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ABSTRACT 

This is a thesis in two parts.  First is the presentation of a new technique by which it is 

possible to constrain tectonic models of oceanic regions which are devoid of magnetic 

reversal anomalies.  I applied this technique to the Osbourn region of the Southwest Pacific 

and determined the tectonic history of the Cretaceous Osbourn spreading center.  The 

results of this analysis showed that the Osbourn Trough, although an extinct spreading 

center, was not part of the Cretaceous Pacific-Phoenix spreading center.  The second part of 

this thesis involves study of the cratonic Congo sedimentary basin.  I created instantaneous 

dynamic models of the Congo basin that are strongly constrained by observation and which 

demonstrate that the most recent subsidence event of the basin has a mantle dynamic 

origin. These models constrain the density structure of the upper mantle beneath the Congo.  

In addition, I examined geologic data that constrain the time-dependent history of the 

Congo basin in an attempt to determine the subsidence mechanism of cratonic sedimentary 

basins. 
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C h a p t e r  1  

 

INTRODUCTION 

Chapters one and two of this thesis—which outline the history of the Osbourn Trough—

appear, at first glance, to be completely unrelated to Chapters three and four on the 

Congo basin.  The Osbourn Trough is an extinct feature.  Conversely, the Congo basin’s 

surface is currently being dynamically depressed.  The Congo basin lies on ancient 

continental crust more than a billion years old, while the oceanic lithosphere near the 

Osbourn Trough is an order of magnitude younger, having been created during the mid to 

late Cretaceous.  The tectonic history of the Osbourn Trough is the story of an evolving 

plate boundary.  In contrast, the Formation of the Congo basin is of interest because it is a 

deformational process that occurs away from plate boundaries.  Finally, and perhaps most 

obvious, the Osbourn Trough is 5 km beneath the sea surface, whereas the Congo basin 

appears to have been almost exclusively subaerial for the past one hundred and fifty 

million years!  Despite these dissimilarities, both of these topics stem from the same 

motivation: the importance of understanding the mechanical properties and behaviors of 

the lithosphere. 

Understanding the tectonic history of the Osbourn Trough is important for several 

reasons.  It was active during the Cretaceous, a period in which enhanced mid-ocean 

volcanism may have resulted in a rise of global sea level.  Quantifying the spreading rates, 

and therefore the volume of water displaced, of Cretaceous spreading centers is therefore 

very important.  Additionally, the tectonic configuration of the Pacific and surrounding 

oceanic plates during the Cretaceous is poorly constrained.  This poor constraint makes it 

impossible to accurately create plate reconstructions that extend back to mid-Cretaceous 

times.  However, perhaps the most important reason for understanding the history of the 

Cretaceous Osbourn spreading center is that this history is part of a larger story in which 

the largest known oceanic plateau erupted onto the seafloor and fractured into several 
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pieces, which subsequently spread apart.  Three of these pieces eventually became the 

Manihiki, Hikurangi and Ontong-Java plateaus all of which are contained within the 

modern Pacific Plate.  The relation of this massive eruption to the Pacific-Phoenix-

Farallon triple junction is particularly interesting in terms of the mechanical properties of 

oceanic lithosphere and the interaction between the lithosphere and mantle convection.  It 

is not known if the eruption of this massive plateau occurred at the location of this ridge-

ridge-ridge triple junction or if the triple junction shifted to the location of the eruption.  

The first possibility implies that the material erupted to form the plateaus may have 

flowed upward within a pre-existing mantle flow regime beneath intersecting mid-ocean 

ridges, while the second implies that the force of the eruption caused a large-scale re-

organization of the plate system.  The history of the Osbourn spreading center is just a 

single chapter within this story; it is interesting because it is the best-constrained part of 

the story and is a complete documentation of the evolution of the Osbourn system from 

the initial fracturing of the large plateau to the eventual extinction and capture of the 

Hikurangi region by the Pacific Plate.  

However, understanding the story of the Osbourn Trough is hampered by the lack of 

magnetic reversals during the Cretaceous Long Normal Polarity Interval (Chron C34) and 

the resulting magnetic lineations these reversals leave as a record of past spreading 

activity.  In Chapter Two, I present and validate a technique by which it is possible to 

accurately determine the azimuth of spreading at oceanic spreading centers and place 

bounds on their spreading rates using abyssal-hill morphology.  In Chapter Three, I use 

this technique to constrain the history of the Osbourn spreading center from birth to death.  

The most important result of this work is that it appears that there were two triple 

junctions in the Manihiki region throughout Chron C34, lending support to the theory that 

the eruption of the Ontong-Java, Manihiki and Hikurangi plateaus caused the fracturing 

of the Pacific Plate into several microplates.  Studying how and why this fracturing 

process occurred will reveal many insights into the mechanical properties of the oceanic 

lithosphere.  However before we can study these properties we must first document what 

happened, which is the main motivation of Chapter Three. 
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The Congo basin study presented here in Chapters Four and Five is also focused on the 

interactions of mantle convection and the mechanical properties of cratonic lithosphere.  

Here we have a mantle downwelling which is causing the depression of the Earth’s 

surface.  As outlined in Chapter Four, the dynamics of this depression is very well 

constrained by long-wavelength (>800 km) gravity, topography and shear-wave velocity 

anomalies.  This combination of anomalous observations at the Congo basin allows us to 

tightly constrain the density structure of the lithosphere beneath the Congo basin, 

revealing the presence of a large high-density object at shallow (100 km) mantle depths.  

In Chapter Five I go on to present evidence that the Congo basin, at least for the present 

and during the Cenozoic, has been depositionally inactive.  This observation is very 

important in terms of the mechanical properties of the lithosphere because it implies that 

the high-density region within the Congo lithosphere indicated by instantaneous models 

is (probably) stable.  Mechanisms by which this anomaly could be stabilized may include 

thermal diffusion, although other mechanisms may also be important. 

Another important theme of Chapters Four and Five is the implications this study of the 

Congo basin on cratonic basins in general.  The stratigraphic infill and time-dependent 

properties of the Congo basin throughout the Meso-Cenozoic are typical of Cratonic 

basins implying the current dynamic state of the Congo basin may also have occurred at 

other basins in the past.  Stratigraphically and economically important entities, the 

formation mechanisms of these basins are generally unknown, but may provide critical 

information about the mechanical properties of cratonic lithosphere.  The Congo basin, 

with its unique characteristics may be the key to understanding the formation 

mechanisms of these basins. 

Despite their obvious differences, the two parts of this thesis are motivated by a need to 

understand the mechanical properties of the lithosphere.  The story of the formation of 

the Osbourn Trough and the current dynamical state of Congo basin help to reveal these 

properties. 
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C h a p t e r  2  

A RIDGELET TRANSFORM METHOD FOR CONSTRAINING TECTONIC 
MODELS VIA ABYSSAL-HILL MORPHOLOGY 

Nathan J. Downey and Robert W. Clayton 

Abstract 

Abyssal-hill shape and orientation is related to the direction and spreading rate of paleo-

spreading centers.  Therefore, analyzing abyssal hill shape and trend is useful for 

constraining tectonic models of regions devoid of magnetic reversal anomalies.  Detecting 

systematic changes of abyssal hill shapes or trends, due to changes in spreading rate or 

direction, is not straightforward, which makes it difficult to determine appropriate regions 

over which to average abyssal hill parameters.  Often, however, detecting these systematic 

changes, where they occur, and the scale over which they occur, is of primary importance 

for tectonic reconstructions.  We present a new method of abyssal-hill analysis that is based 

on the ridgelet transform, a relative of the 2D wavelet transform.  Our method is capable of 

locally estimating the width, azimuth and root-mean-square (RMS) amplitude of abyssal 

hill fabric, and highlights changes in these parameters across a survey area, making it 

possible to identify regions created with a constant spreading rate and direction.  We use 

three multibeam swaths, one crossing the Osbourn Trough in the southwest Pacific Basin, 

one crossing the East Pacific Rise and one crossing the Mid-Atlantic Ridge, to demonstrate 

the utility and performance of our method. 
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1. Introduction 

Measurements of abyssal hill morphology can be used to constrain tectonic histories of 

regions devoid of magnetic reversal anomalies [Menard, 1967].  By examining the shape 

and orientation of abyssal hills over these regions, it is possible to make spreading rate and 

direction estimates for use in tectonic reconstructions; however other factors can also affect 

abyssal hill shape and trend [Goff et al., 1997]. 

The shape of abyssal hills is controlled by the faulting process that occurs at oceanic 

spreading centers after the formation of oceanic crust [Buck and Polikov, 1998; Goff, et al., 

1995; Macdonald, et al., 1996].  The nature of this faulting is determined by the local stress 

state, which is in turn, related to the spreading rate. Therefore several measures of abyssal 

hill shape correlate with spreading rate and direction.   These measures include abyssal hill 

width, asymmetry (measured as a difference in slope between the sides facing toward and 

away from the spreading center) and root-mean-square (RMS) amplitude [Goff, 1991; Goff, 

et al., 1997; Hayes and Kane, 1991; Kriner, et al., 2006].  Abyssal hill trend (the azimuth 

of the hill's long axis) and the distribution in azimuths of the slopes facing toward and away 

from the spreading axis are useful indicators of paleo-spreading direction [Goff and Jordan, 

1988; Kriner, et al., 2006]. 

Abyssal hill shape and azimuth naturally vary. Even amongst abyssal hills simultaneously 

created at a single spreading center there is a slight variation in these parameters.  This 

natural variation therefore requires that we obtain an average abyssal hill shape that can 

then be used to infer spreading rates and directions.  This variation makes it necessary to 

use statistical tests to determine if the mean shape or trend of two populations of abyssal 

hills is different.  The techniques of Goff and Jordan [1988] and Kriner et al. [2006] 

approach the problem of abyssal hill variation by estimating an average shape and trend 

parameter for a region of seafloor.  During this process, any systematic change in abyssal 

hill shape across this region is lost, making it necessary to use a cross-validation approach, 

where several estimates are made over the same area using different estimation regions, to 

determine the location of systematic changes in abyssal hill shape.  Often, however, these 

changes are interesting tectonic features, that indicate a change in spreading rate or 
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direction.  For example, Larson et al. [2002] were able to map the location of the Pacific-

Phoenix-Farallon triple junction trace by examining changes in abyssal hill trends. 

In this paper we present a new method of estimating the width, trend, and RMS amplitude 

of abyssal hills based on the ridgelet transform [Candès, 1998; Starck et al. 2002, 2003].  

This method is spatially local, with the capability of determining the shape and azimuth of 

individual abyssal hills.  The advantage of this technique is that averaging after shape 

estimation makes it easier to identify the location of systematic changes in abyssal hill 

shape. As a result, determining appropriate regions over which to average shapes and 

azimuths is simplified.  We demonstrate the usefulness of this technique by examining 

three swaths of multibeam data (Figure 1), one collected near the Osbourn Trough (OT) 

[Lonsdale, 1997], one collected near the East Pacific Rise (EPR) and one collected near the 

Mid-Atlantic Ridge (MAR).  Our results highlight the differences between abyssal hills 

created at fast and slow spreading centers, as outlined by Goff [1991], Goff et al. 

[1995,1997] and Hayes and Kane [1991].  We are able to detect two regions of anomalous 

seafloor morphology near the EPR, which correspond to the location of the Loius Scarp 

and Yaquina Fracture Zone [Eakins and Lonsdale, 2003] and are able to show that the 

Louis Scarp marks the location of a possible change in spreading direction.  We also 

identify the possible location of either a change in the spreading direction of the Osbourn 

paleo-spreading center or the location of a triple junction trace, and the location of a 

possible reduction of spreading rate at the Osbourn paleo-spreading center. 

2. The ridgelet transform 

2.1 Wavelet analysis of geologic textures 

The two-dimensional ridgelet transform [Candès, 1998; Starck, et al., 2003] is a relative of 

the two-dimensional wavelet transform.  Wavelet transform methods have varied 

application in the Earth sciences [Kumar and Foufoula-Georgiou, 1997], including 

quantifying the multiscale alignment of fault outcrops in a continental setting [Ouillion, 

1996], the study of rock fabric alignment [Gaillot, et al., 1999], and the analysis of sea 

floor texture [Little, et al., 1993].  Little et al. [1993] used 1D wavelets to highlight a region 
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of reduced short-wavelength power and enhanced long-wavelength power in a center-beam 

bathymetry profile collected northeast of Hawaii.  They conclude that this anomalous 

region was created at a small abandoned spreading center, which they were able to locate 

near the region’s center.  The wavelet transform allowed them to separate the scales of the 

bathymetry so that a large-scale thermal swell could be analyzed separately from the small-

scale features associated with the abandoned spreading center. 

Little et al. [1994, 1996] extended this technique to the analysis of 2D Sea Beam data.  For 

this analysis they created a 2D analyzing function capable of enhancing abyssal hills of an 

a priori preferred orientation.  These functions were applied to data collected near the Mid-

Atlantic Ridge, and by selectively enhancing features oriented parallel to the ridge axis, 

were able to recreate an interpretation of abyssal-hill fabric made by identifying abyssal 

hills manually [Little and Smith, 1996]. 

Our ridgelet transform method differs from that of Little et al. [1994, 1996] because it 

automatically determines abyssal-hill azimuths and scales for individual abyssal hills.  

These individual estimates are then averaged in regional groups such that populations of 

hills with statistically different properties are identified. 

2.2 Definition of the ridgelet transform 

The ridgelet transform maps a function in a 2D space-space domain to a 3D space-azimuth-

scale domain. It is defined as follows [Candès and Donoho, 1999; Starck, et al., 2003].  

Choose a function,  :  (where  indicates the set of real numbers), with sufficient 

decay and which satisfies the wavelet definition [Mallat, 1998]: 

R  R R

  0ψ(s) ds . (1) 

The corresponding ridgelet is defined for a scale parameter a > 0, a location parameter (we 

use along-track distance) b R , and an azimuth parameter [0°, 360°) measured 

positive clockwise from the x

θ

2 (northward) direction, as the function a,b,R
2  

[Candès and Donoho, 1999]: 

R
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     






 


a

bθxθx
 ψ

a
,xxψa,b,θ

cossin1 21
21 . (2) 

A plot of this function for various values of a, b and  is presented in Figure 2.  The 

ridgelet transform is given by: 

      212121  dxdx,xx f,xxψ a,b,θR a,b,θf              (3) 

where f : R 2 R  is the function we wish to analyze. 

A ridgelet can be thought of as an infinitely anisotropic two-dimensional wavelet: it is 

constant along the q direction and has a cross-sectional shape given by dilations of y.  

When used in a ridgelet transform, the ridgelet function locates and characterizes the 

elongate features of f, similar to the anisotropic wavelets of Gaillot et al. [1999] and 

Ouillon et al. [1996] and to the analyzing functions of Little et al. [1994]. 

2.3 Digital implementation of the ridgelet transform 

A useful property of the ridgelet transform is its relation to the Radon transform 

[Bracewell, 2000].  The Radon transform of a function f : 2 is given by: R  R

         212121 cossin dx dxsθxθx δ,xx fθ,sRa f   (4) 

where s is a location parameter (usually chosen to be one spatial dimension of the original 

signal) and  is defined as before.  The Radon transform maps a function from a space-

space domain to a space-azimuth domain.  If we use the one-dimensional wavelet 

transform along the space dimension of the Radon transform formula: 

    dss ψθ,s Ra a,bf  (5) 

where a,b(s) is the dilated and translated wavelet: 
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  





 


a

bs
 ψ

a
sψa,b

1
 (6) 

with a and b defined as before, we recover the ridgelet transform (Equation 3). 

This property suggests a method by which we can calculate the ridgelet transform of a 

dataset: first transform to the Radon domain, then apply a 1D wavelet transform along lines 

of constant  [Starck, et al., 2002; Starck, et al., 2003]. 

The 2D ridgelet transform maps linear features in a two-dimensional space-space domain 

to maxima in a three-dimensional location-scale-azimuth domain.  By applying the ridgelet 

transform, with appropriate y, to multibeam bathymetry and then locating maxima in the 

ridgelet domain we are able to determine the dominant scale and azimuth of abyssal ridges 

along a multibeam swath.  It is, therefore, relatively simple to detect the location and scale 

of systematic changes in these parameters using statistical tests.  The local RMS amplitude 

is easily calculated during our implementation of the ridgelet transform (see §3.1 below). 

The ridgelet transform is invertible [Starck, et al., 2002, 2003], however, invertibility is not 

necessary for our analysis because we interpret our data directly in the ridgelet domain.  

This ridgelet domain analysis allows us considerable latitude in the design and 

implementation of the ridgelet transform algorithm.  We first Radon transform the 

bathymetry data by numerically calculating the line integrals given by Equation (4) in the 

spatial domain.  Because multibeam data are collected in swaths, a bias is introduced when 

calculating the Radon transform, i.e. along-track azimuths will have a longer domain of 

integration in (4) than will cross-track azimuths.  A space-domain implementation allows 

us to avoid this bias by restricting the length of the along-track Radon integrals.  A space-

domain calculation also allows us to normalize the Radon integral (4) by the length of the 

line along which the data are summed, avoiding the problem of irregular edges and gaps in 

the data.  This normalization yields an “average” bathymetry along an azimuth, allowing 

for a more physical interpretation of the Radon-transformed data.  This Radon transform 

process also results in a regular gridding of the data in the Radon domain allowing us to use 
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standard Fast Fourier Transform techniques to calculate the wavelet transform during the 

transformation of the data to the ridgelet domain. 

3. Application of the ridgelet transform to abyssal-hill morphology 

3.1 Example ridgelet transform of multibeam data 

We use a section of multibeam data collected north of the Osbourn Trough [Lonsdale, 

1997] by the research-vessel icebreaker (R/VIB) Nathaniel B. Palmer during cruise 

NBP0304 in 2003 (Figure 1) to illustrate the ridgelet transform (Figure 3). The Osbourn 

Trough is located between 26°S and 26°15'S at the bottom of Figure 3a. 

Our Radon transform algorithm takes a gridded multibeam dataset as input (we use a 200 

m grid spacing) and a series of track points that (approximately) run down the center of the 

multibeam swath.  The track points parameterize the “location” for the location-azimuth 

output of the Radon transform. For each track point we only use the data within a 10 km 

radius (the Radon aperture), which is approximately half the width of a multibeam swath.  

We calculate the average bathymetry of the data in that window and subtract it from the 

data within the window to yield a bathymetric anomaly.  The RMS amplitude of this 

anomaly is our local measure of the RMS amplitude of the abyssal hills (we also 

simultaneously calculate the RMS amplitude of the bathymetry within a 20 km-radius 

window for comparison).  The 10 km-radius window restricts our analysis to wavelengths 

less than ~20 km.  A similar wavelength band was used by Hayes and Kane [1991] in their 

analysis of abyssal-hill RMS amplitude. 

Next, the Radon integral (4) is calculated along lines intersecting the track point with 

azimuths varying from 0° to 180°.  The result of these integrals for each azimuth is then 

normalized by the length of the integral through regions of defined bathymetry (i.e. the 

Radon integral is not calculated over gaps in the data).  The final output, after this process 

has been applied to all track points, is the Radon transform of the bathymetric anomaly in a 

track point-azimuth domain.  The output of our Radon transform algorithm for the example 

dataset is shown in Figure 3b. 
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Features localized near a single point of the spatial domain become localized along lines in 

the Radon domain.  In a location-azimuth space these lines follow the shape of the tangent 

function.  This effect can be seen by examining the Radon transform of the two seamounts 

near 25°37’S (Figure 3a). These seamounts appear in Figure 3b as low-amplitude linear 

anomalies in the shape of tangent curves centered at 90°.  Conversely the Radon transform 

concentrates linear features in the spatial domain at single points of the Radon domain.  

The location of these points coincides with the azimuth and location of their parent features 

in the spatial domain.  There is a small NW-SE trending ridge located within the Osbourn 

Trough at 26°4'S in Figure 3a.  This ridge maps to a peak in the Radon domain at 120° 

azimuth (Figure 3b).  The peaks in Figure 3b corresponding to narrow ridges on the 

seafloor are much more localized than are the peaks corresponding to wide abyssal ridges.  

For narrow abyssal ridges, a small range of azimuths lay along the top of the abyssal ridges 

(i.e., the region where the abyssal ridge is significantly higher than the abyssal plain).  

However, for wider abyssal ridges, the range of azimuths that lay along the region of high 

bathymetry is much larger.  Therefore the width of a peak in the Radon domain is wider in 

azimuth for large scale abyssal hills than for small scale abyssal hills.  This effect is 

reduced by increasing the width of the multibeam swath by combining data from two 

adjacent swaths and using a correspondingly larger Radon aperture. 

Because the Radon transform resolution depends on abyssal-hill scale, a further separation 

of the data based on scale is desired.  This separation is accomplished during the second 

step of the ridgelet transform.  The wavelet that we choose to use for this step is the 

Mexican Hat wavelet (Figure 4), which is defined as the second derivative of a Gaussian: 

       222 22

2

2

1 /x/x

dx
d   exexψ   . (7) 

The Mexican Hat wavelet satisfies the following equation, when  = : R

  
 Γ

ndx xx ψ 0 ,     n = 0,1. (8) 

For n = 0, this equation reduces to the wavelet definition (1) and the n = 1 case 

demonstrates that the Mexican Hat wavelet has zero linear moment.  Because the Mexican 
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Hat wavelet is localized to a small region of , called its “effective support”, (see Figure 

4), equation (8) holds approximately when is equal to the effective support.  The 

Mexican Hat wavelet is insensitive to the mean and any linear trend in the data over the 

wavelet’s effective support, so we are able to measure the scales of small ridges 

superimposed on large ridges independently, as the large ridge is approximately linear at 

the scale of the smaller ridge.  Also, because the Mexican Hat wavelet is symmetric, peaks 

in the Radon domain correspond to peaks in the ridgelet domain, preserving their sign.  

Thus local minima in the ridgelet domain correspond to trenches and local maxima 

correspond to ridges.  The locations of the maxima in the ridgelet domain provide us with a 

local measure of the azimuth and scale of abyssal hills. 

R

Γ

The wavelet transform increases the dimensionality of the data by one, taking us from the 

2D azimuth-location domain of the Radon transformed data to the 3D azimuth-location-

scale domain of the ridgelet transformed data.  To compare our results with those of 

previous studies it is necessary to convert the scale, which is a relative measure of wavelet 

size, to a width parameter expressed in kilometers.  We define this new width parameter to 

be the distance between the zero crossings of the Mexican Hat wavelet of appropriate scale 

(Figure 4). 

Figures 3c-f show the output of the ridgelet transform of the data in Figure 3a as several 

constant-width slices through the ridgelet transform output.  Because the Radon transform 

utilizes a "Dirac ridge" (see the square panel below Figure 3b) to transform data, it is 

sensitive to all linear features in the data regardless of the scale (width) of those features.  A 

ridgelet corresponding to the widths of the slices in Figures 3c-f are plotted, at the scale of 

the data in Figure 3a, in the square panel beneath each slice.  These ridgelets are only 

sensitive to linear features in the data that have a width close to that of the ridgelet itself.  

Described in this way, the ridgelet transform of the data for a specified scale can be 

interpreted as a band-limited Radon transform.  Thus Figures 3c-f can be thought of as a 

scale decomposition of Figure 3b. 

As noted above, the peaks corresponding to the small-scale ridges in the space domain are 

much smaller in azimuth than the peaks corresponding to large scale ridges.  The azimuth 
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resolution is constant across each ridgelet slice, therefore the ridgelet transform also 

separates the well-resolved small-scale features from the poorly resolved large-scale ones. 

Increasing the size of the Radon aperture would help to better resolve the large-scale 

features. In this case, however, the size of the Radon aperture is limited to the width of the 

multibeam swath.  A wider swath width (or 2 swaths next to each other) would improve the 

resolution in azimuth at our scales of interest.  For a constant azimuth, the ridgelet 

transform has the same resolution characteristics as the wavelet transform—better location 

resolution at small scales and better scale resolution at large scales [Mallat, 1998]. 

By examining Figures 3c-f we can see that the peak corresponding to the small ridge at 

26°4'S has highest amplitude for a width of 4 km.  We can therefore estimate this abyssal 

hill's width as 4 km and its azimuth as 120°.  Similarly the ridge bounding the northern side 

of the Osbourn Trough at 25°56'S has a dominant width of 8 km and an azimuth of ~80°.  

On Figure 3a, we have marked the azimuth and scale at the appropriate location for each 

ridgelet maxima by a symbol consisting of a line segment that parallels the ridge axis, and 

an I-shaped symbol oriented 90° to the line segment, whose length equals the width of each 

ridge.  A sample symbol for an azimuth of 45° and a width of 5 km is shown beneath 

Figure 3a. 

3.2 Results of ridgelet analysis of the Osbourn Trough, East Pacific Rise and Mid-Atlantic 

Ridge datasets 

In addition to the Osbourn Trough multibeam data, we also applied our ridgelet transform 

method to two other multibeam swaths (Figure 1).  The East Pacific Rise (EPR) dataset 

was acquired by the R/V Revelle in 1997 (cruise GENE04), while the Mid-Atlantic Ridge 

(MAR) dataset was acquired onboard the R/V Melville in 2002 (cruise VANC05).  A 

sample of the output of our ridgelet transform analysis of these additional swaths is shown 

in Figures 5 and 6.  The East Pacific Rise is located at longitude 108°48’W in Figure 5a, 

and the Mid-Atlantic Ridge is located near 10°3’W in Figure 6.  The widths and azimuths 

of the abyssal hills are marked in Figures 5 and 6 using the same scheme as in Figure 3a.  

