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Abstract

A granular flow is a two-component flow with an assembly of discrete solid particles
dispersed in a fluid. Because of the similarity between the random motion of particles
in a granular flow and the motion of molecules in a gas, the dense-gas kinetic theory
has been broadly employed to analyze granular flows. However, most research only
discusses aspects of momentum transport; three issues have received less attention:
the diffusion process, the heat transfer problem, and the behavior of binary mixtures.
The current research emphasizes these aspects.

A granular flow diffusion experiment was conducted in a vertical channel to in-
vestigate the effects that result in mixing of the material. The mean velocities, the
longitudinal fluctuating velocities, and the mixing-layer thickness were measured.
A simple analysis based on the diffusion equation shows that the thickness of the
mixing layer increases with the square-root of downstream distance and depends on
the magnitude of the velocity fluctuations relative to the mean velocity. The experi-
mental velocity profiles were also compared with profiles calculated from theoretical
analysis based on kinetic theory.

The analytical relations were developed for the flow-induced particle diffusivity

and the thermal conductivity based on dense-gas kinetic theory. The two coefficients



were found to increase with the square-root of the granular temperature, a term
that quantifies the specific kinetic energy of the flow. The theoretical particle diffu-
sivity was used to compare with the current experimental measurements involving
the granular flow mixing layer. The analytical expression for the effective thermal
conductivity was also compared with experimental measurements. The differences
between the predictions and the measurements suggest limitations in some of the
underlying kinetic-theory assumptions.

The constitutive relations were presented for a binary-mixture of granular ma-
terials as derived from the revised Enskog theory. The current research focuses on
the process of granular thermal diffusion — a diffusion process resulting from the
granular temperature gradient. A granular flow of binary-mixtures in an oscillatory
no-flow system, in a sheared system, and in a vertical channel were examined, and in-
dicated a complete segregation when granular thermal diffusion effect was sufficiently

large.
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Chapter 1

Introduction

A granular material is an assembly of a large number of discrete solid components
that are dispersed in a fluid. This class of two-phase flow occurs in many industrial
situations such as the transport of ore, coal, mineral concentrate, sand, powders,
food products or tablets. Avalanches of snow (Hopfinger 1983), motion of ice sheets
(Longwell et al. 1948), slides of rock debris (Hsu 1975), and submarine debris flows
(Middleton and Hampton 1976) are some examples in the geophysical field. In the
chemical industry more than 30% of products are formed as particles (Shamlou
1988). Examples of related heat and mass transfer problems include the handling
and conveying of frozen foods prior to packaging, the drying, heating or cooling of
grains, the calcination of limestone, and the gasification of solid waste in moving
beds and rotary kilns (Kunii 1980; Richard and Raghavan 1984; Ferron and Singh
1991). An important aspect in many of these applications is the degree of mixing

that occurs in the handling of the materials (Clump 1967). Most modeling efforts
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rely on empirical information that is difficult to apply to a range of material flow
rates and different types of material (Stephens and Bridgwater 1978; Bridgwater et
al. 1985). In order to efficiently handle the transport processes in industrial fields,

an understanding of the rheological behavior of granular material flows is important.

1.1 Research Developments for Granular Material Flows

Bagnold is the pioneer of the field of granular flows. Three regimes of granular
flow behavior were classified by Bagnold (1954): the macroviscous, the transitional,
and the grain-inertia. These three regimes were distinguished by a dimensionless

parameter, the “Bagnold number” Ba,
Ba = A%p 02(—z)/uf (1.1)
4 dy ’

where A is a function of the solid fraction, p, is the particle density, o is the particle
diameter, dug /dy is the shear rate, and py is the dynamic viscosity of the interstitial
fluid. Like the Reynolds number, the Bagnold number denotes the ratio of the inertia
force to the viscous force in the granular material low. For Ba < 40, the flow is
in the macroviscous regime where the viscosity of the interstitial fluid is dominant
in the flow. For Ba > 450, the flow corresponds to the grain-inertia regime, where
the interstitial fluid plays little role in the mechanics of the flow. Instead, the inter-
particle collisions govern the flow behavior. The current study only addresses in
this regime. The flows with a Bagnold number between the two limits are within
the transitional regime, where both the interstitial fluid and the collisions between

particles are important.
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In the grain-inertia regime (rapid-flow regime), the particles are much denser
than the interstitial fluid or are closely packed, so the interstitial fluid is neglected
in the bulk flow behavior. The particle-to-particle collisions are dominant in the
flows (Savage 1984; Campbell 1990), and result in a random motion of the particles.
The similarity between the random motion of the particles in a granular flow and
the motion of molecules in a gas drew recent researchers to use the term granular
temperature to quantify the mean-square value of the fluctuating velocities (Ogawa
1978). Although the granular temperature plays a similar role as the thermal tem-
perature in the gas kinetic theory, it does not have the dimension of temperature (K
or °C) but has the dimension of specific energy (m?/sec?).

In the grain-inertia regime of granular flows, similar to dense gases, there are
two important mechanisms that influence the transport properties: the streaming or
kinetic mode, and the collisional mode (Campbell 1990). The streaming or kinetic
mode accounts for the transfer of particle properties as the particles freely move
between collisions. The collisional mode accounts for the transfer of the properties
during collisions. The streaming mode is dominant for the dilute flows that have
larger mean-free paths. The collisional mode is more important for the high-solid-
fraction flows because of the higher collisional frequency.

In recent years the field of granular material flows has significantly progressed
through the application of gas kinetic theory. Savage and Jeffrey (1981) employed
the Maxwellian distribution function to model the random motion of the particles
and assumed binary collisions between particles. They analyzed the stress tensor in

a granular flow at high flow rates. They assumed the particles were perfectly elastic,
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which was not true in all the applications.

Similar to Savage and Jeffrey (1981), Jenkins and Savage (1983) assumed the fluc-
tuating velocity distribution function was Maxwellian and derived the conservation
equations of mass, momentum and fluctuating energy for the rapid flow of identical,
smooth, nearly elastic, spherical particles. The integral forms for the stress, fluctuat-
ing energy flux and energy dissipation were also derived. However, only the collisional
contributions to the transfer of stress and fluctuating energy were considered in these
two studies.

Based on Chapman-Enskog dense-gas kinetic theory (Chapman and Cowling
1970), Lun et al. (1984) derived the kinetic theory for a granular flow of nearly
elastic particles. Not only the collisional contribution but also the kinetic mode were
considered, so the theory is also applicable to a dilute system which is dominated
by the kinetic mode. The importance of the research by Lun et al. (1984) is that
the velocity distribution function was not assumed to be Maxwellian as the earlier
studies. Since gradients in the velocity, the granular temperature and the number
density exist in the granular flows, the system is not in an equilibrium state and
the velocity distribution function should not be Maxwellian. Lun et al. successfully
developed the first order correction term for the velocity distribution function and
applied the theory to more general flow fields. However, in order to use the modified
Maxwellian distribution function, the collisions were assumed to be isotropic. This
assumption did not have to be made in the studies by Savage and Jeffrey (1981) and
Jenkins and Savage (1983). The details of the dense-kinetic theory are discussed in

Section 2.1. The governing equations, the stress tensor and the fluctuating energy
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flux derived by Lun et al. (1984) are described in Sections 2.2 and 2.3.1.

Besides the inelasticity, many granular materials are not perfectly-frictionless and
the rotational inertia of the particles should be included in the analysis. Jenkins and
Richman (1985) employed the Grad’s method of moments to derive the governing
equations and the constitutive relations for plane flows of a dense gas of identical,
rough, inelastic circular disks. Based on the theory derived by Jenkins and Savage
(1983) and Lun et al. (1984), Lun and Savage (1987) extended the theory for granular
flow of rough, inelastic spherical particles; however, only the collisional mode was
considered in their analysis. Lun (1991) continued to work on the kinetic theory for
slightly inelastic and slightly rough spheres by considering both the kinetic and the
collisional modes. Because of the complexity of these theories and the number of
parameters used, the calculations are too complicated to be applied to general flows.

The no-slip velocity conditions on the boundary are widely used in fluid mechan-
ics. However, this is not true in a granular flow. In a granular flow, the boundary
generates shear work and fluctuating energy. The energy is also dissipated due to
inelastic collisions between the particles and the boundary. To solve the governing
equations for a granular flow, the boundary conditions can be prescribed by specific
values from experimental results (Ahn et al. 1992). Otherwise, the boundary condi-
tions have to be found from their dependence on the whole flow field. Jenkins and
Richman (1986) derived the boundary conditions for plane flows of smooth, nearly
elastic, circular disks with a bumpy boundary. Based on the ‘kinetic theory and as-
suming a Maxwellian distribution function for the fluctuating velocity, they balanced

the transfer rates and dissipation rates of momentum and energy between the flows
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and the boundary and finally they could express the boundary conditions implicitly.
Richman (1988) improved Jenkins and Richman’s (1986) theory by using a modified
Maxwellian distribution function and derived the boundary conditions for the flow
of smooth, nearly elastic spheres with a bumpy wall.

Johnson and Jackson (1987) derived the constitutive relations for granular ma-
terials including frictional effects. Different from Lun’s (1991) analysis, in which
the velocity distribution function was derived by considering the rotational inertia,
Johnson and Jackson calculated the frictional contributions to the stress and the
energy based on some empirical results. The kinetic and the collisional contributions
were calculated from the results from Lun et al. (1984). The boundary conditions
were also derived by balancing the momentum and the energy transfer similar to
Richman’s (1988) analysis. Frictional effects were also included in the derivation of
the boundary condition. The theory was applied to plane shear flows in the same
study. Johnson et al. (1990) continued to apply this theory to flows in the chutes in
a later study. However, there are still several assumptions that remain questionable,
e.g., the dependence of the frictional normal stress on the solid fraction, and the
continuum assumption when the depth of the flow was only a few particle diameters.

There are relatively few experimental studies of granular flows. Measurements
of velocity, granular temperature and solid fraction are the most difficult aspects of
the experimental work. Some examples of experimental studies of granular material
flows in shear cells are Savage and McKeown (1983), Savage and Sayed (1984), Hanes
and Inman (1985), and Wang and Campbell (1992); that in the vertical channels are

Takahashi and Yanai (1973), Savage (1979) and Nedderman and Laohakul (1980);
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and that in the inclined chutes are Roberts (1969), Ridgway and Rupp (1970), Au-
genstein and Hogg (1974, 1978), Bailard (1978), Savage (1979), Ishida and Shirai
(1979), Patton et al. (1987), Johnson et al. (1990) and Ahn et al. (1991). Most of
these experiments measured the normal stresses, shear stresses, average solid frac-
tions for certain regions, or mass flow rates. Using high-speed camera technology
(Roberts 1969; Nedderman and Laohakul 1980) or the fibre optic probes (Savage
1979; Ishida and Shirai 1979; Johnson et al. 1990; Ahn et al. 1991) the point velocity
profiles were also measured. The fluctuating velocities in the flow direction and the
1-D solid fractions were first successfully measured by Ahn et al. (1991) by using
fibre optic probes. However, the granular temperature and the solid fraction still can
not be measured directly, although Ahn et al. used the one-dimensional information
to predict these values.

Due to the difficulty in the real measurements, computer simulation methods have
become an important vehicle in understanding the rheology of the granular material
flows. By putting a number of imaginary particles (or disks) in a control volume
bounded by periodic boundaries and giving them initial translational velocities and
angular rotational velocities which are randomly distributed about the flow field,
the particles start to collide with each other and finally reach a steady state. The
interactions between particles only occur at particle-particle contact points. Only
binary collisions are considered and the interstitial fluid effects are neglected. Some
examples are Walton (1984), Campbell and Brennen (1985a,b), Campbell and Gong
(1986, 1987), Walton (1986), Walton and Braun (1986a,b), Campbell (1988,1989),

Walton et al. (1988), Louge et al. (1990), Kim and Rosato (1992) and Walton (1992).
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Through computer simulations, statistical calculations of the velocities, granular
temperatures and solid fractions become possible. The computer simulation results
of Campbell and Brennen (1985b) indicated that the velocity distribution functions
are close to Maxwellian. The results also indicated that the granular temperatures
are not perfectly-isotropic; however, the isotropy of the granular temperature is a
general assumption in the kinetic theory. The technology of computer simulation
was also extended to calculate the self-diffusion coefficients (Savage 1992).

Heat transfer problems are important in industry, especially for the drying, heat-
ing or cooling of grains. Most of the heat transfer studies discuss convection and
have many similarities to convection in fluidized beds. Sullivan and Sabersky (1975)
investigated the convective heat transfer from a flat plate which was immersed in a
flow of granular medium. The convective heat transfer to the granular flow in an
inclined chute was also studied by Patton et al. (1986) and Ahn (1989). These three
studies included experimental and analytical works; however, the theories did not
include the effects of particle mixing, and the kinetic theory was not employed.

By mean-free-path argument and assuming that the fluctuating velocity distri-
bution was Maxwellian, Hunt and Hsiau (1990) developed a theory for the effective
thermal conductivity of low-density granular flows. Wang and Campbell (1992)
performed a heat transfer experiment in an annular shear cell. By measuring the

temperatures and the heat flux, the effective thermal conductivity was determined.
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1.2 Topics of the Present Research

Most of the developments about dense-gas kinetic theory are described in Chapter 2.
Sections 2.1 and 2.2 describe the background of the kinetic theory and the governing
equations for flows of granular materials. The results of the stress tensor and the
fluctuating flux derived by Lun et al (1984) are given in Section 2.3.1. In Sections
2.3.2 and 2.3.3, the analytical relations for the flow-induced particle diffusivity and
the thermal conductivity are derived based on the kinetic theory of dense gases. The
particle diffusivity and the effective thermal conductivity are found to increase with
the square-root of the granular temperature. Section 2.4 describes the kinetic theory
for a binary-mixture of granular materials which were derived by Lépez de Haro et
al (1983) and Jenkins and Mancini (1989) by employing the revised Enskog theory.

Chapter 3 describes the experimental study of granular flows in a vertical channel.
The first part of the experiment concerns the measurement of the local velocity and
the fluctuating velocity in the flow direction. These quantities were measured using
fibre optic probe technology. The second part is a particle diffusion experiment which
was conducted in the same vertical channel. Two differently-colored and otherwise-
identical particle streams were mixed in the channel. A frame grabber and an image
processing system were employed to measure the mixing layer thickness. Section 3.1
describes the experimental apparatus and the procedures; the data are presented in
Section 3.2.

In Chapter 4 the theoretical results from Section 2.3 are used to predict the ex-

perimental results. By solving the momentum and the fluctuating energy equations,
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the velocity and the granular temperature profiles are obtained. The results and the
comparison with the experimental velocity profiles are shown in Section 4.1. The
expression of the self-diffusion coefficient derived in Section 2.3.2 is used to calculate
the mixing layer thickness profiles in the vertical channel. Section 4.2 shows the
comparison with the experimental results described in Chapter 3. In Section 4.3,
the expression for the effective thermal conductivity is compared with Wang and
Campbell’s (1992) experimental results.

Chapter 5 presents the study of granular thermal diffusion in a binary mixture.
Due to the granular temperature gradient, the phenomenon called granular thermal
diffusion occurs. This issue has not been previously discussed in the research field
of granular flows. By using the theory derived by Jenkins and Mancini (1989) which
is introduced in Section 2.4, the granular thermal diffusion process is studied. The
theory is applied to calculate granular thermal diffusion in an oscillatory system, a

sheared flow and a flow in a vertical channel.
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Chapter 2

Dense-Gas Kinetic Theory

2.1 Background

The interactions between particles are the most important mechanisms in the grain-
inertia regime of granular flows. Similar to a molecular gas, the collisions result
in a random motion of the particles. In recent years, researchers (Savage 1984;
Campbell 1990) have started to employ the dense-gas kinetic theory to develop the
governing equations and the constitutive relations for granular flows. Different from
the perfectly elastic molecules in gases, the particles in granular flows are not elastic
and energy is dissipated due to the inelastic collisions. Hence, the particle motion is
not self-sustaining and the energy should be generated by the shearing of the flows
or by the vibration of the boundaries.

