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Abstract 

Near-band-gap circularly polarized excitation in III-V semiconductors provides 

spin-polarized electrons that transfer spin order to lattice nuclei via fluctuations in the 

contact hyperfine interaction.  This process of optical nuclear polarization and the 

complementary technique of optical detection of nuclear magnetic resonance (NMR) 

provide extreme sensitivity enhancement and spatial selectivity in structured samples, 

enabling collection of NMR spectra from samples such as single quantum wells or dots 

containing as few as ~105 nuclei. 

Combining these advances with novel techniques for high spectral resolution, we 

have probed quantum-confined electronic states near the interface of a single epitaxially 

grown Al(1-x)GaxAs/GaAs (x = 0.36) heterojunction.  Using a novel strategy that we refer 

to as POWER (perturbations observed with enhanced resolution) NMR, multiple-pulse 

time suspension is synchronized with bandgap optical irradiation to reveal spectra of 

effective spin Hamiltonians that are differences between those of the occupied and 

unoccupied photoexcited electronic state.  The underlying NMR linewidth is reduced by 

three orders of magnitude in these experiments, enabling resolution of an asymmetric line 

shape due to light-induced hyperfine interactions.  The results are successfully fit with the 

coherent nuclear spin evolution and relaxation theoretically expected for sites distributed 

over the volume of an electronic excitation weakly localized at a point defect.  This 

analysis establishes a one-to-one relationship, which can be used to follow nuclear spin 

diffusion, between optical Knight shift and the radial position of lattice nuclei. 

We have also introduced POWER NMR techniques to characterize the change in 

electric field associated with cycling from light-on to light-off states via a linear 
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quadrupole Stark effect (LQSE) of the nuclear spins.  Simulations of these NMR spectra 

in terms of the radial electric fields of either donor-bound electrons or excitons indicate 

differences, where the bound-exciton model provides a significantly better fit to the data.  

The same spin physics enabled our measurement of the heterojunction interfacial field, 

which we find to be less than 1.3 kV/cm at the sites responsible for optical NMR.  Other 

simulations show the promise of optical NMR as a tool in future studies aimed at atomic-

level characterization of quantum-confined systems such as quantum dots and wells.  
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I. Introduction 

Nuclear magnetic resonance (NMR) spectroscopy is a technique that rose from 

the independent basic research of physicists Edward M. Purcell[1] and Felix Bloch.[2]  The 

pair later shared the 1952 Nobel prize in physics for their coincident discovery of NMR, 

which has since grown into the most widely used spectroscopic method, with applications 

in biology, chemistry, physics and medicine.  For all its utility, however, the traditional 

approach to NMR experiments suffers from its inherent low sensitivity and its restriction 

as a probe of only bulk material properties, rather than local features in structured 

samples.  These shortcomings are especially apparent with the ever-increasing demand 

for characterization of the tiny and ordered realms of nature, such as single-crystal 

proteins, and fabricated nanoscale materials, such as layered epitaxial semiconductors. 

Optical NMR (ONMR) is one successful approach towards overcoming the noted 

limitations of the traditional spectroscopic technique.  The key to ONMR is the coupling 

of photoexcited electrons to nuclear spin degrees of freedom.  Its most widespread 

application is to III-V semiconductors such as GaAs, where circularly polarized optical 

excitation provides spin-polarized conduction-band electrons, which in turn transfer 

corresponding order to lattice nuclei.[3,4]  This process of optical nuclear polarization 

(ONP) adds several orders of magnitude in sensitivity to the NMR experiment by 

providing a larger nuclear moment to measure.  Additionally, photoluminescence (PL) in 

III-V’s exhibits polarization response[4-9] and/or frequency shifts[10-12] according to the 

spin state of the same nuclei.  Thus, an NMR signal, traditionally detected as a weak 

radiofrequency (rf) emission of the spin system, can be effectively amplified by encoding 

it in a much more energetic optical signal, yielding a further increase in 
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sensitivity.[5,7-9,11-13]  The combination of ONP and optical detection has supplied signal-

to-noise enhancement by a factor of up to 1012 in GaAs materials.[11,12]  Furthermore, 

each of these processes provides spatial selectivity due to the locality of the electron-

nuclear interactions on which they depend. 

The ONMR experiment is a powerful probe of electronic states confined to 

quantum wells (QWs) and dots, and at point defects and material interfaces.  These 

systems exhibit fundamental quantum behavior that is often unexpected,[14] and which 

can play important roles in device physics.  However, orders-of-magnitude enhancement 

of spectral resolution over previous ONMR experiments[5,7-9,11,13,15-23] is needed to 

approach atomic-scale spatial resolution by NMR.  One hurdle to improving resolution is 

particular to ONMR methodology:  perturbation of the nuclear spin system by the optical 

detection process.  Buratto, et al.[8] solved this problem by implementing a novel 

detection scheme that enabled separation of the ONP, NMR evolution and optical 

detection periods on the experiment timeline.  Marohn, et al.[9] subsequently incorporated 

their more versatile Larmor beat detection (LBD) method in this time-sequenced 

approach.   

A more general obstacle to obtaining high resolution in solid-state NMR is due to 

strong dipolar couplings between neighboring nuclei, which yield linewidths several 

orders of magnitude broader than those in liquid-state experiments.  In this thesis, a novel 

methodology is presented which attacks this problem by synchronizing resonant 

irradiation of the nuclear spins with cyclic perturbations of the sample during the NMR 

evolution period.[24-26]  Using this approach, which we refer to as POWER ( perturbations 

observed with enhanced resolution) NMR, the sequence of rf pulses and cycled 
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perturbations is arranged in such a way that line broadening due to magnetic field 

inhomogeneity and unresolved spin couplings is removed, while the spin Hamiltonian 

due to the perturbation interaction remains as the dominant source of spectral structure. 

The remainder of this thesis is organized as follows.  In Section A of the current 

chapter, the basic physics and apparatus of traditional NMR spectroscopy are introduced.  

The photophysics of ONP and optical detection of NMR in III-V semiconductors are 

presented in Section B, while multiple-pulse POWER NMR techniques are detailed in 

Section C.  Chapter 2 contains a detailed description of our ONMR experimental 

procedures and apparatus.  In Chapter 3, I discuss experiments where optical 

spectroscopy was used to probe the so-called H-band photoluminescent states in an 

AlGaAs/GaAs heterojunction.  These states have received recent attention due to their 

relation to the material interface in high-quality epitaxially grown samples,[27-30] and are 

relevant to our ONMR investigations of such a sample, including, in Chapter 3, 

characterization of the electric field at the heterojunction interface via a linear quadrupole 

Stark effect (LQSE) of the lattice nuclei.  Additionally, in Chapter 4, the first 

experimental applications of the POWER NMR approach are detailed, in which we have 

obtained a radially resolved image of the electron wave function corresponding to the 

H-band states and characterized the combined electron and hole distributions through 

their electric field.  Finally, in Chapter 5, I present a third application of POWER NMR, 

in which an electric field applied normal to the plane of an n-type GaAs QW induces a 

polarization response in the quantum-confined carrier population.  Simulations of this 

response in the quantum-confined dimension indicate the practicality of measuring the 

polarization field with atomic-layer resolution in an isotopically diluted 10 nm QW. 
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A. Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) experiments probe the properties of atomic 

nuclei and their local environment by recording the transitions between nuclear spin 

energy levels.  The energy separation of these levels is determined primarily by the 

Zeeman interaction, which is linear in 

the strength of an applied magnetic field 

B0, as depicted in Fig. 1.1(a).  The 

magnitude of the Zeeman splitting for a 

given value of B0 is a property of the 

nuclear isotope alone.  However, the 

local environment of the nucleus is also 

probed by NMR, since the observed 

energy splitting also reflects the 

response of the local electronic system 

to the applied field, the magnetic 

coupling of the nucleus to nearby spins, 

and, for a nucleus with spin I ≥ 1, the 

orientation-dependent coupling of the nucleus to an electric field gradient.  Because 

NMR probes this diverse set of observables, it is the premier spectroscopic tool for 

chemical and structural analysis at the atomic level. 

The basic experimental apparatus used in NMR experiments is shown in 

Fig. 1.1(b).  Typically, electromagnets provide a large, homogeneous B0 at the sample 

position, while a coil of conducting wire surrounding the sample serves as the source of 

 
FIG. 1.1 (a) Zeeman energy splitting of nuclear spin 
states, which are labeled according to the allowed 
values of m, the projection of the dimensionless 
nuclear spin angular momentum I along B0, for the 
case where 1

2I = =  I .  (b) Basic NMR experimental 
apparatus. 
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radiofrequency (rf) irradiation used to induce NMR transitions.  An oscillating voltage 

applied across the coil circuit at angular frequency ω provides an identically time-

dependent magnetic field with amplitude 2 B1 directed orthogonal to B0.  When the 

irradiation frequency matches the nuclear Larmor frequency 

      0 0/ nE Bω = ∆ = − γ= , (1.1) 

where =  is Planck's constant h divided by 2π and γn is the nuclear gyromagnetic ratio, it 

induces transitions between Zeeman energy levels.  This is the condition known as 

resonance.  The static field must be homogeneous over 

the sample volume in order to ensure that the width 

and relative energies of spin transitions for a set of like 

nuclei are determined only by their local environment, 

as opposed to variation of the Zeeman interaction 

across the sample. 

The thermal population difference between 

spin energy levels, which determines the net strength 

of absorption or emission, increases with B0; therefore, 

high fields are advantageous in the NMR experiment.  

However, in modern NMR spectroscopy, simple 

absorption or emission measurements in the frequency domain are replaced by a time-

domain experiment, where pulses of broadband irradiation excite coherent spin 

transitions that yield subsequent time evolution of the nuclear magnetic moment M.  

 

FIG. 1.2    (a) The nuclear 
magnetic moment M resulting 
from net alignment of the spins 
along B0.  (b) Precession of M 
about B0 following a π/2 pulse. 
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Thermal populations of the 1
2spin-  Zeeman levels exhibit net alignment along B0, 

yielding a corresponding nuclear magnetic moment, 

      nN= γM I= , (1.2) 

in the same direction, as shown in Fig. 1.2(a), where N is the number of spins in the 

ensemble and I is the dimensionless nuclear spin angular momentum operator.  A short, 

resonant rf pulse turns M away from B0 and, in the case where the pulse duration tp is 

such that (-γn B1 tp) = π/2, this rotation is by 90° and places M in the transverse plane.  

Following this π/2 pulse, M precesses about B0, as shown in Fig. 1.2(b), a time-

dependence that is traditionally detected via Faraday Law induction of a voltage 

proportional to d
dt M in the nearby coil.  This signal voltage is given by 

    
2/

0( ) cos( ) t TS t A t e−= ω  (1.3) 

where A is a scaling factor proportional M, 0 /Eω = ∆ =  is the nuclear Larmor frequency 

and T2 is the transverse nuclear spin relaxation constant.  The Larmor frequency of 

precession exactly matches the 

frequency that corresponds to the 

energy splitting between nuclear spin 

levels.  This suggests an equivalence 

of time and frequency-domain NMR 

signals, which is made clear by 

executing a Fourier transformation of the time-domain NMR signal.  The result of this 

operation is illustrated in Fig. 1.3, where S(t) transforms into a single Lorentzian peak at 

ω0 in the frequency domain and with a full width at half max (FWHM) of (π T2)-1. 

 
FIG. 1.3  An example time-domain NMR signal 
S(t), which is converted into a frequency domain 
signal shown at right by the mathematical operation 
known as Fourier transformation. 
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The greatest advance provided with time-domain NMR is the ability to coherently 

control the orientation of M over the course of the experiment.[31-33]  Sequences including 

trains of resonant rf pulses with various phase and duration can be arranged to yield a 

combination of free and driven evolution of the spins that averages the effects of certain 

interactions to zero, placing others in greater prominence.  With such control, a 

tremendous variety of multiple-pulse sequences have been designed to narrow NMR 

spectral features.  This provides otherwise inaccessible spectroscopic resolution, while 

additionally sorting spin interactions according to the interests of experimenter.  In 

contrast, frequency-domain NMR experiments are almost completely lacking in this 

sophistication. 

Finally, two factors that determine the sensitivity in a traditional NMR experiment 

are highlighted in the basic overview above:  the degree of thermal spin polarization and 

the inductive coupling of the time-dependent M to a detection coil.  Thermal polarization 

of nuclear spins is notoriously weak, as dictated by the small energy splitting dominated 

by the Zeeman interaction.  Consider the example of 71Ga (I = 3
2 ), which has the largest 

splitting among the isotopes present in GaAs.  The Zeeman polarization of a 3
2spin-  

nucleus is 

 
2 33 31 1

2 2 2 2
2 33 31 1

2 2 2 2

        
      nP + ζ − ζ − ζ=
+ ζ + ζ + ζ

, (1.4) 

where 0( / )Bk Te− ωζ = = , kB is the Boltzmann constant and T is the temperature.  Even in a 

large 11.75 T field at T = 2 K, this yields only 0.5% 71Ga spin polarization.  In contrast, 

ONP in bulk GaAs, which does not depend on high field, has yielded 71Ga polarization of 

~10% at 2 K with B0 ~ 250 mT,[9] while still greater optically induced polarization is 
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possible in QW samples.[17]  Additionally, inductive coupling of the spins to the detection 

coils is much weaker than hyperfine coupling between the nuclear spins and photoexcited 

electrons.  The latter can be used to encode an NMR signal into the PL response of such 

electrons with a coupling efficiency that is dramatically increased relative to the inductive 

approach.  In the following section, I present the basic III-V photophysical processes that 

govern ONP, for generation of large, nonequilibrium M, and optical detection, for more 

efficient detection of its evolution. 

