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ABSTRACT

In this report the problem of drag reduction or
minimization for adrcraft in supersonic flight is investigated
within the framework of linearized theory of inviscid flow for
fixed flighﬁ Mach number,

General theorems applicable to complete aircraft
configurations are developed. These theorems state defining pro=-
perties of distributions of thickness and normal force restricted
to a particular region of the aircraft configurations that
minimize the drag of the complete aircraft under . the condition
that the distribution of thickness and normal force on the remainder
of the aircraft is specified in advance. These optimum distribu-
tions are further required to satisfy some of the various types
of constraints that are commonly specified for aircraft.

The problem of finding the optimum distribution of
thickness, 1ift and sidefofce on a slender body of revolution is
also studied under the assumption that the body carries no
total 1ift or sideforce and can be represented by placing the
distributions along the body axis., The case for which the Mach
envelope of the body does not include all of the remaining portion
of the aircraft configuration, upon which the thickness and normal
force are specified, is solved. This solution covers the previously
known case for which the Mach envelope of the bedy includes the

entire aircraft.
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I. IRTRODUCTION

1o Statement of Problem,

A crucial problem in the design of supersonic aircraft
is that of achieving a relatively low drag, consistent with other
design requirements of the aircraft., In recent years much
theoretical research has been devoted to this problem. Most of
this research has been done within the frame work of linearized
theory of inviscid flow, and has dealt with specialized problems
such as that of finding the minimum drag of a wing whose plan=
form and 1ift are prescribed or the minimum drag of a fuselage
whose length and volume are prescribed (see examples below),

The present report is an extension and generalization
of previous research, Our aim is to develop general theorems
applicable to complete aircraft configurations rather than to
isolated components such as wings and fuselages. It will be
assumed that certain characteristics of an aircraft are specified
in advance. Examples of such specified characteristics are:

8, The aircraft configuration, By an aircraft configuration
is meant a definite spatial arrangement of wings of fixed
planform and bodies of fixed length.

b, The flight Mach number,

c. A set of constraints, Constraints are, for example:
total 1lift, total fuselage volume, and maximum wing
thickness at the mid-chord as a function of span,

d. The geometry, or the 1lift distribution, of a part of the

airplane may be completely specified,
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The problem is then to find an optimum geémetrical shaype
of the aircraft, i.e. a shape which makes the drag a minimum.

We shall retain the assumptions of linearized theory of
inviscid flow*. The aircraft may then be represented by a distris
bution of singularities (volume elements, lifting elements, etce.,
see below)., A distribution of singularities that gives the minimun
drag, consistent with the specified characteristics of the aire
craft, will be called an optimum distribution, The geometry of

he aircraft is then easily computed from the distribution of
gsingularitiesshence, if an optimum distribution of singularities
has been found, the problem of finding the optimum geometry may
be considered solveds

This report is concerned mainly with general theorens
regarding optimum distributions. Examples will be given to show
how -expiiedt these theorems may be used to determine optimum

distributions explicitly in special cases.

2. Assumptions of Linearized Theory.

Steady, frictionless, isentropic, supersonic flow past
-the aircraft is assumed. The velocity, density, and pressure are
denoted by 'q, p, and P , respectively. These guantities at
upstream infinity (in fact, everywhere up stream of the region of

influence of the aircraft) are denoted EO = Uf, Pyo and Fio’

Y
When the inviscid drag is known, one may make crude estimates
of the viscous drag based on the concept of wetted area. Such
estimates are useful, say, in comparing wings of different
planforms., This problem will, however, not be considered here,



Perturbation quantifies

-
-gl' =3~30=3=Ui=(ugV,3V)
¢ = L4
P! =P = p, (2.1
Pr=F-p

are introduced,
The slopes of the surfaces of wings and bodies are
assumed to be sufficiently small so that the perturbation gquantities
are well represented by linearized theory., A potential #(x,y,z) is
defined such that
3 = (u,v,w) = grad ¢ (2.2)

where § satisfies the wave equation

B Bt B 4 By, =0 (2.3)

The perturbation pressure as given by linearized theory is

pt = mfo Tu (2.4)

Boundary conditions are applied upon mean surfaces in the
case of wings and in the case of bodies upon cylindrical surfaces
or on a mean line near the body axis., In all cases the mean
surfaces, cylinders and lines upon which boundary conditions are

applied,are assumed to be parallel to the free stream direction.

3. Some Typical Problems of Drag Minimization.

The theorems to be derived here are of guite general
nature, To aid in the understanding of the concepts that unders

lie these theorems, examples of more specialized problems which
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already have been studied extensively (see references below)

are given.
1e¢ Given a thin plane
and freestream Mach

that will cause thi

wing of fixed planform, total 1ift L,
number M, find the twist and camber

s 1lift to be distributed so as to

produce minimum drag.

2o Given the fixed pla

nform and Mach number of problem (1)

and the total wing volume V find the thickness distri-

bution that produce

s minimum drag at zero 1lift.

3. Given a body of fixed length ¢, total volume V and

Mach number M, find the distribution of cross-sectional

area t(x) that pr

oduces minimum drag.

The first two problems concern wings that are treated as

planar systems. The general
planform has been studied in
other studies have been made

The mean surface of

e.ge the x,y-plane, If this

problem of plénar wings of fixed
references (1) to (6), Numerous
for particular planform shapes.

~theswing-dis taken to be a plane,

is done then it can be shown that

drag due to lift can be separated from drag due to thickness,

i.es there is no interaction

for non-planar systems.

e This fact is not true in general

The twist and camber is described by a function ¢ (x,y)

defined as the angle that the middle surface of the wing makes

with the free stream direction., X(x,y) is referred to as the

angle of attack distribution

and, within linearized theory, bears

the following relation to the upwash



X (x,y) = _l’“’_(:g_zﬁ (3.1)

The wing thickness, defined as the difference in z-coordinate of
the upper and lower wing surface, is described by the function
t{x,y)e & and t are defined over the region S din the x,y=-

plane referred to as the wing planform, as shown in Fig. 3=1

g

H

ﬂi} ,

F‘ig@ 3)""1 @

The local 1lift distributionﬂ‘I (x,y), is related to
X (x,y) by the formulas of linearized theory. Similarly the
linearized perturbation pressure p'! = "<Fo Uu is computed by
linear theory from t{(x,¥)e.
The total or net 1ift and wing volume are given by
ffﬁ(x,y) dx dy (3.2)
S

jf t(x,y) dx dy (5.3)
S

L

[

=<
1
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The drags due to 1lift and thickness, as has been mentioned, are

separable for the planar wing and are given by the formulas
E &

D(due to 1ift) = ffaﬁ éx &y = i 3 4 ax ay (3.4)
$ S

2t
LS. ~
jsj p' -3 dz dy

D(due to thickness)

i

..Jf/oo Uu -*;l-};- dx 4y (3.5)
e ,

The total inviscid drag is thus given by the sum of equations 3.4
and 3.5,

Because of the linearity of the formulas superposition
can be used., Thus, for example, if CK1 and X 5 are two angles

of=-attack distributions, and if ,Z1 and ,(2 are the correspond=-

ing 1ift distributions, then

implies

£

i

L+ 4

and vice versa, The 1lift and drag are given by

[
l

_,éijdxdy+&fﬁ2dxdy:L1+L2,

o
n

{; (&g + “2)(,Q1+ jg)dxdy

Jsjd1/€1 dx d.V‘*”JS,( (d’i'ea +0(2,f.!) ax dy+

+ ffaa,éa dx dy
S

12 2 °
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The middle term in the drag expression is called the interference

drag and half of its value is symbolically represented by

Ly dp =F0g =3 S ol vl ax s

i

1 J~( W W,
- == sz s e
273 b ,(2 + - [13 dx dy (3.7)
The utility of this notation becomes apparent when several distri=-

butions are considered simultaneously. It is readily seen that
(L dy) = (L, £
:01:(/81911)9 D2=(X2’12> (398)

(W]
i

(/ell +£29 /@1 +/€2) = ([9/?1) + 2([11[2) + (’(29/@2)
In reference 3, the concept of orthogonality was

introduced., Two 1lift distributions /61 and f > were defined to

be orthogonal if their interference drag is zero, i.e,
([rlyﬂa) =0 &

The drag of two orthogonal distributions is then given simply by

the sum of their individual drags, d.e.

D= D1 + D2 o

Similar vrelatiocns exist between thickness distributions
on the wing. The interference drag between two thickness distri-

butions t, and tz is denoted by 2(’51,%2)9 where

(t,,t "Jf L o
Epaty) = = /JOUH»;;-——-+u—-5-—-3dzdy (3.9)
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In references (1) and (2), R.T. Jones developed criteria
that optimum distributions must satisfy for planar wings of
fixed planform. These criteria are generalized in the theorems
of this report so that they can be applied to a complete aircraft
as well as to isolated wings or bodies. This will be done in
Chapter III.

The criteria of references (1) and (2) were found useful
in formulating integral eguations for optimum distributions.
These equations, however, do not lend themselves easily to
mathematical analysis and hencé have been solved in the exact
sense for only a very limited number of planform shapes. Among
these are the elliptical planforms discussed by Jones (ref. 2).
It will be shown in Chapter IV how, in the particular case of sing-
ularities distributed along a streamwise line, an integral equa-
tion formulated from thergeneral theorems of Chapter III can be
solved to obtain an optimum distribution.

Integral methods have been developed (references 3, 4,
5, 6) to obtain approximate solutions that have drag values very
near the minimum. The methods have been applied to planar wings
of fixed planform for the lifting case and readily extend to cover
the thickness case. These methods essentially consist of finding
optimum linear combinations of a finite set of distributions for
which the interference drag between individual distfibutions in
the set can be calculated. No doubt these methods can be extended
further with the aid of the theorems of Chapter III to cover the

case of a complete aircraft,
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I¥., PRELIMINARY DISCUSSION AND FORMULAS

k, Basic Singularities Used in the Linearized Representation

of an Aircraft.

