Performance Modeling for Concurrent Particle Simulations

Thesis by

Marc A. Rieffel

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1998
(Submitted May 21, 1998)

i

© 1998
Marc A. Rieffel
All Rights Reserved

111

Acknowledgements

I would like to thank my advisor, Dr. Stephen Taylor, for all of the support and
guidance that he has given me over the past four years. Under his direction, I was
able to progress rapidly in the academic environment, while simultaneously enjoying
a host of other activities. When the going got tough, he showed me what it means
to stand up for one’s self and one’s friends, no matter the size or strength of the
opposition.

The work presented in this thesis is closely tied to that of Jerrell Watts in his the-
sis, Dynamic Load Balancing and Granularity Control on Heterogeneous and Hybrid
Architectures. Without the continuous collaboration with Jerrell, this work would
have taken much longer, and the results would not have been nearly as satisfactory.
1 have learned more from discussions with him than from any of the classes I have
ever taken.

The application of the techniques presented here to problems of industrial rele-
vance is primarily due to the guidance and assistance of Sadasivan Shankar of Intel
Corporation. His advice and encouragement have been very helpful during my gradu-
ate study. Discussions with Mikhail Ivanov and Sergey Gimelshein from the Russian
Academy of Sciences have been essential for understanding the DSMC method and its
associated implementation techniques. The numerical validation studies in Chapter
2 and a number of the optimizations presented in Chapter 3 are direct results of this
collaboration.

I would also like to thank Tiranee Achalakul, Maura Benton, Gillian Borgnak,
Andrew Brown, Wayne Christopher, Evan Cohn, Viren Dogra, Xavier Fan, Peter
Haaland, Bob Haimes, Ross Harvey, Alexander Kashkovsky, Gennady Markelov,
John Maweu, Daniel Maskit, Jeremy D. Monin, Bradley Nelson, Sirikunya Nilpanich,
Michael Palmer, Diane Poirier, Karie Smart, David Weaver, and Armin Wulf, for their

assistance at different stages of this work. Thanks are due to the other members of

iv
my thesis defense committee, Jim Arvo, K. Mani Chandy, and Vincent McKoy, for
their insightful comments and suggestions, particularly on Chapter 4. Finally, I would
like to thank all of those who joined me on numerous sailing, flying, diving, hiking,
camping, and surfing trips.

Access to the Intel Paragon was provided by Caltech/CACR. Access to the Cray
T3D was provided by the Jet Propulsion Laboratory. Infrastructure support and com-
puting resources for this research were provided by BMDO under contract DAAHO04-
96-1-0319, and by Avalon Computer Systems, Intel Corporation, and Silicon Graph-
ics. The research described in this report is sponsored by Intel Corporation and
the Advanced Research Projects Agency under contract number DABT63-95-C-0116.
This project includes Russian participation that is supported by the U.S. Civilian
Research and Development Foundation under Award No. RE1241. The information
contained herein does not necessarily reflect the position or policy of the government
of the United States, and no official endorsement should be inferred.

This document was prepared using IXTgXand the thesis template written by Michael

Kelsey.

Abstract

This thesis develops an application- and architecture-independent framework for pre-
dicting the runtime and memory requirements of particle simulations in complex
three-dimensional geometries. Both sequential and concurrent simulations are ad-
dressed, on a variety of homogeneous and heterogeneous architectures. The models
are considered in the context of neutral flow Direct Simulation Monte Carlo (DSMC)
simulations for semiconductor manufacturing and aerospace applications.

Complex physical and chemical processes render algorithmic analysis alone insuf-
ficient for understanding the performance characteristics of particle simulations. For
this reason, detailed knowledge of the interaction between the physics and chemistry
of a problem and the numerical method used to solve it is required.

Prediction of runtime and storage requirements of sequential and concurrent parti-
cle simulations is possible with the use of these models. The feasibility of simulations
for given physical systems can also be determined. While the present work focuses
on the concurrent DSMC method, the same modeling techniques can be applied to

other numerical methods, such as Particle-In-Cell (PIC) and Navier-Stokes (NS).

Contents

Acknowledgements

Abstract

1 Introduction

1.1
1.2
1.3

Contributions
Motivation

Overview.

2 Physical and Chemical Models

2.1
2.2
2.3
2.4

2.5

2.6
2.7
2.8
2.9

DSMC Overview
DSMC Algorithm
Transport Model
Collision Models
2.4.1 Hard Sphere
2.4.2 Variable Hard Sphere
2.4.3 Variable Soft Sphere

2.4.4 Larsen-Borgnakke . .
Boundary Models
2.5.1 Inflow Surfaces . . .
2.5.2 Outflow Surfaces . .
2.5.3 Solid Surfaces

Convergence Considerations
Accuracy Considerations . .
Related Work

Summary

vi

iii

ek

N

[

O e oy S

vii

3 Sequential Algorithms

3.1 Model Optimizations e
3.1.1 Transport Model Optimizations
3.1.2 Collision Model Optimizations
3.1.3 Boundary Model Optimization.
3.1.4 Pseudo-Random Number Generation

3.2 Model Extensionso
3.2.1 Adaptive Boundary Conditions
3.2.2 Adjustable Particle Weights
3.2.3 Grid Adaption
3.2.4 Adaptive Result Collection

3.3 Software Engineering Considerations

3.4 Related Work

3.5 Summary

Sequential Performance Model and Analysis

4.1 Computational Complexity Analysis
4.1.1 Simulation Parameters 0L
4.1.2 Transport Phase,
4.1.3 Collision Phase,
4.1.4 Timestep Duration
4.1.5 Memory Requirements

4.2 Flow Configurations
4.2.1 Steady-State Internal Flows
4.2.2 Steady-State External Flows
4.2.3 Unsteady Internal Flows
4.2.4 Unsteady External Flows.

4.3 Parameter Estimation oo
4.3.1 General DSMC Parameters

4.3.2 Implementation-Specific Parameters

40
40
40
41
42
43
44
44
47
49
52
o4
35
o7

4.4 Predictive Modeling
4.5 Large-Scale Simulations 0L
4.6 Related Work
4.7 SUIMMATY . .« . . o o v o e s e e e

Concurrent Algorithms

5.1 Concurrent DSMCo
5.1.1 Partitioningo
5.1.2 Mapping
5.1.3 Communication

5.2 Communication Optimizations

5.3 Static Load Balancingo

5.4 Dynamic Load Balancing

5.5 Automatic Granularity Control

5.6 Concurrent Grid Adaption

5.7 Concurrent Adaptive Result Collection

5.8 Software Engineering Considerations

5.9 Related Work

5.10 Summary

Concurrent Performance Model and Analysis

6.1 Concurrent Performance Modeling
6.2 Partitioning Issues Lo o
6.3 Communication Modeling
6.4 Model Parameters Lo
6.5 Mesh-Based Modeling
6.6 Mesh-Based Experiments
6.7 Bus-Based Modeling L o
6.8 Bus-Based Experiments 0oL
6.9 Model Predictions

6.10 Heterogeneous Modeling

109

6.11 Related Worko
6.12 Summary
7 Related Experimental Studies
7.1 Partition Connectivity
7.2 Unstructured Grid Transport
7.3 Parallel DSMC Scalability
7.4 Load Balancing Experiments
7.5 Automatic Granularity Control Experiments
7.6 Architecture Comparison
7.7 Related Work
7.8 Summary ...

8 Technology Demonstrations

8.1
8.2

8.3
8.4

Semiconductor Manufacturing Applications
Simulation Results
8.2.1 Convergence
822 Amnalysis
8.2.3 Related Work
8.2.4 Summary
Aerospace Applications
Simulation Results
84.1 Related Work
8.4.2 Summary

9 Conclusion

Bibliography

128
128
130
131
132
133
135
138
139

153

156

158

List

1.1
1.2

2.1
2.2

2.3
24
2.5
2.6

2.7
2.8
2.9

2.10
2.11
2.12

2.13
2.14

2.15

2.16

of Figures

Schematic representation of semiconductor etching
The Gaseous Electronics Conference (GEC) Reference Cell Reactor

(left) and tetrahedral grid used to represent it (right)

Particle trajectory through tetrahedral cells
Possible intersections between a particle trajectory and a cell face for
parabolic (left) and straight (right) trajectories
Collision scattering angles
Hawk HS Argon Density
SMILE HS Argon Density,
Temperature vs. time for VHS simulations, using 50% Ar and 50% He
(left) and 90% Ar and 10% He (right)
Hawk VHS Argon Density
SMILE VHS Argon Density
Temperature vs. time for VSS simulations, using 50% Ar and 50% He
(left) and 90% Ar and 10% He (right)
Hawk VSS Argon Density
SMILE VSS Argon Density
Temperature vs. time for simulations with TR relaxation (left) and
TRV relaxation (right)
Hawk Larsen-Borgnakke Argon Density
SMILE Larsen-Borgnakke Argon Density
Temperature profiles along the centerline for SMILE (lines) and Hawk
(points)

Particle inflow vectors

22
23
23

27
29
29

biel
2.17 Particle density along a horizontal line above the wafer, showing esti-

mated errors

3.1 Probe Pressure as a function of simulation time

3.2 Local adaption of tetrahedral grid cells, shown in two dimensions

3.3 Grid for the inflow port of the GEC grid before (left) and after (right)
grid adaptiono

3.4 Grid adaption level in the GEC Reference Cell Reactor

3.5 Number of particles used for calculating macroscopic parameters with
and without adaptive results collection

3.6 Pressure (left) and speed (right) along lines through a reactor simula-
tion, showing results both with and without adaptive results collection

3.7 Layering of Software Components

4.1 Predicted and measured step time as a function of physical parameters

4.2 Memory usage as a function of physical parameters

5.1 Concurrent DSMC methodology
5.2 The grid for the GEC reference cell after initial partitioning
5.3 Over-partitioning for mapping multiple partitions to each processor
5.4 The grid for the GEC reference cell after initial partitioning (left) and
static partition balancing (right)

5.5 The Concurrent Graph abstraction

6.1 Predicted and measured scaling of a box simulation the Cray T3D . .

36

46

50

ol

03

23
95

114

6.2 Predicted and measured scaling of a GEC simulation on the Cray T3D 115

6.3 Predicted and measured scaling of a box simulation the SGI Power

Challenge
6.4 Predicted and measured scaling of a GEC simulation on the SGI Power

Challenge

6.6

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

8.1

8.2

8.3

8.4

X1t
Predicted timestep time as a function of number of processors for (.29
Pa/2.2 mTorr, 2.66 Pa/20 mTorr, 6.65 Pa/50 mTorr, and 13.3 Pa/100
mTorr simulations 119
Parallel efficiency as a function of problem size and number of pro-
cessors (left) and predicted parallel efficiency (right) for 0.29 Pa/2.2
mTorr, 2.66 Pa/20 mTorr, 6.65 Pa/50 mTorr, and 13.3 Pa/100 mTorr

simulations L 120

Connections Per Processor (left) and average connection distance (right)
as a function of Partitions Per Processor 128
Connections Per partition as a function of the number of partitions(left)
and average connection distance as a function of number of processors
(right) 129
Number of Communication Rounds (left) and Particles exchanged, per
processor, in each round (right) as a function of the number of processors130
Unscaled (left) and scaled (right) performance on the GEC problem . 132
Performance as a function of partitions per processors 134
Scalability results for the Cray T3D (left) and the Avalon A12 (right). 136
Scalability results for a network of multiprocessor Dell PC’s (left) and
the SGI Power Challenge (right). 137
Performance on the Cray T3D, Avalon A12, Dell network, and SGI
Power Challenge 138

The Gaseous Electronics Conference (GEC) Reference Cell Reactor
(left) and tetrahedral grid used to represent it (right) 140
Pressure in the horizontal (left) and vertical (right) planes for the hor-
izontal 45-degree configuration 142
Pressure in the horizontal (left) and vertical (right) planes for the hor-
izontal 135-degree configuration 143
Pressure in the horizontal (left) and vertical (right) planes for the ver-

tical configuration Lo 144

8.5

8.6

8.7

8.8

8.9

xiii
Pressure in the horizontal (left) and vertical (right) planes for the show-
erhead configuration
Pressure in the horizontal (left) and vertical (right) planes for the
heated wafer showerhead configuration
System energy (left) and particles and collisions (right) as functions of
simulation time
Particle density as a function of position along a line above the wafer,
passing through the inflow ports in the horizontal configurations (left),
and along a line through the outflow port in the horizontal configura-
tions (right)
Average particle speed as a function of position along a line above the

wafer, passing through the inflow ports in the horizontal configurations

145

145

146

147

(left) and through the outflow port in the horizontal configurations (right)148

8.10 Outside (left) and inside (right) diagrams of the Skipper satellite . . .

8.11 Temperature solution (left) and key (right)

8.12 Speed solution (left) and key (right)

152
153

xiv

List of Tables

2.2
2.3
2.4
2.5

3.1

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3

8.1

Parameters for Isothermal VSS Box Test, 21
Parameters for Thermal-Gradient VSS Box Test 21
Parameters for Thermal-Gradient VSS Box Test 22
Larsen-Borgnakke TR Validation Parameters 28
Larsen-Borgnakke TRV Validation Parameters 28
Pseudo-Random Number Generator Performance 43
General DSMC Parameters., 71
Implementation-Specific Parameters 72
GEC Simulation Predictions 76
Summary of Simulation Times for Different Configurations 78
Summary of Memory Requirements for Different Configurations . . . 78
General Model Parameters 110
Implementation-Specific Parameters 111
GEC Simulation Predictions 121

XV

List of Programs

2.1
2.2
2.3
24
2.1
5.2

DSMC Algorithm 9
DSMC Transport Algorithm 10
Single-Particle Transport 11
DSMC Collision Algorithm| 14
Concurrent DSMC Algorithm 83

Bounding Box Partitioning, 95

XVv1

List of Symbols

Symbol | Description

A sampling time, inflow area

a acceleration

b largest prime factor of number of partitions

C number of cells in a simulation

C, exposed cells

c performance model parameter

¢ inflow stream velocity

d distance, dimension of bounding box, HS collision diameter

D number of dimensions, mesh diameter

FE parallel efficiency

e statistical scatter or error

eff efficiency of load balance

f ratio of avg. compute time to i-th computer’s
compute time

g collision relative velocity

h free dimension of simulated volume

J number of samples for error estimation

j particle influx per unit area

K convergence time, or ratio of mean free path to cell size

k Boltzmann constant

L characteristic dimension of simulated region

[length, cell size

M memory

m particle mass

N number of particles in a simulation

n particle number density

Ny number of particles communicated

XVil

Symbol | Description

P number of simulations for unsteady flow

14 partitions, processors

P, target pressure
P, measured pressure

P number of grid partitions
D minimum number of particles per cell

1 particle, probe position

q dimensionality of the partitioning or the mesh
R random variable uniformly distributed in, 0 < R < 1
r radius, reflectivity, samples per cell

S total simulation timesteps, DSMC speed

S molecular speed ratio, connections per partition,

steps, processor speed

T time or temperature
Tos particle exchange communication time

T, global communication time

T communication overhead time

T communication time per processor

t time

At timestep

U ratio of avg. to max. compute time, load balance
u measure of heat or work, dimensionless speed

U tangential unit vector

V volume

v speed
Umnp most probable velocity

vy tangential or thermal velocity

U velocity

Xvilii

Symbol | Description

Uy, normal component of velocity

v average particle speed

U tangential unit vector

wy particle weight, ratio of real to simulated particles

wy local particle weight

W species weight

o Variable Hard Sphere (VHS) model parameter,
adaptive boundary condition parameter

8 Variable Soft Sphere (VSS) model parameter,
inverse of most probable velocity

€ azimuthal impact angle

A mean free path between collisions

d particle flux

) tangential thermal velocity angle

o collision cross section

0 inflow angle

0, tangential inflow angle

T unsteady oscillation period

X collision scattering angle

£ any macroscopic parameter

Ag

error in macroscopic parameter &

Chapter 1 Introduction

This thesis presents a framework for understanding the runtime and memory re-
quirements of particle simulations involving complex three-dimensional geometries.
Application- and architecture-independent models for sequential and concurrent sim-
ulations are developed. Extensions of these models address the performance char-
acteristics of concurrent simulations on a variety of homogeneous and heterogeneous
architectures. Evaluation of the models is achieved with a variety of neutral flow Di-
rect Simulation Monte Carlo (DSMC) simulations for semiconductor manufacturing
and aerospace applications.

Due to the complex physical and chemical processes involved, traditional algorith-
mic analysis alone is insufficient for understanding the performance characteristics of
particle simulations. In fact, these characteristics are primarily determined by the
interaction between the physics and chemistry of a problem and the simulation tech-
nique.

The models presented here can be used to predict the runtime and storage require-
ments of sequential and concurrent particle simulations, and thereby determine the
feasibility of simulations for given physical systems. While the present work focuses
on the concurrent DSMC method, the same modeling techniques can be applied to

other numerical methods, such as Particle-In-Cell (PIC) and Navier-Stokes (NS).

1.1 Contributions

The contributions of this research are:

1. Novel sequential and concurrent algorithms for three-dimensional DSMC simu-
lations involving complex geometries. These include techniques for grid adap-

tion, static and dynamic partitioning, static and dynamic load balancing [99,

2
100, 101], automatic granularity control [85], adaptive boundary conditions [80],
and adaptive collection of results. Validation of these algorithms is performed
for a variety of simulation conditions [32, 79], and their application to prob-
lems of industrial relevance is presented [90, 92]. These algorithms provide the
infrastructure for validation and evaluation of the sequential and concurrent

performance models presented in subsequent chapters [81, 83, 84, 93].

2. A sequential model for predicting runtime and storage requirements of DSMC

simulations in a variety of physical configurations[83].

3. A concurrent model for predicting runtime and storage requirements of concur-
rent DSMC simulations on a variety of parallel, distributed, and heterogeneous

architectures [86]

4. Evaluations of the predictive power of these models when applied to large-scale

simulations[83, 86].

5. A study and quantification of the benefits of automatic granularity control in

the context of realistic large-scale concurrent DSMC simulations[84].

1.2 Motivation

Recent advances in microprocessor performance have been driven primarily by im-
provements in manufacturing technology. New processes and equipment have paved
the way for smaller feature sizes and larger wafer sizes. These have, in turn, enabled
the production of microprocessors with more transistors, operating at lower voltages
and with higher clock rates. One of the key pieces of equipment in microelectronics
manufacturing is the plasma reactor, used in 30 to 40 percent of processing steps.
Plasma processing equipment also accounts for approximately 20 percent of the cost
of configuring a new semiconductor manufacturing plant. The cost of these produc-
tion facilities is escalating, as are the research and development costs of introducing

each new generation of processing technology. It is widely recognized that the devel-

3
opment of computational tools for modeling plasma reactors is essential to reduce the
costs of validating new reactor designs and of improving manufacturing processes.

Significant advances have been made in recent years in the modeling of low-
pressure neutral flow [15, 20]. While it is now possible to address a wide variety of
engineering problems associated with neutral, ion, and electron transport in plasma
reactors. However, the utility of these modeling techniques has so far been limited,
as they do not address the entire design cycle of a simulation.

Process engineers seek simulation methods that are increasingly realistic, pushing
toward three-dimensional models of complex geometries and reacting chemistry. Even
two-dimensional calculations have large memory and performance requirements, and
the conceptual leap to three-dimensional calculations has proved elusive. Acceptable
simulation results require not only appropriate chemical and physical models, but
also substantial investments in geometric modeling, gridding, post-processing, and
analysis techniques. These steps in the design cycle are interrelated, and the process
of obtaining a meaningful result is frequently a time-consuming, iterative process.
For example, after some initial calculations it is frequently necessary to regenerate
the computational grid or simplify the geometry. Simulation techniques will continue
to have limited engineering applicability until each of these steps is addressed in a
comprehensive simulation methodology.

The reactors of interest involve weakly ionized plasmas (with degree of ionization
~ 10™*) with electron-impact gas-phase reactions and ion-enhanced surface reactions.
Neutral flow is of importance in studying these systems since it determines the re-
actor pressure, the center-of-mass motion, and the production of chemically active
species. In addition, the lateral location and possible agglomeration of particulates
are determined by the characteristics of neutral flow. Since pressure drops are more
significant in low pressure reactors, the study of neutral flow is critical to optimal
design. The flow can be supersonic close to gas inlets, and good design is necessary
to avoid large pressure drops and highly asymmetric flows.

Figure 1.1 shows a schematic representation of the process of semiconductor etch-

ing. Gas enters the reactor, reacts with the surface of the wafer, and the products

|

suEATH=—> f t ¢ ¢ t 1

) SAS PRODUCTS
IN our
SHEATH==> | | | | | |
< WAIER

ELECTRODE ,

Figure 1.1: Schematic representation of semiconductor etching

of these reactions are pumped out of the reactor. Energy is supplied to the system

through direct or alternating currents applied to electrodes in the reactor.

Figure 1.2: The Gaseous Electronics Conference (GEC) Reference Cell Reactor (left)
and tetrahedral grid used to represent it (right)

The DSMC technique can be applied to the simulation of neutral flow inside three-
dimensional plasma reactors with complex geometries. A typical plasma reactor, the
Gaseous Electronics Conference (GEC) reference cell, is shown in Figure 1.2 (left).
At low pressures (less than 200 Pa (1.5 Torr)), the mean free path is on the order
of the characteristic length of the reactor (approximately 30 cm). The DSMC tech-
nique considered in this thesis leverages and integrates a variety of ideas taken from

computational fluid dynamics and finite-element methods. A central aim is to ex-

5
ploit existing industrial tools that are already in use by process engineers in order to
shorten the design cycle to acceptable engineering timescales. Application of the per-
formance models developed in this thesis allows for the prediction of computational
requirements of such simulations. A better understanding of the performance char-
acteristics of particle methods, such as the DSMC technique, significantly increases

the applicability of these methods to problems of industrial relevance.

1.3 Overview

The simulation of rarefied gas flow and the DSMC method as an example of particle
simulation techniques are introduced in Chapter 2, and validation of a DSMC imple-
mentation is presented. Chapter 3 presents novel optimizations and extensions to the
basic DSMC method. Chapter 4 presents a model of the prediction of runtime and
storage requirements of sequential simulations, based on flow configurations and phys-
ical parameters. The model is then evaluated in the context of realistic large-scale
simulations.

The performance model in Chapter 4 is extended in Chapter 5 to concurrent
DSMC, and novel concurrent algorithms for partitioning, mapping, communication,
load balancing, and granularity control are presented. Chapter 6 presents a model
of the performance characteristics of concurrent DSMC simulations, and evaluates
this model in the context of realistic simulations on several concurrent architectures.
Chapter 7 explores the performance implications of dynamic load balancing and auto-
matic granularity control, and Chapter 8 demonstrates the application of the concur-

rent DSMC method to simulations for semiconductor manufacturing and aerospace

applications.

Chapter 2 Physical and Chemical
Models

This chapter provides background information on the simulation of rarefied gas flow
and presents the Direct Simulation Monte Carlo (DSMC) method. The infrastructure
described in this chapter is used to assess the performance models in subsequent
chapters. The DSMC method was chosen in order to illustrate the full complexity of
particle simulations. In addition to the particle transport phase common to all particle
simulations, the collision phase of the DSMC method provides additional constraints
on performance analyses. By addressing the most complex of particle simulation
techniques, the analyses presented in subsequent chapters are also applicable to a

wide range of other numerical methods.

2.1 DSMC Overview

A variety of simulation techniques are used for the simulation of fluid flow, or gas
dynamics. The characteristic parameter that determines gas flow properties is the
Knudsen number, Kn = A/L where A is the mean free path in a gas and L is the ref-
erence flow scale. In the continuum regime, where the Knudsen number tends toward
zero, microscopic structure can be ignored, and a system can be completely described
in terms of macroscopic parameters such as density, temperature, and velocity. In
the free-molecular regime, where the Knudsen number tends toward infinity, collisions
between molecules can be neglected, and the flow behavior is controlled by interac-
tions between molecules and boundary surfaces. The region between the continuum
and free-molecular regimes, where the Knudsen number is close to unity, is called the
transilion regime.

In the transition regime, viscosity, heat conduction, relaxation, diffusion, and

7
chemical processes are important, and it is also possible for velocity distribution
functions to be non-Maxwellian, resulting in strong thermal nonequilibrium. As ther-
mal and chemical relaxation lengths may be comparable to the reference flow scale,
differences between translational, rotational, and vibrational temperatures may be
important.

Several numerical techniques for simulating transitional gas flow have been de-
veloped in the past 20 years. Navier-Stokes and viscous shock layer equations can
typically be used for the simulation of near-continuum flows, with appropriate ex-
tensions for modeling slip velocity and temperature jumps at surfaces. Because the
Navier-Stokes equations assume only small deviations from thermal equilibrium, how-
ever, they are not suitable for studying rarefied flows with flow disturbances, such as
shock waves, in which the velocity distribution functions are strongly nonequilibrium.

The governing equation in the transition regime is the Boltzmann Equation, a
detailed treatment of which can be found in [23], [24], or [56]. It is a nonlinear integral-
differential equation, closed with respect to the one-particle distribution function,
which in turn determines the density of particles in a six-dimensional phase space of
particle coordinates and velocities.

Some approaches for solving the Boltzmann equation include direct integration,
molecular dynamics methods, the Direct Simulation Monte Carlo (DSMC) method,
techniques coupling both DSMC and continuum methods [18], model equation ap-
proaches [88], and the test particle method [36]. The DSMC method is the ap-
proach of choice for the study of complex multidimensional flows of rarefied hyper-
sonic aerothermodynamics, as well as for the simulation of neutral flow in plasma
reactors. Reasons for this include the simple transition from one-dimensional to two-
and three-dimensional problems, and the ease with which complex models of particle
interaction can be incorporated without substantial increase in computational costs
[52]. It is also well suited for use on modern concurrent architectures [80].

The DSMC method was pioneered by Graeme A. Bird [12, 13, 15]. It can be used
to model chemical reactions [14], and has been extended to address translational and

rotational effects in gaseous expansions [11], and to include the maximum entropy

8

(ME) and Borgnakke-Larsen (BL) models for internal energy exchange [63]. Sophis-
ticated models have been developed for energy transfer between vibrational and trans-
lational modes, such as those used in simulating flow over a two-dimensional wedge
[19]. DSMC has also been combined with fluid electron models and self-consistent
electric fields to simulate plasma systems [9, 71]. A detailed description of the VSS
collision model and its relation to the Lennard-Jones and inverse-power-law potentials
can be found in [57, 58].

In principle, the DSMC technique can account for all of the physics needed for
any problem [68], and is therefore a pure form of computational fluid dynamics. In
practice, however, the technique can be substantially more computationally intensive
than continuum approaches for high-pressure (low altitude) flows.

Systems that the DSMC method can be used to simulate include space vehicles in
the upper atmosphere [14, 48, 49], plasma reactors for semiconductor manufacturing

[9, 82, 96], lava flow from volcanos [2], and many others.

2.2 DSMC Algorithm

The Direct Simulation Monte Carlo (DSMC) method is an approach for solving the
Boltzmann equation by simulating the behavior of individual particles. Since it is
impossible to simulate the actual number of particles in a realistic system, a smaller
number of simulation particles is used, each representing a large number of real par-
ticles. A computational grid is used to represent the simulated region of interest, and
statistical techniques are employed to reproduce the correct macroscopic behavior.
At the start of a simulation, computational grid cells are filled with simulated
particles according to initial freestream conditions. The simulation takes discrete
steps 1n time, timesteps, during which a transport model is used to move particles
through the grid, a collision model is used for particle-particle (including chemical)
interactions, and a boundary model is used for interactions between particles and
boundary surfaces. Macroscopic properties, such as density and temperature, are

computed by appropriate averaging of particle masses and thermal velocities.

9
The DSMC algorithm is shown in Program 2.1. Particle motion and interactions
are decoupled over the duration of a timestep. Each timestep is composed of two
phases, the transport phase, during which particles move between grid cells, and the
collision phase, during which particles interact within a cell. Global information,
such as the total number of particles in the domain, may also be computed at every

timestep. These phases are described in detail in the following sections.

DSMC()
{
InitializeAllCells();
for(step = 0; step < NUM_STEPS; step++)
{
MoveParticles(dt); /* Transport Phase */
CollideParticles(dt); /* Collision Phase */
ComputeGlobalInformation();
}
ComputeMacroscopicParameters();
}

Program 2.1: DSMC Algorithm

2.3 Transport Model

The transport model of the DSMC technique is concerned with moving particles
through the simulated region for a specified period of time in order to determine their
final positions both in space and within the computational grid. The transport phase
of the algorithm is shown in Program 2.2. Each particle in each cell must be moved
for a duration specified by the simulation timestep.

The requirements of the transport model are strongly influenced by the type of
computational grid that is used. Unlike other types of grids, unstructured tetrahe-
dral grids can be easily generated automatically, using existing CAD/CAM packages.
They can also represent complex geometries, and can be locally adapted. For these
reasons, the present work is based on, but not limited to, the use of unstructured tetra-

hedral grids. Particle transport through tetrahedral grid cells can be accomplished

10

MoveParticles(dt)

{

for(each cell in domain)

{

for(particle = FirstParticle(cell); particle;
particle = NextParticle(particle))

g

MoveParticle(cell, particle, dt);
¥
F
i

Program 2.2: DSMC Transport Algorithm

using standard ray-tracing techniques [34]. This is accomplished by computing inter-
sections between a particle’s trajectory and the faces of the cell in which it is located,
thereby determining the face through which the particle will exit and the adjacent
cell into which it will travel. This process is repeated until the final position is found,

both in physical space and in the computational grid.

Figure 2.1: Particle trajectory through tetrahedral cells

Figure 2.1 illustrates this process in a two-dimensional representation of a sample
geometry. Cells are represented as triangles and cell faces as line segments. Consider
a particle initially at position 7o with velocity vp, initially located in Cell 1. The par-
ticle’s vector position and cell location at the end of the timestep At are determined
by its initial position, velocity, starting cell, and the timestep duration Af.

Program 2.3 shows the algorithm for moving a single particle within a cell. To
determine whether a particle will move into another cell, it is necessary to calculate

which cell face the particle’s trajectory will first intersect. In Figure 2.1, for example,

11

MoveParticle(cell, particle, dt)
{
RayTrace(cell, particle, &closest_time, &closest_face);
/* Recursion base case: particle ends in this cell */
if(closest_time > dt)
MoveParticleWithinCell(cell, particle, dt);
else
{ /* Move particle to the edge of the cell */
MoveParticleWithinCell(cell, particle, closest_time);
if (BoundaryFace(closest_face))

{
PerformBoundaryInteraction(face, particle);
/* Recursively move particle within same cell */
MoveParticle(cell, particle, dt - closest_time);

}

else

{
nextcell = NeighborCell(face);
/* Recursively move particle in adjacent cell */
MoveParticle(nextcell, particle, dt - closest_time);

}
}
}

Program 2.3: Single-Particle Transport

the particle’s trajectory will first intersect face M and then face L.

Given the closest face along the particle’s trajectory, the intersection time for that
face is compared to the timestep length, A¢. If the intersection time is greater than
At, the particle will not hit any faces in the current timestep and can therefore be
moved directly to its new position. If, however, the intersection time is less than
the timestep, the particle will hit the closest face. Most cell faces are internal to the
grid, and particles move through them to adjacent cells. If the cell face corresponds
to a physical surface, the boundary model is employed to determine the interaction
between the particle and the surface. Surface reactions may also occur at this point.

