Robust Mask-layout and Process Synthesis in
Micro-Electro-Mechanical-Systems (MEMS) Using Genetic
Algorithms

Thesis by
Lin Ma

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2001

(Defended May 11, 2001)

i

© 2001
Lin Ma
All rights Reserved

iii
Acknowledgements

I would like to express my gratitude to my advisor, Professor Erik Antonsson, for his guidence
and encouragement. His patience and optimism make my work and study at Caltech a pleasant
experience. Certainly without his advice this work will be impossible.

Also I would like to thank my committee members, Professor Joel Burdick, Professor David
Goodwin, and Professor Kennith Pickar, for the time they spend on guiding me through and their
inspiring ideas.

I owe my special thanks to Qi, for her love and support. I also thank my parents, who always

take pride in me.

v

Robust Mask-layout and Process Synthesis in Micro-Electro-Mechanical-Systems
(MEMS) Using Genetic Algorithms
by
Lin Ma

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

This thesis reports a Genetic Algorithm approach for the mask-layout and process flow synthesis
problem. For a given desired target shape, an optimal mask-layout and process flow can be au-
tomatically generated using the Genetic Algorithm synthesis approach. The Genetic Algorithm
manipulates and evolves a population of candidate solutions (mask-layouts and process parameters)
by utilizing a process simulation tool to evaluate the performance of the candidate solutions. For the
mask-layout and process flow synthesis problem, encoding schemes, selection schemes, and genetic
operations have been developed to effectively explore the solution space and control the evolution
and convergence of the solutions.

The synthesis approach is tested for mask-layout and process synthesis for bulk wet etching. By
integrating a bulk wet etching simulation tool into the Genetic Algorithm iterations, the algorithm
can automatically generate proper mask-layout and process flow which can fabricate 3-D geometry
close to the desired 3-D target shape. For structures with convex corners, complex compensation
structures can be synthesized by the algorithm. More importantly, the process flow can also be
synthesized. For multi-step wet etching processes, proper etchant sequence and etch times for each
etch step can be synthesized automatically by the algorithm. When the choice of different process
flows exists, the enlarged solution space makes the design problem more challenging. The ability
to synthesize process flows makes the automatic design method more complete and more valuable.

The algorithm is further extended to achieve robust design. Since fabrication variations and
modeling inaccuracy always exist, the synthesized solutions without considering these variations
may not generate satisfactory results in actual fabrication. Robust design methods are developed

to synthesize robust mask-layouts and process flows in “noisy” environment. Since the synthe-

sis procedure considers the effect of variations in the fabrication procedures, the final synthesized
solution will have high robustness to the variations, and will generate satisfactory results under a va-
riety of fabrication conditions. The robust design approaches are implemented and tested for robust
mask-layout design for mask misalignment and etch rate variations. Mask-layouts robust to mask
misalignment noise and etch rate variations during the fabrication can be synthesized. The synthe-
sized mask-layouts generally improve the yield significantly by exhibiting consistent performance

under a variety of fabrication conditions.

vi

Contents

1 Introduction

1.1 MEMS Design Approaches
IIL Overview o o i
1.1.2 Empirical Approach
1.1.3 Simulation and Modeling Approach
1.1.4 Synthesis and Optimization Approach
1.2 Current MEMS CADResearch
1.2.1 Process Simulation Tools«
1.2.2 Device Analysis Tools o oL
1.23 MEMSCADPackages e
1.3 Synthesisand Design o
1.4 Contributions of This Thesis
1.5 Overviewofthe Chapters
2 Genetic Algorithms
2.1 Introduction e
2.2 General StTUCLUre e e e
2.3 GATerminology e
2.4 EBncoding
2.5 Selection e
2.5.1 Fitness Proportionate Selection
2.5.2 Deterministic Selection oo
2.6 CIOSSOVET . . v v v v v e e e e e e e e e e e e
27 MuUtation e e e e
2.8 Example oo e e

o w0 AN N Nt R LY D

e
[\ B

vii
2.9 Summary e e e e

Bulk Wet Etching Simulation Tool

Shape Matching

4.1 Introduction e
4.2 Polygonal Shape Matching o
43 3-DShapeMatching
4.4 Calculating Fitness Value L o
4.5 Summaryo e e

Mask-layout and Process Synthesis: Design and Implementation

5.1 Introduction e e
5.2 Mask-layouts: Coding and Genetic Operations ~
52.1 CodingScheme
5.2.2 Mask Initialization L
523 Crossoverof Polygons
5.2.4 Crossover of Polygons with Different Side Numbers
525 Mask Mutationo oo e e e e e
53 Selection Scheme
5.4 Symmetry: Computational Considerations
5.5 Test: Searching for a Quadri-Symmetric Polygon
5.6 Process FIOwWs o o o 0 oo i e
57 Summary e

Mask-layout and Process Synthesis for Bulk Wet Etching

6.1 OVEIVIEW o o e e e
6.2 Corner Compensation e
6.3 SquareMesa. e
6.3.1 EtchRateData
6.3.2 TargetShape
6.3.3 Test e
6.4 CrossGroove v i i e e

6.5 Mask-layout and Process Synthesiso L

31

36
36
37
40
43
45

46
46
48
48
49
50
54
57
58
61
62
67
69

6.6 SUMMATY e e e e 99
Robust Design 100
T1 OVEIVIEW . . o o v e 100
7.2 Background 103

7.2.1 Product/Process Design 103

7.22 RobustDesign 105
7.3 Taguchi Methodand S/NRatio 106
7.4 Robust Design with S/N Ratio for Mask-Layout Misalignment 109
7.5 Genetic Algorithms for Robust Design 116

7.5.1 GAs with a Robust Solution Searching Scheme 116
7.6 GA/RS® Robust Design for Etch Rate Variations 119
777 SUMMATY . . . o . o e e e e e e 124
Conclusion 126
8.1 Summary 126
82 Future Work L e 127
Exploitation and Exploration 130
Fitness Scaling 131
Tournament Selection 133
Crossover 134
D.1 Binary CrossOVEr o v ot it i e e e 134
D.2 Real CrOSSOVET . . .« v v v v v it e e e e e e e 136

D.2.1 Conventional Crossovers« . v it 136

D.2.2 Arithmetic CIOSSOVEIS v v v v v v i e e e i 136
Schema Theorem 138
E.l Schema e e 138

E.2 SchemaProcessing v i it 140

X

List of Figures

1.1 MEMS design: empirical approach L. 3
1.2 MEMS design: simulation and modeling approach 4
1.3 MEMS design: synthesis and optimization approach 5
1.4 Tterative synthesis flowchart oL 11
2.1 The general structure of Genetic Algorithms 17
2.2 The relation of phenotype space and genotype space 19
2.3 Blend crossover (BLX-a) e 25
24 Mutation L. e e e e e e 26
2.5 Function f(z) =xsin(mx) 28
2.6 Results of the GA optimization Lo 29
2.7 Convergence of the average fitness values 30
3.1 Exarﬁples of SEGS wet etching simulation 32
3.2 Simulated result of a two-step wet etching fabrication 33
3.3 Multi-step etching simulation: Moving of interface between old wall and new wall

(side view) e 33
3.4 Visualization of the reconstructed surface of etching contours 35
4.1 Turning function of polygons e 38
4.2 3-D shape representation andmatch oL 41
4.3 A shape mismatch of zero doesn’t mean same shape 42
5.1 A schematic representation of a Genetic Algorithm MEMS synthesis technique . . 47
5.2 A schematic illustration of the GA coding scheme for mask-layouts 49
53 Crossover of twopolygons L e 52

54

Add-then-remove scheme for crossover of polygons with different numbers of sides 56

55
5.6
5.7
5.8
59
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

Mutation of apolygon o Lo 59
Selection pressure controlled by selection bias b 61
Acrossasthetargetshapeo 63
Convergence curves of shape and size mismatches 64
Best polygons at different iterations 65
Convergence of the number of polygons with 16 sides to the population size 66
Target polygon and the search result using fixed polygon side number GA 67
Corner undercutting of a square mask in anisotropic etching 72
Octagonal shape resulted from long etchtime 72
A mask with compensation structures and the resulted square mesa 73
Compensation pattern examples 75
Asquaremesa e e e 76
A square mesa represented by polygon layerso 78
Synthesis results: mask-layouts and simulated shapes 79
Convergence curves of shape and size mismatch values 80
Convergence of number of polygons with 24 sides to the population size 80
Various synthesized mask-layouts for the squaremesa 82
Synthesized mask-layouts for the square mesa with different feature lengths 83
ACTOSS EIOOVE « . v v v v i e e e 84
A cross groove represented by polygon layerso 84
Synthesis results: mask-layouts and simulated shapes 86
Convergence curves of shape and size mismatch values 87

Convergence of number of polygons with either 24 or 28 sides to the population size 87

The best mask-layout at iteration 55 and iteration 58 88
Various synthesized mask-layouts for the cross groove 90
Synthesized mask-layouts for the cross groove with different feature lengths 91
The target shape 92
The target shape represented by polygon layers 93
Synthesis results: mask-layouts and simulated shapes 94
Convergence curves of shape and size mismatch values 95

Convergence of number of polygons with 24 sides to the population size 96

X1

6.25 Convergence of number of candidate solutions having #2 and #1 as the first and
second etchant numbers to the population size 96

6.26 Convergence of number of candidate solutions having the first etch time between

2.5 hours and 3.5 hours to the population size 97
6.27 Various synthesized mask-layouts for the target shape 98
7.1 Synthesized mask-layout forasquare mesa 101
7.2 Fabricated shape when the mask has a 3° misalignment 101

7.3 A schematic representation of a Genetic Algorithm MEMS synthesis technique for

robustdesign L 102
7.4 Block diagram of a product/process: P Diagram 104
7.5 Quality distribution in robustdesigno 108
7.6 Schematic model of fitness evaluation 111
7.7 Synthesized result of arobustdesigno Lo 111
7.8 Comparison of robust synthesis and non-robust synthesis 112
7.9 Histogram of fitness distribution for non-robust synthesis result 114
7.10 Histogram of fitness distribution for robust synthesisresult 114
7.11 Shape mismatch vs. mask misalignment for both masks 115
7.12 Fitness evaluation model in GA/RS® 117
7.13 Synthesized result of arobustdesigno L 120
7.14 Comparison of robust synthesis and non-robust synthesis 120
7.15 Shape mismatch vs. etch rate variations for bothmasks 121
7.16 Synthesized result of arobustdesign oo 122
7.17 Comparison of robust synthesis and non-robust synthesis 123
7.18 Shape mismatch vs. etch rate variations for both masks 123
8.1 A synthesized mask-layout with small y-direction dimension 129
D.1 One-point binary CrosSOVET o v v v vt vt 134
D.2 Two-point binary CrOSSOVEr v v v v v i e 135
D.3 Uniform binary CroSSOVEr o v v v v v e e e 136
D.4 Arithmetic CroSSOVEr . . .« o« v o i v e e e e e e e 137

E.1 Visualization of regions of schemata 140

xii

List of Tables

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2

GA parameter settings o 63
Synthesis data showing convergence 63
Etching rates for 45 wt.%, S§ “CKOH Solution 76
Evolution parameters for GA Lo 77
Synthesis data showing convergence e e e e e e e 78
Evolution parameters for GA oo oo 85
Synthesis data showing convergence 85
Etching rates for three differentetchants 92
Evolution parameters for GA 93
Synthesis data showing convergence 95
Statistics data for non-robust and robust synthesis results 113
Etchiﬁg ratedata L. L e 119

Chapter 1

Introduction

As the variety and complexity of micro-electro-mechanical-systems (MEMS) expand, the need for
design tools and automation strategies to create robust, cost-effective, and manufacturable micro-
machined devices and systems becomes critical. Such tools will allow non-specialists to design
sophisticated MEMS devices, and will enhance the efficiency of expert designers. While there has
been diverse work in the general area of computer aided design (CAD) for MEMS, many of these
tools apply to process simulation or analysis of the behavioral and mechanical properties of de-
vices. While process simulators and device analysis tools are excellent tools for verification and
refinement, and they can reduce cost and time of device development, the task of developing the
initial process (including mask-layouts), and appropriate changes to the process if the simulation
results are unsatisfactory, remains on the designer. The design process itself, for mask-layouts and
fabrication process flows, is still a job for experts, and iterations of trials and errors are needed to
achieve a robust and effective procedure.

At present, a MEMS designer conceives of a function, then informally creates a mask-layout
and a fabrication process flow that the designer believes will manufacture a shape that will exhibit
the desired function. This process is based largely on the designer’s intuition and experience, and
is difficult for complex geometries or for novice engineers. A prototype device is created from the
suggested mask and fabrication process, and its actual function is tested. If the performance of the
device is unsatisfactory, changes must be made to the mask-layout and fabrication process. This
procedure results in many iterations and many prototypes. Process simulation tools and function
modeling tools are developed to simulate the fabrication procedure and test the device performance
on computers. Although these tools can speed up the device development and provide verifica-

tion for the design, they do not provide much help for the mask-layout and process synthesis task,

which still relies heavily upon the designer’s intuitive understanding of the fabrication process. The
designer can only count on experience, and the simulation results, to design and modify the mask-
layouts and fabrication processes. Additionally, the wide variety of micromachining processes in
use today makes this intuitive work even more difficult, and typically force designers to limit them-
selves to familiar processes. In some cases certain etchants or geometries are avoided because they
require too many iterations to get the right mask-layouts and process flows.

The desired approach for designing MEMS devices is the reverse of the process just described:
The designer conceives of a MEMS function, then through an automated process determines a shape
(three-dimensional geometry) that will exhibit the desired function. Another automated process is
then used to determine a mask-layout and a set of fabrication instructions that will create the desired
shape. Thus the present process is: mask-to-shape-to-function, the desired process is the reverse:
function-to-shape-to-mask.

This thesis addresses issues in formalizing and automating the synthesis (design) of MEMS, and
discusses the development of algorithms that automate the robust mask-layout and process design

for bulk wet etching.

1.1 MEMS Design Approaches

1.1.1 Overview

The development for MEMS devices benefits from the use of computer modeling and simulation.
Most of the design tools developed for conventional mechanical engineering can be utilized to
assist in the mechanical design aspects of MEMS devices, and various process simulation tools
and device analysis programs have been developed to provide help in the design process. However,
micromachining process synthesis and design automation are still largely lacking. Therefore, a
major portion of the design cycle may still include time-consuming experimental determinations
of design space and process improvement to ensure manufacturing accuracy and robustness. New
design tools and automation strategies are needed to provide robust, cost-effective, fast turn-around,
and manufacturable MEMS products [113]. The ability to synthesize mask-layout and process flows
and device geometries from function specification will represent the ultimate design automation of
micromechanical systems.

For MEMS device development, there exist three different approaches. They are described

below, and the advantages of the synthesis and optimization approach are discussed.

Iteration
Mask-Layout Device Device Device Function
& Process Prototyping Geometry Analysis

Figure 1.1: MEMS design: empirical approach

1.1.2 Empirical Approach

A typical development path for a MEMS device with an empirical approach without the aid of
computer simulation is illustrated in Figure 1.1. Designers-start with the mask-layout and fabrication
process flow. A prototype is fabricated and tested, and the performance is compared with the target
or desired function. The first prototype’s performance is in general unsatisfactory, and iterations of
device prototyping and analysis process are usually involved to move towards an optimum design
solution. The entire iteration procedure can be broken into two sub-procedures each of which takes
the form of iterations: the device analysis step, and device prototyping step. Iterations of device
analysis steps are taken until a satisfactory device geometry is found which meets the performance
function requirement, and iterations of device prototyping are taken with the goal of searching for
a mask-layout and fabrication process flow that will produce the desired device shape. Device
prototyping iterations start with the selection of a fabrication process and the settings of process
inputs, which typically include material, mask-layout and process parameters such as temperature
and process duration time. Then the actual fabrication proceeds to produce the device prototype.
The prototype is then compared with the desired device shape, and if the shape comparison result
doesn’t meet the required tolerance, readjustment of mask-layout and process parameters need to
be made before starting next iteration.

This procedure depends strongly on human experience in the involved MEMS design and fab-
rication processes and such experience is usually obtained through many repeated trials and errors.

Because of the many iterations of device prototyping and analysis, the production yield is low.

Iteration
Mask-Layout Process Device Function _
; ; - Function
& Process Simulation Geometry Modeling

Figure 1.2: MEMS design: simulation and modeling approach

1.1.3 Simulation and Modeling Approach

Several steps of MEMS design process can be automated which makes the iterations faster and
cheaper. Figure 1.2 illustrates how computer simulation can be used to reduce costly fabrication and
testing iterations. There are two categories of simulation: process simulation (simulating fabrication
processes), and function modeling (analyzing device performance).

Process simulation tools can be used to automate the fabrication step and, when combined with
function modeling tools (finite element analysis, efc.), further automate the device analysis step.
Combining these two, the device prototyping experience can be learned through the simulation on
computers instead of actual device production with many trials and errors, and the device perfor-

mance assessment can be performed without actually testing the devices.

Process Simulation

A process simulation tool takes mask-layout and fabrication process settings as input and generates
an accurate three-dimensional representation of the resulting device geometry to take the place of
the actual fabricated device geometry.

The majority of bulk-micromachining processes involve isotropic or anisotropic etching of
single-crystalline silicon, gallium arsenide, or amorphous glass. For anisotropic etching, the etch
rates at different crystalline directions are different, and the transition from the mask-layout to the
etched shape is generally geometrically complex. An accurate etch rate model is essential to simu-
late the fabrication process. A good bulk etching simulation tool can be useful to predict the device
geometry from the mask-layout. For example, the ability to model the formation of silicon convex

corners with KOH etching will help in designing corner compensation structures.

Mask-Layout Mask & Process Device Geometry

Function
& Process Synthesis Geometry Synthesis

Figure 1.3: MEMS design: synthesis and optimization approach

Surface micromachined devices, on the other hand, are built from thin film materials such as
polycrystalline or amorphous silicon, silicon nitride, silicon dioxide, and various metal thin films.
An ideal process simulator will be able to simulate the geometric effects of sequential IC process
stages, including patterning of photoresists, oxidation, diffusion, deposition, etching, etc., to pro-

duce geometric representations of the structure after each process stage.

Function Modeling

The purpose of the device design is to develop a device which has some desired functional per-
formance. Microfabricated sensors function by converting one or several physical or chemical
conditions into electrical or optical signals, while most actuators perform the inverse functions.
The modeling of MEMS devices generally involve electrostatic, electromagnetic, ferroelectric, and
piezoelectric phenomena, to name a few. These characteristics are often coupled with static or dy-
namic mechanical deformation of the microstructures. Therefore, a self-consistent modeling tool is
needed to represent the transfer behaviors of these devices. For most micromechanical structures,
the conventional CAD analysis tools, e.g., the finite element method, can be used to analyze the

mechanical behavior.

1.1.4 Synthesis and Optimization Approach

Even though both fabrication and device analysis steps can be automated, without the automation
of the search through the design space (composed of mask-layouts and fabrication process flows),
designers still can only count on experience to drive the entire iterative device prototyping and anal-
ysis process. Development of automatic geometry synthesis and mask-layout and process synthesis

will lead to the ultimate design automation of micromechanical systems, as illustrated in Figure 1.3.

These synthesis and optimization programs will automatically generate the device geometry and
fabrication process for such device given a desired device functionality. Recently, various pro-
cess synthesis tools have been developed to automatically synthesize the fabrication processes for
a given device design [35, 47, 52, 82, 91]. For device geometry synthesis, although currently there
is no existent software tools directly targeting it, desires have been raised to develop future ge-
ometry synthesis tools which will automatically synthesize the optimum design solution for the
targeted functional features. By utilizing process synthesis and geometry synthesis tools, the bur-
den of MEMS fabrication considerations is reduced so that designers can fully focus on the device

functional design.

1.2 Current MEMS CAD Research

As illustrated above, as the field of microelectromechanical systems develops there is an increasing
need for CAD systems to assist designers of devices and systems in a variety of tasks. Current
research on MEMS CAD is investigating a number of tools for MEMS design. Research work on
process synthesis and design automation will be described in the next section, and the following

discusses CAD tools for process simulation and device analysis.

1.2.1 Process Simulation Tools

As microelectromechanical systems become more complex, designers will find it useful to derive
models of the geometry of their device structures directly from the process description and planar
mask patterns. With process simulation tools, MEMS designers can verify process descriptions
and masks before beginning fabrication, and ensure a robust design by examining performance
sensitivities to process and mask variations.

The development of process simulation tools is directly influenced by MEMS fabrication tech-
nologies. Currently, there are mainly two types of MEMS fabrication techniques: surface microma-

chining, and bulk micromachining.

Surface micromachining

For surface micromachining, most of the techniques can be borrowed from IC processes which have
been well-developed through the past decades. Therefore, most process simulation tools of surface

micromachining are obtained through slight modification of existing VLSI simulators. These sim-

ulators cover standard semiconductor processes such as oxidation, diffusion, thin-film deposition,
and plasma etching.

For example, a simulator called OYSTER was developed by Koppelman [64]. OYSTER sim-
ulates the geometric effects of sequential IC process stages, in order to produce three-dimensional
polyhedral representations of all material structures in a design cell after each process stage. The
polyhedral models may be used with various analytic procedures as sources of geometric data for
finite-element calculations, or they may be subjected to interference calculations, or inspected to
detect structural anomalies. Another example is SAMPLE for simulation of projection lithography

deposition, and etching [85, 86].

Bulk micromachining

Bulk micromachining is used to fabricate three-dimensional mechanical structures (especially high
aspect-ratio structures) on the silicon substrate with the u;e of wet (chemical) or dry (plasma) etch-
ing technique combined with masking films or etch-resistant layers.

Most of the chemicals used today are anisotropic etchants which attack different crystallo-
graphic orientation of the material at different rates and provide control over the intended shape
of the wafer. Wet isotropic etching and plasma etching are also used to provide geometries that are
not dependent on crystallographic orientation.

All bulk m'icromachining simulation programs predict the three-dimensional geometry change
of the underlying etching structure for different etching time steps based on the input of a mask-
layout and etch rate data. Early etch modeling work includes the Wulff-Jaccodine method of trav-
eling planes [42, 59]. A number of computer implementations have been developed [17, 18, 28,
29, 107, 108, 115]. Another important etching simulation tool is the Slowness method by Foote
and Sequin [106]. The models of the Wulff-Jaccodine method and the Slowness method are purely
based on geometric analysis, while Hubbard and Antonsson [56], Than and Buttgenbach [114], and
Zhu and Liu [125, 126] developed cellular automata (CA) algorithms which base the rate of removal
of each cubic cell of material on the number of nearest neighbor cells remaining. The geometric
analysis is fast and accurate but is limited to basic shapes; the cellular automata approach is slow
but is able to simulate the etching of shapes of any complexity. SEGS by Hubbard and Antons-

son [55] uses an edge segmentation approach to trade-off the advantages of the geometric analysis

and cellular automata.

1.2.2 Device Analysis Tools

Fortunately, the conventional mechanical CAD tools can be borrowed for MEMS device analysis.
The mechanical behavior analysis usually starts with a simulated three-dimensional solid model
along with specified boundary conditions; the discretization process is followed to mesh the solid
model. A PDE solver is utilized to generate evaluation results for performance properties such as
stress and deformation distributions. The whole process is rather computationally intensive, and a
major effort is being devoted to developing fast and accurate algorithms to improve the efficiency
of the process. The mixed mode simulation and analysis are also developed where electrical and
mechanical models are combined. Senturia et al. studied such mixed mode simulation such as

capacitance calculations for a mechanically deformed diaphragm [104].

1.2.3 MEMS CAD Packages

Much work has been done on the broader picture of MEMS design concerning CAD architecture
and the interface of process simulators with function modelers [16, 64, 74, 93, 105, 118].

Various MEMS CAD programs have been developed to integrate process simulation tools and
device analysis tools. The examples are MEMCAD by MIT [105], IntelliCAD by IntelliSense [75]
and CAEMEMS by the University of Michigan [16, 25, 124]. Commercial MEMS CAD packages
have been developed by companies such as Coventer (originally Microcosm), IntelliSense, MEM-
SCAP and CFDRC. These programs typically also integrate a geometric solid modeler at front for
users to construct 3D structures and maintain material and process databases for users to specify
materials and fabrication processes. With the use of such multi-functional tools, designers can carry
out “what if” experiments during the device prototyping and analysis process more effectively.
However, even under these integrated design environments, designers still need to undertake many
trials in order to seek the optimum design solution and the appropriate process settings. Therefore,
the development of synthesis tools to achieve a higher level of design automation becomes rather

important.

1.3 Synthesis and Design

As demonstrated in last sections, the iterative nature of the simulation-based design methodology
represents an increasing burden as process complexity grows. There is a clear need for automated

design tools to develop fabrication process specifications from desired device geometry.

The design of VLSI systems has become highly formalized and automated since Mead and Con-
way’s early work in this area [57, 78]. Prior to their work, VL.SI design was the exclusive domain of
highly trained and experienced specialists. Mead and Conway’s synthesis approach enabled VLSI
designers to concentrate on the desired function of the chip, rather than the details of its physical
implementation. Other engineering domains (including MEMS design) have not had the benefit of
the same level of formalism and automation in design, and engineering design in these areas re-
mains the province of highly trained and experienced specialists. The great contribution of VLSI
CAD synthesis tools to the success of VLSI technology provides a realistic image of the potential
impact that MEMS synthesis tools can give to the future development of MEMS technology.

As far as surface micromachining is concerned, the structure of process flow is very similar to
that of VLSI. Such similarity creates opportunities for the MEMS structured design tools to borrow
much of the VLSI framework which includes the separated abstraction levels and the hierarchical
system modeling based on primitive functional elements. The recent development of schematic
synthesis design tools for surface micro-machining by Fedder et al. has demonstrated such bene-
fits [35, 82]. Mastrangelo and his group at University of Michigan have developed MISTIC [47, 52],
a process compiler for thin film micro devices. MISTIC employs a systematic method for the au-
tomatic generation of fabrication processes of thin film micro-machined devices. By using topo-
logical sorting techniques, all possible process sequences can be extracted from the layer order in
terms of fundamental processing steps like deposition, lithography and etching, and an optimal se-
quence is deterﬁ]ined by using a cost function based on a database of materials and processes. Such
VLSI-like synthesis methods could be very helpful for the overall design of MEMS devices whose
performance depends on their component layout and inter-connection between components. But for
high aspect-ratio devices whose performance critically depends on their three-dimensional geome-
try, especially those fabricated by bulk micromachining, no synthesis tools exist that can automate
the device design process.

In a typical bulk micromachining process, an amount of silicon is etched away to build a three-
dimensional structure. The geometry of the three-dimensional structure is generally important to
ensure device performance, and many of the most interesting, useful, and valuable mechanical de-
vices intrinsically rely on three-dimensional behavior and three-dimensional shapes. But because of
the anisotropicity of the etching, the transition from the mask-layout to the final shape is in general
complex and non-intuitive. Some methods have been proposed to synthesize local mask-layout ge-

ometry for convex corners in device shapes by studying etch rate diagram and corner convexity [71],

10

but generally speaking, for complex device shapes reversing a fabrication process simulation (so that
a 2-D mask-layout might be produced) is impractical [54]. Furthermore, sometimes the fabrication
process flow may also need to be synthesized. For example, complex three-dimensional shapes can
be generated using fabrication procedures such as multi-step wet etching process [43, 63, 98, 109].
For a multi-step wet etching process design, the etchant sequence and etch duration for each etch-
ing step are design parameters that need to be determined, and to choose a right formula (process
flow) is not an easy task because of the large number of different possibilities. A mask-layout and
process synthesis methodology is badly needed to help the designer design proper mask-layout and

fabrication process flow for a desired device shape.