The three datasets presented here were chosen because they were collected during transits 

across a spreading center (or extinct spreading center in the case of the Osbourn Trough) 
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and therefore are long stretches of a single swath.  Furthermore these swaths survey 

bathymetry created at much different spreading rates.  The EPR dataset surveys crust 

created at roughly 14 cm/yr [Small, 1998] whereas the MAR dataset surveys crust created 

at 3.3 cm/yr [DeMets et al., 1991].  The paleo-spreading rate of the Osbourn spreading 

center is estimated to have been 6-8 cm/yr [Billen and Stock, 2000] 

The output of the application of our ridgelet transform procedure to the multibeam data 

acquired during all three cruises is shown in Figures 7-9 and Table 1.  Figure 7 displays the 

results of the ridgelet analysis of the EPR dataset.  This dataset includes two regions of 

anomalous abyssal hill shape.  The eastern anomalous region extends from 109°3'W to 

108°12'W (Figure 5b) and is characterized by an increased RMS amplitude and NE and 

NW trending abyssal hills, values much different from the regional abyssal-hill trends (see 

Figures 7a and 7c).  The location of this anomalous region coincides with the trace of the 

Yaquina Fracture Zone (Figure 5b) as mapped by Eakins and Lonsdale [2003].  The 

western region of anomalous bathymetry extends from 111°54'W to 110°45'W (Figure 5c) 

and is likewise characterized by increased RMS amplitude, but does not exhibit any 

unusual abyssal-hill trends.  This corresponds to the location of the Louis Scarp [Eakins 

and Lonsdale, 2003].  These two anomalous regions provide natural boundaries between 

regions of relatively constant abyssal-hill properties.  Therefore we divide the EPR abyssal 

hills into three populations (Figure 6).  Group EPR 1 consists of abyssal hills observed west 

of the Louis Scarp, EPR 2 contains those observed between the Louis Scarp and the 

Yaquina Fracture Zone and EPR 3 are the abyssal hills observed east of the Yaquina 

Fracture Zone.  All three populations exhibit similar RMS amplitudes, ranging from 50-100 

m, a range typical of crust created at fast spreading centers [Goff et al., 1997].  Similarly, 

all three populations exhibit a similar  mean abyssal hill width.  However these widths vary 

widely in all three populations.  The Louis Scarp, however, marks the location of a change 

in abyssal hill strike.  Population EPR 1 has a mean azimuth of 5.1° and an angular 

deviation [Cain, 1989] of  8.6°, while EPR 2 has mean azimuth of 12.3° and angular 

deviation of 7.3° (Table 1).  The result of a Watson-Williams test [Zar, 1999] shows that 

these means are significantly different with 95% confidence.  Thus the Louis Scarp may 

mark the location of a change in spreading direction. 
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The results of the ridgelet analysis of the MAR dataset are shown in Figure 8.  Unlike the 

EPR abyssal hills, the azimuths of the MAR abyssal hills do not vary significantly along 

the ship track, and we see no reason to separate these abyssal hills into separate populations 

based on their shapes and locations.  The widths also vary widely, with a slightly higher 

mean value than the EPR abyssal hills, as would be expected for slower spreading centers, 

however, the large scatter of widths makes it impossible to determine if this difference is 

significant.  The RMS amplitude of the bathymetry near the Mid-Atlantic Ridge is in 

general much larger than that of the EPR, ranging from 100-400m, a range that is in 

agreement with that of typical slow-spreading regions [Goff et al., 1997].  However, farther 

from the Mid-Atlantic Ridge, RMS amplitudes decrease markedly.  This decrease in 

seafloor roughness is most likely due to an increase in sediment cover (gray line in Figure 

7c) which artificially smoothes seafloor bathymetry. 

There is a change in abyssal hill azimuth for the Osbourn Trough dataset (Figure 8) at 

approximately 23°S.  Abyssal hills between 20°S and 22°S (group OT 1) have mean trend 

of 98.3° and an angular deviation of 7.1° while abyssal-hills between 24°S and 26°S (group 

OT 3) have mean trend 90.6° and an angular deviation of 6.8°.  The result of a Watson-

Williams test shows that these two populations have different means at a 95% confidence 

level.  However, the abyssal hills between 22°S and 24°S (group OT 2) have a mean trend 

of 93.9° which is not significantly different from the means of either groups OT 1 or OT 3.  

Unlike the relatively sudden shifts of abyssal-hill azimuths observed at the Louis Scarp, 

this change in azimuth appears to occur over a larger scale.  Two possible geologic 

scenarios which would result in a change in abyssal-hill trend are a change in paleo-

spreading direction along this multibeam swath, or the presence of a triple junction trace 

between 22°S and 24°S.  The widths of the OT abyssal hills are typically about 5 km.  The 

sediment thickness along the OT dataset is in general quite thin, so sediment smoothing 

should not affect our estimates of seafloor roughness there.  The RMS amplitudes of this 

dataset are also quite low, near 50-100 m, with the exception of the region immediately 

north of the Osbourn Trough which exhibits roughness of 50-300 m.  This pattern of 

roughness of the Osbourn Trough dataset may result from a significant slowing of 

spreading rate prior to the extinction of the Osbourn Trough. 
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4. Discussion and conclusions 

Our ridgelet transform method is capable of locally estimating abyssal-hill width, azimuth 

and RMS amplitude.  It should also be possible to modify our method to quantify other 

aspects of abyssal hill shape.  Using asymmetric wavelets in conjunction with the Mexican 

Hat wavelet utilized here may quantify abyssal-hill asymmetry using the ridgelet transform.  

The estimation of abyssal-hill shape should be especially useful for studies of regions 

where other data types are unavailable for constraining tectonic models, such as regions 

created during periods of constant magnetic polarity. 

A particularly important aspect of our method is that it simplifies detecting changes in 

abyssal hill shape, which is a possible indicator of a change in spreading rate or direction.  

We are able to use our method to detect  a change in spreading direction at the Louis Scarp 

west of the EPR, a possible change in spreading direction, or the location of a triple 

junction trace, north of the Osbourn Trough, and a possible decrease in spreading rate prior 

to the extinction of the Osbourn paleo-spreading center.  Determining when any change in 

spreading direction or rate occurred, however, is not directly possible using multibeam 

data.  Unlike magnetic reversal data there is no timescale associated with changes in 

abyssal-hill morphology.  Other data, such as radiometric dating of dredge or core samples 

are required to fully constrain the tectonic history of a region via abyssal hill morphology. 

There are several potential sources of error in our ridgelet analysis.  Any process that 

modifies the shape of abyssal hills after their formation will affect the results of any 

bathymetry analysis.  Two of the most prevalent processes are intraplate volcanism 

resulting in the formation of seamounts and the modification of seafloor shape by 

sedimentation. Small point features in the multibeam data are sufficiently averaged out 

during the Radon transform, but large seamounts can affect the output if their height 

exceeds the amplitude summed along nearby abyssal ridges. In the regions where abyssal 

hill analysis may be most useful for tectonic reconstructions (i.e., those created during the 

Cretaceous Long Normal Polarity Interval; Chron C34, 83-121 Ma [Cande and Kent, 

1995]) sediment cover can be relatively thick.  Sediment cover tends to smooth out 

bathymetry by reducing the RMS amplitude and damping the expression of small scale 

features. Therefore, it is important to know the sediment thickness near multibeam surveys.  
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Seismic data and drilling may provide some control on sediment thickness.  Ultimately, 

however, the errors that may affect the results of our ridgelet transform method must be 

examined on a region by region basis. 
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Tables 
 
Table 1: Table of abyssal hill population statistics 
Population Mean Azimuth (°) Angular Deviation 

(°) 
Mean Width 

(km) 
Width Standard 
Deviation (km) 

EPR 1 5.1 8.6 2.6 1.6 

EPR 2 12.3 7.3 2.8 3.2 

EPR 3 9.7 8.5 3.2 3.5 

MAR -12.5 12.4 4.1 4.6 

OT 1 98.3 7.1 6.0 3.8 

OT 2 93.9 11.9 6.2 3.0 

OT 3 90.6 6.8 4.3 2.6 
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Figure 1:  a) Basemap outlining the locations of the Osbourn Trough (OT), East Pacific 

Rise (EPR) and Mid-Atlantic Ridge (MAR) multibeam datasets used in this study.  b) 

The solid line in this figure marks the location of the Osbourn Trough multibeam swath. 

The data collected along the yellow section of this line is plotted in Figure 3a. c) Same as 

b) except for the East Pacific Rise dataset.  The three yellow sections of the EPR swath 

are plotted in Figures 5a-c.  d) The location of the Mid-Atlantic Ridge multibeam swath, 

the yellow section of which marks the location of the multibeam data plotted in Figure 6.  

The dashed lines in b)-d) mark the locations of active spreading centers (EPR and MAR) 

or in the case of the OT dataset, the location of the extinct Osbourn spreading center. 
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Figure 2:  Example ridgelets similar to those used in our analysis.  These functions are 

constant along one dimension and shaped like a Mexican Hat wavelet perpendicular to 

that dimension.  Arrows indicate the directions of the x1 and x2 axes.   is measured 

positive clockwise from x2.  a) Reference ridgelet: = 0, a = ao, b = bo.  b) Rotated and 

scaled version of a): = 20°, a = 2ao, b = bo.  c) Translated version of b):  = 20°, a = 

2ao, b > bo. 
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Figure 3: a) Example dataset consisting of a section of the NBP0304 multibeam data 

north of  the Osbourn Trough.  This dataset contains two prominent seamounts near 

25°37'S, numerous abyssal-hills and a single ridge contained within the axis of the 

Osbourn Trough at 26°6'S.  b) Radon transform of the dataset in a).  The seamounts 

appear as tangent function shaped features.  Most of the abyssal-hills show up as maxima 

near 90°.  However the ridge in the trough axis strikes at 120° and appears in b) as a 

maximum at the location appropriate to that azimuth.  Note that the smallest ridges in a) 

form well-localized maxima in b), relative to the maxima of larger ridges.  This 

difference in behavior between scales leads naturally to the multiscale decomposition of 

this data presented in c)-f).  The box beneath b) shows a schematic of the Dirac ridge 

used in the Radon transform to analyze the data in a).  Figures c)-f) present a particular 

slice through the ridgelet transform at the width indicated. A sample ridgelet 

corresponding to each width is plotted in the box beneath each panel at the scale of the 

data in a). The resolution in azimuth is best for the smallest scale abyssal hills.  The 

location of the maxima in these slices gives a measure of the location and azimuth of a 

particular abyssal hill.  The width at which each abyssal hill maxima has largest 

amplitude is the measure of the width of that abyssal hill.  The locations, azimuths and 

widths of each maxima in the ridgelet domain are plotted on a) with a symbol consisting 

of a line segment parallel to the azimuth, and a superimposed I-shaped symbol at 90 

degrees to the azimuth whose length equals the width location of each maxima.  A 

sample symbol for a northeast trending 5 km wide hill is shown beneath a). 
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Figure 4: Example Mexican Hat wavelet superimposed on the Radon transform of the 

NBP0304 data at =90° and the latitudes shown.  The scale and translation of the 

wavelet match a peak in the ridgelet transform of the data.  The width of the wavelet is 

defined as the distance between zero-crossings of the wavelet.  Note also that the wavelet 

is effectively zero outside the region of its “effective support”. 
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Figure 5: a) A sample of the EPR multibeam swath.  The East Pacific Rise is located at 

106°42’W in this figure.  The location of each ridgelet maxima is plotted using the same 

symbol used in Figure 3a. b) Same as a) but for the anomalous region of seafloor fabric 

observed near the Yaquina Fracture Zone (FZ). c) Detail of the anomalous multibeam 

data collected near the Louis Scarp. 
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Figure 6: A sample of the MAR multibeam swath.  The Mid-Atlantic Ridge is located at 

10°3’W in this figure. 
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Figure 7: Output of the ridgelet transform method for the EPR multibeam data.  The 

Louis Scarp and Yaquina Fracture Zone provide natural boundaries between three 

populations of abyssal hills, which we denote as EPR 1, 2 and 3.  a)  Azimuths of the 

observed abyssal hills.  The Grey lines denote the locations of the EPR 1,2 and 3 

populations.  For each population, the mean azimuth is plotted as a solid line and the 

mean +/- one angular deviation [Cain, 1989] are plotted as two dotted lines.  The azimuth 

of the EPR abyssal hills changes across the Louis Scarp, from 5.1° for EPR 1, west of the 

scarp to 12.3° for EPR 2 east of the scarp, a difference that is statistically significant.  

With the exception of a few anomalous abyssal hills near the Yaquina Fracture Zone, the 

azimuth of abyssal hills does not significantly change east of the Louis Scarp, with a 

mean of 9.7° for the EPR 3 abyssal hills.  b) The widths of these abyssal hills vary widely, 

and no clear trend or change in abyssal hill widths is observed between the three 

populations.  The mean width of each population is plotted as a solid line.  c) RMS 

amplitude of the EPR bathymetry, calculated using a 10 km-radius (solid black line) and 

a 20 km-radius (dashed black line) window.  Also plotted is the sediment thickness along 

the multibeam swath taken from the NGDC global sediment database [Divins, 2006].  

The RMS amplitude is within the range of 50-100 m for all three groups of abyssal hills, 

a value typical of fast spreading ridges.  The RMS amplitude of bathymetry increases 

markedly near the locations of the Louis Scarp and Yaquina Fracture Zone. 
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Figure 8: Output of the ridgelet transform algorithm for the MAR multibeam data.  

Unlike the EPR abyssal hills there are no clear boundaries observed in the data. a) The 

azimuths of MAR abyssal hills remain relatively constant across the survey area, with a 

mean value of -12.5° (soild line) and an angular deviation of 12.4° (dotted lines).  b) The 

widths are also scattered similar to those of the EPR abyssal hills, with a slightly higher 

mean width of 4.1 km (solid line).  c) The RMS amplitude near the MAR axis, which is 

typical of slow spreading rates.  The RMS amplitude  decreases steadily with increasing 

distance to the MAR.  This decrease in smoothness is correlated with sediment thickness, 

which increases with distance from the ridge.  The decrease in RMS amplitude therefore 

is attributed to the smoothing effect of thick sediment cover. 
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Figure 9: Output of the ridgelet transform algorithm for the OT multibeam data.  a)  The 

abyssal-hills in this figure have been separated into three groups, based on latitude, as 

shown by the grey lines.  Group OT 1 has mean trend 98.3°, group OT 2 has mean trend 

93.9° and group OT 3 has mean trend 90.6°.  Watson-Williams tests [Zar, 1999] show 

that groups OT 1 and OT 3 have significantly different means, however, group OT 2's 

mean is not significantly different from either group OT 1 or OT 3.  This change in 

abyssal-hill trend may be evidence of either a change in the spreading direction of the 

Osbourn paleo-spreading center or the presence of a triple junction trace between 22°S 

and 24°S.  Unlike the relatively sudden change in abyssal-hill trend at the Louis Scarp, 

this transition in trend occurs over a larger scale.  b)  Widths of abyssal hills near the 

Osbourn Trough.  There are no significant trends across the survey area.  c)  The RMS 

amplitude of abyssal hills along the survey.  The amplitude is highest near the Osbourn 

Trough axis, and may indicate a change in spreading rate prior to extinction of the 

Osbourn paleo-spreading center. 
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C h a p t e r  3  

HISTORY OF THE CRETACEOUS OSBOURN SPREADING CENTER 

Nathan J. Downey, Joann M. Stock, Robert W. Clayton and Steven C. Cande 

Abstract 

The Osbourn Trough is a fossil spreading center that rifted apart the Manihiki and 

Hikurangi Plateaus during Cretaceous time.  Previous models of the Osbourn Trough are 

based on data collected near the trough axis, only constraining the history of the Osbourn 

spreading center during the last few Ma of spreading.  Our dataset includes multibeam 

data collected northward to the Manihiki Plateau, allowing us to examine seafloor 

morphology created during the entire active period of the Osbourn Spreading center, as 

well as several additional multibeam datasets that provide the opportunity to examine the 

relationship between the Osbourn paleo spreading center and the Cretaceous Pacific-

Phoenix ridge. The axial gravity of the trough is similar to the gravity found at other 

extinct slow-intermediate spreading rate ridges.  Magnetic models indicate that spreading 

at the trough ceased during Chron C34.  Abyssal-hill trends indicate that spreading 

direction during the early history of the Osbourn spreading center occurred at 15°-20°.  

The east-west component of this spreading explains the modern east-west offset of the 

Manihiki and Hikurangi Plateaus.  Spreading rotated to 2°-5° prior to extinction.  

Abyssal-hill RMS amplitudes show that a decrease in spreading rate, from >7 cm/yr to 2-

6 cm/yr full-spreading rate, occurred ~2-6 Ma prior to ridge extinction.  Our data analysis 

is unable to determine the exact spreading rate on the Osbourn Spreading center prior to 

the slowing event.  Our model resolves the conflict between regional models of the 

Osbourn region with models based on its axial characteristics by showing that spreading 

at the Osbourn spreading center was decoupled from Pacific-Phoenix spreading. 
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1.  Introduction 

The Osbourn Trough is a fossil Cretaceous spreading axis located in the Southwest 

Pacific Basin (Figure 1).  It lies between the Manihiki and Hikurangi Plateaus, and 

intersects the Tonga-Kermadec Trench and Louisville Ridge at its western boundary.  

The Osbourn Trough was identified relatively recently [Lonsdale, 1997] due to a weak 

bathymetric expression, an absence of magnetic field reversal anomalies, and a lack of 

ship track data.  The drilling vessel Glomar Challenger surveyed the Osbourn Trough at 

26°S, 169°W during Deep Sea Drilling Program (DSDP) leg 91 [Menard et al., 1987].  

At the time of this survey the length of the Osbourn Trough was unknown, making its 

interpretation difficult.  Global gravity datasets showed that the trough is characterized by 

a negative axial gravity anomaly, revealing the full extent of the Osbourn Trough for the 

first time [Lonsdale, 1997; Sandwell and Smith, 1997].   

Lonsdale [1997] hypothesized that the Osbourn Trough is an extinct spreading center, but 

that result was controversial due to limited data coverage (e.g., Small and Abbott [1998]).  

Subsequent ship track studies [Billen and Stock, 2000], however, showed that the trough 

has morphology typical of extinct spreading ridges.  The Osbourn paleo-spreading center 

formed when a large oceanic plateau rifted into several pieces, resulting in the creation of 

the Manihiki and Hikurangi plateaus [Lonsdale, 1997], a hypothesis that is supported by 

studies of the two plateaus [Hoernle et al., 2004; Mortimer and Parkinson, 1996; Taylor, 

2006].  Mortimer et al. [2006] present isotopic data which constrain this rifting event to 

prior to 115 Ma.  Spreading at the Osbourn ridge presumably ceased when the Hikurangi 

plateau collided with the Chatham Rise paleo-subduction zone [Lonsdale, 1997].   

The spreading rate and extinction age of the Osbourn paleo-spreading center remain 

controversial.  Data collected at the trough axis imply a slow spreading rate and a late 

extinction age for the Cretaceous Osbourn spreading center.  Conversely, attempts to 

determine the role the Osbourn spreading center plays in the tectonic history of the 

Southwest Pacific Basin [Eagles et al., 2004; Larter et al., 2002] require either a fast 

spreading rate for the Osbourn ridge, with a corresponding early extinction age, or 

complex plate geometries.   A fast spreading rate is expected if the Osbourn Trough is 
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indeed an extinct section of the Pacific-Phoenix ridge as postulated by Lonsdale [1997].  

This conflict between models results, in part, because the region surrounding the Osbourn 

Trough formed during the Cretaceous Long Normal Polarity Interval (Chron C34, 121-

83Ma; [Cande and Kent, 1995]) and therefore lacks the magnetic reversal anomalies 

useful for determining plate histories.  This deficiency has led to the formulation of 

models based solely on the axial characteristics of the Osbourn Trough, which may only 

be representative of the last few Ma before the trough’s extinction.  Confusion also 

surrounds the origin of several features of the region surrounding the trough.  The 

Wishbone Scarp (Figure 1) is difficult to explain as a fracture zone, as it is very 

prominent south of the trough but there is no conjugate feature observed in the gravity 

field north of the trough.  Furthermore the Wishbone Scarp forks to the south, which is 

not a feature typical of fracture zones.  Mortimer et al. [2006] assert that the western arm 

of the Wishbone Scarp is a fracture zone that later became the location of incipient 

subduction.  East of the Wishbone Scarp there is a linear gravity anomaly that is the 

northern extension of a triple junction trace (Figure 1).  The identification of this feature 

as a triple junction trace is based on the differing distances between Chrons C34y and 

C33y on either side of this gravity lineation.  The reconstruction of Eagles et al. [2004] 

shows this triple junction separated the Phoenix, Pacific and Charcot plates during the 

early Cretaceous. 

The first extensive marine survey of the Osbourn Trough was carried out aboard the 

United States Antarctic Program’s Research Vessel Icebreaker (R/VIB) Nathaniel B. 

Palmer (cruise NBP9806; [Billen and Stock, 2000]).  Magnetic anomalies were 

interpreted to indicate that the Osbourn Trough ceased spreading at 71 or 83 Ma [Billen 

and Stock, 2000].  Assuming that rifting between the Manihiki and Hikurangi plateaus 

began shortly after their formation at the beginning of Chron C34 (121 Ma) Billen and 

Stock [2000] estimated an average full spreading rate (FSR) for the Osbourn paleo-

spreading center of 6-8 cm/yr.  This spreading rate is consistent with the trough’s 

morphology, as imaged by multibeam bathymetry.  The model proposed by Billen and 

Stock [2000] is similar to that originally proposed by Lonsdale [1997] except that he 

calculated a 15 cm/yr full spreading rate based on a 105 Ma extinction age.  This 
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extinction age was hypothesized to correspond to the time when the Hikurangi plateau 

collided with the Gondwana margin.   

Sutherland and Hollis [2001] estimate that the crust at DSDP site 595A (Figure 1) formed 

at 132-144 Ma based on the biostratigraphy of the deepest sediments cored.  They use 

these estimates in conjunction with the observations of Billen and Stock [2000] and the 

63°S paleo-latitude of creation of the crust [Menard et al., 1987] to propose a different 

model of the history of the Osbourn spreading center. In this model, Sutherland and 

Hollis [2001] propose that two spreading centers were active in this region prior to 120 

Ma, the Pacific-Phoenix spreading center and a spreading center to the south separating 

the Phoenix plate from a newly-inferred plate, which they dub the Moa Plate.  Sutherland 

and Hollis [2001] propose that the crust at DSDP site 595 was created at the Phoenix-

Moa ridge at ca. 137 Ma.  After eruption of the Manihiki and Hikurangi plateaus 

spreading continued on the Phoenix-Moa ridge, which separated the two plateaus.  The 

Osbourn Trough is interpreted to be the extinct western section of this ridge.  In order to 

explain the close proximity of the Osbourn Trough and DSDP site 595, Sutherland and 

Hollis [2001] argue that the East Wishbone Scarp is the remnant of a transform fault that 

offset the Phoenix-Moa ridge, implying a ~50 Ma age discontinuity at a fracture zone 

west of DSDP site 595. 

Recently, as data from the regions surrounding the Osbourn Trough became more 

available, tectonic models of these regions have been formulated.  These models provide 

a regional framework into which any tectonic model of the Osbourn Trough must fit.  

Larson et al. [2002] provide a constraint on the location of the Pacific-Phoenix-Farallon 

triple junction (PAC-PHO-FAR, Figure 1) throughout Chron C34 by examining the 

changes in abyssal-hill fabric east of the Osbourn Trough.  The geometry of this triple 

junction, along with the area of seafloor created during Chron C34 implies that spreading 

at the Pacific-Phoenix ridge occurred at 18-20 cm/yr FSR.  They also show a change in 

spreading direction at the Pacific-Phoenix spreading center.  Prior to ~100 Ma spreading 

occurred along an azimuth of ~171°, whereas the spreading direction in regions created 

after 100 Ma averaged ~164°.   
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Eagles et al. [2004] present a detailed high-resolution reconstruction of the Pacific-

Antarctic ridge and associated plate kinematics from 90-45 Ma.  The earliest part of this 

reconstruction presents a model of the region south of the Osbourn Trough that provides 

a late-stage boundary for models of the Osbourn region.  Eagles et al. [2004] also argue 

that the spreading directions observed by Larson et al. [2002] cannot explain the east-

west offset of the Hikurangi and Manihiki plateaus. 

Taylor [2006] presents a model of the Ellice Basin, a region west of the Manihiki Plateau 

(Figure 1).  This model shows that the Manihiki and Hikurangi Plateau were not only 

conjugate to each other at the time of formation, but that they were also conjugate to the 

Ontong Java Plateau.  This single large plateau fragmented into at least three parts around 

119-123 Ma.  Taylor’s [2006] model thus provides an early boundary condition for 

models of the Osbourn spreading center.   

Mortimer et al.'s [2006] model of the history of the western arm of the Wishbone Scarp 

asserts that this scarp formed as a fracture zone prior to 115 Ma, was later the location of 

oblique convergence resulting in the formation of an intraoceanic subduction zone at ca. 

115 Ma, and evolved into a rift margin at 92-98 Ma before becoming tectonically inactive.  

These results constrain the age of the formation of the Osbourn paleo-spreading center to 

before 115 Ma.  Because the West Wishbone Scarp would have been in close proximity 

to the Manihiki and Hikurangi plateaus at this time, the observations of Mortimer et al. 

[2006] provide an important constraint on the early history of the Osbourn spreading 

center. 

Ideally a model of the Osbourn spreading center should be compatible with the history of 

the Pacific-Phoenix-Farallon triple junction [Larson et al., 2002], provide temporal and 

spatial continuity between the models of Taylor [2006] and Eagles et al. [2004] and be 

consistent with the observations of Mortimer et al. [2006].  A crucial observation for 

constraining the timing of this model is the age of the crust at DSDP sites 595 and 596 

(Figure 1).  40Ar/39Ar analyses of the crust cored at site 595/6 yield a minimum age of 

100 Ma [Menard et al., 1987].  This estimate is compatible with the 132-144 Ma age of 

the radiolaria found in the basal sediments (9 m above basement) of hole 595A 
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[Sutherland and Hollis, 2001].  However, the radiolarian fossils in the deepest sediments 

cored at hole 595 (1.5 m above basement) indicate an age of 94-99 Ma.   