B. Optical NMR Methodology 

As noted above, two of the most common pitfalls of traditional NMR 

spectroscopy are low signal sensitivity and poor spatial selectivity for samples that are 

inhomogeneous or structured.  The sensitivity of traditional solid-state NMR 

spectroscopy is such that a minimum of ~1017 spins are required to obtain a discernable 

NMR signal, whereas individual semiconductor quantum dots, for example, may contain 

only ~105 spins.  The failing of traditional NMR as a spatially selective technique resides 

in its inability to separate the signal of scarce local regions within a sample from that of 

the same nuclei in the bulk material, thus, possibly obscuring the signal of interest with a 

large, mundane companion.  The utility of ONP and optical detection for defeating these 

limitations was noted above.  In this section, I describe the photophysical processes that 

are generally relevant for ONP and optical detection in III-V semiconductors with the 

zincblende crystal structure, which excludes GaN.  The time-sequenced and Larmor-beat-

detection ONMR methodologies, which complete the picture of techniques developed 

earlier and used for all experiments presented in this thesis, are also described. 
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1. Optical Nuclear Polarization 

The optical selection rules and subsequent photoelectron spin relaxation that 

govern ONP in bulk III-V semiconductors is depicted in Fig. 1.4.  The two-step process 

of ONP is a transfer of angular momentum from circularly polarized (CP) photons to 

photoexcited electrons and, finally, to lattice nuclei.  The first step is the production of 

spin-polarized conduction-band 

electrons by a CP excitation 

beam with unit propagation 

vector ˆen  along the direction of 

an external magnetic field B0.  

The spin-polarization follows 

from conservation of angular 

momentum and the oscillator 

strengths of allowed transitions, as shown at the right of Fig. 1.4.[4]  The valence holes 

and conduction electrons thus generated are labeled in the figure according to their spin-

plus-orbital angular momentum, Je and Jh, respectively.  The difference (Je - Jh) for a 

given electron-hole pair must be equal to the unit of angular momentum supplied by the 

exciting photons.  Thus, right CP light (σ+), which carries +1 unit of angular momentum 

projected along 0 ˆ// enB , is capable of generating electron-hole pairs with 

(Je, Jh) = 31
2 2( , )− −  or 1 1

2 2( , )+ − .  However, the matrix elements that determine the 

relative strengths of these transitions favor generation of the 31
2 2( , )− −  pair in a 3:1 ratio.  

This ratio results in an initial electron spin polarization 

 
FIG. 1.4  The basic photophysical processes underlying 
ONP in a III-V semiconductor.  Valence-band (VB) and 
conduction-band (CB) sublevels are shown at right with 
labels denoting spin-plus-orbital angular momentum 
projected onto the axis of 0 ˆ// enB .  The number of arrows 
connecting electron hole pairs at right indicates the 
relative strength of corresponding allowed transitions. 
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which, at 2 K in a 250 mT field, is far greater in magnitude than the thermal value of 

~ 0.02.  Including electronic relaxation and allowing arbitrary circular polarization, 

   

  
      ˆ ˆex e ex en n−+

−+
σ −σ
σ + σρ = = ρK , (1.6) 

of the excitation beam provides the more general result[6] 

 ( )  
*

1 1 ˆ = / ex ee e eT T nξ ρP , (1.7) 

where 1
2ξ = , according to the selection rules for bulk III-V materials, T1e is the electron 

spin relaxation time, and 

 ( ) 11 1*
1 1 re eT T

−− −= + τ , (1.8) 

where τr
-1 is the radiative recombination rate.  We also note that in a region of a III-V that 

exhibits quantum confinement, such as a QW, the degeneracy of light 1
2( )hJ = ±  and 

heavy 3
2( )hJ = ±  holes is lifted.[34]  When the energy splitting of these holes is sufficient 

for resolved excitation, production of only (Je, Jh) = 31
2 2( , )+ +  electron-hole pairs is 

possible, yielding ξ = 1, and thus electrons which are even further from thermal 

equilibrium, as is favorable for ONP. 

The final step in the ONP process is the transfer of the photoelectron spin order to 

lattice nuclei via contact hyperfine coupling, which is most efficient where 

photoelectrons localize at shallow trapping sites in the crystal lattice.  The Hamiltonian 

governing this interaction between a single electron-nuclear pair is 

  
       

2, 2
0 03  ( )C i i i

hf B n ig= − Γ µ µ γ Ψ ⋅r  I SH , (1.9) 
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in units of Hz, where Γ is occupancy of the electronic localization site, S is the 

dimensionless electron spin angular momentum operator, g0 is the free-electron 

g-factor,1(a) and Ψ(ri) is the value of the electronic wave function at the ith nuclear center.  

The spectral density of fluctuations in , C i
hfH  at the difference between the electron and 

nuclear Larmor frequencies induces mutual electron-nuclear spin flips, thus transferring 

spin order into the nuclear population.  Such fluctuations may be due, for example, to 

scattering of the electron spin by free electrons.[6] 

At low temperatures, where thermal phonons are scarce, the process described 

above dominates photoelectron spin relaxation, and the prescribed optical pumping yields 

ONP.  Furthermore, according to Eq. (1.9), the effects of ONP are appreciable only for 

nuclei near the center of electronic localization, since Ψ(ri) vanishes elsewhere.  This 

provides spatial selectivity in the optical NMR experiment.  Finally, it is noteworthy that 

spin-polarized holes are also produced in the above scheme; however, as concerns the 

ONMR experiment, the effect of the hole spins is generally negligible, since their 

hyperfine coupling to lattice nuclei is relatively weak and their spin exhibits rapid 

thermalization.[35,36] 

2. Optical Detection of NMR via the Hanle Effect 

The Hanle effect is the variation of PL polarization in response to a magnetic field 

B^ oriented transverse with respect to the direction of electron spin polarization.[37]  Its 

existence in III-V semiconductors may be understood beginning with the optical selection 

rules presented above in the context of ONP.  As indicated in Fig. 1.5, the radiative decay 

                                                 
1(a) Paget, et al[6] have discussed the appropriateness of using the free-electron g-factor, rather than the 
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of spin-down (up) conduction-band electrons 

yields a 3:1 (1:3) ratio of σ+ to σ- photons.  

Thus, spin-polarized conduction-band 

electrons generated by CP excitation yield 

nonvanishing CP of luminescence ρ.  Using 

an argument similar to that used for excitation 

in Section B.1 of this chapter, we obtain 

       ˆ ˆ2d de n nρ = ξ ⋅ = ξ ⋅P S , (1.10) 

where ˆdn  is the unit propagation vector of the detected light.  The effect of a transverse 

field B^ on ρ is qualitatively understood according to the precession of S about the field, 

which reduces S , and hence ρ, according to Eq. (1.10). 

A quantitative picture of the Hanle effect is derived from the steady-state solution 

to electron the Bloch equation 

 ( ) ( )       
1

1 0e e
d
dt T −= − − γ ×S S S S B , (1.11) 

which describes the time evolution of S  in a magnetic field B.  In this expression,  

 ( )   
*1

0 1 12 ˆ/ ex ee eT T n= ξ ρS  (1.12) 

is the steady-state photoelectron spin [See Eq. (1.7)], γe = g* µB / h is the electron 

gyromagnetic ratio, as determined by the effective conduction-band g-factor, g* = -0.44, 

and equivalent longitudinal and transverse spin relaxation times are assumed.  The 

steady-state solution[38] to Eq. (1.11) is valid when 

                                                                                                                                                 
conduction-band value, in Eq. (1.9).  

 
FIG. 1.5  The relation between the CP of 
luminescence ρ, and the photoelectron 
spin state. 
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1

1
1   e

dB
B dt T −� . (1.13) 

Keeping this in mind, and inserting the steady-state result into Eq. (1.10) yields 

    

   

  

2

0 2 2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( )e d e d e dH H

H

B n n B n n n n
B

⋅ + × + ⋅ ⋅ρ = ρ
+

      B B B
B

, (1.14) 

where ( )  
2 *

0 1 1/ exe eT Tρ = ξ ρ  (1.15) 

is the initial polarization, and 

 ( )   

1
1eH eB T −= γ  (1.16) 

is known as the intrinsic Hanle width.  Taking ˆen  and ˆdn  to be mutually parallel to the 

component B// of B = (B//  + B^), Eq. (1.14) 

reduces to 

 ( )
( ) ( )

  

2
0 1/ 2

2 2
1/ 2

B
B B⊥

ρ
ρ =

+
, (1.17) 

where 

 ( )1/ 22 2
1/ 2 //HB B B= +  (1.18) 

is the half-width at half-max of this 

Lorentzian response to B^, which is known as the Hanle curve and plotted in Fig. 1.6. 

Nuclear spins are also capable of eliciting this Hanle response via their contact-

hyperfine-mediated influence on the electron spin.  The Hamiltonian that is the sum over 

all nuclear sites Eq. (1.9) governs this effect, and may be written as 

 ( )  
1  C

hf e n h−= −γ ⋅S BH , (1.19) 

in units of Hz, where Bn is the sum of so-called nuclear hyperfine fields  

FIG. 1.6  The Hanle curve, describing the 
Lorentzian dependence of ρ on the 
magnitude B^ of the transverse magnetic 
field.  The half-width at half-max is 
determined by the electron gyromagnetic 
ratio γe and spin relaxation time T1e, and 
the component B// of magnetic field 
parallel to the electron spin. 
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2 ,2 *
0 03  

( / ) ( ) i
n n ii

g g hα α α
α= µ γ χ Ψ∑B r  I  (1.20) 

of isotopes present in the material, and where χα is the fractional abundance of the 

isotope α.  Writing C
hfH  in this way, we see that each nuclear isotope presents an 

effective magnetic field to photoexcited electrons, and furthermore, this field may be up 

to several Tesla in magnitude.[6,7]  If a component of Bn is oriented transverse to the 

direction of photoelectron spin polarization, then it provides B^ and reduces ρ according 

to Eq. (1.17).  Thus an NMR experiment, which involves just such a reorientation of 

nuclear spins, may be encoded as a Hanle response.  Such an approach yields 

dramatically enhanced sensitivity and, according to the dependence of  

n
αB  on Ψ(ri) in 

Eq. (1.20), further solidifies the spatial selectivity of the ONMR experiment. 

In early optically detected experiments, cw NMR spectroscopy was used to probe 

the nuclear spin system.  At resonance, the reorientation of nuclear spins, and hence the 

corresponding  

n
αB , away from B0 provided B^, and in turn a decrease in ρ as the NMR 

signal.  However, this is not the optimum approach to optical detection.  First, it suffers 

from the lack of coherent control of the nuclear spin system inherent in cw NMR, and 

second, this approach encodes the NMR signal at a poor location on the Hanle curve:  its 

center, where the signal response is most nonlinear, and where the minimized slope 

represents the minimum sensitivity to a transverse field of nuclear origin.  Finally, NMR 

line shapes obtained in this manner are distorted by inhomogeneity of the hyperfine 

interaction, since continuous optical irradiation is required to provide the PL signal while 

exciting spin transitions.  To overcome these difficulties, a new ONMR scheme is 

needed:  one that allows temporal separation and individual optimization of the processes 
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of ONP, NMR evolution, and optical detection.  Sections B.3 and B.4 review the 

advances in these areas made in the Weitekamp group at Caltech. 

3. Time-Sequenced ONMR Methodology 

Buratto, et al.[8,39,40] provided two major advances in ONMR with their 

development of the time-sequenced methodology.  The first is due to the arrangement of 

separate periods for ONP, arbitrary time-domain NMR evolution, and optical detection, 

as shown in Fig. 1.7.  An important result of this simple modification of previous 

experiments is that NMR evolution is free from concurrent optical detection, and thus 

from the corresponding perturbation of inhomogeneous hyperfine interactions.  

Additionally, since this segmentation incorporates time-domain NMR evolution, one may 

use the most sophisticated NMR techniques to probe nuclear spin interactions.  These 

include multiple-pulse experiments, which may incorporate any perturbation to the spin 

system, including optical excitation, if measurement of the corresponding effects is 

desirable.  The noted segmentation of the ONMR timeline is generally applicable with a 

variety of optical detection methods, including those that rely on an Overhauser shift of 

PL lines[11,12] or on Faraday rotation[13] to encode NMR; however, these, and other recent 

experiments that rely on the Hanle effect, were executed without time sequencing. One 

goal of the research presented in this thesis is to demonstrate that the most informative 

NMR experiments must be obtained using an approach based on time sequencing. 

The second advance provided by the time-sequenced approach is due to the use of 

a transverse reference field  ref
⊥B  for improved Hanle-effect optical detection.  At the end 

of the timeline shown in Fig 1.7, a signal field, 
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FIG. 1.7  (a) Timeline of the time-sequenced ONMR experiment with CP laser (hν) irradiation 
along the z-axis, magnetic fields along the lab-frame y- and z-axes, and rf irradiation orthogonal to z 
shown.  (b) The corresponding trajectory of nuclear spin magnetization M. 
 In the first step, depicted only in (a), residual spin magnetization is killed with a sequence of 
5 π/2 rf pulses with intervening delays τd p T2, the transverse nuclear spin relaxation time.  This 
ensures an equivalent shot-to-shot starting point for repetition of the experiment.  A (π/2)y pulse 
following ONP initiates the NMR evolution period of time t1 = (n × ∆ t1), where n is an integer.  A 
second (π/2)y pulse stores the x-component, |M| cos ω0t1, of remaining spin magnetization along 
B0 // z, leaving the y-component in the xy-plane, where it quickly dephases to zero.  The stored spin 
magnetization is the NMR signal and next follows B0 as it is cycled adiabatically to the y-axis.  
Optical detection (OD) for time t2 ensues, where the Hanle effect response to the total field 
| By +  

n
αB | in the transverse plane is observed.  [Recall from Eqs. (1.2) and (1.20) that  

n
α ∝B M , and 

thus follows the trajectory shown in (b).]  By serves as the reference field  ref
⊥B  discussed in the text. 

