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Abstract

The ever-growing demand for higher rates and better quality of service in cellular
systems has attracted many researchers to study techniques to boost the capacity
and improve the performance of cellular systems. The main candidates to increase
the capacity are to use multiple antennas or to increase the bandwidth. This thesis
attempts to solve a few challenges regarding scheduling schemes in the downlink of
cellular networks, and the implementation of modulation schemes suited for wideband
channels.

Downlink scheduling in cellular systems is known to be a bottleneck for future
broadband wireless communications. Information theoretic results on broadcast chan-
nels provide the limits for the maximum achievable rates for each receiver and trans-
mission schemes to achieve them. It turns out that the sum-rate! capacity of a
multi-antenna broadcast channel heavily depends on the availability of channel state
information (CSI) at the transmitter. Unfortunately, the dirty paper coding (DPC)
scheme which achieves the capacity region is extremely computationally intensive es-
pecially in multiuser context. Furthermore, relying on the assumption that full CSI
is available from all the n users may not be feasible in practice.

In the first part of the thesis, we obtain the scaling law of the sum-rate capacity for
large n and for a homogeneous fading MIMO (multiple input multiple output) broad-
cast channel, and then propose a simple scheme that only requires little (partial) CSI

and yet achieves the same scaling law. Another important issue in downlink schedul-

lsum-rate (or throughput) refers to the sum of the transmission rates to all users.
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ing is to maintain fairness among users with different distances to the transmitter.
Interestingly, we prove that our scheduling scheme becomes fair provided that the
number of transmit antennas is large enough. We further analyze the impact of using
a throughput optimal scheduling on the delay in sending information to the users.
Finally, we look into the problem of differentiated rate scheduling in which different
users demand for different sets of rates. We obtain explicit scheduling schemes to
achieve the rate constraints.

In the second part of the thesis, we focus on orthogonal frequency division mul-
tiplexing (OFDM), which is the most promising technique for broadband wireless
channels (mainly due to its simplicity of channel equalization even in a severe multi-
path fading environment). The main disadvantage of this modulation, however, is its
high peak to mean envelope power ratio (PMEPR). This is due to the fact that the
OFDM signal consists of many (say n) harmonically related subcarriers which may,
in the worst-case, add up constructively and lead to large peaks (of order n) in the
signal.

Despite this worst-case performance, we show that when each subcarrier is chosen
from some given constellation, the PMEPR behaves like logn almost surely, for large
n. This implies that there exist almost full-rate codes with a PMEPR of logn for
large n. We further prove that there exist codes with rate not vanishing to zero such
that the PMEPR is less than a constant (independent of n). We also construct high
rate codes with a guaranteed PMEPR of 4logn. Simulation results show that in a
system with 128 subcarriers and using 16QAM, the PMEPR of a multicarrier signal
can be reduced from 13.5 to 3.4 which is within 1.6dB of the PMEPR of a single

carrier system.
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Chapter 1

Introduction

1.1 Capacity Increase in Wireless Systems

The wireless industry has been confronted with an ever-growing demand for higher
rates and better quality of service. The down-link scheduling in cellular systems is
known to be the bottleneck for future broadband wireless communications. From the
early 1980s when cellular systems were first deployed, there has been a tremendous
increase in the number of subscribers, a huge improvement in the quality of service,
and also in the availability of a variety of services other than voice. The success in
cellular systems also motivated the use of wireless systems for many other applications
such as local area networks (LAN) and bluetooth, which is a short-range wireless
connection protocol.

The main property of a wireless channel is its random time-varying behavior due to
the mobility of users and other objects, as well as obstacles in the environment. More
specifically, the channel to a given user might have poor conditions at some times and
favorable conditions at some other times. This is the so-called “fading” behavior of the
channel. In many situations, multiple copies of the transmitted signal may be received
with different delays and different strengths. This is called “multipath fading” and
can severely deteriorate the performance when the transmitted signals have shorter

duration (e.g., broadband transmission). Also, since the subscribers are mobile, it
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is generally assumed that the processing capability as well as the average transmit
power are limited resources for the handheld devices. Therefore, any communication
scheme that aims for higher transmission rates through a wireless channel has to deal
with fading channels, limited average power, and low complexity receivers.

In order to improve the capacity of a cellular system with an average power con-
straint, one can either decrease the cell size, increase the bandwidth, or add more
antennas at the transmitter and/or receivers. Increasing the number of cells (or de-
creasing the cell size) has been the most traditional method for increasing the capacity
and was studied in the 1970s at Bell Labs. However this method has some drawbacks.
First of all, this would increase the number of handshakes as users move between the
cells more often. Secondly, there is a cost associated with deploying new base stations
as it requires buying land and expanding the backbone. Finally, it is quite clear that
this method can not be progress indefinitely! Therefore, this thesis deals with a few
challenges associated with the last two options to increase capacity, namely, adding

more antennas or increasing the bandwidth.

1.1.1 Use of Multiple Antennas

Multiple-antenna communications systems have generated a great deal of interest
since they are capable of considerably increasing the capacity of a wireless link. In
fact, it was known for a long time that, if perfect channel state information (CSI)
were available at the transmitter and receiver, then they could jointly diagonalize the
channel, thereby creating as many parallel channels as the minimum of the number of
transmit/receive antennas and thus increase the capacity of the channel by this same
factor. More surprisingly, it was later shown that the same capacity scaling is true if
the channel is not known at the transmitter [18, 51| and even if it is not known at
the receiver [19, 20] (provided the coherence interval of the channel is not too short).

While these are all true for point-to-point communications links, there has only



Base Station

i"th user

Figure 1.1: A cellular system with multiple antennas in the transmitter (base station)

been recent interest in the role of multiple antenna systems in a multi-user network
environment, and especially in broadcast and multi-access scenarios. In fact, broad-
cast and multiple access channels refer to the downlink and uplink of cellular system
(as shown in Fig. 1.1). Therefore, information theoretic results on broadcast chan-
nels provide the limits for the maximum achievable rates for each receiver (i.e., the
capacity region) and transmission schemes to achieve the region. For example, the
sum-rate capacity is a point on the boundary of the region that shows the maximum
total rate (or throughput) that can be conveyed by the transmitter to all the users.
In multi-antenna broadcast channels, unlike point-to-point multi-antenna chan-
nels, the multi-user capacity depends heavily on whether the transmitter knows the
channel coefficients to each user [35, 9, 53]. For instance, in a Gaussian broadcast
channel with M transmit antennas and n single antenna users, the sum rate capacity
scales like M loglogn for large n if perfect channel state information (CSI) is avail-
able at the transmitter, yet only logarithmically with M if it is not. It is also known
that the sum-rate capacity can be achieved using dirty paper coding (DPC). Unfor-

tunately, implementation of DPC, especially in the multi-user context, is extremely
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computationally expensive. Furthermore, DPC relies on the assumption that full CSI
is available from all the n users which may not be feasible in practice. These issues

raise the following question:

e Considering that in a typical cellular system, the number of users is much larger
than the number of transmit antennas, do there exist schemes that lead to near-

sum-rate capacity with less complexity and less feedback?

This question is mainly dealt with in Chapters 2 and 3 in which we first obtain
the scaling law of the sum-rate capacity when n is much larger than M, and then we
propose a simple scheme with partial CSI that achieves the same scaling law for the

sum-rate as obtained with DPC.

1.1.2 Performance Issues

Many applications in wireless systems such as video-on-demand not only require
higher rates but also are sensitive to delay [79, 83]. In fact, resource allocation
in wireless systems aims for two conflicting goals, firstly providing quality of service
such as delay and fairness to users, and secondly maximizing the throughput of the
system [80]. This conflict is due to the fact that capacity-optimal schemes exploit the
time-varying nature of the channel by allocating the power to the user that has the
“best” channel conditions, and therefore, there is no consideration for the delay and
fairness in these types of transmission [28].

On the other hand, in future cellular systems, users might request for different
applications such as voice, internet, or video-on-demand. This implies that the base
station has to provide differentiated services to different users yet at the same time,
maximize the throughput. Therefore, the best operating point on the capacity region
will no longer be the sum-rate capacity point. While achieving the sum-rate capacity

point has been studied before, it is not easy to generalize the results to achieve other



points on the capacity region.

Therefore, this thesis studies the performance of capacity-optimal scheduling schemes
in terms of fairness among users and delay in giving service to different users in chap-
ter 3 and 5. Also, in chapter 4, we obtain explicit transmission schemes that provide

differentiated rates to users while maximizing the throughput of the systems.

1.1.3 Increasing the Bandwidth

Increasing the bandwidth is one the candidates to increase the capacity of cellular
systems. The main challenge in systems with large bandwidth is to alleviate the
frequency selectivity of the channel which implies that different frequency components
of the transmit signal will be affected differently by the channel. This will require the
receiver to equalize the channel which can be computationally intense [31].

Orthogonal frequency devision multiplexing (OFDM) is one of the most appealing
techniques for wideband channels as it significantly simplifies the equalization [44].
This is done by breaking the wideband transmit signal into many narrowband sub-
channels. As each subchannel has a much smaller bandwidth, the channel roughly
behaves as a constant in each coherence interval; this constant is of course different
from one subchannel to the other. Each subchannel can be then equalized easily by
just dividing the signal by the channel constant. In fact, OFDM has been proposed
for several high speed wireless standards such as IEEE802.11a,g, digital audio/video
broadcasting (DAB/DVB) [31].

The main disadvantage of this modulation, however, is its high peak-to-mean-
envelope-power-ratio (PMEPR) [43, 44]. This is due to the fact that the OFDM
signal consists of many, say n, harmonically related subcarriers which may add up
constructively and lead to large peaks in the signal. In fact the worst case PMEPR is
of the order of n. This high PMEPR will significantly hamper the power efficiency of

the power amplifier in the transmitter front end, which in return reduces the battery



life time.

A whole host of methods have been proposed for PMEPR reduction, such as
coding, selective mapping, reserved carriers, and clipping [37, 36, 43, 38, 39]. Most
of these methods are heuristic and do not provide much analytical insight into the
problem. The main goal Chapters 6,7, and 8 has been to provide theoretical limits
for PMEPR reduction using coding. One of the fundamental questions in this area
has been to obtain the distribution of the PMEPR when each subcarrier is chosen
from some given constellation.

We can, in fact, obtain the asymptotic behavior of distribution of PMEPR for a
large number of subcarriers, n, and prove that for almost all the practical constella-
tions, the PMEPR, behaves like logn almost surely [4]. This implies that there exist
almost full-rate codes with the PMEPR of logn for large n. This result raises two

interesting questions:
e Can we construct high rate codes with a guaranteed PMEPR of logn?

e Do there exist codes with rate not vanishing to zero such that the PMEPR is

less than logn (say constant)?

We can, in fact, answer both of the aforementioned questions. In particular, for a
g-ary constellation, we design a code with rate 1 — log, 2, PMEPR of 4logn for any
n, and decoding/encoding of order n. Furthermore, we can prove that the answer to
the second answer is affirmative. For large n, we show that there exist exponentially
many codewords (in n) with a PMEPR bounded by a constant independent of n.
These two results are shown by balancing the PMEPR of each codeword using the
sign of each subcarrier. Simulation results confirm that a significant improvement in

PMEPR can be achieved using our coding scheme.
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1.2 Contributions of the Thesis

In this section, we review the contents of each chapter and mention the main contri-
butions. The thesis is organized in such a way that different chapters can be more or
less read independently.

It should be also mentioned that most of our analytical results are asymptotic
which implies that one (or more) parameter in the problem is assumed to grow to
infinity. This is for the following reasons. First of all, it is the asymptotic regime
which is pften of practical interests; for instance, in cellular systems, the number of
users is assumed to be large or in a multicarrier system the number of subcarriers is
assumed to be large. Secondly, the analysis is often not tractable in the general case.
Finally, the asymptotic results usually give a lot of insight into the problem which
can not be otherwise obtained. Therefore, throughout the thesis, we normally focus
on situations where some parameters in the system gets large while other parameters
are fixed.

In Chapter 2, broadcast channels are defined and known capacity results are pre-
sented under differing assumptions regarding the amount of channel state information
(CSI) at the transmitter. In the case where full CSI is available in the transmitter,
it has been shown that the sum-rate capacity in single transmit antenna systems can
be achieved by transmitting only to the receiver with the most favorable channel con-
dition. This scheduling is called “opportunistic.” For the multi-antenna broadcast
channel, however, the sum-rate capacity is achieved using dirty paper coding (DPC).
In order to gain a better insight into the behavior of the sum-rate with the number
of users, n, and number of transmit antennas, M, we obtain the scaling laws of the
sum-rate for multi-antenna channels when n is large. It turns out that opportunistic
transmission can incur a big loss compared to that of DPC. Furthermore, in the case

where the transmitter has full CSI, the sum-rate capacity does grow linearly with M,
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yet only logarithmically with M when the transmitter has no CSI. Therefore the need
for some sort of CSI is a necessity if we would like to boost the capacity by a factor
of M.

In Chapter 3, we propose a simple scheme that only requires little feedback (partial
CSI) and achieves the same scaling law for the sum-rate as what we obtained using
DPC when n is large. This is motivated by the fact that in systems with large n,
obtaining full CSI from all users may not be feasible. Since lack of CSI does not
lead to multi-user gains, it is therefore of interest to investigate transmission schemes
that employ only partial CSI. Our scheme is one that constructs M random beams
and that transmits information to the users with the highest signal-to-noise-plus-
interference ratios (SINRs), which can be made available to the transmitter with
very little feedback. For fixed M and n increasing, the throughput of our scheme
scales as M loglognN, where N is the number of receive antennas of each user. This
is precisely the same scaling obtained with perfect CSI using dirty paper coding.
We furthermore show that linear increase in throughput with M can be obtained
provided that M does not not grow faster than logn. We also study the fairness of
our scheduling in a heterogeneous network and show that, when M is large enough,
the system becomes interference-dominated and the probability of transmitting to
any user converges to %, irrespective of its path-loss. In fact, using M = alogn
transmit antennas emerges as a desirable operating point, both in terms of providing
linear scaling of the throughput with M as well as in guaranteeing fairness.

In Chapter 4, we consider the downlink of a wireless cellular system where users
have different rate demands; therefore, our main interest is no longer to achieve the
sum-rate capacity of broadcast channel. In particular, we assume n homogenous users
are divided into M groups, each group of which requires the same rate, and where
the ratio of the groups’ rates are given. The transmitter would like to maximize the

throughput (sum of the rates to all users) while maintaining the rational rate con-
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straints. In general, this problem appears to be computationally intractable since the
ergodic capacity region is described as the convex hull of (an infinite) set of rates. To
illustrate this, we first consider systems where n = 2 and n = 3 and where each user
requires a different rate. We focus on the achievable region by using weighted oppor-
tunistic scheduling (WO)—a generalization of opportunistic scheduling—in which we
transmit to only the user that has the largest “weighted” signal to noise ratio (SNR). It
turns out that determining the explicit relationship between the appropriate weights
of the schedule and the desired ratio of the rates is analytically intractable even for
the case of n = 3. For this reason, and also because most practical systems have
many users, we focus on the asymptotic regime of large n where explicit results can
be found. In particular, we propose three scheduling schemes to provide the rational
rate constraints namely, the aforementioned WO, time division opportunistic (TO),
and superposition coding (SC). In TO, each group has its own time slot in which
the transmitter chooses the user with the best SNR from the corresponding group.
Superposition coding is the scheme that achieves the information-theoretic capacity
region. For each scheduling we give an explicit scheme to guarantee the rational rate
constraints. We also analyze the throughput loss due to the rate constraints for all
three different schemes. In particular, we show that the throughput loss compared to
the maximum throughput (i.e., the sum rate capacity without any rate constraints)
tends to zero for large n. Thus, there is not much of a penalty in providing different
levels of service to different users. We also analyze the convergence rate of all the
schemes and provide simulations supporting the theoretical analysis.

In Chapter 5, we look into the delay analysis for the opportunistic transmission in
broadcast channels. We consider a single-antenna broadcast block fading channel with
n users where the transmission is packet-based and all the users are backlogged. We
define the delay as the minimum number of channel uses that guarantees all n users

successfully receive m packets. This is a more stringent notion of delay than average
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delay and is the worst case delay among the users. A delay optimal scheduling scheme,
such as round-robin, achieves the delay of mn. For the opportunistic scheduling
(which is throughput optimal) where the transmitter sends a packet to the user with
the best channel conditions at each channel use, we derive the mean and variance of
the delay for any m and n. For large n and in a homogeneous network, it is proved
that the expected delay in receiving one packet by all the receivers scales as nlogn, as
opposed to n for the round-robin scheduling. We also show that when m grows faster
than (logn)", for some r > 1, then the delay scales as mn. This roughly determines
the time-scale required for the system to behave fairly in a homogeneous network.
We then propose a scheme to significantly reduce the delay at the expense of a small
throughput hit. We further look into the advantage of multiple transmit antennas on
the delay. For a system with M antennas in the transmitter where at each channel
use packets are sent to M different users, we obtain the expected delay in receiving
one packet by all the users.

In the following sections, we turn our attention to the peak to average power
reduction of OFDM systems. In Chapter 6, we introduce OFDM signals and define the
peak to mean envelope power ratio (PMEPR). We derive lower and upper probability
bounds for the PMEPR distribution when the number of subcarriers n is large. Even
though the worst case PMEPR is of the order of n, the main result is that the PMEPR
of a random codeword C' = (cy,...,c,) is logn with probability one asymptotically,
for the following three general cases: (i) ¢; is chosen independently and identically
from a complex QAM constellation in which the real and imaginary part of ¢; each
has i.i.d. and even distribution (not necessarily uniform), (ii) ¢; is chosen from a PSK
constellation where the distribution over the constellation points is invariant under
7/2 rotation, (i7¢) C is chosen uniformly from a complex sphere of dimension n.
Furthermore, we use these bounds to obtain a Varsharmov-Gilbert (VG) style bound

for the achievable rate and minimum Hamming distance of codes with entries chosen
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from QAM/PSK constellations and with PMEPR of less than logn for sufficiently
large n. It is proved that asymptotically, the VG bound remains the same for codes
with PMEPR of less than logn.

The results in Chapter 6 motivates the question of how much reduction beyond
logn can one asymptotically achieve with coding, and at what price in terms of the
rate loss. In Chapter 7, by optimally choosing the sign of each subcarrier, we prove
the existence of g-ary codes of constant PMEPR for sufficiently large n, and with a
rate loss of at most log, 2. We also obtain a Varsharmov-Gilbert type upper bound
on the rate of a code given its minimum Hamming distance with constant PMEPR,
for large n.

Since ours is an existence result, we also study the problem of designing signs for
PMEPR reduction in Chapter 8. We investigate practical schemes to search over the
sign vector with linear or polynomial complexity in n while providing a worst case
guarantee on the resulting PMEPR. In particular, we first propose two algorithms
one based on derandomization and the other one base on a greedy approach. Both
of these algorithms have order n complexity in the transmitter and no additional
complexity in the receiver, while guaranteeing that the worst case PMEPR is less than
4logn. For symmetric g-ary constellations, this algorithm constructs a code with rate
1 —log,2 and with PMEPR of clogn with simple encoding and decoding. In fact,
simulation results show a much better performance than the upper bound; for example
in a system with 128 subcarriers and using 16QQAM constellation, the PMEPR has
been reduced from 13.5 to 3.4 which is within 1.6dB of the PMEPR of single carrier
system. Finally we propose a modification of both algorithms using sphere decoding
that lead to much better PMEPR at the cost cubic computational complexity at the
transmitter. At the end of this Chapter, we also introduce another PMEPR reduction
method using constellation modification by adjusting the amplitude and signs of each

subcarrier.
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Finally in Chapter 9, we discuss a few interesting open problems that have been

brought up by the research undertaken in this thesis.
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Chapter 2

Basics of Broadcast Channels

2.1 Introduction

A broadcast channel consists of one transmitter, many receivers (say n), and a trans-
mission medium that is shared by all the receivers. This channel was first introduced
by Cover in [22] in the 1970s and since then has attracted a lot of interest in the
research community. Here R; refers to the rate for the i’th receiver (or user). A
rate n-tuple (Ry,..., R,), is said to be achievable for the broadcast channel if reli-
able communication at these rates for each user is possible. The capacity region of a
broadcast channel is the closure of the set of achievable rates.

Clearly, the downlink scheduling in cellular systems can be modeled as a broad-
cast channel in which the channels to the users are randomly changing over time.
Therefore, information theoretic results on broadcast channels provide the limits for
the maximum achievable rates for each receiver in the downlink of cellular systems.
This further motivates the study of the capacity region and transmission schemes
(i.e., scheduling) in broadcast channels.

The capacity region for single antenna broadcast channels was first studied in the
1970s by several authors (see for example [22, 11] and the references therein). It
has been shown that the single antenna broadcast channel falls into the category of

degraded channels and its capacity region is known to be achieved by superposition
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coding [11]. Here degradedness (roughly) means that the broadcast channel is equiv-
alent to the cascade of n channels where the output of each one corresponds to one
of the receivers. Superposition coding is a method to superimpose high rate and low
rate information to different users in one codeword. In this coding the best user will
be able to decode the information to all n users. This will be further explained in
Section 2.2.

Recently, there has been a large amount of interest in the area of multi-antenna
broadcast channels; more specifically, the capacity region of MIMO (Multiple Input
Multiple Output) Gaussian broadcast channels in which the additive noise is modeled
as a white Gaussian noise. This recent interest is mainly due to an impressive capacity
increase in a point-to-point communication link using multiple transmit and receive
antennas. Unfortunately, MIMO broadcast channels in general do not fall into the
category of degraded channels, and therefore, the problem cannot be solved with the
known information-theoretic techniques. In the case of Gaussian MIMO broadcast
channels and when the channel state information is known in both transmitter and
recetvers (so called full CSI assumption), there has been recent progress on the capac-
ity region in the past three years. It is shown by several authors [9, 10, 12, 54] that
the sum-rate capacity (which is the point on the boundary of the capacity region that
maximizes Y .., R;) is achieved by dirty paper coding (DPC). In fact DPC was first
introduced by Costa in 1985 to obtain the capacity of point-to-point channels with
known interference at the transmitter and receiver. The main result of Costa is that
if the interference is known non-causally, the capacity is the same as that of a channel
with no interference and can be achieved by DPC. The main idea behind DPC is to
presubtract the interference at the transmitter while maintaining the average power
constraint. This technique is then applied by Caire and Shamai [9] to a broadcast
channel with two users to obtain the sum-rate capacity and then it is generalized to

more than two users in [10, 12, 54]. Very recently, Weingarten et al. [53] proved that
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the capacity region can be achieved by dirty paper coding.

While the above results suggest that sum-rate capacity increases linearly in the
number of transmit antennas, they all rely on the assumption that the channel is
known perfectly at the transmitter. In many applications, however, it is not reason-
able to assume that all the channel coefficient to every user can be made available to
the transmitter. This is especially true if the number of transmit antennas M and/or
the number of users n is large (or if the users are mobile and are moving rapidly).
Therefore, it would be worthwhile analyzing the sum-rate (or throughput) of the
broadcast channel under different amounts and types of channel state information
(CSI) at the transmitter or the receivers.

For point-to-point multiple antenna links, it is known that the capacity scales
linearly with the minimum of the number of transmit and receive antennas, no matter
whether CSI is available in either the transmitter or the receivers [51, 18, 19, 20]. It
also should be mentioned that, although CSI does not affect the capacity that much,
it can greatly simplify the decoding/encoding in the system.

The main goal of this chapter is to look into the capacity of broadcast channels
under two extreme cases, namely, when the transmitter has full CSI or no CSI. Our
main focus would be on the sum-rate capacity of the system as it refers to the max-
imum throughput in the downlink scheduling. It also should be mentioned that the
sum-rate capacity can be written as a logdet convex optimization problem with n
variables and can be therefore evaluated numerically. However, little analytical in-
sight is gained from the expression. In order to better understand the behavior of
the sum-rate capacity, we investigate the scaling laws of the sum-rate capacity of
Gaussian MIMO broadcast channels with many users n when the transmitter has
M antennas and each receiver is equipped with N antennas. Previously, in [14, 16],
asymptotic results for the sum rate of DPC and beamforming have been derived when

n and M have the same growth rate. Furthermore, in [15], the asymptotics of the
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sum-rate for DPC is derived for large signal to noise ratios and large M when the
other parameters of the system are fixed. However, motivated by a cellular system
with large number of users (say 100) and having M < 5, we consider a different region
in which n is large and M is either fixed or growing to infinity with much less pace,
i.e., logarithmically with n.

Here is the outline of this chapter. Section 2.2 introduces our channel model and
notation. In Section 2.3, we review the existing results on the capacity of single and
multi-antenna broadcast channels under differing CSI assumptions. In Section 2.4,
we obtain the scaling laws of the sum-rate for the MIMO broadcast channel using

different scheduling schemes and Section 2.5 concludes the chapter.

2.2 Channel Model and Notation

A broadcast channel is defined as a channel with one transmitter and many receivers
where the transmitter or the receivers may be equipped with multiple antennas as
shown in Fig. 1.1. As we are interested in a cellular system, throughout the thesis,
we assume the information intended for different users is independent.

We consider a Gaussian broadcast channel with n users, a transmitter with M an-
tennas and receivers equipped with N antennas. Therefore we may write the received

vector at the 7'th receiver at the ¢’th channel use as

Yi(t) = Hi(t)S(t) + Ni(t), i=1,...,n, (2.1)

where H;(t) is an N x M matrix that represents the channel, S(¢) (M x 1) is the
transmit symbol, and N;(t) (N x 1) is the additive noise. Both H;(t)’s and N;(t)’s have
independently and identically distributed (i.i.d.) complex Gaussian entries with zero
mean and unit variance, CN(0,1). N;(¢) here randomly and independently changes

to another value at ¢ + 1’th channel use.
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In a wireless channel, we need to model the environment between the transmitter
and the receivers as well. Here, we consider a block fading narrowband model for the
channel, which implies that the channel, e.g. H;(t), remains constant for 7" channel
uses where T is the coherence interval of the channel. The channel then randomly
changes to another value (see [41] for example and reference therein). Here T" denotes
the coherence time of the channel.

Moreover, the expected value of the total transmit power is assumed to be P,
ie., E{S*S} = P. Therefore the received signal to noise ratio (SNR) of the i’th
user will be F{|H;S|?} = P. Throughout the thesis it is assumed that the users
are homogeneous, i.e., they have the same SNR. In this thesis, we only consider a
short-term average transmit power constraint which implies that the transmitter has
to use the power P at each channel use. This is mainly motivated by the fact that
the base station is subject to a short term power constraint which should be satisfied
for each fading state.

Assuming that the channel changes over time in the stationary and ergodic man-
ner, throughout the thesis, we focus on the ergodic rates and the capacity region
refers to the ergodic capacity region. Therefore, computation of the rates involves
averaging over the channel realization. We may then drop the time index from (2.1)
for the sake of brevity.

Throughout the thesis we extensively use notation for orders as follows: f(x) =
O(g(x)) means that there exists a non-negative constant « such that xli)r{)lo |%| <a.
Similarly f(z) = o(g(x)) denotes that the limit goes to zero. Finally, f(z) = O(g(z))

implies that there exist positive constants o and 3 such that 5 < lim |%| < a.
T—>00
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2.3 Earlier Results on the Capacity of Broadcast

Channels

In this section, we review the earlier results on the capacity of broadcast channel
under differing CSI assumptions. We start with single antenna systems and then we

present the results for the multi-antenna broadcast channel.

2.3.1 Single Antenna Broadcast Channel

As mentioned, the broadcast channel was first introduced by Cover [22]. It is shown
that a single antenna broadcast channel falls into the category of degraded channels.
The capacity region for degraded broadcast channel has been shown to be achieved
by superposition coding [11].

To further clarify the definitions, we consider a broadcast channel with 2 users.
Similar results are valid for channels with more than 2 users. The broadcast channel
consists of an alphabet X and two output alphabets ); and ), and a probability
transition function p(yi,ys|z). A code ((25%: 25%2) K) for a broadcast channel

consists of an encoder
X ({1,2,...,288) x {1,2,...,2588)) o K
and two decoders corresponding to each user as

VE 5 {1,2,... 2KR~}

Vi —{1,2,...,2K")

We define the average probability of error as the probability PX that the decoded

message is not equal to the transmitted message. A rate pair (R;, Rs) is then said to
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be achievable for the broadcast channel if there exists a sequence of ((2KF1 2KR2) [)
codes such that PX tends to zero as K becomes large. The capacity region is the
closure of the set of achievable rates. It should be mentioned that the capacity region
depends only on the conditional of the marginal distributions of p(y;|z) and p(y2|z).

A broadcast channel is called physically degraded if p(y1, y2|z) = p(y1|x)p(ya|y1)-
Since the capacity region only depends on the marginal, we can generalize the idea of
physically degraded channels and define stochastically degraded channels that have
the same capacity region. A broadcast channel is call stochastically degraded if its
conditional marginal distribution is the same as that of a physically degraded one,

i.e., if there exists a distribution p’(y2|y1) such that

plyalz) =Y p(yil2)p (valyr)

A physically degraded channel means that the channel between X and Y5 can be
represented as the cascade of the channel between X and Y; (denoted by p(Y;]X))
and another channel between Y; and Y; (denoted by p(Y3]Y7)). This definition can
be easily generalized to a channel with more than two users.

The capacity region can be represented as a convex hull of the closure of all

(R1 s RQ) satisfying

Ry < I(U;Ys),

R, < I(X;Yi|U) (2.2)

for some joint distribution p(u)p(z|u)p(y, z|z) where I(-;-) denotes the mutual infor-
mation and the auxiliary random variable U has cardinality bounded by the cardi-
nality of X, )Y, and ),. Here the auxiliary random variable U will serve as a cloud

center that can be distinguished by both receivers s and );. Each cloud consists of
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Figure 2.1: Ergodic capacity region for a homogeneous broadcast channel with two
users

2KR1 codewords XK distinguishable by the receiver Y;. The worst receiver can only
see the clouds, while the better receiver can see the individual codewords within the
clouds. Therefore the best receiver can decode the information to the worst receiver.
This is in fact the main idea behind superimposing the information intended to both
receivers in one codeword.

While the previous results hold for a general broadcast channel, in this thesis
we are interested in a time-varying Gaussian broadcast channel defined in Section
2.2. The ergodic capacity of a gaussian broadcast channel can be also achieved by
superposition coding. Fig. 2.1 shows the ergodic capacity region for the two-user
homogeneous broadcast channel. Clearly the maximum throughput or the sum-rate
of the broadcast channel refers to the point on the boundary of the region that
maximizes 7, + Ry as shown in Fig. 2.1.

In a fading broadcast channel with short-term average power constraint, it has
been proved that to achieve the sum-rate capacity, the transmitter has to assign all

the power to the receiver with the best channel condition [28]. This is intuitively
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obvious since if the transmitter assigns some portion of the power to a receiver with
less capacity, it is clear that the sum of the rates will be less than the case where
the transmitter assigns all its power to the user with the largest capacity. We call
this opportunistic time-sharing method of transmission to only the best user as the
opportunitic scheduling for brevity [28, 57].

It is worth mentioning that the single antenna broadcast channel is degraded
even when channel state information is not available at either the receivers or the
transmitter. For the multi-antenna broadcast channel, however, the channel is not
degraded when full CSI is available at the transmitter and the receivers. Intuitively,
the reason is that the channels are matrices and it is not clear how the transmitter can
compare the channels of different receivers with each other. In the next subsection,
we review the results for the capacity region of a multi-antenna broadcast channel for

differing amount of CSI at the transmitter and the receivers.

2.3.2 MIMO Broadcast with no CSI at the Transmitter

Assuming that the transmitter or the receivers are equipped with multiple antennas,
the MIMO broadcast channel is still degraded if the transmitter has no CSI [9]. This
result is valid for both cases where the receivers either have full CSI or have no CSI.
Knowing that the channels are degraded, we can state that the capacity region
of the MIMO broadcast channel defined is with superposition coding [11] when the
transmitter has no CSI, irrespective of whether the receivers have full CSI or not.
Knowing the capacity region, we investigate the behavior of the sum-rate capacity
with respect to the number of users and the number of receive/trasnmit antennas.
Suppose Cpc is the capacity region of the channel, hence any n-tuple rate vector
(R, ..., R,) belonging to the set Cpc is achievable. Since the MIMO BC channel is

degraded, the sum-rate capacity can be bounded by the individual capacity® of the

!By individual capacity C;, we mean the capacity of the point-to-point link between the trans-
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user with the largest number of receive antennas [11],

maX ZR < maxC,, (2.3)

(Rla ,Rn ECBC

where C; is the individual capacity of the 7’th user.
It is known that with full CSI in the receiver and for large signal to noise ratios
(SNR), the capacity of the point-to-point communication link between the transmitter

and the first receiver, C1, scales like [18],
C; =min(M, N)log P + O(1), (2.4)

where we used the fact that the total average transmit power is P.
For the case with no CSI in the receivers, it is also shown that for large signal-to-
noise ratios [19, 20,

min(M,ry, |T/2])
T

Cy = min(M, N, |T/2)) (1 - ) logP+0(1),  (25)

where T is the coherence interval of the channel.

Assuming M > N, Egs. (2.4), (2.5) together with (2.3) imply that the sum-rate
capacity with no CSI at the transmitter does not depend on M for large SNRs no
matter whether the receivers have full CSI or not. Furthermore, the sum-rate capacity
does not depend on the number of users n, which is to be expected, since we have
no information about the users at the transmitter and the transmitter cannot exploit

the multiuser nature of the system.

mitter and the ¢’th receiver.
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2.3.3 MIMO Broadcast with Full CSI at the Transmitter

As mentioned, when full CSI is available at the transmitter, the broadcast channel
is not degraded as it is not clear how to compare channel matrices with each other.
Therefore the problem becomes more complicated and is still open in the general case.
However, for the Gaussian broadcast channel, it has been shown shown by several
authors [9, 10, 12] that the sum-rate capacity is achieved by so called dirty paper coding
(DPC). In this scheme, since the interference is known non-causally, the transmitter
presubtracts the interference. The main challenge however is to satisfy the average
transmit power constraint. This can be done by dirty paper coding, which was first
proposed by M. Costa [9]. Only recently, it has been proved that the capacity region
of multi-antenna Gaussian broadcast channels in fact can be achieved by dirty paper
coding [53]. It should be mentioned that the dirty paper coding scheme, especially
in the multi-user context, is extremely computationally intensive [55]. This is mainly
due to the fact that the implementation of DPC requires a vector quantization of large
dimensions which has exponential complexity. Having mentioned that, suboptimal
schemes such as channel inversion or Tomlinson-Harashima precoding [54, 55, 56]
have been proposed that give relatively close performance to the optimal schemes.
Here we consider the system model in (2.1), for a channel with n receivers each
one equipped with N antennas and a base station with M antennas. Given a set
of N x N positive semi-definite matrices P, > 0 which satisfy the power constraint
tr(3°r_, P, < P, and a permutation function 7 on the set {1,...,n}, the following

rates are achievable in the MIMO Gaussian broadcast channel using DPC [53]

og |Hk(zz 1PW(Z)H*+I‘
2 IHk(Z“P ) Hy + 1

RPY (7, Py,...,P,) = (2.6)

forall k=1,...,n. The DPC region is given by the convex hull of all the achievable
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rates as

RPP =¢ (U U rZ@, A, .,Pn)> (2.7)

m Pp,..,Pp
In [53], it is further proved that the capacity region of the MIMO Gaussian broadcast
channel is equivalent to the DPC rate region defined in (2.7).

In fact, the expression for the sum-rate capacity can be simplified and written as,

Bor =B {{Plzo,...,PnnZlg:z’(f'(Z P;)<P} tog det (1 - Z H; PiHi) } ’ 28)

i=1

where H; are N x M channel matrices with i.i.d. CN(0,1) distributions, and P is
the average power constraint. Since the logdet function is concave and the function
inside the logdet is a linear in P,;’s, the maximization inside the expectation in (2.21)
is a concave optimization problem and can be solve in polynomial time. However,
as the number of users increases, numerically evaluating Rpp becomes cumbersome.
Furthermore, the expression in (2.21) gives little inside into the behavior of the sum-
rate as a function of the number of users and number of transmit/receive antennas.
Therefore, in the next sections, we look into the scaling behavior of the sum-rate
capacity for broadcast channels. Along with dirty paper coding, we also analyze the
scaling law of the sum-rate when the transmitter uses the opportunistic scheduling to
the user with the maximum instantaneous capacity. This is a very simple scheduling

while achieving the sum-rate capacity for a single antenna broadcast channel.

2.4 Scaling Laws of Sum-Rate in MIMO Systems

As mentioned in previous section, numerically evaluating the sum-rate capacity re-
quires a lot of computation and lead to little inside specially for a large number of
users. As in cellular systems, the number of users is much larger than the number of

antennas, in this section, we investigate the scaling laws of the sum-rate capacity of
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Gaussian MIMO broadcast channels with many users n using opportunitic transmis-
sion and DPC when the transmitter has M antennas and each receiver is equipped
with N antennas. Previously, in [14, 16], asymptotic results for the sum-rate of DPC
and beamforming have been derived when n and M have the same growth rate.
Furthermore, in [15], the asymptotics of the throughput for DPC and opportunistic
time-sharing are derived for large signal to noise ratios and large M when the other
parameters of the system are fixed. However, motivated by a cellular system with a
large number of users (say 100) and having M < 5, we consider a different region in
which n is large and M is either fixed or growing to infinity with much less pace, i.e.,

logarithmically with n.

2.4.1 Scaling Laws of Opportunistic Time-Sharing

In a single antenna broadcast system with full CSI at the transmitter, the sum-rate
capacity can be achieved by using time-sharing and sending to the user with the
largest simultaneous capacity. However, for a multi-antenna broadcast system with
full CSI at the transmitter, this is not the case. In this section, we derive the scaling
laws for the sum-rate of multi-antenna broadcast channels using time-sharing to the
strongest user, e.g., opportunistic transmission, for a large number of users.

It is clear that, by only sending to the strongest user, the sum-rate (denoted by
E{Ry}) can be written as [15, 13]

i=1,..,n  P;>0,tr(P;)<P

E{R,}=F {;rllaXnC’(H,, P)} =F {.max max logdet (I + H,P,-H;)} ,
(2.9)
where C'(H;, P) is the capacity of the link between the transmitter and the i’th receiver
with the channel matrix H;, and P; (M x M) is the optimal covariance matrix of the
transmitted signal. Lemma 2.1 considers the case where M and N are fixed and n

grows to infinity. Lemma 2.2 derives the result for the case that M is also growing to
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infinity but logarithmically with n.
Lemma 2.1 For M, N, and P fixed, we have

im Bk} =
n—comin(M, N)loglogn

(2.10)

Proof: First of all we assume M > N, the case where N > M can be analyzed in

N
the same way. Using the inequality det(A) < (%) where A is an N x N matrix,
we can bound C(H;, P) as
1
C(H;,P) < Nlog (1 + Ntr(HiPiH;)) ) (2.11)

Defining H; = [h} ... hjy] (where b (N x 1) is the j’th column of H;), we can use
the inequality

P.H* < i'* i' ) ]
tr(H;P,H}) < 12%)1(\/1% hitr(F;) (2.12)

We can also find a lower bound by assigning equal power to N transmit antennas

instead of M. Clearly, this leads to

P ! !
C(H;,P) > Nlog <1 + N)‘min(Hz’Hz‘*)) , (2.13)

where Apin(+) denotes the minimum eigenvalue of its argument and the matrix H;
(N x N) is a truncated version of H; (N x M) by omitting M — N columns of H;.

Using (6.45) and (6.46), we may write the expected sum-rate of the opportunistic
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scheme as

P ! I*
E {Nlog (1 + ﬁ@%}%Amin(Hiﬂi )) } < F{Ry;} <

P o
E {'max N log (1 + v ax hz.*h;-> } . (2.14)

i=1,..n 1<j<m J

It is worth noting that h*h% has a x*(2N) distribution. In [66], it is shown that
NAmin(H; H;*) is exponentially distributed ([66], Theorem 5.5, p. 62). Therefore,

using the results in extreme value theory (see Appendix 10.1), it can be shown that

1<i<nM

Pr {lognM +2(N —2)loglognM + O(logloglogn) < max «,

1
< lognM+2N loglognM+0O(loglog logn)} =1-0 <1 5 ) ,
og’n

(2.15)

where £, are i.i.d. and have x?(2N) distribution.

