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INERTIAL EFFECTS ON PARTICLE DYNAMICS
Phillip M. Lovalenti
Advisor: John F. Brady

Abstract

While the theory of suspension flows and particle dynamics is well understood under
Stokes flow conditions when viscous forces dominate, little is known at finite Reynolds
number when the inertial forces of the suspending fluid are important. In the present
study, expressions are derived that allow for dynamic calculations of particle, drop,
and bubble motion at finite Reynolds number. The results show a significant change
in the temporal behavior of the force/velocity relationship from that derived from
the unsteady Stokes equations, particularly as a body approaches its steady state.
At finite Reynolds number, when the convective inertial effects are included, the
hydrodynamic force on a body has much weaker history dependence on the past
motion of the body and it reaches its steady state faster than what would be predicted
if only the unsteady inertial effects are accounted for. When compared with numerical
solutions of the Navier-Stokes equations, the analytical force expressions perform well
up to a Reynolds number of 0.5.

A common theme to the derivations is the use of the reciprocal theorem which
provides for an efficient and elegant means for computing inertial effects in suspen-
sion mechanics. Connections with past approaches are made in light of these new

applications of the reciprocal theorem.
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Chapter 1

Introduction

In modeling suspensions, the particular approach one uses is largely determined by
the magnitude of the Reynolds number, a measure of the inertial forces relative to
the viscous forces in the suspension. The Reynolds number is given by Re = pl.U./u,
where [, and U, are the characteristic length dimension and velocity of the particles
and p and p are the viscosity and density of the suspending fluid. Thus the modeling
approach is usually dictated by the particle sizes one is dealing with.

For small particles, say in the micron range, suspended in fluids of moderate
viscosities, i.e., liquids, the Reynolds number is generally small (<« 1). Under these
conditions, the Stokes equations, which describe the motion of an inertialess fluid, are
used to evaluate the particle dynamics in suspensions dominated by viscous forces.
That is, the Reynolds number is taken to be identically equal to zero. The Stokes
equations have the fortuitous property of being linear in the fluid velocity and lead
to a linear relationship between the particle velocities and the hydrodynamic stresses
acting on them. A suspension modeling method that fully exploits this linearity
property is Stokesian dynamics [6] which is a molecular dynamics-like technique for
simulating suspension flows. Another important consequence of the Stokes equations

is that the particle dynamics governed by Stokes flow depends only on the instanta-



neous state of the system; the current dynamics are independent of the path by which
it has come to that state, which means there is no history dependence.

On the other end of the spectrum, for particles in the millimeter range or larger, an
approach for modelling suspensions is granular dynamics. This approach to describing
suspension flows completely neglects the presence of the suspending fluid, usually a
gas, under the assumption that particle inertia and solid-body collisions dominate
the dynamics of the particle motion. Here, the Reynolds number is generally large so
that one is justified in neglecting the viscous forces that act on the particles. Analysis
in this regime is often by way of kinetic theory [23, 22].

When the particles are on the order of tens or hundreds of microns and the sus-
pending fluid is a gas, one is often in an intermediate condition where both solid-
body collisions and viscous forces are important. The result is due to the fact that
the Reynolds number is small owing to the small particle sizes, while the Reynolds
number based on the particle density instead of the fluid density, usually referred to
as the Stokes number (St = p,l.U./p), is order one or larger. The Stokes number is
a measure of the relative importance of particle inertia to the viscous forces in the
fluid. This regime has been recently investigated by Koch [27] also through the use
of a kinetic theory approach.

At present, little theory exists which takes into account the effects due to the
inertia of the suspending fluid. So in an effort to fill this gap, we began to consider
cases when both the viscous and inertial forces of the suspending fluid were important,
that is, when the Reynolds number was not infinitesimally small. The conditions
to have in mind here are for particle sizes of hundreds of microns or millimeters
suspended in liquids of moderate viscosities on the order of a Poise. Qur ultimate
goal is to extend simulation methods such as Stokesian dynamics to cases where the
Reynolds number is small but finite. One could anticipate that this is a difficult task

since the governing equations for the fluid are now the full unsteady Navier—Stokes



equations, and the linearity properties and lack of history dependence attributed to
the Stokes equations no longer exist.

Many interesting phenomena exist which are finite Reynolds number effects, par-
ticularly those associate with the lift force on particles perpendicular to the flow
direction. Most notably was that observed by Segré and Silberberg [48]. They found
that the particles in dilute suspensions of neutrally buoyant spheres flowing through
tubes tended to migrate to a preferred position at 0.6 tube radii from the axis inde-
pendent of their initial position. As can be demonstrated by a reversibility argument,
this is a phenomena that the Stokes equations could never predict. The possibility
of discovering such peculiar behavior provides additional motivation for investigating
suspension flows at non-zero Reynolds number.

With its great utility in the study of Stokes flow problems, the reciprocal theorem,
in its more general form, was targeted as the method of choice for studying suspensions
at small-but-finite Reynolds number. Its applications spans all areas of transport
phenomena. A subset of these is in the computation of surface integrated quantities
such as the total heat flow from or the net force on a body suspended in a fluid. The
more global uses of the reciprocal theorem in the area of fluid mechanics are well
demonstrated in a book by Kim and Karrila [24]. In the next section we shall show
the relative ease with which one can derive a well-known result for weak convection
effects in heat transfer using the reciprocal theorem approach. We choose the heat
flow problem because the governing equations are scalar, as opposed to the vector
equations associated with fluid flow, making the analysis easier to follow. This will
provide the motivation for employing the approach to study other more difficult, and

previously unsolved, problems in suspension mechanics.



1.1 Weak convection effects in heat transfer

Here we will outline the use of the reciprocal theorem to compute the small-but-finite
Péclet number correction to the heat flow from a spherical particle in a uniform flow
accurate to O(Pe). Although for fluid flow, the following chapter will clarify many of
the details of the procedure.

Neglecting any viscous dissipation effects, the steady thermal energy equation for

an incompressible fluid satisfying Fourier conduction is in dimensionless form
Pe(u-VT) = V*T, (1.1)

where u is the velocity and T' is the temperature of the fluid. The dimensionless
parameter Pe is the Péclet number and provides a measure of the relative magnitude
of convection (due to the uniform flow) compared with conduction as a mechanism
of transporting heat. It is defined by Pe = pC,Ua/k where p, C, and k are the
heat capacity and thermal conductivity of the fluid while U is the magnitude of the
free-stream velocity and a is the particle radius. We shall assume all the physical
properties of the fluid remain constant.

Consider two temperature fields which satisfy (1.1): one for small Péclet number
and denoted by T, the other for Péclet number identically equal to zero (the pure
conduction limit) which we denote by T and satisfying V2T = 0. Let the boundary

conditions for both of these fields be given by

T,T-——l on 9,

T,7—0 at |x|— oo, (1.2)

where S represents the surface of the sphere and x is the position vector in a coordinate

system with origin at the center of the sphere. The solution for the temperature field



T is given simply by T' = 1/r where r = |x|. The solution for T, on the other hand,
is unknown for arbitrary Pe.

Next let us assume the Reynolds number for the flow past the particle is suffi-
ciently small that the velocity field u can be approximated by Stokes flow. The most
important consequence of this is that the velocity field possesses fore-aft symmetry
and thus u(x) = u(—x). Because the particle is fixed in a uniform flow, u = 0 on the
particle surface, while far from the particle it approaches the uniform stream (u — i)
where 1, is a unit vector in the z-direction.

In order to evaluate the heat flow from the sphere that takes into account the
small-but-finite Péclet number effect, we require the reciprocal theorem expression.

It is derived by first noting

/VV~(TVT—TVT) dv
:/V(TV2T+VT-VT—VT~VT-TV2T) dv,

— Pe /V (T(u-vT)) aV, (1.3)

where V represents the volume of the fluid surrounding the particle. Here we have
used the fact that 7" satisfies (1.1) and T satisfies Laplace’s equation. Starting from

the same point above we can apply the divergence theorem to obtain

/ v.(FvT -TVT) dv
14

- SPn-VTdS—/SPn-VTdS, (1.4)

where S, is the surface of the particle and n is the outer normal to the particle surface
pointing into the fluid. Here we have applied the boundary conditions (1.2). If we

define the dimensionless heat flux from the particle to the fluid, which is identified as



the Nusselt number Nu, as

-1
Nu=—[ n-VvTd .
u /Spn S, (1.5)

:271'

and use the the fact that 7' = 1/r, (1.4) becomes
/V V.- (IVT - TVT) dV = —dr + 2x Nu. (1.6)
Now equating the two results (1.3) and (1.6) we have
Nu=2+ %Pe/v ((w-vD)T) dV. (1.7)

The first term is the pure conduction result and the second is the finite Pe contri-
bution due to convection. Note that although we shall apply this reciprocal theorem
expression to the case of small Pe, it is actually valid for arbitrary Pe.

For Pe < 1, one would expect that the convective correction could be approx-
imated simply by replacing T by the pure conduction solution 7" as a regular per-
turbation approach. However, what one finds is that this results in a conditionally
convergent integral. This is because the integrand would be O(r~3) and would yield
a log singularity at infinity; due to the symmetry properties of both 7" and u, on the
other hand, the integrand would be antisymmetric and the angular integration if done
first would result in a zero contribution. The reason for this apparent anomaly is that
while the pure conduction solution is a valid approximation to the actual temperature
field near the particle, its not valid far from the particle where convection becomes
important in transporting heat.

To resolve the problem we need to consider the far-field form of the temperature



field. Its governing equation is

Pe%z = V2T + 476(x), (1.8)
z

where we have made two approximations. First, we have used u ~ i, in the far-
field. Second, we have replaced the surface boundary condition by a point-source
description of the particle. In the far-field the particle appears as a point-source of
heat to a first approximation of magnitude given by the pure conduction solution
(2r Nu ~ 4r). This expression is now amenable to Fourier transforms and thus we
may write

2miPeksT = —4n2k*T + 4, (1.9)
so that the Fourier transformed temperature field is

N 2
T=—r. 1.10

27 k? -+ iPekg ( )
Since contributions to the convective correction from the near-field are negligible due
to the symmetry argument discussed above, we can extend the volume of integration
in (1.7) to the entire domain of space, particle plus fluid, without affecting the result

to O(Pe). This allows us to apply the convolution theorem and write (1.7) as

Nu=2+ %Pe/ ((miksT)T) (1.11)

Then substituting (1.10) where 7" is given by (1.10) with Pe = 0 we have

1 4ik;
Nu = —P dk. .
u=2+ 27 6/ <k2(27rk2 + iPekg)) k (1.12)

If we ignore the antisymmetric imaginary part of the integrand and its associated

singularity, which is simply due to artificially extending the domain of integration to



the center of the particle, we can evaluate the real part to find

Nu = 2 + Pe. (1.13)

This represents the well-known small-but-finite Péclet number corrected Nusselt num-
ber for heat flow.

For the fluid flow problems we consider in the following chapters, the analogous
arguments to those presented above can be obtained simply by replacing the idea
of heat transport by conduction and convection with vorticity transport by diffusion

and convection.

1.2 Thesis overview

The motivation for the next three chapters was to more fully understand particle
dynamics in fluids at small-but-finite Reynolds number. Surprisingly, little theory has
been developed in this area even for single isolated particles. Hence, these chapters
have been devoted towards the study of isolated particles in unbounded domains.
New results are derived for the temporal behavior of the force/velocity relationship
for particles in unsteady motion. These are most often attributed to the history
dependence of this relationship associated with finite Reynolds number flows.

In Chapter 2 we develop the theory for the hydrodynamic force acting on a solid
particle in arbitrary curvilinear motion in a time-dependent uniform flow at finite
Reynolds number. Several inertesting results from the analysis of this chapter were
obtained. As a particle approaches a steady velocity, say in changing from one steady
state to another, the unsteady Stokes equations, which neglect the convective inertia
of the suspending fluid, would predict a temporal decay of the hydrodynamic force
of t=%. At finite Reynolds number, when the convective inertial effects as well as the

unsteady inertial effects are accounted for, the temporal decay of the force is faster



3000

2500

1000

500 f

0 0.1 0.2 0.3 0.4 0.5 0.6

Re

Figure 1.1: The time it takes a sphere of radius a to reach 99% of its terminal velocity
after being released from rest in a fluid of kinematic viscosity v as a function of the
Reynolds number Re.

and dependent on the initial and final conditions before and after the particle changed
its velocity. One of the more striking consequences of this behavior is that particles,
in general, reach their steady state velocity more quickly at finite Reynolds numbers
than under zero Reynolds number (unsteady Stokes flow) conditions. This finding
is dramatically illustrated in Figure 1.1, where the time it takes a sphere released
from rest to reach 99% of its terminal velocity is shown as a function of the Reynolds
number Re. For example, the sphere will reach its steady state velocity 40 times faster
at Re = 0.3 than at zero Reynolds number. An even more intriguing result is that
when a particle changes its velocity from one constant, finite value to another, the
hydrodynamic force reaches its new steady state exponentially fast at finite Reynolds,
as opposed to the “universal” t~2 approach to steady state predicted by the unsteady
Stokes flow solution. The faster temporal decay found here translates into the fact

that the velocity history dependence of the force on a particle is much weaker at
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finite Reynolds number. This observation, in turn, can have important implications
for numerical computations as computer time and data storage can be reduced in
doing dynamic analyses of particle trajectories in viscous fluids.

In Chapter 3 the analytical force expression from Chapter 2 is applied to the study
of oscillatory particle motion. By comparing the results with previously published
numerical solutions of the Navier—Stokes equations at various Reynolds numbers, it
is found that the analytical force expression works well up to a Reynolds number of
about 0.5. This finding is quite suprising considering the fact that the expression is
derived on the basis that the Reynolds number is very small.

Chapter 4 represents an extension of the above theory to the case of bubbles
and drops. Using the reciprocal theorem, a general hydrodynamic force expression
is derived that takes into account drop shape and an arbitrarily imposed flow. This
general expression is then applied to the case of a spherical drop moving in a uniform
time-dependent flow at small-but-finite Reynolds number. It is found that the low-
frequency (long-time) dynamics of the force on a drop is very similar to the case of a
solid particle.

In the Chapter 5 we make an effort to extend the ideas of the previous chapters
for single particles to multiparticle systems with an eye towards the use of the results
to simulate suspension flows. Here, in using the reciprocal theorem approach, one is
able to collect in a self-consistent manner all the hydrodynamic terms that affect the
dynamics. Included in the expressions are contributions from both the many-body
hydrodynamic interactions and the inertia of the suspending fluid (the finite Reynolds
number effects).

The last chapter is meant to provide some ideas for the future direction that this
work can take. Some of the issues that deserve further investigation have already
begun to be addressed, and the preliminary results from these pursuits are presented

in this chapter. Specifically, we consider particle dynamics in a linearly varying
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imposed flows, which can lead to inertial lift forces on particles, and sedimenting
cubic latices of particles to find how particle interactions can influence the inertial

effects of the suspending fluid.
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Chapter 2

The hydrodynamic force on a rigid
particle undergoing arbitrary
time-dependent motion at small

Reynolds number

Summary

The hydrodynamic force acting on a rigid spherical particle translating with arbitrary
time-dependent motion in a time-dependent flowing fluid is calculated to O(Re) for
small but finite values of the Reynolds number, Re, based on the particle’s slip velocity
relative to the uniform flow. The corresponding expression for an arbitrarily shaped
rigid particle is evaluated for the case when the time scale of variation of the particle’s
slip velocity is much greater than the diffusive scale, a®/v, where a is the characteristic
particle dimension and v is the kinematic viscosity of the fluid. It is found that
the expression for the hydrodynamic force is not simply an additive combination of
the results from unsteady Stokes flow and steady Oseen flow and that the temporal

decay to steady state for small but finite Re is always faster than the =% behavior
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of unsteady Stokes flow. For example, when the particle accelerates from rest the

temporal approach to steady-state scales as ¢72.

2.1 Introduction

This study is concerned with the unsteady motion of a rigid particle in an unbounded
incompressible Newtonian fluid. The flow far from the particle may also be unsteady,
but is taken to be uniform. In addition, we assume that the particle Reynolds num-
ber, Re = U.a/v, based on a characteristic particle slip velocity, U., remains small
throughout the particle motion. Here a denotes the characteristic particle dimension
and v is the kinematic viscosity of the fluid. In particular, we solve for the unsteady
hydrodynamic force acting on the particle for small but finite values of the Reynolds
number.

The motivation for studying such a problem at small Reynolds number is three-
fold. First, there is the basic question of what are the forces acting on a particle
undergoing an arbitrary time-dependent motion. How do these forces depend on
time and on the Reynolds number? Second, the problem has applications in particle
dynamics. For example, in suspension mechanics Stokes flow often dominates the
fluid motion, owing to small particle sizes and relatively large fluid viscosities. The
inertia of the fluid and particle are then small corrections, and the present analysis
represents a first step to the inclusion of both convective and unsteady inertial effects
in suspension mechanics. Third, there is considerable interest in the transport of
small particles in turbulent flows [44, 36, 53], and a large part of the unsteadiness
arises from the turbulent velocity fluctuations. Determining unsteady hydrodynamic
forces in these flows is necessary to determine the particle motion, which has ob-
vious implications for particle dispersion and deposition, particle-image velocimetry

measurements [2], etc. In addition, through this problem we wish to demonstrate
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the relative simplicity of using the reciprocal theorem as an approach to computing
inertial effects.

To determine the force correct to O(Re), we do not solve for the detailed flow
field; instead, we make use of the reciprocal theorem and the known results of steady
(and, in some cases, unsteady) Stokes flow to avoid the detailed problem and proceed
directly to computing the force. From the reciprocal theorem we obtain results for
the hydrodynamic force in terms of inertial corrections to the steady Stokes drag.
These corrections come from two sources. One is due to the unsteady nature of the
flow and yields such contributions to the hydrodynamic force as the Basset force and
the added mass. The other inertial corrections are due to weak convective effects and
are the origin of the well-known O(Re) Oseen correction to the steady Stokes drag.
When both contributions are considered together, we shall see that the nature of
the hydrodynamic force is determined by the characteristic time scale of the motion,
T.. When 7. is small (e.g., O(a?/v)), the unsteady inertial corrections dominate the
hydrodynamic force. Only when 7. becomes very large (i.e., 7. > O(v/U.?)) does
the convective inertial correction take the form of the Oseen result. Further, and
not surprisingly, we shall see that the two inertial contributions, unsteadiness and
convection, are not simply additive. Indeed, the convective inertia changes funda-
mentally the temporal decay of the unsteady inertia from t"'lf, characteristic of an
unsteady Stokes flow, to t=2 when particles accelerate from rest, which has profound
implications for the approach to steady-state.

In the area of unsteady inertial effects, several results have been obtained by previ-
ous researchers. For example, Basset (3] determined the hydrodynamic force acting
on a spherical particle undergoing arbitrary time-dependent motion in an otherwise

quiescent fluid. The governing equations were the unsteady Stokes equations for a
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fluid of density p and viscosity pu:

7]
—Vp—f—,uvzu:pa—‘:, V.u=0, (2.1a)

with boundary conditions
u="U,(t) when |[x|=0a; u,p—0 as |x|— oco. (2.1b)

Here, u is the velocity of the fluid, p the pressure, U,(t) the velocity of the particle,

and a its radius. Basset’s result is

1 .
FZ (1) = —6mpaU,(t) — 6 pua (£> 2 / C U s s, (22)
TV -0 (t—3)2
where ﬁp(t) is the acceleration of the particle. The first term is the pseudo-steady
Stokes drag. The second is the Basset memory integral, which depends on the past
history of the particle motion. It is a combination of both viscous and inertial con-
tributions to the force in that it depends on both the viscosity of the fluid and the
acceleration of the particle. The last term, a purely inertial contribution, is the so-
called added mass. It represents the additional mass the particle appears to have due
to the resistance to acceleration of the surrounding fluid.

Basset’s result was extended to conditions where the flow far from the particle was
other than uniform [33] (see also Appendix 2.10.) and to particles of non-spherical
shape An important result of the analysis by Lawrence and Weinbaum [29] is that
the form of the hydrodynamic force becomes significantly more complicated than
(2.2) for non-spherical particles. For example, they demonstrated the existence of
distinct high- and low-frequency forms for the “Basset” history force associated with
the axisymmetric oscillation of a spheroid. Only for the special case of a sphere is

the history force the same in the high- and low-frequency limits. Here we refer to
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the history force as that term proportional to the half power of the frequency in the
Fourier transform representation of the solution. In this way it retains the form of the
second term of (2.2) in the time domain for arbitrary particle motion. We note also
that Gavze [17] recently presented a general theory for the force and torque acting
on a particle of arbitrary shape undergoing rigid body motion in unsteady Stokes
flow. Gavze derives expressions for the second-rank tensors that relate the force and
torque to the particle’s velocity and acceleration, and demonstrates their symmetry
properties. The author identifies a steady resistance tensor associated with steady
Stokes flow, a potential (or “added mass”) resistance tensor associated with potential
flow, and a Basset resistance tensor that is a function of time.

One of the first treatments of convective inertia was the classic problem solved
by Oseen [40, 41] . He computed the first correction to Stokes drag for small but
finite values of the Reynolds number for a sphere held fixed in a steady uniform flow,
U. Oseen recognized that the governing equations near the particle were adequately
described by the Stokes equations, but that far from the particle they were more

appropriately given by the so-called Oseen equations:
~Vp+uViu=pU-Vu, V-u=0. (2.3)

Oseen constructed a uniformly valid leading order approximation to the flow field

that satisfies (2.3) everywhere and obtained the hydrodynamic force expression
F§, = 6rpuaU(1 + 2Re), (2.4)

where Re = a|U|/v. Although this result for the force is correct, Oseen did not
compute the velocity field accurate to O(Re). Proudman and Pearson [43] made use
of singular perturbation theory to correctly compute the velocity field to this order,

and extended Oseen’s result to O(Re?log(Re)). Brenner and Cox (8] generalized
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these results to particles of arbitrary shape.

