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Abstract

A C-chip VLSI decomposition of a graph G is a collection of C' vertex-disjoint
subgraphs of G which together contain all of G’s vertices and a subset of its edges.
If the vertex-disjoint subgraphs are isomorphic to each other, we call one of these
isomorphic subgraphs a building block. The efficiency of a VLSI decomposition
is defined to be the fraction of edges of G that are in the subgraphs. In this
thesis, motivated by the need to construct large Viterbi decoders, we study VLSI
decompositions for deBruijn graphs. We obtain some strong necessa,ry conditions
for a graph to be a building block for a deBruijn graph, and some slightly more
restrictive sufficient conditions which allow us to construct some efficient building
blocks for deBruijn graphs. By using the methods described in this thesis, we have
found a 64-chip VLSI decomposition of the deBruijn graph B;s with efficiency 0.754.
This decomposition is being used by JPL design engineers to build a single-board
Viterbi decoder for the K = 15, rate 1/4 convolutional code which will be used on

NASA’s Galileo mission.

Furthermore, we study VLSI decompositions for the families of complete
graphs, hypercubes, hyperplanes, meshes, and shuffle-exchange graphs. In each
of these cases, we obtain very efficient or even optimal decompositions. We also
prove several general theorems that can be applied to obtain bounds on the effi-
ciencies for VLSI decompositions of other complex graphs. In general, the results

presented in this thesis are useful for implementing massively parallel computers.
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I. Introduction

There are two major problems in designing massively parallel computers—(i)
choose the appropriate interconnection network; and (ii) implement the choosen
architecture in minimum cost. In this thesis, we will concentrate on the second

problem.

For the first problem, the solution usually relies on the effectiveness for the
different architectures to implement certain applications and algorithms. Many
researches [Leig92] have been done to compare the algorithmic times for different
interconnection schemes. As an example, the hypercube and the hypercubic derived
networks, e.g., the shuffle-exchange graph, have efficient implementations for the
Fast Fourier Transform, sorting algorithms, and many other useful applications.
We will discuss the multi-chip implementation for some of these architectures in
this thesis. In particular, we discuss the implementation for the deBruijn graph
extensively in Chapter 4. We focus on this family of graphs because they represent
the circuit diagrams for fully parallel Viterbi decoders. In fact, the binary deBruijn
graph Br_s (to be defined in Section 4.1) represents the fully parallel Viterbi
decoder for a constraint length K, rate 1/n convolutional code; and NASA is using

a K = 15, rate 1/4 convolutional code on the Galileo mission.

For the second problem, the solution usually relies on the effectiveness on using
the resources, i.e., the available chip area and the available number of pins per
chip. With the recent advances in VLSI technologies, the transistor sizes have been
greatly reduced and the die size, i.e., the available chip area, has simultaneously been
largely increased. As a result, many processors can be built inside one single chip.
Unfortunately, the slow progress in packaging technology has left us a bottleneck
on the number of available pins. Thus many recent circuit designs are limited by
the available number of pins and/or I/O capability. In this thesis, we attempt to

find methods to take full advantage of the precious pins by minimizing the number
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of external inter-chip connections. The exact problem, which we call the VLSI

decomposition problem, is precisely defined in Chapter 2.

In Chapters 3—-5, we reveal our attempts to solve the VLSI decomposition prob-
lem for the families of complete graphs, hypercubes, hyperplanes, meshes, deBruijn
graphs, and shuflle-exchange graphs. For all these cases, we have found optimal
or relatively good solutions. In Chapter 6, we present several general theorems
and some general techniques that can be used to obtain bounds on the number
of inter-chip connections for a given graph. These theorems and techniques can
be applied to many other graphs that are not discussed in this thesis. Finally, in

Chapter 7, we summarize all the important results that are presented in this thesis.
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II. The VLSI Decomposition Problem

Let G be a graph that represents an interconnection network for a complex
circuit, such as a high-speed parallel computer. The vertices of G correspond to
arithmetic processors and the edges of G correspond to data paths connecting the
processors. Furthermore, we use directed and undirected edges to represent simplex

and duplex links respectively.

In modern VLSI technology, if the circuit is too large to fit on a single chip, it
may be possible to build it by wiring together two or more appropriately designed
chips. Each processor must then be placed on one of the chips, but the wires of the
circuit may be either internal to the chips (intrachip wires) or external (interchip
wires). Thus we are motivated to define a C-chip VLSI decomposition of a graph G
as a collection of C' vertex-disjoint subgraphs of G which together contain all of G’s
vertices, and a subset of its edges. The edges contained in the collection of subgraphs
are called internal edges. Since we can reduce the total number of pins on the chips
by including as many internal edges as possible in the decomposition, we define the

efficiency of a C-chip VLSI decomposition of G into subgraphs Hy, H,,..., Hc as

c .
(2'1) eﬁ(Hl,Hz, T ,HC = G) = ————lel(g()ﬂl)

where E(G) denotes the number of edges in graph G. The number of vertices in the
subgraph H; is called the size (or the chip size) of H;. Let k; denote the size of H;

and |G| denote the number of vertices in G. Then
Byt ky oo+ ho = |G-

An example of a three-chip VLSI decomposition for the deBruijn graph Bs (to be
defined in Section 4.1) into chip sizes 2, 3 and 3 with an efficiency of 0.625 is shown
in Figure 2.1.

In a VLSI decomposition of G into subgraphs Hy, Hs,..., Hc, it is normally

desirable for the subgraphs H; to be isomorphic since the cost of fabricating multiple
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Figure 2.1. A three-chip VLSI decomposition for the de-

Bruijn graph Bs with an efficiency of 0.625.

copies of one chip is much less than designing several kinds of chips. For the case
Hy = H; =--- = Hc = H, we call one of these isomorphic subgraphs H a building
block for the graph G. The size k = |H| of a building block for G must be a factor of
|G|. In addition, we use the shorthand notation eff( H F G) to denote the efficiency
of the VLSI decomposition for G into building blocks H. Thus, by (2.1),

(2.2) eff(HI—G)zeﬂ“(H,H,---,HHG):%-%.

We also call eff(H - G) the efficiency of the building block H for the graph G. If a
building block can be used to build any graph in a fixed set of graphs {G,,}, we call
it a universal building block for {G}. The efficiency of a universal building block
H for the set of graphs {G,} is usually a function of n, i.e.,

_ 1Gal  E(H)

(2.3) Cfi(H F Gn) = s

However, there are special cases, such as the universal deBruijn building blocks (c.f.

Section 4.8), that have an efficiency independent of n.
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In this thesis, we consider the following VLSI decomposition problems:

[1] Given a graph G and chip sizes ki, ks, ..., kc (where ky + ks + -+ + ke = |G]),
what are the most efficient VLSI decompositions for G into C chips of sizes

ki, ka, ... ko?

[2] Given a graph G and a non-negative integer k (where k divides |G|), what
are the most efficient VLSI decompositions for G into C' chips (that are not

required to be isomorphic) of equal sizes k?

[3] Given a graph G and a non-negative integer k (where k divides |G|), what are
the most efficient building blocks of size k for G?

[4] Given a family of graphs {Gr}n>n and a non-negative integer k (where k
divides |G| for each n > N), what are the most efficient universal building

blocks of size k for {Gp}n>n7

A related problem, usually called the “pin limitation” problem, is to determine
the maximum possible number EF, (k) of interconnecting edges in a subgraph of
G with k vertices. If EZ(k) is known for a graph G, the efficiency for the C-chip
VLSI decomposition of graph G into subgraphs Hi(ky), Ha(k2),- -+, Hc(ko) of sizes

ki,ks, ..., kc respectively is bounded above by

(2.4) eff(Hy(ky), Hy(ks), -, Ho(ko) = G) < Eg(k1) + Eg(k2) +-- -+ Eg(ke)

E(G)
In particular, for the case ky = kg = --- = k¢ = k, we obtain
(2.5) (G5k) < em(@s k) < E-E6E)
. 61 5 ~ CNI y o~ E(G) 5

where en;(G; k) denotes the efficiency of the most efficient VLSI decomposition into
C chips (which are not required to be isomorphic) of equal sizes k and e,(G; k)
denotes the efficiency of the most efficient VLSI decomposition into C isomorphic

chips (i.e., building blocks) of size k for the graph G.



page 6

In the following chapters, we reveal some efficient VLSI decompositions for
several graph families. In some cases, (2.4) and (2.5) together with previous results
on the studies of “pin limitations” [Harp64,Lind64,Snir81,Cyph90] provide proofs
that the known VLSI decompositions are optimal.
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ITI. Complete Graphs, Hypercubes, Hyperplanes, Meshes

3.1. An Easy Case: Complete Graphs K,

The complete graph K,, consists of n vertices and (72’) edges, each connecting two
distinct vertices. Figure 3.1 shows the complete graphs K3, K4, and K5. Note that
any induced subgraphJ[ of K, with m vertices (where m < n) is isomorphic to the
complete graph K,,. Thus the most efficient C-chip VLSI decomposition of K, into
chip sizes ki, ka,...,kc (where k1 + ks + --- 4+ k¢ = n) consists of the C smaller
complete graphs Ky, , Kj,, ..., K. with an efficiency of

$) )+ (%)

(2) '

An example of an optimal two-chip VLSI decomposition of Ky into chip sizes 4 and

(3.1) eff( Ky, , Ky, -+, Ko — Kp) = (

5 with an efficiency of 4/9 is shown in Figure 3.2.

Figure 3.1. The complete graphs K3, K; and Kj.

By letting ky = k3 = -+ = k¢ = k in (3.1), the most efficient VLSI decompo-

sition of K, into chips (which are not required to be isomorphic) of equal sizes k

f An induced subgraph H is a subgraph that contains all edges with both endvertices in H.
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e internal wires

AN .
W — —  external wires
Figure 3.2. An optimal two-chip VLSI decomposition of Ky

into chip sizes 4 and 5.

(where k|n) consists of n/k complete graphs K with an efficiency of

Ky n
(3.2) eNI(I(n; k) = eff(f&"k, K, Ky .Kn) = (2) ko— k-1

5 n-1

Consequently, the complete graph Ky is the most efficient K, building block of size

k with an efficiency of

B\ n B
(3.3) el( Ky k) =eff(Ki F K,,) = (2)n k k 1_
2) n—1

N

Since (3.3) holds for all n that are multiples of k, the complete graph K} is also the
most efficient universal building block (of size k) for the family of complete graphs

{Kn}lcmn where N is a positive integer.
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3.2. Binary n-Cubes I,

The binary n-cube I, has 2" vertices, labelled by the binary n-tuples {0,1}", and
n - 2""! edges, each connecting two vertices with labels different in one position.

Figure 3.3 shows the binary n-cubes I}, I'; and I7j.

Let H(m) be the induced subgraph]L containing m vertices of I, that have
labels equivalent to the binary expansion of the first m non-negative integers
0,1,...,m —1. Harper[Harp64,Bern67,Hart76] showed that the subgraph H(m)
has the maximum number of edges among all subgraphs of I, with m vertices
(where m < 2™). Consider a vertex of H(m). Each “one” in the label indicates that
the vertex with a “zero” in the same position is also in :‘H(m) and thus indicates

the presence of an edge in H(m). Therefore the total number of edges in H(m) is

(3.4) b (m) = B(H(m) = Y weigh()

where weight(¢) denotes the number of “one”s in the binary expansion of i. From
(3.4) and (2.4), the efficiency for a C-chip VLSI decomposition of I, into chip sizes
ki,ky,... ko (where k1 + k2 + - -+ + k¢ = 2™) is bounded above by

C ki—1
1 3
(3.5) weight(7)
E(I}) ; j._ZO
For the case ky = ks = -+ = k¢ = 2, the expression (3.5) can be simplified to
(6 em(Tn?) < b 3 (bo2vny - BEEHETY
. NI 7 —_ E(Fn) P b (n)(2n__1) —_— n.

The upper bound (3.6) can be achieved if we decompose I, into 2"~% I'-chips.
We can show that such a decomposition is possible by construction, i.e., finding a

one-to-one mapping between the vertex set V of I, and the set of ordered pairs

f Induced subgraph is defined in the footnote on page 7.
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100 101

00 01 N 001

0
161 111
1 10 11 010 011

Figure 3.3. The binary n-cubes I, I and I3.

(1,7), where 1 denotes the chip number and j denotes a vertex inside chip i, such
that if two vertices are connected inside a I-chip, then those two vertices are also
connected in the graph I',. Now let the 2" =% I'i-chips be numbered in binary from
00---0 to 11---1. For each of these 2" % chips, we use conventional labels for
its vertices, i.e., each vertex is labelled by a binary k-tuple and two vertices are
connected iff their labels are different in exactly one position. We can map vertex
V1V - - - v, of I, onto the I'k-chip numbered vgy vk42 - - vy, at location vivy - - - vg.
Note that this one-to-one mapping satisfies the above mentioned requirement, i.e.,
if two vertices are connected inside a Ik-chip, then those two vertices are also
connected in the graph I',. Figure 3.4 shows an example of an optimal two-chip

VLSI decomposition of I’y into two I'3-chips by using the above mapping procedure.

By (3.6) and the argument above, the decomposition of I', into 2"~ binary
k-cubes is an optimal C = 2"~% chip (of chip sizes ky = ke = -+ = ko = 2%) VLSI
decomposition. The efficiency is
@ k) k
@E)  a

Since (3.7) holds for all n > k, the binary k-cube I is also the most efficient

(B.7)  elTni2¥) = exa(Tni2%) = ofi(Te b ) = &)
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—

1001 1011

internal edges
-— —  external edges

Figure 3.4. An optimal two-chip VLSI decomposition of I
into I's-chips with an efficiency of 3/4.

universal building block for the family of binary n-cubes {I7,},>~ where N > k.

3.3. n-Dimensional Hyperplanes I',(l1,l5,...,1,)

An n-dimensional hyperplane I',(l1,15, ... ,1,) consists of vertices viv; - - - v,,, where
0 <wv; <I; — 1, and two vertices are connected iff their labels are different in one
position. Thus there are lyly - - -1, vertices and (I; + 13+ -+ 1, —n)(lily---1,)/2
edges in Iy,(ly,l3,...,1;). (Note that the binary n-cube is a special case of an
n-dimensional hyperplane with /; = 2 for 1 < i < n.) Since the hyperplane
I'n(ly, 1y, ..., 1) is isomorphic to I,(l},4,...,1,), where I'y,l's,...,I', is a per-

mutation of ly,1,,...,[,,, we may assume
LzbL>--->1,

without loss of generality.



page 12

For each vertex v = vivg---v, in Ih(l,la,...,1,), we may assign a distinct

non-negative integer N(v) defined by
N(v) = N(vivz---vn) =vy + hog + hilsvg + -+ lily - Ly qv,.

