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Abstract

A micromechanically based model for fatigue crack nucleation in ductile F.C.C. met-
als is developed. The theory includes a model of F.C.C. crystal-plasticity in finite
deformations that takes into account the Bauschinger effect, dipole annihilation in
the persistent slip bands (PSBs), with vacancy generation and PSB elongation as a
byproduct, as well as coupled vacancy diffusion and the attendant surface motion due
to the flux of vacancies out of the body.

Finite element simulations are performed in order to establish the predictive ca-
pability of the theory. Detailed modelling of the intersection of the PSB with a free
surface, enhanced by the use of remeshing and surface evolution techniques, enable the
prediction of nucleation sites, life expectancy, surface profile, alternate slip between
the sides of the PSB and strain localization at the grooves.

In an attempt to resolve the dislocation structures experimentally observed during
cyclic loading, a theory based on the non-convexity of a pseudo-energy density is
developed. Non-homogeneous minimizers are found containing variants oriented in
coincidence with the dislocation walls observed experimentally. Due to the latent
hardening and geometrical softening, the minimizing structures are found to consist

of regions of single slip which is in accordance with the observed “patchy slip.”
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Chapter 1 Introduction

Engineers and designers have been aware of fatigue failure for over 150 years. In the
early nineteeth century, with the arrival of steam machinery, failure due to fatigue
started to show its relevance. Engineers, mostly in the mining and railway industries,
began studies of the behavior of metal parts subject to cyclic loads.

The first work on fatigue is believed to be that of W. A. J. Albert in the 1830s
[Alb38]. He was interested in the cyclic behavior of mine-hoist chains made of welded
iron and conducted experiments of up to 10° cycles. Bending test on beams were
performed as early as 1840s by E. A. Hodgkinson [Hod49] and Fairbairn [Fai64].
Wholer discovered that the fatigue life of specimens is determined by the range of
applied stress (S-N curves) and that there is a stress under which specimens would
not fail by fatigue (endurance limit). The fact that the yield strength decreases with
load reversals, referred as Bauschinger effect, was reported for the first time in the
1880s.

In 1903 Ewing and Humfrey performed experiments on iron. By examining the
free surfaces, they discovered that the fatigue failure is related to slip band formation
and broadening [EHO03]. They also noticed that the crack nucleation sites coincide
with the places where the bands broaden, thus taking the first steps in the physical
characterization of the fatigue phenomena.

In the mid-1950s, Coffin [Cof54] and Mason established the dependence of fatigue
life on the plastic strains through a phenomenological approach. They noticed a linear
relation between the logarithm of the plastic amplitude and number of cycles from
which they were able to deduce the life expectancy of specimens.

In 1961 Paris et al. ([PGA61]; [PE63]) established that the crack growth rate per
cycle, da/dN, is proportional to a power of the difference between the applied stress
intensity factors, AK, i.e., da/DN =~ C(AK)™, a relation presently known as the

Paris Law.
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The phenomenological approaches to fatigue life based on macroscopic variables
has found wide use among designers. Stress-based methods, such as the early work
of Wholer, can estimate, for a given applied stress amplitude, the number of cycles
to failure and the stress range under which no failure occurs, or endurance limit.
Strain-based methods, such as that of Coffin and Mason, can also be used to predict
the fatigue life. Depending on the amplitudes of the plastic and elastic strains at
failure, these methods divide the fatigue process into those that are ductile, with
Aepiastic > A€elastic, OF strength driven otherwise. The two above-mentioned methods
were developed under conditions of constant stress or strain amplitude. By contrast,
the Palmgren-Miner rule [Min45] allows for the extension of constant amplitude pre-
dictions of fatigue life to varying amplitude.

If the existence of an initial crack is assumed, the Paris Law provides a powerful
tool to determine the extent of crack growth. The Paris Law is used extensively in
practice to establish inspection intervals for parts and structures subjected to fatigue
loading.

The fatigue crack growth phenomenon can be divided in two stages. In stage I,
where microstructural effects are of great relevance, the crack path follows slip lines
and crack-growth rates are low. In stage II the crack fields extend over presence in a
domain surrounding the tip that encompasses many grains. The transition from the
first to the second stage occurs when the size of the plastic zone around the crack
tip exceeds the grain size. Since the nucleation and initial growth of microcracks is
associated with localized surface regions of plastic slip, the early stages of fatigue are
independent of the mean tensile stress, but depend on the amplitude of the cycle.
Compressive mean stresses prevent the development of macrocracks, but not the
initiation of the microcracks. There is plenty of evidence that the existence of stage
I microcracks does not imply the growth of them to stage II macrocracks [FMP74].

It has been observed microscopically ([FMP74]; [TWL56]) that in the free surface
plays an important role in fatigue processes. In many metals, it is known that trans-
granular cracks occur more readily at lower temperatures than intergranular cracks,

in particular when the surface is not exposed to an aggressive atmosphere [FMP74].
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There is evidence that damage in polycrystalline ductile metals is associated with the
grains close to the free surface: specimens that have the surface re-polished during
the test exhibit a longer life ([TWL56]; [BPB83]). Environmental effects are also of
considerable importance in the behavior of surface grains ([GS32]; [TWL56]). In ad-
dition, examination of the failure surface of homogeneous specimens does not reveal
cracks in the bulk [FMP74].

The majority of the experimental data on fatigue problems has been obtained
during the last fifty years of this century. The term persistent slip band (PSB) was
first used by Thompson et al. [TWL56]. Their fatigue tests were interrupted in order
to look for slip bands on the surfaces and then continued. In some of the test they
re-polished the surface during the interruptions, finding that slip band traces appear
at the same places after restarting the loading. This was a clear evidence that the
PSBs are part of a bulk effect and not only a surface perturbation. Forsyth [FS55]
was the first to report the extrusion phenomena at the surfaces. The localized slip
activity in the PSBs and the attendant produce high dislocation density and vacancy
concentration, accounting for the different etching properties observed in the PSB
and the matrix.

At room temperature, it has been observed that cracks initiate at the intersec-
tion of slip bands with the free surface [FMP74]. Examination of tested specimens
by transmission electron microscopy shows that there exists an intricate dislocation
arrangement in the bulk of the material. Complex dislocation structures have been
observed in many studies, with large number of dislocation loops condensed in the
walls [Fel65].

With the use of electron microscopes, many advances have been made in under-
standing the micromechanics of the fatigue process [Sur91]. Observation of strain
localization into PSBs and dislocation structures have been correlated with imposed
strain amplitudes and surface roughness. In F.C.C. metals, endurance limits have
also been correlated with the formation of PSBs. The absence of strain localization
has been found to prevent the formation of cracks ([Lai76]; [BM65]).

The formation of PSBs and their ladder structure has not been explained in a
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manner that accounts for all the experimental observations. Different authors have
variously endeavored to understand this problem by positing: kinetic instabilities
produced by annihilation of dislocations during the activation of a secondary slip
system [KWL80J; energy minimization of dislocation structures ([DBL86]; [DHL86])
and instabilities in dislocation motion governed by diffusion-reaction like equation
([WAS85]; [Aif87]; [GLLY5]), with varying degrees of success.

The first part of this thesis is concerned with the micromechanical understanding
of the nucleation of fatigue cracks in F.C.C. single crystals. The fact that in clean
specimens with smooth surfaces the fatigue crack nucleation stage can account for
up to 80% of the total life [Sur91], and that in ductile metals the fatigue cracks are
nucleated in the surface grains, provides impetus for this work.

A micromechanical model is developed which uses multiphysics simulations in-
cluding: crystal plasticity and a micromechanical based model for the Bauschinger
effect; vacancy generation due to dipole annihilation; vacancy diffusion, taking into
account the stress-assisted diffusion and an anisotropic diffusivity due to pipe diffu-
sion; and surface profile evolution due to the outward flux of vacancies. The finite
element implementation of the theory [RO97] enables the simulation of realistic test
conditions. The objectives of the work are: to predict the number of cycles necessary
to nucleate a crack; to identify crack initiation sites and probable mechanisms that
lead to surface roughness; and to observe the alternate slip in the PSBs and the slip
concentration at the grooves, among others.

The second part of the thesis focuses on the dislocation structures (i.e., walls,
cells, labyrinth structures) that are experimentally found in cyclic fatigue of F.C.C.
metals ([AKLM84]; [Sur91]; [RP80]; [Cha81]). A model based on minimization of a
pseudoenergy density is developed which allows for non-homogeneous deformations
satisfiying rank-one compatibility at the interface between variants. Due to latent
hardening and geometrical softening, single-slip variants are found to be energy min-
imizers. Dislocations at the interface of the variants form wall structures with orien-
tations that are in accordance with TEM observations. In particular “patchy slip”

(JPAN82], [Asa79]), where a uniform global deformation decomposes into different
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zones of single slip, is an observed phenomenon. The predicted wall orientations and

dislocation structures are found to be in good agreement with published experimental

observations.



Chapter 2 Fatigue crack nucleation in

F.C.C. ductile metals

2.1 Introduction

Fatigue-crack nucleation often accounts for a substantial part of the fatigue life of
components. In clean specimens, with smooth surfaces the nucleation stage can be
up to 80% of the life. However, while the observational evidence accumulated to date
on the mechanisms underlying fatigue crack initiation is quite copious (see [Sur91] for
a recent review), success in developing a quantitative understanding of crack initiation
processes has been somewhat limited. Indeed, a micromechanically based computa-
tional capability enabling the prediction of the number of cycles to fatigue-crack
nucleation appears to be unavailable at present. In this work, we develop a microme-
chanical finite-element model of fatigue-crack initiation in nominally defect-free pure
F.C.C. metals. The scale of observation envisioned is that of a single persistent slip
band (PSB) intersecting the free surface of a single crystal. The nucleation event
is identified with the formation of a sharp surface crack, whose subsequent growth
obeys the laws of fracture mechanics.

Experiments dating back to Thompson et al. [TWL56] and, more recently, to
Basinski et al. [BPB83], have conclusively demonstrated that fatigue-crack nucleation
is mediated by surface roughness. This roughness arises at the intersection between
the surface and PSBs extending through the entire cross section of the crystal. In the
saturation stage of the cyclic behavior of metals, PSBs carry the majority of the defor-
mation. As the PSBs are cycled in shear, they simultaneously elongate and extrude
out of the surface, forming surface protrusions ([For33]; [FS55]; [For57]; [CH57]).
The re-entrant corners induced by the surface protrusions at the matrix/PSB inter-

face are preferential sites for fatigue-crack nucleation ([ML89b]; [KOK™*77]; [BM65]).
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The accurate modeling of surface roughening is, therefore, an important stepping
stone towards the formulation of micromechanical models of fatigue-crack nucleation.

Essmann, Gdésele and Mughrabi [EGMS81] developed a comprehensive theory of
surface roughening based on the hypothesis that dislocation pair annihilation is the
origin of PSB elongation. We take this theory as the basis of our model. However, we
have departed from the kinematics proposed by Essmann et al. [EGM81], who argued
that the net effect of pair annihilation is to tilt the effective slip plane away from the
plane of the PSBs. We show that PSB elongation can be understood within the
conventional kinematics of dislocation motion as the consequence of the climb which
inevitably accompanies dislocation annihilation. This climb component of the motion
of dislocations directly accounts for the elongation of the PSBs and, eventually, for
the development of surface extrusions.

An additional byproduct of dislocation pair annihilation is the generation of vast
numbers of vacancies. The vacancy concentration within the PSBs is much larger
than the vacancy concentration in the matrix, and it greatly exceeds the equilibrium
vacancy concentration at the free surface. These concentration differentials promote
vacancy diffusion, which is aided by pipe diffusion through the screw segments even at
relatively low temperatures. Owing to the dislocation structures which develop within
the PSBs, pipe diffusion operates preferentially towards the free surface. The resulting
net outward flux of vacancies causes the surface to recede. Our simulations show that
this mechanism is particularly effective at the PSB/matrix interface, and contributes
to the formation of grooves at those locations. As the specimen is cycled, those
grooves steadily sharpen. After a predictable number of cycles, the angle subtended
at the groove tip reduces to zero, signalling the nucleation of a sharp crack.

This chapter is organized as follows. In Section 2.2 we succinctly review the
salient aspects of the experimental record which form the basis of our model. Copper
is adopted as a convenient model material throughout this paper. In Section 2.3, a
single-crystal plasticity theory developed by Cuitifio and Ortiz ([Cn092]; [CnO96])
is extended to account for cyclic behavior, PSB elongation due to climb and fully-

coupled diffusion. The accuracy of the model is demonstrated by comparison with
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cyclic stress-strain data. The finite-element implementation of the theory is discussed
in Section 2.4. It bears emphasis that the ability to follow the formation of surface
protrusions requires finite deformation capability. To sidestep difficulties associated
with deformation-induced mesh distortion, as well as to resolve the fine-scale fea-
tures of the solution, we resort to automatic and adaptive remeshing. Finally, in
Section 2.5 selected simulations are reported which demonstrate the ability of the

theory to predict the number of cycles required for fatigue-crack nucleation.

2.2 Experimental background

There is presently a wealth of experimental data concerning the cyclic behavior of
single-crystal specimens under uniaxial loading. For completeness and subsequent
reference, we begin by reviewing those aspects of the experimental record which form
the basis of our model. Crystalline copper is one of the materials which have been
most thoroughly investigated and, consequently, we have adopted it as a convenient
model material. For simplicity, we confine our review to fully reversed, constant
plastic-strain amplitude loading histories. More detailed experimental accounts of

fatigue-crack nucleation may be found elsewhere [Sur91].

2.2.1 Saturation stress-strain behavior

During the early stages of loading, the uniaxial cyclic response of single crystals is
transient in nature. If the crystal is oriented such that plastic deformation takes place
predominantly by single slip, the dislocations gradually orient themselves normal
to the slip direction, thereby taking on a predominantly edge character ((BBH69);
[HG69]). The main hardening mechanism consists of the mutual trapping of parallel
edge dislocations of opposite sign into dipoles and multipoles, leading to the formation
of vein and channel structures. Eventually, a saturation stage is reached wherein the
resolved shear stress 7 acting on the primary slip system attains a constant value 7.

The saturation stress-strain curve of a crystal is conventionally defined as the

relation between the plastic slip-strain amplitude ,; and the saturation resolved shear
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stress 7,. In Fig. 2.2.1 [Mug78], Mughrabi shows the saturation stress-strain curve of
a copper single-crystal specimen. Three well-differentiated stages may be identified in
this curve. In the first stage, v,y < 7x107°%, 7, is a monotonically increasing function of
Ypi- The deformation in this stage is fairly uniform over the specimen, and no signs of
strain localization are as yet evident. Dislocations are predominantly of edge character
and collected in veins of high dislocation density separated by channels containing
comparatively low densities of screw dislocations ([BKB80]; [Sur91]); see Fig. 2.2.1.
The dislocations in the veins form dense multipoles of zero net Burgers vector and,
consequently, do not result in long-range stresses [Mug80]. The mean dislocation
density in the veins is of the order of 10' m~2 and three orders of magnitude lower
in the channels. Veins are roughly 1.5um wide and can fill up to 50% of the material
[Woo73]. The saturation stage is characterized by the ability of the back and forth
motion of the dislocations in the veins to accommodate the deformation ([Fel65];
[FL75]; [GM75]; [KW79]). This flip-flop mechanism can accommodate plastic strains
up to 10~*. No fatigue cracks are observed in the first stage of the saturation stress-
strain curve, which strongly suggests that strain localization is a prerequisite for crack
nucleation ([Lai76]; [BM65]).

The second stage of the saturation stress-strain curve, yun =~ 7 X 107° <
You < Vpi,psB R T X 1073, exhibits a plateau wherein 7, is ostensibly independent of
vy1- The deformation in the specimen ceases to be uniform and localizes to narrow
bands of intense deformation, or persistent slip bands (PSB). The volume of PSBs is a
monotonically increasing function of 7,;. Assuming that the matrix can accommodate
a maximum slip strain -, » independent of 7, and that each PSB can carry a fixed
amount of slip, the slip-strain amplitude is related to the volume fraction f of PSBs

through the law of mixtures [Win74]

Yoo = [ Yopse + (1= F) Ypm (2.1)

where v, psg is the slip strain at f = 1, corresponding to the end of the second

stage of the saturation stress-strain curve. The PSBs cross the entire crystal and
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Figure 2.1: Saturation stress-strain curve (CSSC ) of a copper single-crystal specimen
[Mug78].

Figure 2.2: Matrix vein structure in a single crystal of copper fatigued to saturation
at 77.4 K. The primary glide plane coincides with the plane of the figure and the
Burgers vector with the [101] direction [BKB80].
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Figure 2.3: Fatigue crack initiation at a PSB-matrix interface in a copper crystal
fatigued for 60,000 cycles at , = 0.002 and room temperature, [ML89b].

intersect the surfaces, where they give rise to surface roughness [ML89b]. After a
sufficient number of cycles, fine surface cracks are observed to appear at the matrix-
PSB interface ([EHO03]; [Gou33]; [ML89b]; [Sur9l]); Fig. 2.2.1. These and similar
observations suggest that fatigue-crack initiation is mediated by PSB formation and
surface roughening.

The dislocation structures found in the PSBs differ markedly from those in the ma-
trix ((MAH79]; [Sur91]); see Fig. 2.2.1. PSBs are characterized by dense walls of edge
dislocations oriented in the direction of the deformation. These walls are separated by
channels containing comparatively low densities of screw segments. The walls occupy
about 10% of the volume of the PSBs, are 0.03 — 0.25um thick and roughly 1.3um
apart. The dislocation density within the PSBs remains roughly constant owing to a
dynamic equilibrium between dislocation multiplication and annihilation. About two
thirds of the dipoles in the walls are of vacancy type and the remaining one third are
of interstitial type ([ABW76]; [AW76]). The deformation in the PSB is carried by
dislocation loops which bow out of their walls and jump across the adjacent channel.

As a loop bows out, it forms two kinks of screw character which sweep the length of
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Figure 2.4: Ladder structure of PSBs in a copper crystal fatigued at v, = 1 X 10
and room temperature [MAHT9).

the channel. When a bowing dislocation loop impinges upon a neighboring wall, it
may activate the emission of a new loop, which results in a snowballing effect. The
main deformation mechanism in the matrix is the flip-flop motion of dislocation pairs
within the veins.

The formation of PSBs is a poorly-understood phenomenon. Kuhlmann-Wilsdorf
and Laird [KWL80] have proposed that PSBs are formed from the veins by the
activation of a second slip system that causes massive dislocation annihilation and
redistribution. Other authors ([WAS85]; [Aif87]; [GLL95]) have suggested that PSBs
are the net result of a process of patterning governed by a reaction-diffusion equation.
Yet other authors [DBL86] and [DHL86] have proposed that the wall structures arise
as energy minimizers.

In the third stage of the saturation stress-strain curve, Y, psg < Ypi, Ts 1S Once
again an increasing function of ,;. This stage is characterized by the activation of a
secondary slip system at the PSB/matrix interface and the subsequent formation of

cell and labyrinth dislocation structures ([AKLM84]; [Sur91]); see Fig. 2.2.1.



Figure 2.5: Labyrinth structure in a copper single crystal cycled to saturation at
Yo =5 x 1073, [AKLM84].

2.2.2 Surface roughness and crack nucleation

The irreversibility of slip within the PSBs results in the roughening of the crystal
surface. This surface roughening manifests itself in two forms: a) extrusions and
intrusions, at sites where PSB emerge into the surface, with wave length of the order
of the width of the PSB ([ML89a]; [DEM86]; [Sur91]); see Figs. 2.2.2 and 2.2.2; b) a
roughness of shorter wave length than the protrusions caused by the randomness of
the slip activity.

The interface between the PSBs and the matrix are preferential sites for the nu-
cleation of cracks ([ML89a]; [ML89b); [HN86]; [Hem59]; [HD78]; [BM65]; [ABWT76];
[EGMS81]; [ML89b]; [TWL56]; [NVF77]); see Figs. 2.2.2 and 2.2.1. The importance of
surface roughness as regards fatigue crack initiation was unambiguously established
by Basinski et al. [BPB83], who showed that the fatigue life of the specimen could
be prolonged by electropolishing of the surfaces during test interruptions.

A number of theories ([FL75]; [Woo58]; [May60]; [DEM86]) and mechanistic mod-
els ([TM81]; [MN90]; [VCNM90]; [Lin92]) of the surface roughening phenomenon have

been proposed. It is by now well established that surface roughness first appears when
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Figure 2.6: Protrusions on the surface of a copper crystal fatigue at room temperature
for 1.2 x 10° cycles at y,; = 2 x 1073, [ML89a).

Figure 2.7: PSB protrusion profile in a copper crystal [DEMS86].
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Figure 2.8: PSB and matrix dislocation structure and stress raiser sites.

the mean dislocation distance approaches the annihilation distance. Thus, a dipole
consisting of edge dislocations in copper will annihilate to form a vacancy or an inter-
stitial if the spacing of the dislocations becomes smaller than about 1.6 nm [EGMS81].
The majority of the dislocation dipoles which are annihilated during fatigue are of the
vacancy type [ABWT6], leading to a substantial increase in the vacancy concentra-
tion. Using electrical conductivity techniques, Johnson and Johnson [JJ65] and Poldk
[Pol70] measured vacancy concentrations of the order of 107 in fatigued metals.
Differt, Essmann and Mughrabi [DEM86] have modelled the short wave roughness
by randombly irreversible slip process caused by the production and annihilation of
screw dislocation. This process could be able to produce the observed hills and valleys.
Essmann, Gosele and Mughrabi [EGMS81] have developed a model of surface extru-
sion and fatigue crack nucleation based on the hypothesis that dislocation annihilation
within the PSBs, and the attendant vacancy generation, are the origin of slip irre-
versibility. The PSB is loaded with a non-cycling compression in this model [BO85].
Driven by the concentration differential between PSBs and matrix, vacancies diffuse
from the PSBs into the matrix ([Han55]; [BH59]; [JD66]; [RH66]). Voids formed by

vacancy aggregation can grow at the interface between the PSB and the matrix, es-
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pecially near the surface where entrapped gas can render the voids stable ([Mug81];
[KB78]). Void nucleation and growth are known to constitute a mechanism of ductile
crack growth in single crystals ([LW75]; [Wil82]). Antonopouluos et al. [ABWT76]
introduced an alternative model in which the PSBs are loaded in tension due to
the generation of vacancy dipoles, a mechanism which is also responsible for surface
roughening. Possible ways to reconcile the models of Essmann et al. [EGM8I1] and

Antonopouluos et al. [ABW76] have been discussed by Brown and Ogin in [BO85].