Sano [47] extended the Proudman and Pearson result to the unsteady startup
problem where U(¢) = UH(t) and the fluid is stationary everywhere for ¢t < 0. (H(t)
is the Heaviside function.) His solution for the hydrodynamic force is

F#(t) =6rpaU [H(t) + 15(t) + (7t)7F + -g-Re{ (1 + -R—%;)erf(§1zet%)
€

2
+ <1 o2 ) exp(—1Re’t) —

8 9 p.2 2
()i Re T }—l— s Re‘InRe + O(Re?)|.

3(7rt)%Re

(2.5)

Here, t has been nondimensionalized by a?/v, §(¢) is the dirac delta function, and
erf(z) is the error function. The first three terms are the unsteady Stokes force, while
the portion in curly brackets represents the unsteady Oseen contribution. This result
was based on Bentwich and Miloh’s [5] Laplace transform solution for the unsteady
Oseen velocity field. It is Sano’s result that most closely corresponds to the current
work. We extend his result to conditions where the particle and the far-field flow
can have general time dependence and to particles of arbitrary shape. Of particular
interest in (2.5) is the fact that with the inclusion of the Oseen convective inertia
the force approaches its steady value as t=2 in contrast to the =3 predicted by the
Basset term of (2.2) from just including the unsteady inertia. This much more rapid
temporal decay has important implications for unsteady particle motion. Ockendon
[39] also found that on long time scales there is a change in the temporal decay due to
the contribution from convective inertia. Recent numerical studies by Mei, Lawrence
and Adrian [37] and Mei and Adrian [35] have also confirmed this change in
temporal decay.

In order to appreciate the different physical processes occurring in unsteady par-
ticle motion, a consideration of the various time scales present is warranted. One

can define a Strouhal number as SI = (a/U.)/7., which is a measure of the time
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scale of variation, or unsteadiness, relative to the convective time a/U,. For example,
when a particle is accelerating from rest in stationary fluid, the appropriate time
scale is O(a*/v), the time it takes vorticity to diffuse over the length a. In this
case, S| = O(Re™') > 1, reflecting the fact that unsteady inertia is large compared
to convective inertia. If one considers the problem of a particle released from rest
and settling under gravity, initially the time scale is O(a?/v), but as the particle
approaches its terminal velocity it progresses through an entire range of longer time
scales. Thus, the Strouhal number initially would be very large but would become
very small as steady state was being attained. In oscillatory motion 7, = O(w™?),
where w is the frequency of oscillation. Here again, the magnitude of S! may take on
very large or small values depending on the magnitude of w. Steady particle motion,
on the other hand, corresponds to an infinite time scale of variation. Thus, for ex-
ample, oscillatory particle motion coupled with steady motion provides a condition
for the existence of duel time scales, one being w™! and the other infinite. Due to
the non-linearity of the Navier-Stokes equations, these two effects cannot in general
be separated into isolated contributions. Also, distinct magnitudes of $! may not
be identifiable at a given instant in time. Since we wish to consider arbitrary time-
dependent motion, we must allow for the fact the relative importance of unsteady
and convective inertia, i.e., S, may be of arbitrary magnitude and may change as a
function of time. Thus, we shall explicitly leave the Strouhal number in the problem.

If we take as a prototypical example the problem of a spherical particle settling
under gravity, our goal then is to compute the hydrodynamic force correct to O(Re)
as the particle accelerates from rest and approaches its terminal velocity. As we shall
see, initially the hydrodynamic force is determined by unsteady Stokes flow, where
the Stokes drag, Basset force, and the added mass are of equal importance. At this
stage, vorticity has not diffused out to the Oseen distance of O(aRe™!), and, since

there is no far-field Oseen region, one does not expect an O(Re) Oseen-like correction
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to the drag. We find, for the case of a spherical particle, that on this time scale
(1. ~ a*/v) there is no convective inertial correction to the hydrodynamic force at
O(Re). (Under these conditions the convective inertial correction can be anticipated
to enter at O(Re?).) In fact, not until S = O(Re), or 7. = v/U.?, which corresponds
to the time it takes vorticity to diffuse out to the Oseen distance, does the convective
inertia of the fluid make a contribution to the hydrodynamic force at O(Re). Finally,
when the particle reaches its terminal velocity, the hydrodynamic force to O(Re) is
given by the Stokes drag plus the steady Oseen correction.

As remarked earlier, the Oseen convective inertia changes the approach to steady
state from ¢~ to t2. To understand how this comes about we must first appreciate
that the origin of the Basset, t'%, scaling is due to the uniform (spherically symmetric)
diffusion of vorticity generated at the particle surface into regions of irrotational
flow. At finite Re, however, this process does not continue indefinitely. Rather,
when the vorticity has diffused out to the Oseen distance, it is swept up in the
wake region behind the particle where it is transported by convection. As we shall
show, this change in the mechanism of vorticity transport accounts for the change
in the temporal behavior of the hydrodynamic force. Because of this change in the
temporal decay, a particle released from rest at finite Reynolds number will reach
its terminal velocity much more rapidly than one would have predicted based on the
Basset correction alone. This fact may explain why experimentalists have measured a
steady terminal velocity when the length of their apparatus would not have permitted
this if the Basset force was correct.

We can at this point estimate the temporal decay of the force from energy dis-
sipation arguments and the known behavior of unsteady Stokes flow and the wake
region in Oseen flow. The rate of doing work by the particle on the fluid is propor-
tional to the volume integral over the fluid of the dissipation o:Vu. As steady-state

is approached the temporal perturbation to the steady force is proportional to the
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“dissipation deficit” — the dissipation due to the disturbance velocity — in the region
of the fluid not yet reached by the transported vorticity. Vorticity is either confined
to the vorticity diffusion volume for short time scales or to the truncated Oseen wake
at finite Reynold numbers for long time scales. In both cases, in the region yet to
be reached by the vorticity, at steady-state the disturbance velocity u will behave as
1/r and the associated stress field o will be 1/ from Stokes flow, where r is the
distance from the center of the particle. When vorticity has not diffused out to the
Oseen distance, 7. < v/U?, the velocity disturbance is confined to a (spherical) region
of size a(l/t)%. Hence, the temporal correction to the force in dimensional form goes
as F' ~ ,uasz(‘jt)% r=2 . r=2dV ~ pa®U(vt)~7 ~ pal(a®/vt)t. This is just the ¢t~3
approach to steady-state of the Basset force.

However, when vorticity has diffused out to the Oseen distance, (I/t)% ~ aRe™ !,
the velocity disturbance is gathered up by the convective flow and confined to the
(unsteady) Oseen wake. Denoting by z the distance behind the particle, the length
of the wake grows convectively as z ~ Ut, while its width (v/A) grows diffusively as
(2v/U)2 = (vt)7, where A is the cross-sectional area of the wake. Thus, letting o
scale as Vu and |u| ~ 1/r &~ 1/z from Stokes flow, the temporal correction to the di-
mensional force goes as F' ~ paU [ 272 272dzd A ~ pa*Uz73A ~ pa?U(Ut)3(vt) ~
paU(aU/v)(v/U?t)?%; the advertised t=2 temporal decay. We shall see explicitly below
by detailed analysis that this is indeed the proper temporal decay.

In what follows, we obtain the form for the hydrodynamic force to O(Re) that
spans the transition from the unsteady Stokes force to the Oseen drag for arbitrary
time-dependent motion. As expected from the above discussion and from the result
of Sano [47] , it is found that the results are not simply additive. We shall also see
that the form of the result will greatly simplify for the case of a spherical particle.
In addition, we obtain a simplified expression for arbitrarily shaped particles for the

case when the time scale is long (>> a?/v). Under this condition, both unsteady
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and convective inertial corrections can be treated through singular perturbations to
steady Stokes flow and will require only the steady Stokes velocity field associated
with the translating particle.

In the next section, the full governing equations for the problem will be posed
and the relevant dimensionless parameters identified. In Section 2.3, the reciprocal
theorem is presented for computing the inertial correction to the steady Stokes drag.
A general derivation of the reciprocal theorem with inertial effects is given in Appendix
2.10. This derivation also generalizes the work of Maxey and Riley [33] . Since
the inertial correction in the reciprocal theorem is expressed as a volume integral of
functions of the velocity field over the entire fluid domain, we apply scaling arguments
in Section 2.4 to obtain a uniformly valid velocity field that is valid for all time
scales. In Section 2.5, we combine this velocity field with the reciprocal theorem to
obtain an expression for the hydrodynamic force correct to O(Re). In the following
three sections, calculations are performed to simplify the expression under various
conditions of time scales and particle shape. Includedin Section 2.7 is the application
of the expression to the numerical calculation of the settling velocity of a spherical
particle released from rest. In the last section, we conclude with a discussion of the

results.

2.2 Governing equations and boundary condi-
tions
The governing equations for the problem are given by the full Navier-Stokes equations

!

9
—Vp Vi = p(-é‘i;- +u' - V), (2.6a)

V.u' =0, (2.6b)
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with the boundary conditions
u' = U,(t) on the surface of the particle, (2.6¢)

u' - UP(), p = p>® as |x—Y,(t)] — oo. (2.6d)

The uniform undisturbed flow far from the particle is U*(¢), and Y,(¢) is the position

vector for the center of mass of the particle. The pressure p™ satisfies
— Vp™® = ReSIUX(2). (2.7)

For our purposes, it is more convenient to pose the problem in a translating
coordinate system with the origin at the instantaneous center of the particle. Also,
since we wish to deal with a velocity field that decays to zero far from the particle,
we consider the disturbance velocity and pressure fields. Thus, letting r = x — Y, (1),

u=u'—U>(t) and p = p’ — p*, the problem becomes in dimensionless form:

Ou

— Vp+ V2u = ReSl 5 + Reu - Vu — ReU,(t) - Vu, (2.8a)
V.u=0, (2.8b)
with
u = U,(t) on the surface of the particle, (2.8¢)
u, p—0 as [r|— oo. (2.8d)

The slip velocity of the particle U,(t) is defined by U,(t) = Up,(t) — U>(¢). The
Reynolds number is Re = U.a/v, and the Strouhal number is SI = (a/U,)/.. Here,
a, U., and 7, are the characteristic particle dimension, particle slip velocity, and time

scale, respectively. U,(t) and u have been nondimensionalized by U,, r by a, and p
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by pU./a. We do not prescribe an initial condition, but only require that u remains

bounded for all time, —oo < t < oo.

2.3 The reciprocal theorem

As stated in the introduction, we make use of the reciprocal theorem to compute the
hydrodynamic force for the problem stated above. In Appendix 2.10, we derive the
reciprocal theorem for the total hydrodynamic force acting on a spherical particle
undergoing the time-dependent motion U,(t) in a time- and space-dependent flow,
v®(x,t), and for the total hydrodynamic force on an arbitrarily shaped particle in a
uniform time-dependent flow, U*(t). For a uniform flow U*(%) about a particle of
arbitrary shape with slip velocity U,(¢), the reciprocal theorem takes the following

form:

FH(t) = FH(t) + ReSIV,U™(t) - / f(u) - M(r)dV, (2.9)

where the hydrodynamic force, F¥(t), has been nondimensionalized by pal, and the
volume of the particle, ‘7;, by a®. Here, FH (%) is the pseudo-steady Stokes drag on the
particle under the given flow conditions associated with the problem; for example, for
a sphere FH¥(t) = —67U,(t). The function f(u) is given by the RHS of (2.8a) and

satisfies the following series of equalities:

f(u) = ReSl%? + Re{u - Vu — U,(¢) - Vu}, (2.10a)
=V.o, (2.10b)
= —-Vp+ V?u, (2.10c)

where o and u are, respectively, the stress and velocity fields associated with the
full disturbance Navier-Stokes problem given by (2.8). The inertia of the fluid is

represented by f in the sense that f = 0 under steady Stokes flow conditions when
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Re = 0.
The second-order tensor M(r) in (2.9) is defined by the condition that M(r)- U,
is the Stokes velocity field for the particle translating with constant velocity U, in a

stationary fluid. For example, for a spherical particle M(r) is given by

» 3(1 rr 3(1 rr
M(r) = 1 (; + 7‘_3) + 1 (gﬁ - ;—5-) ) (2.11)

where r = |r| and I is the idem tensor. We note that the center of the coordinate
system is at the particle center and that the volume integral in the reciprocal theorem
is over the entire volume of fluid.

As an added note, the reciprocal theorem is an exact result; if u is known, (2.9)
yields the exact hydrodynamic force acting on the particle for arbitrary values of the
Reynolds number. This is in contrast to a similar analysis presented by Leal [30]
for bounded domains which were limited to regular perturbations in small Re. By
formulating the disturbance problem, we are able to remove this limitation and treat
the general problem.

Our goal now is to approximate the volume integral of (2.9) to give the inertial
contribution to the hydrodynamic force correct to O(Re) valid for all times. However,
since the volume integral in (2.9) is over the entire fluid domain, the approximation
needed must be uniformly valid over this region. It is well known that the solution to
Stokes equations do not provide a valid description far from the particle, and singular
perturbations will be necessary to construct a uniformly valid approximation.

In order to further motivate the necessity of singular perturbation theory, consider
the result of substituting the steady Stokes velocity field for a spherical particle (the
solution to (2.8) with Re = 0) into the reciprocal theorem through the expression for
f(u) given by (2.10a). This velocity field decays as 1/r far from the particle, which is

also true of the M-field, as can be seen from (2.11). Thus, the integrand associated
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with the first term of f, ReSIdu/dt - M, decays as 1/r2. (Note that the integrand
in this case can be expressed as ReSIM - M - U,(¢).) This term yields a divergent
contribution to the volume integral of the reciprocal theorem. The contribution from
the third term in f is conditionally convergent being 1/r3.

The next obvious choice to substitute into the reciprocal theorem would be to
consider the unsteady Stokes velocity field since it decays as O(1/r3®) and would
eliminate the convergence difficulties. As it turns out, however, for the case of a
sphere this only yields the unsteady inertial corrections associated with the last two
terms of (2.2) and fails to produce convective inertial corrections due to the symmetry
of the unsteady Stokes field. Since the unsteady Stokes flow must be linear in U,(¢),
it must be an even function of r, as r is the only other vector in the problem. Since
f is then odd in r and M(r) is even, the integrand is odd in r and the volume
integral is zero upon angular integration. Clearly, more detailed considerations of the
appropriate “approximate” velocity field are necessary in order to correctly include
the convective inertial contributions to O(Re). (Note that although for nonspherical
particles convective inertial contributions will be produced by these terms with the

unsteady Stokes velocity field, it will not be the complete correction.)

2.4 The uniformly valid velocity field

We see from the governing equation (2.8) that the parameters that determine the
form of the flow field are the Reynolds number and the Strouhal number (or, more
appropriately, Re and the product ReS!). The Reynolds number indicates the magni-
tude of the convective inertia relative to viscous forces, while ReS! is a measure of the
relative magnitude of the unsteady inertia of the fluid. Throughout the analysis that
follows we assume that Re < 1. As we have seen, however, the Strouhal number may

take on a range of magnitudes depending on the time scale of variation, and, since we
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do not restrict the time scale, ReS! may also range in magnitude. In Appendix 2.11,
a formal perturbation analysis is used to develop scaling arguments for constructing
a velocity field which is uniformly valid in space and time. Here we simply outline
the results and present the reasoning used to obtain the uniformly valid field.

The most important point one finds from the scaling analysis is that singular
perturbations are not required for particle motions with time scales smaller than
v/U?, i.e., such that ReSI>> Re?. With these conditions the unsteady Stokes velocity
field, which we denote as vy, is uniformly valid in the entire fluid domain to leading
order. There is no Oseen region where the convective inertia is of the same order
as unsteady inertia or viscous forces. This feature of the flow is simply a result of
the fact that the vorticity generated by such motion cannot diffuse out to the Oseen
distance, aRe™!.

For particle motions with longer time scales, such that ReS! < Re?, singular
perturbations are required in order to take into account the Oseen region. The basic
idea in constructing a uniformly valid field with singular perturbation techniques is
to add the inner field, valid to the appropriate level of accuracy in the inner region, to
the outer field and subtract the parts they have in common in their region of overlap.
In the present case, we identify the inner region as that within the Oseen distance,
and the outer region as that outside the Oseen distance. The leading order field in
the inner region, valid for all time scales, satisfies the unsteady Stokes equations. In
the outer region the leading order velocity field is given by the point-forced unsteady
Oseen equations (see (2.114)). Only the point-forced equations are required to leading
order because the dominate disturbance produced by the particle at large distances
is that due to the force monopole. The velocity field that is common to both is that
resulting from the point-forced unsteady Stokes equations (see (2.110)), and this field
must be subtracted to prevent a double-counting of the contributions from the inner

and outer regions. We denote the outer field less its overlap with the inner region as
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Revit.

Although, strictly speaking, the leading order inner field on these long time scales
is the steady Stokes velocity field, by replacing it with the unsteady Stokes field we
have actually constructed a field uniformly valid in space and time. This is a result
of the fact that the unsteady Stokes field on long time scales, 7. > v/U?, will reduce
to leading order to the steady Stokes field in the inner region and to the point-
forced unsteady Stokes field in the outer region, the behavior of which is removed
by the common part field discussed above. On the other hand, on short time scales,
7. < v/U?, the “outer” unsteady Oseen field will reduce to the point-forced unsteady
Stokes field to leading order, which similarly will be removed by the common part
field. In both cases we obtain the desired velocity field to leading order: a steady
Stokes inner field plus unsteady Oseen outer field for long time scales, and a uniformly
valid unsteady Stokes field for short time scales.

An additional level of accuracy to the unsteady Stokes field is required for particle
motions with time scales of a®/v or smaller, or ReS! > O(1). Under these condi-
tions, the regular perturbation to the unsteady Stokes field for convective inertia (see
(2.108)) is also required in general to obtain the proper O(Re) correction to the un-
steady term, ReSI0u/dt, in (2.10a). This field is denoted Rev;. However, one must be
careful in adding this field to prevent double-counting contributions already included
by Revit. Their common part, the point-forced portion of the regular perturbation
field denoted by Rev}, must be subtracted. Having taken these requirements into
account, the final expression for the uniformly valid velocity field for all time scales
is

u* = vy + Revit + Rev, — Rev?. (2.12)
(As a reminder from Appendix 2.11, a subscript “0” indicates a leading order field

and a “1” indicates a velocity field contribution due solely to convective inertia, a

superscript “p” signifies a point-forced field, and the superscript “+” indicates that
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convective inertial terms are retained to leading order in the governing equation.) The
vo-field is the unsteady Stokes velocity field and Rev, is its regular perturbation for
convective inertia. The Revit-field is the point-forced unsteady Oseen field with the
point-forced unsteady Stokes field subtracted off, and this represents a singularly per-
turbed correction for convective inertia. The governing equation for Rev; is given by
(2.124). The last term, Rev}, with governing equation given by (2.121), is necessary
to prevent a double counting of contributions from Rev; and Rev’™.

At this point one can derive an additional result from the scaling analysis of
Appendix 2.11. Although it is true that when 7. < v/U? there is no region in the
fluid domain where convective inertia is of the same magnitude as unsteady inertia,
the converse of this condition is not true. That is, when 7. > v/U? there will always
be a far-field region where convective and unsteady inertia (as well as viscous forces)
are of equal importance. This region is a result of the finite length of the Oseen wake
for finite times. One can predict the temporal decay given at the end of Section 2.1
from the scalings for this wake region given by (2.117) when ReS! < Re®. That is, if

we use the (2.117) scalings in the full integral portion of the reciprocal theorem (2.9)

we find
f(u) ~ O(SP?), (2.13a)
M ~ O(S1), (2.13b)
dV = dzdydz ~ O((ReSI*)™), (2.13¢)

which when these are combined yield a contribution to the hydrodynamic force that

is O(SI%/Re).
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2.5 Expression for the hydrodynamic force to
O(Re)

With the above description of an approximation for the velocity field which is uni-
formly valid in space and time, we now use the reciprocal theorem (2.9) to obtain an
expression for the hydrodynamic force, correct to O(Re), which is uniformly valid in
time. To evaluate the inertial contributions to the force, we need to approximate the
volume integral of (2.9). This calculation is performed by combining the uniformly

valid velocity field (2.12) with the first expression for f(u) given in (2.10a):

f(u) ~ f(u*) = ReSl—a—aXi(-)- + Re (ReSl%%l + vo - Vvg — Uy(t) - va)
p+ P
+ReSl<Re ag; . Reaa‘;1> — RAUL()- Vit + .. (2.14)

The first four terms on the right-hand side of (5.1) represent contributions from the
unsteady Stokes equations and its regular O(Re) perturbation for convection. The
additional terms shown only make important contributions in the outer “Oseen”
region and only when ReS! < O(Re?). As we shall see in what follows, they are
necessary to get the correct force to O(Re). Scaling arguments can be used to show
that the terms not shown combine (as in Re*U,(t)- V(vy — V7)) to make contributions
to the hydrodynamic force smaller than O(Re) for all time and can therefore be
neglected.

When this approximation to f(u) is combined with the reciprocal theorem (2.9),



30

we obtain

F7(t) =F7(t) + ReSIV, U™ (1 / ReSl% MdV

'—RC/(RGSlaa + vg- VVO - s(t) . VV()) . MdV

Vs
ovit oV} pt] v
——ReJ {ReSl( 5 " B ) — ReU,(t) - VVviT| - MdV + o(Re)(2.15)
s

The first integral yields precisely the hydrodynamic force due to the unsteady Stokes
velocity field, v, less the pseudo-steady Stokes drag, F¥(¢). This is due to the fact
that the reciprocal theorem is an exact result for any inertial velocity field, including
the unsteady Stokes field. Indeed, the result that this first integral represents the
unsteady inertial contributions to the unsteady Stokes drag was verified by direct
calculation using the known solution to the unsteady Stokes equations for a spherical
particle. The second integral represents the contribution from the regular perturba-
tion to the unsteady Stokes problem.