Certain basic solutions of the wave equation are utilized
in the linearized description of the flow about an aircraft,.
The potential representing a source in supersonic flow is such a
‘basic solution of the wave equation., Other basic solutions can
be built up by applying certain limiting procedures to a super-
position of sources. These resulting solutions are the doublet,
horseshoe vortex, line vortex, etc.,

Some of the basic solutions are described briefly in
this section. TFor derivations and more detailed discussion see

references (7) and (8).

Source,
A basic solution of equation 2.% is the potential of a

supersonic source, i.ee.

.
-1
27 { (x= )%= p21Gr- ) a- 021} V/2
Pg = { for x= 3 > [(y~1()2+(2° 3>2]1/2
| (L)
L 0 elsewhere

It can be shown (ref, 7) that equation 4.1 represents a unit

volume flow from the point ( 3,‘7, $)e
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Doublet.

The three-dimensional doublet or dipole,is a second basic
solution of the wave equation and is obtained by allowing a source
and sink of equal magnitude to approach each other, while the
product of the source strength and the distance between the source
and sink remains constant., The axis of the doublet is defined
as the vector extending from the center of the source to the
center of the sink. The doublet is thus a vector gquantity and
the abgve derivation is equivalent to taking the directional
derivative of the source poténtial in the direction of the axis

of the doublet. Thus

i

P
@ (grad g.) - (éz + bj + cE)
D 3

(L“aa)

ax—}?g(by + c2) 1/2

2 2
2M(x- p 2%/ x2 fr=ply e

]

is the potential of a unit doublet at the origin with the direction

cosines of its axis given by (a,b,c)e.

Horseshoe vortex.

The potential of a third basic singularity, called the
horseshoe vortex, is the potential due to a semi-infinite stream-
wise line of doublets of constant strength with their axes normal
to the free stream and all pointing in the same direction, say
Hf + dg. BEquivalently this potential can be obtained by
differentiating the potential due to a semi-infinite streamwise

. . . 2 >
line of sources in the direction bj + ck., Thus
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X= B
d -» -
B =[gradf 1 ¢ (b3 + ck)
- x(by + cz) x)lér (4.3)
27 2 [x°- }622‘2:}172 -
represents a horseshoe vortex of unit strength ([' = 1) located

at the origine The associated force is normal to the x-axis and
o -> -
has magnitude /OOU and direction bj + cke
If equation 4.3 is divided by /poU, the potential for

a unit "force element" is obtained., Thus if b = 0, ¢ = 1, then

g = = x> Br (L.b)
LT oy /ooUraixz_ ﬁ2r231/2 Ay

is the potential of a unit lifting element located at the origin.

Similarly, the potential of a unit side force element is

J
2
X

Bop = — = x> gr (4.5)
TS puell _p2e2] V2 < p

Volune element,

Another useful singularity is the "volume elementi,
The potential of a unit volume element is the free stream velocity
U times the potential of a unit dipole, with axis in the free
stream direction (source upstream from the sink). To show this,

consider the original construction of the dipole. Let

0 = volume of fluid per unit time flowing from source
and absorbed by the sink, and
d = distance between source and sink.

Then the length of time that it takes for the fluid to go from
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the socurce to the sink is -% since the fluid travels at a

velocity U. Therefore the volume occupied by the fluid is
agd strength of dipole

VOl:Uz 5

Thus the potential of a unit volume element is U times the

potential of a unit dipole, that is

' Ux
2’7[’(:{2-/3 Zr

By 2,572 x> pr (4.6)

5. Distributions of Singularities Representing Real Aircraft.

In treating problems of a more general nature than those
given as examples in Section %, it is convenient to consider an
alrcraft as a distribution of singularities.

The flow field around the wing of fixed planform
described in Section 3 can be calculated by distributing 1ift and
volume element singularities over a region S (the wing planform)
in the x,y-plane., If the density of the 1lift and volume element
distributions is set equal to the local 1ift and thickness
intensities Jf(x,y) and t(x,y) on the wing, then the wing is
represented in the mathematical sense by the singularity distri-
butions.

Similarly, one may choose a non-planar surface 3
parallel to free stream direction. If suitable singularities
(representing thickness and forces normal to 8) are distributed
over S one obtains a mathematical representation of flow past a

non=planar wing having S as its mean surface.
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The flow about a slender body of revolution can be
described by placing a distribution of volume elements along the
axis (a free streamline) of the body. The density of this linear
distribution of volume elements is equated to the cross-sectional
area. t(x) of the body. If the nose of the body is at the

origin then the potential is given by

p z_,.U_fX“/“ 6(3) (x-3)d3
2T ), [(x- 5 )2- p2x217/2

il

U t(E) IX'PI‘
2T [(x-3)°- g°c2] /2

I A BaVo N U@ D1-E: (5.7)
2 o [(X-§)2~ﬁ2r2]1/2

where the prime stands for differentiation in the x~directione.
If the body is smoothly faired then the infinite part of
equation 5.1, corresponding to surface roughness (ref. 8), can be

discarded, The remaining finite part

X-8T .
g = 22 j £ £(8) d§ (5.2)
o ¢

-5 X‘_S)aﬁ_ﬁzrzf/é
is the potential resulting from a lineal source distribution of
strength Ut'(x).

The potential due to a cylinder extending from = 00 to
+ 00 is zero since its cross-sectional area is a constant, If the
body begins or ends in an infinite cylinder and slender body
theory is used, then the length of the volume element distribution

t(x) will be semi-infinite, while the length of the source
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distribution Ut'(x) will extend over a finite interval. In
this case the value of t will be defined at the beginning
and at the end of the interval over which t'(x) is given.
The following convention will be adopted: if t'(x) is

defined over an interval a < x é b  then

x
t(x) = Jf ti(x) dx
a

unless otherwise stated,

A distribution of volume elements on the axis can
_ &also represent a "bump" on a cylinder, and “exact" linear theory
used to compute the shape of the bump (ref. 8). It turns out
(ref. 9) that the volume in the bump is just equal to the
equivalent closed slender body, i.e. the sum of the volume
elements (see fig. 5.1). The shape of the bump approaches the
shape of the slender body as the radius of the cylinder approaches
ZEero,

Negative volume elements can be interpreted as
depressions on a cylinder and can be used in a superposition

procedure as long as the resulting body or wing is real,



RSV SV AV A 3

Volume in bump = Volume in slender body

E‘igw 5‘1 @

6, Idealized Aircraft.

In formulating and proving general theorems and results
it has been found convenient not to restrict oneself to singu=-
larity distributions representing conventional aircraft. Thus,
instead of restricting the regions over which singularities are
distributed to lines and surfaces, one may define the singulari-
ties in spatial regions., The resulting configuration of singu=-
larities is called »n "idealized aircraft'.

Low drag idealized aircraft may sometimes be approxi-
mated and sometimes realized in the exact sense by arrangements
of real wings and bodies and hence may point the way to obtaining
a practical low drag configuration. Of course, viscous drag
must be taken into account in any final evaluation of the

resulting (possibly unconventional) aircraft,
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Furthermore, if a real aircraft can be enclosed in a
three-dimensional region for which an optimum distribution of
1ift, sideforce, and volume element singularities can be found
having the same total 1ift and volume as the real aircraft, then
a general principle of minimum drag states that the minimum
inviscid drag of the singularity distribution is less than any
inviscid drag value that the actual aircraft can obtain. Thus
for a given real configuration one may be able to compute useful
lower bounds for the drag.,

Finally, in formulating general theorems that can be
applied to any aircraft, we do not know where the singularities
might lie, Therefore we just state that they are defined in a
certain region R which may be a three, two, or one-dimensional
region depending on the particular application of the theorenms.

For the rest of this report t(x,y,z), ,JZ(x,y,z) and
s(x,y,2) will be referred to simply as thickness, 1ift and
sideforce distributions defined in a region R and shall be
interpreted to mean singularity distributions defined in R,

t will be said to be defined in R if R is the region con~

2t
ox © "
distribution formed by the superposition of ¢, JQ, and s will

taining all of the equivalent source singularities, U

be denoted by

Alx,y,2) = t(x,y,2) + ,Q(x,y,z) + 8(x,y,2) (6.1)
The "distant flow field" about a real airecraft can

sometimes be represented by spatial singularity distributions.
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This is done by means of "equivalent singularity distributions®
some of which are discussed in reference 8,

Equivalent singularity distributions are defined as
follows: two singularity distributions A1 and AZ are eguiva-

lent 1f and only if their resvective flows are identical every=

This

where outside of some surface enclosing A1 and AZ.
surface is usually the Mach envelope of a region within which

A1 and A, are defined., If A1 and A are equivalent, then

2 2

the combined distributien A1 - A2 has zero net 1ift, zero net
sideforce and zero drag., While the distant flow field produced
by A1 or A2 is the same in the region outside of the enclosing
surface, it may be quite different inside.

Thus, while the linearized flow field near the surfaces
of a real aircraft is described by placing the singularity

distributions on mean surfaces and mean lines, the distant flow

field may be represented by an equivalent idealized aircraft.