The modeling of the random motion of the particles is an important aspect in

analyzing granular flows. Employing the dense-gas kinetic theory, the fluctuating



— 12—

velocities of the particles are assumed to follow the singlet velocity distribution,
f (1)(r, c; t). Since the particle motion is not self-sustaining, the velocity distribution
function is not Maxwellian. In this case, the singlet velocity distribution function

f(l)(r, c;t) is assumed to be
f(l)(r7 C,t) = f(O)(I‘,C,t)(l + @), (21)

where c is the particle’s local velocity, r is the particle location, ¢ is the time, ®
is a perturbation term where ® < 1, and f (0)(r, c;t) is the well-known Maxwellian

distribution function:

Ot e on(_C?
fOw et =t (~g5). (22)

In the Maxwellian distribution function, n is the number density, C is the magnitude
of the fluctuating velocity C, and T is the granular temperature. The fluctuating
velocity C is the local velocity deviation from the mean velocity u, u =< c¢ >, C =
¢ —u. Analogous to the thermal temperature in the gases, the granular temperature
quantifies the specific kinetic energy of the particles and is defined by T =< C? > /3.
The symbol < > represents the ensemble-average quantity. The ensemble-average of
the local property, ¥, is determined by averaging the single-particle properties over

the entire velocity space:
L [y
<W>:—/Wf(mqmm (2.3)
n

where the product f(l)(r,c;t)dc represents the probable number of particles per
unit volume with local velocities within the velocity element dc centered at ¢ and

dc = degdeyde,. In Equation (2.3), ¥ denotes the local particle properties, such as
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mass, momentum, or energy. Due to the random movements of the particles, these
properties may vary from the ensemble-average value.

Except for the sections on binary mixtures, the present work assumes all the
particles are identical, spherical, smooth and nearly elastic. The collisions are in-
stantaneous and only binary collisions are considered. To analyze a binary collision,
the pair-distribution function f(z)(r - %ak, ci,r+ %ak, c2;1) is used instead of the
single-particle velocity distribution function (Chapman and Cowling 1970; Lun et al.
1984), where the subscripts 1 and 2 represent two different particles, o denotes the
particle diameter and k is the unit vector directed from the center of particle 1 to
particle 2, as shown in Figure 2.1. Using the Enskog assumption for dense gases, Lun
et al. (1984) defined the pair-distribution function from the product of the single-

particle velocity distribution functions for particles 1 and 2, and a correction factor

gO(V)a

f(z)(r — %ak, ci,r+ %ak, co;t) = go(z/)f(l)(r — %Uk, C1; t)f(l)(r + %ak, c2;t). (24)

The correction factor go(v) in Equation (2.4) is referred to as the radial distribution
function evaluated when the particles are in contact and v is the solid fraction.
The radial distribution function equals unity for low-density flows and approaches
infinity as the flow approaches a packed, rigid state. An empirical form of this radial

distribution function was given by Carnahan and Starling (1969) as follows :

g0(v) = (2= v)/[2(1 - v)’]. (2.5)

This expression becomes poor when solid fraction is higher than 0.5. For sheared
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granular flows, the work by Lun and Savage (1986) suggests the following form :
go(v) = (1= /"), (2.6)

where v* is the maximum shearable solid fraction for spherical particles. This ex-
pression is more appropriate for the high-solid-fraction flows. The radial distribution
functions as given by Equations (2.5) or (2.6) assume an isotropic distribution of
collision angles between the two colliding spheres. The expression in Equation (2.6)
is used in the present study.

Therefore, the number of pairs of particles 1 and 2 that are in contact that have
impact velocities within the range ¢; to ¢y +dc1 and ¢5 to ca+des could be expressed

as

1
A - %ak, ci,r+ 5(;1<,<:2;7t)a2(c12 - k)dkdc;des,

where c13 is the relative velocity of the two impacting particles, ¢ = ¢; — cs.

2.2 Governing Equations

Lun et al. (1984) modified the equation for the rate of change of < n¥ > given by
Reif (1965) as

%<nlll >:n<F-%I:->—V-<nc\Il>—V-®(\Il)+x(\Il), (2.7)

where F is the specific external force of the particles. The first term on the right
hand side of Equation (2.7) is the time rate of change of < n¥ > that results from

the variation in the local velocity ¢ due to the external force field. The second term
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is the “convection” term which represents the rate of change of < n¥ > due to the
net influx to the volume of the flow. The last two terms account for the change
rate of < nW¥ > per unit volume due to the inter-particle collisions. The collisional
contribution was derived by Lun et al. (1984) and decomposed into two parts: one

is the collisional “source-like” contribution y,

0.2
= — Uh4+ 0 — Ty — 0 -k
x(¥) 5 /cm.bo( 2+ ¥ — VU2 —¥y)(c12 - k)

X fO(r— Lok, er,r + Lok, cp;t) dkdeydes, (2.8)

and the other is the collisional flux ®,

3

o
o) = 5 c12‘k>0(\11'1 —¥)(c12- k)k
X f(z)(r — %ak, c,r+ %ak, c2;t) dkdeydes, (2.9)

where ' denotes the properties after the collision.
By substituting ¥ = m, mc or mc?/2 into Equation (2.7) respectively, the con-

servation equations of mass, momentum and fluctuating energy are obtained:

dp
o =—pV -u, (2.10)
e )F-V.P (2.11)
pdt _p ) .
3 dY
—p— =-P:Vu-V.T— .
L P:Vu-V v, (2.12)

where p is the bulk flow density, and is determined from the product of the particle
mass, m, and the number density, p = mn, or from the product of the particle

density, pp, and the solid fraction, p = ppv- In Equation (2.11), P is the pressure
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tensor contributed from the streaming mode Pj and the collisional mode P, as

mentioned in the Section 1.1:

P=P; + P, (2.13)

where
P,=p<CC >, (2.14)
P, = ®(mC). (2.15)

Similar to the pressure tensor, the fluctuating energy flux denoted by T is also

composed of the streaming mode I'y and the collisional mode T',:

I=T;+T,, (2.16)
where
1
T = 5P < C%*C >, (2.17)
L. = @(%mcz). (2.18)

The last term in Equation (2.12) 7 represents the energy dissipated per unit

volume due to the collisions and is expressed as:
L
v = —x(imC )- (2.19)

Note that when ¥ = mC substituted into Equation (2.8), x(mc) is zero since mc is

a summational invariant.
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2.3 Transport Phenomena in a Single Species Granular Flow

2.3.1 Stress Tensor and Fluctuating Energy Flux

The key point in developing the transport equations for a non-uniform gas or a
granular flow is to obtain the perturbation term of the singlet velocity distribution
function, ®. Using the Enskog theory, Chapman and Cowling (1970) assumed that
the perturbation term is linearly dependent on the gradients of the pressure, the
(granular) temperature, the flow velocity, and the diffusion force vector resulting
from the deviation between the non-uniform flow and the uniform system. The
diffusion force vector vanishes when the particles are identical. The details of the
diffusion force vector are given in Section 2.4. Chapman and Cowling expressed the
coefficients of the gradients in terms of Sonine polynomials. By keeping the first term
in the expansions and they successfully derived the constitutive relations of the elastic
dense gases. For flows of slightly inelastic particles, Lun et al. (1984) used a different
approach and assumed a trial function as the perturbation function that satisfied the
different moment equations generated by Equation (2.7). The perturbation function

was then derived:

® = al(CC—l(JQI) : Vu‘f‘az(é—C—2>C-VInT+a3(§—§_2)C.Vlnn’ (2.20)
3 2 27 5 97
where
a; = — o [1 + §77(377 _ 2)1/90} (2-21)
n(2—n)pYg L 5 )
16 1202
“ = Bn(41 = 33)pTgo [1 +— (4 - 3)1/90], (2.22)
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B 192
~ 25(41 — 33n)pYgo

as (20— 1)(n — )e(vg0), (2.23)

and

5m(T/7)2 - 75m(r/7r)%_

1
= —(1 ==
n=g5(l+e) # 1602 6402

Note that the restitution coeflicient of the particles is denoted by e, and I is the
identity matrix. For the elastic particles, e, = 1 and n = 1, and the perturbation
function derived by Lun et al. is the same as the first approximation derived by
Chapman and Cowling (1970).

Using Equation (2.20) in Equations (2.13)-(2.19), Lun et al. (1984) derived the

stress tensor, the fluctuating energy flux and the energy dissipation as follows:

8 1 L
P = |ppg1(v,ep)T — ppamm/zg(ﬂ‘?V . u]I — 2pp092(v, €)Y 28, (2.24)
I'= —ppa[g3(y, ep)T%VT + g4(v, ep)T%VV] , (2.25)

3
v = %g5(y, ep) Y2, (2.26)
where
1 1

S = E(un,p + Uupn) — §u1,15np, Ln,p=1=z,y,z (2.27)

and the coefficients ¢1(v, ep), g2(v, €p), 93(v, €p), 94(v,€p) and g5(v, e,) depend on v

and e, and are expressed as follows:

gl(V7 ep) =v+ 477’/2907 (228)
57 1 83n—1 64 3n—2 12 , }
- 2 = =2 2.2
g2, 6p) = =g {n(Q—n)g0+5 2y TG, Y ey (229)
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To determine the diffusive flux of particles 1 into particles 2, assume that transport
by diffusion only occurs in the y-direction as shown in Figure 2.2. Then the deter-
mination of the mass flux is similar to the method used to determine the streaming
contributions to the stress tensor and the kinetic-energy flux vector. The mass fluxes

of the two groups of particles are

m1 1 dny
Pl EChy = /Cly fl( )(rl,cl;t) dc; = —-Dlz—dy , (2.34)
7’;’&2 1 dn
E = ECzy = /Czy fz( )(I‘z,CQ;t) dey = _DZIFyg’ (2.35)

where ¥Cy symbolizes the y-direction fluctuating velocity integrated over the whole
velocity space. Fick’s law is used in Equations (2.34) and (2.35) to define the diffusion
coefficients, Dis and Dg;. If the velocity distribution function is Maxwellian (® =
0), then the diffusive fluxes 7y and 7, are zero. Because of the concentration
gradient, however, the flow is not in equilibrium and the perturbation term ® should
be included. Lun et al.’s singlet velocity distribution function cannot be used to
derive the diffusion velocity since their perturbation function was developed for a
single species. Instead the method by Kennard (1938) is used in which a correction
term is added to the Maxwellian distribution function to represent the singlet velocity

distribution function:
fi(l)(riaci;t) = fi(O)(riaci;t) + fi(C)(ri’ci;t) ’ i=1or2. (236)

Using this representation yields a non-zero diffusive flux. It should be noted that
f(© has the similar form as ® f© and flo « f©. A similar technique is applied

here to derive the self-diffusion coefficient for granular material flows.
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In kinetic theory, the Boltzmann equation is used to describe the rate of change
in the velocity distribution function that results from particle collisions (Chapman
and Cowling 1970). Similarly for granular-material flows, the Boltzmann equation
could be used to determine the distribution functions fl(l) and fz(l). Assuming there

are no external forces applied to the particles, the Boltzmann equation is

P fi(l)
ot

a5

O _
4GV [

] , t=1lor?2, (2.37)
coll

where the right-hand side represents the change of velocity distribution function due
to the collisions. For steady-state conditions and assuming only variations in the

y-direction, Equation (2.37) becomes

C; 8fi(1) — [afi(l)
Yy ot

]w“, i=lor2. (2.38)
The general form for the distribution function, Equation (2.36), is substituted into
Equation (2.38), and the derivative of the correction term is neglected since f(¢) «
f©. By noting that the collisions do not alter the Maxwellian distribution function,

and assuming that Ty is independent of y within the local region of interest, Equation

(2.38) becomes

C; = ex
YOy (2n1)3 p(= QT)dy

ar” C? dn; [6f,-(°)

=1 2 2.39
5 ]w”, ? or 2, (2.39)

As described by Kennard (1938), one method of solving Equation (2.39) is to
substitute for the right-hand side an integral expression for the rate of change of
the distribution function. The distribution function is then found by solving the
integro-differential equation. A simpler method, referred to as the Maxwell-Chapman

method as outlined by Kennard (1938), involves substituting an assumed form for
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fl(c). Following the arguments by Kennard, the form of Equation (2.39) suggests

representations for the correction terms:

c Ct
1( ) = Al(le eXp(—éT—l1 3 (2.40)
() C3
3 = A0y eXP(—2T2), (2.41)

where A; and A2 are coefficients that need to be determined. Since the particles are
identical, the granular temperatures are equal, Ty = T3 = Y. Using Equation (2.40)

and re-evaluating Equation (2.34) yields:

1 5 3 dny
? = ECly = A]TZ(QW‘)Z = _Dlzjy——. (2.42)

A similar expression is obtained for my. For a flow without a net mass flux, s is
equal to —my, and as a result A; must be equal to —A;.

To find A; it is necessary to examine the rate of change of Y.C1y by collisions.
This quantity is determined by multiplying the Boltzmann equation by Chy and
integrating over the velocity space. From Equation (2.39) and using DX.Cyy to
represent the rate of change of XC1,,

af
ot

dnq
dcy =T—. 2.43
]coll ! dy ( )

DxCy, = [ Cly[

The first step to determine DX (', is to examine the effect of each collision on
the velocity C1,. To proceed, consider a collision between an incoming particle 1 and
a scattering particle 2; the particles are of equal mass, smooth and slightly inelastic.

By the conservation of linear momentum, the change in y-velocity of particle 1 is

C{y — C1y = —Chy(1 + €,)(1 — cos §) /4, (2.44)
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where ' indicates the velocity after collision, Cy; is the relative fluctuating velocity
vector Ci; = C; — Cg, e, is the coefficient of restitution between the inelastic
particles, and 0 is the angle through which Cj3 is turned during the collision. The
next step is to consider all possible collisions between the scattering particle 2 and
incoming particles 1. Using the scattering coefficient of 6% /4, the fraction of incoming
particles 1 per unit area scattered into the angle from 0 to 0 + df is 27 (0% /4) sin 6d6.
The number of encounters between the pairs of particles 1 and 2 that result in the
movement of particle 1 into an angle df centered at 4 is found from the product of
the scattering coefficient, 27(0?/4)sin 0df, the relative velocity, Cj2, and the pair-
distribution function, f®(r— %ak, c1,r + %ak, c2;t) depdey. Therefore, the total
change in XCyy is found by integrating over all possible angles df and over the

velocity spaces dej and dea,

[c.o NN SR Y 2
DECh, = / / / (27%: sin 0)C12(Cl, — Ciy)
—00 —~o0 0
x  fO- —;-ak, c1,r + %ak, c2;t) ddeydes. (2.45)

Equation (2.45) is evaluated by substituting in Equations (2.2), (2.4), (2.36), (2.40),
(2.41) and (2.44) and neglecting the second order terms, l(c) 2(0) and the terms
involving the space derivative of the velocity distribution functions. The integral

becomes

8v2
DXCry = —(Ainz — Aznl)-g—WZUZQO(V)(l +ep) 17 (2.46)

By combining Equations (2.42), (2.43) and (2.46) with A2 = —A; and n = n; + ny,

the self-diffusion coefficient is

ovrY

- 8(1 + ep)vgo(v)

Dy (2.47)



~ 94 —

The same result is also derived using a momentum transfer method as outlined
by Present (1958). The following is a brief outline of this method. Present used a

modified Maxwellian velocity distribution function:

fO(r,c;t) =

(2.48)

2 . 2 2
n Xp[-—Cz—l_(Cy ’Uy) +Cz:|’

(277)2 27

where vy is the diffusion velocity and v, < Cy. Equation (2.48) is linearized which

yields
n

(277T)2

C? v
exp(—Z—T—)(l + TyCy) (2.49)

f(l)(r, c; t) =

This distribution function has a similar correction form to the distribution function
in Equations (2.40) and (2.41).