The last integral of (2.15) is the contribution from the outer, singularly perturbed,
velocity field. The entire point of the scaling analysis in Section 2.4 was to obtain this
last term. At large length scales and long times this volume integral is necessary to
obtain the correct O(Re) force, which can be seen by noting that the terms in square
brackets in (2.15) are O(Re?) in the outer region when SI = Re and that MdV is
O(Re™?) in this outer region (distances of O(Re™')), so that the volume integral itself
is O(1).

Finally, we note that all integrals in (2.15) are absolutely convergent in space for
all time. It is important to note that had we used the steady Stokes velocity field,
Up, in place of the unsteady Stokes field, vy, in the integrals above, which would be a
natural thing to do with the reciprocal theorem, the integrals would be conditionally

convergent because the term U,(t) - Vup - M, for example, is O(1/r®). Using the
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unsteady Stokes solution removes this difficulty.

In order to greatly ease later calculations, we make a few simplifications of the
last integral in (2.15). First, we note that because the contribution to the integral
from the inner region (i.e., for distances smaller than O(Re)) is of lower order than
O(Re), the precise form of M in the inner region is not required. Only the far field
form of M, which is to leading order given by the Stokeslet field, Mp, is required.

This field is the solution to
— VP + V’M, = —67®6(r), V-M, =0. (2.16)

Here, P is a vector and 67® is the Stokes resistance tensor associated with the
particle: —67® - U, is the hydrodynamic force acting on the particle translating with
velocity U,. For a spherical particle, MP is given by the first term of (2.11).

Next, we note that if we replace M with Mp we may extend the integration volume
to include the volume of the particle. This extension may be performed because the
vi*. and the v{-fields are nonsingular at the origin (i.e., the point force at the origin
has been subtracted). Thus, the entire integrand behaves at worst as O(r~2) asr — 0,
which is integrable. Also, upon integrating over the particle volume we make an error
smaller than O(Re), since the integrand is smaller than O(Re) and the volume of
integration is O(1). Note that the difference field vi* — v¥ is O(Re) in this region.

The final simplification is in neglecting the term involving Rev}. This can be done

because the v} field is antisymmetric (or odd); that is,
vi(—r) = —vi(r), (2.17)

as can be seen from the governing equations, (2.110) and (2.121). Thus, since the
Mp-ﬁeld is symmetric, that part of integrand involving the vi-field will be strictly

antisymmetric and will angularly average to zero when integrated over any spherical
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surface.
With the above considerations taken into account, the expression to O(Re) for the
hydrodynamic force acting on a particle of arbitrary shape translating with a time

dependent velocity U,(t) relative to a uniform stream, U*(t), is

FH(t) =FE (t) + ReSIV, U= (1)

—Re/(ReSl%—‘;-l- +vo: Vvg —Ug(t) - Vvo) -MdV

Vy

avp+ R
—Re/(ReSl 0; —ReUs(t).vV5’+> ‘M, dV +o(Re), (2.18)
Voo

where V., represents the entire volume of space. F (¢) is that portion of the hydro-
dynamic force due solely to the unsteady Stokes problem (cf (2.107)); and, with U,(t)
replacing U,(t), it becomes (2.2) for a spherical particle. The second integral is only
required if ReSl < O(Re?); that is, this O(Re) contribution comes from integration
over the outer region when vorticity has diffused out to an O(aRe™!) distance. In
the next section we evaluate this outer contribution. The contribution from unsteady
Stokes flow and the regular perturbation (the first integral) will be commented on,

and simplified for certain cases, in Section 2.7 and Section 2.8.

2.6 Calculation of the unsteady Oseen correction

We write the contribution to the hydrodynamic force from the outer velocity field

(the second integral in (2.18)) as

out

FH (1) = — / £, (Revit) - M, dV, (2.192)
Voo

where
P+

f,u:(Revi™) = Re (ReSla;; — ReU,(t) - va+). (2.19b)
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To evaluate this integral we make use of the convolution theorem and Fourier trans-

forms to obtain:

e m—
A

FiL() == [ fu(Revi)(k) My(~k) dK, (2.20)
Vo
where ~ indicates the Fourier transform defined by

g(k) = / g(r)e kT g, (2.21)

Voo

The Stokeslet field 1\7[,, can be found from the Fourier transform of the governing

equations (2.16):
o 3

M, =5

(I — nknk) - P, (222)

Here, n; is the spherical unit normal in k-space (i.e., ny = k/k) and k = |k|. The
Fourier transform of f,,; is found from the transform of (2.124) with (2.110) (see

Appendix 2.12). The result is

2miRe

f/ou\ R Py
(BeviT) = | s

k- (Us(s)eZWiRe(Ys“)—Ys(s))'k/ ResT — Us(t))
xe_47r2k2(t_s)/ReSIF£f(8) . (I — nknk) ds

+/t {1 — e%z‘Re(Ys(t)-Ys(s))-k/ReszJ

-00

Xe_47r2k2(t—-s)/ReSIFf(S) . (I _ nknk) ds, (2,23)

where Y, (t) — Y,(s) is the integrated displacement of the particle relative to the fluid
from time s to the current time ¢, and F#(s) is the pseudo-steady Stokes drag at
time s. Also, it should be noted that in this equation, and in the equations that

follow, Y,(t) has been nondimensionalized by aSI™! (= 7.U.), not a. Since only the
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symmetric part (which is also the real part) of (6.5) can contribute to the volume

integral of (2.19a), we write

— t —27mRe
p+ - . 1 —_— .
fout (Revi™ ) ym —ﬁw RSl k- U,(s) sm(?wRe(YS(t) Y,(s)) k/ReSl)

Xe_41r2k2(t_s)/ReSIFsH(3) . (I — nknk) dS

—_00

+ t [1 —-cos<27rRe(Ys(t) —Ys(s))-k/ReSl)]

Xe—41r2k2(t_s)/ReSIF£I(5) (I —ngng)ds. (2.24)

If we combine (2.22) and (2.24) in (2.20) and perform the k-integration, the result is

H (5 SRe’ R HORNG AVER AOL IR
F°"t(t)_167r%(zzesz)%/-oo(t—s)%Us()( t—s )'Gl(t’ Jdo - ®

): it FH
_3(ReS1) [ = () . Gyt 5)ds - @, (2.25a)
8rz  J-oo (t —s)2
where
Gi(t,s) = / neng(I — ngng e~ A e g0 (2.25b)
Q
Gt s) = / (I— ngng)(1 — e Ay g (2.25¢)
Q
and

W=

t—s
here () represents the angular integration over a spherical surface.

Now if we consider the situation with U,(t) = 0 we can obtain the steady-state

result for FH

Fll, = —6r (3Re[3(®-p)- & - 3(®-p)-pp-3]) U,  (226a)
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where
U
p=—. (2.26b)
|Us|
Here we have used the fact that
Ff = —67® - U,. (2.27)

This result agrees with the Oseen correction to Stokes drag obtained by Brenner (7]
for an arbitrary particle shape.
In what follows we present some simplified expressions for the unsteady Oseen

correction to the Stokes drag. The unsteady Oseen correction will be defined by

FE (1) = F7,(1) + (Re“)% / RO (2.28)
L -0 (t— )%
The first term on the right-hand side is given by (2.25). The second term represents
the long-time expression of the “Basset” history force for an arbitrarily shaped particle
and, as will be shown in Section 2.8, is the dominant long-time temporal contribution
from unsteady Stokes flow. This definition is chosen because we wish to show the
long-time asymptotic behavior for various particle slip velocities. In all cases, we find
that the long-time tail decays faster than the t~z predicted by unsteady Stokes flow.

First note that the second integral in the expression for FZ (t), (2.25a), may be

out

written as
| 3ot FH 2 3t R
{3(&3‘2‘) / s (S)l . /(I — nknk)e_(A'n") dQds — <Re_Sl> / —Fs—(fzr dSl -,
8r2  J-oo (t—s)2 J T moo (t = s5)2

(2.29)

where it is seen that the second term cancels identically with the long-time “Basset”

history force term in (2.28). Next, performing integration by parts in s on the first
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integral in (2.29) and combining with the first integral of (2.25a), we obtain the

following result for FZ_ (¢):

ReSl —(A-1.)?
ngc( 8 71"2 {/ /[{FH A nk) (Amny)

+1(FH (1) - Ff(s)e—(A'nkV)} : -(-I(—tj—)n_’c)] ds dﬂ} . ®. (2.30)

Further simplification of the angular integration can be achieved by dividing F¥(s)
into portions parallel and perpendicular to A, which itself is parallel to the displace-
ment vector Y,(t) — Y,(s). If we define the direction of the displacement vector by

the unit vector p(s), we can define the following:

Fl(s) = F¥(s) - p(s)p(s), (2.31a)
Fi4(s) = Ff(s)- (I-p(s)p(s)), (2.31b)
where
Y1) = Y(s) .
p(s) = .0 = Y.0)] (2.31¢)

Note that FH(s) = FHl(s) + FHL(s). By always letting p(s) point in the z-direction

and F#1(s) in the x-direction in Q-space, the angular integration can be reduced to
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obtain

Fg,.(t) = -3— (Re‘ﬂ)% { / t /0 1 [2(1 = x2){2FfH(s)(| Alz)2e (AR

+(EI(D) — B2 0007) )

(1 %) { 2P () | Ao 0ARF 4+ (BH4(r) Ff%s)e*““f)i’)}]

dzds
X TEpE } - P, (2.32)

Here, z represents the Cosine of the angle between p(s) and ng. Finally, performing

integration by parts in &, we find the following expression for F&_ (t):

ngc(t>=§(365’)%{ / [ ) - { §|2(27j,erf<lAi>——exp(—lAlz))}Ffws)

™ —o0

HAFI() — {exp(-IAPY) - i (ert(A]) = exp(—|AF) JF L<3>]

2ds } ¥ (2.33)

(t—s)%

Now in order to investigate the temporal response of this correction, we evaluate
(2.33) for various rectilinear slip velocities: Uy(t) = U,(t)p. In all cases the time scale,
Te, i chosen as 4v/U? so that ReSl = Re®/4. This choice is simply for convenience
since we are interested in long-time asymptotic behavior. Also we let FHl(¢) =
FAIU,(t) and FHL(t) = FHLU(t) where FHIl = —67(® - p) - (pp) and FHL =
—6x(® ) (I pp).

First we consider the slip velocity given by a step change at ¢t = 0, U,(t) = H(¢).

After some manipulation and with the aid of Mathematica, we arrive at the following



38

expression:

+Ffl{<g— — -é%)erf(t%) + 2(;)% (1 + é) exp(~t)}] :
(2.34)

This result is consistent with that obtained by Sano, (2.5), for spherical particles.
Recall that @ = I for spheres. In addition, (2.34) demonstrates the existence of
the ¢72 decay for arbitrarily shaped particles which confirms the scaling analysis in
Section 2.3. Note that the above result does not include an “added mass” contribution
which would appear simply as a delta function at ¢t = 0.

The expression given by (2.34) leads to a long-time asymptotic form for FZ_(¢)
which is useful when a particle approaches its steady-state velocity monotonically
from rest. Consider such a slip velocity, Us(t), which is zero for ¢ < 0 and goes to
1 as t — oo. Provided that for O(1) values of ¢t on the time scale 4v/U? we have
11 — (Y,(t) = Y,(0))/Us(¢)t| < 1, the velocity profile will appear as a step change
on this time scale. Under these conditions, the long-time asymptotic form can be
predicted from (2.34) by replacing U, with U.U,(¢) in all terms implicitly scaled by
U.:

FE (1) = gczze@- [Ff“{(l + 4;, tQ)erf((ct)%) T (1 - %) exp(——ct)}

(wet)z

werel (- et o (1 )i

where ¢(t) = U2(t). Strictly speaking, this form corresponds to the result for a step

change in the velocity from zero to Us(t).
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In order to test the validity of (2.35), for various U,(t) profiles we investigate
the coefficient of the Re® - F#ll-term extracted from the complete expression (2.33),

defined here as f(t):

£ = -;:-1—{ [ 300~ { R GrgertaD - exo(-141) Josts)]

ds
X . 2.36
(t—s) } ( )

Wj

Equation (2.35) indicates that by plotting f(t)/c(t) versus c(t)t, the results should
fall on the same curve. Since we wish to justify applying the asymptotic form to
particles settling under gravity, we test it with trajectories that possess the long-time
asymptotic form predicted by unsteady Stokes flow for a particle released from rest

and settling under gravity:

Us(t) = O, t < 0,
1
=1-—— t>0,
(1+2)"
1
=1-— t > 0. (2.37)

(14 22)?

If we were to choose a trajectory with a ¢~? decay, it would not be surprising to see
a force response as in (2.35) with a ¢=? decay. However, if we use a trajectory with a
much slower decay, =2, as in (2.37), and the form (2.35) still holds, this will be a much
more severe test since it is a greater deviation from a step change velocity profile. The
results for various values of Re are given in figures 2.1 and 2.2, which have unscaled
and scaled axes, respectively, by performing the integration in (2.36) numerically.
The curve for Re = 0 corresponds to the step response given by (2.34). Figure 2.2
shows that the scaled variables collapse the results onto the Re = 0 curve quite well.

The fact that the curves are uniformly higher for increasing Re reflects the increased
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A.=""6 8 10 12 14

Figure 2.1: Temporal response of the unsteady Oseen correction to the hydrodynamic
force, f(t), due to a particle accelerating from rest as O(t_%). The particle trajectory
is given by (2.37) and f(t) is defined by (2.36). Time is scaled by 4v/U2. The curve
for Re=0 is the step increase response from (2.34). The Reynolds number, which is a
parameter in (2.37), is: —— Re=0; - — Re=0.1; - - — Re=0.3; — - — Re=1.

deviation of the velocity profiles from that of a step change. Additional refinement
can be achieved if, instead of UZ(t), time was scaled with (Y;(t) — ¥;(0))?/t2, which
1s indicated by the presence of A in the exact result, (2.33).

Next, in order to test the generality of the =% decay, we consider the temporal

response of f(t) to the following velocity profile:

=1, t>0, (2.38)

where 0 < b < 1. The results for various values of b are shown in figure 2.3. The

exact solution for the case when b = 0 is given by (2.34). The long-time asymptotic
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1'4 t(Uu(t)y)"2

Figure 2.2: Temporal response of the scaled unsteady Oseen correction to the hydro-
dynamic force, f(t)/UZ(t), due to a particle accelerating from rest as O(t~z). The
particle trajectory is given by (2.37) and f(t) is defined by (2.36). Time is scaled by
4v[UZ. The curve for Re=0 is the step increase response from (2.34). The Reynolds
number, which is a parameter in (2.37), is: —~ Re=0; — — Re=0.1; -~ - — Re=0.3;

— -+~ Re=1.

forms from

f) =3

ool w

ool W

ool w

(2.36) were found analytically to be

1 RUR
1+<Z+O(t te t))ﬁ],

1 . e—4b(1—b)t
”(4(1—6)2*0“ )) 7]

t>1,  (239)
(-
AT
(2.39b)
t> 1, (2.39)
t> !
=257

(2.39d)
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Figure 2.3: Temporal response of the unsteady Oseen correction to the hydrodynamic
force, f(t), due to a step change increase in the particle velocity. The particle tra-
jectory is given by (2.38) and f(t) is defined by (2.36). Time is scaled by 4v/UZ.
The ratio, b, of the particle velocity before the step change to that after is: — b=0;
- - b=0.1; - - - =0.5; — - — 6=0.9.

We see that for a step change from a non-zero constant velocity, the decay to steady-
state is ultimately exponential. Note that for b < 1, f(t) behaves as (2.39a) provided
that 1 < ¢t <« 1/(4b). Also, when (26 — 1) < 1, f(t) goes as (2.39¢) if 1 € t <
(26— 1)2

Finally, we consider the velocity profile for a step change down:

=b,  t>0. (2.40)

The results for different values of b are shown in figure 2.4. The long-time asymptotic
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Figure 2.4: Temporal response of the unsteady Oseen correction to the hydrodynamic
force, f(t), due to a step change decrease in the particle velocity. The particle trajec-
tory is given by (2.40) and f(t) is defined by (2.36). Time is scaled by 4v/U?. The
ratio, b, of the particle velocity after the step change to that before is: — b=0; — -
6=0.1; — - — b=0.5; - - — =0.9.

forms from (2.36) were found analytically as

311 1 1 1
t = ——= T Ty -~ . -—.—l-
1(2) 8|2t orsss t 82 167343

+ O(t—‘*)}, b=0, t>1, (241a)

3., (1-b et 1
=21 (=2 o)) ) ——— |, 0<b<l, t> (241D
(13 + o ))WE(M)J b1, 1> e

Equation (2.41a) also holds for b < 1 when 1 < t < b72.

These differences in the temporal decay to steady-state reflects the contrast be-
tween the creation or destruction of the wake structure, associated with the algebraic
decay, and simply modifying the wake structure already established, which is asso-
ciated with exponential decay. Step changes from or to zero velocity require the

creation or complete destruction of the wake, and this evidently requires an alge-
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braically long-time. Step changes from and to finite velocities maintain the wake
structure throughout the process, and the efficient convective transport of vorticity
yields an exponential decay or response. These fundamentally different temporal
responses — algebraic versus exponential — are quite intriguing and may have impor-
tant implications for oscillatory flows or the response of particles to time-dependent

fluctuating velocities caused, for example, by turbulent flows.

2.7 Expression of the hydrodynamic force acting
on a spherical particle

The remaining contribution to the hydrodynamic force is given by

FI(t) =FE (1) + ReSIV, U (1)

—Re / (RBSI% + vg - VVO - Us(t) . VVO) . M dV. (242)

Vy

For a spherical particle, the evaluation of (2.42) is simple. The entire contribution
from the regular perturbation is identically zero. This simplification follows as the
vo-field is strictly symmetric, and the v,-field is strictly anti-symmetric, as one can
observe from their governing equations, (2.107) and (2.108). Hence, the entire in-
tegrand of the integral in (2.42) antisymmetric. (One can note that the M-field is
symmetric from (2.11).) Then, since the volume of integration is spherically symmet-
ric, angular integration will yield zero. For a sphere, the only contribution from (2.42)
is the unsteady Stokes force, which is given by (2.2) with U,(t) replacing U,(t), and

the buoyancy force ReSlf/;,U_w(t) with 17;, = %’r. Thus, we have

FH (1) = —677{U5(t) + (@)%/; (:j:(:))% ds} - %’rResng(t) + %ReSlwa(t).

(2.43)
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Combining F# ,(t) from (2.28) and (2.33) with (2.43), the expression for the total

out

hydrodynamic force acting on a sphere is

. 9 .
FA(t) = %ReSlUm(t) ~ 67U,(t) — = ReSIU, (1)

2 ] et gleonn o e

+3FI4(0) — {exp(-IAP) - gt (sTert(1AD - exp(-IAP) JE24 ()

2ds
(t—-s)%

} + o(Re), (2.44)

where we have used F¥(¢) = —67U,(¢). Thus, since the last term of (2.44) is FE__(¢),
the asymptotic temporal behaviors described for the step changes in the previous
section were actually for the entire hydrodynamic force.

Now we apply (2.44) to the problem of a sphere released from rest and settling
under gravity. The equation of motion for a particle immersed in a fluid is given in

dimensional form by

mPUP(t) = Fem(t) + FH(t)a (2-45)

where F***(t) is the external force acting on the particle. For the problem of a particle

settling under gravity, the external force is the buoyancy force
F = (m, — my)g(—1,), (2.46)

where m,, is the mass of the particle and my is the mass of the fluid displaced by the
particle. The hydrodynamic force acting on the sphere to O(Re) is given by (2.44)
with U(t) = 0, Uy(t) = Uy(t), Y,(t) = Y,(t), and FH(t) = —67U,(¢).* Thus,

“In actuality we could equally well replace F¥ (¢) with the full force monopole, F,(t), given by
(2.113). In this case, F1(t) = —=F¢** + (m, /m; — 1)V, ReSIU, (t) ~ —F°** for 1, = v/UZ2. However,
we then would need to include the Basset term and the quantity (ReSl/nt)3F=t as well in (2.44).
Regardless, the difference in choice will alter the result by an amount smaller than O(Re).
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letting U,(t) = U, (t)(~=is), Y,(t) = Y,(t)(=i,), and FH(t) = FH(t)(~i,), we have for

the sphere released from rest at ¢t = 0

) _ —67U,(t) — i ReSIU,(t)
pal,
_%(wReSl)%{ /0 t[ 20,(t) — —%(%—Z—erf(/&) -exp(——A2))}Up(s)]
2ds  8U,(t)
(—oF stk } (2472)
where ,
e

Combining (2.46) and (2.47) in (2.45) and rearranging, we obtain for the equation of

motion of the sphere

L=ty 5 (1 + f) a0
%{ [ 20, (2Aerf(A)—-exp( Az))}Up(s)]
2ds 8U,(t)
it t e } (2.48)

where p, is the density of the particle. Here, we have taken the diffusive time scale,

a?/v, so that ReSI = 1, and the Stokes terminal velocity as the velocity scale:

Uc = UStokes = w‘f_)'g (249)
6rpa

We note that Re = alU./v = 2(p, — p)pga®/9u®. Also, with U,(0) = 0, we have

U,(0) = v (2.50)

(1 + 2pp/p)
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With a simple time stepping, finite difference routine U,(t) was solved numerically
to produce Figure 2.5, with Re = 0.3 and p,/p = 1.1. This value of Re was chosen
based on experimental results which showed the steady Oseen formula for the drag
to be a good approximation for Reynolds numbers below 0.4 [34]. The curve for pure
unsteady Stokes flow (i.e., for Re = 0) is included for comparison. By definition, the
terminal velocity associated with this curve is 1.0. Numerical difficulties occurred for
the Re = 0.3 curve after ¢ ~ 50 which are believed to be due to the nonlinearity of
the governing equation (2.48). The remainder of the curve was obtained using the
long-time asymptotic formula (2.35) for the last term of (2.48), the unsteady Oseen
correction. Using (2.35) for ¢ > Re™? (note that here ¢ must be replaced by Re?t/4

in (2.35)), we have the following solution for U,(¢):

2 Re 1
~ — 2.\-2
Up(t) Upo (Rezt)2 [Upo(z _ Upo)} + 0<(Re t) )7 (2.51&)
where
4 :
U, = 5!;((1 +2Re)” — 1). (2.51b)

We find that for Re = 0.3 the decay to steady-state (defined as 99% of the terminal
velocity) is about forty times faster with the unsteady Oseen correction than with
just the unsteady Stokes force. One must be cautious with such conclusions, however,
since this sort of temporal decay is bounded by the existence of higher order terms
which may have slower than O(t72) decay. We note that the next correction, which
is O(Re?log Re), was indicated by Sano [47] to have no temporal nature. This is
believed to be related to the fact that the O(Re®log Re) term arises from volume
integration in the reciprocal theorem of the inner fields over the inner region where

the fluid motion is nearly steady.®

’One can compute the O(RezlogRe) term from:

—Re? f::oo((lf)?e-‘) [—Us(t) . Vul—l + ‘151 -Vul +uf- Vugl -M,, dv,
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Figure 2.5: Trajectory of a sphere released from rest and settling under gravity. The
ratio of particle density to fluid density, p,/ps, is 1.1. Time is scaled by a%/v and
the velocity by the Stokes terminal velocity. The right side of the curve for Re=0.3
is from the long-time asymptotic result given by (2.51). The Reynolds number is:
—— Re=0; - — Re=0.3; . . . . Re=0.3 (steady-state solution).

