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ABSTRACT

An analytic representation for the Tuminosity function for
galaxies is proposed. Best fits of this function to counts of nearby
bright galaxies and to counts of galaxies in rich clusters have been
obtained. The results are marginally consistent with a single lumin-
osity function valid for both samples. The proposed representation
contains a characteristic magnitude M* which exhibits an equivalent
dispersion of only .24 magnitudes from cluster to cluster. The narrow
dispersion in absolute magnitude observed for the brightest members of
clusters 1is understood in large part as statistical fluctuation about
a universal luminosity function, but the correlation of absolute mag-
nitude with richness expected from the proposed representation is not
observed.

It is shown that galaxies will condense into clusters of the
sizes presently observed if the perturbations giving rise to galaxies
were randomly distributed at recombination. A model for the origin of
clusters is proposed which assumes (a) that galaxies collapse without
dissipation, (b) that the perturbations giving rise to galaxies are
centrally condensed, and (c) that most of the matter density in the
universe is in galaxies.

The problem of the distribution of cluster sizes for Poisson
distributed points is discussed and an analytic approach to a solution
is developed. Humerical experiments show factor of two agreement with

the soluticn cbtained.
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It is shown that if galaxies were randomly distributed at some
early epoch massive galaxies are less likely to be isolated than less
massive galaxies. An observational definition of an "isolated

galaxy" is offered and an observational test of the model is proposed.
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General Introduction

It may be argued that the luminosity function for galaxies and
the clustering of galaxies are two aspects of the same problem, the
distribution of galaxies with respect to luminosity and with respect
to position. These two aspects are treated here as separate ques-
tions. We present in Chapter I an analytic representation of the
Tuminosity function. It was developed primarily as a tool in simpli-
fying the calculations in Chapters II and IV, but the proposed
representation turns out to be interesting in its own right, offering
a convenient parameterization of the properties of different samples
of galaxies. We find, for example, that the luminosity function con-
tains a characteristic luminosity which is remarkably constant from
one cluster of galaxies to the next. We are led to interpret the
narrow dispersion in the absolute magnitude of the brightest members
of clusters of galaxies as a reflection of the constancy of this
characteristic lTuminosity.

In Chapter II we take galaxies for granted, arguing that there
must have been density perturbations in an otherwise homogeneous uni-
verse in order for us to observe galaxies at the present. We then
argue that if these pregalactic perturbations were Poisson distributed
(a rather strong assumption) the presently observed clustering of
galaxies may be understood entirely in terms of fluctuations in the
density of pregalactic perturbations at recombination. To do this we
borrow a result from Chapter III, which deals exclusively with the
clustering of random points. We examine in Chapter III the frequency

distribution of clusters of points and develop an analytic approximation
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to the expected distribution of clusters. The approximation devel-
oped in Chapter III is useful in a variety of problems, including the
apparent clustering of certain asteroids and the apparent flaring of
X-ray sources.

We discuss in Chapter IV a slightly different model for the
clustering of galaxies, assuming that galaxies rather than pregalac-
tic perturbations were randomly distributed at some early epoch. We
offer an operational definition of an "isolated galaxy", and predict
that isolated galaxies will be substantially fainter than average.

The central thread running through this thesis is that the
masses (and Tuminosities) of galaxies were determined at recombination
by the mass distribution of pregalactic perturbations. These per-
turbations are assumed to be randomly distributed. A region with
extra pregalactic perturbations collapses to form a cluster, but in
the 1imit of rich clusters the distribution of luminosities in a
cluster is a "fair sample" of the universal distribution of pregalactic
perturbations. Isolated ga]axieé, however, are very strongly biased
in favor of less massive galaxies, since a massive galaxy is more

1ikely to bind a companion galaxy than a less massive one.



-3-
Chapter I
THE LUMINOSITY FUNCTION FOR GALAXIES

1. Introduction

The theory of gravitational condensation of galaxies from stat-
istically independent subcondensations (Press and Schechter 1974a)
predicts that the number of galaxies of mass 7 will show\an exponen-
tial cutoff at some characteristic mass #*. If we assume that the
mass to Tuminosity ratio for galaxies is independent of mass (Morton
and Chevalier 1973, Roberts 1969) then the Tuminosity function for
galaxies will exhibit an exponential cutoff beyond some characteristic
luminosity L* . The luminosity function predicted by the statistical

theory is then

s(L)dL = ¢* exp[-L/L*1(L/1*) 732 d(1/1%) (1)

where ¢(L) 1is the number of galaxies per luminosity
interval, dL ~ , per unit volume, dV .

While the predicted Tuminosity function exhibits a power Tlaw
dependence of number versus luminosity at luminosities fainter than the
characteristic luminosity L* , the negative three halves power shown
in equation (1) depends upon a simplified assumption about how one iden-
tifies potential galaxies. A more careful treatment shows that the
power is almost certainly not three halves (Press and Schechter 1974b).
Nonetheless, the proposition of an exponential cutoff in luminosity, if
correct, is extremely important. It "explains” in a natural way the

remarkably constant luminosity found for the very brightest galaxies in
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rich clusters of galaxies. We shall therefore examine the analytic rep-

resentation

o(L)dL = ¢* exp[-L/L*] (L/L*)* d(L/L*) (2)

where o 1is taken as a free parameter to be determined from fits to
observational data.

In Section 3 we show that for a suitable choice of the parameters
o and L* , equation (2) shows agreement with Oemler's (1974) observa-
tions of the luminosity function for galaxies in rich clusters. We also
show that a suitable choice of these parameters yields similarly good
agreement with the Tuminosity function for field galaxies, which we
determine in Section 2. Furthermore, the values of a and L* found
respectively for field and cluster galaxies are consistent with a single
lTuminosity function for both samples of galaxies. For the purpose of
discussion we adopt a standard value of o and in Sectioh 4 we examine
the variability of L* for a sample of fourteen rich clusters, finding
that L* s a useful standard candle. The existence of such a stand-
ard candle has frequently been stressed by Abell (Abell 1962, Bautz and
Abell 1973). The results presented here diffek chiefly in the defini-
tion of the characteristic luminosity and in using the method of least
squares to determine the parameter L* rather than relying upon
"eyeball" estimates. In Section 5 we show that the narrow dispersion
in Tuminosity exhibited by the brightest members of rich clusters can
pe understood (in the manner suggested by Peebles 1968) as statistical
fluctuations about a universal luminosity function. Section 6 presents

several brief calculations which help demonstrate the utility of the
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proposed analytic representation.

2. The Local Luminosity Function

The term "luminosity function" is applied to galaxies by exten-
sion of the terminology of stellar astronomy. The space density
w(L,AL,r,AV) is defined to be the density of galaxies (or stars) in
the volume-luminosity interval ALAV . If n(L,AL,E,AV) is the number

of galaxies in that interval then

n(L,AL,r,AV)

In discussions of the space density of stars it is usually assumed that
v is only weakly dependent on AV and AL for a large range of
values. (AV must be large enough to smooth over the inhomogeneity due
to individual stars but smaller than the scale on which the Galaxy ex-
hibits spatial structure). A further assumption is frequently made
that ¢(L,r) is separable into a dimensionless density function D(f)
and a Tuminosity function ¢(L) with the units of number density per

Tuminosity interval:

i

w(L,r) ALAV (4)

~

o(L) D(E) ALAV

The space density for galaxies, however, is strongly dependent on
AV ; even for the richest clusters of galaxies the scales AV for which
one can obtain a well determined space density are of the same size as
tne scales on wnicn the cluster exnibits spatial structure. If the uni-
verse is nomogeneous on large scales, then the Tuminosity function can

pe redefined as the 1imit of tne space density for large volumes:
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o(L)AL = Vim ¢(L, AL,AV) (5)
N > e
Our observations are limited, however, to finite volumes in the vicinity
of our own galaxy, and we must be careful to consider the scales on
which inhomogeneities may occur in a local determination of the Tuminos-
ity function.

Local determination of the luminosity function is made more dif-
ficult by the fact that the sample of galaxies used in such a deter-
mination is necessarily limited by apparent magnitude. If all galaxies
down to some apparent magnitude are included, then smaller volumes are
peing sampled for low luminosity galaxies than for brighter ones. For
every volume one expects fluctuations in the space density of some
finite size. As the volume gets smaller, one expects larger fluctua-
tions. The faint end of the Tuminosity function will therefore be rela-
tively poorly determined. The situation is further complicated by the
fact that we conduct our counts of galaxies from a privileged position,
namely our own galaxy. Peebles (1974) has shown that the probability
of finding a galaxy in a volume element chosen close to another galaxy
is higher than in a volume element chosen at random. If dP is the
propapility of finding a galaxy in a volume dV at a distance r from

another galaxy, then
dP = N[1 + g(r)] dV (6)

wnere N 15 tne mean density and &(r) is the covariance function.

r-].8

Peebles finds that &(r) ~ and is of order unity at distances of

5 Mpc. We snhall assume that any local density enhancement exhibits the
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same power law dependence but we shall take the amplitude of such an
enhancement to be indeterminate. Further assuming that such an enhance-
ment is independent of luminosity, the expected space density y(L,r)

in the vicinity of our galaxy is given by

D(Lor) = o)1 + E(r)] (7)
g(r) = ex(&y8 (8)
r

where £&* indicates the amplitude of any local density enhancement and
r* is a convenient reference radius. The space density may then be
integrated over the volume sampled for a given Timiting apparent mag-
nitude to give the expected number of galaxies n(L)dL 1in a magnitude

1imited sample of galaxies:
n(L)dL = v (L)[(L/0%)%2 + 2.5 g*(1/1%)°87 L (9)

where L* 14s a reference luminosity and V* 1is the volume sampled at
luminosity L* . The reference radius r* 1is related to [* by the

relation

rx = dex[(mc— M* - 25)/5] Mpc (10)

wnere m. is the Timiting apparent magnitude and M* 1s the absolute

magnitude corresponding to [* . The volume V* 1is given by
90°

f - .
*3 dex[-.6A csc z] sin z dz (11)

11,
1im!

v* =—§-ﬁr

|b

wiere Eb%imfis the 1imiting galactic latitude for the sample and A is

the absorption coefficient appropriate to a cosecant absorption law.
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Equation (9) allows us to obtain the Tuminosity function ¢(L)
from observed counts of galaxies n(L) in an apparent magnitude limited
survey. We must be extremely careful that our survey sample is complete,
not only with respect to identification and measurement of apparent mag-
nitude but also with respect to measurement of the d&stance modulus.
This is particularly important when radial velocities are used as dis-
tance indicators, since the low surface brightness of intrinsically faint
galaxies makes measurement of these galaxies more difficult. Any galaxies
in a magnitude limited sample which Tack redshifts are likely to be the

least luminous ones.