Let H(m) be the induced subgraplﬂL of I'n(ly,la,... 1) (where ly > 1 > --- > 1)
with m vertices such that vertex v is in H(m) iff N(v) < m. Lindsey [Lind64]
generalized Harper’s result [Harp64] and showed that the subgraph H(m) has the
maximum number of edges among all subgraphs of I',(l1,12,. .., [, ) with m vertices
(where m < Lily---1,). Similar to the case of the binary n-cube, the number of

edges in H(m) is

(59 B3, 1ty (m) = BCH(m) = 3 weight(i)

where weight(i) denotes the sum of the digits in N71(3), i.e., if N(vivg - v,) = 1,
then weight(i) = v + v3 + -+ + va. By (3.8), the number of internal edges in a
C-chip VLSI decomposition of I',(11,1s,. .. ,1,) with chip sizes k1, ks, ..., ke (where
ki + ke +---+kc =UhLIlz---1,) is bounded above by

C k;—1
(3.9) Y o) weight(i)
i=1 \ j=0
For the case ky = ko = --- = k¢ = l1ly - - - I, the expression (3.9) can be simplified
to
c
L4+lb+--+1—k Lh+lo+- 4+l —k
Z(1+2+ A (1112"'lk)>: ey o (Lily -+ 1)
— 2 2
This upper bound can be achieved if we decompose I'(ly,lz,...,l;) into

k-dimensional sub-hyperplanes I'x(l1,ls,...,l;) by mapping vertex vivy---v, of

I'h(li,1y,. .. ,1,) onto location v1v; - - - vy in the chip numbered vy 1013 - - - v,,. The

J[ Induced subgraph is defined in the footnote on page 7.
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efficiency of such an optimal C = I 41142 - -1, chip (of chip sizes ky = ks = -+ =
kc = lily - - - ly) VLSI decomposition for I'y(l1,15,...,1,) is

CI(Fn(ll,lz, . ,ln);lllQ e lk) = BNI(Fn(ll,lz7 - ,ln);lllz v lk)

(3.10) Lh+lg+- -k
= off Loy L) F Dol ds, . 1)) = .
€ (Fk(ll7 2 9 k) (1 2 )) l]+l2++ln——n

Since (3.10) holds for all n > k, the k-dimensional hyperplane I'v(l1,ls,...,Ix)
(where l; > Iy > --- > I}) is also the most efficient universal building block for the

family of hyperplanes {I'7(l1,ls,...,ln)}n>n Where N > kand [; <[ fork < i < n.

As a final remark, if we consider only the hyperplanes I',(l) that denotes

In(li,lay .. yl) with Iy = Iy = -+ = [, = I, the optimal C = ["% chip VLSI
decomposition (with chip sizes k1 = kg = --- = k¢ = I¥) for I',(1) consists of ["~*
copies of I't(I). By letting Iy =13 =--- =l = [ in (3.10), we obtain the efficiency
as
kl—Fk &k
(3.11) ex(Tn(1);1%F) = ext(Tn(1);1F) = eff(Tk(1) - Ty(1)) = — =
—-n n

Again, since (3.11) holds for all n > k, the hyperplane I';(I) is also the most efficient

universal building block for the family of hyperplanes {I5()}n>n where N > k.

3.4. d-Dimensional Meshes M)(n) Without Wrap-Around

A d-dimensional mesh of side length n has n? vertices labelled by the n-ary d-tuples
{0,1,---,n — 1}%. For the mesh M/(n) without wrap-around, two vertices are
connected by an edge iff their labels are different in one position and the difference
of the two digits in that position is one. (The mesh My(n) with wrap-around is
defined in the next section.) Thus there are (d)(n — 1)(n?™') edges in M/(n).
Note that a basic difference between meshes and hyperplanes is that we normally
consider family of meshes {Mj(n)}n>x that have different side lengths in contrast
with family of hyperplanes {I',(I)},>¢ that have different dimensions. Figure 3.5
shows the two-dimensional meshes Mj(6) and M,(6).
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Figure 3.5. Two dimensional meshes: (a) M3(6) without
wrap-around and (b) M3(6) with wrap-around.

Let Hj(m) be a subgraph of Mj(n) with m vertices and let V(H)(m)) be
the vertex set of Hj(m). Let P.(Hj(m)), where 1 < r < d, be the set of (d—
1)-tuples (1,22, -, 24—1) such that (21,25, -+, 24-1) € P.(H}(m)) iff there exists
(21,29, &r_1, 4, r, Trq1, -, g—1) € V(H)(m)) for some j. (Intuitively, we
may consider P.(H}(m)) as the (d—1)-dimensional projection of a d-dimensional
object.) Figure 3.6 shows a subgraph H,(14) with Pi(H;(14)) = {1,2,3,4} and
Py(Hy(14)) = {1,2,3,4,5}. Note that the number of edges that are in the rth
dimension, i.e., those connecting vertices (21,22, -, &r—1,J, &y, Try1," +, 241 ) and
(1,22, 81, + 1, @, Bry1,- -+, 24—1), In Hj(m)is < m — |P.(H)(m))| (where
the notation |R| denotes the number of elements in the set R). Thus the total

number of edges in H}(m) is bounded above by

d
(3.12) E(Hj(m)) < dm = |P(Hy(m))|

r=1
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Projection P2

Projection Py

Figure 3.6. A subgraph H;(14) of M}(6). P1(H;(14)) =
{1,2,3,4} and Py(H;(14)) = {1,2,3,4,5}.

Cypher [Cyph90] proved that Zle \Pr(Hj(m))| > dm*“T . Thus, by (3.12),

the maximum number of edges in the subgraph H);(m) is bounded above by
. a1
(3.13) M&(n)(m) S d * (m —m d ).

From (2.4) and (3.13), the efficiency for a C-chip VLSI decomposition of M(n) into
chip sizes ki, ks, ..., kc (where ky + ko + -+ - + k¢ = n?¢) is bounded above by
1 & Py 1L P
(3.14) E—(—W;(d-(ki—kid)):W;<ki~kid>.
For the case ky = ky = --- = kg = k¢, the expression (3.14) can be simplified to
1 C
exi(Mg(n); k%) < CECD) ; (k! — k771

_ (@) ) (m)(k—1)
(=D (- 1)k

The upper bound (3.15) can be achieved if we decompose M) (n) into (n/k)? M} (k)-

(3.15)

chips by mapping vertex (vy, v, -+, vgq) of Mj(n) onto position (r1,72,---,74) in the
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chip numbered (q1,¢q2, -+, q4) where ¢; and r; are the quotient and the remainder
respectively when v; is divided by k. Thus the decomposition of M)(n) into (n/k)?
d-dimensional M"(k) meshes is an optimal C = (n/k)? chip (of chip sizes k; = ky =
-+» = ko = k%) VLSI decomposition with an efficiency of

ex(My(n); k%) = exa(My(n); k7)

3.16 n/k)*(d) (k" )(k — 2\
( ) = eff(M(k) b My(n)) = ( /(kd))((,zlgsﬁ:)(n)_(_kl) s - En>-(—k1)(;§

Since (3.16) holds for all n that is a multiple of &, the mesh M/(k) is also the most

efficient universal building block for the family of meshes {Mj(n)}n), where N is

a positive integer.

3.5. d-Dimensional Meshes M;(n) With Wrap-Around

A d-dimensional mesh My(n) (with wrap-around) of side length n has n? vertices
labelled by the n-ary d-tuples {0,1,---,n — 1}¢. Two vertices are connected by an
edge iff their labels are different in one position and the difference of the two digits
in that position is 1 mod n. Thus there are dn? edges in My(n). Figure 3.5(b)
shows the mesh M;(6).

By using the same argument introduced by Cypher [Cyph90], we can prove
that for meshes My(n),

ntl - dm — dm 7T

(3.17) Elyy(my(m) <

Thus the efficiencies for My(n) building blocks of size k¢ (where k|n) are bounded
above by

ex(Ma(n); k%) < exa(Ma(n); k)

(3'18) S(ﬂ‘l‘l.dkd_d'(k,d)’d—}l)_(%)d_k_l 1

n dn? n

The upper bound (3.18) can almost be achieved if we decompose My(n) into (n/k)?

M3 (k) meshes (without wrap-around) by mapping vertex vivs - - - vg of My(n) onto



page 17

position ry7g - - - rq in the chip numbered ¢ ¢ - - - g4, where ¢; and r; are the quotient
and the remainder respectively when v; is divided by k. The efficiency of this
decomposition is

@k -DETYE k1

(3.19) off(My(k) + Mu(n)) o ;

By (3.18), the efficiency for a universal My(n) building block of size k¢ is
bounded above by 21 since a universal My(n) building block is necessary to build
Mg4(n) with arbitrary large n. Thus the M) (k) mesh is the most efficient universal
building block of size k? for the family of meshes {My(n)};n|n» Where N is a positive

integer.
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IV. DeBruijn Graphs

4.1. Binary DeBruijn Graphs B,

The binary deBruijn graph B,, can be defined as a directed graph with 2" vertices,
each represented with a binary n-tuple, and 2"*! edges, each labelled with a binary
(n+1)-tuple, where the edge zy 23 - - - €p41 is a directed edge from zox3 - €441 to

12y - &y. Figure 4.1 shows the binary deBruijn graphs B; and Bj.

100
010
101

110
111 =

Figure 4.1. The deBruijn graphs By (or B}) and Bj (or
B3).

Some necessary conditions and a general construction for efficient VLSI de-
compositions for binary deBruijn graphs are discussed in [Doli92a,Doli92b]. These
results can directly be generalized for g-ary deBruijn graphs BZ. This chapter con-
siders VLSI decompositions for deBruijn graphs BZ with emphasis on binary de-

Bruijn graphs B,, which have practical significance in building fully parallel Viterbi
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decoders. In addition, the binary deBruijn graphs B, have strong resemblance with

the shuffle-exchange graphs ¥,, as to be shown in Chapter 5.

4.2. g-ary DeBruijn Graphs B{

The g-ary deBruijn graph B can be defined as a directed graph with ¢™ vertices,
each represented with a g-ary n-tuple {0,1,---,¢ — 1}", and ¢"*! edges, each la-
belled with a g-ary (n+1)-tuple {0,1,---,q — 1}, where the edge 2129 -+ 2p11
is a directed edge from zqz3- - 2pyq to 129 - 2,. Figures 4.1 and 4.2 show the

deBruijn graphs B (or B,), B3 (or B;), and B3.

Figure 4.2. The deBruijn graph Bj.

In the next section, we derive some properties of deBruijn graphs which are
needed to study the VLSI decomposition for these graphs. (Other important prop-
erties can be found in [Golo82: Secs. 2.2 and 6.2].)
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4.3. Properties of DeBruijn Graphs B!

We first define some terms for a graph G that may contain both directed and
undirected edges. These terms are defined in a general way so that the same
terminology may be used on the shuffle-exchange graphs in Chapter 5. Let
P = (Py,P,, -, Pi41) be asequence of [+ 1 vertices, and E = (Ey,Es,---,E;) be a
sequence of [ edges (directed or undirected), in a graph G. If, for i = 1,2,...,1, E;
is an edge joining P; and P;1; (in either direction if E; is a directed edge), we call
(P,E) an ambulance path (in resemblance with the fact that an ambulance need

not to obey the street directions during emergency) of length | from Py to Pry.

By tracing along the ambulance path (P, E) in the order Py, P,,..., Piyq, its
edge set E can be divided into three classes—undirected edges, forward edges (di-
rected edges in the same direction as the trace) and backward edges (directed edges
in the reverse direction). If there are f forward edges and b backward edges, we
define the net length of the ambulance path to be |f — b| and the signed net length
to be f —b.

A normal path (or simply called path) is an ambulance path with no backward
edge. A normal trail (or trail) is a normal path with distinct edges. A cycle is an
ambulance path such that Py, P,,..., P; are all distinct, but Pryy = P;. A cycle in
which the number of forward edges equals the number of backward edges is called a
balanced cycle. A cycle which is not balanced is ga]led an unbalanced cycle. We also
call a cycle with r forward edges and s backward edges an (r,s) cycle. Figure 4.3
shows an unbalanced (3,2) (or (2,3) depending on the direction of the trace) cycle
of length 5 in B;.

Theorem 4.1. If X and Y are vertices in BY, and [ is a positive integer with

I < n, then there cannot be more than one path of length [ from X to Y.

Proof: Let X = zy2y---2,. In a path from X to YV, the vertex immediately
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Figure 4.3. An unbalanced (3,2) cycle of length 5 in Bs.
The net length is 1.

following X must be y; 2123 ---xn—; for some y; € {0,1,---.¢ — 1}. The next
vertex must then be yoy321 --- 2,9, and so on. Thus Y, which is the [th vertex
in the path, must be of the form ¥ = yjy;—1 ---y12122 - - ®,,—; (where y; has not
been shifted out since I < n). It follows that each vertex on the path, and hence

the path itself, is uniquely determined by X and Y. [ |

The following theorem shows that the number of vertex-disjoint unbalanced

(r,s) cycles in B{ is bounded above by a number independent of n.

Theorem 4.2. In BZ, there are at most ¢'/I vertex-disjoint unbalanced (r,8)

cycles, where [ = r + s is the length of the cycle.

Proof: Ifl > n, the theorem is trivially true, since B¢ has ¢™ vertices and thus at
most g™ /I < ¢'/l vertex-disjoint unbalanced cycles of length I. On the other hand,
if I <mn,let A=ajay---an be a vertex which lies on an unbalanced (r,s) cycle.
Since a cycle may be traversed in either of two opposite directions, we may assume

r > s without loss of generality. After traversing the cycle and returning back to
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A, the substring as41as42 -+ - @p—r will have been shifted to the right r — s positions

and so we have

A=2122 - TpQsq10542 An_rY1Y2 * " Ys-

Since this expression must be the same as the original label aqay - - - a,, by equating

the corresponding bits in positions r + 1 through n — s, we obtain the equations
(4.1) Arii = st (1<i<n—s—r).

It follows from (4.1) that A is uniquely determined by the [ values a;,as,...,a,
and ap—st1,@n—s+t2,--.,0an, so that there are at most ¢"7° = ¢’ vertices that can
lic on an unbalanced (r, s) cycle. Since each (r,s) cycle contains exactly I vertices,
it follows that a set of vertex-disjoint unbalanced (r, s) cycles contain at most ¢'/I

members. l

Let SZ be the set of all g-ary strings X of length n such that one of the longest
run of zeros in X is either at the extreme left or the extreme right. For exam-
ple, 0020100,0012003,1234123 € S?, but 0100230 ¢ S3. The following theorem
shows that the number of edge-disjoint (vertex-disjoint) unbalanced cycles in B
is bounded above by the number of elements in S? 41 (S%). In addition, we may
remove all unbalanced cycles in Bf by deleting all edges E € SI_, or all vertices
Ve Si.

Theorem 4.3. In an unbalanced cycle in Bf, (i) there exists a vertex V € S? and

(ii) there exists a directed edge E € S ;.

Proof: Let P; = ajas---a, be a vertex on an unbalanced (r,s) cycle and we
assume r > s without loss of generality. Let Py, Ey, Py, Ey, -+, P, Ey, Pryy (where
Piy1 = Py and I = r + s) be the sequence of vertices and edges if we trace along the

cycle starting from vertex Py and back to P; = Pyq. (The directed edge E; may
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connect the vertices P; and Pj4, in either direction.) Let

r' = max d(P;,FP;)
1<i<I+1

s = min d(P,P;)
1<i<I+1

(4.2)

where d(P;, P;) denotes the signed net length of the ambulance path PP, --- P;.
Then agy1as+2---an—p 1s the longest substring in P, = ajas---a, that is
also a substring in any other vertices P;, 2 < ¢ < [ 4 1, i.e., the substring
Qg 4+10s'42 "+ G-y 15 shifted back and forth but never get shifted out when we

trace along the cycle.

