A-

where
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