2.8 Expression of the hydrodynamic force acting
on an arbitrarily shaped particle: long-time
limit

As can be seen from (2.42), to evaluate the hydrodynamic force to O(Re) in general
would require both the unsteady Stokes velocity field, v, and its regular perturbation,

vi. Computing such fields for non-spherical particles is a difficult task. Few solutions

where u; is the solution to the regular perturbation to steady Stokes flow and the above superscripts
indicate that the velocity fields are homogeneous in that power of |r], i.e., ul_1 represents those terms
of u; that are O(r~1). By analogy, we anticipate that this term will be O(Re® log((ReSI)~%)) for
time scales such that a®/v < 7, < v/UZ, since the velocity fields in the integral are only valid out
to the distance to which vorticity has diffused, O(( ReSI)~3).
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exist for the unsteady Stokes field created by the motion of a non-spherical particle.
Most notable is the rather complex formulation presented by Lawrence and Weinbaum
[28] for the axisymmetric motion of a spheroid. We are unaware, however, of any
solutions for the regular perturbation field.

For a non-spherical particle, however, one can use the general approach of the
reciprocal theorem and the idea of a uniformly valid velocity field to find the form
of the unsteady Stokes corrections to the pseudo-steady Stokes drag in the limit of
ReSl <« 1. This is the limit when the time scale of variation is much longer than the
diffusive scale a?/v. The Basset history force in the long-time limit, which, in general,
may be different in the short-time limit, is identified as the term that is O((ReSI)z).
The acceleration reaction (for lack of a better name) will represent the O(ReS!) term
since, as we shall see below, it is proportional to the particle acceleration. These
terms are contained in F& | so for now we only consider this term and not the integral
n (2.42).

We begin with the reciprocal theorem expression for the unsteady Stokes force
from (2.15):

F2 (1) = — ReSl / 9o Nrqv, (2.52)
where vp is the unsteady Stokes velocity field (i.e., the solution of (2.107)). When
ReS! < 1, near to the particle the velocity field will be dominated by steady Stokes
flow, while far from the particle at distances of O(a(ReS!)~2), the flow to leading
order is given by the point-forced unsteady Stokes solution. Thus, we approximate

vo with a uniformly valid velocity field as
vo ~ vy' = (up — uh) + v7, (2.53)

where ug is the steady Stokes velocity field, and u} is the solution to the point-forced

Stokes field given by (2.119). The solution to the full point-forced unsteady Stokes
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velocity field, vP, is given by the solution to

P
— VII? + V7P = ReSl%vT +FP(t)é(r), V-vF=0, (2.54)

which is identified as the outer velocity field. Here we retain the entire force monopole

to ensure the desired accuracy in the hydrodynamic force; that is,
F(t) = FX(t) — ReSIV,U,(t). (2.55)

In the presence of an O(1) dipole contribution to the velocity field, which would
arise from an external torque or straining motion, this uniformly valid field is not
accurate to O(ReSl), but only to O((ReSl)z). We assume for now there is no dipole
contribution, but will return to this issue later.

If we define Ms as

M, =M-M,, (2.56)
and note that
up —uf = (M — M,) - U,(t), (2.57)
then (2.53) becomes
Vi = M, - U,(t) + Vv*. (2.58)

Using this approximation for the unsteady Stokes velocity field we obtain the following

expression for the unsteady Stokes drag to O(ReS!):

- MdV + o(ReSl), (2.59)

. NP O vP
FH (1) = FH () — ResIU, (1) - / NIT . MdV — ReS! / a‘;
v Vv
where M7 is the transpose of M,.
One can see that if there were a dipole contribution to Ms, the first integral of

(2.59) would be conditionally convergent, as the dipole is antisymmetric and O(r~?),
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while the monopole contribution from M is O(r~!) and symmetric. That is, if we
perform the radial integration first we obtain a log singularity at infinity; while angular
integration, done first over any spherical surface, removes the log singularity. Note
that without the dipole M, is O(r=3).

This apparent problem is simply a shortcoming of approximating the actual ve-
locity by a field with too low an accuracy in ReSl, only to O((ReSI)?), in the outer
region. To be mathematically rigorous, one could include the dipole field in the outer
velocity field in the same manner as was done for the monopole. This creates un-
necessary labor, however. Instead, if there is a dipole contribution, we may force a

convergent order of integration by writing (2.59) as

- 00

. A - P
FZ(t) = F2(t) — ReSIU,(t) - lim / NT . NdV - ReSl/ ‘% .M dV + o(ReSl),
Vi (R) Vs

(2.60)
where now V;(R) is the volume of fluid surrounding the particle and bounded by
a spherical surface of radius R. This is justified by the fact that the actual dipole
contribution to the unsteady Stokes field is anti-symmetric but only O(r™*) for large
r. As an added note, a dipole contribution will only exist if the particle can exert a
torque (or stresslet) on the fluid by its translational motion. This would be the case,
for example, for a screw-shaped particle if there was an external torque to prevent it
from rotating.

Now we shall consider how to simplify the calculation of the second integral of
(2.60), the contribution of v? to FZ. First we decompose it into the following two

parts:
ovP . vP . ovP .
ReSl/—a—t-MdV—ReSl/W-MpdV—%ReSl/W-Mst. (2.61)
Vs Vs Vs

In the last integral of (2.61), we may replace v? with u}) because in the outer region,
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where this is an invalid approximation, the error that it makes in the hydrodynamic
force is o( ReSl). Here again the dipole contribution may be dealt with as above to
obtain

ReSl/——— NI, dV = ReSIU,(t) - lim / NT .M, dV +o(ReSl).  (2.62)

R—oo

Vi(R)

The first integral in (2.61) may be rewritten as an integral over the entire region of

space minus that over the volume of the particle and approximated as

ovP - dvr
ReSl/E—-MpdV=ReSl/—at—( NI (k) dk — ReSIU,( /MT N, dV

+ o(ReSl). (2.63)

In the integral over the volume of the particle we have replaced v? with uj, since this
makes an error that is o( ReS!). The integral over all space was rewritten in Fourier
space with the use of the convolution theorem. Combining (2.62) and (2.63) in (2.61),

this contribution to the unsteady Stokes force becomes

——ReSl/—— MdV———ReSl/ (—k) dk + ReSIU,(t /MT M, dV

— ReSIU,(t) - Jim M? - M, dV + o(ReSl). (2.64)
Vi (R)

The integral in (2.64) involving the Fourier transforms can be evaluated in the

same manner as was done in Section 2.6. Following the procedure in Appendix 2.12,

we obtain
P t
ReSlath / F(s) - (ngng — De~ 4™ * (=) Rest g (2.65)

Combining (2.22) for M, and (2.65) and performing the integration over k-space



53

gives

ReSl/ 9V k). M, (—k) dk = — (R;S’)%/_;g%%ds-@. (2.66)
Now we must consider carefully what form F}*(¢) must take in order to obtain
the hydrodynamic force to O(ReSl). Note that F}*(t) represents the exact hydro-
dynamic force acting on the particle due to the unsteady Stokes field plus a term
that is O(ReS!). To obtain the contribution to the hydrodynamic force from (2.66)
to O(ReSI), F**(t) must be replaced with the particle drag to O((ReSl)z). The O(1)
contribution is the pseudo-steady Stokes drag, F¥(t). The O((ReS!)7) contribution
to Fy*(t) can be found by evaluating (2.66) with Fy*(¢) replaced by F(t). Thus the
proper form of F}*(¢) to be used in (2.66) is

Fus(t) = FA (1) + (5-‘35-’-)% I (F HON & + o (Rest)?). (2.67)

T t—s)3
Evaluating (2.66), using the above expression for F}*(¢) we obtain

] 5 e (B2 [ B

+ ReSIFH (1) - & - ® + o(ReSl). (2.68)

Finally, combining the above result with (2.64) in the expression of the total unsteady

Stokes force (2.60), we obtain, correct to O(ReS!),

I\ 3 t X :
FA(t) = —67% - {U (1) + (Res) 3 [ Usls) st Resia @-Us(t)}
- 00 (t — 3)5
T 971' .
- ReSl Jim / MT NIV - 2@ -8R - Uy(1)
(R
+ o(ReS1), (2.69)
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where we have used the fact that [y g4y, I\A/I;f . Mp dV = 2& - ®R. The first term
is the pseudo-steady Stokes drag. The second is identified as the Basset history force
in the long-time limit. This form of the history force was first noted by Williams
[61] . The remaining terms combine to contribute to what we have referred to as
the acceleration reaction, being proportional to the particle acceleration relative to
the imposed flow. It is the counterpart to the added mass in the short-time limit
associated with potential low. The entire result agrees in form with the expression
obtained by Pozrikidis [42] for the low-frequency oscillation of a particle. However,
Pozrikidis’ expression requires the solution of an integral equation for the given parti-
cle. It is also interesting to point out that the above resultant “acceleration reaction”
resistance tensor is symmetric, which agrees with the finding of Gavze [17] .

To find the acceleration reaction correction in this limit of small ReS!, we only
require the steady Stokes velocity field created by the translating particle at time ¢
and the corresponding Stokes drag. Indeed, if we use the steady Stokes velocity field
for a translating sphere we obtain —%ﬂ'ReSlUp(t), the added mass of a sphere, which
agrees with the fact that the acceleration reaction and the added mass are the same
for the special case of a spherical particle. If we use the Stokes velocity field and
drag for an oblate spheroid translating along its axis of symmetry, given in the text
by Happel and Brenner [18], we obtain the following expression for the acceleration

reaction in dimensional variables when ReS! < 1:

H 2 31 3! ’
F” (t) = —2mpb°U(t 3
1.0 = =30 0{0 (s e
2273
+ 1
D= (2 —D)oot-11)

—(1=2)% 4 2% (/:()[((:ot'1 z)? + 3(zcot™ z)? - 3]dz — 3A>] },
(2.70a)

- [2/\ +4X° + (245X —3)%) cot ™' A
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where

A =b/(a? - b?)7. (2.70b)

Here a and b the are major and minor semi-axes of the spheroid, respectively. For a

slightly oblate spheroid we define its nonsphericity, €, by
a=b1+e¢), el (2.71)

Then the acceleration reaction becomes

1 2 .
FA (1) = —%pr3{1 + 366 + %62 + 0(62)}U3(t), (2.72)

which agrees with the result of Lawrence and Weinbaum [28] in the low-frequency
limit of an oscillating slightly oblate spheroid for the part of the force proportional
to the first power of the frequency. We note that the added mass found by Lawrence
and Weinbaum [28] in the high-frequency limit differs from (2.72) at O(€?), which
again demonstrates the uniqueness of the result (2.2) for a perfect solid sphere.
Finally, for ReSl < 1, the contribution to the hydrodynamic force from the regular
perturbation to unsteady Stokes flow (the integral portion of (2.42)) may be simplified.
Clearly, the part from the term Re(ReS!)0v;/0t is only a small correction to the
already small O(Re) correction to the drag evaluated in Section 2.6 and can therefore
be neglected. In addition, in the terms involving Revy - Vvg and ReU,(t) - Vvg, vo
could be replaced with the approximate field given by (2.53). However, even this level
of accuracy is unnecessary. If we simply use the steady Stokes field, up, we can obtain
the correction to O(Re), but to only O(1) in ReS!. In doing so, however, one must
recognize that the integrand, ReU,(t)- Vu, - M, is conditionally convergent, since it

is O(r~3) and antisymmetric at large distances from the particle. Thus, we simply
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approximate this entire contribution by writing

Re /(RESI'%V‘; + Vo - VV() - Us(t) . VVO) . MdV =
Vs

R—o00

Re lim / (uo - Vue — Uy(t) - Vu0> ‘M dV +o(Re). (2.73)
Vi(R) ,

The integral on the right-hand side of (2.73) may be shown to only contribute a force
orthogonal to the direction of motion of the particle — a lift force. The portion parallel

to the direction of motion is given by the volume integration of

<u0 - Vug — U,(t) - Vuo> M- U,(t) = [V - (uouo — Us(t)uoﬂ ‘g
1

= §V . (uouo - Ug — Us(t)uo . U()),

(2.74)

where we have used the continuity equation and that M -U,(t) = uo. Application of
the divergence theorem in the volume integral of this quantity and using the boundary
condition on the surface of the particle yields surface integrals which are identically
zero. Thus, the contribution given by (2.73) can only yield a transverse or side force.
This result agrees with the conclusion reached by Brenner and Cox [8] . This form
of the term represented by (2.73) was first noted in a paper by Cox [11].

If we combine the results of Section 2.6 and Section 2.8, we obtain the expression
of the hydrodynamic force acting on an arbitrarily shaped rigid particle in the limit

when the time scale associated with the particle’s slip velocity is much greater than

the diffusive scale. Combining (2.28) and (2.33) with (2.42), (2.69), and (2.73) the



57

hydrodynamic force is

F(t) = ReSIV,U(t) + FA(2)

—ReSl{67T<I>-<I>-<I>+}%im Q/ MT-MdV—%”@-@R)} - U, (t)

1(R)
P e
+ %Ffi(t) - {exp(“|A]2) - 2|11X|2 (27lilerf(|A|) - eXP(-lA|2))}FfJ—(s)]

y 2d53 &
(t—s)2

— Re lim / (ug - Vug — Ug(t) - Vuo) .M dV + o(ReSl) + o(Re).  (2.75)

- OO

Vi(R)

The first term of this expression is due to an accelerating reference frame, the second
is the pseudo-steady Stokes drag, and the third has been labeled as the acceleration
reaction. The fourth term represents the unsteady Oseen correction to the hydrody-
namic force. It is a new history integral that replaces the Basset history force in the
long-time limit at finite Reynolds number. The last term of this expression can only
contribute a force perpendicular to the slip velocity of the particle. In order to make
use of this expression for a given particle we only require the steady Stokes drag and

the corresponding steady Stokes velocity field created by the translating particle.

2.9 Results and discussion

When the time scale is O(v/U?), or longer, the history force represented by the
unsteady Oseen correction is O(Re) and has a temporal behavior very different from
the Basset term; for shorter time scales it behaves simply as the Basset history force
in the long-time limit. This is due to the fact that the time scale must be of this

large magnitude for vorticity to have diffused out to the Oseen distance of aRe™!.
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When this has occurred vorticity is swept up in a wake region behind the particle and
transported by convection. Also, on this long time scale, the acceleration reaction
(the third term of (2.75)) is negligible, being O(Re?). Due to the change in the
mechanism of vorticity tranéport - convection in the wake versus radial diffusion —
we have shown that for time scales greater than O(v/U?) the temporal behavior of
the force will decay faster than the t~3 predicted by unsteady Stokes flow.

It is important to note that (2.75) is valid for all time scales for the case of a rigid
spherical particle. This condition exists because the asymptotic form of the unsteady
Stokes force to O(ReS!) for large time scales (7. > a?/v) is the same for arbitrary
time scales. The corresponding expression for a spherical particle is given by (2.44).
This expression would be appropriate for the calculation of the hydrodynamic force
to O(Re) acting on a sphere undergoing any time dependent motion in a prescribed
uniform flow when the particle Reynolds number is small but finite. As demonstrated
in the previous section, it can also be used for the dynamic calculation of the trajectory
of the particle under the action of an external force.

To reiterate the approach we have used, the analysis begins by constructing a
uniformly valid velocity field which is then used in the appropriate reciprocal theorem.
This uniformly valid velocity field is constructed by summing the leading order field
valid close to the particle with that valid far from the particle and subtracting the
parts common to both fields. The near field is given by the steady (or unsteady)
Stokes equations. It is this field which takes into account the finite size and shape of
the particle. The far field, when one exists, is given by a point-forced equation with
only the dominant inertial terms retained; in the far field the particle appears as a
force monopole to leading order. Then the common part is simply the point-forced
Stokes (or unsteady Stokes) velocity field.

In performing calculations, the way these fields are distributed is dictated by the

necessity to maintain convergent volume integrations. In Appendix 2.11, the outer
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field, v?*, was formed by subtracting the point-forced unsteady Stokes field so that
the Stokeslet nature of the field at the origin was removed. This rearrangement
allowed integration to be extended to the center of the particle and the subsequent
application of Fourier transforms and the convolution theorem in Section 2.6. Had
this rearrangement not been performed, the resulting term, U,(t)- Vvi* . Mp, would
have been a conditionally convergent anti-symmetric integrand at the origin, being
O(|r|™3). Also, in grouping the velocity fields the way we did, the unsteady Stokes
force was retained as a separate contribution, which could be treated on its own.

On the other hand, when the unsteady Stokes force was evaluated in Section
2.8, the outer field was taken as the point-forced unsteady Stokes field. Since it
formed a convergent integrand both at the origin and at infinity, this again allowed
the application of Fourier transforms and the convolution theorem. In this way the
common part, the Stokeslet, was subtracted from the inner steady Stokes field to form
the new field given by M, - U, (t). Then once proper account was taken for possible
dipole contributions, this field yielded a convergent contribution to the hydrodynamic
force when used in the reciprocal theorem. Had the Stokeslet not been subtracted from
the inner field, the resulting integrand, duo/dt - M, would not have been convergent
when integrated to infinity, being O(r~?) at large distances from the particle.

In using this approach to obtain inertial corrections to the steady Stokes force
acting on the particle, one is able to attribute the various contributions directly
to regions in the fluid domain and the corresponding velocity field. This method
contrasts the usual approach of applying matching conditions and the subsequent
evaluation of contributions to the hydrodynamic force from higher order inner fields.
In a sense, the matching procedure is done implicitly by the formation of a uniformly
valid velocity field. An advantage to this approach is that, in general, the evaluation
of higher order fields is not required to obtain the leading order corrections to the

steady Stokes force. In addition, only the Fourier space solution to the outer field
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(2.124) is needed to perform the calculations. As an added comment, we note that
the Laplace transform (in time) method of Bentwich and Miloh [5] could not be used
here because of the problem of dealing with the time-dependent coefficient, U,(t), in
the convective terms of the outer velocity field.

The equation for the outer contribution to the hydrodynamic force, (2.20), can be
shown to be equivalent to previous researchers’ findings [9, 46| in that it represents a
term proportional to a uniform flow created by the outer velocity field at the center

of the particle. The governing equations for the Rev?t-field dictate that

_ e —
fou:(ReviT) (k) = Re (ReSla(;,; — 27iReU,(t) - kv’f+> (2.76a)
— _4n?Rek™VIT — 27iReU, (1) - kvP. (2.76b)

Thus, if (2.76b) is combined with (2.22), the Fourier transform of the M,-field, in
(2.20), we find

FH

out

(t) = 67 ® -VZ (Re@ - %ﬁ) dk. (2.77)
The second term of this expression has no effect except to remove the conditionally
convergent antisymmetric contribution that was discussed above. Therefore, (2.77)
demonstrates that this contribution is simply the dot product of 67® with the uniform
flow created by the disturbance field Rev?t at the center of the particle.

The extension of this analysis to include particle rotation does not significantly

alter the derivation provided we have

AQIE
RO o(1), (2.78)

where §2,(%) is the angular velocity of the particle. This condition implies that the

Reynolds number based on the characteristic slip velocity is of the same magnitude as
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that based on the characteristic angular velocity of the particle. The only adjustment
for the derivation of the outer contribution from Section 2.6 is to recognize the fact

that FH(t) is given by
FH(t) = —67®(t) - Uy(t) — Rra(t) - (1), (2.79)

where Rpq(t) is the resistance matrix relating particle rotation to hydrodynamic
force. For nonspherical particles both resistance matrices may be time dependent
due to the rotation of the particle.

In the presence of particle rotation, the boundary conditions on the surface of
the particle must be appropriately modified in the governing equations for the inner
velocity fields. With particle rotation the symmetry arguments described in  Section
2.7 for a spherical particle no longer hold for the contributions from the regular
perturbation to unsteady Stokes flow. These will make an O(Re) contribution in the
presence of particle rotation. Thus, the conclusion that the expression given by (2.44)
holds for all time scales would no longer be valid. However, for it to be valid to O(Re)
and to O(ReS!) when ReSl < O(1), the only modification required is to include the

contribution from the expression given by (2.73). That is,

— Re }%grgo / (uo - Vug — U,(t) - Vu()) ‘MdV = 7ReSQ,(t) x U,(t), (2.80)
Vi(R)

where ©,(t) has been nondimensionalized by U./a and X indicates a vector cross
product. Here, ug is the steady Stokes velocity field created by the sphere translating
and rotating in a stationary fluid. This represents the lift force first obtained by
Rubinow and Keller [45] . We note that in this derivation the M-field remains the
same as previously described, i.e., that for particle translation only.