7. Drag Formulas,

The non=viscous drag of wings and bodies as given by
linearized theory may be obtained from two different points of
view. First the drag can be evaluated by integrating the local
pressure times frontal area over the wing and body surfaces.
Second, the drag can be evaluated from momentum considerations
involving the flow field produced at a great distance from the
aircraft. It can be shown (ref. 8) that the drag as given by
linearized theory is a quadratic expression in the linearized

perturbation quantities,
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Let wuy, v, and w Dbe the perturbation velocities
computed by linearized theory from the distribution A(x,y,2)

defined in a region R, The drag evaluated by the first method is
D= - &ffjﬂ [ptu 2L+ 2 g T slandy dz (7.7
e R E A i °

Each term has the following intuitive interpretation: the first

term is the linearized pressure ff%Uu acting on the increments

2t
o X

(-w) times the strength of the local strength of the bound vortex

of frontal area dt = dxs the second term is the downwash

[ = XfU times the free stream density /ao; the third term has a
o
similar interpretation. Equation 7.1 is the generalization of

equations 3.4 and 3.5, except that here the interference between
1ift, thickness and sideforce is accounted for,

Consider two distributions A,I defined in R1 and Aa
defined in R, The drag produced by the combined distribution

2

> consists of the drag D1 of A1 plus the drag D? of

. 1 .
A2 plus an interference term D12 where 5 D12 is denoted by

A1 + A

the symbol (A1,A2). D12 is given by

ot w
1 2 2
D12 = E(Aqsﬁa) = - j\&J. EFoUuZ‘EE" * 5 /61 * 5 51] dx dy dz
1

f'ff[. Uu -mat2+_,£ +-—-—1s]dxd dz
- o 1 ax T t2TT %2 y
R .
2
(7.2)
It is evident from equation 7.2 that the interference

drag is symmetric and bilinear, i.ec.
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(Aqs*ﬁlz) = (AZsA'!) (7933)
(A1+A29A3) = (A1,A5) + (AZ‘AB) = (A59Aﬁ+ﬁg) (7.3b)
The drag of A1 or A is then given by

2

D

; (Aq,Aq) = D(A1)9

(7.3c)

#

D, = (B,545) = D(4,)

Also (Aq,A,)is communtative with scalars. Thus if a and b

are any two scalars then

ah

[t}

Drag of (aA1+bA2) D(aA1+bA2) = (aA1+bA2, 1‘+’bA2)

i

2
a“(hqshq) + 2ab(A4,4,) + ba(Aa,AZ) (7.34)

This symbolic notation is a direct generalization of eguations 3,7
and 3.9. The relations 7.3a, b, ¢ correspond to equations 3.8,

(A1,A2) written out in full is

' 3
(Bqatp) + (Bqy ) + (Bg,8,) +

(8q585) ={ Cgsta) + Cge o)+ Cgesy) + L

-~

(51,t2) + (84, 5) * (31’52) )
The off-diagonal terms in this sum represent interference drag
between the different types of distribution.

The method of Hayes (ref. 8,10) is an example of the
second method of drag evaluation. Here, a large circular cylinder
is employed as part of a control surface that surrounds the
singularity distribution, The axis of the cylinder is chosen to

be parallel to the free stream direction and to pass through or

near the region R. The radius is made to become very large
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compared to the dimensions of R, Finally the cylindrical control
surface is closed by a plane normal to the flow direction placed
at a distance down stream from R that is much greater than the
radius of the cylinder.

Wave drag is computed from the rate at which momentum
in the free stream direction is carried across the cylindrical
portion of the control surface, while vortex drag is computed
from the rate at which momentum in the free stream direction is
carried across the plane portion of the control surface,

Derivation of the method can be found in Hayes' original
report (ref. 10) or in ref., (8). Only Hayes' construction and
the formula for computing wave drag are given here,

The axis of the c¢cylinder is taken as the x-axis and the
polar angle & = tan'1-§ is introduced. The region R is
enclosed in a double Mach cone region R' shown in Fig. 7.7
The vertices of R! lie on the x-axis at the distances a and b
as measured from some suiftable origin.

The eguation

1
B

defines a two-parameter family of Mach planes for which % is

(x= %) (7e4)

Z sin € + y cos € =

the x-intercept. For fixed € a set of parallel Mach planes is
obtaineds, All of the singularities in the distribution A(x,y,2)
are displaced, in this set of parallel Mach planes, to the x=-axis,

where concentrated lineal distributions are formed

A(%,0) = t(3,0) +L(%,0) + s(3,0)
These lineal distributions are different in general for different

values of ®©.
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Hayes' control cylinder
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In computing the wave drag by Hayes' formula, the
equivalent lineal source distribution for the angle € 1is needed.

This is given by

n(3,e) = Ut*(3,0) ¢-jf% {K(%,08) sin @ + s(%,0) cos 6]

(7.5)
The contribution to the wave drag from the angle © on Hayes!

cylinder is given by Hayes'! formula.

a Lo J{b b
—_— = h'(x,0) dx h'(Z%,8) log|x~-2| a% (7.6)
o g2 Ja “/; l

The total wave drag is then given by

~ Po L/‘27‘( 1))
Dwave = 8’”’2 o e de (7.7)

8. General Reverse Flow Theorem and the Expression for Interference

Drag in Terms of Combined Flow Velocities.

In the reversed flow field, produced by a distribution
of thickness, 1ift and sideforce in the reversed flow, the free
stream velocity vector is 4, = -ﬁZ and this is directed opposite
to the free stream velocity vector in the forward flow A, = Uz.
The coordinate system and sign conventions used in expressing
positive 1lift, sideforce, and velocity components in the forward
flow are retained in the reversed flow., Drag, however, is the
aerodynamic force in the appropriate free stream for either case,

Fig. 8~1 shows a positive volume element, lifting element,
and sideforce element in forward and reverse flow. Note that in
the positive volume element the source is upstream from the sink,

and that vortices trail downstream from the bound vortex in either



- 23 .
FORWARD FIOW

gE%*MW{E? w  direction of dipols

f/."
7

S0Ures ' sink

pogitive volume element

{ i
i U
1 W
v ‘
’: l.e"l /
U m;;fm—w €y
/ pogitive 1ifting element

r~
4

pogitive side force slement

REVERSED FLOW

direction of dipole —i—)—-

Y
e
\K
7

sink 7 ‘source”
positive volume elemend

z
A
Y
’ |
S p //
(2 / st (]

positive Lifting element /

6 1 /

poeitive sideforce elsment

2 ‘”T;.‘;:a @ 8 had l @



flows Also note that the direction of vorticity in the bound

vortex representing force elements is changed in the reversed

[

flow in order to maintain the same positive direction of 1ift and
side force as in the forward flow., The region of space influenced
by the singularities is, in either case, the downstream Mach
cone originating from the singularities.
Distributions and perturbation velocities considered in
reversed flow will be denoted with the subscript r, while in
the forward flow they will be denoted with the subscript f.
Consider the forward and reversed flow produced by the

same distribution A(x,y,z) of thickness, 1ift and sideforce, i.e.
Af = Ar

The equivalent source distrivution of the thickness t in A

. 2t . S A . -
is U~?;§ in the ! rward flow and < T in the reversed flow.

Thus in the representation of thickness by sources and sinks,
sources are replaced by sinks and sinks by sources when the flow

3

is reversed con the same thickness Jistribution. This can be seen

in the accompanying two~dimensional figure.




Let qp and 4. be the respective velocity fields produced by the
distribution A 4in the forward and reversed flow., The combined
flow field is then defined as theaverage of qf and qr.-

Quatntites in the combined flow will be denoted with a bar,

- 1

q =3 (ap + a.)
. (UL + g.') + (=Ui + ")
-2 e ip
._:.‘.(",,, 1) = q'
=7 4y L =4

or
ﬁ-*—q-(u +u ) \7~-—1(v + V) v‘fr——1(vw + w ) (8.1)
-2 f r’? -2 f r’? -2 f ¢

and in terms of the perturbation velocity potentials
3 = grad P B=a(B.+8) (8.2)
! 2 °7f r’’ *

General Reciprocity Theorem (ref. 11),

2r

two distributions in forward and reversed flows respectively, and

If A1f defined in R1 and A defined in RZ are

if UspaVopy Wyp are the perturbation velocities produced by
AZf’ and Us s Vo9 Wy oo aAre the perturbation velocities

produced by AZr’ then

t w v
- 2r 1f 1f _
L U T v op * T Sppd Gx dy dz
By
[ Y4 Yo Vor
= Uu [ e iy
” 5 Yo " + T 1 5 g s1fj dx dy dz
1
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With the aid of this theorem, the interference drag
given by equation 7.2 can be expressed as either an integral over
q or an integral over Ra. Consider the first integral in
equation 7.2, Let A1 = A?R and AZ = A2F' Then by equation

R

8.% one obtains

JJZ[ ;ﬁoUuz ax a.ﬁ U s, dx dy dz

at W
= \Léjﬁ gFoUuaf'"ﬁéz + —%ﬁ ,€1~ +-—§£ s,_] dx dy dz
1

+

1

2T w v
2f Tr 1r
j\gf [/OoUu’]r 3% —5 faf * 5 st] dx dy daz
2

Bt w v
Jl{f Lo0ugr 55 = A

il
+

th
L

82] dx dy dz

Let A be denoted by A in the second integral of equation

=1 (3
7.2, then Uq = Ugpy Wy = Wypy Vg = Voge If equation 7.2 is

divided by two one obtains

1 2%,  (wgr wap)
A2) = ~\jJ;j~ gfoulg(u1r+ u?f) 0 x * 2U ’22
2

L]

(44

(v1r+ V1f)

+ CITRRa 82] dx dy dz

In terms of the combined flow velocities

at W
- 2 1 1
(a 1! ) - j£j [ﬁDUu,]'a?{— + -{J‘-'/ea + -5 532] dx dy dz (8oha)

w
2

. 9t V2
= (Ay,Aq)= -JJ:{ L Uu, 5 + ﬁmg£1 5 51] dx dy dz
(3.4b)
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Equation 8,.4b follows from equation 8.4a from the symmetry

property of (A1’A2)‘ The validity of Either Ry or RZ’

are surface regions or portions of a curve, in which case the

or both,

integrals become surface or line integrals.



ITI. GENERAL THEOREMS CONCERNING OPTIMUM DISTRIBUTIONS.

9. Formulation of the General Problem.

The three minimum drag problems given as examples in
Section 3 can be formulated in terms of singularity distributions.
In the first problem the distribution of lifting elements K (x,y)
defined on S that produces minimum drag for fixed total 1lift L
is sought. The twist and camber is then determined from £ (x,y)
by linearized theory. In the second problem the optimum volume
element distribution t(x,y), defined on S, is sought for fixed
total volume V. In the third problem the optimum distribution
of volume elements t(x), defined on the body axis, is sought for
fixed total volume.

These problems have three things in common: first, they
all deal with singularity distributions defined in a fixed regionj
second, the constraints are scalar quantities that are linear
functions of the intensities of the singularity distributionsy
third, only one type of singularity distribution is considered at
a time, i.e. 1ift or thickness.