We first prove part (i) of the theorem. Suppose one of the longest run of
zeros in P, = ajasy - - a, is the substring ayay+1---ay. Hu=10rv =nor P
does not contain any zero, then Py € S and we are done. Otherwise the next
vertex P, on the unbalanced cycle has the label zajas ---a,-; (if Ey is a forward
edge) or asas---any (if By is a backward edge). In both cases, either P, € S¢
or the substring a,ay41 - - - @, remains to be one of the longest run of zeros in Ps.
Continuing this way, if P; ¢ S V1 <4 < j, then either Pj4; € S? or the substring
Ay@yy1 - Gy is one of the longest run of zeros in Pj41. Now we consider three cases:

(a)v>n—r,bDu<s+1l,and (¢) s +1<u<v<n-—r.

a) For the case v > n — 7', let v' be the smallest positive integer such that
) g

d(Py,Py) =n—v,ie.,
n—v=d(Py,Py)>d(P,P) Vi<

It P ¢ S V1<i<v', then Py € SI since the substring aya,11 - a, is a suffix
of Pvl .

(b) For the case u < s' + 1, let u' be the smallest positive integer such that
d(Py,Py) = u, ie.,
U = d(Pl,Pul) < d(Pl,P,) Vi<
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If P, € S V1 <i<u,then P, € S¢ since the substring aya,+1 - a, is a prefix
of Pul.

(c) For the remaining case s' + 1 < u < v < n —r', we will show that there exists
another all zeros substring a¢—y4, -+ -a¢ (which is also one of the longest run of
zeros) in Py where ¢ > n — 7' so that case (¢) reduces to case (a). First note that

vertex Pj4+; has the form
Pl+1 = X1L2 Lyl (r—s) Qo' +1Qe7 42 " An—r' Y1Y2 " * " Ypi _(r—3)-

By equating the corresponding bits of Py; and Py = ajas - a,, we obtain the

equations
(4.3) Qr_gri = a; (s +1<i<n-—7').

It follows from (4.3) and s' +1 < u < v < n — 7' that the substring
Qr—stu** Qrogty = Oy -Gy 15 also an all zeros substring of length v — u + 1.
Continuing this way, the substring ap,(r—s)4u ** - Gm(r—s)+o is an all zeros substring

if (m—1)(r —s)+v <n-—r'. Byletting ¢t = m(r — s) +v and

-1

n—r' —v n—r —v
m—1= >

r—as r—s:s

where [ ]| denotes the greatest integer function, we obtain
n—r —v ,
t=m(r—s)+v>|—|)(r—s)+v=n—r
r—s
which is what we set out to show.

To prove (ii), we use the result in part (1) which asserts the existence of a vertex
P; € SZ. Then at least three of the four directed edges P;0, P;1, 0F;, and 1P; have
the longest run of zeros either at the extreme left or the extreme right. Thus at
least one of the two distinct edges E;_; or F; has its longest run of zeros either at

the extreme left or the extreme right. |
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Theorem 4.4. (i) In an ambulance path of net length > n — 2 in BY, there exists

a vertex V € S%. (ii) In an ambulance path of net length > n in B{, there exists a

directed edge E € S} ;.

Proof: Let P, =ajay::-an, andlet Py, Ey, Py, Ey,---, Py, By, P11 be the sequence
of vertices and edges if we trace along an ambulance path from vertex P; to Pyy.
Let d(P;, P;) denote the signed net length of the ambulance path from P; to P;.

Without loss of generality, we assume d(Py, Piy1) to be non-negative.

Suppose one of the longest run of zeros in P, = ajaz---a, is the substring
AyQyti--Gy. If u =1 o0r v =mn or P; does not contain any zero, then P, € S¢
and we are done. Thus we only need to consider the case 2 < u <ov <n-1. If
d( Py, Pi41) > n—2, there must exist a positive integer v’ such that v’ is the smallest
and d(P,Py)=n—wvsincen —v <n—2<d(P,P41). TP ¢SEVI<i<v,

then P, € SI since the substring ayay, 41 -+ - a, is a suffix of P,.

To prove part (ii), note that if d( Py, Pry1) > n, then d(P,, P) > n— 2. By the
result in part (i), there exists a vertex P; (2 < 1 <) that is in the set SZ. Then
at least one of the two directed edges E;_1 and E; (which are in the form P;0, P;1,

0F;, or 1P;) has its longest run of zeros either at the extreme left or the extreme

right. 1
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4.4. C-Chip VLSI Decompositions for DeBruijn Graphs B¢

In Chapter GT, there are some general theorems that can be used to obtain upper
bounds on the efficiency for some VLSI decompositions. In particular, Theorem 6.3
together with Theorem 4.1 give a lower bound on the number of input edges w

(defined in Section 6.1) for any subgraph of BZ.

Let H(m) be an induced subgra,phhL of B with m vertices. Let E.,, be the set
of edges e; in B such that e; has one endvertex in H(m) and the other endvertex
not in H(m). Let H..(m) be the union of H(m) and E.,,. (As in Section 6.1,
we call H...,(m) a subgraph with external edges.) By letting d; = q for all the m
vertices in the vertex set V of H.,,(m) in Theorem 6.3, we obtain

(+1) ) (qlogg) < (wl+ Y gloglwl+ Y g VI<n

v EV v, €V v; EV

(4.4) (I +1)(gm) < (wl + gm)log, (wl + gm) vVl <n.

Since (wl + gm)log, (wl + gm) is a monotonic increasing function of w, there exists
an integer wmin(q,m,!) which is the smallest among all integers w that satisfy
Inequality (4.4) for a given ¢, m and l. By noting that (4.4) holds for all I < n, we

obtain the lower bound
(4.5) W 2> Wigwerbounalg, M, M) = %axwmin(q,m,l)

on the number of input edges on any subgraph H.,,(m) of BZ. Consequently, since

each vertex in H.,,(m) has in-degree ¢, the number of edges in any subgraph H (m)

of B is bounded above by

(46) E*BZ (m) S qm - wlowerbound(q) m) n)

J[ Most of Chapter 6 does not use results from other chapters and can be read independently.
fit Induced subgraph is defined in the footnote on page 7.
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It follows from (2.4) and (4.6) that the efficiency for a C-chip VLSI decompo-
sition of deBruijn graph B{ into subgraphs Hi(k1), Ha(k2), -, Hc(kc) of sizes
ki,ks, ..., kc respectively is bounded above by

1
(4.7) eff(Hy (ky), Hy(ks),- -, Ho(ke) = B1) < 1— pree > Wiewervouna(@, ki 1)

1<i<C

m n Wiowerbouna (g =2, M, )
1 n> 1 1
2 n> 2 1
3 n> 8 2
4 n> 6 2
5—-17 n> 5 2
8 n > 15 3
16 n>12 4
32 n > 25 7
64 n > 36 12
128 n > 45 21
256 n > 59 38
512 n > 81 70

Table 4.1. Some values of Wi yerbouna(g, M, n) for ¢ = 2 and

n sufficiently large. Wi wervouna(q, m,n) is defined in Equa-

tion (4.5).

Table 4.1 lists some values of Wiowerbouna(q, M, 1) for ¢ = 2 and n is sufficiently
large. Table 4.2 lists some other values of wlowerhound(q,m,n) for ¢ = 2 and m =

128. As an example, refering to Table 4.2, Wi yermouna(2,128,13) = 13. Thus if we
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decompose Bj; into 64 chips of equal sizes 128, there will be at least 13 x 64 =
832 external wires or efficiency < 0.949 as imposed by the upper bound in (4.7).
From this example, (4.7) does not seem to be a tight upper bound (since the best
decomposition we are able to find has an efficiency far less than 0.949). However,
we will see that (4.7) is a rather good upper bound for large values of m and n when
we study the asymptotic behavior of Wi werbouna(q, ™M, 1) as m — oo and compare

the result with Theorem 4.12.

n Wiowerbouna(¢ =2, m =128, n)
8 . 4
9 6
10 3
11 10
12 11
13<n<14 13
15 14
16 15,
17<n <18 16
19<n<21 17
22<n <25 18
26 <n <31 19
32<n <44 20
45 <n 21

Table 4.2. Some values of Wiqyerpouna(q, M, 1) for ¢ = 2 and

m = 128. Wiwerbouna(q, M, 1) is defined in Equation (4.5).
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Lemma 4.5. Let X and Y be positive integers such that X > band Y > 1. If
X <Ylog, Y, then Y > X/(log, X).

Proof: We have

X X X
— log, ( X) = (logy X — log; log, X)

< long(long) =X <Ylog,V

and Y log, Y is a monotonic increasing function for ¥ > 1. |

We may apply Lemma 4.5 on Inequality (4.4) to obtain

(I+1)(gm) gm
Wiowesvonns(451) 2 i Sy T T
_ (gm)(1+1— logq(l +1)— logq(qm))

(D(log, (1 4 1) +log,(qm))

Vi<n

or

(gm)(1 +1 —log, (I + 1) —log,(gm))
W8 vl 1) 2 B (i log (T 1) 4 logy (qm)

For n > (log, m)'t* where a is a constant > 0, we may let [ = (log, m)' T in (4.8)
to obtain

(gm)((log, m)' " + 1 —log,((log, m)' T + 1) — log,(gm))

((log, m)' ™ ")(log, ((log, m)' "™ + 1) +log, (gm))
gm

wlowerbound(Q’ m7 n) Z

(4.9) = as m — oo.

log, m

That is, if a large deBruijn graph BY is decomposed into sufficiently small chips of

sizes ki,ks,..., ke, then there are at least

external wires.
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4.5. DeBruijn Building Blocks

From Theorems 4.1 and 4.2, we obtain two necessary conditions for deBruijn build-

ing blocks.

Theorem 4.6. If a graph H of size ¢*/C is a building block for the deBruijn
graph Bl then

(i) For any two vertices X and Y in H, there cannot be more than one

path of the same length I < n from X to Y.
(ii) H does not contain any unbalanced cycle of length I < log,C.

Proof: Part (i) follows immediately from Theorem 4.1 since H is a subgraph of

BZ. To prove (ii), note that Theorem 4.2 implies that C < ¢'/I < ¢'. [

We may use the results in Section 4.4 to obtain an upper bound for the efficiency

of deBruijn building blocks. By letting ky = ks = - -+ = k¢ = ¢* in Equation (4.7),
the efficiency for a building block of size ¢* for the deBruijn graph BY is bounded
above by

q. k q k wlowerbound(q7 qk7 n)
(410) eI(BrU q ) < 6NI(Bn;q ) <1- qk+1
where

qk‘-l—l

(4:.11) ]j,fn inf wlowerbound(q) qk7 n) 2 k

for n > k'** (where a > 0) as implied by (4.9). That is, if a large deBruijn graph
B{ is decomposed into sufficiently small subgraphs of equal sizes ¢*, then the set

of external edges will contain at least 1/k of the edges in BY.
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4.6. Universal DeBruijn Building Blocks

We consider universal deBruyn buslding blocks for the family of deBruijn graphs
{B}n>n. Since a universal deBruijn building block is necessary to build deBruijn

graphs B with arbitrary large n, it follows from Theorem 4.6 that

(i) A universal deBruijn building block cannot contain two vertices X and Y such

that there are two paths of the same length from X to Y.
(i1) A universal deBruijn building block cannot contain any unbalanced cycle.

Condition (ii) is equivalent to the statement that a universal deBruijn building
block must be a graded digraph. In the following, we first introduce the notion of
a graded digraph and then prove the equivalence between digraphs with no unbal-
anced cycle and graded digraphs in Lemma 4.7.

A digraph G with vertex set V is graded of rank m if there is a mapping p from
the vertex set V to the set {0,1,...,m}, such that, for z,y € V, p(y) = p(z) + 1 if
there is a directed edge from z to y. We call p(z) the rank of z.

Lemma 4.7. Let H be a digraph. H is a graded digraph of rank m iff all cycles

in H are balanced and all ambulance paths in H have net length < m.

Proof: We will first prove the “if” portion and then the “only if” portion of the
lemma.

=—>  Suppose all cycles in H are balanced and all ambulance paths in H
have net length < m. Let V be the vertex set of digraph H. We will prove that
H is a graded digraph of rank m by constructing a rank function p that maps the
vertex set V to the set {0,1,...,m}. Without loss of generality, H is assumed to
be a connected graph. Otherwise, if H is the union of two disjoint subgraphs H;
and Hy; whose rank functions (defined in this proof) are p; and p, respectively,

then, for each vertex v in graph H, we may let p(v) to be p1(v) (or pa(v)) if v is in
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the subgraph Hy (or Hs).

To construct p, we first choose an arbitrary vertex vy € V and assign an
arbitrary integer N(vg) to this vertex. For each of the other vertices v € V (v # vy),
there must be at least one ambulance path from vy to v since H is connected. If
there is an ambulance path with f forward edges and b backward edges from vg to

v, we assign the integer

N(w)=N(vo)+f—b

to vertex v. If there are two ambulance paths, say P; and P, from vy to v, we
obtain the same assignment N(v) independent of the path P; or P, that is used.
Such a consistency exists since all cycles in H are balanced by hypothesis and thus

the cycle that is composed of Py and P, (P, being traced from v to vg) must also
be balanced.

Now let Npyin (which may be negative) be the smallest integer in the set
{N(v), v € V}. (A minimum exists since there is a finite number of elements

in the set {N(v), v € V'}.) For each v € V, we assign the rank
p(v) = N(v) — Nmin-

To show that the mapping p is indeed a rank function, we need to prove that
p(w) = p(v) + 1 if there is a directed edge from v to w. This can be shown by
considering the cycle composed by path P, (an ambulance path from vy to v), the
directed edge from v to w, and path P,, (an ambulance path from w to vg). Let P,
(P,,) contains f, (f},) forward edges and b, (b)) backward edges. Since all cycles

in graph H are balanced by hypothesis,
fo—by+1+f, -0, =0.
Consequently,

p(v) = p(w) = N(v) = N(w) = (fo = by) — (b, — fo,) = -1
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which is set out to be shown.
In addition, since all ambulance paths in graph H have net length < m by

hypothesis and £ = |[N(2) — N(y)| indicates the existence of a path of net length ¢

between vertices z and v,
0 < p(v) = |p(v)| = IN(v) = Nmin| <m

for any v € V. Thus p is a mapping from the vertex set V of graph H to the set
{0,1,...,m} and H is a graded digraph of rank m.

<= Now suppose H (with vertex set V) is a graded digraph of rank m such that
vertex v € V has rank p(v). We need to prove that (i) all ambulance paths in H
_have net length < m and (ii) all cycles in H are balanced.