Noting that NAmin(H, H;*) has x?(2) distribution, we can similarly prove that

7 ! 1
Pr<logn — 2loglogn < max NAmin(H,H,;") <logn+2loglogn ; =1-0 — | -
1<i<n log”n
(2.16)
We also know that the sum-rate capacity is certainly bounded by the capacity of
a MIMO single user link with M transmit and n/N receiver antennas (cooperation

allowed between users), i.e., C' is of the order of Mlogn [27, 52]. Defining A =

lognM + 2N loglognM + O(logloglogn), we can now derive an upper bound for
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E{Ry} as
E{R;;} < FE {Rts\ maX/i;- < A} Pr { max;-s; < A}
1<i<n 1<i<n
+0 <M10g (nN)Pr{lrE_aLx Ky > A})

P
= Nlog (1 + N logn) + O(logloglogn). (2.17)
Similarly, a lower bound can be written as

E{Ri} > E{R|logn < maxN A (H;H}) < logn + 2loglogn} x

Pr{logn < maxNAmin(H;H}) < logn + 2loglogn}
P 1
= NI 1+ —1 1- . 2.18
Og( i Ogn) ( logn> (2.18)

Egs. (2.17) and (2.18) complete the proof and lead to (2.10). O

In practice, the number of users n is large; however, it is not infinite. Therefore,
it would be of interest to analyze the sum-rate when M is also growing to infinity
but with a much lower pace than n, say as logn. For example, in a cellular network
with 100 users and four or five transmit antennas, it is clear that M is in the order
of logn. The next lemma analyzes the sum-rate of opportunistic time-sharing when

M is of the order of logn.

Lemma 2.2 For M = [;logn where B1 is a constant independent of n and for N

and P fized, we have
E{R;}

—_— = 2.1
n1—>ooNlog logn (2.19)

Proof: The proof is along the same line as the proof of Lemma 2.1. Clearly, assuming

M > N, Eq. (2.14) holds for any M, N and P. Furthermore, the derivation of the
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upper and lower bounds in Lemma 2.1 was based on the distribution of ) g}gg{M/i;
where ;s either have x?(2N) or x?(2) distributions for any M and N, respe_c‘;ively.
As N is assumed fixed, the bounds both still hold and therefore E{R;} is growing

like Nloglogn. [J

2.4.2 Scaling Laws for Dirty Paper Coding

In [27], assuming a transmitter with M/ antennas, single antenna receivers and total
average transmit power of M, it is proved that the sum-rate capacity of DPC scales
like M loglogn for large values of n and when M is fixed. In this section, we first
generalize this result to the case of having multiple antenna users, i.e., N > 1, and
when the average total transmit power is fixed. Again, we further look into the scaling
laws of the sum-rate when M is also going to infinity logarithmically with n, i.e., with
a much lower pace than n.

In the following lemma, we show that when M is fixed the sum-rate scales like
MloglognN as n grows to infinity and for any N no matter whether N grows to

infinity or not.
Lemma 2.3 For M and P fized and any N, we have

E{Rppc}

o _ 2.20
nro0 M loglognN (220)

Proof: The sum-rate in MIMO BC channel has been recently addressed by several
authors [9, 10, 12]. Using the duality between the broadcast channel and MAC, the

sum-rate of MIMO BC, E{Rppc} is equal to [10, 12],

., . | I HPH |, (221
{Rppc} {{PIZO,_“,anI&%}%_Itr(Pi)sp} Ogdet( +Z i )} (2.21)

i=1
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where H; are N x M channel matrices with i.i.d. CN(0, 1) distributions, P; (N x N)
is the optimal power scheduling, and P is the total transmit power.
Using the inequality det(A) < (%)M where A is an M x M matrix, we can

write (2.21) as

S tr(H; PH;)

E < MFE 1 1 : . 2.22
Denoting the matrix H;} = [Qi* gﬁ\’?] (where gj- (1 x M) is the j’th row of H;),
we can state the following inequality,

tr(H;PH;) < max g;0; tr(B;). (2.23)
Using (2.23) and (2.22), we obtain
Yor, max g;'-gzi*tr(Pi)
=11<<N
E < MFE 1 1
{fppe} < {P1,..., P,f%ii(ﬂ-)g]ﬂ} ©8 * M
k kx n )
1002, 190890 9)" i ()
< ME max log [ 1+
{Pla'“aPnaz tT(Pl)SP} M
= meliog(1+2L (2.24)
N ©8 M@%”z ' '

where k;’s are i.i.d. random variables with x?(2M) distribution. Eq. (2.15) states
that with high probability the maximum of nN i.i.d. random variables with x%(2M)
distribution behaves like logn N+O(loglogn) (see Appendix 10.1 and also Eq. (2.16)).

Therefore, similar to the argument in (2.17), we may write

E{Rppc} < Mlog(1+ PlognN) + O(logloglogn). (2.25)

To prove that M loglognN is achievable, we use the scheme proposed in [27] with
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partial side information that achieves M loglognN when M is fixed. It is worth
noting that in [27], the average transmit power was M (P = M), however, since M
is fixed, it is easy to see that changing the average total transmit power from M to

P (another constant) does not affect the scaling law of the sum-rate. Therefore,
E{Rppc} > M loglognN + O(logloglogn). (2.26)

Eq. (2.25) and (2.26) complete the proof of the lemma. O
The next lemma considers a different region in which M is also logarithmically

increasing with n.

Lemma 2.4 For M = Blogn and fired N, P and 3, we have

lim 7E{RDPC} =7

lim =2 (2.27)

where 7 is a constant independent of n. Furthermore, we can bound y by v < log(1+«)

where a is the unique solution to a — Bloga =1+ 5 — BlogS.

Proof: As we stated in the proof of Lemma 2.1 (i.e., Eq. (2.24)), we can write the

following upper bound for the the sum-rate capacity for any n and M,

P
E{Rppc} < ME {log (1 + 07 ax Iii) } , (2.28)

1<i<nN

where k;’s are i.i.d. x?(2M) random variables. The only difference here is that M is

also a function of n and is going to infinity. In Appendix 2.6.1, we prove that

1<i<nN logn

Pr{ max k; < logn—i—O(loglogn)} =1-0 ( L ) , (2.29)

the upper bound in the lemma follows by using the same technique as in the proof of

Lemma 2.3.
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In order to find a lower bound, we may use any suboptimal scheduling and show
that its sum-rate is bigger than oM where « is a constant independent of n. This is
in fact done in [27] in which a random beamforming method is proposed that achieves
the linear scaling of sum-rate with M even when M grows logarithmically with M.

This will be more described in Chapter 3. This completes the proof of the lemma. [

2.5 How Much Does CSI Affect the Sum-Rate Ca-
pacity?

In this Chapter, we reviewed the results on the capacity region of broadcast chan-
nels. It is shown that the amount of channel state information significantly changes
the capacity, and in particular, the sum-rate capacity. For instance, in a Gaussian
broadcast channel with M transmit antennas and n single antenna users, the sum
rate capacity scales like M loglogn for large n if perfect channel state information
(CSI) is available at the transmitter, yet only logarithmically with M if it is not.

In systems with large n, obtaining full CSI from all users may not be feasible.
Since lack of CSI does not lead to multi-user gains, it is therefore of interest to
investigate transmission schemes that require less complexity and less feedback. We
considered the opportunistic scheduling which a simple scheduling that achieves the
sum-rate capacity of the single antenna broadcast channel. The scaling laws of DPC
and opportunistic scheduling are compared for the case of large number of users and
when the transmit antennas are fixed or growing logarithmically with n. Lemma 2.1

and 8.1 imply that for M and N fixed and when M > N, we have
Rpp Mloglogn M

= lim —————— = —. 2.

In fact, Eq. (2.30) proves the conjecture of [15] for a large number of users and when
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the number of transmit antennas is fixed.

For the case where the number of receive antennas is one, it is clear from (2.30) that
opportunistic scheduling leads to scaling law of only loglog n as opposed to M loglogn
achieved by DPC. This further motivates the investigation of simple transmission
schemes that not only require less computation (compared to DPC) but also relaxes
the assumption of having full CSI in the transmitter. This is indeed the main goal of
the next Chapter in which a transmission scheme is proposed that requires little CSI

and achieves a sum-rate that has the same scaling law as that of dirty paper coding.

2.6 Appendix

2.6.1 Proof of Eq. (2.29)

In this appendix, we investigate the behavior of the maximum of n i.i.d. random
variable k; for i = 1,...,n with x?(2M) distribution where M = Slogn. Clearly the

cumulative distribution function of k; can be written as

M-1

F(x):Pr{/{igx}zl—e_xzx—zl—i

m=0

(2.31)

In order to find the behavior of the maximum of &;’s, we have to compute F"(z).

Following the technique in [27], we initially solve the the following equality,

_ . _ (logn)®
T'(M) ===

(2.32)

It is worth noting that both arguments of the incomplete gamma function in Eq. (5.87)

are going to infinity. The asymptotic expansion of the incomplete gamma function
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has been studied by Tricomi [4, 8] and it is shown that

- S o Do)

(2.33)

as the modulus of VM /(x — M) tends to zero. We can also write the asymptotic

expansion of the gamma function in [63] as
1
logI'(M) = MlogM — M — §logM—|—O(1). (2.34)

Using the asymptotic expansions, we can solve (5.87) to get x; = aclogn— g loglogn+

o(loglogn) where « satisfies

a—PBloga=1+ 5 — Blogp. (2.35)

Therefore the probability that the maximum of k;’s is less than x; can be written as

Pr { max k; < x,} = (F(z)" = (1 - M)n =0 (e*<1°g">3) : (2.36)

1<i<n n

1
nlogn

We can also similarly find z,, such that F'(z,) = 1—

as r, = alog n—l—% loglogn—+

o(loglogn). Therefore,

nlogn logn

1 " 1
Pr {lrga<x ki < a:u} = (F(z,))" = (1 — ) =1-0( ). (2.37)
Eqgs. (2.36) and (2.37) can be combined to get

) 3
Pr {alogn ~ 5 loglogn + o(loglogn) < max K < alogn + o) loglogn + o(loglog n)}

:1_0( ! )
logn




35
This completes the derivation of Eq. (2.29). O
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Chapter 3

Multi-Antenna Broadcast Channels

3.1 Introduction

Multiple-antenna communications systems have generated a great deal of interest
since they are capable of considerably increasing the capacity of a wireless link. In
fact, it was known for a long time that, if perfect channel state information were
available at the transmitter and receiver, then they could jointly diagonalize the
channel, thereby creating as many parallel channels as the minimum of the number
of transmit/receive antennas and thus increase the capacity of the channel by this
same factor. More surprisingly, it was later shown that the same capacity scaling
is true if the channel is not known at the transmitter [18, 51] and even if it is not
known at the receiver [19, 20] (provided the coherence interval of the channel is not
too short).

As mentioned in Chapter 2, while these are all true for point-to-point commu-
nications links, there has only been recent interest in the role of multiple-antenna
systems in a multiuser network environment, and especially in broadcast and multi-
access scenarios. There has been a line of work studying scheduling algorithms in
multiple-input multiple-output (MIMO) broadcast channels [52] with the main result
being that, due to channel-hardening in MIMO systems, many of the multiuser gains

disappear. There has been another line of work studying the sum-rate capacity, and
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in fact the capacity region, of MIMO broadcast channels [9, 10, 12]. It has been shown
that the sum-rate capacity is achieved by dirty paper coding and, moreover recently,
it has been shown that dirty paper coding in fact achieves the capacity region of the
Gaussian MIMO broadcast channel [53].

While the above results suggest that capacity increases linearly in the number
of transmit antennas, they all rely on the assumption that the channel is known
perfectly at the transmitter. Moreover, the dirty paper coding scheme, especially in
the multiuser context, is extremely computationally intensive (although suboptimal
schemes such as channel inversion or Tomlinson-Harashima precoding [54, 55, 56] give
relatively close performance to the optimal schemes). One may speculate whether,
as in the point-to-point case, it is possible to get the same gains without having
channel knowledge at the transmitter. Unfortunately, it is not too difficult to convince
oneself that if no channel knowledge is available at the transmitter, then sum-rate
capacity (maximum throughput) scales only logarithmically in the number of transmit
antennas. In fact, in this case increasing the number of transmit antennas yields no
gains since the same performance can be obtained with a single transmit antenna
operating at higher power.

In many applications, however, it is not reasonable to assume that all the channel
coeflicients to every user can be made available to the transmitter. This is especially
true if the number of transmit antennas M and/or the number of users n is large
(or if the users are mobile and are moving rapidly). Since perfect channel state
information may be impractical, yet no channel state information is useless, it is very
important to devise and study transmission schemes that require only partial channel
state information at the transmitter. This is the main goal of this chapter.

The scheme we propose is one that constructs M random orthonormal beams and
transmits to users with the highest signal-to-noise-plus-interference ratios (SINRs).

In this sense, it is in the same spirit as the work of [57] where the transmission of
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random beams is also proposed.

However, our scheme differs in several key respects. First, we send multiple beams
(in fact, M of them) whereas [57] sends only a single beam. Second, whereas the main
concern in [57] is to improve the proportional fairness of the system (by giving different
users more of a chance to be the best user) our scheme aims at capturing as much of
the broadcast channel capacity as possible. Fairness' is achieved in our system as a
convenient by-product.

We should remark that our scheme requires far less feedback than one that provides
full channel state information. To have full channel knowledge at the receiver, each
user must feedback M complex numbers (its channel gains) to the transmitter. Here
each user need only feed back one real number (its best SINR) and the corresponding
index, which is an integer number. In fact, it turns out that only users who have
favorable SINRs need to do so, which can considerably reduce the amount of feedback
required.

Based on asymptotic analysis, we show that, for fixed M and n increasing, our
proposed scheme achieves a throughput? of M loglognN, where N is the number of
receive antennas of each user. Happily, this is the same as the scaling law of the sum-
rate capacity when perfect channel state information is available, as shown in Chapter
2 [58], and so, asymptotically, our scheme does not suffer a loss in this regime. One
may ask, how fast may M grow to guarantee a linear scaling of the throughput R
with M7 We show that the answer is M = O(logn); more precisely, if % — « then
% — o, whereas if % — 00 then % — 0.

In schemes (such as ours) that exploit multiuser diversity there is often tension
between increasing capacity (by transmitting to the strongest users) and fairness.

The reason is that the strongest users (here meaning the users closest to the base sta-

'In this thesis, by fairness we mean that the probability of choosing users with different signal to
noise ratios is equal.
2In this thesis, throughput refers to the achievable sum average rate by the scheduling scheme.
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tion) may dominate the network. Fortunately, we show that in our scheme, provided
the number of transmit antennas is large enough, the system becomes interference
dominated and so, although close users receive strong signal they also receive strong
interference. Therefore it can be shown that, for large enough M and in a heteroge-
neous network, the probability of any user having the highest SINR converges to %,
irrespective of how strong their signal strength is. A more careful study of this issue
reveals that the choice of M = alogn transmit antennas is a desirable operating
point, both in terms of providing linear scaling of the throughput with M as well as
in guaranteeing fairness.

The remainder of this chapter is organized as follows: Section 3.2 describes the
formulation of the problem. Our proposed scheduling algorithm is introduced in
Section 3.3. In Section 3.4, the asymptotic analysis of the throughput of our scheme
is presented for the case where the number of users is increasing, M (number of
transmit antennas) is fixed, and each user has single receive antenna (N = 1). Section
3.5 considers the case where M is allowed to grow to infinity as well. In Section 3.6,
different scenarios for N > 1 are considered and the asymptotic behavior of their
throughput is obtained. Fairness of our scheduling when the users have different
signal to noise ratios is considered in Section 3.7. Section 3.8 presents the simulation
result for the throughput and fairness of our proposed scheduling. Finally Section 3.9

concludes the chapter.

3.2 Problem Formulation

We consider a multi-antenna Gaussian broadcast channel with n receivers equipped
with NV antennas and a transmitter with M antennas. We consider the block fading
model for the channel described by a propagation matrix that is constant during the

coherence interval of 7. Since in a typical cellular system, the number of users is
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much larger than the number of transmit antennas, and also the number of antennas
in the base station (or the transmitter) is greater than the number of antennas in the
receiver, we often assume n > M and N < M throughout the chapter.
Let S(t) be the M x 1 vector of the transmit symbols at time slot ¢, and let Y;()

be the N x 1 vector of the received signal at the i’th receiver related by
Yi(t) = /piH:iS(t) + Wi, i=1,...,n, (3.1)

where H; is an N x M complex channel matrix, known perfectly to the receiver, W;
is a N x 1 additive noise, and the entries of H; and W; are i.i.d. complex Gaussian
with zero mean and variance one, CN(0,1). Moreover, the total transmit power is
assumed to be M, i.e., E{S*S} = M, in other words, the transmit power per antenna

is one?

. Therefore the received signal to noise ratio (SNR) of the i’th user will be
E{p;|H;S|*} = P = Mp;; however to simplify the notation we refer to p; as the SNR
of the 7’the user.

To analyze the throughput of the system we consider a homogeneous network
in which all the users have the same SNR, i.e., p; = p for i = 1,...,n. However,

in the last part of the chapter, we look into the fairness issue when the network is

heterogeneous in which the users have different SNRs.

3.3 Scheduling Based on Random Beamforming

The capacity of point-to-point multi-antenna systems has been investigated with dif-
ferent assumption for the channel state information (CSI) whether the receiver or

the transmitter knows the channel or not. As it is shown in [18, 51] if the receiver

3This is in contrast to the convention used in single link MIMO channels where the total transmit
power, E{S*S} = 1, is fixed. There this is done to make a fair comparison with a single antenna
channel operating at the same transmit power. Here, however, since we will be transmitting to M
different users, we would like to make a comparison to M independent single antenna links each
operating at unit power. Hence our normalization will be E{S*S} = M.
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knows the channel, the capacity scales like min(M, N)log p no matter whether the
transmitter knows the channel or not. Indeed, it is shown in [19, 20] that when the

min(M,N)

receiver does not know CSI, the capacity scales like min(M, N)(1 — =—7—)logp

where T is the coherence interval of the channel.

While the full CSI in the transmitter does not seem to be beneficial in the point-to-
point communication, the knowledge of the channel is crucial in broadcast channels
[52, 21]. For the case with the full CSI available at both the transmitter and the
receivers, it is shown that the sum rate capacity of the Gaussian broadcast channel
can be achieved by using dirty paper coding [9, 10, 12]. More precisely, for the case

where N = 1, the sum rate capacity, Rpp, can be written as

Rop = E logdet [ 1 HPH; |}, 3.2
pr {{Pl,---,P{mI}%XPi:Mﬂ} o8 e ( +Z ! )} ( )

i=1

where H; is 1 x M channel matrix and M p is the total average power. In the previous

chapter, the following lemma is proved (see also [102]):

Lemma 3.1 Suppose both the transmitter and receivers know the channel perfectly in
a Gaussian broadcast channel with n single antenna receivers with average transmit
power of Mp, and the transmitter has M antennas. Let also M and p be fized, then

for sufficiently large n, the sum rate capacity scales like M loglogn.

Therefore when the transmitter and receivers have full CSI, the sum-rate capacity
scales linearly with M. On the other hand, having full CSI in both sides requires a
lot of feedback and practically it is unrealistic. This motivates the question of how
much partial side information is needed in the transmitter that provides us a linear
scaling of the throughput with M and reduces the amount of feedback [59, 52, 21].

In order to exploit having multiple antennas in the transmitter without having
full CSI in the transmitter, we propose a scheme that constructs M random beams

and transmits to the users with the highest signal to interference plus noise ratios
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(SINRs). For simplicity, we assume N = 1 and we choose M random orthonormal
vectors ¢, (M x 1) for m = 1,..., M where ¢;’s are generated according to an
isotropic distribution [20]. Then at time slot ¢, the m’th vector is multiplied by the

m’th transmit symbol s, (%), so that the transmitted signal is

St) = bmlt)sm(t), t=1,...,T. (3.3)

Following our earlier assumption and using the independence of s;’s, the average
transmit power per antenna is one, equivalently F{|s;|*} = 1, and henceforth the
total transmit power is E{S*S} = M. After T' channel uses, we independently choose
another set of orthonormal vectors {¢,,}, and so on. We assume s,,’s are letters from
codewords of a Gaussian capacity-achieving codebook. We further assume that the
coding is performed across several blocks.

From now on, for simplicity, we drop the time index from S;(¢) and Y;(¢), and

therefore, the received signal at the 7’th receiver is

M
Y=Y /pHibmsm + Wi, i=1,...,n. (3.4)
m=1

We assume that the i’th receiver knows H;¢,, for m = 1,... M (this can be
readily arranged by training). Therefore, the i’th receiver can compute the following
M SINRs by assuming that s, is the desired signal and the other s;’s are interference

as follows,

|Hi¢m|2
1/p+ 3 ppm [ Hite’

SINR;,, = m=1,..., M. (3.5)

Note that on average the SINRs behave like* SINR;,, ~ 1/p+(1]\/I—1) ~ 7. Thus if

4This can be made more precise, however for the sake of brevity we just mention a sketchy
argument.
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we randomly assign beams to users, the throughput will be

M
R=F {Z log (1 + SINRi,m)} = MFE]log(1+ SINR, ,,)

=1

< Mlog(1+ E{SINR;,,})
~ Mlog(1+M_1)
M
~ 1. 3.6
< T (3.6)

Thus, even though we are sending M different signals, we do not get M-fold increase
in the throughput. Therefore, the side information in the transmitter is crucial to
exploit the multiuser diversity.

Suppose now each receiver feeds back its maximum SINR, i.e., . gn:ixMSINRi,m,
along with the index m in which the SINR is maximized. Therefore,_ ir; the trans-
mitter, instead of randomly assigning each beam to one of the users, the transmitter
assigns s,, to the user with the highest corresponding SINR, i.e., lrgiag%SINRi,m. So if

we do the above scheduling, the throughput can be written roughly as

M
R~F { log (1 + max SINRZ-,m> } =ME {log (1 + max SINRZ-,m> } . (3.7)
— 1<i<n 1<i<n

where we used “x” instead of “=" since there is a small probability that user ¢ may be
the strongest user for more than one signal s,,. In Section 3.4, we shall see that this
is very unlikely as n increases, and so the above approximation approaches equality.

It is important to note that compared to (3.6), we have a maximization over
1 inside the logarithm. Thus, we need to study the distribution of max SINR; 1,
which, as we shall see, has a huge effect on the end result. We also ren;a;k that, as

we shall see in Section 3.4, it is not even necessary for all users to send back their

strongest SINR, which considerably reduces the required feedback.
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3.4 Throughput Analysis: N =1, M is fixed

In this section we obtain lower and upper bounds for the throughput when M is fixed,
N =1, and n is going to infinity. Using M random beams and sending to the users

with the highest SINRs, we can bound the throughput Ry gr, as

f— =1,..,n

Rypr<E {

M
) Tlog (1 -+ max SINRi,m) } , (3.8)

where this is an upper bound since we ignored the probability that user 7 be the max-
imum SINR user twice (if this is the case, the transmitter has to choose another user
with SINR less than the maximum SINR, which therefore decreases the throughput).
On the other hand, the following lemma states a lower bound for the throughput as

well.

Lemma 3.2 Let Ry;gr be the throughput of the random beamforming scheduling.
Then,

Rypr > M (1 — {Pr{SINR;; <1}}")E {log (1 + max SINRU) ‘EI%aX SINR,; > 1} )
(3.9)

Proof: First of all we make the following observation: For any r € {1,..., M},
conditioning on the fact that SINR;, = max SINR;, > 1, then SINR;, has to be the
maximum over m = 1,..., M as well, i.e.,, SINR;, = max_ SINR;,,. This can be

=1,..,,

easily proved as follows; assuming SINR,;, > 1, we have

Hido* > 1/p+ > [Hgel* > [Hipm|* m=1,..., M.
k#r
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Now we can write SINR; ,, and m # r as

H m2 H. m2

TP+ S [ Hi 2 [Hy

<1 (3.10)

and hence SINR;, is the maximum over m = 1...,M as well, i.e.,, SINR;, =
nllaxMSINRzm Therefore, it is impossible for a user to be the maximum SINR

for two signals conditional on the fact that max SINR;, > 1. Thus the throughput

can be bounded as

i=1,...,n

Ruypr > Z Pr{ max SINR, ,, > 1}

E {log (1 + max SINRi,m)\ max SINR, ,, > 1} (3.11)

i=1,...,n =1,...,n

Since ® = (¢ ...dx) is a unitary matrix, so H;® is a vector with i.i.d. CN(0,1)
entries. This implies that |H;¢,,|* are i.i.d. over m (and also over i) with x?(2)

distribution. Therefore SINR; ,, for 7 = 1,...,n, are i.i.d. but not independent over

m=1,..., M. Thus

Pr{ max SINR, ,,, < 1} = (Pr{SINR;; <1})". (3.12)

1=1,...,n

Substituting (3.12) in (3.11) completes the proof. [J

As we shall show later, the lower and upper bounds for the throughput become

tight for sufficiently large n and when lim 2 = 0. In this case, conditioning on

n—oologn
1?§}&SINRZ m > 1 in Lemma 3.2 can be replaced by max SINRzm > n where n is a
3
constant independent of n and the bounds remain tlght. ThlS implies that the receiver
is only required to feed back its maximum SINR if it is greater than n along with the

index m corresponding to the signal. Therefore the amount of feedback here will be

nPr{1 in:ixMSINRi,m > n} real numbers, and M integers (at most). However, in the
_m_
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case with full CSI in the transmitter, the amount of feedback is 2nM real numbers
which is roughly 2M times bigger than what we need in our scheme. Furthermore
the complexity of our scheme is much less than the proposed schemes to implement
dirty paper coding with full CSI using nested lattices or trellis precoding [55, 54].
In order to evaluate the lower and upper bounds, we have to obtain the distribution
of SINR;,,. As mentioned earlier, |H;¢,,|*’s are i.i.d. over m (and also over i) with

x%(2) distribution. Thus,

‘Hi¢m|2 _ z

T ot Y Hidk? 1/pty

(3.13)

where z has x?(2), and y has x?(2M — 2) distributions (denoted by fy(-)). Condi-
tioning on y, the probability distribution function (PDF) of SINR; ,,,, fs(z), can be

written as

fiz) = / " fuv(eln) fr () dy

M—2€—y

- 1 ~(pty)z Y
| e e s sy

eT/p
= Q1o (%(1 to)+ M- 1) | (314

We can also calculate the cumulative distribution function (CDF) of SINR, ,,,, Fs(x),

as

e_z/p

Fs(x):/om(el(1(1+x)+M_1)dx:1_( z> 0. (3.15)

1+ x)M \ p 1+ z)M-1

Since SINR; ,, for 2 = 1,...,n, are i.i.d. random variables, the CDF of max SINR;
for m = 1...,M is (Fs(x))". Using the obtained CDF we can now evaluate the

throughput of our proposed randomly chosen beamforming technique:

Lemma 3.3 For any p, M, and n, the throughput of the randomly chosen beamform-
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ing satisfies

M/ log(1 + z)nfs(z)F* Y(z)dz < Rypr < M/ log(1 + z)nfs(z)F* ! (x)dz,
1 0

(3.16)
where fs(x) and Fy(x) are as defined in (3.14) and (3.15), respectively.

Proof: The upper bound clearly follows from (3.8) by substituting the distribution of
the maximum SINR in (3.8). To prove the lower bound, we can write the conditional

distribution of maxSINR;; given that maxSINR;; > 1 as
1<i<n 1<i<n

Pr{lrllax SINR;; < a\lrllax SINR;; > 1} =

Now taking the derivative of the CDF, and substituting the PDF in (3.9), we can
derive the lower bound as stated in (3.16). O

Lemma 3.3 can be used to evaluate the throughput for any n, p, and M. However
in many systems p and M are fixed, but n (the number of users) is large. It is therefore
useful to investigate this regime. In what follows, we will focus on the scaling laws of
the throughput for large n.

In fact the asymptotic behavior of the distribution of the maximum of n i.i.d. ran-
dom variables has been extensively studied in the literature [60, 61, 62]. In Appendix
10.1 we review results that we need in this chapter. Corollary 10.3 in Appendix 10.1

can be used to state the following result.

Lemma 3.4 Let SINR;,, = 1,...,n be n i.i.d. random variables with distribution
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function fs(x) as in (3.14). Then, for M and p fized and n sufficiently large,

Pr {plogn — pM loglogn + O(logloglogn) < max SINR; , <

1
plogn—p(M — 2)loglogn + O(logloglogn)} >1-0 (log n>3.18)

In particular,
Pr {

Remark 3.1: Lemma 3.4 shows that when M is fixed and n increases, the maximum

1<i<n

max SINR, ,,,

| <ologloesn\ Ly o 1), (3.19)
logn logn

plogn

SINR behaves like plogn + O(loglogn). On the other hand, from the expression for
the SINR defined in (3.5), it is clear that the numerator is a x?(2) random variable
and the interference terms constitute a x?(2M —2) random variable. It is well-known
that (see Example 1 in Appendix 10.1) the maximum of n i.i.d. x?(2) behaves like
log n for large n. One may then suspect that z_ gifnSINRi’m should behave like ﬁgﬂﬁ,
arguing that when the numerator takes on its maximum the denominator takes on its
average value. What is interesting about Lemma 3.4 is that this heuristic argument
is not true. It turns out that max SINR, ,, is achieved when the numerator behaves

i=1,...,n

as logn and the interference terms are arbitrarily small, this yielding the behavior
plogn.
Proof: We use Corollary 10.3 in Appendix 10.1 to find the asymptotic distribution

of the maximum of n i.i.d. random variable SINR;,, for « = 1,...,n. The growth
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function gs(x) for x > 0, here, is

1—-Fy(z %
gs(x):T(A) - — él++> ST
(1+2)™ \ p r
B 1+z
- (I+a)/p+M-1
M-1
B ) (3.20)

Q+z)/p+M-1

Clearly lim g5(x) = p > 0o that the first condition of Corollary 10.3 is met. To verify
—00
the second condition we need to find u,, defined via the equation 1 — F(u,) = 1/n.

Thus

—Un/p 1
e Up,

Eq. (3.21) implies that u, = plogn — p(M — 1) loglogn + O(logloglogn) for large
n and fixed M. Taking derivatives, it is straightforward to verify that ¢(™ (u,) =

O(W) for large n. Corollary 10.3 therefore applies, and so

Pr{ploglogn < max SINR; ,, — u, < ploglogn} >1—O( ). (3.22)

logn

The theorem follows by substituting the value of u, in (3.22). O
We can now state the following theorem to prove the asymptotic linear scaling of

the throughput with M when M is fixed.

Theorem 3.5 Let M and p be fired and N =1. Then

RMBF

P = 3.23
nl—gloMloglogn (3:23)
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Proof: We derive upper and lower bounds for R, gr when n is sufficiently large. For

large n, using the upper bound in (3.8) and Eq. (3.19), we may write

IN

RMBF

M
E {Z log (1 + max SINRi,m> }

m=1

IN

MPr {.max SINR; < uy, + ploglog n} log (1 + u, + ploglogn)

i=1,...,n

+MPr {.max SINR; ,, > u,, + ploglog n} log (1 + pn)

i=1,...,n

IN

M log(1 + uy, + ploglogn) + MO(1/logn)log(1l + pn)

IN

M log(1 + u, + ploglogn) + O(1),

where u, = plogn— p(M —1)loglogn+O(logloglogn) as derived in Lemma 3.4 and
we used the fact that the throughput is bounded by M log(1+ pn) (the capacity of a
MIMO point to point system with M transmit and n receive antennas). In order to

find a lower bound, We can use the lower bound in (3.9) and Lemma 3.4 to write

RMBF 2 Pr {'max SINRZ,m 2 1} X

i=1,...,n

=1,...,n =1,...,n

M
E {Z log (1 + max SINRZ-,m) | max SINR;,,, > 1}

m=1

> Pr {'maX SINR; ,,, > 1} X

i=1,...,n

M log(1 + u, — ploglog n)Pr{ max SINR; ,,, > u, — ploglog n}

i=1,...,n

Pr {.max SINR; ,,, > 1}

i=1,...,n

—  Mlog(u, — ploglogn) <1—0( L )) (3.24)

logn

where we used the definition of the conditional probability. The corollary follows by
substituting the value of u, and observing that both the lower and upper bounds

converge to M loglogn + O(logloglogn). O
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Remark 3.2: Using Eq. (3.18) it is not hard to obtain the next order term in

Rysr as follows:
Ryr > Mlog(plogn — pM loglogn) + o(logloglogn). (3.25)

Theorem 3.5 states that for fixed M as n grows to infinity the throughput scales
like M loglogn. Interestingly in Lemma 3.1, we showed that M loglogn is in fact the
best sum-rate capacity that can be achieved with full knowledge of the channel using
dirty paper coding [12, 10, 9]. Therefore, as far as the scaling law of the throughput
is concerned, we are not losing anything in terms of the throughput provided that
M is fixed. This in fact raises the question of how far we can increase M and still
maintain the linearly scaling of throughput with M. This question will be answered

in the next section.

3.5 Linear Scaling of Throughput with M

In this section, we consider the case where the number of transmit antennas M is
allowed to grow to infinity. We would like to see how fast can M grow to retain the
linear scaling of throughput with M. Similar to the previous section, we assume each
receiver has a single antenna and the total average transmit power is M, i.e., the
average transmit power per antennas is one.

Since M is also going to infinity, the results in Appendix 10.1 do not apply.
Therefore, we need to directly analyze the asymptotic behavior of the maximum
SINR when both n and M grow to infinity. Of course, the asymptotics will depend
on the growth rate of M relative to n.

In what follows, we first show that if lim iﬂ is a constant, the throughput of

n— 0008

our scheme still exhibits linear growth, i.e., lim RM—MBF is a constant independent of n.
n—oo
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Furthermore, we show that if M grows faster than logn, i.e., lim % = oo, then the
n—r0Q
ratio of the throughput to M tends to zero. Therefore throughput will linearly scale

with M provided that M does not grow faster than logn.

Theorem 3.6 Suppose the transmitter has M antennas, each receiver is equipped

with a single antenna, and that we use random beamforming to users with the highest

SINR’s. Then, if M = ‘esnt3logloen=c/p o 1 pore ¢ s q positive constant. Then,

log (1+c¢)
loglogn 1
Pric—a——— < maxSINR;,, <cpy >1-0 3 , (3.26)
logn 1<i<n ’ log” n

where o = 7(1 + ¢) log (1 + ¢). Consequently,

: Rusr
lim ———/2" 1. 2
nl—galoMlog (1+¢) (3:27)

Proof: First of all, note that

—c/p
€ —c —1)lo c
1-— FS(C) = W =€ /p+(M—1)log(1+ ) (328)

Inserting the value of M in (3.28) yields, 1 — F,(c) = ———5—. Therefore,

~ nlog®n

n 1 n
Pr{maxSINR, , < ¢} = {F(c)}" = (1- nlog3n)

1
en log(l—in Tog® n)

_ 3 1
e 1/ log n—I—O(n1056 n)

= 1-0(1/log’n), (3.29)

where we used the fact that log(1 — ) = —z + O(z?) for small z. Similarly setting
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d=c— % we have
ogn
log 1 log1
1— FS(CI) _ 6—c/p+—g—g—apolog°nn+(M—1) log(1+¢)—(M—1) log(l——g—g—afc) ﬁ)g’;)

log | logl
—c/pH(M—1)log(14¢) 4 @ FEE™  —(M—1)log(1- GRERER)

e %—FO(log logn/logn)

nlogn
_log*n x (1+O(loglogn/logn)) _ log*n + o(log" n)
n n ’

where in the third step we used a = 7(1 + ¢) log(1 + ¢) and in the forth step we used
the identity e = 1 4 O(z) for small z. We can now state that

logl
Pr{lrgagc SINR;,, < ¢ — 10808

}o= (F()

_ (1 log4n+0(log4n)>n
n

logn

e—log4 n+o(log4 n) =0 (%) , (330)

n

where in the last step we have been very conservative. Now, using (3.30) and (3.29),

we get

log1
Pr {c — ozM < maxSINR; ,, < c} > Pr { max SINR,; ,, < c} -1

logn 1<i<n 1<i<n
log1
L Pr {c_ oloBlosn maXSINRm}
logn 1<i<n '
1
= 1-0(—5—). (3.31)
log”n

In order to find bounds on the throughput, we use a similar argument as in the proof
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of Theorem 3.5 to show that

IN

RMBF

M
E {Z log (1 + max SINRi,m) }

m=1

= Pr{ max SINR;m < ¢} X

M
E {Z log (1 + igaXnSINRi=m) |iiI11aX"SINRi,m < c}

..........
m=1

+Pr{ max SINR,,, > ¢} x

=1,..,n

M
E {Z log (1 + max SINRi,m) | max SINR;,, > c}

ot =1,...,n =1,...,n

M log n)
log® n

IN

Mlog(1—|-c)+0<

1
= Mlog(l+¢)+0O (10gn> : (3.32)

where we used the fact the sum-rate is bounded by M log (1 + pn) and M = O(logn).
In order to derive a lower bound for the throughput, for ¢ > 1 we can use Lemma
3.2 and the fact that the maximum SINR is almost surely equal to ¢ > 1, to obtain
a lower bound as

log] 1
Rurpr > Mlog (1 te—a—2 Og") (1 —0 (—)) (3.33)

logn nt

for ¢ > 1. Clearly, for ¢ < 1, the lower bound in Lemma 3.2 is not tight. Therefore,

in order to find a lower bound, we define the event A as the event that for all m,

loglogn

T We also define the event B as the event

c—e€ < maxSINR,; ,;, < ¢ where € = «
1<i<n

that each user ¢ can at most be the maximum for one signal s,,.
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Therefore the throughput can be written as

Rypr = E{rate} = F{rate|]AN B}Pr{AN B} + E{rate|A'U B'}(1 — Pr{AN B})

v

E{rate|An B}Pr{AN B}

loglogn
0

> Mlog (1 te—a ) Pr{B|A}Pr{A}, (3.34)

where in the last inequality we used the fact that given the events A and B, the trans-
mission rate corresponding to the signal s, is greater than log (1 +c— a%).

Now we can use the union bound to find a lower bound for Pr{A} as

1<i<n

Pr{A} = Pr {Vm, max SINR; ,,, € [c — €, c]}
> 1—Pr {Elm, max SINR; ., & [c — €, c]}
1<i<n

> 1-— MPr{maXSINRi,m & [c— e, c]}
1<i<n
M
1.0 ( ) , (3.35)

log® n

where we used (3.31) in the last inequality. In Appendix 3.10.1, it is shown that

Pr{B|A} > 10 (%) . (3.36)

Therefore, inserting (3.36) and (3.35) into (3.34), we get

loglogn (loglog n)2)> < ( logn ))
R > M1 1 — 1-0 | ——=~ 1-0 | — .
MBI = og( te-a logn ) ( ( Vdogn log®n
(3.37)

Theorem 3.6 follows using (3.37) and (3.33) for ¢ < 1. O
Theorem 3.6 shows that when M grows like logn, the throughput still scales
linearly with M. In the next theorem, we show that increasing M at a rate faster

than logn results in sublinear scaling of the throughput with M. It is also worth
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noting that the sum rate capacity of the broadcast channel with full CSI also scales
linearly with M, i.e., nlggo R—Alj[” = « where « is a constant independent of n [58].
Therefore, in this regime, up to a constant multiplicative factor, the scaling law of

the throughput of our scheme is still the same as that of dirty paper coding.

Remark 3.3: Similar to Remark 3.1, from the SINR expression one may expect

lo _ lo, _ 1
that igf.l.}fnSINRi’m behaves as =" = m = log(1 + ¢). The argument is that
the maximum is achieved when the numerator behaves as logn and the denominator
behaves as the mean of x?(2M — 2) (here it is not reasonable to assume that the
numerator can be logn and the interference terms arbitrarily small, since we have

O(logn) interference terms). However careful analysis of Theorem 3.6 shows that this

heuristic is false: max SINR; ,, is achieved when the numerator behaves as logn and

i=1,...,n

: logn logn
the interference terms as = < Tog(140)"

Theorem 3.7 Consider the setting of Theorem 3.6. If M grows faster than logn,

i.e., lim 1% = 00, then lim RM—NfF =0.
n—00 ogmn n—o0

Proof: Let u, be a positive sequence such that limwu, = 0. For such a u,, let

n—oQ
M = QIfg" +1, clearly lim 2 = oc if and only if lim u, = 0. With the choice of
og(1+un) n—oclogn n—00
Uy, we have
—Un/p
—Un/p—(M—1) 1o Un) __ €
1 — Fy(up) = e tn/p~(M=1log(itun) _ —~ (3.38)

and therefore,

1<i<n

_un/p
Pr{maxSINR;,, < u,} = {Fs(u,)}" = (1 ¢ )

Using a similar argument as in the proof of Theorem 3.6, we can therefore bound the
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throughput as

(3.39)

M1
Rypr < Mlog(1 4+ u,) + O ( 0gn> :

n

Eq. (3.39) implies that lim ZMBE — () since lim u, = 0. O
n—oo n—oo
It is worth mentioning that with full CSI at the transmitter, the sum-rate capacity
linearly scales with M even when M is of the order of n [14]. This can be seen by a
simple zero forcing beamforming scheme that creates M parallel channels as long as
the channel matrix is full rank [56]. Our scheme has access only to partial CSI, and

can therefore only guarantee a linear scaling in M, provided that M does not grow

faster than logn.