Problems of this type have the following formulation.

Let A stand for either a 1ift, thickness, or sideforce distribution.
Let R be the region in which A is defined. A linear operator

W(A) 4is defined over R so as to produce a scalar quantity, ¢.g.
total 1ift, total volume, etc. Linearity implies that if a is

any scalar that multiplies every singularity in A, then

Wa A) = a w(a)
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W(A) is then taken as the conmstraint and the problem is formulated:

Find the distribution A4 in R that makes the drag of A a

miminum for a fixed value of W(A).

1 and A2

are considered,  The distributions A1 is defined in a region

This problem can be generalized, Two distributions A

21 and is held fixed while a distribution A2 defined in a region

R2 igsought such that the drag of the combined distribution

A1 + Aa is minimized under the condition that W(AZ) is fixed.
Stated formally:

Given a fixed region R2 and a fixed distribution A1 defined in

R1 find the distribution AZ in R2 that makes the drag of the

combined distribution A1 + Aa a minimum for a fixed value of W(AZ).

This general formulation is more useful when drag
reduction for a complete aircraft is considered. Below are given
a few of the reasons why this is so.

First, ease of fabrication and structural requirenents
may make it impossible to make drag reduction adjustments on thick-
ness in some regions of aircraft. These regions may then be taken
as the region Rq, and the ?egions where drag saving adjustuments
can be made as the region Ra.

Second, if the constraints are complicated in a region
it may be advantageous from the mathematical peoint of view to
break the region up into sub-regions where the constraints are
simple. The region also may be complicated by re=entrant

boundaries, etc. In this case the region~ is broken up inte sube

regions with simple boundaries.
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Third, when interference between different types of
distributions is considered, it may be advantageous to make
adjustment on one type of distribution in the region at a time,
e.go to adjust the thickness distribution while keeping the 1ift
distribution fixed. In this case R1 and R2 may be the same
region or one a sub-region of the other.

This generalized problem will be studied in the sections

that follow.

10, The Fundamental Theorem of Drag Reduction.

In seeking the distribitions A2 that reduce the drag it
may not be practical to find the absolute optimum distribution
within the class of all possible distributions. In this event
one may seek the relative optimum in a restricted class of
distributions for which numerical computations can be made,

Examples of restricted classes of distributions are:
conical distributions of 1ift on a delta wing; thickness distribu=
tions on a straight wing that are independent of spani all linear
combinations of a finite set of distributionsj all thickness
distributions that vanish at the trailing edge of a wing, etc.

A restriqted class of distributions, C, will be defined as a set

of distributions which is closed under linear combinations, i.e.

if A* and A" are any two members of C, then €1A’+ 62A" is

a member of C where €1 and 62 are any two real scalars,.
Let A2 defined in Ra be the relative optimum distrie

bution in the class C for fixed W(AZ) and for fixed A1 in

Rqe Since Aé'is‘cptimmmﬁ it follows -that: the drag”
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D(A,i + Aa) cannot be improved by adding any distribution A}

in C for which W(Aé) is zero. Let € Dbe any scalar, then

Aé is in €, has zero W, and

0

D(A,l + A, + €AL)

5 (A1+A2+ e.éi'a., 1’&14-&21- € AL)

2 2

(A 2
= (A1 + Aoy Ag o+ Aa) + 26(31 + A, Aé) + € (Aé,Aé)

2 (hg+ Ay Mg+ By) =D(hy + A,) =D

5 (a)

opt.
The scalar € in (a) can have any sign and magnitude., The
inequality in (a) implies that

(A'§+A

21AL) =0 (10.1)

If equation 10,71 were not true one could always choose an

csufficiently small such that
.2e(A,l + Aj,41) €O (b)

and
e%(ay, 43) < [2€(a, + Ay0n0)] (e)

Equations (b) and (¢) and the inequality (a) are then contradictory.
This proves equation 10.7.

Now let AZ be an arbitrary distribution defined in

R2 and in the class C., The distribution

W(Ké)
9 = -
A = Ay (L) )

has zero W and is in C. Hence, upon substitution into equation

10,1, one obtains

R d

. w(E)
(A,E + Aa,ﬁia) = Tg‘j‘ (A,] + Aa, AZ) (1092)

7
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It has been proﬁed that equation 10,2 is a necessary

condition that AZ must satisfy in order to be optimum for fixed W.

If equation 10.2 holds for all Ké in the class C then equation

1062 is also sufficient.

Thus the necessary and sufficient condition that AZ be

an optimum in C for fixed W and A, is that equation 10.2°

be satisfied for all A, in C.

11 General theorems concerning Optimum Thickness Distributions,

In formulating the theorems of this section certain
restrictions are placed upon the regions where the optimum thick-
ness distributions are defined.

Consider an arbitrary thickness distribution t(x,y,2)
in a region R. It shall be assumed that any infinite line
y = constant, z = constant has at most one connected line
segment inside R, . The upstream point where the line intersects

the boundary of R will be called a leading point and its

x=coordinate denoted by
% (yy2)

The downstream point of intersection will be called a trailing
point and its x=coordinate denoted by

XT(y,z)
The collection of all leading points will be called the leading
boundary of R and the collection of all trailing points will be
called the trailing boundary of R, In addition R may have
cylindrical boundaries that are parallel to the x-axis. Unless
otherwise stated it is assumed that +t(x,y,z) vanishes on the

leading boundary of R, i.e.
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t(XLsZJHZ) = 0 ,
Two quantities of interest in aircraft design that are
linear functions of the singularities representing thickness are

the total volume* V and the base area F., These are defined as

follows:
V=v(t) = J:fjnt(x,y,z) dx dy dz (111
R
F=wt) = Jff &L(%%ﬂdx dy dz (11.2)
R

Two fundamental theorems will now be proved concerning the
necessary and sufficient condition that optimum thickness distri-
butions must satisfy when either fixed volume or fixed base area
is taken as the constraint.

Let W Dbe the total volume and t2 be an optimum for
fixed V within the class of thickness distributions, defined in
Ra9 that vanish on the 1¢ading and trailing boundaries of Rae

If %é is an arbitrary member of this class then

%E(XL,y,z) = %é(xT,y,z) =0 (a)

and equations 10.2 and 11.1 yield

o (A, + t ,t,) ~
(Ag+ T,5t5) = 1 V(ti) 2 ijf t, dx dy dz (1)
2

Now let 51 and 52 be combined flow perturbation velocities

)
Note that the volume of t has no connection with the volume of

the region R within which t is defined. t(x,y,2) is a distri=-
bution of volume element singularities in a linearized repre=~
sentation of thickness. For example, if t is a distribution of
volume element singularities on the mean surface of a wing, then
the region of definition is two-dimensional and has zero volune,
but the volume of the wing is given by the sum of the volume
elements (c¢f, sections 5 and 6).
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computed from A,E and tZ respectively. The left hand side of

equation (b) may be expressed according to equation 8.4ta.
( .. 9% (A+t,t)§j‘j‘
- jR /OQU(u,ﬁua) S dx dy dz = —-m— t dx dy dz
2 ,
Integration by parts and equation (a) then yield

2(w ) A (A4+t
fff/oov_;_i“a dxdde—“%W*Syft dx dy dz
(e)

Since (¢) is valid for all ’1‘;’2 it follows that

dlu,+0,) (A,+t.,t.)
1772 17772272 .
S = ‘FOHV(tg) in R, (11.3)

if A1 is interpreted as the distribution of all

singularities other than ta, including 1ift and sidefore in Ras

then Gﬁ + aa' is the x~component of the combined flow perturbation
velocity produced by all singularity distributions in the flow

field and 51 + 62 is simply denoted by u. The term (Aq+t,et,)

can be expressed with the aid of equation 8.4a; equation 11,3

can then be expressed —Dt
-fJf p, vE ~== ax ay az
25 oflwy) Ry fo
X~ o=x  ° R TVCE,) in Ry

(11.4)

The numerator in the right hand side of equation 11.4 can be
interpreted as the drag produced by all combined flow pressures
(~//% Uu) acting on the optimum thickness distribution tze These

results are summarized in the first theorem,
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Theorenm 1. The necessary and sufficient condition that

t2 is a thickness distribution in Ra that minimizes D(A1+t2),

within the class of thickness distributions which wanish on the

leading and trailing boundaries of RZ’

‘ Aq, is that the pradient in the x-direction of (§1+az) be a

for fixed V(ta) and fixed

constant in the region Rze The value of this constant is given

by equation 11.3. Further, if Ay is the distribution of all

thickness 1lift and sideforce excluding ¢ then the x-component

21

of the gradient of u is constant in RZ and has the value given

by equation 11.k4,

Let W be the total base area and t2 be an optimum in

the class of thickness distributions in RZ that vanish on leading

boundaries of R If 'Eé is an arbitrary distribution in this

20
class then equations 10.2, 11.2, and 8.7a yield

Bt (A t st )
-Jégjrjp U(u +u.) TT"‘ dx dy dz = F(Z 3 jjp 5 i dx dy dz
2

(a)
Since (4) is valid for_éii ‘%é in the class it follows that
(A, + t.,t.)
= = 1 2772
(u,+u,) = = . (11.5)
172 PoUF(E )

If A1 includes all thickness 1ift and side force
distributions other than ta, then equation 11.7 has the expression

Jyﬂ Uu'——— dx 4y d=z

u = (£ﬂ+ﬁ2) = (11.6)

j%ﬁF(tz)

The right hand side of equation 11.6 has an interpretation
similar to that of eguation 11.,4. These results are summarized

in the second theorem,
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Theorem 2, The necessary and sufficient condition that

ﬁa is a thickness distribution in R2 that minimizes D(A1+t2),

within the class of thickness distributions which vanish on the

leading boundary of R for fixed base area F(tz) and fixed Aqs

29

is that (aq+§2) be a constant in Rae The value of this constant

- is given by equation 11,5, Further, if A, is the distribution

of all thickness, lift, and sideforce excluding t.,, then U is

29

constant in RE and has the value given by equation 11.6.