A particle that experiences no forces will travel in a straight line. In the presence of

a uniform acceleration field, @, particles experience acceleration, and follow parabolic

12

trajectories defined by,
1
F(t) = 7y + Uot + 5&’#, (2.1)

where 7(t) is the particle’s position at time ¢. Acceleration of this form is typically
due to gravity or electric fields. The intersection time between the particle’s curved

trajectory and a cell face, ¢;, is given by the equation,
I (1l - o
n-(7(t;) —p)=n- (-2~ati + vot; + 1o — p) =0, (2.2)

where 7 is a vector normal to the plane, and 7 is any point on the plane.

Since this equation is quadratic in ¢;, it may have zero, one, or two real roots. The
solution of iterest, corresponding to the first intersection with the closest cell face,
corresponds to the smallest positive root. Complex roots have no physical meaning,
while negative roots correspond to intersections behind the particle’s initial position.
Figure 2.2 (left) shows several possible intersection scenarios. Here, the particle’s
initial position is represented as a blue circle, the trajectory as a black curve, and the
plane as a red line. In each case, the desired intersection, if any, is indicated by a
green square.

This method, however, is inapplicable whenever [7-@] = 0, which occurs whenever
the acceleration is zero or parallel to the plane. The different possibilities for this case
are shown in Figure 2.2 (right). If the particle’s trajectory is not parallel to the plane,

there is exactly one intersection time, and this is given by,

Gt 2 (23)

n-v

t; =

Once the intersection time for the cell face is found, the intersection position, p;, is

given by,

—

1
Di = 70 + Voti + Eat?' (2.4)

13

Two positive solutions

smaller solution selected

Intersection Found

No real solutions,

no intersection

Intersection Behind

One positive solution,

selected for intersection f-}
No intersection
No positive solutions,
no intersection i
w
v

Iigure 2.2: Possible intersections between a particle trajectory and a cell face for

parabolic (left) and straight (right) trajectorics
2.4 Collision Models

The ability of a DSMC implementation to correctly model a physical system is pri-
marily determined by the complexity of particle-particle interactions, as specified in
its collision model. Simplistic collision models can lead to erroneous results, while
unnecessarily complex models can dramafically increase simulation time. Binary col-
lisions are fundamentally an N-squared interaction for N particles. For simulations
involving millions ol particles, it is impractical to consider all possible interactions.
Il the mean [ree path is larger than the cell size, however, there can be no statisti-
cally significant spatial gradients within a cell. Taking advantage of this, the DSMC
method needs only consider collisions between particles in the same cell. Statistical
techniques are used to determine the correct number of collisions in time proportional
to the number of particles in the cell.

The DSMC collision model uses an acceptance-rejection method based on collision

14
tests. The maximum frequency of test collisions in a cell, v, is computed using,

N (N - 1) Wy {O(QHb)gab]mar
2V ’

vV =

(2.5)

where g, is the magnitude of the relative velocity between a pair of particles a and
b, 0(gu) is the collision cross section evaluated at that velocity, NV is the number
of particles in the cell, [0(gqes)gas],,,, 1S an estimate of maximum possible value of
0 (gab) Yas, Wy 1s the ratio of real to simulated particles, and V is the volume of the

cell. The collision algorithm is shown in Program 2.4.

CollideParticles()
{
for(each cell in domain)
{
nu=N=* (N-1) * w_.p * sigijmax/(2 V);
t = 0;
while(t < dt)
{
t =t + 1/nu;
if(t < dt)
{
SelectParticles(a,b);
p = sigma(g_ab) * g_ab/sigijmax} ;
with(probability p)
PerformCollision(a,b);

Program 2.4: DSMC Collision Algorithm

A time counter, ¢, is initialized to zero and incremented by the collision time,
T = %, for every collision test. Collision tests are performed as long as ¢ is less than
the simulation timestep, At. Two particles, a and b, are selected randomly from the
N particles in the cell, and these particles collide with probability ﬁ%—ﬁz. The

collision updates particle velocities appropriately .

In a collision, two scattering angles, x and e, are defined. As shown in Figure 2.3,

15

Figure 2.3: Collision scattering angles

X is the angle between the pre-collision relative velocity and the post-collision relative
velocity and e is the azimuthal impact angle measured between the collision plane and
some reference plane.

Three different collision models are used for monatomic gas interactions, Hard
Sphere (HS), Variable Hard Sphere (VHS), and Variable Soft Sphere (VSS). The
Hard Sphere model uses a constant collision cross section and isotropic scattering
angles. In order to more accurately reproduce viscosity effects, the Variable Soft
Sphere uses a cross section that is a function of temperature, or relative velocity.
The Variable Soft Sphere model can also match diffusion coefficients by using non-
isotropic scattering. In order to model polyatomic molecules with internal degrees of
freedom, the Larsen-Borgnakke energy exchange model is employed [16].

The following sections describe these models in more detail, and explain the tests
used for their validation. For certain tests, comparisons were made with another
DSMC implementation, SMILE. SMILE is a computational tool for solving problems
of rarefied gas aerothermodynamics [47], created at the Institute for Theoretical and
Applied Mechanics (Novosibirsk, Russia). It is based on the majorant principle of
construction and substantiation of numerical schemes for the DSMC method. The
coupling of “cell” and “free cell” schemes [48] provides the required spatial resolution
throughout the whole flow field, including regions with strong gradients. Comparison
of two implementations is particularly useful when modeling physical systems that

do not have simple analytical solutions.

16
2.4.1 Hard Sphere

In the Hard Sphere model, the collision cross section, o(g), is a constant of the model,
o(g) =0 = wd*. (2.6)

For a given particle diameter, d, and impact parameter, b, the scattering angle, , is

specified by,
b= dcos(x/2). (2.7)

Validation of the Hard Sphere model was conducted with two series of tests, one
involving thermal relaxation in a box geometry, the second involving hypersonic flow
past a cylinder.

The box tests were designed to verify that all of the basic DSMC operations were
correctly implemented, including transport, inflow, accommodation, and HS colli-
sions. Two identical species, Ar and Ar* were simulated, and the collision frequencies
were found to agree with theory. Simulations were then conducted with Ar and He
in equal concentrations, with density n = 1.83 x 10! particles per cubic meter, and
both species at equilibrium temperature 300K. The collision frequencies were equal to
theoretical values, and the system remained in equilibrium. The next test considered
a mixture of Ar and He at different temperatures. The system reached equilibrium at
the correct temperature, the collision frequencies were correct, and equilibrium was
reached at the same rate as SMILE simulations.

The next test considered different concentrations of Ar and He, (90% and 10%,
respectively), with Ar at 100K and He at 500K. The final temperature of the system
was verified to be 0.9 x 100 + 0.1 x 500 = 140K. The last box case considered the
opposite concentrations (10% and 90%), with argon at 100K and He at 500K. The
final temperature of the system was verified to be 0.1 x 100 + 0.9 x 500 = 460K

The final validation test for the HS collision model considered Mach-4 flow past a
cylinder of radius 0.05m, with a grid extending 0.15m in front of the cylinder, 0.35m

behind, and 0.2m to the side. A freestream number density of 1.83 x 102! particles per

17
cubic meter was used, with freestream speed 526.86 m/s and {reestream temperature
50K. The cylinder itself was fully accommodating at 300K, and the gas was 50%
Ar and 50% He. Because of the symmetry of this problem, only the upper half of
the cylinder was simulated. A thin (0.01 m) 3-D grid was used for the Hawk, while
the SMILE simulation was conducted in two dimensions. The results from the two

simulations are shown in Figures 2.4 and 2.5, and they are in excellent agreement.

Figure 2.4: Hawk HS Argon Density

Figure 2.5: SMILE IS Argon Density

2.4.2 Variable Hard Sphere
The Variable Hard Sphere (VHS) model, developed by Bird in 1981, uses cross sections
that are [unctions of relative velocity, but with hard sphere (HS) scattering angles.

Collision, viscosity, and diffusion cross sections therefore take the form,

or=nd’=¢ (mygz/Z)a (2.8)

2
gy = §7r([2 (2.9)

18
op = md* (2.10)

where ¢ and « are parameters of the model. As with the Hard Sphere model, the

VHS model uses isotropic scattering angles,

b= dcos(x/2). (2.11)

For a gas at equilibrium, the total collision cross section may be written

TT'C “
a:aT:g,ef(Tf) : (2.12)

where o0,y is the reference value of the cross-section at the reference temperature 7., £
and « is a model parameter used to match viscosity. For a coefficient of viscosity s,
one can write p o< 7%, where w = « + 0.5. It is computationally inconvenient,
however, for the cross section, a microscopic property, to depend on temperature,
a macroscopic property. Integration of the velocity distribution function, however,

yields the relation,
m,g*

2k

T = (T2 -a)/, (2.13)

where m; is the reduced mass of the collision, g is the relative velocity of the collision,

and £ is the Boltzmann constant. The collision cross section can the be written,

25T\ 1
— Oye . 2.14
ot = Ores (m, g > (2 -a) (2:14)

Initial validation of the VHS model consisted of running a uniform specular box
and comparing the number of collisions between Hawk and SMILE. The results were
in excellent agreement. The next series of tests studied the temperature relaxation
rate in the specular box, with mixtures of argon and helium at different temperatures
and in different concentrations.

The first of these tests was a 50%-50% mixture of argon and helium, with argon
at 100 K and helium at 500K. As would be expected, the final temperature of the
mixture was 300K. Figure 2.6 (left) shows that SMILE and Hawk both reached the

19
correct final temperature at the same rate. The second test was with 90% argon at
100K and 10% helium at 500). The number of collisions, and convergence rates, as

shown in Figure 2.6 (right), both agreed.

500 T T T T T T T T T
DEMC-0B Ar &
{

AR DEME-QD Ha 450 , ; ; : :
s0 |- S i
= DEME-0D Ar ¢
o 500 {- D3HC-OD He + |
¢ tawk Ar ——
i \ 1 Hawk He —
aso d
350 N 4
g 400 |- b

Tamperatuze (X)
g

/ as
200 / \
/ 200 ~
/ B,
1900 ¥ S
/ 150 |- Biian, 0
0 ; e
. { 100
|
50 L L L L . L L L L s %5 L L " L L
00,0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0 0.001 0.002 0.003 0.004 0.005 0.006
Time (3)

Figure 2.6: Temperature vs. time for VHS simulations, using 50% Ar and 50% IHe
(left) and 90% Ar and 10% He (right)

The final test of the VHS model was the cylinder problem, as described in Section
2.4.1. For this, a mixture of 50% argon and 50% helium was used, with o = 0.5.
Density plots for the two codes are shown in Figures 2.7 and 2.8, and these agree very
well. The density along the streamline was also compared and found to be the same

for the two codes.

Figure 2.7: Hawk VHS Argon Density

2.4.3 Variable Soft Sphere

The main disadvantage of the VHS model arises when matching viscosity coefficients

o,. The diffusion cross-sections for the two models, and hence. the diffusion coel-

20

Figure 2.8: SMILE VHS Argon Density

ficients, coincide only for the hard sphere model. The variable soft sphere (VSS)
model developed by Koura [57, 58] has no such drawback. The VSS model uses the
same velocity-dependent cross section as the VHS model, but introduces anisotropic
scattering angles. In terms of the molecular diameter, d, and the impact parameter,

b, the VSS model can be written as,

(g)ﬁ = (-;—) . (2.15)

The model parameter 3 is used to characterize the anisotropy of the scattering angle,
and is used to match the diffusion coefficient. (This 8 corresponds to 1/a in [15].)
These parameters must be used for computing the post-collision relative velocity g—;
as a function of the pre-collision relative velocity ¢. The azimuthal impact angle, ¢,

is computed using a random number R;,
c = 97TR]_, (216)

where R; is a random variable, uniformly distributed 0 < R, < 1. The two compo-

nents of the scattering angle, x, are computed using another random number, Ry,

cosy = 2RS — 1 (817

(2.18)

sin y =

21

The components of q7 can then be computed as

g = gz COS X + V92 + g2sin xsine (2.19)

. . —1/2
9y = gy cos X + sin x (¢'g cos€ — g, g, sine) (gj + gf) (2.20)

. . —-1/2
9, = gz cos x —sinx (¢'g, cos e + g, g, sine) (gﬁ + gﬁ) . (2.21)

The derivation of these equations may be found in [15].

Validation of the VSS model was conducted using a series of box tests and a
cylinder flow test. The first box test used the parameters shown in Table 2.1. The
system was shown to stay in equilibrium at 100K, and the collision frequencies agreed

with those of SMILE simulations.

Table 2.1: Parameters for Isothermal VSS Box Test

Species Ar-Ar | Ar-He | He-He
o 0.31 0.235 0.16

J] 0.714 | 0.754 | 0.794
Concentration 0.5 0.5
Temperature (K) | 100 100

The next test for the VSS model was with Ar and He at different initial tempera-
tures, as shown in Table 2.2. The convergence rates of the temperatures were shown

to agree with the results of SMILE, as shown in Figure 2.9 (left).

Table 2.2: Parameters for Thermal-Gradient VSS Box Test

Species Ar-Ar | Ar-He | He-He |
e 0.31 | 0.235 | 0.16
I3 0.714 | 0.754 | 0.794
Concentration 0.5 0.5
Temperature (K) | 100 500

22

Table 2.3: Parameters for Thermal-Gradient VSS Box Test

Species Ar-Ar | Ar-He | He-He
o 0.31 0.235 0.16
0 0.714 | 0.754 | 0.794
Concentration 0.9 0.1
Temperature (IK) | 100 500
TR T (K)
600.0
~&= 1 (Ar), SMILE~0D -8 T(Ar) , Hawx
500 . 0f =P T (He) , SMILE-0OD -8~ T (He) , Hawx
&7 (Ar) , Hawk [~ T (Ar) , SMILE-OD
—©- T (He) , Hawk 500. 0% P~ T (He) , SMILE-0D
400.0
400.0
300.0f -
300.0fF
200.0f
200.0
100, 04 = o XEw
)))) - - i) . . . t(s)
0.000 0.001 0.002 0.003 0.004 0.005 0.0e+00 1.0e-03 2.0e-03 3.0e-03 4.0e-03 5.0e-03 G,0e-03

Figure 2.9: Temperature vs. time for VSS simulations, using 50% Ar and 50% He
(left) and 90% Ar and 10% He (right)

The final box test for the VSS model used argon and helium in different concen-
trations, as shown in Table 2.3. Results were in excellent agreement with SMILE, as
shown in Figure 2.9 (right). These same parameters were used for a simulation of
the hypersonic cylinder flow. Results for Hawk and SMILE simulations are shown in

Figures 2.10 and 2.11.

2.4.4 Larsen-Borgnakke

The Larsen-Borgnakke model of energy exchange is used to describe internal en-
ergy modes for rotation and vibration [16]. Relative translational and internal post-
collision energies of colliding particles are assumed to be distributed according to
equilibrium distribution functions.

The model associates with each species a number of atoms n, and a charac-

23

Figure 2.10: Hawk VSS Argon Density

Figure 2.11: SMILE VSS Argon Density

teristic vibrational temperature ©, , and with each particle, rotational energy F,
and vibrational energy E,. Rota- tional and vibrational energies are assumed to be
continuous. The current work considers two types of energy exchange, translational-
rotational (TR) and translational-rotational-vibrational (TRV). Each collision has
some probability ¢g of a TR exchange and some (smaller)probability ¢y of a TRV
exchange.

It is first necessary to characterize the number of degrees of freedom in each of the
energy modes. Relative translational energy has 3 degrees of freedom. For rotational
energy, the number of degrees of freedom ¢, is a function of the number of atoms, ng,
given by,

U Hge=l
ET' . 2 Py, 2 (222)
3 By 23

The number of effective vibrational degrees of freedom can be derived from the

simple harmonic oscillator (SHO) approximation. Vibrational degrees of freedom

are therefore a function of the local temperature, 7', and the species’ characteristic

24

vibrational temperature ©,, given by,

20,/T Na(ng — 1)

& = o 1 % 5 : (2.23)

When a particle is first injected into the domain, whether by initial conditions,
inflow, or surface emission, its initial rotational and vibrational energies must be
computed. These values are sampled from the equilibrium distribution function for
the specified temperature 7. Internal energies, both rotational, F, and vibrational,
E,, as functions of degrees of freedom, &, and &,, are computed as follows. If the
number of degrees of freedom is less than or equal to two, the internal energy can be

computed using a single random number R,
E=—In(R)%L ¢<2 (2.24)

If the number of degrees of freedom is greater than two, internal energy is sampled
from the distribution function,

£/2—1 IoYIY
J(E)=tgm (&) e >0 (2.25)

using the acceptance-rejection method.

The two mechanisms for exchange of internal energy are between translational
and rotational modes (TR), and between translational, rotational, and vibrational
modes (TRV). These redistributions take place according to the equilibrium energy

distribution function for a specified number of degrees of freedom, given by,

f(E) 1 (FE)5/2_1 —E/kT (2 26)

= — e i
I'(&/2) \kT ’

where f(F) is the probability of the occurrence of energy F, £ is the number of degrees

of freedom, & is the Boltzmann constant, and 7" is the temperature. For an exchange

between two modes A and B, with respective degrees of freedom €4 and &g, the joint

distribution function is,

—(EA+ER)/kT E £a/2—1 E Ep/2—1
f(Ea, Ep) = — (—4) (—B—> : (2.27)
[(€a/2)1(E/2) \KT kT
This can be written in terms of the total energy, E, = E4 + Ep,
—E¢/kT E, — Fa\6A/271 /N é8/2-1
f(BEp) = —— (: B) (i) . (2.28)
F(E/2T(Es/2) \ kT KT

Acceptance-rejection sampling of this distribution yields Ep, from which £, = E, —
Eg can be computed.

Once a collision is selected to occur, exchanges may take place between trans-
lational, rotational, and vibrational energy modes. This is typically achieved by
specifying a probability that TR exchange occurs, ¢r, and a probability that TRV
exchange occurs, ¢y. These probabilities can also be computed as functions of species
parameters and the local translational temperature [61, 76].

A TR exchange is performed as follows. The total collision energy to be redis-
tributed is the sum of translational and rotational energies, £, = E, + E,, where
E, = E/*+ E? is the sum of the rotational energies of the two colliding particles. The
first step in the exchange is to distribute the collision energy between translational
and rotational energy modes. After checking the relative velocity in a collision, the
distribution function is biased, so the number of relative translational degrees of free-
dom must be taken as § = 4—2«a. The number of rotational degrees of freedom is the
sum of rotational degrees of freedom for the two colliding particles, & = £4+¢2. The
total collision energy is therefore first redistributed between & and &,, respectively.

The rotational energy is then redistributed between the two particles with ro-
tational degrees of freedom £* and &P, as described above, yielding E# and EB
respectively. The post- collision relative velocity, ¢', is then computed from the post-

collision translational energy, £y, using the reduced mass of the collision, m,,
l 2Et

— _ 2.9
g oo (2.29)

26
In a TRV exchange, the total collision energy is F, = E, + E;, where E, is the
translational energy and F; is the internal energy. The internal energy is in the
sum of the internal energies of the two particles, F;, = E# + EP. The internal
energy of a particle is the sum of rotational and vibrational energies, E = E4 +
BA,

A A B
£t7€i7 i iBa 71-47 ?7 v?andg’v'

Similarly, the number of degrees of freedom in the various energy modes are,

The total collision energy, F., is first distributed between translational and internal
modes, using & and &;, to obtain F, and E;. The translational energy F, is used to
compute the post-collision relative velocity, as described above. The internal energy,
E;, is distributed between the two particles, using degrees of freedom &' and €7,
to obtain E and EP, respectively. The internal energy of particle A, EA, is then
distributed between rotational and vibrational modes, with degrees of freedom &
and &2, to obtain rotational and vibrational energies, 4 and E#4 respectively. The
internal energy for particle B is similarly distributed between FP and EZ.

The translational temperature of a species, T}, is calculated with,

m(vZ —7?)

=Y 2.
T, m (2.30)

The rotational temperature, 7,, si similarly computed from the average rotational

energy, I, using, _
2F,
r kfr "

The vibrational temperature, T, is computed using the characteristic vibrational

(2.31)

temperature, ©,, and the average vibrational energy, E,,,

O,
T, = m%—) (2.32)

The total temperature, 7', can then be computed using,

T — ftﬂ + gTTT + §YJTU

§ 1616 (2:33)

27
where {; = 3 is the number of translational degrees of [reedom.
A series of tests was performed to validate this implementation of the Larsen-
Borgnakke energy exchange model. These were designed to verify correct equilib-
rium conditions, as well as translational-rotational (TR) and translational-rotational-

vibrational (TRV) relaxation rates. These tests were performed for a uniform box

with specular walls.

1000 : v . . : : : : L6090.4: T T T T T T T
™ T 'i Hawk Translational ——
u ei e Hawk Rotational ——-
Rotat al niek
! n:):::::r’:a‘l ° Y Hawk Vibrational ——
™ Rotatisnal + § DSME-0 slational ©
300 R 8000 [\, LSMC-00 Rotationzl + |
P
T { R
S i e e O I
500 T g e 6000 (RS e
o IS e g v
X s
@ 2 12‘ g
i P = o
100 |- Vi 3 4000 |- /
A
4 3
/
y 7
7 /
200 | - 2000 |- /
/ /
% L s L . 9 . 1 L
0 10 20 30 0 50 0 70 80 90 [} 50 100 150 200 250 300 350 100
Tume (3)

Time (a)

Figure 2.12: Temperature vs. time for simulations with TR relaxation (left) and TRV
relaxation (right)

The first test was for N2 at equilibrium in a box, with translational, rotational,
and vibrational temperatures equal to 10,000K, density 1.83 x 10'® particles per cubic
meter, constant TR exchange probability ¢z = 0.2, and constant TRV exchange
probability ¢y = 0.02. The system stayed in equilibrium for o = 0,0.5 and 0.24.

The next case considered relaxation between translational and rotational modes
for @« = 0.24. Initially, the translational temperature was 1000K, the rotational
temperature 0K, and the vibra- tional temperature 0K. The TR exchange probability
was constant at ¢p = 0.2, and no TRV exchanges took place (¢y = 0). The results
for Hawk and SMILE agree as shown in Figure 2.12.

The next case considered relaxation between translational, rotational, and vibra-
tional modes, with parameters as shown in Table 2.4.

The next case was a mixture of nitrogen and oxygen, each with internal degrees

of freedom, and with TR and TRV exchange probabilities as specified in Table 2.5.

28

Table 2.4: Larsen-Borgnakke TR Validation Parameters

Species N2
« 0.24
I3 0.735
Or 0.2
ov 0.02
O, 3390 K
Tres 273 K
Oref 5.3068 x 10~ m?
T; 10000 K
T, 5000 K
T, 0K

As shown in Figure 2.12 (right), the agreement between results was excellent.

Table 2.5: Larsen-Borgnakke TRV Validation Parameters

Species N2-N2 N2-02 02-02
« 0.24 0.255 0.27
I} 0.735 0.725 0.7143
hline ¢ 0.2 0.2 0.2
ov 0.02 0.02 0.02
0, 3390 K 2256 K
Trey 273 K 273 K 273 K
Oref 5.3068 x 1071 | 5.3069 x 10~ | 5.307 x 10~ 1°
Fraction 0.5 0.5
T, 10000 K 15000 K
T, 5000 K 7500 K
T, 0K 0K

The final Larsen-Borgnakke test was for supersonic flow around the cylinder. A
mixture of oxygen and nitrogen was used, with the same collision parameters as in
Table 2.5. Figures 2.13 and 2.14 show trans- lational temperature flow fields for Hawk
and SMILE, respectively. These figures show excellent agreement between the two
simulations.

In order to quantitatively evaluate the agreement between the two results, tem-

peratures in each of the three modes (translational, rotational, and vibrational) were

Figure 2.14: SMILE Larsen-Borgnakke Argon Density

sampled along the centerline upstream of the cylinder. Figure 2.15 shows these val-
ues for both Hawk and SMILE. The two simulation results agree to within statistical

scatter.

30

12000.0

—®= Tvib (SMILE-0D)
= Trot (SMILE-0D)
=8-Ttrn (SMILE-0D)
¢ Tvib (Hawk)
@ Trot (Hawk)
® Ttrn (Hawk)

10000. 0}

8000.

6000.

4000. 07

2000. 0

Figure 2.15: Temperature profiles along the centerline for SMILE (lines) and Hawk

(points)

31
2.5 Boundary Models

The process of configuring a simulation involves specifying physical boundary condi-
tions for each of the boundaries. These conditions determine the nature of interac-
tlons between simulated particles and the boundary surfaces. The three fundamental
surface types are inflow, outflow, and solid. Inflow surfaces are used for inlet and up-
stream conditions, outflow surfaces are used for exhaust or downstream conditions,
and solid surfaces are used for physical objects in the domain, such as reactor walls

or aircraft wings.

2.5.1 Inflow Surfaces

The inflow surface model is the primary mechanism for introducing mass, momentum
and energy into a neutral flow simulation. Consider a cell face on this surface, with
area A, unit normal 7, and unit tangential vectors ¢ and @, as shown in Figure 2.16.
Assume that this face is designated to have inflow of density n, at temperature 7T,
with stream velocity ¢ Let 6 be the angle between the face normal and the stream

velocity and 3 the inverse of the most probable velocity, 8 = si7, Where m is the

particle mass and k is the Boltzmann constant.

Figure 2.16: Particle inflow vectors

The molecular speed ratio, s, is given by s = |c]3. The particle flux ® can be

computed, using,

@ = e~ (030 4 g\ /7 cos B(1 + erf(s cos B)). (2.34)

32
"The number of simulated particles crossing the face, per unit area, per unit time,

j, is then,
Pdn

= 2w,/

where wy, is the ratio of real to simulated particles. The average number of simulated

(2.35)

particles, NV, to be injected during timestep At is given by,

N = jAAt, (2.36)

"The thermal velocity of an injected particle, ¥, is computed as the sum of normal
and tangential thermal velocities, v;, and o}, respectively. Let ¢, = ¢-7 be the normal
component of the stream velocity, and let s, = ¢,3. A dimensionless speed, u, is
sampled, using the acceptance-rejection method, from the Maxwellian distribution

function,

f(u) = ue=(5n)’, (2.37)

The dimensionless speed is then converted to the normal thermal speed, v, = %,
and the normal component of the thermal velocity is calculated as, v, = v,n. In order
to determine the tangential component of the thermal speed, vy, a random thermal

speed, v, is computed for the specified temperature, 7T, using,

kT
o= R, (2.38)
m

where R is a random number. Let ¢ represent the angle that the tangential thermal
velocity will make with respect to the tangential vector 4. This is computed using
¢ = 2mRy, where Ry is another random number. The thermal components of the

tangential thermal velocity, v;, and v;, are given by
Uy = 10 Sin @ (2.39)

Uy = DUy COS . (2.40)

33

The thermal tangential velocity, vy, is the sum of these two components,
Ut = Uy + Uy (2.41)

The total thermal velocity, v, is then the sum of its normal and tangential components,
¥ = v, + v;, and the total inflow velocity, @, is the sum of stream and thermal
components, W = ¢ + .

Once the velocity of an inflowing particle has been determined, its initial position
1s sclected as a random point on the boundary face, and it is moved for a random
fraction of the global timestep At. Counts of outflowing particles may be kept in

order to compute surface flux properties.

2.5.2 Outflow Surfaces

Outflow surfaces can be used to model the downstream conditions for an acrospace

simulation, or the exhaust port of a plasma reactor. Particles that hit outflow surfaces

are simply removed from the simulation.

2.5.3 Solid Surfaces

A solid surface is one through which particles cannot pass. These are typically used
to model rigid objects, such as aircraft wings or walls of a reactor. A particle that
hits a solid surface may leave the surface with a velocity determined by the surface
temperature via diffuse reflection, or may bounce elastically via specular reflection.
Surfaces may also be specified as in between specular and diffuse, with a probability

of each. Surface reactions may also take place on solid surfaces.

Accommodating Surfaces

A particles colliding with an accommodating surface acquires the surface tempera-
ture. Consider a particle of mass m, colliding with a accommodating surface with

temperature 7', surface normal 7, and tangential unit vectors, % and 4. The most

34

probable velocity, v,,,, of a particle of mass m at temperature 7T is given by,
—_— (2.42)

The normal component of the post-collision diffuse velocity, vy, is obtained using this

Up, = Ump\/ — In R (2.43)

The tangential speed, v, is computed similarly, using a second random number Rs,

Ut = Umpn/ — In RQ. (244)

In order to distribute the velocity uniformly in the tangential direction, a third random

and a random number R,

number, H3, is used to compute the tangential angle, 6,
0; = 27 R;. (2.45)

The tangential direction ¢ is computed from the tangential angle and the two tangen-

tial vectors o and 7,

t = dsin, + ¥ cosb,. (2.46)

The tangential velocity of the particle,s;, is obtained from the tangential speed and

direction using
Uy = vt (2.47)

Finally, the post-reflection velocity of the particle is determined by adding normal

and tangential components,
Uy = U3 + Up,. (2.48)
Specular Surfaces

A particle arriving at a specular surface will leave with angle of reflection equal to

the angle of incidence. The component of the velocity in the direction of the surface

35
normal 7 is completely reversed, while the other two components are unchanged. For
an incoming velocity vy, the exit velocity, v;, is given by,

— ~

vy = Up — 2(U - A1)

(2.49)

3

2.6 Convergence Considerations

As with any numerical simulation, it is important to ensure convergence of the al-
gorithm. The total amount of simulation time required for a steady-state simulation
to converge is governed by the acoustic time: the amount of time that it takes for
thermal disturbances to traverse the entire width of the simulated region. For simple
simulations, several acoustic periods may be sufficient for a simulation’s macroscopic
parameters to converge to their steady-state values. A predictive model for this pro-
cess is discussed in Section 4.1.1.

Increasing the level of complexity of the simulation may increase the amount of
time required for convergence. For example, the use of adaptive boundary conditions,
as described in Section 3.2.1, requires the simulation to repeatedly converge after small
changes in surface properties. For this type of simulation, tens or hundreds of acoustic

periods may be required for final simulation convergence.

2.7 Accuracy Considerations

One advantage of the DSMC method is that it allows for straightforward estimation
of the error of a solution. Once steady state has been achieved, several statistically
independent solutions can be obtained by averaging macroscopic parameters over sev-
eral thousand steps, resetting statistics, and then averaging again. The average of
several different solutions gives a good estimate at the “true” solution, and the stan-
dard deviation of the solutions provides an estimate of the accuracy of the solution.

Consider a simulation for which a macroscopic parameter & is sampled at J different

36

times. The best estimate of £ is the average value,

_ 12
§= Zfi- (2.50)

3

<

Similarly, the estimated error in £, A£, is given by the standard deviation of these

values,

Ag=——> (&-8)" (251)

7E+20
6.8E+20 E
6.6E+20 F
6.4E+20 |

6.2E+20 F

6E+20 |

Density (m™~)

5.8E+20 F
5.66+20 |

5.4E+20 |

5.2E+20 [

1 L L L L 1 L s L i 1

E L
5E+20 o o=

0.4
Position {m)

Figure 2.17: Particle density along a horizontal line above the wafer, showing esti-
mated errors

The result of applying this procedure to a large-scale GEC simulation is shown
in Figure 2.17. In this case, the macroscopic parameter £ is particle density, n, and
J = 5 samples were used. The mean value of density, 7, is plotted as a function of
position. (Here, position is distance measured horizontally across the reactor, above
the wafer.) At each point, error bars are drawn with sizes given by An. The larger
errors in this line correspond to regions of small grid cells, few particles, and high

statistical scatter.