To modify the expression given by (2.75) for nonspherical particle rotation one

must first apply the FZ(t) as given by (2.79) where the resistance matrices may also
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be time dependent. The acceleration reaction contribution, given as the third term of
(2.75), requires detailed modifications of the analysis given in Section 2.8. That is,
in (2.75) we have assumed @ is not a function of time. If, however, the particle was
nonspherical and as it translated it was tumbling about an axis that was not an axis
of symmetry, ® would be time dependent. Under these conditions the acceleration

reaction would be replaced by

T——00 T

P R P R
_ lim / (a“(’ M—8—‘;"-Mp>dv+/%-Mpdv},(2.81a)
VP

ReSl{ lim l[/: BH(q)- 3(q, 1) dg + FH (z) - J(a:,t)]

R—oo ot F) ot

Vi(R)

where

f ®(s)
J(z,t) =
@ /“” ((t=s)(s — 2))

s B(t). (2.81b)

W=

When @ is independent of time, J(z,t) is equal to 7® - ®. In the above expression,
as well as in the last term of (2.75), the steady Stokes velocity field for the particle
both translating and rotating in a stationary fluid is required for the uo-field. It
should also be noted that the Stokes velocity fields uy and u} are in general functions
of time not only because of the time dependent nature of U,(¢) and £2,(¢) but also
because of the change in orientation of the particle with time. For example, if up =
M - U,(t), then M may also be a function of time through the particle orientation
dependence relative to Uy(t). As a final note, the second-order tensor ® in these
modified expressions remains as defined above since the M-field is expressed in terms
of the particle translating in the given orientation at time t.

Another possibility for extension of these results would be to consider the case of
non-steady particle motion in a linear flow. Maxey and Riley [33] have obtained a
solution for the corresponding unsteady Stokes problem associated with a translating

sphere in a time-dependent non-uniform flow. Their analysis shows there is no sig-
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nificant modification of the unsteady Stokes force from that of (2.2) for the case of a
linear flow, the only difference being that the particle velocity is given as relative to
the undisturbed flow evaluated at the particle center. It is believed that the inclu-
sion of the convective inertial corrections would be of more significance in this case
than in the uniform flow problem analyzed here, because the critical time scale for
which an outer region develops, where the convective inertia is important to leading
order, is 47!, where 7 is the characteristic strain rate of the external flow. This is a
more relevant time scale since it does not depend on the fluid viscosity nor on any
external forces that act on the particle. The dominant convective correction to the
unsteady Stokes force would in general come from the outer contribution since it is
O(R%2l ) where Res; = a®4/v [46]. This correction could be solved for, in principle, by
the analysis presented here, but it would ultimately require the solution of a partial
differential equation for the velocity field in Fourier space.

As a final note, the use of the present approach to study oscillatory motion and
the motion of bubbles and drops at small Reynolds number will be carried out in

Chapters 3 and 4, respectively.
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2.10 Appendix: The reciprocal theorem and ex-
pressions for the particle force

It is necessary to briefly consider the governing equations and general features of
the fluid motion about a rigid particle translating with velocity U, in a general
time-dependent flow. Relative to a coordinate system fixed in the laboratory, the
undisturbed fluid motion is denoted v*°(x,t). Referred to a coordinate system in-
stantaneously fixed to the particle, the undisturbed fluid motion is denoted u®(r,t),
where v°(x,t) = U® 4 u®(r,t) and U® = v*(Y,(t),t) is the fluid velocity
evaluated at the current particle location.

The disturbance flow equations relative to a particle-fixed observer enter fre-
quently in the analysis below. Denoting the disturbance velocity, pressure, and stress
by (u, p, o), the disturbance flow satisfies

du

5 +u-Vud+u:-Vu® +u®.Vu

Vzu—Vp-——V-a:Re{Sl

+ (U= -U,) -Vu},

= f(u,u*), (2.82a)

and

V-u=0, (2.82b)

where we have assumed v satisfies the Navier-Stokes equations. The function f will
be used throughout to represent the inertial terms in the equations of motion. This
term clearly depends on the details of the undisturbed fluid motion and the distur-
bance flow generated by the particle. Also, the disturbance flow problem satisfies the

boundary conditions

u=U,-v®(x,t) for r=x-Y,(t) €S, (2.83a)
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and

u, p—0 as r =|r| — oco. (2.83b)

Notice that the disturbance velocity field u(r, t) describes fluid motion in the vicin-
ity of the particle relative to an observer moving along the streamline, which, at time
t, passes through the particle center. The final term in equation (2.82a) represents
a slip between the actual particle velocity and the undisturbed flow evaluated at the
instantaneous location of the particle.

Translational accelerations of the particle arise to balance the difference between
the hydrodynamic and external forces, F¢**. The hydrodynamic force F¥ exerted by

the fluid on the particle is given by

ReSIT, U, — F=! = / n-ordS=F", (2.84)
S

where m, is the mass of the particle nondimensionalized by the product of the density

3. Here, or

of the fluid, p, and the cube of the characteristic particle dimension, a
denotes the stress tensor for the actual flow about the particle.

We now outline the use of the reciprocal theorem to derive a general expression, in-
cluding inertial effects, for the hydrodynamic force as a function of the time-dependent
undisturbed velocity field. This application of the reciprocal theorem is similar to the
procedure used by previous investigators [12, 20, 30]. These earlier studies were
interested in calculating the inertial contribution to particle translational and rota-
tional velocities for situations where the Reynolds number was sufficiently small that
a rigid boundary was reached prior to an O(Re’%) distance where fluid inertia be-
comes significant. Consequently, the boundary was located in the “inner” region and
a regular perturbation method accounting for inertial effects was applicable. Con-

trary to statements made in earlier studies, however, here we show it is possible to

use the reciprocal theorem in those instances where fluid inertia enters directly and,
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in principle, a solution for the detailed flow field would require singular perturbation
methods. In this case, we require that the “outer” region where fluid inertia becomes
significant is closer to the particle than any boundaries; i.e., O(Re™?) < L/a, where L
is a representative geometric length scale and where, for example, # = 1 for uniform
flow and B = 1/2 for linear flow.

Consider two solutions of the Navier-Stokes equations (u, o, f) and (i, &, f ) where
f and f represent the inertial (steady and unsteady) terms. Also, V -u = 0 and
V -4 = 0. The reciprocal theorem states that at any time ¢,

/S(n-a)-ud5'+/vff-udV=/S(n-o)-udS—l— foudv (2.85)

Vs

where S represents all bounding surfaces, S = S, + S» and n in the unit outward
normal directed from S into the fluid volume V;. We will neglect the presence of any
walls since here we are concerned with an isolated particle in an unbounded prescribed
flow.

Let the unhatted flow correspond to the disturbance flow problem defined earlier
by equation (2.82). Let ({1,4,f) correspond to the Stokes flow problem of a rigid

particle translating with velocity U:
V.-a=0, V.-6=0, f=0, (2.86a)

with

4=U for reS, and 0 —0 as |r| > co. (2.86b)

Owing to the linearity of the governing equations and boundary conditions, the solu-

tion of this fundamental Stokes flow problem will take the form

a(r)=M-U (2.87)
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where the second-rank tensor M is a function of position; for a spherical particle it
has the well-known form

M=§(I+£)+i(l—3ﬂ). (2.88)

roord r3 s

The disturbance Stokes flow problem has the familiar properties
|Gl ~ O(1/r) as r — oo, |o] ~ O(1/r?) as r— co. (2.89)

Although (2.82) cannot be solved exactly (unless Re = 0), nevertheless for any

Reynolds number it is clear that for large r
lu| ~ O(r=®), with a > 0. (2.90)

Hence, the integral over S, in (2.85) involving (n - &) - u will vanish as the surface
So moves off to infinity. Similarly, the viscous stress associated with o will scale as
|[Vu| ~ O(r~>"1), and thus this part of (n- o) -1 on S, will also give zero. Thus,

we are left to consider the integral

—/ pn -G d8.
Sco

If in the far field viscous terms are larger than or the same order as inertial terms,

@=1 and this integral will not contribute. If there are regions

then p will also scale as r~
in the outer flow that are inviscid, then either these regions will be irrotational or
rotational and the pressure must be estimated from Bernoulli’s equation. In this case
it is not obvious that p decays sufficiently rapidly to neglect this integral, although it

seems most likely that this will be the case.

For the calculations performed in this paper, which are perturbations about the
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zero-Reynolds-number solution, p scales viscously and we may safely neglect all terms
which involve So,. Thus, the reciprocal theorem (2.85) may now be written in the

simpler ‘disturbance’ form

/Sp(n-a)-udS—l-/fo-ude/Sp(n-a)-udS, (2.91)

which, with the caveat about inviscid flow, is an exact statement valid at any time
t for an isolated rigid particle in a prescribed unbounded flow at arbitrary particle
Reynolds number Re.

We will now make use of the definition of the disturbance flow problems u, which is
the flow involving inertia, and G, which is the fundamental solution to typical Stokes
flow problems, in order to derive a general equation relating the hydrodynamic force
on the particle, to the undisturbed fluid motion v*(x,t).

Using (2.86b) for the boundary condition on 1, it follows that
/(n-a)-ﬁdsz/ n-ods-U. (2.92)
SP SP

Now it only remains to identify the disturbance flow stress as & = o7y — o™, where
o is the stress tensor for the actual flow about the particle, o is the stress tensor
for the undisturbed motion, and so involves v*°, and o is defined by the disturbance
flow problem (2.82). It follows that the term on the right-hand side of (2.92) is related

to the particle force (see (2.84).). Thus, (2.92) becomes

/S(n-o')-ﬁdSzFH-fJ—— (n-o=)dS-U. (2.93)

Sp

Applying the divergence theorem to the integral involving the undisturbed flow, we
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obtain

/(n-a)-ﬁdszFH.I*J—/V(V.aw)dV.U (2.94)

Sp

The evaluation of this integral involving the undisturbed motion is most easily

performed by referring all velocities to the laboratory frame. In this case v*®°(x,t)

satisfies
V0% = g2 O;:w (2.95a)
where
%‘; = Sl% + v (x,t)- V. (2.95b)

The right-hand side of (2.95a) is a function of position x and when substituted in
(2.94) yields

N Dy n
(n-o)-adS=F7 .0 — Re Y_qv. 0. (2.96)

Sp v, Dt

Next consider the integral on the right-hand side of (2.91). Using the boundary
condition on the surface of the particle associated with the disturbance flow problem

(2.83a), we have

/Sp(n-a)-udS=/SPn-0'dS-Up—/SP(n~0')'v dSs, (2.97)

or

/S(n-&)-udszﬁ-up— [((n-6)-v=ds (2.98)

where F' is the force acting on the particle associated with the disturbance Stokes
flow problem.
To proceed further to simplify (2.98) one can either use a known solution for

the Stokes flow about the particle or one must have knowledge of the nature of the
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undisturbed motion and appeal to the symmetry properties of the resistance tensors
associated with the particle force. We pursue the first approach now by considering
the flow about a spherical particle. We will return to the second approach later for
the case when the undisturbed flow is uniform.

On the surface of a sphere, the force per unit area in Stokes flow is given simply
by

A

n- &‘Tzl,r=n = "":';'U. (2-99)

Substituting (2.99) into the integral on the right-hand side of (2.98) yields
o 3 .
/ (n-a)oudSzl—&rUp—f——/ vwdS}-U. (2.100)
Sp 2Js,

Here we have used the known result for a sphere that F = —6rU. Eliminating U
from the problem, we find that when (2.96) and (2.100) are combined in the reciprocal

theorem (2.91) it yields the following relationship for a sphere:

DOOVOO

3 . .
dV———67rU,,+-2~/Spv a5~ [, £-¥av. (2.101)

Each of the integrals involving the undisturbed motion in equation (2.101) can be
evaluated by using a Taylor series expansion about the instantaneous center of the
particle Y,(t) (assuming the velocity gradient variations are small over the length
scale of the particle) and performing the integrations; here, quadratic variations are
retained. Using (2.84), which balances the particle translational acceleration against

the net forces, leads to the general expression for a sphere:

i [ppe  D®V 1 _, Dovee et
3Re[pr” S )Yp(t) 0V (5 )Ypm =F
1 .
—67 [U, — U™ — sV (Y, (), ) - | £-Mav, (2.102)
Vs
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where p, is the density of the particle. In principle, equation (2.102) is valid for
any Reynolds number Re at any time ¢. Specifically, we have found this formulation
useful for an examination of inertial corrections at low Reynolds numbers. It is a
generalization incorporating all inertial influences of a result of Maxey and Riley [33]
, which was restricted to the unsteady Stokes equations.

Now for a nonspherical particle in a uniform undisturbed flow (v = U*(¢),

u® = 0) (2.98) becomes
/Sp(n-&)-udS=F-(Up—~U°°). (2.103)
Using the resistance tensor form for Stokes flow, F may be expressed as
F=-Rp-U, (2.104)

where R gy is the second-rank tensor relating particle velocity to the drag. Since Rpy

is a symmetric tensor, (2.103) is now given by

/S(n-&)-ud5=Ff-fJ, (2.105)

P

where F#(= —Rpy - (U, — U*®)) is the actual Stokes drag acting on the particle.
If we combine (2.96) with (2.105) in the reciprocal theorem (2.91) and eliminate U,
we find the following expression for the hydrodynamic force acting on an arbitrarily
shaped particle translating in a uniform flow:

FH(t) = FA(t) + ReSIV,U%(t) — £ MdV, (2.106)
!

Here, f/p is the volume of particle nondimensionalized by a3, and M - U is the Stokes

velocity field caused by the nonspherical particle translating with velocity U.
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As a final note, analogous expressions for the hydrodynamic torque and particle
stresslet have also been derived with this approach by introducing a rotational velocity
and rate-of-strain tensor, respectively, into the surface boundary condition (2.86b) for

the disturbance Stokes flow problem [49].

2.11 Appendix: Scaling arguments for the uni-
formly valid velocity field

We identify three cases to be considered based on the relative magnitude of Re and
ReSl: ReSl>> O(Re?), ReS! = O(Re?), and ReS! < O(Re?). In each case, we attempt
to rescale length to find if a dominant balance exists in the governing equation such
that convective inertia is retained to leading order. That is, we wish to find “outer”
velocity fields where convective inertial terms are of equal magnitude as viscous or
unsteady inertial terms. In all cases the pressure will be rescaled so that it remains to
satisfy continuity. Also, in order to obtain further scaling information for the outer
velocity fields, we shall employ the method used by Saffman [46] in replacing the
boundary conditions on the surface of the particle with force monopoles, dipoles, etc.
at the particle center.

We shall be considering various velocity fields associated with different governing
equations, and each field will have different dependent variables. The general conven-
tion for the pressure and velocity symbols are as follows: (a) (II, v) are for unsteady
fields, while (p, u) for steady fields; () a subscript “0” denotes a leading order field,
while a subscript “1” denotes a corresponding velocity field contribution due solely to
the convective inertia of the fluid, which is identically zero for zero Reynolds number;
(¢) a superscript “p” denotes a monopole, or point-force field; (d) a superscript “+”
signifies that a convective inertial term is retained in the governing equation for the

leading order field. Note that the unsub-(or unsuper-)scripted (p, u) will continue
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to represent the solution to the full Navier—Stokes problem presented in Section 2.2.

2.11.1  SI>> Re:

When SI > Re, or the characteristic time 7. < v/U?, there is no rescaling of the
governing equations for which the convective terms can be the same order as the
viscous or unsteady terms. This reflects the fact that vorticity has not diffused out to
the Oseen distance aRe~!. Thus, a uniformly valid first approximation to the velocity

field under these conditions will always be given by the unsteady Stokes equations

- VHO + VZVO = RGSI%, (2107&)
V.vo =0, (2.107b)
with
vo = U,(t) on the surface of the particle, (2.107¢)
vo, Ilo—> 0 as |r| — oo. (2.107d)

The contribution from the convective inertia will then be simply an O(Re) regular
perturbation to unsteady Stokes flow. That is, if we take (Ilp,vo) as the solution
to the above unsteady Stokes equations, then the O(Re) contribution to the velocity

field due to convection, (Rell;, Revy), must satisfy

avl

- VHl + V2v1 — RESIW = Vg- VV() - Us(t) . VV(), (2108&)
Vv, =0, (2.108b)
vy =0 on the surface of the particle, (2.108c¢)

vy, II; = 0 as |r| — oo. (2.108d)
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Although this correction is O(Re) and therefore one would expect that when using
the reciprocal theorem (2.9) this field could be neglected, it is needed in order to get
the proper O(Re) correction to the unsteady, ReSldu/0t, term in (2.10).

Other than the requirement that ReS! > O(Re?), the above arguments are for
arbitrary magnitudes of ReSl. If, however, we have the additional condition that
ReSl < O(1), which is equivalent to having a time scale much longer than the diffusive
scale a?/v, one can apply a singular perturbation analysis to the solution of the
unsteady Stokes equations. This is done in Section 2.8 in the main text for the
case of non-spherical particles. We only note here that if ReSl < O(1), the governing

equations for vg near the particle will be to leading order the steady Stokes equations:

— Vpo + Vu, =0, (2.109a)

V- uo =0, (2.109b)

uo = Uy(t) on the surface of the particle, (2.109¢)
Ug, po — 0 as |r| — oo. (2.109d)

While far from the particle, at distances of O(a(ReS!)~7), they will be given to leading

order by point-forced unsteady Stokes equations:

¥4
— VI + Vi, = ReSlaa‘;() + FH(1)8(r), (2.110a)
V.vg =0, (2.110b)

where FH(t) is the dimensionless pseudo-steady Stokes drag acting on the particle
and é(r) is the three dimensional dirac delta function. Convection will enter as a

regular perturbation to these fields in their respective regions of validity.
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2.11.2 51 = O(Re):

When S! = O(Re), there is a dominant balance between the viscous and both the
unsteady and convective inertial terms. This signals the existence of a singular per-
turbation expansion in small Re. The time scale corresponding to this condition is
7. = v/U.?, and was also identified by Bentwich and Miloh [5] in their analysis. If

we define outer variables as
T=Rer, P=Re?p, UW=Re 'u, (2.111)

the full governing equations for this “outer” region become

—Vp+Vu =%—? — U,(t) - Vu + F,()8(F)
+Rew - VU + ReFy(t) - V§(F) + ..., (2.112a)
V-u=0. (2.112b)

Here, we have replaced the boundary condition on the surface of the particle by a
series of multipoles. The first multipole F;(t) is given by integrating (2.112a) over

the volume of the particle to obtain
F.(t) = FA(t) — ReSIV,U,(2), (2.113)

where F(t) is the full hydrodynamic force acting on the particle, nondimensionalized
by paU.. The volume of the particle ‘7,) has been nondimensionalized by a3. In this
case, Fy(t) can be approximated by the pseudo-steady Stokes drag, F#(¢), to leading
order. The second multipole F3(t) is a second-order tensor which is given by the
stresslet and rotlet acting on the particle. The remaining terms (not shown) represent

the higher order multipoles which are of lower order in Re. Thus, our leading order
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outer equations when ReS! = O(Re?) are given, in the original scaled variables, by

P+
— VIIET + Vivit = ReSlag: — ReU,(t) - VBT + FH(1)8(x), (2.114a)
V.-vit=o. (2.114b)

The governing equations for the inner region (i.e., for |r| < O(Re™')) are the steady

Stokes equations given by (2.109).

2.11.3 Sl K Re:

When S! < Re, or 7. > v/UZ, again, to leading order, the velocity field near to
the particle is given by the steady Stokes equations. There are two possibilities,
however, for producing a balance of terms through rescaling that includes convective
and viscous terms. The first results from the rescaling given by (2.111), which yields

the steady Oseen equations to leading order:

— Vpt + Viud = —ReU,(t)- Vuf + FZ()é(r), V-ul =0. (2.115)

The other possibility comes from a balance of the unsteady and convective inertial
terms with viscous terms in a region that is O(aS$l™!) from the particle.

To discover this second outer region, the length in the direction of Uy(t), consid-
ered constant on this long time scale, is rescaled to balance the unsteady and convec-
tive inertial terms. Then, the other two mutually orthogonal directions are rescaled
to retain diffusive (or viscous) terms, i.e., the classic scalings for an unsteady laminar
wake. The pressure gradient scale is determined by using these length scales in the
appropriate expression for the pressure created by a Stokeslet (i.e., F¥ . x/47r%), as
the pressure variation takes this form to leading order in the outer region. Finally,

the velocity scales are determined by balancing dominant terms with the pressure
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gradient in the individual component momentum equations. For example, if we take
the z-direction as the direction of U,(t), then the z-momentum equation becomes to

leading order

ap 0* 0? d 0
ot lamtas =5 —Usz e 2.11
a'z‘+<3§2+8y2 == o V)" (2:116)
The rescaling in this equation is given by
(¢, y) = (ReS)™2(z, §), 2=S8I""%, (2.117a)
and
dp _ 39P s

The length scales associated with these equations are larger than those in the steady
Oseen equations above, O(aSI™!) vs. O(aRe™!). Thus they are associated with a
farther field region than the Oseen region which applies to the wake immediately
behind the particle. As seen in Section 2.4, the inclusion of the transient term in the
governing equation for this new region of the flow has consequence for the temporal
decay of the drag.

The above scaling analysis has identified the form of the outer region depending
on the relative magnitudes of ReS! and Re?. With this information we now proceed to
construct a velocity field that is uniformly valid in space for all times. This velocity
field will be used in the volume integral over the entire fluid region when computing
the inertial correction to the steady Stokes drag through the reciprocal theorem (2.9).