2.3 Constitutive behavior

In order to follow the processes of deformation leading to the nucleation of a fatigue
crack, constitutive models of the inelastic behavior of the PSBs are required. In
this paper, we focus on the response of a fatigued single crystal at saturation, and,
consequently, we shall not concern ourselves with the transient preceding saturation.
In most cases of interest, this transient constitutes a small portion of the fatigue life
of the specimen and can, therefore, be neglected to a first approximation.

As noted earlier, the main deformation mechanisms operating in the matrix at
saturation are the motion of screw segments in the channels and the flip-flop of
dislocation pairs in the veins. This latter effect has been modeled by idealizing the
veins as Taylor dislocation lattices ([KW79|; [CL81]). Because dislocation motion
in the veins is reversible at saturation, its effect can be understood as an effective
reduction in the shear modulus of the crystal. Under the conditions of interest here
this reduction will be neglected to a first approximation. Likewise, following Winter
[Win74], Brown and Ogin [BO85|, we shall assume that most of the slip strain is
carried by the PSBs, and will simply treat the matrix as elastic.

Next, we turn to the inelastic behavior of the PSBs. Away from free surfaces and
grain boundaries, plastic deformation in the PSBs occurs predominantly by single slip.
The dislocations in the primary slip system adopt the characteristic ladder structure
alluded to in Section 2.2.1. By contrast, multiple slip inevitably occurs at the inter-

section between a PSB and, e.g., a free surface. Therefore, modeling of these regions
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necessitates constitutive descriptions which account for multiple slip. To this end,
we have adapted a micromechanical theory of slip in F.C.C. single crystals proposed
by Ortiz and Popov [OP82] and further developed by Cuitifio and Ortiz [Cn092], by
explicitly accounting for the ladder structure of PSBs and the Bauschinger effect.

Under the conditions envisioned here, the total deformation of the crystal is the
result of three main mechanisms: lattice distortion; dislocation motion within the
active slip systems; and vacancy generation. Mathematically, this suggests a multi-

plicative decomposition
F = F°FPF" (2.2)

of the deformation gradient F into: a factor F¥ which represents the effect of vacancy
generation; a plastic part F?, defined as the cumulative effect of dislocation motion;
and an elastic part F¢, which describes the distortion of the lattice. Eq. (2.2) gener-
alizes the conventional multiplicative kinematics of Lee [Lee69]. Following Teodosiu
[Teo69] and others ([AR77]; [Hav73]; [HR72]; [Man72]; [Ric71]) we shall assume that
F? leaves the crystal lattice not only essentially undistorted, but also unrotated. Thus,
the rotation of the lattice is contained in F¢. In this section we begin by considering
pure slip processes and defer consideration of the vacancy generation mechanism until
Section 2.3.3.

Stresses in the crystal are induced by the lattice distortions described by F¢. One
might express this connection by, for instance, postulating a relation T(F¢) between
the Kirchhoff stress tensor 7 and F¢. A standard exercise shows that the most general

form of this relation consistent with the principle of material frame indifference is
S = S(C*) (2.3)

where S = F¢~17F¢~7 is a symmetric second Piola-Kirchhoff stress tensor relative to
the crystal lattice, and C® = F¢TF¢ is the elastic right Cauchy-Green deformation

tensor. For most applications involving metals, a linear—albeit anisotropic-relation
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between S and the elastic lagrangean strain B¢ = (C®~1)/2 can be assumed without
much loss of generality. Higher-order elastic moduli have been given by Teodosiu

[Teo82].

From the kinematics of dislocation motion, Rice [Ric71] derived the flow rule

Pl =1" =) §°5*@m" (2.4)
o

where ¥* is the shear strain rate on system « and §* and m® are the corresponding
slip direction and slip plane normal. In FCC crystals, the potentially active slip
systems are the 12 octahedral systems belonging to the family of {111} planes and
[110] directions. We adopt throughout the convention of differentiating between the
positive and negative slip directions £m® for each slip system, whereupon the slip

rates ¥* can be constrained to be nonnegative.
A simple calculation shows that the stress measure conjugate to v* is the resolved
shear stress 7% acting on the plane of normal m® in the direction §%. The resolved

shear stress follows from, e.g., the Kirchhoff stress tensor 7 through the relation
% = s*Tgm® (2.5)

where one defines s* = F¢8® and m® = F*7m?. In view of the work conjugacy of
the variables 7® and v°, it is possible to interpret the resolved shear stress 7* as the
driving force for the slip strain rate <.

To render the preceding constitutive relations complete, an equation of evolution
for v* needs to be formulated. For definiteness, we shall restrict our discussion to
the case of fully reversed, constant plastic-strain amplitude loading histories, and to
rate-independent plasticity. Rate effects, which can be non-negligible for very high-
frequency loading, may be built into the formulation by recourse to a viscosity law
(see, e.g., [CnO92]). In keeping with our focus on saturation, we shall assume the
dislocation densities in all slip systems to remain constant. Extensions of the model

to account for dislocation multiplication and annihilation may be found elsewhere
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(see, e.g., [Cn092]).

2.3.1 Loading

Each active system in the crystal, say system «, yields during the course of one half
of every cycle, with the opposite system —m® taking up the remaining half. During
loading, the motion of dislocations within an active system « is driven by the resolved
shear stress 7% and is resisted by obstacles. There are two main sources of obstacles
to be considered, both of which contribute to the hardening of the crystal: forest
dislocations and the mutual trapping of edge dislocations in PSB walls. The primary
slip system within the PSBs hardens almost exclusively by the trapping mechanism,
as the dislocation densities in the secondary systems are too low for forest hardening
to be of significance. By contrast, secondary systems, such as are activated at the
free surface/PSB intersection, lack a self-organized ladder structure and are subject

to forest hardening only. These hardening mechanisms are next considered in turn.

Trapping hardening in PSBs

Consider the primary slip system within a fully developed PSB. The main obstacle to
dislocation motion in the ladder structure is the mutual trapping of edge dislocations
of opposite sign. Let s denote the strength of the bond between a dislocation and
the wall which contains it. Alternatively, s is the critical value of the resolved shear
stress required for the dislocation to break loose from the wall. Since the arrangement
of dislocations within a wall is, to some extent, random, it follows that s itself is a
random variable. Let f (s) denote the probability density of bond strengths s in a
wall structure under zero resolved shear stress. Thus, f(s)ds is the fraction of bond
strengths in the interval (s, s + ds) in an unstressed dislocation wall.

Next, consider a process of monotonic loading of the slip system under consid-
eration. The assumption of rate-independent behavior requires that all dislocations
occupy stable positions throughout the loading process. In particular, if the load is

held fixed, no dislocation motion and, correspondingly, no slip strain, should ensue.
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Let f(s) denote the probability density of bond strengths in the wall after the resolved
shear stress has been increased monotonically to 7. Evidently, for all dislocations to
be stable at this stage, all bonds must have a strength s > 7, i. e., f(s) = 0 in the
interval 0 < s < 7.

Imagine now that the resolved shear stress is further increased from 7 to 7 +
dr. Evidently, this causes a fraction f(7)dr of the dislocation density to become
unstable, break free from their respective walls and jump to neighboring walls. Under
the assumption of rate-independent behavior, these jumps occur instantaneously. A
subfraction (1 — P(7)) of the destabilized dislocations will be trapped by the nearest
wall after one single jump, while the remainder will proceed beyond. Of these, again
a subfraction (1 — P(7)) will be trapped at the second wall, while the remainder will

proceed beyond, and so on. The average number of jumps taken by a dislocation

before it is trapped at a stable position is, therefore,

N = (1-P(r))+2P(r)(1 — P(r)) + 3P(r)*(1 — P(r))+...
= — (2.6)
(1-P(7))

Mobile dislocations need not physically cross walls in order to effect multiple jumps.
It suffices that, when a dislocation impinges upon a wall, it destabilizes a dislocation

segment on the opposite side, which then proceeds through the next channel.
Evidently, the probability that one of the destabilized dislocations forms a stable
bond of strength s after its flight is f(s). The function f(s) has to be adjusted
to reflect these newly created bonds and for the fact that f(s) must vanish over
the extended interval 0 < s < 7 + dr. An analytical treatment of this problem has
been given by Cuitifio and Ortiz [CnO93] within the statistical mechanical framework
proposed by Ortiz and Popov [OP82], who derived a kinetic equation governing the
evolution of f(s) using standard tools of nonequilibrium statistical mechanics. Cuitifio
and Ortiz [Cn092] obtained analytical solutions of the kinetic equation for the case of

monotonic loading and an arbitrary time variation of the density of point obstacles.
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The solution is

fs) = (2.7)

where H(z) is the Heaviside step function. We verify that f(s) = 0 for s < 7, as

required.
The hardening law follows from the preceding results and standard relations from

dislocation mechanics. The incremental slip strain may be written in the form
dy=bdplL (2.8)

where dp is the fraction of dislocations which are destabilized by the load increment,
b is the magnitude of the Burgers vector and L is mean free flight distance of the

dislocations. By virtue of the preceding results, one has

dp = pf(r)dr = pl——é(;—)(;)-dT (2.9)

where p is the dislocation density in the primary system and

(1= P(n)

L=Nw= (2.10)

where w is the separation between walls. Inserting (2.9) and (2.10) into (2.8) yields

dy = h(r) dr (2.11)
where
_ f(r)
h(T) = bpw D) (2.12)

is the sought plastic hardening modulus due to trapping.
In order to have an explicit expression for the hardening relations, the unstressed

bond strength probability f(s) needs to be identified. To aid in this identification,
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Figure 2.9: Comparison between experimental [Mug78] and theoretical hysteresis
loops at saturation for different values of ;.

eq. (2.11) may be integrated, with the result

1
717 = by~ V) 2.1
This relation permits the direct identification of }3(7‘) from an experimentally mea-
sured hysteresis loop (7). From Mughrabi’s data in Fig. 10, page 213 of [MugT78|,
we have found that f(7) is well-approximated by the beta distribution

f(S) _ %(S/Ts)p“;((;;])s/Ts)‘I—-l’ (214

where B(p,q) is the beta function and 75 is the saturation stress which depends
on temperature (Table 2.1 of ref. [Sur91]). A choice of parameters which fits well
Mughrabi’s data is p = 20, ¢ = 1.03. A comparison between simulated and experi-
mental hysteresis loops for a copper single crystal fatigued to saturation is shown in
Fig. 2.3.1. As may be seen from the figure, the predicted hysteresis loops are in good

agreement with observation.
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Forest hardening

At the intersection between the PSB and the free surface, a complex pattern of defor-
mation arises which cannot be accommodated by single slip, and multiple slip ensues.
The highly self-organized ladder dislocation structure cannot be assumed to develop
in the secondary systems. Instead, we shall presume that hardening in these sys-
tems occurs by the forest dislocation mechanism, i.e., that dislocations piercing the
slip plane, or forest dislocations, constitute the principal source of obstacles to the
motion of dislocations. Detailed numerical simulations of a dislocation line propa-
gating through a random array of point obstacles have been carried out by Foreman
and Makin ([FM66]; [FM67]), and by Kocks [Koc66]. In Kocks’ model, all obstacles
opposing the motion of the dislocation line are idealized as pinning points. Pairs of
such points arrest dislocations, which require a certain threshold resolved shear stress
5 to overcome the barrier. For a given temperature, s can be estimated from a line
tension calculation (see, e.g., the review of [KZ73]). The simplest such estimate gives
s = aub/l, where p is the shear modulus, b, the length of the Burgers vector, [, the
distance between pinning points, and « is a temperature-dependent coefficient of the
order of 0.3.

The motion of the dislocations through a random distribution of obstacles obeys a
kinetic equation which was derived by Ortiz and Popov [OP82] using standard tools of
nonequilibrium statistical mechanics. Cuitifio and Ortiz [CnO92] obtained analytical
solutions of the governing kinetic equation which determine the analytical form of
the hardening law. For randomly distributed obstacles in the slip plane, the result is

(see [Cn092])

(2.15)

where n® is the density of point obstacles, p® is the dislocation density, h*® is the

self-hardening modulus, 72 is a characteristic or ‘flow’ stress, v is a characteristic slip
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strain, and h¢ is a characteristic hardening modulus. In keeping with our focus on the
saturation stress-strain behavior of fatigued single crystals, we presume all dislocation
densities p® to remain constant throughout. The values of 7% and v determine the
location of the ‘bend’ in the resolved shear stress-slip strain curve. In particular, 77
correlates with the value of the flow stress determined by back-extrapolation. As is
evident from (2.15), 7% and 72 are a function of the dislocation density p* and the
density n® of point obstacles in the slip plane.

The hardening matrix predicted by the above dislocation model is diagonal, and,
consequently, the hardening law (2.15) conforms to the general structure suggested
by Bassani and Wu ([BW91la]; [BW91b]) on the basis of their experimental data. The
precise manner in which the dislocation model accounts for latent hardening effects in
high-purity FCC metals has been extensively discussed by Cuitifio and Ortiz [CnO93].
Detailed comparisons demonstrating good agreement between the predictions of the
theory and stress-strain and latent-hardening data have also been given by Cuitifio
and Ortiz [Cn093].

A key variable in the description of the forest hardening is the density n® of point
obstacles afforded by forest dislocations. Evidently, n® is a function of the dislocation
densities in all remaining systems. The experimental work of Franciosi and co-workers
([FBZ80); [FZ82]; [FZ83]; [Fra85b]; [Fra85al; [Fra88]) is suggestive of a dependence

of the form

n® =Y a*p’. (2.16)
B

Experimentally determined values of the interaction matrix a®® have been given by
Franciosi and Zaoui [FZ82] for the 12 slip systems belonging to the family of {111}
planes and [110] directions in FCC crystals, and by Franciosi [FZ83] for the 24 sys-
tems of types {211} [111] and {110} [111] in B.C.C. crystals. They classify the
interactions according to whether the dislocations belong to the same system (inter-
action coefficient ag), fail to form junctions (interaction coefficient a;), form Hirth

locks (interaction coefficient ay), co-planar junctions (interaction coefficient a,), glis-
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sile junctions (interaction coefficient ay), or sessile Lomer-Cottrell locks (interaction
coefficient a3), with ap < a; < ay < a3. Franciosi has also found the interaction
coefficients to be linearly dependent on the stacking fault energy of the crystal, the
degree of anisotropy increasing with decreasing stacking fault energy.

In regions of multiple slip of the PSB, the trapping and forest hardening mech-
anisms operate concurrently on the primary system. For simplicity, in calculations
we have assumed that the combined hardening matrix 2%’ can be approximated as
the sum of the hardening matrices due to trapping and forest hardening. It bears
emphasis that, since the dislocation density in the secondary systems is orders of
magnitude lower than in the primary system, the overwhelmingly dominant harden-
ing mechanism in the primary system is trapping. Conversely, the high dislocation
density in the primary system hardens greatly the secondary systems through the
forest mechanism, with the result that secondary slip can only be activated in regions
of stress concentration such as the junctures between PSB boundaries and the free

surface.

2.3.2 Unloading and the Bauschinger effect

The Bauschinger effect refers to the experimental observation that, after a certain
amount of plastic deformation, the material yields at a reduced stress when the direc-
tion of loading is reversed. The Bauschinger effect was modeled within the context of
the forest theory of hardening by Ortiz and Popov [OP82]. After a process of mono-
tonic loading up to a resolved shear stress 7, the probability density f(s) of obstacle
strengths s faced by the dislocations in the slip system under consideration is given
by (2.7). In particular, for quasi-static loading leading to rate-independent behavior,
all dislocations in the system must be pinned by obstacles of strength s > 7. Ortiz
and Popov [OP82] argued that reversed slip gradually causes this dislocation /obstacle
arrangement to dissolve, with the result that f (s) approaches the virgin distribution
f (s) when the reverse slip strain 7 greatly exceeds a characteristic slip strain -,.

Thus, after sufficient reverse slip, a process of reloading ostensibly gives rise to the
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virgin stress-strain curve once again, in keeping with the observed Bauschinger effect.
Ortiz and Popov [OP82] derived a kinetic equation governing the transition of
f(s) towards f(s) brought about by reverse slip. However, a computationally more
convenient means of modeling the transition is to simply assume that f(s) remains

of the form

f(s) H(s — ) (2.17)

f(S) - 1-— P(’To)

where 7y is the critical resolved shear stress for re-loading. In this manner, the
hardening moduli derived in Sections 2.3.1 and 2.3.1 retain their validity upon re-
loading. Clearly, at the onset of reverse slip, 7, should be set to the maximum
resolved shear stress 7, attained during loading. Conversely, for sufficiently large
reverse slip, 79 should tend to zero. The law of evolution of 7y with v can be derived

from the kinetic equation of Ortiz and Popov [OP82]; see Appendix I. The result is

p(T ) _ P(Tmax)e_'Y/'Yc
T 4 Plrmg) (e — 1)

(2.18)

Evidently, when v = 0 this equation returns 7y = Tmax, Whereas for /v, > 1 the
same equation gives 7o — 0, as required. Upon reloading, the system remains elastic
while 7 < 75 and slip begins when 7 > 75. Following the onset of slip, hardening is

taken to be governed by the hardening laws derived in Sections 2.3.1 and 2.3.1.

2.3.3 Vacancy generation and volumetric expansion

During saturation, the dislocation density in the PSB remains constant, at roughly
pw & 6 % 10%m ™2, by virtue of the establishment of a dynamical equilibrium between
multiplication and annihilation. Annihilation occurs when two edge segments of op-
posite sign get closer than a critical distance y, ~ 1.6 nm. As noted in Section 2.2,
most dipoles observed in PSBs are of the vacancy type. Indeed, dislocation annihi-
lation is thought to be the principal source of vacancies in the PSBs. Another effect

of dislocation annihilation is a steady elongation of the PSBs, which is ultimately
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responsible for the formation of surface protrusions. In this section, we formulate
simple relations quantifying these two effects, namely, vacancy generation and PSB
elongation.

If single slip were the sole deformation mechanism, PSBs would merely shear
back and forth and no elongation of the slip plane would be kinematically possible.
Discounting the activation of a secondary slip system, it is clear that the elongation of
the PSBs in the direction of the nominal slip plane must necessarily involve climb as
well as slip. Dislocation climb is not conservative and gives rise to point defects such
as vacancies. Consequently, PSB elongation and vacancy generation are necessarily
simultaneous. However, it should be carefully noted that PSB elongation is not caused
by vacancy accumulation, as the change of volume corresponding to the saturation
vacancy concentration is often much smaller than the extruded volume.

Dislocation climb takes place during pair annihilation. The geometry of the pro-
cess is schematically shown in Fig. 2.3.3, which shows an elongated rectangular loop in
a PSB in which the main edge segments are at the critical distance y, for spontaneous
annihilation. The length L of the loop is taken to be commensurate with the width
of the specimen. The edge segments are parallel to the walls and, consequently, the
Burgers vector is normal to the plane of the loop. Clearly, the mutual annihilation
of the edge segments requires them to undergo climb until the area Ly of the loop
reduces to zero; see Fig. 2.3.3. Denoting by b and § the magnitude and direction of
the Burgers vector, respectively, the rate of deformation induced by climb is

fopo-1 - A ®5 (2.19)
V
where A is the area rate swept by climbing dislocations and V is the volume of the
PSB. The vacancy concentration rate induced by climb is
1 Ab  Ab

y = 2.2
GENT ST (2.20)

where NV is the number of atoms in the PSB and  is the atomic volume. Using this
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relation, (2.19) can be recast in the form
F'F"" ! =¢,595 (2.21)

which gives the rate of elongation in terms of the vacancy concentration rate.

The vacancy concentration rate can be related to the rate of slip by estimating
the frequency of pair annihilation events. To this end, consider an edge segment
circumscribed by a circle of radius ., the distance for spontaneous pair annihilation.
The number of dislocations of opposite sign which enter the circle in an interval of time
At is py.vAt, where v is the mean dislocation velocity. The number of annihilation
events per unit time is, therefore, (n/2)py.v, where n is the total number of edge
segments of length L in the PSB. Using the relation n = pV/L, the number of
annihilation events per unit time and volume is computed to be (1/2)p*y.v/L. Each
annihilation event generates y.Lb/{) vacancies. Therefore, the number of vacancies
generated per unit time and volume is (1/2)p%y2bv /S, and the vacancy concentration

rate is

1
Gy = §p2y§bu. (2.22)

Finally, using the relation ¥ = bpv to eliminate v gives the expression

. I .
by = 5PYT- (2.23)

This equation enables the calculation of the vacancy concentration rate when the slip

rate is known. The elongation rate then follows from (2.21).

2.3.4 Vacancy diffusion and crack nucleation

The process of pair annihilation introduces a large concentration differential between
PSBs and matrix. The vacancy concentration in the PSBs is also greatly in excess

of the equilibrium vacancy concentration at the free surface. This induces strong
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Figure 2.10: Effect of loops annihilation and vacancy generation.

concentration gradients which provide a driving force for vacancy diffusion. In ad-
dition, vacancy diffusion may be enhanced by pipe diffusion and assisted by stress
concentrations at the PSB/surface interface. Due to the protracted nature of fatigue
loading, diffusive mechanisms often have ample time to operate. The outward flow
of vacancies causes the boundary of the crystal to change its shape. As we shall see,
this effect contributes to boundary grooving and the eventual nucleation of a surface
crack.