We present here a new determination of the luminosity function
from counts of bright galaxies. The sample consisted of all galaxies
listed in the Reference Catalog of Bright Galaxies (de Vaucouleurs and
de Vaucouleurs 1964) with apparent B(0) magnitudes brighter than 11.75.
Galaxies closer than 30° to the galactic plane and within 6° of the cen-

o7 5 =+13.5%) were excluded

ter of the Virgo cluster of galaxies (a=12
from the sample. Distances were determined using radial velocities (cor-
rected for solar motion and galactic rotation according to de Vaucouleurs
and de Vaucouleurs (1964)) and assuming a Hubble constant h0:=50 km
sec']Mpc-]. Absolute magnitudes were computed using an absorption coeffi-
cient AB= 0.12 magnitude (Peterson 1970a). Radial vé]ocities were taken
from tne Reference Catalog, with tihe following exceptions: (1) Neﬁtral
nydrogen velocities of Lewis and Robinson (1973) were used for members

of the South Polar Group of galaxies. (2) Radial velocities were found

for twelve galaxies without velocities in the Reference Catalog and are

Tisted in Table 1.
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TABLE 1

Reference Catalog Galaxies Brighter than mB(O) = 11.75, and
with lbII] > 309, without Catalogued Radial Velocities

ID Velocity ReferenceT
NGC1326 1233 (b)
NGC1532 1587 (c)
NGC1559 1284 (c)
NGC1672 1034 (c)
NGC1792 1035 (a)
NGC4096 540 (b)
NGC4145 1035 (e)
NGC4236 186 (f)
NGC4651 685 (a)
NGC4654 960 (a)
NGC4939 2862 (a)
NGC5247 | 1530 (d)

ID Group Grqup )

Velocity Identification
NGC1448 665 G21
NGC1617 999 G16
NGC4395 342 G3
NGC5054 2597 NGC5049
NGC7424 1561 G27
1€5332 142 Gl
1C5201 ce None
A58 .- Local

i (a) de Vaucouleurs and de Vaucouleurs (1967) (d) Balkowski et al (1973)
(b) Bottinelli et al (19 70) (e) Chincarini and Rood
(c) Carranza (1967) (1972)

(f) Rogstad et al (1967)
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(3) No radial velocity was found for eight galaxies. For five of these,
the mean radial velocities of the de Vaucouleurs group (1968) with which
each has been identified have been used. One galaxy, NGC5054, appears
to be a member of a group with NGC5049. The radial velocity of that
galaxy has been used. No radial velocity was assigned either to IC5201
or A58 (Sculptor).

The sample contains 192 galaxies, of which two have no measured red-
shifts and five show blueshifts. Of the remaining 185, all but oné,
HGC1313, are brighter than MB(O)= -16. The counts n(L) of galaxies
brighter than MB(O)=—J6 are shown in Figure 1.

It is obvious from the observation of negative radial velocities
that there is some component Av in each velocity which cannot be due to
the Hubble law. The luminosities computed using radial velocities are
therefore subject to some random error. This situation is analogous to
that encountered in stellar astronomy when parallaxes have a statistical

uncertainty. The uncertainty AL in the Tuminosity is given by

AL = 2BV (12)
v
For each magnitude bin in Figure 1 we can compute an uncertainty aver-
aged over all apparent magnitudes and over all galactic latitudes,
assuming a root-mean-squared uncertainty in the radial ve]ocityﬁgiven by
w2 | e find that

2.1/2

o(L) = 3.28 L2 (11%)!/? (13)

where v* = hor* . We can therefore use the Eddington method (Trumpler

and Weaver 1953) to correct the observed number of counts to the "true"



NUMBER

Fig.

ABSCLUTE  NMAGNITUDE

Counts of Tocal galaxies brighter than mB(O)~= 11.75. Solid
line shows best fit of proposed representation to data. Broken
Tine shows correction for non-Hubble component of radial velo-

cities.
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counts

12 i 1 1 i
(L) = nobs(]-c -o'g)-2n, o'oc - n 02/2-+~-- (14)

n
true obs

where primes indicate derivatives with respect to luminosity. It is
clear from equation (14) that we need a smooth curve through the ob-
served counts in order to take derivatives. The solid line shown in
Figure 1 shows reasonably good agreement with the data. The broken line
gives the "true" counts applying equations (13) and (14) and assuming

V2 2 200 km sec—1, a value typical of

an rms non-Hubble component <Av2>
the velocity dispersions in de Vaucouleurs' groups. It is remarkable
that the uncorrected and corrected curves differ by so 1ittle. This is
an accident of the observed distribution: were the solid line either
steeper or less steep, the corrections would be much larger.

The Tuminosity function ¢(L) obtained from the counts shown in
Figure1 isinsubstantial agreement with the results of van den
Bergh (1961), Christiansen (1968), and Shapiro (1971). The use of
radial velocity as the sole distance indicator, however, allows for a
more careful treatment of errors in derived absolute magnitudes. The

attention paid to the completeness of radial velocity data limits the

size of possible systematic effects.

3. Comparison of Proposed Analytic Representation with Counts of Field

and Cluster Galaxies

We have an analytic expression for the expected number of galaxies
n(L) in an apparent magnitude limited sample, equation (9), and we have
tne observed counts shown in Figure 1. We shall use the method of Teast

squares to obtain the best agreement of the proposed representation and
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the observations. The proposed representation has three free parameters
¢*, L* , and o . In addition there are two additional parameters about
which we have only limited information. &* characterizes the amplitude

of some Tocal density enhancement, assumed to show an r_]'8

2,1/2

depend-
ence, and <Av characterizes the size of the non-Hubble component
of the observed radial velocities. The data are not sufficiently strong
to determine five parameters. We shall therefore constrain £* and

1/2

<Av2> to reasonable values and examine how changes in them affect the

solution for ¢* , L* , and a .

Before solving for these parameters, we must recast the correction
for non-Hubble velocities into a correction to the theory rather than a
correction to the data. If n(L) is the expected number of galaxies of

luminosity L , then nc](L), the number expected after correcting for

uncertainties in the Tuminosity o(L) , is given by

2

n (L) =n(l +c'"+ c") +2n'c'c + n"oz/z + ... (15)

cl

wnich differs only in signs from the correction as applied to observa-
tion (equation (14)). A second correction must be applied because a
finite bin width, AM = 1 magnitude, has been used in assembling the data.

The correction is given by Trumpler and Weaver (1953)
x 2 1 3 2
n () = n (1) + nly (M) (8M) /24 + .. (16)

wnere we nave for the first time cast the theory in terms of absolute

magnitude rather than luminosity. Assuming values for £* and <Av2>”2

we may fit the data using equations (16), (15), (13), (3) and (2).
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Tne method of least squares not only yields values for the param-
eters, but also provides an "unbiased estimate"of the covariance matrix
(Wolberg 1967). The diagonal elements give the squares of the uncer-
tainties in the parameters while the off-diagonal elements determine how
strongly correlated the parameters are. Using the least squares method

2,1/2

and assuming <Av = g* =0, we find the following values for o ,

Mg(o), ¢*V* and the covariance matrix I

¢*V¥ = 18811 [1.14(2) 5.68(-1) 5.17(-1)7

M;(O) = -20.89 .10 % = |5.68(-1) 9.40(-3) 6.25(-3)

o =-1.47+ .08 | 5.17(-1) 6.25(-3) 5.70(-3)
(17)

We have solved for the product ¢*V* rather than o¢* alone to

facilitate comparison with the results obtained from cluster galaxies.

4 2

V¥ is found to be 6.40 x 10 Mpc3 from equation (11). The value of ¥
ontained from the least squares fit is 1.4 for four degrees of freedom.
The solid Tine in Figure 1 shows equation (16) evaluated using the least
squares solution for the free parameters.

The effects of non-Hubble velocities and of a local density en-
nancement, characterized by <Av2>]/2 and g* respectively, may be
found by postulating non-zero values and again solving for ¢*, L* , and
a . The effects of non-zero values for these quantities is shown by
proken lines in Figure 3. A value of <v2>]/2 = 200 km sec_] changes
M* by .34 magnitudes. A value of E* = .04, corresponding to a density en-

hancement at MB(O)= -16.5 of a factor of four, changes the parameter o
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by .29 . Such a local enhancement may be possible. The Local Group
may have decelerated the two nearest neighboring groups (the South Polar
Group and the M81 Group) leaving an unbound density enhancement of that
order.