3.6 Throughput Analysis: N > 1, M is fixed

In the previous sections, we focused on the case where each receiver is equipped
with only one antenna. When the users have multiple receive antennas, the sum-rate
capacity of DPC scales as M loglognN [58]. Insofar as our scheme is concerned, there

are three distinct possibilities:

1. Treating each receive antenna as an independent user. In this case, we effectively
have nN single antenna receivers. Therefore, each receiver should feed back N
times the amount of information since each user has N independent antennas
and therefore it has N maximum SINRs corresponding to each receive antenna.
The transmitter then assigns s, for m = 1,..., M to the antenna of that user
with the highest SINR, i.e., 12?;<NSINR,-M. Since we have nN i.i.d. SINRs, the
maximization will be over n]_V _i.i.d. random variables instead of n ones which

was the case for N = 1.



58
2. Assigning at most one beam to each user. In this case, the SINR can be written

as
Ot Him
1/p+ Zk;&m ¢y H Hiy,’

where as in (3.1), H; is the N X M channel matrix for the 7’th user. Again we

SINR;,,, =

m=1,..., M, (3.40)

send the symbol s,, to the user corresponding to max SINR; . Note that in
<i<n
this case each user just feeds back its maximum SINR and the corresponding

index m in which it is maximum.

3. Assigning multiple beams to each user. For simplicity, let us assume K = M/N
is an integer.® In this case, we either assign N beams to a user or no beams at
all. Therefore to find the best user, instead of feeding back SINRs, each receiver

has to feed back its capacity, computed as

—1

1

Cim = log { det { T + @}, H: H; Py, (—1 +3y @;H;Hjcbk> . (3.41)
p

k#m
for m = 1,..., M/N where the ®;’s (k = 1,...,K) are M x N random or-
thonormal matrices chosen according to an isotropic distributions. In other

words, ® = (@, ... ®k) is an M x M unitary matrix.

As mentioned, the first case is effectively the same as having n/N users with single
receive antennas. The second case is a generalization of the case with N =1, and it
turns out the analysis of this is very similar to that of the case with N = 1. On the
other hand, the last case is quite different from the previous two cases and requires
more effort to be analyzed. In terms of the amount of feedback, clearly the first case

requires N times more feedback than the second and third cases.

5The more general case can be handled in a straightforward fashion, but will not be done here
for the sake of brevity.
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Case 1:

Here, since we consider all the receive antennas as separate users (no cooperation
among receivers), we have n/N users with single receive antennas. In this case, the
formulation of the problem is the same as that in Section 3.4 with the only difference
being that n is replaced by nN. Therefore, we can state the following limit result as

a simple consequence of Theorem 3.5,

RMBF

lim —— =1 3.42
noroo M loglognN (342)

when M is fixed and for any N.

Remark 3.4: In fact, it has been recently shown in [58] that when M is fixed, n is
large, and for any IV, the sum rate capacity scales like M loglognN in the presence of
full CSI in the transmitter using dirty paper coding. Therefore, treating each antenna

as an independent user does give the right scaling law for the throughput.

Case 2:

Here we send at most one symbol per user. Therefore each user has to feed back its
maximum SINR calculated as in (3.40), where H; is the N x M channel matrix for
the ¢’th user. Similar to Section 3.4, using the orthogonality of ¢,,’s, we first write the

SINR as SINR; ,,, = where 2 has x2(2N) and y has x2(2N(M —1)) distributions

_z
1/p+y

that are independent.® Therefore, we may write the PDF of the SINR; ,, (denoted by

fsy) as

g?N"2emelr = 9N—1, NM—N—1,—u(l+z)
B g?N-2¢a/p Zil 2N-1\_1 (N(M-1)+i-1)
2N -D(NM - N -1)& i PPN=i=17 (1 4 g)NM=D)+i

(3.43)

6The reason is that ® is a unitary matrix and H; is a matrix of i.i.d. CN(0,1).
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The above f;, (z) can be used to evaluate exactly the throughput using Lemma 3.2.
The asymptotic analysis can be done similarly to that of Section 3.4, although the

analysis becomes more cumbersome.

Theorem 3.8 Let max SINR; ;,, where SINR; ,,, for i =1,...,n be n i.i.d. random

variables defined in (3.40) and let M and N be fized numbers. Then for sufficiently

large n,

Pr {plogn — p(N(M +1) — 2)loglogn + O(logloglogn) < max SINR; m,

<i<n
1
logn

—O(logloglogn) < plogn — p(N(M — 3) 4+ 1) loglogn } >1-0( ) (3.44)

and therefore,

. Ry Br
— = 3.45
nbeo M loglogn ( )
Proof: We use Corollary 10.3 in Appendix 10.1 to prove the first part of the theorem.
We first check whether the growth function has a positive constant limit or not. Using

L’Hopital’s rule and (3.43), we get
LA} (3.46)
T

So the first condition in Corollary 10.3 is met. Furthermore, taking the integral of
fsn(x) in (3.43), it is quite straightforward to show that gim (x) = O(1/2™) for large
x.

To verify the last condition, we need to find u, defined as the solution of 1 —

F, (u,) = % Since solving the equation is involved, we can find upper and lower
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bounds for u,, i.e., v}, < u, < u?, by first deriving lower and upper bounds for f,, (z):

NM+ N —2 e=o/p
2N —1 (1 + z)NM+1)- < fon (@) <
Z2N—1 (2N—1) (N(M—1)+i—1)! e—/p

i=0 i P2N=i—T

(2N — )I(NM — N — 1)! (1 + 2)NM=3)+2

(3.47)

for z > 1. The lower bound follows by replacing u+1/p by w in the integral of (3.43),
which then becomes an exponential integral. The upper bound can be also derived
by using z <z + 1 and 1 < z + 1 in the expansion in (3.43).

Replacing f;, (z) by its lower bound allows us to compute u!, via

o0 —z/p 1
e _
/uln {5 2) VO3 dex = o (3.48)

where vy, = (N My N _2) Using the identity f

oN 1 A rdr = ePbMTIT(=M +1,b(a+ 1))

(1+w
and the asymptotic expansion I'(—M + 1,z) = zMe%(1 + O(1/x)) for large |z| as in

[63], we obtain

Y T(=M+1, %(uﬁ;ﬁ-l)) = % = ul = plogn—p(N(M+1)-3) loglogn+O(logloglogn),
(3.49)
where 7] only depends on N, M, p, and does not depend on n.

We can similarly find the upper bound as ul = plogn+p(N(M —3)+1) loglogn+
O(logloglogn). Using Corollary 10.3 and the bounds for u,, we can use the same
argument as in the proof of Theorem 3.5 (i.e., Eq. (3.24)), to prove the first part of
the theorem. The second part of the Theorem follows by using the same argument
as in the proof of theorem 3.5 (i.e., Eq. (3.24)) and Eq. (3.44). O

Remark 3.5: Using (3.44) it follows that the next order term in Ry/pp is

Rypr < M log(plogn — p(N(M — 3) — 1) loglogn) + o(logloglogn). (3.50)
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Note that using (3.25), the expansion for Case 1 is

Ruypr > Mlog(plognN — pM loglognN) + o(logloglogn),

which implies that the scheme of Case 2 is worse than that of Case 1 (it is even worse
than using N = 1 receive antenna, which can be explained by the channel hardening

that occurs for N > 1).

Case 3:

Here each user feeds back its largest capacity C;,, defined in (3.41), and so we need

to analyze the (asymptotic) distribution of max Cim to find an upper bound for the
i=1...,n

throughput. While, in principle, this can be done, the algebra is extremely tedious.

It turns out that an upper bound for the throughput can be derived if we replace

Cim by the simple upper bound

Cim < Cf,, = logdet (I + p@;, H H;®ry,). (3.51)

The analysis of C},, is easier because the eigenvalues of ®;, H; H;®,, are readily char-
acterized (via Wishart distribution [66]) than those appearing in C; ,,. Since H;® has
the same distribution as H;, the N x N matrices H;®,, consists of i.i.d. CN(0,1) and

are also independent over ¢ and m. Therefore we need to study

C! =logdet(I + pG:G;), i=1,...,n, (3.52)

where G; is N x N and has ii.d. CN(0,1) entries. Consequently the throughput

will be Rypr < %E{1n<1a<>< (C¥,...,C")} since we have M /N random beams. Now

letting A%, ..., A% be the eigenvalues of the matrix GG, we can state the following
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inequality for Ry pp:

N
P i
Rypr < ME {gglog (1 + 5 ;)\k> } , (3.53)
. : . tr(ara \ v
where we used the inequality det(I + G;G;) < (1 + T’) . The next theorem

presents an asymptotic result for the throughput of Case 3.

Theorem 3.9 Let M and N be fired and n increasing, then the throughput of Case
3 is bounded by
Rypr < Mlog(1+ % logn + O(loglogn)). (3.54)

Proof: In order to evaluate the upper bound in (3.53), we may use the fact that
tr{G*G} has x%(2N?) distribution. It is in fact shown in Example 1 of Appendix

10.1 that for large n, the maximum of n x2(2N?) random variables satisfies

N
2 i
Pr {logn + (N* = 2)loglogn + O(logloglogn) < 112{&5}% ; Ay, <

1
logn+N210glogn—|—O(logloglogn)} 21—0(] ) :
ogn

Therefore we can use the above result, (3.53), and using the same argument as in

Theorem 3.5 (i.e., (3.24)) to show that
Rur < Mlog (1 + % logn + O(loglogn)) +O(1). (3.55)
Again when M and N are fixed, the throughput achieved by Case 3 has the leading

order term of M loglogn. The only effect is observed in the lower order terms (the

logloglogn term), and therefore, we conclude that Case 1 is the best and Case 3 is
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the worst.

3.6.1 Discussion

The analysis of the sum-rate capacity of DPC shows that increasing the number of
receive antennas beyond N = 1 does not substantially increase the total throughput
[58]. Therefore, one may ask whether it is beneficial for any user to have more than
one antenna. Thus, assume that some users have N > 1 antennas, and that we are
employing the scheme of Case 1. It is quite clear that a user with /N antennas will
receive N times the rate of a user with one antenna simply because the probability
that it will be the strongest user and be transmitted to increases N-fold. Thus users
with more antennas will receive higher rates. However, since more receive antennas
does not increase the throughput, this will come at the expense of all users in the

system.

3.7 Fairness in the Scheduling

So far, we have assumed a homogeneous network in the sense that the SNR for all
users was equal, namely p = p;, ¢+ = 1,...,n. In practice, however, due to the
different distances of the users from the base station and the corresponding different
path losses, the users will experience different SNRs so that p;’s will not be identical.
Such networks are called heterogeneous.

In heterogeneous networks, there is usually tension between the gains obtained
from employing multiuser diversity and the fairness of the system. More explicitly,
if we transmit only to the best user to maximize the throughput, the system may be
dominated by users who are closest to the base station. On the other hand, if we
insist on transmitting to users in a fair way (for example, by insisting on proportional

fairness [57]), then we will be sacrificing throughput since we will not always be
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transmitting to the strongest user.

A fortunate consequence of our random multi-beam method is that, if the number
of transmit antennas is large enough, then the system becomes interference domi-
nated. In other words, even though the closest users will receive strong signal, they
will also receive strong interference. In this case, being the best user will depend not
so much on how close one is to the base station, but rather on how one’s channel
vector H; aligns with the closest beam direction ¢,,, m = 1,..., M. Therefore, one
would expect that the probability that any user is the strongest will not depend on
its SNR p;.

In what follows we will make this observation more precise. We will show that
if the number of transmit antennas M grows faster than or equal to logn then the
system will be fair; thus we achieve maximum throughput and fairness simultaneously.

As usual, we consider M transmit antennas and N = 1 receive antennas at each
user (recall that for N > 1, the best policy is to have no cooperation between N
antennas, which basically changes the problem to n/N single antenna users). Denoting
the signal to noise ratio of the ¢’th user by p;, then the PDF of SINR, ,,, can be written
as

. 1/pie*/ri (M — 1)e~o/Pi

foi(z) = Grom T gy o © > 0. (3.56)

We are interested in computing the probability of transmitting the m-th signal to the
i'th user with SNR of p; (denoted by P,, ), i.e.,

P, =P, ., = Pr{SINR;,, > SINRy,...,SINR; 1. SINRis1m, .., SINRy .}

_ /Ow/om.../oxifm(xi) T1 Sz da,. (3.57)

J=1,5#1

Note that due to the fact that SINR; ,,, for m = 1,..., M have the same distribution,
P, m does not depend on the index m and P, = P, ,, for m = 1,...,M. The

following theorem obtains bounds on the probability of choosing the weakest user
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with ppin = 1I£z'lgnnpi and the strongest user with ppa. = 112?5}; Di-

Theorem 3.10 Let M be the number of transmit antennas and p; is the SINR of the
1’th user. Define pypin = min p; and ppax = max p;, the SNR corresponding to the
1<i<n 1<i<n

weakest and strongest user, respectively. Then,

Y Y

p S M—-1+ Prrllin e_(Pmin_Pmax 0 1 358
pmin_M_l'i_pria n + (ﬁ ’ ( )

and 2logn
p e(Pnllin_PI;ax)(e - 1 450
+ =, :
Pmax — n n2 ( )
where P, . and P, . are the probability of choosing users with minimum and mazi-

mum SNR, respectively.

Proof: Let e = 1 — -1 > 0. We first find a lower bound for the probability

Pmin Pmax

of choosing the user with minimum SNR by assuming all the other users have the

maximum SNR. Therefore, using (8.25), we get

ooe—(ﬁ-i—e)m 1 e_Pr:a,x ot
P, > +1+)+M—-18 (12" )
prin = / I+ M {(pmax )1 +2) } T+ a1

x n—1 x
. /“;mM —1+ (= +e(1+x) e d [ e -
= o M _ 1 (1—}—1;) (1 + x)M—l d./f (1 + .'L')M_l

Pmax

(3.60)
Also we can use the following inequality for z > 0,
M-1+-"14e M-1+(-"+4¢(l+2z) L +e
Pmaxl S (Pmax - )( ) S Pmaxl , (361)
M_1+pmax M_1+Pr:——:j( Pmax

where we used the fact that the function being bounded is monotonically increasing
Q] fi

for x > 0. Now we define 1, to be the solution to (li_u’;% = n—12 Clearly (le;;%

1S
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monotonically decreasing and there is a unique solution for uy. Then for € > 0,
-1
M—-1+-—"+¢ uo T\ e
Pp i 2 pmaxl e—euo / 1 _ €’ i _ €’ dx
i M—1+ - 0 (1+z)M-1 | dz (14 z)M-1

T n—1 x
o0 e_ﬂmax d 6_ Pmax
—€EUQ 1 - . - d
te /UO ( (1+x)M_1> dx ( (1+x)M_1> v

In order to find a lower bound, we ignore the second integral and we use the fact that

e” > e for € > 0 and 0 < ¢ < ug. Therefore, we get

M _— 1 + L + 6 —€Uo - I:g,x "
Pp > pmaxl € 1— _ & e
min M—1+ n (1 + ug) M1

Pmax
M—1+ -1 +epeut
— plnax1 € (1 _ 1/n2)n—1,
M -1+ p- n

where u§ is an upper bound for uy, i.e., ug > ug, and can be calculated as

2logn

uo + (M — 1) log(1 + ug) = 2logn = ug < N1 —1 = e M1 — 1 = u¥. (3.62)

pmax

Therefore for any M and n, the lower bound can be written as

L (G M )
M - 1 + Pmin [ Pmin Pmax e aNm—1
Pmax

which leads to (3.58). We can also find an upper bound for P, . by considering that

max

all the other receivers have the minimum SNR. Therefore similar to (3.60), we may

write
z 1 n—1
o0 efpmﬁ (]_ —|— ]]) ei(Pmax —|—€)£E
P < M-1 1l——— d 3.64
Pmax —/(; (1 +.Z‘)M { Dimax + } ( (1 +./E)M_1 X, ( )
where we used the definition of e. We can further define h(z) = % and we let
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u, be the solution to h(ug) = 1/n?. Therefore, separating the integral to two regions,

we get

IN

Pmax

/0 " (' (z)) (1 = h(z)e™)""" dz + / h (—H(z)) (1 = h(z)e™)" " dz

uo

/Ouo (=K(z)) (1 - h(a:)e*”")n_1 dz + /00 (—h(z))dw,

uo

IN

where we used the fact that 1 — h(z)e " < 1 — h(z)e~" for 0 < z < ug and € > 0.

L
nZo

Similarly for the second integral we used 1 — h(z)e™** < 1. Noting that h(ug) =

the upper bound can be written as

e€u0 — €U n —€EU n
Povs < — {1 = h(ug)e=*)" — (1 — e=*)"} + h(uo)
ecvo 1
< o
- n n?

logn
where uy < uf . We can therefore use the fact that uy < e m=1 —1 as shown in (3.62)

to get
(e (e M2F 1)

€' Pmin Pmax

1

5
n2

P

Pmax —

+ (3.65)

n

which leads to (3.59). O

Based on the result of Theorem 3.10, we can state the following corollary:

Corollary 3.11 If 1oAg/In = « then by increasing the average transmit power, we have

P

Pmin

— %, and so the system becomes more and more fair. Alternatively, if we fiz

1

the SNR and increase o, P, — - and the system becomes fair.

Proof: It is clear from Theorem 3.10 that if % is fixed and we increase the average

M
logn

power, P, . isgoingto o Moreover, as goes to infinity, again P, . isapproaching

%. Therefore the system becomes fair. [
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Sum Rate Throughput

Figure 3.1: Throughput versus the number of transmit antennas for different SNRs
and n = 500.

3.8 Simulation Results

In this section we verify our asymptotic results with simulations and numerical eval-
uation. As Lemma 3.2 states, bounds on the throughput can be evaluated for any n,
M, and p. We also proved in Theorems 3.5 and 3.6 that the upper bound is tight
when M < alogn, which is the region that we are interested in, therefore, we plot
Eq. (3.7) as a good approximation for the throughput. Fig. 3.1 and 3.2 show the
throughput versus the number of transmit antennas M, for different SNRs. Clearly
for M < 4 the curve behaves linearly and as M becomes logn =~ 4 the throughput
curves become saturated.

We also investigate the fairness of the scheduling by simulations. We compare the
fairness of our scheduling with multiple transmit antennas with that of the case with
one antenna in the base station M = 1, in which the base scheduling strategy (in
terms of maximizing the throughput) is to transmit to the user with the maximum

SNR. Suppose users have SNRs uniformly distributed from 6 dB to 15 dB, therefore
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number of users: 100
10 T T

I
— SNR=10db
—©- SNR=5db
— — SNR=0db

Sum Rate Throughput

Figure 3.2: Throughput versus the number of transmit antennas for different SNRs
and n = 100.
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Figure 3.3: The number of times that each user with the corresponding SNR is chosen
for 50000 iterations with M =1 and n = 500.

the users corresponding to the SNR of 15 dB and 6 dB are the strongest and the
weakest users, respectively. Fig. 3.3 shows the number of times that each user with
the corresponding SNR is chosen out of 50,000 iterations. Clearly the user with the
minimum SNR rarely gets to be transmitted to. On the other hand, Fig. 3.4 shows
the fairness of our proposed algorithm by using M = 5(~ logn) antennas in the base
station. As Fig. 3.3 and 3.4 show, the fairness has been significantly improved by
using multiple transmit antennas. For instance, the ratio of the number of times that
the strongest user is chosen to the number of times that the weakest user is chosen
is 700 for the case with M = 1 as opposed to 2.5 for the case with M = 5 using our

scheduling.
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Figure 3.4: The number of times that each user with the corresponding SNR is chosen
for 10000 iterations with M = 5 and n = 100.
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3.9 Conclusion

This chapter dealt with multiple antenna broadcast channels where due to rapid
time variations of the channel, limited resources, and imperfect feedback, full channel
state information for all users cannot be provided at the transmitter. Since having
no channel state information does not lead to gains, it is important to study MIMO
broadcast channels with partial CSI. In this chapter, we proposed using random beams
and choosing the users with the highest SINR. When the number of users grows and
M is fixed, we proved that the throughput scales like M loglogn, which coincides
with the scaling law of the sum-rate capacity assuming perfect CSI and using dirty
paper coding. We further showed that with our scheme, the throughput scales linearly
with M, provided that M does not grow faster than logn. Moreover, we considered
different scenarios for the case with more than one receive antenna N > 1, and
we showed that by using random beamforming, throughput of our scheme scales as
M loglognN when M is fixed and for any N that is precisely the same as the scaling
of the sum rate capacity using dirty paper coding. This implies that increasing N
has no significant impact on the throughput.

Another issue that we addressed was to analyze the fairness in our scheduling
when the users are heterogeneous. We proved that as M becomes large the scheduling
becomes more and more fair and when M > alogn the scheduling will be fair irre-
spective of the signal to noise ratio of the users. We conclude that using M = alogn
emerges as a desirable operating point, both in terms of guaranteeing fairness as well

as providing linear scaling of the throughput with M.
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3.10 Appendix

3.10.1 Proof of Eq. (3.36)

In this appendix, we compute a lower bound for Pr{B|A} where A is the event that
for all m, ¢ — e < lrgiangINR < ¢, and B is the event that each user can be the
maximum for at most_ (;ne signal sp,,. Let’s assume p,, = arg maxSINR,; ;,. Therefore,
i
we can upper bound 1 —Pr{B|A} by the probability of the event that there exists an
index p,, such that the corresponding user is the maximum for at least two signals
Sm, and s,,,. Since this event is conditioned on event A, both the maximums should
be between ¢ and ¢ — € and clearly one of them should be max SINR,, ,,,. Therefore

1<m<M

1—-Pr{B|A} < Pr {Elp € {p1,...,pm} :c— e <SINR,, m,s 1inagcﬂ/ISINRpl,m < c}

< MPr {c — e < SINR; ;,,, max SINR; ,, < c} : (3.66)
1<m<M

where we used the union bound and the fact that all SINRs have the same distribution

over %, and m; is not the index corresponding to the maximum SINR over m. In order

to compute the probability in (3.66), we define the random variables 8, = |h1¢y,|* for

m=1,..., M, and let r = arg max ;. Therefore, we want to compute the probability
that
¢> max SINRy, = maxpi _ _ maxf (3.67)
and that there exists m; € {1,..., M} and m; # r such that
_ By
c— € <SINRy;m, = (3.68)

%+maxﬁi—|—D’

where D = 3"V 8, — max ; — Bm,. Eq. (3.67) and (3.68) imply that B, > (1 —

¢)maxf3;. This probability can be computed by integrating over a the probability that
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there are at least two ;s in the region [a(1 — £), a] and all the §;’s are less than a.

Therefore,

1-Pr{B|A} < MPr{3m,e{l,....M}y,mi#r:Bm > (1— Z)maxﬂ,-}
= M/ ( ) a(l — —) <p < a} (Pr{p, < a}) *da

s [ ey

= 0= [ = 1Pu -0 (3.69)

where in the second step we use the fact that two ;s must be large (in fact in the

region [a(1 — £), a]) and §;’s are i.i.d random variables. In order to compute (3.69),

we define the function T'(e) = [, u!~*~%(1 — u)™~2du. Clearly, the integral in (3.69)
can be written as T'(€) + T(—e) — 27°(0). By mean value theorem, we can use the

Taylor expansion of the integral to get
1
/ (u¢ — 1)2u(1 — u)™2du = T(e) + T(—¢) — 27(0) = T"(¢)é?, (3.70)
0
where —e < ( < e. Now we can write the second derivative of T'(() as

T'(y) = / (log u)?u'~~(1 — u)™?du

< /O(logu)2 09(1 — u)M2du, (3.71)
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where we used the fact that € is very small and —e < ¢ < e. We know that u%*(logu)?

is a bounded function for u € [0, 1], therefore,

T () 0 < /0 1 u®(1 — u)M_Zdu)

B I'(M — 1)T'(1.5)
B O( (M +0.5) )

" (Ml1.5> , (3.72)

IN

where we used the asymptotic expansion of the gamma functions [63]. Replacing

(3.72) in (3.70) and then into (3.69), we get

1 - Pr{B|A} < O(&M'®) = O (%) . (3.73)
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Chapter 4

Differentiated Rate Scheduling for
(Gaussian Broadcast Channels

4.1 Introduction

The downlink scheduling in cellular systems is known to be one major bottleneck for
future broadband wireless communications. Information-theoretic results on broad-
cast channels provide the limits for the maximum achievable rates' for each receiver
[22, 25, 26]. For example in a homogeneous network, if the transmitter wants to max-
imize the throughput (or the sum of the rates to all the receivers?), the best strategy
is to transmit to the user with the best channel condition at each channel use. This
is the so called “opportunistic” transmission strategy as described in Chapter 2 (see
also [28]).

In homogenous networks, opportunistic scheduling treats all the users equally. In
systems that are provisioned to provide differentiated services to different users, the
transmitter has to give different services (or rates) to different subsets of receivers,
and yet at the same time, maximize the throughput [24].

In this chapter, we are interested in analyzing differentiated rate scheduling schemes

for broadcast channels. In particular we assume receivers are divided into M groups

!Here we assume the channel is ergodic and rate refers to the average rate over all channel
realizations.
2We use users and receivers interchangeably.
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where the ratios of the rates of users in different groups are given. Given these ra-
tios, the overriding question in this chapter is to devise schemes that provide the rate
constraints and yet at the same time maximize the throughput of the system. We
are also interested to see how much throughput loss the transmitter would incur by
imposing such constraints.

In the first part of the chapter, we consider channels with a small number of users
(i.e., n = 2,3). It turns out that the problem of determining a schedule that satisfies
the rational rate constraints becomes analytically intractable as the number of users
grows beyond 3. Therefore, in the second part of the chapter, we assume that the
number of users is large. This is, of course, of practical interest since many systems
operate in such a regime. Furthermore, it allows us to obtain explicit results in the
asymptote of large n.

We should also mention that in this chapter we will only be dealing with ho-
mogenous networks, in the sense that the SNRs of the different users are assumed
to have the same probability distribution. Of course many networks are, in fact,
heterogenous, with different users having different distributions for their SNRs. The
methodology of this chapter (and many of the results, we suspect) can be carried
over to the heterogenous case, with the caveat that the development will be much
more involved and cumbersome. For this reason, and for reasons of space, although
quite important in practice, we deem the heterogenous case beyond the scope of the
current chapter. We only remark that by appropriate power control any heterogenous

network can be made to look homogenous (after which all our results will directly

apply).
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4.2 Problem Formulation

We consider a scalar Gaussian broadcast system with n receivers. We also assume the
channels between the transmitter and the receivers are block fading, i.e., the channels
remain fixed over any block of data transmission. After any such block the channels
will change (perhaps to independent values). For the purposes of this chapter it will
not matter how the channels change from block to block, other than the fact that
they vary in some stationary and ergodic way.>

The relationship between X, the transmitted signal, and Y;, the received signal at
receiver %, can be written as

Y; = hX + Wi, (4.1)

where h; is the channel coefficient between the transmitter and the 7-th receiver and
W; is the additive noise. h; and W; are i.i.d. complex circularly symmetric Gaussian
random variables with zero mean and variance one, CN(0,1). In terms of channel
knowledge, we assume that h; is known perfectly at the transmitter and the receiver.
We further assume that the transmitter is subject to a short-term power constraint,
so that the transmitted signal in every state must satisfy the power constraint P.
We denote the (average) rate of the i’th user, i = 1,...,n, over the different channel
realizations by R;.

In this chapter, we are interested in analyzing differentiated rate scheduling schemes
for broadcast systems with n users. We consider a partitioning of the users into M
groups G, . . ., G, where different groups require different rates from the transmitter.
We also assume that the sizes of the groups are all of the same order and hence, the
cardinality of G, is agn where M and «4’s are fixed numbers such that Zf\il o; = 1.

Assuming that the average rate of a user in the k’th group is denoted by RF,?

3This is because our focus is on the rate. If we had focused on other performance measures, such
as delay, then how the channels vary with time would have been important.
4Throughout the chapter, we use superscript k to refer to any user in Gy.
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without loss of generality, we may assume R' < ... < R™. We further impose the
constraint that the average rate of a user in the i-th group is ; times the average rate

of a user in the M-th group. In general we are interested in the following optimization

problem:
max ZRi (4.2)
i=1
) RF
subject to i = Be, k=1,...,M, (4.3)
where 81 < ... < Buy—1 < By = 1 are fixed numbers independent of n. It is clear

that the best operating point in the ergodic capacity region is the intersection of the
boundary of the capacity region Cgc(Ry, - - -, Ry,) with the line defined in (4.3). While
this is easy enough to state, it is not so easy to do since Cpg¢ is implicitly defined as
the convex hull of an infinite set of rates. Moreover, it is not so easy to see how any
point on the boundary of the capacity region can be mapped back to a schedule.

In Section 4.3, we consider a channel with a small number of users, namely n = 2
and n = 3. We also focus on the rate region achieved by weighted-opportunisitc (WO)
scheduling in which we transmit to the user that has the maximum weighted SNR.
We obtain the relationship between the weights for WO scheduling and the ratio of
the rates. It turns out that finding an explicit relationship between the weights as a
function of the given ratios is analytically intractable for n > 3, even if we allow for
simplifying assumptions such as considering the low SNR regime. We further look
into the throughput loss due to the rate constraints in (4.3).

In order to obtain explicit solutions, in the second part of the chapter, we consider
a system with many users and, rather than attempt to solve (4.2)-(4.3) directly, we
look at the performance of three specific scheduling schemes to provide the rational
rate constraints in (4.3). These are weighted-opportunistic, time-division opportunis-

tic, and superposition coding. In the time-division scheme we allow the transmitter
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to divide each channel use to non-equal time slots. At the k-th slot, the transmit-
ter sends to the receiver with the best channel condition from group G,. Finally,

superposition coding is the one that achieves the ergodic capacity region [22, 25].

4.3 Channels with a Small Number of Users

In this section, we start with characterizing the achievable rate region using weighted-
opportunistic (WO) scheduling. In WO, at each channel use we send to only the user

that has the maximum weighted signal to noise ratio, i.e., the user for which

max ju; | hi|?. (4.4)

1<i<n

Let us look at the rate transmitted to one of the users, say the first user (denoted

by RY). Clearly,

RY = Pr(user 1 is transmitted to) x

/ log(1 + Px)Pr(z|x = |h;|?, user 1 is transmitted to)dz.
0

Defining z; = |hs|?, i = 2,...,n, the probability density function inside the integral

can be written as

i Pr(x:r;>ﬂ Ti i =2,...,m)
Pr(z|lz > —,z;,1=2,...,n) =
1 Pr(ac>—acz,z:2,...,n)
Pr(z > iz, i=2,...,n|z)p(z)
Pr(ac>—acz, =2,...,n)

| (1 e :U) e

Pr(user 1 is transmitted to)
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Replacing this last expression into the formula for R} yields

RY = /00 log(1 + Px) ﬁ (1 — 6_%x> e “du. (4.5)
0

=2

The rates to the other users can be found in a similar fashion.

Let us now focus on (4.5) for the case of two and three users.

4.3.1 Case 1: Two-User Channels

Eq. (4.5) now simply reduces to

R} = / log(1 + Pz) (1 — e_l%m) e *dz. (4.6)
0

Similarly, the rate for the second user is as in (4.6) with the only difference that pu,

should be exchanged by p,. We would like to find p; and py® such that the rate

w

. . R . .
constraint, i.e. = 3, is satisfied.

L
> RY

We can simplify (4.6) as

oo P
RY = / {log(l + Px)e “dx — o log (1 4 :c) } e “dx
0 M1+ e H1 + pe

1.1 o pitpo M1+ Mo
= —ePEi(—— Puy By | — 4.7
e? Ei( P) + TR ( Py ) (4.7)

where we used the definition of the exponential integral function defined as —Ei(—z) =

ffo e—ttw dt. We can similarly write the rate for the second user as

1. 1 Ry Ay e
y = —ePEi(——=) + Pur By | — . 4.
= er Bil P) 1+ ,u26 e ( Py ) (48)

In order to find the u; that satisfies the rate constraint of (4.3), we need to solve the

5Tt is worth mentioning that the sum of p;’s is equal to 1.
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following non-polynomial equation,

BB+ (= e B () o)

1 5. 1 P; . 1
—e?P Bi(—5) + pmePri Bi ( —5—

Pui

It does not seem that (4.9) has a closed form solution because it involves the expo-
nential integral. We can numerically evaluate 5 versus u; as shown in Fig. 4.1. Since
i1 + po = 1, here we assume that p, is varying between zero and one.

The generalization to a system with n > 2 users is straightforward: We simply
need to expand the products in (4.5) into a summation of exponentials and then
repeatedly use the exponential integral. Applying the rate constraints will lead to a
non-polynomial system of equations with n—1 equalities and n—1 variables. Although
it may be possible to solve numerically such a system of equations, it gives us little
insight into the problem.

In order to find more explicit results, in the next section, we simplify the system

(4.9) by assuming that P is small (low SNR regime).

4.3.2 Case 2: Low SNR Regime

Assuming that the system is working in the regime of small P, the instantaneous rate
can be approximated to first order as P|h;|? (instead of log(1 + P|h;|?)). It turns
out that this leads to a system of polynomial equations, which can be theoretically
dealt with using Groebner bases.® Given a finite set of multivariate polynomials over
a field, a new set of polynomials with good properties can be found by an algorithm
of Buchberger, called the Groebner basis, which can be used to find the solutions of
the polynomial system. This method has been extensively studied, developed and

has been implemented on all major computer algebra systems.

6Groebner bases method was introduced by Bruno Buchberger in 1965 [64].
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Figure 4.1: 3 versus u; for a channel with n = 2.

In a channel with two users, the rates can be written as

Ry =

/ Pz(1 — 67%1)6_%35 =P(2— ).
0

(4.10)
Similarly,

Ry = P(1—u1).

(4.11)
Therefore the boundary of the rate region is characterized by (4.10) and (4.11). This

parametric characterization can be made explicit by eliminating p; from (4.10) and
(4.11) as

(4.12)

Now given the ratio of the rates and (4.12), we can easily obtain p; such that the
ratio of the rates will be equal to S.

This framework can be easily generalized to the case of more than two users. We
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omit the details and simply state that for n = 3, we may write the rates as

Ry _ e b N Mok
P pa g3 g pe pois 4 paps + paps
Ry _ o _ m b n Papis

o+ s po o popis + papis + p s’
ﬁ - 11— M1 M2 n 12

M2+M3_M3+M2 Popis + ppts + pafte’
I = a1+ po+ s,

To find the explicit characterization of the rate region, we have to eliminate the
ui’s from the above set of polynomial equations. This can be done with the aid of
Groebner bases using Mathematica, say. However the complexity of the algorithm
becomes formidable, even for the case of n = 3.

On the other hand, it is possible to attempt to solve the above system of equations
numerically. This, in principle, will allow us to map a set of rate constraints to a set
of weights for the schedule. However, as mentioned earlier, this gives little insight

and, moreover, it too can be quite complex for large n.

4.3.3 Throughput Loss

It is clear that there is a price to pay in terms of throughput (sum-rate) to maintain
the rate constraints. This is due to the fact that we are not working on the sum-rate
capacity point and therefore, the throughput will be reduced compared to the case
where we had no rate constraint. In this part, we numerically evaluate the throughput
degradation due to imposing the rate constraint of g for a channel with two users.
Assuming that the rate of the first user is 8 times the rate of the second user, Fig. 4.2
shows the ratio of the throughput of the WO scheduling over the sum-rate capacity
versus f.

Clearly, when 3 equals one, the WO scheduling achieves the sum-rate capacity,
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Throughput Ratio

80

Figure 4.2: Ratio of the throughput with rate constraints over the sum-rate capacity
versus [ for a channel with n = 2.

and therefore, throughput will be equal to the sum-rate capacity. As [ increases
the throughput loss will be more. It is quite interesting to observe that even for
very large § (e.g., close to 70), the throughput is above 80 percent of the sum-rate
capacity. Therefore, the throughput does not seem to be too much affected by the
differentiated rate scheduling. In the next section, we look into this throughput loss

in the regime of large number of users.

4.4 Channels with Many Users

In Section 4.3, we observed that finding an explicit relationship between (;’s and the

1;’s in WO scheduling becomes very complicated even for the case of n = 3.
Therefore, for the remainder of the chapter, we look into the regime of a large

number of users. We consider three different schedulings, namely, WO, TO and

superposition coding. It will turn out that having a large number of users will simplify
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the derivations and lead to explicit results.

4.4.1 Weighted-Opportunistic Scheduling

In this part, we consider the scheduling described in (4.4). Since the rates of the users
within the same group are the same, it is clear that we only need to set M different
1;’s corresponding to each of M different groups. The first question would be to figure
out the mapping between the ;’s in (4.3) and py’s. In other words, what values of
;s lead to the desired ratios 3;’s? Secondly, we are also interested to obtain the loss
we incur on the throughput (i.e., sum of the rates) of the system by imposing (4.3)
and using this scheduling.

In order to find the rate of a user in Gj, i.e. RYY, using weighted-opportunistic

scheduling, we may use (4.5) to write

M
R = /00 log(1 + Pz)e “(1 — e )t H(l — e_‘%‘m)o‘i"dx. (4.13)
0 i

Equation (4.13) follows by noting that a user in G; is chosen if its own channel is

better than ayn — 1 users in G; and its weighted channel is better than o;n users in
Gifori=2,..., M.

As observed in Section 4.3, analyzing R for any n involves the exponential

integral function and therefore explicitly finding the solution for u;’s to guarantee

B;’s becomes cumbersome and numerically intractable. Therefore, we consider the

regime of large number of users and find y;’s that satisfy (4.3) in this regime.

Lemma 4.1 Suppose M and «;’s are fixred and n grows. Then if u;’s are chosen such

that

1 ;
p=14 08P

, M
logn

, (4.14)

g ey
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then lim Ig@—’f‘; =p; fori=1,...,M — 1. Furthermore
n—oo

lim 2= 1%

4.15
n—oo loglogn (4.15)

Proof: Assuming (4.14) holds, we first prove that R = %. We can write
k=1

(4.13) as

o M — k1,
R = / log(1 4 Px)e%ek—1 knlog(i=e ") g,
0

N e T O(ne AT
= / log(l + Pa))e*wfzkzl agne +O(ne )dl‘
0

_zlog (B1/Bg)
—z—ne * [ LM are logn  +0(n™"7)

= / log(1 + Pzx)e dz, (4.16)
0

where 7 is some positive constant and where Eq. (4.16) is obtained by expanding the
logarithm and using (4.14).

We now consider three regions for the integral in (4.16), namely, between log an +
4loglogn (H;), greater than logan+4loglogn (Hs), and less than logan—4loglogn
(Hs) where a = w We can bound the integral over H, by noting that the
average rate to the first group is at most of the order loglogn and therefore an upper
would be loglogn multiplied by the probability that |hi|? is greater than logan +

4loglogn condition on the fact that [hi|* > £i|h;[? for i = 2,...,n. Hence the

integral over H, can be written as

°° _zlog (81/85) om
/ log(1 + Px)e-=—ne™ Tilyawe™ W7 +0(ne ") g,
log an+-4loglogn
% - —log (81/8) =Z—
= 0 (loglogn/ e *—ne 2y M e 08P/ PR Togm du
log an+4loglogn

_ 0 loglogn '
n(logn)*
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Similarly the integral over H3 can be obtained and is equal to O (logl%e_(l"g ”)4)>.
We now focus on evaluating the integral over H;. We may change the variables

toy =z — logan to get

log an+4loglogn z

p—e—T M —log (B1/Bk)7

/ log(1 4+ Pz)e & ¢ " 2k=1%e " dx
logan—4loglogn

log an+4loglogn _
- (1°g logn + O ( : )) / pmrmem T, age” O
IOg n log an—4loglogn

_ loglogn +O(1/logn) / T v gy

an —4loglogn
logl 1
et ()
) k=1 kB logm

It is quite straightforward to write the rate for users in the other groups in a

similar way. Therefore for any group, we obtain

Rl Mﬁk loglogn L0 <loglo4gn) . (4.17)
Sy nlog n

Clearly the ratios of the rates satisfy (4.3) in the limit of large n and also the first
order term in the throughput of this scheme is loglogn that leads to the second part
of the lemma. [

Remark 4.1 Lemma 4.1 asserts that the average rates of users are quite sensitive
to the change of u;’s. In order to further understand the impact of a change in p;’s on
the rates, we consider a two-group system. Following the methodology in the proof

of Lemma 4.1, we can prove the following results. If

T _ 1 . Rl,w _
i l1-o <logn> = nh—{goR?,w =1, (4.18)

where R*" is as defined in Lemma 4.1. Moreover, if

1 1w
—=c< 1= lim

J7%) n—oo RZ:W

=0, (4.19)
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where ¢ is a constant independent of n.