The vacancy flux through the crystal follows as [PE92]

Cy

RT

J,=-D (Vocv + VOW) (2.24)

where D is the diffusivity tensor, W is the elastic strain energy density, R is the
universal gas constant, T is the absolute temperature and V, is the material gradient
operator. In components, (Vo f); = 0f/0X;, where (X,, X5, X3) denotes a material
reference frame defined on the undeformed configuration of the crystal. Care must be
exercised in properly defining material gradients due to the large deformations under-
gone by the crystal, e.g., within the PSB. In particular, material frame indifference is
ensured by formulating the laws governing vacancy diffusion on the undeformed con-
figuration. Stress assisted diffusion, driven by the strain energy density gradient, may

be expected to be of significance at the PSB/surface interface, where stress concen-
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trations arise. The evolution of vacancy concentration is governed by the continuity

equation

oc,
ot

- _VO ‘ Jv + 8y (225)
where s, is the vacancy generation rate given by (2.23). Substitution of (2.25) into
(2.24) gives rise to the diffusion equation

de,
ot

Cy

RT

=Vy-D (Vocv + VW) + 8y (2.26)

which must be satisfied throughout the undeformed configuration of the crystal. At
the surface, the vacancy concentration must remain at its equilibrium value, which is

given by [PE92]

Coq = € A /HT (2.27)
where AG, is the free energy per vacancy added to the system, k is Boltzmann’s
constant and 7' is the absolute temperature. The free energy AG, and the surface
energy 7 may be expected to depend sensitively on the presence of impurities [RW89]
and, therefore, on the environment.

Two principal mechanisms contribute to the diffusivity of vacancies in single crys-
tals, namely, lattice diffusion and ‘pipe’ diffusion along dislocation lines. Assuming
for simplicity parallel dislocations, the effective diffusion coefficient D in the direction

of the dislocations can be estimated through the rule of mixtures [BG79)

D = Diaitice + 0°pD (2.28)

pipe
where p is the dislocation density. The activation energy for diffusion through the
lattice is considerably larger than that for dislocation or pipe diffusion. Consequently,
pipe diffusion dominates up to near the melting temperature, whereupon lattice diffu-

sion becomes dominant [CF57]. In addition, Balluffi and Granato [BG79] concluded
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that high-rate vacancy diffusion takes place in a narrow region surrounding the dislo-
cation core where an appreciable positive binding energy for vacancies exists. Vacancy
diffusivities are commonly measured in undeformed specimens containing low dislo-

cation densities. Therefore, the required value of Dpipe can be estimated as

Dy

o= Y 2.29
ppe — p25, ( )

D

where D, is the experimentally determined diffusivity and py is the corresponding
dislocation density. Eq. (2.29) can be used to calibrate the model.

In the PSBs, the dislocations are oriented predominantly in two directions. Most
dislocations are of an edge character and are parallel to the surface. However, these
dislocations do not contribute to vacancy diffusion towards the matrix or the surface,
and their effect can therefore be neglected in a two-dimensional model. While screw
segments crossing the channels between walls are less numerous, with densities three
orders of magnitude smaller than those of edge dislocations in the walls, they are,
however, oriented towards the surface and, consequently, contribute significantly to
boundary diffusion. Letting, as before, 5 be the Burgers vector direction in the un-
deformed configuration of the crystal, the diffusivity tensor may therefore be written

as
D = Diygticel + b*pscrew DpipeS ® § (2.30)

where I is the identity tensor. Evidently, the vacancy flux due to pipe diffusion
along screw segments is unidirectional and parallel to the PSBs. Because the vacancy
concentration within the PSBs is expected to be greatly in excess of the equilibrium
concentration ¢, at the free surface, a net flux of vacancies is expected to develop
towards the surface. Since pipe diffusion is relatively insensitive to temperature, this
mechanism should remain operative at relatively low temperatures.

The net effect of the outward vacancy flux is to cause the surface of the crystal to

recede. The inward motion of the surface is expected to be most pronounced at the
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PSB/matrix interface, and thus result in groove formation. In order to compute the
inward velocity of the surface, begin by writing the vacancy flux as J, = ¢, V,,, where
V, is the vacancy velocity relative to the undeformed configuration of the crystal.
Next consider a small element of area ASy on the undeformed surface of the crystal.
Over a small increment of time At, all vacancies in the right cylinder of base AS,
and height V,, - NA¢ exit though the boundary. Here N is the unit outward normal
to ASy. The volume of this cylinder is AVy = A5V, - NAt and, consequently,
the number of vacancies which exit the crystal is AN, = p,AV,, where p, = ¢,/
is the vacancy density, i. e., the number of vacancies per unit volume. The volume
of vacancies which exit the crystal is AV, = QAN,, and the inward velocity of the
surface is Viy = AV, /(ASy/At). Combining these relations finally gives

Vy=J,-N (2.31)

It bears emphasis that Vy is a configurational velocity which expresses the rate at
which the undeformed surface of crystal recedes due to the exit of vacancies. In
particular, Viy should be carefully differentiated from the velocity of the material

particles pertaining to the motion of the crystal.

2.4 Numerical implementation

Our finite-element implementation of the preceding theory extends the approach of
Cuitino and Ortiz ([Cn092]; [CnO96]) to account for fully-coupled vacancy diffusion.
The finite deformations undergone by the crystal are followed incrementally. Equilib-
rium is enforced weakly at the end of each increment by recourse to the principle of
virtual work, which renders the method implicit. Likewise, the stresses, plastic defor-
mations and the hardening parameters are updated implicitly by the backward-Euler
method. A particularly appealing property of implicit integration is that the finite-
kinematical aspects of the calculations, such as the finite rotations undergone by the

lattice, are treated exactly. The collection of active slip systems is determined itera-
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tively [CnO92]. The incremental displacements are solved for via a Newton-Raphson
iteration. The exact algorithmic or “consistent” tangent stiffness matrix has been
derived by Cuitifio and Ortiz [CnO92]. All meshes are generated automatically by
the advancing front method [PVMZ87]. Meshes are graded exponentially away from
the PSB/matrix/surface junctions.

As can be expected from the subtle changes that take place with each load cycle,
there are two well-differentiated time scales in the processes under consideration: i)
the loading period, and ii) the characteristic time of evolution of surface protrusions.
The simulation of the growth of a protrusion requires extending the calculations over
many loading cycles. In principle, the incremental approach just described requires an
appropriate resolution of each cycle of deformation, which would appear to render the
method impractical. However, the cyclic response of the crystal, and other aspects of
the solution such as the distribution of vacancy concentrations, vary slowly over many
cycles of deformation. To exploit this situation, we simulate one cycle in detail and
calculate the difference between the values of the field quantities at the beginning and
end of the cycle. This difference is then eztrapolated over a large number of cycles.
The results of this extrapolation are then taken as initial conditions for the next direct
calculation.

The coupling between diffusion and deformation is taken into account by a stag-
gered procedure. Following one mechanical step, the rate of vacancy generation due
to dislocation pair annihilation is calculated from eq. (2.23). The diffusion equation
(2.26) is then solved and the vacancy concentrations updated. The finite-element
treatment of the vacancy diffusion problem is based on the weak statement of the

diffusion equation

oc, Co B
/Bo [8t1/)+voz/)-D<ch+RTVOW) —SUJ dVy =0 (2.32)

where By denotes the undeformed configuration of the crystal and ¢ = 0 on its
boundary 0B,. Since the diffusion step is taken at fixed deformation, the elastic

strain energy density W enters (2.32) as a known function of position. In order to
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avoid unsymmetric terms in the diffusion equation, which complicate the formulation
of finite element approximations ([BH82]; [MHS85]), we introduce the integration factor

exp(W/RT) leading to the alternative weak form
/ [eW/RT %ctﬁz/; + Voo - ("'FTD Ve,) — eV/FT s, | dV}y = 0. (2.33)
Bo

We discretize this equation in time using the trapezoidal rule [Hug87]. Following
the update of the vacancy concentration, the motion of the referential surface of the
crystal due to the outward flux of vacancies is computed from (2.31). Finally, the
elongation of the PSB is determined from (2.21), which completes one application of

the staggered procedure.

2.5 Numerical simulation of fatigue-crack initia-
tion

In this section, we apply the theory developed in the foregoing to the simulation of
fatigue-crack nucleation in a copper specimen subjected to fully reversed, constant
strain amplitude loading. The specimen is oriented for single slip, with loading applied
in the [125] direction. The principal objective of the simulation is to follow in detail the
formation of surface roughness and eventual nucleation of a surface crack. Therefore,
we consider a fully formed PSB and focus sharply at the intersection between the PSB
and the free surface of the crystal, which is taken to coincide with the plane (210).
The crystal is assumed to undergo plane strain in the plane (121). The applied plastic
strain amplitude is de, = 6x 1073, and the loading frequency is 0.25 Hz, which is in the
bulk part of laboratory testing ([Mug78]; [BBH69]; [CL81]; [HD78]). For simplicity,
we neglect the initial transient entirely and presume the PSB to be saturated from
the outset. The specimen dimensions and geometry are shown in Fig. 2.5, which
1s not drawn to scale. We use an exponentially graded mesh to triangulate the full
specimen. This is important since the elongation of the PSB scales with its length.

A detail of the initial mesh in shown in Fig. 2.13. The material parameters used in
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Figure 2.11: a) Mesh after 400 cycles, b) mesh after 5600 cycles.
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Figure 2.12: Geometry of the computational model.

cll = 168.4GPa

cl2 = 121.4GPa

c44 = 75.4GPa
Burgers vector b = 0.256nm

Wall separation w = 1.3pm
PSBdislocation density p = 4.2 x 10'm™2
saturation CRSS 7, = 28MPa
Diattice = 1.5x107%m?/s
D pipe/ Diattice = 800

Table 2.1: Material parameters.

calculations are collected in Table 2.5 and in Cuitifio and Ortiz [CnO92].

Fig. 2.13 shows the solution after 4,800 cycles. No evidence of extrusion is as yet
apparent at this stage. As expected, all fields attain nearly constant values within the
PSB far away from the surface. By contrast, some incipient spatial variation is already
visible near the surface. Thus, the slip activity, as measured by the effective slip
strain é, = 3, 4%, exhibits maxima which alternate between both sides of the PSB.
Likewise, the values of the vacancy generation rate ¢,, and the PSB elongation due
to pair annihilation, also peak near the surface at the PSB/matrix interfaces. These
trends are accentuated with the passage of time. After 45,000 cycles, a protrusion is
clearly visible and the alternating character of the near-surface slip activity fields in

the PSB is fully apparent, Fig. 2.5, as are the peaks in vacancy generation rate and
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Figure 2.16: Slip activity distribution during the compressive and tensile half-cycles.
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Figure 2.17: Schematic model for the alternating slip activity.
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Figure 2.18: Experimental and numerical surface profiles.
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PSB elongation. The final shape of the surface protrusion and the attendant fields
after 65,000 cycles is shown in Fig. 2.5. As the elongation of the PSB is constrained
by the matrix, the PSB is left in a state of residual compression. As pointed out
by Lin [Lin92], this compression combines with the applied loads to cause the slip
activity to alternate from the acute corner of the protrusion during the compressive
half-cycle to the obtuse corner during the tensile half-cycle, Fig. 2.5 and 2.5.

The shape of the protrusion is the result of a competition between the elongation
of the PSB, which pushes material out of the matrix, and the vacancy flux through
the surface, which causes the surface to recede. Elongation wins out at the center of
the PSB, which results in the development of a protrusion. Compatibility between
PSB and matrix requires the activation of multiple slip systems near the surface
and forces the protrusion to take on a rounded shape. The magnitude of the local
deformations near the surface can be quite substantial, which attests to the need for
finite-deformation computational capability. Continuous remeshing is also required to
maintain the aspect ratio of the elements within acceptable bounds. A close-up view
of a typical adapted mesh is shown in Fig. 2.5, showing the requisite mesh refinement
at the re-entrant corners of the protrusion. Fig. 2.5 also shows a comparison between
the computed protrusion profile and that observed by Differt et al. [DEM86]. The
good agreement between the predictions of the theory and observation is evident from
the figure. The rate at which the protrusion grows is shown in Fig. 2.5. Initially the
rate of growth is slow. At about 30,000 cycles the rate of growth accelerates and
eventually attains a nearly constant value.

Remarkably, the combination of PSB elongation, multiple slip at the re-entrant
corners and, most notably, vacancy flux through the surface results in the development
of grooves. These grooves are clearly visible in Fig. 2.5, especially at the acute corner
of the protrusion. A close-up view of this groove, which has already developed into
a sharp notch, is shown in Fig. 2.5¢. A measure of the sharpness of the grooves is
the angle o subtended at the apex. The variation of these angles with the number of
cycles is shown in Fig. 2.5. As may be seen from this figure, sharpening of the main

groove accelerates after about 30,000 cycles and subsequently attains a constant rate.
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Figure 2.19: Growth of extrusion with number of cycles.

The extrapolation of this trend to the limit of @ = 0 affords an unequivocal definition
of fatigue-crack nucleation. In the present simulation, nucleation occurs after about
80,000 cycles. An alternative measure of the extent of growth of the grooves is their
depth 6. The variation of this depth with the number of cycles is shown in Fig. 2.5.
As before, growth accelerates at roughly 30,000 cycles and subsequently attains a

constant rate.
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2.6 Summary and conclusions

We have developed a micromechanical finite-element model of fatigue-crack initiation
in nominally defect-free F.C.C. metals. The scale of observation envisioned is that
of a single persistent slip band (PSB) intersecting the free surface of a near-surface
grain. The nucleation event is identified with the formation of a sharp surface crack,
whose subsequent growth obeys the laws of fracture mechanics. Basic building blocks
of the theory are: a model of cyclic plasticity tailored to PSBs which accounts for the
Bauschinger effect, PSB elongation due to pair annihilation, and vacancy generation;
and a model of vacancy diffusion which accounts for pipe diffusion and the surface
motion resulting from the outward flux of vacancies.

Our numerical simulations show that the outward vacancy flux causes the surface
to recede, which promotes the formation of grooves at the PSB/matrix interface.
These grooves sharpen steadily until, after a predictable number of cycles, the angle
subtended by one of the grooves reduces to zero. This event furnishes an unequivocal
definition of fatigue-crack nucleation. It also signals the end of the range of usefulness
of the model, as the expectation is that once a sharp crack is formed and the attendant
singular field is established at its tip, laws governing the subsequent growth of the
crack can be formulated within the conventional confines of fracture mechanics. Thus,
fracture mechanics picks up where the present theory exhausts its usefulness.

The numerical model developed in the foregoing opens the possibility of detailed
parametric studies of the dependence of fatigue-crack nucleation on material proper-
ties and microstructure, loading and temperature histories, and environmental con-

ditions.
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2.7 Appendix I. The Bauschinger effect

Ortiz and Popov [OP82] derived a kinetic equation governing the evolution of the
obstacle strength density function f(s) during reverse slip. The kinetic equation is
=206 - 16s) (2.34)
where % is the slip rate in the reverse slip direction and . is a characteristic slip
strain. Evidently, (2.34) compels f to approach the virgin distribution f with large
~ on the scale of 7. Eq. (2.34) is linear in f and its solution is elementary [OP82].
However, the function f at the end of reverse loading is not generally of the form (2.7)
and, upon reloading, the hardening modulus differs from (2.12). An approximate-but
computationally convenient-treatment of (2.34) is to insert into (2.34) a trial function
of the form (2.17), which is consistent with (2.7), and collocate (2.34) at 7o. After a

trite calculation, this procedure yields the rate equation

o 4 P(r)(l - P(n)

— = = . (2.35
ot e f(7) )
Rearranging terms, this equation can be written in the form
2P) _ L b1 - i) (2.36)
= ——P(r)(1 — . .
dy Ye oo ’
This equation is separable and admits the solution
P P (Timax
log L) g Plmed) 7 (2.37)
1— P(7o) 1= P((Tmax)) 7

where T, 1S the maximum resolved shear stress attained during the previous loading
and v = 0 coincides with the onset of reverse slip. Evidently, the choice of constants
in (2.37) ensures that 7o = Tmax for ¥ = 0, as required. Solving (2.37) for P(m) finally
gives (2.18).
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Chapter 3 Non-homogeneous
deformations as energy minimizers in
ductile crystals and their relation with

dislocation structures

3.1 Introduction

Plastically deformed crystals are often observed to develop intricate dislocation struc-
tures such as: the dipolar wall, labyrinth and mosaic structures which arise in cycli-
cally deformed polycrystals and in single crystals oriented for multiple slip ([AKLM8&4];
[RP80]; [Cha81]; [MB82]; [BBTS85]; [JW84a]; [WM84]; [LVDS86]; [LKKS86]); the per-
sistent slip bands in cyclically deformed crystals oriented for single slip ([Mug78];
[WooT73]; [Win74]); the coplanar slip zones which develop during the stage I of hard-
ening of FCC single crystals [HTN86]; and the fence and carpet structures charac-
teristic of the early stages of stage II of hardening ([HTN86]; [Ste66]), to name a few
salient examples. The characterization of these and other dislocation structures from
first principles of mechanics has long been a principal-albeit largely unfulfilled-aim
of physical metallurgy.

It has been suggested that at least some of these structures can be understood as
energy minimizers ((HKW86]; [LCM86]; [LWMC89]). Neumann [Neu86] investigated
the structure and stability of loop patches, such as are found in the matrix of single
crystals oriented for single slip and cycled to saturation, by explicitly considering
an ensemble of parallel straight edge dislocations and numerically minimizing their
interaction energy. A similar approach has been followed in other recent studies of

dislocation loop patches [LBN93]. In these investigations, the primary unknown is the
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equilibrium position of the discrete dislocations, and their motion, which is driven
by their mutual interaction forces, is not explicitly related to the plastic deforma-
tion of the crystal. Consequently, the resulting structures cannot be interpreted as
deformation microstructures in general.

Kocks [Koc60] pointed out that interactions between primary and secondary dis-
locations, which are responsible for latent hardening in single crystals, necessarily
inhibit the simultaneous operation of more than one slip system over the same region
of the crystal and, consequently, cause the slip activity to segregate into regions of
single slip. Mobile dislocations belonging to two neighboring active systems meet at
the interface between the corresponding single slip regions and interact strongly, e.g.,
through the formation of immobile sessile jogs. The accumulation of such trapped
dislocations leads to the formation of dislocation walls. In general, these dislocation
walls contain two types of glide dislocations and therefore are referred to as dipolar
walls (e.g., [HKW86]). According to the energy minimization principle, the walls
thus formed should tend to adopt energy minimizing configurations. The minimum
condition was derived by Frank [Fra50] within the framework of linear elasticity. In
turn, Hirth and Lothe [HL68] (see also [BS86]) found the dipolar walls which satisfy
Frank’s condition. Evidently, this theory relates the dislocation structures to plastic
deformation processes only to the extent that the dislocation walls are required to be
composed of glide dislocations.

Despite the valuable insights revealed by these studies, a comprehensive math-
ematical analysis of dislocation structures in plastically deformed crystals does not
appear to have been attempted. In particular, the recently developed direct methods
of the calculus of variations (e.g., [Dac89]), including notions of weak convergence
and effective behavior, have not been applied to ductile single crystals to the best of
our knowledge. One of the primary goals of this work is to formulate the problem
of the determination of dislocation structures as a nonconvex minimization problem.
Because the constitutive behavior of ductile single crystals is inelastic, it is not im-
mediately clear what-if any—minimum principle characterizes the stable equilibrium

configurations of the crystals. We show, however, that a sequence of pseudoelastic
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energy densities may be defined which is minimized by the successive incremental de-
formations of the crystal. The incremental nature of the variational principle reflects
the inelastic and irreversible nature of plastic deformations.

The identification of an incremental pseudoelastic energy confers the problem of
determining the equilibrium deformations of ductile single crystals a variational char-
acter. It also reveals the following crucial insight: the pseudoelastic energy densities
of crystals undergoing geometrical softening or latent hardening are nonconvez. Here
geometrical softening refers to a reduction in the resolved shear stress required for
the operation of a system induced by lattice rotations [Asa83]; and latent hardening
refers to a high rate of hardening of the primary system due to the activation of
a secondary system ([Koc66]; [BW9la]; [BW91b]; [FBZ80]; [Koc64]; [RKC65]). In
particular, we find that the pseudoelastic energy density of previously undeformed
crystals possessing latent hardening has wells corresponding to those deformations
which are attainable by the activation of a single slip system followed by a lattice or
elastic rotation. Such crystals find it energetically favorable to deform locally in single
slip. A strategy for minimizing the energy of the crystal is, in essence, to attempt
to construct compatible deformations satisfying the following requirements: the plas-
tic deformation field consists locally of single slip; the elastic deformation consists
locally of a lattice rotation, which ensures the absence of “long-range stresses”; and
the average deformation matches a prescribed macroscopic value. A somewhat more
precise statement of this prescription is given in Section 3.4 in terms of minimizing
sequences of deformations.

As just stated, the determination of microstructures in ductile single crystals is
strictly a problem of compatibility and, as such, is in analogy to other problems
of microstructural development, e.g., those arising in the crystallographic theory of
martensite ([BJ87]; [Koh91]; [Bha9l]; [KM92]; [Bha92]). It bears emphasis that
the present theory seeks primarily to characterize the equilibrium deformations of
ductile single crystals, and is therefore at variance with approaches which regard the
disposition of discrete dislocation ensembles as the primary unknown. However, it

should be carefully noted that the energy-minimizing dislocation structures may be
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deduced from the deformation fields. Thus, while the deformation gradient field must
be compatible in some suitable sense, neither the elastic nor the plastic deformation
fields need be compatible in general. Physically, the incompatibility of the plastic and
elastic deformations is equivalent to a distribution of dislocations. The mathematical
connection between dislocations and incompatibility is discussed in Section 3.4 and
used subsequently to infer the geometry of dislocation structures.