We would also T1ike to compare the proposed analytic representa-
tion with counts of galaxies in rich clusters. We can define a
luminosity function for clusters of galaxies if we can agree on a
definition for a cluster of galaxies. If V_i is the volume associated

th

with the i~ cluster of galaxies, then

N e Do

n(L,AL,Vi)

i=1

¢C(L)AL = Tim

k> o

(18)

1V"

H DT ox

i
¢C(L)AL can be determined with arbitrary precision if a large enough
unbiased sample of clusters is used. There is unfortunately, no univer-
sal agreement as to the definition of a cluster, and in particular there
is disagreement as to the physical extent of clusters (for example, see
Yahil 1974). It is possible, however, that for a reasonable range of
definitions of clusters, the derived Tuminosity function differs only
by a multiplicative factor. The shape of the Tuminosity function would
then be independent of the cluster definition. The parameter ¢* would
depend upon the definition used but the parameters a and L* would

be independent of the definition used. For a sample of clusters of

galaxies, tne expected number of galaxies is then

n(L)dL = n* exp(-L/L%)(L/L*)% d(L/L*) (19)
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where n* depends upon the number of clusters included and the cluster
definition used.

We have constructed a composite set of counts from counts in
thirteen of the fifteen clusters studied by Oemler (1974). The clusters
Abell 2670 and ZwC1l 1545.1+ 2104 were not used, since counts in these
clusters were obtained at very faint apparent magnitudes and are ex-
tremely sensitive to the number of background galaxies subtracted.
Furthermore, the five galaxies classified as cD galaxies by Oemler
have been deleted on the hypothesis that some extraordinary phenomenon
has greatly increased their Tuminosity. Statistical uncertainties were
computed under the assumption that no background correction has been
subtracted from the data. Since background corrections have in fact
peen applied, the uncertainties have been underestimated. The composite
set of counts is presented in Figure 2.

Before obtaining a best fit of the expected counts to the observed
counts, we note that since the data presented in Figure 2 have been
pinned twice, once by Oemler and again here, the correction for finite
binning becomes
)2

n (M) = n(M) + n"(M)(aM

. /8 (20)

The least squares solution for the parameters n*, M3(24 1) and o yields

the following results
n* = 910+120 [1.33(4) 1.12(1) 5.22(0) |
. |

i)(24.7) = -21-41 % .10 £ = |1.12Q1) 1.09(-2)  4.13(-3)
o = -1.24+.05 5.22(0) 4.13(-3)  2.32(-3)

L. -
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1000 |~ —
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o CLUSTER -
GALAXIES

L ! | | ] ;
18 19 20 -2l -22  -23

ABSOILUTE MAGNITUDE

Fig. 2. Composite counts of cluster galaxies as a function of HJ(24 1)

Solid Tine shows best fit of proposed representation to

data.
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A value of x2 = 16.5 for 11 degrees of freedom was obtained, which
indicates reasonably good agreement considering the underestimation of
the uncertainties. The solid line in Figure 2 shows equation (20)
evaluated using the least squares solution for the three parameters.

We are in a position to compare the luminosity functions for
field and cluster galaxies by comparing the solutions for the parameters
M* and o . There are strong reasons, however, to expect the luminos-
ity functions to be substantially different for the two samples. The
field galaxies are dominated by spirals, while the cluster galaxies are
dominated by lenticulars and ellipticals. The characteristic magnitude
M% might be different either because the masses of spirals and ellip-
ticals are very different (Page 1965), or because the mass to luminosity
ratios are very different for the two classes. If we assume for the
moment that the two classes of galaxies have the same distribution as a
function of mass, the parameter o will still depend first upon the
variation of the mass-to-luminosity ratio with mass, and second, with
the variation of isophotal magnitude with luminosity. There is no
reason to expect these to be the same for the two classes of galaxies.

Before the solutions for M* for field and cluster galaxies may
be compared, they must be reduced to a common system of magnitudes. The
value obtained for field galaxies in the B band may be corrected to

the J band using Oemler's conversion formula
J = B - .65 (B-V) (22)

along with the mean color for the galaxies in the local sample
<(B-V)> = .75 magnitude. A correction should also be made so that the

absolute magnitudes refer to the same limiting isophote, but this 1is
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difficult to accomplish with any degree of reliability. We proceed, how-
ever, noting that Oemler (1974) gives a correction to total magnitude of
the order of two-tenths of a magnitude, while de Vaucouleurs and de
Vaucouleurs (1964) give corrections to total magnitude of .65 magnitude
for "early" type galaxies and .33 magnitude for "late" type galaxies.
Since the local samples contain equal numbers of early and late types, a

correction of the order of five-tenths of a magnitude seems reasonable.

Figure 3 shows the solutions for o and Mj(m) for field and
cluster ga]akies} The ellipses show formal 50% confidence intervals
obtained from the covariance matrices. The uncertainties in absolute
magnitude are somewhat larger due to the uncertainty in conversion to
total magnitude. The broken Tines show the results of least squares
fits to the local data assuming non-zero values for the non-Hubble com-
ponent of radial velocities and the local density enhancement.

The agreement between the field and cluster galaxies is rather
remarkable given the difference in the two types of galaxies. (Such
agreement has been noted before by Peebles 1971). The agreement im-
proves if one takes account of the possible systematic effects in the
local determination. The effects of local density enhancement and of
non-Hubble radial velocities will be substantially diminished when
radial velocities are available for a complete sample of galaxies to a
fainter Timiting magnitude. Until such data are available, we suggest
that a "standard" value of o = -5/4 be used in calculations using the
proposed analytic representation. Constraining o« to this value and
again fitting the local data, we find M’g(o) = -20.68 and

3 3

6" = 4.23x10 °Mpc™>. Likewise a constrained fit to the cluster
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3. Results of least squares solutions for parameters

H3(w) and o . Ellipses show 50 percent confidence
contours. Broken lines show effects of local density
enhancement and non-Hubble component of radial velocities.
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. . L3 . * -—
luminosity function yields MJ(24‘]) = -21.43.

*

4. L as a Standard Candle

The existence of a characteristic luminosity L* was first noted
by Abell (1962). He represented the integrated luminosity function

N(> L)) for galaxies in clusters by two power laws:

ot]
N*(LL*) L< Lk
N> L) = A (23)
- *x, L B+l
N (=) L> Ly
Ly

where LK is Abell's characteristic luminosity, and where o = -1.5

Z seemed remarkably constant

and B = -3 . He further noted that L
from cluster to cluster. Bautz and Abell (1972) report a dispersion

o(MX) in the absolute magnitude of the characteristic luminosity
O(MZ) = 0.16 magnitudé (24)

for a sample of 8 rich clusters of galaxies. The integrated luminosity
function N(> L) is not suitable for least squares analysis, however,
since the points are not statistically independent. When differentiated,
equation (23) exhibits a "hump" which is present in the Coma Cluster
(Roell 1962) but absent in most other clusters (Oemler 1974).

If we consider the purpose of LK as defining the luminosity at
which tne luminosity function exhibits a rapid change in logarithmic
slope, then LZ and L* as defined in this work serve the same purpose.

We are naturally led to ask whether L* is the same for all clusters.

Tne method of least squares is particularly useful in this respect,
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since it gives a value for L* and an uncertainty in that value. The
less well the proposed representation fits, the more uncertain the solu-
tion for L* . 1In such fits the value of & is constrained to -5/4
since the data are not sufficient to determine three parameters.

It is possible to use the composite luminosity function to pre-
dict the expected dispersion in M* . When o is constrained to the
'standard" value, M* is determined for the composite Tuminosity function
with an uncertainty of .058 magnitude. Since thirteen clusters went
into that composite, we expect the average uncertainty for a typical
individual cluster to be of the order of 13 times as large, or .21
magnitude.

The results of the least squares analysis for each of fourteen
clusters are given in Table 2. Column (2) of that table gives the solu-
tion for Mj(24.]) for each cluster, and column (4) gives the uncer-
tainty in that value. Column (3) gives the residual from the mean value.
Column (5) gives the value of n* found by constraining M3(24']) to the
mean value, -21.37, and column (6) gives the uncertainty in that value.
The values in parenthesis for Abell 2670 were obtained deleting those
galaxies fainter than My (o4 1) = -19 .

For the purpose of cosmological tests, one is less interested in
the dispersion about the mean value of M* than one is in the accuracy
with which that mean value of M* can be determined. (The deceleration
parameter would be well determined if we had a large number of clusters
at z = .4 and a large number at z = 0 . The mean value of M* at
eacn redshift would then determine qo.) We can use the uncertainties

in Table 3 to compute a mean characteristic magnitude <> = -21.37
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TABLE 2

Magnitude Residuals for Fourteen Rich Clusters of Galaxies.

Cluster M* M* - <M*> o (M¥) n* o(n*)
194 -22.32 - 0.95 0.64 22 4
400 -21.41 - .04 .33 35 2
539 -21.26 + 11 .22 44 7
665 -22.52 - 1.15 .66 120 32

1228 -21.32 + .05 .25 42 2
1314 -21.41 - .04 1 47 2
1367 -21.30 + .07 .37 50 6
1413 -21.36 + .01 .24 125 5
Coma -21.26 + .11 .20 117 4
1904 -21.50 - .15 7 84 8
Herc ~21.52 - .15 17 58 5
2197 -20.63 .74 44 66 4
2199 -21.06 .31 .16 75 10
2670 -22.09 - .72 .53 57 11

(2670) (-21.45) (-.08) | (.47) (93) (13)
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and an uncertainty in the mean of .065 magnitude. Multiplying this by

/14 to obtain an "equivalent" dispersion in M* we find

Geq(M*) = 0.24 magnitude (25)

in good agreement with that expected from the composite luminosity func-
tion. While this result is larger than that found by Baytz and Abell,
it is assuredly free from any bias since the solution is accomplished
by an automatic method without human intervention. Furthermore, there
is hope of improving the uncertainties by restricting attention to the
central regions of clusters, minimizing the effect of uncertainties in

the subtracted background.