Let Z1; denote the average momentum transfer resulting from collisions between

group 1 and group 2 per unit volume per unit time. For slightly-inelastic particles

of uniform mass, using the conservation of linear momentum =, in y-direction is
_ 4 2
E12,y = g(l + ep)o*VaTmgo(v)ning(viy — vy ). (2.50)
From Equation (2.14), the kinetic normal stress in y-direction is
Plk,yy = p1 < C1yCiy >= mn1 T. (2.51)

If the granular temperature is constant in a small local region dy, then the net force
acting on group 1 particles is dPij 4, = mYdny which is equivalent to —d Py, yy. By

the conservation of momentum,

dPlk,yy = ——312,ydy. (2.52)
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Using the fact that the total mass flux is zero, nivlyy = —ngvyy and ny + ng = n,
the self-diffusion coefficient is derived which results in the same relation as given by
Equation (2.47).

Savage (1992) applied the Einstein relation (McQuarrie 1976) which relates the

self-diffusion coefficient to the velocity autocorrelation function:
1 oo
Dy = 5/0 < C(0)-C(r) > dr, (2.53)

where 7 is a time variable. Savage followed kinetic-theory arguments and assumed

that

< C(0)-C(1) >=< C? > exp(—«t), (2.54)

where £71, a relaxation time, is influenced by the average momentum change due
to collisions (McQuarrie 1976). When Equation (2.53) is evaluated, the resulting
expression for the diffusion coefficient is the same as Equation (2.47).

Equation (2.47) indicates that the diffusion coefficient increases with square root
of the granular temperature. For the elastic particles, e, = 1, the self-diffusion
coefficient in Equation (2.47) becomes the same as derived by Throne (Chapman

and Cowling 1970).

2.3.3 Effective Thermal Conductivity

Different from gases, in granular flows, the heat is transferred due to the movements
and the mixing of the particles. Hunt and Hsiau (1990) used mean-free-path ar-
guments to develop analytical expressions for the effective thermal conductivity for

low-density granular flows. They assumed constant properties and determined ex-
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pressions for the effective thermal conductivity by integrating over the entire flow
field. Instead of considering the entire flow with constant properties, a small local re-
gion is considered here and properties are assumed constant in this small region. The
effective thermal conductivity due to the motion of the particles is developed from
dense-gas kinetic theory. Since the heat capacity of the fluid is much smaller than
that of the particles, the heat transfer due to the movement of the fluid is neglected.
Sun and Chen (1988) verified that conduction between particles during collisions is
negligible because of the short duration of the collision time and the small contact
area. Therefore, only the heat transfer due to the streaming mode is considered for

the heat transfer study and the heat flux could be determined from
q=n < AeC >, (2.55)

where Ac is the excess energy carried by a particle in the flows and is evaluated as
follows. Note that the thermal radiation is neglected in the present analysis.

Consider a particle of thermal conductivity, kp, heat capacity, cp, total surface
area, A, characteristic length, /,, and a heat transfer coefficient between the particle
and the fluid, k. The temperature gradient only exists in y-direction as shown in
Figure 2.3. For Biot number, B: = hl,/k,, less than 0.1, the lumped system analysis
is applied and the energy equation becomes

dT
mey— = RA(Ty —T), (2.56)

where t is time variable, T" is particle temperature and T is the local temperature of
the surrounding fluid. As shown in Figure 2.3, consider a particle initially at the fluid

temperate Ty that moves a short distance [ to a new position with fluid temperature
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T}' = Ts + l,(dT'/dy), where [, is the y-component of . Then at the new position,

Equation (2.56) becomes

C% =T + lyfl—z - T, (2.57)
where { = mc,/hA. Suppose that the particle moves a distance ! within a time =
to the position with surrounding fluid temperature of T]’c = To = Ty + 1,(dT/dy).
Assume C) is constant in this small local region, then the time and distance are
related by 7 = [/C = I, /Cy. Therefore Equation (2.57) could be solved:

dr ar dT
T_T0+lyd_y —tCyd—y —Coy?d-}/—-l-Og exp(—t/(), (258)

where Cj is a constant to be determined. By using the initial condition that the
particle temperature equals the surrounding fluid temperature before the movement,
ie., T'=1Tr =Ty — ly(dT/dy), the coefficient C3 is found to be (Cy(dT'/dy). Hence

the particle temperature when ¢t = 7 = ly/Cy is obtained:
dT
=T~ CyC‘@[l — exp(—ly /CCy)]. (2.59)

The group 1,/(Cy = ThA/mc, is the product of the Biot number and the Fourier
number, where the Fourier number is Fo = kpyT A/lymc,. When the pa:rticle Biot-

Fourier number is small, BiFo < 1, Equation (2.59) reduces to

dT

T=Th=~lyg, (2.60)

The excess energy carried by the particle to this position relative to the surrounding
fluid is Ae = —mcyly(dT'/dy). The length I, is found from the mean free path, A,

and the angle £ between C and y-axis, [, = A cos €. Therefore,

dT
Ae = —mey )\ cos E—. 2.61
Phrcos ¢ (261)
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Similar to the streaming transport relations, the heat flux in the y-direction is found
by integrating the product of C, and the excess energy carried by particles over the

entire velocity space:
gy =n < AeCy >= /AeCy fO(r,¢;t) de. (2.62)

By substituting Equations (2.1) or (2.36) and (2.61) into Equation (2.62) and noting
that the product of AeCy and the correction term of velocity distribution function

is an odd function, Equation (2.62) becomes

zﬁmncpAlT%d—T. (2.63)

=73 dy

The next step is to find the mean free path by using techniques from dense-

gas kinetic theory. Let k represent the unit vector from the center of particle 1 to
particle 2. Then o2(cy2 - k)dk is the oblique volume in which particle 2 will collide
with particle 1 per unit time for particles 1 and 2 with the relative position vector

between k and k + dk (Chapman and Cowling 1970). The collision frequency is

e = 02/ . 0(c12-k) f(z)(r~%0'k, c1,T + 30k, ¢35 1) dkdeydey
Cc19-k>

= 4n’0?go(v)V7 Y. (2.64)

The collision interval, which is the mean time between two successive collisions, 2.,

is
n 1
= — = i 2.65
Ve 4nolgo(v)Vn Y (265)

The mean free path is the product of mean absolute velocity C' and the collision

interval, t., so

=Ct, = ¢
- dno?gy(v)Vr Y’

(2.66)
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where C in Equation (2.66) is defined as

C = / C fO(r,¢;t) de = @ (2.67)

By introducing Equation (2.67) into Equation (2.66) and using v = 7no3/6, the

mean free path is

A 2 (2.68)
] = —. .
6\/§Vg0(y)
Finally, the local heat flux is determined,
_ _ P a l/zd_T 9
Y ) dy (2.69)
and the effective conductivity k, 7f is
_Pep O 1/2
kerr = —T/e, 2.
=R vga() (2:70)

The expression for the effective conductivity is similar to that for the diffusion coef-

ficient since each increases with o and T1/2 and decreases with go(v).

2.4 Binary Mixture of Granular Materials

2.4.1 Introduction

The three previous sections discuss the transport mechanisms in a single-sized gran-
ular flow. However, in real applications, the particle sizes are usually not uniform.
Because of the complications involved in the transport of multicomponent mixtures,
this topic receives little attention.

The following is a brief outline of the recent studies about a binary mixture of

granular materials. Shen (1984) used mixing-length kinetic theory concepts to study
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binary-sized mixtures in a highly-concentrated simple-shear flow. The particles were
of the same material, frictionless, inelastic and spherical. Shen calculated the normal
and the shear stresses and compared with Savage and Sayed’s (1984) experimental
results. Farrell et al. (1986) followed the dense-gas kinetic theory for mixtures to
derive the governing equations for a binary-mixture of smooth, slightly inelastic,
spherical granular particles. They also calculated the stresses generated in a simple
shear flow with high solid fraction. The results were compared with Shen’s (1984)
theoretical and Savage and Sayed’s (1984) experimental results. However, both of
these theoretical studies only considered the collisional mode of the stresses. Jenkins
and Mancini (1987) used the more rigorous kinetic theory to derive the balance laws
and the constitutive relations for the plane flow of a dense, binary mixture of smooth,
nearly elastic, circular disks. In this study, both the kinetic and the collisional modes
were considered. Jenkins and Mancini (1989) used revised Enskog theory to develop
the kinetic theory for binary mixtures of smooth, nearly elastic spheres. The current
study follows the approach by Jenkins and Mancini (1989) but focuses on the granular
thermal diffusion problems.

In binary or multisize mixtures, a phenomena called “segregation” may occur.
Segregation may result from differences in the particle size, the particle mass, the
properties of materials, and the angle-of-repose of the material (Johanson 1978).
Savage and Lun (1988) proposed and analyzed two mechanisms due to size difference:
“random fluctuating sieve” mechanism and “squeeze expulsion” mechanism. The
random fluctuating sieve mechanism results from the induced gravity, in which the

smaller particles more easily fill in the voids. The “squeeze expulsion” mechanism
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describes the process in which a particle could be squeezed out to another layer
because the contact forces are not balanced. Segregation is important and is broadly
discussed in the industrial fields involving powders and granular materials (Johanson
1978). Some studies about this complicated phenomena have been reviewed by
Savage (1987). However, the present study is interested in the segregation caused by

the granular thermal diffusion.

2.4.2 Revised Enskog Theory and Governing Equations

Enskog was the first person to consider the collisional transfer in dense gases, but
he only considered the single-sized particles. His theory and work in this field was
fully described by Chapman and Cowling (1970). Throne extended Enskog theory
to the binary mixtures of hard spheres. This extended theory was also outlined by
Chapman and Cowling (1970).

Similar to the single species of dense gases, a radial distribution function describ-
ing the probability of the collisions between two particles should be evaluated. Since
the particles are of different size and mass in the mixture, it is difficult to define
the local density to evaluate the radial distribution function in a non-equilibrium
flow. Barajas et al. (1973) evaluated the radial distribution function at three dif-
ferent locations: the midpoint of the line connecting the two colliding particles, the
contact point, and the mass center of the two colliding particles. They found that
neither of these choices was satisfactory because the diffusion force was in conflict
with irreversible thermodynamics.

Instead of using a specific point to evaluate the radial distribution function in the
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standard Enskog theory (SET), van Beijeren and Ernst (1973) proposed a modified
Enskog theory (referred by Lépez de Haro et al. (1983) as revised Enskog theory —
RET) which took the radial distribution function at the contact point as a nonlocal
functional of the density field. The results from the RET were found to be consistent
with irreversible thermodynamics. Lépez de Haro et al. (1983) employed the RET to
the multicomponent mixtures and derived the linear transport theory. Jenkins and
Mancini (1989) extended this theory to binary mixtures of smooth, nearly elastic
spheres.

Let the subscripts o and 3 represent two different species in the binary-mixture,
and ¢, j are either o or . Similar to Equations (2.1)-(2.3) for the single species,
the singlet velocity distribution functions fi(l)(ri, c;;t) , the Maxwellian distribution
functions fi(ﬂ)(ri, c;;t) and the ensemble-average of a single-particle property of the

tth species U; are defined as

O ieit) = fOrieit) (1+0y), (2.71)
. . p)2
O, eit) = ‘(2—7:;?6@(—%), (2.72)
and
< V¥; >= El— v, fl-(l)(r,-,c,-;t) dc;, (2.73)

where T; is the granular temperature of species i defined by T; =< C? > /3. The

granular temperature of the mixture is defined by
T = L (paTa + psTs) (2.74)
- mon Pala Pelg), .

where n is the total number density, n = n,, + ng, pa and pg are the bulk densities

for the two species in the flows, p; = ppivi = m;n;, and myg is the sum of the masses
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of particles o and 3, m

0 = Mgy + mg. For a binary mixture, the equipartition of
fluctuating energy is assumed ( Shen 1984; Farrell et al 1986)

3

Then the Maxwellian distribution function for the ith species is rewritten as

(0) mi \3 m;C?
0 2 1Yy
i (vieist) =n, (27rm0T> exp( 2mo Y
The pair-distribution function for particles i and J is defined as

(2)(1‘

(2.76)

1 1 1
a”k c;,r+ a,]k cj;t) = gij(r — az-jk,r-!— §aijk; t)

1
- 50k, ¢i; 01 + 5%'1% cj;t) (2.77)

where g;; is the radial distribution function of two particles evaluated when particles

are in contact, k is the unit vector directing from particle z to 7,

, and oj; is the average
diameter of the two particles, o;; = (o; + 0;)/2 as shown in Figure 2.4

The two kinetic equations derived by Lépez de Haro et al. (1983) are

9 9N Wy .
(at+cz V+Fz acz) fz (rlacht) Zl

,7ii(cij k)
j=a,8
X [gz-j(r, r+ az-jk)fz-( )(r, c;; t)f(l)(r + oijk, cj;t)
gis(r,r = o) fO (1, i) FO (1 4+ 0k, o5 t)] dkdc;, (2.78)

where F; are the specific external forces of particles of species 7, and ' means the

velocities after the collision.