2.8 Related Work

Several different gridding techniques have been used for DSMC computations. While

all methods use grid cells for collision calculations, methods differ in the relations

37

between grid cells and boundary surfaces. For simple box-like geometries, a Cartesian,
or axially aligned grid, can be used, with its surfaces representing the boundary
surfaces [15, 104]. Using this type of grid, particle transport can be performed as two
separate steps, movement and indexing. Particle destinations in space are quickly
computed from their initial positions and velocities, and then particles are indexed
into cells according to their final positions. Axially aligned grids, however, are unable
to represent curved geometries directly.

For simulations involving trivial geometries, straight trajectories, and Cartesian
grids, particle transport and indexing are simple and fast [15, 66, 73, 87]. A particle’s
final position is quickly computed from its initial position and velocity, and the final
position can be indexed into the grid with a small number of floating point operations.
Boundary interactions are discovered by comparing the particle’s final position with
the boundaries of the domain, another fast and simple operation. The computational
cost of this operation is not a function of the length of the particle’s trajectory.

For straight trajectories in simple geometries [106], it is possible to determine
whether a particle’s trajectory intersects with a boundary surface purely by consid-
ering its starting and ending positions. For curved trajectories, however, this is not
possible. For parabolic trajectories, such as would result from a constant electric or
gravitational field, the particle acceleration must also be considered [80]. Boundary
intersections for trajectories that are even more complex may have to be considered
in short segments. In this case, the cost of the algorithm depends on the length and
curvature of the trajectory. If acceleration is a local property, and computed sepa-
rately for each grid cell (as would be the case for a DSMC simulation coupled with an
electric field solver), a particle’s trajectory must be recomputed for each cell through
which it passes. In this case, again, the cost depends on the length and complexity
of the trajectory.

For completely arbitrary geometries, it is necessary to check whether any of the
faces that the trajectory crosses represents a boundary surface. If a boundary surface
is crossed during the timestep, the trajectory must be updated accordingly. The

computational cost of this approach therefore depends on the number of faces (both

38
internal and boundary) that the particle crosses, and therefore the length of the
particle’s trajectory.

For non-Cartesian grids, including hexahedral [96] and tetrahedral grids [26, 80],
additional complexity results from the fact that a position in space cannot be trivially
indexed into the computational grid. Information relating spatial positions to grid
locations is only stored locally. Given a starting cell, position, and velocity, it is only
possible to determine the cell face through which the particle will exit the cell. If
this face represents a boundary surface, the boundary model can be employed. If
not, the particle can then pass through to the neighboring cell on the opposite side
of the face. Information about this next cell can then be retrieved, and this process
repcated until the final destination cell is found. The cost of this operation is also
determined by the number of faces through which the particle passes.

Structured hexahedral grid surfaces can be matched to boundary surfaces for mod-
erately complex geometries [74, 96]. For these grids, more sophisticated techniques,
such as coordinate-transformation[79] or ray tracing [96], must be used to determine
particle destinations within the grid. Unfortunately, hexahedral grids cannot be easily
generated automatically, nor can they be locally refined.

Only two techniques allow the use of automatically-generated grids for complex
geometries and local adaption of grid cells: ray-tracing on tetrahedral grids[26, 80]
and the decoupled-grid approach[46]. While mature techniques exist for automatic
generation, smoothing, and local refinement of unstructured tetrahedral grids for
extremely complex geometries, transport operations within these grids must be per-
formed using ray-tracing and are therefore computationally intensive. The decoupled-
grid approach, on the other hand, uses a Cartesian grid for collision computations,
and a triangular surface mesh for geometry representation. While the transport com-
putations in the decoupled-grid approach are more complex than those for simple
axially aligned geometries, they are generally faster than ray tracing on tetrahedral
grids.

For both of these approaches, more sophisticated techniques are required to cor-

rectly capture particle-surface interactions. While a particle’s destination may be

39
simply computed, it is necessary to ensure that the particle’s trajectory does not
cross any boundary surfaces during a timestep.

In the decoupled-grid approach [46, 47, 51, 52|, an axially aligned grid is used
for collision computations, and boundary surfaces are represented with separate data
structures. A set of triangular surface patches, for example, can be automatically
generated and used in place of the grid for boundary interactions. A hierarchical
octree structure can then be used for local, and even directional, refinement. The
computational cost of moving particles through an octree Cartesian grid, with ref-
erence to triangular surface element, is greater than that of moving particles in a
simple Cartesian grid, but potentially less than that of ray-tracing through a tetra-
hedral grid. The performance modeling techniques presented in subsequent chapters

apply equally well to this method of particle transport.

2.9 Summary

This chapter has introduced the DSMC method for the simulation of rarefied gas
flows. The algorithms associated with the numerical technique have been presented.
A series of validation tests for each of the collision models has been described. Issues
of accuracy, convergence, and validation have also been addressed. The following
chapters elaborate on the sequential algorithms, the concurrent DSMC technique,

and performance considerations for DSMC simulations.

40

Chapter 3 Sequential Algorithms

This chapter discusses a variety of novel optimizations for DSMC implementations
and extensions to the basic DSMC model. Optimizations are used to reduce the
amount of computational time required for sequential simulations, while extensions
to the technique are designed to improve the quality and accuracy of results for a given
amount of simulation time, or to enable the simulation of more complex physical and

chemical processes.

3.1 Model Optimizations

This section presents several optimizations to the basic DSMC algorithm as described
in Section 2.2. Each component of the model presents opportunities for sequential
optimization and tuning. Transport model optimizations revolve around fast deter-
mination of particle trajectories. Optimizations to the collision model reduce the
amount of overhead computation. Boundary model optimizations allow for fast in-
teractions between particles and surfaces. As with any Monte Carlo technique, many
pseudo-random numbers must be used, and the choice of pseudo-random number

generator can have a significant impact on the accuracy and speed of simulations.

3.1.1 Transport Model Optimizations

Particle transport in unstructured tetrahedral grids can be accelerated through the
use of inscribed spheres. For each grid cell, the cell center and radius of an inscribed
sphere can be computed. It can be quickly determined whether a particle’s final
position lies within the inscribed sphere of the starting cell. If so, the particle will
stay in the cell and no ray tracing computations are required. If not, the full ray

tracing algorithm must be used.

41

The effectiveness of this optimization was measured by conducting a series of
simulations of a box geometry, both with and without the use of inscribed spheres.
This grid was primarily composed of right tetrahedra (with 3 right angles), which are
common in automatically generated grids. Measurements showed that an average of
9.4% of the volume of the cell is contained in the inscribed sphere. Since the cost of
moving particles to points within the spheres is negligible compared to the cost of the
full ray-tracing algorithm, the speedup of the transport algorithm should be almost as
much as the fraction of the volume contained in the inscribed spheres. Timing tests
confirmed this, with measurements showing a 9% speedup of the transport algorithm.
The optimization was also extended to check the inscribed spheres of the neighboring
cells, but experiments showed that the cost of the additional tests was greater than
the time savings for the small fraction of particles found in the inscribed spheres of
neighboring cells.

The effect of cell shape on the sphere optimization was also observed in a simu-
lation with grid adaption activated. With all cells adapting, the typical cell shape
changed with each level of adaption, and the fraction of particles that moved inside

the spheres was seen to alternate between 7% and 10%.

3.1.2 Collision Model Optimizations

In the DSMC algorithm presented in Program 2.1, the transport and collision phases
are distinct. First, all of the particles in a cell are moved, and then all of the collisions
in the cell are computed. Because particles continuously move into and out of cells,
it is most convenient to use a linked-list data structure to associate cells with the
particles that they contain. The transport phase of a timestep is then a direct linked-
list traversal. The collision phase, however, requires random access to particles in
the cell. For this reason, collisions cannot be performed during a single traversal of
the linked-list of particles. The technique used for this study is to traverse the list
of particles, building an array of pointers to the particles and thereby allowing the

collision phase to access the particles directly.

42

In initial experiments involving non-reacting flows, it was possible to perform the
collision phase during the same traversal as the transport phase. All of the test-
collision pairs were computed and stored in a table. During the linked list traversal,
this table was consulted in order to determine if a particle must take part in a collision.

A one-pass timestep implemented in this manner has the advantages of speed and
efficiency, particularly when the fraction of colliding particles is small. Unfortunately,
this technique cannot be used for simulations involving reacting flows. When chemical
reactions take place in a cell, the number of particles of each species changes during
the collision process. Because the collision frequency is a function of the number of
particles present from each species, the number of test collisions and collision pairs
cannot be predicted a priori. It is therefore impossible to precompute a table of
colliding particles. For reacting flows, the implementation considered in this thesis
requires one traversal of the particle list per timestep, plus one additional traversal
for each reaction that takes place.

Profiling experiments showed that the amount of computation required for colli-
sions in flows involving multiple species, internal degrees of freedom, and chemical re-
actions is much greater than that required for single-species, monatomic, non-reacting
simulations. An important optimization was therefore to use a simple streamlined
version of the collision algorithm for simulations that did no not involve multiple
species or chemical reactions. The result was to reduce the time required for the

collision phase of the algorithm by about 20%.

3.1.3 Boundary Model Optimization

Intersections between particle trajectories and boundary surfaces are detected during
the transport phase of a DSMC simulation, therefore the boundary model was imple-
mented as part of the transport phase. Because the fraction of particles that interact
with boundary surfaces during any timestep is small (typically less than 10%), and
the operations required for boundary interaction are simple, the boundary model does

not contribute significantly to the total timestep time.

43

3.1.4 Pseudo-Random Number Generation

Pseudo-random numbers are used in many parts of the DSMC method. The most
common instance is for collision calculations, for example when determining whether
a test collision is a real collision (Section 2.4) and for computing post-collision relative
velocities (Section 2.4.3). Pseudo-random numbers are also used extensively in the
boundary models, for particle inflow (Section 2.5.1) and accommodating surfaces
(Sect 2.5.3).

As with any Monte Carlo method, the selection of a pseudo-random number gener-
ator can have significant effects on the speed and accuracy of the simulation. The use
of a generator with too short a period or poor equidistribution properties can result
in non-physical results. On the other hand, the use of a computationally-expensive
generator can dramatically increase simulation time.

For the purposes of this study, five generators were considered: ran2, from Nu-
merical Recipes in C [78]; t£t800 and MT19937B by Matsumoto and Nishimura [64];
random2 by Park and Miller [78]; and slaran from LAPACK [28]. These genera-
tors were compared in terms of period and equidistribution properties (where avail-
able), and execution times. Execution times were measured by generating ten million
pseudo-random numbers on an SGI Power Challenge. The results were normalized by
the fastest time. The results are shown in Table 3.1. The fastest time was for tt800,
followed closely by MT19937B, which also had the longest period and best equidis-
tribution properties. These results show that there can be as much as a four-fold

difference in execution times between generators.

Table 3.1: Pseudo-Random Number Generator Performance

} Algorithm H Period l Equdistribution [Time—l

ran2 218 N/A | 3.91

tt800 2800 25| 1.00
MT19937B || 219937 623 | 1.03
random?2 N/A N/A | 1.90
slaran N/A N/A| 1.84

44

The generator with the longest period, MT19937B, works as follows. It uses a simple
initialization routine to fill a table with intermediate random values. One random
number is computed from each entry in the table, and then a new table is recomputed
from the old table. While the recalculation of this table is computationally intensive,
it must only be done infrequently. Computing random numbers from table entries,
however, is a very fast operation. MT19937B was therefore modified to perform the
table extraction inline, requiring a function call only for recomputing the table. This
approach dramatically reduced the overhead time required for pseudo-random number
generation, increasing the speed of MT19937B by a further 20%. The size of the table
can also be adjusted to obtain a suitable balance between memory usage and the cost
of recomputing the table. In practice, MT19937B has proven to be a fast and reliable

generator.

With only minor modifications, it was converted to a thread-safe implementation.

3.2 Model Extensions

Extensions to the basic DSMC technique described in Chapter 2 improve the accuracy
or efficiency of simulations and allow for the simulation of more sophisticated physical
and chemical processes. Adaptive boundary conditions are used in situations where
actual boundary conditions cannot be accurately measured or predicted. Adjustable
particle weights facilitate the simulation of systems with large gradients in particle
densities or species concentrations. Adaptive gridding and result collection allow for

accurate and efficient simulation of complex geometries.

3.2.1 Adaptive Boundary Conditions

Adaptive boundary conditions are used in situations where actual boundary condi-
tions cannot be accurately measured or predicted. The primary application of this
technique is the simulation of plasma reactors, as described in Section 1.2. In these
cases, the pressure at one position in the reactor is known, but the exact nature of the

exhaust boundary condition cannot be accurately measured. The properties of the

45
outflow surface are related to the pumping rate, or exhaust pressure, of the reactor.
Changing the reflectivity on a surface affects the pressure throughout a reactor. It
is therefore useful to adaptively adjust the outflow boundary condition in order to
maintain the desired pressure in the reactor. This approach assumes that the tar-
get pressure can be achieved at some reflectivity and that measured pressure is a
monotonic function of the surface reflectivity.

Outflow surfaces are implemented as partially-reflective. The reflectivity, r, spec-
ifies the probability that a particle hitting the surface will be specularly reflected
back into the domain. Particles that are not reflected exit the simulation. Consider
a given a probe position p, an initial surface reflectivity, rq, a target pressure, P,
and an estimate of alpha = %, the rate at which changes in reflectivity R affect
the measured pressure P,,. After s steps, the pressure at g, P, is measured and the

reflectivity is updated using,

Rt+s:Rt+a(Pm_Pt)- (31)

If o and the number of steps between updating the reflectivity, s, are held constant,
poor choices of « render this algorithm unsuitable. Too small a value of |« will cause
the system to take a long time to converge on the target value; too large a value of
la| will make the system unstable, causing large fluctuations in the reflectivity.

One approach is to adaptively change «, increasing its magnitude when the system
is far from the target pressure, and decreasing its magnitude when near the target
pressure. This method was studied in the context of reactor simulations, but it was
found to be extremely sensitive to the statistical noise inherent in intermediate DSMC
solutions. Using a large value of s yielded a long convergence time, while using a small
value of s limited the accuracy of the solution.

Experimental study showed that a more effective approach is to adapt the number
of timesteps between updating the reflectivity, s. Initially, a small value of s was used,
so that the reflectivity was updated frequently and the system can rapidly approached

the target pressure. When the measured pressure passed the target pressure and the

46
error changed sign, s is increased by a factor 3y, thereby increasing the number of
steps over which the pressure was averaged, and decreasing the noise in the measured
pressure. If the error retained the same sign, s was decreased by a factor §;, thereby
accelerating the convergence rate. Empirical studies have found the values o =

~0.02Pa™", 59 = 5, B; = 2, and (B, = 0.9 to be very effective for several geometries

and target pressures.

Figure 3.1: Probe Pressure as a function of simulation time

The results of applying this technique to the simulation of a plasma reactor are
shown in Figure 3.1, which shows probe pressure and target pressure as functions
of simulated time. During the first 0.05 seconds, oscillations well above and below
the target pressure can be observed, converging to near the target pressure by 0.05
seconds. Spikes in probe pressure after this time correspond to timesteps during
which macroscopic parameters were reset: after resetting parameters, the number of
samples used for computing pressure is very small, and the pressure measurements
thus suffer from statistical scatter. As the number of steps between changing the
reflectivity changes, the statistical scatter is dampened out. By 0.15 seconds into the
simulation, the pressure has converged to the target pressure.

While this approach has been developed for adapting boundary reflectivity for
obtaining a desired pressure, the same approach could be used for other purposes as
well. Some possibilities include adapting inflow temperature to obtain a desired wafer

temperature, and adapting freestream flow speed past a spacecraft in order to obtain

47

a desired shock wave thickness.

3.2.2 Adjustable Particle Weights

The basic DSMC algorithm, as described in Chapter 2, assumes that each particle in
the domain represents the same number of real particles. For a number of applications,
however, it can be useful for the weight of a particle, or the number of real particles
that it represents, to vary as a function of position, time, and chemical species.

The accuracy and quality of a solution in any portion of the grid is determined
by the number of particles per cell. In some situations, smoothness and accuracy are
more important in some parts of the domain than in others. In a spacecraft reentry
calculation, for example, it is important to have good smoothness in the region of
the bow shock, but less important in regions far away from the body. Similarly, in
a plasma reactor simulation, smooth results may be more important near the wafer
than in the exhaust or inflow regions. This problem is particularly important in
axisymmetric calculations where the volume of cells near the axis of rotation becomes
very small, while the behavior in this region is critical to the entire simulation.

An effective approach to addressing these constraints is to use different particle
weights in different parts of the grid, or spatially-varying particle weights. In these
cases, two weights are used, a global weight, w,, and a local weight, w;, for each
region 7. The particle weight used for collision and boundary condition calculations
is the product of these two, w, = wyw;. A complication arises when particles move
between adjacent cells with different local weights. When a particle moves to a cell
with half the weight of its starting cell, it must be replicated, or cloned: a new particle
is introduced with the same position and velocity as the original particle. When a
particle moves to a cell with twice the weight of its starting cell, it must be removed
from the domain with a 50% probability. In general, a particle moving from a region
with local weight w; to a region with local weight w, must become, on average, w; /w,
particles.

The disadvantage of this procedure is that the relative velocity between two cloned

48
particles is zero, which biases the collision process. In the extreme case, if all particles
in a cell are clones of a single incoming particle, the relative velocity between any pair
of particles will be zero, and no collisions will occur. It is therefore more accurate
to use a number of transitions with small changes in local weights than to use one
transition with a large local weight change. When it is necessary to include large
weight changes in short distances, it may be effective to perturb the velocities of cloned
particles by a random thermal component determined by the local cell temperature.

For steady-state simulations, these complexities can be avoided by using different
timesteps in regions with different particle weights. No particle cloning or deletion is
necessary when the particle flux is conserved. The particle flux is given by the ratio
of the local particle weight to the local timestep. The constraint can therefore be
written, wy/At; = we/Aty. This approach, however is inconsistent with the concept
of a global system time, and cannot be used for unsteady calculations or simulations
using adaptive boundary conditions such as those described in Section 3.2.1.

The other situation in which adjustable particle weights may be beneficial is the
simulation of systems involving large differences in concentration of different gas
species, or when trace species are present. In some simulations, the flow of trace
species through the system is much more important than the flow of the background
species. This is the case for some reentry calculations, for which the production of
small quantities nitric oxide (NO) determines the radiative emissions that may be
the desired simulation results. It is also true for ions in plasma simulations. If trace
specles are given the same weights as background species, simulations with a suffi-
cient number of trace particles to produce reasonably smooth results will require a
prohibitively large number of background particles.

One approach for efficiently providing accurate results for trace species is to use
species-dependent particle weights[13]. In this case, a particle’s weight for boundary
and collision processes is given by the global weight, w,, local weight, w;, and species
weight, w,, w, = w,w,ws. The number of test collisions between two species is then
computed as if both species had the greater weight, and the post-collision relative

velocity of the particle with lower weight is only updated with a probability given

49

by the ratio of the lesser weight to the greater weight. Because this technique only
conserves energy on average, it can introduce random walk-type errors [21]. A more
sophisticated technique that conserves energy more closely has been presented in [21].

A final use for varying particle weights is for the purpose of rapid convergence.
At the beginning of a simulation, a small number of particles may be used in order
to rapidly find a coarse solution. Each particle can then be replicated, and with the
greater number particles, a more accurate solution can be found. This procedure
can be repeated several times, until a further increase in the number of particles
has no effect on macroscopic properties. During the averaging phase of a steady-state
simulation, the number of particles can be further increased in order to obtain smooth

results with many particles per cell.

3.2.3 Grid Adaption

In the DSMC method, error is related to the ratio of the mean free path to the cell
size. If the cell size is too large, steep gradients cannot be reproduced. If the cell size
is too small, computational resources are wasted, and statistical scatter is increased.
The mean free path is a macroscopic parameter computed during a simulation. Since
1t cannot be determined a priori, it is impossible to generate an optimal grid before
simulations have been conducted.

The implementation considered for this study uses an adaptive gridding technique
to ensure simulation accuracy without wasting cells. The initial computational grid
1s generated so as to accurately define the geometry with the largest cells possible.
Periodically during the simulation, the ratio of mean free path to cell size, K = \/I
is computed in each cell. Cells with K too small are marked for adaption so long as
they contain a sufficient number of particles.

The adaption of tetrahedral grid cells is performed using standard methods drawn
from finite element analysis [53], as shown schematically in Figure 3.2. When a cell
is marked for adaption, an edge in that cell is selected. A new point is introduced

along this edge, each cell that shares the edge is split into two new cells, and each

o0

Two Original Cells Four New Cells
dge marked for adaption

New Faces

New Point

Figure 3.2: Local adaption of tetrahedral grid cells, shown in two dimensions

face that shares the edge is split into two new faces. Repeated adaption of the same
edges would result in increasingly skewed grid cells. By always selecting the longest
edge in a cell for adaption, however, repeated adaption is not likely to increase grid

skew.

Figure 3.3: Grid for the inflow port of the GEC grid before (left) and after (right)
grid adaption

Figure 3.3 (left) shows the grid for a small port in the GEC reactor (See Section
1.2) that is configured with an inflow surface at its end (top right). The particle

density in these cells is relatively high, therefore the local mean free path is shorter

51

than the typical cell size and adaption is necessary. Figure 3.3 (right) shows the same
section of the grid after several iterations of the adaption process. Note a decrease in
the average cell size, and therefore an increase in the number of cells after adaption

has taken place.

Figure 3.4: Grid adaption level in the GEC Reference Cell Reactor

Figure 3.4 shows a horizontal cut through the center of the reactor, with cells are
colored according to their adaption history. Regions that have not been adapted are
shown in dark blue, while brighter colors indicate increased levels of adaption. Cells
shown in red are the result of 5 levels of adaption, and are therefore 32 times smaller
than the original grid cells from which they were derived. The port in the upper right
is the inflow port pictured in the previous figures. Note that the inflow port has been
extensively adapted, while the other similar ports have only been adapted through
one or two levels. Elsewhere in the reactor, the density is fairly uniform, so grid cells
have adapted to be of roughly uniform size. It is clear from these pictures that such a
complicated adaption pattern could not be easily generated by hand. Automatic grid
generation and adaption therefore appreciably reduce the overall time to complete

these simulations.

52
3.2.4 Adaptive Result Collection

In tetrahedral simulations involving complex geometries, it is sometimes possible to
have regions of the grid with cell sizes that are much smaller than required by the
collision algorithm. In these areas, the number of particles per grid cell is small and
results suffer from a high degree of statistical scatter. This can also have an interesting
effect on computed average particle speed. If the average, or stream, particle speed
in one of these areas is small compared to the thermal speed, any computed speed
will be purely due to statistical fluctuations. Since the fluctuations may be higher in
regions of unnecessarily small grid cells, speed results in these areas may be incorrectly
appear to be higher than speeds in other areas.

This problem can be addressed with an adaptive technique for gathering statistics.
The principle behind this technique is that if two adjacent cells both have too few
particles for good statistics, there can be no statistically significant difference between
their macroscopic parameters. If the two cells combine their particles for the purpose
of statistics collection, and both use the same resulting average, smoother results
can be obtained without loss of accuracy. Note that cells are only combined for the
purpose of results calculation; collisions and transport for the cells can take place as
before.

The algorithm works as follows. Each cell initially belongs to a results group that
contains just one cell. Any cell with a results group that has fewer than a specified
number of particles (10, for example) is marked for merging. A marked cell is merged
with the closest of its neighboring cells that is also marked. A hierarchy of results
groups is formed. Using the hierarchy, it is possible to reverse the merges. For
example, if particle doubling takes place and some cells then have enough particles
on their own, they may decide to break off from their neighbors.

The effectiveness of this technique was demonstrated using simulations of the GEC
reactor. Figures 3.5 and 3.6 each show scalar values along a line above the wafer in the
GEC cell. Each plot shows the results using the original statistics method as well as

the results using adaptive statistics. In Figure 3.5, the original results show two dips

Figure 3.5: Number of partficles used for calculating

Average Pariice Count

Qrigingl —--
Smoothed —--

0z 026

and without adaptive results collection

Pressure (Pa)

25 |-

T
Qnginnt -
Smaothed —-

0.3
Pasition (im)

03
Pasition (i)

Spees (mis)

macroscopic parameters with

5 |-

T ¥ T T T T
4 Orignl ——
/g/ | Smoothed --—

0
LA}

L
0.15

0z 0.3
Position (in)

Figure 3.6: Pressure (left) and speed (right) along lines through a reactor simulation,
showing results both with and without adaptive results collection

in particle count, corresponding to opposite edges of the wafer. At two points, the

particle count goes all the way to zero. In the adapted results, however, particle count

is always greater than zero, always greater than the original results, and sometimes

by a significant amount. The effect of increased particle count is shown in Figures 3.6

(left and right). These show much smoother results after adaption, with about 50%

less fluctuation in most cases. In Figure 3.6 (right) speed was close to zero where

the average particle count was zero, and was very high in the regions of low particle

count. After adaption, the speed was fairly uniform across the wafer, without large

spikes or drops.

54
3.3 Software Engineering Considerations

As with any large software projects, software engineering considerations are important
for DSMC implementations. This section presents some specific techniques for the
engineering of DSMC implementations designed for large-scale simulations of complex
geometries.

The most important consideration is software modularity. Components of an
implementation must be distinct and their interfaces clearly defined. Transport, col-
lision, and boundary models must also be isolated. With the use of modular com-
ponents of the collision phase of the algorithm, it is easy to implement new collision
models without impact on the other phases of the algorithm. A modular transport
phase makes it possible to quickly switch between different gridding systems where
necessary. The addition of new boundary models can also be achieved without mod-
ification to the collision and transport models.

The data structures in a DSMC implementation lend themselves to object orien-
tation. The key objects are particles, grid cells, cell faces, and partitions. Particle
properties include mass, position, velocity, and internal energy, and particle meth-
ods include transport and collisions. Cell structures include lists of particles and a
set of macroscopic parameters. Operations on cells include transport and collision
of contained particles, as well as grid adaption and the calculation of macroscopic
properties. Cell face properties include temperature and boundary type, an cell faces
can interact with particles or be split during grid adaption.

Figure 3.7 shows the layers in the software hierarchy used for the present work.
The two lowest-level modules are the Structures Library and the Scalable Concurrent
Programming (SCP) Library. The Structures Library is used for the manipulation of
hash tables and for vector algebra. The SCP Library is used for file I/O. The Grid
Library maintains geometrical and grid information using the hash tables from the
Structures Library, and performs file I/O using the SCP Library. The application, in
turn, uses the grid manipulation routines from the Grid Library, file I/O routines from

the SCP Library, and the vector and hash operations from the Structures Library.

Figure 3.7: Layering of Software Components
3.4 Related Work

The optimization of DSMC simulations for workstation architectures is presented in
[26]. Efficient processor utilization is demonstrated using cell-based particle lists,
similar to those in the current work, in contrast to performance obtained using tradi-
tional global particle arrays. While global particle arrays are appropriate for vector
computers, the resulting random access of array elements yields poor cache utiliza-
tion. In this implementation, spatially-varying particle weights and particle cloning
are used for axisymmetric simulations. Quasi-interactive control of simulations is
achieved by rereading the configuration files periodically during a simulation. An
optimized technique for selecting collision pairs is also presented. Two-dimensional
grids containing mixtures of structured and unstructured cells can also be used with
this irnplementation.

Some efforts have addressed grid generation and adaption with an iterative man-
ual approach[95]. An initial grid is used to obtain estimates of the mean free path
throughout the grid. Based on visual inspection of these estimates, the user identi-
fies problem areas and generates a new grid, with increased or decreased resolution

where necessary. This process is repeated until an acceptable solution is found. This

56

approach has two significant drawbacks. First, it requires time-consuming manual
intervention for non-trivial geometries, and second, the use of repeated simulations
dramatically increases the total amount of computational time required for a final
solution. Another approach is to run a simplified simulation on a Cartesian grid, and
then use the simulation results to guide the generation of a grid used for a full sim-
ulation [26]. While this approach requires less manual intervention, it still requires
substantially more time for a complete simulation.

DSMC grid adaption methods for hexahedral grids are presented in [106]. This
approach shifts cell vertices based on calculation of local flow gradients. Adaption
constraints driven by local mean free path are presented, similar to those used in this
thesis. This work also discusses the effects of statistical scatter on the grid adap-
tion process. While it is a purely sequential implementation, the technique could be
extended for concurrent execution with only nearest-neighbor communication. The
disadvantages, however, are that the number of grid cells remains constant and adap-
tion only takes place along one axis of the grid. In regions of extensive adaption or
complex geometry, this approach is inadequate.

Another approach to grid adaption is to use a hierarchical Cartesian grid, with
mismatched cell faces. This approach increases the complexity required for the trans-
port phase, but can be performed locally. It can also be used for directional adaption,
intentionally increasing the aspect ratio of cells in response to local gradients in the
macroscopic properties of the system. In any case, solution-driven run-time grid
adaption is essential for accurate and efficient simulation of complex geometries.

With the use of a hierarchical octree-type grid [47], adaptive result collection can
be implemented by computing macroscopic parameters at higher levels of the grid
hierarchy than the cells used for collision computations. If a cell has too few particles
for smooth results, it can merge its results with the other cells at the same level of
the hierarchy, producing a single common value one level higher in the hierarchy.
This approach is equivalent to the tetrahedral results-merging approach, except that
a single hierarchy is maintained for both grid adaption and for results merging.

The software engineering of DSMC implementations has been considered by Par-

o7
sons [77]. His approach uses object-oriented and multi-agent systems paradigms, and
he presents results for two-dimensional object-oriented implementations. The struc-
ture of this implementation has many features in common with that of the present
work. A more complete software engineering approach is presented by Dietrich and
Boyd [26]. This approach stresses software maintainability and the interchangeability
of different physical and chemical models. Separate libraries are developed for the
DSMC kernel, a geometry model for grid operations and particle transport, and a
physics library for collisions. This approach is similar to that used in the present
work, though its applicability to simulation techniques other than DSMC has not

been demonstrated.

3.5 Summary

For large-scale simulations to be feasible on industrial timescales, attention must be
focused on minimizing required simulation time. Optimizations to each model of the
DSMC method have been presented in this chapter. This chapter has also presented
a number of extensions to the basic DSMC technique. These extensions are necessary
for ensuring efficient and accurate simulations for a variety of physical situations.
Optimizations and extensions to the physical simulations such as the DSMC method
revolve around the interaction between physical, physical, and computational prop-
erties of the method. Each of these properties must be studied in detail in order to

provide a solution appropriate for problems of industrial relevance.

58

Chapter 4 Sequential Performance

Model and Analysis

This chapter considers the computational requirements of DSMC simulations in terms
of the physical parameters of the systems that are being simulated. Predictive mod-
els for simulation time and storage requirements are presented. These models are
independent of the simulation architecture, gridding and implementation techniques,
and transport, collision, and boundary models. The effects of the dimensionality and
flow-configuration on performance and memory usage requirements of simulations are
shown. The use of the full model defines the range of physical simulations that are
feasible with existing computational resources.