In Section 3.4.1, interfaces between two single slip variants are characterized an-
alytically. These interfaces are subsequently taken as the basic building block for
sequential lamination, which results in the construction of complex wall structures.
The general results are specialized to the FCC crystal class in Section 3.5. The
predicted interfaces are of a precise crystallographic character and constitute a com-
pendium of commonly observed dislocation walls, e.g., the {100} walls characteristic
of the labyrinth structures in cyclically deformed crystals oriented for multiple slip
([Cha81]; [MB82]); [BBT85]; [JW84a]; [AKLM84]; [LVDS86]), which attests to the
soundness of the theory. Many commonly observed dislocation structures consist of
roughly parallel arrays of dislocation walls which, we argue, are instances of lamina-
tion. This includes coplanar slip zones such as observed by Higashida et al. [HTN86]
to form during the stage I of hardening in Cu-lat.%Ge single crystals; the fence struc-
tures observed during the early stages of stage II of hardening in FCC crystals [Ste66];
and the parallel arrays of dipolar walls which develop in FCC crystals fatigued to sat-
uration ([WM84]; [Yum89]; [LKKS86]; [Bou83]; [DBL&6]; [DHL86]). An instance of a
possible rank-two laminate, or a laminate of laminates, is discussed in Section 3.5.4.

Finally, in Section 3.6 a nonlocal extension of the theory is derived by adding to
the local free energy density of the crystal the self-energy density of the dislocations.
This extension introduces an absolute microstructural length scale and permits to
accord the dislocation walls a well-defined interfacial energy. On the basis of this
interfacial energy, the spacing [ of the dislocation walls is estimated. In the absence
of branching the theory predicts the scaling laws [ ~ L'/? and | ~ v~/2 in terms

of the grain size L and the slip strain ~, respectively. This latter scaling relation

is consistent with observations of the dependence of cell sizes on the applied strain
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[BK86]. Simple estimates of the wall spacing in copper single crystals fatigued to

saturation are also in the ball park of experimental observation.

3.2 Variational formulation of inelastic problems

Our first objective is to devise a variational formulation for inelastic solids. In par-
ticular, we endeavor to formulate the boundary value problem of finite deformation
plasticity as a sequence of incremental energy minimization problems. The appro-
priate definition of the energy function to be minimized is the principal aim of this
section. We show that, when the constitutive equations are integrated along defor-
mation histories which minimize the work of deformation, the resulting incremental
stress-strain relations take a pseudoelastic form, with the work of deformation itself
supplying the appropriate strain energy potential. This approach has been used in the
past to derive deformation, or pseudoelastic, theories of plasticity ([MP66]; [Mai69];
[SL69]; [CMT6]).

3.2.1 Field equations and constitutive framework

We begin by considering a general inelastic solid occupying a domain €2 in its reference
configuration. Deformations of the solid are described by deformation mappings y(x) :

Q — R? with gradient
F(z) = Vy(x). (3.1)

We adopt an internal variable formalism ([Lub72]; [Lub73]) to describe inelastic pro-
cesses undergone by the solid and postulate the existence of a Helmholtz free energy
density ¢(F,q) per unit undeformed volume, where ¢ € RY is some suitable finite
collection of internal variables. For simplicity, we restrict our attention to isothermal
processes and omit the dependence of ¢ and all other state functions on tempera-

ture. The local value of the first Piola-Kirchhoff stress tensor follows from Coleman’s
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relations in the form

_ 06(F,q)
P=—— (3.2)

Here and in all subsequent discussions of local behavior, we omit the dependence of
the fields on z for simplicity, and local relations such as (3.2) are tacitly presumed to

hold at all material points z € €2. The equilibrium of the solid demands that

V.P=0. (3.3)

In order to determine the evolution of the internal variable field, suitable kinetic
equations must be supplied. Assuming that the rate of the internal processes is
determined solely by the local thermodynamic state, the general form of the kinetic

equations is

§=f(F,q). (3.4)

The second law of thermodynamics places the following restriction on the rate equa-

tions:
Q-¢>0 (3.5)
where
_ 0¢(F,q)
Q=5 (3.6)

are the thermodynamic “forces” conjugate to q. The kinetic relations are said to
derive from an inelastic potential if there exists a differentiable function ¥ (Q), ¢) such

that

_0Y(Q,q)
=55 (3.7)
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For single crystals, the concept of inelastic potential was introduced by Rice [Ric75].
All the preceding constitutive relations are subject to material frame indifference,
i. e., must remain invariant under superimposed rigid body motions. In the particular
case in which the internal variables are scalars or remain unchanged under rotations

superimposed on the deformed configuration, material frame indifference requires that
¢(RF,q) = ¢(F,q), VR€ SO(3). (3.8)

A standard exercise (see, e.g., [Gur81]) then shows that the most general form of ¢

consistent with the requirements of material frame indifference is
¢=9¢(C,q), C=F'F (3.9)

where C' is the right Cauchy-Green deformation tensor.

3.2.2 Minimizing deformation paths

We shall assume sufficient regularity of the local deformation histories F'(¢) and the
rates f(F,q) to ensure existence and uniqueness of continuously differentiable solu-

tions ¢(t) of the local initial value problem
q(t) = f(F(t),q(®),  4(0) = (3.10)

over some time interval [0,T]. For instance, it suffices to assume that F(t) is a
continuous function of ¢ € [0, T] and f(F, ¢) a continuous function of F' satisfying the

Lipschitz condition

I f(Fq)— f(Fd)ISLllg—¢ | (3.11)

for all F, q and ¢/, t € [0,T], and some constant L (see, e.g., [Gea71]). These con-
ditions may reasonably be expected to be met, e.g., by most models of viscoelastic

and viscoplastic behavior, including viscoplastic regularizations of rate-independent
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plasticity models (see [Lub72] for examples of these models; [Ort81], chp. 3, for a dis-
cussion of the viscoplastic regularization). If the rates satisfy the Lipschitz condition
(3.11), it then follows that problem (3.10) is well-posed with respect to the initial

conditions, i. e., there exists a constant M such that
lat) —d'@®) 1< M|l g—ql (3.12)

for all ¢ and ¢/, t € [0,T] (see, e.g., [GeaTl]).

In order to define an incremental pseudoelastic energy density, we consider the
following auxiliary local problem. Let F'(¢) and ¢(t), t € [0,7T], be deformation and
internal variable histories at the point under consideration. Suppose that the initial
conditions F'(0) and ¢(0) are known and the final deformation F(T') is prescribed.
Then we wish to determine histories of deformation F(t), having the prescribed ini-
tial and terminal values F(0) and F(T), respectively, which minimize the work of

deformation density
T .
W = / P - Fdt. (3.13)
0

In writing (3.13) it is tacitly understood that ¢(¢) follows from F'(¢) by integration of
the kinetic equations (3.4). From relations (3.2) and (3.6), (3.13) may be recast as

T
W = / (¢ +Q - g)dt. (3.14)
0
The first term is a perfect differential and integrates exactly, with the result
T
W = [¢]?{+/ Q - gdt. (3.15)
0
The minimizing deformation paths satisfy the stationarity condition

_[0¢ R . Y
oW = ﬁ-6F+55-6q]0+/0 [0Q - ¢+ Q - 6¢]dt = 0. (3.16)
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Using (3.2) and the fact that §F(0) = 0, (3.16) reduces to

W = P(T) - 6F(T) + B_j : (5qr + /T[cSQ ¢+ Q- d4ldt = 0. (3.17)

An integration by parts of the second term in the integrand and (3.6) gives
T .
W = P(T) - 6F(T) +/ QG- O bqldt = 0. (3.18)
0

Finally, noting that 6 F(T) = 0, since F(T') is prescribed, results in the stationarity

condition
T -
6W:/ 60 G- Q- dgldt =0 (3.19)
0

which determines the minimizing deformation paths F(t).

3.2.3 Rate-independent behavior

The stationarity condition (3.19) simplifies further in the case of rate-independent
behavior. Let ¢(¢) be the solution of (3.10) corresponding to a deformation history
F(t), and let s(¢) be an absolutely continuous, monotonically increasing function of ¢t €
[0,T]. The solid is said to be rate-independent if the solution of (3.10) corresponding
to the deformation history F(s(t)) is q(s(t)) for all F(¢). Solids which are not rate
independent are said to be rate dependent.

A rate-independent theory of inelastic behavior may be formulated by identifying
an N-parameter family of convex sets K(q) € RY. The convex sets K(g), which are
allowed to have corners, define the elastic domain of the solid. As will become appar-
ent in subsequent applications to finite-deformation plasticity, an explicit dependence

of K on ¢ is generally required in order to account for geometric effects. Introduce
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the inelastic potential:

(@, q9) = Ik@(@) =0, if @ € K(q) (3.20)

= 00, otherwise.

Here, I ;) (@) is the indicator function of the convex set K (q) [Roc70]. Evidently, this
function is not differentiable with respect to @ in the ordinary sense, which precludes
a direct application of (3.7). Nonetheless, it was noted by Moreau ([Mor62]; [Mor63];
[Mor65]; [Mor66]; [Mor67]; [Mor70]; [Mor71]; [Mor74]; [Mor76]) in his pioneer work
on plasticity that the convexity of K (g) permits the definition of a generalized deriva-
tive of Ix(q)(Q) with respect to @, or ‘subdifferential’, which gives the conventional
flow rules of plasticity a rigorous mathematical meaning. A detailed discussion of
subdifferentials and their relation to plasticity may be found in [Ort81]. For present
purposes, it suffices to note that the subdifferential of I (4 (Q) is the set-valued func-

tion
@ q) =00Ix)(Q) ={d 5t (Q@—-Q)-¢>0, VQ' € K(q)}. (3.21)

It follows from this definition that the rates f(Q, ¢) = 0 if @ belongs to the interior of
K(q), while f(Q,q) is any element of the normal cone if @) is on the boundary 0K (q)
of K(q) [Ort81], in agreement with the conventional definition of the flow rule in rate-
independent plasticity. The subdifferential of a differentiable function coincides with
its ordinary derivative. Therefore, (3.7) may be extended to the rate-independent case
by simply interpreting derivatives with respect to @ in the sense of subdifferentials
as required.

An alternative device for sidestepping the mathematical difficulties inherent to
rate-independent behavior is to resort to a viscoplastic regularization. A particularly
convenient procedure is furnished by the classical Yosida’s regularization of nonlinear
semigroup theory [Yos65], leading to linear viscoplasticity. The relation between the

Yosida regularization and linear viscoplasticity was first noted by Ortiz [Ort81]. Let
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Pr(¢)(Q) denote the closest point projection of RN onto K(g). Thus,

- P = 1 -Q 3.22
18— Pr@(@) lI= jmin || Q- Q" (3.22)
for some suitable norm || - ||. Then the Yosida or linear viscoplastic regularization of
(3.20) is
1
fe= Z[Q — Pg)(Q)] (3.23)

where € is a viscosity constant which plays the role of a small parameter. This
class of kinetic equations satisfies all the regularity requirements assumed in Sec-
tion 3.2.2. In addition, it follows from general results of nonlinear semigroup theory
([CP69]; [CPT70]; [Ort81]) that the solutions ¢.(t) of the initial value problem (3.10)
corresponding to the kinetic relations (3.23) and the rate-independent solutions ¢(#)

corresponding to (3.21) satisfy the bound:
la(t) = ¢c(t) [|[< CVet (3.24)

which shows that the linear viscoplastic solution converges to the rate-independent
solution in the inviscid limit € — 0. Since € sets the temporal scale, it additionally
follows that the linear viscoplastic solution converges to the rate-independent solution
in the quasistatic limit, i. e., for sufficiently slow deformation processes. These results
show that the subdifferential formalism (3.21) required to represent rate-independent
behavior, which necessitates the consideration of lower semi-continuous inelastic po-
tentials of the form (3.20), may be conveniently sidestepped, if so desired, by con-
sidering slightly viscous regularizations of the form (3.23), with the rate-independent
behavior recovered in the limit of € — 0.

It is readily verified that, for rate-independent solids,

5Q - ¢ =0. (3.25)
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Thus, if Q(t) is in the interior of K(g(¢)), then ¢(¢) = 0 and (3.25) holds. If 4(¢) # 0,
then 6Q)(f) must represent neutral loading and be contained within the tangent cone
to K(q(t)) at Q(t). But, ¢(¢) lies within the normal cone to K(q(¢)) at Q(¢) and,
consequently, (3.25) also holds. In view of (3.25), the stationarity condition (3.19)

reduces to
T -
5W:—/ Q-5qgdt =0 (3.26)
0

for rate-independent solids. Clearly, for a purely elastic deformation history, such
that Q(t) lies in the interior of K(q(¢)) for all ¢ € [0,T7], 8q(t) is necessarily zero and
(3.26) is trivially satisfied. It thus follows that all elastic paths are extremal.

3.2.4 Pseudoelastic incremental behavior

Let W(F(T'); F'(0),¢(0)) be the work of deformation per unit undeformed volume
computed along a minimizing path joining F(0) to F(T).

Consider now a small variation 6F(T) of the terminal deformation. The cor-
responding variation of W (F(T); F(0),q(0)) is given by (3.18). But, since by as-
sumption W (F(T); F(0), ¢(0)) is computed along a minimizing path, the stationarity
condition (3.19) holds and (3.18) reduces to

SW = P(T) - §F(T). (3.27)
This shows that W(F(T); F(0), ¢(0)) is a pseudoelastic potential for P(T), i.e.,

P(T) = (3.28)

which is the sought incremental constitutive relation. Despite the similarity between
(3.28) and hyperelastic constitutive relations, the inelastic character (history depen-
dent) of the material is clearly belied by the incremental form of W (F(T'); F(0), ¢(0))

and its dependence on the initial conditions (F(0),¢(0)). It follows from material
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frame indifference that if F(¢) is a minimizing path, then R(¢)F(¢) is also a minimiz-
ing path for any rigid motion R(t) € SO(3) and does the same work of deformation
W over the interval [0,7]. In particular, the pseudoelastic strain energy density
W(F(T); F(0), q(0)) satisfies material frame indifference.
Besides leading to the incremental constitutive relations (3.28), an integration of
the kinetic equations (3.4) along a minimizing deformation path yields a terminal

value
q(T) = K(F(T); F(0),4(0)) (3.29)

of the internal variables. By construction, the mapping K is consistent with the

kinetic equations (3.4) in the sense that

FF(O).0(0) = | K (FT): FO,00)| (3.30

for all initial conditions F(0) and ¢(0). Additionally, because K (F(T); F(0),¢(0))
is the ezract integral of (3.4) along a minimizing path, it follows from (3.12) that K

satisfies the Lipschitz condition
| K(F(T); F(0),4(0)) — K(F(T); £(0),¢'(0)) |< M || q(0) — ¢'(0) | (3.31)

which may be regarded as a stability condition (see, e.g., [GeaT1], p. 55).

Evidently, actual deformation histories need not be minimizing paths. However,
in order to approximate the effect of an arbitrary deformation history F(t), ¢t € [0,T],
we may sample F'(t) at discrete times ¢, = nAt, n = 0,1,...N, At = T/N, and

apply the mapping (3.29) recursively to obtain the sequence
Qn—}-l:K(Fn—l—l,Fn:(Zn)a TLZO,,N—l (332)

where F,, = F(t,). At every step, the new stresses P, ; derive from the pseudoelastic
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energy density W (F,1; Fp, qn) as

6W(Fn+1§ Fna Qn)

3.33
aFn—H ( )

Pn+1:

As expected, the response is history dependent, i. e., Py depends not only on the ter-
minal deformation Fiy but on the complete history of deformation {F,,, n =0,..., N}.
While this incremental procedure is clearly approximate, it follows that the incre-
mental internal variable history converges to the exact one as the number of steps
increases. More precisely, the consistency and stability of K, egs. (3.30) and (3.31)

respectively, guarantee that
Qne—>q(t), asAt—0 (3.34)

(see, e.g., [GeaTl], p. 57).

3.2.5 Inelastic boundary value problems

The chief advantage of the incremental procedure just outlined is that the incremental
stress-strain relations are pseudoelastic, which opens the way for the application of
variational methods to inelastic solids. For the purposes at hand, it is sufficient to

consider affine displacement boundary conditions of the form
y(z,t) = F(t)x, € o, tel0,T] (3.35)
Since, by the divergence theorem, one has

Flt) = l_flﬂ /Q Vy(z,)dz (3.36)

F(t) may be regarded as a prescribed history of average deformation. A dual picture,
consisting of the application of tractions T'(¢t) = P(t) - n all around 9, has been
developed by Ball et al. [BCJ95]. Here n denotes the unit normal to 0Q. In this

approach, P(t) represents a history of average stress imparted to the solid by some
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suitable loading device.
In anticipation of the emergence of fine microstructures, we adopt a variational
definition of equilibrium and identify the stable equilibrium deformations of the solid

with the minimizers of the pseudoelastic energy

Elyns) = / W (Vs (2); 4 (@), 4o () d. (3.37)

By definition, F(y,.1) is the total work of deformation done as the deformation jumps
from F,(z) = Vy,(z) to Fhy1(x) = Vyni1(z) along local minimizing paths at all
points z € Q. Tt should be carefully noted that, while the deformation gradients F,,(x)
determined by the incremental procedure are compatible, the intervening deformation
histories connecting F,(z) to F,.i(z) through local minimizing paths may not be

compatible in general. Let y,.1(z) be a solution of the variational problem:

Blyns) = inf / W(Vy(2); (), a0 () da (3.38)

YyEYn 11

where the infimum is taken over some suitable space of functions satisfying the essen-
tial boundary conditions (3.35), e.g., Yni1 = {y = Fppz + o, vo € Wy (% R%)}.
In addition, let g,.1(z) be obtained by applying the evolutionary mapping (3.32)
locally to (Fy(z),q.(z)) with F,1(z) = Vy,i1(z) at every z € Q. In view of the
potential relations (3.33), it is clear that the Euler-Lagrange equation corresponding
to (3.38) is the equilibrium equation (3.3) and, consequently, for smooth solutions
the minimum principle (3.38) and (3.3) are equivalent statements of equilibrium. In
view of the local convergence property (3.34) of the incremental procedure, we may
reasonably expect, under suitable technical conditions, global convergence of y, 1 (z)
and g, ;1(z) to the solutions y(z,t) and ¢(z,t) should such solutions exist.

The existence of minimizers of (3.38) depends crucially on the quasiconvexity—or
lack of it thereof-of the pseudoelastic strain energy density W (see, e.g., [Dac89]). In
particular, if W first begins to lack quasiconvexity over the incremental step (£,, tp11),

there may not exist any energy-minimizing deformation y,.1(z) € Y,.1. It is often
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possible, however, to construct minimizing sequences of deformations y,(ﬂl which

attain the minimum energy in the limit, i. e., such that

lm B2) = nt [ WOy un(),aa(o)d (3.39)

YEYn 1

It should be carefully noted that the limit yﬂli\ynﬂ is not a minimizer in general,

i. e.,

YEYnt1

Eyuys) > inf / W(Vy(2); v (@), 40 (2))da, (3.40)

a manifestation of the lack of lower semicontinuity of the functional E(y). Minimizing
sequences often exhibit increasingly fine detail and have been found to describe well
certain observed microstructures. The examples given in Section 3.5 demonstrate
that certain dislocation structures are amenable to a similar interpretation, namely,
as minimizers of the energy functional (3.38).

While the concept of minimizing sequence, a leitmotiv of the modern calculus of
variations, has proved its worth in many applications, the infinite finiteness of the
microstructure predicted by the theory is an obvious flaw. The lack of existence
of minimizers is particularly cumbersome in the present incremental setting, as a
deformation y,(z) of finite fineness is required, e.g., at time ¢,, as the initial con-
dition for the subsequent step. At the core of the degeneracy of the local theory is
the lack of a characteristic or intrinsic length in the constitutive description of the
material. In other areas of application, regularized theories have been devised by
building additional physics into the model, such as surface energy, capillarity, bend-
ing and exchange energy. An effect of these higher-order terms in the energy is to
introduce an intrinsic length scale [ which sets a lower bound for the fineness of the
microstructure. Additionally, the higher-order terms may have a direct influence on
the microstructure, e.g., by promoting twin branching [KM92]. Often, the augmented
energy E“(y) is a singular perturbation of E(y) in the small parameter € = /L, where

L is a characteristic dimension of the crystal. By virtue of the smallness of [, the aug-
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mented theories retain the ability to account for fine microstructure. Yet another
simple device to eliminate unphysically fine structures from the solution is to restrict
the minimization of E(y) to a subspace Y., of functions y = Fz + y, such that the
support of the Fourier transform of y, is contained in the ball |k| < 27/l = A, where
A is the wavenumber cutoff. This device is widely used in statistical field theories
(e.g., [CL95]) to eliminate “ultraviolet” divergences, and is similar in spirit to the use
of a core cutoff radius in the theory of linear elastic dislocations.

In the case of crystal plasticity, the fineness of the dislocation distribution is ev-
idently constrained by the crystal lattice. Consequently, a characteristic material
length is the magnitude |b| of the Burgers vector, and the corresponding small pa-
rameter is € = |b|/L. It is conceivable that some singularly perturbed version E¢(y)
of E(y) might be justifiable on physical grounds. In this work, we shall primarily
focus on those features of dislocation microstructures which can be deduced from the
local energy E(y). A brief discussion of microstructural sizes and scaling is given in
Section 3.6, albeit within the simplified framework of the so-called ‘sharp-interface’

approximation ([Mod87]; [Ste88]).

3.3 Application to crystal plasticity

In this section, the preceding general framework is specialized to plastic solids and,
as a further special case, to ductile single crystals. Simple models of geometrical
softening and latent hardening are introduced which inevitably lead to nonconvex
pseudoelastic strain energy densities. This lack of convexity in turn lies at the root
of some commonly observed deformation and dislocation structures in crystals, as

demonstrated in subsequent sections.