Similar to Equation (2.7), the change rate of < n;¥; > is

0 ov;
at<n,\Il > = n; < Fy

> —V- < nic;¥; >
Jc;

+ X [xi(W) - V- 04(8)). (2.79)
j=ap



~34 -

The last two terms represent the collisional contribution: Xi; is the “source-like”

contribution,
2
xis() = <2 [ (W W - W - Uy (i k)
J 2 c;j k>0 ! J I J
@, 1 el
X fi (r— é’o'ijk, c;,r+ 50,']'1(, cj; t)dkdc;dc;, (2.80)

and ©;; is the collisional flux,

3

0'..
0;;(¥;) = —-* Wi — ;)(cij -
(Vi) 5 Cij'k>0( g )(cij - k)k
(2) 1 1
X fij (r— —z—di]'k, ci,r+ 50’,‘]'1{, cj; t)dkdc;dc;, (2.81)

where ' denotes the properties after the collision.
Substituting ¥; = m,; into Equation (2.79), the diffusion equation for species 7 is

obtained:
By summing the diffusion equations for different species and using the mass average

velocity u = (pauq + pgug)/p, then the conservation equation of mass is derived:
— = —pV - u, (2.83)

where p is the (total) bulk flow density, p = po + pg. Using a similar procedure as

above but taking ¥; = m;c; and micz2 /2, the conservation equations of momentum

and fluctuating energy are determined:

d
Eltl = —V-P+ paFo+psFs (2.84)

and
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3m n%_ ;mOTv'(nava+nﬁVﬂ) = —V'I‘—'P :Vu

+ poavVa- - Fo+ PBvp - F,B -7 (2'85)
where v; is the diffusion velocity of species i,
vi=<GC;>. (2.86)

The pressure tensor has contributions from the kinetic mode P and the collisional

mode P,:
P=P,+P,, (2.87)
where
P = Z Py = Z pi < G;C; >, (2.88)
i=a,8 i=a,f
and

= 2 2 Poij= 3 > 0;(miCy). (2.89)

i=a,f j=o,f i=o,8 j=o,f
The fluctuating energy flux I' is also composed of the kinetic mode 'y and the

collisional mode I',:

'=Ty+7I,, (2.90)
where
Tr= Y Tu= ) ,o, < CIC; >, (2.91)
1=a,f3 = a,[)‘
and

=2 Y Teij= Y X 05 mzC'”’). (2.92)

Z CY,,B ]_aaﬂ z*a,,B] O’,,B
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The energy dissipation due to the inelastic collisions per unit volume is denoted by

~ and is evaluated as:

=-2 X xu(%miC?)- (2.93)

i=a,,3 jza’ﬁ
2.4.3 Expressions for the Constitutive Relations

Similar to the method by Chapman and Cowling (1970), Jenkins and Mancini (1989)

expressed the perturbation term of the singlet velocity distribution function ®; as

¢, =—A;-VInY~-B;:Vu+ H;V-u—-D,-d; + Z Li; (1 = epi5), (2.94)
j=a7ﬂ

where e, ;; is the restitution coefficient between particles ¢ and j, and d; is the

diffusion force:

d, = W[VP—}— —za:ﬁp] (F; — F; )} +j§/3 " (5” + 37rnja M;;9.;)VInY
ni  (Opi_
+ ]Za:ﬁ — (an, Vny), (2.95)

where P is the “granular pressure” (normal stress), &;; is the Kronecker delta and
M;; = mi/mij = m;/(m; + mj). The diffusion force is the main difference that
results from using RET instead of SET. In Equation (2.95), gcij is the equilibrium
value of the radial distribution function for particles i and j at contact which is
found by substituting the local density as the equilibrium density and is expressed

as (Kincaid et al 1983; Jenkins and Mancini 1989)

Geij = [Z2+ 3‘100{ 275 +2( ""’f Zz} / Z3, (2.96)

(oF)
where

Z njos, 1=1,2,3; Z=1-27;. (2.97)
J =a,f8
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Note that Z3 is equal to the total solid fraction, Z3 = v = v, + vg. This equilibrium
radial distribution function is originally derived by Mansoori et al. (1971) and is
known as Carnahan-Starling approximation. In Equation (2.95), p; denotes the
“granular chemical potential” of species ¢ which depends on the radial distribution
function used. Corresponding to the form of equilibrium distribution function derived
by Mansoori et al., the granular chemical potential p; is expressed as (Reed and
Gubbins 1973)

7ro‘?P 3Z90; + 32’10;-2

i
i i —n(1-Z
moT o n( 3)+6m0T Z
9Z3a} Z20; 2[ Z3 Z32]
24300 | g( 220Nz 23 45
t oot <Z3) nat 5
2904 3 Z3(2—Z3)]
(B g s B 56

In Equation (2.94), A;, B;, H;, D; and L;; are functions of C;. By expanding
A;, B;, H;, D; and L;; as Sonine polynomials, Jenkins and Mancini (1989) solved
Equation (2.78) in the first-order approximation and found that the velocity distri-
bution functions were independent of the inelasticity of the collisions for this order of
approximation. It should be noted that the particles treated here are slightly inelas-
tic; otherwise, the inelasticity would enter the first-order solution. By substituting
the first-order of the velocity distribution function into Equations (2.87)-(2.93), the
stresses, the fluctuating energy flux and the energy dissipation can be determined.

The normal stress or the granular pressure in the mixture P is

2
P=moY(n+ > > gwnmja?jgcij). (2.99)
i=a,f j=a,8
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When there is no diffusion, the shear stress is given by

3}
Pnl =4 #n, nvla r=uoy,z, k 7£ la (2100)
37‘1
where g is the mixture viscosity:
= = Z szmOT(nz Z M]zﬂ'nzn] z]gcm)
i=o, Jj=a,B
2rmomim; T
15 D ( m”’ j ) ninjol gei;. (2.101)

i=a,8 j=a,f
In Equation (2.101), b9 is the coeflicient of the first-order term in the Sonine poly-

nomial expansion of B; and expressed as

8
bio = 5[61 Z ni(6ij + 57”1] z]gcw M;i)
Jj=a,p

32 Mo
+ 2 ( = IB Z (1 - 1] n] + Z 157Tn]nko-]kgC]kMk])]
j=a,f3 k=ao,0
512
{gmﬂnanﬂ(mo'f) [b bg — ——S)——aaﬂwmamﬁ/mo]} (2.102)
where
Tmamg\3 (2 2 m; nEg T\

b; = 4002 ( @ ﬂ) (— ——’) —kekk g 2(-—) k. 2.1
z 7o\ om3 3+5mk * niger  F\myg/ 7 (2.103)

When there is no diffusion, the fluctuating energy flux is expressed as

oY
F = —/\57:; Z,Tl =7,Y,%, (2104)
where A is
5 2mo Y\ 3
A= = g X azl( : ) (nz+ >, MijMjimnin;ojigei;)
i=a,f D jap
4 2rmgmim; Y 7
+ g 33 (TR ) ol (2:105)

=0, j=ao,f Y
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In Equation (2.105), a;1 is the coefficient of the first-order term in the Sonine poly-

nomial expansion of A; and expressed as

8
aip = 15[“:’ > ni(&j+37mj0?jgcz‘jMz'jMﬂ)

J=a,B
1
TMaMm
+ 54mz(Ta—5—ﬂ) a/ﬂ (1= é&ij)(nj + E ”nfnk kgC]kMk] Jk)]
Mo j=a,8 k=a,8 0
1
+ {ngﬂn,,nﬂ@m,-)?(14580aﬂ7rM3ﬁM§a/mg — aaaﬁ)}, (2.106)
where
m % 4
- o2 G B )
a; L p m——— k,-l— k+5 ik Mp;
1
NE9ckk 2f T 2 .
+ ———80< ) kA i, 2.107
nigcik k mg ?é ( )

The energy dissipation due to the inelastic collisions per unit volume is derived as

L—e2,: r2mm;m3T3\3%
Y= D0 D 4AgajolmingMj; ”’”( — ) . (2.108)
iz, j=of 2 mim;

From Equation (2.86), the difference between the diffusion velocities of the two
species is determined from

2

vy = brgVY), .
Vo — Vg nans Daﬁ (d + kr— T V ‘ (2 109)
where D, is the diffusion coefficient given by
3 2T  \3 1
D,g = —( ) 2.110
*F = on My Mg, SUgﬁgmﬂ ( )
and ky is granular-thermal-diffusion ratio expressed as
4 1 Nan 3 3
by = gniol,— 2 [ME a0 — MZpag]. (2.111)



— 40 -

Since there is no mass transfer during collisions, the mutual diffusion only depends
on the kinetic mode.

The self-diffusion process in a single species granular flow has been studied in the
earlier section. For the binary-mixture, there is a new diffusion mechanism, granular
thermal diffusion, that results from the granular temperature gradient as indicated
in Equation (2.109). The granular-thermal-diffusion ratio ky is the ratio of the gran-
ular thermal diffusion coefficient Dy to the mutual-diffusion coefficient Dyg. From
Equation (2.111), kv is 0 if the two species are identical meaning there is no granular
thermal diffusion process for a single-species granular flow. The granular-thermal-
diffusion ratio in Equation (2.109) is positive if species « is more massive, or if « is
of larger size than species 8. The effect of the granular thermal diffusion is that the
lighter or the smaller particles move to the position with higher granular temper-
ature, and the heavier or the larger particles move in the opposite direction. This
phenomena has been indicated by the theoretical development and some experiments
for gases and liquids (Chapman and Cowling 1970). The details of granular thermal
diffusion process are presented in Chapter 5.

The diffusion coeflicient given by Equation (2.110) has the same form as derived
by Throne for the perfectly-elastic dense gases. Since the present theory neglects the
higher order terms, the inelasticity does not enter the equation. If the two species
are identical, then Equation (2.110) is the same as the diffusion coefficient shown in
Equation (2.47) by substituting e, = 1. Although the diffusion coefficient derived
by RET is the same as that derived by SET, the diffusion force is different which

causes a different diffusion flux.
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Chapter 3

Experimental Study of Granular Flows

in a Vertical Channel

3.1 Experimental Apparatus and Procedures

3.1.1 Facility

The present experiment was designed to study diffusion in granular material flows.
Two differently-colored but otherwise-identical particle streams were mixed in a ver-
tical channel. The bulk ensemble-average velocities, the fluctuating velocities and
the mixing layer thicknesses were measured.

Figure 3.1 shows the schematic drawing of the granular-flow mixing layer facility.
The particles entered the test section from an upper feed hopper. A thin metal
splitter plate was placed in the center of the hopper and extended about 2 cm into

the test section to separate the two different colored streams. On one side of the
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splitter plate the particles were dyed black, and on the other side the particles were
fluorescent yellow; aside from the difference in color, the particles were identical glass
spheres. The test section was 1 m in height, 2.18 cm in depth, and had adjustable
side walls. The material flow rate was controlled by the size of the opening of the
lower hopper and was determined by collecting the material exiting the test section
over a designated period of time and weighing the sample.

Two tempered-glass plates were used as the front and back surfaces. Since there
were dirt and static charge left on the surface after the particles slipped past, the
plates were removed to be cleaned and polished after every two to three experimen-
tal runs in order to create a two-dimensional flow. As shown by the experimental
results, the surface conditions of the side walls influenced the velocity profiles and
the diffusion experiments. The present experiments were composed of three side-wall
conditions: polished glass walls, walls roughened by adhering a layer of 3-mm diam-
eter glass spheres to the surface, and aluminum walls with 120° saw-tooth V-grooves
of 3-mm depth.

Glass beads with particle density, p, = 2490 kg/m3, were used as the granular
materials. The sizes of particles and the channel width, 2H, also influenced the
experimental results. The average particle diameters, o, of 3-mm, 2-mm and 1-mm
were used. Most of the experiments used the 3-mm glass beads and two different
channel widths: the narrow channel of 3.81 cm (2H/o = 12.7), and the wide channel
of 5.08 cm (2H/o = 17.0). For the roughened and saw-tooth side walls, the channel
width was measured between the outer edges of the attached particles or between

the tips of the peaks. The experiments were performed for low and high flow rates
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which corresponded to average velocities of about 5 cm/sec and 10 cm/sec. Since
the roughened and saw-tooth walls offered a slightly larger flow cross-section than
the smooth walls, the mass flow rates were larger for these wall conditions. Some
additional experiments were performed at higher flow rates; however, based on visual
observations the flow appeared to surge especially for the smooth and the roughened

side walls.

For the roughened and saw-tooth walls, a total of eight experiments were con-
ducted using 3-mm diameter beads for the two flow rates, and the two channel sizes.
As shown in Section 3.2.2, the largest mixing-layer thickness was approximately 4o
at a downstream distance of /o = 300. To increase the mixing layer thickness rela-
tive to the particle size, additional experiments were conducted using smaller beads
of 1-mm and 2-mm diameters. For the 2-mm beads, the channel width using the
saw-tooth sides was 2.54 cm, which corresponded to 2H/o = 12.7 — the same ratio
of width to particle diameter as in the narrow channel with the 3-mm beads. For
I-mm beads, the smallest channel size possible was 1.59 cm (2H /o = 15.9). With the
smaller particle diameters, it was possible to use higher average velocities without
an apparent surging problem. As a result, the average velocities using the 1-mm and
2-mm beads were approximately 18 cm/sec.

The average solid fraction, v, was determined from the equation v = 1 | PpUze Ac
where i was the mass flow rate, uyq was the average velocity across the channel which
was determined from the velocity profiles, and A, was the channel cross-sectional
area. Because of the additional flow area caused by the surfaces of the roughened

and saw-tooth channels, the effective channel width was estimated as the distance
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2H + 0. For all experiments, the solid fraction ranged from approximately 0.59 to
0.64. The maximum shearable solid fraction, ¥* was about 0.65. The distribution
of the local solid fraction was not measured, because of the observations of the flow
that indicated the variation appeared to be small and within the uncertainty of the

measurement technique.

3.1.2 Velocity Measurements

Savage (1979) first introduced the use of fibre optic probes to measure velocities in
granular flows. Later Ahn et al. (1991) developed a similar system and successfully
measured the velocities, the velocity-fluctuations and the one-dimensional solid frac-
tions of the granular flows at the base, the free surface and the side walls of the
chute. This technique was modified to apply to the measurements of the present
experiments.

Two MTI 062H fibre-optic displacement probes were placed in a holder that
was mounted flush to the front tempered glass plate as shown in Figure 3.2. The
holder could be moved upwards or downwards, and to the left or to the right so that
measurements in different positions were possible. The probes were hemispherical-
type, i.e., all the filaments in a semi-circle of the probe face emitted light and those
in the other semi-circle received light. The diameter of the probe was 1.6-mm. The
two probes were arranged as shown in Figure 3.3. They were spaced center-to-center
4.5-mm apart for the 3-mm beads, and 2.5-mm apart for the 2-mm beads. The
velocity profiles were not measured for the 1-mm beads, because the uncertainty in

the measurement technique increased significantly when the fibre optic probe was
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larger than the size of the beads.

The signals from the receiving parts of the two fibre optic displacement probes
were transferred to the voltage outputs through two MTI KD-300 fotonic sensors.
The Data Translation DT2811-PGH consisting of 16 channels of analog-digital con-
verter was used to digitize the voltage outputs and then to store the digitized data.
The DT2811-PGH was connected to an 8253 Intel Programmable Timer which was
used to measure the time. The timer was installed inside a Zenith 386 personal
computer. A software program written in C controlled the whole process including
the sampling rate and the gains of the signals. There were 32,000 samples recorded
in 24 seconds for each run of the experiment and between 200-300 particles were
detected. The flow chart of the process is shown in Figure 3.2.

The output from the displacement probe depends on the gap between the object
and the face of the probe, so a sine-like signal appears when a spherical particle
passes the probe. Figure 3.4 shows a sequence of outputs when particles pass by the
two probes. As shown in the figure, there is a time delay between the two signals
that depends on the travel time of the particle. The upper curve was the output
from the probe placed in the upstream, and the lower curve was for the downstream
probe.

A BASIC program, which was originally written by Ahn (1989), was modified
to analyze the samples. The first step in determining the velocities of individual
particles was to calculate an average time delay between the two signal records. The
average time delay was calculated by cross-correlating the entire two records from

outputs of the displacement probes. Figure 3.5 shows a typical cross-correlation
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curve. The average velocity, Uz,ave Was then calculated from the time delay and the
spacing between the centers of the two probes.

The second part of the computer algorithm identified the passage of individual
particles in each of the data records. The average signal output was computed to
determine the initial threshold voltage as shown in Figure 3.4. A peak in the voltage
output data was identified as a possible passage if the value of the peak was higher
than the threshold voltage. In addition, the width of the peak had to be within a
certain range. For the particles with diameter of o, the peak width had to be between
0.10/ug qve and o /ug qve. If the peak fell outside this range, the data corresponding
to that peak was not included in the further calculations. The total number of
particles that passed by this probe based on the initial threshold voltage could be
counted after the above examination. Then this procedure was repeated based on
an increased threshold voltage until the maximum total number of particle passages
was obtained. A similar procedure was performed for the second data record.

The third part of the algorithm calculated the velocity of individual particles. For
each identified peak in the upstream record, the expected time for the corresponding
peak to be found in the downstream record was determined from the average time
delay. At this expected time, the downstream record was examined to see if a peak
occurred at that time or within a time window between 0.71 to 1.67 of the time delay.
This time window corresponded to a velocity variation of + 40% of the previously
calculated average value, ug gpe. If the peak in the second record did not occur within
this range, the velocity was not calculated for the particle that was observed in the

upstream record. After a particular particle was confirmed to have passed by the
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two probes, the velocity of this particle could be calculated. In Ahn’s program the
passage time of the particular particle was calculated from the time delay between
the peaks in the data records.» To calculate a more accurate time delay, two-thirds of
the two signals corresponding to a particle passage were cross-correlated. The reason
for using two-thirds instead of the entire peaks in the cross-correlation was that the
peaks might not be in the center of the signals and the widths of the two signals
might not be the same. An individual particle velocity was obtained by dividing the
center-to-center probe distance by the time delay. A more accurate mean velocity
than that obtained from cross-correlating the two entire records was determined by
averaging these individual velocities. The similar procedure was repeated twice by
using the new time windows based on the newly calculated mean velocity. Finally,
the ensemble-average velocity < ¢; > was obtained. The ensemble-average of the
square of the fluctuating velocities in the flow direction, < C2 > was then calculated.