We further look into the throughput loss that we would incur by differentiated
rate scheduling. From Lemma 4.1, it is clear that the first order of the sum-rate
(i.e., loglogn) remains unchanged. In the next lemma we show that the difference
of the sum-rate capacity (maximum throughput) and the throughput of this schemes

converges to zero. We also obtain the convergence rate.

Lemma 4.2 Suppose M and o;’s are fixed and n grows. Then,

/000 nlog(l + Px)e *(1 — e )" ! — ZRZ" =06 (%) : (4.20)

where the first term denotes the sum-rate capacity achieved by sending to the user

with the best channel condition at each channel use.

Proof: We prove this lemma for the case of M = 2 for the sake of brevity, however
it is quite straightforward to generalize to M > 2. We first divide the integral that
represents the difference of the throughputs into three regions as we did in the proof
of Lemma 4.1. The first term would be the integral over the region ;. We can then
write the integral as

/ glog(l + Px)e™%(1 — e~ )"/27! {(1- o I ka
Ha

(1— e mo)n/2 _ (1 - e—ﬁ—iw)"ﬂ} dz

4loglogn —y n/2—1 —y n/2 )
= 0 (loglogn e’ (1 - Z—/Q) { (1 B Z—/2> (1- e*Z—Q(yﬂogn/?))n/Q

—4loglogn

—(1 — e mwHlogn/2)yn/2 } dy> , (4.21)
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where y = z — logn/2. Assuming that € = 10{0’01%’ we can write (4.21) as
o [ 1021 9 — L e_loﬁ%ln(l""ﬂl(l""e)) e_log'y%ln(l"'%(l—f)
(0} ogn e log*n — _
glog 1+ 61(1+¢€) 1+i(1_6)
= O(’loglogn)
logl 3
o ( (loglogn)™ o
(logn)?

It is quite straightforward to show that the other terms would contribute O ((logﬂ) .

log n)2+2y

This completes the proof. [

4.4.2 Time-Division Opportunistic Scheduling

Another, in fact simpler, approach to guarantee the rate constraints is to do time-
sharing between different groups by dividing each channel use of duration 7' into
M slots of different lengths.” The 4’th slot is dedicated to the i’th group and the
transmitter chooses the receiver with the best channel conditions for transmission
from G;. Intuitively, we should be able to achieve the rational rate constraints if we
divide the slots into the same ratios. (Lemma 4.3 shows this is the case.)

Here we denote the rate of a user in G, using this scheme by R, similarly the
rate of the i’th user will be denoted by R!. In the next lemma, we show that if the
cardinality of all groups is of the order of n, we can construct the length of slots such

that (4.3) is satisfied and the throughput of the scheme scales like loglogn.

Lemma 4.3 Suppose M and «;’s are fixed. Also, let l; be the length of the i’th slot

and is equal to
li _ a; 3;
T ¥r b

"Instead of one channel use, one might divide every K channel uses into slots of different lengths

i=1,..., M. (4.23)
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Then lim % =p; fori=1,...,M — 1. Moreowver,
n—r0o0
nopt
lim M = (4.24)
n—oologlogn

Proof: It is quite easy to show that at the ¢’th slot in which the transmitter sends
information to the user with the best channel condition among users in G;, the total

rate of information sent to G; is equal to

li iDi
—loglog a;n = 3 P log log a;n. (4.25)
T i=1 a;f3;

Therefore since users in each group are equally likely to be chosen, the rate to a user
in the i’th group is equal to a%ﬂ times the rate to G; as in (4.25). This proves the first
part of the lemma. The second part of the lemma follows by noting that 224:1 o =1
and «4’s are fixed and are not vanishing to zero. [

It is worth mentioning that in the time-division scheme at the ¢’th slot, the trans-
mitter will certainly not transmit to any user outside group ¢ even if such a user has
a much better channel condition. Therefore although simpler, one may guess that
the time-division scheme has a lower throughput than the weighted opportunistic
one. The next lemma proves again the throughput of this scheme converges to the
sum-rate capacity, however, the convergence rate for the time-division scheme is poly-

nomially slower than that of the weighted-opportunistic scheduling (i.e., © (bglﬂ)

logn
versus © (%) ).

Lemma 4.4 Suppose M and «;’s are fized. Also, let l; be chosen as in (4.23). Then

_ loglogn
T ac t
/0 nlog(l+ Px)e (1 —e E R, = ( log 1 ) . (4.26)
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Proof: Here we present the proof for the special case of having two groups of the
same size. The proof however can be generalized easily and we omit it for the sake
of brevity.

The difference of the throughputs can be written as

> 1
[nroga+pe s {a-e - da-e e a
0

We can now follow the same approach as in the proof of Lemma 4.1 and expand the
integral to three parts, namely, logn/2 + 4loglogn, larger than logn/2 4+ 4loglogn,
and smaller than logn/2 — 4loglogn, which were named as H;,Hs and Hs, respec-
tively. It is quite straightforward to show that the last two integrals over H, and H3
lead to O(%’%).

The integral over H; can be then evaluated as

logn/2+4loglogn 1
/ nlog(1l + Pz)e™” {(1 —e )"t - 5(1 — ew)nﬂl} dx
It

ogn/2—4loglogn

4loglogn e Y n/2—1 eV n/2 1

= 0 loglogn/ e Y (1——> (1__> — = Ydy
—4loglogmn n/2 77,/2 2
4loglogn B B 1

= 0 (log logn/ e Ve ¢’ (e‘e g —) dy)
—4loglogn 2

- 0 (bg]ﬂ) . (4.28)

logn

This completes the proof for the two-group case. The generalization to the M group
case follows by using the same technique and we omit for the sake of brevity. [

In the next subsection, we look into a scheme that employs superposition coding
and clearly leads to the best throughput as we actually work on the boundary of
the capacity region. As the analysis becomes complicated, we just consider two

groups and obtain a scheduling that maximizes the throughput while the rational rate
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constraints of (4.3) are satisfied. It should be mentioned that the ergodic capacity
region of a broadcast channel with two users has been studied in [25], here we look at
a generalization of the result of [25] in which we have n users divided into two groups

with different rate demands.

4.4.3 Superposition Coding

In this section, we analyze the performance of superposition coding for the case when
there are only two groups of users Gi, G, with equal sizes that have different rate
demands. We assume that the average rate provided to a user in the first group is
required to be 8 > 1 times the rate provided to a user in the second group.

In order to maximize the rate (sum-rate) while keeping the ratio of different group
rates fixed and equal to 3, we need to find the point on the boundary of the capacity
region of the Gaussian broadcast channel with short-term power constraint P that
satisfies the differentiated rate constraint. We know that every boundary point is the

solution to the maximization problem

max E ;R
(R1,...Rn)ECBC 4

for some positive values piq, ..., u,. In our case because of the symmetry among the
users in each group, the values of y;’s will be the same for the users in the same group.
Therefore, we only need to characterize the boundary points that are the maximizing

solution to the problem
max R;) + R;
(Brr o BeCo M1 (g ) M2(iEXg:2 i)

for pq, pe > 0. The following lemma characterizes such boundary points. The proof

of this lemma uses the duality of the broadcast channel and the multi-access channel
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for scalar channels [65].

Lemma 4.5 Consider a scalar Gaussian broadcast system with the model described

in Section 4.2 . Consider the following optimization problem

max (30 R)+ (3R (4.29)
1€G1

Ri1,...,Rn)EC .
( 1 n) BC ZEQQ

where Cgc 1s the ergodic capacity region of broadcast channel with short-term power
constraint P and py > po are two positive numbers. Then the solution of the above

optimization problem is

(1 — p2)y(1 + Px)
pa(y — )

gRi = E(log(1 + Px)|mz > usy) + E(log( ) (z,y) € R)

for 1 € Gi. Similarly, for i € Gy, we have

(1 — p2)z(1+ Py)
pa(y — )

ng- — E(log(1 + Py)|mz < pay) — E(log( )|(z,y) € R), (4.31)

where T = max;cg, |hi|?, y = maxieg, |hi|? and region R is defined as

R={(z,y) eR*xRflo<—F M __pv
(=) | T () (= pe)y T J

Proof: The duality between the broadcast channel and the multi-access channel for

the scalar case in [65] states that

CBC = U CMAC(Pl(b)a---aPn(h))
> Pi()=P

where h = (hy, ..., hy), P;(h) is the power allocation function of user 7 and the union
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is over all the permissible power allocation functions. Also
Cuac(Pi(h), ..., Pu(h) = {R: ZRi <log(1+ ZR(@)\M?),VS c{1,...,n}}.
i€S €S

Using this we can rewrite (4.29) as a maximization over all the power allocation
functions and all the corresponding rate vectors in the dual multi-access capacity
region. Based on this, it can be verified that the maximum of (4.29) occurs when we

send only to the users with the best channel in each group. Therefore,

where z = maxieg, |hi|?, y = maxieg, |hi|?. Performing the maximization over P,, P,

we have one of the following possibilities:

1. If pix > poy, we assign all the power to the best user of the first group.

2. If0 < —£2— — KL < P then we split the power between the two best
(mi—p2)z  (p1—p2)y

users in the two groups as

(11 — p2) Pry + iz — pioy

P, = , P,=P — P,. 4.33

p(y — z)w Y (4.33)

3. If i K2 M > P, all the power is assigned to the best user in the second
pr—p2)z  (p1—p2)y

group.

We have plotted the decision region for power allocation in the (%, %) region in Fig. 3.
In the weighted-opportunistic scheduling the power allocation policy would be to send
to the best user in the first group if (z,y) is in R4 and to send to the best user in the
second group if (z,y) is in R UR.00

The question that remains to be answered is to figure out how to choose p; and o

such that the rate constraint in (4.3) satisfied. This is answered in the next lemma.
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(p1—p2)P
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Figure 4.3: The decision region for power allocation in the superposition coding in
two-group case: If (z,y) € Ry, all the power is allocated to best user of group one.
If (z,y) € Ro, all the power is allocated to best user of group two. If (z,y) € R then
power is split between the best users of the two groups as in (4.33).

Lemma 4.6 Suppose f < 1 is fized, p1 = 1, and ps = 1 — m where o = %
(i.e., 1 < a<2) then
Rl
nh_)ngoﬁ = 5. (4.34)

Proof: The lemma follows by using the result of Lemma 4.5 and asymptotically
analyzing the ratio of the rates. The techniques are similar to the ones we used in
the proof of Lemma 4.1 and we omit the proof for the sake of brevity. [
Finally we look into the throughput loss due to the constraint of (4.3) using
superposition coding. Using Lemma 4.1, it is clear that the loss should tend to zero
(loglogn)®

for large n and also the convergence rate should be faster than logn)? - In the next

(loglog n)1+2e

(log )% where

lemma we prove that the convergence rate cannot be faster than

1 < a <2is a fixed number.

Lemma 4.7 Suppose B > 1 is fized and 1, po are chosen as in Lemma 4.6. Then

o0 B . e (loglogn)'*2« )
nlog(l+ Pz)e *(1 —e *)* ! — Ri:Q<— . 4.35
| st + Paje w1 - e > e (4.35)

Proof: Here is the outline of the proof. We can write the throughput under con-
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straints of (4.3) using (4.30) as

am/ log(1 + Px)e “(1 —e “)*" (1 — e*ﬁ—;w)awdx
0

0

(14 Px)y

e <9 %),

+ Elog(

In fact the first two terms are the same as the throughput of the weighted-opportunistic
scheduling with p; = 1 and puy are chosen as in Lemma 4.6. Therefore similar to the
proof of Lemma 4.1 we can show that the difference of the sum-rate capacity and the

(log log n)1+2

first two terms tends to zero like ognj The third term however can be easily

shown to be a positive when (z,y) € R. Therefore, the difference of the sum-rate ca-

(loglogn)!1 2>

pacity and the throughput of this scheme cannot tend to zero faster than (Tog nj

This completes the proof of the lemma. [J

4.5 Simulation Results

In this section we present some simulation results of the three scheduling schemes
studies in this chapter. For ease of demonstration of the results, and since the super-
position coding was only explicitly constructed for the case of M = 2 groups, we will
only present simulations for M = 2.

The first set of simulations are for 5 = 2, i.e., one group requires twice the rate of
the second group. Figure 4.4 shows the sum of the transmitted rate for WO, TO, and
SC as a function of the number of users. As expected, all show a loglogn growth rate.
In fact, the sum of the transmitted rates of WO and SC are quite close to the actual
sum-rate capacity, signifying that that the rate constraints do not lead to much of a
rate hit on the throughput.

Figure 4.5 shows the ratio of the rates transmitted to the two groups as a function
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Figure 4.4: The sum of the transmitted rates for WO, TO, and SC, as well as the
sum-rate capacity of the broadcast channel as a function of the number of users for
a system with M = 2 and § = 2.

of of the number of users for the WO and SC schedules. These slowly converge to

the desired values. TO is not shown as it clearly gives the correct ratio of g = 2.

The second set of simulations are for § = 4 and are shown in Figures 4.6 and 4.7.

4.6 Conclusion

In this chapter, we consider the downlink of a wireless cellular system (in information-
theoretic terms, a broadcast channel with fading) where users have different rate de-
mands. In particular, we assume n homogenous users are divided into M groups,
each group of which requires the same rate, and where the ratio of the groups’ rates
are given. The transmitter would like to maximize the throughput (sum of the rates
to all users) while maintaining the rational rate constraints. In general, this prob-
lem appears to be computationally intractable since the ergodic capacity region is
described as the convex hull of (an infinite) set of rates. To illustrate this, we first

consider systems where n = 2 and n = 3 and where each user requires a different
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Figure 4.5: The ratio of the rates transmitted to the two groups of users as a function
of the number of users for WO and SC for a system with 5 = 2.
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Figure 4.6: The sum of the transmitted rates for WO, TO, and SC, as well as the
sum-rate capacity of the broadcast channel as a function of the number of users for
a system with M = 2 and 8 = 4.
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Figure 4.7: The ratio of the rates transmitted to the two groups of users as a function
of the number of users for WO and SC for a system with § = 4.

rate. We focus on the achievable region by using weighted-opportunistic scheduling
(WO)—a generalization of opportunistic scheduling—in which we transmit to only
the user that has the largest “weighted” signal to noise ratio (SNR). It turns out that
determining the explicit relationship between the appropriate weights of the schedule
and the desired ratio of the rates is analytically intractable even for the case of n = 3.
For this reason, and also because most practical systems have many users, much of
the chapter focuses on the asymptotic regime of large n where explicit results can
be found. In particular, we propose three scheduling schemes to provide the rational
rate constraints namely, the aforementioned WO, time-division opportunistic (TO),
and superposition coding (SC). In TO, each group has its own time slot in which
the transmitter chooses the user with the best SNR from the corresponding group.
Superposition coding is the scheme that achieves the information-theoretic capacity
region. For each scheduling we give an explicit scheme to guarantee the rational rate
constraints. We also analyze the throughput loss due to the rate constraints for all

three different schemes. In particular, we show that the throughput loss compared to
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the maximum throughput (i.e., the sum rate capacity without any rate constraints)
tends to zero for large n. Thus, there is not much of a penalty in providing different
levels of service to different users. We also analyze the convergence rate of all the

schemes and provide simulations supporting the theoretical analysis.
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Chapter 5

Delay in Broadcast Channels

5.1 Introduction

Resource allocation in wireless systems aims for two conflicting goals, firstly providing
quality of service such as delay and fairness to users, and secondly maximizing the
throughput of the system. A fundamental property of wireless channels is their time
variation due to multi-path effects and the mobility of the users. This implies that at
each channel use some users have favorable channel conditions and other users incur
deep fades. In fact, assuming a block fading model for the channel and having full
CSI in the transmitter, it can be shown that sending to the user with the best channel
conditions maximizes the sum rate (or throughput) of the single antenna broadcast
channel.

In order to exploit this multiuser diversity, the base station (or the transmitter) has
to know the channel state information (CSI) of all the users. In fact, this opportunistic
way of transmission has been proposed in Qualcomm’s High Data Rate (HDR) system
(1xEV-DO). Other variations of this scheduling that do not require full CSI in the
transmitter are studied in [76, 77].

However, there is a price to pay for maximizing the throughput, which is fairness
among users and delay in sending packets. Assuming users have different signal-to-

noise ratios, the throughput optimal scheduling will provide much less service to the
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user with the lowest signal-to-noise ratio (SNR) compared to that of the user with the
highest SNR. Even in a homogeneous network where users have equal SNRs and so
the system is long-term fair, there is no delay guarantee for transmitting a packet to
a specific user as the transmission is probabilistic, i.e., at each channel use each user
will be chosen with some probability. The other extreme would be to use a round-
robin type of scheduling that fairly gives service to all users and can guarantee a fixed
delay for transmitting a packet to each user. In applications with delay constraints,
one may wonder how bad the worst case delay (or the delay for the most unfortunate
user) for the throughput optimal strategy is.

In this chapter, we consider a broadcast channel with n backlogged users. The
transmission is packet based and the channel is assumed to be block Rayleigh fading
and changes independently from one block to the other. We also assume packets are
dropped if outage capacity occurs, i.e., the instantaneous capacity goes below the
amount of information in the packet. Given the probability of outage P,, we assume
packets carry a fix amount of information Cy, which only depends on the scheduling.
For example, opportunistic scheduling is the one that maximizes the throughput given
P,. This will be further discussed in Section 5.2.

We define the delay as the minimum number of transmissions that guarantees all
the users will receive m packets successfully. This notion of delay is clearly stronger
than the average delay in the sense that it guarantees the reception of m packets by
all users. Disregarding the throughput, the minimum delay of mn can be achieved
by round-robin scheduling. However, the throughput optimal strategy has to contend
with delay hits. The overriding question in this chapter is to characterize the delay
for the throughput optimal strategy, e.g., to determine its mean and other moments.
Finally, we propose an algorithm to reduce the delay at the expense of a little hit in
the throughput of the system. The results in this chapter imply that opportunistic

transmission increases the delay by a factor of log n compared to that of delay optimal
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strategies.

Previously, the question of the delay-throughput trade-off has been addressed by
several authors in different contexts. In single link systems, the problem of how to
optimally allocate the power among channel uses such that the capacity is maximized
while guaranteeing the delay for sending bits remains bounded has been considered in
(78, 79]. Also, the trade-off between average power and delay has been addressed by
Berry and Gallager for single link systems [80]. In multiuser channels, traditionally
delay and throughput were considered separately and therefore, access schemes such
as ALOHA [81] were proposed to avoid collisions without exploiting multiuser diver-
sity. As noted later in [82, 83], there has been a large body of work to combine the
physical layer and multiple access layer (see [84, 85, 86, 87, 88| and references therein).
For multiple access channels, a decentralized variation of the ALOHA algorithm is
proposed that exploits multiuser diversity [76]. In [89], the authors consider the
problem of characterizing the capacity region under a stability condition for queues.
Stability here is in the sense that the probability of the queue overflow can be made
arbitrarily small by making the buffer size sufficiently large [89].

Scheduling in broadcast channels has been also considered by several authors [90,
91, 92, 93]. In [91], stabilizing parallel queues in the transmitter is considered, where
the connectivity of queues are random to capture deep fades in the wireless channel.
In [93], the authors incorporate the channel state information in their scheduling
while providing delay constraints for packets. Analyzing the average delay (over the
users) can be also done using the results for the general independent input/output
(GI/GI/1) queues and it can be shown that the average delay is of the order of the
number users [94, 95]. However, in order to provide delay guarantee for all users, we
have to study the delay for the most unfortunate user in the system. Clearly the worst
case delay is a function of the number of users and their SNRs (or the probability

of being chosen as the best user at each channel use). While these works give many



106
insights and algorithms, they leave open the question of how large the worst case
delay is as a function of the number of users and their SNRs for using throughput
optimal strategies. This is the main goal of this chapter.

This chapter is organized as follows. Section 5.2 introduces our channel model
and our notation. Section 5.3 deals with characterizing the delay for single antenna
broadcast fading channels. Section 5.4 generalizes the results of Section 5.3 to multi-
antenna broadcast channels. Finally Section 5.5 proposes an algorithm to reduce the
delay at the expense of a little reduction in the throughput and Section 5.6 concludes

the chapter.

5.2 System Model and Assumptions

We consider a single antenna broadcast channel with n receivers. We assume a
block fading channel with a coherence interval of 7', and where the channel changes
independently after 7" seconds. The transmission is assumed to be packet-based and
the length of each packet is 7.

For each block of length 7', the received signal at the ¢’th user at time ¢ can be

written as

i) = /pihi(D)S () + na(t), i=1,...,n, (5.1)

where h;(t) is the effect of channel and n;(t) is additive white noise and that both are
i.i.d. circularly symmetric complex Gaussian distributed with zero mean and variance
of one. Here p; is the SNR of the ¢’th user and S(¢) is the transmitted symbol at
time t. We further assume an independent memoryless channel, which implies that
the channel changes independently to another value after the coherence interval of 7.

In the transmitter we assume there are n queues corresponding to each receiver and

that there is always a packet available to be transmitted to any user (i.e., backlogged

LIf the length of the packet is smaller than 7', the results in this chapter can be easily generalized.
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Figure 5.1: n parallel queues in the transmitter corresponding to n users; we are
interested in the behavior of the longest queue.

users). Fig. 5.1 illustrates the arrangement of queues in the transmitter. In fact, the
main challenges for the scheduler are first to balance the service among all the users
and second to exploit the multiuser diversity in the channel in order to maximize the
throughput of the system. Any scheduling strategy implies a probability for choosing
each user at each channel use that may depend on the signal-to-noise ratio (SNR) of
all users, the length of the queue of users, and the statistics of the channel. For the
throughput optimal strategy, this probability only depends on the SNR of the user
and the channel statistics. For i.i.d. channels, it is clear that these probabilities are
only functions of users’ SNRs.

Assuming that all packets have Cj information bits for a homogeneous network
(i.e., pi = p), we consider a packet to be dropped if outage occurs, i.e., if the in-
stantaneous capacity C' goes below Cj at the time of the transmission [96]. The
instantaneous capacity however depends on the scheduling. For the round-robin
scheduling, C' = log(1 + p|h;|?), which does not depend on n. For the through-

put optimal strategy,? C' however is the maximum of log(1 + p|h;|?) over 1 < i < n,

2In this chapter, we use the terms opportunistic scheduling and throughput optimal strategy
interchangeably.
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ie., C = max log(1 + p|h;|?). We assume if a packet is dropped, the transmitter
will be not;ﬁ;d and the packet will be considered for retransmission whenever the
corresponding user has the best channel conditions.

If we assume that the error probability is simply the outage probability (a reason-
able assumption for long packets [79]), we have P, = Pr(C < Cj). The throughput
is therefore R = Cy(1 — P.) = CyPr(C > Cy). Given P,, any scheduling would lead
to a different Cy. Note that for any value of Cj, the throughput optimal strategy is
to send to the best user as this would minimize P,. Conversely, for any fixed value
of P,, sending to the strongest user maximizes the throughput as this would allow
for the largest possible Cj. It is also worth mentioning that the maximum of n i.i.d.
exponential random variables (the |h;|?) behaves almost surely as logn. Therefore for
large n, we do not need to use power control to compensate for the channel variation
as the maximization automatically prevents having deep fades for large number of
users with high probability. Thus, for the throughput optimal scheduling, it is rea-
sonable to assume that all the packets have the same amount of information, i.e., C
roughly about log(1 + plogn), independent of the time and channel condition.

In this thesis, we define the delay in the broadcast channel as the number of
channel uses (denoted by D,,,) required to guarantee that all the users will receive
m packets successfully. It is clear from the definition of D,, ,, that this notion of delay
refers to the worst case delay among users (or the delay for the most unfortunate
user). Of course, Dy, , is a random variable and depends on the number of users n,
the number of packets m and also the scheduling algorithm. A delay-optimal strategy
is round-robin scheduling, which clearly achieves the optimal delay of mn. However,
round-robin is not throughput optimal, which requires transmitting to the user with
the best channel conditions at each channel use. Throughput optimal strategies, on
the other hand, will have to contend with delay hits. The following section deals with

the delay for the throughput optimal scheduling.
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5.3 Delay Analysis for Single Antenna Broadcast

Channels

Opportunistic transmission is a probabilistic scheduling that implies that each user
will be given service with some given probability. Assuming that the outage probabil-
ity P, is given, the opportunistic scheduling maximizes the throughput or equivalently
Cy (the amount information bits per packet). Analyzing the average delay (over all
the users) can be done as the queue of each user can be considered as an i.i.d. in-
put/output queue [94]. In particular, it can be shown that the average delay is of
the order n [95]. However analyzing the worst case delay (or the delay for the most
unfortunate user in the system) requires considering n parallel queues of n users allto-
gether [97]. In this section, assuming that at each channel use the transmitter sends
to the 2’th user with the probability p;, which only depends on the SNR of all users,
and drops the packet with probability P,, we obtain the moment generating function
of the random variable D, .

We first consider the simple case in which the network is homogeneous and P, = 0.
Then we generalize the result to the case where we have a non-zero P, and/or a
heterogeneous network where users are chosen with different probabilities. We obtain
the mean and variance of the delay D,,, for any m and n. We further look into
the asymptotic behavior of D,, ,, for different regions of m and n at the end of this

section.

5.3.1 Homogeneous Networks with No Dropping Probability

When users are homogeneous and assuming throughput optimal scheduling, the trans-
mitter chooses the i’th user with probability % from the pool of n users since it is
equally likely for each user to have the best channel condition. The random variable

D, , is basically the minimum number of channel uses to guarantee all n users have
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been chosen at least m times.

This problem can be restated as the coupon-collector problem [98], which is stud-
ied by several authors in the mathematics literature (see also chapter 6 of [99]). To be
more precise, users can be seen as people carrying coupons and the transmitter is the
collector who chooses randomly and uniformly from the n people and collects his/her
coupon. The question is how many times should the collector choose to guarantee
that everybody has given at least m coupons. In fact we can state the mean value of

D, , based on a result found in [100].

Theorem 5.1 (Newman and Shepp [100]) Consider a homogeneous broadcast system
with n users. We assume that at each channel use, the transmitter sends to the user

with the best channel condition. Then, we have,

E(Dyn) =n /0 T (1= Su(e ™)) dt, (5.2)

for any m and n where Sp,(t) = Zl:_ol ?,tc—k. .

Proof: Since the network is homogeneous, the probability of choosing the #'th users
is % Therefore, the problem is the same as the problem considered by Newman and
Shepp [100]. See [100] for the proof. O

Inspired by the proof of Theorem 5.1, we can derive the moment-generating func-

tion of Dy, ,, defined as
F(z) =Y #Pr{Dp,>i} =Y b (5.3)
=0 =0

Using the generating function F'(z) in (5.3), we can obtain all the moments of Dy, ,,

with a little effort and by taking higher derivatives of F(z) at z = 1 [?]. For example,
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using the definition of F'(z) in (5.3), we can write

E(Dmn) = F(l),

)

(D) = 2F'(1)+ F(1) — (F(1))2 (5.4)

)

The next theorem obtains F(z) and generalizes the result of Theorem 5.1.

Theorem 5.2 Considering the setting of Theorem 5.1, we can write the moment

generating function of Dy, , defined in (5.3) as

Proof: We evaluate F'(z) by the same trick as [100] in which the mean of D,,, is
derived. In fact, F'(z) can be evaluated by noting that b; is the probability of failure
in obtaining m packets at all the n users up to and including the ¢’th trial. Therefore,
b; is simply the polynomial (%xl + ...+ %xn)’ evaluated at z; = ... =z, = 1 after
excluding all terms which have all x;’s with exponent larger than m — 1. Therefore,

we may write

...—i-xn)i}

- : (5.6)

F(Z) :Zzi{(xl +.

where {-} denotes the operator that removes all the terms that have all z;’s with

exponent less than m — 1. Considering the following identities [100],

i5] 0 .
an = g / e~ 2tidt, (5.7)
0
{e b= g =e [T = Su()), (5:8)

<
Il
=)

=1

where the first equality in Eq. (5.8) is the definition of the exponential function and
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the second equality follows by noting that the second term in the right hand side just
subtracts out the terms with all z;’s larger than m. We may then replace the integral

form for X using (5.7) in (5.6) to get

o0

F(z) = Z/OOO —e zttzdt {($1+Z'+$n)z}

_ n/ e%tz{xl-i— +xn)}dt
0 P

n [ n
_ / o2t [ etmtertton T (% — S(tzs)) | dt
ZJo =0
n [ _a
-7 / e (e — (e — Sm(t))") dt, (5.9)
0
where we replaced z; = 1 for i = 1,...,n and we used (5.8) to get the second equality
and we replaced z; =1 for ¢ = 1,...,n to obtain the last equation. [

It is now quite straightforward to derive the variance of D, ,, using F'(z) and (5.4)

? (D) = 20 /0 T (L= (1= Sn()e™)") dt — E(Dn) — (E(Dn))?. (5.10)

5.3.2 Heterogeneous Networks with Dropping Probability

For the special case of a homogeneous network, we derived the moment generating
function of Dy, , in Theorem 5.2. In what follows, we generalize the results to a more
general setting in which users may have different SNRs and also a packet may be
dropped if outage occurs. We assume the transmitter will be notified in case a packet
is dropped and it will be considered for retransmission whenever the corresponding
user has the best SNR. Here, we assume a memoryless i.i.d. channel and that the
transmitter chooses the 7’th user with probability p; that depends on the SNR of all

users and their channel conditions for the throughput optimal strategy.
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The following theorem states the mean and variance of D,, ,, for this general setting
and for any m and n. The theorem is another generalization of the result of Newman

and Shepp [100] stated in Theorem 5.1.

Theorem 5.3 Suppose we have n users such that the probability of choosing the i’th
user is p; = St and the probability of dropping a packet is P.. Then the moment

generating function for D, ,, defined in (5.3) is

F(z) = L /000 ezt (e”t - e”PetH(etﬁi - Sm(tﬁi))> dt, (5.11)

i=1
where B; = (1 — P.)a;. In particular, assuming Sp,(t) is as defined in Theorem 5.1,
we have

=1

E(Dpy)=n /0 h (1 - f[ (1- Sm(ﬂit)e—ﬂit)> dt, (5.12)

and

JQ(Dm,n) = 2n? /Ooot (1 — H (1 — Sm(ﬁz-t)e—ﬂit)> dt — E(Dy ) — (E(Dm,n))Q.
= (5.13)

Proof: Similar to the proof of Theorem 5.2, we derive the moment generating func-
tion of Dy, ,, as defined in (5.3). Since we have a non-zero probability of dropping a
packet, we may assume that there is a fictitious user (n + 1’th one) corresponding to
the case where the packet is lost; therefore whenever a packet is dropped, we may as-
sume that n+1’th user has been chosen to be transmitted to. Assuming that P, is the
probability of dropping a packet, the probability of choosing the fictitious user is P,
and the probability of choosing the i’th user and sending successfully is %(1 — P,) for
©=1,...,n. Therefore, the delay Dy, , is the number of channel uses that guarantees

having m packets in all the n users (i.e., except for the fictitious user).
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The moment generating function F(z) = > 70  2'Pr(Dmpn > 1) = Yoy 2°b; where
b; is the probability of failure in sending m packets to n users up to and including the
1 channel uses and is equal to the polynomial (%xl +... ﬂ" 220+ P, . Tni1)! evaluated
at r1 = ... =z, = 1 after removing all the terms that have all x4, ..., x, exponents

larger than m. Therefore, we can write F(z) as

F(z) = Z Z— {(Bizi + ..., Butn + nPenir)}

7
=0

n
e, By P.x, o,
{(Brz1 + ,ﬂi'ﬂﬁ +nP.x +1)}g/ ot gy
! 0

Il
IMe L

Con [ sy~ A{(Bir +. -+ Bnn + nPeni1)}

ne > d

_ ﬁ/ooe { tf1z1+.. HtBnxn+nPeXny1 enPex,H_l H(etb’lm _ Sm(tﬁlxl))} dt
ZJo i=1

_n / ( . nPetH(etﬂi—sm(wi))) dt, (5.14)
ZJo i=1

where we used the identity in (5.7) to deduce the second equality. We also used the

following identity (which is analogous to (5.8)) to obtain the third equality in (5.14):
{e$1+---+wn+$n+1} = ¥ttt TntTnt1 _ oTnpa H (6557; _ Sm(%)) (515)
i=1

In (5.15), Sy, (t) is as defined in Theorem 1 and the operator {-} removes the terms
that have the exponents of zy, ..., z, larger than m. Eq. (5.15) can be easily proved
by noting that the polynomials on the left remove all the terms from the exponential
function that have all x;’s for + = 1,...,n with exponents larger than m — 1.

Using the relationship between F(z) and its moments shown in Appendix 5.7.1
and (5.4) and having F(z) derived in (5.14), we can obtain the mean and variance of
D, ,, as stated in the theorem. [

For example, as a simple consequence of (5.12), we can obtain the expected delay
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Figure 5.2: Expected delay éTrg;;‘) for different values of m and n

for the case where n users are equally likely and that the probability of dropping a

packet is P,, as

E(Dpn)

D= [T (- Sae )Y o)

by a simple change of variable in the integral stated in (5.12).

Fig. 5.2 shows the expected delay for m = 1,2, 3,4 and for different numbers of
users for a homogeneous network. It is clear that when n is large and m = 1, the
growth in the expected delay is like nlogn. Also Fig. 5.2 implies that the expected
delay does not grow linearly with m (for small values of m). In fact it converges to
nlogn although the convergence seems to be quite slow. The next subsection deals
with the asymptotic analysis of the delay for different regions of m and n.

Remark 5.1: It is worth mentioning that we can consider the delay in sending
m,; packets to the 7’th user for = = 1,...,n. In particular, considering the setting

of Theorem 5.3, and we are interested in sending m; packets to the j'th user for
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j = 1,...,i where i < n. Defining m = (m4,...,m;) and D, as the minimum

number of channel uses guarantees the receipt of m; packets at the j'the user for

j=1,...,1, we can write the moment generating function for D,, as
o
F(z) = Y 2'Pr(Dm > i)
i=0
oo i
— g/ ezt (ent — " Pet+ 2k Bt H(etﬂp — Smp(tﬁp))> dt. (5'17)
0 e

5.3.3 Asymptotic Analysis of the Moments of D,,,

In the previous subsection, we obtained the moments of D, ,, for a general setting and
for any m and n in closed form. However, it is hard to speculate how the mean and
variance of the delay behave as functions of m and n. In order to get a better insight
into the behavior of the delay, we derive some asymptotic results for the moments of

Dy, and for different regions of m and n.

Theorem 5.4 Assuming a homogeneous network and that a packet will be dropped

with probability P,,

1. For m fized and n — oo, we have?

1
E(Dpy) = TP nlogn + n(m — 1)loglogn + o(nloglogn), (5.18)

0*(Dimn) = O(n?). (5.19)

’

2. For m =logn and n — oo, we have

E(Dpy) =«

’ TP nlogn + O(nloglogn), (5.20)

where o = 3.146 1s the solution to the equation o — loga = 2.

3This case has been also proved in [100], however we present another proof that leads to results
for other regions of m and n as well.
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3. For m = (logn)" where r > 1 is fized and n — oo, then

1 , 1
n) =1 Pen(logn) + o(n(logn)") = )

mn + o(mn).  (5.21)

4. Forn fixed and m — oo,

E(Dpy) =

- nm + o(m). (5.22)

Proof: Refer to appendix 5.7.5 for the proof. [J
Assuming m = 1 and using the result of Theorem 5.4, we can state that the delay

converges to the mean almost surely using Chebychev’s inequality as

1
Pr {|Dmn - nlogn + O(nloglogn)| < n\/logn} >1—-— (5.23)

1-P, logn’

for large n. This implies that the delay hit for sending the first packet successfully
to all the users is increased from the minimum of n for the round-robin scheduling to
nlogn for the opportunistic transmission for large n. So the delay degradation due
to exploiting the channel variation and maximizing the throughput of the system is
a multiplicative factor of logn. It would be also interesting to investigate the scaling
law of the variance of D,,, when m also grows to infinity; this would then imply the
type of convergence to the mean for different regions of m and n.

Remark 5.2: For a homogeneous network, as opportunistic transmission is long-
term fair (i.e., the probability of choosing all the users is the same), we know that
for sufficiently large m, the expected delay should behave like mn. This is confirmed
by the fourth part of Theorem 5.4. Interestingly, Theorem 5.4 further implies that
if m grows faster than (logn)” where r is fixed and greater than one the expected

delay behaves like mn. This has implications for the timescale after which the system
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behaves fairly. Moreover, if m grows logarithmically with n, the expected delay is only
off by a constant factor of o = 3.14, compared to the minimum delay mn. Therefore,
our result can be seen as the short-term behavior of the delay for any m.
As mentioned, the largest delay hit is when we focus on sending a few packets,
i.e., m = 1 or m is small. The delay hit gets less when we focus on sending more
and more packets (i.e., when m gets larger). Therefore, in the rest of the chapter, we

mainly focus on the delay for sending the first packet, i.e. Dy,

5.4 Delay in Multi-Antenna Broadcast Channels

Multiple transmit antennas have been shown to significantly improve the throughput
of a broadcast channel. It is shown that dirty paper coding achieves the sum-rate
capacity of a Gaussian broadcast channel [10, 9, 12]. However, beamforming has long
been proposed as a heuristic method to mitigate the interference in the transmitter
and to send multiple beams to different users. Although beamforming is not optimal
in achieving the sum-rate capacity, its throughput does scale the same as that of dirty
paper coding for a system with many users and has much less complexity than that
of dirty paper coding [101, 102].

In this chapter, for a system with M transmit antennas, we assume a simple model
in which the base station transmits to M different receivers at each channel use. This
is certainly a valid model for beamforming or channel inversion, though it does not fit
the dirty paper scheduling in which the transmitter sends information to all the users
at each time. However, as far as the scaling law of the sum-rate is concerned, when M
is either fixed or growing logarithmically with n, it can be shown that beamforming,
channel inversion, and random beamforming all give the optimal scaling law for the
sum-rate [27].

For a homogeneous network, our model for the multiple antenna transmitter im-
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plies that, at each channel use, the transmitter sends to M different users uniformly
chosen from the pool of n users (see [27]). In this scheduling the transmitter sends M
beams, each one assigned to the user with the best signal-to-noise and interference
ratio (SINR) for the corresponding beam. As shown in Chapter 3, the best SINR
behaves like logn with high probability for large n. Therefore, we may again assume
that each packet carries a fix amount information (roughly about log(1 + plogn)).

This scheduling is certainly more balanced compared to the case where we have
a single antenna system that works M times faster. This can be justified by noticing
the fact that we exclude the possibility of sending to one user twice (or more) in each
block of M transmissions and hence the scheduling is more balanced. In particular,

assuming that there is no packet dropped as in Theorem 5.1, then we have

1

— Dy 5.24
- M ’ ( )

where Dy, (M) is the delay for sending m packets successfully to n users in an M-
transmit antenna system and where D,,,, is the delay for a single antenna broadcast
system as in Theorem 5.1.

In fact we can compute exactly the expected delay in transmitting the first packet
successfully, i.e., E (D ,(M)), for any n and M. Further generalization of the result
to m > 1 is non-trivial and we have not been able to do this; however, it is quite easy
to show that D, ,(M) < mD;,(M). The next theorem presents the result for m =1

and for any n and M.

Theorem 5.5 Consider a broadcast channel with M transmit antennas and n users.
Assuming that no packet is dropped, we can write the expected delay in sending one

packet to all users for any m and n as

ED,00) =33 (a1

k=0 r=1 i=0 (M)k
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Proof: Similar to the proof of Theorem 5.3, we first note that the mean of D, (M)

can be written as
o

E (Dyu(M)) =Y Pr(Dyn(M) > k). (5.26)

k=0
In order to compute the probability of D;, > k, we define the auxiliary random
variable M (k) as the number of users that have received no packets after k channel
uses in which the transmitter sends to M different users. From the definition of p,
it is clear that pY < n and that Dy, (M) > k is equivalent to u (k) > 0. Therefore,

Eq. (5.26) can be written as

o0 n

E (D1 (M) = ZP (uy" (k) > 0) =3 > " Pr(u(

k=0 r=1

|
V

(5.27)

The probability that u* (k) = r can be computed as follows. Assuming pM (k) = r
implies that only n — r users have received at least one packet in k£ channel uses. We
then define the event S; for 4 = 0,1,...,n — r as the event that at least n —r — ¢
users have not received any packets among n — r users who are supposed to receive a
packet. This implies that there are at most ¢ users that the transmitter sends packets
to. It is clear that for 1 < i < M probability of S; is zero, since the transmitter
certainly can transmit to M different users at each channel use. For 7 > M, however

we can write the probability of S; as

I%{&}::Q?J(&)::<2)<n;r)

()"

where we first chose two sets of users with cardinality r and ¢ from the set of n users

i=0,1,....,n—r (5.28)

and then we distributed packets among 7 of them & times by choosing M different
users at each time.