3.3.1 Finite-deformation plasticity

Plastic solids are characterized by the existence of a certain class of deformations F?,

or “plastic” deformations, which leave the crystal lattice undistorted and unrotated,
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and, consequently, induce no long-range stresses. In addition to the plastic deforma-
tion F?, some degree of lattice distortion F'® may also be expected in general. One

therefore has, locally,
F = F°F? (3.41)
and the free energy density follows in the form
¢ = ¢(F*,7) = ¢(FF'~',7) (3.42)

where v is some suitable set of internal variables. We suppose that, for fixed =,
¢ is a nice (e.g., quasiconvex) function of F° attaining a strict minimum for any
F¢ € SO(3). The multiplicative elastic-plastic kinematics (3.41) was first suggested
by Lee [Lee69] and further developed by others ([Teo69]; [AR77]; [Hav73]; [HR72];
[Man72]; [Ric71]).

The free energy ¢ is subject to the requirement of material frame indifference.
It is evident from (3.41) that F? remains unchanged upon the superposition of a
rotation R on F', as such a rotation is absorbed by—and therefore solely affects—F®.
Assuming that the internal parameters v are scalar or also remain unchanged upon

superimposed rotations, material frame indifference requires that
$(RF*,7) = $(F%,7), VR e SO(3). (3.43)

A standard exercise (see, e.g., [Gur81]) then shows that the most general form of ¢,

consistent with the requirements of material frame indifference, is
¢ = ¢(C*,7), C¢ = FTFe = pp-Topr1 (3.44)

in accordance with (3.9). In (3.44), C¢ is the elastic right Cauchy-Green deformation

tensor.

For the standpoint of the general theory developed in the preceding section, FP
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may be regarded as a set of distinguished internal variables, with the remainder of the
internal variable set collected in the array v € R™. Thus, the complete set of internal
variables is ¢ = {F?,v}. A straightforward calculation gives the thermodynamic force
conjugate to F? as

= _ 09 _ per 99 peyprr
= —om = F gm (F)PT. (3.45)

It follows from material frame indifference and representation (3.9) of the internal

energy that
(SFPreeT = SFriee (3.46)

i.e., the tensor SFPTC¢ is symmetric. This places three algebraic constraints on S.

Additionally, the thermodynamic forces conjugate to -y are

_ 09

The complete set of driving forces is @ = {S, —¢g}. Assuming an inelastic potential of

the form (S, g; F?, ), the flow and hardening rules jointly follow from (3.7) in the

form
. oY
7 4
F oS (348)
. oY
= ——= A4
¥ 99 (3.49)

where partial derivatives should be interpreted in the sense of subdifferentials in the

rate-independent case.

3.3.2 Ductile single crystals

Next, we apply the general framework just outlined to ductile single crystals. Plas-

tic deformations in single crystals are crystallographic in nature. The conventional



e
=0
}.—l
=,
[\

Table 3.1: Schmid and Boas’ nomenclature.

kinetic relations for F?, or “flow rule,” are of the form [Ric71]
. N
FPErt =3 4% @ m® (3.50)
a=1

where v* € R, s* € R3, and m® € R? are the slip strain, slip direction and slip-plane

normal corresponding to slip system «. Plastic irreversibility requires that

¥* 20 (3.51)

A zero value of a slip rate 4*(¢) signifies that the corresponding slip system « is
inactive at time t. We note that the flow rule (3.50) allows for multiple slip, i. e., for
simultaneous activity on more than one system over a region of the crystal. A pair
(5%, m?) is referred to as a “slip system.” For instance, in FCC crystals s is any cube
face diagonal and m®, any cube diagonal, which gives the 24 slip systems enumerated
in Table 3.2. For ease of reference, we adopt Schmid and Boas’ nomenclature [SB61]

for the slip systems of an FCC crystal; see Table 3.3.2 and cf. Fig. 3.1.

Note that we need to differentiate between pairs of slip systems of the form (+s, m)
and (—s,m), as we have required that ¥* > 0. We shall denote by & the collection
of all slip systems available for plastic deformation. For processes of pure slip, one
has s@ - m® = 0, which, in view of (3.50) gives tr(FPF?~') = 0 and plastic flow is
volume-preserving.

The crystallographic flow rule (3.50) can be given the potential structure (3.48)

as follows. Begin by introducing the resolved shear stress 7 on slip system « as

7 = (SFPT) - (s* ® m®) (3.52)
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.nS L. [010]

[100]

Figure 3.1: Slip systems of an FCC crystal and Schmid and Boas’ nomenclature
[SB61].

System B2 B4 B5 A3 A2 A6
V2s +[011] | £[101] | £[110] | £[101] | £[011] | £[110]
3m || (111) | (111) | (111) | (111) [ (I11) | (111)
System || C1 C3 C5 D4 D1 D6
V2s +[011] | £[101] | £[110] | £[101] | £[011] | £[110]
V3m (111) | (I11) | (111) | (111) | (111) | (111)

Table 3.2: Slip systems of an FCC crystal.
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where the dot product A - B between two matrices A and B is A;;B;;. Following Rice

[Ric75] we write the flow potential 1) as the sum of slip system contributions, i. e.,

(S, g; F?,7) “(S,g; F?,7). (3.53)

uMz

Next, we assume that the crystal obeys Schmidt’s rule and write

P =97 - g%), (3.54)

e., the slip system flow potential ¥* depends on (S, g; F?,~) solely through the
corresponding resolved shear overstress 7@ — g®. In this context, g takes on the
significance of the critical resolved shear stress for the activation of slip system a.

Substitution of (3.53) and (3.54) into (3.48) and (3.49) gives

N [0

F? = ( % sa®ma) F? (3.55)
o ore

o _31/)0‘ _ 81/10[

= g = (3.56)

Insertion (3.56) into (3.55) gives the standard crystallographic flow rule (3.50), as

required.

3.3.3 Rate-independent behavior

In the particular case of a rate independent crystal, the slip system flow potential

takes the form:

v =0, if 7% — g <0 (3.57)

= 00, otherwise.

Evidently, it follows from (3.52) that, for fixed (g; F?, ), the elastic domain K (F?) =
{Se R 5. t.7*—¢g* <0, a=1,..., N} when represented in (SFP)-space is the



70

intersection of halfspaces and, therefore, is a convex set. Because of the orthogonality
condition s® - m®, it follows that, in (SFPT)-space, K is a cylinder coaxial with the
hydrostatic axis. In view of (3.52), it is evident that the elastic domain depends on the
current value of F?, which may be regarded as a geometric effect. This illustrates the
need for the explicit dependence K (g) of the elastic domain on the internal variables
allowed for in Section 3.2.3.

We now turn to the question of minimizing paths for single crystals. For a general
plastic material, the incremental work of deformation per unit undeformed volume

(3.13) takes the form
T .
W=lgf + [ (S F =gt (3.59)
0
In the special case of single crystals, substitution of (3.50) into (3.58) gives
T
W=l + [ (= g)- Fl (3.59)
0

where we have grouped all the resolved shear stresses into the array 7 € RY. Pro-

ceeding as in the preceding section, the stationarity condition is found to be
T
SW = / (67 — 6g) -4 — (7 — §) - 69)dt = 0. (3.60)
0
In the rate-independent limit (3.60) reduces to
T
/ (+ = §) - 6ydt = 0 (3.61)
0

which determines the minimizing deformation paths.

If 7@ — ¢® < 0 during [t1, 1) C [0,7], which corresponds to elastic unloading of
the system a, it follows that, necessarily, v* = 0 in that time interval and the corre-
sponding term in (3.61) vanishes. Thus, as expected, all elastic paths are stationary.
Suppose now that the crystal has at least five independent slip systems and that

we confine our attention to volume preserving deformation histories. By material
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frame indifference, we can further restrict our attention to pure stretch deformations
F(t) = U(t). This leaves five independent components of deformation. We shall as-
sume that any arbitrary variation d+(t) in the slip activity at time ¢ can be attained
by a suitable choice of U (t). The variations 6(t) being arbitrary, (3.61) requires that
7@ — §® = 0 for the active systems. These requirements and the plastic irreversibility

constraint (3.51) can be expressed compactly in Kuhn-Tucker form as
() —g*(t) <0, and 4%(t) >0, and [t*(t) —g*(O]V*(@) =0 (3.62)

for all slip systems @ = 1, ..., N, which are the optimality conditions for constrained

variational problems ([Roc70]). It follows from the third of (3.62) and (3.59) that
W =[élo, (3.63)

i. e., the work of deformation along a minimizing path in a rate-independent single
crystal equals the change in free energy.

Next, we shall consider such paths as result from constant slip rates ¥* over the
time interval [0,7] under consideration. The slip rates are subject to the plastic
irreversibility constraint (3.51) and some of them may vanish identically over the
time step. The working assumption is, therefore, that the pattern of slip activity,
i. e., the active slip systems and relative slip rates, remains constant throughout the

interval [0, T]. For these paths,
v (t) = (1 = ¢/T)v*(0) + @/ T)y*(T) (3.64)

and the flow rule (3.50) integrates to

a=1

FP(t) = exp {ZW) —(0))s* ® m} F?(0) (3.65)
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In particular,
N
FP(y(T); F*(0),~(0)) = exp {Z[’YQ(T) —7*(0)]s* ® m“} F?(0) (3.66)
a=1
and the elastic right Cauchy-Green deformation tensor at 7" takes the form

C*(v(T),C(T); F?(0),7(0)) = FP~T(v(T); F?(0), v(0))C(T)F?~*(y(T); F?(0),~(0))
(3.67)

where C(T) is given. If, in addition, the path is minimizing, then the work of defor-

mation follows from (3.63) and (3.44) in the form
W(H(T), C(T); F*(0),7(0)) = ¢(C*(+(T); F?(0),7(0)),%(T)) — ¢(0).  (3.68)
The terminal value v(T') of the slip strains then follows from the minimum problem:

W(C(T); F7(0),4(0) = min  W((T),C(T); F*(0),4(0).  (3.69)

Indeed, a trite calculation reveals that

oW (v(T), C(T); F7(0), v(0))

(1) =7(T) — g(T) (3.70)

and, consequently, the Kuhn-Tucker optimality conditions corresponding to (3.69)

are:

(T) - g*(T) <0, and ~+*(T)-~%0)>0, and (3.71)

[T*(T) — g*(D)]Iv*(T) = *(0)] =0 (3.72)

in accordance with (3.62).

Let A be the collection of systems that are active during the time increment.
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Thus,

Y(T) >~*0) if ac A (3.73)
Y4(T) =~20) if agA. (3.74)

Once problem (3.69) has been solved for (7'), for given C(T) and appropriate initial
conditions, the plastic deformation gradient history FP(t), t € [0,T] follows from
(3.64) and (3.65); C*(¢t) follows from the second of (3.44) in terms of the as yet
unknown deformation history C(t); S(t) follows from (3.45) and (3.46); 7(¢) from
(3.52); ¢(t) from (3.47) and (3.64); and, finally, the minimizing deformation history
is any function C(¢), with det(C(t)) = 1, satisfying the conditions:

() =¢*t) if ac A (3.75)
() < g*(t) if agA, (3.76)

provided that the ansatz (3.64) is correct and these constraints can indeed be simul-
taneously satisfied for all ¢ € [0,7]. It should be noted that constraints (3.75) and
(3.76) are satisfied at ¢ = T by the choice of v(T'), and the question is, therefore, if the
slip pattern can indeed be kept unchanged throughout the deformation increment.
The preceding construction reduces the determination of the pseudoelastic energy
density W for rate-independent single crystals to a conventional convex minimization
problem for the slip strains. The nature of W is illustrated in subsequent sections
for two important examples: crystals undergoing geometrical softening; and crystals
exhibiting latent hardening. In both cases, the corresponding energy density W is
found to be nonconvex. The particular well structure of W is subsequently taken as
a basis for constructing energy-minimizing microstructures which agree remarkably

well with observation.
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Figure 3.2: a) Single crystal oriented for single slip loaded in uniaxial tension; b)
stress-strain curve showing lack of convexity due to geometrical softening.

3.3.4 Geometrical softening

The deformation of single crystals may result in large lattice rotations and, corre-
spondingly, in sizeable variations in the resolved shear stresses acting on the slip
systems. Consider, for simplicity, the case of a crystal oriented for single slip. Under
the appropriate conditions, the lattice rotations may sufficiently increase the resolved
shear stress on the active slip system to cause the behavior of the crystal to turn
unstable, a phenomenon known as geometrical softening [Asa83).

In order to illustrate the concept of geometrical softening and its relation to lack of
convexity, we consider the case of single crystal oriented for single slip and loaded in
uniaxial tension, Fig. 3.2a. To further simplify the problem, we shall neglect hardening
and the elasticity of the crystal, i. e., we take F* = R € SO(3), and assume that the
axis of loading is contained within the plane defined by the slip direction s and the
slip plane normal m. We chose a cartesian reference frame in which the (z;, z2)-plane
coincides with the (s, m) plane and the xo-axis is aligned with the loading axis. The

crystal then deforms in plane strain within the (z;, z2)-plane and the axis of lattice
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rotation is the zs-axis. Let § be the angle subtended by the initial slip direction s to

the x; axis and let « be the angle of lattice rotation, so that

cosa —sina O

R=|sina cosa 0 (3.77)
0 0 1
and
cos(0 + «) —sin(f + )
Rs = Sin(e + a) , Rm = cos(H + a) (3.78)
0 0

The activation of the system requires
T=osin(f +a)cos(f+a)=g (3.79)

where ¢ is the applied uniaxial stress and g is the constant critical resolved shear

stress. The deformation gradient is

F = R[I+vs®m]
cosae —sina 0 —cos(f + a)sinf cos(f + a)cosh 0
= |sina cosa 0| +7]| —sin(@+a)sind sin(d+a)cosf 0 |(3.80)
0 0 1 0 0 1

Assuming that the specimen stretches under the action of fixed grips furnishes the

kinematic constraint

0 0
Fli]l=1|ax (3.81)
0 0
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where ) is a prescribed stretch ratio. Inserting (3.80) into (3.81) gives the identities
—sina + ycos(f + a) cosf =0, cos o + ysin(f + a) cos§ = A (3.82)

From (3.79) and (3.82) we obtain

g sin & ) cosa 4 sin asin(f + «)
o= = _
sin(f + a) cos(f + a)’ 7 cos(f + ) cos b’ cos(f + )
(3.83)

parametrized in terms of «. The deformation power may be variously expressed as

(3.84)

which shows that W = g~.

The stress-strain curve of the crystal in terms of the work-conjugate variables
(0,log \) can be obtained by eliminating « from the first and third of (3.83). The
stress-strain curve and work density function W (log M) corresponding to § = 7/8 and
« € [0, 7/4] are shown in Fig. 3.2b. The lack of convexity of the work energy function
is evident from the figure. In particular, we note that the stress-strain curve has the
familiar up-down-up form of one-dimensional models of displacive phase transitions in
solids ([Eri80]; [Sil89]). The equilibrium solutions led to by these models are presently
well understood ([TZ95]; [TZ96]) and, by analogy, we may expect crystals undergoing
geometrical softening to develop fine microstructure. We shall return to this question

in Section 3.5.2.

3.3.5 Latent hardening

Latent hardening tests ([Koc66]; [FBZ80]; [BW9la]; [BWI1b]; [Koc64]; [RKC65])
have been widely used to investigate the hardening behavior of single crystals. In
latent hardening experiments, the crystal is first oriented for single slip and loaded

in uniaxial tension or compression. The crystal is subsequently cut into smaller
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Figure 3.3: Schematic representation of latent hardening tests, showing primary and
secondary loading phases and definition of the latent hardening ratio.

specimens which are rotated and re-loaded so as to activate a secondary system; see
Fig. 3.3. This type of test enables a direct characterization of the hardening induced in
secondary systems by plastic activity in the primary slip system, or latent hardening.

Latent hardening data is often reported in terms of the latent hardening ratio
LHR= 7,/7,, where 7, and 7, denote the critical resolved shear stresses on the primary
and secondary slip system, respectively. The values of the critical resolved shear
stresses are typically obtained from the stress-strain curve by backextrapolation. The
experimental data [FBZ80] reveals that the LHR is a function of the prestrain -,
on the primary system and the strength of the interaction between the primary and
secondary systems. For well-annealed FCC crystals the LHR reduces to 1 as 7, — 0,
as the initial critical resolved shear stress is the same in all systems. With increasing
vp, the LHR goes through a maximum and then settles down to a nearly constant
value.

The mechanisms underlying this dependence are noteworthy. In the prestraining
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stage, the variation of 7, is determined by dislocation multiplication on the primary
system and the attendant increase in the density of point obstacles on the secondary
slip planes. Thus, 7, increases at a high rate typical of the stage II of hardening.
By contrast, 7, increases at a low rate characteristic of the stage I of hardening in
crystals oriented for single slip. Consequently, at small prestrains 7, attains values
considerably in excess of 7, and the LHR rises sharply. For large prestrains, the
dislocation density on the primary system saturates and 7, attains a nearly constant
value. Concurrently, 7, continues to grow slowly due to the self-hardening of the
primary system, which results in a downturn in the LHR.

Crystals undergoing plastic deformation are often observed to develop domains of
predominantly single slip ([BO54], [PCC55] [Sai63]), a mode of deformation which
has been termed “patchy slip” [Asa83]. Several experimental observations of patchy
slip are collected in Fig. 3.4. Piercy et al. [PCC55] attributed this nonuniform
slip mode to latent hardening. They argued that “these results prove the reality
of latent-hardening, in the sense that the slip lines of the one system experience
difficulty in breaking through the active slip lines of the other one” ([PCC55], p. 337).
This conjecture is born out by the bifurcation analysis and numerical simulations of
Pierce et al. [PAN82]. Thus, Pierce et al. [PAN82] applied Hill and Hutchinson’s
bifurcation analysis [HH75] to Asaro’s double-slip planar model of crystals [Asa79]
and found that, for sufficiently strong latent hardening, the governing equations may
change type from elliptic to parabolic. Pierce et al. [PAN82] reasoned that this
transition marks the inception of patchy slip. Finite element simulations of specimens
subjected to uniaxial tension carried out by Pierce et al. [PAN82] do indeed exhibit
nonuniform slip patterns consisting of alternating regions of single slip on the primary
and secondary systems.

It should be carefully noted, however, that bifurcation analyses of the Hill and
Hutchinson type [HH75] are based on the incremental behavior of the solid-the “lin-
ear comparison solid” in Hill’s parlance-and, consequently, are not fully nonlinear.
This inevitably weakens the case for an unequivocal cause-and-effect relation between

latent hardening and patchy slip. In subsequent sections, we carry out a nonlinear
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Figure 3.4: Instances of slip segregation into single-slip domains, or “patchy slip.” a)
From [BOS54]; b) from [Sai63]; ¢) from [RP80]; d) from [JW84b].
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analysis based on the energy minimization theory developed in the foregoing. Within
this framework, the transition to patchy slip arises as a consequence of the lack of
convexity of the energy function in the presence of latent hardening. The well struc-
ture of the pseudoelastic strain energy density suggests that crystals exhibiting latent
hardening can reduce the work required to attain a prescribed average deformation by
developing microstructures consisting of single-slip variants. Deformation structures
based on this ansatz are constructed in subsequent sections.

In order to explicitly exhibit the relation between latent hardening, lack of con-
vexity and patchy slip, we resort to a simple model of latent hardening. In particular,

we seek a model with the following attributes:

1. Parabolic hardening in single slip: g*(v*) ~ /7%

2. Off-diagonally dominant hardening matrix: h%® > h®®* o,8=1,...,N, 8 # a,
where h*?(y) = 8g%/07” is the hardening matrix.

These two requirements roughly reflect the phenomenology of latent hardening sum-
marized above. Evidently, the assumption of parabolic hardening can be trivially
generalized to an arbitrary power-law dependence of g® on v*, but this generalization
will not be pursued here. Begin by assuming an additive decomposition of the free

energy of the form
¢ = We(C®) + WP(y) (3.85)

Implicit in this decomposition is the assumption that the elastic response of the
solid, e.g., upon unloading, is not affected by internal processes, which is a good first
approximation for metals. We further suppose that W€ is quasiconvex, which rules
out purely elastic microstructures, and that W¢ > 0 and W¢(I) = 0. For free energies

of the form (3.85), the hardening relations and hardening matrix are

_ OWP(y)
=5

wg  OPWP(y
h B == —a—f)W’(y‘). (386)

«

9

bl
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A class of functions WP?(-y) which conforms to the requirements stated above is

0 N N o 13
WP = S [Z Zaaﬁ%%} (3.87)
a=1 =1
where 75 and 7y, are a reference resolved shear stress and slip strain, respectively, and

a®® are interaction coefficients.

Experimentally determined values of the matrix a®® have been given by Franciosi
and Zaoui [FZ82] for FCC and BCC crystals. They classify the interactions between
systems according to whether the dislocations belong to the same system (interac-
tion coefficient ay), fail to form junctions (interaction coefficient a, ), form Hirth locks
(interaction coefficient a1), co-planar junctions (interaction coefficient a;), glissile
junctions (interaction coefficient as), or sessile Lomer-Cottrell locks (interaction co-
efficient a3), with ap < a; < ay < a3. These order relations give an off-diagonally
dominant hardening matrix h*® as required. For copper, a fit to the experimental
data gives ay/ag = 5.7, as/ap = 10.2, az/ag = 16.6 [Cn092].

A simple geometrical model for the interaction matrix a®® has been proposed by
Cuitino and Ortiz [Cn093]. The model is based on counting the number of forest
dislocation intersections per unit area of the slip plane, which gives the density of

point obstacles. A trite calculation gives

a*? = %\/1 — (m® - mpP)2. (3.88)

In this simple model the slip systems do not self-harden. Indeed, typical resolved
shear stresses required to deform a well-annealed crystal in single slip tend to be
small compared to those required for multiple slip and, for purposes of understanding
the morphology of dislocation structures, they can conveniently and expeditiously be
neglected to a first approximation. The relation (3.88) was used by Cuitifio and Ortiz
[Cn093] — in lieu of more detailed experimental data — to describe the hardening of
NizAl single crystals.