There are several applications of these models. For existing DSMC applications,
they facilitate the understanding of how changes in simulation parameters affect
changes in computational requirements. They may also be used to compare DSMC
to other techniques for a given problem, and they provide a straightforward method
for determining whether a desired simulation is feasible, given available time, pro-
cessing, and memory constraints. Finally, they can be used for automatic selection
of simulation parameters including timestep, adaption criteria, and the ratio of real
to simulated particles.

These models are developed for the basic DSMC algorithm, making no a priori
assumptions about the nature of the solution. As such, they represent upper bounds
or conservative estimates of the computational requirements for solutions. These
models show that certain classes of simulations may require extremely long runtimes
and large amounts of memory. In practice, simulations may be possible in shorter
times and in less memory. This is only possible, however, by violating the model
assumptions, which are the basic assumptions of the DSMC method. In any case,

these models present a framework for understanding the computational complexity of

59
the DSMC method. As specific optimizations are developed for reducing the compu-

tational requirements of simulations, the basic models may be extended accordingly.

4.1 Computational Complexity Analysis

In order to understand the computational complexity of the DSMC algorithms pre-
sented in Chapter 2, it is essential to consider the interactions between physical,
chemical, and computational aspects of a simulation. Superficial algorithmic anal-
ysis alone is not only inadequate, but is in fact misleading. Because the transport
phase of a timestep is essentially a loop over all particles, one might expect that
the time required for this phase is proportional to the number of particles, which is
proportional to the particle density of a simulation. Similarly, since N particles can
have N? possible interactions, one might expect the cost of the collision phase to be
proportional to the square of the number of particles and therefore the square of the
particle density. As convincing as these arguments may sound, the following sections
demonstrate that the actual dependence of time requirements is completely different.

Internal-flow systems, such as plasma reactors, are typically characterized by the
particle density, the size of the simulated domain, and the collision cross section. For
certain external-flow systems, however, the domain size is not necessarily specified,
and may be adjusted according to density and cross section parameters. For simula-
tions of unsteady flows, it is also important to consider the duration of physical time

for which the system must be simulated, as well as the characteristic oscillation time

of the system.

4.1.1 Simulation Parameters

In order to predict the performance cost of the collision and transport phases of a
DSMC computation, it is useful to calculate some general system parameters, such as
the required number of cells, C, the simulation timestep, At, and the total number of
required timesteps, S. The particle density and collision cross section determine the

mean free path and therefore the required size of computational grid cells, while size

60
of the simulated domain determines the number of cells that are required and the time
required for information to travel across the system. The number of cells required for
a simulation can be determined from the DSMC constraint that the typical cell size,

or characteristic cell length, [, be proportional to the mean free path, A,

Z:C,\/\: C—/\7 (41)
no

where ¢y is a proportionality constant, n is the particle number density (particles
per unit volume) and o is the collision cross section. The number of cells along each
axis of the grid is proportional to the size of the domain along that axis. Given a
characteristic domain size, L, the total number of cells required for a D-dimensional

simulation, C| is,

C = (cvé)D = (EznaL)D, (4.2)

{ Cy
where ¢, is a constant that reflects the type of grid and the skewedness of grid cells.
The number of particles required for a simulation, N, is chosen to be proportional
to the number of cells required, N = ¢,C. The number of particles per cell, ¢,, must
be large enough to allow for a sufficient number of collisions per cell, and to provide
adequate samples for statistics, as discussed below. Using the value of C from (4.2)

gives,

Cy b
N=¢C=¢ <C—naL) . (4.3)
A

A typical three-dimensional system may contain a number of particles comparable to
Avogadro’s number. As it is computationally infeasible to simulate this number of
particles, it is necessary for each simulated particle to represent a large number of real
particles. For one- and two-dimensional simulations, however, the area or thickness
of the simulated domain can be chosen such that each simulated particle represents
one real particle. Let h3~P represent the “free” dimensions of the grid, so that the
total simulated volume is V' = LPh3~P_ The weight of each simulated particle, or the

number of real particles represented by each simulated particle, w,, can be written in

61

terms of the number of cells, using (4.2) and (4.3),

(4.4)

nV _ nLPR*P G < h3=P)

wy = =
P D \ pnD—1,D
N ¢, C cpey \nP 1o

The total amount of simulation time required for a steady-state simulation to
converge is governed by the acoustic time: the amount of time that it takes for

thermal information to traverse the entire width of the simulated region, L. This is

8kT

~.—, where £ is the Boltzmann constant, T

determined by the thermal speed, v, =
is the gas temperature, and m is the particle mass. Assuming that ¢, acoustic periods

are required for convergence, the acoustic, or convergence time T,,,, is given by,

L
Trony = Co—. (4.5)

)

The simulation timestep, At, should be chosen so that the average distance trav-
eled by a particle in a timestep, d, is some fraction, ¢, of the average cell length, I.
If particles traverse too many cells in one timestep, the collision process will not be
correctly captured. On the other hand, too small a timestep will result in inefficient
computation. The accuracy of DSMC solutions improves as the timestep and cell size
approach zero. The average distance traveled by a particle in a timestep is simply the
product of the average total velocity Ty, and the timestep At. The total velocity
is composed of a thermal component, v;, and a stream component, 7, and can be
approximated as their sum, Uz ~ U + v,. Using these approximations, with (4.5)
and (4.2), yields,

At = ¢,

= (55) (65) (16)
Vtotal - aw E—f_vt CD . .

Using the value of C from (4.2), this can be rewritten,

CtCx

(T+v)no (47)

At =

It is important to note that an increase in any of the parameters, n, o, T, or ,

62
results in a decrease in the timestep duration. This in turn results in an increase
in the number of steps required for a simulation and therefore the simulation time.
The number of steps required for convergence, Seony, is the ratio of the acoustic time,

Teonv, to the timestep, At. Using (4.7),

T, c v
Scom/ =2 = = <1 _> L. 4.8
At ciCy + Vg ne (4.8)

In addition to considering the time required for a simulation to converge, it is
also important to examine the tradeoff between execution time, memory usage, and
solution quality. One measure of the quality of a solution is determined by the noise
or statistical scatter. The statistical scatter is determined by the number of samples,
or the product of the average number of particles in a cell, ¢,, and the number of
steps over which macroscopic properties are averaged, S,. Assuming that the scatter
follows a Poisson distribution, the fractional error, e, is inversely proportional to the

square root of the number of samples, N, [15],

e= = : (4.9)

In order to obtain r samples per cell, it is necessary to average results over — steps.
P

In the following sections, these parameters are used to compute the amount of time

required for the transport and collision phases of a DSMC timestep.

4.1.2 Transport Phase

In order to move a particle for one timestep, each component of the particle’s posi-
tion must be updated, as must each component of the particle’s velocity. Since the
number of components is equal to the dimensionality of a simulation, the number of
operations required to move a particle should be roughly proportional to the number
of dimensions in which it is moved. In this case, the time required for the transport
phase of a timestep, Tians, is given by the product of time required to move one par-

ticle in one dimension, T3, the number of dimensions, D, and the number of particles,

63

ﬂrans = TtDN = TtDCpC. (410)

The parameter T} is dependent upon both the machine speed and the implementation

of the transport model. Using the value for N computed in (4.3), this can be written,

D
Tirans = TiDN = EDC—p%}— (7’LO’L)D . (411)
ex

4.1.3 Collision Phase

The time required to compute collisions in a DSMC timestep is proportional to the
number of collisions. Consider a computational cell of volume V,.; that contains Cp
particles. Using the Hard Sphere (HS) collision model, the number of collisions in

that cell during a given timestep, At, is given by,

cp(ep — 1)ovaw,

‘/cell\/§

Nc - At, (412)

where o is the collision cross section and v, is the relative velocity between particles.

Using the timestep duration from (4.7) and the particle weight computed in (4.4), as

well as the average cell volume, V. = LD’g"D, yields,
-1
N, = (& = Decx (2). (4.13)
V2 T+ v

Since each component of a particle’s velocity must be updated in a collision, the
process of computing post-collision relative velocities is roughly proportional to the
number of dimensions. Assuming that the total collision time, 7T,,, is then also
proportional to the number of dimensions, it can be written as the product of the
time spent on each dimension of a collision, T,, the number of dimensions, D, the
number of collisions per cell, N, and the number of cells, C. Combining (4.13) and

(4.2) yields,

(cp — Dee? 1w
T = T,DN,C = T.D pﬂcgjl (W +fvt> (noL)”. (4.14)

64

As with transport time, collision time is proportional to the D-th power of density,
cross section, and the size of the domain. This analysis was developed for the HS
model, where o is a constant, while for the Variable Hard Sphere (VHS) model, o
is a function of relative velocity. Thorough analysis of the cost of the VHS model
could be completed with integration over relative velocities, and the result, would
have roughly the same dependence on o”. The extension to the Variable Soft Sphere
(VSS) model does not affect the number of collisions, only the post-collision scattering
angle. Because more computation is required with each collision, this would have the
effect of increasing 7., but would not change the dependence on the other parameters,

n, o, L, and D.

4.1.4 Timestep Duration

The preceding sections enable the prediction of the time required for a single timestep
of a simulation. Combining Eqs. (4.11) and (4.14) yields the total time required for

one timestep is given by the sum of transport and collision times,

cP ci(c, — 1)ey vy
Tone = Trans Tco = = T e () TC D b DLD. 4.15
trans Lol D |7 i NG) T+, e (4.15)

Note that this analysis does not depend on the type of grid used or the implementation
of the transport or collision phases. All particle transport algorithms must execute
in time proportional to the number of timesteps and the number of particles, and all
collision algorithms must execute in time proportional to the number of collisions,
thus yielding the same dependence on the physical parameters n, o, D, and L, and
the constants c,, cq, ¢y, ¢, and cx. Only the parameters 7} and 7, will vary between

implementations and architectures.

4.1.5 Memory Requirements

In addition to modeling the required execution time, it is also important to predict

the storage requirements for a simulation. The two primary uses of memory are

65
particles and cells. For small simulations, it is also important to consider the amount
of overhead memory, M, consumed by the application code and any fixed-size data
structures. As a rough approximation, the amount of memory required to store a
particle or a grid cell is proportional to the number of dimensions of the simulation,
D. 1If the memory required for each dimension of a single particle is M, and the
memory required for each dimension of a single cell is M., the total memory required

for a simulation, M, can be written,

M = My+M,DN+M.DC = My+M,Dec,C+M.DC = My+(Myc,+M,)DC. (4.16)

4.2 Flow Configurations

This section considers the four possible flow configurations: steady-state internal,
steady-state external, unsteady internal and unsteady external. The computational
requirements of each of these configurations have fundamentally different dependences
on the physical parameters. In order to provide a complete understanding of the com-

plexity of the DSMC method, it is essential to consider each configuration separately.

4.2.1 Steady-State Internal Flows

In order to compute a steady-state flow, a simulation is first Tun to convergence and
then run for additional steps in order to sample and average macroscopic parameters.
The total simulation time is therefore the sum of convergence and averaging times.
The time required to converge an internal-flow, steady-state simulation, K;';'gggg“’, is

the product of the time for each timestep and the number of steps required. Com-

bining (4.15) and (4.8) yields,

. D - DT, T,
intenat _p g Gl (6= VT T b pipen 4.17
intern v =t 7t e)Pl (4.17)

The duration of the averaging portion of a steady computation, Afferral ig goy-

erned by the desired accuracy or number of samples. Averaging time, for a desired

66
number of samples, r, is the product of the time required for each timestep, T),,., and

the number of steps required, S,

Ainternal — ToneSS — Tonei' (418)
C

steady
P

The averaging time can then be written,

interna CUD CiCx 1 Uy D
Astéady = ? ':T't + Tcﬁ - g (E—f— ?}t> D (TLUL) r. (419)

The time required to obtain smooth results is thus proportional to the D-th power of
the density, cross section, and domain size. It is also proportional to the the desired
number of samples, or the inverse square of the acceptable statistical scatter, e.

For a steady-state, fixed-volume simulation, the memory requirements from (4.16)

reduce to,
D
; c
Mipernel = My + (Mjc, -+ MC)CLDDnDaDLD. (4.20)
X

The storage requirements for a simulation are therefore proportional to the cube of

the density, the cube of the cross section, and the size of the simulated domair.

4.2.2 Steady-State External Flows

For certain classes of external flow problems, it is appropriate to adjust the size of
the computational domain according to the other physical parameters. As a first
approximation, it is sometimes possible to use a computational domain with length

proportional to the mean free path,),
L= Cd)\ = -, (421)

where cq is the number of mean free paths to be simulated. The convergence time for

an external flow can then be written,

DD - DT, ¢, T,
Kez@%ernal — Cd Cy Ca <(CP ¢ + p t) D. 4.22
steady C/I\) \/5 10 ()

67
The convergence time is therefore not a function of cross section or density. Similarly,

the averaging time for an external flow, A;g;gggal, for a desired number of samples, r,

can then be computed as,

D 1 v
Aemmal:(vc(f) a1 (L (t) Dr. 4.23
steady ex t+ V2 ¢y) \TU+ v, " (4.23)

The memory requirements of a steady external simulation can be written,

external C(];Cf))
Mste;zdy = MO + CT(MpCp + MC)D (424)
A

Just as simulation time is not a function of cross section or density for this class
of problems, storage requirements are not functions of cross section or density. For
some important systems, it is possible to adjust the domain size with the mean free
path, but not in a directly proportional manner. For these cases, the computational
requirements may be estimated by using the analysis of this section together with the

analysis of the previous section.

4.2.3 Unsteady Internal Flows

For an unsteady problem, the total simulated time is a specified parameter, not
determined by convergence time. Consider an unsteady simulation of a time interval
T, with a characteristic oscillation time 7. The ratio T,/7 is thus the number of
periods to be simulated. Because the flow is changing, it is not possible to average
results over a large number of steps. There are two ways to obtain smooth results for
unsteady flows: the first is to choose a number of particles such that results averaged
over a small number of steps will be sufficiently smooth; the second is to run a number
of simulations with a small number of particles, using a different random seed for each.
The results from the different simulations can then be averaged together to obtain
smooth results. While both methods require approximately the same amount of
simulation time, the first method requires significantly more memory. The following

analysis assumes that P separate simulations are used, where P = 1 corresponds to

68
the first approach, and P > 1 corresponds to the second approach.

For unsteady flows, results can only be averaged over a short period of time during
which the flow remains approximately unchanged. The number of particles per cell,
Cp, must be chosen so that the desired number of samples can be obtained while the
flow is unchanged. It must be assumed that the flow is unchanged over some (small)
fraction of 7. Sampling can then take place during a time ¢, 7. The number of steps

over which it is possible to average is given by,

(4.25)

The number of samples, r, obtained with P separate simulations, is the product of

particles and steps,
C, T

- (4.26)

r=c¢,S, = ¢, P

Equation (4.26) can be solved to determine the minimum number of particles required

per cell, p,,,
rAt

Pm = c, TP’

(4.27)

which can be rewritten using (4.7),

C 1) T
=) 4.28
b CrC <@ + v,/ Pnor ()

‘The computational time required for P unsteady simulations is given by the product
of the time taken for each timestep, T,,., and the number of steps that must be

simulated, S,,. This, in turn, is the ratio of the unsteady time, 715, to the timestep,

At,
T,

internal
Aunsteady - TDnE_A_t- (429)

Using previously computed values, and the approximation ¢, — 1 = ¢,, this yields,

: cpcl e [v
Amternal — Py {T +TCD— (T)} _. D D+1 D+1LDTu, 430
unsteady c CDil t ey \T + 1, ('U + ’Ut) n o ()

tEX

69

Substituting the minimum number of particles p,, for ¢p in (4.30) yields,

. D
internal — Pmc ct v - D+l _D+1rD
Aunsteady - QC/\TEI [E -+ TC o (_vh—;vt)] (U —+ Ut)DTl g L Tu (4 31)
- e e () st |
ciey er Cx \U+ut T

This shows that for unsteady simulations with a given oscillation period, 7, the
computation time is proportional to the D-th power of density, cross section, and do-
main size, and proportional to the number of desired samples and the simulated time,
but inversely proportional to the oscillation time. The cost of unsteady simulations
therefore does not grow as fast as the cost of fixed-size steady simulations, primarily
for the reason that unsteady simulations are not required to converge.

For typical values of n, o, L, and 7, however, the number of particles required
for an unsteady simulation is very much greater than the number required for a
steady simulation. The time and memory requirements of unsteady calculations are
therefore substantially greater than for steady calculations. In some cases, the initial
conditions may be sufficiently uncertain or complicated that a steady simulation must
be converged to determine those conditions before an unsteady computation can
begin, further increasing the cost of unsteady simulations.

In order to estimate the memory requirements for each unsteady internal flow

simulation, the value of p,, from (4.28) can be used in (4.20) to obtain,

. CD Ct 1 anlaD-IT
Mznternal = M v M () M D,D DLD 4.32
unsteady ot X | oo \ v+, P e (4:32)

4.2.4 Unsteady External Flows

The simulation time for an unsteady external flow computation can be obtained by

reducing Eq. (4.31) to,

D D
_ e ¢ Uy rDT,
Amternal — _vd [T + Tc“_ <)J . 4.33
unsteady = ¢ ¢De_ |71 cx \U + vy T (43

70

Similarly, memory requirements can be obtained by reducing Eq. (4.32) to,

cPeb c 1 T
j\/[ezternal = M d v []\/[¢ () MC} D. 4.34
unsteady 0o+ C/? Peren \ T+ vr/) NoT M ()

4.3 Parameter Estimation

This section considers the parameters required for predicting runtime and storage
requirements for DSMC simulations. These parameters can be grouped in two classes:
those that are implementation-dependent or architecture-dependent, and those that
are not. The former can only be discussed in the context of a specific implementation,

while the latter should be common among all DSMC implementations.

4.3.1 General DSMC Parameters

The implementation-independent parameters are summarized in Table 4.1. In general,
particles should not traverse more than about one cell per timestep, so ¢; should be
less than one. In fact, ¢, can be thought of as the inverse of the local Knudsen number,
with typical values in the range, 0.3 < ¢, < 1. The ratio of the cell size to the mean
free path, ¢y, should be less than one. Adaptive gridding systems, such as the one
described in 3.2.3 ensure that this constraint is met. For such approaches, values for
¢y are typically between 0.3 and 1.

In order to understand the convergence time of a simulation, it is important to
consider the grid shape and boundary conditions. For a spherical grid with a uniform
external boundary, information at the boundaries will quickly propagate throughout
the domain. On the other hand, the simulation of a long curved tube with different
boundary conditions at opposite ends will require a long time to converge. In order
to find typical values for the number of acoustic periods required for convergence,
Ca, @ series of simulations was conducted. Simulations were conducted with different
geometries, numbers of cells, and initial conditions. For each simulation, the time
required for macroscopic parameters to reach steady state was measured and divided

by the predicted acoustic time. Typical values of ¢, were found to be in the range

71

Table 4.1: General DSMC Parameters

LParameter LDescription] Typical Valuesj

C Fraction of typical cell

length traveled by typical

particle in one timestep 0.3-1
C Ratio of cell length to local

mean free path, or minimum local

Knudsen number 0.3-1
Cq Acoustic periods required

for convergence 3-10
Cp Ratio of particles to cells 3-10
Cy Measure of grid skewedness 1-5
Cq Number of mean free paths

to be simulated for external flow 10 - 1,000
Cr Fraction of the oscillation

period over which samples can

be averaged 0.01-0.3]

from 3 to 10.

The number of particles per cell, ¢,, must be large enough that a reasonable num-
ber of collisions will take place in each cell. Using larger values of ¢, also reduces
statistical scatter. On the other hand, both runtime and memory usage are propor-
tional to c,. For steady-state simulations, ¢, is typically chosen between 3 and 10.
Some advanced statistical techniques have been used to produce reasonably accurate
results with only about one particle per cell [46].

The parameter ¢, represents the ratio of the typical cell dimension to the cube
root of the cell volume, and is primarily grid-dependent. For typical tetrahedral grid
cells, ¢, = 2, while hexahedral cells have slightly smaller values of ¢,. For skewed grid
cells, ¢, can be arbitrarily large.

The choice of the number of mean free paths that must be simulated, ¢y, is largely
problem-specific, but representative simulations use values between 10 and 1000. Sim-
ilarly, the choice of ¢, the fraction of the oscillation period over which the flow is con-
sidered unchanging, is problem-specific. For a sinusoidal oscillation, however, ¢, = 0.1

is a reasonable value, providing 10 separate results for each oscillation period.

72

4.3.2 Implementation-Specific Parameters

The parameters T;, T,, M,, and M,, are both implementation- and architecture-
specific. For illustrative purposes, typical values were obtained for a three-dimensional
DSMC implementation, Hawk, designed for plasma reactor and spacecraft reentry
calculations[79]. Other DSMC implementations have different associated constants,

but must obey the same dependences on the physical parameters.

Table 4.2: Implementation-Specific Parameters

[Parameter f Description ’ Typical Values]

T; Time required to move one particle for one timestep in

one dimension 22 us
T, Time required to perform one

dimension of one collision 13 pus
M, Memory required for overhead 2.96 MB
M, Memory required per particle, per dimension 18 B
M, Memory required per cell, per dimension 494 B

Table 4.2 summarizes the implementation-dependent parameters obtained for
three-dimensional simulations on a Silicon Graphics Power Challenge with 75-MHz
R8000 processors. In order to measure transport time, simulations were conducted
with the collision phase disabled. Similarly, collision time was measured on simula-
tions with particle transport disabled. A value of ¢p = 10 was used, and the measured
values were T, = 11us per dimension and 7, = 13pus per dimension. Note that a larger
value of ¢, will increase the number of particles being simulated, for the same amount
of per-cell overhead, and result in smaller values for T, and T,.

The overhead memory, My, was estimated for Hawk by running a simulation with
only 12 cells, and with no particles. On the SGI Power Challenge, this value was
approximately My = 2.97 MB. The majority of this is consumed by the program
image alone; only a fraction of a Megabyte is used for the actual data structures.
The memory usage per particle has a lower bound of 2 floating point values per

dimension, one for position and one for velocity. Most implementations, however, use

73

additional storage space for storing additional per-particle data structures that help
to reduce runtime. The particle memory usage in Hawk was estimated by running
neutral flow simulations with varying numbers of particles and recording the memory
usage reported by the operating system, then subtracting the overhead memory M,
and dividing by the number of particles. This yielded an an approximate value,
M, = 18 bytes per dimension. It must also be noted that simulations using more
sophisticated chemistry models may require additional memory to store, for example,
internal energy or species information.

Per-cell memory requirements are likely to vary more between DSMC implemen-
tations. In Hawk, each cell stores several values for unstructured grid information, a
pointer to a linked list of particles, local information used for collisions, and macro-
scopic parameter information. Many of these data structures are irregular and dy-
namic in nature, with sizes that depend on the nature of the problem, and may even
change during a computation. For the computations discussed here, cell sizes were

typically around M, = 494 bytes per dimension.

4.4 Predictive Modeling

In order to illustrate the application of the model to the prediction of actual simulation
requirements, several internal flow simulations were considered. The same techniques,
however, are applicable to external flow simulations. In order to assess the accuracy
of the performance prediction model, Hawk simulations were conducted on five three-
dimensional box grids, each with a different number of cells. Execution time per
timestep and memory usage were measured. The execution time per timestep was
predicted using Equation (4.15) and the parameters in Section 4.3.

Figure 4.1 plots predicted and measured step times as functions of the quantity
nPoP LV For each simulation, the predicted step time is within 8% of the measured
step time. The differences are largest for the small grids (low values of (noL)?),
which can be attributed to the effects of computational overhead and set-up time.

The linear dependence of step time on (noL)”, where D = 3 in this case, is clearly

74

100 - ——— ——— ———— —

s
/0’
10 F Measured ¢ .
Predicted ----- i 1
/G/ T
0 1 { ;
o L J
5
£ |
0, .
qu O 1 L
”) T
/6” W
0.01 f A
o
0.001 i A — ! 2 i 2t " " ot 1 A L4 —_ L
0.01 0.1 1 10 100 1000

n*3 * sigma”3 * VvV

Figure 4.1: Predicted and measured step time as a function of physical parameters

demonstrated by this experiment.

Figure 4.2 shows the predicted and measured memory requirements for the same
simulations. For the larger simulations, memory usage is proportional to the quantity
(naL)D, while for small simulations, the overhead memory, Mp, is the dominant term.
These results show excellent agreement between predictions and measurements. The

difference between predictions and measurements is consistently less than 4%.

4.5 Large-Scale Simulations

While the preceding experiments were performed on simple box grids, the analysis
still holds for complex three-dimensional geometries. As an example of realistic simu-
lations of industrial relevance, simulations of a plasma reactor, the Gaseous Electron-
ics Conference (GEC) Reference Cell, were considered. This reactor has a complex

three-dimensional geometry, with a volume of 0.013m3, and typically operates at a

le+09 T — T T T T T T T ™
Measured ©]
Predicted ----]
9

@ le+08 | I g

i) r 4

>

a

4]

g 4

) o

=} ,

>

q

9]

Cle le+07]

= s]

P o -
le+06 L " P 2 n a1l L 2 P | " P | L
0.01 0.1 1 10 100 1000

n*3 * sigma™3 * v

Figure 4.2: Memory usage as a function of physical parameters

temperature of 300K. For the purpose of these experiments, the reactor was sim-
ulated with argon gas at constant temperature and pressure throughout, using the
Variable Soft Sphere (VSS) collision model with o = 0.31, 8 = 0.714, Trey = 273K,
and oy = 5.307 x 107"m?. The reactor walls and the wafer were all thermally
accommodating at 300 K.

Using the model and constants developed above, runtime and storage requirements
were predicted for simulations of the GEC cell at several densities, or pressures. Table
4.5 lists predictions for the number of cells, number of particles, timestep duration,
convergence time, and memory usage, for three-dimensional simulations at four dif-
ferent operating pressures. These values were obtained using the machine-specific
parameters for the 75-MHz R8000 SGI Power Challenge. For all but the 0.291 Pa
configuration, the convergence time, T,,,, is much greater than the averaging time,
A, and is therefore a close lower bound on the total time required for a simulation.

In order to assess the applicability of the model to realistic three-dimensional

76

Table 4.3: GEC Simulation Predictions

Pressure (Pa) 291 2.66 6.65 13.3 |
Pressure (mTorr) 2.19 20 50 100

Density (m™%) | 7.0x 10" | 6.4 x 102 | 1.61 x 102" | 3.21 x 102
Cells 1.4 x10° | 1.1 x10% | 1.68 x 10° | 1.3 x 1010
Particles 1.4x10° | 1.1x107 [1.68 x 10| 1.3 x 10"
Tone (sec.) 51.7 39x10* | 6.2x10° | 4.9 x 10°
Teonw (sec.) 4.0x10° | 28x107 | 1.1x10° | 1.8 x 100
Mem (Bytes) |2.88x 108 [2.17 x 10T [3.42 x 102 | 2.71 x 10'3

geometries, the first case, at 0.291 Pa, was configured and simulated on an SGI Power
Challenge. Using the model and parameters above, memory usage for this simulation
was predicted to within 3%. Because the model does not take into account the
(implementation-specific) additional cost of moving particles in the high grid-density
regions, the model underpredicted the timestep time by about 25%. In general, the
model can be expected to provide an accurate estimate of memory usage, and a
reasonable lower bound for simulation time, for realistic simulations.

For the other simulations listed in Table 4.5, the higher operating pressure re-
sults in larger computational costs, both in terms of simulation time and storage
requirements. For three dimensional simulations, D = 3 so the time complexity of
the algorithm is proportional to the fourth power of pressure, and the memory re-
quirements are proportional to the cube of pressure. For a simulation at 2.66 Pa
to be conducted to the same accuracy, 22 GB of RAM would be required, and the
convergence portion of the simulation would take 327 days.

A simulation at 6.65 Pa would require 35 years on a single-processor machine with
3 TB RAM. For the 13.3 Pa case, a single SGI Power Challenge would require 27
TB of RAM, and convergence would take 570 years. Note, however, that these are
conservative estimates, or upper bounds. They apply when no a priort knowledge of
the flow is available. In other words, they represent the minimum amount of time
required to guarantee a correct solution.

In practice, accurate simulations at these high pressures have been possible in

77
much shorter timescales. These are achieved by violating the assumptions of the
preceding performance models. The high complexity of the algorithm is primarily a
result of the large numbers of cells required in order to maintain a cell size proportional
to the local mean free path. This constraint is required to ensure that all gradients of
macroscopic parameters can be correctly captured. In regions of the domain where no
significant gradients exist, it is often possible to use much larger cells than dictated
by mean free path constraints. When fewer cells are required, fewer particles are
required, and a larger timestep may be used. The net result can be a substantial
reduction in computational requirements for a simulation.

Because a small sacrifice in the accuracy of a simulation may result in a substan-
tial decrease in computational requirements, simulations may be possible in much less
time and memory than predicted by the models in this chapter. Recall from Chapter
3 that the number of particles per cell can be adjusted as a function of both position
in the grid and species. These techniques are used to increase accuracy in regions of
interest and for species of interest, while obtaining faster solutions in regions of less
interest. Such optimizations, however, are consistent with the model. Changing the
ratio of cell size to local mean free path simply changes a constant in the model. The
fundamental dependence on the physical parameters of the system is unchanged. Fur-
ther, the development of this model reveals opportunities for additional optimizations

to the basic DSMC technique.

4.6 Related Work

Early work on computational complexity was presented in [1, 6, 17]. Knuth’s books
[55] are excellent references on the subject. As an example of analysis of the compu-
tational complexity of another numerical technique, the computational complexity of
diffusion-limited aggregation and fluid invasion in porous media is presented in [62].

While runtimes for various simulations have been presented, no model for the

computational complexity of the DSMC method has previously been presented.

78
4.7 Summary

The simulation execution time for the different configurations is summarized in Table
4.4, while the storage requirements for the different configurations are summarized in

Table 4.5.

Table 4.4: Summary of Simulation Times for Different Configurations

Simulation Time

D, cp—1)T, cp T D+1
o (A +) Do l)”

e (1 2) ()] Dot

cPDeleq ((ep—1)T¢ cpTt
c 2 (15N

Simulation Type

Internal steady

External steady

R0 ne (1 1) ()]
Internal unsteady thgc [Tt + ch; (Eirvt)] D(na)TLDrTu
External unsteady ;é‘i [Tt + Tt (#Ut)] Drfy

Table 4.5: Summary of Memory Requirements for Different Configurations

{ Simulation Type

Memory Requirements

Internal Steady

My + (Myc, + M,)&’iDnDaDLD

External Steady

M0+C e (Myc, + M,)D

Internal Unsteady

D—1,D-1
My + ? [MP cfé)\ (ﬁ+1vr) - : -+ MCnDGD] DL”

cpey c 1
External Unsteady | My + 45> [MPC = (mvr) e M] D

The results of this chapter show that the runtime and memory requirements of
DSMC simulations can be accurately predicted on the basis of physical properties
and machine-specific parameters. The DSMC algorithm is fundamentally polynomial
in the physical parameters, and the degree of the polynomial is primarily determined
by the number of dimensions being simulated. For this reason, the cost of a simula-
tion increases dramatically with the number of dimensions used. Three-dimensional
simulations require both substantially more simulation time and substantially more

memory. Computational requirements are most sensitive to density, or pressure. For

79
a three-dimensional steady-state simulation, doubling the simulation pressure results
in an eight-fold increase in the amount of memory required, and a sizteen-fold in-
crease in the time to convergence. This places a serious constraint on the class of
problems that can be approached with the DSMC method.