1.4 Contributions of This Thesis

To attack the mask-layout and process synthesis problem, a Genetic Algorithm approach for mask-
layout and process synthesis is adopted here that uses simulation of fabrication process in an iterative
refinement loop. An optimum mask-layout and fabrication process flow will be automatically found
through a stochastic search. A flowchart of this approach is shown in Figure 1.4. In this approach,
the user specifies a desired three-dimensional shape. Initial candidate mask-layouts and fabrication
process flows are randomly generated, and the fabrication is simulated through a process simulator.
The simulated shape is then compared with the desired shape to decide if it’s close enough, and if it’s
not, genetic opérations are applied to refine the masks and process parameters, and the procedure is
repeated. The iteration stops when the simulated shape is close enough to the desired shape. For the
mask-layout and process flow synthesis problem, encoding schemes, selection schemes, and genetic
operations have been developed to effectively explore the solution space and control the evolution
and convergence of the solutions.

One of the primary benefits of this approach is that any fabrication process can be utilized with
this synthesis method, as long as an efficient simulation program of the process exists. Thus syn-
thesis can be performed on devices to be fabricated from bulk-wet etching as well as surface micro-
machining. This approach is tested for mask-layout and process synthesis for bulk wet etching. By
integrating a bulk wet etching simulation tool into the Genetic Algorithm iterations, the algorithm
can automatically generate proper mask-layout and process flow which when used can fabricate 3-D
geometry close to the desired 3-D target shape. For structures with convex corners, complex com-

pensation structures can be synthesized by the algorithm. More importantly, the process flow can

11

Desired
3-D Shape

Initial Population of

Mask-Layouts & Process Flows

Y

Fabrication

Simulation

\
Resulting
3-D Shapes

\

Compare

Close enough

|

Done

Not

Close
Enough

New Population of
Masks & Processes

A

Modify Masks and
Process Flows with
Genetic Algorithm

Figure 1.4: Tterative synthesis flowchart

12

also be synthesized. For multi-step wet etching processes, proper etchant sequence and etch times
for each etch step can be synthesized automatically by the algorithm. When the choice of different
process flows exists, the enlarged solution space makes the design problem more challenging. The
ability to synthesize process flows significantly increases the value of the automatic design method.

The Genetic Algorithm synthesis approach is further extended to achieve robust design. Since
fabrication variations and modeling inaccuracy always exist, the synthesized solutions may not gen-
erate satisfactory results without considering these variations. Robust design methods are devel-
oped to synthesize robust mask-layouts and process flows in “noisy” environment. By integrating
expected variations (mask misalignment, etch rate variations, efc.) into the synthesis iteration, and
setting robustness of the candidate solutions as one of the performance factors for candidate solution
evaluation, the iterative stochastic optimization will produce mask-layouts and process flows that
are least sensitive to these variations and can generate satisfactory results under a variety of fabrica-
tion conditions. The robust design approaches are implefnented and tested for robust mask-layout
design for mask misalignment and etch rate variations. Mask-layouts robust to mask misalignment

noise and etch rate variations during the fabrication can be synthesized.

1.5 Overview of the Chapters

Chapter 2 gives an introduction to Genetic Algorithms, the optimization method used in the ap-
proach to the mask-layout and process synthesis. The general structure and various components
of the Genetic Algorithm are described. Chapter 3 briefly describes the SEGS bulk wet etching
simulation tool. In later chapters SEGS is integrated into the Genetic Algorithm iterations to imple-
ment an algorithm for mask-layout and process synthesis for bulk wet etching. Chapter 4 discusses
issues in shape matching, and describes an algorithm to compare two 3-D shapes represented by
polygonal contours. The shape matching algorithm is used in the synthesis to compare the shapes
resulted from the simulation with a specified target shape. For the Genetic Algorithm approach to
the mask-layout and process synthesis, the design and implementation details are provided in Chap-
ter 5. Chapter 6 tests the Genetic Algorithm approach to the mask-layout and process synthesis for
bulk wet etching by using SEGS as the simulator for wet etching steps. For specified target shapes,
optimal mask-layouts and process settings are generated by the synthesis algorithm. Chapter 7 fo-
cuses on the robust design issues. Robust design methods are developed to extend the original GA

synthesis method so that mask-layouts and processes robust to the fabrication variations and mod-

13

eling inaccuracy can be synthesized. Tests of the algorithms are conducted for mask misalignment

and etch rate variations. Major results are summarized in Chapter 8, which concludes the thesis.

14

Chapter 2

Genetic Algorithms

2.1 Introduction

Many optimization problems from science and engineering are complex in nature and difficult to
solve by conventional optimization methods. Since 1960s, there has been an increasing interest in
simulating the natural evolutionary process to solve optimization problems. Stochastic optimization
techniques called evolutionary algorithms [8, 37] have been developed, which can often outper-
form conventional optimization methods when applied to difficult real-world problems. There are
currently three main avenues of this research: Genetic Algorithms (GAs) [49, 53], Evolutionary Pro-
gramming (EP) [38, 39], and Evolution Strategies (ES) [96, 100]. Among them, Genetic Algorithms
are perhaps the-most widely known type of evolutionary algorithms today and have been success-
fully applied to solve many science and engineering problems in various complex domains [49].
The well-known applications of GAs include scheduling and sequencing [23, 34, 97, 122], structure
design [19, 48, 58, 60, 84], layout design [69, 70, 77, 99], and many others.

Genetic algorithms (GAs) are global stochastic optimization techniques that are based on the
adaptive mechanics of natural selection evolution. They were invented by John Holland [53] in
1975, and subsequently have been made widely popular by David Goldberg [49]. GAs use two
basic processes from evolution: inheritance, or the passing of features from one generation to the
next, and competition, or survival of the fittest, which results in weeding out individuals with bad
features from the population. In general, Genetic Algorithms are a non-problem specific technique
which can be applied to virtually any optimization problem if its objective function measurement is

available.

For many optimization problems, the performance landscape (fitness surface) has one or more of

15

the following characteristics: (i) high nonlinearity, (ii) multiple performance optima, and (iii) non-
analyticity (i.e., cannot be written explicitly in a functional form). These characteristics preclude
the use of gradient-like search techniques. Perhaps more troubling is that typical design spaces are
so large that traditional search techniques, such as branch and bound, linear programming, efc.,
are ineffective. GAs are particularly good at finding optima where the fitness surface is nonlinear,
multi-modal, and dependent on several parameters simultaneously. Although in many cases a GA
is unlikely to produce a globally optimal solution to a problem in a given amount of time, it can
produce a solution that is close to the optimum in a time orders of magnitude less than some other
algorithm such as exhaustive search will need. As a stochastic optimization method, Genetic Al-
gorithms have many advantages over traditional techniques. GAs are adaptive search method; they
maintain a population of solutions instead of single solution, and trapping into local optima can be
avoided; the algorithm is implicitly parallel in the sense that a large number of different schema are
evaluated simultaneously during a generation [53]; the cémputation can be easily parallelized for
efficient execution; and finally, the algorithms impose virtually no mathematical requirements on
the optimization problem: they can handle any kind of objective function and constraints. The fol-
lowing sections describe the general structure and key components of Genetic Algorithms, and the
appendices provide more implementation details and the theoretical background. At the end of the
chapter, as an example to show how to construct the various components of a Genetic Algorithm, a

GA 1s constructed to search for the maximum of a function.

2.2 General Structure

A Genetic Algorithm maintains a population of solution candidates and works as an iteration loop.
First, an initial population is generated randomly. Each individual in the population is an encoded
form of a solution to the problem under consideration, called a chromosome which is usually a
string of characters or symbols, e.g., a string of 0’s and 1’s (a binary string). The chromosomes
evolve through successive iterations, called generations. During each generation, the chromosomes
are evaluated by a fitness evaluation function and selected according to the fitness values using a
selection mechanism, e.g., fitness-proportionate selection, so that fitter chromosomes have higher
probabilities of being selected. New chromosomes, called offspring, are formed by either merging
two selected chromosomes from the current generation using a crossover operator, or modifying

a chromosome using a mutation operator. Crossover results in the exchange of genetic material

16

between relatively fit members of the population, potentially leading to a better pool of solutions.
Mutation randomly introduces new features into the population to ensure a more thorough explo-
ration of the search space. A new generation is created by selecting chromosomes from the parents
and the offspring. The population’s average fitness will improve as this procedure continues, and
the algorithm will converge to a best chromosome approaching the optimal or near-optimal solution.
The general structure of Genetic Algorithms is shown in Figure 2.1 in flowchart form.

To use Genetic Algorithms, each of the following must be developed:

Encoding scheme. In GAs, a population of candidate solutions is maintained and manipulated by
genetic operators. The solutions are encoded as chromosomes (usually strings of characters
or symbols, e.g., binary strings, real number strings, or symbol strings) to which genetic
operators can be applied. An encoding scheme is needed to map candidate solutions into

coded strings.

Initialization of population. The initialization is usually done randomly to sample the search space
uniformly without bias. A well-initialized population can improve the algorithm’s robustness
and effectiveness in finding an optimal solution, while a poorly-initialized population may

trap the algorithm in local optima and make it impossible to reach the global optimum.

Evaluation function. During the operation of Genetic Algorithms, all chromosomes are evaluated
to see how fit they are as solutions to the problem. An evaluation function is required to assign

a fitness value to each chromosome.

Genetic operators. In general the well-studied typical canonical genetic operators cannot be di-
rectly applied, since they only work with particular encoding schemes. Additionally, problem-
specific information should be considered when designing efficient, meaningful operators.

Genetic operators suitable to the problem and the encoding scheme must be developed.

2.3 GA Terminology

In this section, the terminology used in Genetic Algorithms is described. Since Genetic Algorithms
simulate natural evolution, some terminology used in GA literature is borrowed from natural genet-
ics.

Genetic Algorithms work on a population, or a collection of candidate solutions to the given

problem. Solutions are encoded as chromosomes which are usually strings of characters and sym-

17

Generate initial population

'

Evaluate each chromosome

!

Select chromosomes according to a selection
scheme such that the fitter chromosomes
have more chance to be selected

v

Apply crossover to pairs of chromosomes
to generate offspring

Apply mutation to the offspring

'

Evaluate the offspring

'

Select from the parent generation and the offspring
to create the new generation

No

Stopping

criteria met?

The best chromosome in the population is taken
as the solution

Figure 2.1: The general structure of Genetic Algorithms

18

bols, and the individual characters or symbols in the strings are referred to as genes. Candidate
solutions constitute the phenotype space, and chromosomes constitute the genotype space. An
encoding scheme is the mapping function between the phenotype and genotype space. Each chro-
mosome is evaluated by an evaluation function (or fitness function) to determine the fitness value.
The evaluation function is usually user-defined, and problem-specific.

Individuals are selected from the population for reproduction, with the selection biased toward
fitter individuals. Different selection schemes have been developed to ensure that survival of the
fittest occurs. The selected individuals form pairs, called parents, and a genetic operator called
crossover is applied to two parents to create two new individuals, called offspring. Crossover com-
bines portions of two parents so that the offspring inherit a combination of the features of the parents.
For each pair of parents, crossover is usually performed with a high probability P, which is called
the crossover probability. With probability 1 — P, crossover is not performed, and the offspring
pair is the same as the parent pair. Mutation is another genétic operator applied to parents. Mutation
randomly changes the chromosome in some way to introduce new features into a population and
make the whole search space reachable. Mutation is usually applied with a low probability, Py,
called mutation probability. Exploitation and Exploration are the terms that refer to two different
aspects during the search: exploiting the best solution and exploring the search space. Appendix A
discusses exploitation and exploration in more details.

A new generation is created by selecting individuals from the parents and offspring. The gen-
eration gap is tﬁe fraction of individuals in the population that are replaced from one generation to
the next. The generation gap is equal to 1 for simple GAs (also referred to as the total replacement
algorithm) in which all individuals in the parent generation are replaced by the new offspring. In
steady-state GAs [111], at each iteration only one pair of parents is selected to create offspring and
then the two offspring replace the worst individual in the current population. Obviously in steady-
state GAs, the generation gap is minimal, since only two offspring are produced in each generation.

Figure 2.2 illustrates the terminology. It should be noted that genetic operators (crossover and

mutation) work on genotype space, while evaluation and selection work on phenotype space.

2.4 Encoding

Before a GA can be applied to a problem, a suitable encoding (or representation) for the problem

must be developed. How to encode a solution of the problem into a chromosome is a key issue

19

Phenotype Space Encoding Genotype Space

Candidate Solutions
- . -

Decoding

Evaluation &

X Genetic Operators
Selection

Figure 2.2: The relation of phenotype space and genotype space

for GAs. In all of Holland’s work [53], chromosomes are binary strings — lists of 0’s and 1’s. For
example, if the problem is to maximize a function of three variables, F'(z,y, z), each variable may
be represented by a 10-bit binary number (suitably scaled), and the chromosome would therefore
consist of 30 binary bits. This type of encoding is called binary coding. Binary strings have been
shown to be capable of encoding a wide variety of information, and they have been used to solve
optimization problems in various domains. The properties of binary string representations for GAs
have been extensively studied, and a good deal is known about the genetic operators and parameter
values that work well with them.

To represent variables by binary strings, the values of the variable must be discrete or can be
discretized. For example, integers can be represented by binary strings using standard binary coding
or Gray coding. If the variables are actually continuous, e.g., real numbers, the binary string length
must be carefully chosen so that the discretization of the variables provides enough resolution to get
the desired level of precision.

As Genetic Algorithms are applied to more applications in different areas, especially for the
constrained optimization problems from engineering world, binary strings are found not to be a
natural coding scheme. As Davis [26] points out, in such problems, the problem parameters are
often numeric (real), so representing them directly as real numbers, rather than binary strings, seems
obvious and concise, and may have advantages. In general for an optimization problem with & real

parameters that need to be optimized, a real number coding uses a vector of k real numbers to

20

encode the solution vector [50, 61, 119]:

x = (x1,T9,...,Tp)

One advantage of real number coding over binary coding is improved precision. Another advantage
is that meaningful, problem-specific genetic operators can be more easily defined. For example,
for real number coding, taking the average or geometric mean of two real numbers can be taken as
the crossover operator. Such genetic operators obviously are more meaningful than the operators
applied to binary strings. Janilow and Michalewicz [61] made a direct comparison between binary
and real number representations, and found that real coding gave faster, more consistent and more
accurate results.

In addition to real number coding, a lot of other coding techniques have been explored in the
last 20 years such as integer coding for combinatorial optimization problems [41], embedded lists
for scheduling problems [79], matrix coding for data structure [22], and LISP S-expressions for
computer program evolving [65].

An encoding scheme is the linkage between the solutions in the phenotype space and the chro-
mosomes in the genotype space, and choosing an appropriate representation of candidate solutions
to the problem at hand with corresponding genetic operators is the foundation for applying Ge-
netic Algorithms to solve real world problems. For any application case, it is necessary to perform
analysis carefully to ensure an appropriate encoding of solutions together with meaningful and
problem-specific genetic operators. Although many empirical and theoretical results are available
for the standard instances of Genetic Algorithms, including encoding scheme and corresponding
genetic operators, most practitioners prefer natural, problem-related encoding schemes along with
carefully designed, meaningful, problem-specific genetic operators. Michalewicz [79] concludes
that utilizing a “natural” representation of candidate solutions for a given problem with a family of

applicable genetic operators is a promising direction for problem solving in general.

2.5 Selection

The key principle of Darwinian natural evolution theory is that the fitter individuals have a greater
chance to reproduce offspring, and it is by the principle of “survival of the fittest” that the species
evolve into better forms. In Genetic Algorithms, the bias towards fitter individuals is achieved

through selection. The objective of any selection scheme is to statistically guarantee that the fitter

21

individuals have a higher probability of selection for reproductioﬁ‘ The term selection pressure is
used to refer to the degree of bias towards fitter individuals for a selection scheme, and selection
pressure is the driving force which determines the rate of convergence of a GA to the optimal
solution. Low selection pressure will give the algorithm more chance to explore the search space,
and high selection pressure pushes the algorithm towards the direction of the highly fit individuals,
and results in exploitation of the most promising search region. Choosing an appropriate selection
scheme is important, and the behavior of the GA strongly depends on the selection scheme. An
inappropriate selection scheme may result in premature or slow convergence.

In a GA, selection is carried out at two different stages: parent selection and generational se-
‘lection. Parent selection is the step in which individuals from the parent generation are selected
as parents to create offspring. Generational selection is carried out after a specified number of off-
spring are generated. In general, the new generation is created by selecting individuals from both the
parent generation and the offspring generation. Most of the proposed selection schemes belong to
the following two categories: stochastic selection and deterministic selection. For parent selection,
stochastic selections are usually applied, and for generational selection, deterministic selections are
usually used. Fitness proportionate selection and tournament selection are two of the most popu-
lar stochastic selection algorithms. The next section describes fitness proportionate selection, and

tournament selection is described in Appendix C.

2.5.1 Fitness Proportionate Selection

Fitness proportionate selection is typically implemented as a probabilistic operator for parent se-
lection, using the relative fitness to determine the selection probability of an individual. In fitness
proportionate selection, the selection probability for each chromosome is proportional to its fitness

value. For chromosome k with fitness value Fy, its selection probability py, is calculated as follows:

pop.-size
e=F/ Y. F
j=1
For example, roulette wheel selection is a proportionate selection scheme in which the slots of a
roulette wheel are sized according to the fitness of each individual in the population. An individual
is selected by spinning the roulette wheel and noting the position of the marker. The probability
of selecting an individual is therefore proportional to its fitness. Another well-known proportionate

selection scheme is stochastic universal selection [9]. Stochastic universal selection is a less noisy

o 2
“version of foulette wheel sélection in which N equi-distant markers are placéd around the roulette

: wﬁé;el, where ‘N is: the number of individuals in the population. N individuals are selected in a
single spin’ of the roulette wheel, and the number of copies of each individual selected is equal to
the number of markers inside the corresponding slot.

Proportionaté selection methods assign selection probability to an individual according to its
ﬁtneés, and this can be problematic. Proportionate selection depends upon positive values, and,
simply adding a large constant value to the objective function can eliminate any selection pressure,
with the algoﬁ‘thm then proceeding as a purely random search. There are several heuristics that have
been devised to compensate for these issues. Using fitness scaling, the fitness of all parents can be
scaled relative to some reference value, and proportionate selection then assigns selection proba-
bility according to the scaled fitness values. Fitness scaling is described in detail in Appendix B.

‘ Rank-based selection methods utilize the indices of individuals when ordered according to fitness
to calculate fhe corresponding selection probabilities, rather than using absolute fitness values [10].
Rank-based selection also eliminafes problems with functions that have large offsets. Linear as
well as nonlinear fitness mappings have been proposed for rank-based selection as illustrated in the

following.

Rank-Based Selection

For rank-base selection, individuals are sorted according to their fitness values, and the selection
probability of each chromosome is assigned according to its rank instead of its raw fitness. After
individuals are sorted in order of raw fitness, the reproductive fitness values are assigned according
to rank. Two methods for mapping rank into reproductive fitness values are in common use: linear
ranking and exponential ranking.

Let F be the reproductive fitness value for the kh chromosome in the ranking of population;
the linear ranking takes the following form:

Flmg—(k—1)x —21—%
b=a—()% pop_size — 1

where parameter q is the reproductive fitness for the best chromosome, and go is the reproductive
fitness for the worst chromosome. Fitness values of intermediate chromosomes are decreased from

q to qg, proportional to their rank. When g is set to 0, it provides the maximum selective pressure.

23
- Michalewicz pr'oposed’ the following éprnential ranking method [79]:

Fp=q(1-g*"

A larger value of g implies stronger selective pressure. Hancock proposed the following exponential

ranking method:

where q is typically about 0.99. The best chromosome has a fitness of 1, and the last one receives
grop-size—1,

Controlling the variance of the fitness values is one of the frequent problems of GA’s. Ranking
assures that the variance is constant throughout the optimization process. Mapping ranks to repro-
ductive fitness for proportionate selection gives a similar result to fitness scaling, in that the ratio of
the maximum to average fitness is normalized to a particular value. However, it also ensures that the
remapped fitnesses of intermediate individuals are regularly spread out. Because of this, the effect
of one or two extreme individuals will be negligible, irrespective of how much greater or less their

fitnesses are than the rest of the population.

2.5.2 Deterministic Selection

Deterministic selection schemes select individuals according to their fitness values in a deterministic
way. |

Deterministic selection schemes are usually used in generational selection to select individuals
from both the parent generation and offspring generation to create the next generation. An example
of deterministic selection. is the generational replacement which replaces the entire parent genera-
tion by tﬁeir offspring (i.e., the offspring generation is taken as the new generation, and the parent
generation is discarded after the offspring generation is created).

Elitist selection [31] is another popular deterministic selection scheme which ensures that the
best chromosome is passed onto the new generation if it is not selected through another process of
selection. Fitness proportionate selection does not guarantee the selection of any particular individ-
ual, including the fittest. Thus with fitness proportionate selection the best solution to the problem

discovered so far can be regularly thrown away. Sometimes this is counterproductive. For many

DA 24

. application“é the search spéed can be greatly improved by not losing the best,v or elite, member be-
tween generations. Ensuring the propagation of the elite member is termed elitism and by retaining
the best ch'ronnlosome in the population, elitist selection guarantees asymptotic convergence.

The (u, A)-evolution strategy [6] uses a deterministic selection scheme which has been intro-
duced to Genetic Algorithms. The notation (u,)\) indicates that p parents create A > p offspring
by Iﬁeans of recombination and mutation, and the best offspring individuals are deterministically
selected to replace the parents. Notice that this mechanism allows that the best member of the pop-
ulation at gen‘eration t + 1 might perform worse than the best individual at generation ¢ (i.e., the
method is not elitist), thus allowing the strategy to accept temporary deteriorations that might help
to leave the region of attraction of a local optimum and reach a better optimum. In contrast, the
(+ X)-evolution strategy [7] selects the p survivors from the union of parents and offspring, such

that a monotonic course of evolution is guaranteed.

2.6 Crossover

Once two chromosomes are selected, the crossover operator is applied to generate two offspring.
Crossover combines the schemata or building blocks from two different solutions in various combi-
nations (see Appendix E for more information about schemata and building blocks). Shorter good
building blocks are converted into progressivly longer good building blocks over time until an entire
good solution is found. Since highly fit individuals are more likely to be selected as parents, the
GA examines more candidate solutions in good regions of the search space and fewer candidate
solutions in _other regions. Crossover is the most important genetic operator for a GA, and it is the
driving force for exploration of the search space to find a optimum solution. The performance of
the GA depends to a great extent on the performance of the crossover operator used. How crossover
~ works can be explained by schema theorem [53] which is detailed in Appendix E.

The implementation of crossover depends on the encoding scheme used. Most canonical GAs
use binary coding, and therefore the crossover schemes for binary codings (called binary crossover
here) have been studied most thoroughly. Several real crossover schemes also have been proposed
and applied to opthation problems utilizing real number encoding. These crossover operators are
discussed in Appendix D, and one particular real crossover scheme, blend crossover, is described in

the following.

25

Figure 2.3: Blend crossover (BLX-a)

Blend Crossover

Rdn‘dom crossovers are one kind of real crossover that essentially create offspring randomly within
a hyper-rectangle defined by the parent points. Flat crossover is a basic random crossover given
by Radcliffe [95], which produces an offspring by uniformly picking a value for each gene from
the range formed by the values of two corresponding parents’ genes. A generalized crossover,
called blend crossover (denoted as BLX-«), is proposed in [33] to introduce more variance into the
operator. BLX-« also uniformly piéks values from a range, but this range is not formed by the values
of the two parents’ genes. As illustrated by Figure 2.3, P; and P, the gene values (real number)
of two parents, form the interval I, and « is a user-defined real parameter. BLX-« first extends
interval I with o on both sides such that the crossover interval is limited by points C'y and C,.
Then a point is randomly picked from the crossover interval. By extending the interval formed by
the parents to include regions beyond the parents, blend crossover introduces more exploration into
the search, and often increases the robustness of the algorithm. Also, since the area of the extension
is proportional to the area of the interval formed by the parents, the amount of exploration introduced
is actually determined by the closeness of the parents. As the evolution proceeds, chromosomes in
the population become converged, and the parents become similar, and the disruptive exploration
introduced by blend crossover becomes less significant. The parameter o controls the amount of
disruptive exploration, aﬁd it is usually set as 0.5, such .that the probability that an offspring lies

outside its parents is equal to the probability that it lies between them.

2.7 Mutation

After new individuals are generated through crossover, mutation is applied with a low probability
to introduce random changes into the population. In a binary-coded GA, mutation may be done by

flipping a bit of a binary string, as shown in Figure 2.4, while in a nonbinary-coded GA, mutation

26

Ori}ginall
Chromosome 011010110
l mutate
After]
Mutation 0 10 10110

Figure 2.4: Mutation

involves randemly generating a new value in a specified position in the chromosome. In GAs,

mutation serves the crucial role of replacing the gene values lost from the population during the

selection process so that they can be tried in the new context, and of providing the gene values that

were not present in the initial population. By introducing random changes into the population, more
- regions of the search space can be evaluated, and premature convergence can be avoided.

For example, in a binary-coded GA, consider a particular bit position, say bit 10, which has
the same value (0) for all chromosomes in the population. In such a case, crossover alone cannot
explore new solutions since crossover does not generate a new gene value, i.e., crossover cannot
create a chromosome with a value of 1 for bit 10, since its value is 0 in all parents. If a value of 0
for bit 10 turns out to be suboptimal, then, without mutation, the algorithm will have no chance of
finding the best solution. However, if mutation is applied, there will be some probability that value
1 will be introduced in bit 10 of some chromosomes, and if this results in an improvement in fitness,
those chromosomes will be multiplied by the selection algorithm and the value 1 at bit 10 will be
inherited by other offspring through crossover. Although the crossover operator is the most efficient
and important genetic operator, by itself, it does not guarantee the reachability of the entire search
space with a finite population size. It is mutation that makes the entire search space reachable.

In real encoding, the basic mutation operator, called uniform mutation, simply replaces a gene
(real nurﬂber) with a randomly selected real number within a specified range. Other real mutation
schemes have been developed. For example, boundary mutation replaces a gene with either the

lower bound or the upper bound [80]. A direction-based mutation was presented in [46]:
=xz4+r-d

where r is a randomly generated nonnegative real number, and d is the approximate gradient direc-

27
" tion vector of the:objective function f with its k% component defined as

ci fmy, ezl + Az, 20) — f(Z1 0 Thy o, Tn)
k —_—
Azxy,

' Mo'fe details about implementations of real coded mutation operators can be found in [44].

Thé mutation probability Py is defined as the probability of mutating each gene. It controls
the rate at which new gene values are introduced into the population. In general, mutation is imple-
mented as a background operator, and is applied with low probability. If the mutation probability is
too high, too many random perturbations will occur, and the offspring will lose their resemblance

to their parents. The ability of the algorithm to build on the history of the search will then be lost.

2.8 Example

In this section, a Genetic Algorithm is constructed to search for the maximum of a multi-modal
function. Implementation details and the optimization result are shown to illustrate how to construct
the various components of a GA and the characteristics of optimization using GAs.

The optimization problem is stated as follows: find the maximum of function
f(z) =zsin(rz), 0<z<6

As shown in Figure 2.5, function f(z) is multi-modal, and the global maximum is at z = 4.522,
where f(4.522) = 4.511.