 A time-domain NMR spectrum is obtained by repeating the experiment several times while 
incrementing n.  A set of dc transients in t2 results, each of which is integrated to yield a single point 
in the time-domain interferogram in t1.  Fourier transformation of this so-called “pointwise” 
spectrum yields the frequency domain. 

   

1 0 1( ) cossig
n nt tα= ωB B , (1.21) 

is collinear with an external field,  ref
y ⊥=B B .  The vector sum of these fields determines 

the PL polarization response shown in Fig. 1.8.  The reference contribution to the total 

transverse field effectively shifts the Hanle curve such that polarization response to the 

nuclear component is approximately about the half-width, rather than the peak, of the 

Lorentzian.  This improves both the linearity and the sensitivity of the NMR signal 

response by encoding it in a region with a larger, flatter slope. 
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At this point, we note that another innovation is required in order to obviate the 

need for cycling the external field, which is a desirable modification since incorporating 

field cycling delays reduces valuable throughput in these cryogenic experiments, and 

because extra apparatus is required to provide a second external field.  Furthermore, the 

approach of Buratto, et al.[8,39,40] requires pointwise detection of the time-domain NMR 

signal via a set of transient signals at 

dc.  Real-time detection of precession 

of  

n
αB  as a modulation of ρ would 

require differentiation of the in-plane 

orientation of  

n
αB , while the Hanle 

effect depolarization of PL discussed 

in this and the previous section 

depends only on the magnitude of the 

transverse field.  The following section is a review of the most recent advance in ONMR 

methodology:  Larmor beat detection, which encodes real-time NMR evolution in the 

Hanle depolarization of luminescence and does not require field cycling. 

4. The Larmor Beat Detection Method 

The Larmor beat detection (LBD) method of Marohn, et al.[9,41-43] relies on a 

transverse reference field that is constant in magnitude, as with the approach of 

Buratto, et al., but which, in distinction, leaves the nuclear quantization axis along B0 // ẑ  

such that precession remains in the transverse plane and the hyperfine field  ( )sig
n tB  of 

Eq. (1.21) is a function of real time t.  Thus, in order to elicit a Hanle response, the 

 

FIG. 1.8  The Hanle response of PL polarization ρ to 
the total transverse field   

 0 1cos )ref
n tα

⊥ + ω(B B  during 
optical detection.  This encodes the time-domain 
NMR signal. 
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reference field must appear to luminescent electrons as an effective field, but not to 

lattice nuclei.  This is exactly the case with a nuclear hyperfine field.  Aside from the 

species providing  ( )sig
n tB , such a field is available from the other NMR active (i.e., I ≠ 0) 

isotopes present in the III-V alloy studied.  For example, in GaAs, the principle isotopes 

present are 3
2spin- :  69Ga, 71Ga and 75As with χα = 0.604, 0.396 and 1, respectively.  

These nuclei can provide, in any combination, signal  sig
nB  and reference  ref

nB  hyperfine 

fields, with the remaining principle isotope and any dilute species contributing  misc
nB  to 

the total hyperfine field. 

The timeline used with the LBD 

method of real-time detection is shown 

in Fig. 1.9.  During both ONP and 

optical detection, B0 is conveniently 

oriented collinear with the propagation 

axes of optical excitation and detection.  

A π/2 pulse on the signal nucleus 

initiates NMR evolution, which is 

concurrent with optical detection and 

off-resonance spin locking (i.e., rf 

irradiation that is in phase with nuclear precession) of the reference isotope.  The off-

resonance lock places reference nuclei in an effective magnetic field 

 ( )   
         0 1

ˆˆ  ( ) /ref ref ref ref
eff lock nz x= − ω − ω + ω γB � , (1.22) 

 

FIG. 1.9  The timeline for real-time optical 
detection of NMR using Larmor-beat detection. 
Irradiation of signal and reference nuclei is shown 
on two lower lines, while that of miscellaneous 
nuclei is omitted here.  The timeline opens with a 
kill sequence on all nuclei, followed by ONP, an 
arbitrary phase π/2 prep pulse, and finally real-
time optical detection of the NMR signal S(t). Use 
of an off-resonance spin lock on the reference 
nucleus is discussed in the text. 
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where ˆ refx�  is the unit vector along the rotating-frame x-axis of the reference isotope with 

Larmor frequency  

0
refω , and (-ω1 / γ ref ) is the magnitude of the rf irradiation at angular 

frequency ωlock.  Concurrent application of this rf irradiation and optical excitation results 

in a steady-state precessing hyperfine field   //ref ref
n effB B , which has a component in the 

transverse plane that is used as the reference field for LBD. 

Luminescent electrons provided by continuous optical excitation exhibit a Hanle 

response to the vector sum 

 ( )    2/( )  ( )   ( )  t Ttot sig ref misc
n n n nt t e t−= + +B B B B  (1.23) 

of hyperfine fields due to freely precessing signal nuclei, locked reference nuclei and 

static miscellaneous nuclei.  First,  misc
nB  and the component of  ( )ref

n tB  along ẑ  make an 

important contribution to the width of the Hanle curve as components of the field B// in 

Eq. (1.18).  Therefore, the longitudinal components of all hyperfine fields must be 

constant during optical detection and for shot-to-shot repetition of the experiment.  

Secondly, the precessing transverse components,  ( )sig
n tB  and ( ) ( )ref

n t
⊥

B , of the total field 

depolarize luminescence.  The time dependence of these fields and of the projection of 

their vector sum into the plane are plotted in Fig. 1.10(a).  The depolarizing field 

( ) ( )tot
n t

⊥
B  is time dependent at the Larmor beat frequency 

 ( )0 0
sig ref

srω = ω − ω . (1.24) 

The Hanle response to a vector field such as ( ) ( )tot
n t

⊥
B  is given by the surface of 

revolution obtained by turning the 2D Hanle curve about the vertical axis at its peak, 
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yielding the 3D Hanle surface shown in Fig. 1.10(b).  Radiofrequency modulation of 

luminescence polarization ρ(t) at ωsr results from the combined effects of signal and 

reference hyperfine fields, as depicted in the figure by the projection of ( ) ( )tot
n t

⊥
B  onto 

the Hanle surface.  Since  ( )ref
n tB  has 

constant magnitude, the process of LBD 

effectively mixes the NMR signal down 

to the Larmor beat frequency ωsr, where 

ρ(t) is the carrier.  Marohn[42] derived 

this result by including the time 

dependence of signal and reference 

hyperfine fields at their respective 

Larmor frequencies in Eq. (1.17) and 

expanding the resulting expression in a 

Taylor series about  0sig
nB = .  Review of 

that derivation is beyond the scope of 

this thesis. 

One aspect of the real-time LBD method, NMR evolution that is simultaneous 

with optical detection, may seem a backwards step to the state of affairs in ONMR that 

preceded the advances of time sequencing.  However, because LBD involves time-

domain NMR evolution, one may apply optical detection in selected windows as a 

periodic probe of the NMR evolution period, thus diminishing its perturbative effects.  

Such an approach, referred to as stroboscopic detection, is commonly used in conjunction 

 

FIG. 1.10    (a) The vector sum of two precessing 
nuclear hyperfine fields,  ref

nB  and  sig
nB , due to 

distinct isotopes in the semiconductor lattice.  
(b) The projection of this sum on the 3D Hanle 
curve. 
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with NMR multiple-pulse techniques, and may even be employed such that unwanted 

perturbations are averaged to zero. 

LBD may also be executed to yield a pointwise time-domain NMR spectrum in a 

way similar to that presented in Section B.3 in the general context of time sequencing 

(see especially Fig. 1.7).  This approach is characterized by the timeline presented in 

Fig. 1.11 with separate periods for NMR 

evolution and optical detection.  In this 

case, as with the real-time methodology, 

the B0 is along ẑ  during ONP and 

optical detection, but is arbitrary during 

NMR evolution, since the field may be 

cycled adiabatically at the breaks 

indicated in the pointwise LBD timeline.  

This freedom is useful for experiments 

in which one wishes to probe the angular dependence of nuclear spin interactions.  

Optical detection with pointwise LBD differs from the real-time approach in that the 

signal nucleus is subjected to a true (i.e., on-resonance) spin lock, which is simultaneous 

with the off-resonance lock of the reference isotope.  This places the signal species in an 

effective field, 

   
   1
ˆ  ( / )sig sig sig

eff n x= − ω γB � , (1.25) 

along ˆ sigx� , its rotating frame x-axis.  The NMR signal is encoded as the Hanle effect 

depolarization of luminescence by 

 

FIG. 1.11  The timeline for acquisition of a 
pointwise time-domain NMR spectrum in t1 using 
Larmor-beat detection in t2.  During ONP and 
optical detection, B0 is parallel to the optical 
propagation axis, but may be cycled to a different 
orientation or magnitude at the breaks in the 
timeline, as desired for NMR evolution. 
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 ( ) ( )   1/( )   ( )   ( )t Ttot sig ref
n n nt t e tρ−

⊥ ⊥
= +B B B , (1.26) 

where T1ρ is the time constant for relaxation of signal magnetization along the spin-

locking axis, and is on the order of the longitudinal nuclear spin-relaxation time T1.  

Because T1ρ is much greater than the relaxation time constant (T2) for free evolution, spin 

locking can be thought of as a sample and hold technique, which, in conjunction with 

LBD, yields a signal transient at ωsr, which may be detected in a narrow bandwidth and 

mixed to dc.  Integration of each member of the set of dc transients resulting from 

repeated application of the timeline with incremented n yields a pointwise time-domain 

spectrum in st1.  This pointwise acquisition of a 1D free-induction-decay signal in t1 via 

spin-locked transients in t2 is the optimum approach in terms of signal-to-noise,1(b) and is 

the sole optical detection scheme used in experiments presented in this thesis. 

C. High-Resolution Solid-State NMR 

In preceding sections of this chapter, much emphasis is placed on advances in 

ONMR methodology that enable high-resolution time-domain NMR experiments.  The 

main goal in utilizing this capability of ONMR, along with its high sensitivity and spatial 

selectivity, is to measure the variation of electronic properties in the vicinity of local 

structures that control device function in epitaxial III-V samples.  These include point 

defects, single heterojunctions, quantum wells, and quantum dots.  The ideal experiment 

establishes a one-to-one relationship between an NMR observable, e.g., line position, and 

some character of the local electronic environment.  Thus, for spatially varying electronic 

properties that bear upon NMR transition frequencies, spectral resolution translates to 
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spatial resolution, and sets the size scale at which material properties can be dissected.  In 

the noted epitaxial structures, spatial variation is atomically abrupt, and the 

corresponding demand for NMR spectral resolution is at the state of the art in the field. 

In the present section, multiple-pulse techniques for high-resolution solid-state 

NMR are discussed.  Additionally, a novel method for high-resolution NMR 

measurement of perturbations to the sample is presented, in which the perturbations are 

cyclic and applied in synchrony with a multiple-pulse sequence.  It is straightforward to 

implement each of the high-resolution techniques presented here in a time-sequenced 

ONMR experiment, and, in subsequent chapters, multiple-pulse ONMR experiments for 

the study of single epitaxial structures in GaAs materials are presented.  Resolution in 

these experiments is three orders of magnitude better than in any previous ONMR 

experiment, and has enabled us to measure local electronic properties via a spectral 

response that is understood in terms of the site-by-site contributions of lattice nuclei. 

1. Multiple-Pulse Line Narrowing 

 Solid-state NMR spectroscopy has notoriously poor spectral resolution due to the 

distribution of dipolar, quadrupolar and anisotropic chemical shift contributions to the 

internal rotating-frame spin Hamiltonian int
�H .  [See, for example, Fig. 1.12(a).]  This 

difficulty is especially apparent in comparison to liquid-state spectroscopy, where 

molecular motions are fast on the NMR timescale and average to zero the first-order 

effects of these spin interactions, routinely yielding sub-Hz linewidths.  However, solid-

state NMR has the advantage, in spite of its resolution problems, of directly measuring 

                                                                                                                                                 
1(b) See Weitekamp[44] Section III.B.2.f. 
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the influence of such couplings on NMR line positions.  The difficult trick is to distill one 

or more interactions from among the myriad overlapping contributions to an NMR 

spectrum. 

Two approaches have been developed for the purpose of selectively averaging 

spin interactions in solids.  The first incorporates motional averaging, such as magic 

angle spinning (MAS) of the sample,[45-47] where the effects of orientation-dependent spin 

interactions are averaged to zero by 

making them time dependent during NMR 

evolution.  The other approach, pioneered 

by Hahn’s invention of the spin echo,[31] 

relies on a sequence of resonant rf pulses 

and intervening free-evolution windows 

that achieves similar averaging via 

coherently driven motions of nuclear spin 

magnetization.[48]  For ONMR 

experiments, in which optical excitation 

and detection are directed along a fixed 

sample axis, schemes that utilize motional 

averaging are untenable; thus, 

experiments presented in this thesis 

employ the multiple-pulse approach 

exclusively. 