In this paper we present a new set of ship track surveys of the Osbourn region.  These 

data represent the most extensive survey of the Osbourn Trough thus far and include data 

collected northward to the Manihiki Plateau (Figure 1).  This dataset offers us the 

opportunity to examine regions created continuously at the Osbourn spreading center 

from its formation to its extinction.  We analyze and interpret these data and formulate a 

new tectonic model that is compatible with the regional tectonics of the Southwest 

Pacific Basin.  We find that contrary to the models of Billen and Stock [2000] spreading 

at the Osbourn spreading center ceased prior to the end of Chron 34.  An earlier 

extinction age matches the models of Eagles et al. [2004].  The reduction of the Osbourn 

spreading center’s spreading rate as it approached extinction may be typical of ridge 

extinction events.  This change in spreading rate explains the axial morphology of the 

Osbourn Trough.  We also observe a change in spreading direction throughout the period 

of active spreading at the Osbourn Trough, which accounts for the east-west offset of the 

Manihiki and Hikurangi plateaus [Eagles et al., 2004].  Furthermore abyssal hill trends 

imply that the Osbourn Trough is not an extinct section of the Pacific-Phoenix ridge and 

therefore that the region of seafloor containing the Hikurangi plateau must have formed a 

plate separate from the Phoenix plate during the active period of the Osbourn spreading 

center. 

2.  Data 

We used ship track gravity, magnetic and seismic data obtained during five separate 

cruises in this study (Figure 1).  Three of these cruises were aboard the R/VIB Nathaniel 

B. Palmer.  Two of these Palmer cruises (NBP0304 and NBP0207) were transits, only 

crossing the Osbourn Trough once, while the third (NBP0304B) carried out an extensive 

survey at a right-stepping offset in the Trough located near 172.7°W.  One Cruise 

(KM0413) was a transit carried out aboard the University of Hawaii’s School of Ocean 

and Earth Science and Technology’s (SOEST) Research Vessel R/V Kilo Moana.  The 

fifth cruise (COOK20) was a transit aboard the Scripps Institution of Oceanography’s 
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Research Vessel R/V Melville.  We also use magnetic anomaly data collected during 

NBP9806A (Figure 1) [Billen and Stock, 2000]. 

During all five cruises, magnetic field strength and multibeam bathymetry were collected.  

Swath width of the multibeam surveys averages ~15-20 km for the 4000-6000 m water 

depths typical of this region of the Southwest Pacific Basin.  The processed multibeam 

data obtained near the Osbourn Trough are shown in Figure 2 superimposed upon 

bathymetry predicted from satellite altimetry [Smith and Sandwell, 1997].   Profiles of the 

magnetic field strength recorded during our cruises, along with those of NBP9806A 

[Billen and Stock, 2000] are plotted in Figure 3a.  Plotted in Figure 3b are the observed 

magnetic field strength data after being reduced to the pole (skewness = 60°).  

In addition gravity data were collected during the three Palmer cruises and COOK20.  

These data are plotted in Figure 4, superimposed upon a series of north-south profiles 

taken from a global satellite dataset [Sandwell and Smith, 1997].  There is good 

agreement between the satellite data and the data collected during the three easternmost 

cruises.  A gravimeter malfunction that occurred during NBP0304b may explain the poor 

agreement of the satellite data with the NBP0304b ship track data.   

Single channel seismic (SCS) data were collected during NBP0207 between latitudes 

27°S and 25°S; during NBP0304B, a multichannel seismic (MCS) survey was carried out 

at the locations shown in Figure 2.  The SCS survey carried out during NBP0207 utilized 

two GI guns with a 3.71 litre capacity, capable of producing energy up to 150 Hz.  Ship 

speed during this survey was 11.1 km/h, with a shot spacing of 37 m. The NBP0304b 

MCS survey consisted of two north-south lines flanking the 172.7°W offset in the 

Osbourn Trough and two short east-west lines that cross this offset.   A much larger 

airgun source was used during this survey to image subcrustal structure beneath the 

Osbourn Trough.  A 6 bolt-airgun array with a 34.8 litre total capacity and a shot spacing 

of 47 m was used for a source.  45 channels of data were recorded with a group spacing 

of 25 m.  The seismic data exhibit a 2-reflector signature on all seismic lines collected.  

The uppermost reflector is the seafloor, while the lower reflector 0.0-0.2 s beneath is the 
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sediment-basement contact.  Despite the large source sizes used and high number of 

channels during NBP0304b, no structures are resolved below the sediments. 

3.  Magnetic anomalies 

The magnetic field strength profiles of Figure 3a are shifted such that they are aligned 

along the axis of the Osbourn Trough.  If the observed anomalies are due to magnetic 

field reversals, there should be a correlation among all the profiles.  However, the 

magnetic field strength profiles adjacent to each other correlate better than those far apart.   

In particular, NBP0304 correlates better with both NBP0207 and COOK20 (correlation 

coefficient, R = 0.65 and 0.79 respectively) than it does with either of the west and 

central profiles of NBP9806 (R = 0.34 and 0.20) even though these two NBP9806 

profiles correlate well with each other (R = 0.75).  Billen and Stock [2000] present 

models of the NBP9806 profiles that predict either a 71 Ma (preferred) or an 83 Ma 

extinction age for the Osbourn spreading center.  However, because the correlation 

between the profiles in Figure 3a disappears with increasing distance between profiles, 

the models of Billen and Stock [2000] do not predict the shape of our magnetic anomaly 

data.  The lack of correlation across our survey area indicates that the source of the 

observed anomalies cannot be magnetic field reversals, casting doubt on the extinction 

age estimates of Billen and Stock [2000] and on paleo-spreading rates inferred from those 

estimates.   

The phase-shifted profiles (Figure 3b) have a strong symmetry about the axis of the 

Osbourn Trough indicating that the magnetic anomalies are most likely due to magnetic 

field strength fluctuations within Chron C34.  Similar fluctuations have been observed 

within Chron C5 [Bowers et al., 2001].  We therefore conclude that the Osbourn 

spreading center stopped spreading some time during Chron C34 (121-83 Ma); however, 

the exact extinction age cannot be determined by analysis of the observed magnetic 

anomalies. 
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4.  Gravity models  

4.1 Spreading rates from gravity measurements 

Active spreading centers are generally characterized by a linear residual gravity anomaly 

coincident with the ridge axis.  The shape of this anomaly depends on the ridge’s 

spreading rate [Small, 1994; Watts, 1982].  A similar pattern is observed in the gravity 

fields of extinct spreading axes [Jonas et al., 1991].   

Jonas et al. [1991] interpret the central gravity lows observed at extinct spreading centers 

as changes in crustal geometry beneath the axial valley.  They use this model to 

successfully explain the residual gravity of several extinct spreading centers.  Their 

model is based on the observation that the basal portions of the oceanic crust emplaced at 

the Bay of Islands ophiolite complex formed at high pressures within the mantle.  Elthon 

et al. [1982] propose a model in which these portions form at a depth of ~30 km beneath 

the ridge axis, flow upwards along an upwelling conduit of material as the oceanic plates 

rift apart, and are emplaced at the base of the oceanic crust.  Jonas et al. [1991] propose 

that this conduit becomes frozen upon ridge extinction displacing higher density mantle 

material resulting in a gravity low.  Recently, Müller et al. [2005] were able to model the 

gravity field of the Adare Trough using this Moho topography model. 

Seismic reflection and refraction data obtained at the Labrador Sea paleo-spreading 

center indicate that crustal thickness decreases toward the ridge axis [Srivastava and 

Keen, 1995].  Magnetic reversal anomalies observed near the ridge axis indicate that the 

region of reduced crustal thickness (4-6 km vs. 6-7 km thick) was formed during a 13 

million year period of slower spreading (0.6 cm/yr vs. 2 cm/yr) immediately prior to 

ridge extinction.  This crustal thinning is accommodated by extension along numerous 

faults in the crust of this region and seismic velocities at the axis are anomalously low 

through the crust and upper 3 km of the mantle [Srivastava and Keen, 1995].  Osler and 

Louden [1992] hypothesize that these regions have undergone serpentinization resulting 

in lower densities and seismic velocities, a process that may have been aided by the 

presence of several faults that penetrate the crust near the ridge axis.  The regions of 
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altered density may be sufficiently large to explain the gravity anomaly observed at the 

Labrador Sea paleo-spreading center [Osler and Louden, 1992]. 

Jung and Vogt [1997] observe that the crust thins at the axis of the Aegir ridge, located in 

the Norwegian Sea,  similar to the observations of Osler and Louden [1992] at the 

Labrador ridge.  Uenzelmann-Neben et al. [1992] observed a change in the amplitude of 

sediment-layer reflections at the axis of the Aegir ridge.  This change is due to a change 

in pore fluids in the sediments of the axial region.  Observing that the Aegir Ridge is 

characterized by a residual gravity low, Uenzelmann-Neben et al. [1992] infer that the 

sediment pore fluids of the axial region were released from a crustal magma chamber as 

it solidified during its extinction.  The residual gravity low at the Aegir Ridge may 

therefore  be due to a low density region within the crust. 

4.2  Osbourn Trough gravity    

The gravity field of the Osbourn Trough is similar to that observed at the Labrador Sea, 

Aegir Ridge and other extinct spreading centers.  In Figure 4, the axis of the Osbourn 

Trough coincides with the gravity low centered at 26°S east of 172.5°W.  The trough 

shifts northward west of this point and coincides with a similar gravity low at 25.75°S.  

In fact the Osbourn Trough is a more prominent feature in gravity datasets than in 

bathymetric datasets and it is not surprising that the trough was not originally identified 

on bathymetric maps but rather was recognized by its axial gravity anomaly [Lonsdale, 

1997]. 

The observed gravity profiles (Figure 4) are composed of several components.  A 15-20 

mGal, 30 km wavelength gravity low centered on the axis of the Osbourn Trough is seen 

in all shiptrack and satellite profiles.  Superimposed upon this, the gravitational 

expression of abyssal hills correlates with bathymetry and is reflected as 5-10 mGal ~20 

km wavelength oscillations present throughout the profiles (compare the seismically-

determined bathymetry in Figures 5a-c with the observed gravity).  The longest 

wavelength components of the gravity field could be caused by changes in crustal 

thickness or large-scale density anomalies located in the mantle.  The amplitude of the 
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axial gravity anomaly cannot be explained by bathymetry and sediment cover.  Billen and 

Stock [2000] argued that the axial gravity anomaly seen at 173.7° W would require an 

increased sediment thickness in the trough axis, and they predicted that at this location, to 

account for the gravity anomaly, sediment cover would have to be 350 m thick.  Our 

seismic data show, however, that sediments in the trough axis at the locations of our 

seismic surveys (Figure 2) are only 60-70 m thick.  Note also that single-channel seismic 

reflection data obtained during Deep-Sea Drilling Project (DSDP) leg 91 by the drilling 

vessel Glomar Challenger demonstrate that the Osbourn Trough at 26oS 169oW is 500 m 

deep and contains a thin (<70 m) sediment infill [Menard et al., 1987].  The thin 

sediment infill of the Osbourn Trough implies that the axial anomaly must be due to 

density anomalies in the crust or uppermost mantle—density anomalies that may be 

explained by the serpentinization, Moho topography or low density crustal body models 

that have been invoked to explain the gravity anomalies of other extinct spreading centers. 

4.3 Gravity models of the Osbourn Trough 

Nettleton’s [1939] method of gravity interpretation uses the topography and free air 

anomaly of a region to determine average subsurface density.  This method is valid as 

long as topography and density do not correlate, such as would occur if the topography 

were locally compensated.  In our analysis we extend Nettleton’s [1939] method to more 

complex models.  The model domain is separated into several sub-domains each of which 

has a constant density and represents a particular model element (e.g. sediments, crust 

etc.).  The gravitational field of each sub-domain for a unit density is calculated using 

Parker’s [1972] method.  The modeled gravity is given by the equation: 





N

1j
jj b(x)φρg(x)                 (1) 

where g(x) is the modeled gravity along the profile; j(x) is the unit density gravity field 

of the jth sub-domain; N is the total number of sub-domains; b is the average background 

gravity of the region; and j is the density of the jth model element.  This approach 

requires us to prescribe only the shape of the model elements; the densities (j) are 
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determined by a least squares inversion of the measured gravity field.    Our method 

requires non-local topographic compensation, and at the wavelengths considered in our 

model ( 50 km) this requirement is satisfied for typical oceanic regions [Watts, 2001]. 

To incorporate the seismic observations into this modeling process, the water-bottom and 

sediment-basement interfaces were interpreted from the migrated seismic sections.  A 

time to depth conversion was then carried out using a 1500 m/s velocity for the water 

column and a 1600 m/s velocity for the sediments, based on measurements at DSDP site 

204 (Figure 2 [Burns, 1973]).  This time-depth conversion provides the geometry of the 

sediment and basement layers in the gravity models. 

We have constructed three models that predict the Osbourn Trough’s gravity field (Figure 

5 and Table 1).  Model 1 contains an elliptical low-density body within the crust.  A 

tradeoff exists between the density contrast of this body with the crust and the thickness 

of this ellipse; however, for a given depth, the width remains fixed regardless of density 

contrast.  The depth of this ellipse can also vary without affecting the calculated densities.   

Deeper ellipses are narrower than shallow ones.   

The limit of a superposition of a large number of ellipses at a range of depths leads to 

model 2.  This model presents serpentinization as the cause of the axial gravity anomaly.  

The geometry of this serpentinized zone is well-constrained by the gravity data, assuming 

that it extends from the surface of the crust to the Moho.  A depth of alteration greater 

than or less than the Moho would yield density contrasts between the altered zone and 

normal crust less than or greater than those in Table 1, respectively.   

Our third model is based upon the model of Jonas et al. [1991], with the gravity signature 

of the Osbourn Trough resulting from the geometry of the Moho alone;  no low-density 

anomaly within the crust is required.  There is a tradeoff between the width and depth 

extent of the crustal root.  If the root extends to 30 km deep, as postulated by Jonas et al. 

[1991], it would become a conduit only a few kilometers wide.   

These three models may be overly simplistic, but they are a useful starting point for 

examining the gravity anomalies.  We have assumed constant density within each model 
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element but our method is insensitive to vertical density gradients. Models that contain 

such gradients and also preserve the density contrasts between elements produce identical 

results.  Each of our three models explains observations equally well and yields densities 

for their common elements (crust, mantle and sediments) that are similar (Table 1).   

Our gravity models do not allow us to draw unique conclusions about the density 

structure of the Osbourn Trough.  They do, however, show that the gravity field of the 

Osbourn Trough is typical of that at other extinct spreading axes.  Furthermore, the 

amplitude of the axial anomaly is similar to that observed at the axes of extinct ridges 

with a 5.5 cm/yr full paleo-spreading rate [Jonas et al., 1991].  This estimate provides an 

important constraint on the history of the Osbourn spreading center immediately prior to 

extinction. 

5.  Abyssal-hill fabric 

5.1 Spreading rate and direction from abyssal-hill fabric 

Abyssal hills are elongate ridges on the ocean floor whose shape varies by region [Goff 

and Jordan, 1988; Hayes and Kane, 1991; Menard, 1967]. They are created at spreading 

centers and form the uppermost layer of oceanic crust and, post-creation, form a series of 

flanking ridges whose long axis parallels the spreading center.  The primary control on 

abyssal-hill morphology is faulting, which occurs at mid-ocean ridges shortly after crustal 

formation [Buck and Polikov, 1998; Goff et al., 1995; Macdonald et al., 1996].  This 

faulting process is controlled by the stress state at the ridge, leading to a correlation 

between abyssal-hill shape and ridge characteristics [Goff, 1991; Goff et al., 1997; Kriner 

et al., 2006].  These characteristics include spreading rate, spreading direction and ridge 

axial-valley morphology.  Thus evaluating abyssal-hill morphology makes it possible to 

reconstruct the tectonic history of a region in the absence of magnetic reversal anomalies 

[Menard, 1967].  It is not possible, however, to directly determine seafloor ages from 

abyssal-hill morphology, making it necessary to infer ages from other data types (e.g. 

biostratigraphy and isotopic dating of core or dredge samples) in regions devoid of 

magnetic reversal anomalies. 
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During their creation, the long axes of abyssal hills preferentially align with the trend of 

the ridge; therefore, because spreading is generally perpendicular to the ridge axis, the 

direction normal to abyssal-hill strike is an indicator of paleo-spreading direction.  The 

alignment of abyssal hills is not perfect, however, and some scatter of azimuths is 

observed within regions created at a single spreading center.  This scatter makes is 

necessary to define regions of relatively constant trend over which a single estimate of 

abyssal hill trend can be made.  By observing where abyssal-hill trends change from 

generally north-south to east-west, Larson et al. [2002] were able to determine the 

spreading directions of the Pacific-Phoenix and Pacific-Farallon spreading centers during 

Chron C34. 

Menard [1967] observed that the root-mean-square (RMS) amplitude of abyssal hills 

negatively correlates with the spreading rate of the parent ridge during abyssal-hill 

formation.  Later studies [Goff, 1991; Goff et al., 1997; Hayes and Kane, 1991] confirm 

this correlation for slow spreading ridges with RMS amplitudes varying from ~220 m for 

regions created at ridges with a full spreading-rate (FSR) of 2 cm/yr, to ~60 m for regions 

created at ridges with spreading at 7 cm/yr FSR.  Goff et al. [1997] find that this 

correlation breaks down for areas formed by ridges spreading faster than 7 cm/yr.  Faster-

spreading (>7 cm/yr FSR) ridges produce seafloor whose RMS amplitude is 50-60 m and 

independent of spreading rate. 

Abyssal-hill width is defined as the horizontal scale of abyssal hills measured 

perpendicular to the hill’s azimuth.  Goff et al. [1991; 1997] observe that as abyssal hills 

get higher they also get wider. As a result, there is also a correlation between abyssal-hill 

width and the spreading rate of the parent spreading center during abyssal-hill formation.  

The characteristic width of abyssal hills decreases from ~8 km for crust created at 2 

cm/yr FSR to ~2 km for crust created at 7 cm/yr FSR.  Characteristic width increases 

with increasing spreading rate for faster rates, from 2 km at 7 cm/yr FSR to 3 km for 

crust created at 16 cm/yr FSR.  Goff et al. [1991] attribute this increase to the complex 

spreading histories typical of extremely fast spreading ridges. 
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The degree of abyssal hill asymmetry, defined as the difference in slope magnitude 

between the inward-facing (towards the spreading axis) and outward-facing sides of an 

abyssal hill, also correlates with spreading rate [Kriner et al., 2006].  Unlike the 

correlations between abyssal-hill width and spreading rate and between abyssal-hill RMS 

amplitude and spreading rate, the correlation between abyssal-hill asymmetry and 

spreading rate does not change at the transition between axial-valley and axial-high 

morphology at ~7 cm/yr FSR.   

5.2  Osbourn Trough abyssal-hill morphology 

We hope to answer the following two questions by analyzing the abyssal-hill fabric 

observed near the Osbourn Trough:  

1. Was there ever an east-west component of spreading on the Osbourn spreading 

center that can explain the east-west offset of the Manihiki and Hikurangi 

plateaus?  

2. Was there a change in spreading rate prior to the extinction of the Osbourn 

spreading center and if so, how does that change the inferred extinction age for 

the Osbourn spreading center? 

Our surveys are ideal for this type of analysis because they extend away from the trough 

for several hundred kilometers.  Two surveys (those conducted during NBP0304 and 

NBP0207) extend northward to the Manihiki plateau, providing a record of abyssal hills 

generated at the Osbourn spreading center throughout its entire active period.  In addition 

to the labeled ship tracks in Figure 1, we also analyze abyssal hill trends observed in 

several other multibeam surveys (dotted lines in Figure 1).  These additional surveys 

provide continuous coverage between regions created at the Osbourn spreading center 

and the regions created at the Pacific-Phoenix ridge, discussed by Larson et al. [2002]. 

The location of changes in abyssal-hill morphology cannot be identified a priori so we 

use a technique of parameter estimation that is spatially local to define regions of 
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relatively constant abyssal hill properties.  For abyssal hill trends a single estimate of 

paleo spreading direction is then made for each region.  

In this paper we estimate abyssal hill statistics by the application of a ridgelet transform 

method to the multibeam bathymetry data (Appendix A).  This method utilizes the 

ridgelet transform of Candès [1998] and Candès and Donoho [1999] to locally estimate 

abyssal-hill azimuth, width and RMS amplitude.  An issue that arises in the use of 

abyssal fabric is the effect of erosion and sedimentation on the estimates.  Fortunately, 

seismic data are available to allow us to quantify this effect.  In Appendix A, we also 

discuss the effect of sedimentation on abyssal-hill parameter estimates. 

Application of the ridgelet transform procedure to our multibeam data shows that the 

abyssal hills observed north and south of the Osbourn Trough can be divided into four 

groups based on azimuth trends and location (Figure 6).  The first group, designated the 

“Manihiki” abyssal hills, consists of the abyssal hills observed between the southern side 

of the Manihiki Plateau and 22°S.  The mean azimuth of this population is 104.7°+/-1.7° 

(95% confidence interval; Figure 6).  The second group, the “North Osbourn” abyssal 

hills in Figure 6, consists of the abyssal hills observed between 22°S and the axis of the 

Osbourn Trough at 26°S.  These abyssal hills have a mean azimuth of 92.1°+/-3.1°, and 

the results of a Watson-Williams test [Zar, 1999] show that this group has a different 

mean from the Manihiki abyssal hills with 95% confidence.  Further subdivision of the 

observed azimuths into smaller populations does not yield any populations with average 

azimuths intermediate to those of the Manihiki and North Osbourn abyssal hills.  South 

of the Osbourn Trough a similar pattern is observed.  The "South Osbourn" abyssal hills, 

those observed between 30°S and the Osbourn Trough, have a mean azimuth of 94.8°+/-

3.5°, similar to the mean azimuth of the North Osbourn abyssal hills.  South of 30°S the 

fourth group, the "Hikurangi" abyssal hills have mean trend of 110.1°+/-7.3°, which 

likewise is similar to the azimuth of the Manihiki abyssal hills.  Like the Manihiki and 

North Osbourn Abyssal hills, the two groups south of the Osbourn Trough also have 

differing means at a 95% confidence level.  However, the sharpness of the transitions 

between the groups at 22°S and 30°S cannot be accurately determined from our data.  We 

estimate that these locations of these transitions are accurate to approximately 1°.  The 
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symmetric pattern of abyssal hill azimuths about the Osbourn Trough is in agreement 

with the spreading center origin of the Osbourn Trough.  The change in abyssal-hill 

azimuth indicates that the spreading direction of the Osbourn paleo-spreading center 

changed from an azimuth of ~13.0° to ~2.8° at time when the crust near 22°S and 30°S 

were simultaneously being created. 

Two groups of abyssal hills east of those created at the Osbourn Trough are also shown in 

Figure 6.  These populations are those described by Larson et al. [2002] as being created 

at the Pacific-Phoenix spreading center during Chron C34.  North of the Austral Fracture 

Zone (AFZ; Figure 1) we observe the "North PAC-PHO" abyssal hills, whose mean 

azimuth is 78.4°+/-6.5°.  South of the AFZ are the "South PAC-PHO abyssal hills, which 

have mean azimuth 74.1°+/-3.5°.  Both of these populations have means that are different 

from the four Osbourn abyssal hill groups as well as from each other at a 95% confidence 

level. 

The output of the RMS amplitude and width analysis of the abyssal hills created at the 

Osbourn spreading center is shown in Figures 7 and 8 respectively.  These two statistics 

are affected by sediment cover, so we restrict our analysis to the ship tracks near the 

western end of the Osbourn Trough where sediments are thinnest and where we have 

seismic data constraints on sediment thickness.  The results of this analysis are shown for 

latitudes between 26°S and 20°S.  North and south of these latitudes, thick sediments 

blanket the abyssal-hill fabric, casting doubt on our estimates of the abyssal-hill RMS 

amplitude and width (see Appendix A).  Similarly, ship tracks approaching the Tonga-

Kermadec subduction zone pass into terrain faulted by extension related to subduction.  

We have also avoided the region of anomalous bathymetry north of the 172.7°W trough 

offset (i.e., a “discordant zone”, [Macdonald et al., 1991]).  In the locations presented in 

Figures 7 and 8 our estimates of abyssal-hill width and amplitude are believed to be 

representative of the basement topography created at the Osbourn spreading center.  The 

RMS amplitude of the bathymetry decreases from 250-300 m at the trough axis near 26°S 

to 50 m north of 25°S (Figure 7).  The RMS amplitude north of 25°S is approximately 

50-60 m for all ship tracks northward until latitude 23.3°S.  North of this point the RMS 

amplitudes begin to fluctuate about 50 m with a maximum excursion of ~110 m and a 

               57



minimum of ~25 m.  The largest excursions occur in regions of increasing sediment 

thickness at the northern ends of NBP0207 and NBP0304 (grey curves in Figure 7).   

The general trend north of 25°S is that where sediments are thin (< 80 m thick) RMS 

amplitudes are small, approximately 40-70 m with a few excursions to 100 m.  The 

results of Goff et al. [1997] and Hayes and Kane [1991] allow us to estimate spreading 

rates for the region of our analysis.  The decrease in RMS amplitude from 250 m to 50 m 

between 26°S and 25°S corresponds to a drop in spreading rate from > 7 cm/yr FSR at 

the time of formation of the crust at 25°S to 2 cm/yr FSR immediately prior to extinction 

of the Osbourn spreading center.  The region north of 25°S where RMS amplitude is 50-

70 m corresponds to formation at spreading rates > 7 cm/yr FSR.  Unfortunately, as 

discussed above, we cannot constrain the exact spreading rate for this region as the 

correlation between RMS amplitude and spreading rate only holds for rates less than 7 

cm/yr FSR. 