Considering the definition of y (k) = r and the S;’s, we can use the inclusion-
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exclusion principle (see chapter 4 of [98]) to obtain

Pr(uh(k)=r) = Pr(Sp—r) — Pr(Sp—r—1) + ...+ Pr(Sp)

= g(—m—r—ipr(si)
CBEr () e

Substituting (5.29) in (5.27), we can write the expected delay as

E(Dia(M)) = 3 Pr(u(k) > 0)

k=0

_ i Y o z_: ynr=i (”Zr> (&)k (5.30)

kOrleM

This completes the proof for the theorem. []
Remark 5.3: It is worth mentioning that we can also obtain the generating
function F'(z) that would lead to the moments of D, , (M) for any M and n. In fact,

F(z) is equal to

o0 o0 Kk
k _ n—r—i® \p) (V=T t
;Z Pr(D; (M >k)—§r:1 2 (—1) (A’})k< ; )(M) :
(5.31)
Using (5.4) and (5.31), we can easily obtain the variance (and other moments) of
Dy 5 (M).

Although Theorem 5.5 gives us the exact value of the expected delay for any
number of users, it does not make clear how much improvement on the delay we can
get in using a multi-antenna transmitter over that of the single antenna system. We
can in fact asymptotically analyze the expected delay derived in Theorem 5.5 for large

numbers of users to get a better intuition about this result.

Theorem 5.6 Consider the setting of Theorem 5.5. Then the expected delay in send-
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ing at least one packet to all n users using an M -antenna transmitter derived in (5.25)

behaves like
> etk
k=1%
ML
r=0 n—r

for large n and when M grows no faster than logn.

E (D1, (M)) = +0(1), (5.32)

Proof: The interested reader is referred to Appendix 5.7.6 for the proof. [J

For the special case of M = 1, the problem reduces to the coupon-collector problem
when m = 1 (one packet). It can be easily shown that the expected delay is equal
ton) ., 1~ nlogn. Clearly the result of Theorem 5.5 confirms this result for one
transmit antenna, i.e., M = 1.

Remark 5.4: As mentioned in (5.24), using multiple transmit antennas in the
transmitter should improve the delay. We may write the improvement on the expected
delay by using M transmit antennas over that of single antenna case as
=M+0 <K> . (5.33)

n

_

I
Eq. (5.33) implies that when M is not growing faster than logn, the gain in delay is
a factor of M, which comes from the fact that we are transmitting packets M times
faster. Therefore, multiple transmit antenna systems incur pretty much the same
delay as that of a single antenna transmitter that operates M times faster when there
is no channel correlation.

Although the gain on delay in using multiple transmit antennas is not that much,
multiple transmit antennas can significantly improve the long-term fairness in a het-
erogeneous network. More precisely, in [27], it is proven that if M grows logarith-
mically with the number of users, the probability of choosing each user becomes
independent of its SNR and approaches % Moreover, when there is channel corre-

lation, multiple antenna systems can significantly reduce the delay by “decorrelating

in time” the effective channel through means such as random beamforming [27, 57].
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5.5 Trading Delay with the Throughput: d-Algorithm

Previously, we showed the delay hit in using the optimal throughput scheduling is a
logn fold increase compared to the minimum achievable delay. In this section, we
propose an algorithm that can reduce the expected delay for sending the first packet
at the price of a little throughput degradation. The goal is to improve the logn-fold
degradation in the delay without too much reduction in the throughput of the system.

In order to improve the delay, we have to introduce more options to the scheduler
at each channel use. For single antenna systems, this can be done by looking at the d
best users in terms of capacity and transmitting to the user among those d users who
has received the least number of packets. We call this scheduling the d-algorithm.
For a large number of users and fixed d, it is quite easy to show that the capacity of
the best user and that of the d’th best user is quite close almost surely. This in fact
guarantees that the throughput degradation using our algorithm is not that much.

The next theorem quantifies the performance of the d-algorithm precisely.

Theorem 5.7 Consider the setting of Theorem 5.1 and suppose the transmitter uses
the d-algorithm. We denote the expected delay in sending the first packet by E(Din).

Then, for any d,

n

E(D},) = n/ ———dz + O(1). (5.34)

0 1— g

1—4 1

Asymptotically, we can further prove that if d is fized,

BE(Di) . E(DL) 1
lim —— Y = i — D = .
D) = o = d (5.35)

Proof: In order to compute the expected delay, we again define the variable r; as
the number of channel uses after sending at least one packet to 7 — 1 users and

before completing the transmission of at least one packet to i users. Clearly r; has a
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geometric distribution as
Pr(r; =k) = (1—p)* 'p; k=1,2,..., (5.36)
where p; is the probability that all the d best users have been chosen before, therefore

pi = 0 1<i<d-1

pi = -l d<i<n-1. (5.37)

Noting that D, , = Z?;OI r;, and also using the fact that the mean value of r; is 1%’

we can obtain the expected value of D, ,, as

n—1 1 n—1 1 n—1 1
EMD¢ Y=Y == s < (5.38)
5T . 2(2—1)...(2—d+1 — i— d’
i—a Pt iz 1 n((n—l))...((n—d—k%) imd 1 — (—Z“)

%

d) / (Z) To evaluate the summation in the

where we used a simple upper bound for (
right hand side of (5.38), we may take integrals from z = 1 to xz = n —d+ 1 from

both sides of

1 > 1 > ! (5.39)
1—(z/n)* ~ 1= (lz]/n)? ~ 1= ((z—1)/n)"
to obtain
E(D¢,) = n/ h - fxxd +0(1), (5.40)

which completes the proof for the first part of the theorem. To prove the second part,
we define the integral on the right hand side of (5.40) as G(n). Then it is quite easy

to show that when d is fixed, we have

. G(n) . d 1
1 =1 = — 41

where we used the L’Hopital’s rule in (5.41). Considering that E(D;,) scales like
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Figure 5.3: Expected delay E(D{,) for different values of d and n

nlogn as proved in Theorem 5.4, the second part of the theorem immediately follows
from (5.41). O

Fig. 5.3 shows the delay improvement for different values of d and for different
number of users. As d increases, the delay improves though with less pace. Clearly,
we can get most of the improvement by just checking the best two users (d = 2) and
further increasing d will not improve the expected delay as much as before.

There is of course a price to pay on the rate for the delay improvement. In order to
see the throughput hit, we look into the ergodic throughput of the channel (denoted
by R(d)) using the d algorithm defined as

R(d) = Elog (1 + p1r£1;1<xk|hi|2> , (5.42)

where max* denotes the k’th maximum and % is a random variable uniformly dis-
tributed between 1 and d. Using results on the extreme value theory, it is quite

straightforward to show that
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lim R(d) — R(1) =0, (5.43)

n—oo

when d is fixed. The proof is based on the fact that is d is fixed, the first and the d
best user both have SNR of about logn(see [60, 27]. Eq. (5.43) implies that in the
limit of large n, the difference of the throughput of the d-algorithm and the maximum
throughput converges to zero.

Remark 5.5: It is worth mentioning that the transmitter may use a round-robin
type of scheduling and also exploits the channel. This can be done by sending to the
best user among n users at the first channel use, and then sending to the best user
among n — 1 users who have not been chosen and so on. This method can ensure
that the worst case delay is equal to n. The ergodic throughput of this scheme can
be written as

1
Rrr=F {ﬁ ;log (1 + p@%’i‘hiF) } : (5.44)
Assuming that the channel is Rayleigh fading, we can show that in the limit the ratio
of Rrr over R(1) is one. Of course, the convergence in (5.43) for the d-algorithm
holds in a stronger sense. Moreover, it is worth mentioning that this scheduling may
require packets with different amounts of information.

Remark 5.6: Another approach to trade the delay with throughput is to consider
a threshold for the capacity and to send to the user who has received the least number
of packets among the users with instantaneous capacity above the threshold value
(Crp). In this case, we basically have a random d that has a binomial distribution
where the binomial parameter ¢ depends on the threshold value C'r,. We can in fact

bound the delay for sending one packet to all users using the d-algorithm as

E(Dyn) = Ee{ E{Dyn|d}} < Eq {"il %l—l)d} ; (5.45)

=
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where d has binomial distribution with parameter ¢ = Pr{log(1 + p;|h:|?) > Cr1}.

5.6 Conclusion

Providing quality of service (QoS) and also maximizing the throughput in a cellular
system are the main challenges that require designing the physical layer and multiple
access layer together. In this chapter, we considered the downlink of a cellular system
(i.e., a broadcast channel) and we also considered a notion of worst case delay, which
is defined as the delay D,,, incurred in receiving m packets by all the n users in
the system. Clearly this definition of the delay is stronger than the average delay
and represents the worst case delay among the users. In order to maximize the
throughput, the transmitter has to send a packet to the user with the best channel
condition, which increases the delay. The main goal of this chapter was to analyze
this delay increase.

Assuming a block fading i.i.d. channel and a single antenna broadcast system with
n backlogged users, we derived the moment generating function of the delay for any
m and n and for a general hetereogeouns network where a packet can be dropped
if outage capacity occurs. Asymptotically, for a homogeneous network where the
throughput optimal scheduling is long-term fair (i.e., the probability of choosing users
are equal), the result implies that the average delay in sending one packet to all users
behaves like n logn as opposed to n for a round-robin scheduling. We also proved that
when m grows like (logn)", for some 7 > 1, then to the first order the delay scales as
mn. This roughly determines the timescale required for the system to behave fairly.
We also looked into the delay analysis for a system equipped with multiple transmit
antennas. Finally we proposed an algorithm that without sacrificing too much on
the throughput can significantly improve the delay. The algorithm always considers

the first d user with the best channel conditions and transmits to the one who has
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received the least number of packets.

There are still questions that remain to be answered. For example, in the model
we considered, all the users always have packets of equal size for transmission; it
would be quite interesting to generalize the results to the case where each user has
a random rate of arrival or a different transmission rate and analyze the behavior of

the length of the longest queue among n users.

5.7 Appendices

5.7.1 Properties of F(z)

In this appendix we prove that using F'(z), we can generate all the moments of D, ,,
as in (5.4). Defining a; as the probability of success in sending at least m packet to

all users in ¢ channel uses, we may write the mean of D,, ,, as

E (Dpp) = iza (5.46)

As b; was the probability of failure in obtaining m packets in all the receivers up to
and including the 7’th channel uses, it is clear that a; = b;_1 — b;. Therefore, we may

write the mean value of D, ,, as

E (Dm,n) = Zi(bifl - bz) = Z b; = F(l)a (547)
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which leads to the first identity in (5.4). We can also write the second moment of

Dy, , as

= iiQCLi = iiQ(bi—l - bz)
i=1 =1

= Zz+12b —2221)

1=0

= b+ Z(Qi +1)b

= i(% +1)b; = 2F'(1) + F(1), (5.48)

=0

which completes the proof of (5.4). We can similarly prove that the i’th moment of

D, ,, can be written as
E (D) = Zz+1 )by —Zz’“b _Z< )szb (5.49)
7=0

It is worth noting that the inner summation can be found by taking the derivatives

of F(z). For example,

Therefore, Egs. (5.49) and (6.40) imply that all the moments of D, ,, can be obtained

in terms of derivatives of F(z) at z = 1.

5.7.2 Proof of (5.78)

In this appendix, we prove Eq. (5.78) and we study the behavior of the maximum
n iid. x?(2m) random variables (z;’s) when m = (logn)” where r is a constant

larger than one. We first note that the CDF of z; is the incomplete gamma function.
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Therefore,

Pr { maxz; < x} = (1 Su(@)e®)" = (%v(m, m))n , (5.51)

1<i<n

where I'(m + 1,2) = 1 — y(m + 1,2) = (m — 1)le7®S,,(x). We first compute the
following probability:
Pr {lrgag(mi < (logn)" + (log n)’/21} = (m!y (m+1, (logn)" + (log n)’/Q’l))n :
(5.52)
In [4, 8], it is shown that when both of the arguments of the incomplete gamma

function grow equally fast, we can expand the incomplete gamma function as
1 1
y(m+1,m+ V2my) = Em! (1 +erf(y) + O(E)) , (5.53)
when m and y are real and y is bounded and erf is the error function. Therefore, we
may use (5.53) to compute (5.52) as

Pr{ s < (logn)” + ogn)"*} = (1. 001/ logn) )" = O™/,

1<i<n

(5.54)

We can also evaluate the following probability as

7"/2+1} _ (1 _ [(m +1, (logn)” + (log n)7/2+1))"

Pr { max z; < (logn)" + (logn) -

1<i<n

(5.55)
We may now use the expansion for I'(a+ 1, ) mentioned in (5.76) when the argument
satisfies the fact that £ tends to zero. Therefore, using Sterling’s formula for m!,
we obtain

Pr { maxz; < (logn)" + (logn)r/QH} = (1=0(e s )\ = 1_0(1/n). (5.56)

1<<
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Using the union bound, Eq. (5.56) and (5.54) imply that
P { Qog ) (log )™ ?) < e, < (logn) + (ogn™>) b =1- 00U/
(5.57)
which completes the proof of (5.78). O

5.7.3 Roots of the Polynomial r(x)

In this appendix we investigate the zeros of the polynomial r(z) = ﬁ =(x—M+
1)pr — (n — M + 1)p when n is large and M is not growing faster than logn. It is
clear that r(x) has m roots and one if them is clearly 2, = n. Intuitively, we would
expect that if n is large the roots of r(x) are very close to the circle |x| = n. We can
in fact prove that if |z| > n then |x —i| > n — i for any n and i. Therefore if |z| > n
then

| 1 (x —1)] > 1 (n —1). (5.58)

2

2

Therefore, 7(z) = 0 cannot have any root outside |z| = n.

1

w57 (w/n) has all its roots inside the unit

In other words, we proved g(z) =
circle. Therefore, we can use the method of iteration to find the x;’s. To use the
iteration method we write the equation g(z) = 0 as h(z) = -;g(z) — z = z, then start
with a guess such as x, and compute z;11 = h(z;). Then the z; ’s converge to the
root if the sequence z;’s belong to an interval I and |h'(z)| < 1 in the same interval
for all z € I.

We first show that for |x| < 1, then |h'(x)| < 1. This can be proved by expanding

h(z) as

h(@:%( @)~ (1—%)):

S

] 2
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It is pretty clear from (5.59) that |b/(z)| = |z| + O (MT2> <1
M

Now we can apply the iteration method by starting with the roots of 2™ = n

as the first approximation. We can then obtain

; 9mi M -1 M—-1 M
Ti _ % (1— )—i— —1-0(—) i=1,...,M—1, (5.60)
n

2n 2n n

where z;’s are the poles of f(x). Having derived the roots, we can obtain the partial

fraction expansion of f(z) as

M-1

1 i
=y f (5.61)

fl) z-n £ T —x;

where z;’s are as defined in (5.60) and «; can be obtained as

1 1
o; = lim (z — z; xr)= : 5.62
A P Y 62

1
M-—1 1 .
(n=—M+1)m 32—y 7%

For example, Eq. (5.62) implies that ag =

5.7.4 Roots of (5.60)

In this appendix we show that assuming z,,’s are as in (5.60), then . (wp_l).’f_!(wp_n i

o(1). Using the definition of z, we get

Re(z;) = n(l— 5

Im(z;) = n(l— o
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We can then easily show that for all 1 < p < M — 1, we have

| | LM 2p i 2+ , 27D
J— fd —_ —_ ln JR—
T 2n M T M2 v

> n—M/2—i. (5.64)

|zp—i|

o g < a < 1 where « is a constant inde-

We may denote the upper bound for

pendent of n and less than 1. Therefore

! M2 _ _ n
n! ‘ < H n—M/2—i oM H 1 .
Tp(xp —1) ... (xp —n+1) e Ty —1 i_niM/2xp—z
S ’IL M/2 1 M H
i a1/2 1——)s1nM
= O (a™(logn)"&") = o(1), (5.65)

where we used the fact that M is not growing faster than logn. This complete the

proof for zp(zp—l)ﬁ!(z,,—nﬂ) = o(1).

5.7.5 Proof of Theorem 5.4

In this appendix we present the proof for Theorem 5.4.

Proof: i) The expected value of D,,, is shown to be equal to (5.16). We first
prove that the integral in (5.16) is in fact proportional to the expected value of the
maximum of n i.i.d. x?(2m) random variables. To prove that, we assume z;’s for
i=1,...,n are i.i.d. random variables with x*(2m) distribution. We can then write
the expected value of the maximum of x;’s as

B{maxz;} = /Ooo 2 fone () = /000(1 ~ Fge(2))dz = /000(1 P ())dz, (5.66)

1<i<n
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where fiq:(x) and Fy,q.(z) are probability distribution and cumulative distribution
functions (CDF) of the maximum of z;’s and F'(z) is the CDF of z;. We further
know that x;’s are i.i.d. and have x?(2m) distribution and therefore their CDF is the
incomplete gamma function and can be written as F(z) = 1 — S;,,(z)e™*. Therefore,

we may write (5.66) as

E(Dpp) = (1n j;e)E{lrg%xi} = (1”_+;) /0 N (1—(1=Su(@)e ™)) dz. (5.67)

Therefore to analyze the mean of D,, ,,, we investigate the behavior of the maximum of
x;’s. In [27], it is shown that for m fixed, max z; behaves like logn+ (m—1) loglogn.
<i<n

More precisely,

maxz; — logn — (m — 1) loglogn
py J |1Sisn SO(loglogn) :1_0( 1 >

logn logn logn
(5.68)
We can therefore state a lower bound for Dy, ,, as
1 o
E(Dn,) > / (1— (1= Su(@)e™)") da
1- Pe logn+(m—1)loglogn
n+1
— S _
T PePr {lrgaéxx, > logn + (m — 1) loglogn}
> 1 (nlogn +n(m —1)loglogn + o(nloglogn)) (1 -0 [ —
= —) nlogn + n(m oglogn + o(nloglogn Tog
1
= nlogn + n(m — 1) loglogn + o(nloglogn). (5.69)

1-P,
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We can also obtain an upper bound for the expected delay as

1 logn+(m—1)loglogn
E(Dpn) < 27 / (1— (1 = Sp(x)e ™)) da
0

’ - 1-PF
+1”_+;e /1; (1= (1 = Sp(@)e)") da
= 1”_"';6 Pr {lrgi)%x, <logn+ (m—1) loglogn} + - l:n %e—wdx
< P (nlogn + n(m — 1)loglogn + o(nloglogn) + 7 —nPe IOC; %e—wda}

1

= TP (nlogn +n(m — 1) loglogn + o(nloglogn) + O (nI'(m + 1,logn))
1

= TP (nlogn + n(m — 1) loglogn) + o(nloglogn), (5.70)

where the third inequality follows from (5.66). Noting that when m is fixed, we have
['(m,z) = O(z™ e ) [63] and thus the last term in the fourth line of (5.70) is of the
order (logn)™. Clearly, the upper bound in (5.70) and the lower bound of (5.69) are
tight to the first order and lead to the proof of (5.18) for the expected value of Dy, .

To obtain the variance, we first note that D,, , < mD,,, which is clear from the
definition of D,,,. Now we first derive the variance of D;, and, since m is fixed,
the variance of D,,, has the same order. Denote by r;, for i =1,...,n, the number
of transmissions after transmitting at least one packet to 2 — 1 users and before 2

users receive their first packet. Clearly the r;’s are independent and have geometric

Pr{ri:k}:<i;1>k_l (1—i;1). (5.71)

The distribution of r; is obtained by noting that r; equals k if in the last £ — 1 trials

distribution

the packet is transmitted to the ¢+ — 1 users who have already been chosen and then
in the £’th channel use, one user will be transmitted to from the pool of n — ¢ + 1
users who have already been chosen.

Using the definition of D,,, it is clear that D,, = Z:.L:l r; and therefore the
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variance of D, can be written as

1 1
0,231’71 =n? Z =z "Z 7 (5.72)
i=1 i=1

It is quite straightforward to prove that the first term on the right hand side of (5.72)
behaves like O(n?) and the second term behaves like nlogn. Therefore the variance

of Dy, ,, can be written as
a%m,n < m’o}, = 0(n?). (5.73)

i1) To prove the second asymptotic result, we mention a result on the behavior of
the maximum of n i.i.d. x*(2m) random variables proved in [101]. It is shown that if

m = logn, then

1
— < ; < =1-
Pr {alogn O(loglogn) < maxz; < ozlogn—i—O(loglogn)} 1-0 <logn> ,
(5.74)
where « satisfies « —loga = 2 (i.e. a & 3.14). Therefore, using the same methodology

as in (5.70), we may write an upper bound for the delay as

E(Dus) < < _1Pen (1 ~0 (loén)) alogn + O (/:o xnf(m)F"l(a:)dx)

logn

= Y megnto [T ey
= 1_P605n gn N rn m' € T

logn

1 n
= 1 (500m +1,l0gm)) .
1 _Peom, ogn+ O - (m+1,alogn)), (5.75)

where m = logn. In [4, 8], the asymptotic behavior of the incomplete gamma function

when both arguments are going to infinity has been considered and it is shown that

r—a

T(a+1,2)=e® . (1 o —— )) , (5.76)
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when the fraction Y% is positive and tends to zero. Using (5.76), (5.75) and using

r—a

Sterling’s formula for the factorial, we obtain

—1Pe anlogn + O(nloglogn). (5.77)
A lower bound for E(D,,,) can be obtained from (5.74), and it is quite easy to show
that E(D,,,) > anlogn using the same approach as in (5.69). Since the upper and
lower bounds for the expected delay are tight to the first order, the second part of
the theorem follows immediately.

i1i) Proof of this part is along the same line as that of the second part. In Appendix

5.7.2, it is proved that if m = (logn)" for r fixed and greater than one, then

Pr {(logn)r — (logn)™?7' < maxz; < (logn)" + (logn)’"/”l} =1-0 (10271) .
(5.78)
Writing the upper and lower bounds for the expected delay as in (5.70) and (5.69)
and using (5.78) and following along the same line as what we did in the proof of the
second part leads to the proof for this part as well.
iv) The proof of the fourth region is a bit different as n is fixed and m grows to in-

finity. Using Chebychev’s inequality and noting that the x;’s have x?(2m) distribution

and therefore have mean and variance of m, we obtain

Pr{m—m3/4§x,-§m+m3/4}=1—O(

%) (5.79)

for any 1 < ¢ < n. We can then use union bound to get

1 1
— 3/4< < 3/4 = — E— = — E—
Pr {m m3/t < 112%);:1:, <m+m } 1-nx0 (\/_> 1-0 <\/_>, (5.80)

where we used the fact that n is fixed. Similarly to the upper bound derived in (5.70),
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we may then obtain an upper bound for the expected delay as

1 1 * n
< 3/4 _ m_—x
E(Dp,) < 1_ Pe(m—l-m n (1 O <m>) + O (/ermM —m!:r e dx)
_ 1 n 3/4
= 1_Pemn+0(m!F(m,m+m )) + o(mn)

1
= ) .81
1_Perrm—i-o(wm) (5.81)

The last equality follows by using the asymptotic expansion of the incomplete gamma
function stated in (5.76) [4, 8]. Clearly mn is the lower bound for the expected delay

and therefore the lower and upper bounds are tight to the order of mn. OJ

5.7.6 Proof of Theorem 5.6

Here we present the proof for Theorem 5.6.

Proof: To asymptotically analyze the expected delay, we may write Eq. (5.25) as
()

&)
SO (T

=(n—M+ 1)M:g_; (Z) ZZ;: (I;) (n— M+1)(A_lek(_7;i_M+ D’
(5.82)

E(Dyn(M)) = i (7) g(_l)w_i (n i T) i (

r=1 i=0 =0

where the second equality follows by noting that the inner summation is a geomet-
ric sum and also we let k¥ = n — r in the second equality. In (5.82), (n)as is the

Pochhammer symbol and is equal to n(n+1)...(n+ M — 1) [63].

To compute the inner summation in (5.82), we define f(x) = (n—M+1)M£(w—M+1)M
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and expand the inside fraction using the partial fraction expansion around x =1 as

f(x)|””:i:{(n—M—i-l)Mi(x—M—i-l)M}x:,-: {MZ_:xipmp} ) :Mz_lifp:cp

p= T—i p:O

where z,’s for p = 0,..., M — 1 are the poles of f(x). The trivial pole of f(z) is

xo = n. In Appendix 5.7.3, it is shown that when n is large, the poles of f(z) can be

written as
Tp 2mp M -1 M -1 (logn)?
— =M [1-— +——+40 p=1,....,M -1, (5.84)
n 2n 2n n?

as long as M does not grow faster than logn. Moreover, the a,’s can be computed as

in (5.62) in Appendix 5.7.3. Replacing (5.83) in (5.82), we get

E(Dyn(M)) = (n— M + 1)MM1a,, ::; (Z) Xk:(—nk—i ! <k) (5.85)

1— X, \ ¢
p=0 i=0 P

Clearly the inner summation is just a function of z, and k. Fortunately we can obtain
a closed form function for the inner summation by noting that following identity on

the partial fraction expansion,

s k! ~ 5
g(z) = A Z:; = (5.86)

z(r—1)... x

where the (5;’s can be obtained as

B; = lim(x —4)g(x) = (=1)* <k> (5.87)

T—1 1

Therefore considering (5.86) and the (;’s derived in (5.87), the inner summation in

(5.85) is equal to g(z) = (w_’]:;kH. Replacing g(z) by the inner summation, we can
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write Eq. (5.85) as

E(Dip(M)) = (n—M+1)y Z_ a, ; (Z) ﬁ (5.88)

Again we can simplify (5.88) by first noting that the inner summation is just a function

of z,. Moreover

>
—~
8
N
[I>
3
L
N
x> 3
N——
s
|
==
=
+
—

_ ln_l(n—k+1)k

- E; (32 - k)k

" pr (x — k) (x —n)y

= %{F(—n,l;l—z;l)— ﬁ}, (5.89)

where F(a, b; ¢; z) is the Gauss hypergeometric function and is equal to ) ,- (“2’;)(:)’“ 1—’?

It is further quite easy to see that

n
F(—n,1;1—2;1) =
k=0

(n—k+1)

R (5.90)

So the third equality in (5.89) follows from (5.90). It is worth mentioning that h(n) =
Zz;é —L_ by just replacing z by n in the definition of h(z); this will be used later in
the proof.

We can further simplify the hypergeometric function by noting that F(z,y; z;1) =

% [63], and therefore we can write h(z) in (5.89) as

1 T1—=2z)l'(n—=x) n!
Mo) = STmri-ors  G-nn
n! 1

_ , 5.91
(m—n)n+1+x—n (5.91)
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where the equality follows using from the fact that ['(1 + z) = zI'(z). We can now

replace h(x) in (5.88) and write the expected delay as

M-—1
E(Din(M)) = (n—M+1)y Y ayh(z,)
p:
Zn 1 M-1 a M-—1 a ’]’L'
_Lak=1k n—M+1 P + I A ,
sy e Z T Z (2 = n)nsa
(5.92)

1
(n—M+1)p ML

n—r

h(z =n) = Y_,_, &, which follows from the definition of i(z) in (5.89). We have to

where we used the fact that ag =

proved in Appendix 5.7.3 and

evaluate the second and third terms in (5.92) for large n. The second term can be

obtained by defining the polynomial r(z) = ﬁ =@ —-M+1)y—(n—M+1)y.

Noting that z,’s are the roots of r(z), we can write

M-1

1 1 1
S = (5.93)

z—xz, r(®) z-n 1) rn)(z-n)

p=1

where the first equality follows from the definition of r(z) and its partial fraction

expansion and qq is basically lim(z — n)f(z) = T,(ln). Now we can replace z = n in
T—n

(5.93) to get

> " = i e )

p=1

57" (n)(& —n)* + O((z — n)*)

- _:{—mac(;— 1)...(x —n+1)(xz —n)?r'(n)
___1"(n)
= SR (5.94)

where we used the Taylor expansion of r(x) around z = n. Using the definition of
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. Therefore the second

r(z) it is quite straightforward to show that (:,"(")2 <

1
(n)) (n—M+1)um

term is of the order one.

To analyze the third term in (5.92), we first note that as z,’s are close to the
circle of radius n and |z, — ¢| is roughly always greater than n — ¢, it can be shown
that W_”T'H)n =0(1)forp=1,...,M —1 (see Appendix 5.7.4 for the proof). Using

that, we can write the third term as

M-1

(n—M-i—l)MZ

p=1

n!
(xy —n+1),

|
QpN.

(mp — N)nt1

ZO(MZ‘I

p=1

Replacing (5.95) and (5.94) in (5.92) leads to the proof. [J
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Chapter 6

OFDM Systems and the High
Peak-to-Average-Power Problem

6.1 Introduction

Multicarrier modulation has been proposed in different broadband wireless and wire-
line applications such as wireless local area networks (WLAN) and digital subscriber
line (DSL). Even though multicarrier modulation is very well-suited in a multipath
fading environment, it suffers from high amplitude variation, which is unfavorable
from a practical point of view. Different schemes have been proposed to reduce the
peak to mean envelope power ratio (PMEPR) ! such as coding methods, clipping,
reserved carriers, and probabilistic methods such as selective mapping and partial
transmit sequence [34, 36, 39, 46, 68, 37, 38|.

Unfortunately, the worst case PMEPR of multicarrier signals is rather high and
is of the order of n where n is the number of subcarriers. On the other hand, the
numerical evaluation of the distribution of PMEPR shows that encountering the worst
case n is highly unlikely [33, 47, 69, 70, 71, 72]. This in fact motivates the problem
of finding the PMEPR distribution to quantify how severe that is. In [33, 47], by

assuming that the multicarrier signal is a Gaussian process, an expression for the

'In this thesis, the term PMEPR refers to the peak to average power of the complex baseband
OFDM signal and PAPR denotes the the peak to average power ratio of the transmit real signal
[37].
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probability distribution of PMEPR is derived. This is a very strong assumption, and,
when the codewords are chosen from fixed constellations, is mathematically not valid
for the joint distribution of n or more samples [73]. Recently, in [71], an upper bound
for the PMEPR distribution is shown for QAM/PSK with M? points and uniform
distribution over the constellation points, and it is shown that the probability of
encountering a PMEPR of greater than (1 + €) logn is going to zero as n increases.
On the other hand, in [72] using techniques different from ours, a lower bound for the
distribution of PMEPR is obtained when codewords are uniformly distributed over a
complex sphere. However, [72] does not perform an asymptotic analysis, which is what
we do here. In this chapter, we generalize the results to a larger class of constellations
with even distribution over the constellation points, and we show a stronger result,
namely with high probability the PMEPR, behaves like logn + O(loglogn). In other
words, encountering a PMEPR of less than logn + O(loglogn) is also highly unlikely.

The results are based on a generalization of the well-known result of Halasz [74]
for Littlewood trigonometric polynomials with equiprobable coefficients chosen inde-
pendently from {+1,—1} [69, 37, 71]. In summary, we show that, with probability
approaching one, any codeword either with entries chosen independently from the
symmetric QAM /PSK constellations or chosen uniformly from a complex sphere has
PMEPR of logn + O(loglogn) for a large number of subcarriers. We then use this
result to determine the achievable rate of codes with given minimum distance and
bounded PMEPR.

The rest of the chapter is outlined as follows. Section 6.2 introduces the notation,
multicarrier signals, and the PMEPR of a codeword. The lower and upper prob-
ability bounds for the PMEPR distribution are derived in Section 6.3. In Section
6.4, we discuss the consequences of the bounds and we obtain a Varsharmov-Gilbert
type bound for the achievable rate of codes with bounded PMEPR and with given

minimum Hamming distance.



145
6.2 Definition

The complex envelope of a multicarrier signal with n subcarriers may be represented

as
n
sct) =) e, 0<t<1/f, (6.1)
i=1
where fq is the subchannel spacing and C = (¢4, ..., ¢,) is the complex modulating

vector with entries from a given complex constellation. The admissible modulating
vectors are called codewords and the ensemble of all possible codewords constitute the
code C. For mathematical convenience, we define the normalized complex envelope

of a multicarrier signal as
sc(f) = Zciejai, 0<6<2m. (6.2)
i=1
Then, the PMEPR of each codeword C in the code C may be defined as

2
PMEPR.(C) = max -2

G EICIPY 63

Similarly, the PMEPR of the code C, denoted by PMEPRg, is defined as the maximum
of (7.3) over all codewords in C. It is clear from the definition of PMEPR that if all
the carriers add up coherently, the PMEPR can be of the order of n.

Even though the worst case PMEPR is of the order n when ¢;’s are chosen from a
constellation such as QAM, it is shown that with high probability the PMEPR of a
random codeword is logn almost surely [75, 74, 35]. This implies that the PMEPR is
not as bad as what is predicted by the worst case and its distribution should be taken
into consideration. Fig. 6.1 compares the complementary cumulative distribution
function (CCDF) of PMEPR for a multicarrier system with n = 128 and using a

64QAM constellation with that of a single carrier system. By ignoring peaks with
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Figure 6.1: Comparison of Pr(PMEPR > )) for a multicarrier system with n = 128
and a single carrier system using a 64(QQAM constellation for 5000 random codewords.
probability below 1073,2 the PMEPR of the multicarrier system is 12.5 as opposed
to 2.3 for the single carrier system. This shows a 7.35 dB gap between the PMEPR
of these two systems.

In this chapter, we will consider two classes of codes, namely, complex symmetric
g-ary codes in which each coordinate is chosen from a complex QAM or PSK constella-
tion with alphabets of cardinality ¢, and spherical codes in which codewords are points
on a complex n-dimensional sphere defined as Q, = {(c1,...,¢n) 1 Doy |ci|> = n} .

It is worth noting that for a random g-ary code with i.i.d. entries chosen from a
constellation, F{||C||*} = nE,, where E,, is the average energy of the constellation.
Also, for spherical codes chosen from 2,,, E{||C||*} = n since all the codewords have
constant norms.

Throughout the thesis, we will use the following notations: C and C represent the

code and codeword, ¢; denotes the 7'th coordinate of the modulating vector C, log{-}

2Throughout the paper, in order to compare the simulation results, we approximate the PMEPR
of a scheme by the value n such that Pr(PMEPR > n) = 1073. We basically ignore peaks with
probability below 1072 in our simulations.
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is the natural logarithm, and H,(r) = —zlog,(x) — (1 — x)log,(z). We use o and 3

as arbitrarily constants and f(n) = O(g(n)) denotes that lim ‘% < |al.

n—o0

6.3 Bounds on Distribution of PMEPR

It is a commonly assumed in the literature that when the ¢;’s in (7.2) are indepen-
dently chosen, sc(f) can be approximated as a Gaussian process (for example see
(33, 47]). However, this is not mathematically rigorous for spherical codewords and
codewords with entries from a QAM /PSK constellation. In other words, by assuming
that the ¢;’s are i.i.d., even though it is conceivable that any finite samples of s¢(9)
are jointly Gaussian for large values of n, this statement is not valid for n samples of
sc(6).

In this section without using any Gaussian assumption, we derive upper and lower
bounds for the PMEPR distribution for different schemes. The derivation of the
bounds are the generalization of a result of Halasz [74] for the asymptotic distribution
of the maximum of | "7 | a; cos if| when a;’s are chosen independently from {+1,—1}
with equal probability. This result is extended in [75] to the maximum of the modulus
of polynomials over the unit circle®* with real independent coefficients, c;, and with

—a2t2+a3t3+0

characteristic function E{e’**} = e () for ¢ in some nontrivial interval

[—d, d].

Based on our application for OFDM signals, we generalize the result of [75] and [74]
to polynomials over the unit circle when its coefficients are chosen from the following
three general cases: (i) ¢;’s are i.i.d. chosen from a complex QAM constellation in
which the real and imaginary parts of ¢; each has i.i.d. and even distribution, (i7) ¢;’s
are i.i.d. chosen from a PSK constellation where the distribution function over the

constellation points is invariant under rotation by /2, and (i74) when the modulating

3By polynomials over the unit circle, here we mean polynomials over the complex field evaluated
on the unit circle.
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codeword, C, is chosen from a complex n-dimensional sphere in which ¢;’s are no

longer independent.

6.3.1 Lower Bound for the PMEPR

In this subsection, we obtain a bound for the probability of having a PMEPR slightly
less than logn and we show that asymptotically this probability goes to zero. Theorem
6.1 derives the bound for QAM constellations and it is later generalized to PSK and
spherical codes in Theorem 6.2 and 6.4.

Since scaling the constellation does not affect the PMEPR, for mathematical con-
venience, we assume the maximum energy of the constellation is one and therefore
the resulting E,, is less than one and denotes the normalized average energy of the

constellation.

Theorem 6.1 [Lower Bound: QAM Case] Let sc(6) be as in (6.2) where ¢; = a;+jb;
and the a;’s and b;’s each has i.i.d and even distributions. Also, let CqQAM be the

ensemble of all the admissible codewords C. Then,

I%{PMEPRQMM«ﬁjgbgn—Gﬁkgkgn}g()(b;n). (6.4)
Proof: Since we are looking for an upper bound for Pr{PMEPR,.(C) < A}, hence a
lower bound for Pr{PMEPR_(C) > A}, instead of considering the maximum of s¢(f)
over all #, we may consider the maximum of s&(#) = Re{sc(6)} over its n samples
O = m(2m + 1)/n for m = 1,...,n. Following the proof of [74], we also define
0<u(z)<1as

0 |z] <M,
u(z) = (6.5)

1 |z|>M+A

where A = | /ﬁ and assume M = \/nEy, logn — 6.5nFE,, loglogn—, /2. We also

logn
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assume u(z) be a function that is ten times differentiable such that u((z) = O(A™")
for 1 <r <10 *. Based on these assumptions on u(z), in Appendix 6.5.1, we proved
other properties of u(z) that will be used later in the proof. We then define the

random variable 7 as

n n

n= u(Re{sc(n)})

(st 0n) = Y- [ v, (06)

where we replaced u(z) by its Fourier transform v(¢). To find a lower bound, we use

the following inequalities:

> > R > - 1— -
Pr{ max [sc(0)] > M} > Pr{ max |sf(0,)| > M} = 1-Pr{n=0}

> 1-Pr{n=0,7>2E{n}}

= 1-Pr{jn— E{n}| > E{n}}

0.2

1-— E"’{nn}' (6.7)

The first inequality follows from the definition of 5, which is zero when |s£(0)] is less
than M. The second inequality follows from the fact that 7 is a non-negative random
variable, and the last inequality is Chebychev’s inequality.

Therefore, the evaluation of the lower bound boils down to the asymptotic analysis
of the first and second moments of 7. In Appendix 6.5.2, it is shown that E{n} >
O(log’n), and o2 = E{n*} — E*{n} < O(E{n}log’ n +log’ n). Therefore, the above

results imply that

1
Pr{ max |s¢(8)| > \/nE,, logn — 6.5nE,, loglogn — \ /%} >1-0 ( ) .

0<9<2r log4 n

(6.8)
Using the definition of PMEPR and normalizing both sides of (6.8) to P,, = nFEg,,

“Note that u(")(z) = O(A~") means that for all =, 1i_>rn |%| < @, which implies that the
n o0

maximum of [u(")(z)] is less than aA~" for large n.



150

the theorem follows. [

As mentioned in Appendix 6.5.2, the derivation of the lower bound relies on the
characteristic function of s&(f). For the PSK case the real and imaginary parts of ¢;
are not independent, however, we can still use a similar argument to generalize the
result to PSK constellations in which the distribution over the constellation points is

invariant under 7/2 rotation.

Theorem 6.2 [Lower Bound: PSK Case] Let ¢; = e?Bi where the ¢;’s i.i.d. chosen
from a q-ary PSK constellation in which the PDF of ¢; is invariant under rotation by

7/2 and C}5% is the ensemble of all codewords C. Then,

1
Pr{PMEPR;rsx (C) < logn — 6.5loglogn} < O (1 1 ) . (6.9)
e og'n

Proof: In the PSK case, we can write the characteristic function of s&(f) as

Bpsk (1) = E{e¢0} = H E{eiRelee ) — H E{cos(tcos (0 + (3;))}

i=1 i=1

= ﬁ E{cost8}, (6.10)

where 3! = cos(if + ;) has an even distribution since the f;’s are chosen from a
PSK constellation such that 3;, 8; + m/2, and consequently j; + 7 are equiprobable.
Furthermore, for || < 1 the characteristic function is positive. Therefore, using the
result of Appendix 6.5.3, we can then write E{cos(t8})} = e~ P{(B)*}?/2+at?+0(t%) f4,
|t| < 1, where the second moment of 5} can be evaluated as

E{(B!)?} = E{cos®(if + 3)} = % + %E{cos(QiH +28;)} = % (6.11)

and the second term is zero since 23; has the same probability as = + 23; due to

the fact that the PDF of §; is invariant under rotation by 7 /2. Therefore, replacing
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(6.11) into E{cos(t3!)} and then into (6.10), we get, ®pgk (t) = e */4tnat’+0(®t?) fo,
|t| < 1. Now, we can use the same argument as that of Theorem 6.1 to find the mean
and variance of n as in (6.54) and (6.66), respectively. The theorem follows similarly
by setting E,, = 1 for PSK constellations. [

To generalize the result to spherical codes, we initially need to find the char-
acteristic function of s%(#) when the codeword C is uniformly distributed over €,,.
Clearly all ¢;’s are dependent, however the following lemma, provides the characteristic

function of s%(f) when C' is uniformly distributed over €2,,.