The field given by the unsteady Stokes equations, vy, is uniformly valid for short
times, ReS! > O(Re?), and we can add to this the O(Re) regular perturbation, v,
to include convective effects; specifically, to get the O(Re) correction to du/d¢. Our

uniformly valid velocity field for short time scales is then

ul = vg + Revy, (2.118)
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where vy and v; are given by solutions to (2.107) and (2.108), respectively.

For long times when ReS! < O(Re?), we must recognize that we have a singular
asymptotic expansion. Near the particle we have the field governed by the steady
Stokes equations (2.109). Far from the particle we have, at most general, the unsteady
Oseen equations (2.114). (Note that the unsteady Oseen flow will asymptote to
(2.115) or (2.116) at long times, ReSl < Re®.) Under these conditions, to construct
a uniformly valid velocity field, one must add these two velocity fields and subtract
their common parts. Since the unsteady Oseen equation is point-forced, the associated
velocity field will reduce to the point-forced Stokes field, or Stokeslet, as the particle
center is approached. Similarly, the inner Stokes field will reduce to the same Stokeslet
at large distances from the particle. It is this Stokeslet that is common to both the
inner and outer fields in their region of overlap, when |r| = O(aRe™'). This Stokeslet

field is given by the solution to

— Vpi+ Vg =FI(t)é(r), V -uf=0. (2.119)

Thus, the uniformly valid velocity field for long time scales is given by

u = up + vit — uj, (2.120)

where ug and viT are given by solutions to (2.109) and (2.114), respectively.

Now, to construct a velocity field valid for all time scales, we must consider the
two velocity fields, (2.118) and (2.120), which are uniformly valid in space albeit for
different time scales, and determine those features which are common to both. For
long times (i.e., ReSl = Re?), v will reduce to (uo + v§ — u}), where (vh — uf)
represents the singular perturbation to Stokes flow from weak unsteadiness. Recall
v§ is given by the solution to point-forced unsteady Stokes equations (2.110). For

short times (i.e., ReSl > Re?), u}” will reduce to (up + v — u}) to leading order as
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well. This condition exists because the convective term in the governing equation for
vh* (2.114), is only a small correction that would not modify the vj-field to leading
order anywhere in the fluid domain, as discussed in Section 2.11.1 above. Thus, vit
reduces to v under the short time scales corresponding to this condition.

In addition, there is another portion of vt that is also common to Rev;. That

is, the point-forced regular perturbation field, Revy, given by

P

— VIE + V2V — ReSl%yt-l— =-U,(t)- Vv, V-v{=0. (2.121)

Recall that the superscript “+” means that convective terms are retained at leading

order. Thus, the uniformly valid velocity field valid for all time scales is given by

uv __ L uv uv p p P
u* =ul” 4+ u” — (up + v§ — uj) — Revi

= vo + Revy + Revit — Rev?, (2.122)

where

Revit =vBT — v, (2.123)

which is given by the solution to

p+

— VIt 4+ Vit — ReSla;; + ReU,(t) - VviT = —U,(t) - V3, (2.124a)

v.-vit=o. (2.124b)
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2.12 Appendix: The Fourier transformed outer

velocity field

+

In this section we solve for the Fourier transformed outer velocity field, vi™, and

the resulting quantity, fout(Revp+). We begin by taking the Fourier transform of
(2.110a): -
LTTP 2720P Ovg H
— 27T1kH0 —_ 47!' ]C Vo = RESI“aT‘ + Fs (t) (2125)

If we then make use of the continuity equation, which takes the form in Fourier space

k-vh=0, (2.126)

one finds the Fourier transformed pressure by taking the dot product of (2.125) with

k:
—~ k- -FH(t)
b= 2t 12
== (2.127)
Combining this with (2.125) and rearranging we have
ovh  artk?—  FH(1)
—_ = 2 . = | 2.128
.t Res 0T Res ™MD (2:128)
where n; = k/k. The solution to this equation is then our solution for \/f?)’:
- —47r2k2(t—s)/Resz ds- _
/ = Sl s - (g —T). (2.129)

Next we take the Fourier transform of (2.124a) and obtain

—

ovht
ot

— 2k — 4x?k2vPF = ReSIZYL _ 27iReU, (1) - kvi¥ — 271U, (¢) - kvh. (2.130)



81

From the application of the continuity equation we find
5+ =o0. (2.131)

Now (2.130) takes the following form

8\2’1 + 47%k* — 2miReU, (1) - k

( oF_ 2miUq(t) - k—
ot Re Sl

Wi Fog VO (2.132)

and performing the integration and substituting for ;% from (2.129), we obtain

"o ¢ i : s " 2,2
Vf+ =[/—m 27iU,(s) - k (/ F; ((I)e——qu k (t~q)/R€51dq)

ReSl - ReSl

x e2MRe(Ys()=Y o(s)) k/ Rest ds] - (ngng = I). (2.133)

Now we can compute

P+

ot

£, (Revit) = Re (ReSla — 27iReU, (1) - k;i’\*) (2.134)

to find
fout(Revf ) =27i1ReU ( k/ ReSl "4“2“(‘ =)/ ReSt g 5. (ngng — 1)

422 /t 2miReU,(s) - k /s Fﬁl(q)e—zhrzkz(t—q)/ﬂesldq
-0 ReSl ~o0 ReSl

w e2mRe(Ys(t)=Y s(5))-k/Rest ds} . (nknk _ I). (2.135)

Next we note that by performing an integration by parts we have

3 F (‘1) -—47r2k2(t—q)/ReSI Ff(s) —4n2k?(t—s)/Resi
dq=—"=¢
-0 ReSl 4 2k2
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Thus combining (2.136) with (2.135) we have finally

p+ FH(S) o4k (t=3)/Resl g o .
fm(Rev1 ) =27iReU,(t) - k T ds- (ngng —1I)
—00 €

_ /t 27"1R6U5( ) kFH(s)e-—-41r2k2(t-—s)/ReSI
-0 RCSI s
27iRe(Y s (t)~ Y s(s))-k/Rest ds- (

Xe ngn; — I)

2miReUs(S) - K omine(Y.(8)= Y. () K/ ResignH
+/ / Resl  © B

e~ AR (=0 [ Rest g o 1 (ngn; — ). (2.137)

If we change the order of integration in the last integral of (2.137) and integrate with

respect to s, we obtain the result in (2.23) in the main text.
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Chapter 3

The force on a sphere in a uniform flow
with small amplitude oscillations at

finite Reynolds number

Summary

The unsteady force acting on a sphere that is held fixed in a steady uniform flow with
small amplitude oscillations is evaluated to O(Re) for small Reynolds number, Re.
Good agreement is shown with the numerical results of Mei, Lawrence, and Adrian
[37] up to Re = 0.5. The analytical result is transformed by Fourier inversion to
allow for an arbitrary time-dependent motion which is small relative to the steady
uniform flow. This yields a history-dependent force which has an integration kernel

that decays exponentially for large time.

3.1 Introduction

Recently Mei, Lawrence, and Adrian [37] (hereinafter referred to as MLA) numeri-

cally computed the unsteady force acting on a spherical particle fixed in a fluid which
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has small fluctuations about its steady free-stream velocity. Specifically, the force

was obtained numerically for the following imposed flow:
Ue'(t") = Ul + eqe™™Y), (3.1)

with the condition a; < 1. The primes are used to indicate dimensional quantities
when there exists a corresponding nondimensional quantity elsewhere in the paper.
The Reynolds number, Re, based on the particle radius, a, and free-stream velocity,
U, ranged from zero up to 50 in their numerical study. For the low-frequencies, their
results indicated that the force has a much shorter memory than that predicted by
the Basset history integral from the unsteady Stokes solution.

Later, Mei and Adrian [35] (henceforth referred to as MA) evaluated the force
analytically at small Reynolds number and low-frequency, w, for the above imposed
flow. A matched asymptotic solution was used in the limit Sl, < Re < 1, where S,
is the Strouhal number (aw/U). The results agreed well with the previous numerical
study of MLA in this limit. Based on the results from both the numerical and
analytical studies, a modified expression for the history force was proposed in the
time domain. It had an integration kernel that decayed as t=2 at large time for both
small and finite Reynolds numbers, as opposed to the t=% decay, associated with the
Basset term for zero Reynolds number.

In the present study, we extend the above analytical results to arbitrary frequency
(or Sl,), maintaining the requirement of Re < 1. This analysis is accomplished by
making use of the previously obtained expression from Chapter 2 for the unsteady
force acting on a particle in arbitrary motion (relative to the fluid) accurate to O(Re).
The derivation combines the general reciprocal theorem for the Navier-Stokes equa-
tions with a uniformly valid asymptotic expansion for the flow field. When the result

is applied to the motion given by (3.1), it is found that the force agrees with both the
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analytical results of MA and the numerical results of MLA up to Re =~ 0.5. However,
when the expression is transformed to account for arbitrary time-dependent motion,
a history-dependent force with an integration kernel that decays exponentially at
large time is obtained, in contrast to the proposed expression of MA which decays
algebraically.

In what follows, we first derive the force expression in the frequency domain for
the flow given by (3.1) and compare it to the results of MLA and MA. Next, in § 3,
we generalize the expression to arbitrary time-dependent motion through Fourier in-
version and evaluate the behavior at large times. We conclude in §4 with a discussion

of the results.

3.2 Evaluation of the force expression in the fre-
quency domain

For a fixed spherical particle in a rectilinear imposed flow, U*°(t), the hydrodynamic

force derived in Chapter 2 reduces to

FH(t) = 6xU>(t) + 2w ReSL U™ (t)

([ [ oo (e

_eﬂ“)}Uw(g] ds dm}, (3.2)

D=

9
+§(ReSl7r)

(t ——s)%

where

_ 1 (Re\? [[U%(q)dg
A@Q~§(§>—7::$—. (3.3)

The Reynolds number and Strouhal number are defined by

Re = “UC, Sl = “/UC, (3.4)

14 Te
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where U, and 7. are the characteristic velocity and time scales of the imposed flow
and v is the kinematic viscosity of the fluid. The force, F¥(¢), has been nondimen-
sionalized by aulU., where p is the viscosity of the fluid. The first term of (3.2) is the
steady Stokes drag; the second represents a combination of the added mass and the
force due to the accelerating imposed flow (which would have been exerted on the
fluid displaced by the sphere); and the last term is a new history integral: it reduces
to the steady Oseen correction for steady motion, and to the Basset history integral
for short-time unsteady motion.

1

For the flow given by (3.1), welet U, = U and 7. = w™!, allowing the dimensionless

imposed flow to be expressed as
U(t) = (1 + aqe™™). (3.5)

If we use this flow in the force expression (3.2) and take the limit of a; < 1, we
obtain to O(ay) after some tedious, but straightforward, manipulation and change of

variables

3 , .
FHE(t) = 67 (1 + gRe + ale_‘t) — 271 ReSl,(are™™)

9 1 e fl—ew) (e —e _\ ds
+=Rer2aqe / / —_—) | c—————— -7 | —dz
2 0o Jo $7, 2 s s2

9 1 . pqef2 e, _\]ds
+ZRe7r§a1e t/o/(; [3—— . (e e ):lem, (3.6)

S2

where v, = 451,/ Re, and Sl, = aw/U. We note that by taking the limit of small oy
we have linearized the relationship between the time-dependent part of the velocity
and the force, which will allow for Fourier inversion to the time domain in the next

section. The above integrations were carried out using Mathematica to obtain

3 . .
FH(t) =67 (1 + —S—Re + ale"'t> — 27i ReSl, (aye™™)
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25(1— i)y, +i)F -2

+67 Reaye
47,

(3.7)

If we expand this expression for small v, (i.e., for small frequency such that Sl, < Re),

the force to O(Sl,) is

FH(t) =67 (1 + gRe + ale_“) — 271 ReSl,(are™™)

1.
+67 Reaye™ (-z- - z—%é—) (3.8)

This expression agrees with the analytical result of MA. In addition, further terms in
the low-frequency expansion are in integer powers of the frequency; the even powers
are associated with the real coefficients of the imposed flow (a;e™™) and the odd
powers with the imaginary coefficients.

To compare (3.7) with the numerical work of MLA, we define the following quan-

tities based on their equivalence to those in MLA:

25 (1 — +i): —i2] 3
| Dipac = Re{ 25 ( 1)(Z;w i) } — ZRe, (3.9)
Ay = —-Im{Re22(1 — ‘)(Zw i) - 12} . (3.10)
1.

Here, D1rac represents the real part of the frequency-dependent drag coefficient and
Ay 1s the imaginary part of the frequency-dependent drag coefficient excluding the
—271 ReSl,-term, both of which are nondimensionalized by 67pua. In figures 3.1(aq,
b) and 3.2(a, b) these quantities are plotted as a function of v, for various Reynolds
numbers, with the numerical data from MLA included for comparison. The same
quantities scaled by the Reynolds number are presented as well to show the results

may be collapsed on a single curve for small Re. The figures show good agreement
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of the analytical and numerical results up to Re =~ 0.5. This might appear somewhat
surprising given that the force expression is valid strictly for the limit of infinitesimally
small Reynolds number, its accuracy being only to O(Re). We note, however, that a
similar finding was made by Maxworthy [34] who determined that the experimentally
observed terminal settling velocity of spheres were adequately predicted by the O(Re)-

accurate Oseen approximation up to Re =~ 0.4.

3.3 Generalization of the force expression to ar-
bitrary time-dependent motion

In order to evaluate the force for a small general time-dependent flow, we must con-
sider ay as the Fourier transform of a small unsteady velocity, U;(t), which is super-
imposed on the steady uniform flow U, under the condition that Uy(t) < U for all ¢t.

Then a; is a function of w and is related to U(t) by

1 oo Py oo s ot
Ui(t) = — /_ ae ™ dw, a(w) = / Ur(s')e™ d s, (3.11)

27T —00

Thus the ay-dependent part of the force expression (3.7) may be readily transformed

to the time domain by integration with respect to w to obtain
3 .
FH(t) = 67 (1 + U3(t) + SRe (14 204(1) + F’(t)) +2rReSIUL (), (3.12)

where

) Re [~ . © 2 —3v,i4+27(1+i)(y, +1)?
1) = —
PO =5 [ 06 [

xe =)/ dy ds. (3.13)

Here 51 is as defined in (3.4) and v = 45!/ Re.
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Figure 3.1: The real part of the acceleration-dependent drag coefficient for small
amplitude oscillations about a uniform flow past a sphere as a function of the dimen-
sionless frequency at various Reynolds numbers, (@) unscaled; () scaled. The lines
are the analytical result (3.9) and the symbols are the numerical results of MLA.
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Figure 3.2: The difference between the imaginary part of the acceleration-dependent
drag coefficient and —27iReSl, for small amplitude oscillations about a uniform flow
past a sphere as a function of the dimensionless frequency at various Reynolds num-
bers, (a) unscaled; (b) scaled. The lines are the analytical result (3.10) and the
symbols are the numerical results of MLA.
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The 7, -integration in the expression for F'(t) may be simplified by contour in-
tegration. The branch cut for the square root in the complex 7, -plane originates
at v, = —i and extends along the negative imaginary axis to —ico. The bounded-
ness of the integrand in (3.13), particularly at the origin, means that its integration
along any closed contour not crossing the branch cut must be zero. Therefore, the
appropriate contours for s > t and s < t are in the upper and lower half-planes,
respectively. The radius of the semicircular portions of the contours are taken to the
limit of infinity, and it can be seen that there is no contribution from the integration
along these parts of the contours. As expected, this implies there is no contribution
to the integral when s > t. When s < ¢, the v_-integration reduces to two integrals
along each side of the branch cut:

Pty =22 [ o)

_27'(' —o0

_/_mwc2~3%j+2%ﬁ-FUﬁL+iﬁnémﬁﬂﬂvd
N o e .

mite 2 = 3,i+ 251+ 1)(1 +1)F iy (i
_ w w e s d d .14
_loo+€ 472 ’Yw S’ (3 )

w

where € is an infinitesimally small, real, positive number. If we set £ = 1y, — 1 this

expression simplifies to

Py = X /t G(t = 8)Us(s) ds. (3.15)

T2 )

The integration kernel for this history force is given by

t) = ‘t/“//oo z2 ~zt/y
G(t)=e A (1+$)2e dz

= T, S /) (3.16)

where W is a confluent hypergeometric function, sometimes known as the Kummer
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function [1].

The asymptotic properties of G(¢) for small and large time are

G = (Mt —gr+0((Dh), L<1 (3.17)
G(t) = [i?(it’.)% + 0((%)%)} et % > 1. (3.18)

In dimensional time these limits are ' < v/U? and # > v/U?, where v/U? represents
the time it takes vorticity to diffuse out to, or be convected through, the Oseen
distance v/U. The integration kernel behaves as that in the Basset history integral
for small time, but shows exponential decay for large time. Note that the second term
of (3.17) will result in the canceling of the 3Re U;(t)-term in the other part of the
force expression (3.12) when the time scale of the motion is small. We note also that
the behavior for large time is in exact agreement with the result obtained in Chapter
2 wherein the temporal response was observed for the force when the velocity made

a step change from one non-zero velocity to another.

3.4 Discussion of results

The reason MA obtained the algebraic decay t~2 instead of exponential decay for their
integration kernel can be explained as follows: Their result is based on the inversion
of a function that interpolates only the one-term asymptotic forms of the imaginary
part of the history force in the low- and high-frequency limits. The problem with
this is that the one term in the low-frequency limit, —%Slwi, is insufficient to predict
the long-time behavior of the integration kernel. Indeed, when inverted for time-
dependent motion this term would yield the acceleration at the current time, which

has no history dependence. Thus, their resultant integration kernel depends critically
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on the choice of interpolating functions; one can obtain a different decay by choosing
a different interpolating function. In addition, by their own principle of causality,
the imaginary part of the history force must be an odd function of the frequency.
However, if their interpolated expression is expanded for low-frequency, an expansion
in all powers of the frequency is obtained, not just the odd powers.

It is interesting to note that the force does decay as t=2 for a step change from a
zero velocity, as can be observed from the result of Sano [47] . This distinction in
decay rates is the result of the difference between the physical processes of the growth
of the Oseen wake into essentially irrotational fluid, which is associated with algebraic
decay, and the modification of the wake already established to infinite length, which
is associated with exponential decay. In the case here, the wake clearly has been
established by the uniform bulk flow U. Once the disturbance created by the small
unsteady flow has diffused through the viscous Stokes region surrounding the parti-
cle, it is balanced exponentially fast by modification of the wake structure through

convective transport mechanisms.
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Chapter 4

The force on a bubble, drop, or
particle in arbitrary
time-dependent motion at small

Reynolds number

Summary

The hydrodynamic force on a body that undergoes translational acceleration in an
unbounded fluid at low Reynolds number is considered. The results extend the prior
analysis of Chapter 2 for rigid particles to drops and bubbles. Similar behavior is
shown in that, with the inclusion of convective inertia, the long-time temporal decay
of the force (or the approach to steady state) at finite Reynolds number is faster than

the ¢~2 predicted by the unsteady Stokes equations.
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4.1 Introduction

In Chapter 2 we analyzed the force on a rigid particle in arbitrary time-dependent
motion in a time-dependent uniform flow for small, but finite, Reynolds number, Re.
The primary conclusion of that study was that the long-time temporal behavior of
the hydrodynamic force decays faster than the =3 decay associated with the Basset
history integral from unsteady Stokes flow. (For short time scale motion, however, the
unsteady Stokes results are valid.) This change in the temporal decay for long-time is
the result of a transition in the mechanism of vorticity transport: from a symmetric
diffusion of vorticity generated at the particle surface to convection of vorticity in the
familiar Oseen wake behind the particle.

The motivation for extending the study to drops is to investigate the similarities
and differences of the results for solid particles with those for drops and bubbles.
Also, it 1s of value to have an expression for the unsteady force on a drop, which is
useful in studies requiring the equation of motion of bubbles, drops, or particles at
small-but-finite Reynolds number.

In what follows, we consider the hydrodynamic force for a drop in arbitrary time-
dependent motion in an unbounded Newtonian fluid undergoing a time- and spatial-
dependent flow. This derivation is accomplished through the use of the reciprocal
theorem. We first derive the expression in general terms, and then simplify it for
particular cases of drop composition, shape and imposed flow. The results for spatially

uniform flow are shown to follow directly from those for a rigid particle.

4.2 Reciprocal theorem expression for the force

Cousider a drop of density p* and viscosity p* in a fluid of density p and viscosity p.
Let A = p*/p and B = (1/*/1/)15 where v* and v are the kinematic viscosities of the

drop and exterior fluid, respectively. The drop is translating with a time-dependent,
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center-of-mass velocity U(t) in an imposed flow u®(x,t). We begin by writing the
Navier-Stokes equations for the fluids inside and outside the drop, where an asterisk

(*) is used to denote variables and parameters associated with the interior fluid of

the drop:
,Du* . L.
V.o* = p TR V-u" =0 inside the drop; (4.1)
Du .
Vo = P o V-u=0 outside the drop. (4.2)

Here, 0 = —pI + u(Vu + Vu7) is the stress tensor for a Newtonian fluid, and the
pressure p includes the effect of a uniform body force (e.g., gravity). Although the
velocities are those relative to the fixed laboratory frame, the origin of the coordinate

system is at the instantaneous center of mass of the drop, so that

Du Ou _

—_— = -Vu -U(t) - Vu. 4.3

o7 = g7 tu Vu-U(t) Vu (4.3)
A position vector in this coordinate system will be denoted by x. If we assume im-
miscible fluids with constant surface tension +, the appropriate boundary conditions

at the interface of the drop and the exterior fluid are continuity of velocity and shear

stress:

u=u’, n-(c—-0")-I-nn)=0 on Sy, (4.4)

where n is the normal to the interface pointing into the exterior fluid and S, represents
the surface of the drop. The second equation of (4.4) is the tangential stress balance.