The widths of abyssal hills in this region also vary (Figure 8).  Between 24.5°S and 26°S 

widths range from 1.5 to 16 km.  North of 24.5°S the smallest scales are subdued with 

widths generally ranging from 2-16 km. Abyssal-hill widths less than 2 km correspond to 

a spreading rate of ~8 cm /yr FSR [Goff et al., 1997].  The smaller widths at the trough 

axis may be explained by increased faulting near the axis of the Osbourn spreading center 

during the last few million years of spreading.  Increased faulting immediately prior to 

the extinction of the Labrador ridge was observed by Srivastava and Keen [1995].   

It is difficult to use abyssal-hill widths to constrain the spreading rate of the Osbourn 

spreading center as we observe a wide range of scales in all regions of our survey and are 

unable to designate any particular width as dominant (Figure 8).  Furthermore, as 

increasing sediment thickness obscures the finest scales first, the true range of scales may 

be even larger than what we observe.  This wide range of observed scales is interesting in 

itself as it indicates that the faulting process that forms abyssal hills can create them at 

several scales simultaneously. 
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The abyssal hill analysis yields some important constraints on the tectonic history of the 

Osbourn spreading center.  When the Hikurangi and Manihiki Plateaus rifted, the 

subsequent spreading that continued to separate the two plateaus took place along a 15°-

20° azimuth.  The east-west component of this spreading may explain the modern east-

west offset of the Hikurangi and Manihiki plateaus.  At some point prior to extinction the 

spreading direction at the Osbourn spreading center changed relatively suddenly to an 

azimuth of 2°-5° ~450 km from the modern trough axis.  We also know that the 

spreading rate slowed significantly immediately prior to the extinction of the spreading 

center.  If the last 110 km of the crust north and south of the trough was emplaced at an 

average full spreading rate of 4-11 cm/yr (a range that is in agreement with RMS 

amplitudes, gravity and morphology observed at the trough axis) then this slowing began 

4-11 Ma before ridge extinction.  The RMS amplitude of bathymetry also indicates that 

prior to this slowing the spreading rate was > 7 cm/yr FSR.  In order to better constrain 

this spreading rate and determine the timing of the events outlined by the abyssal-hill 

strikes we must combine our results with other data obtained near the Osbourn region. 

Two additional features of interest in the bathymetry of the Osbourn region are shown in 

Figures 9 and 10.  The region in Figure 9, east of the Wishbone Scarp contains two long 

linear features (highlighted with dashed lines) that may be the bathymetric expression of 

fracture zones.  These two features are sub-parallel to and located between the Southeast 

Manihiki Scarp and the triple junction trace described by Eagles et al. [2004] (Figure 1).  

However we are unable to determine if these features are connected to either the triple 

junction trace or the Southeast Manihiki Scarp due to a lack of data north and south of 

these lineations.  Several short lines delineate a series of ridges observed southwest of the 

Manihiki Plateau in Figure 10.  These ridges are isolated to this region and their trend 

parallels neither the local abyssal hill fabric nor the trend of the Southeast Manihiki Scarp.  

These ridges may result from the rifting event that first separated the Manihiki and 

Hikurangi plateaus as they are approximately parallel to the trend of the southwest 

margin of the Manihiki Plateau. 
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6. Tectonic model 

6.1 Geometry of Osbourn spreading 

Abyssal-hill strikes provide constraints on the geometry of spreading at the Osbourn 

spreading center.  Spreading initially occurred at an azimuth of approximately 15°-20°, 

based on the trends of the Hikurangi and Manihiki abyssal hills, but later rotated to a 2°-

5° azimuth as indicated by the near east-west strike of the abyssal hills that flank the 

Osbourn Trough.  Based on these constraints we have formulated a geometrical model of 

spreading at the Osbourn paleo spreading center (Figure 11).   

Figure 11a shows the initial configuration of the Manihiki and Hikurangi Plateaus 

immediately prior to their separation.  This configuration matches that proposed by 

Taylor [2006] and predates to the opening of the Ellice basin to the west (Figure 1). The 

configuration in Figure 11b is that corresponds to 1200 km of separation of the Hikurangi 

and Manihiki plateaus.  The east-west component of spreading explains the east-west 

offset of the plateaus described by Eagles et al. [2004].  This spreading direction also 

closely parallels the 14° trend of the Southeast Manihiki Scarp. The Southeast Manihiki 

scarp also appears to be the location of the boundary between the Northern PAC-PHO 

and Manihiki abyssal hills.   In agreement with the results presented by Larson et al. 

[2002], our measurements of the trend of PAC-PHO abyssal hills indicate that the 

spreading southeast of the Manihiki Plateau occurred along an azimuth of 168° and later 

rotated to 164° as the PAC-PHO ridge migrated southward.  The different spreading 

directions observed southeast and southwest of the Manihiki Plateau imply that these 

regions were created at different plate boundaries, and therefore there were at least three 

plates separated by these boundaries.  These three plates consisted of the plate containing 

the Manihiki Plateau which, following Larson et al. we call the Pacific Plate (although 

which plate should be considered the ancestor of the modern Pacific plate at this time is 

debatable, as both the plates that contained the Hikurangi and Ontong Java plateaus 

during the Early Cretaceous now make up portions of the modern Pacific Plate), the 

Hikurangi plate, south of the Osbourn paleo spreading center and the Phoenix plate, south 

of the Cretaceous Pacific -Phoenix ridge.  The boundary between the Hikurangi plates 
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and the Phoenix plates appears to have been at the location of the Southeast Manihiki 

Scarp, although the exact configuration of this triple junction between the three plates 

cannot be determined from our data.  In Figure 10b we also show the location of the 

Western Wishbone Scarp as conjugate to the Southeast Manihiki Scarp and therefore it 

may also be a remnant of the Hikurangi-Phoenix plate boundary.  This configuration is an 

agreement with the fracture zone origin of the West Manihiki Scarp presented by 

Mortimer et al. [2006].  Determining the exact role of the two ridges, and the nature of 

the boundaries between them, requires more detailed marine geophysical surveys of the 

West Wishbone Scarp, and Southeast Manihiki Scarp and surrounding areas. 

After a total of ~2400 km of spreading between the Plateaus, the spreading direction 

changed to 2°-5° relative to the Manihiki Plateau.   Following this rotation another ~900 

km of crust was accreted at the Osbourn ridge before the spreading rate of the ridge 

slowed. The configuration of the Osbourn region immediately prior to this slowing event 

is shown in Figure 11c.  At no location are the abyssal hills created at the Osbourn 

spreading center parallel to those created at the Pacific-Phoenix ridge.  Thus it appears 

that the Hikurangi plate remained separated from the Phoenix plate throughout its entire 

lifetime.  The fracture zones observed in Figure 9 may mark the location of the 

easternmost extent of the Hikurangi Plate at the time of Figure 11c.   

We propose, following Lonsdale [1997] that the slowing event, and eventual extinction of 

the Osbourn Trough was caused by the entrance of the Hikurangi plateau into a 

subduction zone that under-thrust the Gondwana section of the Antarctic Plate.  

Figure 11d shows the configuration of the spreading center and subduction zone at the 

time of extinction of the Osbourn Trough, overlain on their modern locations on the 

Pacific Plate.  After the capture of the Hikurangi plate by the Pacific plate, the relative 

motion between the Pacific plate and Gondwana was divergent, the captured piece thus 

began to move northward away from Gondwana.  This motion was accommodated by 

extension in the Zealandia sector of Gondwana as outlined by Luyendyk [1995].  

Extension continued until ~85 Ma when the Campbell Plateau and Chatham Rise rifted 

away from Antarctica at the modern Pacific-Antarctic ridge. 
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It may have been possible that as the Osbourn spreading center died, the eastern arm of 

the Wishbone Scarp began forming.  As the Hikurangi plateau entered the subduction 

zone it stalled subduction at this location causing the drastic reduction in spreading rate at 

the western part of the Osbourn ridge.  A piece of the eastern part of the Hikurangi plate 

may have continued to move southward into the subduction zone, eventually becoming 

the Charcot plate of Eagles et al. [2004].  In such a scenario, the eastern arm of the 

Wishbone Scarp would have been the location of a strike slip boundary between the 

Charcot Plate and the (now captured) Hikurangi portion of the Pacific Plate.  However, as 

there is little data in the region surrounding the Wishbone scarp, such a model remains 

speculative, and is omitted from Figure 11.   

6.2 Timing of Osbourn spreading 

Despite their strong geometrical constraints on Osbourn spreading, our data provide little 

temporal constraint on the events of Figure 11.  The magnetic anomaly profiles of Figure 

3 imply that the extinction of the Osbourn Spreading Center occurred sometime during 

Chron C34.  Abyssal-hill statistics show that spreading at the Osbourn spreading center 

slowed significantly 4-11 Ma prior to extinction.  This slowing event is expressed as a 

change in the average abyssal-hill amplitude near 25°S north of the Osbourn Trough 

(Figure 2b).  Sediment thickness in the region of Figure 2 is constant at about 60-70 m, so 

the increased smoothness north of 25°S cannot result from increased sedimentation.  We 

estimate a spreading rate of 4-11 cm/yr FSR after the slowing event and > 7 cm/yr FSR 

prior to slowing, based upon abyssal hill amplitudes; however, the exact rate before 

slowing cannot be determined.   

We must therefore rely on other data to constrain the timing of these events.  One such 

constraint is provided by the age of the crust at DSDP site 595.  Preliminary work 

estimated a 100 Ma minimum age of the crust at this site [Menard et al., 1987].  

Sutherland and Hollis [2001] however estimate the crust at this site to be 132-144 Ma 

based upon biostratigraphy of cored sediments.  Previous models of the Osbourn 

spreading center have assumed that rifting between the Hikurangi and Manihiki plateaus 

began shortly after their formation around 119-121 Ma.  However Mortimer et al. [2006] 
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show that this rifting only needs to have occurred before the formation of the West 

Wishbone Scarp at ca. 115 Ma. 

The age estimate of Sutherland and Hollis [2001] implies that the crust at DSDP site 595 

formed prior to the eruption of the Hikurangi and Manihiki Plateaus, an assertion that is 

difficult to explain if this crust was indeed formed at the Osbourn Trough.  However, our 

data do not directly contradict the model of Sutherland and Hollis [2001].  The one ship 

track that we do have at the Longitude of DSDP site 595 shows no evidence of the 

fracture zone implied by Sutherland and Hollis [2001], however data in this region is too 

sparse to eliminate its presence entirely.  In the context of their model, the scenario 

presented in Figure 11 describes the late evolution of the Pacific-Moa plate boundary.  

Another explanation for the anomalous ages determined by Sutherland and Hollis [2001] 

is that deep sea currents transported older sediments to the location of DSDP site 595. 

7. Conclusions 

Our data analysis yields several important clues to explaining the tectonic history of the 

Osbourn Trough.  Analysis of the magnetic data shows that the Osbourn paleo-spreading 

center stopped spreading during Chron C34.  The most fruitful part of our analysis is the 

examination of the seafloor fabric away from the trough axis.  A change in seafloor RMS 

amplitude fabric shows that spreading slowed 4-11 Ma prior to the extinction of the 

Osbourn Trough.  Change in abyssal-hill strike also shows that spreading direction 

changed from NNE-SSW to approximately N-S (measured in a modern Manihiki Plateau 

reference frame) some time prior to the slowing event.  Using our results, we formulated 

a new model of the Osbourn Trough’s tectonic history.   

Our model successfully explains the conflict between Osbourn paleo-spreading models 

and regional models by showing that spreading on the Osbourn spreading center was 

decoupled from that of the Pacific-Phoenix ridge, and by showing that the Osbourn 

spreading center spread at a rate faster than predicted by its axial characteristics.  

Correspondingly, our model predicts that the Osbourn spreading center ceased spreading 

prior to previous estimates.  A rifting age of 115 Ma for the Hikurangi and Manihiki 
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Plateaus predicts spreading ceased prior to 87 Ma, while a 121 Ma extinction age implies 

that spreading stopped before 93 Ma.  

One aspect of our tectonic model warranting further study is the interaction of the 

western end of the Pacific-Phoenix ridge with the Ellice basin spreading center postulated 

to be active at this time [Taylor, 2006].  The presence of the Ellice ridge implies that 

there must be a triple junction trace somewhere southwest of the Manihiki plateau, 

although no such feature has been identified.  As this region is heavily sedimented and 

has been subject to much intra-plate volcanism further marine geophysical surveys are 

required to elucidate the details of formation of this area.  The Wishbone Scarp is also 

sparsely surveyed, and more data are required to elucidate the origin of this anomalous 

feature.  Another aspect warranting further investigation is the extent of the fracture 

zones of Figure 9 and whether they are contiguous with either the southeast Manihiki 

scarp or the Charcot-Phoenix-Pacific triple junction trace described by Eagles et al. 

[2004]. 
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Appendix A: The effect of sedimentation on spreading rates and direction estimates 

from Abyssal-Hill fabric  

Our seismic data provide a means to quantify the effects of sedimentation on abyssal-hill 

statistics.  The NBP0207 seismic line runs north-south perpendicular to the trend of the 

abyssal-hill fabric.  The two-dimensional nature of the seafloor morphology 

perpendicular to the seismic line implies that the observed seismic bathymetry and 

basement depth are a good approximation to the average bathymetry and basement 

topography along an azimuth of 90° (i.e., the bathymetry and basement topography along 

the seismic line is expected to be similar in shape to the Radon transform of the 2D 

bathymetry and basement topography at =90°).  The unusual fabric near the NBP0304b 

seismic lines precludes their use in this analysis as the bathymetry along the seismic line 

is not representative of the bathymetry across the NBP0304b multibeam swath.   

By comparing the RMS amplitude and scales of the seismically determined bathymetry 

and basement topography profiles, we are able to determine the effect of sedimentation 

on these quantities.  Figure A1a 1  shows the bathymetry and basement topography 

interpreted from the NBP0207 seismic data.  Figure A1b shows the sediment thickness 

observed along this line after the application of a mean filter of 5 km half-width.  Part c) 

of Figure A1 displays the ratio of the bathymetry RMS amplitude to the basement RMS 

amplitude, each of which have been calculated using a 20 km moving window.  The 

rough negative correlation between this ratio and the sediment depth in b) indicates that 

thicker sediments reduce the RMS amplitude of the bathymetry relative to that of the 

basement more effectively than do thinner sediments.  Furthermore where sediment 

thickness is less than 75-100 m, the ratio in Figure A1c is very near to 1, indicating that a 

sediment cover of this thickness does not significantly reduce the RMS amplitude of the 

bathymetry relative to the RMS amplitude of the basement.  Similar results have been 

reported by Goff [1991] and Goff et al. [1995; 1997] and are predicted by the 

sedimentation model of  Webb and Jordan [1993].   

                                                 
1 Available as an online supplement at www.agu.org/pubs/crossref/2007/2006JB004550.shtml  
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Figures A1d –A1f demonstrate the effects of sedimentation on scale.  Parts d and e are 

the wavelet transforms of the basement topography and bathymetry respectively.  Part f is 

the difference between parts d and e.  The two wavelet transforms are very similar in 

shape, but their amplitudes differ for widths less than 8 km (Figure A1f).  Thus the effect 

of sedimentation is to preferentially reduce the features of small scale.  We do not 

observe a correlation between the range of scales affected and the sediment thickness.  

Such a correlation has been observed by Goff [1991] and Goff et al. [1997; 1995], where 

sediments progressively dampen larger scales with increasing sediment thickness. 

In order to accurately interpret the results of our multibeam analysis it is important to 

know the sediment depth near our survey locations.  Where sediments are relatively thin 

(< 70-100 m) we can be confident that our RMS amplitude is an accurate estimate of the 

RMS amplitude of basement.  Our scale measurements will be affected by sedimentation 

regardless of sediment depth.  Where possible we can use our seismically-determined 

sediment thickness.  Elsewhere we must rely on the NGDC global sediment thickness 

database [Divins, 2006].  Sedimentation, however, should have no effect on abyssal-hill 

azimuths because sedimentation acts to change abyssal-hill widths and amplitudes only. 
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Tables: 

Table 1: Densities of gravity model elements 
 R 2 sediment (g/cm3) crust (g/cm3) mantle (g/cm3) body (g/cm3) 

Model 1 
(Magma Chamber) 

0.88 1.61 +/- 0.20 2.48 +/- 0.04 3.26 +/- 0.06 2.04 +/- 0.04 

Model 2 
(Serpentinization) 

0.87 1.67 +/- 0.21 2.52 +/- 0.04 3.32 +/- 0.06 2.36 +/- 0.04 

Model 3 
(Crustal Root) 

0.88 1.77 +/- 0.13 2.47 +/- 0.13 3.28 +/- 0.05 - 
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Figure 1:  Bathymetric map [Smith and Sandwell, 1997] of the Southeast Pacific Basin 

near the Osbourn region.  The locations of the tectonic features discussed in the text are 

labeled.  The location of this Figure is shown on the inset globe.  The Pacific-Phoenix-

Farallon triple junction trace (PAC-PHO-FAR) is plotted as a thick dashed line.  The 

Chatham rise paleo-subduction zone is plotted as a line with triangular teeth.  The 

direction of these teeth indicates the direction of paleo-subduction.  The Osbourn Trough 

appears as an east-striking bathymetric low near 26°S, the eastern end of which 

terminates at the intersection with the northern end of the Wishbone Scarp near 165°W.   

The cruises discussed in the gravity and magnetic data sections are labeled.  In addition to 

these, the sections of multibeam data from several additional cruises analyzed in section 5 

are shown as thin dotted lines.  The survey geometry provides us the opportunity to study 

crust created throughout the entire spreading history of the Osbourn spreading center.  

The locations of Deep Sea Drilling Program sites 205 and 595 are shown as a star and a 

dot respectively.  At the southern end of the figure the locations of anomalies 34y and 

33y on either side of a gravity lineation east of the Wishbone Scarp are plotted as taken 

from Larter et al. [2002].  The differing distance between these anomalies on either side 

of this lineation demonstrate that it is the location of a paleo plate boundary.  The three 

white boxes labeled 2, 8 and 9 delineate the locations of Figures 2, 8 and 9 respectively. 
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Figure 2:  a) Multibeam data collected near the Osbourn Trough during our cruises, 

superimposed upon predicted bathymetry from satellite altimetry [Smith and Sandwell, 

1997].  The locations of the NBP0207 SCS and NBP304b MCS surveys are shown by the 

locations of the red and black dashed lines respectively.  The white box outlines the 

location of b).  b) Close-up of a) highlighting the change in abyssal-hill character that 

occurs between 24°S and 25°S.  The abyssal-hill fabric north of 24.5°S is much smoother 

than the fabric south of 24.5°S.  This change in texture is not accompanied by a change in 

sediment thickness, so the subdued fabric to the north cannot result from sediment 

smoothing.   
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Figure 3: a) Magnetic anomaly data observed at the Osbourn Trough.  The magnetic 

profiles have been aligned along the axis of the Osbourn Trough (the trough axis 

coincides with the central solid vertical gridline).  Included in this Figure are our data 

along with that of a previous survey, NBP9806 [Billen and Stock, 2000].  The lack of 

correlation across the survey area indicates that the magnetic anomalies cannot result 

from magnetic field reversal.  b) Magnetic anomaly data in a) after application of a 

reduction to the pole filter (skewness=60°).  The symmetry of the phase-shifted profiles 

shows that these anomalies may result fluctuations in the magnetic field strength during 

Chron C34.  Similar fluctuations have been observed to occur during Chron C5 [Bowers 

et al., 2001]. 
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Figure 4:  Gravity data observed near the Osbourn Trough after the removal of regional 

values.  Our ship track data are shown as solid lines.  The dashed lines are north-south 

profiles taken from a global gravity dataset [Sandwell and Smith, 1997].  The straight 

dotted lines show the zero value for each profile.  The solid gray line follows the Osbourn 

Trough axis.  The Osbourn Trough coincides with the gravity lows at 26°S and 25.2°S, 

east and west of 172.7°W, respectively. 
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Figure 5:  Models of the density structure of the Osbourn Trough that accurately predict 

the observed data. a) A single low-density region beneath the trough axis. b) A 

serpentinization model where the crust density has been modified by hydrothermal 

alteration.  c) The Moho topography model of Jonas et al. [1991]  Densities for each of 

these models that provide the best fit to the data are given in Table 1.  The output of each 

of these models (upper panel) fits the data equally well. 
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Figure 6:  Abyssal hill azimuths as determined via ridgelet transform.  The azimuth 

estimates have been split into six populations, the Manihiki, North Osbourn, South 

Osbourn and Hikurangi abyssal hills, all of which were created at the Osbourn spreading 

center and the North and South Pacific-Phoenix abyssal hills.  Note that in the left panel, 

azimuth estimates falling outside the range of azimuths shown are plotted on the left and 

right boundaries at appropriate latitude.  A rose diagram of each population is shown.  

The size of each population is presented along with the mean azimuth and 95% 

confidence interval.  The difference between the strikes of the Manihiki/Hikurangi 

populations and the Osbourn abyssal hill populations indicates a change of spreading 

direction at the Osbourn spreading center.  Furthermore the difference between the 

Osbourn and Pacific-Phoenix abyssal hills indicates that the Osbourn spreading center 

was not a section of the Cretaceous Pacific-Phoenix ridge.   
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Figure 7:  Abyssal hill RMS amplitude for regions not contaminated by seamounts or 

deep sediments.  The solid gray lines show sediment depth along each ship track taken 

from the NGDC global sediment database.  The solid black lines are the RMS amplitude 

of bathymetry calculated along the profiles.  RMS amplitude increases greatly south of 

25°S.  North of this latitude it remains relatively stable at 50-60 m, with some 

fluctuations occurring as sediments get thicker.  The gray dashed line in the NBP0207 

panel denotes the sediment thickness interpreted from the NBP0207 SCS data.  The 

agreement between this thickness estimate and the NGDC database is closest northward, 

away from the Osbourn Trough. The KM0413 data are presented north of 25°S, as south 

of this latitude KM0413 passes into the “discordant zone” associated with an offset in the 

Osbourn Trough.  The results are also similar with very smooth bathymetry being 

observed northward to 20°S.  The gray dashed line in the KM0413 panel is the sediment 

thickness at the northern end of the eastern NBP0304b MCS line (see Figure 2 for 

location). 
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Figure 8:  Widths of abyssal hills as determined via ridgelet transform.  All cruises 

display similar behavior, with no particular scale being dominant for any latitude band.  

There is an increase in small-width abyssal hills near the Osbourn Trough axis at 26°S.  

These small scales may result from increased faulting near the axis.  This figure 

demonstrates that the process that creates abyssal hills at trough axes does so at a variety 

of scales simultaneously. 
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Figure 9:  Detail of a region east of the Osbourn Trough showing the presence of two 

bathymetric lineations (marked by dashed lines) that may mark the locations of fracture 

zones.  These features may be continuous with either the Southeast Manihiki Scarp or the 

Pacific-Phoenix-Charcot triple junction trace (Figure 1).  These features may mark the 

most easterly extent of the Hikurangi plate during Chron C34. 
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Figure 10:  Detail of the southern Manihiki Plateau and Southeast Manihiki Scarp.  The 

short black dashed lines mark the locations of several anomalous ridges that parallel 

neither the local abyssal hill fabric nor the trend of the Scarp.  These features are isolated 

to this region and as they are sub-parallel to the southwest side of the Manihiki Plateau 

may have resulted from the rifting that initially separated the Hikurangi and Manihiki 

Plateaus.  
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Figure 11:  Tectonic model of the Osbourn region, presented in a Manihiki Plateau 

reference frame.  Our model begins with the Hikurangi and Manihiki Plateaus conjugate, 

in agreement with Taylor’s [2006] model.  Spreading directions determined by abyssal-

hill strikes are shown as double-headed arrows and the locations of the Southeast 

Manihiki and Western Wishbone Scarps are outlined with dotted lines.  The Pacific Plate 

is labeled PAC, the Hikurangi plate HIK and the Antarctic sector of Gondwana ANT.  a) 

Beginning location for the Manihiki and Hikurangi plateau.  b) Configuration after 1200 

km of total separation between the Plateaus.  The spreading direction during the early 

history of the Osbourn spreading center roughly parallels the strike of the West Wishbone 

Scarp and the Southeast Manihiki Scarp.  The formation of these scarps may be related to 

the plate boundary that existed here at this time, as implied by the differing azimuths of 

abyssal hills east and west of the southeast Manihiki scarp.  c) The configuration of the 

Osbourn Spreading center immediately prior to the slowing of spreading.  By this time 

the crust at DSDP site 595 has formed.  d) The configuration of the Osbourn region at the 

time of extinction of the Osbourn Trough superimposed on the bathymetry of the 

Southwest Pacific Basin. 
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C h a p t e r  4  

INSTANTANEOUS DYNAMICS OF THE CRATONIC CONGO BASIN 

Nathan J. Downey 

Abstract 

Understanding the formation mechanisms of cratonic basins provides an examination of 

the rheological, compositional and thermal properties of continental cratons.  However 

these mechanisms are poorly understood because there are few currently-active cratonic 

basins.  One basin thought to be active is the cratonic Congo basin located in equatorial 

Africa.  The Congo basin is coincident with a large negative free-air gravity anomaly, an 

anomalous depression of the Earth’s surface and a large positive upper-mantle shear-

wave velocity anomaly.  Localized admittance models show that the gravity anomaly 

cannot be explained by a flexural support of the topographic depression at the Congo.  

We analyze these data and show that they can be explained by the depression of the 

Congo basin by the action of a downward dynamic force on the lithosphere resulting 

from a high-density object within the lithosphere.  We formulate instantaneous dynamic 

models describing the action of this force on the lithosphere.  These models show that the 

gravity and topography of the Congo basin is best explained by viscous support of an 

anomalously dense region located at 100 km depth within the lithosphere.  The density 

anomaly has a magnitude within the range of 27-60 kg/m3 and is most likely 

compositional in origin.  Our models do not provide a constraint on the lithospheric 

viscosity of the Congo craton because the shallow location of the anomaly ensures strong 

coupling of the anomaly to the surface regardless of viscosity structure.  In addition we 

show that our models are consistent with results of tomographic imaging by using a 

filtering process to examine how various seismic-velocity structures within the upper 

mantle would be expressed in tomographic images. 
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1. Introduction 

Our understanding of the rheology of the lithosphere comes primarily from observations 

and modeling of active and ancient lithospheric deformation. On a large scale, this 

deformation is usually coincident with either modern or ancient plate boundaries.  