 
FIG. 1.12  (a) 71Ga spin-echo ONMR spectrum 
from an AlGaAs/GaAs heterojunction sample, 
obtained with pointwise time-domain evolution 
and LBD.  Linewidths of 1.5-3 kHz reflect a 
distribution of dipolar couplings and strain-
induced quadrupole splittings.  (b) ONMR 
spectrum, with indicated Lorentzian FWHM, 
obtained from the same sample.  The enhanced 
resolution resulted from application of the 
CLSW-16 multiple-pulse line-narrowing 
sequence discussed in this section. 
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The time evolution of a nuclear spin system under the influence of a multiple-

pulse sequence is analyzed using coherent averaging theory,[32,33,49] which replaces int
�H  

with an effective Hamiltonian describing the net evolution of nuclear spins over integer 

multiples of a cyclic sequence.  For well-designed sequences, the dominant contribution 

to the effective Hamiltonian is the time-average (0)H  of int
�H  over the duration tc of the 

sequence.  Contributions to (0)H  are transformations of rotating-frame operators into the 

so-called “toggling-frame” interaction representation.  In the ith evolution window of a 

pulse sequence, such transformation of an arbitrary rotating-frame operator O�  is given by 

      
   

†
T, T, T,i i iO U O U= � , (1.27) 

where 
 T, iU  and its Hermitian conjugate †

T, iU  are the unitary propagation operators that 

perform the inverse action of the rf pulses preceding the ith window.  Finally, the 

contribution of O�  to the average Hamiltonian is 

 
 

 
 

(0) 1
c T,  O i ii

t O−= τ∑H , (1.28) 

where τi is the duration of the ith window. 

The evolution governed by an average Hamiltonian is straightforward to interpret 

when one considers the cyclic nature of the multiple-pulse sequence, which requires that  

 UT, i (n tc ) = å, (1.29) 

where n is an integer number of cycles and å is the identity matrix with the dimensions of 

the Hilbert space that describes the spin system.  This relation and Eq. (1.27) imply that 

the rotating and toggling frames are coincident at times t = n tc, and thus one can interpret 

evolution of the spin system up to such times using the usual density matrix formalism 
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for analysis of evolution in the rotating frame.  For example, the time-dependence of the 

observable corresponding to the operator Ô  is given by 

      
ˆ ˆ( )  ( )c cO n t Tr O n t = ρ  , (1.30) 

where 

 ( ) ( )            
(0) (0)( )  exp  (0) exp  c c cn t i n t i n tρ = − ρ +H H  (1.31) 

is the time-dependent density operator at time t = n tc.  Thus, to monitor real-time 

evolution under a cyclic sequence, one uses the method of stroboscopic detection, where 

spin magnetization is sampled only at integer multiples of the cycle duration, at which 

time ρ(t) is given by Eq. (1.31).  In addition, stroboscopic detection is naturally combined 

with pointwise detection of NMR evolution by using tc as the increment time for the 

encoding period preceding signal detection. 

In the present work, so-called time-suspension multiple-pulse sequences[50,51] are 

of interest.  These yield (0) 0=H  free of all dipolar, quadrupolar, chemical shift and 

heteronuclear indirect couplings.  In particular, the CLSW-16 sequence of π/2 rf 

pulses,[50] shown in Fig. 1.13(a), is our high-resolution workhorse, regularly reducing the 

~ 3.5 kHz dipolar linewidth of nuclei in GaAs to < 10 Hz.  Comparison of the 71Ga 

ONMR spectra in Fig. 1.12 illustrates this enhancement in striking fashion.  Both were 

collected in a pointwise manner at ~ 2 K from identical samples.  The spectrum in (a) was 

obtained using a spin-echo sequence, which refocuses heteronuclear dipolar couplings, 

but leaves homonuclear dipolar and quadrupolar interactions as the primary factors 

determining the spectral distribution over more than 10 kHz.  The spectrum in (b) was 
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obtained using the modified form of CLSW-16 shown in Fig. 1.13(b), resulting in its 

4.1 Hz FWHM Lorentzian line shape, which is at the state of the art in solid-state NMR. 

 

FIG. 1.13  (a) The CLSW-16 multiple-pulse line-narrowing sequence of duration tc.  Each solid bar 
indicates a π/2 rf pulse of duration tp and labeled according to its phase in the rotating frame of the 
signal nucleus.  Pulses are centered so that, in the δ-pulse approximation, intervening free-evolution 
windows alternate in duration τ and 2 τ.  (b) A modification of the sequence, where the duration of 
selected pulses is symmetrically reduced or increased to ( tp ± 2 toff ), as indicated.  This results in a 
homogeneous contribution, (0)

off off zI= ωH , to the average Hamiltonian, which shifts NMR evolution 
in t1 from zero frequency to ωoff in the rotating frame, and achieves second averaging to truncate 
residual error terms. 

The purpose of the noted modification of CLSW-16 is twofold.  First, the 

sequence in Fig. 1.13(b) homogeneously shifts the NMR signal from dc in the indirect 

time dimension of a pointwise-detected experiment.  This reduces its susceptibility to 

shot-to-shot variation (i.e., t1 noise) of the detector and/or spectrometer responsivity.  The 

second advantage is that this frequency shift truncates residual errors due to contributions 

to the effective Hamiltonian of higher order than (0)H .  Such error terms can increase 

linewidth, and, when of sufficient magnitude, add unwanted structure to the NMR 

spectrum.  This effect is shown in Fig. 1.14, where comparison of spectra collected using 

each form of CLSW-16 clearly demonstrates the advantage of the modified approach.  
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The removal of error terms by 

adding a homogeneous offset term 

(0)
offH  to (0)H  is known as “second 

averaging,”[52] and is analogous to 

the truncation of off-diagonal terms 

in int
�H  by the Zeeman interaction. 

The modification of 

CLSW-16 shown in Fig. 1.13(b) is 

based on a similar variation that was 

developed for use in solid-state 

magnetic resonance imaging,[50,54] 

and is also conceptually equivalent 

to earlier approaches to second 

averaging.[52] An explicit calculation of the rf-induced offset provided by the redesigned 

sequence follows.   

In the modified sequence, the duration, ( tp ± 2 toff ), of x and x  rf pulses is either 

increased or decreased relative to the π/2 pulse duration tp.  Each added or subtracted rf 

segment j of duration toff is described by the rotating-frame Hamiltonian, 

      
 , 1rf j j xI= ζ ω�H , (1.32) 

describing rf irradiation along the x or x  axes.  The constant ζ j is equal to +1 for added x 

or subtracted x  irradiation, and to -1 for subtracted x or added x  irradiation.  Each 

toggling-frame contribution, 

 

FIG. 1.14   71Ga NMR spectra (points) collected using 
CLSW-16 with pointwise time-domain evolution, and 
corresponding fits (lines).  The modified version of 
CLSW-16 described in the text and Fig. 1.13(b) 
yielded the single-line (~ 7 Hz FWHM) spectrum, 
while the unmodified version yielded a 19 Hz doublet 
splitting due to residual error terms in the effective 
Hamiltonian.  The apparent frequency offset in the 
doublet spectrum was provided by time-proportional 
phase incrementation[44,53] (TPPI) of the π/2 
preparation pulse.  Unlike the rf-induced offset, the 
shift provided by TPPI is not due to true spin 
evolution and does not result in second averaging. 
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 , †
T T, , T,    rf j

i rf j iU U= �H H , (1.33) 

to (0)
offH  is scaled by the duty factor ( toff / τi ) for its duration in the evolution window i on 

the side of the pulse it modifies.  Thus, using Eq. (1.28), we obtain 

  
    

(0) †
T, , T,  ( / )   off off c i rf j ii

t t U U= ∑ ∑ �
j

H  H  (1.34) 

Appendix I provides the unitary propagators UT, i corresponding to CLSW-16, as 

well as the toggling-frame transformations of several spin operators relevant to the 

nuclear spin system in GaAs.  Inserting the toggling-frame transformations of Ix that 

correspond to windows with pulse modifications into Eq. (1.32), and inserting that result 

into Eqs. (1.33) and (1.34) yields 

  
(0)

1 (16 / )  off off c zt t I= ωH  (1.35) 

for the modification of CLSW-16 shown in Fig. 1.13(b).  All subsequent multiple-pulse 

line-narrowing experiments presented in this thesis utilize the modified form of 

CLSW-16 shown in Fig. 1.13(b), and hence incorporate the rf-induced offset represented 

by Eq. (1.35).  

2. High-Resolution Observables:  POWER NMR 

The suspended-time condition discussed above, where (0) 0=H , or more 

practically, (0)
offH , is a starting point for a novel technique that selectively restores the 

bearing of weak interactions on NMR evolution.  The method, which we refer to as 

POWER (perturbations observed with enhanced resolution) NMR,[24-26] measures the 

response of a spin Hamiltonian to a change in the state of a sample.  This is a common 

strategy for determining underlying structure and dynamics by NMR, although the 
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relatively small induced change in the spectrum is frequently obscured by other 

interactions, such as inhomogeneity of B0 and the spin couplings discussed in the 

previous section.   

If, however, a perturbation of the sample can be applied cyclically, then it is 

possible to obtain information on the difference between the perturbed and unperturbed 

spin Hamiltonians free of the line broadening associated with the invariant terms.  

POWER NMR accomplishes this by synchronizing the cyclic perturbation with a time-

suspension multiple-pulse sequence, in such a way that a perturbative contribution (0)
pH  

survives the averaging process, yielding 

   
(0) (0) (0)  off p= +H H H . (1.36) 

Either secular (i.e., diagonal) or nonsecular terms induced by the cyclic perturbation can 

be incorporated into a secular high-resolution effective Hamiltonian.  Evolution governed 

by this Hamiltonian results in a spectrum about the offset frequency with structure 

dominated by the (possibly varied) response of nuclei to the perturbation.  The linewidth 

of individual contributions to the spectrum is roughly determined by the quality of the 

line narrowing, which is measured in a complimentary experiment that does not include 

the perturbation,1(c) and results in a spectrum like those shown in Figs. 1.12(b) and 1.14. 

                                                 
1(c) In some cases, the perturbation-free spectrum is only an approximate reference for the line width 
underlying the corresponding POWER NMR spectrum.  This is due to the possible introduction of 
homonuclear J couplings along with the intended perturbation interaction.  If that perturbation results in an 
inequivalence of neighboring spins, J structure, which derives from a rotationally invariant Hamiltonian 
that is immune to the action of the multiple-pulse sequence, arises in the spectrum.  Since the magnitude of 
the J interaction is likely smaller than that introduced by the intentional perturbation, the corresponding 
structure may be treated as an additional contribution to the line width that is not apparent in the 
perturbation-free reference.  This issue is considered in more detail in Chapter 5, wherein a procedure to 
account for its effects in simulation of POWER NMR spectra is presented. 
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Pulse-sequence designs for POWER NMR are conceptually similar to those used 

in solid-state NMR imaging,[50,51,54] where the perturbation is a magnetic field gradient.  

Specific examples and corresponding experimental results appear in Chapters 4 and 5 of 

this thesis.  To highlight the significant capabilities of these experiments, some results are 

previewed in the following. 

The prototypical POWER NMR experiment synchronizes optical excitation with 

the CLSW-16 sequence.[24,26]  Using this scheme, we have characterized the distribution 

of optically induced Knight shifts about shallow point defects where electrons or excitons 

localize,[26] as presented in Chapter 4.  The resulting spectrum is analyzed in terms of 

single-nucleus spin physics, summed over thousands of sites, and incorporating (1) ONP, 

(2) the variation in the probability density of the optical excitation with distance from the 

point defect, and (3) hyperfine relaxation.  This treatment suffices for fitting results at 

short ONP times, though the experiment also provides a basis for including spin-diffusion 

effects at longer ONP times.  The 2D analysis of such an experiment has uncovered the 

effects of spin diffusion on line shape and on the hyperfine relaxation.  An analogous 

experiment with optically induced electric fields is also presented in Chapter 4, and 

shows greater sensitivity to the fate of the optically induced hole via a linear Stark effect 

of the nuclear quadrupole Hamiltonian, promising a more complete picture of the defect 

sites.  Example Knight shift and electric-field spectra are shown in Fig. 1.15(a) and (b), 

respectively. 

Finally, a novel technique within the general class of POWER NMR enables 

measurement of a third electronic property:  the polarization response of n-type carriers 

to an rf electric field.  This work is presented in Chapter 5, where along with a detailed 
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presentation of the methodology and underlying physics, simulation of the isotopically 

diluted 69Ga spectrum of an n-type GaAs QW indicates the possibility for atomic-layer-

resolution of the polarization response.  In the proposed experiment, nonsecular terms in 

the nuclear quadrupole Hamiltonian are converted into an effective secular observable:  

the first-order splittings shown in Fig. 1.15(c).  Both the transformation of a nonsecular 

perturbation into a high-resolution secular observable and the proposed localized 

measurement of dielectric response are novel aspects of this work. 