This method of velocity measurements was calibrated using a rotating wheel
that revolved at a fix speed with a layer of particles attached to the outer periphery.
The calibration error was found to be dependent on the sampling rate as shown in
Figure 3.6. With a higher sampling rate, the result was more accurate but there were
fewer particles detected by both probes. The sampling rate of 1/0.000785 sec™! was
found to be the most suitable for the present experiment. The calibration indicated
approximately a 3% error in the average velocity measurements for this sampling

rate and between 200-300 particles were detected.
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3.1.3 Mixing Layer Thickness Measurements

As mentioned is Section 3.1.1, two batches of differently-colored but otherwise-
identical particles were placed on either side of the splitter plate in the upper hopper.
After the bottom hopper was opened, the particles started to move downwards and
to mix in the test section. The mixing layer increased from the end of the splitter
plate. The diffusion experiments involved the visual observation of the colored par-
ticles through the front glass plate. The flow was filmed using a commercial video
recorder, and the images were digitized in real time using a frame-grabber board that
was operated by a personal computer. To increase the number of pixels per particle
(approximately 3—4 pixels were used for a distance of one 3-mm particle diameter),
the upper and lower halves of the channel were filmed separately. A digitized image
was recorded at a rate of 3 images per second for a total of 50 to 90 images. The buffer
size of the frame-grabber board limited the total number of images that could be
stored. After recording the digitized images, the contrast between the light and dark
particles was enhanced so that the dark particles appeared black and the light parti-
cles appeared white. The local ensemble-average color concentration was calculated
from the enhanced images. From the averaged image, the thickness of the mixing
layer, 6, was determined from the physical distance in which the color varied from
0.01 to 0.99 where 0.0 indicates black and 1.0 indicates white. The image-processing
method was tested on a known distribution of particles. These tests indicated that
the results were affected by the lighting and by non-uniform coloring of the parti-
cles; in the actual experiments, care was taken to minimize these effects. After each

experiment, the colored beads were washed and dyed for the next experiment.
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3.2 Presentation of Experimental Data

3.2.1 Velocity and Longitudinal Fluctuating Velocity Profiles

In preliminary experiments, the velocity of the flow was measured at several locations
along the channel to determine the distance over which the profile developed. The
velocity profile appeared to develop within the first 3 to 4 particles downstream of the
splitter plate. After this initial entrance region, no significant variation was detected
with the downstream position except in the region within 10 cm of the exit hopper.
All of the following velocity measurements were obtained at a position approximately
halfway down the length of the channel (z = 50 cm, = 0 at the position of the
end of the splitter plate) and were presented in terms of non-dimensional distance
y/H measured from the channel centerline. The data closest to the channel wall
were located 0.8 mm from the edge of the surface. This location was the closest to
the wall that the 1.6-mm diameter fibre-optic probe could be placed. The velocity
measured at this position is referred to as the slip velocity.

Figures 3.7-3.12 indicate the distributions in the ensemble-average local velocity
uy and in the root-mean-square of the fluctuating velocity in the flow direction,
ul, = < C2? > across the half channel. The local velocity profiles are normalized
by the average velocity across the channel based on the experimental results. The
r.m.s. fluctuating velocity profiles are normalized by the local velocity. Figure 3.7 is
for the 3-mm diameter particles in the channel with polished-glass side walls for both
the high and the low flow rates; the channel width is 5.08 cm. The velocity profiles

are relatively flat indicating there is no shearing of the materials. Figures 3.8 and 3.9
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are for the 3-mm diameter particles in the rough-walled channel with channel widths
of 5.08 cm and 3.81 cm. The velocity profiles are flat in the central region, but show
a significant variation near the side walls over a distance of roughly 3 to 4 particle
diameters. The central plug-flow region appears to be proportionally smaller in the
narrow channel. Similar profiles have been previously observed in vertical channel
flows by Savage (1979).

Figures 3.10 and 3.11 are for the conditions similar to those for Figures 3.8 and
3.9 except the walls have saw-tooth grooves. The velocity profiles also appear similar;
however, the dimensionless velocities are higher than in the rough-walled channel in
the central region and relatively lower in the region close to the walls indicating a
higher shear rate for the saw-tooth walled channel. The slip velocities in the rough-
walled channel are approximately 45-60% of average velocity, and are 25-40% for
the saw-tooth walled channel. Figure 3.12 is for the 2-mm diameter particles in the
saw-tooth walled channel of width 2.54 cm (2H/o = 12.7). The non-dimensional
profiles appear to be similar to that shown in Figure 3.11 for the 3-mm beads in the
narrow channel (2H/o = 12.7).

Figures 3.7(b)-3.12(b) show the corresponding distributions in the r.m.s. of the
fluctuating velocity in the flow direction normalized by the local velocity. The fluctu-
ating components in the central region of the channel are approximately 14-16% of
the local velocity for the high flow rates, and between 10-14% for the low flow rates.
The magnitude of the fluctuating velocity as a percentage of the local velocity does
not vary significantly across the channel, although for the roughened and saw-tooth

channels there appears to be a slight decrease near the walls. It is important to note
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that the measuring technique is designed for uni-directional flows. If the particle
velocity has a tangential component, as visual observations suggest for the particles
closest to the walls, the downstream fibre optic probes do not detect the particle
trajectory. As a result of the transverse motion, the measurement of the streamwise
component of the fluctuating velocity may decrease. The r.m.s. fluctuating velocity
component for the 2-mm diameter beads is similar to that measured using the larger
beads as shown by comparing Figures 3.11 and 3.12. The scatter in the velocity
measurements may result from variations in the surface conditions of the front and

back plates, and in the conditions of the particles from experiment to experiment.

3.2.2 Mixing Layer Thickness Profiles

Particle diffusion experiments were made using the 3-mm diameter beads for both
the low and the high flow rates, and for the three different side-wall conditions; in
addition, two experiments were also performed using 1-mm and 2-mm beads. The
photographs in Figure 3.13 show typical particle distributions at 44 cm < z < 89
cm for four different experimental cases. Figure 3.13(a) is from a flow with polished-
glass side walls and shows no net diffusion of the particles. Visual observations
indicate that the black particles remain on one side of the channel and the yellow
particles on the other. The picture also suggests that the splitter plate does not have
an observable effect on the mixing process. When the flow is sheared, however, as
occurs in the three other flows shown in Figures 3.13(b), (¢) and (d), some particles
move across the centerline. In Figure 3.13(b), the particles are 3-mm diameter and

the channel has the saw-tooth walls with the narrower width. The interface between
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the dark and light particles is uneven, but few of the light particles appear to be
surrounded by dark particles. Using the smaller beads, the diffusion process has
increased because of the length of the channel as compared to the particle size is
proportionally larger as shown in Figures 3.13(c) and (d) for the 2-mm and 1-mm
diameter beads. These pictures indicate that more of the light particles have migrated
into the region of the darker particles.

The mixing-layer thickness results are shown in Figures 3.14-3.20 for the glass
walled channel, for the rough-walled channels, for the saw-toothed channels, and for
the 2-mm and 1-mm diameter beads, respectively. The figures indicate the thickness
of the non-dimensional mixing layer, §/0, as a function of non-dimensional down-
stream distance, z/o. For glass side walls as shown in Figure 3.14, the mixing layer
thickness remains constant, close to one particle in size. This result is anticipated as
shown from the photograph of Figure 3.13(a) that indicates either a black or yellow
particle lying at the center of the channel. For the roughened and saw-toothed sur-
faces, the shearing of the flow results in some transverse movement of the particles.
As indicated by Figures 3.15-3.20, the thickness of the mixing layers are greater than
one particle diameter and increase with downstream position. The particle diffusion
is more pronounced in the narrower channels; this result may be due to the proxim-
ity of the walls to the dark-particle/light-particle interface, which then increases the
transverse particle motion within the center of the channel. However, as indicated by
the velocity measurements, the particle diffusion occurs in a region of the flow where
there is no discernable longitudinal velocity gradient. In comparing the results in

the roughened and saw-toothed channels, the diffusion in the saw-toothed channels
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appears to be slightly larger; the velocity profiles show that the velocity gradient at
the walls is greater with the saw-tooth sides and the larger shear rate may increase
the transverse motion of the particles. By increasing the flow rate, the diffusion
rates appear to increase slightly for all of the flows except for the wide rough-walled
channel in which the mixing-layer thicknesses are comparable. With the larger non-
dimensional channel length, the non-dimensional mixing-layer thickness at £ = 90
cm is greater for the 2-mm and 1-mm beads as shown in Figures 3.19 and 3.20.
The curves in Figures 3.15-3.20 are for flows of constant Peclet number, Pe =
Ugm0 [ D11,m where gy, and Diy 4, are the velocity and the self-diffusion coefficient
within the mixing layer, and the m subscript is used to denote the average value
within the mixing layer. These curves are determined from a simple analysis of
the flow based on the diffusion equation. Assuming that the flow is steady with
no transverse velocity and neglecting diffusion in the flow direction, the diffusion

equation for the mixing layer is written as

Ow 0 Ow
Ug— = @(Dna—y), (3.1)

where u; is the local velocity, w indicates the color concentration, and Dy; is the
local self-diffusion coefficient. If within the mixing layer the velocity and diffusion

coeflicient are assumed to be constant, the diffusion equation may be rewritten as

Ow 0w
uzm'a_m' = Dll,mb’y_z‘- (32)

Assuming that the diffusion process is not restricted by the channel boundaries,
appropriate boundary conditions are that as y — oo, w — 1, and as y — —o0, w —

0; the initial conditions are that at x = 0 and y > 0, w = 1, and at = 0 and
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y < 0, w = 0. Using these conditions, the governing equation is integrated, yielding

the following concentration distribution,

11 Ty 1
w(z,y) = 5 + 5 erf(zﬁPeZ), (3.3)

where the + is for y > 0 and the — for y < 0, and erf( ) indicates the error function.

From this expression the mixing layer thickness, §/c, is determined as

z 1

5 een(2LY en

o Pe

The analysis used to develop Equation (3.4) assumes that the thickness of the
mixing layer is zero at ¢ = 0. However, because of the thickness of the splitter
plate in the experiments the experimental value of the initial mixing-layer thickness
is probably closer to one particle diameter. As a result, the curves calculated using
Equation (3.4) are shifted by one particle diameter so that é/0 =1 at z/o = 0 as
shown in Figures 3.15-3.20.

The lines of constant Pe are included for reference purposes, and are drawn to
bound the data. The comparison of the curves with the experimental measurements
shows that §/c does appear to increase with (z/0)'/2. In addition, as mentioned
in Section 2.3.2, the kinetic theory studies demonstrate that the self-diffusion coeffi-
cient is proportional to the square-root of the granular temperature and the particle
diameter. Since the granular temperature is not measured in the present experiment,
it is impossible to apply directly this result. However, by assuming u}, = < C? >1/2
is proportional to the square-root of the granular temperature, the self-diffusion co-

efficient within the mixing layer, D1 m, would depend on the product ou},,, and the
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Peclet number follows as

U g u
Pe= "1 fm, (3.5)
11,m uzm

where ul,, is the r.m.s. fluctuating velocity in the flow direction within the mixing
layer thickness.

This proportionality given by Equation (3.5) suggests that as the ratio of the
fluctuating velocity to the average velocity increases, the Peclet number decreases
because of the increase in the diffusion coefficient; as a result, §/c should increase.
The rough-walled and saw-toothed-walled experiments indicate that for the higher
flow rates, the velocity fluctuations increase as a percent of the local velocity, and the
corresponding mixing-layer thicknesses are slightly larger. However, the dependence
of the mixing-layer thickness on the longitudinal velocity fluctuations does not ex-
plain why §/¢ is larger for the saw-tooth walls than for the roughened walls when the
magnitude of the velocity fluctuations are similar for approximately equal flow rates
and channel sizes. As stated previously, the curves are based on the assumption of a
constant velocity and diffusion coeflicient within the mixing layer. Although the mea-
surements indicate that the local longitudinal velocity and the velocity fluctuations
are relatively constant within the central region of the channel, visual observations
show that the transverse particle motions vary within the flow. As a result, it is
anticipated that the rate of particle diffusion does vary within the mixing layer.

Although the simple diffusion analysis does not incorporate all of the effects
exhibited by the experiments, the lines suggest an appropriate scaling of the diffusion
process with particle diameter. As indicated by Equation (3.5), the Peclet number is

independent of the particle diameter for the same magnitude of velocity fluctuation.
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By comparing the saw-tooth-wall results in the channel of 2H /o = 12.7 for the 2-mm
with that for the 3-mm beads at the high flow rate (Figures 3.18 and 3.19), the growth
of the mixing layer for each flow roughly follows the curves corresponding to Pe
between 1500 and 3000. For the 1-mm beads, the velocity profiles were not measured
and the ratio of the channel width to the particle diameter does not correspond
exactly with that for the larger beads; however, the growth of the mixing-layer
thickness appears to follow the same Peclet number curves as used for the larger

beads.
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Chapter 4

Comparisons of Experiments and

Theories

4.1 Velocity and Fluctuating Velocity Profiles for the Flows

1n a Vertical Channel

The development of kinetic theory for granular flows is presented in Chapter 2. These
equations are used to determine the fully developed velocity profiles and the mixing-
layer thickness profiles in a vertical channel. These theoretical results are compared
with the experiments described in the last chapter.

For the two-dimensional steady flow as shown in Figure 4.1, assuming that the ve-

locity and granular temperature profiles are fully developed, the governing equations
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can be derived from Equations (2.11) and (2.12) and be written as:

oP,, 0P, ~
(G By ) +rs=0, 1)
( ) =0, (4.2)
and
Oug 0Ty _

From Equations (2.24) and (2.25), for a fully developed flow, the normal stresses are
Pog = Py = ppg1(v, ) T; (4.4)

the shear stresses are

dug

1
Pry = Pyz = —ppogo(v,ep) Y2 a7y (4.5)
and the flux of fluctuating energy in the transverse direction is
1dY adv
T, = ——ppa[gg(l/, D) TET + 94(v, )T @]. (4.6)

By substituting Equations (4.4)-(4.6) and (2.26) into Equations (4.1)-(4.3), the

dimensionless momentum equations in the flow direction and transverse direction are

d 1du? 3 dP*
- *9 z 5 _ rxr —
Iy e TG+ b (v - ) <o (4.7)
and
d *
W[gl(u, ep) T ] =0. (4.8)
The fluctuating energy equation is
d 1dT* 3 dv
- *2 *2
ay [g"’(”’ @)1 gy Tl e T 55
oL dutn? L3
+ Ag(r,e) T (52) — Ags(r,ep) Y™ = 0. (4.9)
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The dimensionless variables, X, Y, uz, Py, and T* are defined by : X = z/o,
Y =y/H, uy = uy/gH, P}, = Pys/ppgo, and T* = T/go, and A = H/o, where,
H is the half-channel width.