In addition, the velocity normal to the interface may be given by

n-u=n-u"=n-U(x,t) onSy, (4.5)
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where the velocity of the interface, U(x,, ), may be a function of the position on the

surface, x,. The conditions to be satisfied far from the drop are

u—u®, p—p> asr — oo, (4.6)
where r = |x|, and the imposed flow (u®, p™) satisfies the Navier-Stokes equa-
tions. Additionally, the velocity and pressure inside the drop are required to remain
bounded.

To determine the drop shape the normal stress balance is also required:

n-(e—0")] n=9Vn)+(f—1£;) -x on Sy, (4.7)

where f, and f; are the uniform body forces per unit volume acting on the fluid
exterior to and inside the drop, respectively, which are necessary here because they
have been incorporated in the pressure term of the stress tensors. Although it does
not directly influence the derivation that follows, the normal stress balance is included
for completeness. For the low-Reynolds-number flows considered here, viscous forces
dominate and the critical parameter determining the drop shape is the capillary
number, Ca = plU./v, where U, is the characteristic velocity of the drop relative
to the imposed flow. For shear flows, U. may be replaced by aG where a is the
characteristic particle size and G is the local shear rate. Under unsteady Stokes flow
conditions,* the spherical drop in a time-dependent uniform flow can be shown to be a
shape which satisfies the governing equations and boundary conditions independent
of Ca [10]. For small Ca, the drop tends to remain spherical in the presence of a
non-uniform flow or for finite Re conditions. The effect of a small but finite Reynolds

number (i.e., the effect of the convective terms of the Navier-Stokes equations) on the

*In unsteady Stokes flow the convective terms of the Navier-Stokes equations (the last two terms
of (4.3)) are neglected owing to the smallness of the Reynolds number while the time derivative in
(4.3) is retained due to the unsteadiness of the flow.
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deformation and drag of a translating drop has been studied by Taylor and Acrivos
[50], although they identified the Weber number as the critical parameter that must
be small to maintain a near spherical drop shape. The Weber number is equal to the
product of Ca and Re. The effect of a linear flow on the deformation of a drop for
small Ca has been treated by Leal [31], which also has references to earlier works on
drop deformation and breakup.

In order to make use of the reciprocal theorem for an unbounded domain, we
require the disturbance quantities which decay at infinity. The disturbance quantities

are defined by

uv=u-u®, p=p-p*, o'=0-0". (4.8)
The governing equations for the disturbance fields are:

D !
Vo' = Pfl}i- +pV-(u'u® +u™u’), Vu'=0; (4.9)

and the boundary conditions become

u=u"—-u®, n-(¢'+06*—-0")-(I—-nn)=0 on Sy, (4.10)

and

u—0, p—-0 asr— oco. (4.11)

We shall also require the disturbance Stokes flow fields for the translating drop
for use in the reciprocal theorem below. Denoting these field with a “hat” ("), the

governing equations and boundary conditions are

V.6*=0, V-0*=0 inside the drop, (4.12)

V-6 =0, V-u=0 outside the drop, (4.13)
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=1, n-(6—-67)-I-nn)=0, n-a*=n-U on S, (4.14)
where U is a constant, and

4—0, p—0 asr— . (4.15)
Using the velocity and stress fields defined above, the reciprocal theorems inside
and outside the drop take the following form:

[(n-)-ids - / (Vo) @ dV = [ (n-6") u*dS, (4.16)

Sq

and

/S(n-a’)-ﬁd5+ (V-o')-2dV = (n-&) udS, (4.17)
d

vy Sa

where we have assumed that by using disturbance quantities there is no contribution
from the surface at infinity.® Here, V; and V; denote the volume of the drop and exte-
rior fluid, respectively. Following a procedure similar to that used by Leal (1980) for
bounded domains, we subtract (4.16) from (4.17), and apply the boundary conditions

(4.10) and (4.14) on the surface of the drop, obtain

/ n-(o'—o*) -0 dS+
Sa

/ (6g—6") u"dS— [ (n-6) - u*dSs. (4.18)

Sq

Vf(V-a)-udV+/Vd(V-a )0 dV =

bAs discussed in Chapter 2, the requirement is that the disturbance pressure p’ decays faster
than r~1, which is justified for the low-Reynolds-number flows to be considered here.
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The first integral on the LHS of (4.18) may be simplified by noting that

. I__*.A*d — . __*_A*d_ . OO_A*d
/Sdn(a a')uS/Sdn(aa)uS n-(oc®)-4"dS

Sa

=/ n-(c-0%dS-U
Sq

— [ (Ve®)-0*dV — [ o®:Va*dV
Vy Va

=F7.0U- | Vo dV-U
Va

1
— o) -Gt dV—= L& -u® 1
Vd(Vcr )-a"dV /\/Sdn o"-u*dSs, (4.19)

where F# (= Js,n-o d S)is the total hydrodynamic force acting on the drop. The first
equality is obtained simply by using the definition of o (4.8). The second equality is
obtained by an application of the tangential (or shear) stress balance (4.4), the use of
the drop surface boundary condition (4.14), and another application of the tangential

stress balance, as follows:

Sa

/n-(a——a*)'ﬁ*dSz n-(oc—-o*)-(I-nn)+nn)-4*dS
Sq

=)/ n-(c—0")-nn-0"dS

Sa
=/ n-(e—0")-nn-UdS
Sa
=/ n-(¢—-o") (I-nn)+nn)ds-U
d
=/ n-(c—-0%)ds-U. (4.20)
Sq

The divergence theorem is also applied to obtain the two volume integrals in the
second equality and the first volume integral in the last equality of (4.19). We note
that if one makes use of the normal stress balance (4.7) in the third equality of (4.20),
1t will ultimately lead to an equation of motion for the drop instead of a derivation
for the hydrodynamic force. This is the result of the fact that the first two terms in

the last equality of (4.19), representing the total hydrodynamic force less the inertia
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of the drop, would be replaced by the negative of the external body forces acting on
the drop. We will return to the derivation of the equation of motion of the drop in
Section 4.5. Finally, the last integral of (4.19) was arrived at by the following series
of steps:

o® Vi dV = [ p(Vu® + Vu=T): va*dV
Va Va

(using the definition of a Newtonian fluid and the fact p=I: Va* = 0)

- /V W(Vu®): (Var + vaT)dV
d

(an identity)

~L1/ wue. (=p T+ p*(Va* + V') dV
v,

(from p*I: Vu® = 0)
1 .

==/ Vu*:6%dV
Ay,

(using the definition of a Newtonian fluid)

1
Ay

(from V.6" = 0)

_!
A Js,

V(5" u®)dV

n-o"-u*ds, (4.21)

where the last step is obtained by applying the divergence theorem.

The first integral of the RHS of (4.18) may be reexpressed using the same steps
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as in (4.20) to obtain:

/ (6 -6) udS = / (6 = &) - U(x,t)dS
= [ n-(6-5"-0()ds
+[ n-(6-67) Ulx,t)dS

Sa

— P U+/ (6 — &%) - Ulx,t)dS,  (4.22)

where F¥ (= fs,n - 6dS) is the steady Stokes drag for the drop translating with

velocity U, and U’(x,,t) (= U(x,,t) — U(t)) is the velocity of the interface relative

to that of the center of mass of the drop. To arrive at the last equality we have also

used the fact that fg n-6"dS = 0 from an application of the divergence theorem.
Combining (4.19) and (4.22) in (4.18) we have

FY . U+/ (Veo') - adV + [ (Vo) (& = 0)aV
V.o®) @ dV =
7o

i‘f-ﬁ—/(nf)- u® dS + = [ n-6t-u=as
Sy A

+/ n (0' —-07)-UdS. (4.23)
d

Noting that all the disturbance Stokes fields are linear in U, we define the following:

i =M*- U,

A

G=M-
=T T 0, (4.24)

U,
U,

where M and M* are second rank tensors and T and T* are third rank tensors, all
of which are functions of position. Also by linearity, the steady Stokes drag may be
expressed as

Fil=_R, -U, (4.25)



103

where R, is the symmetric, second rank resistance tensor which is a function of the
drop shape as well as the viscosity ratio A.° Thus, since all terms of (4.23) are linear

in the arbitrary vector, ﬂ, the vector may be eliminated from (4.23) to obtain

H . / » Y . * . A*.—.—.
F +/Vf(V0') MdV+/Vd(Vo-) (M* —T)dV

Du*
— -M*dV =
/vd(p Dt

N 1 N
—RFU-U—/Sdu°°-(n-T)dS+—X/Sdu“-(n-T*)dS

+/S U (n- (T -1))ds. (4.26)

Here u® satisfies the Navier-Stokes equations and thus:

Du® Ju

Equation (4.26) is a general expression of the hydrodynamic force acting on a drop
of arbitrary shape in an arbitrarily imposed flow, with, of course, the restriction that
the particular drop shape satisfy the normal stress balance for the given imposed flow.
Also, as yet, no restriction has been placed on the magnitude of the Reynolds number.
The first volume integral on the LHS of (4.26) represents the inertial contributions
to the force from the disturbance flow outside the drop. For a solid sphere under
unsteady Stokes flow conditions it yields the familiar added mass and Basset force,
which has been evaluated, for example, by Maxey and Riley [33]. For small-but-finite
Reynolds number, this integral is also the origin of the Oseen correction [40, 41] for
steady uniform flow and the Saffman lift force [46] for steady simple shear flow. The
second volume integral on the LHS of (4.26) is unique to a drop of finite viscosity,

since, as will be shown in Section 4.3, it is identically zero in the limit of a solid

“Note that all the Stokes tensor quantities are evaluated at the current time, and thus may be a
function of time if the drop is deforming.
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particle or a bubble (an inviscid drop). This term is necessary, however, to obtain
the correct force expression for a drop of arbitrary viscosity; as shown in Section 4.4,
it combines with the first integral to produce the unsteady Stokes force acting on
a drop. The last integral on the LHS of (4.26) represents the contribution to the
hydrodynamic force from the inertia of the imposed flow. The first two integrals on
the RHS are those due to the viscous effects of the imposed flow which, as we shall see
in Section 4.3, lead to the Faxen-like corrections to the steady Stokes drag —RFU 0.
The last integral is the contribution to the hydrodynamic force resulting from the

drop changing shape with time.

4.3 Further simplifications of the reciprocal the-
orem

For a solid particle?, M* = I, U’ = 0, and 1/A — 0 so that (4.26) becomes

S Du®
H Vo) MdV — dV =
B + |, (V') - MdV /vp(th)V
—f{FU-I_J—/S u® - (n-T)dS. (4.28)

For a zero-viscosity bubble, A — 0 (i.e., u* — 0 for fixed p) and T* — 0.¢ Thus,

equation (4.26) may be expressed as

- Du® ~
H V. A d _ . * —
B + |, (Vo) M2V /Vb(p o) MV
A " A 1~
R - _/ © . (n-T)d © . (n.=T*d
v U Sbu (n-T)dS+ s,,u (n /\T) S
+ SU'-(n-’i‘)dS, (4.29)
b

91n this case, U’ could represent solid body rotation, allowing the last integral of (4.26) to yield
the contribution to the hydrodynamic force from, for example, a rotating, screw-shaped particle.

¢The quantity T* may actually tend to a constant associated with the pressure inside the bubble,
but a constant tensor here does not affect the force expression (4.26).
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where the second integral of (4.26) was eliminated by noting the following:

/Vb(V-a*) (NI =1V = [ (=9p")- (M7 - T)dV

(for a bubble o* = —p*I)

=/ —V((M* =1)p*)dV

~

(using V-(M* —1I) = 0)

~

_ [ —n- (1" —D)p dS
Sp

(applying the divergence theorem)

=0, (4.30)

where the last step used the condition that n - M* = n-I on the bubble surface. The
second and fourth integrals of (4.29) are evaluated in the limit as p* — 0. Alterna-
tively, one can replace these two integral with their original form, fg (n- o) - MdS,
on the RHS of (4.29), although this is not explicit in u®. Note also that the fourth
integral of (4.29) is a bounded quantity since T* scales linearly with x* and thus %’i‘*
scales with u, independent of p*.

In the case of a spherical drop, the tensors associated with the disturbance Stokes
flow problem are known from the Hadamard-Rybczyriski solution of (4.12)-(4.15) with
(4.24) and (4.25). They are given by

y L r? XX
M= 2043 -2 1+ — 4.31
2()“*‘1){( 3 a2) +a2}’ (4.31)
- 3V +2 a XX A 48 XX
M-t (4 ) s (95), G



6p
—_ I- 4.3
=T TN+ 1) 2a(A+ 1) (4.33)

n 3“* 9/‘*
T = 4.34
p Tl = s ot o ™™ (4:34)
and
R,, = 6mpua (A/\++2{3) L (4.35)

where a is the radius of the drop. Thus, (4.26) may expressed for a spherical drop as

Fil4 [ (Vo) - MdV + | (V-o*)- (M =1)dV
Vf Vd

(Du°°
vy P Dt

A+2/3\ =  3p fA-1 o
-—67r/m( YT )U+2a (/\-{—1)/3,111 dS

15p
—_— <d 4.
2a2(\ + 1) /vdu £ (4:36)

)-M*dV =

+

where we have used the fact that for a sphere a fg, u® -nndS = [, u*dV. The
last integral of (4.26) is zero because the drop shape is fixed (or because U’ has zero
center-of-mass velocity).

To simplify (4.36) further, we can express u® and Du® /Dt as multipole expan-
sions about the center of mass of the drop, assuming the variation of the imposed

flow is small over the dimensions of the drop:

00 _ e =) XX. =] .

u®(x,t) =U”()+x-Vu +—2T.V(Vu ) EXEE (4.37)
Du® Du® Du* xx Du*
S0, 8) = (0, 8) + X Vo +T.v<v o )+ (4.38)
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where U®(¢) = u*(0,t) and the higher order derivatives are evaluated at the in-
stantaneous center of mass of the drop at time ¢. Using (4.37) and (4.38) in (4.36)
and retaining terms up to those including quadratic variations in u®, we have for a

spherical drop

F5’+/V(V-a').MdV+/V(v-a*)-(M*—I)dv
f d
4 5 [ Du*™ A—1/2\ a* _,Du™
"?Tap{ Dt +( N+ 1 )Tﬁv Dt f| .

A4+2/3) [~ o 3\ a_, .
—-—67r,ua(/\+1 ){U—-U —3)\+2€Vu . (4.39)

where we have used the following equalities to show the two forms of the quadratic

variation in D u® /Dt are equivalent up to quadratic variations in u®:

% DDut = %V2(——Vp°° + uVihu™); (4.40)
Du® 1
VvV. = —=VV¥p>, 4.41

where in (4.41) we have used the condition that V-u*® = 0.

4.4 The force acting a drop translating in a uni-
form flow at small Reynolds number

To evaluate exactly the first two integrals of the generalized expression for the hy-
drodynamic force, (4.26), we would require the solution to the full Navier-Stokes
equations for the translating drop. Although we shall not attempt to solve the
Navier-Stokes equations for a general imposed flow, we can make some progress for

the condition of a uniform, time-dependent imposed flow, where u® = U™(t).
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For uniform flow and arbitrary, but fixed drop shape (a condition generally satis-

fied if Ca < 1), (4.26) becomes

FI + (Vo) MdV + (Vo) (M* = 1)dV — pV,U>(t) =
f d

-R,, - T,(®), (4.42)

where U,(t) (= U(t) — U*(t)) is the slip velocity of the drop. Here we have used
the fact that the first two integrals on the RHS of (4.26) may be simplified by noting
Js,(n- T)dS = -R,, and Js,(n T*)dS = 0. The goal now is to estimate the
contributions from the two integrals in (4.42) with the condition that the Reynolds
number (Re = alU./v) for the flow inside and outside the drop, based on the drop’s
slip velocity, is small but finite./ In so doing, we will obtain an expression for the
hydrodynamic force acting on the drop to O(Re) for arbitrary time-dependent motion.

First note the following equalities for the fluid exterior to the drop:

7
f'Ep(%‘%——ﬂs-Vu'+u’~Vu’>
— _vpl_*_ﬂv?ul
=V.o'. (4.43)
And if we define
p=p - %p“’, u” =u" - U=(1), (4.44)

fFor a nonspherical body, a denotes the characteristic drop dimension; otherwise it is the drop
radius.
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we can note the following equalities for the fluid inside the drop:

f*l = p* (aaut _ I_Js . Vu*l + u*l . Vu*/)
— ___Vp*l_*_ M*v2u*/

= V.o* — pU=(t), (4.45)

where we have applied the condition that —(p*/p)Vp™® = p*U°°(t). Using f’ and
f*' to signify the inertial terms from the first equalities of (4.43) and (4.45), the

hydrodynamic force can now be expressed as

F¥ — pV,U®(t) = -R,, - U,(t) - e MdV — S (M*=T)dV. (4.46)
i d

Here we have used arguments similar to (4.30) to show

V(V-a*)-(M* ~0)dV - f*'-(M* ~-0)dV
d

- p*Uoo / ~—D)dV
Va
=pU>@1t)- | V- ~Ir| dV
Va
= pU=(t) / ~1
p s, n- )r}
=0. (4.47)

Now since the boundary conditions for the “primed” fields are

n- (p(Vu' + vuT) - g (vu* + vu?)) . (I-nn) = 0,

u=u", n-u=n-u'=n-U, onlSy (4.48a)

and

u—0, p—>0 asr— oo (4.48Db)
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it can be seen that the two volume integrals in (4.46) represent the inertial corrections
to the steady Stokes drag for a drop translating with velocity U, in a quiescent fluid.
In addition, other than the presence of the integral over the volume of the drop, (4.46)
is identical to the expression for a solid particle. Thus, with appropriate modifications,
we can make use of the results for solid particles from Chapter 2. We will summarize
the general ideas from that chapter to show the similarities and differences with the
current derivation. The interested reader is referred to the original work for further
details.

For small Reynolds number and short time scale motion (7. < v/U? where 7, is
the time scale for the change in the drop’s slip velocity), the flow is governed, to

leading order in Re, by the unsteady Stokes equations throughout the fluid domain:

!

9
— Vp' + V' = pgl:—, V.u' = 0. (4.49)

This approximation is appropriate for the flow inside as well as outside the drop.
The convective terms of the Navier-Stokes equations, u - Vu and U, - Vu, are every-
where smaller than the viscous or the unsteady inertial terms, because the vorticity
produced at the surface of the drop has not diffused out to the Oseen distance, v/U.,,
where convection becomes important as a transport mechanism. Under these condi-
tions, the contributions from the convective terms are obtained solely from a regular
perturbation analysis.

On the other hand, for long time scale motion (7. > v/U?) the flow in the near-
field region (for length scales shorter than the Oseen distance v/U.) is governed by
the steady Stokes equations, while that in the far-field (defined by distances from

the drop of O(v/U.) or greater) is determined by the unsteady Oseen equations to
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leading order:

ou’

EY -0, Vu') +F75(x), Vv-u'=0. (4.50)

-V +MV2u’_p(
Here, the boundary conditions at the drop surface are replaced by the presence of
the force monopole in the governing equation; that is, to leading order in the far-field
region, the particle appears as a point-force disturbance of magnitude the pseudo-
steady Stokes drag FX (= —ﬁm -U,(t)). Also, in this case, diffusion and convection
are of equal importance in the transport of vorticity.

For motion of arbitrary time scales, the unsteady Stokes equations describe the
flow to leading order everywhere, except in the far field where the unsteady Oseen
equations govern the flow when the time scale of the motion is large. Thus, in
evaluating the volume integrals of (4.46), one is able to identify three sources of
inertial terms that can contribute to the hydrodynamic force to O(Re): those from
unsteady Stokes flow, those from applying regular perturbation techniques to the
unsteady Stokes equations in order to account for the convective terms, and those
from unsteady Oseen flow. After taking the proper precautions to prevent a double-
counting of contributions from these sources, one arrives at the following expression
for the hydrodynamic force acting on the drop (basically by analogy with the results

from Chapter 2):

. ou’ - N
Ff——p%U""(t)—_—FffSt—/ p( (;;1 -Us-Vu6+u{)-Vug) -MdV

9 )
-7 < U, vy ul Y >~M*dV

a?
d @ +FT. (4.51)
TV

This expression retains the leading order effects of the convective inertia of the fluid

for small Re, accurate to O(paU.Re). The quantity F¥ | henceforth referred to

Ust’
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as the unsteady Stokes force, represents the hydrodynamic force acting the drop
translating with velocity U,(¢) in a quiescent fluid as determined by the unsteady
Stokes equations (4.49).

The two volume integrals of (4.51) are from the regular perturbation to unsteady
Stokes flow. The velocity fields uj and ug’ are the solutions to (4.49) with the bound-
ary conditions given by (4.48). The velocity fields uj and uj’ are the regular pertur-

bation to unsteady Stokes flow for convection. They satisfy

!
~ V4 = (G5 0 Vbl ) V=0, (052)

for u} and the same equations for uj’ by replacing all quantities in (4.52) with those
corresponding to the fluid in the drop, which are denoted by an asterisk. The bound-

ary conditions are:

n - (p(Vu) + Vu") - p*(Vuy' + Vui'")) - (I-nn) =0,

u=uln-uf=n-ui’=0 on S, (4.53)

The last two terms of (4.51) are attributed to the unsteady Oseen flow, the first
of which is the negative of the long-time asymptotic form of the history force from

unsteady Stokes flow, where the second rank tensor ® is defined by

~

Ry (4.54)

- 67r,ua'

¢

The last term ng, referred to as the unsteady Oseen force, is a new history integral
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which can be expressed by

Fo (1) =

+F40) — {exp(-") - z—‘z(gerf(A) — exp(—4%)) }Fftl(s)l
2ds
= 5)3/2} . P (4.55)

Here, A has the definition

A= %\/%TV-? (lmz = }(s)t) | (4.56)

where the displacement vector, Y (t) — Y,(s), is the time integration of U, from s

to t. The quantities Fz” and Fgl are the components of the pseudo-steady Stokes
force FI; parallel and perpendicular to this displacement vector. For short time scale
motion (< v/UZ), FH behaves as the negative of the history integral in (4.51) so that
their combined contribution to the hydrodynamic force is smaller than O(uaU, Re).
For long time scale motion on the other hand, the history-dependent part of FZIS‘ will
cancel with this history integral in (4.51), and the dominant history dependence of
the hydrodynamic force comes from Fg .