When considering the applicability of the DSMC method to a specific problem, it
1s essential to consider the runtime and storage requirements for the simulation. For
certain high-density or large-volume problems, these requirements may be prohibitive.
By comparing the requirements of the DSMC method with the requirements of other
methods, it is possible to determine the best approach for each specific problem. It
1s also possible to predict how changes in physical parameters will affect runtime and
storage requirements, and thereby to determine bounds on the class of problems that

can be solved with the DSMC technique, given finite computational resources.

80

Chapter 5 Concurrent Algorithms

Realistic computational grids can often be too large to fit in the memory of any single
processor, and realistic simulations may require extremely long execution times on
sequential computers. In order to be able to provide accurate solutions in realistic
time frames, it is important for a DSMC implementation to be able to make use
of all available computational resources, including shared-memory multiprocessors,
distributed-memory multicomputers, and heterogeneous networks of workstations.
Fortunately, the DSMC method is well suited to implementation on concurrent
architectures. This chapter discusses the implementation of the DSMC method on
concurrent architectures, yielding the Concurrent DSMC method. Techniques are
presented for domain decomposition, task mapping, and inter-processor communica-
tion. Novel methods of dynamic load balancing and automatic granularity control

are also presented.

5.1 Concurrent DSMC

The concurrent DSMC method considered for the present study is based on the spatial
decomposition of the computational grid.

The concurrent simulation technique is outlined in Figure 5.1. A three-dimensional
geometry definition is taken directly from CAD/CAM descriptions already available
to process engineers. An unstructured tetrahedral grid is then constructed using
automatic grid generation techniques[43]. This grid is subsequently partitioned for
execution on any of a variety of concurrent architectures including heterogeneous
networks workstations and PC’s, shared-memory multiprocessors, and distributed-
memory multicomputers. Scalable concurrent algorithms are then used to reduce the
numerical simulation time. Adaptive gridding is used to automatically maintain the

accuracy of the simulation. Dynamic load balancing is used to maximize processor

81
Geometry Information
Engineering Drawings (IGES) !
AUTOMATIC GRID GENERATION l s
o

s
i

Boundary-Fitted Grid

w
STATIC PARTITIONING \
N
Partitioned Grid i m c & ‘
o w k

with "Cut" boundaries

€

¢

CONCURRENT SIMULATION

t e S

Partitioned Results

POST-PROCESSING

K
T

Combined Results

for Visualization

.

Figure 5.1: Concurrent DSMC methodology

utilization in the presence of both grid adaption and dynamic flow variations. Finally,
simulation results are analyzed using standard CFD visualization tools [37].
The concurrent simulation technique for the distributed-grid approach involves

four primary stages:

1. Grid Generation. Tetrahedral grids are automatically generated using a
three-dimensional geometry definition taken directly from CAD/CAM descrip-

tions.

2. Static Partitioning. The grid is partitioned for execution on concurrent ar-

chitectures.

3. Concurrent DSMC. Scalable concurrent algorithms are then used to reduce

the numerical simulation time. Adaptive gridding automatically maintains the

82
accuracy of the simulation, and dynamic load balancing maximizes processor

utilization.

4. Post-Processing. After a simulation is complete, results from the partitions

are combined for visualization using industry- standard tools.

Concurrent DSMC requires three modifications to the sequential DSMC algorithm
in Program 2.1. First, the transport phase of the algorithm must be adapted to sup-
port communication between partitions of the grid. Second, global information, such
as the total number of particles in the domain, must be computed using gather-scatter
style communication. The time required to execute one timestep for a single partition
1s primarily dependent on the number of particles that it contains. As the number
of particles varies between partitions, and changes during the course of a simulation,
dynamic load balancing is required for obtaining good parallel efficiency. Dynamic
granularity control is also used to adjust the number of partitions per processor in
order to provide sufficient granularity for the purpose of load balancing while mini-
mizing the overhead of multiple partitions.

Program 5.1 outlines the algorithm executed concurrently the grid partitions. For
the most part, particle transport is local within a partition. A particle may, however,
move across a cell face on the boundary between two partitions. In this case, it is
communicated to the appropriate neighboring partition. Once all of the particles have
been placed in their new cell locations, the collision phase is executed independently
by each partition. At the end of a timestep, global information is computed via global
communication operations. The computational efficiency is maintained through con-
current load balancing and granularity control algorithms that attempt to keep all

processors equally busy.

5.1.1 Partitioning

A computational grid must be decomposed into multiple partitions in order to provide
sufficient granularity for concurrent execution. This involves three phases of the

simulation cycle. First, a grid is initially partitioned into one or more partitions for

83

ConcurrentDSMC ()
{
for(partition = 0; partition < NUM_PARTITIONS; partition++)
/* Concurrently */
{
Initialize(partition);
for(step = 0; step < NUM_STEPS; step++)

{
PartitionTransport(partition); /* Locally */
ExchangeParticles(partition); /* Local communication */
PartitionCollisions(partition);
ComputeGlobalProperties(partition); /* Global communication */

if (LoadImbalance())
BalancelLoad(partition);

}

ComputeMacroscopicParameters(partition);

Program 5.1: Concurrent DSMC Algorithm

each computer on which the computation will be conducted. Depending on the quality
of the initial partitioning, it may be necessary to perform static partition balancing
in order to provide balanced partitions for initial execution. During a simulation,
an executing partition may be dynamically repartitioned if load balancing requires
additional granularity.

Initial partitioning is typically controlled by the user, who specifies the size and
shape of the computational network on which the simulation will be executed. On
one-dimensional networks, such as a network of workstations, the user only needs to
specify the number of computers and the axis along which the grid will be partitioned.
On two-dimensional networks, such as that of the Intel Paragon, the user must specify
the two partitioning axes and the dimensions of the network. On three-dimensional
networks, such as that of the Cray T3D, the user must specify the three dimensions
of the network to be used.

Initial partitioning is based on a volume decomposition that preserves locality.

Cells are sorted in each dimension and grouped according to their sorted positions.

84
Adjacent cells are therefore likely to be mapped to the same partition. This procedure
attempts to minimize the surface area of the partitions, and hence the total amount of
communication required during a simulation. It also attempts to minimize the number
of neighbors for each partition and therefore the number of separate communications
required. Figure 5.2 shows the GEC grid divided into 24 partitions, with one cut in
each horizontal direction, and two in the vertical direction. Some partitions cannot
be seen because of the large number of cells in the center of the reactor. While
the middle partitions contains less volume than the top and bottom partitions, each

contains roughly the same number of cells.

Figure 5.2: The grid for the GEC reference cell after initial partitioning

5.1.2 Mapping

The mapping strategy is guided by the principle of over-partitioning, whereby several
partitions are mapped to each processor. This is shown schematically in Figure 5.3.
Over-partitioning allows partitions of differing sizes to be mapped to the same com-
puter in order to balance load and memory. Specifying the number of computers, and

therefore the total number of cells per computer, provides control over the granularity

85
of the computation, i.e., the ratio of computation to communication. Generally speak-
ing, this corresponds to the ratio of the volume (L? for a characteristic dimension L)
to the surface area of all partitions in a computer (L?). Adjusting the granularity
allows the simulation to be matched to a wide variety of concurrent architectures. On
platforms with high communication costs, such as networks of workstations, a small
number of large partitions may be used. By contrast, a larger number of smaller
partitions may be used on distributed-memory multiprocessors that employ fast com-

munication technology.

Partitions

Processors

Figure 5.3: Over-partitioning for mapping multiple partitions to each processor

Partitions are mapped to computers in such a way as to place neighboring par-
titions in the same or adjacent computers, again maximizing locality. Information
is exchanged between partitions on neighboring computers using message-passing,
while information is directly exchanged between partitions on the same computer or
between partitions on separate computers that share memory by pointer copying.
'The mapping of multiple partitions to each computer allows the overlap of communi-
cation and computation: if one partition is blocked, awaiting communication, another

partition on the same computer may still proceed.

5.1.3 Communication

Communication in concurrent DSMC is required when particles move between adja-

cent partitions. A particle arriving at a partition boundary is sent to the appropriate

86

neighboring partition. The time taken for the particle to reach the surface is sub-
tracted from the current timestep to obtain the remaining time during which the
particle must be moved upon arrival at the neighboring partition.

In order for a concurrent DSMC implementation to produce the same results as
a sequential DSMC implementation, it must satisfy several constraints. Because the
basic algorithm is unchanged, these constraints can be readily determined. The only
operations that are different between concurrent and sequential implementations are
those that occur on partition boundaries. Collisions, boundary surface interactions,
and transport local to a partition are performed in the same manner for both ap-
proaches.

In order to guarantee that the transport algorithm is unchanged, particle commu-

nication must obey the following rules:

1. All particles must reach their final destinations before collisions can be per-

formed.

2. A particle’s final destination must be computed in the same manner as in the

sequential algorithm.

3. Particle properties, including velocity, mass, and chemical species, must be

preserved during transport between partitions.

5.2 Communication Optimizations

One of the most important reasons for loss of efficiency in parallel computations is the
cost of communication. Optimizations to the communication methods and functions
can therefore significantly reduce the time required for concurrent computations.
The most important communication optimization is to combine particles traveling
between a given pair of partitions into a small number of messages. If each particle
is sent separately, communication costs can become prohibitive. The best approach
is to combine a given number of particles into a single message, and then send the

message. The optimal number of particles to combine into a single message is an

87
architecture-specific parameter determined by the latency, and bandwidth, and buffer
sizes of the communication system. Distributed-memory computers typically have
low-latency communications with small buffers, and are most efficient with smaller
numbers of particles per message than on networks of workstations with high-latency

communications and large buffers.

5.3 Static Load Balancing

If a large number of partitions is required for a computation, simple volume parti-
tioning may be inadequate. It allows the number of cells per partition to vary widely,
and it allows a partition to have an undesirably large surface area. These problems
can result in imbalances in processor load and memory usage, and can require more
communication than is necessary. Static load balancing, based on the concept of heat
diffusion, can be used to overcome these problems. Computational cells are treated as
heat to be diffused and exchanged between partitions. It is achieved using a parallel

algorithm to compute the solution to the heat equation (38, 80, 99,

a = CYVQ’U,, (51)

where u is an estimate of the memory and computational cost of a partition and
V2u is a measure of local imbalance. This technique has a variety of useful proper-
ties. It provably converges and its rate of convergence can be determined analytically
[38]. It involves only nearest-neighbor communication and is therefore scalable. The
algorithm is application-independent, and has been applied in the context of Particle-
In-Cell (PIC) calculations by Samanta-Roy, et. al [87]. It has been independently
applied by Ivanov, et. al., to produce substantial performance improvements in an-
other DSMC implementation [50]. The technique has also been extended to support
multiphase computations [100] and to support heterogeneous networks of PC’s and
workstations [101]. The technique was developed by Watts [99]; this section considers

its application to the partitioning of tetrahedral grids for particle simulations.

88

The parameter u is computed as the sum over all cells in a partition,

u= Z (Ccell -+ Cvol‘/;ell): (52)

cells

where c..; is an estimate of the fixed cost per cell, representing the overhead cost
for computations in cells with no particles. The constant Cyol 1S an estimate of the
cell cost proportional to the cell volume, V;, and represents the cost of moving the
particles in the cell. Each cell is treated as a discrete quantity of heat that can be
transferred between adjacent partitions in order to evenly distribute the cost. Cells
are selected for transfer in such a way as to preserve locality and to minimize the area
of surfaces shared between partitions. This process terminates when all partitions

have roughly the same memory and computational costs.

Figure 5.4: The grid for the GEC reference cell after initial partitioning (left) and
static partition balancing (right)

In order to evaluate the effectiveness of this technique, it was performed for a
simulation of the GEC Reference Cell reactor. The initial grid was partitioned and
then static load balancing was performed, resulting in a new partitioning. The load
balance was compared for the two partitionings. Figure 5.4 shows the result of initial
partitioning (left), where it is clear that the partitions are imbalanced, as well as the
same grid after static volume balancing, using ceey = 0, cpoy = 1 (right). Note that

the volume of the middle partitions has grown close to that of the outer partitions.

89
In this case, the ratio of maximum to average partition volume was improved from

1.4 to 1.01.

5.4 Dynamic Load Balancing

Load balancing and work distribution considerations are important for any applica-
tion on concurrent architectures. The computational cost of a single DSMC timestep
for a grid partition is a function of the number of grid cells and particles that it
contains. These quantities both change dynamically in the presence of particle trans-
port and grid adaption. It is therefore impossible to initially partition a complex
three-dimensional grid so that load will be balanced among processors throughout
the computation. For this reason, no static partitioning and mapping will yield an
optimal load balance for the entire duration of a computation.

Realistic large-scale simulations of complex geometries require static and dynamic
load balancing, as well as automatic granularity control. This section summarizes the
load balancing framework that was developed by Watts [98], and describes its appli-
cation in the context of particle simulation. The framework is based on the concept
of heat diffusion, which provides a scalable, correct mechanism for determining how
much work should be migrated between computers, including computers with differ-
ent processing capabilities or external workloads. Heat diffusion only gives the ideal
work transfer, however; to meet that ideal, neighboring computers must exchange
partitions. The selection of which partitions to exchange is guided by both the sizes
of the partitions involved and the effect a partition’s movement would have on its
communication with other partitions. If there are too few or too many partitions
in the system, granularity management routines are used to increase or decrease the

number of partitions. The end-result is a five-step methodology for load balancing a

computation [99, 100]:

1) Load measurement: The load of each computer is determined, either by
having the programmer provide an estimate of resource needs of the partitions

or by measuring their resource usage with system timing calls.

90

2) Load imbalance detection and profitability calculation: Based on the
total load measured at each computer, the efficiency of the computation is
calculated. Load balancing is undertaken if its estimated cost is exceeded by
the estimated reduction in run time that would result from load balancing.

3) Ideal load transfer calculation: Using the load quantities measured in the
first step, computers calculate the ideal degree to which they should transfer
load to or from their neighbors.

4) Partition selection: Using the load transfer quantities calculated previously,
partitions are selected for transfer or exchange between neighboring computers.
This phase may be repeated several times until the transfer quantities have
been adequately met, and it may be guided by cost functions that encourage
communications locality or discourage the movement of partitions with large
data structures.

5) Partition migration: Once the partitions have migrated to their final loca-
tions, any data structures associated with those partitions are transferred from

their old locations to their new locations, and the computation resumes.

The following sections consider these steps in further detail.

Load Measurement

The usefulness of any load balancing scheme is directly dependent on the quality of
load measurement and prediction. Accurate load evaluation is necessary to deter-
mine that a load imbalance exists, to calculate how much load should be transferred
to alleviate that imbalance, and to determine which partitions best fit the ideal load
transfer quantities. Load evaluation can be performed either completely by the ap-
plication, completely by the load balancing system or with a mixture of application
and system facilities.

For the purposes of practical DSMC calculations, it has proven most effective to
measure load empirically. The times required for execution and communication for

a single timestep for each partition are measured using system timing functions, and

91
the sum of these values is used for load balancing. Balancing this quantity yields the
shortest timestep time after load balancing. Balancing of execution time alone, or
number of particles, is almost as effective. Balancing the number of cells per computer
can be effective for uniform or fully adapted simulations, but is not effective for highly

non-uniform or transient flow simulations.

Load Imbalance Detection and Profitability Calculation

For load balancing to be useful, one must first determine when to load balance. Doing
so is comprised of two phases: detecting that a load imbalance exists and determining
if the cost of load balancing exceeds its possible benefits.

Even if a load imbalance exists, it may be better not to load balance, simply
because the cost of load balancing would exceed the benefits of a better load distri-
bution. The time required to load balance can be measured directly using available
facilities. The expected reduction in run time due to load balancing can be estimated
loosely by assuming efficiency will be increased to eff min OF more precisely by main-
taining a history of the improvement in past load balancing steps. If the expected
improvement exceeds the cost of load balancing, the next stage in the load balancing
process should begin [102]. More precisely, load balancing should be undertaken when

the following holds

(eﬁcur < eﬁmin) /\ <(1 - ecj]{ffﬁ) 7-’Step > Tbal) (53)

where eff ..., eff nins €ff new are the current efficiency, desired minimum efficiency and
expected efficiency after load balancing, respectively, Ty, is the time until the next

load balancing opportunity, and T}, is the estimated time required for load balancing.

Ideal Transfer Calculation

After determining that it is advantageous to load balance, one must calculate how

much load should ideally be transferred from one computer to another. In the interest

92
of preserving communication locality, these transfers should be undertaken between
neighboring computers.

As with the static load balancing technique described above, ideal transfer calcu-
lation is achieved based on the solution of the diffusion equation, %—f = V2L. Diffusion
was also explored in [99] and was found to be superior to other load balancing strate-
gies in terms of its performance, robustness and scalability. A more general diffusive
strategy was presented in [100]; unlike previous work, this method uses an implicit
differencing scheme to solve the heat equation on a multi-dimensional torus to a spec-
ified accuracy. The advantage of an implicit scheme is that the timestep size in the
diffusion iteration is not limited by the number of neighbors. For explicit schemes, the

timestep size is limited to ﬁ on a d-dimensional mesh or torus. In [98], an improved,

second-order diffusion scheme was derived.

Partition Selection

Once load transfers between computers have been calculated, it is necessary to de-
termine which partitions should be moved to meet those quantities. The quality of
partition selection directly impacts the ultimate quality of the load balancing.

The problem of selecting which partitions to exchange to achieve a particular
load transfer is weakly NP-complete, since it is simply the subset sum problem.
Fortunately, approximation algorithms exist which allow the subset sum problem to
be solved to a specified non-zero accuracy in polynomial time.

Since the selection algorithm cannot, in general, satisty a particular load transfer
in a single attempt, it is necessary to make multiple attempts. For example, in
the worst-case scenario where all of the partitions are on one computer, only those
computers that are neighbors of the overloaded computer can hope to have their
incoming load transfers satisfied in the first round of exchanges. In such a case, one
would expect that at least O(D) exchange rounds would be necessary, where D is the
diameter of the mesh. The algorithm for partition selection is thus as follows.

The load transfers are colored in the same manner as described for the GDE

93
algorithm. For each color, every computer attempts to satisfy its transfer of that
color, adjusting €max to account for the degree to which its transfers have thus far been
fulfilled. The algorithm is repeated when the colors have been exhausted. Termination
occurs when no more progress toward further load transfer is possible. Termination
can occur earlier if all of the computers have satisfied the minimum requirement of
their outgoing load transfer quantities.

A partition may move multiple hops in the process of achieving load transfers.
Since the data structures for a partition may be large, this store-and-forward style of
remapping may prove costly. A better method is to instead transfer a token, which
contains information about a partition such as its load and the current location of its
data structures. Once partition selection is complete and these tokens have arrived
at their final destinations, the computers can send the partitions’ states directly to

their final locations.

Partition Migration

In addition to selecting which partitions to move, the load balancing framework also
provides mechanisms for moving those partitions from one computer to another. For
the purposes of this study, partition migration is achieved by transferring all partition
data structures from one computer to another computer. Because of the large amount
of data that must be transferred, this is typically the longest part of the load balancing

operation.

5.5 Automatic Granularity Control

Just as it is impossible to partition a grid in order to provide an optimal work dis-
tribution a priori, it is also impossible for a static partitioning of a grid to have the
optimal number of partitions per computer, or granularity. With too few partitions
per computer, it may be impossible to accurately satisfy the work transfer quantities

required for a good load balance. Similarly, a computer with too many partitions per

94
computer will spend an inordinate amount of time on overhead required for switch-
ing between tasks. Simulation properties, such as the number of particles and cells,
change during a simulation. For this reason, even a partitioning that is initially ad-
equate may not remain so as the simulation progresses. This section describes the
application of Watts’ automatic granularity control framework [99] applied to DSMC
simulations.

In the transfer quantity satisfaction phase of load balancing, the partitions may
be so large, or coarse-grained, that it is impossible to balance the load. It is then
necessary to split the partitions into smaller partitions, resulting in a finer granularity.
A partition is split if its corresponding load is greater than a certain fraction of the
average load. If the division of partitions results in a better, but still inadequate
load balance, the threshold is lowered so that more partitions are divided. This
continues until an adequate load balance is achieved, until no benefit results from
finer granularity, or until partitions can no longer be split.

When a partition must be split, the grid cells in the partition are first traversed
in order to compute a bounding box around the partition. The bounding box is then
divided into the desired number of new partitions, so as to minimize the surface area
of the new bounding boxes. New connections are created between the newly-created
partitions, and connections to neighboring partitions are updated. This process can
be completed in time proportional to the number of grid cells, though it does not
necessarily guarantee minimum communication or even division.

During splitting, simulation data structures must be updated accordingly. For
example, counts of the numbers of particles and cells in each partition must be re-
computed. Grid cells and particles are unaffected by partition splitting. Cell faces
that lie on the border between the two new partitions must be replicated, and face-
level data structures updated appropriately.

Dynamic repartitioning routines are invoked when additional granularity is re-
quired for a computation. Typically, the load balancing algorithm will determine
which partitions need to be repartitioned, and for each one, the desired number of

new partitions.

95

The routines for splitting a partition at runtime are the same as those for initial
partitioning. The only exception is that whereas in initial partitioning the user can
specify the desired partitioning parameters along each dimension, this information can
not be provided at runtime. It is therefore necessary to use a heuristic to determine
how to split a partition.

One heuristic that has proved effective is based on the assumption that the par-
tition is shaped similar to its bounding box, and that its cells are roughly uniform in
size. In this case, partitioning parameters can be easily selected in order to minimize
shared surfaces and thus communication. The following recursive algorithm is used

to divide a partition into p smaller partitions.

BoundingBoxPartition(partition, bounding_box, p)
{
b = LargestPrimeFactor(p);
d = LongestDimension(bounding_box);
DivideAlonghAxis(partition, bounding_box, d, b,
&new_partitions, &new_boxes);
for(i = 0; i < b; i++)
{

BoundingBoxPartition(new_partitions[i], new_boxes[i], p/b);
}
}

Program 5.2: Bounding Box Partitioning

Program 5.2 is used to recursively divide a grid partition into a desired number,
p, of new partitions. The first step is to compute b, the largest prime factor of p.
The longest dimension of the bounding box, d, is then determined. The bounding
box and partition can then be divided into b new partitions, along the d axis. Each
of the resulting partitions is recursively split into p/b new partitions

Using the assumption that the bounding boxes of child (post-division) partitions
are simply related to the bounding boxes of the parent (dividing) partition, this
algorithm can determine the partitioning parameters before actually performing any
partitionings, and is thus executed very quickly.

It is important that the bulk of the granularity control operations are local. Com-

96
munication is only required for updating connections between the new partitions and
their neighbors. This allows for rapid granularity adjustment even on large concur-
rent computers. For the simulations considered in this study, the process of load
balancing and granularity control was completed in same amount of time as several
simulation steps. As typical simulations require tens or hundreds of thousands of
timesteps, and load balancing only takes place about once every thousand steps, this

cost is negligible.

5.6 Concurrent Grid Adaption

Grid refinement, as described in Section 3.2.3, is a local process, and can therefore
usually be conducted within a single partition. In cases where an adapting edge lies
on a partition boundary, only the partitions sharing that boundary need to partici-
pate in the adaption. Therefore, the communication and synchronization costs of an
iteration of grid adaption are minimal. Furthermore, grid adaption can be performed

infrequently during a calculation without substantial loss of accuracy.

5.7 Concurrent Adaptive Result Collection

Adaptive result collection, as described in Section 3.2.4 is also a local process. Cells
that combine their particles for the calculation of macroscopic parameters are likely to
be in the same partition. The combination of results from cells in adjacent partitions
could be implemented with only local communication, but the resulting complexity
and communication costs would outweigh the advantages of combining such cells. In

practice, it is sufficient to only combine cells in the same partition.

5.8 Software Engineering Considerations

The primary new object that is introduced for concurrent DSMC is the partition.

Partitions are composed of collections of grid cells and cell faces, and can execute

97
timesteps, split for granularity control, and move between computers for load balanc-
ing.

Concurrent simulations employ the same set of application-independent libraries
as sequential simulations. As described in Section 3.3, the Structures Library is used
for hash tables and vectors, the Grid Library is used for grid manipulations, and the
SCP Library is used for file I/O. For concurrent simulations, the Scalable Concur-
rent Programming Library (SCPIib), also provides basic programming technology to
support irregular applications on scalable concurrent hardware. The library has been
applied to a variety of large-scale industrial simulations and is portable to a wide
range of platforms. On each platform, the library provides a optimized, portable set
of low-level functionality, including message-passing, thread management, synchro-
nization, file I/O, and performance monitoring.

SCPIlib also provides a higher level of functionality, which includes heterogeneous
communication and file I/O, load balancing, and dynamic granularity control. Com-
munication and file [/O occur through objects called ports. These ports are similar to
Unix descriptors in that the same routines can be used to write to a channel port or to
a file port. This allows considerable reuse of application code, since the same routines
used to read and write a data structure can be used for both communication and file
I/O. Furthermore, communication through ports is typed; when a port is created,
the system inputs a header describing the writer’s data type sizes, byte ordering,
etc. The reader can then automatically apply the appropriate transformations, if
necessary. This allows communication between partitions running on heterogeneous
architectures, as well as the ability to read checkpoints written on different platforms.

An SCPIlib application is constructed as a concurrent graph of communicating
partitions, called nodes, as shown in Figure 5.5. Each node is comprised of a thread
of execution, state information, and a set of channel ports for communication with
other nodes. The mapping of nodes to computers is transparent to the user, since the
channels effectively hide the locations of a node’s neighbors in the communication
graph. The library can thus move a node dynamically, so long as the program-

mer provides routines for communicating a node’s state. The programmer can reuse

98

—=1 barrier

Nodes

Figure 5.5: The Concurrent Graph abstraction

checkpointing routines for this purpose; node movement is achieved by checkpointing
a node through the network rather than to a file. Furthermore, the library provides
functionality to dynamically divide or merge nodes, given that the user has provided
the necessary support routines. Node movement and dynamic granularity control are

used in conjunction to provide portable load balancing.

5.9 Related Work

There are three basic techniques for concurrent DSMC, categorized by the way in
which the computational grid is stored: shared-grid, replicated-grid, and distributed-
grid.

Using the shared-grid approach, each processor manages a fraction of the particles
during the transport phase, and a fraction of the cells during the collision phase. While
this approach can yield reasonable speedup on shared-memory systems, it cannot be
applied to distributed-memory systems.

The replicated-grid approach [48] stores a copy of the computational grid on each
processor, and distributes particles among the processors. While the particle trans-
port phase can then be performed locally, communication is required to bring together

all of the particles in a cell, so that the collision phase can be executed. Computations

99
in the collision phase can also be completed locally. The disadvantage of this technique
1s that the memory required for storing the grid on each processor is constant. The
use of complex geometries may result in large grid structures that cannot be stored on
each processor. This approach is therefore inappropriate for large three-dimensional
grid structures or large numbers of processors.

The distributed-grid approach [26, 80], distributes both the particle data struc-
tures and the grid data structures, using a spatial decomposition. While the transport
phase requires communication as particles cross the boundaries between partitions of
the grid, the collision phase is a purely local operation. Because the per-computer
memory requirements for this technique are inversely proportional to the number of
computers, it can be used for simulations involving large grids on large numbers of
Processors.

A number of other researchers have presented concurrent DSMC implementations
with a variety of features. Wilmoth, Carlson, and Bird [105] present a portable im-
plementation and demonstrate good scalability on the Intel iPSC/860, a Cray-YMP,
and a group of Sun workstations. They present both a synchronous communica-
tion system, which is similar to that described in this thesis, and an asynchronous
communication system that uses disk storage to buffer particles being communicated
between processors (or between interleaved processes on a single processor machine).
The disadvantage of the asynchronous system is that it does not preserve a consistent
time and therefore cannot be used for unsteady simulations. The use of disk-based
communication also lacks efficiency and impedes scalability. The most novel part
of this work, however, is the presentation of results on a heterogeneous collection of
workstations. Simulations were conducted on a network of Sun Sparc workstations
with varying processing speeds. A fairly low utilization was reported, and the need
for more sophisticated load balancing techniques was emphasized.

The MONACO system, developed at Cornell University, implements concurrent
DSMC for two-dimensional triangular and three-dimensional tetrahedral grids [26].
This approach uses ray tracing for particle transport. The concurrent implementation

based on domain decomposition is similar to that in the present work except for the

100
use of a global transpose for communicating the number of particles to be exchanged
between processors. The high cost of this operation is the main constraint on the
parallel performance of this implementation. One-dimensional domain decomposition
is described for two-dimensional simulations. A global redistribution of cells is used
for load balancing. Through the use of asynchronous communications, computation
and communication can be overlapped.

The CHAOS library, developed at the University of Maryland [66] has been devel-
oped for communication and data structures required for particle-based applications.
The Parallel Automated Runtime Toolkit at ICASE (PARTI) library developed at
the Institute for Computer Applications in Science and Engineering (ICASE) [73] is
designed to facilitate the implementation of parallel static irregular algorithms. Here,
indirection arrays are used when data access patterns are static, but are only known
at runtime. A concurrent DSMC implementation based on these two libraries is pre-
sented in [73], which also presents recursive coordinate bisection (RCB), recursive
inertial bisection (RIB), and one-dimensional chain techniques for dynamic reparti-
tioning. A heuristic for deciding when to rebalance, based on a work degradation
function is presented.

Load balancing based on recursive spectral bisection (RSB) is described in [94,
97, 103]. Load balancing for DSMC computations has been discussed in [50] and
[99]. Methods have been developed for multi-phase [100] and heterogeneous [101]
load balancing, as well as for automatic granularity control [84]. For implementations
that use only one partition per processor, the transfer of work between processors can

also be achieved by exchanging individual cells between partitions [50].

5.10 Summary

This chapter has presented the concurrent Direct Simulation Monte Carlo technique.
Extensions from the sequential algorithm have been described. Techniques for im-
proving performance on a variety of computer architectures have been introduced,

including partitioning, static and dynamic load balancing, and automatic granularity

101
control. The approach demonstrates the synergy between physical, chemical, numer-

ical, and computational techniques that is required to efficiently address large-scale

problems of industrial relevance.

102

Chapter 6 Concurrent Performance

Model and Analysis

This chapter considers the parallel scalability of the DSMC method, using analysis
techniques that are independent of the simulation architecture, gridding and im-
plementation techniques, and transport, collision, and boundary models. A model
is presented for predicting computational and memory requirements for concurrent
simulations on homogeneous and heterogeneous architectures. Using this model, it
is possible to predict what parallel speedup can be obtained on a given machine for
a given physical system, and to determine how changes in physical parameters af-
fect scalability. The effects of architectural and computational parameters, such as
processing and communication speeds, are also described. Finally, it is possible to
estimate the number of processors that are required to complete a specified simulation
within a reasonable amount of time.

In order to answer these questions, this chapter presents a model of the parallel
performance of a DSMC simulation. The performance implications of different con-
nection topologies are considered. The model is validated and constants of the model
determined for simple test cases. The model is then used to predict the scalability of
a realistic three-dimensional simulation on both shared- and distributed-memory ar-
chitectures, and the results shown to agree with experiments. Additional predictions

define the boundaries of simulations that are feasible with existing computational

resources.