For a fully-developed flow in the vertical channel, the term dP},/dX may still
remain in the equation since the average solid fraction may vary with downstream
position; in addition the function g;(v, ep) is very sensitive to the variation of the
solid fraction when the solid fraction is close to the maximum shearable solid frac-
tion. The normal pressure P, may also vary due to frictional effects. By the classical
analysis of Janssen (1895), the vertical pressure Py, could be estimated (Savage 1984;
Shamlou 1988) as follows. Let P, represent the average vertical pressure across the
channel section, and S, is the average shear stress at the walls across the circum-
ference of the cross section. The shear stress is due to the friction between the walls
and the particles and can be written as S, = P, tan ¢w, where P, is the normal
(horizontal) stress and ¢, is the friction angle for the particles. The ratio of the
horizontal to the vertical pressure is often assumed to be a constant K independent
of the vertical position, i.e., P,/P, = K. Then the force balance equation for a

horizontal element with thickness of dz is

dpP, — KC,tan ¢,
d = pplg — Tpv, (410)

where 7 is the average solid fraction across the channel section, A, and C, are the
area and the periphery of the cross section. Integrating Equation (4.10) with the

boundary condition P, = 0 at z = 0, then the average pressure is found:

T RKCotangy P A, )l (4.11)
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The first derivative of P, in the flow direction is then derived:

(4.12)

dP} e (_KCCta,ngéw )
T = U SXP A z),

where Py = P,/pygo. For the rectangular cross section in the present experiment, the
ratio of the periphery to the area is approximated as Ce/Ac = 2(2H) /w(2H) = 2/w,
where w is the depth of the channel, w < 2H. Both K and tan ¢y are of the order

of 1. Then Equation (4.12) can be approximated as

dP}
X

2z

='ﬂexp(—;). (4.13)

Equation (4.13) is a reasonable estimate of dP%,/dX in Equation (4.7). When the
vertical distance z is greater than a distance of twice the channel depth 2w, the
granular pressure gradient in the flow direction dP;,/dX in Equation (4.7) can be

neglected. Then Equation (4.7) becomes

d 1du} 3
W[gz(l/, eﬂT”%} + ATy =0, (4.14)

Note that the distance of 2w is close to the top of the channel because after subtract-
ing the length that the splitter plate extends in the test section (2 cm), the ratio of
the total channel length to (2w — 2cm) is 42.

Richman and Marciniec (1990) presented boundary conditions for gravity-driven
flows of smooth, inelastic particles down bumpy inclines, and the same theory can
be applied to flows in vertical bumpy channels. The equations for the momentum

and the fluctuating energy at the boundary are:

]

=P-n (4.15)
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and

E-u—v,=I"-n, (4.16)

where E is the momentum transfer rate from the boundary to the flow and n is a
unit normal vector as shown in Figure 4.1. The fluctuating energy dissipated into
the boundary is denoted by 7y, in Equation (4.16) and is proportional to (1 - ew),
where e,, is the restitution coefficient for collisions between walls and the particles
in the flow. Both Z and 7, have been derived by Richman (1988).

Substituting for & and v, from Richman and using Equations (4.4)-(4.6), the

boundary conditions, Equations (4.15) and (4.16), at the vertical bumpy walls (Y=1)

become:
u—é% + % =0, (4.17)
and
1 1 9194+ 1dT* f93 &
T+ g A [93 " (dgr /du)] v { AT dY?
— 2(%)%(1 — €w)(1 — cos ¢) csc? gb} = 0. (4.18)

The coefficient f in Equation (4.18) is defined by:

fo (7/2)% — (915/920)(1 + go0/7)(sin? 6/2) L 9T
2[2csc? (1 — cos ¢) — cos @] 920

, (4.19)

where G = (0 + 04)/2, 0y, is the diameter of wall spheres that generate the bumpy
surface condition as shown in Figure 4.1, ¢ is the angle between the vector normal
to the surface and the line connecting the centers of a particle attached to the wall
and a particle within the flow in the closest packed position. When the particles

attached to the wall are touching and are of the same diameter as those in the flow,
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the angle is 30°. The coefficient g in Equation (4.19) is a function of v and defined

? [ ]
7|1+ 5/(8vgo)
w6 =—FHAm

As shown in Equation (4.8) for a constant coefficient of restitution at every posi-

(4.20)

tion Y, v is only a function of T*; hence Equations (4.14) and (4.9) can be rewritten
as two ordinary-differential equations for d?u%/dY? and d?Y*/dY? as functions of
uy, T*, du}/dY and dY*/dY. These equations are solved by a fourth-order Runge-
Kutta method.

To solve these simultaneous equations, four boundary conditions are needed. Be-
cause of channel symmetry, duj/dY and dY*/dY (of course, also dv/dY’) are zero
at Y = 0. For the rough-walled channel, the boundary conditions as derived by
Richman (1988), Equations (4.17) and (4.18) are employed. A “four-point shooting
method” is developed to solve this boundary value problem. That is, four guessed
sets of uy and T* at ¥ = 0 are chosen to get (+,+), (—,+), (—,—), (+,—) values
of the left-hand sides of Equations (4.17) and (4.18). From the four initial sets of u}
and T*, new sets of u} and T* are determined by averaging two of the sets, such as
the (+,+) and the (—,+) sets. The averaged values of u¥ and T* are then used as
the boundary conditions at ¥ = 0 for the simultaneous equations. If the integration
of the simultaneous equations results in both positive values for the left-hand sides
of Equations (4.17) and (4.18), then the averaged set replaces the original (+,+)
set, and otherwise it replaces the (—,4) set. Next the (—,+) and the (—, —) sets
are averaged and the averaged values replace either the original (—,+) or (—, —) set

depending on the signs of the left-hand sides of Equations (4.17) and (4.18). The
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process is repeated until the four sets of uy and T* converge to values of u* and
T* that result in the left-hand sides of Equations (4.17) and (4.18) being less than
1x 107%. Besides u} and T*, a guessed v at Y = 0 is required to solve the equations.
However, this input value of v at Y = 0 is checked by comparing the calculated and
experimental mass flow rates. If they are not the same, a new value v at ¥ = 0 is
input and the process is repeated.

In the present calculation, the values of the restitution coefficients ep = ey = 0.95
are used for the glass beads (Lun and Savage 1986); and the maximum shearable
solid fraction v* is assumed to be 0.65 (Johnson and Jackson 1987). As described
above, the numerical results for the roughened walls are based on the theoretical
boundary conditions, and hence the profiles are determined without any additional
experimental values except the mass flow rate. For the saw-tooth side walls, the
boundary conditions, Equations (4.17) and (4.18) cannot be used. Instead the cal-
culations are found by using the experimental results for u* at ¥ = 0 and Y = 1
as inputs. By a one-point shooting method the differential equations can be solved.
The value of v at Y = 0 is input, and is checked by comparing the experimental and
calculated value of the mass flow rates.

The calculated velocity profiles are compared with the experimental results in
Figures 4.2-4.5. The experimental measurements of the velocities shown in these
figures are the same as Figures 3.8(a)-3.11(a) except the profiles are not normalized
by the average velocity across the channel, but plotted in the real scale, u, uy =

The comparison between the calculated and the experimental results shows that
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the transport relations and boundary conditions based on dense-gas kinetic theory
analysis predict the velocity profiles moderately well. The calculations slightly over-
predict the slip velocity along the walls and under-predict the centerline velocities.
This difference may result from neglecting the frictional forces, or may be due to the
underlying kinetic theory assumptions.

Figure 4.6 shows the calculated distribution in nondimensional granular temper-
ature for the four different roughened-channel flow conditions. The figures indicate
that granular temperature is conducted from the walls of the channel into the flow
over a distance corresponding to approximately 50 percent of H. Richman and
Marciniec (1991) employed the similar equations and boundary conditions to calcu-
late the fully developed flow in a vertical channel. They found similar profiles of
velocity and granular temperature.

From Figure 4.6, the magnitude of the granular temperature increased with the
flow rate, and with a decrease in channel size. As indicated by the figure and by
Equation (4.18), the gradient of the granular temperature at the wall increases as
the magnitude of the granular temperature increases. The calculated variations in
the granular temperature were not compared with the experimental measurements
since the measurements were only for the fluctuating velocity component in the
flow condition. It is interesting to note that the calculations indicate the granular
temperature should be greatest at the walls. However, the measurements indicate a
decrease in the fluctuating stream-wise velocity from the centerline to the channel
side walls. This discrepancy can be explained as follows.

The particles in the layer closest to the wall follow the wall contour as they
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flow. This movement near the wall causes a local transverse velocity although the
average transverse velocity is zero. Hence the transverse velocity is equal to the local
fluctuating velocity in the direction normal to the flow. As a result, the granular
temperature is the greatest along the wall. For example, the particles along the saw-
tooth wall move at an inclination of 60° and result in an r.m.s. transverse fluctuating
velocity that is 1/ /3 times the average velocity. If the r.m.s. fluctuating velocity in
the flow direction is 10% of the average velocity, then by the assumption of isotropic
distribution of the granular temperature, the granular temperature is 0.01 times the
square of the average velocity. However, if the anisotropic granular temperature
distribution is considered as above, the granular temperature is about 0.2 times
the square of the average velocity. This factor certainly increases the magnitude of

granular temperature along the walls.

4.2 Mixing Layer Thickness

In Section 2.3.2, the self-diffusion coefficient is derived as (Equation (2.47)):

oV/rT
8(1 + ep)vgo(v)

Dy = (4.21)

This expression is used to predict the mixing-layer thickness in the particle diffu-
sion experiment described in Chapter 3. Assuming that the flow is fully developed,
steady state, with no transverse bulk velocity, and neglecting diffusion in the flow
direction, the diffusion equation for the mixing layer is expressed in Equation (3.1)

and rewritten here:

Oow 0 Ow
uxb; = a—y (Dllgy—)’ (422)
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where w is the color concentration. Using the calculated velocity and granular tem-
perature profiles which are numerically calculated in the last section and the theo-
retical self-diffusion coefficient from (4.21), Equation (4.22) is integrated by a Crank-
Nicholson scheme. The boundary conditions for the flow are w = 1 when y = H and
w = 0 when y = —H; the initial conditions are at z = 0 and y > 0, w = 1, and at
=0 and y <0, w=0. From the concentration profiles, the mixing-layer thickness
6 is determined from the distance in which the color concentration w varied from
0.01 to 0.99. Due to the uncertainty in the initial mixing-layer thickness, the theo-
retical profiles are started at §/0 = 1 at 2/ = 0 to compare with the experimental
results as shown in Figures 4.7 and 4.8. Since only the flows in the rough-walled
channel are numerically solved without any experimental measurement information
(except the mass flow rate), the mixing-layer thickness profiles are only compared
for these cases. The experimental curves in Figures 4.7 and 4.8 are found by curve
fitting the experimental data shown in Figures 3.15 and 3.16 for the wide and the
narrow channel widths. The error bars shown in the curves indicate + one standard
deviation.

The theoretical mixing-layer thickness curves indicate the right trend, but the
theory under predicts the experimental results. This expression suggests that the
theoretical diffusivity is lower than that of the experiments.

Although the diffusion process is not well predicted by the kinetic theory analysis
for this high solid fraction, it is interesting to note that as shown in F igures 3.8 and
3.9, the dense-gas kinetic theory predicts the velocity profiles fairly well. For the

momentum transport both kinetic and collisional modes contribute to the transport
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relations; however, the latter is dominant when the solid fraction is large. For dif-
fusion processes, only the kinetic mode contributes, since there is no mass exchange
during a particle collision. Hence for high-solid fractions, the dense-gas kinetic the-
ory seems to predict the collisional mode well, but not the kinetic mode. There
are a number of factors that may contribute to the discrepancy. One reason for
the difference is that when the solid fraction is close to that of a packed bed, the
binary collision assumption used in the kinetic theory model may not be appropri-
ate. Instead the particles slide or roll past each other, and the rotation of particles
may increase the diffusion process. Another possible reason for the deviation may
result from preferred collision angles between particles. The anisotropic distribution
in collision may cause a non-uniform distribution in granular temperature.

Because of many underlying kinetic-theory assumptions, it seems that the theory
does not predict the diffusion process well, especially when the solid fraction is so
close to the maximum shearable solid fraction. The solid fractions calculated from
the kinetic theory are close to 0.64. In the experiment, the solid fraction was not
measured directly. From the measured mass flow rates, the average velocities across
the channel, and the cross section area, the average solid fractions are found to vary
from 0.59 to 0.64 in different conditions. It is interesting to predict the mixing-layer
thickness qualitatively by using these approximated solid fractions without solving
the momentum and the energy equations.

From the experimental measurements, the velocity and the r.m.s. fluctuating
velocity distributions are relatively flat within the central half channel in which the

mixing layer develops. Therefore, it is reasonable to assume the velocity and the
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diffusion coefficient are constant within the mixing layer. This assumption is used in

Section 3.2.2 to solve the diffusion equation and the mixing-layer thickness is found

to be
1) z 1\3%
= = 6.60(25-) 423
o aPe/’ (4.23)
where Pe is the Peclet number, Pe = ugmo/D11,m.
The granular temperature can be estimated by assuming an isotropic distribution
in fluctuating velocities. Then the granular temperature is equal to the ensemble-
12

average of the square of the fluctuating velocities in the flow direction, T = u,” =<

C2 >. From Equation (4.21), Pe is

Pe — UgmO _ 8(1 + ep) (%E)Vgo(l/)- (424)

From the experimental results, ul,/un, is close to 0.15 for all of the experiments
in the rough walled channels. Two extreme values of Pe are evaluated by using
v = 0.59 and v = 0.64, and u},/um = 0.15 in Equation (4.24). By substituting the
two values of Peclet number into Equation (4.23), two mixing layer thickness are
determined as shown in Figure 4.9. The experimental curves are the same as that
shown in Figures 4.7 and 4.8 for both flow rates and both channel widths for the
rough-walled channels. The predictive curves are started at §/o = 1 to compare with
the experimental results.

These curves indicate better agreement between theory and experiment. Since
for the wall conditions used, the flows are anisotropic near the walls as explained in
the last section which results in the discrepancy of granular temperature from the

theory. The discrepancy results in the under prediction of mixing-layer thickness.



— 69 —

For the later prediction by using the experimental information inside the mixing
layer, the discrepancy is decreased. Note that the prediction is still lower than the
experimental results. The reasons have been explained earlier.

The recent study by Savage (1992) compared the kinetic-theory diffusivity with
the results from a computer simulation based on molecular dynamics. Equation
(2.53) was used to calculate the self-diffusion coefficients. He used Equation (2.5) as
the form of the radial distribution function in the calculations of the kinetic theory.
Savage found the self-diffusion coefficients determined from the simulation results
were from 50% to 200% higher than those predicted by the theory. The deviation
was especially large for high solid fractions. He noted that the deviation may result

from the use of the isotropic radial distribution function.

4.3 Effective Thermal Conductivity

In Section 2.3.3, the effective thermal conductivity is derived by using dense-gas ki-
netic theory. The expression in Equation (2.70) for the effective thermal conductivity

kery is rewritten:

_ P T
kess 9\/7_r1/g0(1/)T . (4.25)

This expression is used to compare with the recent experiments by Wang and

Campbell (1992) who experimentally measured the effective thermal conductivity
of a granular flow. Their experiment involved an annular Couette shear cell in
which the rotating surface was heated, and the stationary surface was cooled. Wang

and Campbell operated their experiment for solid fractions ranging from 0.1 to 0.5,
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and for four different types of particles: steel shot (6=2.2 mm) and three sizes of
glass beads (¢=1.9, 3.0 and 3.75 mm). The temperatures of the plates, and the
input heat flux were measured. The effective thermal conductivity of the flow was
determined by balancing the heat conducted by the flows and the heat dissipated
due to the shearing process with the appropriate heat input boundary condition. In
addition, force transducers were used to determine the shear force on the materials.
The apparent viscosity coefficient, Keff, was calculated from the shear stress and
shear rate, and then used to define the apparent Prandtl number. As shown in
Figure 4.10, the apparent Prandtl number increases with solid fraction, and appears
to be independent of particle type and size.