5. Significance of the Brightest Member of a Rich Cluster of Galaxies

Peebles (1968) has suggested that the narrow dispersion in ab-
solute magnitude of the brightest members of a rich cluster of galaxies
can be understood if one assumes that a single universal luminosity
function applies to all clusters of galaxies. He has also reversed
the argument and used the narrow dispersion in M] to compute the
logarithmic slope of such a Tuminosity function at the bright end
(Peebles 1969). Peterson (1970b) has used the analytic representation
proposed by Abell to show that one expects a correlation of cluster
richness and the absolute magnitude of the brightest member. He ex-
tended Abell's representation with two additional power laws (Peterson
1970¢) to obtain a more refined prediction of such a correlation.

The proposed analytic representation of the cluster luminosity

function may be used to compute the most probable value of the absolute

magnitude of tne jth brightest galaxy as a function of n* under the
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assumption that L* s a universal constant. The probability that the
jth brightest galaxy has absolute magnitude M 1is given by

[n(< my73!
Py(M)dM = —s—yr— expl-N(s )] n() (26)

where N(< M) is the expected number of galaxies brighter than M .

The most probable value of the absolute magnitude of the jth brightest
galaxy is found by setting the first derivative Pj(M) equal to zero
while the second derivative gives a reasonably good estimate of thé
root-mean-squared dispersion about that value. (The use of the most
probable value of Mj rather than the mean makes only a few hundredths
of a magnitude difference, but greatly simplifies the numerical compu-
tation.) A good estimate of the richness (as defined by Abell 1958) of
a cluster with a given n* 1is made by computing the most probable value
of the absolute magnitude of the third brightest galaxy and the ex-
pected number of galaxies in the subsequent two magnitude interval. We
have used the proposed representation with o = -5/4 to compute the most
probable values of Mg for j=1,2 and 3 and an estimate of the rich-
ness for a range of values of n* . The results are shown in Figure 4.
The broken lines show the estimated rms dispersion of M] about the
most probable value. Also shown is an estimate of the "population",

N8

JA defined by Sandage and Hardy (1973) to be the number of

galaxies in the 2-1/2 magnitude interval following the third brightest
galaxy in a circle of radius 2 Mpc centered on the cluster.
The proposed representation predicts a range of M] with

. et * - *
ricnness wnich over a reasonable range of values of n (15 < n™ < 150)
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is of the same order as the internal dispersion in M] . Sandage and
Hardy (1973) have estimated Ngg for 79 rich clusters of galaxies.
Breaking these up into Abell richness classes they compute a mean
absolute magnitude for each richness class. A mean "population" has
been computed for each class and the resulting points have been plotted
in Figure 4, using an arbitrary vertical normalization. It may be seen
that there is 1ittle or no observed correlation of M] with N§8 . We
hasten to point out, however, that the data plotted in Figure 4 are a
composite of photometry by Sandage (1972) with an 87 kpc aperture
and photometry by Peterson (1970a) with a 41 kpc aperture. Peterson's
data show a marginal anti-correlation of luminosity and cluster rich-
ness, while Sandage's data show a marginal positive correlation (for
comparison, see Sandage 1972). It is clear that one must be very care-
ful to specify whether one means total, standard metric or isophotal
magnitudes. Since the ana]ytic representation was fitted to Oemler's
isophotal magnitudes, it is not strictly applicable. For example, we
might expect a weaker correlation of standard metric absolute magni-
tude with richness if brighter galaxies have lower average surface
brightness, as found by Oemler (1974).

Figure 4 may be used to compute the expected dispersion in M]
for a given sample of clusters. There are two sources of dispersion in
The first is due to statistical fluctuations in M] at a given

iy -
48

* . . . . . .
value of n~ (or Nc The second is due to thas dispersion in n*

*

J]
(or ngg) for a given sample of clusters. Tne mezan value for N§8 for

the sample of Sandage and Hardy is 68 £42. The dispersion in Ml at

45 _ . . ~ e -
w. = 68 1s .32 magnitude. I

~
~

pproximate range of the most probable

js2}

t
as
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value of M] over the range of Ngs is also .32 magnitude. The ex-

pected dispersion in M] is then .45 magnitude. This is somewhat

larger than the value obtained by Sandage and Hardy

o(M]) = 0.34 magnitude (27)

It appears that in large part the narrow dispersion in M] can be un-
derstood as a reflection of the constancy of M* . There may well be,
however, surface brightness effects which further narrow this dispersion

in M] .

6. Simple Calculations Employing the Proposed Analytic Representation

The proposed analytic representation has the advantage that its
moments may be written as products of gamma functions and powers of L*.
For example, the mean luminosity density in galaxies is readily calcu-

lated:

Mot f Lo(L) dL = T(a+2) ¢*L* (28)
0

where we have assumed that the representation is valid beyond the range
5L* > L > (L*/20) for which its validity has been established. It is
important to note that while the number density of galaxies diverges
for o = -5/4, the luminosity density does not. Furthermore, the con-
tribution to total luminosity from outside the established range is
rather small: only eleven percent from galaxies fainter than L*/20 and
four-tenths of a percent from galaxies brighter than 5L% .

Anotner simple calculation is the mean luminosity of galaxies in an

apparent magnitude Timited sample:
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If o = -5/4, then the average luminosity in such a sample is 5/4 L* R
or .25 magnitude brighter than M. Taking the "standard" value

Mg(0)= -20.68, we see that Messier 31 with My ;) approximately equal to

-20 (Gunn 1974) is not even an "average"ga]axy.

7. Conclusions

We find that the proposed analytic representation adequately
represents the observed luminosity function over a range of roughly
six magnitudes. The data appear to be marginally consistent with the
hypothesis that the Tuminosity functions for field and cluster galaxies
are identical. The characteristic Tuminosity L* can be determined
for a rich cluster of galaxies with an uncertainty of roughly .24 mag-
nitude. The constancy of L* from cluster to cluster indicates that
it is a valuable standard candle. It remains to be seen, however,
with what accuracy L* can be determined for the more distant clusters.
The narrow dispersion in absolute magnitude for brightest cluster mem-
bers can largely be understood as a consequence of the exponential
luminosity cutoff exhibited at the bright end of the luminosity func-
tion of galaxies. The absence of a correlation of absolute magnitude
with richness remains unexplained. The proposed analytic representa-
tion can simplify calculations requiring the Tuminosity function, and

provides a useful reference magnitude for discussions of absolute mag-

nitudes of galaxies.
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Chapter II

THE CLUSTERING OF RANDOM PREGALACTIC PERTURBATIONS

1. Introduction

Not only is the universe inhomogeneous on the scale of galaxies,
it is inhomogeneous on scales including large numbers of galaxies. The
groups of galaxies catalogued by de Vaucouleurs (1968) and the clusters
of galaxies catalogued by Abell (1958) are not mere fluctuations in a
homogeneous distribution of galaxies. The spatial covariance function
for galaxies (Peebles 1974) shows that on scales of order ten megapar-
secs, galaxies exhibit significant clustering.

In marked contrast to the inhomogeneous distribution of galaxies
stands the extreme isotropy of the cosmic microwave background radiation
(Boynton and Partridge 1973). If this radiation was last scattered
dufing the epoch at which, according to standard Friedmann cosmology,
the primeval plasma recombined, then the radiation distribution at that
epoch was remarkably homogeneous. The discovery of the cosmic background
radiation (Penzias and Wilson 1965) sparked new efforts at explaining
how substantial inhomogeneities could have condensed out of a homogene-
ous matter distribution.

Several important results have emerged from these efforts (see
Field 1968 for a review). First, adiabatic perturbations to a Friedmann
universe undergo severely damped acoustic oscillations in the period
prior to recombination (Silk 1967,1968). Adiabatic perturbations

12 solar masses in a critically bound (g =1) universe

14

smaller than 10
and smaller than 10'" solar masses in a cosmologically open (&= .03)

universe cannot have survived recombination (Peebles and Yu 1970).
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Second, the photon fluid and matter fluid are strongly coupled via
Compton scattering. The time scale for the damping of bulk motion of
matter with respect to the photon fluid is short (Peebles 1971), there-
fore those isothermal perturbations smaller than the above 1imits which
did survive recombination can have had little peculiar velocity with
réSpect to similar neighboring perturbations. Finally, this same
photon drag strongly limits the rate at which isothermal perturbations
may grow prior to recombination. Any isothermal perturbations which
existed at recombination must therefore have existed for long times
prior to recombination.

Field (1968) gives rough estimates (depending upon Q and the
collapse time for galaxies) of the density perturbations required at
recombination to give rise to galaxies. Peebles (1972) has argued that
randomly distributed inhomogeneities on a given scale lead through
gravitational instability to inhomogeneities on a larger scale. Com-
bining these two lines of attack, we argue here that granted the den-
sity perturbations required to make galaxies, and granted the assump-
tion that these pregalactic perturbations were independently, randomly
distributed at recombination, one expects clustering of galaxies on the
scales presently observed. We ignore the question of the origin of these
pregalactic perturbations, and argue only that whatever their origin,
they will form clusters.

The assumption of independently distributed pregalactic perturb-
ations is rather strong. It is hard to imagine an evolution of such
perturbations from a completely homogeneous universe which would not

leave anti-correlations: if there is a positive density perturbation,
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there ought to be a negative one nearby. But it is justified observa-
tionally by Peebles' (1974) determination of the spatial covariance
function for galaxies and warrants theoretical examination as a natural

origin for clusters of galaxies.