To prove (i), consider any ambulance path of net length £ between vertices v

and w. Then

t=|p(v) — p(w)| < p(v) —0<m

by hypothesis. Thus all ambulance paths in H have net length < m.

To prove (ii), let A be a vertex on a cycle in graph H. This cycle can also be
considered as an ambulance path of net length ¢ = p(A4) — p(A4) = 0 that starts from
vertex A and back to A. Thus this cycle must be a balanced cycle. |

Theorem 4.8 summarizes the necessary conditions for universal deBruijn build-

ing blocks.

Theorem 4.8. If a digraph H is a universal deBruijn building block for the family
of deBruijn graphs {B%},>n, then

(i) H cannot contain two vertices X and Y such that there are more than

one path of the same length from X to Y.

(i) H is a graded digraph.
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Proof: Condition (i) follows from Theorem 4.6 (i). Condition (ii) follows from

Theorem 4.6 (ii) and Lemma 4.7. [ |

Many digraphs satisfy the two necessary conditions listed in Theorem 4.8. In
particular, any spanning subgraplﬂL H of Bj that is a graded digraph will definitely
satisfy condition (ii). If we further restrict the rank of H to be < k, condition (i) will
also be satisfied by Theorem 4.1 and Lemma 4.7. Surprisingly, these two conditions,

1e.,
(i) H is a graded digraph.
(iv) H has rank < k.

are actually sufficient conditions for any spanning subgraph H of B{ to be a uni-

versal deBruijn building block for the family of deBruijn graphs {BZ},>.

Theorem 4.9. Any spanning subgraph of B] that is a graded digraph of rank < k
is a universal deBruijn building block for the family of deBruijn graphs {BZ},>.

We first prove two lemmas that are necessary to prove Theorem 4.9. For
convenience, we define V7 to be the set of all n-dimensional g-ary vectors. For a
fixed g, we define three linear mappings L, R, and C (“left,” “right,” and “center”)
from V) to V,_,. (Technically, the mappings L, R , and C are each families of
mappings, one for each n > 2.) I # = [x1,...,2,] is a g-ary vector of length n,
then

Le =(x1,...,8n-1)
Re = (z2,...,2,)

Ce=(x1 —22,...,8n—1 — Tp) (mod q).

For example, for ¢ = 2, if # = [10110], then Lz = [1011], Rz = [0110], and
Cz = [1101].

i A spanning subgraph H of graph G is a subgraph that contains all vertices of G.
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Lemma 4.10. The mappings L and R commute with C | 1.e., CLz = LCx and
CRx = RCx for any g-ary vector z of length > 3.

Proof: By direct computation we find that if # = [21,...,2,], then

CLx =LCx={z; —23,...,8p—2 — Tp—1];

CRx = RCx =29 —w3,...,Tp—1 — Tp)-

We now define the burst agreement B(x,y) between two n-vectors ¢ and y as
the length of the largest block of consecutive components on which # and y agree.

For example if ¢ = [11010010] and y = [01110001], then B(z,y) = 3 because = and

y agree in positions 4, 5, and 6, but in no set of four or more consecutive positions.

Lemma 4.11. If z and y are two n-vectors with C"z = C"y, and B(z,y) > r,

then x = y.

Proof: We use induction on r. For r = 1, the assertion is that if Cz = Cy, and
if £ and y agree in at least one coordinate, then = and y are identical. To see

that this is so, note that C is a linear mapping from V! to V!_,. Its nullspace,

i.e., the set of &’s such that Cz = 0, is the set of vectors [z1,...,z,] such that
Ty — Xy =Xy — L3 = -+ = &p_1 — &, = 0. This set contains only the ¢ vectors
[00---0], [11---1],...,[¢g—1,9—1,---,q—1]. Thusif Cz = Cy, then either 2 = y or

e=y+[ii---1] (1 <i<g—1),ie., z and y differ in all n positions. It follows that
it Cx = Cy and if © and y agree in at least one place, then z = y. This completes

the proof for r = 1.

We now assume r > 2, and that the lemma has been proved for all »' < r. If
B(x,y) > r, ie., if ¢ and y agree on r consecutive positions, then clearly Cz and
Cy agree on at least r — 1 positions. Thus if we let ' = Cz and y' = Cy, then
B(«',y') > r—1. Also, the hypothesis C"z = C"y is equivalent to C" 71z’ = C" 1y
Thus by the induction hypothesis, ' =y', i.e., Cx = Cy. But also B(z,y) > r > 1,
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so that by the » = 1 case of the lemma, which has already been proved, z = y. |}

We now return to prove Theorem 4.9 by showing that any spanning subgraph

of Bj that is a graded digraph of rank k builds Bf for all n > k.

Proof of Theorem 4.9: Let H} be a spanning subgraph of B} that is also a
graded digraph of rank k. Let p be the rank function that maps the vertex set V,!
of H] to the set {0,1,...,k}. For any X = [X1,X,,...,X,] € V4, suppose that
C"*X =z € V!, and p(z) = i. We define the (n — k)-bit chip number of X,
denoted by num(X), as

(4.12) num(X) = [ Xy, ..., Xitn—k]

Note that since 0 <¢ <k, then 1 <i+4+1<i+n—k <n, so that the chip number
as defined in (4.12) “fits” within the field of X. In building BZ with ¢"~* copies
of H} (“chips”), numbered [0,0,---,0] to [g—1,¢ — 1,---,¢q — 1], we place vertex
X on the chip numbered num(X), at the location corresponding to z = C* *X.
Lemma 4.11 shows that no two vertices of B can be assigned the same location on
the same chip, so that each of the ¢™ vertices in Bf is assigned a unique “home”
on one of the ¢"~* chips. What remains to show is that the connections within the
chips correspond to connections in the big graph B, i.e., that if num(X) = num(Y")
and if C**X and C"*Y are connected on H}, then X and Y are connected in

Bl ie, LX = RY.

To see this, we reason as follows. Since C**X and C™ *Y are connected on
H}, then p(C™*Y) = p(C"*X) + 1. Thus if p(C"*X) = 4, then p(C"*Y) =

¢ + 1, and so, since num(X ) = num(Y"), we have

(Xit1; o, Xign—i] = Yigz, - o, Yidn—kt1]-
Thus LX and RY agree on n — k consecutive positions, i.e.,

(4.13) B(LX,RY)>n— k.
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But also, since C* *X and C™ %Y are connected on H], we have LC" kX =

RC™ *Y, which, by Lemma 4.10, implies
(4.14) C"FLX = C"FRY.

Combining (4.13) and (4.14), using Lemma 4.11, we find that LX = RY’, which is

what we set out to prove. |

There is a small gap between the necessary conditions (Theorem 4.8) and the
sufficient conditions (Theorem 4.9) on universal deBruijn building blocks. If H
is a spanning subgraph of B} such that H satisfies the necessary conditions (in
Theorem 4.8) and H has rank > k, it is not known, in general, whether or not
H is a universal deBruijn building block. Al the graphs that have been found
in this “gap” have been shown to be universal deBruijn building blocks. As an
example, a Hamilton path of B, which falls into this “gap”, is a universal deBruijn
building block since all deBruijn graphs BY are Hamiltonian [Golo82]. However,
the construction in Theorem 4.9 fails to provide a general proof since num(X) in

Equation (4.12) does not “fit” within the field of X.

4.7. An Example For Building B

In Figure 4.4, the graph Bs(p) is both a spanning subgraph of B; and a graded
digraph of rank 3. By Theorem 4.9, Bs(p) is a universal deBruijn building block
for the family of deBruijn graphs {B,},>3. We illustrate the construction in the
proof of Theorem 4.9, by building the graph Bjs with four copies of the universal
deBruijn building block Bs(p). We begin with Table 4.3, which lists, for each of the
32 possible 5-bit vectors X, the 3-bit vector # = C?X, and the corresponding rank

p().

We number the four copies of Bs(p) 00, 01, 10 and 11. Table 4.3 can be used

to find the chip number and the location within a chip of each 5-bit vector X, as
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100 010 |—={ 001 = 000 |
101 110 —=] o011 |

111

Figure 4.4. The universal deBruijn building block Bs(p).

chip 00 chip 01
100101 [=400010 | =-00001 |=-00000|  [01111}=/10111={01011}={10101|
Loo1oo}>§1oo101%o1oo1] 101110 00111 |=>{00011 |

chip 10 chip 11
110000 [=01000 ={10100 =01010]  [11010}={11101 [={11110}=11111
|1ooo1k>§{11oook%111oo] }11011&01101}%101101

Figure 4.5. Four copies of the graph Bs(p) in Figure 4.4
labelled to form a spanning subgraph of Bs. This is a four-
chip VLSI decomposition of Bj of efficiency 0.50.
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X z=0C*X p(=x) X =C*X px)
00000 000 3 10000 100 0
00001 001 2 10001 101 0
00010 010 1 10010 110 1
00011 011 2 10011 111 1
00100 101 0 10100 001 2
00101 100 0 10101 000 3
00110 111 1 10110 011 2
00111 110 1 10111 010 1
01000 010 1 11000 110 1
01001 011 2 11001 111 1
01010 000 3 11010 100 0
01011 001 2 11011 101 0
01100 111 1 11100 011 2
01101 110 1 11101 010 1
01110 101 0 11110 001 2
01111 100 0 11111 000 3

Table 4.3. A table for building B; from 4 copies of the

graph Bs(p) in Figure 4.4.

follows. For a given X, the value z = C2X gives the location, and the two bits of
X in positions p(z) + 1 and p(x) + 2, which are underlined in the table, give the
chip number. For example, consider X = 11000. According to the table, 2 = 110,
p(z) = 1, and the underlined bits are 10. Thus X is placed in location 110 in the
chip numbered 10. The complete assignment of vertices of By to the four chips is
shown in Figure 4.5. Note that these four chips can be wired together to form Bj
with an efficiency of 0.50.
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4.8. The Most Efficient Known Universal DeBruijn Building Blocks

From Theorem 4.9, we can obtain universal deBruijn building blocks Ugq,k) of size
g* for the family of deBruijn graphs {B%},>, by searching for spanning subgraphs
of B} that is a graded digraph of rank < k. Figures 4.4 and 4.6-4.10 show the most
efficient Uy 1) building blocks we have been able to find, using ad hoc methods, for
1<k<L AR particular, Figure 4.10 shows the most efficient known U, 7y building
block that is being used to build the single board Viterbi decoder for the Galileo
code. (In Figures 4.7-4.10, the vertex labels shown are the decimal equivalents
of the actual binary labels.) For each of the most efficient known U(a,x) building
blocks, we list, in Table 4.4, the number of edges E(Uy, 1) and the efficiency

qn—kE(U(q,k)) . E(U(y,x))

(4.15) eff(Ug ) F BL) = xS = T

which is independent of n. That is, the efficiency of a universal deBruijn building
block U 1) is independent of the size of the deBruijn graph B which it is used to
build.

p=0 —1 p= p=1 p=

1 =10 | 01 |—={ 00 |

(a) (b)

Figure 4.6. (a) The most efficient U, 1y building block. (b)
The most efficient U, o) building block.

f The building block for k = 5 was discovered by Gordon Oliver and the building blocks for
k = 6 and k = 7 were discovered by Sam Dolinar, both from the Jet Propulsion Laboratories.

Gordon has also found a building block for k = 8 with 398 edges.
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k Uzky  E(U@pr) eff(Ugr Bl  cer  Eawound(Uek)
1 Fig. 4.6(a) 1 0.250 1.500 1
2 Tig. 4.6(b) 3 0.375 1.875 4
3 Fig 4.4 8 0.500 2.000 9
4 Fig 4.7 19 0.594 2.031 22
5  Fig 4.8 43 0.672 1.969 48
6  Fig. 4.9 92 0.719 1.969 101
7 Fig. 4.10 193 0.754 1.969 209
8  Fig. —— 398 0.777 2.004 431

Table 4.4. The most efficient known U(; ) building blocks,
for 1 < k < 8. ¢2,1) and Eupouna(U(a,r)) are defined in Equa-
tions (4.19) and (4.17).

We have been able to show by exhaustive search that the entries for 1 < k <4
are optimal in Table 4.4. For larger values of k, we can determine how much
improvement may be possible by obtaining an upper bound for the number of edges
in a U, py building block. We note that there is at most one path between any two
vertices X and Y in a universal deBruijn building block as implied by necessary
conditions (i) and (i) in Theorem 4.8. Thus we may apply Theorem 6.2 to obtain
a lower bound on the number of input edges w (defined in Section 6.1) for any
universal deBruijn building block U, i) with ¢~ vertices. By letting d; = ¢ for all

the ¢* vertices v; in Theorem 6.2, we obtain
(4.16) ¢t < wlog, w.

Since w log, w is a monotonic increasing function, there exists an integer wmin (g, k),

for a given ¢ and k, which is the smallest among all integers w that satify Inequal-
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p=0 p=1 p=2 p= p=4

%1\
\
]11 13 14 7 |

Figure 4.7. The most efficient U 4) building block. The

edge count is 19.

ity (4.16). Then the number of edges in any universal deBruijn building block Uy, x)
1s bounded above by

(4:.17) E(U(q,k)) S Eubound(U(q,k‘)) - qk+1 - wmin((lak)'

The values of Eubound(U@’k)), for 1 < k < 8, are listed in Table 4.4.

Similar to the derivation in Section 4.4, we may apply Lemma 4.5 on Inequal-

ity (4.16) to obtain
qk—i—l

k+1
Thus (4.17) becomes, after dividing both sides by ¢**!

w >

1

The following theorem gives a general construction for universal deBruijn build-

ing blocks that have an efficiency very close to the upper bound (4.18).

Theorem 4.12. Let Sg be the set of all g-ary strings X of length n such that one

of the longest run of zeros in X is either at the extreme left or the extreme right.
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p=1 p=2 p=3 p=4 p=5

6|

[19 — 25 | 14 =] 7 |
10 5 |
\11821}%{26 13

gzg 30|

27
131 | =/15[ -] 23]

22 |

Figure 4.8. The most efficient known Uy, 5y building block.
The edge count is 43.

Let H{ be a spanning subgraph of B} that does not contain any edge € S} 41 and
contains all edges ¢ S 41 H  is a universal deBruijn building block for the family
of deBruijn graphs {B},>; with an efficiency > 1 — 2¢*/(k + 3).

Proof: By Theorems 4.3, 4.4, and Lemma 4.7, H] is a graded digraph of rank
< k. Since H} is also a spanning subgraph of B}, by Theorem 4.9, H} is a universal

deBruijn building block for the family of deBruijn graphs {Bg},>.

To obtain the efficiency, we use an idea from Schwabe [Schw91] to count the
number of elements in the set Sf . Let Y C S{, | be the set of g-ary strings X of
length k + 1 such that one of the longest run of zeros in X is at the extreme left.
Consider the mapping ¥ — 0Y'1. This is a one-to-one mapping of strings € Y to

strings of length k + 3 that have a unique longest run of zeros at the extreme left
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p=6

139851 %::%13[30 H15 |
51

42!