6.1 Concurrent Performance Modeling

The study of the parallel performance of the DSMC method is an extension of the

computational complexity study presented in Chapter 4. Consider a D-dimensional

103
simulation of an internal flow, with domain size L, gas number density n, collision
cross section o, stream speed T, and average thermal speed v,. Recall from Section
4.1.4 that the amount of time required for a single DSMC timestep on a sequential

machine, T, is given by,

C3 Ct(C - 1)0)\ Vt D
Tone = — |, T, L <) 1.\ D L), 6.1
& fa+ 2222 (LU V7 D (o (6.1

where ¢y is the ratio of the typical cell size to the particle mean free path, \: ¢,
is the ratio of the average cell volume to the average cell length; ¢, is the fraction
of the typical cell length traversed by a particle during a single timestep; and ¢,
is the number of particles per cell. The implementation- and architecture-specific
constants, T; and 7T, represent the time per dimension required to move a particle
for one timestep and to perform one collision, respectively. Using this equation, it is
possible to predict the sequential runtime of a single timestep in a DSMC simulation.
For the purposes of predictive performance modeling, the most important factors are
the physical parameters, n, o, and L, the number of dimensions, D, and the number
of particles per cell, c,.

For communication modeling in the following sections, it is also important to de-
termine the number of computational grid cells that will be required for a simulation.
Recall that the required number of cells is guided that the constraint that the typical
cell size should be no more than a fraction, cy, of the mean free path. The number

of cells required for a simulation, C, was obtained in (4.2),

D

C= <C—D) (noL)” . (6.2)

5

The results of Equations 6.1 and 6.2 are used to model concurrent execution time
and communication costs. The case of internal flows is considered because it is more
general. External flows obey the same dependencies, with the appropriate substitu-
tions for n, o, and L. With these substitutions, however, performance requirements

are essentially constant, and the analysis of this case is less interesting.

104
The time required for a concurrent DSMC timestep on the i-th processor, 17
can be written as the sum of compute time, Tciomp, communication time, 7 and
idle time, T,
Tipe =To + T 4T, (6.3)

conc comp comim

For a homogeneous collection of processors, the average amount of computation re-

quired per processor is the sequential DSMC time, T, divided by the number of

processors, p,

ave __ Tone
comp -
p

(6.4)

Consider a partitioning of the grid that gives each computer a different fraction of

the total work, so that

ave

! Tcomp

comp — fl ’

where f is the ratio of the the average computation time to the i-th computer’s com-
putation time. The minimum value of f?, U, is then the ratio of average to maximum
computation time, and therefore a measure of the computational utilization, or load
balance. The time taken by the computer with the most computation time, or the

computer for which f* = U, is given by,

Tave T
Tm,az _ _comp _ Lone ' 6
comp U Up (6)

The fundamental scaling properties of the DSMC method are distinct from load
balancing concerns. This section therefore assumes a uniform distribution of particles
and load, for which the load balance can be predicted by the initial partitioning of
the computational grid.

The concurrent algorithm requires that all partitions have completed a timestep
before starting the next timestep. There is therefore a synchronization point at the
end of the timestep. The total time required for a timestep, 7., is thus equal to

the maximum sum of computation and communication times,

Teone = T/mas 4 T7nac (6.7)

comp comm’

105
For uniform grids and simulations at low Mach numbers, it can be assumed that
communication costs are proportional to computation costs. The load balancing
factor, U, therefore affects both computation and communication terms in the same
manner. The computer with the maximum computation time will also have the
maximum communication time and therefore no idle time, Equations 6.3 - 6.7 can be

combined to yield,

Teone = % (Tcaal;rc;p + Tcaolirc;m) : (68)

The time required for communication, T mm, is strongly dependent on the manner
in which the grid is partitioned, as discussed in the following section.

The parallel efficiency, E, is defined as the ratio of useful work to total work, or
the ratio of the sequential time to the product of the parallel time and number of

processors,

Tll’UE T
E — comp — one .) 9
TCOTLC TCOTLCp (6)

Combining (6.8) and (6.9),

U
FE= : 10
1 + Tcomm/Tcomp (6)

In the following sections, the terms in these equations are estimated for different con-
nection architectures, resulting in predictive models. The effects of initial partitioning

on computational efficiency are also discussed.

6.2 Partitioning Issues

Computational grids must be initially partitioned for execution on multiple proces-
sors, and the choice of partitioning technique can impact the concurrent performance.
Partitioning affects concurrent performance in two ways. First, the uniformity of
partition sizes correlates with the uniformity of computer loads, and therefore load
balance. Poor partitionings can yield poor load balances and thus inefficient concur-

rent execution. Second, the communication requirements are affected by the parti-

106
tioning. Since the area of surfaces exposed by partitioning translates directly into
inter-processor communication, it is desirable to minimize the area of exposed sur-
faces.

Many different techniques can be used for grid partitioning, including bound-
ing box division[79], chain partitioning [67], cell sorting[80], recursive coordinate
bisection[108, 67], and recursive spectral bisection[10]. The present work considers
only bouding-box division, because it is the simplest approach and can yield rea-
sonable results for simple geometries and uniform flows. The analysis, however, can
be extended to address more sophisticated partitioning strategies. The bounding
box method works as follows: A first pass through the entire domain is used to de-
termine the extent of the grid in each of three axes. The resulting bounding box is
divided into equal-volume partitions. For box-like geometries with uniform grids, this
method yields uniform partition sizes and minimal exposed surface area, which results
in good load balance and minimum communication costs. For complex geometries
and non-uniform grids, however, the bounding box method may yield poorly balanced
partitions.

Three parameters are required for the bounding box method in three dimensions:
the number of partitions in the x-dimension, P,, the number of partitions in the
y-dimension, P, and the number of partitions in the z-dimension, P,. The total
number of partitions that are generated, p, is the product of these, p = P.P,P,.
The number of cuts, or exposed surfaces, in each dimension, is one less than the
number of partitions. The total number of cuts through the entire domain, Neys, for

a three-dimensional partitioning, is given by,
New = (P = 1)+ (P, = 1)+ (P, —1) =P, + P, + P, — 3. (6.11)

Assuming that for 3-dimensional partitioning P, = P, = P, = p'/? and that for

2-dimensional partitioning P, = P, = p/2, the number of cuts in a g-dimensional

107

partitioning can be generalized to be,
New = 2q (p"" = 1). (6.12)

For a D-dimensional simulation, the number of cells along each axis of a grid is
proportional to the D-th root of the total number of cells. The D — 1 power of this
value, or the % power of the total number of cells, gives the number of cells exposed

by each cut, £,
E~C7 . (6.13)

Note that the dimensionality of the partitioning, ¢, can not exceed the dimensionality

of the simulation, D:
g <D. (6.14)

The total number of exposed cells for the entire partitioning, C,, can be obtained by

combining (6.11) and (6.13),
_ _ 2L 1/q 251 =
Ce = NewE = (Py + Py + P, =3)C"5 =2 (p"/? — 1) C*%", (6.15)

Assuming a uniform grid density and appropriate timestep and cell sizes, the number
of particles that must be sent by a partition is proportional to the surface area of
faces exposed by partitioning, and to the total particle velocity, vy,. The number of
exposed faces is proportional to the average number of exposed cells, Ce./p. The total
velocity is the sum of average thermal speed, v;, and the stream speed, 7: v, = v+ T.

The average number of particles sent by a partition, Ny, 1s then,

2, Ce
n, = %— (v +7), (6.16)

where ¢y is the fraction of particles in exposed cells that must be communicated.

Using (6.15), this can be written,

crep2q (pl/q - 1) c

n, = ; (v +7), (6.17)

108
where ¢ is the dimensionality of the partitioning, D is the dimensionality of the
simulation, and p is the number of partitions. Knowing the number of particles that
must be exchanged, it is possible to predict the amount of time that will be spent

during the particle exchange phase of the concurrent DSMC algorithm.

6.3 Communication Modeling

Communication cost in a DSMC simulation can be predicted as a function of phys-
ical and computational parameters. Recall from (6.8) that the dependence of the

concurrent execution time on the communication time,

Tone T(wem
4 —comm (6.18)

Up U

Tconc -

Communication takes place at two points in the concurrent algorithm in Program 5.1.
The first is communication of particles between adjacent partitions, and the second
is the global gathering of progress information, such as the number of particles in the
domain. Assuming that particle exchange communication time is 7,,, and that the
global communication time is 7}, the total communication time per processor, T},

can be written,

Ty = 1o + T, (6.19)

Global communication, however, is typically only used for gathering a small amount of
progress information, and can be performed infrequently. Its contribution to the total
communication time can thus be neglected. In most simulations, particle exchange
dominates communication, in terms of the number and size of messages and the time
required for exchanging messages.

Particle exchange requires some fixed overhead time, as well as time for the actual
transfer of messages. The overhead time, T}, is required for communication latency
and for transferring synchronization messages that contain no particles. The time
required for the actual transfer of particles is proportional to the number of particles,

and given by the product of particle transport time per dimension, 1,, the number

109
of dimensions, D, and the number of particles being transferred, n,. The time 7,
includes any additional computation that is required for incorporating particles into
the data structures of their destination partitions. This gives a total communication

time,

Ty, = T, + Tyn,D. (6.20)

Combining (6.20) and (6.17) yields,

1

crcp2q (pl/q — 1) C
p

Tn=1+Tn,D=T,+1, (vs + D). (6.21)

Using the value for the number of cells, C', computed in (4.2), this can be written,

T =Ty +T, <2Cfcgfql{)_1) q (pl/q ~ 1) (v, +T) nP gDV 5 (6.22)
cy D

This equation gives the time that is required for a single processor to perform its

portion of the communication. The total communication time for all processors during

one timestep depends on the type of interconnection architecture and the degree to

which communication bandwidth must be shared. The following sections consider the

communication cost implications of both mesh-based and bus-based architectures.

6.4 Model Parameters

Table 6.1 summarizes the model parameters used in the sequential and concurrent
models. For each parameter, representative values are listed. The first three values in
this table, ¢y, ¢,, and ¢,, were obtained in Section 4.3.1. The value for ¢; was obtained
by measuring exposed cells and communicated particles for a variety of partitionings
of box grids.

For illustrative purposes, typical implementation-specific values were obtained for
an actual DSMC implementation [79]. Other DSMC implementations will have dif-
ferent associated constants, but must obey the same dependences on the physical

and architectural parameters. For each architecture, a series of simulations were con-

110

Table 6.1: General Model Parameters

LParameter [Description [Typical Valuesj

Cx Ratio of cell length to local

mean free path, or minimum local

Knudsen number 0.3-1
Cp Ratio of particles to cells 3-10
Cy Ratio of cell length to cube

root of cell volume 1-5
cy Fraction of particles in

exposed cells that are

communicated 0.51

ducted of gas flow in a simple box grid, in order to estimate architecture-specific
parameters. Simulations were conducting using Argon gas and the Variable Soft
Sphere (VSS) collision model [15].

In order to determine constants for the model in the previous sections, and to
evaluate its accuracy, scalability tests were conducted on two architectures, the SGI
Power Challenge and the Cray T3D. The SGI Power Challenge has 14 75-MHz RS000
processors and 2 GBytes of shared RAM, while the Cray T3D has 256 200-MHz Dec
Alpha processors with 64 GBytes of RAM per processor. These machines represent
two classes of architectures, and the same modeling techniques could be extended to
address other concurrent architectures.

The value of T, was obtained by measuring simulation timestep time with the
collision phase disabled, and dividing this by the number of particles and the number
of dimensions (3). Similarly, T was calculated by timing simulation timesteps with
the transport model disabled, and dividing by the number of collisions and the number
of dimensions. In order to estimate communication costs, the time required for the
communication phase was measured for several different partitionings and numbers
of processors. Linear regression was then used to estimate the overhead time, 1,
and the particle transfer time, 7,. Because multiple rounds of communication may
be required for the particle exchange phase, and computation is required for sending

and receiving particles, these numbers are significantly larger than would be expected

111

from the performance characteristics of the underlying communication architecture.

Table 6.2: Implementation-Specific Parameters

{ Parameter [Description | Pwr. Chal. | TBE
1y Single-particle transport time per dimension 11pus 16us
T, Collision time per dimension 13us 41pus
T Communication overhead time 0138 s | 0.155 s
T, Particle transfer time per dimension 26us 60us

Table 6.2 shows the values of T}, T., T}, and T, for the SGI and Cray architectures,
obtained from these experiments. In the following sections, communication modeling
is extended to predict timestep duration and parallel efficiency on bus-based and
mesh-based architectures. The models use these values to predict performance on

concurrent architectures, and predictions are compared with experiment.

6.5 Mesh-Based Modeling

Mesh-based architectures, such as the Cray T3D and the Intel Paragon, have dedi-
cated connections between adjacent processors. For a g-dimensional mesh, each pro-
cessor has 2q such connections, and must send ¢ messages, each with n,/q particles.

The communication time is then, using (6.22),

2 D—-1 1/q _ 1
Toomm = T = Ty + T, (1oy) (p p) (0 +7) D (noL)’'. (6.23)

Df
Cy

This value can be used for the communication time in (6.10) in order to calculate the

parallel efficiency, F,

. 1
E - 1+Tm/Tcomp
2e (;pcD*1 1/q 1 D1 -1
AT Ty (L2) (=) 0) Do)~ (6.24)
=U |1+ 5 A)
c ce(cp—1)c v - (ncrL)D
j){%[Cth+_1i/§—A(g+vt)Fc]D—p—

While the full form of this equation must be used for accurate modeling of realistic

112
simulations, it is too complex to permit intuitive analysis. With the application of
three assumptions, it can be reduced to a more manageable form. First, assume
zero-overhead communication, in which case the term ¢7; can be neglected. Second,
assume a large number of particles per cell, such that ¢, >> 1. Third, assume low
Mach-number flows, for which 7 << v;. With these assumptions, the equation for

sequential processing time, (6.1), can be reduced to,
Tone = Tsc, D (naL)D , (6.25)

where 7 is an implementation- and architecture-dependent constant, and subsumes
the constants T}, T,, ¢,, ¢, and ¢,. With these approximations, (6.24) can be simpli-

fied to,

D—1] L

E~U {1 + % (2_002)07) (/7 1) (“;:L”ﬂ . (6.26)
This equation explains how model and physical parameters affect the computational
efficiency of a simulation. The dependence on the dimensionality of the mesh, ¢, shows
the advantage of higher-dimension meshes. As ¢ increases, the communication term
decreases, thus improving efficiency. The dependence on the number of processors,
p, suggests an inherent limit in the scalability of the algorithm. Because computa-
tion time decreases faster than the communication time (for a fixed-size problem),
efficiency decreases with the number of processors. Once the number of processors
is large enough, the number of cells per processor becomes small, the fraction of the
particles that must be exchanged approaches unity. In this case, almost all of the
simulation time is spent on communication and overhead. On the other hand, as the
problem size (measured in terms of the quantity noL) grows, the number of required
cells, and thus the computation, grows faster than the number of exposed faces, and

thus the communication. Efficiency therefore increases with problem size.
Note that there is no strong dependence of efficiency on the dimensionality of the
simulation. For a given partitioning and problem size, both communication and com-
putation scale with problem dimensionality so that efficiency is unaffected. Because

the dimensionality of the partitioning can be no greater than the dimensionality of

113
the grid, however, the maximum achievable efficiency is higher for three-dimensional
simulations than for one- and two-dimensional simulations.

It is also important to note that the efficiency is directly proportional to the load
balance, U. The initial load balance is determined by the initial partitioning and
the initial distribution of particles. Assuming a uniform distribution of particles,
however, the load balance can be reasonably predicted by the balance of the volumes
of the initial partitions. This value is determined by the geometry and the specific
partitioning technique, but may be determined statically, and thus used for predictive
modeling. During a real simulation, especially one involving gas injection and exhaust,
the load balance may not correspond to the volume balance of the initial partitioning,
and may change during the course of a simulation.

Equations (6.24) and (6.26) also show the effects of potential optimizations. Im-
provements to the sequential portion of the application will reduce 7} and 7, and
therefore the total simulation time, but will also decrease the efficiency. Optimiza-
tions to the communication hardware and software will reduce communication costs,
T}, and therefore improve efficiency. While the extension to more sophisticated chem-
istry models can increase the amount of sequential work and thus the parallel effi-
ciency, any corresponding increases in the size of particle data structures will result

in increased communication and thus lower parallel efficiency.

6.6 Mesh-Based Experiments

In order to test the predictive capability of the mesh-based performance model, sev-
eral simulations were conducted for a box geometry, with 12,540 tetrahedral cells of
roughly uniform size, using 10 particles per cell, a particle density of 7.3 x 10'8m 3,
and temperature of 300 K. The same problem was simulated on 1, 2, 4, 8, 32, 64,
and 128 processors. Before each simulation, the balance of partition volumes was
computed in order to estimate the load balance of the computation. The time per
timestep was measured and compared with both predicted and ideal speedups.

Figure 6.1 (left) shows the time per timestep as a function of the number of pro-

114

,,,,,,,,,,,,,

Efficiency

Processors

Figure 6.1: Predicted and measured scaling of a box simulation the Cray T3D

cessors for measured, predicted, and ideal cases. Up to 32 processors, the agreement
between the model and experiment is excellent. For 64 and 128 processors, the mea-
sured step time was slightly less than predicted, but the trend is correct. Figure
6.1 (right) shows the parallel efficiency, E, for the same experiments. The trend is
again correctly captured, and the predictions are accurate up to 32 processors. On
128 processors, each cell has fewer than 100 cells and thus fewer than 1000 particles.
The amount of computation on each processor is therefore very small. Most data
structures might even be able to fit in cache memory, thus resulting in an additional
speedup over predictions. This figure also shows the volume balance of the initial
grid. For large numbers of processors, the efficiency loss due to load imbalance is
significantly larger than the loss due to communication.

Simulations of the GEC reactor were also conducted on the T3D. The GEC Re-
actor grid, shown in Figure 1.2 (right), has a volume of 0.013m®. It was simulated
at an operating pressure of 0.291 Pa (2.2 mTorr) and operating temperature 300K,
which corresponds to a particle density of 7.0 x 10'9m=3. The grid was partitioned
for 16, 32, 64, and 128 processors. Due to memory constraints, it was not possible to
simulate this grid on fewer than 16 processors. For each simulation, the step time and
efficiency were both predicted and measured as functions of the number of processors.

The scalability results for the GEC grid are shown in Figure 6.2, with step time on

the left and efficiency on the right. The model consistently underpredicts the timestep

115

'''''''

0.1 . L
[H 10 Loa 1000

Figure 6.2: Predicted and measured scaling of a GEC simulation on the Cray T3D

time, but only by a small margin. One reason for this may be a poor estimate of
uniprocessor time. Since it was impossible to simulate this grid on one processor, the
per-cell processing rate for the box problem was used to estimate the uniprocessor
time. As has been shown in Section 4.5, however, this procedure may underestimate
the time required to simulate complex geometries by as much as 25%. Increasing
the step time by 25% for each case would give a much better agreement between the
model and experiments.

The primary result from this set of experiments is that the model accurately
predicts the performance trend as a function of the number of processors. This is also
shown in the efficiency plot, Figure 6.2 (right). Here again it can be seen that the loss
in efficiency due to load imbalance is greater than the loss due to communication. The
communication costs, however, are accurately predicted by the model. The model
is therefore an effective tool for predicting parallel performance of large, complex-

simulations.

6.7 Bus-Based Modeling

The analysis for the efficiency of bus-based systems is similar to that of mesh-based
communications, except that the bandwidth of the network must be shared by all pro-

cessors. Bus-based systems include shared-memory systems, where the processors all

116
share the same path to main memory, and networks of workstations, where all of the
machines are on the same network segment and must share the network bandwidth.
The communication component of the algorithm in these cases is determined by the
total number of messages exchanged, not the number of messages per processor. The

messaging time is then,

T — 2crepey 1/q - D—-1
= paTi+ T, | 55— (p'7 = 1) (v +) D (noL)"~", (6.27)
A

where ¢ is the dimensionality of the partitioning. The efficiency can then be computed
as,

D-1 -1
apTi + T, (2_%_) (p" ~ 1) (v, +) D (noL)""!

[Cth + Ct(czi/%l)q (gitm) Tc] D(HZL)D

E=U|1+ (6.28)

C

[}
> wEw

As with mesh-based modeling, it is interesting to consider the simplification resulting

from the assumptions of zero-overhead, low Mach number, and many particles per

cell,

T, (2¢pcP1 v, +75\] 7"
E~U|l+ 22 (& Ve _q (t) . 2
U': + Ts (C/l\)_l)p(p) nol (6 9)

Computational efficiency therefore improves with the problem size and the dimension-
ality of the partitioning. Unlike with mesh-based computations, however, efficiency
decreases rapidly with the number of processors, by an additional factor of p. This
result demonstrates the clear advantage of mesh-based networks over bus-based net-

works for DSMC computations.

6.8 Bus-Based Experiments

DSMC performance on shared-memory systems was evaluated on a 14-processor Sili-
con Graphics Power Challenge. At the lowest level, this machine uses a bus architec-
ture, where all processors must share a fixed amount of bandwidth to main memory.

Unless the bus is saturated, however, communication between processors may effec-

117
tively take place in parallel. Because a significant portion of the communication may
be performed in parallel, the machine may behave like a mesh architecture under
certain conditions. For these reasons, the performance of this machine was predicted
using both bus-based and mesh-based communication models.
Simulations were conducted on a 54145-cell box geometry. Simulations were con-
ducted using 1, 2, 4, 8, 12, and 14 processors on this system. For each case, the

timestep time and efficiency were predicted and measured.

22

Etticien

Figure 6.3: Predicted and measured scaling of a box simulation the SGI Power Chal-
lenge

The results of the box simulations on the SGI Power Challenge are shown in Figure
6.3. Figure 6.3 (left) shows time per timestep as a function of the number of proces-
sors, for ideal speedup, mesh- and bus-based predictions, and experimental results.
Up to 4 processors, both models slightly underpredict the time per timestep. For
8-14 processors, the bus-based prediction is significantly higher than the mesh-based
prediction. This is because the model predicts an increase in contention for the shared
bus. Experimental results, however, fall between the two models. This suggests that
the actual behavior of the system is most accurately modeled by combination of bus-
and mesh-based approaches. Since the performance trend is more closely matched by
the mesh-based model, however, this suggests that the majority of communication
operations can occur concurrently.

The computational efficiency of the box simulation on the SGI Power Challenge is

118
shown in Figure 6.3 (right). This shows that the models overpredict the efficiency for
1-4 processors, but bound it for 8-14 processors. This figure also shows the balance
of the initial partitioning, which accounts for a substantial fraction of the efficiency

loss on 12-14 processors.

3
o
73
5
RLEF
-4
wh

us Prediction -
60 F Y Ideal

Figure 6.4: Predicted and measured scaling of a GEC simulation on the SGI Power
Challenge

The GEC grid was also simulated on the SGI Power Challenge. The time per
timestep as a function of number of processors is shown in Figure 6.4 (left). As with
the box grid, both models underpredict the time per timestep up to 4 processors, but
for 8-14 processors, step time is between the two predictions. The mesh-based model
is generally more accurate than the bus-based model. Figure 6.4 (right) shows the

efficiency and volume balance for the same set of experiments.

6.9 Model Predictions

The preceding sections presented a model for concurrent DSMC performance, vali-
dated it on small test problems, and tested its predictive abilities on a large-scale
problem. The same model can also be used to predict the efficiency of more complex
simulations on larger machines. Consider three-dimensional simulations of the GEC
Reference Cell at operating pressures of 2.66 Pa/20 mTorr, 6.65 Pa/50 mTorr, and

13.3 Pa/100 mTorr. Because the time required per timestep is proportional to the

119
number of simulated cells and the number of simulated cells required is proportional
to the cube of the pressure (for three-dimensional simulations), sequential runtime of
these simulations would be substantially greater than that of the 0.29 Pa/2.2 mTorr
simulation.

Table 6.3 lists the number of grid cells required for simulations at each of these
pressures. The higher-pressure simulations require more cells than can be stored on
available sequential systems, so uniprocessor time must be estimated by scaling the
per-particle processing rate from the lowest-pressure case. Because the grids would
be too large to partition statically, it is also impossible to measure the volume balance
of initial partitioning. Load balance was therefore assumed to be 90% for 2 or more
processors. In practice, achievable load balance would depend on both the initial

partitioning and any dynamic load balancing techniques that are used.

le+07 p—
0.29 pa —-

2.66 Pa -

5.65 Pa -

le+06 po..
- 13.3 pa e

100C00 [

16000 p

s)

1000 |

Time {

L L L L
1 10 100 ic00 10000 100000

Figure 6.5: Predicted timestep time as a function of number of processors for 0.29
Pa/2.2 mTorr, 2.66 Pa/20 mTorr, 6.65 Pa/50 mTorr, and 13.3 Pa/100 mTorr simu-
lations

Figure 6.5 shows the predicted timestep times for each of the GEC simulations,
for 1-65,536 processors processors. Note that the step time increases substantially
for the higher pressures. The scaling for high pressures is excellent. No matter how
many processors are used, however, the timestep time can never be less than the
communication overhead time, 7; = 0.155 seconds. The dominance of this term

can be seen in the predictions for the 0.29 Pa/2.2 mTorr case for more than 1000

120
processors. For this simulation, the use of more than 1000 processors would not

result in any further speedup.

Efficiency

Problem size
e

Efficiency

L L L
1 16 100 1000 10000 100000

Processors

Figure 6.6: Parallel efficiency as a function of problem size and number of proces-
sors (left) and predicted parallel efficiency (right) for 0.29 Pa/2.2 mTorr, 2.66 Pa/20
mTorr, 6.65 Pa/50 mTorr, and 13.3 Pa/100 mTorr simulations

For most realistic problems, parallel efficiency decreases with larger numbers of
processors. This is the result of fixed overhead, or inherently sequential aspects of an
algorithm, that remain constant as the amount of useful work per processor decreases.
On the other hand, as the problem size is increased, the amount of useful work per
processor increases, further amortizing the fixed overhead, and improving parallel
efficiency. This phenomenon is represented schematically in Figure 6.6 (left).

Predictions of efficiency, assuming a 90% load balance, are shown in Figure 6.6
(right). The efficiency of the low pressure simulations decreases more rapidly than
that of the high pressure simulations. For the 0.29 Pa/2.2 mTorr case, efficiency drops
below 30% for more than 1000 processors. For the 13.3 Pa/100 mTorr case, however,
efficiency is predicted to remain above 80%, even on 65,536 processors. Note that

It is interesting to consider the number of Cray T3D processors that would be
required to complete a GEC simulation at a given pressure in a given amount of
time. While the sequential time required for a timestep is proportional to the cube of
the pressure, the number of steps required to reach convergence is also proportional

to the pressure. The total sequential time required to reach convergence is therefore

121
proportional to the fourth power of the pressure.

For reactor simulations to be useful for industrial purposes, they must be com-
pleted in reasonable timeframes. Assume that the maximum time available for a
simulation is one week, or 604,800 seconds. The number of steps required for a simu-
lation can be calculated as in Section 4.5. Dividing the time available by the number
of steps required gives the maximum allowable time per timestep, Tiaz- Using the
predicted step times from Figure 6.5, this can be used to determine the minimum
number of processors required to give a solution in the desired time, pym.. Values for
Trnaz and pyime are shown in Figure 6.3. As the pressure increases, the number of pro-
cessors required quickly becomes very large. Above 6.65 Pa/50 mTorr, the minimum
number of processors is much larger than the size of currently available systems.

The number of processors required for a simulation, however, is also constrained
by the amount of available memory. If a single Cray T3D processor had enough avail-
able memory, it could complete a simulation at 0.29 Pa/2.2 mTorr in less than a week.
A 64-MByte T3D processor, however, only has approximately 54 MByte of available
memory, and even with completely uniform memory usage on each processor, at least
5 processors would be required for this simulation. Because of memory imbalances
resulting from uneven grid density and uneven initial partitioning, actual simulations
at this pressure cannot be conducted with fewer than 16 processors. Memory re-
quirements for a DSMC simulation are proportional to the number of cells required,
which is proportional to the cube of the simulated pressure. By scaling the memory
requirements accordingly, it is possible to predict the minimum number of processors,

Pmem, required for completing a simulation at a given pressure.

Table 6.3: GEC Simulation Predictions

Press. | Press. Cells Trnaz | Prime Dimem
Pa mTorr sec.
0.291 2.2 1.4 x 10° | 7,760 1 5

2.66 20 1.1 x 10% | 850 128 3,800
6.65 o0 1.7 x 10% | 339 650 60,500
13.3 100 | 1.3 x 10 | 170 | 50,000 | 479,000

122

Estimated values for p,,.n, are shown in Table 6.3. For each CaSe, Dmem > Primes
therefore these simulations are memory-bound. In other words, the addition of more
memory could substantially reduce the number of required processors. While a 2.66
Pa simulation would require 3,800 64-MByte processors, it would be possible with
1750 128-MByte processors, or 841 256-MByte processors. The effect of pressure on
computational requirements is also clearly demonstrated in this table. As pressure in-
creases, the required number of processors grows very rapidly. As explained in Section
4.5, these predictions are conservative estimates of runtime and storage requirements.
In practice, it may be possible to obtain satisfactory results using substantially fewer

processors and less memory.

6.10 Heterogeneous Modeling

The preceding analysis has been developed for homogeneous collections of processors.
In order to make use of all available computational resources, including networks of
workstations, it is important to also consider heterogeneous collections of computers.
In general, computers may differ in speed of processors and amount of available
memory. Consider a collection of p computers, each with a different processing speed
and memory, M*. The time required for single-particle transport, 7}, and for single-
collisions, T, also varies between computers. The speed at which a computer can

execute a DSMC timestep, measured in terms of particles per second, is given by,

Si—p N _ c,C" _ 1
Toe ™ [+ g7 () R0 [y slevtis (1] '

(6.30)

The parameters 7} and T} are likely to scale between machines in the same manner.

In this case, they can be written in terms of reference times, 7, and 7}, and processor
speeds, s, _

T} = E,Ti = 5 (6.31)

st € st

123

The DSMC speed of a computer is then given by,

Sl

St = — : (6.32)
{Tﬂr—?”——t ates (_u) TC} D

The total DSMC speed of a collection of computers, S, is the sum of the individual

speeds,

2o s'

ce{cp—1)c v |
Tt+ th\/i 2 (F_-f—t’l}—t.)Tc:lD

(6.33)

S:ZSi:{

As with homogeneous simulations, the time required for a timestep, T.,,., is the
sum of communication and computation times. The computation time for a given

partition, T}, is proportional to the number of cells in that partition, C?,

Ti

comp ~—

ci(cp — 1)ey < vy) g
[cth + = () T D (6.34)

The communication time is a linear function of the number of particles communicated,

Ti

comim

=T} + T.Dn},. (6.35)

Assuming that communication times scale with processing times, this can be written,

; ¢+ TpDn;,

comm ~

6.36
X (6.36)
Recall from Section 6.2 that the number of particles communicated by a partition is

proportional to the number of exposed faces,

np = c;c,Ch (v, + 1), (6.37)

For homogeneous networks, it is possible to assume that the number of exposed faces
of a partition is the average number of exposed faces, or the total number of exposed
faces divided by the total number of partitions. For heterogeneous networks, however,

partitions will differ both in terms of the number of total cells and the number of

124
exposed cells. It is therefore more appropriate to write the number of exposed cells

in terms of the total number of cells and the dimensionality of the partitioning,

g—1

Ci=en(C?) ", (6.38)

e

where ¢, is a proportionality constant that reflects the shape of the partitions. The

communication time for the i-th processor can then be written,

comm

. 1 ; 1 N
Liomm = 5 (4T + T,Dm})) = [qu + T, Deyesen (v +7) (CF) 7 J - (6:39)

The total time for a timestep is then given by,

T(jonc = Tciomp +Tcomm
= loTir e () 1] % (6.40)

+ [qu + T, Deyesen (v +) (Ci)gq_] .