2. Preliminary Considerations

Field (1968) and Gunn and Gott (1972) have shown how to use es-
timates of the dynamical parameters of collapsed systems to estimate
the size of density fluctuations required to yield such systems. | For
the case of a radiation free Friedmann universe, the value of the
Hubble parameter h at epoch (1+z) is related to its present value,
h_, and the present value of the deceleration parameter, 4y according

0
to the relation

h? = h2[2q,(1+2)3 + (1-2q,)(1+2)°] (1)

(Misner, Thorne, and Wheeler 1973). The matter density at any epoch is
related to the deceleration parameter and the Hubble parameter accord-
ing to the relation

2

gh™ = %ﬂp (2)

wnere all quantities are expressed in "geometrized” units with
G=c=1. Suppose that a point mass M 1Jsintroduced into an other-
wise uniform Friedmann universe with density p . Following Gunn and
Gott (1972) the binding energy dE of a spherical shell of radius r

surrounding the point mass is given in the Newtonian approximation by
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hzr2 4nr2pdr (3)

N —

(%—ﬂr3p + m)
dE = -

Letting M = %-WR3D and integrating this energy over all shells out

to radius R we find

E = o3 [(2q,- 1) + 5 - q,(1¢2) (L3 12 5

(4)

%"
It should be noted that this expression does not include any binding
energy associated with the point perturbation. We can also calculate
a binding energy when the perturbing mass is uniformly distributed out

to a radius R , yielding

£ = 2 [l2g-1) + 2 q0<1+z>]h§<;?%)2/3 (146) g (5)
00

where & 1is the fractional density perturbation, defined as the ratio
of the perturbing mass m to the unperturbed mass % . It is straight-
forward to calculate the time required for the shell at radius R to
expand to maximum extent and then to collapse to zero volume. Defining

tc as the time required to collapse from maximum to zero volume, we find

"quO

S h2/2 [(2q,-1) +2q,8(1+2)1%/%

t (6)

Tnese three relations are identical to those derived by Gunn and Gott,
but differ from those of Field in that we have assumed that the perturb-
ing mass has not perturbed the Hubble flow. Radiation pressure will
nave prevented an isothermal fluctuation from decelerating at a rate

different from the universe.
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3. The Amplitude of Pregalactic Density Perturbations

We wish to determine the amplitude required of pregalactic per-
turbations existing at recombination. We must therefore recast our
relations in terms of presently observable properties of galaxies.
Dividing both sides of equations (4) and (5) by m we get a binding

energy per unit mass. We shall identify this with %<v2> where

<v2> is the mean squared velocity of stars in a galaxy of mass 7 +m.
This identification will be valid only if there is little dissipation
in the collapse of galaxies. This in turn will be true if the time
scale for star formation tS is short compared to the collapse time
scale tC . Gott (1974) has elaborated arguments in favor of dissi-
pationless collapse. Then neglecting terms of order & we have

o = 3 (201) + foy I (142) 2 (TP (7)
where f takes on a value somewhere between 2 for smooth perturbations
and 5 for point perturbations.

We are faced with the problem that both the masses 7 of
galaxies and the deceleration parameter q, are known only to
within a factor of ten. When these two quantities appear as a ratio
we may lump our ignorance into a single parameter B , the present
ratio of the present matter density to the density in the form of
galaxies. Assuming that the mass distribution of galaxies is given by

= ¢% S/ W /IR /2
o( 7) dm o* exp[ 773]( 7ﬁ*) d( W*) (8)
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we have

W

= q.h% = B % ar(at2) ¢* 7" (9)

B é-n
3 pga] 00

which may be solved for the ratio wf/qo .

Let <y*%>

be defined as the mean squared velocity in a galaxy
of mass * and m* be the associated perturbing mass. Then ignor-

ing the term (2q0—]) we have from equations (4) and (5)

*
fao*(1+z) = Sy [AML(0d2)80 2/3 (10)
hO
and
* 5 <v*2>

m

et (1)

T3 2] Ny r(at2) ¢*

where f takes on the value 2 for smooth perturbations and 5 for
point perturbations. The fractional density enhancement &* required
to form a characteristic galaxy is inversely proportional to 9 and pro-

/3 3

5 * §* is independent

portional to 82 Furthermore, since ¢* « h
of the Hubble constant. The mass m* of such a perturbation does

not contain 9 explicitly and depends only weakly upon B . It seems
then that regardless of cosmological model, the mass required to form
galaxies is remarkably well determined by observable quantities:

«*%>  and o .

4. Tne Amplitude of Precluster Perturbations

There is no general agreement on the definition of a cluster or
group of galaxies. Wnat is certain is that they constitute a substan-

tial enhancement in the number density of galaxies. We can nonetheless
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obtain a rough estimate of the size of perturbations required to pro-
duce clusters. We let equation (6) define a characteristic dynamical
time. Setting & equal to zero, we get a universal characteristic
time. In the event of an open universe, this time is imaginary, but
this is of little concern. What does concern us is the fact that in
order for a perturbation to show up as a substantial density enhance-
ment at the present, its characteristic dynamical time must be sub-
stantially different from the universal characteriétic time. Assuming

that the term (2q0-1) is of order unity, we get
29,6, (1+z) = 1 (12)

where the subscript c¢ refers to clusters of galaxies. The approxi-
mate equality indicates that the exact value of the quantity depends
upon one's definition of a cluster. Note that by dividing equation
(12) by equation (10) we obtain the ratio of &* to 8, independent
of dg

Suppose that we chose at random a volume V at recombination.
The density of pregalactic perturbations must have been (]+z)3 times
greater than the present density of galaxies. Letting n* = ¢*V(1+z)3,
such a volume would contain a mass BI(o+2)n*7*. This volume will
form a cluster if there is a mass perturbation sufficiently large to
satisfy the cluster formation criterion, equation (12). We shall ex-
press the perturbing mass in units of m* Jetting it equal some
unknown quantity A(n*) times T (at2)m*, Substituting into equation

(12) yields
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* *
2qO éé%;l- 7%;-(1+z) = (13)
But m*/ 7" = 6% , and we have already solved for qoé*(1+z). We

therefore have

3
A(n*) _ 3f gl/3 [ 3hy ]2/3

n* ]0<v*2> 4m T(at2) ¢*

(14)

The quantity on the left hand side is just the fractional increase in

the density of pregalactic perturbations required to form a cluster.

5. Model for the Origin of Clusters of Galaxies

We have as yet said nothing about the nature of the perturbations
giving rise to clusters. But expressing the criterion for the forma-
tion of clusters in terms of a fractional increase in the density of
pregalactic perturbations anticipates our hypothesis concerning the
origin of clusters: that the pregalactic perturbations were indepen-
dently, randomly, uniformly distributed and that statistical fluctua-
tions in the density of such perturbations gave rise to clusters of
galaxies. Peebles (1974) has interpreted the slope of the spatial co-
variance function for galaxies as indicating a white noise perturbation
spectrum at recombination, which is just what would obtain from random
pregalactic perturbations. The amplitude of the perturbation spectrum
would then be fixed by the amplitude and density of pregalactic pertur-
bations. Since our calculations have assumed spherical symmetry, we

shall only consider spherical clusters in our model. Any spherical
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region for which the fractional density enhancement in pregalactic pertur-
bations at recombination A(nf)/nf exceeds the value given by equation
(14) is assumed to form a cluster. Every pregalactic perturbation will
end up in a cluster of some size, even if it is only a "cluster" of
one. We ignoré dynamical effects and assume that the final members of
each cluster can be predicted at recombination by locating an appro-
priate overdense spherical region at recombination. In the event that
several pregalactic perturbations are members of two overlapping over-
dense regions, we shall assume that they end up as members of the larger
cluster.

A specific test of our model would be the comparison of the ob-
served distribution of cluster sizes with that predicted by the model.
But we have not yet calculated this expected distribution. We could,
of course, compute this distribution by Monte Carlo methods: we could
distribute points randomly and search for clusters of all sizes, start-
ing with the largest size of interest. But the fractional density
enhancement A(n*)/n* depends upon the assumed or observed values of
f, B, <v*2> and ¢* . We would therefore need to perform such searches
for different values of A(n*)/n* . Searching for clusters by computer
is unfortunately extremely time consuming. It would therefore be
desirable to have an analytic expression for the distribution of clus-
ters.

An analytic treatment of the problem is greatly simplified by
treating randomly distributed objects with equal mass. A cluster
characterized by n* will then have some effective number of randomly

distributed equal mass pregalactic perturbations associated with it.
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We assume that the distribution (8) is valid for the masses m of
pregalactic perturbations as well as for galaxies, with m? replacing
m * as the characteristic mass. This will be so if 6 = 6* for all
galaxies, independent of mass. We can then calculate the koot-mean-

squared fractional mass fluctuation for a volume characterized by n*

o

: 1/2
mén*exp[- m/m*] (m/m*)*d(m/m*)

A(n*) _ 10 , [{a+2) ]1/2 (15)

oo

n*
J m n* exp[-m/m* ] (m/m*)* d (m/m*) r{a+2)n
0

The root-mean-squared fluctuations for a volume characterized by n*
would be the same if one expected T (a+2)n*/(at2) points of equal mass
to be contained in such a volume. We therefore set
=IWWQ) *
leff = (a¥2) " (16)

We have developed an approximate solution to the problem of the
clustering of random points into clusters of points with average den-
sity contrast y = (1+an/n), which we present in detail in Chapter III.
If ny(k) is the density of clusters of k points with density con-
trast y , we obtain an approximate solution for ny(k) by solving

the equation

v 3
D on (m) ('3 {1+ 2/0-Dmry + 133 - k3

m=k '

B (VA0 M 92" (17)
e %=k m!

where o 1is the average point density. The solution to this equation
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shows factor of two agreement with Monte Carlo experiments for y =3
and Yy =9, and we are therefore tempted to use it to predict the ex-
pected distribution of clusters for a value of <y appropriate to the
formation of clusters. ;

For the purpose of evaluating vy , we shall assume that the en-
tire present mass density is in the form of galaxies, letting B =1 .
This seems reasonable considering the 1imits on possible density of
many different forms of intergalactic matter (Gott, Gunn, Schramm and
Tinsley 1974). We shall further assume that the perturbations giving
rise to galaxies are centrally condensed, using the value f =5 . We
adopt the standard values o = -5/4 and ¢* = 4.23 x10"3Mpc"3 devel-
oped in Chapter I. And finally we shall use a mean square& velocity
dispersion <v*2> = ]0_6 (<v*2>]/2 = 300 km sec_] in conventional
units). This value is of the order of the velocity dispersions observed
in bright elliptical galaxies by Morton and Chevalier (1973). It is
smaller than the dispersions observed in giant ellipticals by Minkowski
(1962) but Targer than the typical maximum rotation velocity observed
in spirals (Brosche 1971). Evaluating equation (14) we have

A(n™)
n*

=~ .53 (18)

indicating that an increase in the density of pregalactic perturbations
of slightly more than 50% is required to form a cluster of galaxies.