 

FIG. 1.15   Example POWER NMR spectra 
and simulations to be discussed in detail in 
coming chapters. (a) 71Ga Knight shift (∆νKS) 
and (b) Stark-induced quadrupole splitting 
(∆νQ) spectra obtained by synchronizing cw 
optical pulses with CLSW-16 during NMR 
evolution.  The direction of the Knight shift 
relative to the light-off spectrum depends on 
the electron spin orientation relative to B0 and 
placement of optical pulses.  In (b) the 
observed distribution of splittings is compared 
with adjustable-parameter-free simulations 
corresponding to the indicated competing 
models for the electronic state. (c) Simulated 
69Ga NMR spectrum of a 10 nm quantum well, 
exhibiting atomic-layer-resolved quadrupole 
satellites due to the Stark response of quantum-
confined electrons to an rf electrical 
perturbation synchronized with CLSW-16. 
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II. Instrumentation and Procedures for Optical NMR 

In this chapter, I detail the apparatus required for ONMR experiments with 

Larmor beat detection (LBD), and discuss experimental procedures developed for their 

most effective execution.  The instrumentation includes that needed for any modern 

NMR experiment, such as static and rf magnetic field sources and a spectrometer for 

amplification and detection of an rf signal in a narrow bandwidth.  In addition to these 

components, our ONMR experiments require a cryogenic system to provide a sample 

temperature of ~ 2 K, i.e., below the λ-point of l-He, and optical apparatus for both 

excitation at the GaAs bandgap and detection of the rf-modulation of photoluminescence 

polarization.  Furthermore, POWER NMR experiments, which provide the highest 

resolution for probing sample electronic properties, require synchronizing, to several 

nanoseconds, the timelines for TTL (transistor-transistor logic) controlled optical 

excitation and digitally synthesized rf irradiation of the sample.  Automated control of the 

magnetic field orientation and strength, and of laser power and/or polarization is also 

important, but requires less precise timing. 

Much of the instrumentation presented in this chapter was designed, and often 

home-built, before my arrival in the Weitekamp group at Caltech.  For this I owe special 

credit and gratitude to David Shykind, Steve Buratto, Jack Hwang, John Marohn, Paul 

Carson and Michael Miller.  I must note, however, that any errors in the presentation here 

are my own.  Prior descriptions of the ONMR apparatus are also informative;[39,41-43] 

however, additions and modifications since the most recent of those writings, and the 

intended stand-alone quality of this thesis, require a new presentation. 
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A. The Cryogenic System, Sample Probe and Field Source 

As noted in the first chapter, optical nuclear polarization (ONP) requires 

cryogenic sample temperatures in order to ensure that the dominant factor in nuclear spin 

relaxation is the fluctuation of contact hyperfine interactions between lattice nuclei and 

photoexcited electrons.  The reduced number of thermal phonons also emphasizes the 

role of radiative recombination in the relaxation of photoexcited electronic states, thus 

enabling optical detection of NMR.  A l-He immersion cryostat is an appropriate vessel 

for ONMR experiments.  Relative to a vapor-cooled system, immersion may provide 

greater tolerance to high rf power input to excitation coils, as required for multiple-pulse 

line-narrowing experiments, and reduce rf heating of the sample.  However, boiling of the 

cryogenic fluid can lead to optical scattering that particularly hampers the efficiency of 

luminescence detection.  This problem is avoided by operation below the λ-point of l-He, 

which is reached by reducing the vapor pressure over the immersion bath.[55]  The high 

thermal conductivity of the supercritical helium prevents the spontaneous bubbling 

present in the 4.2 K liquid.  This effect, rather than any advantage provided by further 

reduction of the sample temperature, motivates operation below the λ-point. 

1. Cryogenic Systems 

The cryostat shown in Fig. 2.1 was used for experiments presented in this thesis. 

Internal glass walls separate vacuum and l-N2 insulation jackets from the 10 L capacity 

main chamber, where the sample is immersed in a l-He bath.  An oil diffusion pump 

(Consolidated Electrodynamics, model MCF-60, 2" diameter) with mechanical backing 

brings the vacuum jacket to a nominal pressure of 10-5 torr via stopcock access (not 
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shown).  The 3.0" diameter opening in a copper flange at top accommodates the sample 

probe and magnet assembly (see Fig. 2.2), while a 2.0" diameter sidearm port provides 

access for a mechanical pump (Duo Seal, model 1397) via an adjoined 30' length of 1.5" 

diameter copper pipe.  This pump reduces vapor pressure over the l-He bath, where a 

pump rate of ~ 180 L/min succeeds in adiabatically cooling to the λ-point in 40 min with 

~ 40 % loss.  The l-He hold time at the λ-point ranges from 5 to 7.5 hours, depending 

largely on the rf power demands and corresponding heat input of the particular 

experiment. 

FIG. 2.1  (a) The l-He optical cryostat used for ONMR and custom made by Pope Scientific from 
0.23 cm thick borosilicate glass.  (b) A cross-sectional schematic of the cryostat.   

Optical access to the sample is via 1.25" diameter external quartz windows, 

followed by 1.5" of vacuum space, a second quartz window of 0.75" diameter and, 

finally, ~ 0.5" of l-He to the sample.  The external windows are attached to the cryostat 
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using wax-like Dekhotinsky cement (Pope Scientific), while occasional resealing is 

performed with uniform gentle heating of the seal under slight hand pressure.  Three 

directions of optical access are available, though, in practice, we optically excite and 

detect through the same window.  

2. Sample Probe, Magnet Assembly and rf Excitation Source 

Fig. 2.2 is a schematic drawing of the probe that accompanies the cryostat.  It 

consists of a 7.2 cm diameter, 3.4 cm thick brass cap, which mates with the vertical 

copper flange on the cryostat via an O-ring sealed compression fitting.  An O-ring sealed 

fitting followed by an 

aluminum pipe accommodates 

a vacuum-insulated l-He 

transfer line for delivery to the 

main chamber during filling.  

Temperature is monitored with 

a carbon glass resistor 

(Lakeshore Cryogenics).  

Excluding additional fittings 

on the head for electrical 

access, the remainder of the 

probe is constructed from 

G-10, including circular 

baffles which block heat 

 

FIG. 2.2  The cryogenic probe for ONMR experiments.  The 
inset depicts the magnet assembly, including an rf coil insert.  
Electrical leads to each coil contributing to the longitudinal-
field are at a and b, while the pair is joined at g.  An rf coil 
insert, with leads c and d, fits snugly inside the magnet 
assembly as indicated, and is shown with more detail in 
Fig. 2.3. Temperature is monitored with a carbon glass 
resistor (Lakeshore Cryogenics) contacted at e and f.  
Pressure release (5 psi) at the probe head is not shown. 
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transfer between the 77 K cryostat neck and the l-He belly.  G-10 parts are cemented 

together using a thermal-expansion-matched epoxy that consists of equal parts resin 

(CIBA 6010), hardener (CIBA 825) and fine quartz chop.  Curing in air for 8 hours was 

sufficient.   

Superconducting magnets are a convenient, low-power-consumption source of 

magnetic field for cryogenic experiments.  Additionally, the requirements for field 

homogeneity in an ONMR experiment are low relative to traditional NMR, since the 

sample volume is determined by the absorption depth and spot size, typically ~350 µm in 

our experiments, of incident laser irradiation.  Our probe incorporates a home-wound 

superconducting Helmholtz pair as the source of the so-called longitudinal field B0, 

which is roughly parallel to the propagation axes of optical pumping and detection.  The 

magnet is wound with 54-filament Niobium-Titanium alloy wire on a G-10 form, and has 

an inductance of 1.67 mH at 2 K, and field strength of about 20.5 mT/A.  Typical 

operation is at ~ 250 mT, as calibrated by NMR.  An rf coil is wound on G-10 plug that is 

inserted into a side access in the magnet assembly.  The coil is a joined pair, in which 

each side consists of 36 AWG insulated wire closed packed in 3 levels of 3 windings 

each.  A notch cut into the plug accommodates a sample fixed to a G-10 rod running 

down the center of the probe.  A detailed picture of the plug/coil design, with 

corresponding electrical characteristics, is shown in Fig. 2.3(a). 

An important aspect of the rf excitation circuit is that the coil is used stand-alone 

(i.e., untuned and unmatched) with an 500 watt 0.3-35 MHz rf power amplifier (ENI, 

model 500A).  At the low static field values that we use, the resulting frequency response 

[see Fig. 2.3(b)] enables multinuclear excitation of all isotopes present in GaAs, and can 
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easily be made to cover the range of nuclei in other III-V's.  Operation at an unnecessarily 

higher field requires a 

complicated multiply tuned 

excitation circuit for 

optically detected NMR with 

the inherently multinuclear 

LBD, while the most 

informative multiple-pulse 

experiments have the same 

requirement regardless of 

detection method. 

3. Strain-Free Sample Mounting 

 Frank Grunthaner of the NASA Jet Propulsion Laboratory provided MBE-grown 

GaAs-based samples in 2" diameter disks.  Pieces approximately 3 mm × 3 mm are taken 

from this source by first scoring the GaAs substrate with a diamond-tipped pen, and then 

gently pressing on the substrate side with a straight edge under the score mark.  Record is 

kept of the in-plane crystal axes, since certain NMR observables, most notably the 

quadrupole interaction, depend on their orientation with respect to the static magnetic 

field.  The new sample piece is fixed to the G-10 rod at its flattened end with a thin layer 

of silicone high-vacuum grease (Dow Corning).  After inserting the rod into the sample 

probe, and that assembly into the cryostat at room temperature, the main chamber is 

pumped and purged in a few cycles and left filled with g-He.  The l-N2 jacket is then 

 

FIG. 2.3  (a) Schematic of the rf coil insert.  The notch (1) for 
sample-rod access is 0.125" wide, while the inner edges (2) of 
the 0.020" deep by 0.021" wide grooves for the pair of coil 
windings are separated (3) by 0.175".  A 0.185" diameter hole 
is drilled on the long axis providing a view of the sample. 
Room temperature and 2 K electrical characteristics are noted.  
(b) Coil response to direct input from an rf amplifier.  A Rabi 
frequency of ~ 90 kHz at 3.2 MHz resonance frequency has 
been obtained for 71Ga with this coil. 
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cooled for 20 minutes with the boiloff of an l-N2 tank passing through a tygon tube, and 

subsequently filled with l-N2 over another 20 minutes.  Cooling of the main cryostat 

chamber occurs primarily at the neck of the cryostat, and the sample and silicone 

mounting grease annealed, reaching 

77 K in no less than 2 hours.  Reduction 

of the temperature to 4.2 K during the 

l-He fill occurs over ~ 40 minutes, while 

another 30 minutes achieves the λ-point.  

The strain-free nature of this 

mounting/annealing procedure is 

evidenced by NMR experiments 

performed on samples with and without 

strain, which induces quadrupole 

splitting in GaAs and other III-V's by 

reducing the cubic symmetry of the 

lattice.[9]  Figure 2.4 provides a 

comparison of ONMR spectra obtained from samples at 2 K with and without strain.  The 

strained condition was obtained by lowering an identically mounted sample at room 

temperature into the in-place probe at 4.2 K over a 20-minute period. 

B. Execution of the Experiment Timeline 

Primary control of time-sequenced ONMR experiments with LBD rests with a 

DOS-based personal computer (PC) with a 486-generation processor.  A C-language 

 

FIG. 2.4  Comparison of 71Ga ONMR spectra of 
an AlGaAs/GaAs heterojunction sample with and 
without strain due to the annealing rate of the 
sample and mounting grease. Collected at 2 K 
using LBD and time-domain evolution in a static 
magnetic field along the [001] crystal axis. 
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program run on the PC defines three parallel instruction sets that determine the sequence 

of events during an experiment.  As shown schematically in Fig. 2.5, one of these 

timelines is passed to an external digital word generator (Interface Technologies, model 

RS-670) via a general-purpose interface bus (National Instruments, model AT-GPIB) that 

is plugged in to an ISA 

expansion slot on the PC.  

The digital word 

generator provides up to 

16 channels of TTL 

looped instructions with 

timing resolution of 

25 ns.  A second set of 

instructions is loaded to a 

two-channel, 12-bit 

arbitrary waveform 

generator (Signatec, model AWG502) ISA plug-in board.  The AWG502 sets the timing 

for output of digitally synthesized rf waveforms to both the excitation coil and the 

spectrometer (see Section D).  After instruction sets are loaded to the TTL word 

generator and the AWG502, each runs independent of the PC; however, a third 

coincident set of timing instructions is executed by the computer program itself, via GPIB 

communication to other peripheral instruments. 

Execution of GPIB-controlled events, which are listed in Table 2.1, depends on a 

software poll to PC's system timer.  This is achieved with an ftime() function call in 

 

FIG. 2.5  Schematic of the automated control elements in the 
Larmor-beat-detected ONMR experiment.  Four instruments 
determine event timing:  a DOS-based personal computer (PC) with 
general-purpose interface bus (GPIB) and arbitrary rf waveform 
generator (AWG502) plug-in boards, and an external digital word 
generator (RS-670). 
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C/C++ that is updated at a rate of 18.2 Hz, resulting in a worst-case jitter of 60 ms in the 

timing of these events.  Thus, when a GPIB-controlled event is to be roughly 

synchronized with the TTL and rf timelines, the latter two are set to include sufficient 

delay periods, during which the GPIB event may occur at any time without sensitivity to 

the noted jitter. 

Table 2.1  Devices and corresponding functionality controlled 
via the general purpose interface bus (GPIB). 

Device GPIB-controlled functions 

digital word 
generator 

TTL program loading and sequence 
initiation 

diode laser 
driver 

various, including on/off and high/low 
TTL-switched power levels 

lock-in amplifier voltage output(a) 

(a) Two-channel lock-in output controls the direction and 
magnitude of the static magnetic field, as discussed in 
Section C of this chapter. Traditional lock-in function is 
not utilized for ONMR. 