The optimal assignment of cells to partitions will result in all partitions having the
same concurrent execution time, Te,,.. Consider a partitioning where each partition
has a fraction, f*, of the total number of cells. This equation can be solved for f?, and
the constraint that the sum of these fractions must equal one gives the total concurrent
execution time. For arbitrary g, this cannot be solved analytically. As illustration,
consider a simplified one-dimensional partitioning for which communication overhead,
Ty, can be neglected. Let T, = T, + &(ce—lex (ﬂ—) T,. In this case, the amount of

NG v+ve
communication per partition is constant, and the total step time is,

. D .
T = S_CP [T £7C + Tyepen (v + 7)) (6.41)

conce

Solving this equation for f*, subject to the constraint 3 f* = 1 yields the total

concurrent time,

De, |T,C
Tconc = % { D + TpCfCh ('Ut -+ ﬁ)} s (642)

and the optimal cell allocation,

—— 1 T,
J“=§ —+ = =cren (U + D)

T c (v, + 7). (6.43)

TC

While intuition would suggest that the optimal allocation of cells is simply f! =
sp, this is not correct. Because communication does not increase at the same rate
as computation, work allocations must be adjusted accordingly. Note that these
equations reduce as would be expected. If communication costs can be neglected

T, =~ 0), the concurrent timestep time corresponds to ideal scaling, T.on. = &‘;ISE,
P g

5p
and the optimal cell allocation is proportional to the processing speed, f* = ;—p This
also correctly reduces to the homogeneous case, for which f? = 11).
It is possible for some processors to be so slow that they spend all of their time
on communication and can not contribute useful work to the computation. This
corresponds to the case

T
cren (U +)| < =Zcrep (v, + 7). (6.44)

i st
f~§ TC T.C

Any such processor should be removed from the computation. Another case in which
work assignment needs to be different from that specified in (6.43) is when memory
constraints are exceeded. If the amount of memory required for f'C cells is greater
than the amount of available memory on processor 7, “excess” work from this processor
must be reassigned to other processors.

Having considered the case of one-dimensional partitioning and zero-overhead
communication, it is possible to make qualitative statements about more general
cases. It is always true that as the size of a partition grows, the amount of com-
putation that it requires will grow faster than the amount of communication that
1t requires. For this reason, multi-dimensional partitioning will not avoid the sit-
uation wherein a processor may be too slow to make a useful contribution to the

computation.

126
6.11 Related Work

Several DSMC implementations on concurrent architectures have been presented
[26, 50, 51, 91, 67], and scalability analysis has been presented in [104]. The scala-
bility of similar techniques has been studied in [31, 25]. Load balancing and related
performance optimizations for particle-based simulations are discussed in [87, 108,
50, 99, 100, 66]. The use of automatic granularity control for DSMC simulations is
presented in [84].

Parallel scalability analysis of the DSMC method is presented in [104]. The high
cost of communications and simplistic global remapping strategy used in this imple-
mentation limit efficiency to about 20% on 64 processors. The advantage of increasing
problem size with machine size is discussed, and performance predictions are made
for larger problem sizes and larger machines. While this work elucidates the effects
of communication latency and bandwidth, as well as sequential execution time and
problem size, on a concurrent simulation, it does not explain the dependence of these
quantities on physical simulation parameters.

Previous work has been conducted to show that DSMC simulations do not scale
well for fixed-size problems [73]. This technique uses dynamic remapping techniques
such as recursive coordinate bisection (RCB), recursive inertial bisection (RIB), and
one-dimensional chain partitioning in order to maintain load balance. When scaling
the number of particles and cells with the number of processors, these techniques
achieve better than 70% utilization on up to 64 processors. These load balancing
techniques, however, require substantial amounts of global computation and commu-
nication, and are therefore a fundamental obstacle to further scalability. Another
interesting result of this work is an estimation of the runtime profile of different com-
ponents of the algorithm, showing transport operations requiring about 48% of the
timestep time, collisions 10.6%, and communications and parallel overhead consum-
ing 24-40%. While the ratio of transport costs to collision costs here is similar to
that presented in this thesis, the communication overhead is much larger, suggesting

a less efficient concurrent implementation.

127
6.12 Summary

The results of this work show that the parallel scalability of DSMC implementations
is predictable, using a simple model with a small number of parameters. The two
primary factors that impact parallel efficiency are load imbalance and communication
cost. Load imbalance is primarily determined by initial partitioning, but may be
improved with the use of dynamic load balancing. Communication costs increase
with the number of processors, and with the size of the problem. The fraction of time
spent on communication, however, decreases with problem size. For this reason, large
problems scale more efficiently than small problems.

The extension of the DSMC method to include more sophisticated collision and
chemical models increases the amount of sequential computation required, which im-
proves scaling properties. On the other hand, certain models, such as discrete Larsen-
Borgnakke, may require large and complex data structures for each particle. The cost
of particle communication will therefore be greater for these simulations, decreasing
parallel efficiency.

The amount of sequential simulation time required for a three-dimensional DSMC
timestep is proportional to the cube of gas pressure, and the computation required for
a three-dimensional simulation to converge is proportional to the fourth power of pres-
sure. Even for very efficient parallel implementations, computational requirements for
high-pressure simulations quickly become prohibitive. Simulations above 6.65 Pa/50
mTorr are infeasible, even on the largest parallel machines currently available.

The models presented here made it possible to answer the questions in at the
beginning of the chapter. For a given machine and physical problem, it is possible to
predict parallel performance and efficiency. The effects of changes in physical, algo-
rithmic, and architectural parameters on parallel performance have been quantified.
For a given physical problem size, it is also possible to predict runtime and mem-
ory requirements. These predictions, along with the model for parallel performance
and machine-specific parameters, can be used to estimate the number of Processors

required to satisfy the constraints of available time and memory.

128

Chapter 7 Related Experimental Studies

This chapter presents several additional experimental studies of concurrent DSMC
simulations. A model of partition connectivity is presented and aspects of concurrent
transport in unstructured grids are explored. The effectiveness of dynamic load bal-
ancing and automatic granularity control is demonstrated. Parallel scalability is also

measured on several different platforms.

7.1 Partition Connectivity

The choice of parameters for initial grid partitioning can have a significant impact on
the performance of a simulation. Poor choices can increase both the load imbalance
and the communication cost. While dynamic load balancing and partitioning can
recoupe most of these costs, it is still important to have a versatile initial partitioner

and a good choice of partitioning parameters.

Figure 7.1: Connections Per Processor (left) and average connection distance (right)
as a function of Partitions Per Processor

Figure 7.1 (left) shows the number of connections per processor as a function of

number of partitions per processor, and Figure 7.1 (right) shows the average con-

129
nection distance as a function of the number of partitions per processor. Because
adding more partitions to a processor increases the number of local (same computer)

connections, the average distance decreases with the number of computers.

Ports per Partition
®
s

9o
Average Pa

L L ‘ :
1 10 100 1000 10000 100000 1 10 100 1000

Figure 7.2: Connections Per partition as a function of the number of partitions(left)
and average connection distance as a function of number of processors (right)

Figure 7.2 (left) shows the number of connections per partition as a function of
the number of partitions, for a 12,540-cell cube-shaped grid. Different values for a
particular number of partitions are the result of different partitioning factors. The
points on this plot are bounded by three curves, only one of which is grid-specific.

The lower bound on the number of connections is given by the equation,

§>=2—2/p, (7.1)

where s is the number of connections per partition, and p is the number of parti-
tions. This is the number of connections that result from an optimal one-dimensional

partitioning. The upper bound, for all-to-all connectivity, is specified by the equation,

s<=p-L (7.2)

As seen in the figure, for small p, the number of connections per partition increases
in between the upper and lower bounds. For intermediate p, between 100 and 1000, p

holds an approximately constant value in the range 6-10. When p is large, the number

130
of cells per partition becomes small. When p is equal to the number of grid cells,
each shared face requires a connection, resulting in an average of 4 connections per
partition for a grid with no external boundaries, and 3.89 connections per partition

for this grid. This limit can be approximated with the equation,
C
5<24 2% —, (7.3)

p

where C' is the number of grid cells. This limit is also shown in Figure 7.2 (left).

7.2 Unstructured Grid Transport

Commanicari

Figure 7.3: Number of Communication Rounds (left) and Particles exchanged, per
processor, in each round (right) as a function of the number of processors

As the number of processors used for a computation increases, the number of
partitions must also increase. This results in increased communication in two ways.
First, it leads to an increase in the surface area of partition boundaries, and thus the
probability that a particle will cross a partition boundary. Second, as partitions are
smaller and more numerous, particles are more likely to cross the edges and corners of
partitions, and thus travel through several partitions in one timestep. This requires
additional rounds of nearest-neighbor particle exchanges.

Figure 7.3 (left) shows the number of rounds of particle exchanges as a function

of the number of processors. These results are from the simulation of a 12,540-cell

131
box grid with no net flow, using a number of particles proportional to the number of
processors. It can be seen that the number of communication rounds increases to 6.3
for 128 processors. In the next experiment, the number of communicated particles
was computed for each round of exchanges, and averaged over all of the processors.
The results, shown in Figure 7.3 (right) show that each subsequent round exchanges
10-30 times fewer particles than the previous round. The number of communicated

particles, for any given round, can also be seen to increase slowly with the number of

Processors.

7.3 Parallel DSMC Scalability

Recall that practical DSMC simulations typically involve two phases: startup and
statistics-collection. During the startup phase, macroscopic properties change over
time as the solution emerges. Once the macroscopic parameters have converged,
statistics are collected over several thousand steps in order to obtain smooth and
accurate results. During the startup phase, a small number of particles are used (only
as many as are required to reach a correct solution). As the number of processors is
increased, there is no need to increase the number of particles.

During the statistics-collection phase, however, the goal is to maximize the num-
ber of “samples”, where a sample is one timestep for one particle. As the ratio of
particles to cells increases, the computational overhead associated with each cell is
amortized over a larger number of “useful” particle computations. Maximizing the
particle processing rate therefore results in the shortest wall-clock-time required for
a given level of smoothness. On distributed-memory machines, the use of additional
processors makes possible the use of additional particles. It is therefore useful to
consider a scaled speedup, where the number of particles used is proportional to the
number of processors.

In both phases of a computation, the rate of productive work can be measured and
compared in terms of the number of particles that can be simulated in a given amount

of time. Because of the reduced overhead, this processing rate can actually increase

132
super-linearly with the number of processors. This is particularly true on machines
with small amounts of memory per processor, where single-processor simulations are
only possible with very small numbers of particles. While this metric of performance
may be misleading from an algorithmic scalability perspective, it is nevertheless a
meaningful measure of the amount of “useful work” that can be achieved on existing

platforms.

7.4 Load Balancing Experiments

In order to investigate the effectiveness of dynamic load balancing with automatic
granularity control, a series of GEC simulations was conducted on the Cray T3D. A
high-pressure (13.3 Pa / 100 mTorr), uniform-flow case was considered. Due to the
relatively large size of the grid (140,000 grid cells), and the small amount of memory
per processor (32 MB), this problem could not be run on fewer than 16 processors.
For this reason, the uniprocessor speed could not be determined exactly. An estimate
of the uniprocessor speed was obtained by running the full uniprocessor case on one
Avalon A12 processor (with 512 MB RAM), then timing small uniprocessor test cases
on both the A12 and the T3D. The T3D uniprocessor time was then computed as
the A12 time scaled by the ratio of times for the small problem on the two machines.

Based on several different tests, this figure is believed to be accurate to within 10%.

le+08 b

100000 - 100600
10

Figure 7.4: Unscaled (left) and scaled (right) performance on the GEC problem

133

Simulations were conducted on varying numbers of processors for both scaled and
unscaled cases. For the unscaled simulations, 200,000 particles were used. The un-
scaled results are shown in Figure 7.4 (left). Three lines are shown here: the measured
speed without load balancing or automatic granularity control; the measured speed
with load balancing and granularity control; and the ideal speed, computed by scaling
the estimated uniprocessor speed. For these tests, the combination of load balanc-
ing and granularity control improved performance by 50-100%, but performance still
dropped below 40% of ideal on 128 processors. This can be attributed to the small
number of particles per processor for the unscaled case on large numbers of proces-
sors. As the number of particles per processor decreases, the fraction of time spent
on computational overhead increases, resulting in poor scaling.

Several scaled-particle simulations were also conducted, using 12,500 particles per
processor. These results are shown in Figure 7.4 (right), again with unbalanced,
balanced, and ideal speeds. Here, the unbalanced performance quickly drops to 26%
of ideal, but with load balancing and granularity control, performance remains above
70% of ideal. On 128 processors, the combination of load balancing and granularity
control resulted in a 3x performance improvement, resulting in performance that was

77% of ideal.

7.5 Automatic Granularity Control Experiments

This section presents tests that were conducted in order to evaluate the effectiveness
of the automatic granularity control technique described in Section 5.5. The scaled-
particle simulation was executed on 128 processors with 3.2 million particles, both
with automatic granularity control, and without, using different numbers of partitions
per processor. The GEC Grid was initially statically partitioned for one partition on
each of 128 processors, and tests were conducted using the same initial partitioning,
both with and without automatic granularity control. For the simulation with auto-
matic granularity control, partitions were automatically divided only when deemed

appropriate by the load balancing technique. For the simulations without automatic

134
granularity control, each initial partition was repeatedly split in order to obtain a
specified number of partitions per processor (1,2,4,8, or 16), and then the load bal-
ancing method continued without any further splits. This approach yields the most
uniform granularity possible for the given initial partitioning. In each of these cases,
the performance, in particles per second, was measured both before and after dynamic

load balancing.

1.3e+06 , —_—
B}
1.2e+06 - Unbalanced —<— B
Balanced -+-- .
Auto. Gran. Cntrl. O /,/ \\\\

1.le+06 |- .
o] le+06 /,// *_._
g
o -
0 A
@ 900000 4
N
9 -
A 800000 i
9] L
(0] e
— ’//
8 700000 | P i
D L
[e
o P
f 600000 F J

500000 - 7 i

400000 [\Q_\e\:

300000

1 10

Partitions Per Processor

Figure 7.5: Performance as a function of partitions per processors

Figure 7.5 shows the results of these experiments. The decrease in performance
of the unbalanced case reflects the increased overhead of the additional partitions
on the same processor, which is fairly small, as inter-processor communication is not
increased. With only one partition per processor, load balancing cannot make any
improvement. Up to 8 partitions per processor, performance improves with more
partitions per processor, as load balancing has more flexibility in transfer selection.
Above 8 partitions per computer, however, the increased overhead of non-local com-

munication is greater than any improvements from load balancing, and performance

135
deteriorates.

Without automatic granularity control, the best performance is obtained with
the use of 8 partitions per processor. The automatic granularity control technique
yielded an average of 5.84 partitions per processor, and a 10% better performance,
with 27% fewer partitions. The performance improvement is the result of two factors.
First, fewer partitions are required and thus the volume of communication is reduced:;
second, the approach guarantees that no partition is so large as to impede the load
balancing method.

In addition to the performance improvement that results from the use of automatic
granularity control, it is important to note the reduction of parameters. Without au-
tomatic granularity control, it is necessary to specify the desired number of partitions
per processor. An optimal value for this parameter can only be determined by ex-
tensive tests. A sub-optimal number of partitions per processor could further reduce
performance by 12%. In general, dynamic load balancing and automatic granularity

control will yield substantially better performance than static manual partitioning.

7.6 Architecture Comparison

This section evaluates the performance and scalability of DSMC simulations on a va-
riety of platforms. These simulations are at an operating pressure of 100mTorr. Due
to memory constraints, it was only possible to use small fraction of the number of
grid cells required to satisfy the cell size criteria described in Section 4.1.1. Though
the communication requirements of these examples may underestimate the communi-
cation requirements of more stringent simulations, general simulation properties are
still representative. In each case, the number of particles used in the simulation is
proportional to the memory available to those processors. In other words, as the num-
ber of processors is increased, the number of particles is increased so as to maintain
a constant fraction of memory usage. Performance is measured in terms of particles
per second, or the rate at which particles can be processed for each timestep. For

ideal parallel scaling, this quantity will increase linearly as a function of number of

136

processors.

Figure 7.6: Scalability results for the Cray T3D (left) and the Avalon A12 (right).

Figure 7.6 (left) shows performance on the Cray T3D, which is composed of 256
200-MHz 21064 DEC Alpha processors, with 64 MB RAM each, but without sec-
ondary or tertiary caches. Due to the small memory size, it is impossible to run this
problem on fewer than 16 T3D processors, as the GEC grid alone requires approxi-
mately 16 MB. The ideal T3D performance is therefore calculated by linearly scaling
the balanced 16-processor performance. This figure clearly shows the benefits of load
balancing on large numbers of processors.

Figure 7.6 (right) shows performance on the Avalon A12, which is composed of
12 400 MHz 21164 DEC Alpha processors, each with 500 MB RAM, a 96k secondary
cache, and a 1 MB tertiary cache. Due to the small number of processors on the A12,
the effect of load balancing is much smaller than on the T3D, while the A12 processors
are 3 to 4 times faster than the T3D processors. Due to severe memory constraints
on the T3D, it is only possible to achieve 50% load balance there, compared to 85%
on the A12. These differences account for what is almost an order of magnitude
difference in per-processor speed between the A12 and the T3D.

Figure 7.7 (left) shows the performance results on a network of 5 Dell PC’s, each
containing 4 200 MHz Intel Pentium Pro processors and 1 GB RAM. Note that this
platform uses a heterogeneous communication system, with socket communication

between cabinets and shared-memory communication within cabinets. For this plat-

137

12407

o
100800 p

Processors Pracessors

Figure 7.7: Scalability results for a network of multiprocessor Dell PC’s (left) and the
SGI Power Challenge (right).

form, the effects of dynamic load balancing are shown, both with and without auto-
matic granularity control. Due to the combination of multiple cabinets and multiple
processors within a cabinet, it is advantageous to start simulations with one partition
per cabinet, and to allow the load balancing algorithm to split partitions in order
to achieve both full utilization within a cabinet and load balance across cabinets.
Efficient simulation was possible with all 20 processors.

Performance results on the SGI Power Challenge are shown in Figure 7.7 (right).
This machine uses 14 75-MHz R8000 processors and 2 GB RAM. With just one
cabinet, there is no need for dynamic load balancing.

The results for each platform are combined in Figure 7.8. The highest raw perfor-
mance was achieved on the Cray T3D, with 1.28 million particles per second on 256
processors. More available memory for each processor would allow for a more effi-
cient load balance, which could as much as double the performance on 256-processors.
Of the machines considered in this study, the Avalon A12 demonstrated the highest
per-processor performance, with 94,000 particles per second per processor. The Dell
network also achieved excellent performance, the use of commodity components mak-
ing it a particularly cost-effective platform.

As predicted by the models presented in Chapter 6, the primary constraint on the

efficiency of concurrent DSMC simulations is the load balance. For adequately sized

138

le+08 T
r Avalon Al2 o—
Avalon Al2 Ideal -----
Dell -+--
Dell Ideal -
SGI Power Chal. &~
SGI P. Chal. Ideal ----
Cray T3D % -

le+07 | _
4 Cray T3D Ideal ----- g Pt ?

le+06 |

Particles Per Second

100000

10000 K-
1 10 100
Processors

Figure 7.8: Performance on the Cray T3D, Avalon A12, Dell network, and SGI Power
Challenge

problems, the losses due to communication are generally less than those due to load
imbalance. The minimum number of processors on which simulations were possible
for the Cray T3D is also consistent with predictions from the model in 4. Calculation
of the architecture-specific parameters for the Avalon A12 and Dell platforms would

also allow for the prediction of scalability of these simulations on larger numbers of

Processors.

7.7 Related Work

The concurrent DSMC method developed by Dietrich and Boyd uses domain de-
composition, unstructured grids and ray tracing [26]. The requirement of multiple
communication rounds is described. A parallel efficiency above 90% is achieved on
up to 400 IBM SP2 processors when scaling the number of particles with the number
of processors. Using a constant total number of particles, efficiency drops to 20% on

400 processors.

Yokokawa has developed a parallel DSMC implementation based on grid parti-

139
tioning {107]. Two-dimensional results were obtained on a Fujitsu AP1000, and a
speedup of 42 was obtained on 64 processors. Wang et al. present a scalability study
of their PIC/MC technique that couples self-consistent field solution with Monte
Carlo collisions. Parallel efficiencies were measured to be above 90% for up to 256
Cray T3D processors, 512 Intel Paragon processors, and 512 Intel Delta processors.
This technique uses Cartesian grids with spatial domain decomposition.

Matsumoto and Tokumasu have performed parallel molecular dynamics calcula-
tions of internal energy exchanges for Ny collisions. Using these results in a three-
dimensional parallel DSMC implementation, they achieved 60% parallel efficiency on
64 processors. This work also demonstrates the fact that DSMC efficiency on a given

number of processors improves with problem size [65].

7.8 Summary

This chapter demonstrated a model for partition connectivity as a function of par-
titioning parameters. Concurrent particle transport in unstructured grids was dis-
cussed. Experiments were presented that demonstrated the practical utility of dy-
namic load balancing and automatic granularity control on realistic simulations. Sim-

ulation performance on several concurrent architectures was also presented.

Chapter 8 Technology Demonstrations

This chapter presents several applications of the concurrent DSMC technology. A va-
riety of systems, including semiconductor manufacturing and high-altitude spacecraft

flight, can be addressed with this technique.

8.1 Semiconductor Manufacturing Applications

One of the primary goals in the design of a plasma reactor is to ensure flow uniformity
above the wafer. If flow parameters, such as density and speed, are different across
the wafer, etching and deposition rates will vary accordingly. Non-uniform etching
and deposition rates, in turn, can drastically reduce the yield of a production line.
This section presents results from a series of simulations of low-pressure neutral
flow in the GEC Reference Cell reactor shown in Iligure 8.1 (left). The same initial
grid, shown in Figure 8.1 (right), was used for each configuration. Simulations were
conducted in several different flow configurations, and the uniformity of gas properties

in the vicinity of the wafer was compared between configurations.

Figure 8.1: The Gaseous Electronics Conference (GEC) Reference Cell Reactor (left)
and tetrahedral grid used to represent it (right)

141
8.2 Simulation Results

This section presents results from six simulations of the GEC Reference Cell Reactor,
used to determine the effects of chamber configuration on flow uniformity above the
wafer. In each of the simulations, the walls of the reactor are assumed to be accom-
modating at 300K. Simulations were performed using argon with o = 0.31, 4 = 0.714,
Tres = 273K, and 0,05 = 5.307 x 107""m?. In the first four configurations, the wafer
was held at 300K, while it was heated to 400K for the final configuration.

The outflow surface in each configuration was specified to adapt in order to main-
tain a pressure of 2.66 Pa (20 mTorr) at a point just above the center of the wafer,
as described in Section 3.2.1. Gas was injected at 300K, and a timestep of 4 x 106

seconds was used.

Table 8.1: GEC Reference Cell Simulation Configuration Parameters

Configuration Inflow | Flow Angle n; v; | Ty,

Degrees m>2 | m/s| K
Horizontal-45 Small 45 5 x 10%L | 37.6 | 300
Horizontal-135 Small 135 5 x 10%' | 37.6 | 300
Vertical Top 180 | 6.4 x 10%° | 29.4 | 300
Showerhead Showerhead 180 | 6.4 x 10%° | 29.4 | 300
Heated Wafer || Showerhead 180 | 6.4 x 10%° | 29.4 | 400

The following sections consider the different flow configurations in further detail.
Table 8.1 below shows the parameters used in each of the configurations, the inflow
port, the angle between the inflow and outflow ports, the inflow number density n;,
the inflow speed v;, and the wafer temperature T,. For each case, two 2-D slices
through the reactor are shown, one above and parallel to the wafer (horizontal), and
the other perpendicular to the wafer (vertical). Projections of CAD surfaces onto the
cut planes appear as solid lines. In the horizontal cut, the largest complete circle in
the center of the reactor indicates the edge of the wafer. In the vertical cut, the wafer
appears as a thin horizontal element in the center of the reactor.

The plots are colored by pressure, with a scale from 0 (blue) to 5 (red) Pascal,

142
and 20 contour lines are shown for this interval. A color key is shown in Figure 2.17
(right). The orientation and spacing of the contour lines provides an indication of the
uniformity of the flow above the wafer. Closely spaced parallel contour lines indicate
steep gradients in density, while scattered and separated lines suggest reasonable
uniformity. Concentric contour lines centered at the center of the wafer indicate a
radial flow pattern. These results suggest which configurations are most appropriate

for semiconductor manufacturing purposes.

Horizontal 45-Degree Configuration

In this configuration, gas was injected through the small port appearing on the upper
left of the plane, and exhausted through the large port on the left, 45-degrees apart.
The inflow density was 5 x 10*'/n~* and the inflow speed was 37.6 m/s. Figure 8.2
shows the gas pressure in horizontal and vertical planes for this configuration. The
pressure in the inflow region is high compared to the rest of the reactor and decreases
steadily towards the outflow region. The effects of the inflow can be clearly seen

above the portion of the wafer closest to the inflow port.

Figure 8.2: Pressure in the horizontal (left) and vertical (right) planes for the hori-
zontal 45-degree configuration

143

Horizontal 135-Degree Configuration

In this configuration, gas was injected through the small port at the bottom left of
the plane, and again exhausted through the large port on the left, separated by 135
degrees. This configuration is almost half-symmetric, with gas flowing across the
wafer. Figure 8.3 shows the gas pressure in horizontal and vertical planes. Notice
the high density in the inflow region, and a slightly lower density in the exhaust
region. Since the effects of the inflow port are much stronger than the effects of the
exhaust port, the results of this configuration are almost a mirror image of those
in the previous section. In contrast, however, the effect of the inflow port continues
further across the wafer than in the previous case, resulting in a stronger density drop

and less uniformity.

Figure 8.3: Pressure in the horizontal (left) and vertical (right) planes for the hori-
zontal 135-degree configuration

Vertical Configuration

In this configuration, gas was injected at the top of the reactor with a density of
6.4 x 10*m=* and a speed of 29.4 m/s, and exhausted at the bottom of the reactor.
This configuration is quarter-symmetric, and could be reasonably approximated as
rotationally symmetric about the vertical axis. Figure 8.4 shows uniform gas pressure
across the entire width of the reactor, especially above the wafer. Because the flow is

vertical in this configuration, there is no reason to expect non-uniformities above the

144

horizontally oriented wafer.

Figure 8.4: Pressure in the horizontal (left) and vertical (right) planes for the vertical
configuration

Showerhead Configuration

In this configuration, gas was injected above the wafer, with a density of 6.4 x 102m~3
and a speed of 29.4 m/s, and exhausted at the bottom of the reactor. This configura-
tion is also quarter-symmetric, and could be reasonably approximated as rotationally
symmetric about the vertical axis. Figure 8.5 shows the gas pressure in horizontal
and vertical planes. The concentric contour lines in the horizontal plane, and vertical
lines in the vertical plane, are clear indication of a radial flow profile, where pressure
is highest at the center and lowest at the edges of the wafer. The asymmetry of the
horizontal ports does not noticeably affect the rotational symmetry near the wafer

for this configuration.

Heated Wafer Configuration

This configuration is identical to the previous configuration, with the exception that
the wafer was heated to 400K, while the other solid surfaces of the reactor were held
at 300K. Figure 8.6 shows the gas pressure in horizontal and vertical planes. Again,
the flow is predominantly radial and axisymmetric. Because of the wafer heating, the

temperature above the wafer is greater than in the previous case, but the density is

145

Figure 8.5: Pressure in the horizontal (left) and vertical (right) planes for the show-
erhead configuration

proportionally lower, yielding the same pressure above the wafer. This is enforced by
adaptive pressure regulation, which maintains a constant pressure above the wafer

for all configurations.

Figure 8.6: Pressure in the horizontal (left) and vertical (right) planes for the heated
wafer showerhead configuration

8.2.1 Convergence

For the purposes of this study, convergence was ascertained from examination of over-
all system parameters. The longest timescale in these simulations is the convergence
of the pressure regulation method, because it is governed by the acoustic timescale.

Changes in the exhaust probability must propagate through the entire system be-

146
fore the regulation can converge. Convergence of the pressure regulation algorithm

therefore implies convergence of the system as a whole.

Figure 8.7: System energy (left) and particles and collisions (right) as functions of
simulation time

Figure 8.7 (left) shows system pressure as a function of time for the horizontal
135-degree simulation. Figure 8.7 (right) shows the number of particles and collisions
per timestep for the same simulation. The pressure regulation-induced oscillation can
be seen here as well. The other feature of this plot is the periodic doubling in the
number of particles, as described in Section 3.2.2. Initially, a small number of particles
is used to rapidly obtain an approximate solution. Particles are periodically repli-
cated in order to provide smoother solutions. Using this particle replication method,
convergence can be obtained substantially faster than by running a simulation with
a large number of particles from the beginning.

The results presented in Figures 8.2-8.6 were averaged over several thousand steps,
starting from when the pressure settled to within 10% of the target pressure. After
pressure convergence, the number of particles was further increased to several million,

to ensure accuracy and smoothness of the results.

8.2.2 Analysis

While the preceding figures serve to provide a qualitative description of flow unifor-

mity above the wafer, quantitative comparisons of simulation results are also possible.

147
The following figures show flow parameters in the horizontal plane just above the
wafer. Two lines are considered, both passing through the center of the chamber: one
is parallel to the centerline of the large outflow port in the horizontal configurations
(from left to right), and the other is parallel to the centerline of the inflow ports for

the horizontal configurations (from upper left to bottom right).

Figure 8.8: Particle density as a function of position along a line above the wafer,
passing through the inflow ports in the horizontal configurations (left), and along a
line through the outflow port in the horizontal configurations (right)

Figure 8.8 (left) shows the density along the first line, where the wafer extends from
approximately 0.33 m to 0.47 m. The decrease in density towards the left of the graph
corresponds to the pressure drop along the outflow port. The density peak for the two
showerhead configurations is a direct result of the showerhead inflow, which causes
a radial flow pattern. The density of the heated-wafer showerhead configuration is
lower than that of the regular showerhead configuration, as is required for both to
achieve the same pressure above the wafer. In the vertical configuration, very little
variation is seen across the entire width of the reactor.

The second line, running through the inflow ports, is shown in Figure 8.8 (right),
where the wafer extends from 0.53 m to 0.67m. The most noticeable feature in this
plot is the large density drop along the inflow tubes for the horizontal configuration.
As in the previous plot, the radial flow profile can be observed for the showerhead

configurations, and uniform flow persists for the vertical configuration.

148
Average particle speed along the horizontal line is shown in Figure 8.9 (left). For
the horizontal configurations, the increase in speed from right to left corresponds
to the acceleration towards the outflow port. The profiles for the showerhead con-
figurations are indicative of a radial flow pattern. Unlike the other configurations,
the speed peaks for the vertical configuration correspond to increases in vertical, or
downward, speed, and these occur just past the edges of the wafer, where gas has an

unobstructed path from inlet to outlet.