Lemma 6.3 Let C = (ci,...,¢,) be a random complex vector uniformly distributed

over Q, and s&(6). Then

itsR 2" (n
Bl |t‘nn(n)1 Jn(nlt).

Proof. Let ¢; = a; + jb; for 1 = 1,...,n. As a first step to find the characteristic

function of s&(6), since Y ;_, sin? kO + cos® kf = n, we can state that

p(s&(0) = p({(a1,...,an,b1,...,by),(cosf,... cosnb,sinb, ..., sinnf)))

= p({(U(ay,...,an,b1,...,b5),(v/n,0,...,0))) = p(v/na}), (6.13)

!

where p(z) denotes the PDF of the random variable z, (a},...,al,b},..., b)) =
U(ary.-.,an,b1,...,by), (-, -) denotes the inner product of two vectors, and U is any
orthogonal matrix such that U(cos#,cos26, ..., sinnd) = (1/n,0...,0).

Moreover, since the vector (ay,. .., ap, b1, ..., b,) has an isotropic distribution [20],

the distribution of the vector remains the same under multiplication by orthogonal

matrices, and therefore p(s&(0)) = p(v/nd)) = p(v/na1) = p(y/nri¢:). Now we can
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use Eq. (6.13) to write

E{el¢D} = p{eViricsdt} — B { / K %eﬁ‘/ﬁ“ ¢1d¢1} — E{Jy(tv/nm)},

0 (6.14)
where we used the definition of the Bessel function and the fact that ¢; has the
uniform distribution proved in Appendix 6.5.4. Since Jy(z) is an even function, the
characteristic function is an even function of ¢ and we can therefore focus on ¢ > 0.

Using the distribution of r; computed in Appendix 6.5.4, we can write Eq. (6.14) as

R ) vn 1
E{eltc)} = i / rdo(ty/nr)(n — )" tdr = 2n/ uJo(tnu) (1 — )" 'du
0 0
2"T'(n)
= 1

for t > 0, where we used the identity fol z(1 — 2?)" ' Jy(bx)dr = anblf(") Jn(bx) for
b > 0 [63]. Since the characteristic function is even, the lemma follows from (6.15).

O

For large values of n and 0 < ¢ < 1, we can use the asymptotic expansion of the

Bessel function of order n as [63],

e—n(cosh_1 %f 1-t2)

) = = PP

(1+0(1/n)) (6.16)

for 0 < t < 1. Therefore, we can use the asymptotic expansion
I'(n) = e ™" Y%/27 (14 O (1/n))
for large n [63], together with (6.16) and replace them into (6.15), to obtain

E{/#8O) = E{Jy(tv/nr)} = e (1 4+ 0 (1/n)) = e+t 0N (110(1/n)),

(6.17)
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for |t| < 1 and large n. Therefore, log E{e/*¢®} is an even positive function of ¢ for
large n and |t| < 1. Now using the Taylor expansion of log E{e/**¢(®)} as in Appendix

6.5.3, we can write a4 in (6.17) as

1 1
nan = LB {(s0))°} = SE(nal} = Bfnricos’ i} = 0. (6.18)
Therefore, the characteristic function of s&(f) can be written as
E{el¢0)} = gt /4net’+0(i%) (1 4 (1 /n)) (6.19)

for large n and [t| < 1. This in fact allows us to generalize the lower bound for

random spherical codes in the following theorem.

Theorem 6.4 [Lower Bound: Spherical Codes] Let sc(6) be as in (6.2) where C is
chosen uniformly from Q,,. Also, let C, be the ensemble of all the admissible codewords.

Then,

Pr{PMEPRc, (C) <logn — 6.5loglogn} < O < ) . (6.20)

log* n
Proof- Using Lemma 6.3 in which the characteristic function of s&(8) is computed
for [t| < 1, and using the identity e * = e " 4+ O(|b — a|), we may write E{e/*5¢(t)} =
e~™*/* 4 O(nt*), where C is uniformly distributed over ©,. We can now follow the
same line as the proof of Theorem 6.1 to write the mean of  as in Eq. (6.54). Similarly,

in order to calculate the second moment of 7, we have to compute

(Ds (t, T em; Hl) — E{ej > h_q ak(tcoskbm+T cosk@l)—bk(tsink0m+Tsink01).} (621)

Since Y ,_, (tcos kb, + 7 cos kb;)? + (tsinkb,, + Tsinkb;)* = n(t*> + 7°) for m # 1
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and m + [ # n, by using a similar argument as in the proof of Lemma 6.3, we get
D, (L, 7; O, 0) = E{edVEFTar) (6.22)

where a, is as defined in Lemma 6.3. Consequently, it can be then concluded that for

m # | and m + [ # n, we have
®,(t, 700, 0,) = efn(tz—|—7'2)/4—|—na(t2+72)2+n0((t2+72)3)(1 +0(1/n)). (6.23)

We can similarly prove that EF{n} and E{n?} are as in Egs. (6.54) and (6.66), re-
spectively. So using Chebychev’s inequality as in Theorem 6.1, we can complete the

proof for random spherical codes. [

6.3.2 Upper Bound for the PMEPR

In this subsection, Theorem 6.5 obtains the probability of having PMEPR, slightly
greater than logn for the QAM case and shows that this probability goes to zero as
n tends to infinity. This will be extended to PSK and spherical codes in Theorem 6.6

and 6.7, respectively.

Theorem 6.5 [Upper Bound: QAM Case] Consider the setting of Theorem 6.1.
Then,

1
Pr {PMEPRCQAM(C) > logn + 5.510glogn} <0 ( : ) . (6.24)
q log™n

Proof: We first define the real function sc(v, 6) as

sc(7,0) = Re{e?sc ()} = Z a; cos(i0 + ) — b; sin(i6 + ), (6.25)

=1
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consequently we define K as K = H’lyf%X|Sc(’)/, 0)| = |sc(v0,60)| = maax|sc(t9)|.
As mentioned in [74] and used in [75], the point of introducing v is that we can now
deal with the maximum of a real function sc(7, #) and generalize the result of Halasz

to complex polynomials over the unit circle. Let u(x) be as defined in (6.5) with the

only difference that here M = \/nEy, logn + 5.5nE,, loglogn.We also assume FE,,
is the normalized average energy of the constellation. Consequently, we define the

random variable 7 as

2T 27 27 27 oo
n :/ / u(sc(7, 8))dfdy =/ / / eIsc )y (1) dtdfdy,
o Jo o Jo J-wo

where we substitute u(z) by its Fourier transform v(¢). As the second step, by using
the Taylor expansion of s¢(7,6) around its maximum absolute value, it is shown in

[75, 74] that if n < ﬁ then K < M + 2A. Therefore,

nl

Pr{K < M +2A} >Pr{n < } > 1—nlog?nE{n}, (6.27)

nlog’n

where we used Markov’s inequality to deduce (6.27). Therefore the derivation of the
upper bound boils down to computation of the mean of 7. As in the derivation of the

lower bound, we start with computing the characteristic function of s¢(7, 6),

. . s s 2 . 2 . .
E{ejt > agcos(if+y)—b; sm(ze—l—'y)} = e L Bav1 Y[ cos?(i0+7)— 4 Eqypa> 7, sin®(if+7)

+ ¢ {cn 20054(2'0 +7)+ Zsin4(i9 + 7)} X
i=1 i=1

2 > 2 . .
e~ C Eqv1 207y c08?(i047) =4 Equ2 307 sin®(i0+1)

+ O(nt® + n’t®) (6.28)

a

for [t| < 1 where we used e * = e’ + (b—a)e 4+ O((b — a)?) as in Eq. (6.59) and

Eq1 and E,0 are as defined in Theorem 6.5. We can now take the expectation of n
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as

/ > {3t i 04 cos(#+47)0i Sn(049) . (1) g ddry

2
2

88

s 27
/
T p2T 9 9
/ / e %Eavl >, cos?(i0+y)— %anE?:l sin?(i0+) v (t)dtdvd@
0 _

2w
0 0
o0

+ 0 ( / et n2t8)|v(t)|dt> | (6.29)

S 8

J
-
L0 T /00 t46_%EavlzZ}:1 cos2(ie+'y)—§Eav22?:1 sin?(i0+~) |U(t) |dtd'yd0)

Using the results in Appendix 6.5.1, we can simplify the expectation of 7 as follows:
the first and second terms follow from (6.43) and p = 0,4, and the last term can be

computed by (6.40), to get

B \/ﬁe_% n\/ﬁe_% n n_2

Therefore, by setting the value of M and A, and using the Markov inequality, we

conclude that E{n} = O ( L ) to get

nlog®n

1 1 1
Pr{K§M+2A}2Pr{77§ 5 }Zl—log2n0( 5 )zl—O( : )
nlog”n nlog’n log™ n
(6.31)

The theorem follows by using the definition of PMEPR for large values of n.[J

The next theorem presents the same asymptotic result for the PSK constellations.

Theorem 6.6 [Upper Bound: PSK Case] Consider the setting of Theorem 6.2. Then,

1
Pr {PMEPRcPSK(C) > logn + 5.51loglog n} <0 ( - ) : (6.32)
? log™n
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Proof. We first compute the characteristic function of s¢(7y,6) = Y., cos(if + 5; + ),

E{eftscr9)} = HE{cos(t cos(i + B + 7))} = H E{cos(t3;)}, (6.33)
i=1 =1
where ﬁ;' = cos(if + B; + ) has an even distribution since f; is chosen from a

symmetric PSK constellation. Since the distribution of ¢; is invariant under rotation
by 7/2, using the result in Appendix 6.5.2, and following the same line as in the
proof of Theorem 6.2, we can write the characteristic function as E{e/*¢(0)} =

—nt? J4+nat* +O(ntb

e ) for [t| < 1. The theorem follows by using the characteristic function

of s&(#) and following the same line as in the proof of Theorem 6.5. [J

Theorem 6.7 [Upper Bound: Spherical Codes| Let C be a codeword uniformly cho-

sen from €2, and C, be the ensemble of all those codewords C. Then

1
Pr{PMEPRc,(C) > logn + 5.5loglogn} < O (1 . ) . (6.34)
og*n

Proof: First of all, we derive the characteristic function of s (7, §) when the codeword

C is uniformly distributed over €2,,. We can use the result of Lemma 6.3 to show that

E{ejtsc(fyﬁ)} — e—nt2/4—|—ant4—|—0(nt6) (1 + O(l/n))
= e 4 a(ntt + O(nt®))e ™/ 4 O(n?®)

e ™ 4 antte ™t + O(nt® + n*t®), (6.35)

where we used e™® = 7" + (b — a)e™® + O((b — a)?) for a,b > 0. Fortunately the

characteristic function of sc (7, #) allows us to use a similar approach as in Theorem
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6.5 to evaluate the mean of 7 as

27 27 00
E{n} = / / / E{escOVy(t)dtdydo
0 0 —00

2m 2w [e'e) 2w 2 e’}
= / / / e~ 4y (t)dtdydh + n/ / / tre™™ /4y () dtdyd
0 0 —00 0 0 —00

+ O </_Oo (nt® + n2t8)\u(t)\dt> :

o0

Using the result of Appendix 6.5.1 and similar to Theorem 6.5, we can simplify (6.36)
to get E{n} = O (@) The theorem follows using a similar argument as in

Theorem 6.5 and setting the value of M and A. O

6.4 Summary and Discussion

To get a better insight into the above results, let C; correspond to C;5%, C24M,
or C,; as random codes over the corresponding constellations. Using the inequality

Pr(A) +Pr(B) — 1 < Pr(AnN B) < Pr(A), and Theorems 6.1 to 6.7, we may write

1 > Pr{logn+5.51loglogn > PMEPR,,(C) > logn—6.5loglogn} > 1-0 <log14n> .
(6.36)

Eq. (6.36) shows that with probability approaching unity the PMEPR of any
codewords randomly chosen from symmetric QAM/PSK or ,, behaves like logn +
O(loglogn) asymptotically. This result implies that for large number of subcarriers,
clipping the signal with a threshold value less than logn may cause severe distortion
in the signal. On the other hand, by using probabilistic methods [36] in which we
randomly map the data to different codewords and choose the best one in terms of
PMEPR to transmit, we cannot further reduce the PMEPR below logn. Meanwhile
these methods performs very well for moderate values of n since logn is reasonably

small.
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Another class of methods to reduce the PMEPR is to use coding not only to intro-
duce a large minimum distance but also to reduce PMEPR [37]. It has been shown in
[37] that the Varsharmov-Gilbert (VG) bound for spherical codes with PMEPR less
than 8 logn remains the same as that of spherical codes without PMEPR, restriction.
This shows that there exist high rate and large minimum distance spherical codes
with PMEPR of 8logn.

In fact, we can use the result of Section 6.3 to derive a VG-type bound on the
rate of code with given minimum distance and PMEPR of less than logn. Here,
we use the minimum Hamming distance, which is defined as the minimum number
of coordinates in which any two codewords are different [42]. The rate of C, is also

defined as R = < log, |C| where |C] is the cardinality of the set C.

T n

Corollary 6.8 Let Q, be a complex q-ary symmetric PSK or QAM constellation,
R >0, andogég%. If

1

nlog*n”’

R<1-H,5) - O( (6.37)

then, asymptotically, there exists a code C of length n, with entries chosen from
Q,, rate R, minimum Hamming distance dpyim = |6n|, and PMEPRe < logn +

5.5loglogn.

Proof: The proof follows by first excluding codewords with PMEPR larger than
logn + 5.51loglogn, and then using a VG-type argument to construct a code with
the minimum Hamming distance d,;, = |dn| [42]. O

According to Corollary 6.8, it follows that not only do there exist spherical high
rate codes with PMEPR of 8logn, but there also exist codes chosen from usual
constellations like QAM and PSK with the same asymptotic. On the other hand,
this result does not contradict the existence of exponentially many codewords with

constant PMEPR. However the ratio of the number of these codewords to ¢" has to
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tend to zero asymptotically. So there still remains an open problem of what is the

rate of codes with constant PMEPR?

6.5 Appendices

6.5.1 Properties of u(z)

We adopt the following lemma from [74] with modifications to the fifth and sixth
inequalities that are required for the generalization to polynomials over the unit circle

with complex coefficients.

Lemma 6.9 Let u(x) be a continuous differentiable function as defined in the proof

of Theorem 6.1 and v(t) = 5= [*_ u(z)e?®dz. Then we have the following properties,

2T o0
DErv() = O ( AL) 1<r<10 (6.38)
i) / T @ldt=0 (%) (6.39)
i) /_: #Pu(t)|dt = O (i) 1<p<s (6.40)
iv) /|| l lv(t)|dt = O(1/A®)  for any constant Iy > 0 (6.41)
t|>lo
) /_ ‘: enEaut2/4tpv(t)dt‘ =0 % 1<p<8 (6.42)

27 27 o0 t2 n 9 0 n 2 i0
UZ)/ / / e_T(E‘“’l D1 cos”(i04+7)+Eqv2 iy sin?(4 +7))tpv(t)dtd’)/d9
0 0 —00

-0 "Pay ’ (6.43)

where M = \/nE,w logn + O(loglogn), A =, /logn, and Euy = Eu1 + Ege.
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Proof: For the proof of (6.38) to (6.41) refer to [74]. In order to prove (6.42), we use

Parseval’s theorem and the properties of Fourier transform to obtain

o 2 1 © 2
‘/OO 6_nt /4tpU(t)dt‘ = ﬁ/oo e_m /nu(p)(.r)dt‘ (644)

Now we can use the fact that u(P)(z) is zero for |z| < M and equals to O(1/A") for

|z| > M to rewrite the integral as,

(i)
(\ / (i dt‘) (m / _ﬁ/ndx):o v
|z|>M

e

2
where Q(z) = = [° e **/2dz. Using the asymptotic expansion Q(z) = w;%: (1-

(6.45)

O(1/x%)) [63], we get,

7L/2 \/ﬁe_nEav
Ol—a | =% (6.46)

(6.42) follows from (6.45) and (6.46). To prove (6.43), we first use (6.42) to write the

inner integral in (6.43) as

0o
/ 6_%(Eav1 Yoiq cos?(i0+7)+ Eavz 37 sin®(i0+7)) 42, (t)dt

— O (ﬁe 2(Eqp1 2?21 C052(19+7)+Eav2 E?:l sin2 (i6+7)) ) (6 47)
M AP '
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We then use the following inequality for large values of n similar to [74],

Z Eup1 c08?(i +7) +  Egpsin®(i0 + )

=1

Eav Eav Eav - Ecw - .
_ | 1+2 2)n+( 12 Q)Z;COSQ(ZQ-F’Y)

Eavn n|Egv1i—FEqv2| logn
+ 2logn n S |0| S 7T/2a

nkE,, everywhere

where we used the inequality Y., cos2(i + a) < ST d] a\ and considering that | sin 0| >

/2 for 6 < 0.1, the inequality follows for large n. Therefore we may write,

2w 2w
/ / 2(Eav1 En 1 0052(19+7)+Eav2 En 1 sinZ (i0+7)) dedry

2

M
dmlogn _ _um? - n[Eqy1 = Egyy]
< BT o= mtay 4 Ap2e mEevt T

n

We can now use the fact that 105" < e mha for M = \/nEqlogn + O(loglogn) and

also using,
2
- n[E Eounl a2 M2 a2
e "Eav+Mlogn 2 —e M?/nEqy X e Eavnlogntlaj—azln — O(e M /nEav) (648)

to bound (6.48) by O(e” "Agav) Eq. (6.43) follows from (6.47) and (6.48). O

6.5.2 Mean and Variance of n

In order to calculate the mean and variance of 7, we substitute sZ(#) in (6.6) to get

n 00
n= Z / ejt EZ’ZI ag €08 kfy, —by sin kamU(t)dt. (649)
m=1" ~x
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Using the independence of a;’s and b;’s, we obtain,

E{ejt > k=1 Gk €08 kb —by sin k0m} — H E{ejtak cos k@m}E{ejtbk sin k0m} A q)QAM (t; Gm)-
k=1
(6.50)
It is shown in Appendix 6.5.3 that for [t| < 1, E{e/®%!} = e~ Feu1t?/2-cat’+0(t%) apq
similarly E{ei%!} = ¢ Fovrt?/2-t'+0(°) where E,,, and FE,,, are the average energy
of a; and by, and therefore, E,, = Ey,1 + Eq2 is the average energy of c,. Now using
e =e""+0(b—al) for a,b > 0, we can write Eq. (6.50) as,’

CI)QAM(t; Om) _ e—%(zzzl Eay1 c05? kOm+Eqvz sin? kb, ) +nO(t*) _ e—nEavt2/4 + O(’I’Lt4) (651)
for |t| < 1, where we used the identities: >_,_, cos? kO, = >_,_, sin® kf,, = n/2 for
0, = m(2m + 1)/n. To evaluate the expectation of 1 in (6.49), we replace (6.51)
in (6.49) for |t| < 1, and use one as the upper bound for the absolute value of the

characteristic function for |t| > 1 to get

1

E{n} =n /_ ey (1)t 1O (n2 /_ 1t4\v(t)\dt> +0 <n 4 . \v(t)\dt) . (6.52)

1

We may then extend the first integral to infinity and include the resulting error
in the third term, also by extending the second integral to infinity the third term can

be included in the second integral. Finally, Eq. (6.52) simplifies to

o0

E{n} =n / ¢ Pty (H)dt + O <n2 /

o —0o0

tﬂu(t)\dt) : (6.53)

Using the property (6.40) of u(z) shown in appendix 6.5.1, we may substitute the

5Note that since the characteristic function is less than 1 as shown in Appendix 6.5.3, a has to
be non-negative.



second term by O (Z—i) and using A = logn, we get
E{n} = n/ e " Ear® 4y (1) dt + O (log®n) . (6.54)

In order to find the second moment of 7, we may write n? as

n* =YY ulse(Om)ulsE (@) (6.55)

m=1 [=1

Therefore, after substituting the Fourier transform of u(x) in (6.55), to evaluate each

term of the double summation of (6.55), we should compute

u(s¢(0m))u(sE(6r) =
/oo /00 > {ej > =1 ak(tcoska—H'coskﬂl)—bk(tsinkﬂm—l—'rsinkﬂl)} U(t)U(T)dth. (656)

The inner expectation in (6.56) can be split using the independence of a;’s and by’s

as,

E{ej > =1 ag(t cos kbm+T cos k) —by, (¢ sin k0., 47 sin k6;) }

n n
— H E{ejak(tcosk9m+7cosk91)} > H E{efjbk(tsink9m+7sink91)}
k=1 k=1

= <I>'QAM(t, T3 0m, 01) (6.57)
As we stated for the calculation of E{n}, for |t| < 1, we have

E{ejakt} — ¢ Pavit?/2—a1t?4+0(t%)

and E{ei%!} = e=Fawrt?/2-02t"+0(°) " Therefore, for ||, |7| < 1/2, each expectation in
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(6.57) can be written as

E{ejak(t cos k), +7 cos kel)} —

6_1/2 > =t {E‘(wl(t 08 kO +T cos k6;)% +a1 (t cos kO +T cos k01)4}+0(n(|t\+|7|)6) ) (658)

where we used O((tcoskf,, + 7cosk#))®) = O((|t| + |7])®) for the last term in the
exponent. We can also write a similar equation for by. After substituting (6.58) in
(6.57), we can use the second-order approximation e™® = e+ (b—a)e *+O((b—a)?)

for a,b > 0, to write Eq. (6.57) as

_1 n 2 : s 2
(I>IQAM(t’ s gm’ gl) — e 3 Y =1 Fav1(tcos k047 cos kf;)?+ Eay2(t sin kO, 47 sin k6;)

+ Z { o (t cos kfy, + 7 cos k0;)* + ap(tsin k6, + 7 sin kf;)*
k=1

L O(n(t] + |T|)6>}

x e—% S r_1 Bavi(tcos kOm+7 cos k0;)2+ Eqy2(t sinkOm+7 sin k6;)?

+ O(m*([t[ + 7)) (6.59)

for |t],|7| < 1/2. We can further simplify (6.59) by using the identities,

Z (tcos kO, + T cos k;)* = Z (tsin kb, + Tsin k6;)® = n(t* + 72)/2
k=1 k=1

form # 1 and m+ 1 # n, and E,y = Eg1 + Euya, to get

O yps (6,730, 0) = e 2P L O(n([t] + [[)F)e T oo (47)

+O(n(|t] + [7[)°) + O(* ([t + |7])*) (6.60)

for |t|,|7] < 1/2, m # |, and m + 1 # n. For the other 2n terms (i.e. m =1 or
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m+ 1 =n) in (6.49), we can use the following inequality

2 u(sE0n))u(sH(0)) <237 u(sB(0n)) = 20 (6:61)

since 0 < u(z) < 1. Now replacing (6.60) into (6.56) and then into (6.55) for |¢|, |7| <
1/2, using one as an upper bound for |¢[,|7| > 1/2, and using (6.61) for 2n terms

with m =1 or m + [ = n, we obtain

E{i} < (n* —2n) / e T Ay (1) (1)
~1/2

—-1/2

12 p1/2 Y
0 n32/ [+ e o eyo(r)dear
o J-1/2J -1/2
12 p1/2
0 (n [ \T\>6|v(t>||v<f>|dtdf)
—1/2J -1/2
12 p1/2
+ 0 (n4/ / (|t\+\T|)8\v(t)Hv(7)\dth>
—1/2J-1/2

+0 <n2 /n » /| s |v(t)||v(7')|dtd7'> +2E{n}. (6.62)

To evaluate (6.62), we may extend the integrals in the first four terms from —oo to

oo to find an upper bound for E{n?}. So we may write Eq. (6.62) as

E{n’} < (n*—2n) ( / ) €_nE“”(t2+T2)/4U(t)U(T)dth)2

—00

0 <n3 /_ ) / T+ |T\)4e"E“”(t2+T2)/4|v(t)||U(T)|dth>
( [ // (1) + ) |v<>|\v<7>\dtdf)
+ 0( / /11/; (] + |7)? ()|\U(T)|dtd7>

+ 0< /t |>1/2\ ()\dt) +2BE{n). (6.63)

Now we can use (6.41) in the Appendix 6.5.1 to write the fourth term in (6.63) as
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@) (A”—fs) The second term in (6.63) will be also simplified to

O(n3 / / (|t|+|T\)4e_”E“”(t2+T2)/4|v(t)||v(7')|dtd7')
i -
= 0(”32 / tre et /Ay / T4pe”E‘”T2/4dr)
p=0 "7

nt e—QM2 /nEqy

where we used the identities (6.42) with p = k and p = 4—k. The third term similarly

can be evaluated as

¢ ("3 /_o; /_: (1 + \TI)6Iv(t)||v(r)\dth> -
=0 <n3 {i/z |t’“v(lf)|alt/i> |t (t)|dt + 2/: lv(T)|dT/Z |t6U(t)|dt})

n3 5 1 M n3 n3M
~o(z)+o (g 3) =0 (%) o (') (069

where we again used (6.39) and (6.40) to evaluate both terms in (6.65). Along the

same line as the evaluation of the third term, the fourth term can be also shown to

be O (”Z—ﬁ”) Therefore, setting the value of M and A, we may write

00 ) 2 n4e—2M2/nE,w
E{n’} < 2E{n}+n? </ e~ "Havt /4v(t)dt) +0 g

—00

n3M n*M
+o( = )+0( = )

0 2
= 2E{n}+n? (/ e"E““t2/4v(t)dt) + O(log® n) + O(logn) + O(log® n).

—00

On the other hand, it is easy to find a lower bound for E{n} by using the definition

of u(x) and Parseval’s theorem and show that E{n} > O(log®n) [74]. Equivalently,
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this implies that

o2 = E{n’} — E*{n} = O (E{n}log’n +log’ n) . (6.66)

6.5.3 Properties of ¢.(z)

In this appendix we calculate the characteristic function of a bounded random variable

with an even probability distribution function.

Lemma 6.10 Let ¢ be a real random variable with even PDF (probability density
function), variance Ey,, and mazimum energy 1, i.e., |c|> < 1. Then for |t| < 1, we
have

log ®.(t) = —F4t?/2 + agt* + O(t%) (6.67)
where ®.(t) = E{e’'°}.

Proof: 1t is clear that when the PDF of c is even then the characteristic function is real,
so ®.(t) = E{cos(tc)}. Since the PDF of ¢ is non-negative and the maximum energy of
cisone, ®.(t) is a real positive function. ®.(t) is also inifnitely differentiable for |¢| < 1
since E{cFcos(tc)} is bounded for any k. Now we can write the Taylor expansion
log ®.(t) = Y 2, ait’. Since ®.(0) =1, ag will be zero. Furthermore, since the PDF

of ¢ is even, ®.(t) and log ®.(¢) will be even and therefore ag 1 =0, for k=0,1,....

The values of a; can be computed as a, = 3 q;/(go)) = —3E{c?}. Therefore, for [t| < 1,

we can write the Taylor expansion log(®(t)) = —FE{c?}t?/2 + a4t* + O(t°).

6.5.4 Distribution of ¢;

Lemma 6.11 Let C = (cy,...,c,) be a random complez vector uniformly distributed

over Q,. Let ¢; = r;e?%. Then r1 and ¢, are independent with the following distribu-
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tion,

2 2

p(r1) = nn_lrl(n—rl)"*l, (6.68)
p) = 5 (669

Proof : Since the vector C' is uniformly distributed over Q,, p(C) = .6(CC* — n)

where V' = ( ) Now let’s define C' = (co, . . . Then, we may write p(c;) as
1
pla) =5 / §(CC* —n)dC" = 5 / / (CC M) 4C! du, (6.70)

where we used the definition of §(x). In order to make the integral converging, we

multiply the integral by 1 = ¢®~¢C"# in which 3 > 0. Therefore,

n(B—jw) p—13(B—jw) ,—C'C"* (B—jw) g g 6.71
(:1 27rV// e ( )

It is shown in [20] that if P and @ are Hermition M X M matrices and P > 0,

eV (PHQudy = T So setting z = 3 — jw, we get
det(P-HQ
-

(c1) = - /e(n r%)zd - (n—ri)"™ (6.72)
Pla = 27tV g -t T VI'(n—1) v .

Therefore, we can now compute the probability distribution of 7; and ¢; as follows,
27"

= d = —

p(r1) /7'117(7'1, ¢1)dor VI(n—1)

1
p(g) = /7"117(7“1,(151)617‘1 = o

—ri(n — r2ynt

_ n—1 —
ri(n—r) -

Also since p(r1, ¢1) = p(r1)p(¢1), 1 and ¢, are independent.[]
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Chapter 7

Existence of Codes with Constant
PMEPR

7.1 Introduction

Recently, there has been considerable interest in using multicarrier modulation for
high speed communications [31]. As wireline applications, we can mention Discrete
Multitone (DMT) in the asymmetric digital subscriber line (ADSL) and the very high
rate digital subscriber line (VDSL). Similarly, Orthogonal Frequency Division Multi-
plexing (OFDM) has been proposed for different wireless scenarios such as Wireless
Local Area Network (WLAN) and digital video broadcasting (DVB) [31].

In this modulation, information is carried on several narrowband orthogonal sub-
carriers, each subcarrier being modulated by a complex constellation like QAM or
PSK. A major drawback of using several subcarriers is spurious high amplitude peaks
of the transmitted signal when all of the subcarriers add constructively. To be more
specific, considering a multicarrier system with n subcarriers and each subcarrier be-
ing modulated by BPSK constellation, the worst case peak to mean envelope power
ratio (PMEPR) of this system is n as all the subcarriers add up coherently.

However, several authors noticed that this worst case PMEPR rarely occurs [32,
33, 34, 35]. For large values of n, it is shown in the previous chapter that almost surely,

the PMEPR of any randomly chosen modulating vector, carved from any symmetric
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QAM/PSK constellation, is logn asymptotically [35]. Therefore, even though the
worst case PMEPR can be as bad as n, in the probability sense and in the limit,
PMEPR behaves as logn.

Several schemes have been proposed to reduce the high PMEPR of multicarrier
signals including probabilistic methods (e.g., selective mapping), coding, clipping,
and reserved subcarriers [36, 37, 38, 34, 39]. While existing coding methods give a
guarantee on the PMEPR of the system with a large rate hit for large n, probabilistic
methods usually improve the statistical properties of the PMEPR with a little redun-
dancy and using side information [37, 36]. The basic idea behind the probabilistic
methods is to lower the probability of occurrence of a peak, and in fact, these meth-
ods use the limited redundancy not to eliminate the peaks, but only to make them
less frequent. Therefore, there is no guarantee on the PMEPR similar to the coding
methods.

Recently, Paterson and Tarokh have raised the question of what the trade-off is
between rate and minimum distance of a code with bounded PMEPR [37]. It is
also proved that the Varsharmov-Gilbert upper bound remains the same for spherical
codes with PMEPR less than 8logn for large n. In [35], based on the asymptotic
analysis of PMEPR, it is further shown that the PMEPR of spherical codes and sym-
metric QAM/PSK constellations is logn. However, without contradicting the result
of [35], there still might be exponentially many codewords with constant PMEPR,
even though the probability of randomly choosing one of them goes to zero, and
therefore, they are rare!

In this chapter, we start with addressing the achievable PMEPR reduction by
choosing an optimum sign for each subcarrier. Based on an elegant result of Spencer
on bounded linear forms [40], we prove that by choosing an optimum sign for each
subcarrier, we can indeed achieve constant (independent of n) bounded PMEPR for

sufficiently large n. Moreover, we find an upper bound for the best constant and we
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then use this result and prove the existence of codes carved from a symmetric g-ary
constellation with constant bounded PMEPR and rate greater than 1—log, 2. We also
derive a Varsharmov-Gilbert upper bound on the rate of a code given its minimum
Hamming distance and with constant bounded PMEPR. A scheme with more degrees
of freedom is then considered to reduce the PMEPR at the price of further reducing
the rate of the code. It is also worth mentioning that this scheme can be interpreted
as reducing the PMEPR by expanding the constellation by a factor of two. Of course,
in order to preserve the minimum distance of the constellation, the average power has
to be increased by 3dB.

This chapter is outlined as follows: Section 7.2 introduces our notations and def-
initions. Section 7.3 discusses the peak reduction methods by choosing an optimum
sign for each carrier and elaborates the statement of the problem. Furthermore, Sec-
tion 7.3 reviews the mathematical results on bounded linear forms that will be used
in this thesis. Then, in Section 7.4, we address the achievable PMEPR reduction by
choosing signs; we prove the existence of codes with constant bounded PMEPR for

sufficiently large n. Finally, Section 7.5 concludes this chapter.

7.2 Definition

Assuming no pulse shaping, we may represent the complex envelope of a multicarrier

signal with n subcarriers as

n

sot) =) el 0<t<1/fo, (7.1)
i=1
where fy is the subchannel spacing and C = (¢y,...,¢,) is the complex modulating

vector with entries from a given complex constellation Q. The admissible modulating
vectors are called codewords and the ensemble of all possible codewords constitute the

code C. For mathematical convenience, we define the normalized complex envelope
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of a multicarrier signal as

sc(f) = Zciejai, 0<6<2m. (7.2)

=1

Then, the PMEPR of each codeword C' in the code family C may be defined as

2
PMEPR.(C) = max -2

S B{CIP} (7:3)

Similarly, PMEPR( is defined as the maximum of Eq. (7.3) over all codewords in C.
Clearly, when C is a random code such that the ¢;’s are chosen independently from a
constellation with average power E,,, the average power of C' is nFE,,. Throughout
this thesis, whenever we drop C from PMEPR, we mean C is the random code with
average power nkg,.

We will use the following notation: C and C represent the code family and code-
word, respectively, ¢; denotes the i’th coordinate of the modulating vector C, and
log{-} is the natural logarithm. We also define the rate of a code C chosen from a
g-ary constellation as

1
R = —log, [c], (7.4)

where |C| is the cardinality of the set C. Hamming distance is also defined as the
number of coordinates in which two codewords are different and consequently the

minimum Hamming distance of C is its minimum over all pairs of codewords [42].

7.3 A Peak Reduction Scheme and Bounded Lin-
ear Forms

In this section, for any codeword C = (¢4, ..., ¢,), we study designing optimum signs

for each subcarrier in order to reduce the PMEPR of C. We initially motivate and
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elaborate the statement of the problem and then we introduce results on bounded
linear forms that will be used in the subsequent sections to prove the existence of

codes with high rate and constant bounded PMEPR.

7.3.1 Peak Reduction by Choosing Optimum Signs

Given the codeword C' = (cy,...,¢,), we consider the design of optimum sign, ¢; €
{+1, —1}, for each ¢; in order to minimize the PMEPR of the resulting codeword C, =
(€1¢1, . - ., €ncpn). Clearly the worst case PMEPR of a codeword C' is of the order of n.
We also know that a randomly chosen codeword C' will have a PMEPR of logn for
large values of n [35], and therefore randomly choosing signs should work well for large
n. In fact, randomly choosing signs has shown to be an effective method of PMEPR
reduction for moderate values of n [36]. As an example of similar techniques, in the
selective mapping method (SLM) there are M statistically independent codewords
representing the same information, and the codeword resulting in the lowest PMEPR
is selected for transmission and therefore it needs log, M bits of side information. This
approach was first proposed in [43] for M = 2 and it is generalized in [32, 36]. For
implementation purposes, the M independent codewords are generated by element-
by-element product of the codeword by M pseudorandom sequences with entries from
{+1,—1} or {£1, 5}, for instance Hadamard vectors or m sequences [44].

This raises the question of how much further reduction in PMEPR we can get
by choosing the best sign for each subcarrier. Moreover is there any deterministic
algorithm to design an optimum sign for each subcarrier? Since changing signs does
not affect the average power, we can focus on minimizing the peak of s¢(f) over the
¢;’s. Here is the statement of the problem:

Problem Statement: For any given complex vector C = (ci,...,c,) Where
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le;| € @ and ¢; < v/ Enax, consider the following minimization problem:

€ 0<0<2m “

n
min max | Z e;ciel’, (7.5)
i=1

where € = (€1,...,€¢,) and ¢; € {+1, —1}.

e What is the value of the min-max problem of (7.5) for any codeword C' where

CZ'EQ?

e How much further improvement can we get by considering more elaborate

schemes?
e How can we design the optimum vector ¢ efficiently?

The goal of this chapter is to address the first two questions. The third question
is the topic of Chapter 8 and will be addressed later. In order to answer the above

problem, we need the following lemma.

Lemma 7.1 Let s&(0) and s;(0) be the real and imaginary parts of sc(6), respec-
tively. Also let 0; = % fori=1,...,kn where k > 1 is such that kn is an integer.

Then

1
02%%§W|SC(0)‘ ~ cos 7T/2]{3 \/1I£2§n|80(01)| + 1g2§n|80(gz)|

Proof. 1t is shown by Ehlich and Zeller that a real trigonometric polynomial with n

subcarriers satisfies the following inequality [45]:

1
m R < - R(p .
Oﬁé’%)?(w‘scw)‘ ~ cos 7T/2]€1§i23c(n|80(01)|’ (7.7)

where the 6;’s are kn uniform samples in [0,27]. It is worth noting that various

versions of the inequality in (7.7) have appeared in [46]. Similarly, the same inequality
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is valid for the real trigonometric polynomial s (#). Now, considering that

max |sc(6)] < \/max 1sR(6:)[2 + max |sL(6,)2, (7.8)

0<9<2r 1<i<kn 1<i<kn

the lemma follows immediately from (7.7) and (7.8). O

Lemma 7.1 reformulates the problem in (7.5), and allows us to consider the opti-
mum ¢ to minimize 2kn linear forms constructed by s&(6;) and s5(6;) fori =1,... kn
instead of minimizing the maximum of |s¢(f)| over a continuous variable 6 € [0, 27].

Therefore, instead of Eq. (7.5), we may then consider the following minimization

problem:
n
meinlg)lggm| Z_Zl €ilpil, (7.9)
where a,; is defined as
Re{c;e’%*} 1<p<kn,
4y = (7.10)
Im{c;ed%} kn+1<p < 2kn,

where 0, = 22 Of course, the optimization problems in (7.9) and (7.5) are identical
in the limit for large k. In the following subsection we briefly review some results on

bounded linear forms that will be used to solve the problem in (7.9).

7.3.2 Bounded Linear Forms

In what follows, we define bounded linear forms and introduce the result of J. Spencer
[40] on the discrepancy of sets with two colorings that can be interpreted as bounding

linear forms by using optimum signs.
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Definition 1: For any 1 <[ < m, linear forms L; in n variables (z1,...,z,) are
defined as
n
Li(zy,...,z,) :Zaljxj, 1<l <m, (7.11)
j=1

where all q;; are real and |a;;| < 1.
Throughout this chapter, we assume m > n and we define &« = n/m. We quote
the following result from [40] to bound the linear forms assuming z; € {+1,—1} in

Definition 1.

Theorem 7.2 (Spencer [40]) Let L; be m = an linear forms as defined in Defini-
tion 1 where o is a constant independent of n. Then for sufficiently large values of

n, there exist €1, ...,€, € {+1,—1} such that

|Li(€1,- -, €n)| < K(a)y/m = %\/ﬁ (7.12)

where K(«) is a constant independent of n and is bounded by

K(a) < 114/alog (2a71). (7.13)

Proof: Refer to Theorem 4 and 7 of [40]. O

Theorem 7.2 states that there exists a sign vector € = (ey, ..., €,) that can reduce
the maximum of m linear forms to as much as (a)y/m and also provides an upper
bound for this best constant («). In the Appendix 7.6.1, we obtain tighter bounds
for (), for instance, the bound for () for a = 0.5 in Eq. (7.13) is improved from
9.15 to 4.03. Fig. 7.1 compares the upper bound of % derived in Appendix 7.6.1
with Eq. (7.13) for different values of a.

It is also worth mentioning that considering the matrix [a;;] as a Hadamard matrix,
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Figure 7.1: Upper bounds for K(a)/\/a for different values of «



179
it is clear that there is no sign vector to further reduce the linear forms below /n.
Therefore an easy lower bound for («)/y/a in Theorem 7.2 would be one for any
a. Another implication of this is that Hadamard vectors can be considered as good
candidates for generating pseudorandom sign vectors for probabilistic methods such
as SLM.