The timing of TTL-controlled events, such as the on/off state of optical excitation, 

and of rf events, such as a sequence of π/2 pulses, must, however, be synchronized to 

within several nanoseconds for certain POWER NMR experiments presented in this 

thesis.  For this reason, the AWG502 is configured to accept an external TTL trigger and 

then run on the 40 MHz clock of the TTL word generator.  Empirically, the AWG502 

timeline begins 700 ns after the rising edge of the TTL trigger; thus it is convenient that 

the trigger pulse be of the same duration, and followed by a period in which the two 

timelines are synchronized. Success in this endeavor is demonstrated in Fig. 2.6, which 

contains plots of the digitized (Tektronix, model DSA602A) channel 1 output of the 

AWG502 and of a photodiode monitor of TTL-controlled laser output (see Section C.1).  



Chapter 2  –  Instrumentation and Procedures for Optical NMR 42 

  
 

Optical excitation (7.6 µs pulses of cw irradiation) is arranged in windows of the 

CLSW-16 multiple-pulse line-narrowing sequence[50] of ~ 3.45 µs π/2 rf pulses.  The 

optical pulses provide a Knight shift of the nuclear spins, and their placement during the 

pulse sequence determines the average Hamiltonian that governs nuclear spin 

evolution.[26] 

 

FIG. 2.6  Digitization of events on the 
timelines controlled by the AWG502 and the 
TTL word generator.  In the plot at top, TTL-
switched optical excitation of the sample in 
selected windows of the CLSW-16 multiple-
pulse sequence demonstrates the 
synchronization of events.  The digitized 
segment shown was preceded by 2.0 s of 
parallel AWG502 and RS-670 (TTL) 
operation, thus ensuring sensitivity to any 
accrued timing offset.  The expanded view 
highlights the accuracy of synchronization, 
presenting the arrival of an optical pulse 
between two (π/2)y rf pulses. 

C. Optical Systems 

1. The Excitation Arm 

The arrangement of the optical excitation pathway is depicted in Fig. 2.7(a).  The 

collimated, linearly polarized output (32 mW maximum) of an 802.1 nm diode laser 
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(Melles Griot, model 06DLL707) passes through a focusing lens (focal length, 

f = 40 cm), followed by a λ/4 plate, which converts the light to right circular polarization 

(CP).  After passage through the optical access windows of the cryostat, the excitation 

beam, which propagates ~ 15° off-axis of B0 and the surface normal, reaches the sample 

at a distance of ~ 45 cm from the focusing lens, yielding a measured spot diameter of 

~350 ± 50 µm. 

 

FIG. 2.7  Pathways of optical excitation (a), and detection (b).  In the detection arm, BP indicates 
an optical bandpass filter, LP a linear polarizer and APD a fiber coupled avalanche photodiode.  
The second element used for polarization analysis used is either a photoelastic modulator (PEM), 
for use during the tune-up procedure, or a λ/4 plate for Larmor beat detection of NMR. 

Automated control of the excitation beam is required for several experiments in 

which the nature of the excitation differs between the NMR evolution period and the 

ONP and/or detection periods.  A diode laser driver (Melles Griot, model 06DLD103) 

enables TTL control of laser high and low power levels, including on/off, with the 25 ns 

RS-670-controlled response time discussed above in Section B.  Additionally, a TTL-
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controlled stepper motor (Superior Electronics, model MO 61-FD-6244) and driver 

(Forthright Electronics, model STPNA2) enable automated control of the λ/4 plate.  For 

example, rotation by 90° can be used to switch between left and right CP excitation, and 

requires 50 steps and 300 ms for execution.  The laser power and other miscellaneous 

controls are accessible via the GPIB interface to the driver. 

2. The Detection Arm 

Photoluminescence (PL) of the sample is detected along the axis that is mutually 

parallel with B0 and the surface normal of the sample.  Two arrangements of the detection 

optics are used:  one for pre-NMR tuning of the optics for collection of the PL signal, and 

a modification of that setup for use during LBD. 

i. The Tune-up Configuration 

The apparatus for tune-up of optical detection is shown in Fig. 2.7(b).  

Luminescence passes back out of the cryostat through the two consecutive optical 

windows and then to a lens (f = 10 cm), which nominally collimates sample PL and is 

held ~ 5 cm from the outer window.2(a)  The PL light then passes in sequence through a 

photoelastic modulator (PEM, Hinds International, model 0101), driven at 50 kHz 

between the 830 nm ±λ/4 condition, and a linear polarizer.  A focusing lens (f = 10 cm) 

held ~ 52 cm from the collimation lens is followed by an 832 ± 5 nm bandpass filter, and 

a 5 mm spherical ball lens, which is mounted ~ 8.5 cm from the focusing lens.  The ball 

lens provides coupling of the polarization-analyzed light into the PC-polished free end of 

a fiber-coupled (200 µm core, 0.24 NA, multimode) avalanche photodiode (EG&G 
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Optoelectronics, model 

C30657-010QC-06), which 

is built into the circuit 

depicted in Fig. 2.8.  The 

optical bandpass filter 

limits detection to the 

emission of a particular 

feature in the PL spectrum 

of an Al0.36Ga0.64As/GaAs 

single heterojunction 

sample; thus, the ONMR 

spectrum selectively reports 

on sites in the vicinity of corresponding electronic states, while the filter also reduces the 

contribution to photon shot noise from other luminescent features. 

Polarization analysis is provided in the above scheme as follows.  During the first 

half cycle of PEM modulation, right and left CP light are transformed into orthogonal 

linearly polarized waves, e.g., x and y, respectively.  The subsequent linear polarizer 

passes one of these two components.  In the second half cycle of the PEM, the conversion 

of right and left CP light is reversed to y and x.  Thus, the PEM/linear polarizer 

combination alternately transmits right and left CP components of PL at the 50 kHz 

oscillation of the PEM. 

                                                                                                                                                 
2(a) In order to allow clear passage of the excitation beam, an approximately 3×3 mm notch is cut into the 
outer edge of this lens. 

 

FIG. 2.8  Schematic of the avalanche photodiode (APD) and 
peripheral circuitry.  The prepackaged unit includes the APD 
hardwired to a transimpedance preamplifier, while peripheral 
connections include capacitors C1 = 10 µF (polarized) and 
C2 = 0.1 µF, a resistor, Rb = 10 kΩ, to bias voltage Vb = -217 V, 
and unused pinouts (NC).  The output impedance is Zout = 500 Ω.  
Quoted specifications for the APD include a responsivity of 
21.4 MV/W, bandwidth of 8.4 MHz, and dark noise equivalent 
power of 0.011 pW / Hz1/2

. 



Chapter 2  –  Instrumentation and Procedures for Optical NMR 46 

  
 

Properly phased lock-in detection (Stanford Research Systems, model SR510) of 

the component of avalanche photodiode output at the PEM frequency yields the 

difference between right and left handed PL signals.  Simultaneous chopping of the laser 

excitation at ~ 1.5 kHz provides the "total" PL signal for lock-in detection at the same 

frequency.  During initial tuning of the optics to locate the signal, for example, by 

adjustment of relative lens positions, the total PL is monitored, although fine tuning 

proceeds by maximization of the difference signal.  We rely on the Hanle effect,[37] 

described in Section B.2 of Chapter 1, to validate that the observed signal arises from 

sample PL.  Application of a sufficiently large (~ 50 mT) transverse magnetic field, 

supplied by electromagnets described in Section E, reduces PL polarization, and hence 

the difference signal, to zero.  Finally, the optimal orientation of the longitudinal field is 

antiparallel to the orientation of optically pumped electron spins.  This yields a difference 

signal that is larger than in the parallel case (the so-called banana effect),[41,56-58] and, 

thus, we choose the direction of current through longitudinal magnets on this basis. 

ii. The Configuration for Larmor Beat Detection 

The NMR signal is observed as an rf modulation of one CP component of PL at 

the avalanche photodiode.  The resulting rf component of the electrical signal is 

transmitted to a heterodyne spectrometer, as described in Section D.  The arrangement of 

detection optics differs from that used during tune-up in two ways:  (1) the PEM is 

removed from the path and replaced with a time-independent λ/4 plate with fast and slow 

axes oriented relative to the linear polarization axis of the following element so as to 

transmit left CP light only, and, (2) the chopper is removed from the excitation pathway.  

Observation of Larmor beats in the difference signal may be executed with a detection 
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path that includes the PEM.  However, such an arrangement provides no special 

advantage over single-component observation, while adding complexity to the signal 

analysis, as described elsewhere.[42] 

iii. Collection of the PL Spectrum 

Measurement of the sample PL spectrum and its polarization characteristics 

compliments study of the luminescent electronic states by ONMR.  Spectral analysis of 

the PL is accomplished by replacing the avalanche photodiode with a fiber-coupled 

(200 µm core, multimode) optical spectrometer (Ocean Optics, model PC2000) at the 

fiber optic connection in the assembly shown in Fig. 2.7(b).  The total PL spectrum, or its 

right or left CP components, are collected by excluding or including λ/4 plate in the 

detection pathway. 

D. The rf Heterodyne Spectrometer 

Detection of the LBD signal in a 20 Hz bandwidth is accomplished using the 

scheme shown in Fig. 2.9.  The chip carrying the avalanche photodiode (APD) has an 

internal transimpedance amplifier, which converts the photocurrent to a voltage with 

primary components at the beat frequency νLBD and at dc, due to incomplete modulation 

of PL by the nuclear signal magnetization.  As shown in the first segment of Fig. 2.9, the 

APD output passes through a combination 10:1 impedance transformer and 80 kHz high 

pass filter (TTE, custom order, serial H579-80K-6220) to match the 50 Ω impedance of 

the spectrometer and remove the dc contribution to the signal.  A 1.5 MHz low pass filter 

(home built) is used to prevent high-frequency spurious output of the APD from 

saturating the preamp. 
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FIG. 2.9  Schematic of the ONMR spectrometer.  Some amplification steps have been omitted for the 
sake of clarity.  The net gain is 73 dB or 45 dB depending on whether the preamp is set at high or low. 

Two low-noise rf amplifiers (Mini-Circuits, ZFL-500LN) are used in series for 

initial conditioning of the signal in the second segment of Fig. 2.9; however, a low gain 

setting is available, in which the second amplifier is bypassed to avoid its saturation in 

the case where the filtered APD output is sufficiently large.  The signal is then mixed 

(Mini-Circuits, model ZAD-1H) with a reference at  

 νref   =  (30 MHz - νLBD), (2.1) 
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and filtered to yield an intermediate signal carrier at 30 MHz.  This reference is a filtered 

sideband from the mixture of the second-channel AWG output and the conditioned 

30 MHz output of a precision source (Programmed Test Sources, model PTS500).  The 

appearance of νLBD in Eq. (2.1) is exact, since both the signal frequency (i.e., the APD 

output), which is fixed by rf spin locking[44,59] of the LBD signal and reference nuclei, 

and this reference output are determined by rf generated from the same coherent source: 

the AWG. 

Phase sensitive detection occurs in the third segment shown in Fig. 2.9, in which 

the 30 MHz signal carrier is split into two components 90° out of phase.  Each of these is 

mixed with the 30 MHz conditioned PTS output.  Since this places the signal at dc, 

adjustment of the phase of the latter is used to zero the signal in one channel while 

maximize it in the other, thus ensuring observation of the entire signal.  Finally, both 

channels are fed through a 10 Hz low pass filter (Stanford Research Systems, model 

SR640) and acquired at the 20 Hz digitization rate of a 16-bit A/D converter (Computer 

Boards, model CIO-DAS 1402), which is triggered by a 1 µs TTL pulse from the 

RS-670.  A C-language program has been written to provide graphical output of the 

sequence of digitized signal transients collected during an ONMR experiment. 

E. Magnetic-Field Cycling 

During the periods of ONP and Larmor beat optical detection of NMR, the static 

magnetic field must be parallel, or nearly so, with the propagation axes for optical 

pumping and detection.  However, the time-sequenced approach[8,9] to ONMR allows for 

a different field orientation during the NMR evolution period, enabling study of the 
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angular dependence of nuclear spin interactions.  Of particular relevance to this thesis are 

electric-field-induced quadrupole interactions, which arise due to a reduction in the 

symmetry of the crystal lattice brought on by the perturbation of a dc[60-62] or rf[25,63,64] 

electric field.  The dc-field-induced effect, as exploited in this thesis to characterize the 

radial field distribution of single photocarriers, vanishes when the static magnetic field is 

along the [001] growth axis of GaAs, as is the case for ONP and LBD.  Thus, its 

investigation requires adiabatic cycling of the magnetic field after ONP, yielding a new 

orientation for NMR evolution, which is followed by a second cycling event to restore 

the original orientation for optical detection. 

For this purpose, our apparatus includes an electromagnet that is external to the 

cryostat and provides a transverse magnetic field that is orthogonal to both the rf 

excitation coils and the longitudinal field discussed above in Section A.2.  The transverse 

magnet is an approximate Helmholtz pair, where each coil consists of 31 × 31 windings 

of square (1.7 mm on a side) copper wire supported on a copper yoke with 31 cm and 

19 cm outer and inner diameters, respectively, and a width of 5.7 cm.  The two yokes are 

held at a separation of 12 cm in an aluminum stand, which additionally enables rotation 

of the entire assembly by ±12° for further investigation of the angular dependence of spin 

interactions.  The room-temperature electrical characteristics of this water-cooled pair are 

R = 11.0 Ω, L = 99.1 mH, and C = 197 nF, while the field is 5.65 mT/A at the sample.  

Typical operation is at 57.8 mT, for a 71Ga resonance frequency of 750 kHz. 

Cycling the field between the longitudinal and transverse sources is accomplished 

via GPIB control of the two-channel analog voltage output of a lock-in amplifier 

(Stanford Research Systems, model SR510).  The first channel serves as the modulation 
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input to a home-built current limiter, which gates output of an external power supply 

(Hewlett Packard, model 6264B) to the longitudinal field coils discussed in Section A.2.  