To compare with the experimental results of Wang and Campbell, the granular
temperature must be known, but neither the velocities nor the granular temperature
were measured in the experiment. However, the Prandtl number does not depend
on granular temperature and can be more easily compared by defining an apparent
viscosity based on kinetic theory results. As described in Chapter 2, the shear stress
depends on both the kinetic and the collisional contributions. From Equation (2.24)

or Equation (4.5), the shear stress is expressed as

1du
Pry = —ppoga(v,e,) Y2 7 =

(4.26)

Using —piess to denote the term preceding du,/dy in Equation (4.26), the apparent

Prandtl number is defined by

c
Pr = /lkaffp = 9\/7?90(1/)92(1/, €p)- (4.27)
€

The curves in Figure 4.10 are plotted from Equation (4.27) using e, = 1 and 0.6.
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The theoretical curves over predict the results and the discrepancy increases with the
solid fraction. This comparison suggests that the theoretical thermal conductivity is
lower than that of the experiments for the same apparent viscosity.

The differences between the experimental results and the kinetic theory estimates
may be attributed to some of the same reasons stated in the diffusion analysis. In
addition, it should be noted that the height of the annulus in the experiment by Wang
and Campbell was at most 5.4 cm which was from 14 to 28 particle diameters. For
this finite-sized annulus, the shearing of the flow and the heat transfer near the wall
may vary significantly from that in the bulk region. Near-wall variations may alter
the determination of the apparent viscosity and the effective thermal conductivity.
The analysis also assumes that the Biot-Fourier number for the particles is small. An
estimate can be made using a heat transfer coefficient between a stationary particle
and a flowing fluid. Using the collisional interval for the time {Equation (2.65)), and
assuming that the square root of the r.m.s. fluctuating velocity is 15% of the bulk
average velocity, the Biot-Fourier number is of the order of 0.001. Hence the small
Biot-Fourier number assumption seems to be justified for the Wang and Campbell’s

experiments.
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Chapter 5

Granular Thermal Diffusion in

Granular Flows of Binary Mixtures

In Section 2.4, the governing equations and the constitutive relations for a binary
mixture of granular materials are derived. Different from a single-species material,
not only the pressure gradient and the number density gradient, but also the granular
temperature gradient influence the diffusion process. The former effects are referred
to in this work as particle diffusion (mass diffusion). The later effect is called granular
thermal diffusion in this work, and is the main topic in this chapter.

The rigorous theory about the “thermal diffusion” in gases was first analyzed
by Enskog and Chapman (see Chapman and Cowling 1970). The modified theory
for the binary granular materials is presented in Section 2.4. Frankel (1940) and
Furry (1948) elementarily explained the physical meaning of thermal diffusion. A

similar explanation can be applied to the granular materials. The basic idea is that
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the partial pressure gradient should be balanced by the average momentum transfer
resulting from the collisions between two groups of particles as shown in Equation
(2.52). In a usual case, the different-species collisions and the greatest relative ve-
locity determine the direction of the momentum transfer. This case happens when
the lighter particles coming from the region with higher granular temperature collide
with the heavier particles coming from the lower granular temperature region. This
kind of collision results in a net momentum transfer from the lighter particles to
the heavier particles, in the opposite direction of the granular temperature gradient.
From Equation (2.52), the lighter-species partial pressure increases in the opposite
direction of that of the momentum transfer which is in the direction of granular
temperature gradient. Since the partial pressure is increased with partial number
density, this effect causes the lighter particles concentrating in the place with higher
granular temperature.

This chapter considers two-dimensional (in zy-plane) flows of binary granular
materials in a steady state. The gradients only exist in y-direction, since the flow is
assumed to be fully developed in z-direction. From Equations (2.84) and (2.85), the

governing equations can be simplified as:

OP,
- 4 Patoy + PﬂFB,y =0, (5-1)

dy

OPyy
- aFaz F x — Y, 5.2
gy TPl toslige =0 (5:2)

and
ary, Oug

— =Y _p (ZE) -~ =0, .
5~ Pal(,) —7=0 (5.3)
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where F; ; and F;, are the specific external forces acting on particle 7 in the z and
y directions. For zero bulk diffusion of particles, the diffusion velocities v; are zero,

and Equation (2.109) simplifies to

OlnT B

day + br=5 = =0, (5.4)

where dg 4 is the y component of the diffusion force d,.

As mentioned before, granular thermal diffusion is caused by a granular tem-
perature gradient. From Equation (5.3), the conduction of granular temperature is
influenced by the shear work and the energy dissipation. In order to clearly investi-
gate the influence of the granular temperature on the diffusion process, an oscillatory
system without any bulk motion of perfectly-elastic materials is first examined in Sec-
tion 5.1. The more complicated systems of a sheared flow and a flow in a vertical

channel are studied in the subsequent sections.

5.1 Oscillatory No-Flow System

Consider a steady system without mean motion between two parallel boundaries as
shown in Figure 5.1. The body forces are neglected. The momentum equation in the
z direction disappears since there is no shearing of the flow. From Equation (5.1),

the only momentum equation is written as:

ap
3 =0 (5.5)

and using Equation (2.99), the momentum equation changes to

0 2
—a—y—['_‘f(n—i- >y §7m,-nja,-3jgcij)] = 0. (5.6)

iz“aﬂ j=a)ﬂ
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From Equations (5.3) and (2.104), the balance equation for the fluctuating energy is

&, 0T
537(/\8—?/) =0. (5.7)

Note that since the particles are assumed perfectly-elastic, i.e., e, ;; = 1, the energy
dissipation « is zero.
Using Equations (2.95) and (5.5), Equation (5.4) becomes

Na 4 3 ~\]9InT Na Opa Ony
[kr +j=¥ﬂ " (501, + 37rn]aajManca])] 3y + ——- jzza;ﬂ on; Oy 0. (5.8)

The granular temperature T and the channel location y can be normalized by
the granular temperature at y = 0, Yo, and by the channel width L, T* = T/Yg and
Y = y/L. Equations (5.6)-(5.8) can then be rewritten as four first-order ordinary

differential equations for dv, /dY, dvg/dY, dY*/dY and d*Y*/dY?. Four boundary

conditions are needed to solve the equations:

THY =0) =1, (5.9)
THY =1) = T3, (5.10)
/01 va(Y)dY =73, (5.11)
/0 (Y)Y = 7. (5.12)

As mentioned in Chapter 1, the boundary conditions in a granular flow are dif-
ferent from that in a fluid. Since the no-slip condition is applied in conventional
fluid mechanics, the velocity and the thermodynamic temperature of the fluid at a

solid boundary can be imposed. However, the boundary conditions in a granular
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flow are dependent on the whole flow field, so the velocity and the granular tem-
perature cannot be specified independently. By considering the interaction between
the boundary and the flow field, Richman (1988) derived the boundary conditions
for granular flows of single-species spheres moving at bumpy boundaries which was
roughened by a layer of hemispherical particles. However, the boundary conditions
for other kinds of surfaces are still not available in a theoretical form. For flows of
binary mixtures, the boundary conditions are even more complicated. Because of
this difficulty, the imposed boundary conditions as given above are employed here.

By a Runge-Kutta method, this system of equations can be solved. For the
current calculations, the average solid fractions of species « and 3 of 0.1 and 0.25
are used, Uy = 0.1 and 7g = 0.25. The dimensionless granular temperature at Y = 1
1s chosen to be 2 for the calculations, T} = 2. The calculations are performed for
four different sizes of a: (a) 0o = I-mm, (b) 0, = 1.2-mm, (c) 6o = 1.5-mm, (c)
0q = 2-mm; and the particle diameters of species 3 are 1-mm in the four cases and
the particle densities of both species are 2490 kg/m3.

Figure 5.2 shows the solid fraction distributions for case (a) where species a and
B are identical. Since the two species are identical, there is no granular thermal
diffusion and then the solid fractions of both species decrease in the positive y direc-
tion in a similar ratio. To balance the momentum equation, the granular pressure is
constant in the channel, so the solid fractions decrease with the increase of granular
temperature; this is also indicated by the form of normal pressure for the single-
species material shown in Equation (4.4). To check the numerical integration, this

case is calculated by the theory of Lun et al. (1984) for the single-species material
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as described in Chapter 2. The granular temperature profiles are nearly the same
in the two theories. The solid fraction profiles are compared in Figure 5.2 and the
difference is less than 2%. The difference is because the RET is employed in the
present theory.

Figure 5.3 shows the solid fraction distributions for case (d). The figure indicates
that the smaller particles (3) tend to move to the plate with higher granular temper-
ate and that the larger particles (o) tend to move in the opposite direction. For the
smaller (lighter) particles, the granular thermal diffusion causes a diffusive flux in
the direction of the granular temperature gradient and results in the increase of the
partial number density ng. Due to the partial number density gradient, particle dif-
fusion causes the smaller particles to diffuse to the opposite direction of the gradient
of the partial number density, i.e., the direction in which the granular temperature
decreases. Hence there is a balance between particle diffusion and granular thermal
diffusion so that there is no net bulk diffusive flux. A similar diffusive balance occurs
for the larger particles.

In Figure 5.4, the four cﬁrves are the granular temperature distributions for
the four cases. The differences in the granular temperature profiles result from the
variations in the solid fractions which are due to granular thermal diffusion.

Figure 5.5 shows the ratios of the solid fractions vg/v, in the channel for four
cases in log scale. Due to the granular thermal diffusion, the ratio increases with the
granular temperature. The ratio of vg/v, increases faster for higher ratio of 04 /0p,
which indicates the larger size difference causes an increase in the granular thermal

diffusion. For case (a), since there is no granular thermal diffusion, the distribution
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of vg/vy is flat.

Figure 5.6 shows the ratio of v3/v,, in log scale, for the same particle diameters
for both species but different particle densities. The particle density of species « is
2490 kg/m? but the ratios of particle densities vary for the four cases: ppo/pps = 1,
2, 3, 4. The case of ppo/pps = 1 means identical species and has been discussed
above. The higher ratio of ppo/pps indicates a larger mass difference, which results
in more granular thermal diffusion; hence the ratio of vg/v, increases faster.

When the difference in size or mass of the two species is increased or the gran-
ular temperature gradient is increased, transport due to granular thermal diffusion
becomes more significant. If any factor is large enough, the two species can be com-
pletely segregated. One example is shown in Figure 5.7 plotted for the solid fraction

distributions for the case of T} =3, 0a/0g = 2, and ppa/pps = 4.

5.2 Sheared Granular Flows

In this section, a steady and fully developed sheared flow of a binary mixture between
two parallel boundaries is studied. The configuration of this system is shown in
Figure 5.8. The external forces are neglected. The momentum equation in y direction
and the equation for zero diffusion velocity remain the same as Equations (5.5) or
(5.6) and (5.8) for the oscillatory no-flow system. From Equations (5.2) and (2.100),

the momentum equation in z-direction is written as:

_a%(”aa?;z) =0. (5.13)
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From Equations (5.3), (2.104) and (2.100), the conservation equation for the energy

1s

d ,.0Y Ju,
EE()"BT/) +u( a“y )2 = . (5.14)

The first term in Equation (5.14) is the fluctuating energy added to the system by
the conduction of the granular temperature and the second term is the shear work
done to the system. The sum of these two terms is equal to the energy dissipation

due to the inelastic collisions. Equation (5.14) can be nondimensionalized to

*
Ou;

& /., 0T
Y (’\ oY oY

2
o )" = Riy. (5.15)

) + R%R%p*(

The dimensionless variables T*, u}, A*, p4* and v* are defined as T* = T /Ty, ul =
(1t~ t120)/ (ths,— t1z0) = (tta —1uz0)/ Atiz, N* = N (Yo" ppp0p), 1" = /(Y% 0yp0p),
y* = 7aﬂ/(Tg/2ppﬂ) and Y = y/L, where Ty and u,g is the granular temperature
and the velocity at y = 0, u,y, is the velocity at y = L, and L is the channel width.

The dimensionless parameter R; is defined by

_ Uﬂ(Aulm/ L)

To

Ry (5.16)

Y

and Ry is the ratio of the channel width to the smaller particle diameter, Ry = L/og.

Equations (5.6), (5.13), (5.15) and (5.8) can then be rewritten as six first-order
ordinary differential equations for dvo/dY, dvg/dY, dY*/dY, d*Y*[dY?, dul/dY
and d?u*/dY?. Six boundary conditions are used to solve the equations. The first
four boundary conditions are the same as that used in the oscillatory no-flow system

and the other two are

aE(Y = 0) =0, (5.17)
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and

wi(Y =1) = 1. (5.18)

As discussed in the last section, the boundary conditions for the sheared granular
flows should be determined by the whole flow field. However, due to the lack of
information regarding boundary conditions for binary-mixture flows, the imposed
boundary conditions are used.

The Runge-Kutta method is employed to solve these equations. Due to the effect
of granular thermal diffusion, the solid fraction of the smaller or the lighter particles
(B) is found to increase with the positive gradient of granular temperature and to
decrease when the granular temperature decreases. The only exception occurs when
the solid fraction of the larger or the heavier species is close to 0; in order to maintain
the constant mixture pressure, the solid fraction of the smaller (lighter) particles has
to decrease with the increase of granular temperature.

In the current calculations, 6, = 2-mm, og = 1-mm, pps = ppg = 2490 kg/m3,
epij = 0.95 and Ry = 20 are used. According to the computer simulation result
for simple shear flows of a granular material by Campbell (1989), the parameter of
(0idug/dy)/ T; /2 ranges from 0 to 1. The present calculation uses Rj from 2 to 3 so
that (oidus/dy)/ T; /2 for both species is within this range anywhere in the channel.
The total solid fractions 7 are chosen between 0.3 and 0.45. Three different cases are
studied that result in three very different profiles of the solid fraction distributions
and the granular temperature distributions. The three typical cases are explained as
follows.

Figure 5.9 is the granular temperature and solid fraction distribution for Y% = 10,



- 81 -

Ve = 0.03, 75 = 0.28, and Ry = 2.9. The second derivative of granular temperature is
always positive in the channel indicating that the fluctuating energy is added to the
system everywhere, i.e., the energy dissipation is greater than the shear work done to
the system. The ratio of v3/v, is increasing with the granular temperature resulting
from the granular thermal diffusion similar to the oscillatory no-flow system. Note
that the first derivative of granular temperature at ¥ = 0 is positive.

Figure 5.10 shows the distributions of granular temperature and solid fraction for

7 =15, T = 0.08, g = 0.25, and R; = 2.5. The second derivative of granular
temperature is positive similar to the last case. It indicates that the energy dissipa-
tion is larger than the shear work so that the fluctuating energy has to be conducted
into the system. The first derivative at ¥ = 0 is negative causing the granular tem-
perature to decrease until a certain position (Y = 0.068 in this case) where the first
derivative of granular temperature starts to change sign. The corresponding solid
fraction of the smaller particles shows the same trend as the granular temperature
before Y = 0.272. Since the large particle solid fraction after this position is rela-
tively small, the smaller particle solid fraction decreases with the increase of granular
temperature to maintain the constant pressure.

Figure 5.11 is for the third case of T} = 1.15, 75 = 0.07, 75 = 0.35, and R; = 2.2.
The second derivative of granular temperature is negative in the channel indicating
that the energy dissipation is smaller than the shear work done to the system. Hence
the fluctuating energy is conducted from the system. The solid fractions and the
granular temperature are relatively flat in the center of the channel.

Note that in the first two cases, the granular thermal diffusion causes segregation
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of the two species of particles. By contrast, in the last case, there is not a complete
segregation of the particles.

Figure 5.12 shows the velocity distributions for these three cases of shear flow.
The shear rate in the beginning of the channel for the third case is the largest and the
granular temperature in this case is relatively small (T} = 1.15). Hence the shear
work is higher than the energy dissipation resulting in the negative second derivative
of the granular temperature.