Remark 7.1: Note that each codeword C generates a matrix [a;;] according to
(8.26). In [40], it is shown that for any [a;;], hence any codeword C, there exists
exponentially many vectors €, (1 + J,)™ of them say, such that (7.12) holds. If one
chooses only one of these € vectors, then the rate hit is log, 2. However, if we have
the choice of choosing different vectors e for each codeword, this choice will carry
information and therefore the rate hit will be log, 2 —log, (1 + d,). Characterization
of 0, will further reveal the trade-off between PMEPR and rate. Although having
the option of choosing different vector € increases the rate, it greatly complicates
the encoding and even more so the decoding, and therefore, we will not consider it

further.

7.4 Codes with Constant PMEPR

In this section based on the scheme presented in subsection 3.1 and the results in
subsection 3.2, we address the problem stated in (7.5). We study the existence of
codes with constant PMEPR for sufficiently large values of n. We first derive a lower
bound on the rate of codes with constant bounded PMEPR and then we obtain a
Varsharmov-Gilbert bound for the rate and minimum distance of such codes. We
further reduce the best achievable constant for PMEPR by choosing the optimum
sign for each subcarrier at the price of reducing the rate by using a scheme with more

degrees of freedom. The next theorem answers the first question raised in (7.5).

Theorem 7.3 For any codeword C = (ci,...,¢,) chosen from a constellation Q
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with mazimum and average power E,.. and E,,, respectively, there erists a vector

€= (€1,...,€,) with ¢, € {+1,—1} such that

VoEK(1/2k) | 2E

PMEP < mi e 14
R(C) < mkln{ cos/2k } Eu (7.14)
for sufficiently large n, where Ce = (€1¢1,...,€,¢,) and k > 1 is such that kn is an

integer.

Proof. To prove the theorem, we use Lemma 7.1 and then Theorem 7.2 to bound the
linear forms in (7.9). Therefore, setting @ = 5 < 1 where k is as in Lemma 7.1,we

can use Theorem 7.2 to get

max |s¢, (0)| < M\ME/’mwn. (7.15)

0<0<2r cos 7 /2k

Theorem 7.3 follows by using the definition of PMEPR. [J
The following corollary is an immediate consequence of Theorem 7.3 and states
that there exist exponentially many codewords with constant bounded PMEPR, for

any n sufficiently large.

Corollary 7.4 For any q-ary symmetric constellation in which both A and —A are
in the constellation, there erists a code with rate 1—log, 2 and with constant PMEPR,

for any n sufficiently large.

Proof: We first consider half of the points in the constellation by choosing one of each
two symmetric points, i.e., A or —A. We then use Theorem 7.3 to state the existence
of a choice between any constellation point and its symmetric point such that the

PMEPR of the resulting codeword is less than

(7.16)

2
. V2kK(1/2k) | 2Emas
k cos 7 /2k E,, ’
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where k, E,,, and E,,,, are as defined in Theorem 7.3. Therefore, we have at least
(q/2)" codewords with PMEPR less than (7.16), so R > 1 —log, 2. [J
In the following corollary, we obtain a region for the rate and minimum Hamming

distance of codes with constant PMEPR.

Corollary 7.5 Let Q, be a symmetric g-ary constellation as in Corollary 7.4, R > 0,

g>2,and0<6 < %, iof we have
R < (1—Hyp(0)) (1 —log,2), (7.17)

where H is the entropy function, then asymptotically, there exists a code C of length n,
with entries from Qg, rate R, minimum Hamming distance dpi, = |0n], and constant

bounded PMEPR.

Proof: We first consider one point from every two symmetric points of the constella-
tion, and then we use the Varsharmov-Gilbert argument for the ¢/2-ary constellation
to construct a code with rate 1 — Hy/5(6) and minimum Hamming distance of |dn|
[42]. Therefore, we can state that if Eq. (7.17) is valid, then there exists a code C" of
length n, with entries from the g/2-ary constellation, rate R, and minimum Hamming
distance dp;, = [0n].

Now we construct the code C by modifying the code C'. For every codeword
C = (c1,...,¢,) in C', we choose between ¢; and —¢; in the constellation in order
to minimize the PMEPR, and clearly this does not decrease the minimum Hamming
distance of the code C from that of C’. From Theorem 7.3 we know that for any
codeword in C', there exists such a choice that has PMEPR of less than Eq. (7.16).
This completes the proof. [

We can also consider more sophisticated modifications to a codeword, i.e., choosing
between four symmetric points with respect to the imaginary and real axis instead of

two as in Theorem 7.3. To clarify the idea, let’s assume ¢; = a; + 7b; and also assume
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¢;’s and €}’s are chosen from {+1, —1} and let

n n

SC,.. (9) = Z €;a; cos 10 — €;b; sin 16 + j Z €.a; sin 10 + €;b; cos 6. (7.18)

i=1 i=1

In this scheme, when we want to transmit the symbol a; + 7b;, we are allowed to use
+a; and +b; independently in order to reduce the PMEPR. In other words, since this
scheme certainly has more degrees of freedom, we can further reduce the PMEPR at
the price of reducing the number of codewords to (¢/4)™ for symmetric constellations
with respect to the z and y axis. The following corollary addresses this trade-off

between rate and PMEPR, which is analogous to Corollary 7.4 and ?77.

Corollary 7.6 For any q-ary constellation such that the constellation points are sym-
metric with respect to both real and tmaginary azes, there exists a code with rate at

least 1 —log, 4 and with constant bounded PMEPR, for sufficiently large values of n.

Proof: We prove this along the same line as Corollary 7.4. Since in this case we have

twice as many degrees of freedom, Eq. (7.15) can be rewritten as

max |sc, ,(0)] < M\/QnEmaz. (7.19)

cos /2k

This can be then optimized over k defined as in Theorem 7.3, and therefore the

PMEPR is less than

2
mkin{ ﬁ;if}élli) } 2?}2”. (7.20)
Clearly (7.20) is less than (7.16) and this scheme can improve the best achievable
constant PMEPR of (7.16). On the other hand, since at each time when we want
to choose a; + jb;, we use any of the four combinations of +a; + jb;, the number

of codewords will be at least (¢/4)™ and therefore, the rate should be greater than
1 —log,4. O
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As shown in Corollary 7.4, using the optimum signs for each carrier, ¢; € {+1,—1},
we can reduce the PMEPR from n to a constant of Eq. (7.16) by the rate hit of log, 2.
Another interpretation of this is that by expanding the constellation by a factor of
two, we can reduce the PMEPR from n to a constant for asymptotically large values
of n. By using more degrees of freedom as in Corollary 7.6, we can further reduce
the constant bound for PMEPR from (7.16) to (7.20) at the price of the same rate
hit, i.e., log, 2. As Fig. 7.1 suggests, since the upper bound for K () is quite close to
K(2a), further reduction of the PMEPR by using more degrees of freedom does not
seem to be very efficient.

Remark 7.2: Corollary 7.4 has an interesting implication for the PMEPR dis-
tribution. Assuming Q to be a symmetric constellation, it is shown in [47] that if the
¢;’s are independently chosen from Q, then the OFDM signal tends to a Gaussian
process for large n. Based on this, it is claimed in [47] that the distribution of the

PMEPR can be approximated by

Pr{PMEPR(C) < A} 2 ¢=¢ "V 5 logn (7.21)
for large n and where C' = (cy,...,¢,). However, Eq. (7.21) cannot be true since it

implies that the number of codewords that have a constant PMEPR of A (independent

of n) is given by

qn(l—f(););\/ﬂ/ﬂogn) (722)

Y

which clearly goes to zero as n tends to infinity. This contradicts Corollary 7.4.
Therefore, even though the OFDM signal is a Gaussian process (any finite number of
time samples are jointly Gaussian), this does not say anything about the distribution

of the peak, since it involves an infinite number of samples.
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7.5 Conclusion

We proved the existence of g-ary codes with rate greater than 1—log, 2 with constant
PMEPR when the number of subcarriers n, is large. In fact we can achieve this
region by using the optimum sign for each subcarrier to reduce PMEPR. We also
obtained a Varsharmov-Gilbert upper bound on the rate of a code given its minimum
Hamming distance with constant PMEPR. We then considered a scheme to choose
between four constellation points (rather than two) to further reduce PMEPR at
the price of reducing the rate. In the second part of the chapter we considered the
design of signs to reduce the PMEPR. We proposed a deterministic algorithm that
computes the optimum sign vector efficiently and guarantees a PMEPR of clogn
for any n. This scheme allows us to reduce the PMEPR at the price of expanding
the constellation. Simulation results show a large improvement in the PMEPR by

expanding the constellation by a factor of two.

7.6 Appendices

7.6.1 Bounds on K(«a)

In this appendix we obtain a tighter values for («) than the bound in Theorem 7.2.

We first quote the following theorem from [40] that will be used to find better bounds.

Theorem 7.7 (Spencer [40]-Theorem 10) Let L; be m linear forms as defined in

Definition 1. Let t, an infinite positive sequence v1,7%s, - - ., 3, and p be given satisfying

1) B=21302 H2vQ(t(2s — 1)) + 27,Q(t(25 — 1))
2) Y l=1-c<1 (7.23)

3) H(;-p)<1-p

2
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then there erist €1, ..., €6, € {—1,0,+1} such that

1) H{i: & =0} <2pn
2) |Ll(€1,...,€n)|gt\/a\/m 1§l§m

(7.24)

It is also worth noting that in the proof of the above theorem, sufficiently large n

means that

0> —logc
T 1-B-H(z-p)

where 3, ¢, and p are as defined in Theorem 7.7 [40]. Now we can state the following

lemma:

Lemma 7.8 Let K(a) be defined as in Theorem 7.2. Then, for any t > 3,

K(a) < tva+K (\/—3.05aQ(t) log, 0.39Q(t)) , (7.25)

where Q(t) = \/%7 [ e %da.

Proof: As Theorem 7.2 states, there exists a vector ¢ with entries chosen from
{+1, —1} such that all m linear forms are bounded by K(«)y/m for sufficiently large
values of n. Now to bound the linear forms, we first use Theorem 7.7 and then use
Theorem 7.2 to assign a sign to the remaining coefficients, which were assigned zero

by Theorem 7.7. Therefore, using the definition of K and triangle inequality, we get
K(a) < tv/a+ K(2pa) (7.26)

for sufficiently large n. From now on, we use Theorem 7.7 to compute p in Eq. (7.26)

as a function of £ and a. As a first step, we use the inequality H(1/2—p) < 1—2.88p?
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for p < 0.5 to choose p as a function of 3 as

1
H(§—p) <1-28p*=1—pP<1-4, (7.27)

where %7 is an upper bound for 8. Therefore Eq. (7.27) guarantees the third condition
and we only need to find an upper bound for 8 and simplify the first condition in
(7.23). In Appendix 7.6.2, it is further shown that the first and second conditions of
(7.23) imply that

af < —2.2Q(t) log, 0.39Q(t) = af™ t> 3. (7.28)

Inserting the upper bound of 3 in (7.27), we deduce that p = \/@Q(t) log, 0.39Q(%).
Lemma follows by substituting p in (7.26). O
We can now numerically compute each () by using the recursion of Lemma 7.8.

For example for o = 0.5, letting £t = 5, we get
K(0.5) < 5v0.5 + £(0.0032),
again using the lemma by ¢ = 5,
K(0.5) < 5v0.5 + 6v/0.0032 + K(1.75 x 107°). (7.29)

For the last term we can use the bound in Theorem 7.2 (i.e., K(a) < 114/alog2a71),
and hence Eq. (7.29) implies that K(0.5) < 4.03, which is much better than 9.15 as

suggested by Theorem 7.2.
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7.6.2 Proof of Eq. (7.23)

In this appendix, for ¢ > 3, we simplify the first condition of (7.23), and reveal the
relationship between [, «, and t. The idea is to show that for ¢ > 3 the dominant
term is the first term with s = 1 in (7.23). As a first step, we assume y; = 1.1 and
v; = 20" for 4 > 2 to satisfy the second condition in Eq. (7.23). Therefore, in the
derivation of Lemma 7.8 we will not optimize over the values of 7;’s. Now inserting

the value of 7;’s in the first inequality of (7.23), we may write

af < H(2:2Q(t) +2.2Q(t +Z{ 2Q(t(2s — 1))20°* log, {2Q(t(2s — 1))20° '}

+4Q(t(2s — 1))20°7 '}, (7.30)

where we used the fact that H(e) < —elog, e+€log, e, which follows from log,(1—z) <
zlog,e. Now we can further simplify (7.30), by using e~ < Q(t) < 1/2e~**/2 for

t > 3, to obtain

[M]8

2 2 2 2
af < H(2.2Q(t)) + 2.2Q(t) + {—208—1e—%<25—” log, {Qe_t (25-1) 205—1}

||
I\

S

1 94365 @12 g1

——

[M]8

< H(22Q(1) + 2.2Q(t) {205—1e—t2<25—1> (= (s — 1/2) log, 20 + #3(2s — 1)?)

||
I\

S

_|_
11.43e @51 o(y5~ 1}

where we used s —1/2 < s—1 and 2s — 1 > 2 for s > 2. The above summation can

be easily worked out by defining

o1 (e 20e 3
220 Le=t'(2s-1) = o0 (7.31)



188

Therefore, Eq. (7.31) can be written as

0f < H2.2Q(0) + 2.2Q(t) + 1L43f() + %log 20 (-ﬂd—(j‘)\a:ﬁ)
2f
+t2 (#'a:ﬁ)
< H(2:2Q(t)) + 2.2Q(t) + 28.6¢7% + 60 log, vV20e " + 18012~
< H(2:2Q(t)) +2.3Q(1), (7.32)

where the second inequality is valid for t > 3 by differentiating (7.31) and letting
t = 3 in the denominator. For the third inequality, we can simply observe that the
last three terms are less than e 2 and since 0.1Q(t) > e 2 for t > 3, the third
inequality follows. We can further simplify (7.32) by using H(¢) < —eloge + elog, e

to obtain

af < H(2.20Q(t) +2.3Q(1)
< —2.2Q(t)log,{2.2Q(t)} + 5.43Q(t)
= —2.2Q()10g,{0.39Q (1)}, (7.33)

which yields (7.28).
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Chapter 8
PMEPR Reduction Techniques

8.1 Introduction

The high peak to mean envelope power ratio (PMEPR) of multicarrier signals is one of
the major obstacles in implementing OFDM, xDSL, and other broadband multicarrier
systems. The occurrence of large peaks in the signal seriously hampers the efficiency
of the power amplifier.

Due to the importance of this problem, over the years, different schemes have
been proposed for PMEPR reduction such as coding, deliberate clipping, selective
mapping (SLM), reserved carriers, and tone injection [37, 2, 34, 36, 39, 3]. In all
these schemes, there is always a trade-off between PMEPR and other parameters in
the systems, including coding rate, average power, signal distortion, and bandwidth.
Methods like coding usually give a worst case guarantee on the PMEPR; on the other
hand, there are other methods such as SLM that improve the probability distribution
of PMEPR, i.e., reduce the probability of encountering large PMEPR.

The results in Chapter 7 shed light into this problem and prove the power of
coding on reducing the PMEPR of multicarrier signals. One important result was to
show that balancing each codeword by choosing the optimum sign for each subcarrier
can lead to significant PMEPR reductions. The main goal of this chapter is to

seek practical schemes to reduce the PMEPR of OFDM signals. We first focus on
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constructing codes with low PMEPR by balancing each codeword using the sign of
each subcarrier. Clearly, the complexity of the reduction algorithms are of paramount
importance and the main challenge is to find the signs efficiently while significantly
reducing the PMEPR. We propose three different algorithms for choosing the signs
with polynomial time complexity. In the second part, we look into schemes to modify
the constellation for PMEPR reduction. The resulting algorithms are mainly based
on convex optimization techniques. Simulation results are presented at the end of

this chapter.

8.2 Design of Signs to Reduce the PMEPR

In this section, we are seeking an answer to the third question raised in the previous
chapter, namely the efficient design of signs to reduce the PMEPR. This is in fact
well-motivated by the result of Theorem 7.3 in which it is proved that there exists a
sign vector that yields constant bounded PMEPR for sufficiently large values of n.
The following subsections present three main techniques namely, derandomization,
greedy methods, and algorithms based on sphere decoding. These algorithms seek a

sign vector with a worst-case guarantee on the PMEPR of the resulting codeword.

8.2.1 An Algorithm Based on Derandomization

Based on the results of Chapter 6, any random sign vector should have PMEPR of
log n for large values of n with probability one, and therefore, random methods should
work well in the probability sense. It should be also mentioned that searching over
all the possible 2"~! sign vectors has exponential complexity. Therefore, there is no
hope to find the best sign vector as it is an NP hard problem

In what follows, we propose deterministic and efficient algorithms that basically

search for a good set of sign vector € and then we prove that our algorithm guarantees
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deterministically (not probabilistically) that the PMEPR is less than clogn for any
n (not asymptotically) where c is a constant independent of n. We further quantify
how good the resulting sign vector is in terms of PMEPR, reduction.

We restate the problem here. For any given complex vector C' = (cy, ..., ¢,) where
lc;] € Q and ¢; < v/Fnay, consider the following minimization problem:

n
min max | ; eicie’”|, (8.1)
where € = (€1,...,€6,) and ¢; € {+1,—1}.

We again use Lemma 7.1 to reformulate the problem in (8.1) and instead of de-
signing the vector € to minimize the maximum of |s¢(f)| over a continuous variable
0, we find the optimum ¢;’s to minimize 2kn linear forms corresponding to s&(6;) and
s6(0;) for : = 1,...,n and defined as in Eq. (7.9). Therefore, we may consider the

following problem,

n
méinlg)lggiJ ; €ilpil, (8.2)
where a,; is defined as
Re{c;el®'} 1<p<kn,
Api = (8.3)
Im{c;e’%"} kn+1<p < 2kn,
2
where 0, = 2.

In order to solve (8.2), we consider a more general setting for our problem. Let’s
consider the set of equiprobable vectors € = (ey,...,€,), € € {—1,+1}. Then, for
any codeword C, we define A) as the event that the p’th linear form defined in (8.2)
is greater than \. Furthermore, assume A is chosen such that Z?ﬁ? Pr{A42} is less

than 1, and therefore, there exists a vector ¢ with the above property. We would like
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to efficiently find the vector ¢, such that none of the bad events AI),‘ occur.

This problem has been considered in mathematics and is usually referred to as
the derandomization of random algorithms [30, 48]. In this approach, we assume
that we can compute the conditional probability Pr{A}|e;,...¢;}, and we find the

1

€;’s sequentially. At the j’th step, given the optimally chosen signs €j,...,€;_;," we

choose €} € {+1,—1} such that

2kn 2kn
D Pr{AMe, ... € .6} = mm{ZPr{A’\kl,..., €_1, 6 = +1},
i=1

2kn

ZPI{A)‘|61,..., € 1,6 = -1}}. (8.4)

Due to the above recursive minimization and assuming that €7, ..., €;_; are deter-

mined, we can write the following inequality,

2kn

ZPr{AA|61, €}

Z%" Pr{A}Me;,... € € 1,6 = 1}+22k" Pr{A}e;, ... € €y, 6 =—1}

2
2kn 2kn
>m1n{ZPr{A)‘|61,..., €;_1,€6 = 1}, ZPr{A)‘|el,..., €_1,€ ——1}}
i=1

2kn

= Pr{AMe;,.... €. €, (8.5)
=1

and finally since 37" Pr{A}} < 1, and after determining each ¢; sequentially ac-

cording to (8.4), we will end up with

2kn

ZPI{ANG’{,...,GZ} <1 (8.6)
i=1

Since there is no randomness in the conditional events of (8.6) when all the €’s

!'We use the superscript star to denote that the €;’s are optimally chosen not arbitrary.



193
are determined, each Pr{A}|e},... €.} is either one or zero. Therefore, Eq. (8.6)
implies that all of the probabilities are zero, and consequently, the resulting vector €
guarantees that none of the events A} will occur.
The difficulty here is now in the efficient computation of the conditional probabil-
ities. Instead of using the exact conditional probability functions, we can use upper

bounds for conditional probabilities defined as

Pr{A ey, ..., 6} < FMey, ..., ¢€), (8.7)

if the upper bounds satisfy the following conditions:

i) SR EA <1
) (8.8)
i) Fle,... ) > eje?iﬁn_l}F (€1, -, €-1,€)

Obviously by the same reasoning used for the original algorithm, we can use the upper
bound to find the vector ¢* such that none of the events A} occur. Fortunately, as

will be proved in Theorem 8.1, Chernoff’s bound does the work for us,

n J n
Pr{| Zapiei| > Meg, .., 6} < 2e ™cosh {fyZe apr} H cosh yay,
i=1

r=1 r=j+1

def- page,, . L&), (8.9)

P
for any v > 0 and 1 < p < 2kn. We will show in the proof of Theorem 8.1 that
FMer,...,€), as defined in (8.9), satisfies both conditions in (8.8). Now we return

to our problem and present the following algorithm.

Algorithm 8.1. For any codeword C = (c1, ..., ¢y,), let ay; be asin (7.9), k be as



194

. _ , . .
in Lemma 1, and |¢;| < \/Emaz. Then €; = 1, and €;’s are recursively determined as

2kn j—1 n
= —sign {Z sinh { * Z apr} sinh(v*ayp;) H cosh {y*ap,}} (8.10)

r=1 r=j+1

2log 4kn
nEmaz |:|

forj=2,...,n, where v* =
The following theorem gives the worst case guarantee on the PMEPR of the

codeword C, = (€1¢1, . .., €,0p).

Theorem 8.1 Let C = (c1,...,¢,) be a given codeword where |¢;| < /Epar and
Euw = E{|c;|*}. Also, let C. = (e1cy,. .., €ncn) where ¢ € {+1,—1} is determined

according to Algorithm 8.1. Then the PMEPR of the resulting codeword, C,, will be

4Emacc

less than 052 (7 2k Eqy

log 4kn where k is as in Lemma 7.1.

Proof: The proof relies on the derandomization method illustrated before and uses
the Chernoff bound to evaluate the conditional probability distributions. As a first

step, we derive the upper bound for the conditional probability in (8.7) as

n n
Pr{ Zapiei >)\‘61,...,€j} = Pr{Zapiei>/\|61,...,ej}
i=1 i=1
n
Pr{Zapiei < —/\|€1,...,€j}

— {Zap,e,>)\ Zapzezlq,---, }

i=j+1

{ Zap,e,>)\+2ap,ez\el,..., }

i=j+1

IN

e'Y 21:1 Api€i X 6*7)\E {67 Zi=j+1 Api€; }

+6_7 Zgzl Api€; X 6_7)‘E {6_7 E?=j+1 api€i}

i n
= 2e " cosh {7 Z e,nap,«} H cosh ya,,
r=1

r=j+1
= F)e,-.-,¢5), (8.11)
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where we used Chernoff’s bound and the fact that ¢; € {+1,—1} is equiprobable
and where 7y is the Chernoff’s bound coefficient to be optimized. We then show that
the upper bound satisfies the conditions in (8.8). Using cosh(a + b) + cosh(a — b) =

2cosh acosh b and using the definition of FpA, Eq. (8.11) can be written as

Jj—1 n
FMer,...,€-1) = 26_7’\cosh{7 erapr}coshvapj H cosh ya,,

r=1 r=j+1
n j—1
= e H cosh ya,, (COSh {WZ €rQpr + ’yam}
r=j+1 r=1

j-1
+ cosh {7 Z €rQpr — fyapj}>
r=1

Fli\(e].) e ;ej—laej == +1) +Fp)\(€1, .. .,6]'_1’6]- = —]_)
2

> in FMep. ... € 1.6:). 8.12
> i e 6o6) (8.12)

That ensures the second condition in (8.8) is satisfied. To verify the first condition,

we use the following inequalities:

2kn 2kn n 2kn n 1242
— — L _pr
E F;'\ZE 2e 7’\Hcosh’yapr < E 2e 7)‘1_[(5 2
=1 1=1 r=1 =1 r=1
2kn 2
< Y20 x o
i=1
2
< 4kn677A+j2_nEmaac

)

where we used coshz < e**/2 for z # 0. Now we can optimize over v to get v* =

A/NEpq and setting A = /2nFE,,q, log4kn, Eq. (8.13) can be written as

2kn n 2kn 5

SR apieil > A} < Y F} < dkne m = 1. (8.13)
=1 i=1 i=1

Therefore, the first condition will be also satisfied. Based on (8.4), we can compute
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* 3 3 * *
€; in each step given €7,...,€;_; as

kn kn
€; = —sign {Z FME, ... €y, 65=—+1) — ZF}’\(e’{, ey €y, € = —1)} . (8.14)
i=1 i=1

Substituting the definition of F(ef,..., €} ,¢;) in (8.14), € can be written as in
(8.10). Lemma 7.1 then completes the proof by setting the value of A and relating
PMEPR to the maximum of 2kn linear forms, and it can be easily shown that the
PMEPR of the resulting codeword is less than cos;éf/% log 4kn where k is as in
Lemma 7.1. OJ

In order to get better insight into the above result, we define the rate of a ¢g-ary
code family C as in (7.4). In fact Theorem 8.1 implies that, by using an optimum sign
for each subcarrier, we can construct a code with rate 1—log, 2 and PMEPR of clogn
for any n. The rate and PMEPR of this code is much higher than those of the previous
codes proposed in [37] (and references therein) whose PMEPR is O(log” n) and whose
rate is approaching zero as n increases. It is also worth mentioning that finding
optimum signs in the transmitter side can be done very efficiently, and the decoding
is very simple since the decoder simply ignores the sign of each subcarrier. On the
other hand, this scheme can be interpreted as a scheme to reduce the PMEPR by
expanding the constellation. For instance, by expanding the number of constellation
points by a factor of two and making it symmetric, the resulting PMEPR can be
reduced from n to the order of logn for any n. Of course, in order to preserve the
minimum distance of the constellation, the average power should be increase by 3dB.

Now we present simulation results for different constellations including QPSK and
16QAM and for n = 64 and n = 128. Fig. 8.1 shows the actual complementary cu-
mulative distribution function (CCDF) of PMEPR, Pr{PMEPR, > a}, and compares
with the PMEPR distributions after using the SLM method by Hadamard vectors as

psuedorandom sequences for M = 2,4,8, i.e., the transmitter sends the best code-
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Figure 8.1: PMEPR distributions for n = 64 and for different schemes: SLM with
M = 2,4,8 and using signs based on Algorithm 1 for each subcarrier
word out of M in terms of PMEPR. Fig. 8.1 also shows the CCDF of PMEPR, after
using the signs derived by Algorithm 8.1. Clearly the distribution function improves
significantly. For instance the probability of having PMEPR of 4.6 is almost one,
however by using signs based on Algorithm 8.1 this probability will go down to 1073.
Fig. 8.2 compares similar schemes when the number of subcarriers is 128. Inter-
estingly the gain in PMEPR reduction here is much more. Furthermore the PMEPR
distribution after using the designed signs for n = 64 and n = 128 are very close. It
is also worth noting that the PMEPR drop is much more abrupt after optimizing the
signs. For example, the probability of having PMEPR greater than four is almost

one, however probability of having PMEPR greater than 4.8 goes down to 1073.

8.2.2 A Greedy Algorithm to Choose the Signs

Following Section 8.2.1, we just consider the kn uniform samples of the signal s¢(f)

at 0, = T—n” for p=1,...,kn where k£ > 1 is the oversampling factor. Therefore, the
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Figure 8.2: PMEPR distributions for n = 128 and for different schemes: SLM with
M = 2,4,8 and using signs based on Algorithm 1 for each subcarrier
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problem can be stated as in (8.2).
In other words, we would like to solve
min = [Aello = | min || aieilloo, (8.15)
L

2
e;=1,i=1,.

21,
e;=1,=1,....,n

where A = [q;] is a 2kn X n real matrix and a; = [a,;] and a,; is as defined in (8.26).
Without loss of generality we assume that |a;,| < 1 (which can be done by scaling
the constellation).

In Section 8.2.1, a deterministic algorithm was proposed to design the signs using
derandomization. The algorithm chooses the signs recursively based on the knowledge
of all a;’s. In fact, at the j’th step, we choose the sign that minimizes the conditional
probability that || A€||« is greater than some threshold A and given €y, ..., €;_;. Since
finding the conditional probability is quite messy, we used the Chernoff bound instead.
This leads to Algorithm 8.1 as obtained in Section 8.2.1.

The only drawback of Algorithm 8.1 is that the computation at each step involves
taking the cosine hyperbolic £n times, which may increase the computation. In order
to simplify the computation of Algorithm 8.1 at each step, one may try choosing the
signs in a greedy manner in which at each step the sign that minimizes || 3-7_, a;€;|o0
is chosen given €1, ..., €; 1. Interestingly, we can improve the performance by chang-
ing the infinity norm to norm p. Fig. 8.3 shows the performance of this method using
different norms. It is clear that for n = 128, using p = 6 or 7 leads to quite a large
improvement.

We can in fact justify this behavior analytically. The main result of this section
is to obtain a bound on the PMEPR obtained from greedily minimizing the metric
I 22:1 €ja;][b. In particular, we show that the optimal p is log2kn, which yields a

PMEPR of clogn for any n. Here is the algorithm:



200

100 FEFHH R

T T
Actual Distribution

N —+— After Alg. 2: p=6
N — — — After Alg. 2: p=2
N after Alg. 3: p=infinite

,_.
o\
L
T

Pr(PMEPR>\)

H
OI
b
T

10°

Figure 8.3: Comparison of Pr(PMEPR > \) for n = 128 and using Algorithm 2 for
different value of p and for 5000 codewords.

Algorithm 8.2: Let ¢; = 1, and having chosen €, ..., €;_1, then

k
€y, = arg min || Zaiﬁi”g- (8.16)

€k€{+11_1} .
J=1

The next theorem provides a worst case guarantee on the PMEPR when p is even.

We conjecture that the result holds for p odd as well.

Theorem 8.2 For any p greater than 2, and assuming all the entries of A = [a; ;]

are |a; ;| <1, Algorithm 2 ensures that
| A€l oo < (2kn)Y2\ /D10 (8.17)

for any n. If p =log2kn, then the upper bound is e\/nlogkn.

Proof: We present the proof when p is even for simplicity. If p is odd, we can follow

a similar approach. Assume €q, ..., ex_; have already been determined. We define the
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sequence BY_, = | Z;: ajéj||h. Using Algorithm 8.2, we now find a bound on B
based on B;_;. We first denote Zf;ll aje; = (Y1,---, Yokn)' and ag = (@1, ..., Togn)"-

Hence we may write

2kn kn
2knB? = min {Z(yj — )P, Z(y] + xj)p}

% (Z(yj + ;)" + (y; — ijV’)

=1

% (Z(yj + 1P+ (y; — 1)p) : (8.18)

=1

IN

IN

The last inequality follows from the fact that |z;| < 1 and also using the inequality

(Y +2)" + (y; — )P < (y; + 1P + (y; — 1)° (8.19)

for p > 1 and |z;| < 1. The bound can be proved using the convexity of the left hand
side of (8.19) and therefore its maximum is attained on the boundary.

We can further bound (8.18) by using the inequality
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Therefore,

knB?

IN

kn{(Br_1 +1)? + (B,_ — 1)} (8.20)

< 2n (B2, +p)"?, (8.21)
where the last inequality follows by expanding the right hand side of (8.20) and using

RAPRESRORES

We can therefore obtain a recursive bound for Bf < Bf,l +p. Noting that B; <1,

the fact that

we conclude that B, < ,/np, and therefore,

IN

n n
| Zaiez-lloo | Zamllp
i=1 i=1

< (knpp/an/Q)l/p

= (2kn)'/?\/pn. (8.22)

Finally, letting p = log 2kn, the theorem follows. [J

Theorem 8.2 implies that if the norm p is properly chosen, the PMEPR of the
resulting codeword is guaranteed to be less than clogn where c is a constant inde-
pendent of n.

In fact, if we just allow the designer to find ¢; causally, i.e., based on a4, ...,q;
and not using a;11, ..., a,, the problem of choosing the signs can be formulated as
a mathematical game [1]. Following Spencer’s terminology, at the k’th stage the
“pusher” chooses ay, such that ||ag||c < 1 and then the “chooser” decides on the sign
€x. The value of the game at the k’th stage is || Zle aj€j||o- Based on a result of

[30], we can state the following corollary.

Corollary 8.3 Considering any real kn X n matriz A with entries bounded by one,
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any algorithm that chooses €;’s causally, cannot achieve a PMEPR of less than logn

for large n.

In fact any suboptimal algorithm for the pusher to find a;’s leads to a lower bound
for the problem of causally choosing ¢;’s. In [30], an algorithm is also proposed to
design the signs causally. Here is the algorithm:

Algorithm 8.3: Let ¢; = 1, and having chosen ¢, ..., €;_1, then

k
= 1 h i €i y 823
€ = argmin cos (Z a;€ ) (8.23)

=1

where cosh(X) for the vector X* = (z1,...,%y,) is defined as Y ;- coshz;.
In [30], it is further proved that for a square n x n matrix, the algorithm can
guarantee that ||Ae€||o < v/2nlogn. The proof can be easily extended to the case of

a kn X n matrix.

8.2.3 Pruning Algorithms

As shown in Fig. 8.4, there is still a pretty large gap between the PMEPR of the
multicarrier system (i.e., 4.8) and that of the single carrier systems (i.e., 2.3). More
precisely, we would like to see whether we can efficiently find a better choice of the
signs that further reduces the PMEPR and approaches the CCDF of the single carrier
system. Here we consider two variations of algorithm 8.2.

Pruning Algorithm 8.4: In the first approach, we search over all the possible
signs for the first m subcarriers and then we use Algorithm 8.2 to find the choice
of the signs for the remaining n — m signs. Finally we choose the sign vector (out
of 2™~! possible choices as €¢; = 1) that has the least PMEPR. This of course has
the complexity of order O(2™nlogn) as it requires searching for the best vector by
performing 2™ IFFTs with size n. Fig. 8.5 shows the performance of this scheme for

different m’s. It can be seen that the PMEPR has been reduced from 4.8 to 3.4 at
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Figure 8.4: Comparison of Pr(PMEPR > \) for n = 128 using the pruning algorithms
compared to Algorithm 8.2 with p = 6 for 5000 random codewords.
the cost of additional computational complexity at the transmitter.

Pruning Algorithm 8.5: In the second approach, we consider the metric at
the j’th stage to be || Zgzl aie;|[h. Instead of just looking at the choice of sign that
minimizes the metric at each stage, we keep the sign choices as long as the metric is
less than some threshold value. One legitimate choice of the threshold would be the
value of the metric by running Algorithm 8.2. In order to allow for more sign vectors,
we may increase the threshold at each stage by some value (say 7). At the end of
the algorithm, we choose the best sign vector in terms of PMEPR. Fig. 8.4 shows the
resulting PMEPR improvement for different values of 7.

Fig. 8.5 is the rescaled version of Fig. 8.4 to see better the difference in the CCDF
of PMEPR for the pruning algorithms and Algorithm 8.1. Clearly, the PMEPR is
improved from 12.5 to 3.4 for the multicarrier system with 128 subcarriers and its
PMEPR is just 1.6dB= 10log(3.4/2.3) worse than the single carrier system. This

motivates further investigation for more effective algorithms to choose the sign vector
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Figure 8.5: Comparison of Pr(PMEPR > \) for n = 128 using the pruning algorithms
compared to Algorithm 8.2 with p = 6 for 5000 random codewords.
with less complexity. Moreover, the question of how much further we can improve

the PMEPR remains open.

8.3 Codes for BPSK Constellations

Unfortunately, the scheme proposed in Section 8.2 cannot be extended to BPSK con-
stellation as all the information sent to the receiver is over the sign of each subcarrier.
This problem is further motivated by the fact that for BPSK there is no construction
for a high rate code with PMEPR of less than O(logn) (see [2] and [1]). In this sec-
tion, we try to extend the result to the BPSK constellation by only using a fraction
of all the signs to reduce the PMEPR.

In order to construct BPSK codewords with bounded PMEPR, for any integer r,

we use the sign of 7 equally spaced subcarriers indexed from 1 to n to minimize the
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PMEPR.? Therefore, for any given codeword C, we would like to solve the following

non-convex problem:

71 r
Juin - max ;em (; Ci'r—|—sej0(ir+s)> : (8.24)
where ¢; € {+1, —1}. It is worth mentioning that setting 7 = 1 reduces the problem
to the one addressed in [73].

Following [73], instead of maximizing over 0 < # < 27, we can minimize the
maximum over kn samples of 6 [?, 45]. Therefore the min-max problem of (8.24) can

be written as

n_q
;rgn S n ;Gm%i ; (8.25)
where
Re{D>""_ ciry,el00rts)} 1< p<kn,
Qp; = (826)
Im{}>{ Cirp €U Te)} kn+1<p<2kn,

and 6, = 22,

Fortunately, the machinery used in section 8.2.1 can be generalized to this case
and the following algorithm can be deduced by using a derandomization method as
we did in Algorithm 8.1.

Algorithm 8.6. For any C = (c1,...,¢,), let k be an integer greater than 1 and

|¢i| < V/Emaz- Then €1 =1, and €,’s are recursively determined as

2kn s—1 n/r
€; = —sign E sinh ¢ o €0y ¢ Sinh(a*ays) H cosh{a*a, } ¢,

r=1 r=s+1

fOT'S:Q,_,_’g’ where o = iLOEgLLk”'
max

2For simplicity, we always assume r divides n. This condition is not necessary and it is just for
simplifying the notations.
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The next theorem gives a guarantee on the PMEPR of the resulting codeword by

using Algorithm 8.6.

Theorem 8.4 Let C be a given codeword where ¢; < \/Epap and E,, = E{|c;|*}.
Also let Ce = (€161, ... ,€1Cr 1, €2, ...) where €;’s are determined according to Algo-
rithm 8.6. Then the PMEPR of C. is less than (ﬁ% log4kn for any n and r

where k 1s a positive integer such that kn is an integer.

Proof: The proof is along the same line as the proof of Theorem 8.1. The only
difference here is that we are minimizing the maximum of 2kn linear forms over n/r
signs as opposed to n in Section 8.2. [

Remark 8.1: It is worth mentioning that our scheme is similar to the PTS
method in that we search for the optimum sign for each group to minimize the
PMEPR. The difference however is that we do not require side information in the
receiver as the signs that we used for PMEPR reduction do not carry any information.
Moreover, we propose a simple deterministic algorithm that provides a guarantee on
the PMEPR without performing any Fourier transformation.

Remark 8.2: Since £ is a constant, Theorem 1 implies that the resulting code-
word has a PMEPR of less than clogn where c is a constant independent of n and r
and that ¢ can be determined by optimizing over k.

We can now construct a code set C such that the PMEPR, of all its codewords
is less than crlogn when the ¢;’s are chosen from a symmetric g-ary constellation.
This can be done by reserving the sign of only n/r subcarriers (indexed i = 1,7 +
1,2r+1,...,n—r+1) to minimize the PMEPR, over those signs. Given all the ¢;’s,
Algorithm 1 can be used to determine the signs in polynomial time. Therefore, we
end up having (¢/2)"/"¢" /" codewords with the PMEPR of less than crlogn for

any n and r. That leads to the following corollary:

Corollary 8.5 If ¢;’s are chosen from a q-ary constellation, the code C constructed
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using Algorithm 1 has a rate of 1 — %logq 2 and its PMEPR is less than crlogn for

any n and r, where ¢ is a constant independent of n and r.

It is worth noting that the decoding of C is quite simple as the decoder can
infer the signs (¢;’s) from the corresponding subcarriers since they do not convey any
information over their signs.

Remark 8.3: The extension of our algorithm to the case where ¢;’s can be chosen
from {£1 + j} is straightforward. In this case ¢;’s in (8.24) should be replaced by
€;+ je; where €; and €, are chosen from {41, —1}. Therefore using the same argument
as in (8.25), the problem can be again written in a similar form as in (8.25) and can
be solved using Algorithm 8.6.

This result has an interesting implication on the famous result of Halasz [74].
In [74], Halasz states that almost all BPSK codewords have a PMEPR of less than
logn+O(loglogn) for large n. The design of such a code has been recently addressed
in [2] where codewords with PMEPR of less than 2n have been characterized for any
n.

Corollary 8.5 in fact constructs 2*'=1/") codewords with PMEPR of less than
crlogn for any n. For fixed r and large n, this implies a construction of exponentially

many codewords (in fact 2" ~1/7)) such that their PMEPR is O(logn).

8.3.1 Large Number of Subcarriers

In [35], the result of Halasz is extended to many other constellations including sym-
metric QAM, PSK constellations, and spherical codes. Therefore, the existence of
codes with rate approaching one and the PMEPR of less than logn+ O(loglogn) has
been established, although there is no construction close to this result [1].

Since Algorithm 1 and Theorem 1 work for any n and r, we may choose r to be

logn. We can therefore use Corollary 1 to prove that we can construct a code with
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rate 1 — O(@) and a PMEPR of less than clog’n. We can make a more precise

argument in the following corollary.