To construct the Genetic Algorithm for this optimization problem, real number encoding is
applied. A real number is used to represent variable . The blend crossover BLX-o and uniform
mutation for real number encoding are applied as the genetic operators. Since the problem here is
to search-for the maximum of function f(x), function f(x) will serve as the evaluation function,
and for each candidate solution z, the function value f(z) is used as the fitness value. Linear
ranking selection scheme is utilized to select individuals from the parent population to go through
reproduction, and elitist selection is applied to select the best individuals from the parent population
and the offspring population to form the next generation.

In the test run, the population size is set to 10, and the maximum number of iterations is set to 10.
Figure 2.6 shows the evolution of the distribution of the candidate solutions in each generation as

the iteration proceeds. For each generation (iteration), the distribution of the 10 candidate solutions

28

)

0.0 2.0 4.0 6.0

Figure 2.5: Function f(z) = zsin(mz)

and their fitness values are shown by the symbols on the plot of f(z). It’s clear that as the iteration
proceeds, the exploration effort is gradually concentrating on the area around the global maximum.
Figure 2.7 shows the convergence of the average fitness values in each iteration to the maximum

value of the function: 4.511.

2.9 Summary

Genetic Algorithms are stochastic optimization techniques that are based on the adaptive mechanics
of natural selection evolution. They have been used to solve many optimization problems where the
 fitness surface is nonlinear, multi-modal, and dependent on several parameters simultaneously. The
general structure and the main components, encoding, selection, crossover, and mutation, was de-
scribed in this chapter, and different schemes for each component have been introduced. Although
proper problem-specific encoding scheme and genetic operations need to be developed for a spe-
cific optimization problem, the general schemes provide guidelines for development of a specific
implementation of GA. At the end of the chapter, a GA was constructed to search for the maximum
of a multi-modal function. Implementation details and the optimization result were shown to illus-

trate how to construct the various components of a GA and the characteristics of optimization using

29

7.8

s ¢
25
g
25!

(x)

75

25

25

-7.5 -7.5
0.0 20 40 8.0 0.0 20 4.0 6.0
x x
iteration: 1 iteration: 2
75 75

-25

6]
.
. n
IS

f(x)

25

-25

75 75 L L
0.0 20 40 6.0 0.0 20 4.0 8.0
X x
iteration: 3 iteration: 4
75 T ¥ 75 T T
25| 25|
2 g
25 25t X
7.5 L + -75 v L
0.0 20 4.0 8.0 0.0 20 40 6.0
x x
iteration: 5 iteration: 6
75 T T 75

1)

1)

25

-25

-7.5 7.5 L -
0.0 20 40 8.0 0.0 20 4.0 8.0
x x
iteration: 7 iteration: 8
75 T T ‘ 75 T T
25 | 25
g g
25+ -25 al
<75 . L -7.5 L

»
°
»
o
@
o

iteration: 9

o

iteration: 10

Figure 2.6: Results of the GA optimization

GAs.

Fitness Value f(x)

1.0 - |

SQ — : ' T T T T T T ‘ T

N
o
T

w
o
T

—— Average fitness values
- --- Maximum of f(x) = 4.511

2.0

1.0 3.0 5.0 7.0 9.0
lterations

Figure 2.7: Convergence of the average fitness values

31

Chapter 3

Bulk Wet Etching Simulation Tool

Since the approach developed here for mask-layout and process synthesis problem is to use simula-
tion of fabrication process in an iterative refinement loop, a fabrication process simulation tool that
is both efficient and accurate is important to the implementation of the method. This chapter will
briefly review a bulk wet etching simulation tool called SEGS[55], which is computational efficient
and geometrically accurate.

The bulk wet etching process is a widely used technique to inexpensively produce high aspect
ratio 3-D mechanical structures with the use of chemical etchants. Most of the chemicals used
today are anisotropic etchants which attack different crystallographic orientations of the material
at different rates and provide control over the intended 3-D shape of the etched wafer. All bulk
wet etching simulation programs predict the three-dimensional geometry change of the underlying
etching structure for different etching time steps based on the input of a mask-layout and etch rate
data. Early etch modeling work includes the Wulff-Jaccodine method of traveling planes [42, 59]. A
number of cbmputer implementations have been developed [17, 18, 28, 29, 107, 108, 115]. Another
important etching simulation tool is the Slowness method by Foote and Sequin [106]. The models
* of the Wulff-Jaccodine method and the Slowness method are purely based on geometric analysis,
while Hubbard and Antonsson [56], Than and Buttgenbach [114] developed cellular automata (CA)
algorithms which base the rate of removal of each cubic cell of material on the number of near-
est neighbor cells remaining. The geometric analysis is fast and accurate but is limited to basic
shapes; the cellulaf automata approach is slow but is able to simulate the etching of shapes of any

complexity.

32

Square Mesa Cross Groove (Hole) Isotropic Etching

Figure 3.1: Examples of SEGS wet etching simulation

" SEGS Simulation Tool

SEGS is a bulk wet etching simulation tool developed by Hubbard and Antonsson [55]. SEGS uses
an edge segmentation approach to trade-off the advantages of the geometric analysis and cellular au-
tomata. The basic approach is to start with the polygonal mask-layout boundary of a vector method,
then subdivide each straight line segment into many smaller segments, and these small segments
are updated for further time steps, and local and global intersection are easily identified and han-
dled. The input to the simulation tool is the mask-layout, etch rate data, etch time, and some other
computation parameters, and the output of the simulation is a series of polygon layers (contours) at
different depths, with each contour representing the cross section of the etched structure at that par-
ticular depth, Figure 3.1 shows examples of etched shapes simulated by SEGS. The black polygons
are the mask-layouts, and the etched shapes are represented by a series of polygon layers.
Originally SEGS can only simulate a single etching step where the initial wafer surface is flat.
Although -single step anisbtropic wet etching has long béen used for fabricating microstructures
such as diaphragms, V-grooves, and cantilevers on a silicon wafer, the shapes of the microstructures
fabricated by this etching system are limited, because a conventional single-step process provides
only a limited set of crystallographic planes appearing oﬁ the etching profile. Various groups have
proposed using multi-step chemical anisotropic etching process in order to achieve more complex
three-dimensional microstructures on single-crystal silicon [43, 63, 98, 109]. Using several different
etchants in a fabrication makes it possible to fabricate shapes which cannot be created using single

etchant, and the range of shapes that can be produced is greatly expanded. Designing the multi-steps

33

Figure 3.2: Simulated result of a two-step wet etching fabrication

Po
P1
P2
P3

Figure 3.3: Multi-step etching simulation: Moving of interface between old wall and new wall (side

view)

of an etching process requires an etching simulator.

SEGS was further extended to handle simulation of multi-step wet etching fabrication. The
- fabrication of micro structure using two different etchants in sequence can be simulated. Figure 3.2
shows a structure which results from the simulation of a two-step wet etching fabrication. The
cross sections of the etched structure are shown, and the black polygon is the mask-layout. Us-
ing this simulation system, it is possible to design multi-steps into the anisotropic etching process
which provides a variety of three-dimensional microstructures. An synthesis example for a two-step
anisotropic etching process will be described in Chapter 6.

In extending the function of SEGS to handle multi-step etching simulation, the major difficulty

is in the calculation of the moving of the interface between the walls produced by different applied

34
“etchants; since the walls pfoduéed by different etchants usually have differeﬁt slope angles. Fig-
uré'\3.3 shows how the struéture profile changes when the second etchant is applied to the already
existed structure resulting from the etching using the first etchant. Each profile shows the etched
structure at a different etch time step. Profile py shows the structure at the time to when the second
etéhant is just api)lied. Profile p; shows the structure at time to + 6%, when a new wall with different
slopé angle appears at the corner. As the etching proceeds, the interface between the new wall and
the wall resulting from the first etchant is moving up (line [). Since SEGS calculates and maintains
the etching data by using contours at fixed discrete depths, the moving of the interface of walls must
be handled cal.refully.

SEGS has been used to simulate a wide variety of mask-layouts, and its accuracy has been tested
through experimental verification. SEGS proved to be stable and fast. To simulate shapes shown
in Figure 3.1 on a Sun Ultral0 workstation with a 440 MHz CPU clock speed, a typical simulation

time is only several seconds.

Surface Reconstruction and Visualization

Although SEGS is efficient and accurate in predicting the fabricated device geometry, it represents
the simulated device shape using contours at different depths, not as surfaces. Contours are not
amenable to the analysis and design of micro systems, since it is often necessary to determine
the object interaction and mechanics in which surface or solid representation of shape is required.
Work has been done to achieve surface reconstruction from the contours via Delaunay Triangulation
and visualization of the reconstructed surfaces. Figure 3.4 shows the reconstructed surfaces of the
device shape that has etching contours shown in Figure 3.2. Interested readers are referred to Lee

and Antonsson [67] for details about the algorithm for the surface reconstruction.

35

Figure 3.4: Visualization of the reconstructed surface of etching contours

36

Chapter 4

Shape Matching

4.1 Introduction

The approach developed here to the MEMS mask-layout and process synthesis problem is to use
Genetic Algorithms as an optimization method combining with a simulation tool, to search for the
optimum solution. As discussed in Chapter 2, one of the key issues in applying Genetic Algorithms
to solve a practical problem is that there must be an evaluation function (or performance function).
The evaluation function evaluates candidate solutions to determine the fitness value for each so-
lution so that the genetic operators can manipulate the solution population accordingly to find the
optimum solution. For the mask-layout and process flow synthesis problem, the candidate solutions
in the solution space are mask-layouts and some process parameters. For each candidate solution,
simulation is performed using the mask-layout and process parameters specified by the candidate
solution, and a simulated device shape is obfained. If the simulated shape is geometrically very
close to the desired target shape, the candidate solution (the mask-layout and the process flow) will
be considered to be fit (with a high fitness value). The fitness value for each candidate solution
- should depend on how clese the simulated shape is to the target shape. The simulation program
can be viéwed as. part of the evaluation function, but more is needed to assign a fitness value to
each candidate solution. A shape matching scheme is needed to compare the simulated shapes with
the desired, pre-specified target shape so that a value indicating thé closeness (similarity measure)
between a simulated shape and the target shape can be obtained and assigned as fitness value for
each candidate solution.

Shape matching is a problem of both theoretical and practical importance in computer vision,

and different shape matching algorithms have been developed [62, 83]. Generally speaking, com-

37
L paring arbitrary shdpes in'fhreé dimensions is difficult [14, 15], and most of vthe work is done for
2D shape matching. Amoﬁg the different shape matching algorithms, one particular category is
the polygo'nala shape matching [2, 5,' 24, 90]. Since the simulation tool SEGS used in the mask-
layout and process synthesis problem represents the simulated 3-D shapes with layers of polygons,
a ﬁolygonal shapé matching scheme is suitable for evaluating solutions. Considering the layer repre-
sentﬁtion of 3-D shapes, it is natural to decompose the 3-D shape matching into 2-D shape matching
at all 1ayers and construct the 3-D closeness metric (match value) from the 2-D polygonal niatch val-
ues. In the fol‘lowing sections, a polygonal shape matching scheme is described, and the scheme to
calculate the 3-D match value using the 2-D polygonal shape match values at all layers is discussed.
Before describing the matching schemes, a note about the terminology should be made. In the
following sections, Term “mismatch” will be used to describe the dissimilarity between two shapes,
because the shape matching scheme quantifies the difference (dissimilarity) between two shapes.
Clarification is also needed about the term “shape.” Generally speaking, for a polygon, its size
and orientations and relative locations of its edges are part of the shape of the geometry. However,
the polygonal shape matching scheme introduced here only considers the “pure shape” of the poly-
gons, which is invariant to scaling. In other words, the “pure shape™ of a polygon is unchanged after
scaling. When “shape” is used in shape matching or shape mismatch, it may refer to the geometry’s
shape in general, including its pure shape and size, or to the geometry’s pure shape only, invariant

to scaling. The meaning should be clear from the context.

4.2 Polygonal Shape Matching

Several polygonal shape matching schemes have been proposed, and a method introduced by Arkin

et al. [3}is described here.

Representation bf Polygons

The boundary of a simple polygon A can be represented by the turning function ©(s), as shown
in Figure 4.1. The turning function ©(s) measures the.angle of the counterclockwise tangent as
a function of the arc length s, measured from some reference point on the boundary of A. Thus
©(0) is the angle 6 that the tangent at the reference point makes with some reference orientation
associated with the polygon (such as the z-axis). ©(s) keeps track of the turning that takes place,

increasing with left-handed turns and decreasing with right-handed turns. Formally, if k(s) is the

38

0.

e_o+27E

" 6o

Figure 4.1: Turning function of polygons

curvature function for a curve, then k(s) = ©’(s).

For the purpose of polygonal shape matching, each polygon is rescaled so that the total perimeter
length is 1; hence ©(s) is a function from [0, 1] to R. For a convex polygon, ©(s) is a monotone
function, starting at some value 8 and increasing to § + 2. For a nonconvex polygon, ©(s) may
become arbitrarily large, since it accumulates the total amount of turn, which can grow as a polygon
“spirals” inward. Although ©(s) may become very large over the interval s € [0, 1], in order for the
function to represent a simple closed curve, ©(1) must be ©(0) 4 27 (assuming that the reference
point is placed at a differentiable point along the curve). When the path is polygonal, the turning

function is piecewise-constant, with jump points corresponding to the vertices of the polygon. Note
that the domﬁin of O(s) can be extended to the entire real line in a natural way by allowing angles
to continue to accumulate as the traversal around the perimeter of the polygon continues.

The function _@_(s) has several properties which make it especially suitable for the shape match-
ing purpose. It is piecewise-constant for polygons, making computations particularly easy and fast.
By definition, the function ©(s) is invariant under translation and scaling of the polygon. Rotation
of polygon correspondsb to a simple shift of ©(s) in the 6 direction. Note also that changing the
location of the reférence point by an amount ¢ € [0, 1] along the perimeter of polygon corresponds
to a horizontal shift of the function ©(s) and is simple to compute (the new turning function is given

by ©(s +t)).

39

" 'Distance Function

The shape mismatch between two polygons is calculated by a distance function. The distance
function between two polygons A and B is formally defined as the Lo distance between their two
turning functions © 4(s) and © p(s), minimized with respect to vertical and horizontal shifts of the
turning functions (in other words, minimize with respect to rotation and choice of reference points):

1
d — mi - 24s)2 .
2(4A, B) @ER,tlél[O,l](/o |©4a(s +1t) —Op(s) + 0|°ds)2 4.1)

The above eqilation of distance function can be explained as follows. First the reference point and
orientation of polygon B is fixed, and turning function ©p(s) is obtained. For polygon A, the
reference point is shifted along the boundary by an amount ¢, and the polygon is rotated by angle

6, and the new turning function is given by ©4(s + t) + 6. Then the Ly metric between the two
turning functions is calculated as (J3 1©a(s +1) — ©p(s) + 6|%ds) 2. Finally, the minimum of the
Lo metrics over all shifts ¢ and rotaﬁons 0 is taken as the distance function between polygons A and
B.

The reasons to use Ly norm among all the L, norms are given in reference [3], and one of the
reasons is that the calculation of Ly metric for polygons is easy and fast. Although the distance
function is given as a minimum over all ¢ and 6, it has been shown that for an m-vertex polygon
and an n-vertex polygon, the distance function always reaches its minimum when ¢ is at one of the
mn discrete values on [0, 1] when one vertex of polygon A and one vertex of polygon B coincide
on the s-axis (having the same arc length). Also for a given ¢ it has been shown that the optimal 6
can be calculated as a function of ¢, and the minimization problem for the distance function is really
a one-variable (¢) minimization problem. The runtime for comparing an m-vertex polygon and an

n-vertex polygon is O(mnlog(mn)) [3]. |
_ For the mask-layout and synthesis problem, the shapes that need to be compared are etched
géometries, and the orientation of the polygon contour is considered as part of the polygonal fea-
tures. For this purpose, the distance function should not be rotationally invariant, and equatioﬁ “.1)
should be modified to be |

1
— i _ 27013
4x(4, B) = min ([10.4(s 1) ~ O5(s)ds) “2)

40

" "Size Matching +

The shape matching scheme described above measures only the difference of “pure shapes” of two
~ polygons, i.e.; the distance function is invariant to scaling, and the difference of the sizes of two
polygons is not considered. But for the mask-layout and process synthesis problem the size of the
device geometry is an important factor. The synthesis result is not optimal if the simulated device
has a different size from what is desired, even if the shape of the simulated device is perfectly iden-
tical to the desired shape. Obviously for the problem here the shape matching scheme is not enough
for an errall comparison between two shapes which includes both shape and size comparisons. A
size ﬁlatching scheme is needed. Here the ratio between the perimeter lengths of the two polygons

is used as a size matching measurement. If {4 and [are the perimeter lengths for polygons A and

B, the size mismatch of A and B is defined as
Maz(la/lp,lg/la) — 1 “4.3)

with a mismatch of zero meaning perfect size match. Using the shape matching scheme and size
matching measurement, two polygons are perfectly matched (identical) if and only if both the shape

mismatch value and the size mismatch value are zero.

4.3 3-D Shape Matching

The 3-D shapes in the synthesis problem here are represented by layers of 2-D polygon contours.
Now that matching methods for polygonal shape and size comparison have been developed, a
scheme to cdnstruct the 3-D shape matching measurement using the 2-D polygonal matching mea-
surements is needed.

As described in Chapter 3, the 3-D shapes are represented by layers of polygons. Figure 4.2
shows two 3-D shapes (one simulated shape, one desired target shape) represented by layers of
polygonal contours. The etching simulation program ensures that the polygon layers of both shapes
vertically match, and the shape mismatch (1msp4pe) and size mismatch (i) values are calculated
for each pair of corresponding polygons. The overall shape match of these two 3-D shapes is
constructed as follows.

The mismatch between two 3-D shapes is decomposed into two components: pure shape mis-

match (Mpape) and size mismatch (Ms;,.). Both mismatch values can be constructed as a weighted

= S e 2}
,- /?// ‘ /7 ’ ith1;yer > (L /y
Van £

Shape A Shape B

Figure 4.2: 3-D shape representation and match

sum of all shape or size mismatch values between the two polygon layers in each vertical level:

n
Mshape = Zwimshape(i) 44
i=1
Myize = Y wimsize(i) (4.5)
i=1

where mhape(t) and msize(4) are the shape mismatch and size mismatch values of two polygons
at the sth layer, and w;s are the weights. The weights are introduced to give freedom to specify
the particular importance of the feature matching of certain layers. The average is used for general

purpose when the weights are the same at all layers:

= Mishape (%
Mshape = Z _h—p(_)_ (4.6)
=1 "
M. _ - msize(i)
size =), (4.7)
=1

It has been shown that two 2-D polygons with shape mismatch and size mismatch values of
zero are identical. For 3-D shapes, although shape mismatch and size mismatch are also used to
describe the matching between two 3-D shapes, it should be noted that not all information about
the shape difference is represented by the shape mismatch and size mismatch of 2-D contours. Two

3-D shapes with shape mismatch value and size mismatch value of zero can actually be in different

42

Shape A Shape B Shape C

Figure 4.3: A shape mismatch of zero doesn’t mean same shape

shapes in some special cases. This is because the shape mismatch Mp,qpe constructed as a weighted
sum of all shape mismatch values between the two polygon layers in each vertical level, as shown
in Equation (4.4), does not contain all the shape information. The information about the relative
position of all vertical levels is missing, because the shape matching scheme for 2-D polygons used
here does not consider the positions of the polygons and is translation invariant. For two 3-D shapes
with 2-D contours of the same shape (pure shape) at every level, a shape mismatch of zero will
be produced using Equation (4.4), but these 3-D shapes can actually be in different shapes. For
example, Figure 4.3 shows three 3-D shapes, all with cross sections of square. When comparing
shape A and B, B and C, or A and C, mpape for each layer will be zero because all the cross
sections are in the same shape, a square. So the overall shape (pure shape) mismatch value M qpe
will be zero. But obviously A, B and C are in different shapes. Shape A and B can still be
_ differentiated by‘size mismatch value M;;,., because my;,e values at each layer are not all zero.
However,' for shape A and C, M;,. will also be zero because all ;.. values are zero at each layer.
To differentiate shapes like shapes A and C, other measures such as the gravity center line (the line
connecting centers of gravity of all cross-section polygons) may be needed.

As shown later, the experiments of the mask-layout and process synthesis are conducted on
quadri-symmetric structures because of computational considerations. For quadri-symmetric struc-
fures, the center line goes straight down and is not skewed to any direction, and shapes like C in
Figure 4.3 will not happen. Shape mismatch Mpqpe and size mismatch M;,. are sufficient to serve

as the shape matching evaluation parameter.

4

44 Calculating Fitness Value

In Genetic Alg’orithins, the performance evaluation function should ultimately assign a fitness value
for each candidate solution. For the mask-layout and process synthesis problem, using the shape
matching algorithm described above, naturally the candidate solution with small shape mismatch
should be assigned with a high fitness value. Because a linear ranking selection scheme is used (see
section 5.3 for detail), the absolute values of the fitness are not important since only the rankings
of the fitness values will be used. In that sense, any algorithm can be used to convert the shape
mismatch to fitness value, as long as this algorithm will ensure higher fitness value for small shape

mismatch. A reciprocal function can serve this purpose:

1 .
fit = 4.8
Hess Shape Mismatch Value (48)

But the shape matching scheme just introduced uses two preferences to measure the shape com-
parison result: the “pure” shape mismatch value Mhqpe, and size mismatch value Mj;,.. Before
using the reciprocal function to calculate the fitness value, a mechanism is needed to combine mul-
tiple preferences (attributes) into one single preference. This procedure is called aggregation of
multiple preferences, and an aggregation function serves this purpose.

If 1 and g are two preferences, the aggregation function is in the form

p = P(u1, o) (4.9)

where 1 gives the overall preference. Some examples of aggregation functions include Pazin (141, B2)
— Min(ju1, f12)s Ptaa(pi1, 1i2) = Maz(pu1, p2), and Prr(u1, p2) = /. For aggregation func-
tions, the term “compensation” is used to describe the effect that high performance on one attribute
~ partly compensates for lower performance of another. Pp,q, has highest compensation level since
the overall performance is dictated by the highest-performing attribute and the performance of the
other attribute has no effect on the overall performance at all. Pjy;y, is non-compensating because
the overall performance is dictated by the lowest-performing attribute. For Ppy, the high perfor-
mance on one attribute is deemed to partly compensate for the lower performance on the other.
Interestéd readers are referred to [87] for more discussion about aggregation functions. Proper ag-
gregation function selection is important for multi-criteria decision problems. When designing an

aggregation function, it is crucial to understand the relative importance of different preferences and

44
' . the way in which they interact.
"~ Scott and Antonsson [101, 102] introduced a family of aggregation functions that spans an entire

range of possible operators between Ppsip, and Pasqz:

1
wilt1® +woro®\ s
Py (1, pia; w1, w2) = (H) (4.10)

It is shown that

P = limy,_wPs = Min

1
-~ Po = limg,0Ps = geometric mean (u;"pg?)«1+e2
Py = lim,,1 P, = arithmetic mean ﬂ%’ﬂ
Poo = liMeoiooPs = Max

For a speciﬁc design problem, the values of s and w;, we should be determined by the level of
compensation that should be applied. A method for establishing these values is introduced in [102].
The issues of aggregation of multiple preferences and multi-criteria decision making will be re-
visited in later chapters.

For the shape matching problem here, the two attributes, shape mismatch and size mismatch,
are deemed to be unrelated, and the non-compensating aggregation function Pz, will be used
such that only candidate solutions with good performance in both attributes are considered as good
candidates. Also the discussion above about aggregation functions assumes larger preference value
indicate better performance; however, in the case here, smaller shape mismatch values and size mis-
match values are related to better performance, so the actual formula for shape match aggregation

is Max, not Min:
'Shape Measure = Max(M, shdpe, Myize) 4.11)

and the following reciprocal function gives the fitness value:

1
fitness = 4.12)
Max(Mshapea Msize)

45
45 - Summary - |

This chapter described the shape matching algorithm for 3-D shape comparison. In the Genetic Al-
gorithm approach to the mask-layout and process synthesis problem, the shape matching algorithm
compares the simulated shapes and the target shape, and serves the performance evaluation func-
tion. -Because .of the polygonal layer representation of 3-D shapes used by SEGS etching simulator,
polygonal shape matching scheme is used, and the overall 3-D shape matching metric is constructed
by combining the shape matching values at all layers. The shape matching algorithm produces two
metrics for 3-D shape matching: pure shape mismatch value, and size mismatch value. To assign a
fitness value for a candidate solution in the Genetic Algorithm, an aggregation function is needed to
convert the pure shape mismatch value and the size mismatch value to a single preference. Different
aggregation functions are discussed and the non-compensating aggregation function Pay, is used
for the problem here. Only candidate solutions with both small shape mismatch values and small

size mismatch values are considered as good candidates.

46

Chapter 5

Mask-layout and Process Synthesis: Design and

Implementation

5.1 Introduction

For the problem of synthesis of MEMS mask-layouts and processes, a Genetic Algorithm iteration
loop is constructed to evolve the optimal mask and process flow as shown in Figure 5.1. The user
specifies a desired 3-D target shape. An initial population of solution candidates (mask-layouts and
process parameters) is randomly generated. The fabrication of each mask-layout using the associ-
ated process parameters is then simulated by a specified fabrication simulator to produce a three-
dimensional shape. The performance of each solution candidate is measured through the shape
comparison between the produced shape and the user defined desired shape. During each evolution-
ary loop, genetic operations are applied to control the stochastic searching behavior such that the
best performing solution candidates are more likely to survive and evolve even better offspring for
the next generation. The iteration is stopped when one satisfying solution is found.

As described in Chapter 2, for a Genetic Algorithm to work, in addition to setting some param-
eters, implementation of several aspects must be provided, including the coding scheme, genetic
opérations (crossover, mutation, efc.), and an evaluation of performance. For the mask-layout and
process synthesis problem, each candidate solution in the solution space is a mask-layout asso-
ciated with some process flow parameters. The performance evaluation of candidate solution is
handled through the fabrication simulation and shape matching algorithm described in Chapter 3
and Chapter 4. To design a coding scheme and genetic operations for process parameters in general
is relatively easy, and depends on the particular fabrication procedure that is considered in the syn-

thesis. Later the implementation details of the coding scheme and genetic operations for a two-step

47

Initial Population of
Mask-Layouts & Process Flows

Y

Fabrication
Simulation

New Population of
/ Masks & Processes

!
Resulting i
3-D Shapes
\

A

Desired | Not Modify Masks and
3-D Shape Compare Close Process Flows with
Enough Genetic Algorithm

Close enough |
Y

’ Done

, Fig‘uré 5.1: A schematic representation of a Genetic Algorithm MEMS synthesis technique

48
“wet etching process will be shown, during which two different etchants will be applied to a mask-
: layout in .sequence\to create the final device shape. For mask-layouts, things are more complex,

and more attention is required to design a proper coding scheme and genetic operations, which is

described below.

52 Mask-layouts: Coding and Genetic Operations

5.2.1 Coding Scheme

As introduced in Chapter 2, in a Genetic Algorithm, the genetic operations work on the genotypes

(chromosomes), which are encoded strings of the candidate solutions (phenotypes). To design a

coding scheme to encode the candidate solutions into genotypes is the first step in the design of a
~ Genetic Algorithm.

Mask-layouts are treated geometrically as two-dimensional polygons. An appropriate coding
scheme is needed to encode 2-D polygons with strings which can be easily manipulated by genetic
operations. In Chapter 4, turning function ©(s) is described to represent the boundary of a sim-
ple polygon. Essentially the turning function measures the length and angle of each edge of the
polygon, and edges are considered as the constructing units for a polygon. Similar to turning func-
tion, for mask-layout encoding, edges are used as the constructing units, and edge coding scheme is
developed to encode polygons with strings.