The form of the pseudoelastic strain energy density (3.69) predicted by the model
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is of particular interest. Begin by considering a deformation increment from a previ-
ously undeformed state, i. e., set F?(0) = I, v(0) = 0. From (3.59), (3.85), (3.87) and
the assumed properties of W€, it is clear that W > 0. In addition, owing to the lack
of self-hardening in model (3.88), one has W (F(T')) = 0 for any terminal deformation

of the form
F(T)= R(T)F*(T), FY(T) =1+~%(T)s*® m®, (3.89)

i.e., for deformations consisting of single slip followed by an arbitrary lattice rotation
F¢ = R € SO(3). Indeed, from the first of (3.89), one has C¢(T) = I and, conse-
quently, We¢(C¢(T)) = 0 by the assumed properties of W*¢. Additionally, W? = 0 as
a consequence of the approximation a** = 0. It therefore follows that all single-slip
deformations constitute “wells,” or local minima, of the incremental strain energy
density W of previously undeformed crystals exhibiting latent hardening. In partic-
ular, the energy density W is nonconvez, which foreshadows the development of fine
microstructures.

To exhibit more explicitly the well structure induced by latent hardening, we
consider the simple case of a well-annealed FCC crystal deforming in plane strain
within the plane determined by the directions [101] and [010]; see Fig. 3.5a. The
normal to this plane is in the [101] direction. Combinations of slip systems which
result in plane-strain deformations with this geometry are the pair (111) [110] and
(111) [011], which jointly gives rise to effective in-plane shear along the [121] direction;
see Fig. 3.5a. Similarly, the systems (111) [110] and (111) [011] combine to produce
effective in-plane slip along the [121] direction. Finally, the joint operation of the
pair of systems (111) [101] and (111) [101] also results in the in-plane effective system
(010) [101]. By material frame indifference and incompressibility (not considering
the elastic compressibility), there are only two independent deformation components,
which may be chosen to be (€11 —€22) and €15, where € = log U is the logarithmic strain
tensor. The corresponding energy function W is displayed in Fig. 3.5b. The lack of

convexity of W is immediately apparent. A section of W along a circle || € ||= const.
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Figure 3.5: a,b) Crystal orientation leading to plain strain deformation and active
slip systems; ¢) pseudoelastic energy density revealing nonconvexity induced by latent
hardening; d) W(ro, 8), with 0 < 0 < 27; e) active slip systems.
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centered at the origin exhibits multiple minima, or “wells,” corresponding to single-
slip deformation modes. As noted earlier, due to the lack of self-hardening in the
model, W vanishes identically at these minima.
Next, consider the incremental deformations over a time interval [0, T of a crystal

that has been prestrained in single slip. In this case,
F(0) = R(0)F?(0), FP(0) = I+ ~%(0)s* ® m*® (3.90)

for some slip system «. Evidently, terminal deformations F(T') requiring the activa-
tion of a secondary system inevitably induce latent hardening and, consequently, lead
toa W > 0. By contrast, a terminal deformation of the form (3.89), resulting from
the continuing activation of the prestrained slip system, gives W = 0. Therefore, the
only energy well available to a crystal prestrained in single corresponds to further
single-slip on the prestrained slip system. This reduction in the number of wells due
to prestraining in single slip may be regarded as a “training” of the crystal, which is
subsequently conditioned to prefer a specific single slip for further deformation. We

shall refer to deformation histories of form
F(t) = R(t)FP(t), FP(t) =T+ ~v%(t)s* @ m® (3.91)

as “persistent single slip.” Note that the slip-strain history v*(¢) is allowed to be
arbitrary and, in particular, may exhibit cycles in the 4+s® directions such as occur
in fatigued single crystals. From the above results, it follows that the incremental
energy densities W corresponding to any interval (¢;,%s) of a history of persistent

single slip vanish identically.

3.4 Dislocation structures

The models of geometrical softening and latent hardening developed in the preceding
sections lead to nonconvex incremental energy densities. Under these conditions,

uniform deformation fields are not minimizers of (3.38) in general. Thus, consider a
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macroscopic neighborhood 2 of a ductile single crystal subject to affine displacement
boundary conditions of the form (3.35). Then, the crystal can generally do better in
energetic terms than to deform uniformly over €2 by exploiting the well structure of
the incremental strain energy density W.

For crystals exhibiting latent hardening, the results given in the preceding section
show that uniform deformations consisting of persistent single slip are incremental en-
ergy minimizers. This suggests a strategy for constructing more general approximate
energy minimizers over {2, namely, to seek compatible deformation fields satisfying

(3.35) which consist locally of persistent single slip, i. e., which are of the form

F.(z,t) = R(z,t)FP(z,1) (3.92)

FP(z,t) = I 4 ve(z, t)s(z) ® me(z), (se(z),me(z)) € S (3.93)

over a subset 2, C 2. Note that this is strictly a problem of compatibility. The reason
for not insisting on persistent single slip almost everywhere in € is that compatibil-
ity of deformations, e.g., at the boundary, will in general require the introduction
of boundary layers involving complex slip patterns and elastic strains. However, we
expect that the measure [ — €| can be made arbitrarily small by refining the mi-
crostructure. If, in addition, the energy density remains bounded almost everywhere,
it follows that the sequence F(z,t) = F} /i(z,t) defines an incremental energy min-
imizing sequence.

A fundamental question concerns which average deformation histories F(¢) can
be accommodated by the microstructures just described. It is clear that, for any
such deformation history, the crystal is trained into a pattern of local persistent
single slip early on, and subsequent average deformations must be compatible with
the established microstructure. Within the framework of linearized kinematics, a
plausible conjecture is that, for crystals possessing a sufficiently rich set S of slip
systems, e.g., five or more independent slip systems, incremental energy minimizing

sequences of persistent single slip exist for any history of volume-preserving average



86

deformation gradients of the form
Fit)=1+ f(t)G (3.94)

where f(t) is any absolutely continuous function of time in the interval [0, 7], and G
is a constant traceless matrix. A plausibility argument supporting this conjecture is
given in Section 3.4.3. The linearized kinematics framework is particularly relevant
in high-cycle fatigue, where typical deformation amplitudes are of the order of 1073.
Indeed, many of the examples of microstructures given in Section 3.5 pertain to high-
cycle fatigue of single crystals and polycrystals.

So far we have formulated the problem of microstructural development in ductile
single crystals in terms of compatible deformation fields F'(x,t), and the mathematical
description of dislocation structures has not as yet been addressed. However, the
connection between deformation and dislocation structures is readily made. Thus,
while F(z,?) must be compatible, i. e., it must be a gradient for all ¢ € [0, T] in some
suitable weak sense, the plastic deformation field F?(z,t) is not subject to any such
requirement. Physically, the incompatibility of FP(z,t) represents a distribution of
dislocations within the crystal. To see this, let I be a smooth closed circuit inscribed
within the undeformed crystal, or Burgers circuit. Owing to the incompatibility of

FP, the vector
b(l) = 7{ F? . dx (3.95)
r

is not zero in general but amounts to the vector sum of the undeformed or true Burgers
vectors of all dislocations encircled by I'. Let ¥ be any smooth surface bordering on

I'. Then, by Stokes theorem,
b(T) = / (F? x V) - NdS (3.96)
b

where N is the unit normal to ¥ and dS is the element of area. Following Nye
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([Nyeb3]; see also [Mur87]), the dislocation density tensor is defined as

A=FPxV (3.97)
whereupon (3.96) can be rewritten as
B(T) = / A NdS. (3.98)
s

It is evident from (3.97) that A is a measure of the incompatibility of F? and that,
from a continuum perspective, dislocations are inextricably related to incompatibility.

A direct consequence of definition (3.97) is that
A-V =0. (3.99)

This identity embodies the physical requirement that dislocation lines cannot end
abruptly in the interior of the crystal. Indeed, if the surface ¥ in (3.96) is closed,
then an application of the divergence theorem and (3.99) shows that the net Burgers
vector flux through the surface is zero, as required. Identity (3.99) also embodies
Frank’s rule for dislocation reactions.

The dislocation density tensor corresponding to a single dislocation line supported

on a curve C' in Q is
A(z) =b@t(z)oc(x) (3.100)

where b is the Burgers vector of the dislocation, ¢ is the unit tangent to C and d. is the
Dirac-delta supported on C. Another noteworthy special case is that of continuously

distributed parallel dislocations, for which
A=pb®t (3.101)

where p is the dislocation length per unit volume.
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It follows from the fundamental relation (3.97) that representation (3.92) and
(3.93) describes not only deformation microstructures but dislocation microstruc-
tures as well. However, it bears emphasis that the present approach is at variance
with investigations of low energy dislocation structures which regard the dislocation
density tensor A, e.g., representing an ensemble of discrete dislocations, as the pri-
mary field, and seek to minimize the long-range stresses—or the corresponding elastic
strain energy-induced by A. By contrast, in the present approach F? is the primary
unknown field and A derives from it through (3.97). In particular, the dislocation
distribution is consistent with a history of plastic slip in the crystal. In addition, long-
range stresses are absent from the crystal by construction, as the elastic deformation

F¢ is required to be locally a rotation.

3.4.1 Dislocation walls

In this and subsequent sections, we proceed to describe some simple structures of the
form (3.92) and (3.93), namely, interfaces and laminates. Despite their simplicity,
these structures suffice to explain a number of experimental observations, as demon-
strated in Section 3.5.

We begin by characterizing all possible planar interfaces separating two uniformly
deformed regions of the crystal undergoing single slip. By analogy to the crystallo-
graphic theory of martensite, we shall refer to each of the regions separated by the

interface as variants. The deformations of the variants are, therefore,
FEt) = RE@)(I +v*(t)sT @ m®), (sf,m*)eS, tel0,T] (3.102)

where the labels + refer to the plus and minus sides of the interface as determined
by the unit normal N. The active systems in each of the variants are assumed to
remained unchanged throughout the deformation. For definiteness we shall further

suppose that the crystal is initially undeformed, i. e.,

RE(0)=1I, ~%0)=0 (3.103)
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and we shall require the functions R*(¢) and v*(¢) to be absolutely continuous. In
particular, we rule out unphysical discrete jumps in either the lattice rotations or the
slip strains.

Compatibility across the interface demands
[Fl=F"-F =[y~]®N (3.104)

The rotation R~ can be set to the identity without loss of generality. Then, RT may
be regarded as the rotation of the (+) variant relative to the (—) variant. In addition,
the slip strain v~ may conveniently be utilized to parametrize the motion instead of
time. Then, the compatibility condition (3.104) must be satisfied for all values of y~.
Eq. (3.104) imposes four constraints on [F], namely, that the determinant and the
three principal minors of [F] vanish identically. Thus, for fixed 7=, (3.104) defines
a system of four nonlinear equations in the four unknowns v+, R*. The problem is,
therefore, to find all solutions (y*, R™) of this system of equations.

Of particular interest is the dislocation structure attendant to an interface. As
noted in the foregoing, while the deformation gradients F are required to be com-
patible at the interface in the sense of (3.104), the plastic deformations need not be
compatible in general, and the incompatibility of F? is equivalent to a dislocation dis-
tribution of density (3.97). For interfaces, and application of (3.97) in a distributional

sense, gives
A(z) = —[F?] x Nén(z) (3.105)

where II is the plane of the interface and dp is the Dirac-delta supported on II. As
expected, the dislocations are confined to the interface and form a two-dimensional

dislocation array. In the special case of variants undergoing single slip,

A(z) = [ys®m] x Nép(z) (3.106)
= (v*sT) @ (N xmM)on(z) — (v7s7)® (N x m™)dp(z)  (3.107)
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A comparison of this density and (3.101) reveals that the dislocation wall comprises

two bundles of parallel dislocations of line density, Burgers vector and direction

+
ot = %&[(x), B =bst,  tf =N xm* (3.108)

respectively. In (3.108), b is the magnitude of the Burgers vector. The dislocation
density tensor can alternatively be computed from the jump in elastic part F¢ of the

deformation gradient. Thus, inserting (3.41) into (3.105) and using (3.104) leads to
A(z) = ([F'FT) x Nén(z) = ([F*]F~) x Nén(z) (3.109)

In the absence of long-range stresses, F¢* = R* € SO(3), and one has
A(z) = ([RT]F*) x Nén(z) = ([RY]F~) x Nén(z) (3.110)

which shows that the dislocation density tensor is related to the misorientation [RT]
of the variants.

Two-dimensional dislocation arrangements of the type just described have been
variously termed dislocation boundaries and dislocation walls. Dislocation arrays are
often used as mathematical representations of grain boundaries [HL68], but here the
emphasis is on dislocation boundaries composed solely of glide dislocations. Because
the walls contain dislocations belonging to two different slip systems, they are com-
monly termed dipolar walls. Planar dislocation walls of well-defined crystallographic
orientations are often observed, e.g., as part of the labyrinth structures which de-
velop in cyclically deformed crystals oriented for multiple slip ([AKLM84]; [Cha81];
[MB82]; [BBTS85]; [JW84a]; [LVD86]); and in the “fence” structures observed during
the early stages of stage II of hardening in FCC crystals [Ste66]. Specific examples
of dislocation walls observed in FCC crystals are presented in Section 3.5.

It has been long known (see, e.g., [Nab67]) that certain infinite dislocation walls
do not induce long-range elastic stresses in the crystal and, consequently, constitute

low-energy dislocation structures. Not surprisingly, therefore, those dislocation walls
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turn up ubiquitously as energy minimizers in numerical simulations of ensembles of
discrete dislocations ([Neu86]; [LBN93]). In the present theory, the dislocation walls
which are devoid of long-range stresses are precisely those for which F** = R* ¢
SO(3), as posited in (3.102). However, it should be carefully noted that the precise
crystallographic nature of dislocation walls which is observed experimentally does
not necessarily follow by simple minimization of the interaction energy of discrete
dislocations, but, as demonstrated in Section 3.5.1, requires the additional kinematical

assumption of persistent single slip in the variants.
The enforcement of compatibility at the interface in incremental or eulerian form

proves useful in the analysis of certain interfaces. Let
|=Vv=FF! (3.111)

be the spatial velocity gradient. For persistent single slip on both sides of the interface,

a straightforward calculation gives
li — ,'y:t(R:l:S:t) ® (R:tm:t) + R:t(R:i:)~1. (3112)

Evidently, [* represent the superposition of incremental slip on the rotated systems
(R*s*, R*m®) and incremental lattice rotations R*(R*)~'. In a spatial setting, the

compatibility condition (3.104) becomes
M= =[vn]®n (3.113)

where n represents the current unit normal to the plane of discontinuity. For volume-
preserving deformations, it follows that tr(I*) = 0, which in view of (3.113) necessi-

tates
[v.,n]-n=0. (3.114)

The relation between ([y,n],N) and ([v,,],n) follows simply by inserting (3.111)
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into (3.113), with the result

oD =1 ()N | (] = F*F) il 0= e (119)

For variants undergoing single slip, insertion of (3.112) into (3.113) gives
AT(RYs) @ (RTmT) + RT (RN =47 s~ @m™ =[v,.] ®n. (3.116)

The instantaneous lattice rotation may be eliminated by decomposing (3.116) into

symmetric and skewsymmetric parts, with the result

sym([v.n] ®n) = FFsym[(RTsT) ® (RTm™)] — 7 sym(s” @m™) (3.117)
skw([v,,]®n) = FTskw[(RTs')®@ (RT™m™)] +
RT(RY)™' — 4 skw(s™ ® m™). (3.118)

Here

1 1
symAZ-j = '2—(/1” -+ A]'i), SkWAij = E(AU - Aﬂ) (3119)

signify the symmetric and skewsymmetric components of a tensor A.

It therefore follows that a necessary condition for compatibility is that the left-
hand side of (3.117) be the symmetric part of a traceless rank-one tensor. It is
a simple matter to verify that a traceless symmetric second-order tensor over R3
is the symmetric part of a traceless rank-one tensor iff its determinant vanishes.
To see this, let A = sym(a ® n), with a -n = 0. Clearly, A(a x n) = 0, which
shows that A is singular and, consequently, its determinant is zero. Conversely, let
det(A) = 0. Since, in addition, tr(4) = 0 by assumption, the eigenvalues of A
are of the form {—v/2,v/2,0} for some v € R. Let {ej, 2, e3} be the corresponding
eigenvectors and set a = s, s = (ea4e1)/V/2, m = (e Fe;)/v/2. Then, sym(a®m) =
~(v/2)e1 ® €1 + (7/2)e; ® e = A, which completes the proof. It follows from this

derivation that the symmetric part of a traceless rank-one tensor may be regarded as
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the small-strain tensor corresponding to an infinitesimal slip strain « on the plane of
normal m in the direction s. It should be carefully noted that there are two equivalent
representations of A obtained by exchanging the roles of s and m.

An application of this result to (3.117) yields the condition
det{¥"sym[(R"s") @ (R"m™)] — ¥ sym(s- ® m™)} =0 (3.120)
which, after some trite algebra, reduces to the equation

[Rtst, RPm™, s7][RTst, R"m*, m™ |y =

[s7,m™,R*st|[s",m™, RTm™)y~ (3.121)

where [a,b,c] = (a X b) - ¢ is the triple product. The infinitesimal lattice rotation
R*(R*)™" can be determined from (3.118) as follows. Let (—%/2, 4/2,0) be the eigen-
values and (ey, ey, e3) the eigenvectors of {¥Fsym[(R*s') ® (RTm™)] — ¥ sym(s~ ®

m~)}. Then,

[v:n] = Y(e2 £ €1)/V2 (3.122)
n=(esFe)/V2 (3.123)

and it follows from (3.118) that

wt = RY(RT)!
= +skw([v,,] ®n) —
Atskwl[(RTs%) @ (RT™m™)] 4+ 4 skw(s” @ m™). (3.124)

We shall refer to interfaces such that

[RYsT,Rtm™*,s7|[Rtst,R"m*,m™] #0, and

[s7,m™,R"s%][s",m™, R"Tm™*] # 0 (3.125)
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as “nondegenerate” interfaces. Assuming that the nondegeneracy condition (3.125)
holds for ¢ € [0,T] and that y~(¢) is given, then eqgs. (3.121), (3.124) and the initial
conditions (3.103) define an initial value problem for v*(¢) and R*(t). This problem
has two solutions, or branches, depending on the choice of sign in eq. (3.124). In
degenerate cases eq. (3.121) is trivially satisfied and the geometry of the interfaces
cannot be determined incrementally. Instead, the jump condition (3.104) must be

enforced directly.

3.4.2 Simple laminates

Simple laminates reveal useful insights into commonly observed deformation struc-
tures and furnish the basic building block for recursive lamination. Let L be a char-
acteristic dimension of the domain Q of the crystal and let | < L, e = [/L < 1.

Define the characteristic functions x(£) : [0,1) — R of the variants as

. 0, if¢&elo,vl);
xe (§) = (3.126)
1, ifeevi,l),

x: (&) = 1-x7 (¢ (3.127)

with = € [0,1]. Next extend these functions to the whole real line by periodicity.
In addition, let v+ =1 — v—, so that v+ + v~ = 1. Next, consider two deformation
histories F=(t) of the form (3.102) satisfying the jump condition (3.104). Pairs of
deformations of this form are exhaustively classified for FCC crystals in Section 3.5.
+

Then, the corresponding laminate of layer thickness [ and volume fractions v~ is

characterized by deformation gradients, rotations and plastic deformations of the
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form

Fz,t) = xF(@z-N)Fr@e)+x_(z- N)F~(¢) (3.128)
Fi(z,t) = xHz-N)RT(t)+x. (z- N)R™ (t) (3.129)
Fe(z,t) = x (@ - NI+~ (t)st @m™) +

Xc (@ - N)YT+v(t)s"®@m™) (3.130)

respectively. By construction, this deformation field is weakly compatible and, con-
sequently, there is a continuous displacement field y(z,t) whose gradient is F(z,1)

almost everywhere. The average deformation in the laminate is
F@)=vFT(t)+v F (1) (3.131)

which is independent of e. The dislocation structure corresponding to laminates

consists of an array of parallel dislocation walls of the type (3.105), i. e.,

Az, t) = i[[fy(t)s ®m] x Njo(z-N—kl)—d6(x- N~ (v~ + k). (3.132)
k=1
Periodic arrays of dislocation walls of this type are very frequently found in FCC
crystals, ¢f. Section 3.5.

Now let the crystal be subject to affine boundary conditions (3.35) with F(t) given
by (3.131). Clearly, the deformation field (3.128) is not affine at the boundary and,
consequently, fails to be strictly compatible with F'. Following [BJ87], compatibility
can be restored by the introduction of a narrow boundary layer of thickness /. The
details of the construction of the boundary layer may be found in [BJ87]. Let €,
consist of {2 with the boundary layer excluded. Then, by construction, the restriction
of F, to € is of the form (3.128) and the incremental energy density W remains
bounded within the boundary layer as € — 0, which ensures that F) = F /5 defines

an incremental energy minimizing sequence.
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3.4.3 Sequential lamination

From a macroscopic viewpoint, lamination effectively enriches the class of average
deformation histories which are incremental energy minimizers, from the original class
of persistent single slip histories (3.91) to deformation histories of the form (3.128).
This process of enrichment may be continued recursively, leading to the definition of
sequentially laminated microstructures. Treatments of sequential lamination may be
found in [Koh91], [Bha91], [Bha92], [KS86] and [Ped93]. Experimental evidence of
possible sequential lamination in FCC crystals is presented in Section 3.5.

Uniform deformations may conventionally be categorized as rank-zero laminates.
Laminates of rank one have been explicitly defined in Section 3.4.2. Following Kohn
[Koh91], a laminate of rank-r is a layered mixture of two rank-(r —1) laminates, which
affords an inductive definition of laminates of any rank. As noted by Kohn [Koh91],
the construction of sequential laminates assumes a separation of scales: the length
scale [, of the rth-rank layering satisfies [, < [, ;.