Speed (m/s)

Speed (m/s)

Figure 8.9: Average particle speed as a function of position along a line above the
wafer, passing through the inflow ports in the horizontal configurations (left) and
through the outflow port in the horizontal configurations (right)

Speed along the diagonal line is shown in Figure 8.9 (right). Here, the flow can
be seen to accelerate along the inflow tubes for the horizontal configurations, from
left to right in the 45-degree configuration, and from right to left in the 135-degree
configuration. The showerhead configurations again display radial flow profiles, and
the vertical configuration shows little flow above the wafer.

From the preceding figures, several general conclusions can be drawn. For the ver-
tical and showerhead configurations, flow is generally axisymmetric, as demonstrated
by the similarity between the plots along two different lines. The flow is primarily ra-
dial above the wafer for the showerhead configurations, while it is directly downward
for the vertical configuration. The expected density drops are seen from inflow to

outflow for the horizontal configurations, as are the speed changes in response to the

149
changing geometry of the reactor. Above the wafer, the showerhead configurations
exhibit a 50% radial drop in density, and a 20% decrease in speed. The horizontal
configurations exhibit a 30-50% variation in density, and a 10% variation in speed.
The 135-degree configuration shows better uniformity than the 45-degree configura-
tion, along the horizontal line across the wafer. In all cases, the vertical configuration

provides extremely uniform flow above the wafer.

8.2.3 Related Work

Bukowski, Graves, and Vitello have conducted two-dimensional simulations of induc-
tively coupled plasma in the GEC Reference Cell Reactor [22]. Separate equations
are solved for ions and neutral species, while the electromagnetic fields are solved
self-consistently. Results are compared with experimental data.

Font and Boyd have conducted simulations of a helical etch reactor in a variety of
configurations [30]. The DSMC method is used for modeling neutrals and ions, while
electrons are modeled with a background condition. Their results show the effects of
different nozzle locations.

An inductively coupled plasma reactor with complex geometry have been studied
using the Hybrid Plasma Equipment Model (HPEM), which incorporates electro-
magnetic field solution, electron Monte Carlo simulation, and fluid-chemical kinetics
simulation [59]. These results show excellent agreement with experimental data.

Hitchon, et al., have implemented a nonstatistical technique for studying the trans-
port of sputtered neutral particles [76]. Their “convective scheme” (CS) has also
been use to solve the Boltzmann equation in a cylindrical geometry [75]. Hitchon
has performed a detailed study of the sensitivity of simulations to collision techniques
[40]. Two-dimensional results have been obtained for ion densities in plasma cham-
bers with simple geometries, solved self-consistently with the electrostatic potential
[54, 41]. Techniques have also been presented that permit the results of computation-

ally inexpensive simulations to be extrapolated to obtain results comparable to those

from lengthy simulations [39].

150

Wadsworth has applied a parallel, three-dimensional code to simulation of a sim-
plified, quarter-symmetric version of the GEC reference cell reactor [96]. This im-
plementation uses ray tracing and grid-based partitioning under PVM, and includes
static load balancing. Bartel has performed axisymmetric simulations of plasma reac-
tors, with multiple species and constant electromagnetic fields [9]. In this technique,
electron distributions are solved by a separate fluid model. Economou and Aydil have
monitored etch rates and surface chemistry processes in experimental plasma reactors
(27, 4, 5].

Nanbu and Uchida have combined the PIC and DSMC techniques to support sput-
tering simulations with self-consistent electric fields and multiple species [71]. This
technique has been applied to one-dimensional problems with decoupled neutral flow,
iion formation, sputtering, and sputtering atom transfer. Nanbu and Kondo ana-
lyzed a three-dimensional magnetron discharge using the same PIC/MC technique,
determining the effects of magnetic field and pressure on plasma density [72].

A number of techniques have been used to model plasmas. Graves et al. have
modeled microwave plasmas in cylindrical geometries using a hybrid approach [35].
This technique uses particles to model ions and a fluid model for electrons. Microwave
power deposition is modeled with an ad hoc technique. Barone and Graves simulated
plasma-surface interactions using molecular dynamics (MD) techniques [8].

Currently, three methods are being investigated for handling trace species and the
difference in timescales between ions and neutrals. These are species-selective particle
transport and weighting [13, 21], spatially dependent weighting factors, and overlay
techniques. Validation of these techniques is difficult in the absence of high-quality

experimental data for realistic systems.

8.2.4 Summary

This chapter has presented the basic concepts behind a novel concurrent DSMC
method and demonstrated the method on three-dimensional simulations of the GEC

reference cell. While much progress has been made, this work is a first step in a

151
comprehensive plasma-simulation project. A number of directions are active areas
of research. The use of tetrahedral grids is consistent with finite volume continuum
methods, facilitating the integration of the two techniques. The inclusion of ions and
self-consistent electric fields will significantly enhance the ability to model a variety
of engineering problems associated with plasma reactors.

The main advantage of this technique is that it addresses the entire design cycle
of a simulation. Each step in the process has been optimized in order to minimize the
amount of human effort and computer time required. Industry-standard commercial
tools are used where possible, and scalable concurrent algorithms enable the efficient
use of a wide variety of platforms. Modular software design facilitates the incorpora-
tion of new or proprietary models for physical and chemical processes. Methodologies
that do not address each of these issues are limited in their viability for widespread
industrial application.

The results of this chapter show that large-scale simulations of realistic plasma
reactors are possible within realistic engineering timescales. Using a relatively small
parallel machine such as a 14-processor SGI Power Challenge or a 72-processor Intel
Paragon, simulations have been conducted on a variety of proprietary Intel and Tegal
reactors that have had a direct impact on the efforts of process engineers. These
problems can typically be configured and simulated in about a week using several
million particles. On newer architectures, such as the 12-processor Avalon A-12,
simulations can be completed in 2-3 days. Good performance and scaling have been
observed on as many as 512 processors of a parallel computer and 25 networked
workstations.

While only single-species neutral flow has been presented here, significant progress
has been made in support of complex inelastic collisions, internal energy modes, and
reacting chemistry. Full support for all of these features will allow industrial designers
and process engineers to evaluate new reactor designs and configurations quickly,

accurately, and cost-effectively.

152
8.3 Aerospace Applications

Because Earth’s upper atmosphere is composed of low-density gas, the flight of space-
craft through this regime is also in the transition region. The DSMC technique is
therefore useful for the simulation of spacecraft reentry. One example of this appli-
cation is the Skipper mission, a space experiment designed to measure the ultraviolet
radiation from the shock-heated gas in the nose region of a small satellite. Figure

8.10 shows diagrams of the inside (right) and outside (left) of the satellite.

Figure 8.10: Outside (left) and inside (right) diagrams of the Skipper satellite

A central problem is to optimize the vehicle trajectory so as to maximize the data
acquired by detectors. Flow field predictions are required at a wide variety of angles
of attack; these may then be used by designers to conduct a tradeoff study to obtain

the optimal trajectories for data collection.

8.4 Simulation Results

A simulation of the Skipper satellite was conducted using a 7 km/s argon flow. The
spacecraft body was configured to be fully accommodating at 300K. The simulations
were conducted in 3D, and 2D cuts through the center of the satellite body are shown.

Figure 8.11 shows the temperature results from this simulation. A low temperature
region around the surface of the spacecraft is the result of thermal accommodation.

The high temperature in the bow shock can also be seen in this figure.

153

Ar Temperature (K)

i | -
308.3| 7064.0) |.332Hl Db
3936.2: 1.019E 1.645E

Figure 8.11: Temperature solution (left) and key (right)

Figure 8.12 shows the speed results in the same plane. The 7km/s freestream

speed can be seen. The speed drops to zero immediately in front of the satellite.

8.4.1 Related Work

The DSMC method was originally designed for use with aerospace applications. Bird
has used sophisticated internal energy models in the modeling of reentry of the Space
Shuttle [14]. Ivanov, et al., have performed extensive studies of high-altitude reentry
capsules [51, 47] and other hypersonic rarefied flows [52]. They have also studied the
hysteresis effect in the transition between regular and Mach reflection of planar shock
waves [33, 49]. Nguyen et al. present simulations of hypersonic channel-wedge flows,
along with grid resolution and convergence studies for the monotonic Lagrangian grid
method [74].

Nanbu presents simulations of hypersonic flow around a disk, using regular multi-
block grids [70]. Koura has calculated coefficients for the VSS model for air species
[58]. In collaboration with Legge, they have also performed simulations of force and

heat transfer for flow around a disc and shown good agreement with experimental

154

Ar Average Speed (m/s)

I |
6.7 1591.3; 3176.0} 47 .7 6 ‘I‘)Z‘I}U.
799.0: 2363.7 3968.3' 5553.0 7137.7534

Figure 8.12: Speed solution (left) and key (right)

data [60].

Marriott and Bartel have compared two sophisticated chemistry techniques, Max-
imum Entropy (ME) and Larsen-Borgnakke, on two-dimensional axisymmetric grids
[63]. Their results show that the two approaches yield significantly different solutions
under certain conditions. Boyd has developed models for energy transfer between
vibrational and translational modes, simulating flow over a two-dimensional -wedge
[19]. He has also studied the effects of rotational degrees of freedom for jets of iodine
vapor impinging on blunt bodies [20]. These results agree well with experimental data
for moderate temperatures (100 - 500K), but less satisfactorily for high temperatures.

Another particle technique, Particle-In-Cell, has been used to model ion thruster
backflow contamination [87]. The parallel programming methodology in this work is

very similar to that of that described in this thesis.

8.4.2 Summary

The use of the DSMC method is particularly appropriate for simulations such as those

of the Skipper satellite. The results of this section show that these simulations are

155

feasible with available computational resources.

156

Chapter 9 Conclusion

This thesis has presented a framework for understanding the performance charac-
teristics of particle simulations. Application- and architecture-independent models
have been developed for predicting runtime and storage réquirements for sequential
and concurrent simulations. These models are applicable to a wide variety of homo-
geneous and heterogeneous computational platforms. The models are demonstrated
and evaluated in the context of Direct Simulation Monte Carlo (DSMC) simulations
for semiconductor manufacturing and aerospace applications.

In addition to the work presented here, a number of additional models have been
implemented but have not yet been validated. A framework for supporting arbitrary
chemical reactions has been developed, including calculations of reaction probabilities
from rate constant information. Binary reactions and dissociations are supported.
Infrastructure for supporting surface transport and surface reactions has also been
developed. Simplistic models for particle absorption, reemission, surface reactions
have been implemented. Several novel reaction types have been developed to support
specific industrial needs. Numerical integration of arbitrary particle trajectories has
been developed, using the Gaussian-Quadriture method.

One of the chief elements of complexity of this work is that algorithmic analysis
alone is insufficient for understanding the performance characteristics of particle sim-
ulations. The interaction between the physical and chemical properties of a system
and the numerical method being used to model it must be considered in detail.

Equipped with these predictive models, scientists can determine whether DSMC
simulations of a given system will be feasible with existing computational resources,
or what additional resources will be required. The feasibility boundaries for realistic
simulations have been determined. The same analysis techniques could be applied to
other numerical methods, such as PIC and Navier Stokes. By combining these anal-

yses, it would be possible to determine which numerical method is most appropriate

157

for obtaining a desired level of accuracy on a given physical system.

158

Bibliography

[1] A. Aho, J. Hopcroft, D. Ullman. “The Design and Analysis of Computer Algo-
rithms.” Addison-Wesley. Reading, Mass., 1974.

[2] J. Austin and D. Goldstein. “Direct Numerical Simulation of Low-Density Atmo-
spheric Flow on lo.” Bulletin of the American Physical Society Series II. 39(9).
1994.

[3] D. J. Alofs, R. C. Flagan, G. S. Springer. “Density Distribution Measurements
in Rarefied Gases Contained between Parallel Plates at High Temperature Differ-
ences.” Physics of Fluids. 14(3). 1971.

[4] E. Aydil, R. Gottscho, Y. Chabal. “Real-time Monitoring of Surface Chemistry
during Plasma Processing.” Pure and Applied Chemistry. 66(6). 1994,

[5] S. Han, E. Aydil. “A Study of Surface Reactions during Plasma Enhanced Chem-
ical Vapor Deposition of S04 from SiHy, Os, and Ar Plasma.” Journal of Vacuum
Science and Technology. 1995.

[6] S. Baase. “Computer Algorithms: introduction to design and analysis.” Addison
Welsey. Reading, Mass, 1978.

[7] S. Barnard and H. Simon, “A fast multilevel implementation of recursive spec-
tral bisection for partitioning unstructured problems,” Concurrency: Practice and
Ezperience, vol. 6, pp. 101-117, 1994.

[8] M. Barone and D. Graves. “Molecular dynamics simulations of plasma-surface
chemistry.” Plasma Sources Science and Technology. 1996.

(9] T. Bartel. “Low Density Gas Modelling in the Microelectronics Industry.” Rarefied
Gas Dynamics 19. Volume 1, Oxford University Press. 1995.

[10] S. Barnard and H. Simon, “A fast multilevel implementation of recursive spec-
tral bisection for partitioning unstructured problems,” Concurrency: Practice and
FEzxperience, Vol. 6, pp. 101-117, 1994.

[11] G. A. Bird. “Breakdown of Translational and Rotational Equilibrium in Gaseous
Expansions.” AIAA Journal. 8(11). 1970.

[12] G. A. Bird. “Direct Simulation of the Boltzmann Equation.” Physics of Fluids.
13(11). 1970.

[13] G. A. Bird. “Molecular Gas Dynamics.” Oxford University Press, 1976.

159

[14] G. Bird. “Simulation of Multi-Dimensional and Chemically Reacting Flows.”
Rarefied Gas Dynamics. 1979.

[15] G. Bird. “Molecular Gas Dynamics and the Direct Simulation of Gas Flows.”
Clarendon Press. Oxford, 1994.

[16] C. Borgnakke, P. Larsen. “Statistical Collision Model for Monte Carlo Simulation
of Polyatomic Gas Mixture.” Journal of Computational Physics. (18) 1975.

[17] A. Borodin and I. Munro. “The Computational Complexity of Algebraic and
Numeric Problems.” American Elsevier. New York, 1975.

[18] J. F. Bourgat, P. Le Tallec, and M. D. Tidriri. “Coupling Boltzmann and Navier-
Stokes Equations by friction.” J. Comp. Phys.. 1996.

[19] I. Boyd. “Analysis of vibrational-translational energy transfer using the direct
simulation Monte Carlo method.” Physics of Fluids. 3(7). 1991.

[20] I. Boyd, G. Pham-Van-Diep, E. Muntz. “Monte Carlo Computation of Nonequi-
librium Flow in a Hypersonic Iodine Wind Tunnel.” ATAA Journal. 32(5). 1994.

[21] 1. Boyd. “Conservative Species Weighting Scheme for the Direct Simulation
Monte Carlo Method.” Journal of Thermophysics and Heat Transfer. 10(4). 1996.

[22] J. Bukowski, D. Graves, and P. Vitello. “Two-dimensional fluid model of an in-
ductively coupled plasma with comparison to experimental spatial profiles.” Jour-
nal of Applied Physics. 80(5). 1996.

(23] C. Cercignani. “Theory and Application of the Boltzmann Equation.” Scottish
Academic Press. Edinburgh/London, 1975.

[24] S. Chapman, T. G. Cowling. “The Mathematical Theory of Nonuniform Gases.”
Cambridge University Press. New York, 1952.

[25] M. Crowley, T. Darden, T. Cheatham, and D. Deerfield. “Adventures in Improv-
ing the Scaling and Accuracy of a Parallel Molecular Dynamics Program.” Journal
of Supercomputing. 1997.

[26] S. Dietrich and I. Boyd. “Scalar and Parallel Optimized Implementation of the
Direct Simulation Monte Carlo Method.” Journal of Computational Physics. 1996.

[27] D. Economou, E. Aydil, G. Barna. “In Situ Monitoring of Etching Uniformity
in Plasma Reactors.” Solid State Technology. April, 1991.

[28] G. S. Fishman, “Multiplicative congruential random number generators with
modulus 2**b: an exhaustive analysis for b = 32 and a partial analysis for b =
48" Math. Comp., Vol. 189, pp. 331-344, 1990.

[29] J. Foley. “Introduction to Computer Graphics.” Addison-Wesley. Reading, 1994.

160

[30] G. Font and I. Boyd. “Numerical study of the effects of reactor geometry on a
chlorine plasma helicon etch reactor.” Journal of Vacuum Science and Technology.

15(2). 1997

[31] 1. Foster, W. Gropp, and R. Stevens. “The Parallel Scalability of the Spectral
Transform Method.” Monthly Weather Review. 1992.

[32] S. Gimelshein, G. Markelov, M. Rieffel. “Collision Models in the Hawk DSMC
Implementation.” California Institute of Technology Technical Report CS-96-16.
1996.

[33] S. Gimelshein, G. Markelov, and M. Ivanov. “Real Gas Effects on the Transition
Between Regular and Mach Reflections in Steady Flows.” AIAA Paper 98-0877.
1998.

[34] A.S. Glassner. “Graphics Gems.” Academic Press, Inc.. San Diego, 1990.

[35] D. Graves, H. Wu, R. Porteous. “Modeling and Simulation of High-Density Plas-
mas.” Japanese Journal of Applied Physics. 32(6B). 1993.

[36] J. K. Haviland and M. L. Levin. “Application of Monte Carlo method to heat
transfer in rarefied gases.” Phys. Fluids. 1962.

[37] R. Haimes, M. Giles. “Visual3: Interactive Unsteady Unstructured 3D Visual-
ization.” ATAA Paper 91-0794. Reno, NV.1991

[38] A. Heirich, S. Taylor. “Load Balancing by Diffusion.” Proceedings of 24th Inter-
national Conference on Parallel Programming. 1995.

[39] W. N. G. Hitchon, T. J. Sommerer, J. E. Lawler. “A Self-Consistent Kinetic
Plasma Model with Rapid Convergence.” IEEE Transactions on Plasma Science.

19(2). 1991.

[40] W. N. G. Hitchon, G. J. Parker, J. E. Lawler. “Accurate Models of Collisions
in Glow Discharge Simulations.” IEEE Transactions on Plasma Science. 22 (3).
1994.

[41] W. N. G. Hitchon, E. R. Keiter. “Kinetic Simulation of a Time-Dependent Two-
Dimensional Plasma.” Journal of Computational Physics. 112 (2). 1994.

[42] ICEM-DDN User’s Manual. ICEM-CFD Engineering, Berkeley, CA.
[43] ICEM-Tetra User’s Manual. ICEM-CFD Engineering, Berkeley, CA.

[44] M. Ivanov, S. Rogasinsky. “Analysis of numerical techniques of the direct simu-
lation Monte Carlo method in the rarefied gas dynamics.” Soviet Journal on Nu-
merical Analysis and Mathematical Modelling. 2(6). 1988.

161

[45] M. Ivanov, S. Rogasinsky, V. Rudyak. “Direct statistical simulation method and
master kinetic equation.” XVI International Symposium on Rarefied Gas Dynam-
ics, Pasadena. 1988.

[46] M. S. Ivanov, S. V. Ragasinsky. “Theoretical Analysis of Traditional and Modern
Schemes of the DSMC Method.” Invited Paper, Rarefied Gas Dynamics, 1991.

[47) M. Ivanov, S. Antonov, S. Gimelshein, A. Kashkovsky. “Rarefied Numerical
Aerodynamic Tools for Reentry Problems.” Proceedings of the First European
Computational Fluid Dynamics Conference, Burssels, Belgium. 1992.

[48] M. Ivanov, S. Antonov, S. Gimelshein, A. Kashkovsky. “Computational Tools
for Rarefied Aerodynamics.” Proceedings of the XVII International Symposium on
Rarefied Gas Dynamics, Vancouver, Canada. 1994.

[49] M. Ivanov, S. Gimelshein, A. Beylich. “Hysteresis effect in stationary reflection
of shock waves.” Physics of Fluids. 7(4). 1995.

[50] M. Ivanov, G. Markelov, S. Taylor, J. Watts. “Parallel DMSC Strategies for 3D
Computations.” Proceedings of Parallel CFD °96. 1996.

[61] M. Ivanov, G. Markelov, S. Gimelshein, and S. Antonov. “DSMC Studies of High-
Altitude aerodynamics of Reentry Capsule.” Proc. 20th International Symposium
on Rarefied Gas Dynamics. 1997.

[52] M. Ivanov, S. Gimelshein. “Computational Hypersonic Rarefied Flows.” Ann.
Rev. Flurd Mech.. 1998.

[53] Y. Kallinderis, P. Vijayan. “Adaptive Refinement-Coarsening Scheme for Three-
Dimensional Unstructured Meshes.” AIAA Journal. 31(8). 1993.

[54] E. R. Keiter, W. N. G. Hitchon, M. J. Goeckner. “A kinetic model of pulsed
sheaths.” Physics of Plasmas. 1(11). 1994.

[55] D. Knuth. “The Art of Computer Programming.” Addison Welsey. Reading,
Mass., 1968.

[56] M. N. Kogan. “Rarefied Gas Dynamics.” Plenum Press. New York, 1969.

[57] K. Koura and H. Matsumoto. “Variable soft sphere molecular model for inverse-
power-law or Lennard-Jones potential.” Physics of Fluids. 3(10). 1991.

[58] K. Koura, H. Matsumoto. “Variable soft sphere molecular model for air species.”
Physics of Fluids. 4(5). 1992.

[59] M. Kushner, W. Collison,, M. Grapperhaus, J. Holland, M. Barnes. “A three-
dimensional Model for Inductively-Coupled PLasma-Etching Reactors - Azimuthal
Symmetry, Coil Properties, and Comparison to Experiments.” Journal of Applied
Physics. 80(3). 1996.

162

[60] H. Legge, K. Nanbu, S. Igarashi. “Force and Heat Transfer on a Disc in Rarefied
Flow.” Rarefied Gas Dynamics 17. Volume 1, Weinheim, NY. 1990.

[61] F. Lumpkin III, B. Haas, I. Boyd. “Resolution of the differences between collision
number definitions in particle and continuum simulations.” Phys. Fluids A.. 3(9).

1991.

[62] J. Machta. “The Computational Complexity of Pattern Formation.” Journal of
Statistical Physics. 70(3). 1992.

[63] P. Marriott, T. Bartel. “Comparisons of DSMC Flow Field Predictions using Dif-
ferent Models for Energy Exchange and Chemical Reaction Probability.” Rarefied
Gas Dynamics 19. Volume 1, Oxford University Press. 1995.

[64] M. Matsumoto, T. Nishimura. “Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator.” To appear in ACM Transac-
tions on Modelling and Computer Simulation.

[65] Y. Matsumoto and T. Tokumasu. “Parallel computing of diatomic molecular
rarefied gas flows.” Parallel Computing. (23) 1997.

[66] B. Moon, M. Uysal and J. Saltz. “ Index Translation Schemes for Adaptive
Computations on Distributed Memory Multicomputers.” University of Maryland
Technical Report CS-TR-3428. 1995.

[67] B. Moon and J. Saltz. “Adaptive Runtime Support for Direct Simulation Monte
Carlo Methods on Distributed Memory Architectures.” University of Maryland
Technical Report CS-TR-3427. 1995.

[68] E. P. Muntz. “Rarefied gas dynamics.” Ann. Rev. Fluid Mech.. 1989.

[69] K. Nanbu, Y. Watanabe. “Relaxation Rates of Inverse-Power and Rigid-Sphere
Molecules.” Rep. Ins. High Speed Mach.. (43) 334.1981

[70] K. Nanbu, S. Igarashi, Y. Watanabe. “Three-Dimensional Hypersonic Flow
Around a Disk with Angle of Attack.” Proceedings of the XVI International Sym-
postum on Rarefied Gas Dynamics. 1989.

[71] K. Nanbu, S. Uchida. “Application of Particle Simulation to Plasma Processing.”
Rarefied Gas Dynamics 19. Volume 1, Oxford University Press. 1995.

[72] K. Nanbu and S. Kondo. “Analysis of Three-Dimensional DC Magnetron Dis-
charge by the Particle-in-Cell /Monte Carlo Method.” Japanese Journal of Applied
Physics. 36(1). 1997.

[73] R. Nance, R. Wilmoth, B. Moon, H. Hassan, and J. Saltz. “Parallel Monte Carlo
Simulation of Three-Dimensional Flow over a Flat Plate.” Journal of Thermo-
physics and Heat Transfer. 9(3). 1995.

163

[74] T. Nguyen, C. Oh, R. Sinkovits, J. Anderson Jr., and E. Oran. “Simulations of
High Knudsen Number Flows in a Channel-Wedge Configuration.” ATAA Journal.
35(9). 1997.

[75] G. J. Parker, W. N. G. Hitchon, J. E. Lawler. “Numerical solution of the Boltz-
mann equation in cylindrical geometry.” Physical Review , 50(4): 3210-3219. 1994.

[76] G. J. Parker, W. N. G. Hitchon, D. J. Koch. “Transport of sputtered neutral
particles.” Physical Review pre-print, April 1995.

[77] T. Parsons, J. Harvey. “Object-Process Paradigms in Molecular Computation.”
Rarefied Gas Dynamics 19. Volume 1, Oxford University Press. 1995.

[78] W. Press, S. Teukolsky, W. Vetterling, B. Flannery. “Numerical Recipes in C.”
Cambridge University Press. Cambridge, 1996.

[79] M. Rieffel. “Concurrent Simulations of Plasma Reactors for VLSI Manufactur-
ing.” California Institute of Technology Masters Thesis CS-95-012. 1995.

[80] M. Rieffel, S. Taylor, and J. Watts. “Concurrent Simulation of Plasma Reactors.”
Proceedings of High Performance Computing '97. pp. 163-168. 1997.

[81] M. Rieffel, S. Taylor, J. Watts, S. Shankar, “Concurrent DSMC on Adaptive
Tetrahedral Grids. "Invited talk for the 1997 ICEM-CFD Users’ Group Meeting,
Berkeley, CA, 1997.

[82] M. Rieffel, S. Taylor, and S. Shankar. “Reactor Simulations for Semiconductor
Manufacturing.” Proceedings of High Performance Computing ’98. 1998.

[83] M. Rieffel. “The Computational Complexity of the DSMC Method.” Journal of
Computational Physics. (Submitted) 1998.

[84] M. Rieffel, J. Watts, S. Taylor. “Automatic Granularity Control for Load Balanc-
ing of Concurrent Particle Simulations.” Proceedings of High Performance Com-
puting '98. 1998.

[85] S. Taylor, M. Rieffel, J. Watts, and S. Shankar. “Computational Techniques for
the Concurrent Simulation of Plasma Reactors.” Parallel Computing for Industrial
Applications. Morgan Kaufmann, 1998.

[86] M. Rieffel, S. Taylor. “The Parallel Scalability of the DSMC Method.” IEFE
Transactions on Parallel and Distributed Systems. (Submitted) 1998.

[87] R. Samanta Roy, G. Hastings, and S. Taylor, “Three-Dimensional Plasma
Particle-in-Cell Calculations of Ion Thruster Backflow Contamination,” Journal
of Computational Physics, Vol. 128, pp. 6—18, 1996.

[88] E. M. Shakhov. “Method of studying the rarefied gas motion.” Nauka. Moscow,
1974. (In Russian.)

164

[89] S. Shankar, M. Rieffel, S. Taylor, D. Weaver, A. Wulf. “Low Pressure Neutral
Transport Modelling for Plasma Reactors.” Invited Paper for 12th International
Symposium on Plasma Chemistry, August 21-25, 1995.

[90] S. Shankar, M. Rieffel, S. Taylor, L. Jerde, R. Ditizio. “Three-Dimensional Flow
Simulations in Low Pressure Etch Reactors.” Tegal Plasma Symposium, Santa
Clara, CA. 1996.

[91] S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das, J. Saltz. “Run-time
and Compile-time Support for Adaptive Irregular Problems.” Supercomputing '94.
1994.

[92] S. Taylor, J. Watts, M. Rieffel and M. Palmer. “Large-Scale Irregular Calcula-
tions using Parallel Architectures. Invited paper to the 6th International Sympo-
sium on Computational Fluid Dynamics” 1995.

[93] S. Taylor, J. Watts, M. Rieffel, M. Palmer. “The Concurrent Graph: Basic Tech-
nology for Irregular Problems.” IEEE Parallel and Distributed Technology. 4(2).

1996.

[94] R. Van Driessche and D. Roose, “An improved spectral bisection algorithm and
its application to dynamic load balancing,” Parallel Computing, vol. 21, pp. 29-48,
1995.

[95] Dean C. Wadsworth. “Slip effects in a confined rarefied gas. I: Temperature slip.”
Physics of Fluids. 5(7). 1993.

[96] D. Wadsworth. “Development and Application of a Three-dimensional Parallel
Direct Simulation Monte Carlo Code for Materials Processing Problems.” Proceed-
ings of Parallel CFD 95, Pasadena. 1995.

[97] C. Walshaw and M. Berzins, “Dynamic load-balancing for PDE solvers on adap-
tive unstructured meshes,” Concurrency: Practice and Ezperience, vol. 7, pp. 17—
28, 1995.

[98] J. Watts. “A Practical Approach to Dynamic Load Balancing.” California Insti-
tute of Technology Masters Thesis CS-95-013. 1995.

[99] J. Watts, M. Rieffel, S. Taylor. “Practical Dynamic Load Balancing for Irregular
Problems.” Parallel Algorithms for Irreqularly Structured Problems: IRREGULAR
‘96 Proceedings. Volume 1117, Springer-Verlag LNCS. 1996.

[100] J. Watts, M. Rieffel, S. Taylor. “A Load Balancing Technique for Multiphase
Computations.” Proceedings of High Performance Computing ’97. pp. 15-20. 1997.

[101] J. Watts, M. Rieffel and S. Taylor. “Dynamic Management of Heterogeneous
Resources.” Proceedings of High Performance Computing ‘98. 1998.

165

[102] M. Willebeek-LeMair and A. Reeves, “Strategies for dynamic load balancing
on highly parallel computers,” IEEE Trans. on Parallel and Distributed Systems,

vol. 4, pp. 979-993, 1993.

[103] R. Williams, “Performance of dynamic load balancing algorithms for unstruc-
tured mesh calculations.” Concurrency: Practice and FEzxperience, vol. 3, pp. 457
481, 1991.

[104] R. Wilmoth. “Direct Simulation Monte Carlo Analysis of Rarefied Flows on
Parallel Processors.” J. Thermophysics. 1991.

[105] R. Wilmoth, A. Carlson, and G. Bird. “DSMC Analysis in a Heterogeneous
Computing Environment.” AIAA Journal. 1992.

[106] M. Woronowicz, R. Wilmoth, A. Carlson, and D. Rault. “Procedure for Adapt-
ing Direct Simulation Monte Carlo Meshes.” Proceedings of Rarefied Gas Dynamics.
1992.

[107] M. Yokokawa, K. Watanabe, H. Yamamoto, M. Fujisaki, H. Kaburaki. “Parallel
Processing for the Direct Simulation Monte Carlo Method.” Computational Fluid
Dynamics Journal. 1(3). 1992.

[108] X. Yuan, C. Salisbury, D. Balsara, and R. Melhem. “A load balancing package
on distributed memory systems and its application to particle-particle particle-
mesh (P3M) methods.” Parallel Computing. 1997.

[109] X. Zhong, K. Koura. “Comparison of Solutions of the Burnett Equations,
Navier-Stokes Equations, and DSMC for Couette Flow.” Rarefied Gas Dynamics
19. Volume 1, Oxford University Press. 1995.