For the edge coding scheme, edge length and edge directional angle are chosen to describe
each edge of a polygon [4, 72]. First a vertex on the polygon is randomly chosen, and the coun-
terclockwise traversal of the polygon i$ started. For each passing edge, the length of the edge and
the directional angle of the edge are recorded separately in two strings, the distance string, and

_ the angle string. The directional angles are measures from the positive z axis in counterclockwise
direction (i.e., the nominal angle). In this edge coding scheme, a mask polygon is encoded into two
reél strings. One string contains edge directional angles and the other contains edge lengths. The
size of each string is equal to the number of polygon sides. Two elements, one from each string
with the same gene position, describe an edge of the polygon. The distance strings and angle strings
are genotypes for the mask-layouts in the GA. A schematic illustration of the edge coding scheme
is shown in Figure 5.2. Note that real strings are used in the above coding scheme. A real coding
scheme is used because it provides adequate precision with a short string length.

An alternative way to encode polygons is the vertex coding scheme, in which the vertices are

PHENOTYPE oy

A
I
:
I
Etlflge’a‘
I
1
1
b I ~
L) LR e
m Ej X
Edge 1

A Rectangle Mask Polygon With Edge Length 10 & 20

| i I

GENOTYPE | . . , :
' : Edge 1 : Edge 2 :Edge3 :Edge4 :

'. | l) i

I I 1 | 1

Angle String: 1 0.00; 157! 3.14 1 4.71!

I l l : |

Distance String: 120 10 4 20 10

1 1 1 1]

Figure 5.2: A schematic illustration of the GA coding scheme for mask-layouts

used as the constructing units for the polygons, and the coordinates of the vertices are recorded in
strings. For the mask-layout synthesis problem, the edge coding scheme has advantages over the
vertex coding schemé. The advantage of using polygon edges as the constructing units instead of
vertices is that direct control over the manipulation of the polygon shape is provided using the edge
coding scheme. The features of a polygon shape are captured by its edges, not its vertices. The
correlation between the change of an edge and the change of the polygon shape is clear, while such
a clear correlation can’t be achieved using vertices as the constructing units. Also, using an edge
coding scheme makes designing sensible genetic operations easy and convenient as illustrated in

" later sections. Refer to [68] for more discussion on the advantages of edge coding schemes.

5.2.2 Mask Initialization

Genetic Algorithms work as an iterative loop, and the process to create the first generation of can-
didate solutions is called initialization. For mask-layout synthesis, the goal of the initialization
pfocess is to randomly generate the first generation of polygon shapes which uniformly sample the
solution space. Different initialization procedures are tested and compared (please refer to [68] for

detail), and the procedure used here is implemented in the following way.

50
~_ First an integer number is réndomly chosen in a user-defined range as the ‘polygon side number
by a random generator. Then using the edge-coding scheme, a real number random generator ran-
domly generates polygon edges (edg§: lengths and directional angles). The newly generated edge is
concatenated with the last edge. To satisfy the simplicity constraint for the polygon (no intersection
bétween edges),‘ each newly generated edge must be checked to ensure that there is no intersec-
tion “between'this edge and any already existing edges. If there is intersection, this edge will be
discarded, and another edge will be re-generated and tested. Of course the last edge cannot be

randomly generated and is determined by closing up the polygon.

5.2.3 Cro’ssbver of Polygons

As described in section 2.6, crossover is the main operation used for reproduction. It combines
~ portions of two parents to create two new individuals, called offspring, which inherit a combination
of the features of the parents. In general, to design a sensible crossover method for a specific
problem is not an easy task. Although crossover operation is applied to the genetic representation
(genotypes, strings) of the physical solutions, the crossover scheme must be carefully designed so
that the mechanism of the crossover makes sense on the physical solutions (phenotypes), and the
crossover offspring inherit features from both parents. Considering this, when designing crossover
schemes for polygons, efforts should focus on developing a scheme to inherit and combine features
from two parent polygons, although the final implementation is on the genetic representation, which

is simply two real strings.

Real Number Crossover

First consider which real crossover operator to use. As introduced in section D.2, there are several
. common crossover operators for real-coded strings. Here the blend crossover BLX-« [33] is used.
BLX-a crossover produces an offspring by picking a value for each gene uniformly from the range
formed by the values of two corresponding parent genes with some extension on each side. If the
distance between the two parent genes is I, the length of the extension on each side is af, and « is
a user-specified parameter. The advantages of BLX-« are described in section 2.6. For crossover of
pblygons, BLX-a scheme can be applied to all the paired elements in both Distance String pair and

Angle String pair.

51.
" Geometri¢ Constraints

Now consider what must be modified in the blend crossover BLX-c for real-coded strings for poly-
£0N Crossovers.

- There are two aspects that need to be handled with special care for polygon crossovers. First,
each polygon is represented by two real strings, a distance string, and an angle string. For two
parent polygons, a pair of distance strings and a pair of angle strings are to be combined. After
every pair of genes (real numbers) in these two string pairs is crossed using BLX-a, a new distance
string and a new angle string will be generated. But, unfortunately, they are not guaranteed to
représent a simple closed 2-D polygon because the blend crossover is randomly carried out, and
there may be intersection between edges and the polygon may not be closed. In order to make
sure the offspring from the crossover is a simple closed polygon, care must be taken to satisfy the
- geometric constraints.

To ensure the offspring polygon to be closed, one edge pair must not participate the crossover,
and for the offspring this edge will be determined by closing up the polygon. Which pair of edge
should be chosen not to participate in the crossover? Remember the purpose of crossover is to
generate offspring inheriting common features from the parents. If a pair of edges from two parents
are very similar, this feature should be expected to be preserved to the next generation, instead of
disrupted. If a pair of edges from two parents are very dissimilar, it should be expected that crossover
will explore other possibilities for this edge. This is essentially how the crossover operator balances
the effort of exploitation of promising area and exploration of unknown area in the solution space.
Under this guidance, the blend crossover should be applied to the edge pairs which are common
features in both parent polygons, and the worst matched pair of edges should be chosen as the pair
of edges that don’t participate the crossover. This way the common features from both parents will
- be preserved by the crossover, and new features will be introduced by closing up the polygon to
replace thé worst matched pair of edges. Furthermore, since the angle string pair and distance string
pair are crossovered separately, the worst matched pair of genes for each string pair is selected, and
they don’t necessarily correspond to the same edge pair. -

This scheme is shown in Figure 5.3. The crossover is performed for angle strings and distance
strings separately. In Figure 5.3, two parent polyons have 6 sides, and angle strings and distance
strings with gene length of 6 are paired up. For each string pair, the worst matched pair of genes is

chosen first. For the angle string pair, the worst matched pair of genes is gene 6, and for the distance

52

Parent Polygons: -

Polygon P1 | Polygon P2

€1 < €s Ee < Bs
ey E; E4

€2 e; E> E;

471 5.41 0.00 1.57 3.14 [2.55
471 5.90 0.00 1.57 3.05 |3.31

: o paiy 174 17.0 [15.2] 217 13.0 157
Distance String Pair 10 500 |45 | 267 135 13.5

Angle String Pair

Child: a3 =0.00 a6 =?

Angle String 471 5.67 0.00 1.57 3.10|a6
Distance String 17.7 21.6 | d3| 223 13.1 144

d3=7.55 a6=2.56

Figure 5.3: Crossover of two polygons

13 =? d6 = 14.4

P1
P2

P1
P2

53
" string pair;” gene3. 'For the angle string pair; every gene pair is crossovered ﬁsing blendv crossover
BLX-a except gene 6. Fof the distance string, every gene pair is crossovered except gene 3. After
the CTOSSOVer, one new angle string and one new distance string are generated, with gene 6 on angle
string, ag, and gene 3 on distance string, ds, undetermined. These two undetermined values can be
détermined by the geometric constraint that the two strings should represent a closed 2-D polygon,
as sﬁown in the following.

For a closed 2-D polygon with side number of n, the edges are é;,7 = 1, ..., n. The fact that the

polygon is closed can be expressed mathematically as:

éi+ert+ez+..+é,=0 (GN))

or, in Cartesian coordinates,
> dicosa; =0 (5.2)
i=1
> disina; =0 (5.3)
i=1

where d; and a; are the edge length and directional angle of edge €;.

For the example in Figure 5.3, ag and d3 can be easily calculated from Equation (5.2) and
Equation (5.3): ag = 2.56, and d3 = 7.55. This procedure to determine the two unknown values of
edge length and angle can be shown visually as a geometric reconstruction: by constructing pieces
of edges together into a closed polygon, the two unknown values can be geometrically determined.
This procedure is illustrated at the bottom of Figure 5.3.

Finally the offspring polygon will be checked to see there are edge intersections. If any, this

offspring will be discarded, and the crossover will be performed again.

Polygon Edge Alignment

Now consider another aspect of crossover for polygons. In the section above, crossover is described
being carried out on each gene pair. During the procedure, it is assumed that for two similar poly-
gons, the strings representing the polygons are ordered in such a way that similar edges from the two
polygons appear on the same gene location on the strings. But this is not necessarily the case. Re-
call the encoding scheme used to represent polygons: each edge is represented by two real numbers,

one on the angle string, one on the distance string. The first edge is randomly chosen and it makes

54

" no difference if a different edgn is chosen as the first one, as long as the counferclockwise winding
se'quencev is kept unchanged. If [dy, do, d3, dy, d5] and [a1, ag, a3, a4, as] are the distance string and
angle string for a 5-side polygon, then strings [d4, d5, d1, d2, d3] and [a4, a5, a1, a2, a3] represent the
same polygon. To ensure that the common features (similar edges) of both parent polygons are on
thé same gene location on the strings so that similar edges from both polygons will be paired up in
the érossovef, special care must be taken to achieve the alignment of the polygon edges.

Recall the shape matching algorithm illustrated in Chapter 4, the minimum of L2 distance func-
tion over the nloving reference point of one polygon while keeping the reference point of the other
polygon fixed, is taken as the shape mismatch. Geometrically what happens is this: choose one ver-
tex from each polygon as the starting vertex (reference point), calculate the L2 distance function,
and try all the combinations for the starting vertex (/mn cases for an m-sided polygon and an n-sided
_ polygon), and the minimum is taken as the shape mismatch. In that sense, polygon edge alignment
can be achieved using exactly the same algorithm. The pair of starting vertices corresponding to
the minimum of the distance function will be taken as the starting vertices for both polygons in
the string representations, and the edge correspondence (alignment) between the two polygons is
therefore established.

After the alignment adjustment, the common features on the two parents are paired up, and
further crossover will always exploit the maximum level of common geometric features existing

between the two parent polygons.

5.2.4 Crossover of Polygons with Different Side Numbers

The crossover scheme described above has a limitation: it only works on two polygons with the
same number of sides. The mechanism of the crossover scheme is based on the pairing up of
_ corresponding edges in two polygons, and each edge in one polygon must have a corresponding
edge in the other polygon to crossover with. Using such a crossover scheme restricts the mask-
layout synthesis to a subspace of polygons that all have a specified number of sides. The appropriate
number of sides for the mask-layout synthesis must be guessed in advance, and only a subspace of
the whole polygon space, polygons with this pre-specified number of sides, is explored. The optimal
mask-layout may not be found simply because it lies outside of this subspace. A variable gene length
érOSSover scheme for polygons was developed so that polygons with different numbers of sides can
be explored by the algorithm, and the chance to find the optimum is greatly increased.

To design a variable gene length crossover scheme for polygons, it was noticed that a polygon’s

55

“shape is unchanged after adding some vertices onto the edges of the polygbn. In other words,
alfhough an n-side .polygoﬁ nofmally is viewed as having n edges, it can also be viewed as having
more than n e;dges because one edge can be broken into two edges with same directional angle. In
this sense, if two polygons with n sides and m sides respectively, where m > n, are considered,
bofh polygons can be viewed as m-sided by adding m — n vertices onto the edges of the n-sided
'polygon. After that, these two m-sided polygons can be crossovered using the scheme introduced
previdusly. The offspring from such a crossover will be an m-sided polygon. Some vertices of the
offspring polygon (usually ones connecting the most collinear edges) are then removed to produce
the final polyéqn with number of sides which is generated randomly between 7 and m.

Having’introdqced an approach (called an add-then-remove scheme) to the crossover problem of
polygons with different numbers of sides, where to add the new vertices onto the edges of a polygon

is still a challenging task. An example is used below to illustrate the scheme used here to determine
where to add new vertices.

Figure 5.4 shows the add-then-remove scheme introduced above. Two polygons to be crossovered
are shown at the top of the figure: one with 4 sides, the other with 6 sides.

First, a scheme to determine where to put the new vertices on the polygon with fewer sides is
needed. The locations of new vertices should be chosen in such a way that after insertion of new
vertices and crossover, the offspring polygon combines common features of both parent polygons.
In other words, the insertion of new vertices should not break the already established common
feature (edge) correspondence, and new edge correspondence should also be established by the
insertion. First, polygon edge alignment is conducted to determine the first edge for both polygons,
and get the distance string and angle string representation for both polygons. To determine the
insertion positions, two parent polygons are scaled to same perimeter length (1.0 in the example).
Using a line segment from 0.0 to 1.0 to represent the perimeter of a polygon, each vertex of the
polygon corresponds to a' point on the line segment. For the square in Figure 5.4, the vertices are at
0.25, 0.5, 0.75, and 1.0, and for the hexagon, the vertices are at 0.2, 0.35, 0.5, 0.7, 0.85, and 1.0.

In order to determine where to put the new vertices on the polygon with fewer sides (the square),
it must be established which pair of vertices on both pdlygons correspond to each other. For each
vertex on the polygon with fewer sides, the vertex closest to it on the line segment of the other poly-
gon (the polygon with more sides) is chosen to be the corresponding vertex. In the example shown
in Figure 5.4, for vertex v; of the square, the vertex V; of the hexagon is the corresponding vertex.

Vertex vy corresponds to vertex V3; vertex vs to vertex V4, and vertex vy to vertex Vg. The two

A

56

Pdrent Polygons:
~ Polygon P1 Polygon P2
V3 V2 V4 V3
X X Vs V2
v4 ‘(vo) vi Veé (Vo) Vi
Vo vi V2 v3 V4
| | | | |
I L] | .
Vo Vi V2 V3 Va V5 Vs
Vo vi V2 V3 V4
| | | | J
T
Vo Vi V2 V3 Va V5 Vs
Removea
Vertices
Initial Child Polygon Final Child Polygon

Figure 5.4: Add-then-remove scheme for crossover of polygons with different numbers of sides

57
ségments of the two polygons With correSpohding vertices as end points are éalled corresponding
seégments.' For example, the segment from v; to vy of the square and the segment from V; to V3 of
the hexagop are corresponding segments. Now two vertices are left uncorresponded on the hexagon,
vertex Vo, and vertex V5. Vertex V5 is on segment V] to V3 which has corresponding segment vy to
va on the square: and a new vertex is generated on this corresponding segment of the square with
its pb'sition relative to this corresponding segment exactly the same as vertex V3 is relative to the
coneéponding segment on the hexagon. The corresponding vertex of vertex Vs is generated the
same way. Thf: “x” symbols in Figure 5.4 show where the new vertices are inserted.

| After insertion of the new vertices, the two polygons (now with the same number of sides) are
crossovered to generate the initial child polygon, and then a number between the side numbers of the
two parents is randomly generated as the side number of the final child polygon, and some vertices
of the initial child polygon (usually the most collinear vertices) are then removed to produce the
final polygoh with the specified number of sides. In the example, the parents have side numbers of
4 and 6, the initial child polygon has 6 sides. The randomly generated final polygon side number is
5, and one vertex of the child polygon (the one in the circle) is removed to produce the final polygon

with 5 sides.

5.2.5 Mask Mutation

Although in general crossover is the driving force for the convergence of a Genetic Algorithm,
without mutation the convergence may be trapfied in local optimum. As described in section 2.7,
mutation enables new features to be introduced into a population so that premature convergence can
be avoided. - Mutation makes the whole solution space reachable for every generation during the
evolution, and it provides a chance for the algorithm to explore areas that have been lost through the
_ crossover process of the previous generations.

~ For the problem here, the purpose of the mutation operation is to introduce new polygon edge
features into the current generation. Mutation is applied on each individual, polygon in the case
here. Using the edge-coding scheme, mutation should be applied to the distance string and the
angle string separately. One gene in each string is replaced with a randomly generated value in some
range. Geometrically, that means the edge length of one edge (€]) and the angle of another edge (¢2)
ére changed. Similar to the crossover case, to satisfy the closeness constraint of the polygon, the
angle of €] and the edge length of €3 cannot be kept unchanged and should be determined according

to Equation (5.2) and Equation (5.3). Figure 5.5 illustrates this mutation scheme and the polygon

58

" reconstruction. *

. The rhutation scheme introduced above changes the shape of the polygon without changing the
number of sides of the polygon. For the Genetic Algorithm to work on polygons with different
side numbers, a mutation operation for changing the polygon side number is desired. As the evo-
lution proceeds,‘the crossover operation will make the side numbers of polygons in one generation

'con\“)é,rge. At some point, all the polygons in one generation will have the same number of sides.
Without a mutation operation to change the side number, further evolution will be working on only
a subspace 0{ polygons with a fixed side number. If it turns out the optimum solution has a larger
side number and therefore lies out of this subspace, the algorithm will never reach this optimum.
A mutation bperation to change the polygon side number and therefore introduce candidates with
different topology is needed for the Genetic Algorithm to avoid premature convergence.

The implementation of such mutation is simple. To add edges into a polygon, vertices can be
inserted alohg the polygon perimeter. This doesn’t change the geometry of the polygon, but the
string length is changed. Also veﬁices can be removed from a polygon to decrease the polygon
side number. Since the purpose of this mutation is not to change the shape of the polygon, when
removing vertices from a polygon, the vertices connecting the most collinear edges or very short

edges will be removed first. This way the polygon shape will not be severely changed.

5.3 Selection Scheme

Although genetic operations such as crossover and mutation are the means for a Genetic Algorithm
to explore and exploit the solution space searching for the optimum solution, the principle of evolu-
tion, survival of the fittest, is achieved through a well-designed selection pressure. An appropriately
designed selection scheme should apply proper selection pressure to individuals in a population,
so that the better-performing individuals will have a higher chance to survive the competition and
reproduce, while worse-performance individuals are not discarded totally without a chance.

As described in section 2.5, a selection scheme assigns a selection probability for each individ-
ual in a population. Parents will be selected according to the assigned probability to go through
genetic operations such as crossover and mutation to generate offspring. A linear ranking selection
algorithm is used for the problem here because of its advantages (see section 2.5.1 for details).

For a linear ranking selection, the ranking of all chromosomes in a population (instead of the

raw fitness values) is used to assign the selection probability. An algorithm will map the rank of

59
Initial Polygon:

é6 és

€1 é4

e
2 €3

Angle String 471 5.90 0.00 1.57 3.05 3.31
Distance String 17.8 240 4.5 26.7 13.5 13.5

Mutation: al = ? ad = 0.95
utaton. dl = 8.6 d4=?

Angle String al 15.90 0.00 (0.95|3.05 3.31
Distance String 8.6 240 4.5 |d4 |13.5 135

Reconstruction

al =3.35, d4=14.45

Figure 5.5: Mutation of a polygon

60

"-a chromosome in a population into a reproductive fitness value for this chromosome, and then the
reproductive fitness values will be used in a fitness proportionate selection scheme to calculate the
selection probability for each chromosome. Let Fj, be the reproductive fitness value for the kth
chromosome in the ranking of a population; the linear ranking takes the following form:

F/: — (k-1 q9—qo
k=a—()% pop_size — 1

where parameter ¢ is the reproductive fitness for the best chromosome, and ¢y is the reproductive
fitness for the worst chromosome. Intermediate chromosomes’ fitness values are decreased from g

to qo linearly. When go is set to be 0, it provides the maximum selective vpressure.

Note that
1— %
Fl=q1l—-(k—1) x —%2
k= ()% pop_size — 1)

Since ¢ is a common factor, its value is not important because for fitness proportionate selection,
only the relative fitness matters. Let ¢ = 1, then

k-1

Fl=1-bX ————r
k pop_size — 1

where b = 1 — g is a value between 0 and 1. The value of parameter b can be used to control the
selection pressure and is referred to as selection bias value. When b = 0, the reproductive fitness
values for all chromosomes are all the same, and therefore there is no selection pressure at all. When
b =1, F}, = 0 for the worst chromosome (k = pop_size), and it will never be selected. Figure 5.6
illustrates the linear ranking selection scheme.

In this application, the selection bias value b is gradually increased as the genetic iteration
proceeds to control the rate of convergence. During the initial stage the selection pressure is light so
that more areas in the solution space can be explored and premature convergence can be prevented,
and during the final stage the selection pressure is heavy so that the population will effectively
converge to the final solution. »

Recall that parent selection is only one of the two kinds of selection in one iteration of a Genetic
Algorithm. After the offspring are generated by crossover and mutation, a generational selection
is performed to select individuals from both the parent population and the offspring population to

create the next generation. The elitist selection described in section 2.5.2 is used here to select

61

'Re‘brodﬁc’tive’ Fitness

1 pop_size

Individual Ranking

Figure 5.6: Selection pressure controlled by selection bias b

the best chromosomes from both the parents and the offspring to create the next generation while
keeping the population size unchanged. This way the best-performance individuals will always be

preserved along the evolution.

5.4 Symmetry: Computational Considerations

Because of the geometric constraint requiring simple closed polygons, not all polygons generated
are valid. The polygons need to be checked to guarantee their validity before they are evaluated
and participate in further evolution. For a randomly generated polygon or an offspring polygon
from crossover or mutation, the polygon generation mechanism described above produce the result
that the chance of a polygon with more sides to be invalid is higher than a polygon with fewer
sides. - Therefore more computational time is needed to generate valid polygons with more sides.
- Also polygons with more sides need more time for crossover and mutation because more sides
means longer gene string length. Considering these factors, computational costs can be significantly
reduced in some special cases when polygons have symmetries and can be represented by strings
with length less than the number of sides in the polygon.

Because of the physical crystalline structure of silicon, the anisotropic etchants’ etch rates ex-
hibit symmetry. The etch rate for the direction indicated by the Miller indices (I, m,n) will be the
same no matter where this direction is physically. For a (100) wafer, the SEGS etching simulator

assumes the z axis and y axis are constructed along two perpendicular <110> directions, and the

62
" étch rate is symmetric to both Z axis and y axis. If a mask-layout is quadri—symmetric (symmetric
to both & axis‘ and y axis),‘ then the etched device geometry will also be quadri-symmetric. Con-
versely, if a target device shape is quadri-symmetric, the search effort can be constrained to search
for quadri-symmetric mask-layouts.

| If a polygon is quadri-symmetric, then only one-fourth of the edge features are needed to repre-
sent I'the polygon. Using the edge coding scheme, strings with length of one-fourth of the polygon
side nﬁmber are enough to encode the polygon. In more detail, only one-fourth portion of the edges,
in the first qufldrant, is recorded in the distance string and angle string. Some slight modification
needs to be performed for the polygon initialization and the genetic operations, such that they are
only performéd in the first quadrant. Before evaluation the mask, the encoded first quadrant portion
of the polygon is reflected about z axis and y axis to reconstruct the whole polygon. By utiliz-
ing the quadri-symmetry of the target shape and mask-layouts, the computational time for validity
checking and genetic operations is largely reduced. In the following chapters, quadri-symmetric

mask-layouts will be searched for quadri-symmetric target shapes.

5.5 Test: Searching for a Quadri-Symmetric Polygon

To test the performance of the Genetic Algorithm structure just constructed, experiments are con-
ducted to search for a quadri-symmetric polygon. The etching simulation is not plugged in here
since only the performance of the searching mechanism is tested, e.g., coding, initialization, crossover,
mutation, and selection. A test to search for a pre-specified polygon is enough to serve this purpose.

A quadri-symmetric polygon (a cross as shown in Figure 5.7) is given as the target shape. The
Genetic Algorithm procedure is performed to find a polygon close to the target polygon. The shape
matching algorithm evaluates the performance of each candidate polygon. The synthesis run was
- conducted on a Sun Ultral0 workstation with a 440 MHz CPU clock speed, and it took about 2
minutes. The parameter settings for the GA are shown in Table 5.1. For each generation, each
candidate polygon is compared with the target polygon using the shape matching algorithm and
the shape mismatch values are recorded for each candidate polygon. The average shape mismatch
(both shape mismatch and size mismatch) is calculated for each generation, and Figure 5.8 shows
the convergence of the average shape mismatch along with the iterations.

The geometries of the best resulting polygons in iteration 1, 5, 10, 15, 24, and 50 are shown in

Figure 5.9, and the convergence of the polygon shapes to the target shape can be easily observed.

63

Figure 5.7: A cross as the target shape

Table 5.1: GA parameter settings

GA Parameter Value
Iteration Number 50
Population Size 50
Min Polygon Side Number 4
Max Polygon Side Number | 28

Table 5.2: Synthesis data showing convergence

Tteration | Side Number Shape Mismatch | Size Mismatch
1 20 0.440 0.416
5 12 0.235 0.118
10 12 0.212 0.048
15 16 0.146 0.089
24 16 0.119 0.086
50 16 0.023 0.022

Mismatches

1.0

64

0.8

—— Shape Mismatch
— — - Size Mismatch

0.0 -
0.0

10.0 20.0 30.0 40.0
lterations

Figure 5.8: Convergence curves of shape and size mismatches

50.0

65

Iteration: 1

Iteration: 5

Tteration: 10

Iteration: 15

Iteration: 24

Iteration: 50

.Figure 5.9: Best polygons at different iterations

66

50.0

40.0

30.0

20.0

Number of 16-Side Polygons.

10.0

0-0 n | ! 1 s 1 L 1 i
0.0 10.0 20.0 30.0 40.0 50.0
lterations

Figure 5.10: Convergence of the number of polygons with 16 sides to the population size

Detailed performance information about these six polygons is shown in Table 5.2. The shape and
size mismatch values between the best polygon and the target polygon for each iteration are getting
smaller as the synthesis proceeds. At iteration 50, the best resulting polygon is close to the target
polygon and it’s taken as the optimum and the synthesis is stopped.

The targét polygon has 16 sides. As shown in Table 5.1, during the synthesis, polygons with
number of sides between 4 and 28 are explored. A well designed GA should gradually shift the
- searching effort to the subspace of polygons with 16 sides, and the final result should have 16 sides.
The numl:;er of thé candidate polygons with 16 sides in each generation is recorded, and Figure 5.10
shows the convergence of the number of the candidate polygons with 16 sides to the population size
(50) as the synthesis proceeds. |

To demonstrate the importance of having a variable gene length GA structure to evolve polygons
with proper side number, a synthesis experiment is performed on polygons with a fixed side number.
For the same target polygon (shown on the left side of Figure 5.11) with 16 sides, if the GA tries

to find it in the subspace of polygons with 12 sides, the synthesis will produce the polygon shown

67

Target Polygon Synthesis Result

Figure 5.11: Target polygon and the search result using fixed polygon side number GA

~ on the right side of Figure 5.11 as the best result. Because of the difference between polygons with
different numbers of sides, it’s obvious that a polygon with 12 sides cannot be found having strong
resemblance to a 16-side polygon. If the search is conducted in a subspace with side number more
than 16, polygons close to the target 16-side polygon can be found, but more computational time is

needed because of the redundant edges.