Evidently, sequential laminates have a binary tree structure. The nodes of the
tree are occupied by deformations histories Fi(t), i = 1,...,n, where n is the number
of nodes, or order, of the tree. The root deformation is the average deformation
history F(t). Each node in the tree has either two children or none at all. Nodes
with a common parent are called siblings. Nodes without children are called leaves.
Nodes which are not leaves are said to be internal. The deformation histories of the
children of node 4 will be denoted F;*(t). Each generation is called a level. The root
occupies level 0 of the tree. The number of levels is the rank r of the tree. Level [
contains at most 2 nodes. The example in Fig. 3.6a represents a rank-three laminate
of order eleven. The leaves of the tree are nodes 6 to 11. The children of, e.g., node
2 are nodes 4 and 5, with F, (t) = Fy(t) and F, (t) = F5(t). The sequential laminate
defined by the tree is shown in Fig. 3.6b.

The deformation history F;(t¢) of an internal node 7 is an average of the deformation



97

@ Level 0 @
@ e Level 1 @ @

(k) () & @ & ® (=) &
Level 3 @ @ @ @

AT
R
e

ooy
o N

Figure 3.6: Two sequential laminates with nine kinematical degrees of freedom.

histories F=(t) of its children, i. e.,

Ft) = vi (OF7 () + v OFF (), v (1) + v () = 1. (3.133)

K3

It therefore follows that the deformation history F;(¢) of an l-level node is the average
deformation history of a (r—1I)-rank laminate. Additionally, siblings must be rank-one

compatible, i. e.,
Fr(t) — F7 (t) = a;(t) @ Ny(2), IN;(t)] = 1. (3.134)

We shall say that a sequential laminate is “persistent” if the interface normals N; and
volume fractions 1/2-i are independent of time. In addition, we shall say that a sequen-
tial laminate undergoes persistent single slip if it is persistent and the deformation
histories of all of its leaves are of the form (3.91).

Sequential lamination furnishes a plausibility argument in support of conjecture

(3.94). We begin by considering a time-independent average deformation gradient F
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and address the question of whether such deformation can be matched on average by
a sequential laminate of finite rank in which all leaves deform in single slip. Since
single-slip deformations are volume preserving, F' must itself necessarily be volume
preserving for the laminate to be possible. Evidently, each leave 7 in the laminate
introduces the four degrees of freedom R; and -;. Additionally, each internal node
i possesses the additional degree of freedom v, or v;", and introduces four rank-
one compatibility constraints. Consequently, the number of independent degrees of
freedom of the laminate is d = 4n; — 3n;, where n; is the number of leaves and n; is the
number of internal nodes. Matching the nine components of F on average requires
d > 9. For a rank-one laminate, n; = 2, n; = 1, and d = 5. For a complete rank-two
laminate, n; = 4, n; = 3, and d = 7. Thus, two levels of lamination are not sufficient
to match an arbitrary average deformation gradient in general. By contrast, the two
rank-three laminates shown in Fig. 3.6 have n; = 6, n; = 5, and d = 9 as required. It
therefore follows that the number of degrees of freedom required to match an arbitrary
average deformation gradient may be attained with three levels of lamination.

In general, the condition d > 9 is necessary but not sufficient for the existence of
single-slip laminates matching any arbitrary volume-preserving average deformation
gradient F' on average. Thus, in addition to having a sufficient number of degrees of
freedom, the system of nonlinear equations (3.133) and (3.134) in the leaf unknowns
R;, 7, and the internal node unknowns v, , a; and N;, must have solutions for arbi-
trary F. Physically, this in turn requires the crystal to possess a large enough class
S of independent slip systems. The crystallographic flow rule (3.50) requires five
independent slip systems to match an arbitrary volume-preserving rate of deforma-
tion, but it is not known if this criterion is a sufficient condition for the existence of
laminates as well.

Finally, we consider average deformation histories of the form (3.94) within the
framework of linearized kinematics. Within this approximation, single-slip deforma-
tion gradients admit the representation: F' = I + w + ysym(s ® m), where w is a
skewsymmetric tensor representing a small rotation. Let the laminate corresponding

to the average deformation F' = I + G be determined by w; and +;, at the leaves, and
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v; , a; and N; at the internal nodes. Then, it follows immediately from the structure
of equations (3.133) and (3.134) that the laminate corresponding to F = I + f(t)G
is determined by f(¢)w; and f(¢)v;, at the leaves, and v, f(t)a; and N; at the inter-
nal nodes. We note that the laminate undergoes persistent single slip, as required.
It therefore follows that, in the context of linearized kinematics, the existence of a
sequential single-slip laminate for an average deformation gradient F = I + G guar-

antees the existence of a persistent single-slip sequential laminate for any average

deformation history of the form F(¢t) = I + f(t)G.

3.5 Application to FCC crystals

The dislocation structures which arise in FCC single crystals and polycrystals sub-
jected to monotonic and cyclic loading have been extensively documented in the
literature and, consequently, provide a convenient test of the theory developed in the
foregoing. We adopt throughout the Schmid and Boas nomenclature described in

Section 3.3.2. The slip systems of FCC crystals are enumerated in Table 3.2.

3.5.1 Nondegenerate interfaces

We begin by considering interfaces which are nondegenerate at small strains, i.e., for
Rt =~ I. Since all the slip systems in an FCC crystal are symmetry-related, one of
the systems meeting at the interface, e.g., on the (-) side, can be fixed without loss of
generality. Then, for each system (s*,m™) € S the nondegeneracy condition (3.125)
may be verified at R™ = I, leading to a complete enumeration of the nondegenerate
interfaces of FCC crystals. The geometry of these interfaces then follows from (3.122)
and (3.123). The results of these calculations are summarized in Tables 3.3 and
3.4. It should be carefully noted that the roles of [v,, ] and n are interchangeable.
The crystallographic nature of the interface planes is noteworthy. As demonstrated
subsequently, Tables 3.3 and 3.4 are a compendium of commonly observed dislocation

walls, which atests to the soundness of the theory.
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System (-) A2] B4 | B5 | G5 | C3 | D6 | D4 | D1 | CI
/ System (+)

A A 2/3 1 2/3 [ 1 | -3/2] 3/2 | 1 1 1
[0n] [131] | [217) | [101] | [121] | [112] | [110] | [100] | [010]
n (211) | (113) | (111) | (311) | (311) | (I11) | (00T) | (100)

System (-) A3 | B4 B5 B2 C5 D6 D4 D1 C1
/ System (+)

YA 1 T [ 3/2 | 2/3 32| 1 | 1 |23
[vm] [100] | [111] | [211] | [121] | [112] | [001] | [111] | [311]
n (010) | (011) | (131) | (113) | (131) | (010) | (110) | (121)
System (1) A6/ | B4 | B5 | B2 | C5 | C3 | D4 | DI | Ci

System (+)

A 1 1 | 3/2| 1 | 32|23 23| 1

lvm] [011] | [100] | [113] | [001] | [121] | [131] | [112] | [101]
n (111) | (001) | (211) | (010) | (113) | (112) | (311) | (111)
System (-) B2 || A3 C5 C3 D6 D4 D1 A6 C1

/ System (+)

AT 2/3 | -3/2 | 1 1 [ 372 -1 | 2/3] 1
TV ] [131] | [112] | [111] | [111] | [121] | [100] | [113] | [100]
n (211) | (311) | (110) | (101) | (311) | (010) | (211) | (001)

System (-) B4 | A3 C5 C3 D6 D1 A6 C1 A2
/ System (+)

T 1 [ 32| 1 |2/3 ] 2/3] 1 1 | -3/2
[vm] [010] | [112] | [001] | [121] | [311] | [111] | [111] | [211]
n (100) | (131) | (010) | (113) | (121) | (011) | (110) | (131)
System (-) B5/ || A3 C3 D6 D4 D1 A6 C1 A2

System (+)

A T [2/3 | 1 |32 1 1 | -2/3 | 3/2

[v,n] [111] | [112] | [001] | [121] | [111] | [100] | [311] | [211]
n (011) | (131) | (0T0) | (113) | (101) | (001) | (112) | (113)

Table 3.3: Geometry of nondegenerate interfaces between single-slip variants in FCC
crystals at small strains (Part A). It should be carefully noted that the roles of [v,, ]
and n are interchangeable.
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System (-) C1 || B4 B5 B2 A3 D6 D4 A6 A2
/ System (+)
A 1 | 32| 1 | 3/2|-2/3]|2/3 ] -1 1
[v,m] [110] 11] | [100] | [121] | [113] | [131] | [
n 12) | (001) | (311) | (211) | (211) | (
System () C3]| B4 | B5 | B2 | D6 | D4 | DI | A6 | A2
/ System (+)

e 1 | 3/2 | 1 1 1 3/2 | 2/3 | -2/3
[v,] [0T0] | [131] | [110] | [111] | [010] | [211] | [113] | [31]]
n (001) | (112) [ (111) | (011) | (T00) | (131) | (121) | (121)

System (-) C5 | B4 B2 A3 D6 D4 D1 A6 A2
/ System (+)

A 2/3 | -2/3 [ 3/2 | 1 1 | 3/2 | 1 1
[00] [L12] | [311] | [113] | [100] | [111] | [211] | [010] | [101]
n (I31) | (112) | (121) | (00T) | (0T1) | (113) | (001) | (111)

System () DI | B4 | B5 | B2 | A3 | C5 | C3 | A6 | A2
/ System (+)

AT 32 | 1 1 | 1 | 2/3 [ 2/3] 32 1
[v:n] [121] | [111] | [010] | [111] | [211] | [131] | [112] | [100]
n (31T) [ (101) | (100) | (110) | (113) | (211) | (311) | (001)

System () DA B5 | B2 | A3 | C5 | C3 | A6 | C1 | A2
/ System (+)

AR 2/3 | 2/3 | 1 1 1 | 3/2 | 3/2 | -1
(Vo] [113] | [121] | [010] | [011] | [T0O] | [131] | [211] | [L11]
n (121) | (311) | (001) | (111) | (010) | (112) | (131) [ (110)

System () D6 B4 | B5 | B2 | A3 | C5 | C3 | Cl | A2
/ System (+)

AR 3/2 | 1 1|23 1 1 | -3/2 | 2/3
[V:n] [113] | [010] | [111] | [131] | [100] | [111] | [113] | [31]]
n (121) | (001) | (101) | (112) | (001) | (011) | (211) | (112)

Table 3.4: Geometry of nondegenerate interfaces between single-slip variants in FCC
crystals at small strains (Part B). It should be carefully noted that the roles of v, |
and n are interchangeable.
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Figure 3.7: a) Copper single crystal fatigued with tensile axis [001], showing labyrinth
wall structure on [100] and [001]-planes [JW84a]; b) (010)-cross section of a copper
single crystal specimen showing labyrinth dislocation structure [AKLMS84].

As an example, we choose (s7,m™) = ([101], (111)) = B4. A common test config-
uration involves the activation of a pair of orthogonal Burgers vectors in a fatigued
single crystal, which corresponds to the B4-A3 and B4-C3 interfaces in tables 3.3
and 3.4. In these cases, the interface normals predicted by the theory are of the
{100} type, in agreement with experimentally observed wall orientations ([DBL86];
[LVD86]; [RP80]; [Cha81]; [BBT85]; [MB82]; [JW84a]; [AKLM84]; [WM84]; [LKK84];
[Jin87]). For instance, Jin and Winter [JW84a] have reported the labyrinth structure
shown in Fig. 3.7a, corresponding to cyclically deformed copper single crystals loaded
in the [001] direction. The (010) section of the specimen shown in the figure clearly
exhibits traces of (001) and (100) dislocation walls. A similar labyrinth structure is
also evident in Fig. 3.7b, corresponding to cyclically deformed copper single crystals
oriented between [012] and [135], followed by in situ cyclic straining in pure shear
[AKLM&4].

For a [001] crystal such as tested by Jin and Winter [JW84a], Fig. 3.7a, the eight
systems B4, B2, A3, C3, D4, D1, C1 and A2 are potentially active with a Schmid
factor 7/0 = 0.40825. The interfaces leading to (001) dislocation walls are: B4-C3,
B2-C1, A3-D4 and D1-A2; the interfaces giving (100) dislocation walls are: B4-A3,
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B2-D1, B2-C1, C3-D4, D1-A2 and C1-A2. The geometry of the B4-C3 interface is
shown in Fig. 3.8a. It is noteworthy that the Burgers vectors involved are mutually
orthogonal, a feature that has long been thought to be characteristic of labyrinth
structures. Both sets of interfacial dislocations have the common direction [110],
in accordance with (3.108). The remaining (001)-interfaces are related to the B4-
C3 interface by symmetry operations in the cubic symmetry group which leave the
loading direction [001] and the wall plane (001) invariant. Thus, the A2-D1 interface
is obtained from the B4-C3 interface by a 90° rotation about the [001] axis; the B2-C1
interface is obtained from the B4-C3 interface by a reflection about the (110) plane;
and the A3-D4 interface is obtained from the B2-C1 interface by a 90° rotation about
the [001] axis.

The geometries of the B4-A3, B2-D1 and B2-C1 interfaces are shown in Figs. 3.8b-
d. As before, the Burgers vectors of the active systems are mutually orthogonal. In
the B4-A3 interface, both sets of interfacial dislocations have the common direction
[011], in accordance with (3.108). The B2-D1 and B2-C1 interfaces contain two
families of orthogonal screw dislocations along the [011] and [011] directions. The
remaining (100)-interfaces are obtained from the B4-A3, B2-D1 and B2-C1 interfaces
by the application of symmetry operations in the cubic symmetry group which leave
the loading direction [001] and the wall plane (001) invariant. Thus, the C3-D4 and
C1-A2 interfaces are obtained from the B4-A3 and B2-D1 interfaces by the application
of 180° rotations about the [001] axis; and the D1-A2 interface follows from the B2-C1
interface by the application of a reflection about the (100) plane.

Other theoretically predicted interfaces are also born out by observation. Thus,
Jin [Jin87] observed a labyrinth structure in cyclically deformed copper single crystals
loaded in the [011] direction. Fig. 3.9a shows a (011)-section of the specimen. Traces
of two sets of dislocation walls along the [100] and [011] directions are clearly apparent
in the figure. All dislocation wall traces are of comparable width, which is suggestive
of (011) and (100) walls perpendicular to the (011) plane. Jin [Jin87] noted that the
most highly stressed slip planes for this configuration are B4, B5, A3 and A6. Walls
of (011) orientation are consistent with B4-A6 and B5-A3 interfaces, while (100)-walls
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correspond to the B4-A3 and B5-A6 interfaces; see Fig. 3.10f. A similar structure
was observed by Charsley [Cha81], Fig. 3.9b, in polycrystalline copper alloys fatigued
to saturation.

Observations of Jin [Jin83] and [JW84b] of dislocation structures on (111) foils of
a copper single crystal cyclically deformed along the [112] axis show dislocation wall
traces in the [110] and [112] directions. For this loading axis, the highest resolved
shear stresses occur on systems B4 and C1, with a Schmid factor of 0.40825. The two
types of B4-C1 interfaces correspond to (111) and (110) dislocation walls, Tables 3.3
and 3.4. These walls intersect the (111) plane along the [110] and [112] directions,
respectively, in agreement with observation. In polycrystalline copper, walls of the
{110} type have also been found by Boutin [Bou83] and by Wang et al. [WM84],
Fig. 3.11; and walls of the {111} type have been observed by Liu et al. in fatigued
polycrystalline copper [Yum89], Fig. 3.12.

Lepisto et al. [LKK86] reported wall structures in copper single crystals cycled in
the [111] direction. In this orientation, the systems B4, B5, C5, D4, D1 and C1 are
all potentially active with a common Schmid factor of 0.27217. A (121) section of
the specimen revealed an arrangement of parallel dislocation wall traces in the [101]
direction, Fig. 3.13. These traces are consistent with B4-C5 and D4-C1 interfaces,
which give (131) walls; and B4-C1 and C5-D4 interfaces, which result in (111) walls,
Fig.tefInterfacesFig3. Walls of the {113} type have also been observed by Boutin
([Bou83]; [DBL&6]; [DHL86]), Fig. 3.15a and by Liu et al. [Yum89] in polycrystalline

copper.

3.5.2 Degenerate interfaces

Next we seek to characterize the degenerate interfaces of FCC crystals. These inter-
faces fall into three categories: interfaces between coplanar systems with coincident
normals m*™ = m~ and different slip directions s™ # s~; interfaces between cross-glide
systems having coincident slip directions s™ = s~ and different normals m™ # m™;

and interfaces involving one single slip system, i. e., such that m*™ = m™ and st = s™.
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Figure 3.9: Further examples of the labyrinth structure. a) (011)-section of copper
single crystal cycled in the [011] direction [Jin87]; b) polycrystalline Cu-Ni alloy
fatigued to saturation [Cha81].
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Figure 3.11: (101) wall structure in fatigued polycrystalline copper [WM84].
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Figure 3.12: (111) wall structure in fatigued polycrystalline copper [Yum89].
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In all these cases, eq. (3.121) is trivially satisfied and the jump condition (3.104) must
be directly enforced in order to ascertain the geometry of the interface.

Pairs of coplanar systems having a common normal satisfy (3.104) with
R*=R =R, ly,n] =7"sT —v7s7, N=mt=m =m. (3.135)

In these interfaces, the slip strains y* are not constrained by compatibility and may
be chosen arbitrarily. Evidently, coplanar interfaces are parallel to the common slip
plane. Coplanar slip zones have been observed by Higashida et al. [HTN86] to form
during the stage I of hardening in a Cu-1at.%Ge single crystal loaded in monotonic
tension near the [321] direction, Fig. 3.16a. For a crystal in this orientation, the
primary slip system is C3, with a Schmid factor of 0.46657. However, Higashida
et al. [HTN86] observed that the systems C1 and C5 are predominantly active in
coplanar slip zones, while the activity on the more loaded primary system C3 is largely
inhibited. Indeed, the joint activation of the C1 and C5 systems does result in an
energetic advantage over the activation of system C3, as demonstrated subsequently
in Section 3.5.3.

Similarly, pairs of cross-glide systems having a common slip direction satisfy
(3.104) with

R*"=R = lyw]=Ily"m" -y m™ s,

R,
tont —
N = 1T -7 (3.136)

| vtmt =y~ m~ ||

where we write s = s = s7. As in the coplanar case, the slip strains 4% are not
constrained by compatibility and may be chosen arbitrarily.

Finally, we consider interfaces involving nontrivial rank-one connections of a slip
system with itself. Evidently, a class of interfaces of this type can be constructed as

in the coplanar case, leading to

Rt*=R =R, lyn] =07 —77)s, N =m. (3.137)
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Figure 3.16: Cu-1at.%Ge alloy crystal oriented near [321] and deformed monotonically
to 30% strain [HTN86]. a) Coplanar slip zones revealed by etch pits on the conjugate
plane; b) etch pit configuration due to secondary dislocations in the vicinity of kink
bands.

It should be noted that in this case the plastic deformations FP* are themselves
rank-one compatible and, in view of (3.105), the interfaces are free of dislocations.
The dislocations are either pushed out to infinity or bind tightly to form dense walls
of zero net Burgers vector, such as the rungs in the ladder structure which arises in
single crystals oriented for single slip and fatigued to saturation, Fig. 3.17. Such walls
are invisible within the present continuum description of dislocations, and regions of
the crystal containing them are indistinguishable from the defect-free crystal.

The matrix-persistent slip band (PSB) boundaries in cyclically deformed single
crystals oriented for single slip constitute a prime example of this type of interface
(e.g., [MAHT79]; [WM84]), Fig. 3.17. The planes of the PSBs are ostensibly parallel
to primary slip plane, in accordance with (3.137). It bears emphasis, however, that
the inhomogeneous character of slip in this structure cannot be explained on the
basis of latent hardening, as only one system is kinematically necessary to match
the average strain. An alternative explanation may be based on the geometrical

softening phenomenon discussed in Section 3.3.4. We shall return to this question in
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(b)

Figure 3.17: Views of the (121) section of Cu crystals oriented for single slip and
fatigued to saturation at room temperature revealing matrix and persistent slip
bands (PSB) a) From Mughrabi, Ackermann and Hertz [MAH79]; b) from Wang
and Mughrabi [WM84].
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Figure 3.18: Schematic of kink formation. a) Slip strains y© = 4 tan§; b) rotations
through + tané.

Section 3.5.3.

A complementary class of single-system interfaces can be constructed as follows.
Choose the interface normal N = s, i. e., any vector of type (110), and impart slip
strains = = 4 tan @ on both sides of the interface, Fig. 3.18a. Restore compatibility
by effecting rotations Rt = @Q R(s x m; £6). Here, the notation R(e;a) is used to
denote a rotation about an axis e through and angle ¢, and @) is an arbitrary rotation.
Since the planes on both sides of the interface remain unstretched along the s x m
direction and stretch by the same amount in the m direction, the rotated crystals fit

compatibly, Fig. 3.18b. The resulting deformations are
F* = QR(s x m;£0) [I & tanfs @ m). (3.138)
These satisfy (3.104) with

ly,n] =2sin0@Qm, N =s. (3.139)
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The deformations (3.138) of the variants can alternatively be rewritten as

F*¥ = Q[cosfs®s+sechdm @ m + (s x m) ® (s x m)]
[I £sinfcosfm ® s] (3.140)

= Q[ £tanfm ® s]

[cosfs® s+ secOm @ m+ (s x m) ® (s x m)]. (3.141)

Thus the variant deformations consist of the composition of slip strains of magnitude
v = Fsinfcosf on the plane of normal s in the direction m, followed by stretches
of magnitude cosf and sec in the directions s and m, respectively, followed by an
arbitrary rotation @); or, equivalently, the composition of stretches of magnitude cos 6
and sec 6 in the directions s and m, respectively, followed by slip strains of magnitude
v = £tan# on the plane of normal s in the direction m, followed by an arbitrary

rotation (). The dislocation density tensor (3.105) evaluates to
Az) =2tanfs ® (s x m)én(z) (3.142)

which represents a planar array of parallel edge dislocations, or tilt boundary.