Theorens 1 and 2 will be used to prove three new theorems
concerning optimum thickness distribution.

Volume and bawme area may also be prescribed as functions
of vy and 2, €.g8. the area of the airfoil sections of a wing
prescribed as a function of wing span. Thus

X

T
V(y,z) = f t(x,y,2) dx (117
X
L
(X
T ét(x z)
F(y,z) = -——~3%5L- dx = t(KT,y,z) (11.8)
x

L

The total volume and base area are then given by

V = J:f V(y,z) dy d=z
all y,2 in R
F = J‘j yy2z) dy dz = f J‘ t(szy,z)dy dz
all y,2 in R all y,z in R

Consider the case where V(y,z) is specified for the
region Ra. Let t2 be a thickness distribution that vanishes on
the leading and trailing boundaries of R2 and distributes V(x,¥)

in the x-direction over RZ for fixed A1 such that D(A1+t2}



- 37 -

is minimized, Consider a cylinder with axis parallel to the x-axis
and with crosse-section dx dy. Let the coordinates of the center

of this cylinder be located at y = Yoo 2 = 2 such that T

and z, are in Rz for some x. Denote the elementary region

cut out of Ra by this cylinder by

Rz(yo,zo) = intersection of cylinder with Ra

. . .
Denote the part of ¢, that lies in Ra(yo,zo) by th,

and the remainder, t,~t,, by t4. Let Eé be produced by t},
and ﬁg produced by t% . Then
= £ &
b, = th o+t (e)
1. o= 1t el
u, = uf + uf ()

By definition, ta is that distribution which distributes
V(y,z) optimally, and hence D(A1+t2) cannot be reduced further

by modifying t} in Ra(yégzo) for fixed

V(t') = V(y,z,) dy da (g)
and for fixed tg and Aq.‘ Purthermore té vanishes on leading

and trailing boundaries of R(yo,zo). Therefore té is gptimum
in R(yo,zo) under the conditions of theorem 1, Equation 11.3

gives

o (ug+uff+iiy) (A, rtl,t5)

9 x = P UV(EL) in R (¥,2,) ()

Equations (e), (£), (g), (h) an& 8.3 yield
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34 ‘
[ j‘ U( U, +u,) dx] dy dz
2 (§j+ﬁa) Lot 2 a:{ Tor%0
9 x = Po U(y N ) dy dz
in RZ(yo,zo) (i)

Since Yor 2 are arbitrary, equation (i) must hold throughout

o]

Rae Removal of the subscripts on Yo and 2, and cancellation
of the differential element dy dz in equation (i) gives
- U(U,+0,) === dx
2 (u,+u X Lot T2T 7o
1" "2 L .
= = in R, (11.7)

/OOUV(Y-;Z)

The right hand side of equation 11.7 is a function of y and =z
only and the numerator can be interpreted as the y,z-distribution

of drag produced by the combined flow pressure »~/poU(ﬁ1+ﬁa)

on the optimum distribution t These results are summarized

20

in theorem 3,

Theorem 3. The necessary and sufficient condition that

t, is a thickness distribution that distributes V(y,z) in the

x-~direction over R2 g0 as to minimize D(A1+t2) within the

class of thickness distributions that vanish on the leading and

trailing boundaries of RZ’ for fixed A1, is that the x=component

of the gradient be a function of y and 2z only in Rae The

value of this function is given by equation 11.7,

A similar theorem can be derived for the case that F(y,z)
is specified. The proof of this theorem follows from theorem 2

and is similar to the vproof of theorem 3,

acting
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Theorem ﬁ. The necessary and sufficient condition that

t2 is a thickness distribution in RZ, which vanishes on the

leading boundary of RZ and has the value F(y,z) on the trailing

boundary of R,, that makes D(A1+t2)‘ a minimum for fixed A

2’ 19

is that ﬁ1+§2 be a function of y and =z only in R,. The

value of this function is given by

X

Vf T - . 2 t2

L L) oy o

- - L .

u1 + uz = /pOUFI(Y9Z) in R2 (11.8)

The integral on the right hand side of equation 11.8 has
the same interpretation as the integral in equation 11.7. 1In
both theorems 3 and 4 we can put u = ﬁ1+§2 if all of the
singularities are included in the distribution A1 + t2.

In many cases it is desirable to specify the value of
the thickness as a function of ¥y, z on some intermediate surface
xI(y,z) and require the thickness to vanish on the leading and
trailing boundaries of Rze Thus Xq is defined such that for

all y, 2 in R2
% (742) £ x.(792) & %x(y,2)

and one seeks the distribution t2 that makes D(A1+t2) minimum

under the constraints

b (% ,7,2) =0
tZ(X19Y!Z) = FI(Yqz) (j>
= 0

tZ(xT,y,Z)
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This case is of practical importance in the design of thin wings
for which volume is not the consideration, but in order to fulfill
structural requirements, the distribution of thickness is pre-
scribed along the span at some fraction of wing chord. The line
along which the thickness is prescribed might correspond to the
position of a tapered wing spar. The prescribed thickness

would then be the depth of the spar plus the skin thickness. In

this case F corresponds to frontal area.

I
Let t2 be an optimum distribution in R2 for fixed A1
and for the constraints (j). Divide R, into two regions, R
and RT, such that x = XI forms the trailing boundary of RL

and the leading boundary ¢f R The optimum distribution can be

Te

decomposed into two distributions, t and tT’ such that

L

t2 in RL

b = (k)
Fl(y,z) in Ry
0 in RL
by = (1)
t, - Fl(y,z) in Ry
Then
t2 = tL + tT by (k) and (1)

NSJI
i
t_lﬂl
+
l—fl
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tL(XLsYsZ) = 0

> by (j) and (k) (m)
tL(KIsyQZ) = FI(Y{&}
tT(XI,y,z) =0 )

r by (§) and (1) (n)
tT(XT9y$Z) = = FI(YQZ)J

Since t2 is optimum, no improvement can be made by modifying

tL in RL for fixed A1 and tT under the constraint (m).

Thus ¢t is optimum and theorem 4 can be applied to RL yielding

L
the result %
f I .. dt,
. ’poU(u1+u2) TT;“ dx'
- - - - L
Ug+U,+ U, U+ U,= in R (11.9a)
UYL EUgt Uy 2 UF(7,2) L
By the same argument and the constraints (n)
£p oo ot
. ,POU(u1+u2)~T;§~ dx
- - I .
Ugdll, = = : in R, (11.9b)
1772 ‘/% UFI(y,z) T

The right hand sides of equations 11.9 a,b are functions of ¥y
and 2z only. However they are in general different functions
in RL and .RT respectively.,

Theresults can be summarized in the following theorem,.

Theorem 5, The necessary and sufficient condition that

t is a thickness distribution in RZ, which vanishes on the

2

leading and trailing boundaries of Ra and has the prescribed
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value FI(y,z) on the intermediate surface xI(y,z), that makes

be a function y

Q(A1+t2) a minimum for fixed Aq, is that Uy,
respectively., These functions are,

and 2z only in R and R

L T

in general, different, and their values are given by equations

11.9a and 11.9b respectively.

12. General Theorems Concerning Optimum Normal Force Distributions.

This section deals with optimum distributions of normal
force singularities used in the linearized description of the
flow about wings.

As cited in section 7, the normal force elements are
distributed on mean surfaces which are portions of free stream
surfaces., Consider a point (x,y,2z) on a mean surface. Denote

the slope of the surface in the y,z-plane by m(x,y,2), viz.

%3 = m(X,7,2) (12.1)

For most ﬁean surfaces m(x,y,2) will be independent of x if
real wings are represented. However, to cover cases where one
surface contains different segments of the same free streamline,
the xevariation of m will be retained., For example, for a

particular y, 2 one may have

mq(y,z) for a < x<£ b<c
m(x,y,2) =

ma(y,z) for c¢c< x<d

At the point (x,y,2) on a mean surface, the 1ift and sideforce

bear the relation
s(Xyys2) = = m(x,y,Z)k(X,y,Z) (12.2)
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so that the resulting force is normal to the mean surface. Thus
if the 1ift is positive, the sideforce is negative provided m
is positive, and positive if m is negative.

In formulating the theorems of this section, 1ift and
sideforce singularities are not confined nécessarily to mean
surfaces but are generalized to sﬁatial distributions defined in
a region R. Thus m(x,y,2) is a single valued functionAdefined
in R, and s and J Dbear the relation 12.2. This is done_in
order to simplify the proofs, and the theorems are valid if R
is taken as the mean surface of wings.

Two guantities of interest, whichare linear functions of
normal force distribution defiﬁed in R, are ghe total 1ift L

and the total moment M. These are defined

L=L(L) = féf L(x,y,2) dx dy dz (12.3)
M=MUL) = u[[/‘ﬂ(x,yqz) (xonx) dx dy dz (12.4)
R

where X, refers to the plane x = X, sbout which the moment is
taken.

The general problem of this section is to find the
necessary and sufficient conditions that a distribution of normal

force 4, = jé + s, in R, minimizes D(A1+A2) under the relation

2
12,2 for fixed A4y and L(,ZZ) and for zero moment, M(Q2)=O@

Thus not only is the total 1ift prescribed, but alsoc the x=coordinate
of the center of 1lift is prescribed.

The problem can be resolved into two problems., First,

an optimum distribution AZL in the restricted class 01 of all
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1ift and sideforce distributions satisfying 12.2 in RZ is
considered for fixed 1ift I&,ﬂza)e AZL must satisfy the integral
form of the criterion given by equation 10.2, viz.
NS
» L(L,)
(Aqragpafy) = 3¢ T Mthertar) ()

for all Ké in the class C1e

Second, AEL is considered fixed along with A1 and an

optimum distribution A for fixed moment M(,fZM) in the

2M
restricted class 02 of all 1ift and sideforce distributions
that satisfy equation 12.2 in Ra -and have zero net 1lift is
considered. A2M must satisfy the integrated criterion
M( £ 5)
A S e —————D
(Aqrhopthoysdl) = 303 ) (Aqrhgprhoyisy) (b)
for all Aé in the class C2
L4 = o, L f ) = © (¢)
Equations (c¢) and 10.71 give
¢ —
(Ag+h . AL) = O (d)
(Ag+hs shoy) = 0 (e)

Equation (b) can then be simplified with the aid of the ortho-

gonality relations (d4) and (e).