The other voltage output channel is fed to the control input of a second power supply 

(Hewlett Packard, model 6675A) that is directly connected to the transverse field coils.  

In practice, the control voltages range from 0 to 10 V with 2.5 mV resolution, while the 

current-control circuitry for the longitudinal and transverse fields provides 2.24 and 

2.87 A per volt of modulation input, respectively.  This translates to 0.12 mT (1.5 kHz) 

longitudinal and 0.05 mT (0.65 kHz) transverse field resolutions, where the parenthetical 

values provide the field resolution in units of 71Ga resonance frequency. 

The timing of field-cycling 

events for ONMR experiments with 

pointwise time-domain evolution in t1 

and LBD in t2 is shown in Fig. 2.10, 

where part (a) depicts the timeline (not 

to scale) of rf excitation of the signal 

nucleus.  Delays following ONP and 

evolution accommodate adiabatic field 

cycling, during which magnetization 

along the initial direction of the static 

field follows to the new orientation.  

Fig. 2.10(b) contains plots of recorded 

field-cycling events in which the 

 

FIG. 2.10  (a) Sequence of rf excitation of the 
signal nucleus for a pointwise time-domain 
evolution in t1 with LBD in t2.  (b) The magnet 
current level in the longitudinal and transverse 
field coils plotted on a timeline that represents the 
sequence of a Larmor-beat-detected ONMR 
experiment that requires a transverse field during 
the NMR evolution period. 
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longitudinal field is set high for the opening segment, which coincides with ONP.  

Following that period, the transverse field is cycled to half its final value in about 300 ms, 

at which time the longitudinal field is dropped to zero and the cycle to the ultimate 

transverse field value is initiated.  The total time required for a cycle from a longitudinal 

field of 246.5 mT to a steady-state transverse field of 57.8 mT is 2.1 s.  Use of the two-

step sequence prevents level crossing of the nuclear Zeeman energy levels, thus avoiding 

corresponding fast relaxation of the spin order obtained during ONP.  The second cycling 

event begins at the end of the NMR evolution period, and is sandwiched between a pair 

of π/2 pulses.  The first of these pulses stores the spin magnetization that survives NMR 

evolution along the static field, which is then adiabatically cycled. The second π/2 pulse 

turns spin magnetization into the transverse plane for readout during the detection period.  

The second field-cycling event is an approximate reversal of the first two-step process, 

and requires 700 ms. 

The adiabatic condition[65] for these field-cycling events, which ensures that 

nuclear spin magnetization follows the field during its reorientation, requires that 

 ( )  / 1c n totBν γ � , (2.2) 

where νc is the instantaneous rate of field reorientation, γn is the gyromagnetic ratio of an 

isotope in the spin system, and Btot is the instantaneous magnitude of the total field.  In 

GaAs, 75As is the species with the smallest γn, and, therefore, places the most restrictive 

limitation on the cycling rate.  The unitless reduced rate that is the left-hand side of 

Eq. (2.2) is plotted in Fig. 2.11 for the cycling event immediately following ONP.  This 
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result, and a similar one that corresponds to the second cycling event, demonstrates our 

fulfillment of the adiabatic requirement. 

 

FIG. 2.11  The 75As reduced cycling rate for the 
cycling of the total field in the first step of the 
two-step cycling sequence shown on the timeline 
of Fig. 2.10.  The reduced rate easily satisfies the 
adiabatic requirement of Eq. (2.2). 
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III. Characteristics of a Single AlGaAs/GaAs 
Heterojunction:  the H-band Luminescence 

In this and the following chapter, I present experiments on a modulation-doped 

p-channel AlxGa(1-x)As/GaAs (x = 0.36) single heterojunction grown by molecular beam 

epitaxy (MBE).  The detailed layer profile and energy band diagram of this sample are 

shown in Fig. 3.1, where discrete hole states on the GaAs side of the interface comprise 

the p-channel along the sample plane.  Heterojunction samples of this type have 

generated interest due to the so-called H-band[27] features in the photoluminescence (PL) 

spectrum, which are red shifted by 6 - 12 meV (5 - 10 nm) from the bulk-excitonic 

features and present only at low temperatures (< 10 K) in samples that contain an abrupt 

interface. 

 

FIG. 3.1  Schematic of the layer structure and energy bands of our MBE-grown AlxGa(1-x)As/GaAs 
(x = 0.36) modulation-doped p-channel heterojunction sample.  Layer (1) is a 21 nm GaAs surface 
cap that provides chemical stability in air.  Layer (2) is modulation-doped p-type AlxGa(1-x)As, in 
which the topmost 30 nm (a) is beryllium doped at 6×1017 cm-3 and followed by a 6.5 nm undoped 
spacer layer (b).  Layers (1) and (2) are transparent to the 802.1 nm excitation used in our 
experiments, since the energy gap of the cap layer is perturbed by surface and quantum confinement 
effects, while the AlGaAs gap is well above the excitation energy.  Layer (3) is the “active” layer of 
the sample and consists of 2500 nm of undoped GaAs grown in the [001] direction on a GaAs 
substrate (4).  The Fermi energy EF is in the GaAs gap near the valence band edge, while band 
bending yields hole-occupied discrete states in the interface notch (5). 
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The nature of the electronic states that give rise to the H-band PL has been a 

matter of some debate.[27-29,66,67]  In their early work, Yuan, et al.[66] proposed an 

excitonic model, while others[28] suggested that the recombination of free and donor-

bound electrons with 2D holes at the interface yields the so-called e and d lines, 

respectively, of the H-band.  More recent work seems to confirm the excitonic model, in 

which the PL energy shift relative to bulk exciton features is attributed to the spatially 

indirect character of excitons in a region where the bands slope due to the tail of the 

interfacial electric field.[67]  Within this model, the possibility remains that the e and d 

lines of the H-band distinguish free and bound excitons perturbed by the interface.   

These models for the H-band photoelectronic system are rich with features that 

are uniquely quantifiable by ONMR, and which, upon their characterization, can aid in 

settling the debate over the origin of the H-band.  Relevant observables include the 

interfacial electric field and the single-carrier distributions of electric field and spin 

density.  These properties of the electronic system are held in common with other 

systems that are accessible by ONMR, such as quantum dots and wells.  Thus, studies of 

this p-channel heterojunction represent progress toward characterization of a broad and 

important class of structured semiconductor materials. 

In this chapter, I provide a brief discourse on previous optical spectroscopic 

studies of the H-band, and include characterization of our own sample with measurement 

of the circular polarization (CP) of each individual component of the PL spectrum.  

According to Eq. (1.10), the latter experiments measure the spin orientation of the 

electrons that recombine with thermalized holes to yield luminescence.  This independent 

measure of the spin order related to each feature in the PL spectrum identifies those 



Chapter 3  –  Characteristics of a Single AlGaAs/GaAs Heterojunction:  the H-band Luminescence 56 

 

luminescent features that are potential carriers of an optically detected NMR signal.  

Having thus established the relation between the H-band and our optically detected NMR 

signal, we exploit the response of nuclear spins to an electric field in order to probe the 

interfacial field at the sites of the recombinations that yield the H-band PL.  This 

measurement distinguishes between the magnitudes of the interfacial field expected at 

recombination sites that correspond to the two proposed electronic models.  Finally, the 

results presented in this chapter set the stage for the far more detailed electronic-state 

characterization provided by the POWER NMR experiments presented in Chapter 4.  

There the spatial distributions of single-photocarrier spin and charge are respectively 

measured via Knight shift and electric-field-induced quadrupole interactions of lattice 

nuclei. 

A. The Photoluminescence Spectrum 

1. Characteristics of the H-band 

The PL spectrum of our heterojunction sample is shown in Fig. 3.2 and was 

collected at 4 - 5 K with Ar+ laser excitation at 514.5 nm (Spectra Physics, model 2020) 

and a 1 m monochrometer (SPEX, model 1704) that provided 0.2 nm resolution.  The 

spectrum exhibits bulk excitonic features in the range 818 - 819 nm, as well as the e and 

d lines of the H-band near 823 and 825 nm, respectively, and a band-to-acceptor carbon 

(BAC) transition near 832 nm.  The PL spectrum of the same sample, but collected under 

the conditions used in a typical ONMR experiment, is shown in Fig. 3.3.  The result 

qualitatively matches that of the first spectrum, as described in the figure caption.  Our 

primary interest is in the H-band features of the PL.  Yuan, et al.[27,66] proved the 
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existence of a relationship between the heterojunction interface and the H-band by 

collecting the PL spectra corresponding to a series of such heterojunction samples.  The 

AlGaAs layer was etched progressively across the series and the H-band features 

vanished in those samples where the interface was removed completely. 

Further studies probed the nature of the H-band-to-interface relationship, 

revealing that its red shift relative to the free exciton depends both on experimental 

conditions and the details of the sample structure.  The work of Yuan, et al.[27,66] and 

investigations by Ossau and coworkers[28] showed that the red shift decreases with the 

optical excitation power.  Meanwhile, experiments at a power low enough (1 - 10 W/cm2) 

that the red shift is maximized showed its increase with p-doping level and %Al in the 

AlGaAs layer, as well as with decreasing thickness of the undoped AlGaAs spacer.[27,28]  

The dependence on dopant and Al concentrations and on the spacer thickness may be 

attributable to corresponding changes in the energy band profile that manifest in a larger 

interfacial electric field.  Similarly, reduced excitation power may diminish screening of 

that field by photocarriers at the interface.  The net implication is that the H-band red 

shift increases with the interfacial field, due to some influence of that field on the 

electronic states whose recombinations give rise to the H-band. 
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FIG. 3.2  The PL spectrum (points) and fit (line) of the Al0.36Ga0.64As/GaAs heterojunction sample.  The 
fit to the entire spectrum is composed of individual Lorentzian components, which are plotted and labeled 
according to their apparent energies relative to the ground-state free exciton energy, EFX = 1.513 eV.  The 
e line, however, differs from the other features in that the best fits to the entire spectrum, including that 
shown above, required a Gaussian at the corresponding energy.  The free exciton and band-to-carbon-
acceptor (BAC) peak assignments are based on literature values.[68,69] 

 



Chapter 3  –  Characteristics of a Single AlGaAs/GaAs Heterojunction:  the H-band Luminescence 59 

 

 

FIG. 3.3 
(a) The PL spectrum (points) and fit (line) of 
the same sample, in this case collected in the 
ONMR apparatus.  The sample was at 2 K in a 
246.5 mT field that was mutually parallel to the 
sample growth direction and the propagation 
axis of the right circularly polarized excitation 
at 802.1 nm and 2.0 ± 0.5 W/cm2.  The Ocean 
Optics spectrometer (model PC 2000) discussed 
in Chapter 2 provided 1 nm resolution.  The fit 
to the entire spectrum consists of the same 
components used for the spectrum in Fig. 3.2 
and yielded qualitatively similar results.  Here, 
the e and d lines are 6.5 and 11.0 meV below 
EFX , and the intensity of the H-band is 
increased relative to that of both the bulk 
exciton features and the BAC transition. 
(b) Two PL features at energies higher than the 
collected range of the spectrum in Fig 3.2 are 
revealed here and shown for completeness.  
The arbitrary amplitude units are directly 
comparable those in (a).  No assignment for the 
peak at 1.4546 eV has been found, although the 
higher energy peak is close to the 1.4722 eV 
expected for a donor-to-Ge-acceptor 
transition.[69] 

2. Electronic Models for the H-band Luminescent States 

Two electronic models for the H-band states have been proposed, each of which is 

consistent with the noted dependence on the interfacial field.  Yuan, et al.[27] suggested 

the first, which has since been investigated by others.[28,70]  Therein, free or donor-bound 

electrons in the conduction band tunnel to the interface region and recombine with 2D 

holes in an interface subband.  In this case, an increase in interfacial field, or, 

equivalently, in the slope of the energy bands at the interface, would correspondingly 

increase the H-band red shift as the valence-band-hole potential well at the interface 

deepens.  The second model for the H-band electronic states was put forth in a 

subsequent paper by Yuan and coworkers,[66] and later explored by Shen, et al.[29,67,71]  
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Therein, the H-band is presumed to 

be due to excitonic recombination at 

a distance from the interface where 

the attractive polarizing force of the 

interfacial field on the exciton 

balances with the Coulombic 

attraction of the electron-hole pair.  

This model is schematized in 

Fig. 3.4.  The binding energy Eb of 

the polarized exciton is reduced due 

to the quadratic Stark interaction, 

which provides a small blue shift, 

   b b bE E E′∆ = − , (3.1) 

relative to the free-exciton recombination energy.  However, the band slope also renders 

the excitonic recombination spatially indirect, yielding a red shift ∆Eind that outweighs 

∆Eb in determining the net shift relative to the bulk excitonic feature. 

Previous attempts to distinguish between these two models provide conflicting 

evidence.  Ossau, et al.[28] observed a linear shift of the H-band PL to higher energies 

with a magnetic field applied parallel to the interface.  The observed shift matches that 

which is expected for free-electron Landau levels.  Meanwhile, these authors also found 

that the H-band split into four CP components with a magnetic field applied along the 

surface normal, and that these components each exhibited an apparently linear shift with 

the magnitude of that field.  From this it was inferred that one set of carriers involved in 

 

FIG. 3.4  Comparison of the energies of a free exciton 
(FX) and one perturbed by an electric field such as 
that due to the interface in an AlGaAs/GaAs 
heterojunction.  The slope in the valence (VB) and 
conduction (CB) energy bands gives the value of the 
field.  The binding energy bE′  of the perturbed 
excitons is less than that of the FX, resulting in a small 
blue shift of the transition.  However, the net shift that 
appears in the PL spectrum is red due to the shift ∆Eind 
that results from the spatially indirect nature of the 
recombination. 
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the H-band transition, presumably the holes, is confined at the interface.  Such 2D 

carriers are relatively insensitive to a magnetic field parallel to the interface, as that field 

can induce a cyclotron motion that is restricted by the confining potential.  The analogous 

in-plane motion incurred by a field along the surface normal is much higher in energy.  