1 21 \;
AHIA s

Ec] = 43 ]
(63 | =31 [ ={47]

| 53 58

Figure 4.9. The most efficient known U, ¢, building block.
The edge count is 92.

and are lexicographically least among their cyclic shifts. The size of this set and
thus the number of elments in ¥ is < ¢**3/(k + 3). Similarly, the number of g-ary
strings X € SZ+1 such that one of the longest run of zeros in X is at the extreme

right is also < ¢**%/(k + 3).
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T25k S17e] H
127} =l 63 | = 95 ] 111 116 123

Figure 4.10. The most efficient known Uy, 7y building block.
The edge count is 193.

Consequently, the number of elements in S{,, is < 2¢"3/(k + 3) and the

efficiency is
2¢*

eff(H,fl—Bg)>1—k+3

as stated in this theorem. |
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Combining (4.18) and Theorem 4.12, we obtain

2q2

(4.19) R

<lminfe, ) <limsupef, ) <1- 7=

where ef, denotes the efficiency for the most efficient universal deBruijn building

block U, 1.

We may obtain similar asymptotic behavior for general VLSI decomposition

for deBruijn graphs BZ. Combining (4.10), (4.11) and Theorem 4.12, we obtain

2¢* . . 1
(4.20) 1-— ? fll- 3 < ]lkII_l)loI})f eNI(B,ql;qk) < hﬂsolip eNI(B,%;qk) <1-— z
and
(4.21) 1— 2¢° < liminf e,(B1; k)<]imsu er(BL; k)<1——l
. k+3 s o0 I n1q = k—>oop I n1 4 — k

By comparing (4.19) with (4.20) and (4.21), we can conclude that it is not a severe
restriction in requiring the subgraphs to be both “isomorphic” and “universal” in

a VLSI decomposition of deBruijn graphs B into a large number of subgraphs.

In Table 4.4, we also list the values of ¢(, xy which is defined by

[84 k)
4.22 F(U FBI) =1 — @k

It seems that the efficiency for the most efficient U, j) building block approaches
1-2/(k+1)ask — oo,
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V. Shuffle-Exchange Graphs

5.1. Binary Shuffle-Exchange Graphs ¥,

The binary shuffle-exchange graph ¥,, consists of 2" vertices, each represented by
a binary n-tuple, 2" shuffle edges, each labelled by a binary n-tuple, and 2"7! ex-
change edges, each labelled by a binary (n—1)-tuple. The shuffle edge z 25 -z, is a
directed edge from zs23 - 2,2 to 212923 - - 2,,. The exchange edge z129 - 2,1
is an undirected edge connecting O0zi22 - &p—1 and lzjzy---x,—;. Figure 5.1

shows the binary shuffle-exchange graph ¥s;.

Figure 5.1. The binary shuffle-exchange graph ¥;.

5.2. Properties of Shufle-Exchange Graphs ¥,

The binary shuffle-exchange graph ¥, bears a strong resemblance to the binary
deBruijn graph B,. Every edge in the deBruijn graph B,, can be obtained by either
one shuffle edge or a shuffle edge followed by an exchange edge in ¥,,. The theorems
and the corresponding proofs for deBruijn graphs can be adapted to shuffle-exchange
graphs as shown in this section. (The definitions for trail, net length, et al. are

given in Section 4.3.)
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Theorem 5.1. If X and Y are vertices in ¥,,, and ! is a positive integer with

[ < n, then there cannot be more than one trail of net length [ from X to Y.

Proof: Let X = zozp_12p—2---21. Let P, (0 <7 < [—1) to be the vertex
immediately preceding the (¢4 1)th forward edge in a trail from X to Y and let
P, =Y. The vertex Py must be of the form yox,_1%,—2 -2 where yy = z¢ if Py
is the same as vertex X and yo = Tp if the first edge is an exchange edge in the
trail from X to Y. The vertex P; must be of the form ¥ yozn_12pn—2 - 22 where
y1 = x1 if Py 1s connected to P; by a shuffle edge and y; = #y if Py is connected
to P by a shuffle edge followed by an exchange edge. Continuing in this way, the
vertex Y is of the form Y = yyi—1 - - yo2pn_12n—2 - 2141 where, for 1 < i < [,
y; = x; if P;_y is connected to P; by a shuffle edge and y; = z7 if P;_; is connected
to P; by a shuffle edge followed by an exchange edge. It follows that the vertices P;
(0 <i <1-1) on the trail, and also the trail itself, is uniquely determined by X
and Y. |

Theorem 5.2. If X and Y are vertices in ¥,,, and [ is a positive integer with
I < n, then there is at most one trail of net length ! that begins with a shuffle edge
from X to Y.

Proof: Let X' be the vertex immediately following X on a trail from X to Y.
Since there is only one shuffle edge originated from any vertex in ¥,,, the vertex X'
is uniquely determined by X. By Theorem 5.1, the remaining trail of net length
I —1 from X' to Y is uniquely determined by X’ and Y. Therefore, the trail, if one
exists, is uniquely determined by X and Y. |

Theorem 5.3. In ¥,, there are at most 27! /[ vertex-disjoint unbalanced (r, s)

cycles, where [ = r + s is the total number of directed edges on the cycle.

Proof: If Il > n — 1, the theorem is trivially true, since ¥, has 2" vertices and

thus at most 2"/I < 2*1 /[ vertex-disjoint unbalanced cycles of net length {. On
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the other hand, if I < n —1, let A = ajas---a, be a vertex which lies on an (r,s)
cycle. Since a cycle may be traversed in either of two opposite directions, we may
assume r > s without loss of generality. After traversing the cycle and returning
back to A, the substring as42as43 - - - an—r will have been shifted to the right r — s

positions and so we have

A = TrTpr—_1 " -$1$0a8+2a8+3 o Gp—rY1Y2 c Ys-

Since this expression must be the same as the original label a;as - - - a,,, by equating

the corresponding bits in positions r + 2 through n — s, we obtain the equations
(5.1) Ui = Qsgi 2<i<n—s-—r).

It follows from (5.1) that A is uniquely determined by the [+ 1 values ag, ay, ..., a,
and @p—s41,@n-s42,-..,0n, so that there are at most 2771+¢ = 2!+1 vertices that
can lie on an (r, s) cycle. Since each (r, s) cycle contains at least [ vertices, it follows
that a set of vertex-disjoint (r,s) cycles (in ¥,) contain at most 2/*'/l members

independent of n. [

Let X and Y be sets of strings. If every string in ¥ has a substring in X, we
say that X covers Y. In addition, if no string in X is a substring of any other string
in X, we say that X is srreducible. The following theorem shows that, if T, is a
set of strings that covers {0,1}", we may remove all unbalanced cycles in ¥, by
deleting all shuffle edges that have a prefix in T,, and all exchange edges that have

an endvertex whose prefix is in T),.

Theorem 5.4. If T, is a set of strings that covers {0,1}", then, for every unbal-

anced cycle in ¥,
(i) there exists a vertex V that has a prefix in T);;

(ii) there exists an edge E such that F is either a shuffle edge with prefix

in T), or an exchange edge with an endvertex whose prefix is in T),.
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Proof: Let P, = ajas---a, be a vertex on an unbalanced (r,s) cycle in ¥,,.
Without loss of generality, we assume r < s (i.e., there are more backward edges
than forward edges) and T}, is irreducible. Let Py, Eq, Py, Es, -+, Py, Ey, Pi4y (where
P41 = Py) be the sequence of vertices and edges if we trace along the cycle starting

from vertex P; and back to P, = Ppyy. Let

!
r = max d(P, P
1<i<i+1 (P1, P:)

= min d(P,P)
1<i<I+1

(5.2)

where d( Py, P;) denotes the signed net length of the ambulance path Py P, --- P;.
Then agyi1ag42+ - ap—p is the longest substring in Py = ajas - - a, such that any
other vertex P;, 2 <1 <[+ 1, contains either the substring as41a549-+-ap_ or

the substring @y 1as 40 Gp_p.

We first prove part (i) of the theorem. Since T,, covers {0,1}", the vertex P,
has at least one substring that is an element in 7,,. Let ayay41 - a, be the first
occurrence (i.e., the leftmost) of a T},-string in P;. If u = 1, then P, has a prefix in
T, and we are done. Otherwise the next vertex P, on the unbalanced cycle has the
label anajay -+ - an—1 (if Eq is a forward edge), or asas - - - ana; (if Ey is a backward
edge), or @iasas ---a, (if Ey is an exchange edge). In all cases, either P; has a
prefix in 7}, or the substring a,ay,41 - - - a, remains to be the first occurrence of a
T,.-string in P,. Continuing this way, if, for all 1 <7 < j, P; does not have a prefix
in Ty, then either Pj;; has a prefix in T),, or the substring a,a,4+1 - - - a, is the first
occurrence of a T,-string in P;y,. Now we consider three cases: (a) u < s' + 1, (b)

v>n—r,and (¢) ' +1l<u<v<n—r.

(a) For the case u < s’ + 1, let u' be the smallest positive integer such that
d(Py,Py) = u,ie.,

u = d(Pl,Pul) < d(Pl,P,) Vi < u'.

Then P,/ has the prefix ay,ay+1 - - a, which is a T},-string.
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(b) For the case v > n — r', let v’ be the smallest positive integer such that
d(Py,Py)=n—v+1,ie,

n—v+1=d(P,Py)>dP,P) Vi<

If, for all 1 < ¢ < v', P; does not have a prefix in T,,, then P, must have a prefix
in T, since a, has been shifted out. That is, P, has the suffix ayayy1---a,_1
and thus P, does not contain any 7,,-string if the prefix of P, is not in T,. This
contradicts with the fact that 7, is a cover for {0,1}".

(c) For the remaining case s' +1 < u < v < n—r', we will show that aya,11 - ay
is not the first occurrence of a T,-string in P; and thus contradicts with the original

assumption. First note that vertex P has the form

P[+1 = wsl_(s_,,)ws/_(s_,,)_l X1 TAs 4205143 Ay Y1Y2 0 - yr'+(s—r)‘

By equating the corresponding bits of Py and Py = ajay -+ a,, we obtain the

equations
(5.3) Ai(s—r) = G (8 +2<i<n-—7).

It follows from (5.3) and s' +1 < u < v < n — r' that the substring
Gy—(s—r) """ Gy—(s—r) = Gy '@y Which has an earlier occurrence in P; is also a

T, -string.

To prove (ii), we use the result in part (1) which asserts the existence of a vertex
P; that has a prefix in T),. In ¥,,, P; is the endvertex of two shuffle edges and an
exchange edge. One of the two shuffle edges has the same label as P; and thus also
has a prefix in T},. Then at least one of the two distinct edges F;_; or F; will satisfy
the desired property, i.e., either a shuffle edge with prefix in T}, or an exchange edge

with an endvertex whose prefix is in T,. [
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Theorem 5.5. If T, is a set of strings that covers {0,1}", then

(i) In an ambulance path of net length > n — 1 in ¥,,, there exists a

vertex V that has a prefix in T),.

(i) In an ambulance path of net length > n in ¥,,, there exists an edge E
such that E is either a shuffle edge with prefix in 7,, or an exchange

edge with an endvertex whose prefix is in T,.

Proof: Let P, =ajay---ay, andlet Py, Eq, Ps, Ey,---, P, Ey, Piy1 be the sequence
of vertices and edges if we trace along an ambulance path from vertex P to Pry;.
Let d(P;, P;) denote the signed net length of the ambulance path from P; to P;.

Without loss of generality, we assume d(P;, P;11) to be non-positive.

Since T}, covers {0,1}", there exists a T,-string, say aydyi1---a,, in Py. If
|d(P1, Pi41)] > n — 1, there must exist a smallest positive integer u' such that
d(Py,Py) = —(u — 1) since u < n and thus —(u — 1) > d(P;, Piy1). Then P,/ has
a prefix that is in T},.

To prove part (ii), note that if |d(Py, Pi41)| > n, then |d(P2, P;)] > n — 1. By
the result in part (i), there exists a vertex P; (2 < ¢ < [) that has a prefix in T),.
Then at least one of the two edges E;_; and E; on the ambulance path will satisfy
the desired property, i.e., either a shuffle edge with prefix in T}, or an exchange edge

with an endvertex whose prefix is in 7),. |

5.3. C-Chip VLSI Decompositions for Shufle-Exchange Graphs ¥,

As stated in Theorem 6.7, for any induced subgraph]L (with external edges) H.,..(m)

with m vertices of ¥,,,

(5.4) 2(1+ 1)(m) < (w'l 4 2m)log,(w'l + 2m) Vi<n

T defined in Section 6.3.
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where w' denotes the number of external edges in H.,,(m). Note that Inequal-
ity (5.4) is exactly the same as Inequality (4.4) with ¢ substituted by 2 and w
substituted by w'. Thus we may use the same derivation in Section 4.4 to obtain

the lower bound
(55) w, Z wlowerbound(27 ma n) - Ilrl<a'x wmin(za m) l)
n

on the number of external edges on any subgraph H.,.(m) of ¥,,. (Wiswervouna(q, m, 1)
and wpin(g, m,l) are defined in Equation (4.5) and the paragraph before (4.5) re-
spectively.) Consequently, since each vertex in H,,,(m) has degree 3, the number

of internal edges in any subgraph H.,,(m) of ¥, is bounded above by
N 1
(56) E\I,tn(m) S 5(37’” - wlowerbound(27 m, n))

Some values of Wiowervouna(2,Mm,n) are listed in Tables 4.1 and 4.2. It follows
from (2.4) and (5.6) that the efficiency of a C-chip VLSI decomposition for
the shuffle-exchange graph ¥,, into subgraphs Hy(k;), Ha(k2),- - - ,Ho(ke) of sizes
k1,k2,...,kc respectively is bounded above by

1
(5'7) eﬁ(Hl (k1)7 HQ(k2)> ot 7‘HC(kC) = lI’n) S 1_ -~ Z wlowerbound(27 kl’ n’)'

32" £
1<:LC

By (4.9), for n > (log, m)1+a where « is a constant > 0,

Wiowerbouna (2, T, 1) > (2m)((logy m) ™ + 1 — log,((logy m)' ™ +1) — log, (2m))
T ((logy m) " *)(logy((logy m)' Y 4+ 1) + log, (2m))
2m

(5.8) = og, m as m — oo.

We may interpret (5.7) and (5.8) as follows. If a large shuffle-exchange graph ¥,

is decomposed into sufficiently small chips of sizes k1, k2, ..., ko, then there are at
least o

>

— log, k;

external wires.
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5.4. Shuffle-Exchange Building Blocks

From Theorems 5.1 and 5.3, we obtain two necessary conditions for shuffle-exchange

building blocks.

Theorem 5.6. If a graph H of size ¢*/C is a building block for the shuffle-
exchange graph ¥,,, then

(i) For any two vertices X and Y in H, there cannot be more than one

trail of the same net length | < n from X to Y.

(i) H does not contain any unbalanced (r,s) cycle such that r + s +1 <
log,C.