We have solved equation (17) for the cases vy = 1.48 and
v = 1.58 and present the results of such a solution in Figure 1. The
ordinate shows fy(i neff)’ the fraction of points in clusters greater

than Neff > where
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Z knY(k) (19)
Neff

e nege) = 5
The abscissa shows Naff and also the corresponding value of n*
We have indicated the values of n* appropriate to Abell's (1958)
richness classes 1, 2, and 3, and have also drawn a line at " = 120,
the value appropriate to the richest clusters measured by Oemler (1974)
(see Table 2, Chapter I). It is unfortunate that the approximate solu-
tion for nY(k) obtained from equation (17) breaks down when <y
approaches unity; we discuss the nature of the approximations going
into equation (17) in Chapter 3. We nonetheless believe that the solu-
tion gives a reasonable order of magnitude estimate for k >> 1

There is 1ittle data available against which to test the pre-
dicted distribution. Abell's (1958) richness classifications are not
sufficiently accurate for the purpose. We note, however, that the
Coma cluster, the richest nearby cluster, has n* = 117 and lies at a
distance of roughly 140 Mpc (Rood et al 1972). The volume V occupied
by a sphere of that radius is 1.15 x]O7Mpc3. Assuming that Coma is
the largest cluster in a sphere of twice that volume, and taking the

ratio of n* to 2¢*V , we obtain an estimate of the fraction of

galaxies in clusters the size of Coma or larger: fy(zConm) =1.2 x1073.
This result seems reasonably consistent with the predicted 10_4 of
Figure 1. We also note that for the chosen range of vy , clusters of
richness class 3 are extremely unlikely.

The model is conveniently summarized by enumerating the assump-

tions and uncertainties involved. First, we have assumed that
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pregalactic density perturbations were randomly distributed at recom-
bination. Second, we assume that galaxies collapse without substan-
tial dissipation. Third, we assume that all matter is in the form of
galaxies. Fourth, we assume that pregalactic perturbations were
centrally condensed. Fifth, we assume that the mass to luminosity
ratio for galaxies is independent of mass. And sixth, we assume that
the fractional density perturbations § giving rise to galaxies were
independent of mass. The uncertainties include a substantial uncer-
tainty in the accuracy of the approximate solution for nY(k), the

. N . *2 *
observational uncertainties in <v'™> , ¢

, and o , and the uncer-
tainty in translating our criterion for cluster formation into a

definition of cluster size or radius. In spite of these uncertainties
(or more probably because of them) the model makes reasonable predic-

tions concerning the distribution of rich clusters and galaxies.
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Chapter III

THE CLUSTERING OF RANDOM POINTS
1. Introduction

The hypothesis of random pregalactic perturbations led us to
pose the following problem: Suppose that point masses are Poisson
distributed in Euclidean 3 space with average density p . Choose a
critical density vyp where Yy will be referred to as the density
contrast. Identify as k-clusters sets of k mass points which may be
contained in a sphere with volume k/yp but which are not elements of
m-clusters where m> k . What then is the density nY(k) of k-
clusters?

Our problem is not yet well posed. While it is certain that

for a finite volume V we can determine the average density (k,V),

fy

it is not clear that nY(k,V) converges to a limiting n_(k) as V

Y
grows larger. We shall assume without proof that such a Timit exists.
Further, we must specify a means of choosing between two or more in-
tersecting sets of k points which are not elements of larger clusters.

The problem turns out to be of fairly general interest. For
example, a two-dimensional variant of the problem is considered by
Danielsson (1969), who considers the possible clustering of asteroids
in the T-6 plane. The question is whether two apparent associations
of asteroids can be explained as a chance fluctuation. One needs to
know the probability of observing chance associations of a given size
with some specified density contrast.

A one-dimensional variant of the problem arises in the interpre-
tation of counts arriving from an X-ray source (Rothschild et al 1974).

Suppose one observes a "flare" with a higher than average count rate.
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Is such a flare statistically significant, or is it a chance cluster
in Poisson data? Again the distribution ny(k) will give the possi-
bility of a chance cluster. The distinguishing characteristic in
these situations is that the cluster boundary is identified post-hoc,
after the points have been distributed, and is carefully chosen to
include the maximum number of points.

Similar problems have been treated by several authors. Melzak
(1968) has developed a formalism fof the probability of observing a
cluster of k or more points in a constant volume a (rather than a
cluster with constant density p ) when N points are distributed
in a volume V . The formalism grows unmanageable, however, when kK
and N grow large. Mack (1948) has treated the problem of clustering
in one and two dimensions, but his approach fails to take account of
the possible overlapping of clusters.

In Section 2 we develop an analytic approach to a solution for
ny(k) in a Euclidean space of arbitrary dimension. The method re-
quires that we guess the analytic form of a function, hy(m,k). We
shall make several successive guesses for this functional form. We
present the reasons for each ansatz and the reasons for questioning
tne resulting solution. We present in Section 3 the results of numeri-
cal experiments searching for clusters in one, two and three dimensions
along with the solution for ny(k) obtained from our best gquess of
hy(m,k). The numerical experiments and the derived solution agree

within roughly a factor of two.
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2. Analytic Approach to a Solution for the Density nyjk) of
k-Clusters

As a concrete example, let us suppose that we are interested in
two-dimensional square clusters. We insist that the squares have some
specified orientation. Our results will apply to cube-shaped clusters in
all dimensions, and we shall later discuss the applicability to clus-
ters with other shapes.

We suppose then, that we have a large area A in which mass
points have been Poisson distributed in the density p . Suppose
further that we have already conducted a careful search for all clusters
starting with the largest and working down to the smallest. Around each
m-cluster we have drawn a square with area m/yp . It is still true
that if we choose a point in the plane at random and place the "lower
left" corner of a square pf area k/yp on that point, the probability

that such a square contains k or more mass points is given by

(k)" ks (1)

Pylkd = L “hr—

Y m

11 t~1 8

k

We shall call such a point a "k-corner". The fraction of all points in
the plane which are k-corners is just Py(k). Therefore the fraction
of the total area A covered by k-corners is also Py(k) .

But any k-corner must have an m-cluster with m > k nearby,
since tnere are k or more nearby mass points which may be contained
in a square of area k/yp . Every m-cluster will have some average
area covered by k-corners associated with it, which we shall call

hY(mﬁk). The fraction of the plane covered by k-corners is then
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Py(k) = mzk hY(m,k) nY(m) (2)

If we knew the fpnctiona] form of hy(m,k), we would be able to solve
equations (1) and (2) for ny(k) .

Our first guess of the functional form of hY(m,k) is obtained
as follows: We approximate an m-cluster by a square of area m/yp
with a smooth distribution of finely subdivided mass points with point
density +vyp . The area outside is assumed to have no points. This
approximation fails when vy = 1 . A square of area k/yp will con-
tain exactly k points only if it is wholly contained in the m-cluster.
The lower left corner of the smaller square sweeps out a square with a
side of length (m/yp)”2 - (k/\(p)]/2 . The area of this square gives
us our estimate of hY(m,k). The situation is illustrated in Figure
1. This analysis is readily generalized to the case of r-cubic clus-
ters in an r-dimensional space. The functional form of hY(m,k) is

then given by
r
(m]/r _ k]/r)
o Ye

hY(m,k) = (3)

Combining equations (1)-(3), we obtain

OZO 0 (m (T T =y ] Lk‘ﬂLm e /Y (4)

m=k Y m=k

We were able to solve this equation for nY(k) only by approximating
the left hand side by an integral and by using the integral approxima-

tion of Wilson and Hilferty (1931) for the right hand side. Then

(
j nY(m)(m]/r - kT dm =y
k

-

j exp(-xz) dx (5)
g
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Schematic drawing of area swept out by k-corners
associated with an m-cluster
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where

g = [301 - 132 L V2, (6)

Differentiating both sides r times with respect to k]/r and once
with respect to k , we obtain a solution for nY(k) . It is conveni-
ent to present such results in terms of the fraction of all points in

clusters of size k or greater, fY(z k), defined by

fY = %— Z mn (m) (7)

Once we have solved for ny(k), we shall therefore present our results
in terms of fy(z k).

Shown in Figure 2a are the results of solutions of equation (5)
for the case vy = 3 1in one, two and three dimensions. Figure 2a imme-
diately illustrates the difficulties with our solution for nY(k) .
First, the fraction of all points in clusters exceeds unity which is
impossible. Second, the curve fy(z k) exhibits a positive slope,
indicating a negative density of clusters, which is also impossible.
Both of these difficulties indicate that our function hy(m,k) is an
underestimate of the average area covered by k-corners associated with
an m-cluster.