M( g 5)
(Aoyhd) = Elg2m] (Ao b (£)
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An arbitrary distribution Aé of the class 02 can be formed by

considering an arbitrary distribution Aa of the class Cﬁ and

using the relation

L LA o
A’ = A @ —————— A’f; h
2 2 L(jéL) 2L

Then equations (f) and (h) yield

- 1( IE) M(Z’;) L(:é;) MCLop )
(Apyda) = 57 70 (Ayypohpp) + L WL,y ~ () WA M)J("\zrrz"’f‘*am)
(i)

Finally, we require

ML) = = ML) (3

Equations (a), (i), and (j) combine to give

(A +A_ _+A. A__+A._ )
, ~ o ST Rar oM tar Moy ¥
(Aqeapy+hoyehs) = L Z,) L(Ky)
(A, ,4..) "
21 2M
+ = M( L) (k)
M( zZM) 2

With the aid of equations (e) and (c), equation (k) can be expressed

L uE)
(Aqrhoprhods = 1 £oy) Aon)
i (Aprhyr by Asr +hs ) oF - M(/ea) N
T LUy Ay 2 M(Ry) ~oM
M( 2’2)

The distribution A, = =—p——— is an arbitrary member of a
2 M L)

Aoy

restricted class C of all 1ift and sideforce distributions in

3
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Rz that satisfy equation 12,2 for which the x~coordinate of their
centers of 1lift are all at =x = Xge Thus according to equation

10.2 the distribution

A (m)

o = Aoy T Aoy

is an optimum in C; for fixed A, and LL€2).

The left hand sides of equations (a), (i) and (k) may
be expressed according to equation 8.4a and 12.2, and the gquantities
L(fz) and M(Ia) on the right hand sides, according to equations

12.3 and 12.4, Equation (a) then becomes

1 /= = - = s
-J:gjﬁ b L(w1+w2L) - m(v1+v2L)]J£2 dx dy dz
2
(A +A. ,A__) ~
1 72L 2L \
= Q) jff /szxdydz (n)
2L R2
. @ o bt o >
where WqsVq is produced by A1 and Wor e sz is produced by
%
AZL’
S .
Since A2 is an arbitrary member of the class C1 of

all 1ift and sideforce distributions satisfying the relation 12,2,

£2 can be chosen arbitrarily. Thus for equation (n) to hold for
N/
all ,€2,
(A, +A . A )
- - - = 1" 72L 2L . ‘ .
(w1+w2L) - m(x,7,2) (v1+v2L) = =~ ﬂgﬂ in R, (12.5)

Equation 12.5 is expressed in the following theorem,

in A._.

Note that w is produced by both ’ZZL and Sor, o1,

2L

Similarly remarks apply to Vor,e
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Theorem 6, Let C, be the class of all 1ift and side=

1
force distributions that satisfy the relation 12.2 in Rze Let
A be a 1ift and sideforce distribution in R that minimizes

2L 2
D(A1+A2) in the class 01 for fixed A1 and fixed total 1lift

L(,[aL)e The necessary and sufficient condition that A is such

2L

be a constant in R

an optimum is that (§1+%2L) - m(§1+§2L) e

The value of this constant is given by eguation 12.5.

Equations (i) and (k) can be expressed in forms similar

to equation (n) and the following two theorems deduced,

Theorem 7. Let 02 be the subclass of C 1 formed by

taking all the distributions in 01 that have zero net lift. Let

AEL be the optimum of theorem 6., Let A 21 be a 1lift and side=~

force distribution that minimizes D(A1+A

o e N
2L+n2) within the class

and fixed total moment M(la) = M(l%M)e

02 for fixed A1+A2L

Then the optimum distribution A is orthogonal to Ad+A and

2L ——

2M

- must satisfy the necessary and sufficient condition that

w

oy = Moy be a linear function of x in Rye This linear

function is given by

- - Choysfoy) (Aophoy) ML)

W = MV B X = -
2M 2M MZIZM) L([BL) MKsz)

e [ M( Loy ) vx ] in R
M(,gam) L(£2L) ) 2

(12.6)
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Theorem 8, Let 03 be the subclass of C,B formed by

taking all the distributions in 01 that have zero net moment,

2} in the class C3 for
5 = A2L+A2M' AZL is the

is the optimum in theorem 7,

The distribution that minimizes D(A1+A
fixed L(ﬂg) and fixed A, is 4

optimum in theorem 6 and A

2M
wherein we require that L([ZL) = L([é) and M(IEM)=~ M(!zL),

respectively. For A2 to be this optimum, it is necessary and

sufficient that (%1+ﬁ2) - m(31+52) be a linear function of =X

This linear function is given by

- - - - (AaivI’AZM) (A1+A2’A2) R
(w1+w2) - m&v1+v2) = —Fxfzgzj— (xo-x) - mmETfZEZTw in Ra (12.7)

13, Discussions of Theorems.

The theorems of sections 11 and 12 state the defining
conditions for optimum distributions in the presence of a fixed
distribution, These defining conditions can be used to set up
integral equations which in theory can be solved for A2 in terms
of the known quantities. For example, take Theorem 2. The

condition that defines the optimum distribution t is given

2
by equation 11.5, which can be written,
T = = U, = (A1+t2,t2) in R (a)
- 1 UF(t,) 2

If the distribution A, is known then 51 can in principle be
calculated utilizing the basic singularities of section 4,
Similarly HZ can be expressed in terms of t,. If K(P,q)

is the x-component of the combined flow perturbation velocity
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at the point P = (x,y,3) produced by a unit volume element

located at @ = (E,Y,Z) then

EZ(Xﬁy‘iz) = ij K(P'IQ) tz(%) e (p)
Qg in R
2
where dQ = d4d 3 d.7 d3% . With the aid of equation (b) the integral

equation (a) can be written

JIf xe@ @ 3 (p) -t T2r T2
3 in Ra 2 1 UF(tz)
for all P in R (13.1)

2

Since the integral equation is linear t2 can be split into two

distributions t and tg

3
b, = by + Kt (e)

such that

1]

fff Ide)téa)dQ

- Eq(P), P in R
§ in R
2

1, P in R, (d)

i

jff K(P,q) t,(Q) d4q
Q in R2 »

The constant K is determined such that
F(ta) = F(tB) + K}(tk) (e)

Then t is given by

2

F(tZ) - F(tB)
By = 3t F(t,) 2 (£)
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In Chapter IV it will be shown how one may obtain
explicit solutions of the integral equations if the opiimum
distribution Az is a distribution concentrated on a line
parallel to the xX-axis, i.e, in & lineal region RZ.

The theorems of section 12 have a special interpretation
if the region RE is a portion S2 of a [ree stream surface and
if m is dinterpreted as the slope in tae y, z~plane of this
surface, Let ©(y,z) be the angle measured from the y-axis

between the tangent plane of 3 at the point ¥y,2 in the

e
ze=plane (see figure below).
9
s
4
Non-planar 3 i -
mean surface tangent plane
!,' ,
/ \ (4
/ o
*,
N B /
N | & .
~ e S T TS
. > " .
“'\,’ [ '4(‘;; [V

Thyus m is given by

m = m(xX,y) = ban ., (13.2)
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If equations 12.5, 12,6, and 12,7 are multiplied by cos @ then

the resulting left hand sides are velocities normal %o 82 in

the combined flow. The tangential velocity in the combined

does not enter into the condition that A2 be optimum. For

example, theorem 6 states that the necessary and sufficient con-

dition that the normal force Aa be optimally distributed over

SZ for fixed A1 and fixed 1ift is that the normal component

of the combined flow velocity produced by A1 and A2 be a

constant times cos ©(y,2), viz.

(A, +A A__)
- . - - . 1"4a10 %21, .
(W1+W2L) cos © = (v1+v2L) sin @= ~U L(XaL) cos @ on 3,

(13.4)

It is easily seen that at points where Sa has a vertical tangent

(e %;) plane the normal velocity in the combined flow is

i

VYo and must vanish if AEL is optimum while w1+w2L is

not specified.



- 52 =

IV. OPTIMUM LINEAL DISTRIBUTIONS

14, Expression for Interference Drag Involving a Lineal

Distribution.

Let A1(x,y,z) = tﬂ(x,y,z) + ,11(x,y,z) + sq(xsy,z) be a
distribution that has finite drag and is defined in a region Rq
which may be one, two, or three~dimensional. Let ﬁa(x), gq(x)
and ﬁq(x) be the combined flow perturbation velocities produced
on the x-axis by Aq. Let hq(x,@) be the eguivalent lineal
source distribution on the x-axis as viewed from the angle © on
Hayes'! control cylinder {(cf. section 7). hq(x,Q) is given by

eguation 7.5, i.e.