5.6 Process Flows

The preceding sections illustrate the coding scheme and genetic operations of the Genetic Algo-
rithm for mask-layouts. To synthesize process flow, the process flow parameters also need to be
encoded and manipulated by genetic operations so that a search for the optimum process flow can
be performed. To demonstrate how to construct the coding scheme and genetic operations for pro-
cess flow parameters, this section describes the implementation details of the coding scheme and
genetic operations for a two-step wef etching process.

- In a two-step wet ctching, two different etchants are applied in sequence onto a mask-layout,
each for some etch duration time, to generate the final device geometry. The design parameters for

the process flow are the etchant sequence and the etch durations:

etchant sequence: | e, e

etch durations: ti, to

where e; and ey are the index numbers for the first etchant and the second etchant, and £; and £ are

the etch times for the first and second etch step.

68
i 'Etchant’Séqueﬂce‘ ’

Let us first consider the etchant sequence. Suppose m different etchants are available to choose
from for the two-step wet etching process, and they are identified as #1, #2, ..., #m; therefore, the

possible values of e; and ey are integers between 1 and m, i.e.,
e1, e2 € {1,2,...,m}
Also since the values of e; and e; are unrelated to each other, they can be evolved independently.

Etch Durations

For the etch durations, as shown below, the values of ¢, and ¢, actually are related, and also the
. range of possible values for ¢ and t5 is not fixed for different etchants. A single variable will be
constructed as the etch time parameter to participate in the evolution, and the values of ¢; and ¢
will be determined accordingly.

For the synthesis problem, given a target shape, the total etch depth is known. For a two-step
etching process, the total etch depth is decided by the etch times and the <100> etch rates for both

etchants as follows:
Total Etch Depth =t X 11 + 2 X 79 (5.4)

where r1 and r4 are the <100> etch rate for the first and second etchant. Therefore,

: Total Etch Depth — 1 x r;
2 =

T2

- In other words, t5 can be calculated once ¢; is known and the etchant sequence is known (therefore
the etch rates 1 and ro are known). Therefore, only ¢ needs to participate in the Genetic Algorithm
evolution.

Now consider the range of possible values for etch time ¢;. Obviously, from Equation (5.4),

Total Etch Depth

1

l € [07]

But since the <100> etch rates (r1) can be different for different etchants, the range for possible

values for etch time ¢; will be different for different etchants. To overcome this problem, a new

69
" “variable T} is constructed so that

T =11 xX7m
The range of possible values for variable 71 is

T; € [0, Total Etch Depth]

T is the etch rate variable that participates in the GA evolution, and for a specific value of 17, the

values of t1 and 9 can be calculated as

r1
y Total Etch Depth — T3
2 =

T2
Summary
In summary, the design parameters for the process flow are as follows:
1. etchant sequence e, ey, integers, with range of [1, m].
2. etch time variable T3, real number, with range of [0, Total Etch Depth].

A design point with e; = a, es = b, and 71 = ¢ means the first etchant is etchant #a, the second

Total Etch Depth—c
Ty)

etchant is etchant #b, the first etch time is %, and the second etch time is

For the fabrication process coding scheme, two integers and one real number are used to encode
e1, eg and Tl. The initialization will generate the initial population by randomly sampling in the
corresponding solution spaces ([1,m], [1,m], and [0, Total Etch Depth]). The genetic operation
" (crossover, mutation) schemes for real coding (see Chapter 2 for detail) can be applied. For e; and

es; round-off needs to be performed to get integer values.

5.7 Summary

This chapter introduced in detail the structure and key components of the Genetic Algorithm ap-
proach to the mask-layout and process synthesis problem. For mask-layouts, coding scheme,
crossover, and mutation mechanisms have been constructed to represent and manipulate the evo-

lution of polygons with variable numbers of sides. Special care needs to be taken to satisfy the

o 70
" geometric constraint of sirlnple‘closed polygbns. Linear ranking selection aﬂd elitist selection are
used to select candidate soiutions to reproduce offspring and create the next generation. The Ge-
netic Algorithnrn stracture for mask-layout synthesis was tested by an example to search for a desired
quadri-symmetric polygon, and the synthesis results verified the stable and fast convergence of the
algorithm. To sSznthesize process flows, coding scheme and genetic operations are needed to en-
code and evolve process parameters. To demonstrate the general procedure for manipulation of
process flow parameters, implementation details of the coding scheme and genetic operations were
described for a two-step wet etching process. Now that the key components of the Genetic Algo-

rithm approach to the mask-layout and process synthesis problem have been constructed, the next

chapter will apply the approach to the synthesis of mask-layout and process for bulk wet etching.

71

Chapter 6

Mask-layout and Process Synthesis for Bulk Wet Etching

6.1 Overview

" In the preceding chapters, the main components of the Genetic Algorithm approach to the mask-
layout and process synthesis have been introduced. Chapter 5 described the structure and imple-
mentation of the Genetic Algorithm approach to the synthesis problem; Chapter 3 introduced the
SEGS wet etching simulator which is used to simulate the etching process; Chapter 4 described
the shape comparison algorithm which evaluates the performance of the candidate solutions. In this
chapter, all the components will be integrated, and synthesis examples will be shown to demonstrate
the capacity of the algorithm, and provide a basis for further extension of the method.

Designing corner compensation structures is one of the most challenging tasks when designing
mask-layouts for anisotropic wet etching. Mask-layout synthesis experiments are conducted here
on twobtarget shapes, and different compensation patterns are generated by the Genetic Algorithm
synthesis method. An additional example concerns two-step wet etching process in which two
different etchants will be applied in sequence to generate the final device shape. For a given target

- shape, synthesis is conducted to search for not only a proper mask-layout, but also the right etchant

sequence énd theietch durations for both steps. A synthesis involving both the mask-layout and the

process flow is more complex, and automatic design tools are helpful to synthesize the right process

recipe.

6.2 Corner Compensation

Anisotropic wet etching of (100) silicon wafer is an important technique for silicon micromachining.

Rectangular diaphragms can be formed by this technique with little difficulty. But when etching

7

Figure 6.1: Corner undercutting of a square mask in anisotropic efching

Figure 6.2: Octagonal shape resulted from long etch time

73

Figure 6.3: A mask with compensation structures and the resulted square mesa

rectangular convex corners in silicon using anisotropic etchants, deformation of the edges always
occurs due to undercutting. The corner undercutting starts at the convex corner of the mask and
increases gradually. Figure 6.1 shows a typical example of this undercutting phenomenon. The
convex corners of the square mask are undercut by the fast moving etching planes, and as a result,
two etching fronts appear on each convex corner. If the etching time is long enough, the square mesa
eventually becomes octagonal (Figure 6.2). This is an unwanted effect in micromachining silicon,
e.g., in the fabrication of mechanical sensors for measuring acceleration, where perfect 90° convex
corners are mandatory for good device prediction and specification. The undercutting on convex
corners has been one of the obstacles to the implementation of more complicated structures, such
as mesas and right angle grooves.

The undercutting of convex comérs in anisotropic etching can be reduced or even prevented
by adding the so called compensation structures to the convex corners on the etching mask. For
example, to fabricate a square mesa, instead of using a square mask which has undercutting problem
as shown in Figure 6.1 and Figure 6.2, a mask with extra boundary features at the convex corners
as shown in Figure 6.3 can be used. The compensation structures withstand extra etching time so
that the convex corners will not be attacked. The design of a compensation structure is related to the
specific etchant as well as to the structure to be formed, as the nature of undercutting is dependent

on the etching conditions (such as the composition of the etchant, temperature, etc.). Also, since

74

" the il‘ndercuttingais a function of etch time, the size of the compensation structﬁre is directly related
to the desired etch.depth. Different compensation structures have been proposed. Abu-Zeid uses
square patterns and superimposed compositions of square and rectangular patterns on the convex
comners on the mask for compensation purpose [1]. A more straightforward design is to add triangle
patterns to the convex corners [94, 120). Bao et al. use additional <110>> strips [11] and Mayer et
al. lis'e a <100> bar on convex corners [76]. The compensation patterns usually need a large area
whenvetchjng depth is deep. Zhang et al. proposed a compensation pattern for restricted area such
as narrow groove [123].

Different compensation patterns are illustrated in Figure 6.4. As can be seen in Figure 6.4, most
compensatioh structures are composed of edges in certain particular orientations such as <110>,
<100> and <210>. These orientations are chosen because it is relatively simple to analyze the

etching of structures composed of edges in these orientations, and for some cases, the relationship
between the feature length of the compensation structures and the etching depth can be theoretically
established. However, these compensation patterns are not necessarily optimized when considering
the performance and the area they need. More complex compensation structures can be synthesized
by trying other possibilities, and for a given device shape and surrounding geometry constraints,
compensation structures should be specially designed to meet the requirement. In the following
sections, for two target shapes, a square mesa and a cross groove, mask-layout synthesis using the

Genetic Algorithm approach will be conducted to generate various compensation patterns.

6.3 Square Mesa

6.3.1 Etch Rate Data

_ The etching characteristiqs for KOH etchant have been studied by various groups for different con-
centrations and different temperatures [98, 103, 109, 121]. Literature shows the etch rate in <111>
dﬁection is very small, usually less than 1 pm/hr [98, 109], and the etch rate ratios are about 1.9:1
for <110>:<100> and 1.6:1 for <311>:<100> [103, 121]. For the synthesis tests here, etch rates
for 45wt.%, 58 °C KOH Solution as shown in Table 6.1 are used. The etch rate in <100> direction

is 23 pm/hr.

75

.
-
-

=

Crystal Orientation
<110>

<100>

> <110>

Figure 6.4: Compensation pattern examples

76

Orientation | C'ching Rate
(pm/hr)
100 23
110 44
311 37
11 1

Table 6.1: Etching rates for 45 wt.%, 58 °C KOH Solution

Figure 6.5: A square mesa

77

Parameter Value

Population Size 60
Iteration Number 70

Minimum Polygon Side Number 4

Maximum Polygon Side Number | 28

Table 6.2: Evolution parameters for GA

6.3.2 Target Shape

The target shape in the first mask-layout synthesis example is a square mesa as shown in Figure 6.5.
The sidewalls of the mesa are {111} planes whose etching rates are the slowest. For KOH etching,
if an edge of a mask is aligned with <110> direction, the etched sidewall will be {111} planes
since <1113 direction has the lowest etch rate. Therefore, for a square mesa generated by KOH
etchant, if the top-layer edges of the mesa are aligned with <110> direction, the sidewalls should
be {111} planes. Because of this, the sidewalls of the target square mesa are set to be {111} planes.
This way the sidewalls of the target shape ‘and sidewalls of simulated shapes will be in the same
direction, and the search will focus on finding compensation structures.

The feature length and etching depth are two parameters of the square mesa. As illustrated in
section 6.2, the shape and size of the compensation structures are dependent on the feature length
and etching depth of the shape to be formed. Mask-layout synthesis will be conducted for different

combination of feature length and etching depth for the square mesa.

6.3.3 Test

As described in Chapter 4, the target shape is actually represented by polygon layers. For the square
- mesa, five layers are used, and all the vertical intervals are equal to 23 pm. The total etching depth
is therefore 23 x 4 = 92um. Since the etch rate for <100> direction is 23 pm/hr, the total etching
time will be 4 hours and the etching simulation will produce an etching contour for every hour so
that the simulated shapes also have five polygon layers with equal distance of 23 pm.

For the first test, the feature length of the square mesa (the top-layer edge length) is 500 pm, and
the target shape is shown in Figure 6.6. After some preliminary tuning, the evolution parameters
used in the Genetic Algorithm were set as shown in Table 6.2.

The synthesis task was conducted on a Sun Ultra 10 workstation (440 MHz), and it took about

78

Figure 6.6: A square mesa represented by polygon layers

Table 6.3: Synthesis data showing convergence

| Iteration | Side Number | Shape Mismatch | Size Mismatch

1. 20 0.166 0.221
5 24 0.187 0.142
10 | 28 0.123 0.052
21 24 0.019 0026

50 24 0.013 0.007

79

iteration: 5

iteration: 21

iteration: 10

iteration: 50 Target Shape

Figure 6.7: Synthesis results: mask-layouts and simulated shapes

80

0.6 .
‘ ——— Shape Mismatch
- --- Size Mismatch

» Mismatches

0.0 20.0 40.0 60.0
lterations

Figure 6.8: Convergence curves of shape and size mismatch values

60.0

40.0

20.0

0.0 : : : ' : L
0.0 20.0 40.0 60.0
Iterations

Number of polygons with 24 sides in the population

Figure 6.9: Convergence of number of polygons with 24 sides to the population size

81

" 12 minutes. The'results of “synthesis are shown in Figure 6.7 and Table 6.3. In Figure 6.7, the lower-
right fraﬁle shows-the target shape, and the other frames show the best candidate mask-layouts
(the dark polygons) at five different iterations during the synthesis loop, and the etched (simulated)
3-D shapes. The convergence of the etched shapes to the target shape can be easily observed.
Detailed informétion about these five iterations is shown in Table 6.3. The shape and size mismatch
vvalu.és befweén the etched shape and the target shape for each iteration decreased as the synthesis
proceeded. Atiteration 50, the etched shape of the best mask-layout is very close to the target square
mesa, and the corresponding mask-layout can be taken as the optimum mask-layout for the square
mesa. The compensation pattern at the convex corners can be observed. .

During the synthesis, shape mismatch and size mismatch values were calculated for each can-
didate mask-layout in each generation during the performance evaluation. The average shape mis-
~ match value and average size mismatch value were obtained for each generation, and Figure 6.8
shows the cbnvergence of the average shape mismatch and average size mismatch along with the
iterations. As shown in Table 6.3, during the synthesis, polygons with number of sides between 4
and 28 were explored. The final synthesized mask-layout has 24 sides,‘and Figure 6.9 shows the
convergence of the number of the candidate mask-layouts with 24 sides in each generation to the
population size (60) as the synthesis proceeded.

More synthesis runs were conducted to generate alternative mask-layouts for the target shape.
Starting with a different initial population of randomly generated polygons, the synthesis can find
different mask-layouts as the final solution. Also, the synthesis can be conducted on a subspace
of polygons with a specified side humber, and in that case the synthesized mask-layout will have a
specified number of sides. Various synthesized mask-layouts and the etched shapes are shown in
Figure 6.10, and it can be seen that different synthesized compensation structures all can fabricate
) shapes close to the target shape. »

As another test, synthesis was conducted for square mesas with different feature lengths. Previ-
oﬁsly, the feature length for the square mesa was 500 pm, and the etching depth was 92 pum. To get
different aspect ratios for thefarget shape, the etching depth is unchanged, while different values
are used for the square mesa feature length. The synthesized mask—layouts and the etched shapes

for different feature lengths are shown in Figure 6.11.

82

o]

G
Sisi

Figure 6.10: Various synthesized mask-layouts for the square mesa

83

feature length: 30,u,m feature length: 300um

feature length: 400um feature legth: 400pm

feature lenth: OO,u,m feature ength: 600um

Figure 6.11: Synthesized mask-layouts for the square mesa with different feature lengths

84

Figure 6.12: A cross groove

Figure 6.13: A cross groove represented by polygon layers

85

. Parameter Value
Population Size 70
Tteration Number 80

Minimum Polygon Side Number 4

Maximum Polygon Side Number | 48

Table 6.4: Evolution parameters for GA

Table 6.5: Synthesis data showing convergence

Iteration | Side Number | Shape Mismatch | Size Mismatch
1 36 0.313 0.248
7 24 0.284 0.213
15 32 0.143 0.119
22 28 0.128 0.041
55 28 0.024 0.008

6.4 Cross Groove

A second synthesis test was conducted on a cross groove shown in Figure 6.12, and the layer rep-
resentation of the target shape is shown in Figure 6.13. The KOH etch rate data shown in Table 6.1
were used here also, and the goal of the synthesis was to find proper mask-layout for the cross
groove. Similar to the square mesa, the cross groove target shape consists of five polygon layers,
and all the Vertical intervals are equal to 23 pum. All the edges of the polygons are aligned with
<110> direction, and all the sidewalls are <111> planes. The length of the groove is 1000 pm,
~ and the width is 400 pm (all measured on the top layer). -

- The synthesié for the cross groove is more challenging than the square mesa although in both
cases the main effort is focused on forming the compensation pattern for the convex corners. Since
the total area available for the compensation structure is limited be the cross boundary, the synthe-
sized compensation pattern needs to be small enough to satisfy the area constraint. This becomes
more challenging for cross grooves with higher aspect ratios.

After some preliminary tuning, the evolution parameters used in the Genetic Algorithm were set

as shown in Table 6.4.

“iteration: 7

iteration: 22

Target Shape

Figure 6.14: Synthesis results: mask-layouts and simulated shapes

87

ol ——— Shape Mismatch |
- --- 8ize Mismatch
8
£
2]
g 04]
9
=
02 |
00 ! L . 1 R Sl tateoi
0.0 20.0 40.0 60.0 80.0

lterations

Figure 6.15: Convergence curves of shape and size mismatch values

80.0 : . .] : :

60.0

40.0

20.0

0_0 ' | '] L [l L
0.0 20.0 40.0 60.0 80.0
lterations

Number of polygons with 28 or 32 sides in the population

Figure 6.16: Convergence of number of polygons with either 24 or 28 sides to the population size

88

iteration: 55 v iteration: 58

Figure 6.17: The best mask-layout at iteration 55 and iteration 58

The syn’thesis task run took about 15 minutes on a Sun Ultra 10 workstation. The results of
synthesis are shown in Figure 6.14 and Table 6.5. In Figure 6.14, the lower-right frame shows
the target shape, and the other frames show the best candidate mask-layouts (the dark polygons)
at five different iterations during the synthesis loop, and the etched (simulated) 3-D shapes. The
convergence of the etched shapes to the target shape can be easily observed. Detailed information
about these five iterations is shown in Table 6.5. The shape and size mismatch values between
the etched shape and the target shape for each iteration decreased as the synthesis proceeded. At
iteration 55, the etched shape of the best mask-layout is very close to the target square mesa, and
the corresponding mask-layout can be taken as the optimum mask-layout for the square mesa. The
- compensation pattern at the convex corners can be observed.

The average shape mismatch value and average size mismatch value were calculated for each
generation, and Figure 6.15 shows the convergence of the average shape mismatch and average size
mismatch along with the iterations. As shown in Table 6.5, during the synthesis, polygons with
number of sides between 4 and 48 were explored. Examining the mask-layouts in all generations, it
was found that the searching (evolution) did not converge to a subspace of polygons with a particular
side number, as the case with the synthesis for the square mesa, but converged to two subspaces of
polygons. To be more specific, at the late stage of the evolution, most of the polygons have side
number of either 24 or 28, and the search effort was focused on the subspace of polygons with 24
sides and subspace of polygons with 28 sides. Figure 6.16 shows the convergence of the number

of the candidate mask-layouts with either 24 sides or 28 sides in each generation to the population

89
L éize (70) as the 9ynfhesis ﬁtocegzded. The Genetic Algorithm explored promisiﬁg mask-layouts with
different fopologies to search for the optimum solution for the target shape, and this actually is one
of the characteristics of GA: multiple optima can be searched simultaneously by GA. For example,
Figure 6.17 shows the best mask-layout at iteration 55, which has 28 sides, and the best mask-layout
at it_eration 58, v;/hich has 24 sides, and both mask-layouts generate shapes fairly close to the target
shapé. -
More synthesis runs were conducted to generate alternative mask-layouts for the target shape,

and various S)!nthesized mask-layouts and the etched shapes are shown in Figure 6.18.

| As another test, syntheses were conducted for cross grooves with different feature lengths. Pre-
viously, the feature length for the cross groove was 1000 pm (length) and 400 pm (width), and the
etching depth was 92 pm. To get different aspect ratios for the target shape, the etching depth is
unchanged, while different values are used for the cross groove feature length (groove length and
width). The‘synthesized mask—layouts and the etched shapes for different feature lengths are shown

in Figure 6.19.

6.5 Mask-layout and Process Synthesis

In the previous two examples, a single wet etching step was used in the fabrication, and only the
mask-layout needed to be synthesized for a given target shape. In many cases, the fabrication
process flow itself needs to be synthesized. As described in Chapter 3, complex three-dimensional
shapes can be generated using fabrication procedures such as multi-step wet etching process [43,
63]. For a multi-step wet etching process, the etchant sequence and the etch duration for each
etchant need to be determined by the designer, and for a given target shape, it is more challenging to
design a right formula (process flow) compared to single-step etching because of the large number
* of different possibilities. A mask-layout and process synthesis methodology is badly needed to help
the designer design the mask-layout and the fabrication process flow for a desired device shape.

To demonstrate the capability of the GA approach to the mask-layout and process synthesis, a
synthesis test was conducted to synthesize mask-layout and process flow for a two-step wet etching
process. There were three different etchants available (the etch rate data are shown in Table 6.6),
while the fabrication procedure that was considered was two-step wet etching. That means two
etchants can be applied in sequence to generate the final device shape. For a given target shape,

the goal of the synthesis was to find a proper mask-layout and also the right process flow (i.e.,

90

Figure 6.18: Various synthesized mask-layouts for the cross groove

91

feature engt 120, 500pm

feature length: 1200, 600pum

Figure 6.19: Synthesized mask-layouts for the cross groove with different feature lengths

92

Etchant No. 1

Etchant No. 2

Etchant No. 3

Orientation
(psm/hr) (pm/hr) (pm/hr)
100 5 5 5
110 5 5 1
311 1 6 unknown
111 6 1 unknown

Table 6.6: Etching rates for three different etchants

Figure 6.20: The target shape

93

Figure 6.21: The target shape represented by polygon layers

Parameter Value
Population Size 80
Tteration Number 60

Minimum Polygon Side Number 4

Maximum Polygon Side Number | 32

Table 6.7: Evolution parameters for GA

which two etchants to use, the ordér they will be applied, and the etch time for etch etchant). For the
process flow synthesis, the coding scheme and genetic operations described in section 5.6 were used
to synthesize the etchant sequence and etch durations. The target shape is shown in Figure 6.20, and
_ the layer represeﬁtation of the target shape is shown in Figure 6.21.

Using the evolution parameters shown in Table 6.7, the synthesis task run took about 35 minutes
on a Sun Ultra 10 workstation. The results of synthesis are shown in Figure 6.22 and Table 6.8.
In Figure 6.22, the lower-right frame shows the target shape, and the other frames show the best
candidate mask-layouts (the dark polygons) at five different iteraﬁons during the synthesis loop,
and the etched (simulated) 3-D shapes. The convergence of the etched shapes to the target shape
éan be easily observed. Detailed information about these five iterations is shown in Table 6.8. The
shape and size mismatch values between the etched shape and the target shape for each iteration

decreased as the synthesis proceeded. The etchant sequence converged to (#2, #1), and the etch

itration: 5

iteration: 1

ieration: 8 ‘ o itertion: 17

arge Shape

iteration: 58

Figure 6.22: Synthesis results: mask-layouts and simulated shapes

95

Table 6.8: 'Synthesis' data showing convergence

Iteration | Etchant Sequence | Etch Times | Side Number | Shape Mismatch | Size Mismatch
1 3,2 0.18, 5.82 16 0.339 0.130
5 1,1 5.91, 0.09 20 0.165 0.088

8 | 21 3.90, 2.10 24 0.117 0.061
17 2,1 3.02,2.98 24 0.089 0.075
58 2,1 2.86,3.14 24 0.018 0.018
0.8 : ; : :
0.6 .

—— Shape Mismatch
- --- Size Mismatch

Mismatches

0.0 20.0 - 40.0 60.0
lterations

Figure 6.23: Convergence curves of shape and size mismatch values

9%

80.0
60.0
40.0

'20.0

Number of masks with 24 sides in the Qopulation :

0.0 : ' : ‘ ,
- 0.0 20.0 40.0 60.0
lterations

Figure 6.24: Convergence of number of polygons with 24 sides to the population size

80.0

60.0 g

1
—— Number of candidate solutions having
#2 as the frist etchant number i
---- Number of candidate solutions having|
#1 as the second etchant number

40.0

20.0

Number of candidate solutions in the population

0.0 : ' —— L '
0.0 20.0 40.0 60.0
lterations

Figure 6.25: Convergence of number of candidate solutions having #2 and #1 as the first and second

etchant numbers to the population size

97

A

80.0

60.0

40.0

20.0

Number of candidate solutions in the population

o -
o

20.0 40.0 60.0
lterations

o
(=)

Figure 6.26: Convergence of number of candidate solutions having the first etch time between 2.5

hours and 3.5 hours to the population size

times converged to about (3 hours, 3 hours). At iteration 58, the etched shape of the best mask-
layout and process flow is very close to the target shape. The final solution can be stated as follows:
using the best mask;layout at iteration 58, apply etchant #2 for 2.86 hours, and then etchant #1 for
3.14 hours, a device shape fairly close to the target shape can be fabricated.

The average shape mismatch value and average size mismatch value were calculated for each
generation, and Figure 6.23 shows the convergence of the average shape mismatch and average size
mismatch along with the iterations. As shown in Table 6.8, during the synthesis, polygons with
number of sides between 4 and 32 were explored. The final synthesized mask-layout has 24 sides,
~ and Figure 6.24 shows the convergence of the number of the candidate mask-layouts with 24 sides
in each generation to the population size (80) as the synthesis proceeded. Similarly, the number of
candidate solutions having #2 as the first etchant number and #1 as the second etchant number was
counted for éach iteration, and the convergence of the first and second etchant numbers to #2 and #1
is shown in Figure 6.25. For etch times, the synthesis data showed that the first etch time converged
to around 3.0 hours. The number of candidate solutions having the first etch time between 2.5 hours
and 3.5 hours was counted for each iteration, and the convergence of this number to the population

size is shown in Figure 6.26.

98

ous synthesized mask-layouts for the target shape

Vari

Figure 6.27

99
- More synthesis Tuns were conducted to generate alternative mask-layouts for the target shape,
and various synthesized mask-layouts and the etched shapes are shown in Figure 6.27. Figure 6.27
shows that different compensation structures all can fabricate shapes close to the target shape. Please
note that although different synthesis runs generated different optimum mask-layouts, all synthesis

runs generated tfle same etchant sequence (#2 and #1) and close etch durations (around 3 hours, 3

hours).

6.6 Summary

In this chapter,.the Genetic Algorithm mask-layout and process synthesis approach was tested for
bulk wet etching. The first and second tests were to synthesize compensation strﬁctures for a single-
step wet etching given a square mesa and a cross groove as target shape, and different compensation
patterns have beén synthesized. The third test was about synthesis of both the mask-layout and the
process flow for a two-step wet etching process. For a given target shape, the algorithm was able
to synthesize not only a proper mask-layout, but also a process flow (the etchant sequence and the
etch time for each etchant) to fabricate the target shape. Synthesis results and data were shown to

illustrate the convergence characteristics of the Genetic Algorithm, and the feasibility of the GA

mask-layout and process synthesis approach was verified.