This type of interface arises in the so-called “fence” structures observed during
the early stages of stage II of hardening in FCC crystals [Ste66], Fig. 3.19. Because
the dislocation walls are normal to the primary slip direction, eq. (3.139), they are
sometimes termed “kinks,” and the resulting deformation structures “kink bands”
[HTN86], [Cah51]. Higashida et al. [HTN86] observed the emergence of kink bands at
the onset of stage 11 of hardening in a Cu-1at.%Ge single crystal loaded in monotonic
tension near the [321] direction. As noted above, for a crystal in this orientation, the
primary slip system active is C3. In a (111)-section of the specimen, the kink bands

were revealed by dense etch-pit arrays normal to the Burgers vector, Fig. 3.16b.
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Figure 3.19: Fences normal to the slip in copper deformed to stage III [Ste66).

3.5.3 Simple laminates

By lamination of single-slip variants, crystals can attain a larger class of average
deformations F while remaining essentially free of long-range stresses. For instance,

for coplanar variants the average deformation of the corresponding laminate is

F =R(I+vs®@m) (3.143)

with

vtytst +vTyTs
Rl

y=|vTytst+v s ||, s = (3.144)
This represents a single-slip deformation on the common plane m in the effective
slip direction s. Evidently, by varying the slip activities ¥~ of the systems and their
volume fractions v*, any effective slip direction s orthogonal to m can be achieved.
Thus, coplanar laminates effectively extend the crystallographic slip-system set S
to include all systems (s,m) consisting of a cube diagonal m and any direction s

orthogonal to m.
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As noted in Section 3.5.2, coplanar slip zones have been observed by Higashida et
al. [HTNB86] to form during the stage I of hardening in a Cu-lat.%Ge single crystal
loaded in monotonic tension near the [321] direction, Fig. 3.16a. For a crystal in
this orientation, the slip direction giving the maximum Schmid factor is [527] which,
evidently, is not a crystallographic slip direction. It should be noted that slip in the
maximum Schmid factor direction minimizes the work W required to attain a given
prescribed deformation, which in turn is in accordance with the minimum principle
(3.38). Higashida et al. observed that the primary coplanar slip systems C1 and C5
are predominantly active in nearly equal amounts in the coplanar slip zones. The
optimal slip direction [527] can be effectively attained as in eq. (3.144) through the
combined operation of the systems C1 and C5 with vo1 = 7¢s and ver = 7/12,
ves = 5/12. This ability of coplanar slip zones to effectively match the optimal
slip direction confers them an energetic advantage which explains their occurrence in
actual crystals.
Likewise, for cross-glide variants having a common Burgers vector, the average
deformation of the laminate is of the same form (3.135) with
viytmt + vy m”
| vtyrmt + vy m” ||

y=l|vTymT +v Ty Tm” |, m = (3.145)
Thus, the average deformation is of the single-slip type on the effective plane m along
the common slip direction s. By varying the slip activities v* of the systems and
their volume fractions v*, any effective normal m orthogonal to s can be achieved
and, consequently, cross-glide laminates effectively extend the crystallographic slip-
system set S to include all systems (s, m) consisting of a cube-face diagonal s and
any normal m orthogonal to s.

Finally, we turn to single-system laminates. We begin by considering the “slip-
band” geometry in which the interfaces are parallel to the slip plane. As noted in
Section 3.5.3, a prime example of this type of lamination is furnished by the matrix-

PSB structure characteristic of single crystals oriented for single slip and fatigued to

saturation (e.g., [MAHT79]; [WM84]), Fig. 3.17. In this microstructure, the average
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deformation is carried almost completely by the PSB’s, and the matrix remains nearly
undeformed by comparison. The average deformation is again of the form (3.143),

with
y=vryT 4Ty (3.146)

where v* and v+ are the volume fractions and slip strains in the matrix and PSB. A
similar deformation pattern is observed in the form of slip bands during the stage I of
hardening of most FCC crystals [FW59]. Eq. (3.146) is the basic kinematic relation
underlying the so-called “two-phase model” of cyclic deformation [Win74].

Evidently, slip-band structures cannot be caused by latent hardening, as only
one system is in operation in those structures. A plausible alternative mechanism
is geometrical softening, Section 3.3.4, which results in the up-down-up stress-strain
curve characteristic of displacive phase transitions, Fig. 3.2b. Under these conditions,
the work of deformation of the crystal is minimized by the development of two phases—
the matrix and the bands—which jointly operate at the Maxwell stress [Eri80]. This
stress is determined by the equal-area rule, i. e., the two regions demarcated by the
Maxwell line and the stress-strain curve must be identical, Fig. 3.2b. We note that
the Maxwell stress may be considerably lower than that required for the operation of
the slip system. The strains of the phases are those corresponding to the intersections
of the Maxwell line with the ascending, or stable, parts of the stress-strain curve. In
crystals which are elastically stiff, the matrix strain determined by this construction
is small, in keeping with observation [Mug78|, and approaches zero in the rigid-plastic
limit. The volume fractions of the two phases follow from Gibbs rule.

For kink interfaces, the average deformation follows from (3.140) and (3.141) in
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the form

ST

= Qcosbs® s+ secOhm@m+ (s x m) ® (s X m)]
[I+ (vt —v7)sinfcosfm @ s| (3.147)

= QU+ (" —-v7)tanfm ® s]

[cosfs ® s +secOm@m+ (s x m) @ (s x m)] (3.148)

where, as before, v* are the volume fractions occupied by the + and — variants,
respectively, with v™ + v~ = 1. It follows from (3.147) and (3.148) that the aver-
age deformation which can be attained by a single-system laminate consists of the
composition of a slip strain of magnitude v = (v© — v~ )sinfcosf on the plane of
normal s in the direction m, followed by stretches of magnitude cos# and sec @ in the
directions s and m, respectively, followed by an arbitrary rotation @; or, alternatively,
the composition of stretches of magnitude cosf and sec# in the directions s and m,
respectively, followed by a slip strain of magnitude v = (v —v7~) tan # on the plane of
normal s in the direction m, followed by an arbitrary rotation ). In the special case
in which both variants are mixed in equal proportions, i. e., v = v~ the average
deformation takes the form: F' = QU, where U is a stretch tensor with principal
stretches (cos,sech, 1) and principal directions (s, m,s x m), and @ is an arbitrary
rotation. A clear example of this type of lamination is the fence structures observed
during the early stages of stage II of hardening in FCC crystals [Ste66], Fig. 3.19.
The alternating +6 misorientations about an axis in the slip plane predicted by the
theory, eq. (3.138), are evident in the figure.

As noted in Section 3.4.2, the dislocation structure corresponding to first-order
laminates consists of an array of parallel dislocation walls of the type (3.132). With
the exception of labyrinth structures, all the dislocation walls discussed in Section 3.5.3
are observed to occur in roughly parallel arrays and, therefore, provide further exam-

ples of lamination; see Figs. 3.11, 3.12, 3.13, 3.15a, 3.16, 3.17, 3.19.



122

3.5.4 Sequential laminates

A few of the dislocation structures reported in the literature may arguably be inter-
preted as instances of sequential lamination. For instance, Fig. 3.20 shows a detail of
an interior grain in a polycrystalline copper specimen tested in fatigue by Rasmussen
and Pedersen [RP80]. A set of nearly horizontal fine laminates occupying nearly ver-
tical parallel bands separated by other bands of cell structures is clearly visible in the
figure, which would appear to furnish an example of a rank-two laminate. Another
seeming example of a rank-two laminate is revealed by Fig. 3.15a, which shows a
region of extended wall structure observed by Boutin [Bou83] in a fatigued polycrys-
talline copper. The structure consists of (101) walls (region A) and either (112) or
(113) walls (region B). These two types of laminates may be seen to occupy roughly
horizontal alternating bands in Fig. 3.15a, which may be regarded as defining the
first level of the laminate. It is interesting to note that both examples correspond to
polycrystals, which inevitably develop complex deformations at the single grain level.
Indeed, as noted in Section 3.4.3, the accommodation of general deformations by sin-
gle slip requires several levels of lamination and, consequently, sequential laminates
are more likely to arise in polycrystals.

The geometry of the dislocation structure shown in Fig. 3.15a may be ascertained
much in the same way as the geometry of interfaces was determined in Section 3.4.1.
We begin by analyzing the fine laminates A and B. Since the wall traces in Fig. 3.15a
are of roughly equal thickness, it seems reasonable to presume that the section of
the figure is orthogonal to both sets of walls, i. e., a (111) section. The wall traces
on the (111) are [121] in laminate A and [110] in laminate B. Interfaces leading to
(101) walls are A2-C5 and A6-C1; interfaces resulting in (112) walls are A6-D1 and
A6-D4; and interfaces giving (113) walls are C5-D1 and B5-D4. Assume that the
walls in the B laminate are of the (112) type and that the A and B interfaces are
A6-C1 and A6-D4, respectively. As noted in Section 3.4.1, each of the A and B
laminates has the eight degrees of freedom R*(R*)~! and 4%, and is subject to four

compatibility conditions resulting from (3.113). This leaves four effective degrees of
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freedom per laminate, e.g., R_(R_)_1 and ¥~. The average deformation rates l4 g
of laminates A and B follow from relations (3.113), (3.121), (3.122) and (3.123) in
terms of the degrees of freedom ].%;‘,]3(11{:1’3)“1 and ¥, p- In computing averages,
we assume equal volume fractions v~ = vt = 1/2, as suggested by the widths of
the variants in Fig. 3.15a. Four degrees of freedom, e.g., R (R;)~" and 4}, can
be fixed without loss of generality. The deformation rates [4 p are subject to the
rank-one compatibility condition (3.113). This places four constraints which suffice
to determine R;(Rg)_l and j5. The treatment of these equations is now identical
to that given in Section 3.4.1 to interfaces, leading to equations of the form (3.122)
and (3.123) giving the orientation of the A-B interface. A straightforward calculation
gives ny_p = (0.534523,0.801785,0.26726), the trace of which on the (111) plane is
[—1.06904,0.267262,1.33631], or, approximately, (2, 3,1) and [4,1,5]. The geometry
predicted by the theory is shown in Fig. 3.15b. The agreement between theory and
observation may be deemed satisfactory in view of the considerable irregularities and
uncertainty in the experimentally observed structure. It is conceivable that a better
agreement with experiment might be obtained by considering a different combination
of interfaces, but such possibility will not be pursued here.

It is interesting to note that the dislocation walls bend or split within narrow tran-
sition layers separating regions A and B. The thickness of these layers is of the order
of the wall spacing in the second-level fine laminates. While average deformations of
the A and B bands may be expected to be rank-one compatible, as required to prevent
long-range stresses, the strict compatibility within the bands requires the introduc-
tion of elastically strained boundary layers. The trade-off between refinement of the
microstructure, which tends to decrease the elastic energy in the boundary layers,
and the self-energy of the dislocation walls, which tends to increase with refinement,

is addressed in the next section.
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Figure 3.20: Nested bands of wall structure in a matrix of disoriented cells in poly-
crystal Cu fatigued to saturation [RP80].
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3.6 Dislocation self-energy and scaling

The precise manner in which microstructural dimensions, such as laminate thick-
nesses and cell sizes, scale with various macroscopic variables has been the subject
of considerable study. For instance, a widely accepted theory of cell size evolution
is based on the assumption of “similitude,” to wit, that a structure which is stable
under a stress 7 will be stable under a stress 27 when shrunk to one-half its size.
The similitude conjecture has been verified experimentally for a number of materials
([Han69}; [SH72]) and has been justified on the basis of energy minimization ([Hol70];
[SH72]; [KWT70]; [KWvdM82]). Another scaling relation which holds for a wide range
of materials and deformations states that the flow stress 7 scales with the square root
of the mean dislocation line density p ([OH66]; [MK81]). This law, in conjunction
with similitude, implies that the dislocation cell size scales as 1/ VP

The theory developed in the foregoing is purely local, i. e., it lacks an intrinsic
length scale. As a consequence, the local theory furnishes no information regarding
absolute microstructural dimensions or scaling laws such as just described. While a
detailed study of these issues is beyond the scope of the present work, it is neverthe-
less of some immediate interest to demonstrate how the local theory can be extended
in a physically meaningful manner so as to incorporate an intrinsic length scale com-
mensurate with the crystal lattice parameter. In the local theory, dislocations are
regarded as being continuously distributed with density A(z) given by (3.97). The
free energy density is given by (3.42) which accounts for the long-range elastic dis-
tortions of the lattice and, therefore, suffices to compute the dislocation interaction
energy. However, the free energy density (3.42) does not account for the self-energy of
the dislocations. Indeed, this energy scales with the dislocation length, the estimation
of which requires the consideration of discrete dislocation lines and, consequently, an
explicit acknowledgement of the discreteness of the lattice.

A nonlocal extension of the theory can be obtained-in the spirit of the so-called
“sharp-interface” approximation ([Mod87]; [Ste88])-simply by adding to the free en-
ergy density (3.42) the self-energy density of the dislocations, which we proceed to
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calculate. On the scale of the lattice, plastic slip occurs on discrete crystallographic
planes in integer multiples of the Burgers vector ([Fon87]; [Fon88]; [CK88]). Consider
a dislocation loop C of Burgers vector b on a slip plane of normal m. For simplicity,
suppose that the crystal has slipped by b over the area ¥ of the slip plane bounded

by C. The corresponding microscopic plastic deformation is
F? =14+ bQ® myxdé(z-m) (3.149)

where Xy is the characteristic function of ¥ on the slip plane z-m = 0. Inserting this

expression into (3.97), a straightforward calculation gives
A(z) =b® (v x m)éc(x) (3.150)

where v is the unit normal to C' within the slip plane and dc(z) is the Dirac delta
supported on C. The dislocation length contained in a volume Q of the crystal is,
therefore,

[,
L_/Q a (3.151)

Let T denote the dislocation self-energy per unit length, or dislocation line tension.
Assume, for simplicity, that T is independent of the orientation of the dislocation

line. A commonly used expression for T is [KW89]
T = Culb? (3.152)

where p is an average shear modulus and C is a constant of the order of 0.3. The
assumption of a well-defined line tension permits writing the self-energy of the dislo-

cations as

T|A
B =T = /Q —llb—‘—|dx (3.153)
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which, in view of (3.97), can be put in the form
self T
B = WIF” x Vl|dz. (3.154)
)

In this simple model, the self-energy density is

T

self .
QS (Fp X V) - |b|

|FP % V| (3.155)
and the total free energy density follows from (3.42) and (3.155) as

P = G(FFP~! ) + ¢Self(FP x V) (3.156)

which replaces (3.42). By way of example, consider a planar interface Il separating
two uniformly deformed regions of the crystal. In view of (3.105), the corresponding

self-energy density is

¢ (z) = %| [FP] x N |6n(z). (3.157)
Thus, the scalar
I = I%:II [F?] x N | (3.158)

plays the role of a surface energy for the interface. This is in close analogy to crystal-
lographic twinning, where a surface energy can be assigned to the twin boundaries.
We note that, in view of (3.152) and (3.158), the surface energy I' vanishes in the
formal limit of |b] — 0.

Evidently, the self-energy ¢**f(F? x V) depends on the plastic deformation gradi-
ent and its inclusion in (3.156) renders the theory nonlocal. While in the local theory
a periodic microstructure F?(x) can be scaled to F?(z/¢) without affecting the energy
density, the self-energy density is magnified by a factor of 1/e. Thus, in the nonlo-

cal theory an energy cost is incurred when the scale of the microstructure is refined.
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This type of energy trade-offs have been extensively investigated in other contexts
such as the mathematical theory of martensitic transformations [BJ87], and thin films
[GO94]. In particular, Kohn and Miiller [KM92] have shown that surface energy, in
addition to setting an absolute length scale, can also influence the morphology of the
microstructures, e.g., by promoting twin branching.

Dislocation walls in parallel arrays are often observed to be fairly uniformly spaced
at a distance [ of the order of 1 um. Consideration of the dislocation self-energies
yields a simple estimate of {. For simplicity, we assume that the geometry of the
interfaces is not affected by the dislocation self-energy. From the standpoint of the
local theory, a dislocation structure such as shown in Fig. 3.15a may be regarded as
a member of a minimizing sequence F,(z) of compatible deformations, with € = /L
and L a characteristic macroscopic dimension of the crystal such as the grain size.
As mentioned earlier, compatibility between two laminates, or between a laminate
and the boundary, generally requires the introduction of boundary layers of thickness
~ [ at their interface. The elastic energy in these boundary layers is of the order of
py*L?1, where 7 is a representative slip strain. From (3.152) and (3.158), the surface
energy density I' is of the order of Cpul|b|y, while the surface energy of the crystal is
of the order of Cpulb|yL?/l. Assuming additivity of energies, the total energy of the

crystal follows as

L3
Eal — 0y un? L2 + CgulbwT (3.159)

for some constants C; and Cj of order unity. Minimization of E¥™%! with respect to I

gives
| =Cs¢)/ — (3.160)

whereupon (3.159) becomes

Etotal — 04/1 /11)"73/2[/5/2 (3161)
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for some constants C3 and Cy of order unity.

The scaling law | ~ y~'/2 is consistent with observations of the dependence of
cell sizes on the applied strain [BK86]. The scaling laws | ~ L1/2, Etotal ~ [5/2 were
derived by Ball and James for martensite [BJ87] and can be improved by a self-similar
construction involving branching [KM92]. Using |b| = 2.56 x 1071 m, v = 2.5 x 1073
and I = 107 m, as representative of fatigue in copper, (3.160) gives [ ~ 107¢ m,

which is in the ball park of experimental observation.

3.7 Summary and discussion

Dislocation structures have been variously investigated by considering ensembles of
discrete dislocations and minimizing their interaction emergy ([Neu86]; [LBN93]);
or by seeking dipolar walls satisfying Frank’s minimum energy condition ([Fra50];
[HL68]; [BS86]). Here we have pursued a different line of inquiry based on direct
methods of the calculus of variations. These methods seek to characterize solutions
directly as energy minimizers, instead of as solutions of the Euler equations of the
energy functional. We part company with the majority of investigations of low energy
dislocation structures by placing primary emphasis on deformation microstructures
and regarding the dislocations as manifestations of the incompatibility of the plastic
deformation gradient field. Within this framework, we show that the incremental
displacements of inelastic solids follow as minimizers of a suitably defined pseudoe-
lastic energy function. In crystals exhibiting latent hardening, the energy function
is nonconvex and has wells corresponding to single slip deformations. This favors
microstructures consisting locally of single slip. Several deformation microstructures
constructed in accordance with this prescription have been shown to be in correspon-
dence with commonly observed dislocation structures. Finally, we have shown that a
characteristic length scale can be built into the theory by taking into account the self
energy of the dislocations. The extended theory leads to scaling laws which appear
to be in good qualitative and quantitative agreement with observation.

It is noteworthy that the fundamental factor determining the development of dis-
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location structures is the lack of convexity of the incremental energy functional. The
connection between lack of convexity and the emergence of fine microstructure is
presently well-established in a number of applications such as martensitic transfor-
mations, micromagnetics, liquid crystals and thin films. From this perspective, the
overriding emphasis once placed on formulating constitutive restrictions guaranteeing
existence and uniqueness of solutions of boundary value problems seems somewhat
misplaced. For instance, Drucker’s celebrated postulates (see, e.g., [Lub90]) are equiv-
alent to the assumption of convexity of the incremental boundary value problem and,
consequently, guarantee existence, uniqueness and regularity of classical minimizers
(e.g., [Dac89]). Thus, while convexity may be desirable in structural applications, it
has the unfortunate effect of ruling out solutions with fine microstructure. Therefore,
the case of primary interest as regards the investigation of microstructural devel-
opment concerns precisely those materials which do not obey Drucker’s postulates.
This new constitutive paradigm represents a sharp — and refreshing — departure from
classical plasticity theory.

A number of open questions remain to be addressed. For instance, it is not known
to us what rules—if any—govern the turns and bends in labyrinth structures; or
whether cell structures may also be understood as compatible arrangements of regions
of single slip. In addition, it would be desirable to have constructions enabling the
determination of energy-minimizing microstructures for general deformation histories.
The question of scaling laws and their relation to nonlocal extensions of the theory has
merely been touched upon in this paper and is in need of much further development.
These present uncertainties notwithstanding, it is hoped that the theory formulated in
this paper will provide a convenient basis for a rigorous and systematic mathematical

investigation of the effective behavior of ductile single crystals with microstructure.
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Chapter 4 Conclusions and future work

A micromechanically based model for F.C.C. metals subject to cyclic loads oriented
for single slip has been developed. The model accounts for crystal plasticity, and
two hardening mechanisms: a) dislocation trapping for the main slip system and b)
forest pinning for the secondary systems, and dipole annihilation in the PSBs with the
attendant vacancy production. The vacancy production was found to be responsible
for the elongation of the PSB. A vacancy diffusion model has also been implemented
and the outward flux of vacancies through the free surface is found to be partly
responsible for the grooving process. Finite element simulations have been performed
in order to check the feasibility of the postulated mechanisms taken into account.
The results obtained show good agreement with published experimental data. Crack
nucleation sites have been identified and number of cycles to failure estimated.

Future work in this field should include: multiple PSBs simulations, which is a
possible mechanism for intrusions; analysis of the influence of the load orientation
on the surface profile and life expectancy; a model of the development of PSBs from
a uniform matrix; influence of temperature and environmental effects; extension to
alloys; analysis of polycrystals, where failure is caused by the nucleation of a fatigue
crack at a grain on the surface and its propagation into the bulk; the influence of
grain-boundary structures, in particular high-angle boundaries where crack nucleation
has been observed. More experimental data is needed to fully understand all the
underlying mechanics, especially if three-dimensional models are desired.

In the second part of this thesis, chapter 3, a non-convex energy funtion has
been found to underlie the formation of microstructures in F.C.C crystals subject
to fatigue loads. It has been determined that non-convexity, which is due to latent
hardening and geometrical softening, favors single-slip variants over uniform multi-
slip deformation. It has also been found that the interfaces between the single-slip

variants are in good agreement with published TEM observations of cells, walls and
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labyrinth structures. The “patchy slip” phenomena has been effectively explained,
but additional work is needed to understand features such as the intersection between
walls and gaps in the walls. Incremental numerical models, with latent hardening
values obtained from experiment, may also be implemented to simulate the evolution

of the microstructure with deformation.
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