Interpretation of these deformation processes becomes more difficult the farther back in 

time they occurred, due to tectonic overprinting or erosion.  Consequently, for regions 

where little deformation has occurred or that have not recently been associated with plate 

boundary processes, such as continental cratons, there are few observational constraints 

on models of lithospheric rheology. 

One type of cratonic deformation that has occurred throughout the geologic record is the 

vertical motions associated with the development of intracratonic sedimentary basins.  

These basins are observed in the major cratonic areas, and are often significant sources of 

hydrocarbons.  As a result, these basins have been well studied, especially the Paleozoic 

Michigan, Illinois and Williston basins of North America. The relation between the 

forces driving intracratonic basin subsidence and the style and magnitude of that 

subsidence is determined by the structure, rheology and composition of cratonic 

lithosphere.  For example the thickness of the lithosphere beneath North American 

intracratonic basins has been constrained using a model of two-dimensional thermal-

lithosphere contraction resulting in basin subsidence [Kaminsky and Jaupart, 2000]. By 

modeling cratonic basin subsidence it is possible to estimate the rheology of the 

subcratonic lithosphere and asthenosphere and to quantify the magnitude of buoyancy 

within cratonic lithosphere. Thus, understanding the formation mechanisms of 

intracratonic basins is important not only for economic reasons, but also for 

understanding the mechanical properties of cratonic lithosphere.   

Intracratonic sedimentary basins, defined in terms of their plate-tectonic setting, are those 

basins contained within continental interiors and not associated with plate boundaries 

[Ingersoll and Busby, 1995].  Despite the economic and geodynamic importance of 

intracratonic basins, their formation mechanisms are still not fully understood.  This lack 

of understanding partly results from the unusual properties of these basins [Sloss, 1990].  

               96



Intracratonic basins typically undergo several periods of active subsidence, are extremely 

long lived and subsidence in different basins appears, at least on a long time scale, to be 

synchronous [Leighton and Kolata, 1990].  The most successful formation mechanisms 

rely on motions of anomalous masses in the lithosphere and/or asthenosphere caused by 

changes in the stress-state or thermal structure of the lithosphere during supercontinent 

breakup and/or formation [DeRito et al., 1983; Sloss, 1990].  However, these models 

have not been fully explored because the relation between mantle flow and surface 

deformation was poorly understood when they were proposed. In addition, verification of 

these mantle flow models requires detailed knowledge of the dynamic subsidence and 

gravity fields associated with the basin-forming event.  Since there are few modern active 

intracratonic basins these data are generally not available; the primary barrier to 

understanding intracratonic basin formation is the lack of modern active intracratonic 

basins. 

Two intracratonic basins that are thought to be currently active are the Chad and Congo 

basins, situated in relatively close proximity within central Africa (Figure 1).  The Chad 

basin is currently, and for much of its history since the Neogene has been, the location of 

a variable-sized lake at the center of an endoreic watershed.  The sedimentary fill of the 

Chad basin covers an area of 8×105 km2, is approximately 500 m thick and consists 

largely of lacustrine sediments deposited in a continental environment [Burke, 1976].  

Burke [1976] hypothesized that deposition at the location of Lake Chad is a passive 

response to erosion of surrounding dynamic uplifts. 

The Congo basin is much older, larger and deeper than the Chad basin, and also bears a 

greater resemblance to the Paleozoic intracratonic basins of North America.  Covering an 

area of 1.2×106 km2, roughly the size of Hudson Bay, the Congo basin is among the 

largest intracratonic basins.  The basin straddles the equator in central Africa and is 

contained within the Congo craton, an amalgamation of crustal blocks that formed during 

the Proterozoic [De Waele et al., 2008].  The seismically-determined crustal thickness of 

the Congo craton is within the range 30-45 km with thickest crust observed beneath the 

Congo basin [Pasyanos and Nyblade, 2007].  The basin overlies a faulted basement 

similar to that beneath the Williston.  Sediment infill of the basin is up to 9 km thick and 
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consists of several unconformity-bounded packages that date in age from late Proterozoic 

to Quaternary [Daly et al., 1992].  This pattern is similar to that observed in other 

intracratonic basins and indicates multistage basin development.  The majority of these 

sediments are proposed to have been deposited in response to thermal contraction after a 

late Proterozoic rifting event. However, since the latest Jurassic or earliest Cretaceous  

the basin has been subsiding by an unknown mechanism. 

Using gravity data acquired during the Gravity Recovery and Climate Experiment 

(GRACE) [Tapley et al., 2005] and topography from the Shuttle Radar Topography 

Mission (SRTM) [Farr et al., 2007], we reexamine the admittance (an estimate of the 

linear transfer function between topographic and gravitational spectra) of the Congo 

basin.  The admittance estimates obtained using these data imply that the topography of 

the Congo basin is dynamically supported.  Using active-source seismic data [Daly et al., 

1992] we construct a new isopach of the anomalous early-Cretaceous to Quaternary 

sediments.  This isopach is used to correct the SRTM data to highlight the topographic 

structure of the anomalous subsidence of the Congo basin, which we hypothesize has a 

dynamic origin. We then present three-dimensional models of the instantaneous 

dynamics of the cratonic Congo basin, calculated using the convection code CitcomT 

[Billen et al., 2003], which are constrained using this anomalous topography and gravity.  

We discuss the compatibility of these models with the deeper seismic velocity structure 

beneath the Congo as revealed by tomography.  Our models demonstrate that the 

Cretaceous-Quaternary anomalous subsidence of the Congo basin results from viscous 

support of a high-density region in the uppermost mantle.  The preferred location of this 

anomaly is at 100 km depth with a maximum density anomaly of 27-60 kg/m3.  The 

location of this anomaly within the uppermost mantle, however, makes it difficult to 

uniquely determine the viscosity structure of the Congo lithosphere. 

2. Previous studies of the cratonic Congo basin 

The Congo basin is located almost entirely within the Democratic Republic of the Congo 

(formerly Zaire and the colonial Belgian Congo), with its northern and northwestern 

extents reaching into the Republic of the Congo and the Central African Republic.  It is 
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one of the least studied intracratonic basins due to its relative inaccessibility and long-

term regional political instability.  Geological study during colonial (pre-1960) times 

largely consisted of geological mapping [Cahen, 1954] with some preliminary 

geophysics [Évrard, 1957] and the drilling of two exploratory boreholes [Cahen et al., 

1959, 1960].  The major results of this colonial work are summarized in Giresse [2005].  

Since 1960 the majority of geological study of the Congo basin has been carried out by 

oil exploration companies and is proprietary. However Daly et al. [1992] present an 

interpretation of seismic and well data collected in the early 1980’s.  Much of our current 

knowledge of the Congo basin’s tectonic history is reliant upon interpretation of these 

seismic and well data. 

As is typical for intracratonic basins, the Congo basin developed in stages.  These stages 

are represented by four Paleozoic unconformity-bounded sedimentary sequences capped 

by a ca. 1-2 km thick late-Jurassic/early-Cretaceous to Quaternary sediment package 

[Daly et al., 1992].  The oldest sedimentary rocks in the basin are late Proterozoic.  It is 

not clear if rifting on the basin’s basement faults predated or was coincident with 

deposition of the lowest sedimentary package.  It is clear however that motion on these 

faults was reversed in response to collisional events related to the formation of 

Gondwana during the early and late Paleozoic [Daly et al., 1991].  The evidence for these 

two collisional events is deformed, basinal sediments that are truncated by the sequence 

bounding unconformities.  Daly et al. [1992] cite thermal relaxation after a late 

Proterozoic rifting event as the primary mechanism driving subsidence during deposition 

of the lower four stratigraphic packages.  Since the early Mesozoic, the Congo craton has 

remained stable, with no internal collisional or rifting events taking place, making it 

difficult to determine the subsidence mechanism of the early-Cretaceous to Quaternary 

basin sediments.  Sahagian [1993] tentatively proposes a passive sediment catchment 

model for this latest deposition within the basin, similar to that proposed by Burke [1976] 

for the Chad. 

The lithosphere underlying the Congo basin is being compressed between the East-

African Rift Zone and the Mid-Atlantic Ridge as evidenced from earthquake focal 

mechanisms [Atalay, 2002].  The state of stress in the North American craton during the 
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periods of active subsidence in the Michigan, Williston and Illinois basins is also thought 

to be compressional, as evidenced by the correlation of basin subsidence with orogenic 

events [Sloss, 1988].  Other geophysical characteristics of the Congo basin are not typical 

of intracratonic basins.  Hartley and Allen [1994] observe a long-wavelength Bouguer 

gravity low over the Congo.  This gravity anomaly in combination with the long-

wavelength topographic expression of the Congo basin gives large admittance values at 

long-wavelengths, yielding an effective elastic thickness (EET) of 101 km for the 

lithosphere beneath the Congo basin [Hartley and Allen, 1994; Hartley et al., 1996].  This 

estimate, while similar to estimates of EET in other cratonic regions, may only be an 

upper bound on the true elastic thickness of the Congo lithosphere [McKenzie and 

Fairhead, 1997].  Nevertheless, the ~2000 km wavelength of the Congo basin suggests 

that flexural support is not the primary mode of compensation for its topographic 

expression.  Hartley and Allen [1994] suggest that the anomalous gravity and topography 

of the Congo basin results from the action of a downward dynamic force on the base of 

the lithosphere caused by convective downwelling in the mantle. 

3. Observations and data 

3.1 Gravity 

The free-air anomaly gravity of Africa, derived from the GRACE satellite-only 

geopotential model GGM02S [Tapley et al. 2005], expanded out to degree l = 110 

( km shows that the Congo basin is coincident with an approximately 70 mGal 

free-air gravity low (Figure 2a).  This gravity low is the dominant feature of the gravity 

field over continental Africa.  A geoid height anomaly calculated from GGM02S for the 

same waveband (Figure 2b) is coincident with the Congo basin, but the correlation is less 

dominant than evidenced in the free-air anomaly; the Congo basin is coincident with an 

embayment in the longer wavelength Indian geoid low.  

In order to explore the nature of this gravity anomaly we examine the free-air gravity 

spectrum using a spatio-spectral localization technique [Simons, 1996; Simons et al., 

1997].  The basis of this localization scheme is a windowing function centered at a 
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specific geographic location and derived from a spherical cap, a function on the surface 

of the sphere whose magnitude equals one within a specified angular radius from its 

central location and zero outside that radius.  The spectrum of this windowing function is 

given by truncating the spectrum of spherical cap of radius c at a maximum spherical 

harmonic degree of Lwin.  c is given by: 

)1( 


ss
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ll

                                                             (1) 

where ls = l / fs  is the ratio of the spherical harmonic degree of interest to a real-valued 

scaling factor fs  ≥ 1.0.  Lwin is given by  swin lL   where    denotes the ceiling function.  

The Nyquist condition for this windowing process is given by: 

winobsNyq LLL  .                                                            (2) 

where Lobs is the maximum spherical harmonic degree of the observations.  Two schemes 

for choosing fs have been used.  McGovern et al. [2002] chose fs proportional to l so that 

ls is constant, implying that c and Lwin are also constant.  This choice results in a 

constant windowing function for all spherical harmonic degrees, most suitable for 

analyzing a particular geographic region.  This windowing scheme has a constant spatial 

resolution, but a spectral resolution that increases with l.  The Nyquist condition (2) for 

this windowing scheme, along with the bounds on fs restricts the waveband over which 

this scheme can be applied to: 

winobswin LLlL                                                                          (3) 

Simons et al. [1997] use a different scheme for the windowing process in which fs is 

constant for all windows, and as a result, window size varies with spherical harmonic 

degree, l.  This scheme highlights the physical meaning of fs, namely that it is the number 

of wavelengths contained within the windowing function.  This scheme is well suited to 

analyzing large bandwidth signals.  For different l, the wavelength varies and the window 
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size is dilated so that the spectral resolution remains constant and spatial resolution 

increases with l.  The Nyquist condition for this windowing scheme is: 

obs
s

s
Nyq L

f

f
L

1
 .                                                 (4) 

These two windowing schemes are analogous to standard localized spectral analysis 

methods commonly used to analyze functions in the plane.  The McGovern et al. [2002] 

scheme is similar to the 2D isotropic short-time Fourier transform, while the dilations of 

the window used in the scheme of Simons et al. [1997] are similar to the dilations of the 

2D isotropic wavelet transform.  By windowing a spherical harmonic field near a given 

location using this method we can then apply standard spectral analysis techniques in a 

localized sense. 

The anomalous root-mean-square (RMS) amplitude spectrum of the GGM02S free-air 

gravity anomaly localized near the Congo basin at 22.00°E, 1.75°S is calculated by 

subtracting the globally-averaged local RMS amplitude spectrum of the free-air gravity 

from the RMS amplitude spectrum localized near the Congo (Figure 3).  We utilize the 

windowing scheme of Simons et al. [1997] with a scaling factor, fs = 1.5.  The free-air 

gravity near the Congo has anomalously large amplitudes throughout waveband 10 < l < 

45 (880 km <  km; Figure 3a). We use this spectral signature to design a filter 

that decomposes the GGM02S free-air gravity model into two parts. By using a band pass 

trapezoidal filter (l = 5-10-45-60) and its corresponding band reject filter it can be seen 

that the large gravity low associated with the Congo basin is wholly contained within the 

waveband of anomalously high RMS amplitude (Figures 2c and d).  Even though we are 

focused upon a particular geographic region, we use the windowing scheme of Simons et 

al. [1997], with fs = 1.5, in preference to that of McGovern et al. [2002] throughout this 

paper.  Because the Congo gravity anomaly has a large bandwidth, the window size 

required to analyze the longest wavelength components of the gravity anomaly is much 

larger than that required to analyze the shortest wavelength components.  Were we to 

choose a window large enough to analyze the entire signal, we would have poor spatial 

resolution at the shortest wavelengths of the gravity anomaly.  Conversely by choosing a 
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smaller window we would be gaining spatial resolution at the expense of not being able 

to analyze the entire bandwidth of the gravity anomaly.  The windowing method of 

Simons et al. [1997] provides a compromise between these two extremes. 

3.2 Topography 

The use of a global topographic model in which bathymetry is calculated by downward 

continuation of oceanic gravity anomalies, when comparing the spectral content of 

gravity and topography, will bias any estimation of the transfer function between gravity 

and topography to that of the downward continuation operation.  This bias is easily 

avoided by using only ship track bathymetric measurements in the construction of a 

global topography model.  We construct a new spherical harmonic representation of 

topography based upon the equivalent rock topography model ERT360 [Pavlis and Rapp, 

1990] over oceanic regions.  The ERT360 model, although dated, was created using only 

ship track bathymetric measurements for oceanic areas and is at sufficient resolution for 

our purposes.  Over continental regions we use the SRTM topography data (Figure 1) for 

the construction of our model.  Within this topographic model (expanded out to l = 110; 

Figure 4a), the Congo basin is outlined as a subtle depression in the topography which is 

not as anomalous as the Congo basin’s gravity signature at these long wavelengths (cf. 

Figure 2).  However, the topographic depression of the basin is almost circular in shape, a 

characteristic which is unique within Africa.  

We again use the spectral localization method to calculate the RMS amplitude spectrum 

of the topography localized near the Congo basin (Figure 3b).  The waveband 15 < l < 45 

(880 km <  < 2580 km) exhibits anomalous RMS topography whose amplitude peaks 

near l = 20 (1950 km) and decays to 0 at l = 40 (= 990 km).  The RMS topography 

anomaly within the waveband l < 15 is much larger in amplitude.  These large amplitudes 

result from the spectral expression of the extreme topographic variations associated with 

the ocean-continent boundary, especially the sudden transition from the high elevation of 

southern Africa to the ocean floor at the location of the south-African escarpments 

(Figure 1).  The spectra of step-like features such as the continent-ocean boundary exhibit 

large amplitudes at all degrees.  At l > 15 our windowing functions are small enough that 
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these transitions are masked out of the data and therefore do not affect our spectral 

estimates.  However at the longest wavelengths our spatial windows become large and 

these features begin to dominate the spectrum of the topography. 

3.3 Admittance between gravity and topography 

The topography and gravity datasets described above are significant updates to the 

regional datasets used by Hartley and Allen [1994] and Hartley et al. [1996] in their 

analyses of the gravitational admittance of the Congo.  These analyses also relied upon 

admittance spectra calculated using Bouguer gravity anomalies in their estimates of the 

EET of the Congo lithosphere.  McKenzie and Fairhead [1997] warn that EET estimates 

based on Bouguer admittance can only be considered upper bounds to the true EET, due 

to the effect of erosional damping on short-wavelength components of the topography.  It 

is prudent therefore to re-estimate the admittance spectrum of the Congo using our new 

datasets to verify the conclusions of Hartley and Allen [1994] and Hartley et al. [1996].  

Since our datasets are global in scope, we again utilize spatio-spectral localization to 

restrict our admittance analysis to the Congo region. 

Admittance analyses attempt to estimate the linear transfer function between topography 

and gravity.  The most general linear transfer function between two functions, A and B 

defined on the surface of the sphere, , is given by: 




 dvAvuFuB )ˆ()ˆ,ˆ()ˆ( .                                                           (5) 

The hat (ˆ) symbol is used to denote unit vectors pointing from the center of the sphere to 

a location (,) on the sphere’s surface.  Generally the transfer function between 

topography and gravity is assumed to be spatially invariant and isotropic (see McNutt 

[1979] for an exception).  Under these assumptions, and assuming a particular noise 

model, the spectral coefficients of F can be estimated by the admittance, Z(l) (see 

Appendix A): 
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where glm and hlm are the spherical harmonic coefficients of gravity and topography, 

respectively.  Z(l) is an unbiased estimate of the transfer function’s spectrum [Wieczorek, 

2007].   

If our assumption of a spatially-invariant Fl is violated, then Z(l) estimates a globally-

averaged transfer function.  However, we can examine the spatial variance in Fl using 

spatio-spectral localization.  We denote the spherical harmonic coefficients of gravity and 

topography windowed near a point (o,o) by lm(o,o) and lm(o,o) respectivly.  

Substitution of these windowed coefficients into equation (6) gives a local estimate of Fl: 
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Equation (7) assumes that F is spatially invariant within a window.  By centering these 

windowing functions at different locations we can explore the spatial variance of the 

transfer function. 

We use equation (7) to localize our estimate of admittance near the center of the Congo 

basin, using the same windowing scheme as described above for our estimation of the 

anomalous RMS amplitude spectra of gravity and topography (Figure 5a).  There is 

relatively good correlation between the localized gravity and topography over the 

waveband 15 < l < 40 (990 km <  km), a waveband which also contains much of 

the power of the anomalous free-air gravity. Throughout this waveband the estimated 

admittance is > 25 mGal/km; the admittance is relatively constant at ~50 mGal/km for 25 

< l < 40.  For comparison with the results of Hartley and Allen [1994] and Hartley 

[1996], we calculate synthetic gravity spherical harmonic coefficients assuming that the 

lithosphere responds elastically to the topographic load.  In this model, the synthetic 

               105



gravity has two sources, the gravity anomaly caused by the topography and that caused 

by the flexural deflection of the Moho: 
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where the superscripts H and W indicate the spherical harmonic coefficients of gravity 

associated with the topography and Moho deflection respectively.  The factor multiplying 

the Moho coefficients in equation (8) accounts for the upward continuation of these 

coefficients from the base of the crust at depth Tc to the surface at radius RE.  For the 

subtle topography of the Congo region the gravity coefficients on the right hand side of 

(8) can be approximated by: 
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M and H are the density contrasts across the topographic and Moho interfaces, 

respectively and G is the gravitational constant.  Coefficients of Moho deflection wlm are 

calculated using the formulation for the flexural deflection of a thin spherical elastic shell 

[McGovern et al., 2002; Turcotte et al., 1981]: 
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Te is the thickness of the elastic shell, E is Young’s modulus, g is the acceleration of 

gravity and  is Poisson’s ratio.  We use equations (8)-(13) and the parameters listed in 

Table 1 to calculate synthetic gravity coefficients for values of the elastic thickness Te = 

0, 50, 100, 150 and 200 km.  We then use equation (7) to estimate the localized 

admittance between the topography and these synthetic gravity fields near the Congo at 

22.00°E ,  1.75°S (Figure 5a). 

While the overall fit of the admittance estimated using the GRACE gravity with the 

synthetic admittances is poor, the magnitude of the former is consistent with flexural 

models with Te > 100 km over almost all of the waveband of good correlation between 

gravity and topography (Figure 5a).  The plateau of ~50 mGal/km admittance for the 25 < 

l < 40 waveband is consistent with Te ~ 200 km.  The average magnitude of the Congo’s 

admittance at long wavelengths (Figure 5a) is consistent with the Te value of 101 km 

estimate of Hartley and Allen [1994] and Hartley et al. [1996].  In general continental 

regions exhibit Te values much smaller than this, generally less than 25 km [McKenzie, 

2003].  The unreasonably large Te required to fit the modeled admittance to the GRACE 

admittance indicates that lithospheric flexure is not an important mode of compensation 

of the Congo topography.  We agree with the conclusion of Hartley and Allen [1994] that 

there is likely a downward dynamic force, resulting from mantle convection, acting on 

the base of the Congo lithosphere.  Furthermore we hypothesize that surface subsidence 

caused by mantle convection resulted in the deposition of the anomalous Mesozoic-

Quaternary strata identified by Daly et al. [1992].  

3.4 Cretaceous-Quaternary basin infill 

In order to highlight the pattern of Congo basin dynamic subsidence we remove the 

anomalous late-Cretaceous to Quaternary sedimentary rocks from the topography.  The 

removal process involved is similar to that of backstripping analyses [e.g., Watts and 
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Ryan, 1976]: remove the sedimentary basin infill from the topography by unloading its 

mass from the lithosphere assuming a compensation model.   

We reinterpret the seismic data of Daly et al. [1992] with well control provided by the 

SAMBA and DEKESE wells [Cahen et al., 1959, 1960] and the 1981 Gilson well to 

constrain the shape of the Mesozoic-Quaternary isopach (Figure 6).  Time-depth 

conversions were performed using the refraction velocities determined at the SAMBA 

well by Èvrard [1957].  The lateral extent of these rocks was constrained by digitizing 

outcrop limits of the isopach from the Unesco International Geologic Map of Africa 

[CGMW/Unesco, 1987; Figure 6].  We then fit a smooth surface to these data using the 

MATLAB® gridfit subroutine [D’Errico, 2005].  The isopach map of these sediments 

shows they are oval in shape and reach ~1200 m in thickness (Figure 6).  The region of 

significant sediment accumulation (> 50 m) measures ~1200 km east-west and 900 km 

north-south and is coincident with the location of the Congo free-air anomaly.  As is 

typical of the sediment fill of intracratonic basins there is no evidence of significant 

sediment deformation in the seismic data. 

In order to refine our estimate of the dynamic component of topography, we unload the 

anomalous isopach from the SRTM topography.  Given the large area covered by these 

sediments we assume local compensation in which the corrected topography is given by: 
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where s and m are the bulk density of the sediment infill and mantle respectively and I 

is the sediment thickness.  The density of the sediment infill is constrained by lithology 

and burial depth.  Analysis of the well data indicates that s = 2000 kg/m3, and we 

assume a mantle density of 3300 kg/m3.  Equation (14) gives a maximum topography 

correction of ~-475 m.  We use the sediment-corrected SRTM topography to calculate a 

second spherical harmonic representation of topography and expand this corrected 

topographic field to l = 110 (Figure 4b).  For comparison with the uncorrected 

topography we calculate the anomalous RMS amplitude spectrum of this corrected 
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topographic field (Figure 3b).  As expected, given the large area covered by the 

Anomalous sedimentary rocks, sedimentation in the Congo basin has preferentially 

dampened the topography over the waveband 15 < l < 65 ( km <  < 2580 km) with 

relatively constant damping occurring over 20 < l < 50 (790 km <  < 1950 km).  

Topographic modification caused by sedimentation also appears to be partially 

responsible for the large admittance associated with the Congo basin.  Estimating the 

admittance using the sediment-corrected topography in place of the SRTM topography 

decreases the admittance within the waveband of anomalous gravity by ~10 mGal/km to 

~40 mGal/km.  Even after the sediments have been removed, however, the admittance 

remains too high to be explained by lithospheric flexure.  Typical admittance values from 

cratonic regions are < 20 mGal/km at these wavelengths.  Similar to the decomposition of 

the gravity into band-passed and band rejected components, we decompose the sediment-

corrected topography into components using a similar trapezoidal filter (l = 10-15-45-60; 

Figures 4c and d).  While restricted to a slightly smaller waveband, this decomposition 

demonstrates that the sediment-corrected topography is not only spatially-coincident with 

the Congo free-air gravity, but spectrally-coincident as well. 

3.5 Tomographic structure of Congo lithosphere and asthenosphere 

Global tomographic models of shear-wave velocity anomaly [Ritsema et al., 1999; 

Mégnin and Romanowicz, 2000; Gu et al., 2001; Grand, 2002] generally agree on the 

velocity structure of the lithosphere and upper mantle beneath central Africa.  Of these 

global models we choose S20RTS [Ritsema et al., 1999; Ritsema and van Heijst, 2004] to 

be representative of the general pattern observed (Figure 7).  This velocity structure 

consists of a region of  approximately +5% maximum-amplitude shear-wave velocity 

anomaly, relative to the Preliminary Reference Earth Model (PREM) [Dziewonski and 

Anderson, 1981], located at a depth of ~150 km beneath the Congo basin (Figures 7a, c 

and d).  The anomalous high velocity region decays to +1% at ~300 km depth (Figures 

7b, c and d).  Velocities consistent with PREM (0%) are reached at a much greater depth, 

~800 km (Figures 7c and d).  The horizontal extent of this region covers the entire Congo 

basin and is connected with a region of similar anomalous velocity beneath southern 
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Africa (Figure 7a).  In S20RTS, the Congo velocity anomaly forms a local maximum 

distinct from the velocity maximum beneath southern Africa. 