100

Chapter 7

Robust Design

7.1 Overviéw

In the previous chapters, a Genetic Algorithm approach for MEMS mask-layout and process synthe-
sis has been introduced, and proper mask-layout and process flow can be automatically generated
for given target shape. However, during the search for optimal solutions (mask-layouts and pro-
cess flows), no manufacturing variations (e.g., mask-layout misalignment, temperature variations)
or modeling inaccuracy (e.g., etch rate modeling inaccuracy) have been considered in the evaluation
of the candidate solutions. Thus, although the final solutions synthesized by the Genetic Algorithm
have optimal performance in the simulation, the optimal performance is based on an assumed perfect
manufacturing environment and modeling accuracy which are practically impossible in actual fabri-
cation. The inevitable manufacturing variations and modeling inaccuracy may seriously reduce the
performance of the solutions generated by thé Genetic Algoﬁthm synthesis method. For example,
| for a square.mesa, the Genetic Algorithm mask-layout synthesis method generates a mask-layout
shown as a dark polygon in Figure 7.1 together with the fabricated 3-D shape. The fabricated shape
- matches the target square mesa very well. However, if during the fabrication, the mask-layout is
mi»salignea with fhe crystalline orientation of the silicon wafer by 3°, a 3-D shape shown in Fig-
ure 7.2 will be generated. The mismatch between this shape and the target mesa is significant, and
this device shape may not be acceptable.
Since noise (variations) always exists in the fabrication procedure, solutions robust to the varia-
tions are highly desired, and robust design is the focus of this chapter.
For robust design of mask-layout and process flow, the Genetic Algorithm approach is extended

by incorporating noise (variations) into the Genetic Algorithm search iterations. Figure 7.3 schemat-

101

Figure 7.1: Synthesized mask-layout for a square mesa

Figure 7.2: Fabricated shape when the mask has a 3° misalignment

102

Initial Population of
Mask-Layouts & Process Flows

Y

Expected Fabrication

Variations Simulation J=
New Population of
Y Masks & Processes

Resulting i
3-D Shapes
) Y .

Desired Not Modify Masks and
3-D Shape Compare Close | Process Flows with
L) Enough Genetic Algorithm

Close enough

: Done

" Figure 7.3: A schematic representation of a Genetic Algorithm MEMS synthesis technique for

robust design

103

icélly dem()nstra&es.how n@ise factors are integrated into the design process ﬁsing the Genetic Al-
goﬁthm épprqach to design a solution which is robust to manufacturing variations and modeling
naccuracy. The difference between the robust design scheme and the original Genetic Algorithm
synthesis scheme can be observed by comparing Figure 7.3 with Figure 5.1.

In the follov&;ing sections, first an introduction of the background in robust design area and the
Tagﬁéhi Method is given. Then the concept of Signal-to-Noise (S/N) ratio in the Taguchi Method
is used to modify the Genetic Algorithm synthesis approach for robust design. The implementation
details and a fobust design example for mask misalignment are described. Finally, an alternative
approach to robust design using a specific Genetic Algorithm sampling and evaluation scheme is
introduced which can save computational cost when there are multiple noise sources. A robust

mask-layout design example for etch rate variations is described to illustrate the algorithm.

7.2 Background

The goal of mask-layout and process flow synthesis is to design a fabrication process (mask-layout
can be viewed as part of the process) for a given geometry or performance of a MEMS device. There
are always difficult-to-control variations during the manufacturing and operational life of a process
or device. Neglecting these variations during the product/process design sometimes results in a
product or process which when put in operation exhibits unexpected or unacceptable performance.
Robust design is an important method for improving product or process design by making the output
response insensitive (robust) to uncontrolled variations (noise). The primary goal of robust design
is to develop stable products and processes that exhibit minimum sensitivity to uncontrollable oper-

ational fluctuations.

- 721 Product/Process Design

A block diagram representation of a product (or process) is shown in Figure 7.4. The response
of the product is denoted by y. The response could be the output of the product or some other
suitable characteristic. The response considered for the ﬁurpose of optimization in a robust design
experiment is called a quality characteristic, or performance parameter.

A number of parameters can influence the quality characteristic or response of the product.

These parameters can be classified into the following three classes:

1. Signal factors (M). These are the parameters set by the user of the product to express the

104

Noise
Factors
M y
Product/Process
Signal Response
Factor
Control
Z | Factors

Figure 7.4: Block diagram of a product/process: P Diagram

intended value for the response of the product.

2. Noise factors (x). Certain parameters cannot be controlled by the designer and are called
noise factors. Noise factors cause the response y to deviate from the target specified by the

signal factor M and lead to quality loss.

3. Control factors (z). These are parameters that can be specified freely by the designer. Control
factors are also called design parameters, and it is the designer’s responsibility to determine

the best values of these parameters.

Identifying important responses, signal factors, noise factors and control factors in a specific
_ project is an important task. For example, for the mask-layout and process synthesis problem, the
goal is to design a ﬁlask-layout and process flow for a desired target device shape. The target shape
is the signal factor; noise factors include mask misalignment, temperature variation, efc.; control
factors are the mask-layout and the process flow; the fabricated device shape is the response, and
the match result between the fabricated shape and the target shape can be taken as the performance
parameter.

The three major steps in designing a product or a process are concept design, parameter design,
and tolerance design. Concept design deals with selection of product architecture or process tech-

nology. In this step, the designer examines a variety of architectures and technologies for achieving

105

" the desired function of thé; product and seleéts the most suitable ones for the product. Tolerance
désign is.about selection of the optimum values of the tolerance factors to balance the'improve-
ment in quality loss against the increase in the unit manufacturing cost. Tolerance design should be
performed only after sensitivity to noise has been minimized through parameter design. Parameter
design is the design phase between concept design and tolerance design. The optimum values of the
contfol factors are determined in parameter design to maximize robustness. In parameter design,
designer determines the best settings for the control factors (i.e., the settings that minimize quality
loss) that do not affect manufacturing cost. Thus, designer must minimize the sensitivity of the
function of the product or process to all noise factors and also get the mean function on target.
Parametér design improves quality of product or process without increasing the manufactur-
ing cost, and is the most inexpensive way to improve quality. Robust Design and its associated

- methodology focus on parameter design.

7.2.2 Robust Design

Variations in noise factors (uncontrollable parameters) always exist. It is often difficult, if not im-
possible, to eliminate sources of variation that contribute to a product’s poor performance. It is,
however, more practical to develop a product or process least sensitive to these variations. The fun-
damental principle in robust design is to improve the quality of a product by minimizing the effects
of variation without eliminating these causes.

Robustness refers to the ability of products or processes to perform consistently under varying
operational conditions. During robust design, a designer seeks to determine the control parameter
settings that produce desirable values of the performance mean, while at the same time minimiz-
ing the variance of the performance. Robust design, then, is a multiobjective and nondeterministic
_ approach, and is concerned with both the performance mean and the variability that result from un-
certainty (represe'ntéd through noise variables). In this setting, sensitivity analysis is concerned with
both the mean and variance of the performance. The performance variation is often minimized at
the cost of sacrificing the best performance, and therefore the tradeoff between the aforementioned
two aspects cannot be avoided.

Many different robust design approach have been developed, including the Taguchi method and
éxtensions [88, 92, 112] (which are outlined in next section), Response Surface Methodology and
Compromise Programming approach [20, 21] (which addresses the multiple aspects of the objec-

tive in robust design), Simulated Variance Optimization [89], and Genetic Algorithms for robust

106
" design [36; 40, 81, 116].
| Most‘optimization methods for robust design involve optimization of a statistical estimate of
a performance parameter obtained by experiments or computer simulation. In this approach, the
noise factors are treated as random variables with assigned probability distributions. The design in
question is deﬁn;ed by one or more equations giving a performance parameter as a function of all or
'som‘e'v of the design parameters (i.e., a given design point) and noise factors, interpreted here as the
expected values of the random variables. For a given design point (a set of design parameters), a
large sample of values of the performance parameter may be obtained by repeated sampling of the
noise factors from their assigned distributions by use of random number generators. The resulting
data can then be used to obtain the expected value and variance of the performance parameter and
therefore the value for the statistical estimate at the given design point. The optimum design param-
eters are then obtained at those corresponding to a minimum of the computed estimate, determined

by means of some non-linear optimization algorithm in the presence of constraints.

7.3 Taguchi Method and S/N Ratio

The Taguchi robust design method has been widely used to design quality into products and pro-
cesses. Using this method, the quality of a product is improved by minimizing the effect of the
causes of variation without eliminating the causes. Reference [92] gives a complete description of
the method, and here the Signal-to-Noise ratio (S/N ratio), the key concept in the Taguchi method,
is briefly outlined.

Quality LosS Function

The deviation of performance from the ideal is defined as Quality Loss in the Taguchi method. The
~ quadratic loss function can meaningfully approximate the quality loss in most situations. Let 4 be
the quality characteristic of a product and m be the target value for y. According to the quadratic

loss function, the quality loss is given by
L(y) = k(y — m)®

where k is a constant called quality loss coefficient.

Because of the noise factors, the quality characteristic y of a product or process varies. Let

107

- Yi,42, .- -, Yn b n representative measurements of the quality characteristic y, then the average

quality loss, @, resulting from this product is given by

Q = L)+ L)+ -+ Do)

- g[(yl —m)® + (g2 —m)’ + ... + (g — m)’]

n—1

= kl(p—m)*+ o’]

where u and ¢? are the mean and the variance of y, respectively, as computed by

1 n
po= QU (7.1
i=1
1 n
2 2
— ; — 7.2
o n_lgyy D) (72)
When n is large,

Q = k[(p —m)? + o”| (7.3)

Thus, the average quality loss has the following two components:
1. k(s — m)? resulting from the deviation of the average value of y from the target;
2. ko? resulting from the mean square deviation of y around its own mean.

Equation (7.3) shows that minimizing the expected quality loss can be achieved by minimiz-
ing both the .variance o2 and the difference between the mean and the target. As illustrated by the
Figure 7.5, robust design is always concerned with aligning the peak of the bell shaped response dis-

~ tribution with the targeted quality (optimizing the mean performance), and making the bell shaped

curve thinner (minimizing the variance o).

S/N Ratio

One of the key features of the Taguchi method is the use of Signal-to-Noise ratio (S/N ratio) to
transform the performance characteristic in the optimization process.
In the Taguchi method, the design metric used as the performance measure (performance statis-

tic) usually takes the form of a logarithmic function based on the mean square deviation of product

Probability
Distribution

Performance
Distribution

Target m mean W& Performance
Figure 7.5: Quality distribution in robust design

responses, and is called Signal-to-Noise ratio (S/N ratio). For a set of design parameters (a design

point) Z, the S/N ratio for Z is defined as

n

S/N =-10 log[(z y; —m)?)/n]

i=1

where n is the total number of experiments, y; is the performance parameter for an experiment,
and m is the desired target value for performance parameter. y; = PP(Z,p;), where PP is the
performance parameter being considered, and p; is noise parameter for an experiment.

The formula of the S/N ratio iskclosely related to the quality loss function. Similar to the deduc-

tion for average quality loss, it is easy to get
S/N = —10 log[(p — m)? + 0?] (7.4)

- For minimization problems (the smaller the better), the following S/N ratio can be constructed

by a finite number of experiments:

S/N = —101log[(}_ 7)/n] (1.5)
=1
= —10log[u? + o] (7.6)

Obviously the S/N increase signifies a decrease in the average results (small z) or improved con-

109

L siste‘ncy from one unit to énother (small o), and a combined improvement in the mean result and a
reduction in the variability will result in the greatest S/N increase.

In the next section, the Taguchi method with its S/N ratio is applied to the mask-layout synthesis
problem with mask misalignment noise, and the Genetic Algorithm synthesis approach will be

modified to synthesize mask-layouts robust to the misalignment noise.

7.4 Robust Design with S/N Ratio for Mask-Layout Misalignment

In micromachines, alignment poses more complexity than in IC manufacturing. Not only does
one deal with .high aspect ratio 3-D features causing problems for alignment systems with low
DOF, one also frequently needs to align 3-D features on both sides of the wafer. For commercial
silicon wafers, the alignment accuracy (between the flat and the crystal orientation) is usually in the
" neighborhood of +1° [73, 117]. Additionally, the mask may not be perfectly aligned to the wafer
flat. This alignment accuracy level sometimes reduces the precision of shapes fabricated from some
processes. For example, the size of diaphragms formed after etching through a 500um thick silicon
wafer can vary by 50um if the accuracy of the alignment is of the order of 1° [30, 66, 117]. In
previous chapters, a Genetic Algorithm approach for MEMS mask-layout and procéss synthesis has
been developed, where optimal mask-layout and process flow can be automatically generated for
a given target shape. But in that approach, no variations, or noise factors, are considered during
the design procedure: perfect mask alignment is assumed. In actual fabrication, the misalignment
of the wafer flat, which implies the misalignment of mask-layout, is a noise factor which affects
the quality of the fabricated device, and this variation of mask-layout misalignment can be taken as
the uncontrollable variation when robust design is conducted. A robust design of mask-layout can
synthesize mask-layouts that are robust to the misalignment. Figure 7.3 schematically demonstrates
- how to extend the Genetic Algorithm synthesis approach to achieve robust design by integrating
noise factors into the synthesis iterations. By making the evaluation environment noisy, the searched
optimal solution is robust to the variations. The implementation details and a robust design with S/N

ratio for mask misalignment are described in the following.

Fitness Evaluation

In the previous Genetic Algorithm synthesis approach, the shape comparison result between the

simulated shape and the target shape is the performance metric during the candidate evaluation,

110

" “and the'ﬁthess values are“calculated accbrdingly to ensure that candidate solutions with smaller
vsh-ape miématch values have higher fitness values. For robust design, as illustrated in section 7.3, to
evaluate the performance of candidate solutions a proper performance statistic should be carefully
chpsen, which should combine the candidate solution’s mean performance as well as robustness
measure. When‘ conducting the robust design (Synthesis) of mask-layouts, the S/N ratio in the
Tagﬁ(v:hi method is used as the performance statistic. The mask-layout misalignment is considered
as the uncontrollable noise with Gaussian distribution, and the scheme to calculate fitness values
for all candi({ate solutions in a population is shown in Figure 7.6. For each candidate solution
(mask-layout) in a generation, a series of randomly generated misalignment values are applied to
the mask—lajout before the simulation of the fabrication and shape comparison of the simulated
shapes and the target shape are carried out. Function f(M) in Figure 7.6 simulates the fabrication
~of mask M and calculates the shape mismatch value between the simulated shape and the target
shape. A seﬁes of shape mismatch values will be produced for different misalignment values, and
all the shape mismatch values are used to construct the S/N ratio which is taken as the performance
statistic. This S/N ratio is the overall performance metric, and fitness values for all individuals in
a population are calculated according to the S/N ratios to guide the search for an optimum design

point. The optimal mask-layout found will have high robustness to mask misalignment noise.

Example

As an example, a robust synthesis was conducted which produces the optimal mask-layout, robust
to mask misalignment, given a mesa as the target shape. The mask misalignment was considered
to be a random variable with Gaussian distribution with = 0 and ¢ = 1°. For each mask, 10
misalignment values were sampled and applied to the mask (i.e., n = 10 in Figure 7.6), and per-
_ formance statistic S/N ratio was calculated using the formula shown in Figure 7.6. The synthesized
optimal mask-layoﬁt (the dark polygon) and the target shape (the mesa) are shown in Figure 7.7.
To show the high robustness of this synthesized mask, the synthesis result was compared with the
result from synthesis without considering mask misalignment (here called non-robust synthesis; see
section 7.1).

Figure 7.8 shows the comparison of synthesis results from the robust synthesis and the non-
rbbust synthesis. The first row shows the mask-layout from non-robust synthesis and the fabricated
shapes when the mask misalignments are 0°, 1.5°, and 3°. The second row is for robust synthesis.

Although both masks show a good match between the simulated shape and the target shape when

111

kS

for each generation with genotypes G1,Ga, ..., GN:
{ .
.. Decode each genotype G to produce corresponding phenotype F;;
for(each phenotype P; (mask-layout))
{ -
S/N = 0;
for(j = 0;j <=n;j++)
{
Randomly generate mask misalignment noise A
according to distribution;
M; = P; rotated A; degrees;
Evaluate ShapeMismatch; = f(M;);
S/N+ = ShapeMismatch,/n;
}
S/N = —101log(S/N);
~ ShapeMismatch; = S/N;
} |
Obtain fitness value for each G; according to ShapeMismatch; of P;;

}

Figure 7.6: Schematic model of fitness evaluation

Figure 7.7: Synthesized result of a robust design

112

‘Non-robust Mask

Misalignment: 0° Misalignment: 1.5° Misalignment: 3°

Robust Mask

Misalignment: 0° Misalignment: 1.5° Misalignment: 3°

Figure 7.8: Comparison of robust synthesis and non-robust synthesis

the masks are perfectly aligned (0° misalignment, first column in Figure 7.8), the robust synthesis
result exhibits much higher robustness. When the misalignment increases, the superiority of the
mask-layout from robust synthesis can be easily observed: for a mask misalignment of 3°, the
~robust mask is still able to fabricate a 3-D shape fairly close to the target square mesa, while the
mismatch between the shape resulted from the non-robust mask and the target shape is significant.
To statistically demonstrate that the result from robust synthesis does have higher robustness,
- both the robust mask and the non-robust mask were tested with a series (600 experiments) of ran-
domly generated misalignment noises according to Gaussian distribution with 4 = 0 and o = 1°.
The shape mismatch values between the simulated shapes and the target shape obtained were used
to construct the statistic mean (1) and deviation (o) using Equation (7.1) and Equation (7.2), and
also S/N ratios for both cases using Equation (7.6). The values for y, o, and S/N ratios are shown
in Table 7.1. Table 7.1 shows the robust synthesis result has smaller statistic mean (), smaller
deviation (o), and higher S/N ratio.

To visually show the superiority of the result from robust synthesis over non-robust synthesis,

113

‘Table 7.1: Statistics data for non-robust and robust synthesis results

Non-Robust Synthesis | Robust Synthesis
Result Result
w 0.0385 0.0107
o 0.0157 0.00443
S/N 27.63 38.72

using the shape mismatch values obtained from the 600 experiments for both masks, the histograms
of the shape mismatch distribution for both masks under Gaussian distributed misalignment noise
are plotted and shown in Figure 7.9 and Figure 7.10. Figure 7.9 is for the non-robust mask, and
- Figure 7.10 is for the robust mask. X axis is the shape mismatch value, and Y axis is the exper-
iment frequency. The smaller mean and smaller deviation for the shape mismatch distribution for
the robust synthesis result can be observed from the histograms. If, for example, acceptable devices
have a shape mismatch (compared to the ideal target shape) of 0.025 or less, then nearly all devices
fabricated with the robust mask-layout would be acceptable, while nearly 40% of the devices fabri-
cated with the non-robust mask-layout have shape mismatch values larger than 0.025 and therefore
would not be acceptable. Thus, in this case the robust mask-layout increases the yield from 60% to
almost 100%.

Simulations were performed for both masks with different misalignment values ranging from
0° to 3.0°. Plots of shape mismatch vs. mask misalignment value for both masks are shown in
Figure 7.11. For the non-robust mask-layout, the shape mismatch value increases significantly
when the mask misalignment increases, while the curve for the robust mask-layout is relatively flat.
- The mask-layout from robust synthesis is more insensitive to the mask misalignment variations.

. Theré is an ihteresting phenomenon in Figure 7.11. Since the non-robust synthesis searches for
masks with good performance when perfectly aligned with no consideration of robustness, while
the robust synthesis tries to balance the good performance of the niask and high robustness in some
range of misalignment, it is expected that the curve of shape mismatch vs. mask misalignment
would be flatter for the robust mask, but the non-robust mask has smaller shape mismatch value
when perfectly aligned (0° misalignment) than the robust mask. But interestingly, in the example

just described, as shown in Figure 7.11, although the search effort is the same for both the robust

114

kS

| Frequency

120 |
100 |
80 |
60 |
| 40|

20 ¢

002 0025 003 0035 004

Shape Mismatch

0.015

Figure 7.9: Histogram of fitness distribution for non-robust synthesis result

Frequency
400 }

300 |
200 ¢

100 |

0.01 002 003 0.04
Shape Mismatch

Figure 7.10: Histogram of fitness distribution for robust synthesis result

115

0.050 - A
» . :Jr#‘
£ 0.040 AL _
)
T T
& Poared
K] I
§ — j—f‘.,;
© 0.030 - o i
9 .
c'% /\/«/v’] \ Non-robust Mask

i fﬂ/\/ g]
Robust Mask

0.020 [prrry” |

W

0.010 : '
: 0.0 1.0 2.0 3.0

Mask Misalignment

Figure 7.11: Shape mismatch vs. mask misalignment for both masks

synthesis and the non-robust synthesis (same iteration number, population size, efc.), the robust
synthesis result shows better performance (smaller shape mismatch) than the non-robust synthesis

result for any misalignment value, even when perfectly aligned (0° misalignment).

Computational Cost

Using the preceding approach, to calculate the performance statistic S/N ratio, each mask-layout
needs to be evaluated for a series of samplings of Gaussian distributed misalignment noise. For each
sampling, simulation of the fabrication and the shape comparison need to be performed once. If the
sampling number is n, n simulations and n shape comparisons need to be performed to calculate the
S/N ratio for each mask-layout. Recall that for the previous non-robust synthesis, for each mask-
layout, only one simulatibn and one shape comparison néed to be performed. Obviously the robust
syhthesis increases computational cost dramatically. Things get worse when there are more noise
sources in the robust design. If n samplings are done for each noise, 7 noise sources require n'™
samplings and therefore n™ simulations and n™ shape 'comparisons to calculate the performance
statistic for each candidate solution. To overcome the dramatic compufational cost increase, another
scheme for robust design sampling and evaluation is proposed and tested. This scheme is described

below.

v

e | | 116
7.5 Genetic Algotithins for Robust Design

To extend the 'appliéatibns of GAs to domains that have a noisy environment and require detection of
robust solutions, schemes combining GAs and robustness evaluation techniques and robust solution
se‘érching techniques have been introduced [36, 40, 81, 116]. GAs with noisy fitness functions
and GAs exploring hyper-rectangle design regions instead of design points in traditional GAs have
been studied. For the robust mask-layout and process synthesis problem, a robust design scheme
similar to the one introduced by Tsutsui [116], called GAs with a Robust Solution Searching Scheme
(GA/RS?), is applied, which is outlined below.

7.5.1 GAs with a Robust Solution Searching Scheme

In the following, GAs with a Robust Solution Searching Scheme (GA/RS®) [116] is described for
optimization prdblems where perturbations (noise) exist in the design parameters (solutions). In
GA/RS3, for each individual (candidate solution) in the population, perturbations are added to the
phenotypic parameter values while evaluating the fitness of the individual. In other words, the in-
dividual’s performance is evaluated in a “noisy environment.” This may sound like the same as the
previous robust design approach using S/N ratio. But actually the sampling and evaluation schemes
are different. For robust design with S/N ratio, each candidate solution is evaluated for multiple
samplings of the noise and all the evaluation results are used to construct the S/N ratio, and the S/N
ratio is used to calculate the fitness value. If one candidate survives the competition and appears in
the next generation, its S/N ratio does not need to be re-evaluated. For GA/RS?, in one popula-
 tion, each candidate solution is evaluated for one sampling of the noise and the evaluation result is
used to calculate the fitness value for this generation. Even if a candidate solution survives into the
next generation, to calculate its fitness value in the next generation, it will be re-evaluated again for
~ another random sampling of the noise. So for the robust design with S/N ratio, the robustness of
a solution is captured by the S/N ratio, while for GA/RS®, multiple evaluation of the solutions in
a noisy environment ensures the final solution is robust. In noisy environments, individuals having
“good” genotypic material would become extinct if they were highly sensitive to perturbations of
phenotypic features, and individuals robust to these perturbations would have a better chance to
survivevthe competition. By evaluating individuals in a noisy environment, individuals with higher
robustness are favored. The details of the performance evaluation in a noisy environment are illus-

trated below.

117

‘ Genoﬁype B |] ‘ Phenotype
| © Decoding ®)
| el [N st
g2 / \ p2+ 62
23 / \ p3+83 \: Effective fitness

f(P+A)

Perturbations

(A)

Figure 7.12: Fitness evaluation model in GA/RS?

Ina GA, suppose G = (g1, 92, - - - , gm) is a genotypic string for an individual, P = (p1,p2, - - -, Pm)
is the corresponding phenotypic parameter vector, and f(P) the evaluation function for fitness. In-
stead of calculating the fitness value of the individual as f(P), an evaluation function of the form
f(P + A) is used, where A = (61,09, ...,0,) is a random noise vector (see Figure 7.12). For
each evaluation, the noise vector A is randomly generated according to its distribution probability.
Because the individuals are evaluated in a noisy environment with presence of the noise, only indi-
viduals with both good and consistent (robust) performance can survive the competition. An indi-
vidual with superb performance in one test but very sensitive to the noise will be eliminated through
multiple raﬁdom tests. The solutions thus determined are expected to be more robust against per-
turbations or noise. It should be noted that adding noise in the form f(P + A) may appear to be a
* mutation operation on a real-valued coding, but actually it is operationally different from mutation,
since the noise ié added only to the phenotype and it does not have any direct effect on individual
genotypes. The perturbations are used only for judging the quality of a solution and for selection,
and the genotypic string of the solution is unchanged.

Note that the preceding describes GA/RS® for cases where noises and perturbations are added
to the design parameters directly. For example, in the mask-layout synthesis problem, the mask mis-
alignment noise affects the design parameters (mask-layouts) directly by changing the orientations

of the mask-layouts. The algorithm can also be applied to cases where noises exist not in the design

118.

pérémeteré, but in the ‘evalﬁatiqn environmenf. For example, for the mask-layout synthesis problem,
thé etch fate data assumed in the synthesis may not be accurate. The actual etch rate variations is
a noise existing in the fabrication environment. Although the design parameters (mask-layouts) are
not affected by the etch rate variations, the performance of the mask-layouts are affected. GA/RS3
can be applied t(‘) design mask-layouts robust to environment noises such as etch rate variations.

Now coﬁsider the computational time of the two different schemes for robust design: robust
design with S/N ratio and GA/RS3. As introduced before, Genetic Algorithms work in iterations.
In each iteratipn (generation), there is a population of candidate solutions (called parent population).
A new population of candidate solutions (called offspring population) is generated through genetic
operations, dnd then elitist selection will select from both parent population and offspring population
to create the parent population for next generation. For a Genetic Algorithm with iteration number
M and population size N, if for each generation each candidate solution needs to be evaluated
once, there are IV evaluations for each generation. For the Genetic Algorithm robust design with
S/N ratio, each new candidate solution (in the offspring population) needs to be evaluated n™ times
to calculate the S/N ratio if there are m noise sources and n samplings are required for each noise
source, while the candidate solutions in the parent population do not need to be re-evaluated because
their S/N ratios are already known. The total number of evaluations for the Genetic Algorithm
will be MNn™. For GA/RS?, in each generation, both the parent population and the offspring
population need to be evaluated, which is 2N evaluations. The total number of evaluations for the
Genetic Algorithm will be 2M N.

Therefore, GA/RS? saves computational time compared with the Genetic Algorithm robust
design with the S/N ratio. Genetic Algorithm Robust design with the S/N ratio evaluated the robust-
ness of each candidate solution by explicit multiple samplings of the noise, while for GA/RS3, the

candidate solutions are evaluated in noisy environment while the iteration proceeds. In GA/ RS3,
if one candidate solution is preserved from the initial (first) generation to the final generation, it is
evéluated with random noise samplings N (iteration number) times. But for the newly generated
candidate solution in the final generation, it is only evaluated once. GA/ RS3 distributes the sam-
pling effort intelligently by utilizing the intrinsic exploration and exploitation power of the genetic
operations, such that efficient evaluation of the robustness of the candidate solutions can be achieved
for a limited number of noise samplings [116].
The GA/RS?® approach to robust design will be applied to the mask-layout synthesis problem

in the next section, and robust mask-layout synthesis is conducted for etch rate variations.