Proof: Part (i) follows immediately from Theorem 5.1 since H is a subgraph of

W, For (i), note that Theorem 5.3 implies that C' < 275+ /(5 4 5) < 2rtst1 ||

We may use the results in Section 5.3 to obtain an upper bound for the efficiency
of shuffle-exchange building blocks. By letting ky = ky = - = k¢ = 2% in (5.7),
the efficiency for a building block of size 2* for the shuffle-exchange graph U, is
bounded above by

wlowerbound(27 2k) n)

(5.9) er(¥n;2%) < en(Tp;2%) <1 - L
where

2k+1
(5.10) ]-ik{n inf wlowerbound(2a 2k7 n) Z

for n > k' (where a > 0) as implied by (5.8). That is, if a large shuffle-exchange
graph ¥, is decomposed into sufficiently small subgraphs of equal sizes 2%, then the

set of external edges will contain at least 2/(3k) of the edges in ¥,,.
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5.5. Universal Shuffle-Exchange Building Blocks

We consider universal shuffle-exchange building blocks for the family of shuffle-
exchange graphs {¥,},>n. Since a universal shuffle-exchange building block is
necessary to build shuffle-exchange graphs ¥, with arbitrary large n, it follows

from Theorem 5.6 that

(1) A universal shuffle-exchange building block cannot contain two vertices X and

Y such that there are two trails of the same net length from X to Y.

(i1) A universal shuffle-exchange building block cannot contain any unbalanced

cycle.

Similar to universal deBruijn building blocks (c.f. Section 4.6), condition (ii)
is equivalent to the statement that a universal shuffle-exchange building block must
be a graded graph. In the following, we first extend the definition of graded digraphs
to graphs with both directed and undirected edges.

A graph G with vertex set V is graded of rank m if there is a mapping p from
the vertex set V to the set {0,1,...,m}, such that, for z,y € V, p(y) = p(z) + 1 if
there is a directed edge from z to y and p(y) = p(z) if there is an undirected edge
connecting  and y. We call p(z) the rank of z.

Lemma 5.7. A graph H is a graded graph iff all cycles in H are balanced.
Furthermore, the graded graph H has rank m iff all ambulance paths in H have
net length < m.

Proof: We can prove this lemma by using the same argument given in the proof

of Lemma 4.7. The details are not repeated here. |

Theorem 5.8 summarizes the necessary conditions for universal shuffle-exchange

building blocks.
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Theorem 5.8. If a graph H is a universal shuffle-exchange building block for the
family of shuffle-exchange graphs {¥,},>n, then

(i) H cannot contain two vertices X and ¥ such that there are more than

one trail of the same net length from X to Y.
(i1) H is a graded graph.

Proof: Condition (i) follows from Theorem 5.6 (i). Condition (ii) follows from

Theorem 5.6 (ii) and Lemma 5.7. |

Many graphs satisfy the two necessary conditions listed in Theorem 5.8. By

Theorems 5.3, 5.4, 5.1, and Lemma 5.7, we can obtain such a graph as follows:
(i) Find a set of strings T} that covers {0,1}%.

(ii) Construct the subgraph Hy by deleting from ¥y, all shuffle edges that
have a prefix in Ty and all exchange edges that have an endvertex

whose prefix is in T}.
We will prove that Hj, is indeed a universal shuffle-exchange building block.

Theorem 5.9. If T} covers {0,1}*, then the subgraph ¥ (T}), obtained by delet-
ing from ¥y all shuffle edges that have a prefix in T} and all exchange edges that
have an endvertex whose prefix is in Tk, is a universal shuffle-exchange building

block for the family of shuffle-exchange graphs {¥,},>«-

Proof: We will prove this theorem by showing a general construction to build ¥,
(for all n > k) from 2"* copies of ¥y (T)). Without loss of generality, we assume
Ty to be irreducible.

Let the 2% copies of U (Ty )-chips be numbered by n — k bits ajas - - - an—g,
where a; € {0,1}. We will give a procedure to label the vertices in each chip by
n-bit labels so that the labelled chips can be viewed as isormorphic subgraphs.
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We will then prove that the isormorphic subgraphs are non-overlapping and can
be wired together to form ¥,. The labelling procedure is as follows. Consider a
vertex X = x5+ 2 in an ¥ (Ty)-chip numbered A = ajas -+ an—i. Suppose
LyTyt1- Ty 18 the first occurrence of a Tj-string in X. We will then label vertex

X in chip A as
(511) N(X, A) =122 XpA1A2 " Ak Ly+1Ty+2 " Lytn—k-

We will need to prove the following: (i) Each vertex among all the chips has a
distinct label. That is, N(X1, A1) # N(X3, As) unless X1 = X, and A, = A,. (ii)
If two vertices are connected in an W;(7})-chip, then these two vertices are also
connected in the big graph ¥,. That is, if X and Y are connected, then N(X, A)
and N(Y, A) are also connected.

We will prove (i) by showing that each n-bit string occurs in one of the 27
labels N(X, A). Then, by the pigeonhole principle, part (i) will be true. Consider
an n-bit string Y = y1y2 - - - yn. Suppose the first occurrence of a Ty-string in Y is
the substring yu yur41 - Yor- Let X = y1 -+ Yo' Yo' bn—kt1 " Yn, i.e., X is obtained
by removing from Y the n—k bits immediately following the first Ty-string. Then
the first occurrence of a Ti-string in X must also be y,/yy41 -« - yor. Consequently,
vertex X in the chip numbered A = ypr 1 1Yor 42 -+ Yorpn—i is labelled by N(X, 4) =

Y:y1y2yn

To prove (ii), let X = z;2, - - - 2; and suppose the first occurrence of a Ty-string
in X is 4 @yq1--- 2. f X and Y are connected by a shuffle edge from X to Y, Y =
zpz1T2 - -Tr—1. If X and Y are connected by an exchange edge, Y = z7zsxs - - - 2.
In both cases, the first occurrence of a Ty-string in ¥ must also be Tylygl Ty
since ¥1(T%) does not have any shuffle edge with prefix in T} or any exchange edge
with an endvertéx whose prefix is in Ty. By Equation (5.11), N(X, A) and N(Y, A)

must also be connected likewise in V. |
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5.6. An Example For Building ¥,

The set of strings Ty = {10,0000,0001,0011,0111,1111} is an irreducible cover for
{0,1}*. By Theorem 5.9, the subgraph ¥4(Ty) (shown in Figure 5.2), obtained
by deleting from ¥, all shufle edges that have a prefix in 7; and all exchange
edges that have an endvertex whose prefix is in Ty, is a universal shuffle-exchange
building block for the family of shuffle-exchange graphs {¥, },>4. We illustrate the
construction in the proof of Theorem 5.9, by building the graph ¥¢ with four copies
of the universal shuffle-exchange building block ¥,(Ty).

Figure 5.2. The universal shuffle-exchange building block
W, (Ty).

Consider the vertex 1100 in Figure 5.2. The first occurrence of a T-string is
the substring 10. By (5.11), we assign N(1100,00) = 110000 to the vertex 1100 in
the chip numbered 00. Similarly, for the other three chips numbered A = 01,10, 11,
we assign N(1100, A) = 11040 to the vertex 1100. After this labelling procedure
is completed for every vertex in ¥4(7},), we obtain four labelled chips as shown in
Figure 5.3. Note that these four chips contain all the 64 vertex labels of ¥g and

they can be wired together to form Y.



page 59

Figure 5.3. Four labelled copies of W4(Ty), with A =
00,01,10,11, that can be wired together to build ¥g.

5.7. The Most Efficient Known ¥, (7)) Building Blocks

Theorem 5.9 provides a method to obtain universal shuffle-exchange building blocks
Uy of size 2F for the family of shuffle-exchange graphs {¥,,},>. Similar to universal
deBruijn building blocks, the efficiency of a universal shuffle-exchange building block
U} is also independent of the size of the shuflle-exchange graph ¥,, which it is used
to build. Indeed,

2n=FE(U}) _ E(Uy)

independent of n. Furthermore, the efficiency of the universal shuffle-exchange
building block ¥ (T%) (obtained by using Theorem 5.9) can be determined from the
set of strings Ty. If we define the cost of a set of binary strings X to be cost(X) =
Yorex 2712l where || denotes the length of string z, we can obtain a lower bound
on the efficiency of ¥;(T}) as follows. Consider an irreducible set of strings T}
that covers {0,1}*. In the shuffle-exchange graph ¥y, there are cost(Ty) - 2% shuffle
edges with a prefix in T} and there are at most cost(T%) - 2F exchange edges with
an endvertex whose prefix is in Tj. Therefore, by (5.12), the efficiency of the
VLSI decomposition for ¥,, into universal shuffle-exchange building blocks U (Tk)
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is bounded below by

3281 — cost(T},) - 2F+1

(5.13) eff(Wi(Ty) F ¥,) > 3 9k=1

4
=1- gcost(Tk).

It follows from (5.13) that we can obtain efficient universal shuffle-exchange
building blocks from low cost irreducible sets T} that cover {0,1}%. Although a
minimum cost irreducible set T} (that covers {0,1}*) does not guarantee to provide
the most efficient W (T%) building block, T} gives an indication on how efficient a
universal shuffle-exchange building block we can get. In Table 5.1, we list some
minimum cost irreducible sets T, for 1 < k <9, which are obtained by exhaustive
computer search. For a given k, the minimum cost irreducible set T} is not unique

and we have chosen one randomly to be listed in the table,

For each of the irreducible sets T} shown in Table 5.1, we list the cost of
Ty and the efficiency of eff(¥x(T¥) F ¥,) in Table 5.2. The lower bound for
the efficiency eff(¥4(T7) F ¥,,) is computed by using (5.13). The actual value of
eff( Wi (T}) = ¥,) is obtained by counting the number of edges in Ui(T}). The
upper bound for the efficiency eff(¥x(T) - ¥,,) is computed by using (5.16) which
will be derived later in this section. As an example, consider the case k = 4 with
Ty = {10,0000,0001,0011,0111,1111}. We find that cost(I}) = 272 + 5. 2% =
9/16. By (5.13), eff(¥4(T}) F ¥,) is bounded below by 1 — (4/3) - cost(T}) =
1—(4/3)-(9/16) = 12/48. By (5.16), eff(U4(T) - ¥,,) is bounded above by 38/48
since wy,;,(4) = 10. We can obtain the actual value of eff(¥,(7}) - ¥,,) indirectly
by counting the number of exchange edges that have both endvertices with prefix in
Ty. (In general, the number of edges in ¥ (T}) is equal to 3-25~1 —cost(Ty)-28+1 4+ N
where N denotes the number of exchange edges that have both endvertices with
prefix in T;.) We note that there are four exchange edges, namely, 000, 001, 011,
and 111, that have such a property in ¥4. Thus the number of edges in U4 (7}) is
24 — 18 +4 = 10 and eff(¥,(7T;) F ¥,,) = 20/48 as shown in Table 5.2.

Similar to the derivation of (4.16) for universal deBruijn building blocks, we
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kT

1 {1,0}

2 {1,00}

3 {1,000}

4 {10,0000,0001,0011,0111,1111}

5  {10,00000,00001,00011,00111,01111,11111}

6  {10,000000,000001,000011,000111,001111,011111,111111}
7 {10,0000000,0000001,0000011,0000111,0001111, 0011111,

0111111,1111111}

8  {100,1101,010101,010111,011111, 0000001, 0000101,
0000111, 00000000, 00000110, 00010110, 00011110,
11111110,11111111}

9 {100,1101,0000001,0101011,0101111,0111111, 00001011,
00001111, 01010101, 060000000, 000001010, 000001110,
000010101, 000101010,000101110,000111110,
111111110,111111111}

Table 5.1. The minimum cost irreducible sets Ty that cover

{0,1}*, for 1 <k <09.

may obtain a lower bound on the number of external edges for universal shuffle-
exchange building blocks. By Theorem 5.8, there is at most one trail between any
two vertices in a universal shuffle-exchange building block. Thus we may apply
Theorem 6.8, by letting m = 2F for a universal shuffle-exchange building block Uy

of size 2%, to obtain
(5.14) 28 < w'log, w'

where w' denotes the number of external edges. Again, since w'log, w' is a mono-
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k  cost(Ty)-2F eff(U(TF) - ¥,) - 3-2F
lower bound actual value upper bound

1 2 -2 0 3
2 3 0 2 8
3 5 4 6 17
4 9 12 20 38
5 14 40 50 80
6 23 100 112 165
7 40 224 238 337
8 72 480 520 687
9 127 1028 1080 1392

Table 5.2. The cost and the efficiency for T} given in
Table 5.1. The lower and upper bounds for the efficiency
eff(V(Ty) = ¥,) are obtained from (5.13) and (5.16) re-
spectively. The actual value of eff(¥(T}7) F ¥,,) is obtained

by counting the number of edges in ¥i(T}).

tonic increasing function, there exists a smallest integer w} . (k) that satifies In-
equality (5.14). Consequently, since each vertex in U has degree 3, the number of
internal edges in any universal shuffie-exchange building block Uy is bounded above

by
(5.15) B(UL) € 5(3 2% — whyy (k).

From (5.12) and (5.15), we obtain

Wrnin (k)
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In addition, by (5.14) and Lemma 4.5,

2k—i—l
k+1

(5.17) w' >

From (5.16) and (5.17), we obtain the asymptotic upper bound

2

(5.18) eff(Us b ¥n) < 1= 5=,

We can obtain an asymptotic lower bound for the efficiency of the most efficient
universal shuffle-exchange building block Uy as k — oo as follows. Asin Section 4.3,
we define S to be the set of all g-ary strings X of length n such that one of
the longest runs of zeros in X is either at the extreme left or the extreme right.
Schwabe[Schw91] proved that the set of strings S2, covers {0,1}?™. In Section 4.8,

we proved that the number of elements in 52 is < 2™%3/(m + 2). Thus

3
5.19 £(S2,) = 271l < :
(5.19) os(Sh) = 3 27 < oy
Counsequently, by (5.13), for k even,
4 4 3 64
(5.20) (\I!k(Sk/z F¥,)>1- cost(S'k/2) _§ Ey =1 Ty
Combining (5.18) and (5.20), we obtain
64 2

. 1— —— _ <liminfe! <l A L

(5.21) 31 d) S gr_l}loréfek_hzn—_}solipek_l S 1)

where e}, denotes the efficiency for the most efficient universal shuffle-exchange

building block Uy.

For general VLSI decomposition for shuffle-exchange graphs ¥,,, we may com-

bine (5.20) with (5.9) and (5.10) to obtain

64
(5.22) 1-— 3(k i < hmmf eNI(\Ifn,2 ) < hkm_f,ip ext(Wn; 2k )<1-— T
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and

64 2
(5.23) 1-— Skt d) S < hmmf ex(¥n;2F) < hmsup er(U,;2F) <1 - 3

Similar to deBruijn graphs, by comparing (5.21) with (5.22) and (5.23), it is not a
severe restriction in requiring the subgraphs to be both “isomorphic” and “univer-
sal” in a VLSI decomposition of shuffle-exchange graphs ¥,, into a large number of

subgraphs.
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VI. Some General Theorems

6.1. A Classification of Graphs

Each graph (with a non-empty edge set) may be classified as one of three categories:
(i) graphs with only directed edges;
(i1) graphs with only undirected edges;
(i) graphs with both directed and undirected edges.