In the literature, a shear flow with constant granular temperature, constant solid
fractions and constant shear rate is called a simple shear flow. Since no granular
temperature gradient exists in these flows, there is no granular thermal diffusion
effect. Most studies about binary mixtures only discuss simple shear flows. Jenkins
and Mancini (1989) assumed a simple shear flow to predict shear stress for a binary
particle mixture. They compared with the numerical results from Farrell et al. (1986)
and the computer simulation results from Walton (1989). The current numerical
integration is checked with Jenkins and Mancini’s result using the same assumptions;

no difference is found between the two calculations.

5.3 Flow in a Vertical Channel

A granular flow of a binary mixture in a vertical channel is discussed in this sec-
tion. As shown in Figure 5.13, the flow is two-dimensional, steady state and fully
developed. The momentum equation in y-direction and the zero diffusion velocity

equation are the same as Equations (5.6) and (5.8) for the last two systems. Then
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from Equations (5.2) and (2.100), the momentum equation in the flow direction is

J ; Oug
dy (” Oy

) +pg=0. (5.19)

The conservation equation of the energy remains the same as Equation (5.14) for the

sheared flow. By using the dimensionless variables similar to that defined in Section
2

11, u} = ua/VgH, Y* = T/gog, u* = p/(ppsg"?0§"), X = M(ppag'3%),

vt = 'y/(ppﬂgz"/za[l;/z) and Y = y/H, where H is the half-channel width, the z-

momentum equation and the fluctuating energy equation change to

d s ,0u} 3 Ppa

a—f(” %/_) 4 A3 (g_:;ya +vg) =0, (5.20)
and

LT+ e (25) = any, (5:21)

where A= H/og.

The four equations can be written as six first-order ordinary differential equations
for dva/dY, dvg/dY, dY*/dY, d*Y*/dY?, dul/dY and d?u%/dY?. Six boundary
conditions are needed to solve the equations. Because of the symmetry of the channel,

the first two boundary conditions are:

f;;f(Y =0)=0, (5.22)
‘g/ (Y =0) = 0. (5.23)

The third and the fourth boundary conditions are for the mass flow rates:

H
2ppaw/0 Vauz(y)dy = mg, (5.24)



— 84 —

H
2pppw fo vgusz(y)dy = mg, (5.25)

where w is the channel depth. These two conditions can be changed to the form of
matching the total mass flow rate, g = m, + 7g, and the mass flow rate ratio,
mqa/mg. Suppose that the flow is completely segregated along the walls and only
smaller particles (/) exist close to the walls. If the wall surface is made by attaching a
layer of touching particles of species /3, the boundary conditions proposed by Richman
and Marciniec (1990) for gravity-driven flows of identical particles can be used. The
equations are shown in Equations (4.17) and (4.18). Note that all the parameters and
variables in Equations (4.17) and (4.18) are for the smaller particles including the
granular temperature (Yg = moY/mg). The Runge-Kutta method can be employed
to solve the equations.

There are two difficulties in employing the above analysis. First, when a well-
mixed flow enters the channel, the diffusion process continues in the channel and
changes the solid fractions of the two species. The flow may take a long distance
to develop. If the solid fraction profiles are not fully developed, the above analysis
cannot be applied.

The second problem is about the equilibrium radial distribution function. Reed
and Gubbins (1973) compared the Carnahan-Starling approximation (see Equation
(2.96)) with the molecular-dynamics results for solid fractions smaller than 0.5 and
showed an exact agreement. Only a 2% error is found when solid fraction is 0.55.
For solid fraction higher than this value, the deviation becomes significant and the

Carnahan-Starling approximation fails.
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The experiment discussed in Chapter 3 suggests that the solid fraction of a steady
flow in a vertical channel ranges from 0.59 to 0.64. So the radial distribution function
given by Carnahan and Starling for the single-species (Equation (2.5)) which is not
valid for high solid fraction is not used in the calculations in Chapter 4. However,
the form is used by Richman and Marciniec (1991) to predict the single-species
flows in a vertical channel. Although their calculated profiles of velocity, granular
temperature, and solid fraction show the right trend, the overall solid fractions are
too small (ranging from 0.1 to 0.4). Because of the gravity, the particles accelerate
down the channel without colliding with each other when the solid fraction is low.
In this condition, the kinetic theory breaks down.

Appendix A contains the calculations by assuming the flow is fully developed
and using the equilibrium radial distribution function for a binary-mixture from
the Carnahan-Starling approximation. Similar problems to those encountered by
Richman and Marciniec (1991) occur. Therefore, a better form of the equilibrium
radial distribution function for high solid fractions is needed to solve for flows in a

vertical channel.
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Chapter 6

Concluding Remarks

The current experiment is designed to investigate the diffusion of particles that occurs
when a granular material flow is sheared in a vertical channel. Two differently-
colored but otherwise-identical particle streams were mixed in the channel. In the
experiments, a range of flow conditions were investigated by varying the side wall
conditions, the flow rates, the wall spacing and the particle sizes.

Fibre optic probes were employed to measure the velocities and the longitudinal
r.m.s. fluctuating velocities in different channel locations. The measured velocity
profiles indicate a shear region near the wall of about 3-4 particle diameters in
thickness, and a slip velocity that ranges from 25 to 60% of the average velocity
depending on the wall conditions. The longitudinal velocity fluctuations range from
10 to 16% of the average value, and increase with the overall flow rate.

The frame grabber and image processing technique was used to measure the mix-

ing layer thickness. The diffusion measurements show that the mixing layer thickness
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increases as the square-root of the downstream distance, and appears to depend on
the magnitude of the fluctuating velocity as compared to the average velocity. The
particle diffusion occurs within the central region of the flow in which the velocity
measurements do not indicate any shearing of the material, though visual observa-
tions suggest some transverse movement of the particles. The experiments do not
include the fluctuating velocity in the direction transverse to the flow. These mea-
surements are the subject of future work and important in determining the granular

temperature.

The dense-gas kinetic theory is employed to analyze granu]ar flows. Based on
the constitutive theory developed by Lun et al. (1984) and the boundary conditions
for the bumpy walls derived by Richman and Marciniec (1990), the fully developed
velocity profiles and granular temperature profiles in a vertical channel are deter-
mined. The calculated velocity profiles are compared with the experimental results.
The correspondences between the experiments and the calculations is surprisingly
good considering the transport equations do not include frictional forces, and are
based on the kinetic theory idealizations such as an isotropic granular-temperature

distribution.

Using the dense-gas kinetic theory, the constitutive relations for the flow-induced
particle diffusion coefficient and the effective thermal conductivity are developed.
These transport coeflicients are shown to depend on the square-root of the gran-

ular temperature, the particle sizes, the solid fraction, and the radial distribution
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function. The coefficients are used to estimate transport rates in the current diffu-
sion experiment and the heat transfer experiment performed by Wang and Campbell
(1992). The comparisons demonstrate that the dense-gas kinetic theory analysis
is valuable for developing a functional dependence for the various flow properties;
however, both coefficients derived from kinetic theory are lower than those found
from the experimental measurements. Several reasons are suggested for the discrep-
ancy: the binary collision model, the uniform distribution of particle collisions, and
the isotropic distribution of granular temperature as assumed in the kinetic theory

model.

Jenkins and Mancini (1989) extended the revised Enskog theory to binary mix-
tures of smooth, nearly elastic granular material. Their results are used to study the
granular thermal diffusion phenomena in an oscillatory no-flow system, in a sheared
flow and in a flow in a vertical channel. Due to the granular thermal diffusion, the
lighter (smaller) particles tend to move to the place with higher granular tempera-
ture, and the heavier (larger) particles tend to move in the opposite direction. The
granular thermal diffusion is more significant when the difference in sizes or masses
of the two species is increased or the granular temperature gradient is increased.
The species may be segregated due to this effect. Future work should focus in the
experimental study of the granular thermal diffusion and segregation. The bound-
ary conditions for this subject are not clear, so the imposed conditions are used for
the oscillatory no-flow system and the sheared flow. A better understanding of the

boundary conditions is necessary and should be focused on in the future.
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Appendix A

Numerical Calculations of Granular

Flows in a Vertical Channel

The equations and the boundary conditions described in Section 5.3 are solved by
a Runge-Kutta method. The vertical channel size is chosen to be the same as the
experiment discussed in Chapter 3: w = 2.18 cm, 2H = 3.81 cm. The particle
diameters are 4-mm and 2-mm and the particle densities are 2490 kg/m3. The
restitution coefficients of the collisions between the particles and between the wall
and the particles are 0.95, e;,;; = e, = 0.95.

Figures A.1-A.3 are the solid fraction distribution profiles for three different total
flow rates: (a) o = 2.20 kg/sec, (b) mo = 2.00 kg/sec and (c) g = 1.68 kg/sec; and
the mass flow ratios 1, /g are 1 for the three cases. The solid fraction distributions
are similar to that of the first typical case for the shear flow shown in Figure 5.9. The

granular temperature distributions for the three flow rates are shown in Figure A 4.
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The granular temperature continues to increase from the center of the channel to
the wall, and the gradient causes the granular thermal diffusion and the segregation
of the two species. The distributions of /v, are shown in Figure A.5 in log scale.
For higher flow rate, the granular thermal diffusion effect seems more significant.
The velocity profiles for the three cases are shown in Figure A.6. In the central
region, the profiles are relatively flat. It is interesting that for higher flow rate, the
velocity becomes lower and the corresponding solid fractions are higher. It is different
from the results shown in Chapter 4. Mathematically it is correct; however, physically
it is impossible since the solid fractions are too low to maintain a steady flow without
acceleration. Note that the velocities and the flow rates in the experiment discussed
in Chapter 3 are of the order of 0.1 m/sec and 0.1 kg/sec; however, for the same
size of channel, the velocities and the flow rates of the current calculations are of the
order of 1 m/sec and 1 kg/sec which are the same order as Richman and Marciniec’s

(1991) calculations.
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Figure 2.1: The collision of two identical particles.
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Figure 2.2: Configuration for the concentration gradient.



- 100 -

ROPNOING
YG*C%Q\@»
Q)

@)

J
bx@Q\

2

Figure 2.3: Configuration for the thermal energy flux.
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Figure 2.4: The collision of two particles of different species.
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Figure 3.2: The flow chart for the velocity measurements.




Figure 3.3: Geometry of the faces of the two displacement probes.
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Figure 3.4: Typical voltage outputs (1 unit = 2.44 millivolts) from the two displace-
ment probes, plotted against the dimensionless time, t/At, At = 0.000785 sec. The
second voltage output is subtracted by 300 units to separate two curves. The dashed
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Figure 3.10: Local and fluctuating velocity distributions for the wide channel with
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Figure 3.11: Local and fluctuating velocity distributions for the narrow channel with
saw-tooth walls, 2H = 3.81 cm, uzq = 4.9 cm/sec for m = 0.071 kg/sec, and uz, =

9.7 cm/sec for m = 0.13 kg/sec.
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(a) (b) (c) (d)
Figure 3.13: Typical particle distributions (45 cm < z < 89 cm) for (a) the
smooth-walled channel with 3-mm beads (2H = 5.08 cm), (b) the saw-tooth narrow
channel with 3-mm beads (2H = 3.81 cm), (c) the saw-tooth channel with 2-mm
beads (2H = 2.54 cm), (d) the saw-tooth channel with 1-mm beads (2H = 1.59 cm).
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Figure 3.14: The growth of the mixing-layer thickness, §/o, as a function of down-

stream distance, z/o, for the smooth-walled channel, m = 0.091 kg/sec, and 2H =
5.08 cm.
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Figure 3.15: The growth of the mixing-layer thickness, §/o, as a function of down-
stream distance, z/o, for the wide rough-walled channel, low flow rate m = 0.10

kg/sec, and high flow rate m = 0.20 kg/sec.
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Figure 3.16: The growth of the mixing-layer thickness, §/o, as a function of down-

stream distance, z /0o, for the narrow rough-walled channel, low flow rate = = 0.070

kg/sec, and high flow rate m = 0.13 kg/sec.
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Figure 3.17: The growth of the mixing-layer thickness, /o, as a function of down-

stream distance, z/o, for the wide channel with saw-tooth walls, low flow rate m =

0.10 kg/sec, and high flow rate mm = 0.20 kg/sec.
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Figure 3.18: The growth of the mixing-layer thickness, §/¢, as a function of down-
stream distance, z/o, for the narrow channel with saw-tooth walls, low flow rate

= 0.074 kg/sec, and high flow rate m = 0.14 kg/sec.
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Figure 4.1: The coordinate system and wall geometry of a two-dimensional flow.
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Figure 4.2: Local velocity distributions for the rough-walled wide channel, 2H =

5.08 cm. The curves are the calculated velocity profiles based on the kinetic theory

analysis.
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Figure 4.3: Local velocity distributions for the rough-walled narrow channel, 2H =
3.81 cm. The curves are the calculated velocity profiles based on the kinetic theory

analysis.
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Figure 4.4: Local velocity distributions for the wide channel with saw-tooth walls,
2H = 5.08 cm. The curves are the calculated velocity profiles from the kinetic theory

analysis using the centerline and slip-velocities as boundary conditions.
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Figure 4.5: Local velocity distributions for the narrow channel with saw-tooth walls,
2H = 3.81 cm. The curve are the calculated velocity profiles from the kinetic theory

analysis using the centerline and slip-velocities as boundary conditions.
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Figure 4.6: The calculated granular-temperature distributions, T/(go), for the four

different flow conditions in the rough-walled channel.
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Figure 5.1: Configuration of an oscillatory no-flow system.
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Figure 5.2: The distributions of solid fractions when two species are identical (case
(a)). The dotted line is calculated from the theory of Lun et al. (1984) for the

single-size material.
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Figure 5.3: The distributions of solid fractions for case (d): o4 = 2-mm, o5 = 1-mm.
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Figure 5.4: Granular temperature distributions for four different sizes of a: (a) o4

1-mm, (b) ¢4 = 1.2-mm, (¢) 04 = 1.5-mm, (d) 04 = 2-mm.
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Figure 5.5: The distributions of the ratio of vg/v, for the four cases.
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Figure 5.6: The distributions of the ratio of vg/v, for four different ppo/pps-
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Figure 5.7: The distributions of the solid fractions for Y1 /Ty = 3, 04/0s = 2, and
Ppa/Ppﬂ = 4.
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Figure 5.8: Configuration of a shear flow.
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Figure 5.9: Granular temperature and solid fraction distributions in a shear flow for

T; =10,7 =0.03, 75 = 0.28, and R; = 2.9.
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Figure 5.10: Granular temperature and solid fraction distributions in a shear flow

for T} =15, 74 = 0.08, 75 = 0.25, and Ry = 2.5.
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Figure 5.11: Granular temperature and solid fraction distributions in a shear flow
for T} = 1.15, 75 = 0.07, 75 = 0.35, and R; = 2.2.
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Figure 5.12: Velocity distributions for the case in Figure 5.9-5.11.
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Figure 5.13: Configuration of a flow in a vertical channel.
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Figure A.1: Solid fraction distributions for the granular flow in a vertical channel for

case (a): mp = 2.20 kg/sec.
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Figure A.2: Solid fraction distributions for the granular flow in a vertical channel for

case (b): o = 2.00 kg/sec.
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Figure A.3: Solid fraction distributions for the granular flow in a vertical channel for

case (c): o = 1.68 kg/sec.
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Figure A.4: Granular temperature distributions for the granular flow in a vertical

channel for the three cases.
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Figure A.5: The distributions of the ratio of vg/v, plotted in log(vg/v,) against Y.
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Figure A.6: Velocity distributions for the granular flow in a vertical channel.