119

Orientation Etching Rate
(pm/hr)
100 25
110 25
311 30
111 5

Table 7.2: Etching rate data

7.6 GA/RS?® Robust Design for Etch Rate Variations

The Genetic Algorithm approach to the mask-layout and process synthesis problem works by utiliz-
ing a process simulation. For the process simulation to predict fabrication results correctly, accurate
 etch rate data are needed. But generally, it’s not easy to obtain accurate etch rate data. Etch rates
for an etchant change with factors such as temperature, concentration, stirring, efc., and they may
even change during the etching process. The etch rate variations (or the inaccuracy in the etch rate
model) present a problem to the Genetic Algorithm mask-layout synthesis approach: the synthe-
sized optimal mask-layouts based on assumed etch rate data may not generate the desired shape in
actual fabrication because the actual etch rates may be different. The GA/RS® approach to robust

design is applied here to synthesize mask-layouts robust to the etch rate variations.

Test 1

As the first example, a robust synthesis was conducted to produce the optimal mask-layout robust to
etch rate variations, given a mesa as the target shape. For the wet etching simulation program SEGS,
the etch rate model assumed etch rate data as shown in Table 7.2. The actual etch rate in <311>
direction -during the fabrfcation was considered to be a Gaussian distributed random variable. The
mean (u) of the Gaussian distribution is the same as the <311> direction etch rate assumed in the
etch rate model (30 pm/hr), and the standard deviation (o) is 5% of the mean (5% x30 = 1.5 pm/hr).
The GA/RS? algorithm was implemented such that m each generation, the etching process is
simulated for each mask-layout using a randomly generated <311> direction etch rate according to
the Gaussian distribution with x4 = 30 and o = 1.5. The synthesized optimal mask-layout (the dark
polygon) and the target shape (the mesa) are shown in Figure 7.13. To show the high robustness

of this synthesized mask, the synthesis result was compared with the result from synthesis without

120

Figure 7.13: Synthesized result of a robust design

Non-robust Mask

Etch Rate Variations: 0%

Etch Rate Variations: -15%

Etch Rate Variations: 15%

Robust Mask

Etch Rate Variations: 0%

Etch Rate Variations: -15%

Etch Rate Variations: 15%

Figure 7.14: Comparison of robust synthesis and non-robust synthesis

121

A 010 T T)
AR !
//
0.08 | h .
. i
- =-- Non-Robust Mask K
S —— Robust Mask !
© 0.06 | : .
£)
g)
a 0.04 1 o
< k. I
wn -\ —r ,/\\ e
ARSI > _ , /
0.02 | e]
0.00 : : : ' :
-0.15 -0.05 0.05 0.15

Etch Rate Variation Percentage

Figure 7.15: Shape mismatch vs. etch rate variations for both masks

considering the etch rate variations (here called non-robust synthesis).

Figure 7.14 shows the comparison of the synthesis results from the robust synthesis and the non-
robust synthesis. The first row shows the mask-layout from non-robust synthesis and the fabricated
shapes when the actual <311> direction etch rate used in the fabrication is 30 ym/hr, 25.5 pm/hr
and 34.5 pm/hr (i.e., the same as, 15% smaller than, and 15% larger than the <311> direction
etch rate assumed in the etch rate model). The second row is for the robust synthesis. Although
both masks show a good match between the simulated shape and the target shape when the actual

~ <311> direction etch rate and the assumed etch rate in the etch rate model are the same (30 pm/hr),
the robust synthesis result exhibits much higher robustness. When the actual <311> direction etch
_ rate in the fabrication is 34.5 pm/hr, 15% larger than the <311> direction etch rate assumed in the
etch rate model, the robust mask still generates a shape fairly close to the target mesa, while the
mismatch between the fabricated shape from the non-robust mask and the target mesa is significant.
Plots of shape mismatch vs. <311> direction etch rate variations (the percentage of the differ-
ence of etch rate in <311> direction in the fabrication and the etch rate assumed in the etch rate
model) for both masks were obtained by simulating the fabrication for both masks with different
{31 1> direction etch rate values ranging from 15% smaller than the assumed <311> direction etch
rate in the etch rate model to 15% larger than the assumed <311> direction etch rate. The plots for

both masks are shown in Figure 7.15. The non-robust mask is more sensitive to the <311> direc-

122

Figure 7.16: Synthesized result of a robust design

tion etch rate variations, and the shape mismatch value between the fabricated shape and the target
shape increases significantly when the amount of the <311>> direction etch rate variation increases,

while the mask from robust synthesis is less sensitive to the etch rate variations.

Test 2

In the second test for robust mask-layout synthesis with etch rate variations, the same target shape
is used, and the same etch rates as shown in Table 7.2 are assumed in the etch rate model. For
- etch rate variations, the etch rates in <110>, <311> and <111> directions are considered to be
Gaussian distributed random variables. The means (u) of the Gaussian distribution are the corre-
sponding etch rates in these directions in the etch rate model (25 um/hr, 30 um/hr and 5 pm/hr),
and the standard deviations (o) are 5% of the means (1.25 ,um/lir, 1.5 pm/hr and 0.25 pm/hr).
The GA/RS?® algorithm is implemented such that in each generation, the etching process is sim-
ulated for each mask-layout using randomly generated etch rates in <110>, <311> and <111>
directions according to the Gaussian distribution. The synthesized optimal mask-layout (the dark
polygon) and the target shape (the mesa) are shown in Figure 7.16. To show the high robustness

of this synthesized mask, the synthesis result is compared with the result from non-robust synthesis

123

" Noﬁérobustv Mask

Etch Rate Variations: 0% Etch Rate Variations: -15%

Etch Rate Variations: 15%

Robust Mask

Etch Rate Variations: 0%

Etch Rate Variations: -15%

Etch Rate Variations: 15%

Figure 7.17: Comparison of robust synthesis and non-robust synthesis

0.12

Shape Mismatch
o
(=]
(o]

0.04

0.02 .

0.00

—— Robust Mask
- --- Non-Robust Mask

-0.15

-0.05 0.05 0.15

Etch Rate Variation Percentage

Figure 7.18: Shape mismatch vs. etch rate variations for both masks

124
" without consideting the et?:h rate variations.

| Figufe 7.17 shows the comparison of the synthesis results from the robust synthesis and the non-
robust synthesis. The first row shows the mask-layout from non-robust synthesis and the fabricated
shapes when the actual etch rates in <110>, <311> and <111>> directions in the fabrication are
the same as, 15‘% smaller than, and 15% larger than the ones in the etch rate model (25 pm/hr,
30 um/hr and 5 pm/br). The second row is for the robust synthesis. Although both masks show
good match between the simulated shape and the target shape when the actual etch rates in <110>,
<311> and <11 directions and the assumed etch rates in the etch rate model are the same,
the robust synthesis result exhibits much lower sensitivity. When the actual etch rates in <110>,
<311> and <111> directions are 15% larger than the assumed etch rates in the etch rate model,
the robust mask still generates a shape fairly close to the target mesa, while the mismatch between
~ the fabricated shape from the non-robust mask and the target mesa is significant.

Plots of vshape mismatch vs. the etch rate variations (the percentage of the difference of etch rates
in <110>, <311> and <111> directions in the fabrication and the etch rates assumed in the etch
rate model) for both masks are obtained by simulating the fabrication for both masks with different
etch rates in <110>, <311> and <111> directions ranging from 15% smaller than the assumed
etch rates in the etch rate model to 15% larger than the assumed etch rates. The plots for both masks
are shown in Figure 7.18. The non-robust mask is more sensitive to the etch rate variations, while

the mask from robust synthesis is less sensitive.

7.7 Summary

This chapter focused on robust design. Since noise (variations) always exists in the fabrication pro-
cedure, the mask-layouts and process flows synthesized by the previous GA approach may generate
~ unsatisfactory results if the mask-layouts and process flows are sensitive to the variations. Design
solutions robust to the variations can generate satisfactory results under a variety of fabrication con-
ditions and are highly desired. The previous Genetic Algorithm approach was modified to achieve
robust mask-layout synthesis. By incorporating expected variations into the GA iterations, the algo-
rithm is capable of producing solutions robust to the variations. Two approaches for robust design
of mask-layouts and processes were developed. Genetic Algorithm robust design with the S/N ratio
evaluates each candidate solution with multiple samplings of the noise, and the S/N ratio in the

Taguchi method is constructed to guide the evolution. In GAs with a Robust Solution Searching

125

" Scheme (GA/ 1%53), the é;mdidate solutions are evaluated in noisy environment while the iteration
pr'oceeds; These two approaches were tested for robust mask-layout synthesis with mask misalign-
ment and etch rate variations, and mask-layouts robust to the variations have be synthesized. The
high robustness of the synthesized mask-layouts was verified by comparing them with the mask-

layouts synthesized from the previous non-robust synthesis approach.

126

Chapter 8

Conclusion

8.1 Summary

" In this thesis, a Genetic Algorithm approach for the mask-layout and process flow synthesis prob-
lem has been developed. For a given desired target shape, an optimal mask-layout and process
flow can be automatically generated using the Genetic Algorithm synthesis approach. The Genetic
Algorithm manipulates and evolves a population of candidate solutions (mask-layouts and process
parameters) by utilizing a process simulation tool to evaluate the performance of the candidate so-
lutions. The process simulation tool is used to simulate the fabrication for each mask-layout with
associated process flow to generate the 3-D device geometry. A shape matching algorithm compares
the simulated device shapes with the desired target shape, and assigns a fitness value for each can-
didate solution in a population. For the mask-layout and process flow synthesis problem, encoding
schemes, selection schemes, and genetic operations have been developed to effectively explore the
solution spaée and control the evolution and convergence of the solutions.

The synthesis approach was tested for mask-layout and process synthesis for bulk wet etch-
- ing. By iptegrating a bulk wet etching simulation tool into the Genetic Algorithm iterations, the
algorithm can aufomatically generate proper mask-layout and process flow which can fabricate 3-D
geometry close to the desired 3-D target shape. For structures with convex corners, complex com-
pensation structures can be synthesized by the algorithm. More importantly, the process flow can
also be synthesized. For multi-step wet etching processes, proper etchant sequence and etch times
for each etch step can be synthesized automatically by the algorithm. When the choice of different
process flows exists, the enlarged solution space makes the design problem more challenging. The

ability to synthesize process flows makes the automatic design method more complete and more

127

e i)alﬁable. 3

| -The élgorithm‘was further extended to achieve robust design. Since fabrication variations and
modeling inaccuracy always exist, the synthesized solutions without considering these variations
may not generate satisfactory results in actual fabrication. Robust designs using the Taguchi method
and Genetic Aléorithms with a Robust Solution Séarchjng Scheme (GA/RS?) have been developed
to ssintheSizé robust mask-layouts and process flows in “noisy” environment. Since the synthesis
procedure considers the effect of variations in the fabrication procedures, the final synthesized solu-
tion will have high robustness to the variations, and will generate satisfactory results under a variety
of fabrication conditions. The robust design approaches were implemented and tested for robust
mask-layouf design for mask misalignment and etch rate variations. Mask-layouts robust to mask
misalignment noise and etch rate variations during the fabrication were synthesized. A typical ro-
~ bust synthesis run using GA/ RS?3 took about 1 hour, and the synthesized mask-layout generally
improved thé yield significantly by exhibiting consistent performance under a variety of fabrication

conditions.

8.2 Future Work

Further work can be done to expand the potential of the Genetic Algorithm approach to the mask-
layout and process flow synthesis problem.

First, work can be done about the population size control for the Genetic Algorithm. In the
algorithm, the user needs to specify the population size before running the synthesis. To ensure a
reasonable amount of sampling of the solution space, the population size cannot be too small. But
setting a too large population size dramatically increases the computation time, especially when the
process simulation is time-consuming. To set an appropriate population size, trials and tunings are
~ needed and trade-off between the sampling of the solution space and the computation cost needs
to be made. A possible scheme is to use variable population size. The population size is set large
when starting the synthesis to hold enough samplings of the solution space, and when the evolution
converges, the population size is decreased to eliminate duplicate or similar candidate solutions and
save computation cost.

Sec‘ond, the algorithm can be extended by integrating other process simulation tools into the Ge-
netic Algorithm iterations. As described earlier, the Genetic Algorithm approach works by utilizing

a process simulation tool as performance evaluation, and the bulk wet etching simulator SEGS is

128

" used in the exampieS'shoWn to synthesize ﬁlask-layout and process for wet etching steps. SEGS
cén only’simulate wet etching steps, while in actual fabrication, etching sometimes is used together
with “adding” techniques such as deposition. More complex structures can be generated by us-
ing different fabrication techniques together, and the design for mask-layouts and process flows is
more challengin‘g because of the enlarged solutidn space. The potential of the Genetic Algorithm
appfbach to the mask-layout and process synthesis problem can be fully realized by utilizing a
more complete process simulation tool. Of course, for a particular fabrication technique and related

applications, ways to represent and compare the geometry need to be developed.
| Third, the approach can be customized in the sense that other performance evaluation criteria
can be used in addition to shape matching. Shape matching between the simulated shapes and the
target shape was used as the performance evaluation criteria in the test examples, and candidate
solutions with close shape match were assigned with high fitness values. In the robust design with
Taguchi method, the robustness measure S/N ratio, which is a combination of shape mismatch mean
and deviation, was used as the performance evaluation criteria, and candidate solutions are consid-
ered to be fit when they have not only a small shape mismatch mean, but also a small deviation.
The algorithm can be customized to use other performance evaluation criteria so that the final syn-
thesized solution will exhibit a desired design function. For example, to achieve a material-efficient
mask-layout design, mask-layout with smaller area is considered better than mask-layout with big-
ger area. The area of the mask-layout can be used as one of the performance evaluation criteria, and
mask-layout with small area can be synthesized. Figure 8.1 shows a synthesized mask with small
y-direction dimension. To fabricate an array of square mesas with high density in the y-direction,
mask-layout with small y-direction dimension is needed. During the mask-layout synthesis, for each
candidate mask, its y-direction dimension is measured and combined with the shape mismatch value
between the simulated shape and the target shape to calculate the fitness value for the mask. The
; fitness value calculation formula ensures that a mask with small y-direction dimension and small
sﬁape mismatch value will be assigned with a high fitness value. The final synthesized mask will
not only fabricate a geometry close to the target shape, but also have a small y-direction dimension.
Finally, as illustrated in Chapter 1, the mask-layout and process synthesis addresses only part
of the design problem in the synthesis and optimization approach: to synthesize mask-layouts and
process flows for a given device shape. Issues about Geometry synthesis (synthesizing device shape
from a device function specification), and integration of mask-layout and process synthesis and

geometry synthesis have not been examined. The principles of the Genetic Algorithm iterative

129

Figure 8.1: A synthesized mask-layout with small y-direction dimension

synthesis approach developed here can be borrowed to develop schemes for geometry synthesis. By
utilizing process synthesis and geometry synthesis, for a specified device function, the device shape
and mask-layout and process to produce the device can be automatically generated, and designers

can fully focus on the device functional design.

130

Appendix A
Exploitation and Exploration

Most classical optimization methods find the optimal solution by determining a sequence of steps
leading to the optimum based on the gradient or higher order derivatives of the objective function.
When such information is unavailable, search becomes the only practical method. Search can be
performed by either blind strategies or heuristic strategies [12]. Blind search strategies do not use
information about the problem domain. Heuristic search strategies use additional information to
guide the search along with the best search directions. These two strategies focus on two different
but equally important aspects during the search/optimization: exploiting the best solution and ex-
ploring the search space [13]. Exploration investigates new and unknown areas in the search space,
and exploitation makes use of knowledge found at points previously visited to help find better points.
Hill-climbing is an example of a strategy which exploits the best solution for possible improvement
while ignoring the exploration of the search space. Random search is an example of a strategy which
explores the solution space while ignoring the exploitation of the promising regions of the search
space. Theée two strategies are contradictory, and a good search algorithm must find a tradeoff
between the two. Genetic algorithms are a class of general-purpose search methods combining ele-
~ ments of directed and stochastic search which can make a remarkable balance between exploration
and exploitation of the search space. At the beginning of genetic search, there is a widely random
and diverse population and crossover operator tends to perform widespread search for exploring all
solution space. As the high fitness solutions develop, the crossover operator provides exploitation
in the neighborhood of each of them. In other words, what kinds of searches (exploitation or explo-
ration) a crossover performs are determined by the environment of the genetic system (the diversity

of population).

131

Appendi)i B
Fitness Scaling

If raw fitness values are used for fitness proportionate selection, without any scaling or normaliza-
tion, then one of two things can happen. If the fitness range is too large, then only a few good
~ individuals will vbe selected. This will tend to fill the entire population with similar chromosomes
and will limit the ability of the GA to explore the search space. On the other hand, if the fitness
values are too close to each other, then the GA will tend to select one copy of each individual, with
only random variations in selection. Consequently, it will not be guided by small fitness variations
and will be reduced to random search. In early generations, there is a tendency for a few super
chromosomes to dominate the selection process, and in later generations, when the population is
largely converged, competition among chromosomes is less strong and a random search behavior
will emerge. Fitness scaling is used to scale the raw fitness values so that the GA sees a reasonable
amount of difference in the scaled fitness values of the best versus the worst individuals [77]. Thus,
fitness scaling controls the selection pressure or discriminating power of the GA.

Beginning with [27], scaling of objective function values has become a widely accepted practice
and several scaling mechanisms have been proposed. In general, the scaled fitness Fj, derived from

~ the raw fitness Fj, for chromosome k: can be expressed as follows:
F, = G(Fy)

where the mapping function G(-) transforms the raw fitness into scaled fitness. The function G()
may take different forms to yield different scaling methods, such as linear scaling, sigma truncation,

power law scaling, efc. Some of them are illustrated briefly below. For detailed description, see [44].

132

Linear Scaﬁng When the mapping function takes the form of a linear transformation, the

following linear scaling method applies:
F,]2 =a X F L+ b

where parameters a and b are normally selected such that the average chromosome receives one
offspring copy on average, and the best receives the specified number of copies (usually two). Linear
scaling adjusts the fitness values of all chromosomes in such a way that the best chromosome gets a
fixed number of expected offspring and thus prevents it from reproducing too many offspring. This

method may gfve negative fitness values that are usually taken as zero.
Sigma Truncation For Sigma truncation [49],
F,=F—(F—cxo)

where c is a small user-defined integer called the sigma scaling factor, o is the standard deviation
of the fitness of the population, and F’ is the average raw fitness value. Negative scaled fitnesses FJ,
are set to zero.

This scales the fitness such that, if the raw fitness is -k standard deviations from the population

average, the fitness is
F = (cxk)o.

This means that any individual worse than ¢ standard deviations from the population mean

(k = c) is not selected at all. The usual value of ¢ reported in the literature is between 1 and 5.

- Boltzmann Selection Boltzmann selection [79] is a nonlinear scaling method for proportion-

ate selection, using the following scaling function:

Fl = ef/T

where T is a user-defined control parameter. The selection pressure can be adjusted by assigning T’

high or low.

133

Appendix C
Tournament Selection

Like fitness propoi’tionate selection, tournament selection is a stochastic selection scheme. In binary
tournament selection [51], two individuals are taken at random, and the better individual is selected
- from the two. If binary tournament selection is being done without replacement, then the two indi-
viduals are set aside for the next selection operation, and they are not replaced into the population.
Since two individuals are removed from the population for every individual selected, and the pop-
ulation size remains constant from one generation to the next, the original population is restored
after the new population is half-filled. Therefore, the best individual will be selected twice, and the
worst individual will not be selected at all. The number of copies selected of any other individual
cannot be predictedv except that it is either zero, one or two. In binary tournament selection with
replacement, the two individuals are immediately replaced into the population for the next selection
operation.

Binary tournament selection was generalized to fournament selection which works by taking a
random uniform sample of a certain size ¢ > 1 from the population, selecting the best of these ¢
individuals to survive for the next generation. This method has gained increasing popularity because
© it is easy to implement, COmputatiohally efficient, and allows for fine-tuning of selection pressure

by increasing or decreasing the tournament size q.

134

AppendiX D

Crossover

D.1 Binary Crossover

The “traditional” GA uses 1-point crossover, where the two mating chromosomes (binary strings)
are each cut once at corresponding points, and the sections after the cuts exchanged. The two
offspring each inherit some genes from each parent. See Figure D.1 for detail.

Many different binary crossover schemes have been devised, often involving more than one cut
point. In 2-point crossover (and multiple-point crossover in general), chromosomes are regarded
as loops formed by joining the ends together. To exchange a segment from one loop with that
from another loop requires the selection of two cut points, as shown in Figure D.2. Obviously,
1-point crossover can be viewed as 2-point crossover with one of the cut points fixed at the start
of the string, and it’s fair to say that 2-point crossover is more general than 1-point crossover al-
though they both perform the same task (exchanging single segment of two parents). Researchers

now agree that 2-point crossover is generally better than 1-point crossover. The effectiveness of

Crossing | Point

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure D.1: One-point binary crossover

135

Ghromosome: 11011001010011010

End (| Start
.0
ks 1 o Crossing Point 1
Q : 0/ rossing Point
~ v
- ek
@ Q
o Q
Crossing Point 2

Figure D.2: Two-point binary crossover

multiple-point crossover was investigated in [27], and it was concluded that 2-point crossover gives
the best performance, but that adding more crossover points reduces the performance of the GA.
The problem with adding additional crossover points is that building blocks are more likely to be
disrupted. However, an advantage of having more crossover points is that the solution space may be
searched more thoroughly.

Uniform crossover is another binary crossover scheme which is radically different from 1-point
crossover. In uniform crossover, after a pair of parents are selected, a crossover mask, which is also
a binary string with the same length as the chromosomes, is randomly generated. An offspring is
created by éssigning each gene in the offspring by copying the corresponding gene from one or the
other parent, chosen according to the crossover mask. Where there is a 1 in the crossover mask, the
" gene is copied from the first parent, and where there is a 0 in the mask, the gene is copied from the
second parent, as shown in Figure D.3. The process is repeated to produce the second offspring.
The offspring therefore contain a mixture of genes from each parent, and the number of effective
crossing points is not fixed, but will average L /2 where L is the chromosome length.

A comparison of different binary crossover operators, including 1-point, 2-point, multi-point
and uniform crossover, was undertaken in [32], both theoretically and empirically. It was found that
none of them is the consistent winner, and there was not more than 20% difference in speed among

the techniques.

136

L Parent 1

Parent 2 011010110

Crossover Mask 110010011

Offspring 1

Offspring 2

Figure D.3: Uniform binary crossover

D.2 Real Crossover

In real encoding -implemehtations, each chromosome is encoded as a vector of real numbers with the
same length as the solution vector. In recent years, several crossover schemes have been proposed
for real number encoding, and most of them belong to the following two categories: conventional
crossovers (including simple and random), and arithmetic crossovers.

The conventional crossovers are made by extending the canonical crossover operatoré for binary
representation into the real coding case. The arithmetic crossovers are constructed by borrowing the
concept of linear combination of vectors from the area of convex sets theory. These crossover

operators are described in detail below.

D.2.1 - Conventional Crossovers

Conventional crossovers include simple crossovers and random crossovers. Random crossovers
have been introduced in section 2.6. Simple crossovers [110, 111] include 1-point, 2-point, multi-
point and uniform crossover. These crossover operators are analogous to those of the binary imple-

mentation, except that each gene is now a real number rather than a binary bit (0 or 1).

D.2.2 Arithmetic Crossovers

Let 1 and z9 be two parent chromosomes (real vectors). Arithmetic crossovers are defined as the

combination of two vectors as follows:

Icll = A\21 + A9zo

137.
Y A x

Linear Hull = R2

rad
.
P

-
-
-

P Affine Hull
—————————— T

Convex Hull

Y
o

Figure D.4: Arithmetic crossover

.’11"2 = Az9 + Aoz

By restricting the coefficients A\; and), in different ways, the equations above produce three differ-

ent kinds of arithmetic crossover [45, 119, 79]:

linear crossover A1, Ay are real
affine crossover A1 + Ay =1

convex crossover A1+ =1, A >0, >0

The names linear, affine and convex are borrowed from convex set theory, in which a combination
of two Vectdrs, x1 and xo9, is called linear, affine, or convex when A; and Ay are restricted to be
real, A\ + Ada = 1, 0r A1 + A2 = 1,1 > 0, 3 > 0. The convex crossover appears to be the
- most commonly used. When the restriction that Ay = As = 0.5 is applied, the special case of the
averaging crossovér is produced [26].

A geometric explanation of arithmetic operators for a two-dimensional case is shown in Fig-
ure D.4. z1 and z are two parent vectors. The offspring generated with convex crossover consti-
tute the so-called convex hull. Similarly, the offspring generated with affine crossover constitute
the affine hull and the offspring generated with linear crossover constitute the linear hull. In the
two-dimensional case (Figure D.4), the solid line connecting the two parents is the convex hull, and

the solid and dashed lines are the affine hull and the linear hull is the whole space.

138

Appendi)i E
Schema Theorem

Most research into GAs has so far concentrated on finding empirical rules for getting them to per-
form well. Exactly why Genetic Algorithms work is a subject of some controversy, with much more
- work being reqﬁired before all questions can be finally answered. Nevertheless, several hypotheses
have been put forward which can partially explain the success of GAs. This can be used to help us
implement good GA applications.

Holland’s schema theorem [53] was the first rigorous explanation of how GAs work, and it
formed the basis of most theoretical work on the topic. The schema theorem explains the power of

the GA in terms of how schemata are processed.

E.1 Schema

A schema (plural schemata) is a fixed template describing a subset of strings with similarities at
certain defined positions. Thus, strings which contain the same schema contain, to some degree,
similar information. Here only binary alphabets will be considered, allowing templates to be rep-
resented by the ternary alphabet {0, 1, #}. The meta-symbol # is called the “don’t care” element,
and within any string the presence of the meta-symbol # at a position implies that either a0 ora 1
could be present at that position. A particular chromosome is said to be an instance of a particular
schema, or contain a particular schema if it matches that schema, with the # symbol matching any-
thing. So for example, 101010 and 010010 are both instances of the schema 1##010. Conversely,
two examples of schemata that are contained within 101010 are 1010#0 and 1#10##. A schema is a
partial solution and represents a set of possible fully specified solutions. A schema with m specified
elements and (n — m) #s can be considered to be an (n — m) dimensional hyperplane in the solution

space. All points on that hyperplane are instances of the schema.

139

Ina ty‘pical*biﬁary—cdded GA, where the chromosomes are binary strings, each string in the
pdpulatidn is an instance of 2© schemata (or say each string contains 27 schemata), where L is the
length of Qacl} individual string. Therefore, a population of N chromosomes could contain between
2L and N2L possible schemata, since there may be duplications. The total number of different
séhemam contained in all possible strings is 3%, since each gene in a schema may be O, 1, or #. In
genéral, for an alphabet of cardinality (or distinct characters) k, there are (k + 1)’ schemata. for
a population of /N chromosomes, there could be between kL and NkL possible schemata. Thus,
although therf: are only /N chromosomes in the population, a much greater number of schemata are
pfocessed in parallel, and this property is called implicit parallelism [53].

A schema represents a region of the search space and the area of the search space represented
by a schema and the location of this area depend on the number and location of the meta-symbols
| within the schema. The regions of the search space represented by schemata such as 1##H### are
much larger than schemata such as 1110#. Schemata are typically classified by their defining length
and their order. The order o of a schema S is the number of positions within the schema that are

not defined by a meta-symbol, i.e.,
o(S)=L-m

where m is the number of meta-symbols and L is the schema length. In other words, the order is

the number of fixed positions within the schema:
S = #1#0#; o(S) =2

The defining length d specifies the distance between the first and last non meta-symbol charac-

ters within the schema:
S =#1#0#;, d(S)=4-2=2

In general, low order schemata cover large regions of space and high order schemata cover much
smaller regions, which is illustrated in Figure E.1. In Figure E.1, binary strings with 4 bits are used
to represent integers in the range [0, 15]. Low order schema 1### covers half of the space ([8, 15]),
and high order schema 01#0 covers a much smaller region (it actually represents only integers 4 and

6).