If one has the unsteady Stokes solution for the translating drop, (4.51) can be
used to obtain a closed-form expression for the hydrodynamic force for small but
finite Reynolds number. In the case of a spherical drop, for example, the analysis is
simplified by the fact that the contributions from the regular perturbation to unsteady
Stokes flow (the two volume integrals of (4.51)) are identically zero, as can be seen
from a symmetry argument. The unsteady Stokes force for a spherical drop in the

frequency domain has been analyzed by Kim and Karrila [25]. Their result implicitly
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assumes the kinematic viscosities of the fluid inside and outside the drop are equal,
but this is easily generalized to arbitrary kinematic viscosity ratios; the corrected

result as a function of the frequency w is

) —omuaf (o @ Utorfen) )
B0 = ol (14 o4 5 - s S ) 4
where
f(a) = o* tanh @ — 3 + 3tanh o, (4.58)
and
g(@) = o® 4 6a — 6tanh a — 3o’ tanh a. (4.59)

Here o = \/:W is the dimensionless frequency parameter and 3 = y/v/v*. The
primary result of (4.57) is that the history integral for unsteady Stokes flow for a
drop is not of the same form as that for a solid sphere because of the fourth term of
the expression, which vanishes in the case of a solid. Although the resulting memory
kernel continues to behave as £~2 in both the limit as ¢ — 0 and as ¢ — oo, the
coefficient of the t~% term is different in the long-time asymptotic expression from
that for short time scales (¢t < a?/v), except for a bubble, which tends toward a
constant as t — 0 [52].

For a spherical bubble (4.57) simplifies considerably, allowing one to obtain a
closed form expression for the unsteady Stokes force for motion of arbitrary time
scale. Using the analytical result from Yang and Leal [52] for the unsteady Stokes

force, (4.51) for a spherical bubble becomes

dr 4 - _ :
FH — g-a3pU°°(t) = —4rpalU,(t) — -?;W,OGSUS(t)

t 2 -
- 87r,ua/ =9/ erfe ( 9v(t — 3)/a2> U,(s)ds

8Tpa

/t U.(s)
VT Jeoo \Iv(t — s)/a?

-+

ds +F7, (4.60)
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where in (4.55), the expression for F¥ | FH (1) is replaced by —4rpuaU,(t) and ® by
%I. By an asymptotic analysis it can be seen that the memory kernel of the first
integral of (4.60) tends to a constant for small time and behaves as the negative of
the second memory function for large-time.

For a drop of arbitrary shape, one can obtain an expression for the hydrodynamic
force in terms of the results from steady Stokes flow in the limit when the time scale 7,
of the variation of the drop’s slip velocity satisfies 7. > a?/v. Following the procedure

from Chapter 2, we obtain

FI(t) = pVaU=(t) + FH () + F¥ (1)
/ MT-MdV—%T-@-@R

——p{67rti~<1>-<§+}%im
Vi(R)

} : ﬁs(t)

_p {/M*T-M*dV— le} 0,(1)
Va

— pf%:l_{];lo (u’st -Vul — U, - Vu'St) -MdV
Vi(R)

—p [ (uz - Vuz -0, Vuz) Nav
Va

a’lv

+ o(paU.Re) + o(pal, -

c

), (4.61)

where V;(R) represents a large spherical volume of radius R with origin at the center
of the drop, and u!, and u? are the steady Stokes solutions to the disturbance flow
problem.

For a spherical drop the two terms in large curly braces from (4.61) combine to

yield

3N —-3x -1 1 S
— 6ma® y U, (1). .62
i {” 21N+ 1)3 +”63(A+1)2} ®) (4.62)

This result agrees with the low-frequency (long-time) limit of the O(a?)- term from
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the result given by (4.57). This term is very different from the added mass in the
high-frequency (short-time) limit, —%wpa3ﬁs(t), and reflects the uniqueness of the
solid sphere which happens to have the same value in the low- and high-frequency
limits. Recall the that the contribution from the inertial terms inside the drop (the
source of the second term of (4.62)) are identically zero for the case of a solid particle
or bubble. Note also that since we have assumed the flow inside the drop is described
by the steady Stokes equations to leading order in the long-time limit, we require that
p* > p*al.. Thus, the second term of (4.62) does indeed go to zero in the limit of a
bubble (p* — 0) since p* must approach zero accordingly.

It can be seen in (4.61) that the long-time temporal response of the hydrodynamic
force is dictated by the properties of Fi‘ This term, identified as the unsteady
Oseen correction to the hydrodynamic force, was analyzed in Chapter 2. It was
shown that its decay to steady state is algebraic for a step change from or to a zero
velocity: behaving as =2 when the drop accelerates from rest and as ¢~! when it comes
to rest. However, when the step changes are between finite velocities the ultimate
decay of the hydrodynamic force is exponential. This contrast in temporal decay
reflects the distinction between the creation (or destruction) of the wake structure,
associated with the algebraic decay, and the modification of the wake structure already
established, which leads to exponential decay. The fact that in all cases the temporal
decay is faster than the t~% associated with unsteady Stokes flow reflects the efficient
mechanism of convective transport of vorticity relative to that of diffusion. It should
be reiterated that this behavior is observed on long-time scales (> v/U?) and thus

for small time the decay will go as 3.
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4.5 Results and discussion

To provide some confirmation of the validity of the results we have obtained, we
compare with the recently published numerical work of Mei and Klausner [38]. They
evaluated the force on a spherical bubble held fixed in a uniform flow with small

fluctuations, a flow given by
U*(t) = U(1 + de™"), (4.63)

with the condition § < 1 and results for the drag evaluated to O(6). By letting
U,(t) = —U>(t) in the force expression for a bubble, (4.60), and with the aid of
the frequency domain expression (4.57) and the use of Mathematica to carry out the

appropriate integrations, we arrive at the following expression for the force accurate

to O(8) and to O(Re)

FE@#) 2 2 ., 1 5
— s 1wt - 25 1wt
6rpall 3 13°¢ tT3*0e

+45e—iwt «
- —a
9 1+a/3

1 4 w281 = i)(y, +1)7 — 2
—R _R 6 —iwt w .
tglet ghicoe 4,

(4.64)

The Reynolds number is defined by Re = al//v and 7, = 4wv/U? is a dimensionless
low-frequency parameter. The first two terms originate from the pseudo-steady Stokes
drag, the third from the added mass and the acceleration of the imposed flow, and the
fourth from the first two history integrals of (4.60): the unsteady Stokes history force
less its low-frequency asymptote. The last two terms of (4.64) are from the unsteady
Oseen correction, FH_.

If we define the history force as the part of (4.64) that results from subtract-

ing off both the finite zero-frequency components and the O(a?) term (~ w), the
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dimensionless history force may be expressed as

H
Fi(t) _ 4 g omiut @,
6rpal 9 1+ a/3

4 (251 —; DE — %
+hre 5< (1—1i)(y, +1) 1__?1), (465)

4+, 4

where the 3/4-term in (4.65) is necessary to remove the zero frequency asymptote of
the last term of (4.64). The real and imaginary parts of the history force coefficient
have been evaluated numerically by Mei and Klausner [38] for Re=0.05, 2.5, and 20.
(Note that their definition of the Reynolds number is based on the bubble diameter,
not the radius as is done here, so their values are reported as 0.1, 5, and 40.) Using
the notation of Mei and Klausner [38], we define the following history force coefficients

as a function of the frequency parameter & = (wa2/2v)7:

Dupn(e) = Re [4 ( (( 22)5;/3 - (‘Zi)%e)
)

4 [25(1—i)(8e2/Re2 +1)7 —2i 3
+§R€ ( 3262/Re2 t Z y (466)

and

Diru(e) = Im[% ( (—2i)2¢

21 ~2i)2
9\ 1+ (-21)2¢/3 - (=2) )
4 (251 —1)(8e?*/Re? +1)7 — 21 3
g Fe ( 3202/ e? - Z)] (4.67)

where we have used the fact that a = (—2i)Ze and 7, = 8¢2/Re?. The case of
Re = 0.05 is relevant to the current small Reynolds number study and is shown in
Figures 4.1(a, b) for the real and imaginary parts, Digy and Dijg, respectively. Also
included is the unsteady Stokes result given by the first term of (4.66) and (4.67),

which represents the asymptotic limit of the expressions as Re — 0 for fixed €. The
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Figure 4.1: Comparison of the (a) real and (b) imaginary parts of the history force
coefficient for a bubble, Digy and Dirg respectively, with the numerical results of
Mei and Klausner [38] as a function of the frequency parameter «.
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low-frequency asymptote in Fig. 4.1(a) is given by

8
lim DIRH(E) E

e<Rek1 9 Re ) (4'68)

The results show very good agreement with the numerical work of Mei and Klausner
over the entire range of frequency. This agreement is consistent with the findings of
Chapter 3 for solid spheres which showed good agreement with the numerical work
of Mei et al. [37] up to Re ~ 0.5.

Also in the analysis Chapter 3 is the inversion of the frequency-dependent result
to the time domain for a general time-dependent motion, when the unsteady portion
is small. A similar derivation can be performed here. The interested reader is referred

to the previous chapter for the details. The result is

FP(t) = 6mpual (3 AOR: 1Re (14204t ))) + 27pa®0s (1)

+87r,ua/ (=92 erfe (\/9V(t - s)/az) Up(s)ds

87r,ua/ Us(s)
/9yt —s /a2
+67ruaU§—7T—/ G(t — s)Uy(s)ds, (4.69)
with
e =tU2 4y e m% ~ztU? /4y
G(t) = e /0 T dz, (4.70)

where the imposed flow U*(t) = U(1 + Uy(t)) has the condition U;(t) < 1 for all
time.

Equations (4.66) and (4.67) also show good agreement at higher Reynolds number
for high frequency motion. This condition exists because the unsteady Stokes solution

1s valid even for moderate Re, provided € > Re. At low frequency (¢ < Re), good
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qualitative agreement is achieved at higher Reynolds number only when the unsteady
Oseen force is left by itself to predict the history force. The corrections from the
unsteady Stokes solution (the terms contained in the first set of large parentheses in
(4.66) and (4.67)), which are of higher order than O(Re) at low frequency, are not
properly matched because (4.60) is strictly valid for very small Re and is only accurate
to O(Re). Although they are smaller than O(Re), the unsteady Stokes corrections
apparently erroneously alter the behavior of the history force at low frequency. This is
not a problem for solid spheres because the unsteady Stokes history force is uniquely
simple, being the same in both the high- and the low-frequency limit. The history
force for a solid sphere can then be completely accounted for by the unsteady Oseen
correction; there are no required unsteady Stokes corrections to the history force. This
problem with bubbles (which also exists for drops) can be illustrated by noting that
the unsteady Stokes corrections at low frequency contribute the quantity —8¢3/81
to Digy. By comparison with (4.68), we see that it will actually dominate and
incorrectly change the sign of D;ry when € < Re®/9, however, at that point Dy is
less than O(Re®). Thus, if one is studying low-frequency behavior at finite Re, it is
advisable to use only the unsteady Oseen correction to represent the history force for
a bubble or drop.

Next in order to show the variation of the force on a drop with drop properties and
Reynolds number, we consider the history force on a spherical drop for the motion
described by (4.63). Using the same arguments as for the bubble, the history force

for a drop using (4.57) is given to O(8) by

FE(t) “5e~jwt< 1/3  2/3X+5/9 1+ a)*f(ap) )

Grpall A1 O+ D2 0T Xg(aB) + (3 +a)f(af)

e (A2 (251 i)y, +i)E -2 3
5 1wt w _ ) .
+Rebe </\+1 ) ( o ; (4.71)
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The history force coefficient can then be expressed as a function of a by

Din(a) = 1/3 2/3)\+5/9a_ (14 ) f(af) )
UTWNHTT D2 T Mg(aB) + B+ a)f(aB)
A+2/3\* [(4a®/Re*+1)5 -1 3
+Re ( T ) ( 87/ Re? —1l (4.72)
where we have used v, = 4ia?/Re?. The high-frequency behavior of (4.72) is given
by
a 1
D]HNCY<1——'£\‘> IKak I‘B‘,/\ (473&)
3(2/3+ 0?2 L (A+2/3\° .
YT Re el A Li<a< 3 (4.73b)
~ 3 1Re, 1,5 <a < 35 (4.73¢)
/\,5 1
~ T a>lL L (4.73d)

while the low-frequency behavior is

A+2/3)\°
1/3 « ! gRe( + /3) , Re,L

= — 1 1
HY YT YT N A+ 1 &5 <ol (4.74a)
ABa X +2/3\?
+2/3 1
N()\+1) a, Re a1, 3 (4.74¢)
.3.Re_oi A+2/3 ’
47 Re2\ N+ 1
2 2 2 2)2
o o 28 + 84X —34%) 4+ 63)1% — 332 1
—Re 72 18901 + )° ,  a< g, Re. (4.744)

In Fig. 4.2 we show the dependence of D,y on the viscosity ratio A for A = 0 to co.
For low frequency, A alters the behavior of Dy by simply a numerical coefficient. At
high frequency, there is a stronger dependence on A, particularly for small A\. This

is because the properties of the drop are tending toward that of a bubble which has
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Figure 4.2: Dependence of the history force coefficient Dy for a drop on the viscosity
ratio A as a function of the frequency parameter a.
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Figure 4.3: Dependence of the history force coefficient D,y for a drop on the kinematic
viscosity ratio B as a function of the frequency parameter a.
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a very different high-frequency asymptote from that of a drop, O(1) versus O(c).
Figure 4.3 shows the dependence of Dy on the kinematic viscosity ratio through
the parameter 4. In this case, since A is fixed, it actually shows the effect of the
density of the drop relative to the surrounding fluid, i.e., 8 ~ (p*/p)’;‘. There is little
variation in Dyg with 3 at low frequency. However, there is a stronger dependence,
very similar to A, at high frequency; higher/lower density drops behave similarly as
higher/lower viscosity drops at high frequency.

In Fig. 4.4(a) the dependence of D1y on the Reynolds number is shown. As the
Reynolds number is increased the deviation of the history force from its corresponding
unsteady Stokes solution increases, with the deviations becoming evident at higher
frequencies. This deviation of the history force from the unsteady Stokes solution at
low frequencies leads to a much different temporal behavior of the force on a bubble,
drop, or particle at finite Reynolds number, particularly as steady state is approached.
Finally, in Fig. 4.4(b) we plot the curves of Fig. 4.4(a) at finite Reynolds number in
inertial coordinates rescaled by dividing by Re. It demonstrates that the results can
be collapsed quite well on a single curve for given values of A and 3. The rescaling
works provided the high-frequency asymptote varies linearly with «, e.g., we are not
dealing with a bubble which shows no variation with a at high frequency, and it
improves at intermediate & as A and 3 are increased.

We now conclude by deriving the equation of motion for a bubble, drop, or particle
in a fluid, appropriate for motion at small but finite Reynolds number. The general

expression is given by
myU = F7 + FE=, (4.75)

where my is the mass of the body. Here, we have assumed that the only forces acting

on the body are hydrodynamic forces and external body forces, FF*| such as the
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buoyancy force due to gravity.

In the absence of velocity gradients in the imposed flow,? the general expression
for the hydrodynamic force is given by (4.51), where one can take into account the
influence of the deformation of the body by iﬁcluding the last term of (4.26). The
two volume integrals in (4.51) are absent for spherical bodies. For long time scale
motion (> a®/v) of nonspheres they can be approximated using the solution of the
steady Stokes flow field for the translating body. Under this condition, it can be
shown that they contribute only a side force perpendicular to the direction of motion
(see Chapter 2.).

For a spherical body the hydrodynamic force to O(Re) simplifies to

4T a?
F = —apU=(t) + FZ — /= LHOF FH 4.

d 3 ap + USt Ty \/TS s @+ ( 76)
where the unsteady Oseen force F¥ is given by (4.55). A closed-form expression for
the unsteady Stokes force F(I]{St is available only for a solid body or a bubble. For
bodies of intermediate viscosity one must invert the expression given by (4.57) to the

time domain. The solution can be written formally as

(1 + a)*f(aB) )
Ag(aB) + (34 a)f(aB)
xe w(t=3) g d s, (4.77)

" i _ o'} a2
FE(0)==3ua [ 0(s) [ (14a+5 -

For a solid sphere (a body of infinite viscosity relative to the exterior fluid), this

expression reduces to the well-known result of Basset [3]:

FH_(t) = —6rpal, (1 —ngasU (t)
a2
—67 pa — (4.78)

9The requirement here is that the Oseen time scale /U2 is much less than the characteristic
shear rate in the imposed flow.
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For an inviscid sphere it becomes [52]:

FA (t) = —47paU,(t) - %WpaBI.-JS(t)

Ust
t 2 -
- 87rua/ (1= erfc (\/QV(t - s)/a2> U,(s)ds. (4.79)

It is interesting to point out that in both of these limits the force expression is
independent of the density of the material inside of the body. However, it can be
seen in (4.77) that through the parameter § the density of the drop can influence the
force for general drop viscosities.

To compare the equation of motion for a solid sphere to that of an inviscid sphere
(the distinction here from a bubble being that the body may have finite density), we
combine the appropriate forms of F¥_ from (4.78) and (4.79) with F# from (4.55)

in (4.76) to obtain (4.75) for a solid sphere:

(md -+ -;-mf) st + 67r,uaI—Js

3 a2 t
+30H() - {exp< A7) -

—erf —exp(—AQ))}fjsl(s)

0 {5
~3—<ﬁ

Y erf(A) - exp(~ A2>)}UL(3)}

2ds
(15—_—55/_2

= — (mq — ms) U () + (mg — my) g, (4.80)
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and for an inviscid sphere:

(md + %mf) [;Js + 477;1(1[_13

t
—|—87r,ua/

—00

e (t-8)/a% g ( 9u(t ~ S)/a2) fjs(s) ds

_8mpa / 8] s(8)

W
+7r/ta\/:'——127{ /— ;{ ; oll(t) - { = (Egerf(A) - exp(_AZ))}ﬁQ(s)

Ul(t) - {exp( A?) — ——(\/jerf(A) — exp(—Az))}ﬁj(s)}

2A2
2ds
(t — s)3/2

— (ma — my) UP(t) + (my — my) g, (4.81)

where m; is the mass of the exterior fluid displaced by the sphere and g is the
acceleration due to gravity. Here, we have assumed the only external force is the
buoyancy force, FE*! = (my — m;) g.

Apart from the two additional history integrals in (4.81), the governing equations
for the two bodies are essentially the same, in that they have the same terms with
only a difference in numerical coefficients. For very short time scale motion (< a?/v),
the temporal behavior of the two bodies will be nearly the same since the dominant
contribution from the LHS of their respective equations is the same first term. For
time scales of O(a®/v), all terms of the governing equations will be important in
the bodys’ motion, and it is under this condition that the temporal behavior of the
motion can possibly be different owing to the difference in the history dependence,
a much weaker history dependence for the case of the inviscid drop.* For long time

scale motion (> v/U?), the temporal behavior of the bodys’ motion will now be very

h We note this condition could have been observed from the results of unsteady Stokes flow without
any of the Oseen-like considerations used here.
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similar since it is largely dictated by the unsteady Oseen force given by the last term

on the LHS of (4.80) and (4.81), which differ only by a numerical coefficient.
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Chapter 5

The reciprocal theorem for an

N-particle system

Summary

The dynamics of an N-particle system is expressed in terms of the hydrodynamic
forces, torques and stresslets on each particle in an arbitrary imposed flow at finite
Reynolds number. The results generalize the prior analyses of Kim and Mifflin (1985)
and Jeffery and Onishi (1984) which are restricted to two spherical particles in Stokes
flow (i.e., zero Reynolds number). The results for large separations are shown to agree
with the mobility formulation by Durlofsky, Brady, and Bossis (1987) in a previous

study of monodisperse spherical particles in Stokes flow.

5.1 Introduction

Considerable research has been carried out on the study of particle interactions under
Stokes flow conditions [21, 26]. Here we consider the case of a cluster or collection
of particles in an unbounded locally linear flow without restriction on the magnitude

of the Reynolds number for the imposed flow or the particle disturbance flow. We
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are able to derive expressions that represent a mobility-like formulation for the par-
ticle interactions since, for spherical particles, they reduce to the far-field mobility
formulation of the Stokesian dynamics approach to suspension flows.

In the following section we introduce the reciprocal theorem for fluid flow. Then
in Section 5.3 we apply this expression to a general N-particle system by defining the
appropriate velocity, pressure, and stress fields along with carefully chosen boundary
conditions. In Section 5.4 we make simplifications of the expressions while main-
taining the generality of their validity, while in Section 5.5 the simplifications are
made under the assumption that the particles are far apart. The last section pro-
vides some concluding remarks on the application of the expressions to multiparticle
dynamics and includes an outline of the modified approach to obtain a resistance-like

formulation.

5.2 The reciprocal theorem expression

Consider a closed fluid domain V; bounded by surfaces S. If the fluid is Newtonian

and incompressible the reciprocal theorem applies and can be expressed as

/S(n-a")-ﬁdS+/Vf(V-a’)-ﬁdV:/S(n-&)-u’dS—{—/V(V-&)-u’dV, (5.1)

where n is the normal to the surfaces S which points into the volume of fluid V.
Here o' and & represent two Newtonian fluid stress tensors defined in the domain
Vi

o' = —pT+ p(Vu' + Vu”), &= 