Regional models of the shear-wave velocity anomaly beneath Africa, calculated using 

Rayleigh-wave phase velocities, are not as consistent.  Ritsema and van Heijst’s [2000] 

model was calculated using a subset of the data used in S20RTS, and exhibits a similar 

pattern of shear-wave velocity anomaly, although resolution is poor at depths greater than 

250 km.  Fishwick [2007] presents a model based on an updated dataset relative to that of 

Ritsema and van Heijst [1999].  This dataset was constructed with an emphasis on high-

quality data and the resulting velocity structure is very similar to S20RTS.  Both of these 

models indicate that shear-wave velocity anomalies beneath central Africa are strongest 

beneath the Congo basin at a depth of 100-150 km.  In contrast, the model of Pasyanos 

and Nyblade [2007] characterizes the upper mantle beneath parts of the Congo craton 

with anomalously high velocities; however, the region immediately below the Congo 

basin is not anomalous.  Pasyanos and Nyblade’s [2007] model does indicate that the 

sediments of the Congo basin make up the upper 20% of a 45 km thick crust, the thickest 

observed on the African continent.  Pasyanos and Nyblade [2007] interpret the absence 

of anomalously fast velocities in the upper mantle beneath the basin as indicative of a 

missing cratonic keel, proposing that the Congo basin overlies a hole in the cratonic 

mantle lithosphere.  Pasyanos and Nyblade [2007] attribute the difference between their 

model and previous models to poor horizontal resolution in the latter: the Congo basin is 

surrounded by anomalously fast lithosphere which, in these models, has been “smeared” 

into the upper mantle beneath the Congo basin. 

Shear-wave velocities are sensitive to temperature because of the strong temperature 

dependence of the shear modulus [Priestly and McKenzie, 2006].  As the temperature 

within the mantle approaches the melting temperature the magnitude of the shear 

modulus is reduced and seismic velocities decrease.  Temperature is also an important, 

but not exclusive, control on density throughout the mantle, with the coefficient of 

thermal expansion being ~10-5 K-1.  Cold regions within the mantle are therefore denser 

and have greater shear wave velocities than their warmer surroundings.  If the velocity 

anomaly beneath the Congo basin as shown in S20RTS is a robust feature, it may indicate 
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the presence of an anomalously dense region in the upper mantle beneath the Congo, 

consistent with dynamic support of the Congo basin’s anomalous topography. 

4. Instantaneous dynamics of the cratonic Congo basin 

4.1 Dynamic models of cratonic basin subsidence 

Mantle dynamics has long been hypothesized to play a role in intracratonic basin 

subsidence.  DeRito et al. [1983] demonstrated using semi-analytical models of 

viscoelastic beam flexure, that stress changes in the lithosphere could cause anomalous 

high-density flexurally-compensated bodies within the lithosphere to become unstable, 

flow, and essentially relax toward an isostatic state.  Accompanying this flow is a 

depression of the surface, causing the formation or re-activation of subsidence in an 

intracratonic basin.  Middleton [1989] presented a model in which intracratonic basin 

subsidence is caused by the combined effects of dynamic topography and thermal 

contraction over an asthenospheric downwelling or “cold spot”.  Middleton [1989] noted 

however that permanent subsidence resulting from this mechanism is difficult to achieve, 

requiring that a fraction of sediment be preserved above base-level as the basin is uplifted 

in response to removal of the cold spot.  Models of intracratonic basin subsidence caused 

by downward flow of dense eclogite bodies within the cratonic lithosphere roughly 

predict the subsidence histories of the Michigan, Illinois and Williston basins [Naimark 

and Ismail-Zadeh, 1995].  However, attempts at modeling the role of mantle dynamics in 

intracratonic sedimentary basin subsidence have had limited usefulness; inadequate 

observational constraint makes it difficult to uniquely determine model parameters. 

The geophysical and geological observations of the Congo basin provide a unique and 

unprecedented opportunity to study the role dynamic topography plays in cratonic basin 

subsidence.  The correlation of the Congo gravity anomaly, anomalous topographic 

depression and upper mantle shear-wave velocity anomaly is striking.  Nowhere else are 

these quantities correlated at such large wavelengths.  Furthermore these data combine to 

provide tight constraints on the dynamic processes currently depressing the Congo 

lithosphere.  
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4.2 Calculation of model topography and gravity 

The observations outlined in section three only constrain the current state of the Congo 

basin.  There is no information about the evolution of the basin contained in the gravity, 

topography or shear-wave velocity anomaly associated with the basin.  Therefore, 

following the approach of Billen et al. [2003], we solve only the conservation of mass 

and momentum equations and not the energy equation when calculating the dynamic 

topography. 

Under the infinite Prandtl number and Boussinesq approximations, the force balance 

between mantle density anomalies and surface deflection is governed by conservation of 

mass, as expressed by the continuity equation: 

0 u


                                                                      (15) 

and conservation of momentum as expressed by the Stokes equation: 

0f~ 
                                                                        (16) 

where is the velocity vector, u
 ~ is stress and f


 is the body-force.  The over-arrow and 

over-tilde notations indicate vectors and second order tensors, respectively.  We adopt a 

Newtonian-viscous constitutive relation: 

 ~
I
~~  P                                                                       (17) 

in which I
~

 is the identity tensor, P is pressure,  is the dynamic viscosity and ~  is the 

strain-rate tensor defined as: 

T)(
~

uu
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  .                                                                     (18) 

The body-force is given by: 
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

.                                                                     (19) 
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is absolute temperature, To is a reference temperatureo is a reference density, is the 

coefficient of thermal expansion and r̂  is the radial unit vector.  Non-dimensionalizing 

using the definitions: 
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where is the thermal diffusivity, o is a reference viscosity and  is the temperature 

difference between Earth’s surface and the mantle’s interior, yields from (15): 

0''  u


                                                                      (21) 

and from the combination of (16)-(19): 
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 RaTuuP                                  (22) 

where the non-dimensional Rayleigh number, Ra, is: 
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o TgR
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3
 .                                                          (23) 

Ra is a measure of the relative importance of buoyancy and viscous resistance.  Values of 

the parameters used in the models presented here give a Rayleigh number of 4.35×108 

(Table 2). 

We solve equations (21) and (22) for  and 'P 'u


 in spherical coordinates using the finite-

element (FE) mantle convection code CitcomT [Billen et al., 2003].  Our model domain 

consists of an 80° by 80° spherical sector centered on the equator whose depth ranges 

from the surface to 2890 km, the core-mantle boundary (CMB; Figure 8).  The total 

number of elements in each dimension is 216.  The grid spacing varies in latitude and 

longitude with the innermost 34° by 34° region having a constant grid spacing of 0.2° 
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which increases linearly outside this inner region to 2.75° at the model boundaries.  

Depth grid spacing is 7 km over the uppermost 700 km, linearly increasing beneath to 40 

km at the CMB.  Boundary conditions are reflecting (u0 or u = 0 and 

rron the side walls of the model and free-slip (urr = 0, rr on the 

upper and lower surface.  In addition, non-dimensional temperature, ’, equals 0 on the 

upper surface and 1 at the CMB.  The equatorial position of the model domain ensures its 

symmetry about the equator.  For comparison with observations the results obtained on 

this domain are rotated, preserving north so that the center of the model domain coincides 

with the center of the Congo basin at 22.00°W, 1.75°S.   

CitcomT utilizes the consistent boundary flux (CBF) method [Zhong et al., 1993] to 

calculate the normal stress on the upper surface of the model domain.  Rather than 

attempt to calculate the normal stress on this surface, rr, using the constitutive relation 

(17) the CBF method uses the solution to the model pressure and velocity fields ( 'P  and 

) to solve the Stokes and continuity equations for the normal stress directly on the 

upper free surface of the model.  Zhong et al. [1993] demonstrate that the CBF method is 

substantially more accurate, in terms of relative errors, than calculating the normal stress 

by smoothing element stresses on the free surface. Billen et al. [2003] benchmarked this 

procedure for the spherical problem solved by CitcomT. 

'u


Dynamic topography is the topography that results in response to the normal stress 

imposed on the surface by viscous flow in the mantle.  Because of the large wavelength 

of the anomalous topography observed in the Congo we adopt a model in which the 

surface-normal stress is balanced by isostatic adjustment of the Earth’s surface: 

g
H

fill

rr
M 




                  (24) 

where Hm is the model topography and fill is the density contrast between the 

uppermost mantle and the material infilling the surface deflection.  For our models, we 

compare this modeled topography to the sediment-corrected topography calculated in 
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Section 3 and therefore the infilling material is air and fill is equal to the reference 

density   

The model gravity consists of two parts, the gravity due to the variations of density 

within the mantle and the gravity due to the mass deficit created by the dynamic 

topography.  The spherical harmonic coefficients of the gravity at Earth’s surface (r = 

RE) due to the internal density structure, r,,, are calculated using: 
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where Ylm(,is a spherical harmonic (see Appendix A) and dsin(dd.  The 

spherical harmonic coefficients and the integral over r are calculated within CitcomT 

using the numerical quadrature method used in the FE computation.  The topographic 

component of the gravity is calculated using a modified version of (25) in which the 

integral over r and the upward continuation factor are dropped because the topographic 

density anomaly is located at the upper surface of the model. This density anomaly equals 

the model topography scaled by the surface density contrast s: 
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where hlm are the spherical harmonic coefficients of the model topography, HM.  The 

magnitudes of these two components of gravity are similar and opposite in sign because a 

positive density within the mantle causes a negative density anomaly at the surface.  The 

total gravity anomaly is therefore relatively small in magnitude compared to either the 

gravity from internal density variations or the surface deflection and therefore these two 

gravity components must be calculated as accurately as possible.  The consistent 

boundary flux method therefore also facilitates accurate calculation of the model gravity 

anomaly. 
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4.3 Model setup 

The shape of the input density structure of our models is described by a cyndrically 

symmetric bi-variate Gaussian density anomaly at a specified depth (Figure 9a).  The axis 

of symmetry is vertically oriented beneath the center of the Congo basin at 22.00°E, 

1.75°S.  The horizontal width and vertical thickness of these anomalies is specified by 

their half-width and half-thickness (the distance at which the magnitude of the Gaussian 

drops to one-half maximum).  The half-width is measured along the surface of the Earth 

so that deeper models, while having a smaller absolute width, have the same angular 

width as shallower models.  Thus the shape of these density anomalies, when the half-

thickness is less than the half-width is an oblate spheroid.  In general, we run these 

models in groups containing 21 members of constant width whose depth location varies 

from 50 km to 500 km and whose half-thickness at each depth varies from 50 km to a 

maximum equal to their depth.  The magnitude of the maximum density anomaly of each 

group member is varied so that the total anomalous mass of each member is constant 

within a group.   

The viscosity of our models is described using the relation: 
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in which f  [0,1] is a function of position x


, r is the ratio of maximum to minimum 

viscosity and vT describes the decay of viscosity with increasing f (Figure 10).  This 

relation is similar to that used by Conrad and Molnar [1999] in which non-dimensional 

temperature has been replaced by f and to which we have added the parameter vT.  For 

the background viscosity, f equals the ratio of depth to lithospheric thickness within the 

lithosphere and equals 1 throughout the sub-lithospheric mantle (Figure 9b).  The 

viscosity of the density anomalies is calculated using the same bi-variate Gaussian 

geometry to describe the spatial distribution of f.  The maximum viscosity of the 

anomalies is expressed in terms of the depth at which the maximum viscosity equals the 

background viscosity, symbolized eqv depth and expressed in km (in Figure 9c, eqv 
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depth = 50 km, so the maximum viscosity of the anomaly equals the background 

viscosity in Figure 9b at 50 km depth).  The viscosity at any given location is taken to be 

the larger of the background and anomalous viscosities (Figure 9d).  Within each group 

of models we use the same viscosity parameters and background viscosity.  This is done 

to ensure that while the mass distribution of each group member may be different, its 

mass remains mechanically coherent.  In addition we explore the effects of a viscosity 

increase beneath the lithosphere by specifying, for some models, a transition depth 

beneath which the viscosity increases by a specified ratio over a depth of 100 km beneath 

which viscosity remains constant. Specifying the total anomalous mass for different sized 

anomalies, while keeping a similar viscosity structure means that we must specify the 

input viscosity independently from the input density and therefore cannot use a 

temperature-dependent viscosity.  The input temperature field used when solving 

equation (22) is obtained by mapping our specified densities into “effective” temperature.  

We specify the viscosity input to CitcomT directly.   

While we have parameterized our input density in terms of temperature, this density can 

have either a compositional or thermal component.  Since we are solving only for the 

instantaneous flow we do not need to distinguish between density anomalies arising from 

composition and those arising from temperature.  This approach also has some additional 

benefits.  In cratonic regions, lithospheric instability may only occur within the lower 

extent of the thermal boundary layer and be driven by compositional effects, perhaps due 

to phase changes [O’Connell and Wasserburg, 1972; Kaus et al., 2005].  Compositional 

buoyancy may also be responsible for the apparent long-term stability of cratonic 

lithosphere [Jordan, 1978; Kelly et al., 2003; Sleep, 2005].  Comparing our best-fit input 

density models with density anomalies associated with different mineral phase changes 

may allows us to discern the relative roles of compositional and thermal density changes 

in cratons.  Using temperature to determine both the density and viscosity variations 

within the mantle also assumes a functional relationship between temperature, density 

and viscosity [see Hirth and Kohlstedt, 2003].  Incorporating this relationship into 

dynamic models of mantle convection often requires the use of parameters that disagree 

with experimental results to explain observations.  Our approach is to find a suite of 
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viscosity and density structures that match observations and then determine any 

implications these structures have on the functional relationship between density and 

viscosity. 

4.4 Results 

Preliminary modeling quickly showed that a half-width of 600 km provided the best fit to 

observations, regardless of the viscosity structure, for anomalies contained within the 

upper mantle (we tested models ranging in half-width from 100 km to 800 km).  This is 

most likely due to the large horizontal extent of the Congo gravity anomaly, along with 

our placement of the density anomaly within the upper mantle region. It is this region that 

contains the seismic velocity anomaly observed in S20RTS.  As a result, we only discuss 

model groups with 600 km half-width here.  The parameters of model groups we do 

discuss are given in Table 3 along with the depth, thickness, misfit and maximum density 

contrast associated with the best-fit model of each group.    

The thickness and depth of the density anomalies controls their coupling to the surface as 

illustrated by the trends in the magnitude of the topographic depression (Figure 11).  For 

group 3 (Figure 11a), as the density anomalies are placed deeper, the resultant deflection 

of the surface decreases.  Note that this occurs even as the anomalies get thicker as the 

total anomalous mass remains constant.  Thicker anomalies, however, have larger 

deflections for a given depth than do thinner ones, resulting from the greater viscous 

coupling to the surface.  This effect is reduced if the maximum viscosity of the anomalies 

decreases: the only difference between group 3 and group 6 in Figures 11a and 11c is eqv 

, which equals 50 km for group 3 and 100 km for group 6.  Note, however, that for a 

given depth the topographic deflection within group 6 is relatively constant compared 

with the higher-viscosity anomalies of group 3.  For anomalies with a 50 or 100 km half-

thickness, increasing the rate at which the background viscosity decays determines the 

magnitude of the decrease in topographic deflection (Figure 12).  Model groups in which 

the anomalies have a viscosity similar to that of the uppermost lithosphere, or in which 

the viscosity decays more slowly with depth (groups 1 and 8; Figures 11b and 11d) 

exhibit increased topographic deflections with depth for a few cases (i.e., 100 km half-
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thickness in Figure 11d and 200 km half-thickness in Figure 11b).  In addition, the 

models with the maximum topographic deflection within these groups have larger half-

widths.  While these deflections are larger in magnitude, they are also narrower in width 

(Figure 13).  Thus the thick high-viscosity region associated with these models focuses 

the distribution of stress on the surface to a narrower region.   

The symbol size in Figure 11 is proportional to the topographic misfit for each model 

(Appendix B).  The topography, taken by itself, does not strongly constrain our models 

because while for the models in Figure 11, the topography is fit best by shallow models, 

increasing the total mass anomaly would shift the best fitting models deeper. 

The topographic component of the gravity follows the same trends outlined above for the 

topography, however the addition of the gravity due to the density anomaly changes these 

trends somewhat when considering the total gravity anomaly (Figure 14).  The gravity 

due to the density anomaly decays much faster, as density anomalies shift deeper, than 

does the topography.  This is seen in Figure 14a where, for shallow depths, the gravity 

has a magnitude of -40 mGal.  As the mass anomaly gets deeper, the positive gravity due 

to the mass anomaly decreases rapidly and therefore cannot counteract the large negative 

gravity anomaly caused by the topographic deflection.  Thus for deep models in Figure 

14a, the gravity is extremely negative (near -100 mGal).  This effect is even stronger for 

models in which the density anomaly remains strongly coupled to the surface at greater 

depths (Figures 14b and 14d).  For group 6 this effect is not as strong because of the 

reduced topographic deflection for the deeper models due to weak surface coupling.  

From Figure 11c it can be seen that the topographic depression for the deepest models in 

group 6 is less than the deepest models of the other groups in Figure 11.  When the 

density anomaly is placed deep in the mantle, its influence on observed gravity is 

minimal; the observed gravity is that due to the surface deflection, which is smaller for 

group 6 than for the strongly coupled models.   

Another interesting effect seen in Figure 14 for models with 50 km half-width is an 

increase in the goodness of model fit as the density anomaly gets deeper.  This occurs 

because for the deeper models, the topography and its gravity anomaly are reduced 
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because of reduced surface coupling. At the same time the magnitude of the gravity due 

to the density anomaly is also reduced because it is deeper in the mantle.  Since the net 

gravity is the difference of these two magnitudes this difference matches observations 

better than if either quantity were larger.  This is true in general and it is possible to 

match the observed gravity well even when the topographic deflection is under or over 

predicted.  An example is model I924, the best fitting model in group 12 (Table 3).  This 

model fits the gravity well but the topography poorly.  Thus, the gravity taken alone is 

not a sufficient constraint on the density and viscosity of our models. 

The gravity and topography taken together do provide a stronger constraint on the density 

and viscosity of our models.  The topographic deflection is related to the anomalous 

density via the viscosity structure and determines the topographic component of the 

gravity.  The total gravity is, in addition, also directly sensitive to the input density.  The 

tradeoffs discussed above, associated with fitting either the topography or the gravity 

alone are therefore eliminated.  This can be seen in the plots of model admittance and 

total model fit (Figures 15 and 16).  Both these quantities are sensitive to topography and 

gravity.  The best fit model admittances occur for models at 100 km depth.  Models 

situated deeper in the mantle have a very large gravity anomaly compared to the 

topographic deflection and therefore admittances are large.  Conversely, anomalies at a 

shallower depth have a subdued gravity due to the increasing gravitational influence of 

the anomalous mass compared to that of the topography (in the limit of a density anomaly 

at the surface the total gravity goes to zero).  The total misfit shows a similar pattern to 

the admittance with best fitting models corresponding to a density anomaly at 100 km 

depth.  The overall best fitting model is in group 3, located at 100 km depth and with a 

100 km half-thickness (Table 3).  The best fitting models for all groups (except group 12 

as discussed above) with an isoviscous lower mantle are located at 50 or 100 km depth 

with most occurring at 100 km.  These best-fitting models are also relatively thin with 

half-thicknesses of either 50 or 100 km.  The overall best-fitting model, I546 in group 3, 

matches the observed gravity, topography and admittance well: The residual gravity and 

topography anomalies are small and the anomalous gravity, topography and admittance 
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spectra are well reproduced (Figures 17, 18 and 19).  The other models in Table 3 whose 

total misfit is less than about 0.540 fit similarly well. 

Our best-fitting models provide a better constraint on the density structure than on the 

viscosity structure.  The total anomalous mass of the best fitting models in Table 3 ranges 

only from 8-10×1018 kg.  Since these anomalies are constrained to be relatively thin and 

contained within the lithosphere, this corresponds to a maximum anomalous density 

range of 27-60 kg/m3.  Increasing or decreasing the anomalous mass outside this range 

results in models which fit the data poorly.  It is possible to achieve a better fit for larger 

anomalous masses by providing some support to the anomalies by introducing a viscosity 

increase for the lower mantle.  Groups 5 and 13 have the same total anomalous mass; 

however, the best fitting model in group 13 is situated 300 km deep, beneath the 

lithosphere and in a location where some of the mass is supported by the higher viscosity 

transition zone and lower mantle.  In contrast, the best fitting model of group 5 is located 

at 50 km depth, but fits much more poorly.  An increase in viscosity beneath the 

lithosphere, however, has little effect on the fit of the anomalies situated within the 

lithosphere: The 50 km thick 50 km deep density anomaly in group 13 fits the data about 

as well as that of group 5 with a total misfit of 0.633 vs. 0.638.  We cannot uniquely 

determine the magnitude of the viscosity increase from the upper to lower mantle because 

there is a tradeoff between the depth of the viscosity increase and the magnitude of that 

increase (Compare groups 13 and 14 in Table 3).  From Table 3 it can be seen, however, 

that these deeper models supported by a high-viscosity lower mantle fit the gravity much 

less well than the best-fitting models with density anomalies located at shallower depths 

for groups with less total mass.  This poor fit results from the upward continuation of the 

gravity due to the density anomaly.  For these deep density anomalies, a large mass is 

required to fit the topography adequately; however, upward continuation of the gravity 

due to the mass anomaly shifts its spectral content out of the band containing the 

anomalous Congo basin gravity by preferentially damping shorter wavelengths.  This 

effect can be counteracted by decreasing the width of the anomaly, in effect making the 

gravity shorter wavelength before upward continuation; however doing so results in a 

poorer fit to the topography, which is not affected by the spectral dampening related to 
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upward continuation.  Thus the near coincidence of the spectral content of the anomalous 

topography and the anomalous gravity implies a shallow source of the mass anomaly 

resulting in topographic deflection. 

Unfortunately, we are not able to constrain the viscosity structure of the lithosphere with 

our models.  The three best-fitting individual models in Table 3 have the same mass 

anomaly with the same maximum viscosity, but have significantly different background 

viscosity profiles.  Furthermore, we can also achieve a very good fit using a model in 

which the maximum viscosity of the anomaly is significantly less than the maximum 

viscosity anomaly of our overall best-fit model.  This inability to constrain the viscosity 

structure within the lithosphere probably results from the shallow location of the density 

anomaly.  At these depths there is no significant difference in the strength of coupling 

between the anomaly and the surface for different viscosity structures.  As a result, these 

various viscosity structures result in a similar topographic depression at the surface for 

shallow density anomalies (Figure 11). 

4.4 Calculation of synthetic tomographic images 

In addition to our dynamic solutions we also create synthetic tomographic images for our 

various input models.  We utilize the filtering procedure of Ritsema et al. [2007] to obtain 

the images expected for our input model geometries, assuming resolution characteristics 

consistent with S20RTS (Figure 20).  Previous authors have used either empirical 

calibration of shear-wave velocity and temperature [e.g., Priestly and McKenzie, 2006] or 

have relied on mineral physics constraints to scale temperature perturbations into velocity 

perturbations [e.g., Tan and Gurnis, 2007].   However, we assume that the shear wave 

velocity anomaly resulting from our models follows the same bi-variate Gaussian pattern 

and has unit amplitude.  This approach avoids the need to scale geodynamic variables by 

poorly-determined conversion factors (see Karato [2008]).  In order to quantify the fit 

between the synthetic images and those of S20RTS, we derive a misfit parameter based 

on the correlation coefficient which is localized horizontally using the same spatio-

spectral localization used for the gravity and topography, and localized to the upper 

mantle using a combination of the S20RTS basis splines (see appendix B). 
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The local correlations observed for the various input models ranges from 0.28 to 0.47 

(Figure 21).  At the long wavelengths associated with S20RTS (we are restricted to l < 

20, which for fs = 1.5 yields LNyq = 12), our windowing functions include a large area 

surrounding the Congo basin where our models are not defined, resulting in the overall 

low correlation values in Figure 17.  However, these correlation values still provide a 

relative measure of model fit.  The greatest variation in correlation occurs for models 

with a 50 km half-width, with the overall best and worst fitting models occurring at 100 

and 200 km, respectively. That these models occur at adjacent depths is indicative of the 

rapid change with depth in shear-wave velocity anomaly that occurs in the uppermost 

regions of S20RTS beneath the Congo (Figure 7).  At 100 km half-thickness the depth 

variation of correlation is decreased, however the best-fit model still occurs at 200 km 

depth.  For half-thicknesses greater than or equal to 200 km, all models fit the 

observations equally well.  This lack of variation results from the relatively constant 

shear-wave velocity anomaly of S20RTS over these larger depth ranges within the upper 

800 km of the mantle beneath the Congo basin.  

5. Discussion and conclusions 

The observations outlined in Section 3 demonstrate that the Congo basin’s surface is 

currently being depressed in response to the downward flow of an anomalously dense 

region in the mantle.  This geodynamic scenario is similar to that generically proposed by 

DeRito et al. [1983] and Naimark and Ismail-Zadeh [1995] in which density anomalies 

like the one observed described here periodically become unstable and cause subsidence 

of intracratonic basins.  While our observations do not indicate what stage of the 

subsidence process the Congo basin is currently undergoing, they do provide the best 

evidence thus far that intracratonic basin subsidence is driven by dynamic topography 

and that the most recent depression of the Congo basin is dynamically maintained.  