Given a k-cluster, there must be some finite area covered by
k-corners: if the k-mass points may be contained in a square of area
k/vyo , it must be possible to displace the square some small distance
in any direction and still contain all k points. Just how much the
square may be displaced depends upon how the mass points are distri-

buted. If, for example, the k-mass points were randomly distributed
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inside a square of area k/yp , the average distance to the nearest
point from a given side would be 1/(k+1) times the length of a side.
On average, the lower left corner of the square would sweep out an

area

_k 2 \2
hY(k,k) = ?5'(E:T) (8)

without any of the mass points falling outside the square. There is
reason to expect, however, that the k-mass points are not distributed
randomly inside a square of area k/yp . We know that the points are
not contained in a larger cluster, which places conditions on the dis-
tribution of mass-points 1nsidé and outside the cluster. It seems
likely that equation (8) gives an upper limit: that the points of a
k-cluster are distributed in some fashion which is smoother than ran-

dom.
Our second guess of hy(m,k) is an attempt to modify our

initial guess with a term which compensates for the discrete distri-

bution of mass-points in an m-cluster. We try

h (mk) = mT01 + 27m)] - KT/ vo (9)

which reduces to equation (8) when m =k and r =2 . Egquation (9)
is clearly makeshift: it uses a result derived assuming that the
points inside an m-cluster are extremely smoothly distributed and
tacks on a result assuming that all points inside an m-cluster are
completely random. If we are now assuming that all points are random-
ly distributed, we should modify our original guess (equation (3)) to
take account of this randomness. The result of such a correction

would be to Tower our guess of hy(m,k) to something of the order of
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half that given by equation (3) in the limit when m >> k >> 1 . But
since our first guess of hy(m,k) was clearly an underestimate (giving

fY(z k) > 1), we allow ourselves the liberty of taking the maximum
estimate based on a completely smooth distribution of points and tacking
on a maximum estimate based on a random distribution.

Combining equations (1), (2) and (9), we obtain

(k/xmg”" kY (10

(m) {n/7T1+2/ ()] - K77} -

Y on
m=k Y mzk

We have obtained solutions for ny(k) by assuming that ny(m) =0 for
m > & and solving stepwise from m= 2% to m=1 . Using different
values of & , the solutions appear to converge to a single value of

nY(k) when & -k >> 1. Figure 2b shows the results of numerical

il

solutions of equation (10) in all three dimensions for vy = 3. Figure
3 shows the results of three-dimensional so]utions’for Yy =2, 3, and

4. We are confronted with the same difficulties previously encount-

ered: the fraction of mass points in clusters of size k or greater,

f&(z_k), exceeds unity and for vy <2 exhibits a positive slope .

It is important to note that the solution is better behaved for
the case v = 4 than for y =2 . This tendency is what we expect
from the fact that we have ignored those k-corners which include mass
points outside m-clusters. There are in fact mass points outside m-
clusters, and it may be possible to "trade" a point inside an m-cluster
for a point outside. We shall compensate for this by approximating an
m-cluster with a square containing m(y-1)/y random mass points super-

imposed on a smoothed background point density of p . The analog of

equation (9) is then
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CLUSTER SIZE
Fraction of points in clusters of size
solution of equation (10) with r = 3

k or

greater from
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(k) = (m'/1 4 2/L-Dmy £ 103 - KT/ v (11)

which reduces to it in the Tlimit as vy > « .

We have still not dealt adequately with the problem of the ran-
domness of points outside an m-cluster: all we have done is to increase
the correction for the randomness of points inside an m-cluster. Our
justification is that our previous estimate of hy(m,k) was clearly
an overestimate, as evidenced by the fact that fy(g k) exceeded
unity.

Combining equations (1), (2) and (11), we obtain

oo

Ion(m) /" {1+2/0-1my] + 1) - /)’

m=k

- yp [ WL Ry (12)
m=k ’
which may be solved by a procedure similar to that used for equation
(10).

Figure 2¢ shows the results of solutions to equation (12) with
y=3 for r =1-4. While the so]utions in one, two and three dimen-
sions now seem fairly well behaved, it is clear from the four-
dimensional solution that we have not yet dealt adequately with the
problem of k-corners including points outside m-clusters. Furthermore,
the fact that the one and two-dimensional solutions show fy(z_k) Tess
than unity indicates that having worked so hard to obtain an expres-

sion valid in three dimensions, we are now underestimating the number

of clusters in one and two dimensions. Before making any further
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guesses of hY(m,k), we shall test the solutions of equation (12)

against Monte Carlo experiments.

3. Numerical Experiments in One, Two, and Three Dimensions

We have determined the density nY(k) of k-clusters with overden-
sity <y by numerical experiments in one, two, and three dimensions.
The experiments are most easily understood in one dimension. N mass
points are distributed randomly in a Tine of length N/p . While
such a distribution is not Poisson, for intervals much smaller than
Np the difference between the Poisson and binomial probabilities is
small. The line was divided into +yN bins, so that a cluster of
size k would span k bins. Starting with a large integer & , the
line was scanned for clusters of size k < 2 by keeping a running
total over k bins , adding a new bin and subtracting an old bin,
identifying a k-cluster whenever the running total equalled k (or
on the first pass exceeded ).

For the two and three-dimensional experiments, N points were
distributed randomly in a square or cubic volume HN/p . The full
positions of the points were saved, but on each scan for k-clusters
the volume was divided into kyN bins for the two-dimensional case

and k2

v bins for the three-dimensional case, insuring that each square
( or cubic) k-cluster had an edge k bins Tlong. This elaborate
procedure was necessary to insure that the fraction of clusters not
identified due to the binning of points was comparable in one, two,

and tnree dimensions. We expect that the probability of missing a

cluster is roughly twice as great in two dimensions as in one, since

each cluster is scanned in two directions.
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Searching for clusters by computer is extremely time consuming.
For our algorithm, the number of operations is of order Nyzr where &
is the length of the edge of the largest cluster expressed in bins. By
binning our points we gain speed in identifying clusters at the expense
of Tosing some fraction of them. As a test of the efficiency of the
cluster finding algorithm, the numerical experiment for the case r =2
and y = 9 was repeated with the edge of each square 2k bins long
rather than k . The fraction of points in clusters fY(z k) did not
increase by more than 30%.

Edge effects are negligible only when the length of the edge of
a cluster is much less than the edge of the large volume. To compensate
for edge effects in one dimension, the ends of the Tong line were
joined to make a ring. In two dimensions the edges of the large square
area were joined to make a torus (as in Danielsson 1869) and faces were
likewise treated in three dimensions.

The results of these numerical experiments are presented in
Figures 4 and 5. The solid lines give experimental values of fy(z k)
for y =3 and vy =9 while the broken lines give the values predicted
using our best guess of hY(m,k). The experiments were performed with
12500 points, 2500 points and 500 points respectively for the one, two
and three-dimensional experiments. For the one and two-dimensional
experiments our estimate of ny(k) is clearly an underestimate, while
for the three-dimensional case we are overestimating the number of
clusters. Even so, the computed and the experimental curves appear to
have roughly the same shape, and at no point does the fY(z k) appear to

pe significantly wrong by greater than a factor of two.
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4. Discussion

Our method for approximating the density of k-clusters
rapidly deteriorates as the number of dimensions increases and as
y approaches unity. It nonetheless offers an order of magnitude
estimate of the relative numbers of k-clusters expected. It is clear
that we have not yet exhausted the possible functional forms for
hy(m,k). A better guess may yield better solutions for ny(k).

While our analysis and experiments assumed square or cubic
clusters, our first guess of hY(m,k) (equation (3)) is valid for
circular or spherical and triangular or tetrahedral clusters as well.
Though the subsequent correction (equations (8) and (9)) explicitly
used the assumption of square or cubic clusters, the correction will
be of the same order in m for other geometries. Careful two-

dimensional numerical experiments may settle the question of whether

the distribution of clusters differs for different cluster shapes.
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Chapter IV
ISOLATED GALAXIES

i. Introduction

Although there is considerable discussion of systematic proper-
ties of those galaxies which are members of pairs, groups and clusters,
relatively little attention is paid to those galaxies which are not
members of larger systems. This is not surprising since galaxies
which are not members of larger systems are of 1ittle use in dynamical
studies. But they are interesting in their own right precisely be-
cause they are not members of larger associations. Any theory which
attempts to explain the clustering of galaxies ought to take account
as well of the non-clustering of some galaxies.

The model for the clustering of galaxies presented in Chapter
IT assumed that pregalactic perturbations were randomly distributed
at some early epoch. We assume here that galaxies were randomly dis-
tributed at some early epoch, but the model is otherwise the same.
Granted this assumption, we show that isolated galaxies ought to be
fainter than the average for all galaxies. We also show that if gal-
axies are distributed in a subrandom fashion, with a zone of avoidance
around each galaxy, the size of the effect will be diminished. The
angular momentum and gas content of isolated galaxies also deserve
serious attention, but for the present we restrict our attention to

predicting the Tuminosity of such isolated galaxies.
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2. Pairwise Unbound Galaxies

We assume a matter-dominated Friedmann cosmology, that galaxies
were randomly distributed at some early epoch, and that all matter is
in galaxies. The precise epoch is not important as long as the decel-
eration parameter q at that epoch is approximately equal to one-half
(or equivalently, as long as the fraction of critical density at that
epoch is approximately unity). The galaxies are assumed to have no
peculiar velocities with respect to local comoving coordinates at this
initial epoch. The clustering of galaxies is assumed to result from
the gravitational condensation of fluctuations in the density of gal-
axies.

An analytic calculation of the probability that any given galaxy
will énd up as a member of a bound association of any size is a diffi-
cult problem (see Chapter III). But it is straightforward to calculate
the probability that a given galaxy is not bound to any other galaxy

when the two are considered as a pair. We shall discuss later the

problems associated with identifying such pairs with isolated galaxies.
For simplicity, suppose that at the initial epoch all galaxies
nave mass % and were distributed with density ¢ . Letting h be

the value of the Hubble parameter at the initial epoch, we have

Trent = ph (1)
where we have again set G = c =1 . Suppose that one test galaxy has
mass % . A second galaxy of mass ¢ will be pairwise bound to this

test galaxy if it is located within a sphere of radius r around it

vhere



Ll (2)

The probability that no galaxy of mass %~ is located within this

sphere is given by P(u) where

P(u) = expl- 5 mr¢] = expl- (1+u)] (3)

and where the dimensionless mass u is defined by

woE oot (4)

It is immediately clear that the more massive the test galaxy, the
more likely it is to be pairwise bound in this picture.