L
£

he(%,0) = Ut4(x,0) - [Iq(x,e) sin @ + 54(x,0) cos 8] (a)

Choose an interval a < x { b large enough to include
hq(x,@) for all ©. For the wave drag of A, to be finite it
is necessary that hq(x,G) be differentiable in the interval

a<{ x{ b and vanish at the end points, i.e.

h1(a$9) = h1(b,9) =0 (b)
for all © (Ref. 8)., (There may be a few ©-values for which this
condition is not satisfied. However at these points, qu/dG as
defined by equation 7.6 must be integrable,)

Now consider a lineal distribution Aa(x)zta(x)+.£2(x)+;2(x)
that has finite drag and is defined over an interval -c < x < ¢,
For finite wave drag, té, 12, and 85 must be differentiable in

the interval =-¢ {( x { ¢ and vanish at x = + ¢, i.e.



té(c) = té(~0) = 0
fz(c) = ﬂa(-c) =0 (1.1
sz(x) = sa(ac) =0

Furthermore, for finite vortex drag the net 1ift and side force

of A, must vanish (ref. 12), i.e.

c c
JZC [E(X) dx = O, j[ sa(x) dx = O (14,2)

=C

The interference drag between A1 and A2 thus appears

only as wave drag interference and can be calculated either by the
method of Hayes or by equation 8.ka.
The interference drag will bhe calculated by Hayes' method

first. The equivalent lineal source distribution of A is simply

2

hz(x,@) = Uti(x) --iﬁiﬁ [,egﬁx,g) sin @ + sgﬂx,g) cos @] (e¢)

o)

Bquations (a) and (c¢) together with Hayes' formula 7.6 and 7.7 give

«fz 27 b c
(44545) = -57;5 ] ae fa hj(x,0) dx f_.c ni(%,0)log|x- zlat

(14.3)
The inner integral in equation 14.3 can be integrated by parts
noting that hz(x,g) is continuous over the interval -c £ x { ¢,
With the aid of equations 14.71 one obtains

f.: b3(¥,0) loglx-3lat = - |

=C

] hZ(ZgG)

-§-:—-§—-d§ (d)

Substituting equation d into equation 14,1 gives, after inter=

changing the bound variables and the order of integration,



- 54 -

] b h'(g,@)
(Aﬂ,Aa)»‘JOO f de f h,(%,0) dx/ 0z (e)

8W ) =C a x =8

Substituting the expression for hz(x,@) given by eqguation ¢
and performing the 6 integration first , one obtains

¢ 7 o b 1 21 1 ] '
(A,PAB) = = /;c {/pov[w J; m (—2‘-;;-(" fo hil(g ,G)&O)d}, 'tZ(X)

-

1[-£ (° 1 (1 [27, ]
5 [47T\J; I (27f‘j; h1(§,9) sin © a@}d% ,Jg(x)

ol

2 ,e L (T a0 ed@d} (x) b a
+ 5 'Tf qu 2“!1 ) 1(§,8) cos giszx x

(14.3)

If the interfergnce drag is calculated by means of equation 8.ka

one obtains the expression

o () 7,40)
(Bqehy) = - j-c [P0 5400) t400) + —— L,(0) + —— s,(x)]d¥

(Mhok)
Coumparison of equations 14,3 and 14.4 gives the following

result, where <f(@)> stands for the mean value of (@), i.e.

| 1 3T
(£(e) = Eh??f £(0) de ,
o]

and where the order of &~integration and 3 -differentiation has

been changed,

All of the requirements for changes in the orders of the
integrations and differentiation, have been found to be
satisfied if one deals only with distributions A1 and A

that have finite wave drag. 2
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_ {n,(%,0) >
T(x) = f 1 Al ey (14.5a)
_ _ (n,(%,6) sin @)
wﬁ(x) = ﬁ7% jﬁ L T a4y + A (14,.5b)
a
b (8,(3,0) cos @ )
¥ (%) ‘Ifj‘ ! o a3y + o (1h.50)

Since the interval =¢ { x { ¢ and the distribution Az(x) can be
chosen arbitrarily within the class of lineal distributions with
finite drag, i.e. equations (14.,2) apply; equations T4.5 a,b,c
are valid for all x in the infinite interval. A and o~ are not
determined in the comparison and they do not affeect the calculation
of interference drag as long as Aa is restricted to the class of
lineal distributions with finite drag. Egquations 14.5b and 14.5¢
are exact if A énd g~ are equated to the value of ﬁ1 and ?1
in the Trefftz plane at f = 0, 2 = 0,

A lineal distribution K1(X)=E1(x)+ ,Q1(x)+§1(x) will
now be found that producesexactly the same interference drag with

any lineal distribution AZ(X) as A1(x,y,z) does, i.e.

(Ag0h5) = (Eﬁ,aa) for all A,(x) (£)

Such a lineal distribution will be referred to as a "pseudo lineal
distribution”. The equivalent lineal source distribution of @1(x)

as viewed from the angle © is

ﬁq(x,@) = U%;(x) - }géﬁ ﬁ_ﬁq(x) sin 6 + 51(x) cos 8] (14.6)
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It is easy to see from equations 14.5 a,b,c and 14.4 that for
E/(x) to be a pseudo lineal distribution of A (x,7,2)

it is sufficient that

(By(x,0)) = UE300) = {hy(x,0)) (¥, 7a)

~—-—/-8-=-= Z’I(X) = <h,§(x,9) sin e}

1]
]

<51(K,@) sin 9)

2 p U
fo | (14.7b)
= A
<h1(x,9) cos 9> = - ET;ZBE 51(x) = <hq(x,9) cos Q>
' (1he7¢)
Furthermore, from the differentiability condition on h, and

1
equa’cion(b)j,%%, Z,!, and “5'1 satisfy the differentiability condition

and
££§(a) = g,’](b) =I1(a) =11(b) = E,‘(a) = g,.(b) = 0 (14.8)

Hence the wave drag of K1(x) is finite, One further requirement

shall be made which fixes the pseudo lineal distribution 'A1, ViZe
%1(a) = 0 (14.9)

The interference drag between A and A can thus be

1 2

computed from 4.4, viz.

Vq
,(2 b s2] dx (14,10)

W
U U

c
= o i 0 ' e
(Aqyhy) = Lc [po v iy by +
where 31, §1, and ?1 are calculated directly from the distribution

Aq(x?yqz) or from equations similar to equations 4.5, visz.
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U.,z = W\[a E" % d’§ (14;1’58&)
2 -
ol U/b 23t %)
m A T - % a% (14.110)
(t.11e)

BU b 53(3)
/‘Wfa P

obtained by using the pseﬁdo lineal distribution A1(X).

Equation (f) states that
(14.12)

(8g = Bguh,) = 0 for all A,(x) with finite wave plus
vortex drag

Similarly it can be shown that
with finite wave drag

(14.13)

,with

(A1 - A1’A2)Wave 0 for all Aa(x)

Thus if one puts A, = 51 in equation (14.13) one obtains

its aid

(g - Aq + Aj) = wave(A A1) * Doe 1)
(14.14)

Wave(A ) = Dwave 1

Net base areas, 1ift, and sideforce of the distribution

are given (as in egquations 11.2 and 12.3) by

Aq
ot b
Fy o= F(A1) =Jl£{ ) L dx dy dz = jﬁ t5(x,0) ax (14.15a)
R a
1
b
Ly = L(A,i) = Jff ,?1 dx dy dz =f ,?,,(x,e) dx (14.15b)
R a
1
(14.15¢)

1]

S(Aﬁ) = j~(f s, dx dy dz jﬁb s,(x,0) ax
R a

&2}
-3
i
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The equalities on the right hand sides of equations 14.75 follow
from the method of construction,given in section 7,0f the lineal
projections t%(xgg),‘ﬁ1(x,@) and Sq(X’@)o From equations
4.7, 1%.15 and equation(a)and the orthogonality between 1, sin @
and cos @, one obtains

,

b b
. <h,§(x9@)> dx = -% <fa h,ﬂ(xeg) dx>

i

o] PN

F(m

=%— {UF1 - /fU [L,i sin @ + 84 cos G]> = Fy ('_!4.16&)

©

and similarly

- Z}OOU

KLy = - Z

L,! (14.160b)
E/QOU
1) - 2
= 51 ' (11'%'0163)

<UF1 - %[L,‘ sin @ +'S1 cos @]> sin €

1

s(s

<UF1 - —/Bé-ﬁ[L,l sin © + S’I cos @]> cos ©

Unless L1 and 81 are zero, the eguivalent pseudo distribution

E?(x) has infinite vortex drag,

15 Optimum Lineal Distributions in the Presence of a Fixed

Distribution.

This section is devoted to the study of the problem of
finding optimum lineal distributions of thickness, 1ift and side-
force for an interval =c é_ x_é ¢ on the x-axis such that the drag
of the combined distribution A1+A2 is minimized. Aq(x,y,z) is

a given fixed distribution that may represent wings and bodies off
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the axis. A is required to satisfy a set of constraints such as

2
fixed total volume or fixed base area., In addition, A2 must
satisfy the conditions

L) = 0, s({,) =0 (15.1

- in order to have finite vortex drag (cf. section 14). According
to Monk's stagger theorem and equations 15.71 only the wave drag of
A1+A2 is minimized. Thus the pseudo lineal distribution §1(x)
will be used to replace Aq(x,ygz) in the formulas. The drag of

A +A

1t8o is then given by

D(A1+A2) = D(Aﬁ) + 2(A1+A2,A2) - (AagAZ) (15.2)

As is indicated in the example of section 13, the optimum

distribution A can be split up into two distributions

2
by = Ay + By (15.3)
The first distribution AB is chosen such that the wave drag of
A1+AS is minimized irrespective of total volume, total base area,

or equations 15,1 or other constraints which may be imposed on the
distribution AZ' The necessary and sufficient condition that

AAL be this optimum is that

(Aqehg, W) o= Cageag, D) =0 (15.b)

hold for all lineal distributions Kg that have finite wave drag
and are confined to the interval =-c ¢ x< c¢. The proof of equation
15.4 is similar to that used in deriving equation 10.7.

If equation 15.4 is expressed in the form of equation

14.9 one obtains
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W.?-ﬁ-'ﬂa V1+V3

c - —~
~U/jc [/oQU(u?+u3) t% + «~5--[3 = 63] dx = O (15.5)

Since '%g,.QB, and Eé are arbitrary, one obtains

u1+u3 = Q, WorW, = O, v1+v3 =0
where the combined flow velocities are calculated with the aid

of equations 14,11 a,b,c. One obtains, after cancelling out the

constant factor,

¢ tg(%) b %g{%)
/%‘ 2 a =.,/; £ at (15.62)
c (&) b J1(85)
: ) _ 1
d{; o dg = = d/; £ 5 ag | (15.6b)

it

c sé(%) b E%(%) )
L/‘; — ag = </; --g-:? ag (15.6¢)

for 2al1l == in the interval =c <x< c. For finite wave drag of

the distributions A, and 51, it is required that

3

t5(xc) =4 5(xe) = s5(4c) = 0 (15.64)

€%(a) = E%(b) =‘£1(a> =.21(b> = 51(a) = §1(b) = 0 (15.6e)

In addition we will require

tE(-c) = 0 and E%(a) =0 (15.6¢)
These are the integral equations which must be solved for the

distribution A_.