Models in which anomalous masses within the cratonic lithosphere become unstable in 

response to global tectonic events are also the most plausible mechanism to explain the 

long-period near-synchronicity of intracratonic basin subsidence worldwide [Sloss, 

1990]. 
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The gravity and topographic anomalies associated with the Congo basin also provide 

constraints on the density structure of the lithosphere.  Simultaneously fitting both gravity 

and topography allow us to determine the magnitude of the total mass anomaly associated 

with the Congo anomaly.  We are also able to constrain this anomaly as being located 

within the lithosphere at a depth of 100 km.  The maximum density contrast across this 

anomaly ranges from 27-60 kg/m3, depending on its half-width and thickness.  If the 

density anomaly has a thermal origin this corresponds to a temperature drop of 409-909 

K, relative to ambient mantle, assuming a thermal expansivity, , of 2×10-5 K-1.  Such a 

large temperature anomaly implies that the lithosphere beneath the Congo basin has a 

temperature similar to that of the crust.  Correspondingly, the viscosity of such a cold 

mantle region should be very large [Priestly and McKenzie, 2006].  Our modeling results 

do show, however, that even for a linear viscosity profile through the lithosphere the 

observations are not fit well.  It is much more likely that the origin of these large density 

anomalies is largely compositional.  Density changes associated with the eclogite phase 

transition can easily explain the observed density contrasts without requiring the presence 

of a large thermal anomaly and associated high viscosities beneath the Congo basin 

[Anderson, 2007]. 

We are not able to tightly constrain the viscosity of the lithosphere beneath the Congo 

basin.  This inability arises from the location of the preferred anomaly in the uppermost 

mantle where it is tightly coupled to the surface for a range of viscosity structures, 

including exponential and two super-exponential decay rates.  It does appear that a linear 

viscosity profile through the lithosphere is inconsistent with observations.  Thus we are 

unable to determine the exact nature of the decrease in lithospheric viscosity with depth. 

Our final constraint on the density and viscosity structure of the lithosphere comes from 

the analysis of the shear-wave velocity anomaly observed beneath the Congo basin.  This 

analysis shows that the location of a large seismic velocity anomaly within the 

lithosphere is consistent with the tomographic results.  However the exact placement of 

that anomaly appears deeper in the lithosphere than our preferred models.  This 

difference in location may result from an offset of the location of the center of the density 

anomaly and the location of maximum seismic velocity anomaly.  For example, a region 
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of constant seismic velocity with depth will have a greater velocity anomaly at greater 

depths relative to PREM due to the increase in background velocity within PREM. In this 

analysis we have ignored the amplitude of the seismic velocity anomalies when 

comparing various models and the resolution of S20RTS limits us to very large scales.  

Perhaps a more detailed analysis including an analysis of predicted amplitudes of the 

seismic anomalies and a higher resolution model will provide more constraints on the 

structure of the Congo lithosphere.  Another implication for the tomographic analysis is 

the influence of composition on seismic velocity.  Anderson [2007] shows that for 

eclogitic bodies within the uppermost mantle, density and seismic velocity are not 

strongly correlated.  Indeed it is possible to have a high-density region which is not 

observed seismically.  If this is indeed the case beneath the Congo basin, and the density 

anomaly is caused by an eclogite phase transition, this may explain the lack of 

lithospheric root beneath the Congo basin observed in the tomographic model of 

Pasyanos and Nyblade [2007]. 

In conclusion, the observations of topography, shear-wave velocity anomaly and gravity 

at the Congo basin indicate a dynamic origin for the depression of the basin’s surface.  

These observations taken together indicate that the density anomaly causing this 

subsidence is located within the upper mantle at a depth of 100 km.  In addition the 

magnitude of this density anomaly is 27-60 kg/m3, a range most consistent with a 

compositional origin.  We are not able to constrain the exact nature of the viscosity 

structure of the lithosphere.  It does appear, however, that the decay of viscosity with 

depth is exponential or super-exponential.  While we cannot claim our models fit the data 

uniquely, due to the nonlinear nature of mantle convection, it does appear that our best-

fitting models are the most reasonable assuming realistic lithospheric density and 

viscosity structures.  
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Appendix A: Definition of admittance 

Starting with the general linear transfer function between two functions A and B, defined 

on the surface of the sphere (equation (5)): 




 dvAvuFuB )ˆ()ˆ,ˆ()ˆ( .                                                        (A1) 

We assume that the transfer function F is isotropic.  Physically, this means that there is 

no azimuthal bias about the point  in the transfer function F, or equivalently, that  

is only dependent on the zonal components of  about the pole u .  It is also generally 

assumed that the transfer function is spatially-invariant on the surface of the sphere.  

Mathematically, these two assumptions mean that F has no explicit dependence on the 

location  depending only on the angular separation between the points  and , i.e., 

that .  Substituting this relation into equation (A1) gives a convolution 

integral [Basri and Jacobs, 2003].  These convolution integrals are most conveniently 

expressed in the spherical harmonic domain. 
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We adopt the Varshalovich et al. [1988] normalization for the spherical harmonic 

functions: 




 im
ml

m
lm eP

ml

mll
mY )(cos

)!(

)!(

4

)12(
))sgn((),(




 ,                   (A2) 

l = 0,1,2,… and m is an integer such that –l ≤ m ≤ l .  Plm are the associated Legendre 

functions, defined for m ≥ 0 as: 
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where Pl are Legendre polynomials.  These spherical harmonic functions are normalized 

such that: 
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Continuous functions on the sphere can then be represented by: 
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The spherical harmonic coefficients alm of the function A() are given by: 



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The cross power spectrum between two sets of spherical harmonic coefficients is defined: 
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Saa(l) is termed the power spectrum.  The correlation spectrum between two sets of 

coefficients is defined as: 
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Returning to the transfer function (A1), If we choose as the  = 0 axis, then since F 

only depends on we have the following spherical harmonic representation of the 

transfer function: 
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We can now transform equation (A1) using the Funk-Hecke theorem [Basri and Jacobs, 

2003]: 
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Thus using (A5), replacing A with B and alm with blm, 

lmllm aFb  .                                                        (A11) 

Our goal is to estimate Fl when blm and alm are the spherical harmonic coefficients of the 

gravity and topography respectively.   In general, equation (A11) will not hold for 

observed gravity and topography due to the presence of “noise” in the gravity. We need 

to modify equation (A11) to take this into account: 

lmlmllm nhFg                                                         (A12) 

where glm and hlm are the spherical harmonic coefficients of gravity and topography and 

nlm are the coefficients of the “noise”.  The “noise” in equation (A12) is defined as the 

component of the gravity which is uncorrelated with the topography, i.e. the cross power 

spectrum between the topography and the noise given by equation (A7) is zero for all l.  

Sources of this noise are not just measurement errors but also include any component of 

the gravity that cannot be linearly related to the topography.  Defining the noise in this 

way allows us to calculate an estimate of Fl, denoted as Z(l), by multiplying equation 

(A12) by  and summing over m yielding equation (6): 
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Appendix B: Calculation of model misfit 

B1. Tomography, gravity and total misfit 

The model misfit parameters used to determine which gravity and topography models 

best fit observations are based upon a localized version of the residual sum of squares 

(RSS): 
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where d(o,and m(are the data and the model respectively, localized near the 

location using the spatio-spectral localization method outlined in the text, and defined 

over the surface of the Earth.  Using Parseval’s theorem [Wieczorek, 2007] (B1) is 

transformed to: 
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In terms of the total cross power between two functions, 
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(B2) becomes: 
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Thus the local residual sum of squares equals the power in the localized data plus the 

power in the localized model minus twice their cross power.  In practice, the sum over l  

in equation (B3) must be restricted to a finite range of l.  We choose to sum the power 

over the waveband containing the anomalous topography and gravity, namely 10 ≤ l ≤ 40, 

when calculating the model misfit parameters.  In order to combine the gravity and 

topography misfit we normalize (B4) by the localized data power, since the model power 

varies between models, but the data power does not: 
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RSSN() will equal 1 for the “null” model, m(= 0, and will equal 0 when the data 

and model match perfectly over our waveband of interest.  Combining the gravity and 

topography normalized misfits is accomplished by averaging: 
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2

1
 )RSSN( GravTopoTotal  .                               (B6) 

Throughout this paper we use equations (B5) and (B6) to calculate model misfit when the 

data and model are localized near the center of the Congo basin at °°S). 

A similar process is used to calculate the misfit of the localized admittance (7).  This 

misfit is based upon the root-mean-square residual of model and observed admittance 

over a specified waveband: 
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We restrict the sum in equation (B7) to the waveband 20 ≤ l ≤ 40 over which the 

observed admittance is anomalously high.  We also normalize (B7) by the residual for the 

“null” model giving: 
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The admittance misfit is only used to identify which models give admittance values 

similar to those observed and is not included in the total misfit calculation since it is not 

an independent measure of model misfit. 
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B2. Tomography misfit 

S20RTS is parameterized in terms of spherical harmonic functions and 21 radial basis 

splines, defined on the domain RCMB < r < RE: 
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where Vs is shear-wave velocity anomaly relative to PREM, and Zr are the splines.  

Using the procedures of Ritsema et al. [2007] we project our input models onto this basis 

and then apply the S20RTS resolution filter to obtain the coefficients of the synthetic 

velocity anomaly, sklm.  We calculate the local correlation coefficient between the 

synthetic and S20RTS for each spline using [Toksöz et al., 1969]: 
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where vklm(and sklm(are the coefficients of S20RTS and the synthetic tomography 

respectively, after being localized near the Congo basin.  The coefficients ck provide a 

representation of the localized correlation as a function of depth: 
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We calculate a weighted average of this correlation function using a weighting function, 

g(r), whose support is the uppermost mantle (depth < 1000 km) and whose amplitude is 

constant throughout r < 800 km (Figure B1): 
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where gk are the coefficients of the filter g in the spline basis.  C is a measure of the 

correlation between the synthetic tomography and S20RTS localized near the Congo and 

to a depth less than 1000 km. 
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Tables: 
 
Table 1: Parameters used in flexure calculations 
 
Variable Name Symbol Value 
Crustal Thickness TC 35 km 
Earth Radius RE 6371 km 
Topographic Density Contrast H 2670 kg/m3 

Moho Density Contrast M 630 kg/m3 

Gravitational Acceleration g 9.81 m/s2 

Young’s Modulus E 100 GPa 
Poisson’s Ratio  0.25 

 
 
Table 2: Parameters used in viscous models 
 
Variable Name Symbol Value 
Reference Density o 3300 kg/m3 

Temperature Change Across Model  1300 K 
Themal Diffusivity  1×10-6 m2/s 
Coefficient of Thermal Expansion  2×10-5 K-1 

Reference Viscosity o 5×1020 Pas 
Rayleigh Number Ra 4.35×108 
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Table 3: Summary of model groups 
 

Group Parameters Best Fit Model From Each Group 
Group 

Tv   eqv 
Depth 
(km) 

Mass 
Anomaly 
(1018 kg) 

Zlm 
(km) 

rlm Model Anomaly 
Depth 
(km) 

Half-
Thickness 

(km) 

Gravity 
Misfit 

Topography 
Misfit 

Total 
Misfit 

max 
(kg/m3) 

1 4.35 0 9 - 1 I806 100 50 0.398 0.686 0.542 54 
2 4.35 50 8 - 1 I790 100 100 0.395 0.681 0.538 27 
3 4.35 50 9 - 1 I546 100 100 0.381 0.682 0.532 30 
4 4.35 50 10 - 1 I506 100 50 0.378 0.695 0.537 60 
5 4.35 50 14.7 - 1 I763 50 50 0.376 0.900 0.638 100 
6 4.35 100 9 - 1 I832 100 100 0.385 0.682 0.534 30 
7 0.1 50 8 - 1 I895 100 100 0.387 0.680 0.534 27 
8 0.1 50 9 - 1 I848 100 50 0.381 0.684 0.533 54 
9 0.1 50 10 - 1 I530 100 50 0.387 0.699 0.543 60 
10 -0.9 50 10 - 1 I489 50 50 0.401 0.702 0.552 68 
11 10 50 9 - 1 I874 100 100 0.383 0.682 0.533 30 
12 4.35 50 6 - 1 I924 200 50 0.386 0.714 0.550 36 
13 4.35 50 14.7 500 50 I718 300 50 0.409 0.689 0.549 93 
14 4.35 50 14.7 400 20 I742 300 50 0.419 0.704 0.561 93 
15 -0.9 50 9 - 1 I944 100 50 0.389 0.686 0.538 54 
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Figure 1:  Basemap showing the SRTM topography of Africa.  The major features 

discussed in the text are labeled.  Note the nearly circular depression of the Congo basin. 

The white box outlines the location of Figures 6 and 8.  The south African escarpments 

are labeled:  DE = Drakensberg Escarpment, GE = Great Escarpment and BE = 

Gamsberg Escarpment. 
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Figure 2:  a) Free-air gravity anomaly (GGM02S from GRACE) expanded to Lmax = 110.  

Note the prominent low coincident with the Congo basin.  b) Geoid heights from 

GGM02S.  The Congo basin is coincident with an embayment in the high-amplitude, 

long-wavelength Indian geoid low.  Contour interval is 5 m, with the zero contour as a 

thick line.  c) Filtered free-air anomaly (GGM02S) using a trapezoidal band pass filter (l 

= 5-10-45-60).  d) Same as c) except the field was filtered using the conjugate band reject 

filter: c) and d) represent a decomposition of the field in a).  Note that the gravity low 

associated with the Congo is contained within the waveband of anomalously high RMS 

amplitude highlighted in Figure 3a. 
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Figure 3:  a)  Anomalous RMS amplitude spectrum of the GGM02S free-air gravity 

anomaly localized near the center of the Congo basin at 22.0°E, 1.75°S.  The amplitude 

of the gravity anomaly near the Congo is particularly large within the waveband 10 < l < 

45.  b) Same as a) except that the RMS amplitude anomaly of the topography has been 

localized near the Congo: topography before the removal of the anomalous Mesozoic-

Quaternary isopach (solid line); anomalous RMS amplitude of the topography after 

correction for sediment removal (dashed line).  Note that there are two wavebands over 

which the topography of the Congo is anomalous.  For the waveband 5 < l < 15, the large 

amplitudes result from the spectral expression of the continent-ocean boundary, while the 

anomalous amplitudes within the waveband 15 < l < 45 result from the topographic 

expression of the Congo basin.  Sedimentation within the basin has preferentially 

dampened the topography within the waveband 15 < l < 65, with uniform damping over 

20 < l < 50. 
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Figure 4:  a) Topography of Africa expanded out to Lmax = 110.  The Congo basin has 

only a slight topographic expression.  b) Topography of Africa after the removal and 

unloading of the anomalous Mesozoic-Quaternary sedimentary infill of the Congo basin.  

Removal of these sediments highlights the structure of the Congo’s anomalous 

topography which is nearly circular in shape.  c) & d) Similar to the free-air anomaly of 

the Congo, this unloaded topography is also band limited as shown by decomposing the 

topography using an l = 10-15-45-60 trapezoidal band pass and conjugate band reject 

filter. 
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Figure 5:  a) Estimated admittance of the Congo basin localized near 22.00°E, 1.75°S 

(solid line with error bars), along with the localized correlation coefficient (thick line).  

The dashed lines are model admittances calculated assuming flexural support of a 

topographic load using the values listed in Table 1 and are labeled with the magnitude, in 

km, of the elastic thickness.  The admittance of the Congo region is consistent with 

unreasonably large values of elastic thickness, indicating that the topography near the 

Congo is not maintained by lithospheric flexure.  b) Same as a) except that the sediment 

unloaded topography has been used in the admittance estimate. 
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Figure 6:  Contours of the Mesozoic-Quaternary sedimentary rocks (thin black lines; 

thickness labeled in m).  See Figure 1 for location; the Congo and Ubangui rivers are 

shown as gray lines for reference.  These sedimentary units are identified by Daly et al. 

[1992] as having no explainable subsidence mechanism.  The location of thickest 

sediment infill is coincident with the location of the Congo gravity anomaly (Figure 2).  

The thick black lines and well symbols denote the locations of the seismic sections and 

wells used in the construction of this map.  The wells are designated DEKESE (D), 

SAMBA (S) and Gilson (G).  Velocities determined by refraction surveys near the 

location of the SAMBA well were used for time-depth conversion of the seismic data 

[Évrard, 1957]. 
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Figure 7:  a) Depth slice through the tomography model S20RTS [Ritsema et al., 1999; 

Ritsema and van Heijst, 2004] at a depth of 150 km.  Note the +5% shear-wave velocity 

anomaly (relative to PREM) beneath the Congo basin which forms a maxima distinct 

from the fast regions beneath southern Africa.  b) Same as a) but at a depth of 300 km. At 

this depth the Congo velocity anomaly has magnitude +1%.  c) NE-SW cross section 

through S20RTS along the profile A-A’.  d) Same as c), however the cross section trends 

NW-SE along profile B-B’.  These two cross-sections highlight the depth extent of the 

Congo basin velocity anomaly.  The maximum anomaly of +5% occurs near a depth of 

100-150 km.  This anomaly decays with depth to +2% over the depth range 150-300 km.  

From 300 km to 800 km depth the velocity anomaly is relatively constant at 1%, reaching 

0% near 800 km deep. 
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Figure 8:  3-D view of our finite-element mesh viewed from the southeast.  The gridlines 

have been decimated by a factor of six for clarity.  The domain extends from the CMB to 

the surface, spans 80° longitude by 80° latitude and straddles the equator.  The total 

number of nodes in each dimension is 217.  The central 34° by 34° region has a grid 

spacing of 0.2° increasing linearly outside this region to 2.75° at the edge of the domain.  

In depth the grid spacing is 7 km over the uppermost 700 km of the mantle and increases 

linearly below to 40 km spacing at the CMB. 
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Figure 9:  Cross-sections through the center of a sample input model with half-width = 

600 km, half-depth = 100 km, depth = 100 km, r = 1000, vT = 4.35 and total anomalous 

mass = 9×1018 kg.  a) Input density structure.  The maximum density anomaly is +27 

kg/m3.  b) Background viscosity structure.  c) Viscosity anomaly associated with the 

density anomaly in a).  The value of the background viscosity structure at a depth of 50 

km defines the maximum viscosity of the anomaly.  d) The total viscosity structure is 

defined as max(background, anomaly).  Defining the viscosity in this manner allows the 

anomalous mass to be viscously coupled to the lithosphere smoothly and without 

increasing the viscosity within the lithosphere. 
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Figure 10:  Viscosity as a function of f for various values of vT and r = 1000.  For the 

background viscosity, f equals the ratio of depth to lithospheric thickness.  This viscosity 

profile is nearly linear with f for vT = -0.9, nearly exponential for vT = 0.1 and super-

exponential for vT = 4.35 and 10. 
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Figure 11:  Model topography for several groups presented in Table 3.  In all cases the 

total mass anomaly is 9×1018 kg and the lower mantle is isoviscous.  The symbol size 

indicates goodness of fit with observations with a larger symbol meaning a better fit (See 

Appensix B).  The color of each symbol displays the maximum topographic depression 

observed at the center of the Congo basin.  These models all have an isoviscous lower 

mantle.  Other viscosity parameters are: a) Group 3, eqv depth = 50 km, vT = 4.35.  b) 

Group 8, eqv depth = 50 km, vT = 0.1.  c) Group 6, eqv depth = 100 km, vT = 4.35.  d) 

Group 1, eqv depth = 0 km, vT = 4.35.  See text for a detailed discussion of these models. 
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Figure 12:  Magnitude of topographic deflection for models with different background 

viscosity profiles.  All cases have the same mass anomaly of 9×1018 kg and half-thickness 

of 50 km.  The topographic depression is nearly the same for all viscosity profiles at a 

depth of 50 km; however the depression for models whose profile is super-exponential 

(vT = 4.35 and 10) decays more quickly with depth than the models with a near 

exponential viscosity profile (vT = 0.1). 
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Figure 13:  Profiles of model topography along a north-south transect through the Congo 

basin at 22°E.  The profiles here are for models in group 1.  These models all have a 

relatively high viscosity associated with the density anomaly.  a) Group 1 models whose 

half-thickness is 50 km for various depths (the model at 50 km depth has been left out for 

clarity: it is very similar to the profile for the model at 100 km depth).  The magnitude of 

the depression for these models decreases as the anomaly gets deeper, while the width 

remains relatively constant.  b) Group 1 models whose depth is 400 km.  Thicker 

anomalies are more strongly coupled to the surface so the magnitude of the depression for 

these models increases with anomaly thickness.  Note however that there is also a 

significant narrowing of the depression for the models whose anomaly is thickest.  The 

red curve in a) and b) are for the same model and provides a reference shape. 
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Figure 14:  Same as Figure 11, except symbol size represents gravity misfit and symbol 

color represents total gravity anomaly at the center of the Congo basin. 
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Figure 15:  Same as Figure 11, except symbol size represents admittance misfit and 

symbol color represents average admittance observed over the band 20 < l < 40 when 

gravity and topography are localized near the center of the Congo basin. 
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Figure 16:  Same as Figure 11, except symbol size represents total misfit. 
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Figure 17:  Sample model output for our overall best-fitting model (model I546; Table 3).  

a) Model topography reaches maximum amplitude of about 1.4 km near the center of the 

Congo basin.  b) Residual topography calculated by subtracting the model in a) from the 

sediment-corrected topography displayed in Figure 4b.  The absence of any significant 

depression at the location of the Congo basin demonstrates the very good fit to 

observations we are able to achieve with our dynamic models.  c) Model gravity for our 

best-fit model.  This model gravity reaches -70 mGal minimum magnitude at the center 

of the Congo basin.  d) Residual gravity given by subtracting the model gravity from the 

GRACE gravity shown in Figure 2a.  Again, there is no systematic misfit observed in the 

Congo region indicating a good fit.  Overall we are able to fit the gravity and topography 

of the Congo basin using several models whose output is similar to those described here 

(see Table 3). 
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Figure 18:  a)  Bandpassed topographic profile of our best-fit model, I546, along with 

the sediment unloaded topography (“Observation”) and the original SRTM topography 

(“Surface”) at longitude 22°E.  The model fits the data the best near the center of the 

Congo basin.  The large southward increase in the observed topography south of the 

basin is the high elevations of southern Africa.  b) Model power “spectrogram” along the 

profile in a).  Each vertical slice of this image represents the power spectrum of the 

model in a) localized near the latitudes along the profile.  Note that the model power is 

localized near the Congo basin.  c) Spectrogram of the “observed” profile in a).  Note the 

anomalous RMS topography near the Congo, superimposed upon a triangular-shaped 

region of high topography power in southern Africa.  d) Localized residual sum of 

squares (RSS) for model I546 (see Appendix B).  The localized RSS is equivalent to the 

data power minus the model power, so it is equal to the image in c) minus the image in b).  

Note that much of the anomalous power associated with the Congo basin has been 

removed. 
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Figure 19:  Same as Figure 18, but for gravity.  Note that in c) the Congo gravity 

anomaly is isolated from other anomalies. In d) much of the anomalous power of gravity 

has been removed indicating a good model fit at the Congo basin and over the waveband 

containing the Congo gravity anomaly. 
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Figure 20:  a) Same as Figure 7 for the input seismic velocity anomaly for a 100 km 

deep, 100 km wide anomaly of unit amplitude.  This model has been projected onto the 

S20RTS tomography model’s basis.  b) Output of the filtering process of Ritsema et al. 

[2007] for the input model in a).  The presence of this anomaly in the upper mantle is 

consistent with the observations in Figure 7.  
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Figure 21:  This diagram displays localized correlation coefficients between modeled 

and observed shear-wave velocity anomalies for the model geometries used here.  Larger 

symbols indicate better fit.  These coefficients have been calculated by localizing the 

correlation between the model and S20RTS basis splines to the uppermost mantle and 

horizontally to the Congo region using spatio-spectral localization. 
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Figure B1:  Profile of the function used to weight the correlation of model and observed 

tomography to the uppermost mantle. This weighting function emphasizes the correlation 

in the uppermost 800 km of the mantle, the region which contains the anomalous shear-

wave velocities observed beneath the Congo basin. 
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C h a p t e r  5  

SUBSIDENCE HISTORY OF THE CRATONIC CONGO BASIN 

Nathan J. Downey 

Abstract 

The time-dependent properties of cratonic basins can yield insight into their formation 

mechanisms.  The unusual properties of these basins including their intermittent 

subsidence, ellipsoidal isopach pattern and roughly simultaneous global subsidence have 

been difficult to explain.  We present data that constrain the development of the Congo 

basin since the early Cretaceous.  These data demonstrate that the Congo basin is 

currently not a location of major sediment deposition.  We present two possible models 

for the history of the Congo basin since early Cretaceous time.  In the first, subsidence in 

the basin and associated sediment deposition has slowly diminished over time to the 

current state in which sediment largely bypasses the basin to be deposited offshore.  In 

the second model, the basin has rebounded.  This second model explains the rapid 

increase in sedimentation that occurred at 34 Ma and also explains the origin of the 

uplifted central parts of the Congo basin. 
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1. Introduction 

Understanding the mechanisms of intracratonic basin formation is critical for determining 

the mechanical properties of cratons and how they respond to changes in global tectonics.  

Unfortunately, the mechanisms forming these basins are still not fully understood. Their 

time-dependent properties, however, provide clues as to the nature of their formation 

mechanisms.  Relating these properties to the dynamics of basin formation may provide 

insights into the rheology, thermal properties, and composition of cratons.  A full 

understanding of the formation of intracratonic basins may not be necessary to constrain 

the physical properties of cratonic lithosphere; some constraint on the rheology and 

composition of continental interiors can be provided by examining individual properties 

of intracratonic basins.   