This chapter presents some theorems for graphs in each of these three categories.
These theorems are useful for obtaining bounds for the efficiency of some VLSI
decompositions as shown in Chapters IV and V. We first extend the definition of

graphs to graphs with external edges.

Let H be a subgraph of G. Let E.,, be a set of edges in G such that each
e; € E.,. is an edge connecting a vertex not in H and a vertex in H. We call the
union of H and E.,, a graph with external edges. Furthermore, if ¢; € E.,, is a
directed edge from a vertex not in H to a vertex in H, we call e; an input edge. If
e; € E.,, is a directed edge from a vertex in H to a vertex not in H, we call e; an
output edge. For convenience, we also use internal edges to refer to all edges that
are in the original subgraph H. Figure 6.1 shows a digraph with 8 input edges and

8 output edges (or a total of 16 external edges).
Theorem 6.1. Let G.,, and G!_, be two graphs with external edges. Let G.,, and

respectively, by replacing all directed

ext

G' s be graphs obtained from G,,, and G’
edges with undirected edges. If G.,, is isormorphic to G'.,,, then G.,, and G’

have the same number of vertices, the same number of internal edges and the same

number of external edges.
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% vertices

— & external edges

—> internal edges

Figure 6.1. A digraph with 8 input edges and 8 output
edges (or a total of 16 external edges).

Proof: The proof follows by noting that there is a one-to-one mapping on the
vertices, internal edges and external edges among the four graphs G..., Goxi, G,

and G/_,. [

By Theorem 6.1, any theorem given in this chapter can actually be applied to
any type of graphs, i.e., directed, undirected, or both. However, it usually requires
a clever choice of the mapping to obtain good bounds. In addition, the proofs in

Theorems 6.6-6.8 demonstrate some extensions of this mapping technique.

6.2. Directed Graph Bounds

This section introduces four theorems for directed graphs.

Theorem 6.2. (Collins [Coll92b]). Let H.,, be a digraph with external edges
such that each vertex in H,,, has the same in-degree as out-degree. Let V be the
vertex set of H.,.. If, for any two vertices X,Y € V, there is at most one path from

X toY in H,.,,, then

Z dilogd; <wlogw
v; EV
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where d; denotes the in-degree of vertex v;, and w denotes the number of input

edges for H,,,.

— ——
- in-degree d; out-degree d; —
— 3 —

w inputs w outputs

Figure 6.2. A digraph with external edges in which vertex

v; has in-degree = out-degree = d;.

Proof (Collins [Coll92b]):  Referring to Figure 6.2, let the w input edges for
H... be denoted by ey, es,...,ey,. Since each vertex in H.,, has the same in-degree
as out-degree, the number of output edges is also w. We imagine that a token
is injected into H.,, through one of the input edges e; and each node acts like a
random switching element such that when a token arrives at the node, it is equally
likely to be put out on one of its outgoing edges. The token will eventually leave
H.,, through one of the w output edges since there is no cycle in H,,,. (Otherwise
the existence of a cycle in H.,,, will contradict the hypothesis that there is at most
one path between two vertices in H.,,.) Then the entropy of the random variable
that specifies the probability for the token leaving on one of the w output edges
must equal } o p;(i)logd; where p;(i) is the probability of the token passing

through vertex v; (when the token is injected through input edge e;) since there is
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at most one path of getting from e; to each one of the output edges. Thus

(6.1) Z p;j(1)log d; <log(w).

v; €V

Now imagine that a token is injected into H.,, through each one of the input

edges. Equation (6.1) becomes

Z Z pj(i)log d; < wlog(w)

J=1v; €V
w
= Zp](z log d; < wlog(w)
v; €V 3=1
= Z d;log d; < wlog(w)
v; EV
since there is an average of d; tokens passing through vertex v;. |

Theorem 6.3. Let H,,, be a digraph with external edges such that each vertex
in H,, has the same in-degree as out-degree. Let V be the vertex set of H,,, and

let I be a positive integer. If, for any two vertices X,Y € V| there is at most one

path of length [ from X to Y in H,,,, then

(+1) ) (dilogds) < (wi+ Y di)log(wl + Y _ d;)

v, EV 9, €V v, EV

where d; denotes the in-degree of vertex v;, and w denotes the number of input

edges of H.,,.

Proof: Given a positive integer [ and a digraph (with external edges). H.,, with
vertex set V = {vi,v2,---,v,}, we may construct another digraph (with external

edges) H! (1) with (I 4 1)(n) vertices, labelled by ordered pairs (v;,y), 1 <i < n,

ext
0 <y < I. There is an internal directed edge from (v;,y;) to (v;,y;) in H' (1) iff
y; = y; + 1 and there exists a directed edge from v; to v; in H.,,. If there is an
input edge to vertex v; in H.,,, there is a corresponding input edge to each vertex

(vi,y), 1 <y <lin H!_(I). Similarly, if there is an output edge from vertex v; in

ext
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H.,., there is a corresponding output edge from each vertex (v;,y), 0 <y <I1—-1
in H'

ext

(1). In addition, there are d; input edges to vertex (v;,0) and there are d;
output edges from vertex (v;,!) in H' (I). An example is shown in Figure 6.3 with
a subgraph (with external edges) H.,, of deBruijn graph B; and the corresponding
H! (I =3).

ext

\ \
:::g:(ooqo)“y*e’(ooa1)‘\ \ - (000,2) \\ =71(000,3) [ &

4
— 20010 "\ o1, \\_j©01.2) O\ \J©001,3) — =
3 4
—31(010,0) [ (010,1) [ (010,2) (010,3) %~
\
% (100,0 \ 100,1 \ 100,2 \ -
— = (100,0) [ \N(100,1) [\ N(100,2) [\ N(1003) [— =
NN AN e 3
NS N SN— T T T T T
\\ \\\ T e — e
\\ \\\\\\\\\\\\\\\ 3>>
____________ -

Figure 6.3. (a) A subgraph (with external edges) H.,, of
deBruijn graph Bs. (b) The corresponding H!  (I=3).
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Since there is at most one path of length ! from any vertex X to any vertex Y in
H.,., there is at most one path from vertex (v;,0) to vertex (v;,1), where v;,v; € V,

in graph H' (). It follows that there is never more than one path between any two

e

1) and thus we may apply Theorem 6.2 on H! (I). By noting that
g

ext

vertices in H'

ext

there are ) . d; input edges entering the column 0 and there are w input edges

entering each of the other [ columns, we obtain the desired inequality

(6.2) (+1) > (dilogdi) < (wl+ Y di)log(wl + Y d)

9, €V v, EV v, EV

by Theorem 6.2. i

Theorems 6.2 and 6.3 can be generalized to other digraphs that contain vertices

v; with different in-degrees d;;, and out-degrees d If d;;, < d;... we may add

diow, — d
d

tin Tout® in tout

i out iin Phantom input edges to vertex v;. Similarly, if d;_,, < d;,,, we may add

d;... phantom output edges to vertex v;. Then we may apply Theorems 6.2 and

tin
6.3 on this new graph with “phantom” edges. The generalized theorems are stated
in the following. Note that Theorems 6.4 and 6.5 degenerate back to Theorems 6.2

and 6.3 when d;,, = d;,,, for each vertex v; in H_,,.

Theorem 6.4. Let H.. be a digraph with external edges such that vertex v;

in H.,, has in-degree d;;, and out-degree d;,.,. Let d;, ., = max(d;,,,d;,.,,) and

dimin = min(d;,,, di,,,). Let wi, (w...) denote the number of input (output) edges

iin)
for graph H.,,. Let V be the vertex set of H,,,. If, for any two vertices X, Y ¢ V,
there is at most one path from X to Y in H,,,, then

Z dimax log dimax <w 1Og w
v; eV

where

1
w = —2- (win + Woue + Z (dimax - dimin)) :

v €V

Theorem 6.5. Let H,., be a digraph with external edges such that vertex v,

in H.,, has in-degree d;,, and out-degree d;,,,. Let d;,,, = max(d;,,,d;,,,) and
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dimin = min(d;,,, d;.,, ). Let wy, (w,.,,) denote the number of input (output) edges
for graph H.,,. Let V be the vertex set of H,,, and let | be a positive integer. If,
for any two vertices X,Y € V, there is at most one path of length | from X to Y

in H,,,, then

(Z + 1) Z dimax 1Og dimax < (UJl + Z dimax)log(wl + Z dima.x)
v, €V v, EV v, EV

where

w = % (win + wout; + Z (dimax - dlmln)) )

v; €V

6.3. Undirected Graph Bounds

Given a set of graphs {G1,G2,---,G,} where G; has [; vertices with vertex set V; =
{(4,0),(¢,1),---,(i,1;)}, we may form another graph G with I;l,---1, vertices as
follows. The vertices of G are labelled by n-tuples ajas - - a,,, where 0 < a; < I, —1.
Two vertices 2122 -+ -z, and y1ys - - - Y, are connected by an undirected edge iff their
labels are different in exactly one position, say position j, such that vertices (7, z;)
and (j,y;) are connected in G;. Then the graph G can be viewed as a Cartesian

“product” of the graphs G1,Gs,...,G,.

All undirected graphs can be considered as a “product” graph with n = 1. Be-
sides this trivial case, many graphs are “product” graphs with n > 1. In particular,
the n-dimensional hyperplane I, (1,15, ... ,1,) (defined in Section 3.3) is a product
of n complete graphs K;,, 1 <7 < n. As another example, the d-dimensional mesh
M4(n) with wrap-around is a product of n rings where each ring contains d vertices.
In Theorem 6.6, we use the binary n-cube (defined in Section 3.2) as an example to

demonstrate a technique that can be applied to any “product” graph.
q PP y P grap

We first begin with a definition. A subgraph (with external edges) H.,, is called

an induced subgraph with external edges if H,,, contains all internal and external
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— —— 001 000 010 — =

—— - 101 100 110 — ——

Figure 6.4. An induced subgraph with external edges of the

binary n-cube I3.

edges that have at least one vertex in H.,,. Figure 6.4 shows an induced subgraph

(with external edges) of the Binary n-cube I}.

Theorem 6.6. Let H.,, be an induced subgraph with external edges of the binary
n-cube I,,. Then

2(n + 1)(m) < (w' 4 2m)log,(w' + 2m)

where w' denotes the number of external edges and m denotes the number of vertices

in H.,.

Proof: Referring to Figure 3.3, we can classify the edges of a binary n-cube (or a
“product” graph in general) into different dimensions. For example, in I's, the edge
connecting vertices 000 and 010 can be viewed as an edge in the second dimension.
In general, an edge connecting two vertices that are different in the rth position
can be classified as an edge in the rth dimension. With this classification, there is
a unique path between any two vertices in I', such that the traversed edges are in
increasing dimensions, i.e., if the traversed edges are in the sequence Ey, E,, ..., Ej,
then dim(E,) < dim(E,) < --- < dim(E;) where dim(F;) denotes the dimension of

edge E;. We will use this idea to prove this theorem.

Given an induced subgraph (with external edges) H.,, with m vertices of I, we

may construct another digraph (with external edges) H! , with (n+1)(m) vertices as

ext

follows. Let V = {v1,v2,-+,vm} be the vertex set of H.,,. We label the (n+1)(m)
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vertices of H! by the ordered pairs (v;,y), 1 < i < m, 0 < y < n. If there is an

ext

undirected edge connecting vertices v; and v; in the rth dimension in H,,,, then
we add, in H , directed edges from (v;,r — 1) to (v;,r) and from (vj,r — 1) to
(vi,r). If there is an external edge connecting to vertex v; in the rth dimension

in H,,,, then we add, in H'

ext?

an input edge to vertex (v;,r) and an output edge

from vertex (v;,r — 1). For each of the vertices (v;,0) in H'

ext )

we add two input

edges. For each of the vertices (v;,n) in H!

ext?

we add two output edges. There are
no other edges to be added besides the edges described above. The graph obtained

by the above procedure is the desired digraph H! , which has the same in-degree as

t

out-degree on each of its vertices. Figure 6.5 shows the digraph H'  constructed

xt

from the induced subgraph shown in Figure 6.4 using the above definition.

constructed

Figure 6.5. The corresponding digraph H!

t

from the induced subgraph shown in Figure 6.4.
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We mentioned at the beginning of this proof that there is a unique path between

any two vertices in I, such that the traversed edges are in increasing dimensions.

!
ext

As a result, the constructed graph H'  satisfies the requirement in Theorem 6.2

that there is at most one path between any two vertices in H! ,. Thus we may apply

Theorem 6.2 on H'

ext

in which each vertex has in-degree (= out-degree) two. Note

that for each external edge in H.,,, there is a corresponding input edge in H’

ext”

In addition, there are 2m input edges entering column 0. Therefore we obtain the

mmequality
(6.3) 2(n +1)(m) < (w' + 2m)log,(w' + 2m)
by applying Theorem 6.2 on H! ,. |

The lower bound on the number of external edges given in Theorem 6.6 is not
a tight bound. It can be shown that the bound (6.3) is weaker than the bound (3.4)
given in Section 3.2. However, (3.4) holds only for binary n-cubes I', while the
technique illustrated in the proof of Theorem 6.6 can be applied to any “product”
graph.

6.4. Bounds on Graphs with Both Directed and Undirected Edges

For graphs with both directed and undirected edges, there are many ways to ap-
ply Theorem 6.2 to obtain lower bounds for the number of external edges. We
will illustrate a technique similar to the one used in the proof of Theorem 6.6. In
Theorems 6.7 and 6.8, we prove two lower bounds on induced subgraphs with ex-
ternal edges (defined in Section 6.3) of the shuffle-exchange graph ¥,, (defined in
Section 5.1). Figure 6.6 shows an induced subgraph (with external edges) of the
shuffle-exchange graph V3.

Theorem 6.7. Let H.,, be an induced subgraph with external edges of the shuffle-
exchange graph ¥,,. Then

2(1 4+ 1)(m) < (w'l 4 2m)log,(w'l + 2m) Vi<n
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Figure 6.6. An induced subgraph with external edges of the
shuffle-exchange graph ¥s.

where w' denotes the number of external edges and m denotes the number of vertices

mH,_,.

Proof: By Theorem 5.2, if X and Y are vertices in ¥, and [ is a positive integer
with [ < n, then there is a unique trail of net length / that begins with a shuffle edge
from X to Y. By noting the similarity of this property with the digraph stated in

Theorem 6.3, we will use a similar method to prove this theorem.