Corollary 8.6 For large n, using the construction as in Corollary 1, the code C has

a rate 1 — O( (1n)) and a PMEPR of less than cf(n)logn where 1 < f(n) < n such

Q.

~

that lim f(n)

n—oo

Therefore in an attempt to construct almost rate-one codes with PMEPR of log n,
we have been able to construct codes with almost rate-one (in fact, R =1 — O(ﬁ))
and PMEPR of less than cf(n) x logn where c is a constant independent of n. Recent
results by Litsyn et. al [3] have provided codes with less redundancy and pretty much
similar bounds on the PMEPR. Th only catch is additional complexity (which is in

the order of n'°8™).

8.4 Constellation Shaping for PMEPR Reduction

In this section, we consider the PMEPR reduction by adjusting the sign and ampli-
tude of each subcarrier. This would give more freedom to balance the IFFT of the
codewords and further reduce the PMEPR. This method is a more general version of
the scheme that has been recently proposed in [50, 73].

We first consider MPSK constellations and we then generalize the idea to other
constellations as well. Here is the statement of the problem: For any given complex
vector C' = (¢, ..., c,) where ¢;’s are chosen from any MPSK constellation, find the

solution to the following optimization problem:
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o . . n . . . ]02
minirmnize 02%?2(«‘ Yo €6(1 4 uy)ce?”|

subject to ¢ € {+1,—1}

(8.27)
0 S U S Umax
Z:'Lzl |Ci‘2(1 + ui)2 < (1 +n)nPu,
where € = (e1,...,€¢,) and u €™ are the optimization variables, u; denotes the ampli-

tude variations of the 7’th subcarrier, and n denotes the average power increase. It is
of great practical interest to reduce the peak of s () without excessively increasing
the average power and therefore 1 cannot be too large. In order to limit the varia-
tion of the new modulating vector C, = (€1(1 + uy)cy, ..., €,(1 + uy)cy), we further
constrain u; to be less than wuy,.,. The last constraint also implies that the average
power increase is controlled by the parameter 7. Clearly, the bound on u;’s limits the
dynamic range of the quantizer in the transmitter. On the other hand, n limits the
total variations of the constellation points while the minimum distance between the
constellation points is fixed.

In summary, the price for reducing the PMEPR with our scheme is a slight increase
in the average power, n or 10log(1+7) dB, and sending no information over the sign
of each subcarrier. For instance, Fig. 8.6 shows the modified QPSK constellation.
For constellations other than MPSK, we let outer points in the constellation move
such that the minimum distance of the constellation points does not change. This is
shown for the 16QAM constellation in Fig. 8.7.

It is also worth noting that the receiver is not required to know the vectors € and
u. Therefore, for the decoding, the receiver may ignore the sign of each subcarrier
as it does not convey any information. Furthermore, the receiver may use the same
decision region for the decoding of the constellation points as for the case where u = 0.
This is due to the fact that constellation points are only allowed to move outward as

shown in Fig. 8.6 and 8.7.
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Figure 8.7: Modified 16QAM constellation
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In order to compensate the rate loss due to not sending information over the signs,
the transmitter can double the constellation size at the expense of a 3dB average power
increase (to preserve the minimum distance of the constellation). Therefore, the total
cost for amplitude and sign adjustment will be 3 + 10log(1 + 7)dB average power
increase.

Clearly the optimization problem as stated in (8.27) is not convex due to having
an integer constraint, i.e., ¢; € {+1, —1}. However assuming that u; = 0 for all i, we
can find a suboptimal solution for the signs using the result of [50, 73]. Afterwards,
given ¢;’s and ¢;’s, we show that the optimization over u;’s is convex and can be done
very efficiently.

In fact, a suboptimal solution to the optimization over the sign can be efficiently
evaluated using the results in Section 8.2 (e.g., Algorithm 8.1). Even though, Al-
gorithm 8.1 does not give us the best signs, it is shown in Section 8.2 that it can
significantly reduce the PMEPR. Now by further optimizing over the u;, we can fur-
ther reduce the PMEPR at the price of a slight increase in the average power. This
gives us another degree of freedom to trade the PMEPR with a negligible average
power increase and without deteriorating the minimum distance of the constellation.

One might ask whether changing the order of the optimization might improve the
PMEPR reduction. Intuitively, balancing the maximum of a multicarrier signal that
is already fairly balanced by optimizing over the sign of each subcarrier requires less
average power increase 1) than the case where we first optimize the constellation over

u;’s. Simulation results also confirm this.

8.4.1 Amplitude Adjustment Using Convex Optimization

In this section, we solve the problem of minimizing the peak of the multicarrier signal
over u;’s given the signs and the information symbols ¢;’s and we show that it is

a convex problem with a linear matrix inequality (LMI) constraint [7]. We further



213

present a relaxation of the problem that leads to an approximate solution with less
complexity by minimizing the maximum of the samples of the multicarrier signal.

First of all we notice the fact that
Y el +u)z™ = H(zI — F)7'G, (8.28)
i=1

where H' = [c161(1 4+ u1), ..., cpen(1 +uy)], z = €%, Gt =[1,0,...,0], and

0 ... 0
1 0
F =
0 1 0

Given the ¢;’s and ¢;’s, we can then restate (8.27) as the following optimization
problem,
minimize 7y
subject to ||H(2I — F)7'G|leo < v

(8.29)
0 S Us; S Umax

Z?:l |CZ‘2(1 + U’i)2 S (1 + n)nPav-

In order to show that the above problem is convex, we use the bounded real lemma

[5]:

Lemma 8.7 (Bounded Real Lemma) Suppose v > 0 and F is stable. Then the

following two statements are equivalent:
(i)
[H(2I = F)™'Glloo < 7.
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(ii) There exists a Hermitian Y such that

Y +F'YF H* FYG
H = H 27 0 > 0.
G*YF 0 A I+GYG

Since the matrix H is linear in the entries of the matrix H, we can see that the
constraint in the optimization problem of (8.29) is a linear matrix inequality [7].
Therefore, given the values of €;’s and ¢;’s, we can state the minimization in (8.27)

over u;’s as the following convex optimization problem:

minimize 7y
subject to H >0
(8.30)
0 < ;i < Umax
S el 4+ ui)? < (14 n)nPay.
where H' = [cie1(1+ uy),. .., cnén(1 + uy,)], and the matrix ¥ in H is Hermitian.

This problem is a semi-definite program (SDP) and can be solved globally and
efficiently using interior-point methods. Software packages exist that implement these
methods; we use the recent package SeDuMi 1.02 [6].

Since the size of the LMI in the above SDP is relatively large, the computational
load is still high for practical purposes. In fact the complexity is O(n®) even though
exploiting the structure of the LMI can lead to faster implementations [7]. Another
way to lower the computational load with very little loss in accuracy is to discretize
sc(f) and then solve the discretized problem. That is, instead of minimizing the
maximum of s¢_, () over 1 < 0 < 2w, we consider minimization of the maximum

of kn uniform samples of sc_, (0) at 6, = 22 for p = 1,...,kn®. This certainly has

31t is worth mentioning that the resulting sc. ,(6,)’s are the oversampled IFFT of the vector
Ceu-

3
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much less complexity and can be written as a quadratically-constrained quadratic
program [7], which is solved much more efficiently than the original SDP. We use
SeDuMi for solving this problem as well. Furthermore, using the relationship be-
tween the maximum of s¢__ (6) over f and the maximum over 6;, we can make our
approximation practically accurate by choosing k = 4 [46].

More specifically, this optimization problem can be written as

minimize 7y
subject to 0 < u; < Umax

Re{sc(60,)}]? + Im{sc(6,)}]? < ¥ (8.31)

forp=1,...,kn,

Z?:l |Cz|2(1 + ’U,Z')2 S (1 + n)nP,w.

Simulation results show that the solution to the problems in (8.30) and (8.31) are very
close by choosing k£ = 4. Therefore, in the simulations part we solve the problem in

(8.31) to optimize over u;’s instead of solving (8.30), which requires more computation.

8.4.2 Simulation Results

As we discussed in the previous sections, there is a trade-off between PMEPR re-
duction and average power increase, 7, and also the range of variation for u;’s, i.e.,
Umax- 1N this section we carry out simulations to explore this trade-off for n = 64 and
n = 128 and for QPSK and 16QAM constellations. The algorithm for designing the
signs is applicable to any symmetric constellation. For the amplitude variation of the
constellation points, we use the schemes shown in Fig. 8.6 and Fig. 8.7, for QPSK
and 16QAM, respectively.

Fig. 8.8 shows the CCDF (complementary cumulative distribution function) of

PMEPR when ¢;’s are chosen from QPSK constellation and for different average
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Figure 8.8: CCDF of the PMEPR for QPSK by optimizing over the ¢;’s and u;’s for
n = 128, umax = 1, and n = 0.01, 0.05.

power increases. Clearly, we need at least 0.21db (n = 0.05) average power increase,
to get a noticeable PMEPR reduction after optimizing over the signs. As Fig. 8.8
suggests for n = 128, the PMEPR can be decreased from 10.5 to 4.5 with just using
the signs and this can be further pushed down to 3.1 by also optimizing over the u;’s
with a little average power increase.

We can further do the simulations for a wider range of u;, i.e., Upaxy = 2. As
Fig. 8.8 shows for n = 128, we can further reduce the PMEPR by allowing more
degrees of freedom to each point, however, this causes large peak to average power
ratios for the ¢;’s, which is not practically favorable.

Fig. 8.9 also shows the PMEPR reduction when ¢;’s are chosen from 16QAM
constellation and the variation of the constellation points is as in Fig. 8.7. In sum-

mary, simulation results suggest that by expanding the constellation and increasing
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Figure 8.9: CCDF of the PMEPR for QPSK by optimizing over the ¢;’s and u;’s for
n = 128, upnax = 2, and n = 0.01,0.05,0.1.
the average power by 0.21db, the PMEPR of multicarrier signals can be decreased

dramatically, i.e., from 10.5 to 3.1 for n = 128.

8.5 Other Applications of the Sign Algorithms

The algorithms proposed to choose the signs to reduce the PMEPR for multicarrier
signals in Section 8.2 can be applied to more general signals. In fact, we can address
the PMEPR problem for non-harmonic multicarrier signals as a straightforward gen-
eralization. We can also consider the joint PMEPR and intercarrier interference (ICI)
reduction in OFDM systems that has been recently addressed in [49]. In the following
subsection we consider the peak to average power ratio (PAPR) in multiple antenna

systems employing LD codes [41] .
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Figure 8.10: CCDF of the PMEPR for 16QAM constellation by optimizing over the
€;’s and u;’s for n = 64, n = 0.02,0.1, and the constellation modification is according
to Fig. 2 with uy,., = 0.3 for outer points.

8.5.1 PAPR in Multiple Antenna Systems Using LD Codes

Another issue of interest is the peak value analysis of the transmitted signal in multiple
antenna systems. We consider LD codes for two reasons: first, LD codes are very
general and include many proposed codes, and second, LD codes are linear as a
function of the information symbols and this allows us to use our approach to address
this problem.

We consider the following systems: Assume M and N are the number of transmit
and receive antennas and «o;’s and f;’s are chosen from a constellation. Then using

LD codes, the transmit matrix S = [s;;]rxm over T time slots is defined as

Q
S = agAg + 78,8y, (8.32)
qg=1
where A,’s are constant 7' x M matrices to be optimized to achieve capacity and
where Q < min (M, N)T. Since each entry of the matrix S is the linear combination

of 2@) independent information symbols, |s;;|, in the worst case, can be in the order
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of 2() as all of the terms add up coherently. To mathematically quantify this effect,
we define the peak to average power ratio (PAPR) of the multiple antenna system as
max|s;;|* max|s;;[*

i i,j

PAPR(C) = ! = :
E {Zz’,j |8ij\2} MT

(8.33)

since the average transmit power is MT, i.e., E{tr(SS*)} = E {Zw \sij|2} = MT,
and where C = (o, ..., a9, f1,-..,0¢) is the information vector that is mapped to
the transmit matrix S as in (8.32). Similarly the maximum of PAPR(C) over all the
admissible vectors of C' is the PAPR of the multiple antenna system.

To get a better insight on how severe this problem can be for multiple antenna
systems, let the «;’s and the §;’s be chosen from a BPSK constellation, and therefore

Eq. (8.32) can be written as
Q Q
S=> 0 Af— BBl +j> a,Al+B,BF, (8.34)
i=1 i=1

where A% and A! correspond to the real and imaginary parts of the matrix A. Fur-
thermore, we assume
Q

7j=1

Q
(a)* + (b)* <@ and 3 (af)” + (b)) < Q (8.35)
j=1

Clearly Eq. (8.35) is not valid; we can simply scale af¥’s and b}

] ;s to satisfy (8.35)

without affecting the peak to average power ratio as defined in (8.33). This assump-
tion simplifies our derivations and makes the result more clear. Clearly the worst
case analysis can give us the PAPR of O(Q) as all the terms add up constructively.
However, the following theorem shows that encountering a PAPR of greater than

O(log @) is highly unlikely as @ is getting large and N/M is a constant.

Lemma 8.8 Under the assumption of (8.35) and when the «;’s and B;’s are chosen
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from a BPSK constellation,

4Q 4Q 1
Pr{PAP — — < — .
r{ R(C) > T log MT + T loglog MT} < log 20T (8.36)

Proof: Since o;’s and f3;’s are independent and have uniform distribution over {+1, —1},

we can use (8.34) to write

Pr{[s| > A} < 2Pr{s] > A} <2

tsk
E{@ J} = % —t)\E {et 2?21 aiag—ﬂib{j} , (837)
etA
where we used the union bound and Chernoff’s bound for the first and second in-

equality. We can now further use the distribution of «;’s and f;’s to bound the

characteristic function as
R @ Q Ry2 4 2
E{e"i} = H {coshtaj x coshtb)} <e 5 TL )] < Q2 (8.38)

where we used the inequality cosh o < ¢**/? and (8.35). Therefore, Eq. (8.37) can be
simplified to
Pr{[sf| > A} < 2¢ @/~ (8.39)

for any ¢ > 0 and similarly the same inequality holds for s . We can now optimize

A

over t to set t* = 5, and use the following inequalities to get

QD

Pr{max|s;;| > V2)\} < MTPr{|s;| > V2A}
Z’]

IN

MTPr{|s| > A} + MTPr{|s};| > A}

IMTe /2@,

IN

The lemma follows by letting A = /2Q log MT + 2Q) loglog MT. O
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Lemma 8.8 states that even though the worst case PAPR can be of the order
of @, it is highly unlikely to encounter peaks greater than O (% log Q) since ) =
min{M, N} x T.

Now since the problem here again can be reduced to bounding linear forms, we
can follow along the same line as the previous section and show that there exist codes
with a constant PAPR by just choosing optimum signs for each « and . In this case,
we have a sign vector with 2¢) elements and 2M7T linear forms. We can also use the
algorithm in [50], to find the vector € by simply using 2M T linear forms corresponding
to the real and imaginary parts of the entries of S and () signs to be chosen to reduce

max|s;;|.

P
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Chapter 9

Future Work

The results in the thesis have brought up a few interesting open problems. In what
follows, we discuss the open problems and opportunities for future research in the
areas of scheduling in broadcast channels and code design for PMEPR reduction of

OFDM signals.

Sum-Rate of MIMO Broadcast Channels

While the results presented in Chapters 2 and 3 have shown that beamforming is
a promising technique to increase the sum-rate of MIMO broadcast channels, these
results rely on simplifying assumptions on the behavior of the channels. For instance,
the outdoor wireless channel will have shadowing on top of the Rayleigh fading be-
havior; this certainly would impact the multiuser diversity as the channel variations
of users will be magnified by the shadowing.

Another simplifying assumption is the fact that we did not assume any Doppler
spread in the system. This would affect the authenticity of the feedback and would
cause the transmitter to mistakenly choose the user that does not have the true max-
imum SINR (signal to noise and interference ratio). This would also raise another
interesting question about what we should do when the base station (or the transmit-

ter) receives a noisy version of the true SINR. One simple scheme would be to back
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off from the received maximum SINR; this certainly decreases the sum-rate. Under-
standing the amount of back off and the effect of the noise variance on the sum-rate
are challenging open problems.
Finally, in practice there is a correlation between the transmit antennas because
of the distance between antennas in the base station. It is certainly worthwhile un-
derstanding the sum-rate sensitivity to the correlation for dirty paper coding and our

proposed beamforming scheme.

Scheduling in Broadcast Channel

In Chapter 4, we considered a single antenna homogeneous broadcast channel
where different users demand for different sets of rates. It would be intriguing to
generalize the set up in two different directions, namely, a heterogeneous network, or
a broadcast channel with multiple antennas in the transmitter.

We could also consider the effect of noisy feedback on the scheduling. In practice,
we would not have perfect feedback, and therefore, the designer has to take into
account the noise variance in the scheduling as well.

In Chapter 5, we obtained the delay hit using opportunistic scheduling by assum-
ing that whenever a user has the best channel conditions, he/she would certainly
have a packet for transmission. In other words, the users are backlogged. Although it
seems to be quite difficult, we would be interested in removing this assumption. The
general problem here in fact is to come up with an algorithm that depends on both
channel state conditions and the queue lengths while minimizing the delay. Here de-
lay can be defined as average delay or the maximum delay among users. In fact, there
are results stating algorithms to stabilize the queues, however, the delay behavior has
not been analyzed [89].

It is also worth mentioning that we considered a channel with no temporal corre-
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lation in our analysis of delay. Wireless channel do have temporal correlations which
can affect the delay dramatically. Therefore, analysis of the effect of temporal corre-

lation would be of interest.

Coding for PMEPR reduction

The results in Chapters 6, 7 and 8 state that there exist high rate codes with very
good PMEPR properties. Although we have been able to prove the existence of high
rate codes with constant PMEPR and constructed codes with PMEPR  of order log n,
we have not been able to find codes with PMEPR of less than order logn. Recently
there has been a line of work by S. Litsyn [3] to establish a relationship between
strength of binary codes over {+1,—1} and its ability to reduce the PMEPR. This
further proves the power of coding for PMEPR reduction. Therefore, finding codes
with small PMEPR remains as an interesting open problem which requires further

research.
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Chapter 10

Appendix

10.1 On Extreme Value Theory

In this appendix, we review some results on the asymptotic behavior of the maximum
of n ii.d. random variables when n is sufficiently large. This problem has been
addressed in several papers and books (see, e.g., [60, 62] and references therein).
It is known that for an arbitrary distribution, the density of the maximum does not
necessarily have a limit as n goes to infinity. In [60], necessary and sufficient conditions
for the existence of a limit for the distribution of the maximum is established.

In what follows, Theorem 10.1 presents all possible limiting distributions for the
cumulative distribution of the maximum of n i.i.d. random variables. Theorem 10.2
focuses on the class of distributions that are of interest in this thesis and establishes
the convergence rate to the limiting distribution. Finally, using Theorem 10.2, we

deduce Corollary 10.3, which is the main result.

Theorem 10.1 (Gnedenko ’47) Let x1,...,x, be a sequence of i.i.d. random vari-
ables and xpmax = max (1,...,%,). Suppose that for some sequences {a, > 0}, {b,}

of real constants, an(Tmax — bn) converges in distribution to a random variable with



226

distribution function G(z). Then G(x) must be one of the following three types:

iii) G(z) =

where u(-) is the step function.

Proof: Refer to [60, 67].

It turns out that the class of distribution functions we encounter in this chapter
are of type ¢. Therefore, we further look into sufficient conditions on the distribution
of z; such that the distribution of the maximum is of type .

We shall need the following definitions: let z;’s be positive random variables with
continuous and strictly positive distribution function fx(z) for z > 0 and CDF of

Fx(z), and define the growth function as gx(z) = 1;5’(‘;)9” ). Further define u, to be

the unique solution to

1—Fﬂm0:%, (10.1)

(note that u,, is unique due to the fact that Fx(-) is continuous and strictly increasing

for x > 0). We now state the following result from [61]:

Theorem 10.2 (Uzgoren ’56) Let x1,...,x, be a sequence of i.i.d. positive random
variables with continuous and strictly positive PDF fx(x) for x > 0 and CDF of

Fx(x). Let also gx(x) be the growth function. Then if lim g(z) = ¢ > 0, then
T—00

log{—log F"*(un + ug(ua))} = —u

2 1 m ,(m —u+0(u?g' (un))
el g (€ |
2! m/! n
(10:2)

where uy, s as defined in (10.1).
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Proof: Refer to the proof of Eq. (19) in [61].
Consider, for example, a x?(2) random variable with f(z) = e ®u(z). Then, it is
quite easy to see that g(z) = 1, u, = logn, and all the derivatives of g(x) are zero.

Then, Theorem 10.2 simplifies to

€

_u+o(e;u )

Pr{maxz; <logn +u} — e~ (10.3)

Letting u = loglogn and u = —loglogn and using (10.3) and (10.2), we can easily

show that
Pr{logn — loglogn < maxz; < logn + loglogn} > 1 — 0O(1/logn). (10.4)
Imposing a constraint on the derivatives of the growth function, we can use Theorem

10.2 to state the following corollary, which is used throughout the thesis.

Corollary 10.3 Let x1,...,z, be as defined in Theorem 10.2. If u, = O(logn) and

g() is such that lim g(x) = ¢ > 0 and g™ (u,) = O(1/u™), then,

T—r 00

1
Pr{u, — cloglogn < maxz; < u, + cloglogn} >1—-0 (1 ) ) (10.5)
ogn
Proof: Since the distribution of z;’s satisfies the conditions of Theorem 10.2, and
g(u,) = ¢+ o(1), we can choose u = loglogn and write the expansion of the distri-

bution of max x; as

Pr{maxz; < u, + cloglogn} = F"(u, + cloglogn)
_e—loglogn+0(1£%ig%tgﬂ)

= €

= 1-0(

logn

), (10.6)
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where we used the identity e* = 1 + O(z) for small z and also we used the fact that

u, = O(logn). Similarly we may write

1
Pr{maxz; < u, — cloglogn} = ¢~ 'e8n(1+0(oglogn/logn)) _ () (-) : (10.7)
n

Combining (10.7) and (10.6) completes the proof for this corollary. [J
Ezample 1. Suppose the z;’s have a x?(2m) distribution and we apply Corollary

10.3 to obtain the asymptotic behavior of max x;. We can write g(z) as

1—F(z) (m—1)le™ ZT’:)l 2 m-_1 i—(m-1)
— _ 1= i (m o 1), Z .

9(z) = flx) e~ Tgm—lL 7! (10.8)

1=0

In order to find u,,, we use the asymptotic expansion of the incomplete gamma func-

tion to get [63],
1
1= F(uy) = L(m,uy) = u" e (14 O(1/u,)) = - (10.9)
This would then imply that

un, = logn + (m — 1) loglogn + O(logloglogn). (10.10)

We can also observe that g™ (u,) = O(1/u™). Therefore, the maximum value of n

i.i.d. x*(2m) random variables satisfies

Pr {logn + (m — 2)loglogn + O(logloglogn) < Max z; <

1
logn+m10glogn+0(logloglogn} >1—O< ) :
logn



229

Bibliography

[1] S. Litsyn, “On the PAPR problem,” in DIMACS Workshop on Algebraic Coding
Theory and Information Theory, Dec. 1518 2003.

[2] G. Freiman, S. Litsyn, and A. Yudin, “A method to suppress high peaks in
BPSK modulated OFDM signal,” IEEE Trans. Communications, vol. 52, no. 9,
Sep. 2004.

[3] S. Litsyn, and A. Shpunt, “A method for peak power reduction in OFDM

signals,” submitted to IEEE Trans. Communications, July 2005.

[4] F. G. Tricomi, “Asymptotische eigenschaften der unvollstandigen gammafunk-

tion,” Math. Z., vol. 53, pp. 136-148, 1950.

[6] B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-Quadratic estimation and
control: a unified approach to H? and H™ theories, STAM studies in applied and

numerical mathematics, 1999.

[6] J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization over

symmetric cones,” Optimization Methods and Software, pp. 625653, 1999.

[7] S. Boyd and L. Vanderberghe, Conver Optimization, Cambridge University
Press, 2003.

[8] W. Gautschi, “The incomplete gamma functions since Tricomi,” Atti dei Con-

vegni Linci, no. 147, pp. 203-237, 1998.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

230
G. Caire and S. Shamai, “On the achievable throughput of a multi-antenna
Gaussian broadcast channel,” IEEE Trans. Inform., vol. 49, no. 7, pp. 1691—
1706, July 2003.

P. Viswanath and D. N. Tse, “Sum capacity of the vector Gaussian broadcast
channel and downlink-uplink duality,” IEEE Trans. Inform., vol. 49, no. 8, pp.
1912-1921, Aug. 2003.

P. Bergman, “Random coding theorem for broadcast channels with degraded

components,” IEEFE Trans. Inform., vol. 19, no. 3, pp. 197-207, Mar. 1973.

S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates and sum
rate capacity of Gaussian MIMO broadcast channel,” IEEE Trans. Inform., vol.
49, no. 10, pp. 2658-2668, Oct. 2002.

H. Vishwanathan, S. Venkatesan, and H. Huang, “Downlink capcity evaluation
of cellular networks with known interference cancellation,” IEEE Jour. Selec.

Areas. Commu., vol. 21, no. 5, pp. 802-811, June 2003.

B. Hochwald and S. Viswanath, “Space-time multiple access: linear growth in

the sum rate,” in Proc. of the 40th Annual Allerton Conf., 2002.

N. Jindal and A. Goldsmith, “Dirty paper coding vs. TDMA for MIMO broadcast

channel,” to appear in Proc. IEEE Inter. Conf. Commu., June 2004.

H. Viswanathan and S. Venkatesan, “Asymptotics of sum rate for dirty paper
coding and beamforming in multiple antenna broadcast channels,” in Proc. of

the 41st Annual Allerton Conf., 2003.

N. Jindal, S. Jafar, S. Vishwanath, and A. Goldsmith, “Sum power waterfilling
for Gaussian broadcast channels,” in Proc. 36th Asilomar Conf. on Sig. and

Syst., 2002.



18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

231
E. Telatar, “Capacity of multi-antenna Gaussian channel,” Furopean Trans.

Telecommunications, vol. 10, pp. 585-595, Nov. 1999.

L. Zheng and D. N. Tse, “Communications on the Grassman manifold: a ge-
ometric approach to the noncoherent multiple-antenna channel,” IEEE Trans.

Info., vol. 48, no. 2, pp. 359-384, Feb. 2002.

B. Hassibi and T. L. Marzetta, “Multiple-antennas and isotropically random
unitary inputs: the received signal density in closed form,” IEEFE Trans. Info.,

vol. 48, no. 6, pp. 1473-1484, June 2002.

A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of
MIMO channels,” IEEFE Jour. Selec. Areas. Commu., vol. 21, no. 5, pp. 684-702,
June 2003.

T. Cover, “Broadcast channels,” IEEE Trans. Inform., vol. 18, no. 1, pp. 2-14,
Jan. 1972.

A. Amraoui, G. Kramer, and S. Shamai, “Coding for the MIMO broadcast
channel,” in Proc. of IEEE ISIT, 2003.

N. Jindal and A. Goldsmith, “Capacity and optimal power allocation for fading
broadcast channels with minimum rates,” IEEE Trans. Info. Theory, vol. 49,

no. 11, pp. 2895-2909, 2003.

L. Li and A. Goldsmith, “Capacity and optimal resource allocation for fading
broadcast channels. I. ergodic capacity,” IEEE Trans. Info. Theory, vol. 47, no. 3,
pp. 1083-1102, 2001,

H. Viswanathan, S. Venkatesa, and H. Huang, “Downlink capacity evaluation of
cellular networks with known interference cancellation,” IEEE Jour. Selec. Areas

in Comm., vol. 21, no. 5, pp. 802-811, 2003.



232
[27] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels with
partial side information,” IEEE Trans. Info. Theory, vol. 51, no. 2, pp. 506-522,

2005.

[28] R. Knopp and P. Humblet, “Information capacity and power control in single cell
multiuser communications,” in Proc. IEEE Inter. Conf. Comm., vol. 1, pp. 331-

339, 1995.

[29] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of Gaussian
multiple-access and broadcast channels” IEEE Trans. Info. Theory, vol. 50, no. 5,
pp. 768-783, 2004.

[30] J. Spencer, Ten lectures on the probabilistic method, STAM CBMS-NSF Regional

Conference Series in Applied Mathematics, 1994.

[31] A. R. Bahai and B. R. Saltzberg, Multicarrier Digital Communications: Theory

and applications of OFDM, Plenum Publishing Corporation, 1999.

[32] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak to average
power ratio of multicarrier modulation by selected mapping,” Electronics Letters,

vol. 32, no. 22, Oct. 1996.

[33] H. Ochiai and H. Imai, “On the distribution of the peak to average power ratio
in OFDM signals,” IEEFE Trans. Comm., vol. 49, no. 2, pp. 282-289, Feb. 2001.

[34] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of
OFDM,” in Proc. IEEE Veh. Tech. Conf., May 1997, pp. 1634-1638.

[35] M. Sharif and B. Hassibi, “On multicarrier signals where the PMEPR of a random
codeword is logn,” IEEE Trans. Inform., vol. 50, no. 5, pp. 895-903, May 2004.

(36] S. H. Muller and J. B. Huber, “A comparison of peak power reduction schemes

for OFDM,” in Proc. IEEE Glob. Comm. Conf., 1997, pp. 1-5.



233

[37] K .G. Paterson and V. Tarokh, “On the existence and construction of good codes
with low peak to average power ratios,” IEEE Trans. Inform., vol. 46, no. 6, pp.

1974-1986, Sep. 2000.

[38] J.A. Davis and J. Jedwab, “Peak to mean power control in OFDM, Golay
complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform., vol.

45, no. 7, pp. 23972417, Nov. 1999.

[39] J. Tellado and J. M. Cioffi, “Efficient algorithms for reducing PAR in multicarrier

systems,” in Proc. IEEE Inter. Symp. Info., August 1998, p. 191.

[40] J. Spencer, “Six standard deviations suffice,” Trans. Amer. Math. Soc., vol. 289,

no. 2, pp. 679-706, June 1985.

[41] B. Hassibi and B. Hochwald, “High rate codes that are linear in space and time,”
IEEE Trans. Inform., vol. 48, no. 7, pp. 1804-1824, July 2002.

[42] S. B. Wicker, Error control systems for digital communication and storage, Pren-

tice Hall: NJ, Englewood cliffs, 1995.

[43] D. Mestdagh and P. Spruyt, “A method to reduce the probablity of clipping in
DMT based transcievers,” IEEE Trans. Commun., vol. 44, no. 10, pp. 12341238,
Oct. 1996.

[44] R. Van Nee, OFDM for wireless multimedia communication, Artech House:

Boston, 2000.

[45] H. Ehlich and K. Zeller, “Schwankung von polynomen zwischen gitterpunkten,”
Math. Zeitschr., vol. 86, pp. 41-44, 1964.

[46] M. Sharif, M. Gharavi-Alkhansari, and B. H. Khalaj, “On the peak to average
power of OFDM signals based on oversampling,” IEEE Trans. Comm., vol. 51,
no. 1, pp. 72-78, Jan. 2003.



[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

234
S. Wei, D. Goeckel, and P. Kelly, “A modern extreme value theory approach
to calculating the distribution of the peak to average power ratio in OFDM
systems,” in Proc. of IEEE ICC, 2002, pp. 1686-1690.

R. Motowani and P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

K. Sathananthan and C. Tellambura, “Coding to reduce both PAR and PICR
of an OFDM signal,” IEEE Commun. Letters, vol. 6, no. 8, Aug. 2002.

M. Sharif and B. Hassibi, “A deterministic algorithm that achieves PMEPR, of
clogn for multicarrier signals,” in Proc. IEEE Int. Conf. Acoustic, Speech, and

Signal Processing, April, 2003.

G. J. Foschini and M. J. Gans, “On limits of wireless communications in a

”

fading environment when using multiple antennas,” Wireless Personal Commu-

nications, vol. 6, pp. 311-335, Mar. 1998.

B. Hochwald, T. Marzetta, and V. Tarokh, “Multi-antenna channel-hardening
and its implications for rate feedback and scheduling,” IEEE Trans. Inform.,

vol. 50, no. 9, pp. 1893-1909, Sep. 2004.

H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the gaussian
MIMO broadcast channel,” in Proc. of IEEE ISIT, 2004.

W. Yu and J. M. Cioffi, “Trellis precoding for the broadcast channel,” in Proc.
IEEFE Glob. Comm. Conf., 2001.

R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for structured
multiterminal binning,” IEEE Trans. Info., vol. 48, no. 6, pp. 1250-1277, June

2002.



[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

235
C. B. Peel, B. Hochwald, and A. L. Swindlehurst, “A vector perturbation tech-
nique for near capacity multi-antenna multi-user communication- Part I: Channel
inversion and regularization,” IEEE Trans. Commu., vol. 53, no. 1, pp. 195-202,
Jan. 2005.

P. Viswanath, D. N. Tse, and R. Laroia, “Opportunistic beamforming using
dump antennas,” IEEE Trans. Inform., vol. 48, no. 6, pp. 1277-1294, June

2002.

M. Sharif and B. Hassibi, “Scaling laws of sum rate using time-sharing, DPC,
and beamforming for MIMO broadcast channels,” in Proc. of IEEE ISIT, 2004.

J. Chul Roh and B. Rao, “Multiple antenna channels with partial feedback,” in

Proc. of IEEE ICC, 2003.

M. R. Leadbetter, “Extreme value theory under weak mixing conditions,” Studies

in Probability Theory, MAA Studies in Mathematics, pp. 46-110, 1978.

N. T. Uzgoren, “The asymptotic developement of the distribution of the extreme
values of a sample,” Studies in Mathematics and Mechanics Presented to Richard

von Mises, Academic Press, New York, pp. 346-353, 1954.
H. A. David, Order Statistics, New York, Wiley, 1970.

I. S. Gradshteyn and I. M. Rsyzhik, Table of Integrals, Series, and Products,

Academic Press Inc., London, 1965.

B. Sturmfels, Grobner Bases and Convex Polytopes, American Mathematical

Society, Providence, R. 1., 1996.

N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of Gaussian
multiple-access and broadcast channels,” IEEE Trans. Info. Theory, vol. 50,
no. 5, pp. 768-783, 2004.



[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

236

A. Edelman, “Eigenvalues and condition numbers of random matrices,” MIT

PhD Dissertation, 1989.

M. R. Leadbetter and H. Rootzen, “Extremal theory for stochastic processes,”
The Annals of Probability, vol. 16, pp. 431-478, 1988.

G. Wunder and H. Boche, “Peak value estimation of band-limited signals from
its samples, noise enhancement, and a local characterization in the neighborhood

of an extermum,” IEEE Trans. Signal Processing, vol. 51, no. 3, March 2003.

N. Dinur and D. Wulich, “Peak to average power ratio in high-order OFDM,”
IEEE Trans. Commun., vol. 49, no. 6, June 2001.

D. Wulich, N. Dinur, and A. Glinowiecki, “Level clipped high order OFDM,”
IEEFE Trans. Commun., vol. 48, no. 6, June 2000.

G. Wunder and H. Boche, “Upper bounds on the statistical distribution of the
crest factor in OFDM transmission,” IEEE Trans. Info. Theory, vol. 49, no. 2,
Feb. 2003.

M. Friese, “On the achievable information rate with peak power limited orthog-
onal frequency devision multiplexing,” IEEE Trans. Info. Theory, vol. 46, no. 7,
Nov. 2000.

M. Sharif and B. Hassibi, “Existence of codes with constant PMEPR and related

design,” to appear in IEEE Trans. Signal Processing, 2004.

G. Halasz, “On the result of Salem and Zygmund concerning random polynomi-

als,” Studia Scien. Math. Hung., pp. 369-377, 1973.

A. Gersho, B. Gopinath, and A. M. Odlyzko, “Coefficient inaccuracy in transver-
sal filtering,” The Bell Systems Technical Journal, vol. 58, no. 10, pp. 2301-2316,

Dec. 1979.



237
[76] X. Qin and R. Berry, “Exploiting multiuser diversity for medium access control

in wireless networks,” in Proc. of INFOCOM, 2003, pp. 1084-1094.

[77] S. Shamai and E. Telatar, “Some information theoretic aspects of decentralized
power control in multiple access fading channels,” in Proc. Information Theory

and Networking Workshop, 1999.

[78] I. Bettesh and S. Shamai, “Optimal power and rate control for fading channels,”
in Proc. Veh. Tech. Conf., 2001, pp. 1063-1067.

[79] G. Caire, G. Taricco, and E. Biglieri, “Optimum power allocation over fading

channels,” IEEE Trans. Info., vol. 45, no. 5, pp. 1468-1489, July 1999.

[80] R. A. Berry and R. G. Gallager, “Communication over fading channels with
delay constraints,” IEEE Trans. Info., vol. 48, no. 5, pp. 1135-1149, May 2002.

[81] N. Abramson, “The ALOHA systems-another alternative for computer commu-

nications,” in Proc. Fall Joint Comput. Conf., 1970, pp. 281-285.

[82] R. Gallager, “A perspective on multiaccess channels,” IEEE Trans. Info., vol.
31, no. 3, pp. 124-142, Mar. 1985.

[83] A. Ephremides and B. Hajek, “Information theory and communication networks:
an unconsummated union,” IEEFE Trans. Info., vol. 44, no. 10, pp. 2416-2434,
Oct. 1998.

(84] D. N. Tse and S. V. Hanly, “Multiaccess fading channels. 1. polymatroid struc-
ture, optimal resource allocation and throughput capacities,” IEEE Trans. Info.,

vol. 44, no. 7, pp. 2796-2815, Nov. 1998.

[85] L. Tong, V. Naware, and P. Venkitasubramaniam, “Signal processing in random

access: a cross layer perspective,” IEEFE Signal Processing Magazine, July 2004.



238
[86] M. J. Neely and E. Modiano, “Dynamic power allocation and routing of time-
varying wireless networks,” IEEE Jour. on Selected Areas in Comm., vol. 23,

no. 1, Jan. 2005.

[87] S. Kumar and P. R. Kumar, “Performance bounds for queueing networks and

scheduling policies,” IEEE Trans. Auto. Control, vol. 39, no. 9, Aug. 1994.

[88] P. R. Kumar and S. Meyn, “Stability of queueing networks and scheduling
policies,” IEEE Trans. Auto. Control, vol. 40, no. 2, Feb. 1995.

[89] E. Yeh and A. S. Cohen, “Throughput and delay optimal resource allocation in
multiaccess fading channels,” in Proc. of IEEE ISIT, 2003, pp. 245-245.

[90] J.I. Capetanakis, “Tree algorithms for packet broadcast channels,” IEEFE Trans.

Info., vol. 25, no. 9, pp. 505-515, Sep. 1979.

[91] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel queues
with randomly varying connectivity,” IEEE Trans. Inform., vol. 39, no. 2, Mar.

1993.

[92] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for broadcast

channels,” in Proc. IEEFE Inter. Symp. Info., July 2002, p. 382.

93] M. Andrew, K. Kumaran, K. Ramanan, A. Stoylar, P. Whiting, and R. Vi-
jaykumar, “Providing quality of service over a shared wireless link,” I[FEFE

Communications magazine, vol. 39, no. 2, pp. 246-251, Feb. 2001.

[94] J. F. Kingman, “Inequalities in the theory of queues,” Journal of the Royal

Statistical Society: Series B, vol. 32, no. 1, pp. 102-110, Jan. 1970.

[95] M. J. Ferguson, “On the control stability, and waiting time in a slotted ALOHA

random access system,” IEFEE Trans. Comm., vol. 23, no. 10, Oct. 1975.



239
[96] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic considera-
tions for cellular mobile radio,” IEEE Trans. Vehic. Tech., vol. 43, no. 2, pp.
359-378, May 1994.

[97] A. Ephremides and R. Zhu, “Delay analysis of interacting queues with an ap-

proximate model,” IEEE Trans. Comm., vol. 35, no. 2, Feb. 1987.

(98] W. Feller, An introduction to probability theory and its applications, John Wiley
and Sons, Inc., 1967.

[99] N. L. Johnson and S. Kotz, Urn models and their application, John Wiley and
Sons, Inc., 1977.

[100] D. J. Newman and L. Shepp, “The double dixie cup problem,” Amer. Math.
Monthly, vol. 67, no. 1, pp. 58-61, Jan. 1960.

[101] M. Sharif and B. Hassibi, “A comparison of time-sharing, DPC, and beam-
forming for MIMO broadcast channels with many users,” in Proc. Inter. Symp.

on Information Theory, June 2004.

[102] Y. Xie and C. Georghiades, “Some results on the sum rate capacity of MIMO
fading broadcast channel,” in Proc. Inter. Symp. in Advances in Wireless Comm.

2002.