 

Instantaneous models of the Cratonic Congo basin show that the late Jurassic-Quaternary 

subsidence within the basin is dynamically maintained.  These models show that the 

gravity and topography observed at the Congo basin can be explained by viscous support 

of a high-density body located within the lithosphere at 100 km depth.  While the current 

dynamics of the Congo basin can be modeled using a variety of lithospheric viscosity 

models, a tighter constraint on these structures can perhaps be gleaned from examining 

the current subsidence rate of the basin.  Observations of the subsidence history of the 

Congo basin determined by 1-D backstripping of several wells contained within the basin 

(see Figure 1) indicate that the majority of the sediments within the dynamic surface 

depression were deposited during Cretaceous time and that there has been little net 

subsidence since.  Additionally, the small-scale topographic structure of the central 

Congo basin indicates that much of the current surface of the basin is not depositional, an 

observation supported by the increase of sediment deposition at the offshore Congo fan 

sometime near the Eocene-Oligocene boundary (34 Ma).  Thus the late Jurassic to 

Quaternary sedimentary infill of the Congo basin forms an unconformity-bounded 

sedimentary sequence typical of intracratonic basins.   
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We present dynamic models of the current subsidence of the Congo basin.  These models 

show that an exponential or linear decrease in viscosity through the lithosphere results in 

a negligible subsidence rate.  We also present two possible models for the development 

of Congo stratigraphy, one characterized by an exponential decrease and one in which the 

basin rebounds. 

 

2. Time-dependent properties of intracratonic basins. 

 

Intracratonic basins are the longest-lived of all basin types [Woodcock, 2004].  In terms 

of the mechanical properties of their substratum, intracratonic basins overlie ancient 

cratonic lithosphere which is thought to be stable over long periods (>1 Ga).  In addition, 

intracratonic basins often, although not always, overlie ancient lithospheric rifts. Despite 

this superposition, the subsidence within intracratonic basins is generally not associated 

with rift activity because rift formation generally predates basin subsidence.  The 

isopachs of intracratonic basins bear no resemblance to the linear structures of their 

underlying rifts.  Instead, the isopachs of intracratonic basins follow a bi-variate Gaussian 

pattern [Sloss, 1991].  Intracratonic basins typically undergo several cycles of renewed 

subsidence resulting in the formation of superposed unconformity-bounded sediment 

packages.  In addition, these cycles are observed, based on chronostratigraphic 

correlation, to occur somewhat simultaneously in intracratonic basins on a global scale 

[Leighton and Kolata, 1990].  The nature of chronostratigraphic control makes it difficult 

to determine the time-scales over which this synchronicity occurs [Miall, 1994, 1997].  If 

eustasy is the dominant factor determining deposition within a basin, it is expected that 

deposition should be globally synchronous over short time-scales.  However, identifying 

this synchronicity at the time-scales of the briefest depositional events observed is not 

possible using chronostratigraphic data.  Similarly, it is not known if the onset and 

termination of sedimentation within intracratonic basins occurs simultaneously, or if 

these basins subside at rates determined by local tectonics in response to global tectonic 

events.  Mechanisms proposed to explain intracratonic basin formation have difficulty 

explaining the long-period global synchroneity of intracratonic basin activity, their 

typically circular isopachs and their periodic activity.   
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3. Cretaceous-Quaternary history of the Congo basin 

 

3.1 Paleogeography and interaction with the passive margin 

 

Throughout Cretaceous time, the Congo region of Africa was the location of a large 

shallow lake at the center of an internally-draining basin, reflected in the lacustrine or 

lagoonal character of the majority of sediments deposited in the basin at this time 

[Guillocheau et al., 2007].  A few possible marine deposits of Cretaceous age are 

observed at the basin margins [Giresse, 2005].  This lake lay within a relative 

topographic low between the northern and southern regions of Africa.  In the latest 

Cretaceous this lake was uplifted along with the rest of southern Africa, while remaining 

depressed relative to southern Africa, morphology similar to that observed today 

[Guillocheau et al., 2007].  Also in the latest Cretaceous a shift to a drier climate 

occurred.  The sediments deposited within the basin at this time exhibit a lacustrine or 

fluvial affinity; the dry climate indicates that the Congo basin at this time was probably 

analogous to the modern Chad basin [Burke, 1974].  A second climatic shift to wetter 

conditions occurred near the Eocene-Oligocene boundary at 34 Ma [Séranne, 1998; 

Burke and Gunnell, 2008].  This date corresponds to the global shift from greenhouse to 

icehouse climatic conditions [Séranne, 1998].  The Eocene-Oligocene boundary also 

marks the initiation of high rates of sediment deposition at the Congo deep-sea fan 

[Lavier et al., 2001; Leturmy et al., 2003; Anka and Séranne, 2004; Figure 2].  Séranne 

and Anka [2005] and Séranne [1998] attribute this increase to the shift to a warmer 

climate that occurred at this time.  Since 2.8 Ma the Congo region of Africa has been 

extremely wet, with the central portion of the Congo basin currently receiving some of 

the highest rainfall observed on the African continent [Burke and Gunnell, 2008]. 

 

3.2 Backstripping 

 

The late-Jurassic to Quaternary stratigraphy of the Congo basin is characterized by thick 

Mesozoic sections overlain by a thin Cenozoic cover.  The ages of the individual units 
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within this section are poorly determined [Giresse, 2005].  We identify five distinct 

stratigraphic units observed within three different wells (Figures 1 and 3).  The basal 

Stanleyville formation, which is observed in the Samba and Gilson wells, but not in the 

Dekese well (Figure 3) is a fining-upward conglomeratic unit which lies unconformably 

over Paleozoic and Triassic units [Giresse, 2005; Daly et al., 1992].  The age of this unit 

is late Jurassic to early Cretaceous.  The Stanleyville is overlain by the lower-Cretaceous 

Loia formation and the upper Cretaceous Bokungu formations.  The Kwango formation is 

identified here as being late Cretaceous in age, although it may also date from the earliest 

Tertiary.  Above the Kwango exists a thin veneer of sediments of unknown, but probably 

Cenozoic, age. 

 

Sahagian (1993) attempted to discern the tectonic subsidence of the Congo basin by 

backstripping the sediments of the Samba well.  In his analysis Sahagian [1993] 

corrected for sea-level using the curves from Sahagian [1988], resulting in a linear 

tectonic subsidence curve for the basin.  Sahagian [1993] interpreted this curve to 

indicate that the Congo basin is a passive receptacle of sediment eroded from surrounding 

uplifted regions.  Re-examination of the paleogeographic data outlined above indicates 

that correcting for sea-level change in the subsidence analysis of the Congo basin is not 

warranted given the continental nature of the sediment infill.   

 

We present a 1-D backstripping analysis of the Gilson, Dekese and Samba wells in which 

we have not applied a correction for sea-level change (Figure 3).  The age of the units 

within the wells also differs slightly from that of Sahagian [1993].  We based our ages 

upon the review by Giresse [2005] (Table 1); however, the age differences are not 

significant given the large uncertainties associated with dating the strata.  The resulting 

subsidence history is consistent between wells and indicates that the Congo basin 

subsided, relative to a local base-level unique to each well, at a rate of approximately 15-

20 m/Myr throughout the early Cretaceous (note that this rate is the observed total 

subsidence rate, the estimated tectonic subsidence rate for the same period ranges 6-8 

m/Myr).  These rates are consistent with rates generally observed for individual 

subsidence events within cratonic basins [Leighton and Kolata, 1990];  total subsidence 

               191



rates averaged over longer time periods tend to be smaller, less than 10 m/Myr and often 

less than 5 m/Myr [Sloss, 1996].  Since the mid Cretaceous there has been a period of 

apparent quiescence represented by the thin late Cretaceous and Cenozoic sections 

observed within the wells.  It is important to note that, for conformable stratigraphic 

sections and in the absence of additional constraints, subsidence curves determined by 

backstripping will always show a monotonic increase in basin subsidence.    

 

3.3 Small-scale topographic structure of the Congo basin 

 

Local relief is defined as the difference in elevation (h) between regions separated by a 

horizontal length scale d and can be estimated using: 

 

)()()( xhxhh


                 (1) 

 

where )(xh


 is the elevation at a location x


in the plane and 


 is a vector of magnitude d 

[Weissel et al., 1994].  The brackets  denote a spatial averaging operation.  If the 

scaling properties of topography are isotropic then h only depends on d and can often be 

described using a power–law relation, 

 

HCddh  )(  ,                (2) 

 

in which C is an amplitude factor and H is the Hurst exponent [Weissel et al., 1994].  

Aharonson and Schorghofer [2006] use local estimates of H to characterize Martian 

topography, finding that smooth regions are characterized by low values of H, while 

rougher regions are characterized by H ~ 0.8.  Hurtrez et al. [1999] find that terrestrial 

estimates of H are dependent upon d, with scales between ~100 and ~1000 m being 

dominated by fluvial erosion characterized by H ~ 0.5.  Weissel et al. [1994] calculate H 

for three regions within Saudia Arabia and northeast Africa, finding that the topography 

in these regions is characterized by 0.5 < H < 0.7. 
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We estimate the local relief in the Congo basin using Shuttle Radar Topography Mission 

(SRTM) Version 3 [Jarvis et al., 2008] topography at a variety of length scales within the 

range 450 m < d < 1170 m using equation (1).  This range of scales restricts us to the 

scales which are sensitive to fluvial processes, with the lower bound being chosen so that 

we are estimating relief at a minimum distance of approximately 5 times the resolution of 

the SRTM data.  We estimate the local relief on a regular grid by finding the relief 

between every unique pair of data points, separated by a distance equal to d, within a 5 

km radius of each grid point.   We then average these relief estimates, weighted by their 

distance from the grid point.   

 

Although the Congo basin is a topographic depression on a large scale, examination of 

the small-scale topography of the “Eastern Region” (Figure 4a) reveals a valley and ridge 

morphology typical of fluvially-modified topography.  The “Western Region” in Figure 

4a exhibits a smooth morphology.  The estimated local relief for d = 900 m confirms 

these general topographic styles of the central regions of the Congo basin (Figure 4b). 

The local relief in the Eastern Region generally ranges between 10 m and 30 m and 

increases to the southeast, while the Western Region is typified by a local relief less than 

10 m.   The Hurst exponent estimated over the 450 m < d < 1170m length scale range is ~ 

0.4 for much of the Eastern Region, consistent with a fluvially-modified landscape and ~ 

0.1 for the Western Region, indicating a flat topography.  The Hurst exponent in the 

Western Region tends to be larger, ~ 0.4, near stream channels.  The incision of the rivers 

into the topography of the eastern region is also evidenced in the Unesco geologic map of 

the region (Figure 4d) [CGMW/Unesco, 1987].  The Western Region roughly 

corresponds to the location of the most recent sedimentation, indicated by the late-

Quaternary age of the exposed sediments. This region is also dominated by wetlands.  In 

the Congo-bounded region, several rivers have eroded through the Cenozoic section and 

Mesozoic rocks are exposed in the base of the river valleys. 

 

The small-scale morphology and surface geology of the Congo basin indicate that much 

of the modern surface of the Congo basin is not the site of sediment deposition interface.  

Our poor understanding of the interaction between erosion, surface uplift, lithology and 
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climate patterns does not allow us to attach any significance to the southeastward 

increase in local relief.  The ongoing erosion of the Congo topography has an important 

implication for the dynamics of Congo subsidence because it indicates that the magnitude 

of the dynamic topography is not rapidly changing. 

 

4. Dynamic models of current Congo Basin subsidence 

 

We use a finite element formulation of thermal convection of viscous material (CitcomT, 

[Billen et al., 2003]) to model the current subsidence rate of the Congo basin.  Thermal 

convection in the mantle is modeled by the Stokes and continuity equations under 

Boussinesq and infinite Prandtl number conditions: 

 

0f~ 
                               (3) 

 

0 u


.                 (4) 

 

 The time-dependence is given by the heat equation: 

 

TTu
t

T 2

 


                (5) 

 

and we assume a Newtonian-viscous constitutive relation: 

 

 ~
I
~~  P  .                (6) 

 

~ is the stress tensor, f


 is the gravitational body-force, u


is velocity, t is time, T is 

temperature,  is thermal diffusivity, I
~

 is the identity tensor, P is pressure,  is the 

dynamic viscosity and  is the strain-rate tensor.   given by the viscosity law: ~
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in which f  [0,1], termed the “effective temperature”, is a function of position x


, r is the 

ratio of maximum to minimum viscosity and vT describes the decay of viscosity with 

increasing f .  determines the maximum viscosity associated with the density anomaly 

and is expressed in terms of the depth at which this maximum viscosity equals the 

background viscosity (symbolized eqv and expressed in km).  To calculate the change in 

surface topography with time, we solve the Stokes and continuity equations at two times 

[Gurnis, et al., 2000] between which the evolution of the temperature field within our 

model is governed by equation (5).  The difference in the magnitude of the surface 

dynamic topography at these two times divided by the duration of the time step estimates 

the current subsidence rate of the basin (typically 105 yr). 

 

We calculate subsidence rates for the models of Table 2.  In all these models the density 

anomaly is centered at 100 km depth.  The variable we are trying to constrain using the 

subsidence rate calculation is vT, the parameter which controls the rate at which viscosity 

decays with depth in the lithosphere.  The results of our uplift calculations show that 

subsidence rate does vary with vT: models whose decay is super-exponential with depth 

have maximum subsidence rates ranging from 15-43 m/Myr with diffusion and 27-56 

m/Myr without diffusion.  Models whose viscosity decay rate with depth is near 

exponential or linear have much smaller maximum rates of 2.3-5.7 m/Myr without 

diffusion (Figure 5).  For these models diffusion reduces subsidence rate even to the point 

of uplift.  It seems that thermal diffusion could act as a stabilizing process for the Congo 

anomaly; other stabilizing forces could be at work and more detailed modeling needs to 

be carried out.  If the Congo basin is currently not a major depositional location, models 

with an exponential, or linear, decay in viscosity with depth are preferred because of their 

low subsidence rates.   
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5. Discussion and Conclusions 

 

Throughout the Cretaceous the Congo basin was the location of an internally draining 

watershed.  Subsidence within the basin provided accommodation space for sediment 

deposition which reached up to 1 km in thickness as evidenced by the Cretaceous 

sedimentary rocks preserved in the basin.  Contrast this observation with the current state 

of the Congo basin in which sediments largely bypass the continental basin to be 

deposited at the Congo deep-sea fan.  The current state of the Congo basin is typical of 

intracratonic basins.  Sediment supply within cratonic basins almost always meets or 

exceeds the accommodation space made available by the slow subsidence typical of these 

basins; sediment-starved intracratonic basins are rarely observed in the geologic record 

[Sloss, 1996].  From analysis of the basin stratigraphy observed in the basin’s wells, it 

appears the shift to an externally-draining state occurred in the late Cretaceous, given the 

thin Cenozoic sediment cover observed within the basin. 

 

We present two possible subsidence histories for the Congo basin which are consistent 

with observations (Figure 6).  In the first, the subsidence of the basin is characterized by 

exponential decay (Figure 6a).  Subsidence was rapid throughout the early Cretaceous, 

decreasing to extremely low rates in the Cenozoic.  The transfer of deposition location 

from within the basin to without would have been a gradual process.  Finally at the 

present day, when subsidence has essentially stopped, sediment would be routed to final 

deposition locations exterior to the basin.  A second possibility is one in which the Congo 

basin rebounded during the Cenozoic (Figure 5c).  In this model, the basin reaches 

maximum subsidence sometime within the Cenozoic after which it rebounds resulting in 

erosion at the basin’s surface.  This model is stratigraphically indistinguishable from the 

exponential-decay model.  We have no constraint on how much sediment has been 

eroded: the exponential model predicts a small amount, the rebound model predicts a 

large amount.   

 

Important for distinguishing between these models is the age of the Cenozoic strata 

within the basin.  The exponential decay model predicts that these strata should be largely 
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late Cretaceous to Paleogene in age with a decreasing thickness into the Neogene.  The 

rebound model predicts that these strata should date exclusively from the late-Cretaceous 

to Paleogene.  Unfortunately our poor constraint on the ages of these strata does not allow 

us to distinguish these models in this manner.  A second observation which distinguishes 

these models is the rate of sedimentation increase on the passive margin.  In the 

exponential decay model, sediment deposition is gradually transferred out of the Congo 

basin, while in the rebound model the transfer should be sudden, with a sustained 

increase in sedimentation at the new deposition location as the transfer of sediment from 

the basin to the new location is enhanced by basin uplift.  The rapid increase of 

sedimentation at the Congo passive margin lends support to the basin rebound hypothesis.  

Sedimentation at the passive margin also constrains the timing of this rebound event to 

prior to 34 Ma.  Anka and Séranne [2003] attribute the massive increase in sedimentation 

at the coast as a response to a change in climate at this time.  The magnitude of 

sedimentation increase at the coast, however, probably is in response to a large-scale 

reorganization in the sediment routing system of the Congo region.  While the efficiency 

of this transfer would have been greatly enhanced due to a climatic change, the 

underlying cause is probably dynamic in origin. 

 

The two possible subsidence histories outlined in Figure 6 also imply differing 

subsidence mechanisms.  Exponential decay is usually associated with contraction 

following a thermal disturbance within the lithosphere. Hot-spot volcanism is usually 

cited as a source in the case of intracratonic basins.  The current high-density region 

beneath the Congo basin would therefore represent a mass of material which was 

emplaced within the lithosphere and then cooled to its present state.  However there are 

several problems with this hypothesis.  There is no evidence for recent surface volcanism 

within the Congo basin and there is a question of space.  The rifts underlying the Congo 

basin have been inactive since the Paleozoic so it is not easy to see how space for a large 

magmatic body within the lithosphere could have been created.  Subsidence followed by 

rebound is indicative of the generation of a lithospheric instability.  In this model, the 

lithosphere beneath the Congo region became unstable during the Cretaceous, perhaps 

aided by a phase change, flowed downward into the mantle and detached.  The rebound 
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represents the declining topographic influence of this sinking lithospheric chunk as it 

sank deeper in the mantle.  The current high-density anomaly observed within the 

lithosphere represents the remnants of this instability, perhaps preserved because of its 

location within the highly viscous upper mantle.  

 

The mantle instability model of intracratonic basin formation is also attractive because it 

helps to explain some of the unusual properties of intracratonic basins.  An axially-

symmetric or near-symmetric lithospheric instability depresses the surface in a basin-like 

shape, resulting in a roughly circular or oval shaped depression.  The resulting isopach 

closely resembles the bi-variant Gaussian pattern described by Sloss [1991].  DeRito et al. 

[1983] show that the formation of lithospheric instabilities such as the one hypothesized 

here can be enhanced by changes in continental stress patterns.  Large tectonic re-

organizations could explain why these instabilities form beneath different intracratonic 

basins at roughly similar times.  Smaller period variations in subsidence rates between 

basins could result from local effects, such as lithospheric thickness and thermal state.  

Finally, the Late-Jurassic to Quaternary strata within the Congo basin form an 

unconformity-bound sequence typical of intracratonic basins.  The largely continental 

nature of the sediments within this package indicates that the bounding unconformities 

are unrelated to sea-level change.  A lithospheric instability mechanism can therefore 

explain the subsidence patterns typically observed in intracratonic basins.   
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Tables 
 
Table 1:  Stratigraphic ages used in Backstripping analysis 

Formation Age Range (Ma) 
Late Cretaceous-Cenozoic (Cz) 90-0 

Kwango 99-90 
Bokungu 121-99 

Loia 140-121 
Stanleyville 150-140 
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Table 2: Summary of uplift models 

Models 
(w/out,w/ 
diffusion) 

Tv   eqv 
Depth 
(km) 

Mass 
Anomaly 
(1018 kg) 

Half-
Thickness 

(km) 

max 
(kg/m3) 

Subsidence Rate, 
No Diffusion 

(m/Ma) 

Subsidence Rate 
with Diffusion 

(m/Ma) 
U018,U003 4.35 50 8 100 27 26.5 14.7 
U017,U001 4.35 50 9 100 30 31.2 18.1 
U019,U004 4.35 50 10 50 60 29.4 24.9 
U020,U006 4.35 100 9 100 30 32.9 19.8 
U016,U007 0.1 50 8 100 27 5.4 -6.3 
U021,U008 0.1 50 9 50 54 5.7 1.1 
U022,U011 10 50 9 100 30 56.4 43.0 
U023,U015 -0.9 50 9 50 54 1.4 -2.3 
 
 

               202



 

               203



Figure 1: Isopach map of the Late-Jurassic to Quaternary sedimentary infill of the Congo 

basin.  These sedimentary rocks fill the bottom of a long-wavelength dynamic depression 

in the Earth’s surface.  The locations of three wells used to constrain the subsidence 

history of the basin are shown.   
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Figure 2:  History of sedimentation on the Congo/Angolan margin of central Africa, 

taken from Leturmy et al. [2003].  The sedimentation rates are those observed on three 

profiles across the margin, denoted Congo (C), Gabon (G) and Angola (A).  Sediments 

deposited prior to 90 Ma are associated with the development of the passive margin as 

Africa rifted away from South America.  From 90 Ma to 34 Ma sedimentation at the 

coast was limited to sediment discharge from small coastal streams.  34 Ma marks a 

major increase in the rate of sedimentation at the passive margin, probably reflecting a 

significant change in the depositional system of the Congo basin, after which 

sedimentation rates averaged 40 m/Myr along the profiles shown. 
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Figure 3:  a) Total subsidence (dotted line and open circles) and backstripped tectonic 

subsidence (solid circles and solid line) calculated using the stratigraphy observed in the 

Gilson well.  b) Geohistory diagram for the Gilson well.  The thickness of the 

stratigraphic units are shown over time.  Note that the Cenozoic section is much thinner 

than the Mesozoic section.  The basal conglomerates of the Stanleyville formation lie 

unconformably on the deeper Paleozoic and Triassic strata of the basin.   c)-d) Same as 

for a)-b) but for the stratigraphy of the Samba well.  Note the thicker Stanleyville section 

here.  This reflects the south and eastward thinning of the Stanleyville formation within 

the basin.  e)-f)  Subsidence and geohistory for the Dekese well.  The Stanleyville and 

Kwango formations are not observed here; however, the thickness of the Bokungu 

formation is greater than observed in the other wells, which may result from an inability 

to distinguish Kwango from Bokungo strata within the Dekese section.  All the tectonic 

subsidence curves demonstrate the same general pattern of relatively rapid Mesozoic 

subsidence of 15-20 m/Ma followed by a Cenozoic period of quiescence.  See text for 

details on the assumptions used to create these plots and limitations in their interpretation. 

 

               208



0.0

0.5

1.0

D
ep

th
 (

km
)

050100150

Ma

Gilson Subsidencea)
0.0

0.5

1.0

D
ep

th
 (

km
)

050100150

Ma

Gilson Geohistoryb)

Stanleyville

Loia

Bokungu
Kwango

CZ

0.0

0.5

1.0

D
ep

th
 (

km
)

050100150

Ma

Samba Subsidencec)
0.0

0.5

1.0

D
ep

th
 (

km
)

050100150

Ma

Samba Geohistoryd)

Stanleyville

Loia

Bokungu

Kwango
CZ

0.0

0.5

1.0

D
ep

th
 (

km
)

050100150

Ma

Dekese Subsidencee)

Total Subsidence

Tectonic Subsidence

0.0

0.5

1.0

D
ep

th
 (

km
)

050100150

Ma

Dekese Geohistory

Loia

Bokungu (+Kwango?)

CZ

f)

               209



Figure 4:  a) SRTM topography of Congo Basin.  Location corresponds to that of Figure 

1.  The Congo and Ubangui rivers are labeled for reference. The 300 m isopach of the 

Mesozoic-Quaternary sedimentary strata and the Congo River are used to outline 

boundaries of two regions, denoted the eastern and western regions.  The white box 

shows the location of Figure 4d.  b) Local relief, calculated as detailed in the text, over a 

length scale of 990 m.  The local relief within the eastern region generally ranges 

between 10 m and 30 m and increases to the southeast, while much of the area of the 

western region is much smoother with local relief typically less than 10 m.  c) The Hurst 

exponent calculated over a range of scales varying from 450 m to 1170 m.  While the 

distinction between the eastern and western regions is not as clear as in the local relief, 

the eastern region exhibits a Hurst exponent in the range 0.3 < H < 0.8.  A notable 

exception occurs near 23°W, 2°S where H ~ 0.1.  In the western region, the smoothest 

regions have H ~ 0.1 with higher values coinciding with river channels.  d)  Detail of the 

surface geology of the Congo basin [CGMW/Unesco, 1987].  Q2 denotes late Quaternary 

sediments.  N2-Q1 denotes Neogene to early Quaternary sediments (although the true age 

of these sediments is unknown.  They could date from the Late Cretaceous to Quaternary.  

See text for details). K1 are upper Cretaceous and K2 are middle Cretaceous aged 

sediments.  Much of the western region contains recent deposits, while in the eastern 

region rivers have incised into older deposits as evidenced by the Cretaceous exposures 

in their headwaters.   
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Figure 5:  a) Profiles of the topographic deflections for the models with subsidence rates 

less than 10 m/Ma along longitude 22°E. b) Uplift/subsidence of the models in a) along 

the same profile.  Dashed line indicates heat diffusion was allowed in the model while 

solid line means that diffusion was not allowed.  Uplift is only observed if there is 

diffusion of heat within the anomaly, however very low subsidence rates can be achieved 

for no diffusion if the viscosity profile within the lithosphere is nearly linear. 
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Figure 6:  a) Synthetic subsidence curve for the exponential decay model, typical of a 

thermal contraction mechanism for basin subsidence.  The data points from the 

subsidence curve of the Samba well are shown for comparison.  b) Synthetic geohistory 

associated with the model in a).  In this model sediment deposition within the basin 

gradually decreases to the current state in which sediments bypass the basin and are 

deposited on the passive margin.  c)-d)  Same as a)-b) but for the basin rebound model.   

The shaded sediments in d) represent sediments deposited within the basin which were 

later eroded and deposited on the coast.  This mechanism is consistent with the rapid 

increase of sediment delivery to the passive margin near 34 Ma and also explains the 

uplifted topography in the central regions of the Congo basin (Figure 4a).  
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