Given a positive integer [ and an induced subgraph (with external edges) H.,,
with m vertices of ¥,,, we may construct another digraph (with external edges)
H! (1) with (21 +1)(m) vertices as follows. Let V = {vy,vs, -+, v, } be the vertex
set of H,,,. We label the (2] +1)(m) vertices of H! (I) by the ordered pairs (v;, y),
1 << m, 0<Ly <2l H there exists a shuffle edge from v; to v; in H,,,, then
we add, in H/!

ext

(1), directed edges from (v;,2y) to (vj,2y + 1) and from (v;,2y) to
vi,2y + 2), for each mteger y such that 0 <y <1 — 1. If there exists an exchange
J g

edge connecting vertices v; and v; in H.,,, then we add, in H! (I), directed edges

from (v;,2y+1) to (v;,2y + 2) and from (v;,2y + 1) to (v;, 2y + 2), for each integer
y such that 0 < y <[ —1. If there is an input edge to vertex v; in H,,,, we add
a corresponding input edge to each vertex (v;,y), 1 <y < 2l in H! (I). If there

is an output edge from vertex v; in H.,,, we add two corresponding output edges

from each vertex (v;,2y), 0 <y <1 —11in H! (I). If there is an external exchange
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edge with endvertex v; in H.,,, then we add an input edge to each vertex (v;,2y),
1 <y <1, and we add an output edge from each vertex (v;,2y+1),0 <y <[ —1.
For each of the vertices (v;,0) in H! (I), we add two input edges. For each of

ext

the vertices (v;,2l) in H!

ext

(1), we add two output edges. There are no other edges
to be added besides the edges described above. The graph obtained by the above
procedure is the desired digraph H! (I) which has the same in-degree as out-degree
on each of its vertices. Figure 6.7 shows the digraph H!  (I=3) constructed from

the induced subgraph shown in Figure 6.6 using the above definition.

000,1 #0003} #0005
—21000,0 000,2 000,4 000,6/ —=

10004,
100,1 0103 0015
—21001,0 >100,2 1010,4 :001,6] =
_001,1} 1003/, § 0105|
—=1010,0 001,2 \%»100,4 010,6 =
010,1 0013 \L 1005 \N
~721100,0 010,2 = 001,4 1100,6 =
101,1 /\\/ 1013} 101,5 //\\
— 11010k 7 101,27 101,41 /7 101,6[ "
A S aRA AR A
/N N /N N /N P

Figure 6.7. The corresponding digraph H! (I = 3) con-

structed from the induced subgraph shown in Figure 6.6.

By Theorem 5.2, if I < n, there is at most one path between any two vertices in
H! (I). Thus we may again apply Theorem 6.2 on H! (1) since ecach vertex has the

same in-degree as out-degree in H!  (I). There are (m)(I+1) vertices with in-degree

two and ml vertices with in-degree one. There are 2m input edges entering column 0
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and w'l input edges entering the remaining 2! columns. Therefore we obtain the

inequality
(6.4) 2(1 4+ 1)(m) < (w'l 4+ 2m)log,(w'l + 2m) Vi<n
by Theorem 6.2. |

The same technique shown in the proof of Theorem 6.7 can be used to modify
Theorem 6.2. We again use the shuffle-exchange graph as an example for illustra-

tion.

Theorem 6.8. Let H.,,, be an induced subgraph with external edges of the shuffle-
exchange graph VU,. If there is at most one trail between any two vertices in H.,,,
then

2m < w'log, w'

where w' denotes the number of external edges and m denotes the number of vertices

m H_,.

Proof: Similar to the proof of Theorem 6.7, we will construct another digraph

such that H'

ext

(with external edges) H! will satisfy the unique path requirement

Xt
in Theorem 6.2. We will use the induced subgraph (with external edges) shown in
Figure 6.8 to demonstrate the construction. Note that there is at most one trail

between any two vertices in the induced subgraph shown in Figure 6.8.

To begin with, let V = {vq,v2,---,vn} be the vertex set of H,,. We then
construct H!  with 2m vertices as follows. We label the vertices of H! , by the

ordered pairs (v;,y), 1 <i < m, y € {0,1}. If there exists a shuffle edge from v;
to v; in H.,,,, then we add, in H!

ext?

directed edges from (v;,1) to (v;,0) and from
(vi,1) to (vj,1). If there exists an exchange edge connecting vertices v; and v; in
H..., then we add, in H.,,, directed edges from (v;,0) to (v;,1) and from (v;,0) to
(vi,1). If there is an input edge to vertex v; in H.,,, we add a corresponding input

edge to each vertex (v;,y), y € {0,1} in H,,,. If there is an output edge from vertex
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Figure 6.8. An induced subgraph (with external edges) H.,,
of ¥3 such that there is at most one trail between any two

vertices in H,,.

v; in H,,., we add two corresponding output edges from vertex (v;,1) in H! . If
there is an external exchange edge with endvertex v; in H.,,, then we add an input
edge to vertex (v;,1) and an output edge from vertex (v;,0). There are no other
edges to be added besides the edges described above. The graph obtained by the
above procedure is the desired digraph H! , in which any two vertices have at most
one path between them. Figure 6.9 shows the digraph H! , constructed from the

induced subgraph shown in Figure 6.8 using the above definition.

Figure 6.9. The corresponding digraph H! , constructed

from the induced subgraph shown in Figure 6.8.
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In H!

ext?

there are m vertices with in-degree (= out-degree) two and another m
vertices with in-degree (= out-degree) one. There are w' input edges and also w’

output edges. Therefore, we obtain the desired inequality
(6.5) 2m < w'log, w'

by Theorem 6.2. |
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VII. Conclusions and Summary

With the recent advances in VLSI technology, the design of VLSI circuits is
becoming limited by the number of available pins rather than by the available chip
area. The results in this thesis provide a guideline on how to decompose several
families of graphs to make full use of the limited number of available pins. As
an example, the methods described in Chapter 4 can be used to design a 64-chip
VLSI decomposition of the deBruijn graph B3 with efficiency 0.754. This chip,
shown in Figure 4.10, is being used by JPL design engineers to build a single-board
fully parallel Viterbi decoder for the Galileo code—a constraint length 15, rate 1/4
convolutional code. In contrast, earlier results|Coll88,Coll92a)] led to a less efficient
256-chip VLSI decomposition of Byg with efficiency 0.563, which was used to design

a multi-board decoder for the Galileo code.
In the following sections, we summarize the major results presented in this

thesis.

7.1. Notations

(1) For general C-chip VLSI decompositions:

DE(G — ki, ka,...,kc) denotes the set of the most efficient C-chip VLSI

decomposition for graph G into chip sizes ky, ko, ..., k.

DE(G — ki, kg, ..., ko) denotes the set of the most efficient known C-chip

VLSI decomposition for graph G into chip sizes kq, kso,. .., kc.

(Hy1,Hs,---,Hc — G) represents the VLSI decomposition for graph G into
subgraphs H1, Hy,..., Hc.

eff(Hy,H,, -+, Hc — G) denotes the efficiency of the VLSI decomposition for
graph G into subgraphs Hy, H,, ..., He.
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e*(G — ki,ks,...,kc) denotes the efficiency of the most efficient C-chip VLSI

decomposition for graph G into chip sizes ki, k2,..., kc.
(2) For VLSI decompositions into equal chip sizes:

D:(G — k) (or DF(G — k)) denotes the set of the most efficient (or the most
efficient known) VLSI decomposition for graph G into subgraphs, that

are not required to be isomorphic, of equal sizes k.

D} (G — k) (or DF (G — k)) denotes the set of the most efficient (or the
most efficient known) VLSI decomposition for graph G into isomorphic

subgraphs of size k.

(H - G) represents the VLSI decomposition for graph G into isomorphic sub-
graphs H.

eff( H - G) denotes the efficiency of the VLSI decomposition for graph G into

isomorphic subgraphs H.

exi(G; k) denotes the efficiency of the most efficient VLSI decomposition for
graph G into subgraphs (that are not required to be isomorphic) of size
k.

e:(G; k) denotes the efficiency of the most efficient VLSI decomposition for
graph G into isomorphic subgraphs of size k.

(3) For universal building blocks, we use similar notations, i.e., notations obtained

by replacing G by {G,}.
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7.2. Complete Graph K,
(1) For general C-chip VLSI decompositions:

DE(Ky — ki, ke, ... ke) = {(Kiy, Kiyy -+, Kk — Kp)}. (Note that there is

an equal sign in this equation since the optimal decomposition is unique. )

Fyp(P2) 4. (*
e (Kn — ki, ko, ... ko) = eff(Kpy, Kiyy - s Ko = Kn) = (2)+<2()£; +(F)

2

(2) For VLSI decompositions into equal chip sizes:
D(Kn — k) = Di(Kp — k) = {(Ki - Kn)}
er(Knj k) = exi( K3 k) = eff(Ki F K,,) = fz%l

T-

(3) For VLSI decompositions into universal building blocks:

D;I({I(Tt}kNln, where NeZ+; k)

- D;‘({I(n}kNM, where NeZ+; k) = {(I(k F {I(n}kN]n)}

61({I{n}kN|n, where NeZ+; k) = eNI({I{n}kNM, where NeZ+; k)
= eff(Ki F {Kubenyn) = 222
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7.3. n-Dimensional Hyperplane I',(I) and Binary n-Cube I, = I,(I=2)
(1) For general C-chip VLSI decompositions:
Di(In(l) — k1, ks, ..., kc) = unknown in general.

" C ki— ) .
e*(Ta(l) = ki b, - ko) < toyerbiyery S (D4, weight(i) )
where weight(7) is defined in Section 3.3.

DE(T(1) — ra1F2 ) 1% D {(Tk, (D), Tk, (1), -+, The (1) — (D))}
eff(Ti, (1), Ty (1), Tre (1) = o) = e Ty (ki 1)
(2) For VLSI decompositions into equal chip sizes:
Din(Lall) = 1%) 2 DHT(D) — 1¥) D (T4 F TaD).
ex(Tn(D); 1%) = exa(Tn(l); 1F) = £
(3) For VLSI decompositions into universal building blocks:

D;I({Fn(l)}nZN, where N>k lk) _D.. D:({Fn(l)}nZN, where N>k; lk)
2 (Le() F {Tn(D)}aznN)-

61({Fn(l)}n2N, where Nék; lk) = eNI({Fn(Z)}nZN, where N>k, lk) = E-

n



7.4. n-Dimensional HyperplaneT Ll ls,. .. 1)

(1) For general C-chip VLSI decompositions:

DE(In(lh, 2, ..o 1n) — k1, k2, ..., kc) = unknown in general.

6*(Fn(ll,12,...,ln) - kl,kQ,... ,kc)

2 C k;—1 . .
< (P P Wy Y ¢y POy ) Dz (Zj:o Welght(l))

where weight(7) is defined in Section 3.3.

(2) For VLSI decompositions into equal chip sizes:

D:II(Fn(ll,lz, e ,ln) — lyly -+ Ig)
D DNl b, .. 1) — Ly - 1)
O (Ik(ly,loy. .. l) F Dp(l, s, .0 1))

ex(Dn(li,lay. .y 1n) lilg -+ - 1g)

L4441 =k
= eNI(I‘n(ll,lz,... ,ln);lllz lk) = m

(3) For VLSI decompositions into universal building blocks:

DY({n(lis by - - ln) b a> N, where N2k; Uil - k)
2 D;‘({Fn(ll, lz, e 7ln)}n2N, where N>kj lll2 cas lk)
D (Le(li,lz, - ) F ATl by 1) Yas )

61({Fn(ll, 12, . 7ln)}n_>_N, where N>k} 1112 v lk)
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= eNI({Fn(lla l2) e ,ln)}nZN, where NZk;lll2 tt lk) - %

f We assume [y > Iy > -+« > [, without loss of generality.
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7.5. d-Dimensional Mesh M/ (n) Without Wrap-Around
(1) For general C-chip VLSI decompositions:

DE(M(n) — ki, ka,. .., kc) = unknown in general.

. c a1
e*(My(n) — ki, ks, ko) < iy ie (kz — ki ) :
De(My(n) — ka', ko, ko) = {(My(k), My(k2), ..., M(kc) = My(n))}.
! ! 1 1 _ 1 C d d-1

(M} (kr), My(ka), ..., M) = My(n)) = ooy Sy (k — k).
(2) For VLSI decompositions into equal chip sizes:

Da(My(n) — k) = Dy (My(n) — k) = {(M(k) b My(n))}.

ex(My(n); k%) = exa(My(n); k?) = (2=t
(3) For VLSI decompositions into universal building blocks:

D;I({Mél(n)}kN[n, where NeZ+; k)
= Dy ({My(n)}kN|n, where Nez+; k) = {(My(k) b {Mz(n)}inn)}-

61({Mtli(n)}kN|n, where NeZ+: k) = eNI({M(li(n)}thz, where NeZ+) k) = EZ)_(:IE)—(IB
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7.6. d-Dimensional Mesh M;(n) With Wrap-Around
(1) For general C-chip VLSI decompositions:
DE(Ma(n) — ki, ks, ..., kc) = unknown in general.
e*(My(n) — ki, ks, ... ko) < L 30 (ﬂgl Y. ki—) .
(2) For VLSI decompositions into equal chip sizes:
D (Mq(n) — k%) 2 {(MY(k) F Ma(n))}.
eff( M) (k) F My(n)) = &L
B2 < el(Ma(n); k%) < en(Ma(n); k) < 551+ 1.
(3) For VLSI decompositions into universal building blocks:

'D;I({Md(n)}k]\fln, where NeZ+; kd)
2 D:({Md(n)}kNM, where NEZ+; kd) 2 {(Mél(k) F {Md(n)}kN|n)}

61({Md(n)}kN|n, where NeZ+; kd) = eNI({Md(n)}kN|n, where NeZ+3; k‘d) = k%l
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7.7. DeBruijn Graph B?
(1) For general C-chip VLSI decompositions:
DE(BE — ki, kg, ..., ko) = unknown in general.

e*(Bqu — k17 kZ) LI 7kC) S 1 - E_ﬁlfi——l ZIS’LSC wlowerbound(Q) ki, n)

where Wioyerbouna(q, ki, 1) is defined in Equation (4.5).
(2) For VLSI decompositions into equal chip sizes:

DH(BE — ¢*) 2 {(H{ + BL)}
where H] is defined in the proof of Theorem 4.9.

2 - owerboun 3 k,
1= k—‘?’—3 < eI(B%;qk) < eNI(B%;qk) <1- = bqk-}i(q . n).

(3) For VLSI decompositions into universal building blocks:

D ({BL}n>N, where N2k ¢F) 2 {(H] F B%)}.

2 2 min 7k
1— 7;1—3 < 61({B%}n21\7, where NZk;qk) <1- ‘ui_qféql_l

where wmyin(g, k) is defined in the paragraph before Equation (4.17).



7.8. Binary Shuffle-Exchange Graph ¥,

(1) For general C-chip VLSI decompositions:
DE(Vy, — ki, k2, ..., kc) = unknown in general.

6*(\I’n - k]_, kz, “ e ,kc’) S 1 - # EISlSC wlowerbound(27 kl) n)

where W erbouna(2, ki, 1) is defined in Equation (4.5).
(2) For VLSI decompositions into equal chip sizes:

Df (¥ — 2°) 2 {(Wk(Tk) b n)}
where ¥ (T}) is defined in Theorem 5.9.

1- < eI(\IIn; 2k) < eNI(‘I’n; 2k) <1- wlowerbound(Z 2k n)

64
3(k+4) 3.2F

(3) For VLSI decompositions into universal building blocks:

D;F({\I’n}nZN, where N>k 2k) .D_ {(\I’k(Tk) + ‘I’n)}

k
1-— 3(k+4) < 61({\11 }n>N where N>k72 ) <1- “%:%E‘l
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where w! . (k) is defined in the paragraph before Equation (5.15).

min
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