3

The middle term of equation 15,71 can be expressed with

the aid of equation 15.4 where we let A=A Thus

2@



(£1+A2,A2) = (Kq* zthy by Yyave = urta) yave
= (A,,A 3 wave T CApehiy) oce
D(A,+A5) = D(A,) + B(AA’AB)wave +20h08) have
- (4 Aj)wa 2(A31Aq)wave = (Ah’Aﬁ)wave
= D(&q) = Do (Ag) + D (8)) (15.7)

The second distribution Aq is chosen such that the

gquantity D (A,) is minimized under the conditions:
L

wave
(L) = - L), 8(sy,) = - 8(sy) (15.8)

derived from equations 15.1. In addition, th must be such that
the constraints on the combined thickness distribution ,t2 = t3+t@

are satisfied. For example, if F(tz) is specified then the

constraint for tg is

F(ty,) = F(t,) = F(tB) (15.9)
If A2 is to have fixed volume and zero base area then
(15.10)
Vq(tq) = V(ta) - V(tB)

are the constraints that AQ must satisfy.
The problem of finding Aq such that Dwave(A4) is
minimized under the conditions 15.8 and the constraints given by

equations 15.9 or 15.10 has been extensively studied in the

references (see references (2), (8), (13), (4), for examplel.
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Aq can be decomposed into four basic orthogonal optimum distri-

butions, viz.

Karman ogive distribution (ref. 13):

-2 2-1/2 W
t = xle -x"] + sinﬁl‘ X 4 l} F
co c2 c 2
Pt ) =F, Wt )= NTFe
e
D(t_ ) ==t F
co 2
e |
Sears Haack distribution (refs. 14,15):
S
8y 2 _2.3/2
tSH = It (C - 2 )
3 ¢
F(tSH) = O, V(tg) =V
gy .2
D(tSH) =—;7'f—-;-2:V

Elliptic 1ift distribution (ref., 2):

. 2L_ (2 _ .2y/2

= 7702
Z 2

D (4) =Rl

wave B 2
27ch

Elliptic sideforce distribution:

25 2 2.1/2 B
S, = = (¢ = x7)
B2
2
B°s?
Dwave(sE) = 2
27ch

? -

(15.11)

(15.12)

(15.13)

(15,.14)
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By choosing L = aL(IB), S = = S(SB) in equations
15.13 and 15.14, respectively,conditions 15.8 are satisfied.
The constraint 15.9 is satisfied by choosing F = F(tg)
= F(ta) - F(tg) in equation 15.11. Similarly, the constraints
15,10 are satisfied by choosing F = F(tq) = ~F(t3) in equation

1511 and V = V(ta) - V(tB) + 7Tc F(tB) in equation 15.12

The remainder of this section is devoted to the calcu~
lation of AB(X)’ L(ZB), 3(33)’ F(tB) and V(tB)' To include the
most general case,(a) and (b) in equations 15.6 a,b,c are chosen
such that

al =c{ x£ c¢ckb

Cénsider the integral equations 15.6 a,b,c.* Since they

are all of the same form only the first one will be discussed in

detailf viz.

'(s _ E(3) -
[c ¢ ; f ZIOPL (15.152)
where by equations 15.6 d,e,f, t3 and Eq must satisfy the end
conditions
%i(ip) =0, gfnc) = 0 (15.15b)
%1(a) = E%(b) =E.(a) =0 (15.15¢)

It will be shown thalt the solution of 15.15 a which satisfies the

end conditions 15.15b

- 2 2.1/2
- 1 =c b R0 (p7-c)
t'x) = = (X)) + / - / :
1 W(CZGXZ 1/2 a c 12 - X

(15.16)

a7

Equatien 15,15a is similar to the airfoil equations and is fully

discussed in ref. 16,
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The following integrals are needed to verify that equation
15,16 is a solution of equation 15,15 and for use in obtaining

integrals of tg(x),

yis
= = for < =C
G(Xs ) =/X 072“(:2)1/2 d§ = Sin”1l_—x-02 + ¢ 7
7 e (22 V2 p-E o x| LT ror pe
(a)
where the principal value of si,nm1 is assumed, i.e.
- Zé'ré .ss:i_rx'“1 < 2.27 s
and where lxl < Ce G(x,?) has the following properties
2 a(xy) _ (CxD VR4 (o)
57 ()72“02)1/2 )i-» x
7
G(x,c) = 0, Gx,=c) = =TT
- £
T for 7 sc |
. <
G(—c{?) = 0, G(c,?): 0] for|7[-< c (e)
+ for > ¢
L

The integral of G(X;Y) from x = =¢c to +c¢ forl'y[;> ¢ is
also needed.
c

© > G
C/C; G(x,?) ax c[G(c,Y) + G(~c,?)] - d{? X S— dx

c

i

R A )
¢ G(ec,m) -0/0 dx
7 ") e (R V2 ” -

2)1/2

¢ Gley) = 7 Gleyy) + Tr(ya-c

(c-p) 6Co,p) + 7(72.«:2 /2

i

(d)
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Another integral which is needed is derived from equation (c¢)

c 072“62)’]/2 4k
e (28272 TxGD)

2 2 ﬂ/Z

1 (’7 1 1
V= /. §2>1/2 7 Ul
«-ﬂ‘ for =C
=-i~[ﬁc,) - Gle,x)] . ,Ix|<c
7“X 7 7”x + I for c

(e)
We have, upon substituting tg from equation 15.16

into equation 15.15a,

o t(E) g © B®
d = - d
J/ic 5= u/ic E-x
+-,;;/ (o ga)va ;-vx / / 7“"5 ay

(£)

Interchanging the order of ? and § =-integration, noting equation

(e), and replacing & Dby ? in the first integral on the right

hand side of eguation (f), gives

¢ t%(%) . c t"(?) J/? 0/0 Tu (7)
£ = -
&[-c §-x lc: 7"}{ 7«3{ 7

/“’ M ()
- a
o 7-=°7 ®

as required. Thus t3(x) given by equation 15,16 is a solution

1]

of the integral equation 15.15a.
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The integral of ¢ from =c¢c to x dis given by

3

X X
t4(x) = /; tg(%) a = -[{: Ez;(%) ag
-G b _
/; ﬁ &(x,y) B0 ay (w)

where the order of § and ? -integrations has been inter=

U->

changed and equation (a) has been used. Integration of the

second integral on the right hand side of (h) by parts,yields
t4(x) = - By(x) + TY(<c)
[t1(nc) Glx,=c)- t'(a) G(x,a)= t’(b) G x, b)+t°(c) Glx,c)]

f f 2-‘*-‘-’&2— B ay (1)

#LA #LA

Equations (b) and (c¢) and the end conditions 15.15¢ then give,

finally,
2 2.1/2 -c b E*(y)
- (c=x 1 ay
B1(x) = ~E4(x) - ~2X ) / -/ ,
3 1 T 1/ a R (?2_32 1/2 7~x

An alternative form of eguation (15.18) is obtained with the aid

(15.18)

of the identity

(a2 Pt CEESIGES iy
- 5 J

(72_X2)1/2 - (o ~X2)1/2 M I 1/2 72 2 1/2

[ b 1 1(?) (? ’ca)
tB(X) = -t1(x) + T;“"g—"g“f7" d/j d/) - d7

b t%(?) (X+7) (15.19)
d 5.19
Tr(c =X ) J[ u/7 2 2 17~ 7
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To show that ! vanishes at the end of the interval

3

we let x = ¢ in equation (h) and obtain, with the aid of (c¢),
C - ws
BAC) =L t5(8) a% = -/ B4(n) dy = <E4(0) + E4(a) (k)

The right hand side of equation (k) vanishes by equation 15.15c.
Therefore tg(c) = 0 as required.

Further integrations of equation 15.19 yields
- - 1 =c b -
= s s e - )
tB(X) = t1(x) + t1( c) + ﬂ’(/: JC G(xgy) t1(7) d7

O ke Y (Y d WL L LB
> . o [ 2372 7

7o
-4 J:s:i.n“1 X I /'0- /b E%()Z))? d (15.20)
e R N A (72002)172 i
: b ¢ b\ Ea(y)
F(t,) = t.{(c) = = £8(n) dp = - d
3 3 b[; 140 dy . e <?2w02)172 Vi
c b E’(V)
= -\-»]E‘,l - / - —-—-ii-é-—va‘ d‘? (15.21)
a c (? -c") '

where F, is the base area of the distribution Aq(x,y,z) (see
equations M4.17a). Equation 15.20 has an alternative form similar

to equation 15.18, viz,

1/2 T,
_ = (c =X ) ©1 dy
tB(X) = mtq(X) Jp Jp (72 5 1/2 7 =x
02y 1/2 t'(y)
--F G(x b) + Xl Jf Jﬁ d
(72 2,772 i

t‘( )
Y B N
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Integration of equation 15.22 from =c¢c to ¢, with

the aid of equations (d) and (¢), yields the volume of t5’ Vize

-c b .7y
- 1
V(t,) = = V(%) - (/n - Jﬂ d
3 1 . . (Vamca)1/2 i

- F, [(bzsca 1/2 =(b=c)]

“-f f (2-H72 (271 d7'°/ f ;

(15.23)

Solutions for A and s are obtained by putting

_ 3 3
‘fq or §1 in place of E% in equation 15.18, viz,

022 1/2 (7)
B =X ) 1 d»
13(’{) = J(X) / f 2 2,172 =

(15.24)
2oy’ 1/2 (7)
- o ux d‘)7
s5(x) = =84(x) - f f RO

(15.25)

Similarly L(tB) and S(tB) are obtained with the aid of equations

14.17b and 14.17¢, viz.
] 2007
1 --{f f 2 2 ,} d? (15526)

<7>’7
-5, - Ifa -ﬁ} (72-c2)1/2 ay (15.27)

=L

L(t3)

it

S(tﬁ)
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