For comparison, suppose that the presence of a galaxy of mass
u  precluded the possibility of a second galaxy being located within

/3 This would be the case if all the

a sphere of radius (3/4m¢ u)
mass were drawn up from a homogeneous medium. The probability that

a second galaxy lies within radius r dis S(u) where

S(u) = exp[-1] (5)

independent of the mass of tne test galaxy. This picture is somewhat
inconsistent since we ought to insist that the second galaxy be drawn
up from the surrounding medium as well. In spite of this inconsis-
tency, this alternative proves useful for the purpose of comparison.

We shall call this model the "subrandom" picture in contrast to the

"completely random" model.



-63-

These results are readily generalized to deal with a complete
distribution of masses ¢(u) . We shall assume that the distribution
of galaxy masses has the same distribution as the distribution of gal-

axy luminosities,
o(n) du = ¢* exp[-uJn® du (6)

The analog of equation (1) 1is then

h? (7)

N

-43—1T T(at2) ¢* o =

We may further generalize the problem by introducing a binding factor
k such that if p and p' are the dimensionless masses of two gal-
axies, they are pairwise bound by the factor « if they are closer

than r where
77.7’((]_;4‘]_1'? - —;"K hzrz (8)

in analogy to equation (2). We must make one further generalization,
necessitated by the fact that for the purpose of observations, the mass
u' of the companion galaxy must be some fraction yx of the mass of
the first galaxy or it will escape detection. The probability that a
galaxy of mass u will not be pairwise bound by the factor «k to a
galaxy of mass u' > xu 1is given by PK(u,X) where
f (') ¢(u') du'
P (i) = expy - & (9)

K jw 't og(ut) du

Using equation (6), this may be expressed in terms of incomplete gamma
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functions as

TL(a+2) sxu] + ulL(o*1) ]
P (u,x) = exp{- } (10)
< (oc+2)

We can likewise generalize the subrandom picture giving the analog of
equation (5)
T[(at2),xu] (k=1)[(a+1),xu]

S (wsx) = exp{- —————+u } (11)
kT {a+2) kT (0+2)

which reduces to equation (5) when X =0 and «x =1

3. Definition of Isolated Galaxies

We would 1ike to choose an observational definition of an iso-
lated galaxy which corresponds to a pairwise unbound galaxy at the
initial epoch. We must first decide upon a value of the binding factor
k which is as large as possible so that the dynamics of the pair is not
1ikely to be influenced by nearby neighbors, but small enough so that
the factor k can be determined unambiguously for a given pair.

Two galaxies of masses H and u' bound by the factor ¥ at

the initial epoch will reach a maximum radius rMX gt time tMeX
where
2 o (utu').1/3
O S e (12)
(«-1)"h

and

max . 1 1/2

£ S [ 5] (13)
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max

Suppose we choose K such that t]im

Tim is qne—third t0 , the present

age of the universe. Then any pair of galaxies with masses u and u'
separated at the present by rT?é has had either one close encounter or no
close encounters. If they have had one close encounter, they are bound by
the factor Klim If they are just approaching for the first time, then
they are bound by the factor «_ where (Kc—l) =-679(K]im-]). Any pair of
galaxies of masses p and u' separated by more than rT?é must be ap-
proaching for the first time and must be bound by a factor less than Ke
Any such pair of galaxies separated by less than r??é may be approaching
for the second time and may be bound by a factor greater than «q;..
Therefore r??$ is the smallest radius such that « for a pair separated
by greater than that radius can be determined unambiguously.

We shall drop the superscript "max" and let the "limiting radius"

"im be defined by
2 '
rin = LG22 m X213 (14)

We shall call a galaxy of mass p "isolated by x magnitudes" if there is
no galaxy of mass p' > yu within a Timiting radius, and where

-.4x

x =10 (15)

We have chosen the smallest possible definition of r to

Tim
minimize dynamical effects due to third galaxies. Close binary systems
are less likely to be affected by encounters with third galaxies than

Tess tightly bound systems. HNonetheless, it seems likely that particu-

Tarly in rich clusters of galaxies, pairwise bound galaxies may have

been split apart, and new close pairs may have been formed. Dynamical
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effects may therefore affect the relative numbers of pairwise unbound
galaxies. In spite of this we shall identify isolated galaxies as de-
fined in this section with the pairwise unbound galaxies of the pre-
vious section. We still expect that among isolated galaxies, the more

massive galaxies will be underrepresented.

4. Selection Effects in the Identification of Isolated Galaxies

Having chosen a definition of isolated galaxies to agree as well
as possible with the definition of pairwise unbound galaxies, we may use
equations (10) and (11) to calculate the expected mass distribution of
pairwise unbound galaxies and compare this with the observed distribution
of isolated galaxies. We must be careful, however, to eliminate selec-
tion effects in the identification of isolated galaxies.

Owing to the difficulty in obtaining redshifts, it is Tikely
that an isolated galaxy will be identified only if there is no galaxy
within some angular separation. In particular, a galaxy with apparent
magnitude m and at distance D will be identified as isolated by x

magnitudes only if there is no second galaxy of apparent magnitude

m' < mtx separated by angle 6 from the first galaxy, where
ry.
o < —pt () (16)
and
* _ 2 \2 _%.2-1/3
Y"Hm = [(_37”‘) Wlto (]7)

Tne dimensionless masses u and u' are calculated assuming a constant
mass-to-luminosity ratio and that the second galaxy is at the same dis-

tance as the first.
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There is always the chance that a background or foreground gal-
axy may be separated by only a small angle from a galaxy which is in
fact isolated. Such a galaxy would not be identified by the above
procedure. Suppose that there are N galaxies per steradian brighter
than mtx and assume that they are randomly distributed on the sky.
Then the probability that a given galaxy has no other galaxy of magni-
~tude m' < mtx within angle 6 is given by

2 23 o
p(D,usx) = exp {- _1_1;‘;1_2_____%,\, X3/ f y )23 gy (18)
X

where the integral must be performed numerically. It is important to
note that at a given apparent magnitude (u/chonstant) massive isolated
galaxies are less likely to have spurious projected companions than
less massive jsolated galaxies. Therefore selection effects favor the

identification of massive isolated galaxies.

5. Predicted Mean Luminosity of Isolated Galaxies

Suppose we have a sample of galaxies complete to some limiting
magnitude m with measured redshifts. Suppose further that we have a
second 1ist of galaxies, complete to magnitude wm+x with N galaxies
per steradian. The second 1ist may be used to identify isolated gal-
axies on the first 1ist. The expected number of galaxies isolated by

magnitudes, n(x), is then
- u'l/ZD*

n(x) = f du ¢(u) P_(1sx) f 4rDdD p(D1x) (19)
0

wnere D* is the greatest distance at which a galaxy of mass ﬁ7* will
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be included in the first list. Substituting equation (17) we find

n(x) = [ 60 P )
0

1/2% x2  2/3 ©
ue’ "D Trys U 2 3/2 -

x J 4n0% exp [— Am w22 J vy (1+y)? 3ay|ap}
0 D uD* X

(20)
For a given value of x , the integral with respect to y is constant

and the integral with respect to D may be expressed as an incomplete
gamma function. Note that if we increase D* (N/D"‘3 remaining con-
stant) there is a finite 1imit to the number of galaxies isolated by

X magnitudes that one can identify by this process. This is because
beyond a certain distance, virtually all isolated galaxies will have
spurious apparent companions.

The expected total mass in the n(x) disolated galaxies in units
of 7* may be found by multiplying the integrand in equation (19) by
an additional factor of u . Dividing the expected mass by the expected
number gives a predicted mean mass in units of m* . We have already
assumed a constant mass-to-light ratio, which gives us the average
Tuminosity in units of L* . We can just as well use SK(u,X) in equa-
tions (19) and (20) instead of PK(p,X) to obtain the mean Tuminosity
of isolated galaxies in the subrandom model.

Before we can actually do the integrals in equation (20) we must
specify a mass-to-light ratio. Given the Tuminosity function of Chapter
I, we can then calculate the present mass density, which gives a value
of 9 and hence to . We can either compute N down to a given

1imiting apparent magnitude or we can allow «§ to be determined by the
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comparison list. K. may also be computed once a mass 7* 1is speci-
fied. If the time at which galaxies are presumed to be random is very
much smaller than the present age of the universe, then « will be
very close to unity.

While the predicted mean luminosity depends upon the depth D*
of the sample of galaxies, it is interesting to compute the mean Tumin-~
osity for the special case when spurious apparent companions are
unimportant. The exponential in equation (20) is then unity, and the
results are independent of the assumed mass-to-luminosity ratio. The
results of such a computation are shown in Figure 1, where the broken
Iine gives the mean Tuminosity in the subrandom case. We see that if
we consider galaxies isolated by 3 magnitudes, the mean luminosity in
the random model is almost 3/2 of a magnitude fainter than the subrandom
model. The horizontal line at 5/4L * shows the mean luminosity of
all galaxies in a magnitude limited survey. It is remarkable that for
small values of x , the mean luminosity of isolated galaxies exceeds
that of all galaxies. But this is due to the fact that the most
luminous galaxies are rare, and a galaxy only x magnitudes fainter,
where x 1is small, is not Tikely to be nearby at the initial epoch.
When the selection effect due to background and foreground galaxies is
included, both curves will move to brighter absolute magnitudes.

The completely random model presented here differs from the
model presented in Chapter Il in that we assume here that galaxies
themselves were randomly distributed rather than pregalactic perturba-

tions. Nonetheless we would expect a similar effect for pregalactic
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Fig. 1. MHMean Tuminosity of galaxies isolated by x magnitudes as
function of x .
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perturbations: the more massive ones would be more likely to be bound

to companions than the less massive ones.
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