Lo . 140

v
e

Schema 01#0

Schema 1###

Figure E.1: Visualization of regions of schemata

E.2 Schema Processing

When genetic operators, such as selection, crossover and mutation, are applied to the population,
the chromosomes are modified and the distribution of the schemata is changed accordingly. For
any particular chromosome (string) within a GA, it can get fragmented by crossover, attacked by
mutation or simply thrown away by the selection operator. Because the selection mechanism favors
chromosomes with high fitness, fitter parents, which are expected to contain some good schemata,
will produce more offspring. Therefore, the number of instances of good schemata tends to increase,
and the number of instances of bad schemata tends to decrease. The change of the number of
instances. of a particular schema during a GA run can be roughly estimated and this estimation
throws light on how GAs work.

The combined effect of selection, crossover, and mutation gives the so-called reproductive
schema growth equation:

For a particular schema S, if (.5, g) > 0 is the number of instances of S within the population

141
ot generation g, * ‘

f(S,9) _pds

®(S 1) > -

~ where f(S, g)is the average fitness of all instances of S at generation g, and f(g) is the average
fitness of generation g. I and P, are the crossover probability and mutation probability, and d(S)
and o(S) are the defining length and order of S. The equation above indicates the expected number
of strings matching a schema S in the next generation as a function of the actual number of strings
matching the schema in the current generation, the relative fitness of the schema, and its defining
length and order.

The final result of the growth equation can be stated as follows:

Schema Theorem: Short (defining length), low-order, above-average schemata receive

exponentially increasing trials in subsequent generations of a Genetic Algorithm.

The short, low-order, above-average schemata are termed building blocks by Goldberg [49]. An
immediate result of the schema theorem is that GAs explore the search space by building blocks
which, subsequently, are combined into larger blocks through crossover. The building block hy-
pothesis states that GAs attempt to find highly fit solutions to the problem under consideration by

the juxtaposition of these building blocks:

Building Block Hypothesis: A Genetic Algorithm seeks near-optimal performance
through the juxtaposition of short, low-order, high-performance schemata, called the

building blocks.

142

: Bibliography

(1]

(2]

jE)

[4]

(5]

(6]

(7]

8]

(9]

(10]

M.M. Abu-Zeid. Corner undercutting in anisotropically etched isolation contours. Journal of the Elec-

trochemical Society, 131:2138-2142, 1984.

H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. International

Journal of Computational Geometry & Applications, 5:75-91, 1995.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An efficiently con-
putable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis And Machine

Intelligence, vol. 13, No. 3:209-215, 1991.

Esther M. Arkin, L. Paul Chew, Daniel P. Huttenlocher, Klara Kedem, and Joseph S. B. Mitchell. An
efficiently computable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 13:209-215, 1991.

M. J. Atallah. A linear time algorithm for the hausdorff distance between convex polygons. Information

Processing Letter, 17:207-209, 1983.

T. Bick. Selective pressure in evolutionary algorithms: A characterization of selection mechanisms.
In D. Fogel, editor, Proceedings of the First IEEE Conference on Evolutionary Computation, pages
57-62, New York, 1994. IEEE.

T. Biick and F. Hoffmeister. Extended selection mechanism in genetic algorithms. In Proceedings of the
Fourth Interndtional Conference on Genetic Algorithms, pages 92-99, San Mateo, CA, 1991. Morgan

Kaufmann, Publishers. ’

Thomas Biick, Ulrich Hammel, and Hans-Paul Schwefel. Evolutionary computation: Comments on

the history and current state. I[EEE Transactions on Evolutionary Computation, 1(1):3-15, April 1997.

James E. Baker. Adaptive selection methods for genetic algorithms. In John Grefenstette, editor, Pro-
ceedings of the First International Conference on Genetic Algorithms and Their Applications, pages

101-111, Hillsdale, NJ, 1985. Lawrence Erlbaum Associates.

James E. Baker. Reducing bias and inefficiency in the selection algorithm. In The Second International

Conference on Genetic Algorithms, Hillsdale, NJ, 1987. Lawrence Erlbaum Associates.

143

5! 1] M. Bao, C. Bulrrel;, J. Esteve, J. Bausells, and S. Marco. Etching front control of (110) strips for corner
' compensation. Sensors and Actuators A-Physical, 37-38:727-732, 1993.

[12] L. Bolc and J. Cytowski. Search Methods for Artificial Intelligence. Academic Press, London, 1992.

- [13] L. Booker. Improving search in genetic algorithms. In Genetic Algorithms and Simulated Annealing.

Pitman, New York, 1987.

[14] J. W. Boyse. Data structure for a solid modeller. In NSF Workshop on the Representation of Three-
Dimensional Objects, 1979.

[15] Ernesto Bribiesca. Measuring 3-D shape similarity using progressive transformations. Pattern Recog-

nition, vol. 29, No. 7, 1996.

[16] R. A. Buser, Selden B. Crary, and O. S. Juma. Integration of the anisotropic-silicon-etching program
ASEP within the CAEMEMS CAD/CAE framework. In Proceedings of Micro Electro Mechanical
Systems (MEMS ’92), pages 133-138, New York, February 1992. IEEE.

[17] R. A. Buser and N. F. de Rooij. ASEP: A CAD program for silicon anisotropic etching. Sensors and
Actuators A-Physical, 28:71-78, 1991.

[18] H. Camon and A. Gue. Modelling of an anisotropic etching in silicon-based sensor applications. Sen-

sors and Actuators A-Physical, 33:103-105, 1992.

[19] C.D. Chapman, K. Saitou, and M.J. Jakiela. Genetic algorithms as an approach to configuration and
topology design. ASME Journal of Mechanical Design, 116(4):1005-1012, 1994.

[20] Wei Chen, J. K. Allen, Kwok-Leung Tsui, and F. Mistree. A procedure for robust design: Minimizing
variations caused by noise factors and control factors. ASME Journal of Mechanical Design, 118:478—

485, 1996.

[21] Wei Chen, Margaret Wiecek, and Jinhuan Zhang. Quality utility - a compromise programming ap-
proach to robust design. ASME Journal of Mechanical Design, 121(2):179-187,1999.

[22] J. Cohoon and W. Paris. Genetic placement. IEEE Transactions on Computer-Aided Design, 6:1272—
1277, 1987.

[23] David Corne and Peter Ross. Practical issues and recent advances in job- and open-shop scheduling.
In D. Dasgupta and Z. Michalewicz, editors, Evolutionary Algorithms in Engineering Applications,

pages 531-546. Springer-Verlag, Berlin, Germany, 1997. -

[24] P. Cox, H. Maitre, M. Minoux, and C. C. Ribeiro. Optimal matching of convex polygons. Pattern
Recognition Letter, 9:327-334, 1989.

[25] Selden B. Crary and Y. Zhang. CAEMEMS: An intergrated computer-aided engineering workbench
for micro-electro mechanical systems. In Proceedings of Micro Electro Mechanical Systems (MEMS

’90), pages 113-115, New York, 1990. IEEE.

144

" [26] L. Davis. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991.

[27] Kenneth A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. thesis,

- [28]

[29]
[30]
[31]

[32]

(33]

[34]

(35]
_[36]
[37]
[38]

[39]

(40]

The Univer§ity of Michigan, Ann Arbor, MI, 1975.

G. DeL.apierre. Anisotropic crystal etching: A simulation program. Sensors and Actuators A-Physical,
31:267-274,1992.

D. Dietrich and J. Fruhauf. Computer simulations of the development of dish-shaped deepenings by

orientation-dependent etching of (100) silicon. Sensors and Actuators A-Physical, 39:261-262, 1993.

G. Ensell. -Alignment of mask patterns to crystal orientation. Sensors and Actuators A-Physical,

53:345-348, 1996.

Larry J. Eshelman. The CHC adaptive search algorithm: How to have safe search when engaging in

nontraditional genetic recombinition. Foundation of Genetic Algorithms, pages 265-283, July 1991.

Larry J. Eshelman, R. Caruna, and J. David Schaffer. Biases in the crossover landscape. In The Third
International Conference on Genetic Algorithms, pages 10-19, Hillsdale, NJ, 1989. Lawrence Erl-

baum.

Larry J. Eshelman and J. David Schaffer. Real-coded genetic algorithms and interval-schemata. In
Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms 1, pages 187-202, San Mateo, CA,
July 1991. International Society for Genetic Algorithms, Morgan Kaufmann, Publishers. Proceedings

of the First Workshop on the Foundations of Genetic Algorithms (FOGA).

Hsiao-Lan Fang, David Corne, and Peter Ross. A genetic algorithm for job-shop problems with various
schedule quality criteria. In T. C. Fogarty, editor, Evolutionary Computation, AISB Workshop, pages
3949, Berlin, Germany, 1996. Springer-Verlag.

Gary K. Fedder. Structured design of integrated MEMS. In 12th Annual IEEE International Micro
Electro Mechanical Systems Conference, pages 1-8, Orlando, FL, January 1999. IEEE.

J. M. Fitzpatrick and J. J. Grefenstette. Genetic algorithms in noisy environments. Machine Learning,

3:101-120, 1988.

David B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transaction on Neural

Networks, 5(1):3—14, January 1994.
L. J. Fogel. Antonomous automata. Industrial Research, 4:14—19, 1962.
L. J. Fogel. On the Organization of Intellect. Ph.D. thesis, University of California, Los Angeles, 1964.

B. Forouraghi. A genetic algorithm for multiobjective robust design. Applied Intelligence, 12:151-161,
2000.

145

>[41‘] B. Fox and M ‘McMahon. Genetic 6perat9rs for sequencing problems. In Gregory J. E. Rawlins,

: editor, Foundations of Genetic Algorithms 1, pages 284-009, San Mateo, CA, July 1991. International
Society.for Genetic Algorithms, Morgan Kaufmann, Publishers. Proceedings of the First Workshop on
the Foundations of Genetic Algdrithms (FOGA).

t42] E. C. Frank and M. B. Ives. Orientation-dependent dissolution of Germanium. Journal of Applied
Physics, 31(11):1996-1999, November 1960.

[431 J. Fruhauf and B. Hannemann. Anisotropic multi-step etch processes of silicon. Journal of Microme-

chanics and Microengineering, 7:137-140, 1997.

[44] Mitsuo Gen and Runwei Cheng. Genetic Algorithms And Engineering Design. John Wiley & Sons,
New York, 1996.

[45] Mitsuo Gen, K. Ida, and Runwei Cheng. Multirow machine layout problem in fuzzy environment using

genetic algorithms. Computers and Industrial Engineering, 29:519-523, September 1995.

[46] Mitsuo Gen, B. Liu, and K. Ida. Evolution program for constrained nonlinear optimization. In Pro-

ceedings of the 16th International Conference on Computers and Industrial Engineering, 1994.

[47] B. Gogoi, R. Yeun, and C. H. Mastrangelo. The automatic synthesis of planar fabrication process flows
for surface micromachined devices. In Proceedings of the IEEE Micro Electro Mechanical Systems

Workshop, pages 153-157, New York, January 1994. IEEE.

[48] David E. Goldberg. Simple genetic algorithms and the minimal deceptive problem. In Genetic Algo-
rithms and Simulated Annealing, pages 74-88. Morgan Kaufmann, Publishers, San Mateo, CA, 1987.

[49] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA, 1989. .

[50] David E. Goldberg. Real-coded genetic algorithms, virtual alphabets, and blocking. Technical Report
IliGAL Report 90001, University of Illinios at Urbana-Champaign, Urbana, IL, 1990.

[51] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic
algorithms. In Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms 1, pages 69-93, San
Mateo, CA, July 1991. International Society for Genetic Algorithms, Morgan Kaufmann, Publishers.
Proceedings of the First Workshop on the Foundations of Genetic Algorithms (FOGA).

[52] M. Hasanuzzaman and C. H. Mastrangelo. Process compilation of thin film microdevices. IEEE Trans-

action on Computer-Aided Design of Intergrated Circuit and Systems, 15:745-764, July 1996.

[53] John H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann
Arbor, M1, 1975.

[54] Ted J. Hubbard and Erik K. Antonsson. Emergent Faces in Crystal Etching. Journal of Microelectome-
chanical Systems, 3(1):19-28, March 1994.

146

3

.[55] Ted J. Hubbard and Erik K. Antonsson. Design of MEMS via Efficient Simulation of Fabrication. In

[56]

-[57]

(58]

Design for Manufacturing Conference, New York, August 1996. ASME.

Ted J. Hubbard and Erik K. Antonsson. Cellular Automata in MEMS Design. Sensors and Materials,
9(7):437-448, 1997.

Merrill Hunt and James A. Rowson. Blocking in a system on a chip. IEEE Spectrum, 33(11):35-41,
November 1996.

Phil Husbands, Giles Jermy, Malcolm Mcllhagga, and Robert Ives. Two applications of genetic al-

~ gorithms' to component design. In T. C. Fogarty, editor, Evolutionary Computation, AISB Workshop,

[59]

[60]

[61]

[62]

[63]

[64]

(65]

[66]

[67]

pages 50-61, Berlin, Germany, 1996. Springer-Verlag.

R. J. Jaccodine. Use of modified free energy theorems to predict equilibrium growing and etching

shapes. Journal of Applied Physics, 33(8):2643-2647, August 1962.

M.J.J akielé, C. Chapman, J. Duda, A. Adewuya, and K. Saitou. Continuum structural topology design
with genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4):339~
356, 2000.

Cezary Z. Janilow and Zbigniew Michalewicz. An experimental comparison of binary and floating
point representations in genetic algorithms. In The Fourth International Conference on Genetic Algo-

rithms, San Mateo, CA, 1991. Morgan Kaufmann, Publishers.

Liang kai Huang and Mao jiun J. Wang. Efficient shape matching through model-based shape recog-
nition. Pattern Recognition, 29:207-215, 1996.

I. Kang, M. R. Haskard, and N. D. Samaan. A study of two-step silicon anisotropic etching for a
polygon-shaped microstructure using koh solution. Sensors and Actuators A-Physical, 62:646-651,
1997.

G. Koppleman. Oyster, a simulation tool for micro electromechanical design. Sensors and Actuators

A-Physical, 20:179-185, 1989.

J. Koza. Evolution and co-evolution of computer programs to control independently-acting agents. In
Jean-Arcady Meyer and Stewart W. Wilson, editors, The First International Conference on Simulation

of Adaptive Behavior: From Animals to Animats, pages 366375, Cambridge, MA, 1991. MIT Press.

J. M. Lai, W. H. Chieng, and Y. C. Huang. Precision alignment of mask etching with respect to crystal

otientation. Journal of Micromechanics and Microengineering, 8:327-329, 1998.

Cin-Young Lee and Erik K. Antonsson. Surface Reconstruction of Etched Contours. In MSM’99, Mod-
eling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, One Kendall Square,
Cambridge, MA, U.S.A., April 1999. Applied Computational Research Society. International Confer-

ence on Modeling and Simulation of Microsystems.

N 01
A ‘ 4

[68) Hui Li. Evolutionary Techniques Applied to Mask-layout Synthesis in Micro-Mechanical-Electronic
Systems (MEMS). Ph.D. thesis, California Institute of Technology, Pasadena, CA, June 1999.

[69] Jens Lienig. A parallel genetic algorithm for performance-driven VLSI routing. IEEE Transactions on
, Evolutionary Computation, 1(1):29-39, April 1997.

[70] .Jens Lienig. Physical design of VLSI circuits and the application of genetic algorithms. In D. Dasgupta
and Z. Michalewicz, editors, Evolutionary Algorithms in Engineering Applications, pages 277-292.
Springer-Verlag, Berlin, Germany, 1997.

[71] Mark K: Long, Joel W. Burdick, and Erik K. Antonsson. Design of Compensation Structures for
Anisotropic Etching. In MSM 99, Modeling and Simulation of Microsystems, Semiconductors, Sensors
and Actuators, One Kendall Square, Cambridge, MA, U.S.A., April 1999. Applied Computational

Research Society. International Conference on Modeling and Simulation of Microsystems.

[72] Lin Ma and Erik K. Antonsson. Mask-Layout and Process Synthesis for MEMS. In MSM’2001, Mod-
eling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, One Kendall Square,
Cambridge, MA, U.S.A., April 2000. Applied Computational Research Society. International Confer-

ence on Modeling and Simulation of Microsystems.
[73] Marc Madou. Fundamentals of Microfabrication. CRC Press, New York, 1997.

[74] E Maseeh, R. Harris, and Stephen Senturia. A CAD architecture for MEMS. In Transducers *90, pages
4449, New York, 1990. IEEE.

[75] Fariborz Maseeh. Intellicad MEMS computer-aided design. In Jan G. Korvink, editor, 1997 CAD for
MEMS Workshop Digest, page 18, Switzerland, March 1997. Physical Electronics Laboratory, ETH
Zurich.

[76] G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kuhl. Fabrication of non-underetched convex
corners in anisotropic etching of (100)-silicon in aqueous KOH with respect to novel micromechanic

elements. Journal of the Electrochemical Society, 137(12):3947-3951, December 1990.

[77] Piriaki Mazumder and Elizabeth M. Rudnick. Genetic Algorithms for VLSI Design, Layout & Test
Automation. Prentice-Hall, Englewood Cliffs, NJ, 1999.

[78] C.Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley Publishing Company, Read-
ing, Massachusetts, 1980.

[79] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Program. Springer-Verlag,

Berlin, 1994.

[80] Zbigniew Michalewicz, T. Logan, and S. Swaminathan. Evolutionary operations for continuous convex
parameter spaces. In Anthony V. Sebald and Lawrence J. Fogel, editors, Proceedings of the Third

Annual Conference on Evolutionary Programming, pages 84-97, Singapore, 1994.

[81]
[82)
[83]

[84]

(85]

[86]

[87]
[88]
[89]
(901

[91]

(92]

93]

[94)

148

’é .
B. L. Miller and D. E. Goldberg. Genetic algorithms, selection scheme, and the varying effect of noise.

Evolutionary Cbmutation, 4:113-131, 1996.

Tamal Mukherjee, Gary K. Fedder; and R. D. (Shawn) Blanton. Hierarchical design and test of inte-
grated microsystems. IEEE Design and Test of Computers, 16(4):18-27, Oct.-Dec. 1999.

‘D. Mumford. The problem of robust shape descriptors. In Proceedings of First International Confer-

ence on Computer Vision, 1987.

S. Obayashi, D. Sasaki, Y. Takeguchi, and N. Hirose. Multiobjective evolutionary computation for
supersonic wing-shape optimization. IEEE Transactions on Evolutionary Computation, 4(2):182-187,

2000.

W. G. Oldham, S. N. Nandgaonkar, A. R. Neureurather, and M. M. O’Toole. A general simulator for
visi lithography and etching process: Part i - application to projection lithography. IEEE Transactions
on Electron Devices, 26:717-722,1979.

W. G. Oldham, A. R. Neureurather, C. Sung, J. L. Reynolds, S. N. Nandgaonkar, and M. M. O’Toole.
A general simulator for vlsi lithography and etching process: Part ii - application to deposition and

etching. IEEE Transaction on Electron Devices, 27:1455-1559, 1980.

Kevin N. Otto and Erik K. Antonsson. Trade-Off Strategies in Engineering Design. Research in Engi-
neering Design, 3(2):87-104, 1991.

Kevin N. Otto and Erik K. Antonsson. Extensions to the Taguchi Method of Product Design. ASME
Journal of Mechanical Design, 115(1):5-13, March 1993.

D. B. Parkinson. Simulated variance optimization for robust design. Quality and Reliability Engineer-

ing International, 14:15-21, 1998.

T. P. Pavlidis. Polygonal approximation by Newton’s method. IEEE Transaction Computation, vol.
C-26 No. 8:800-807, 1977.

Andy Perrin, Venkat Ananthakrishnan, Feng Gao, Radha Sarma, and G. K. Ananthasuresh. Voxel-
based heterogeneous geometric modeling for surface micromachined MEMS. In MSM 2001, Modeling
and Simulation of Microsystems, Semiconductors, Sensors and Actuators, One Kendall Square, Cam-
bridge, MA, U.S.A., March 2001. Applied Computational Research Society. International Conference

on Modeling and Simulation of Microsystems.
M. Phadke. Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs, NJ, 1989.

F. Pourahmadi and J. Twerdok. Modeling micromachined sensors with finite elements. Machine De-

sign, pages 44—60, July 1990.

B. Puers and W. Sansen. Compensation structures for convex corner micromachining in silicon. Sen-

sors and Actuators A-Physical, 21-23:1036-1041, 1990.

[95]
[96]

[97]

[98]

- [99]

[100]
[101]
[102]
[103]
[104]

[105]

[106]
[107]

[108]

149
N. Radcliffe. Genetic Neural Networks on MIMD Computers. Ph.D. thesis, University of Edinburgh,
UK, 1990.

I. Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biolgischen

evolution. Stuttgart: Frommann-Holzboog Verlag, 1973.

‘Peter Ross and Dave Corne. Comparing genetic algorithms, simulated annealing, and stochastic hill-

climbing on timetable problems. In T. C. Fogarty, editor, Evolutionary Computation, AISB Workshop,
pages 94-102, Berlin, Germany, 1995. Springer-Verlag.

Kazuo Sato, Mitsuhiro Shikida, Yoshihiro Matsushima, Takishi Yamashiro, Kazuo Asaumi, Ya-
suroh Iriye, and Masaharu Yamamoto. Characterization of orientation-dependent etching properties
of single-crystal silicon: Effects of KOH concentration. Sensors and Actuators A-Physical, 64:87-93,
1998.

Dragan A. Savic and Godfrey A. Walters. Genetic operators and constraint handling for pipe network
optimization. In T. C. Fogarty, editor, Evolutionary Computation, AISB Workshop, pages 154-165,
Berlin, Germany, 1995. Springer-Verlag.

H. P. Schwefel. Kybernetische evolution als strtegie der experimentellen forschung in der strmung-

stechnik. Ph.D. thesis, Technical University of Berlin, 1965.

Michael J. Scott and Erik K. Antonsson. Aggregation Functions for Engineering Design Trade-offs.
Fuzzy Sets and Systems, 99(3):253-264, 1998.

Michael J. Scott and Erik K. Antonsson. Using Indifference Points in Engineering Decisions. In 11th

International Conference on Design Theory and Methodology. ASME, September 2000.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel. Anisotropic etching of crystaline silicon in
alkaline solutions. Journal of the Electrochemical Society, 137:3613-3631, 1990.

Stephen D. Senturia, N. Aluru, and Jacob K. White. Simulating the bahavior of mems devices: Com-

putational methods and needs. IEEE Computational Science and Engineering, 4:30-43, January 1997.

Stephen D. Senturia, R. M. Harris, B. P. Johnson, S. Kim, M. A. Shulman, and Jacob K. White. A
computer-aided design system for microelectromechanical systems (MEMCAD). Journal of Micro-

electomechanical Systems, 1:3—13, March 1992.

C. H. Sequin. Computer simulation of anisotropic crystal etching. Sensors and Actuators A-Physical,

34(3):225-241, September 1992.

D. W. Shaw. Morphology analysis in Iocalized crystal growth and dissolution. Journal of Crystal
Growth, 47:509=517, 1979.

D. W. Shaw. Localized etching with acidic hyrogen peroxide solutions. Journal of the Electrochemical

Society: Solid State Science and Technology, pages 874-880, April 1981.

150

SR ‘ . ,
[109] Mitsuhiro Shikida, Kazuo Sato, Kenji Tokoro, and Daisuke Uchikawa. Comparison of anisotropic

etching properties between KOH and TMAH solutions. Journal of Microelectomechanical Systems,

1999.. .

’ [110] William M. Spears and Kenneth De Jong. On the virtues of parameterized uniform crossover. In The

. Fourth International Conference on Genetic Algorithms, pages 230-236, San Mateo, CA, 1991.

[111] Gilbert Syswerda. Uniform crossover in genetic algorithms. In The Fourth International Conference

on Genetic Algorithms, pages 2-9, San Mateo, CA, 1989.

[112] G. Taguchi. Introduction to Quality Engineering. Asian Productivity Organization, Unipub, White
Plains, NY, 1986.

{113] William C. Tang. Overview of microelectromechanical systems and design processes. In Proceedings
of the 34th Design Automation Conference, pages 670-673, New York, June 1997. SIGDA, Associa-
tion for Computing Machinery (ACM). Paper 42.1.

[114] O. Than and S. Buttgenbach. Simulation of anisotropic chemical etching of crytalline silicon using a

cellular-automata model. Sensors and Actuators A-Physical, 45:85-89, 1994.

{115] T. Thurgate. Segment based etch algorithm and modeling. IEEE Transactions on Computer-Aided
Design, 10(9):1101-1109, September 1991.

[116] S. Tsutsui and A. Ghosh. Genetic algorithms with a robust solution searching scheme. IEEE Transac-

tions on Evolutionary Comutation, 1:201-208, 1997.

[117] Mattias Vangbo and Ylva Backlund. Precise mask alignment to the crystallographic orientation of sil-
icon wafers using wet anisotropic etching. Journal of Micromechanics and Microengineering, 6:279—~

284, 1996.

[118] Kensall D. Wise. Integrated microelectromechanical systems: A perspective on MEMS in the 90s. In
MEMS °91, pages 33-38, New York, 1991. IEEE.

* [119] Alden H. Wright. Genetic algorithms for real parameter optimization. In Gregory J. E. Rawlins, editor,
Foundations of Genetic Algorithms 1, pages 205-217, San Mateo, CA, July 1991. International Society
for Genetic Algorithms, Morgan Kaufmann, Publishers. Proceedings of the First Workshop on the
Foundations of Genetic Algorithms (FOGA). '

[120] X. Wu and W. H. Ko. Compensating corner undercutting in anisotropic etching of (100) silicon. Sen-
sors and Actuators A-Physical, 18:207-215, 1989.

[121] Heng Yang, Minhang Bao, Shaoqun Shen, Xinxin Li, Dacheng Zhang, and Guoyin Wu. A novel
technique for measuring etch rate distribution of Si. Sensors and Actuators A-Physical, 79:136-140,
2000.

B SR 151
{122] Kelvin K. Yue and David J. Lilja. Designing multiprocessor scheduling algorithms using a distributed
genetic algorithm- system. In D. Dasgupta and Z. Michalewicz, editors, Evolutionary Algorithms in

Engineering Applications, pages 207-222. Springer- Verlag, Berlin, Germany, 1997.

[123] QingXin Zhang, Litian Liu, and Zhijian Li. A new approach to convex corner compensation for

_ anisotropic etching of (100) Si in KOH. Sensors and Actuators A-Physical, 56:251-254,1996.

[124] Y. Zhang, Selden B. Crary, and Kensall D. Wise. Pressure sensor design and simulation using the
CAEMEMS-D module. In Solid-State Sensor and Actuator Workshop, pages 32-35, New York, 1990.

Transducers Research Foundation, Inc., [EEE. Technical Digest.

[125] Zhenjun Zhu and Chang Liu. Anisotropic crystalline etching simulation using a continuous celiular
automata algorithm. In Micro-Electro-Mechanical Systems (MEMS), pages 577-582, New York, NY,
November 1998. ASME. International Mechanical Engineering Congress and Exposition (IMECE),
Anaheim, CA, DSC-Vol. 66.

[126] ZhenjunZhu and Chang Liu. Micromachining process simulation using a continuous cellular automata

method. Journal of Microelectomechanical Systems, 9(2):252-261, June 2000.