Combining these arguments, Ossau, et al. concluded that the H-band is due to 

recombination of a free (or donor-bound) electron with a 2D interfacial hole. 

In direct contrast to the above results, the experiments of Shen and coworkers[67] 

support an excitonic model.  This group observed a nonlinear diamagnetic shift of the 

H-band to higher energy with a magnetic field oriented either perpendicular or parallel to 

the interface plane.  This implies that the H-band is of excitonic origin, since an initial 

state that includes one or more free carriers would exhibit linear, paramagnetic energy 

dependence that is larger than the observed nonlinear shift.  Furthermore, these authors 

pointed out that, according to the so-called phase-filling effect,[72] excitonic transitions 

cannot involve 2D carriers. 

Based on these observations, Shen, et al. proposed[29,67,71] a dynamic model for 

the formation of excitons that are polarized by the interfacial field to yield the red-shifted 

H-band luminescence.  The mechanism is depicted in Fig. 3.5, and begins with 

photoexcitation of an electron-hole pair, followed by relaxation of each carrier to its band 

edge and spatial transport under the influence of the interfacial field.  Finally, the electron 

and a second hole, which was photoexcited nearer to the flatband region, trap each other 

to form a polarized exciton whose recombination yields the H-band luminescence. 

Time-resolved PL experiments on analogous n-type samples, in which the carrier 

transport is reversed in direction relative to Fig. 3.5, provide evidence to support this 
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dynamic model.[29,67]  In those studies, 

Shen, et al. observed that the free-

exciton PL had a decay rate typical of 

that in bulk samples, but also exhibited a 

unique two-component rise time.  A 

fast, tens-of-picoseconds rise in the PL 

signal is attributed to direct exciton 

formation in the flatband region, while a 

subsequent 1 - 2 ns rise is linked to 

exciton formation like that shown in Fig. 3.5, but where the electron and hole joined and 

recombined in the flatband region.  It is reasonable to expect that similar exciton 

formation occurs nearer to the interface, yielding polarized excitons that energetically 

match the H-band. 

The final piece of evidence with which Shen, et al. connected the H-band to 

excitons results from their PL experiments with concurrent microwave irradiation of a 

cyclotron resonance of the 2D holes in p-type samples.[67]  The microwave irradiation 

served to heat the interface region and, by association, nearby photoexcited electrons.  

The increased energy of these electrons presumably carried their trajectory to a greater 

distance from the interface prior to exciton formation of the sort in part (c) of Fig. 3.5.  

As evidence of this process, the authors observed a reduction in the H-band PL with a 

corresponding increase in free exciton emission and zero net change in PL intensity. 

 

FIG. 3.5  Dynamic model for formation of 
H-band electronic states proposed by Shen, 
et al.[67,71] (a) Photoexcitation of an electron-hole 
pair. (b) Carrier drift in the interfacial field.  
(c) Polarized exciton formation. 
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B. Characterization of the Interfacial Electric Field 

As recounted above, previous authors have established the existence of a 

relationship between the H-band electronic states and the heterojunction interfacial field.  

However, contrasting models for these electronic states have been proposed.  The most 

recent and compelling results suggest an excitonic model, but that evidence is indirect 

and has not discounted the possibility of recombination involving 2D interfacial holes.  

An as-yet-uncharacterized feature that can distinguish between these two models is the 

magnitude of the interfacial field at the recombination sites.  In this section, I present a 

calculation of the interfacial-field profile and estimate its magnitude at distances from the 

interface that could reasonably correspond to the two models for the H-band electronic 

states.  Finally, I present the results of optically detected NMR experiments in which the 

H-band PL serves as the NMR signal carrier, as established by analysis of the CP of 

features contributing to the entire PL signal.  The ONMR experiment measures the value 

of the interfacial field at the sites responsible for NMR, which in turn are the sites of 

H-band recombination.  The result clearly distinguishes between the values of the 

interfacial field expected for the two contending models for the H-band electronic states. 

1. The Exciton Dissociation Limit 

The interfacial field at the possible sites of excitonic recombination in the model 

of Shen, et al. is limited by field-induced dissociation of the electronic state.  In quantum 

wells, the quantum-confined Stark effect[73,74] can yield an energy shift of the excitonic 

luminescence corresponding to up to 50 times the classical ionization field 

εi = (Eb / 8 e ax), where ax is the exciton Bohr radius.  However, in bulk samples, the shift 
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is limited by dissociation to ~ 10% Eb.[74,75]  The same is true in a single heterojunction, 

where one-sided confinement allows escape of the carrier that is repelled by the 

interfacial field.  An estimate of the corresponding dissociation-limited electric field is 

made using perturbation theory to calculate corrections to Eb, which in turn are held to 

10% of the unperturbed energy. 

An exciton is described by the spatial hydrogenic wave function  

 
  

( )  ( , ) ( )
              ,

nlm lm nlY R r
n l m

Ψ = θ φ
=

r
r

 (3.2) 

where r = (r, θ, φ) is the relative electron-hole coordinate, n, l and m are usual quantum 

numbers labeling the spherical harmonic Ylm(θ, φ) and radial Rnl(r) factors, and the 

second line expresses the function in Dirac notation.  The associated exciton Bohr radius 

is 

   ( / )x B xa a= κ µ , (3.3) 

where κ = 13.1 is the GaAs dielectric constant, aB is the Bohr radius of the hydrogen 

atom and µx is the reduced mass of the exciton composed of electron and hole with 

effective masses me and mh, respectively.  The perturbation Hamiltonian for an interfacial 

electric field εint along the z-axis is  

 Hε  =  (-e εint z )  =  (-e εint r cos θ ). (3.4) 

The corresponding first-order perturbation theory correction to the ground-state energy is 

       
(1)
1 100 100intE e z= − ε , (3.5) 

which vanishes by symmetry.  The second-order correction is 
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This is simplified using the relationships[76] 

 (0) 2 (0)
1  nE n E−=  (3.7) 

and 

 
  

   1, 1,cos  ( , )  ( , )  ( , )lm l m l mY AY A Y+ −′θ θ φ = θ φ + θ φ , (3.8) 

where 

   
( 1)( 1)

(2 1)(2 3)
l m l m

l lA + + − +
+ +=           and            

( )( )
(2 1)(2 1)
l m l m
l lA + −
+ −′ = . (3.9) 

Substituting Eqs. (3.7) - (3.9) into Eq. (3.6) and using the orthonormality of the Ylm(θ, φ), 

we obtain 

 ( ) 

   

2 2
(2) 2 1
1 1,0 ,1(0) 1 0

1

(1 )  ( ) ( ) 
3

int
nn

e
E n r R r R r dr

E
∞− −

≠

ε
= −∑ ∫ . (3.10) 

To estimate this correction in GaAs, we insert me = 0.067 m0, and the heavy-hole 

mass, mhh = 0.465 m0, where m0 is the free electron rest mass, into Eq. (3.3) for ax, which 

appears in the factors R1,0(r) and Rn,1(r) (see, for example, Dykstra[77]).  Substituting the 

resulting radial functions and Eb = 4.2 meV[78] into Eq. (3.10), and truncating the sum at 

n = 5 yields 

 (2) 2
21 (GaAs)  0.29  meV/(kV/cm)E = . (3.11) 

Satisfaction of the requirement that (2)
1  0.1 bE E≤  determines the dissociation-limited 

electric field of 1.2 kV/cm.  For the light-hole mass, mlh = 0.082 m0, and the calculated 

corresponding binding energy Eb = 2.9 meV, the dissociation limit is instead 0.52 kV/cm. 
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2. Self-Consistent Calculation of the Interfacial Field 

 The band structure of the AlGaAs/GaAs heterojunction sample with the layer and 

doping profile shown in Fig. 3.1 was calculated numerically using a self-consistent 

Schrödinger-Poisson solver.  Relevant parameters of the calculation include:  a dielectric 

constant of 13.03(a) in both materials, background p-type doping of 3 × 1014 cm-3
, a 

valence-band offset at the AlGaAs/GaAs interfaces of 35% of the total gap difference, 

and energy pinning at the surface (i.e., of the GaAs cap) and substrate of 0.7 eV, which 

corresponds to the mid-gap of GaAs.  The program accounts for only one type of hole; 

however, since the heavy-light hole degeneracy is removed at the interface, previous 

authors have neglected the lower energy light-hole levels in calculating the interfacial 

subband states.[28]  Therefore, I have assumed the GaAs heavy-hole mass, mhh = 0.465 m0.  

                                                 
3(a)   The Schrödinger-Poisson solver used here accepts a dielectric constant no greater than 13.0, while the 
accepted value in GaAs is 13.1.[79]  Since the source code is not immediately available for incorporation of 
changes allowing the larger value, I have proceeded using the maximum and note that resulting differences 
in output are inconsequential to the qualitative assessment of the interfacial field and states sought here. 

 

FIG. 3.6  (a) Calculated 1D profile of the interfacial electric field.  The position axis is labeled 
relative to distance from the interface on the GaAs side of the (non-cap) heterojunction.  Note the 
changes in scale at each break.  (b) The normalized envelope wave functions of corresponding 
occupied hole states.  



Chapter 3  –  Characteristics of a Single AlGaAs/GaAs Heterojunction:  the H-band Luminescence 67 

 

The calculation was executed on a 1D grid with 2 Å spacing from the surface to a 

distance of 60 nm beyond the (non-cap) heterojunction interface, while a 60 Å increment 

was used from that point out to the substrate. 

The resulting profiles of the interfacial electric field and the envelope wave 

functions of the occupied discrete hole states are plotted in Fig. 3.6.  If the H-band 

luminescence is due to the recombination of free electrons with the interfacial holes 

represented by the envelope functions in Fig. 3.6(b), then the electric field at the 

recombination sites should be  25 kV/cm according to the result plotted in Fig 3.6(a).  

This is in stark contrast to the ~1.2 kV/cm dissociation-limited field for excitonic 

recombination, which, as indicated in the figure, corresponds to a distance from the 

interface in excess of 1 µm. 

3. NMR Measurement of the Interfacial Field 

In noncentrosymmetric crystals such as GaAs, there exists a linear quadrupole 

Stark effect (LQSE) whereby the nuclear resonance of spins I ≥ 1 is split in proportion to 

an electric field.[25,60-62,80,81]  Here, we exploit this interaction to measure the interfacial 

field at the sites responsible for the signal in an optically detected NMR experiment.  We 

establish that the H-band PL serves as the NMR signal carrier with further optical 

experiments, and thus that the environment reported on by the NMR signal is that where 

the corresponding electronic states recombine. 

i. The Linear Quadrupole Stark Effect 

A detailed description of the LQSE is presented in Appendix B.  In brief, an 

electric field at a noncentrosymmetric site perturbs the valence electronic states in the 
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lattice such that a field gradient arises at the nuclear sites.  The magnitude of the induced 

gradient, and in turn the nuclear quadrupole interaction, is linear in the electric field.  The 

observable quantity is a quadrupole splitting of the nuclear resonance, where, in the 

example of a spin 3
2  such as any of the primary isotopes in GaAs, the degeneracy of 

1 1
2 2( )+ ↔ −  and 3 1

2 2( )± ↔ ±  transitions is lifted, resulting in a symmetric 3:4:3 triplet.   

The relevant form of the rotating-frame LQSE nuclear spin Hamiltonian is the 

time-independent part of Eq. (B.18) of Appendix B: 

  

2,0 2,0( , , )    ( , , )
2 (2 1)Q

eQ T V
I I

′α β γ = α β γ
−

�
=

H , (3.12) 

where e is the unit electric charge, Q is the nuclear quadrupole moment, T2,0 is the 

spherical tensor operator given by Eq. (B.7) and the expression is in units of (radÿs-1).  

The dependence of Q
�H  on the orientation of B0 with respect to the crystal axes is given 

by the Euler angles α, β and γ as discussed in the appendix, where Eq. (B.19) gives the 

explicit form of the component 2,0 ( , , )V ′ α β γ  of the LQSE-induced electric-field-gradient 

tensor.  Inserting that expression and Eq. (B.7) for T2,0 into Eq. (3.12) and dropping the 

ineffectual term proportional to the identity operator, yields 

      
21

2( , , ) ( , , )QQ zIα β γ = ω α β γ�H , (3.13) 

where we have defined 
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E100, E010 and E001 are the components of the electric field along the crystal axes indicated 

in the subscript and C14 is a constant describing the coupling between the electric field 

and the induced-gradient tensor, as discussed in Appendix B. 

NMR evolution governed by the Hamiltonian of Eq. (3.13) is evaluated using the 

standard density matrix formalism to yield the rotating-frame time-domain NMR signal, 

 ( ) ( )        ( )  exp  (0) exp  Q QS t Tr I i t i t+ = − ρ + 
� �H H , (3.15) 

where ρ(0) is the initial density matrix and it is understood that real and imaginary parts 

of the signal represent its two orthogonal components in the transverse plane.  The initial 

condition is established by a (π/2)x preparation pulse on the optically pumped nuclear 

magnetization that yields ρ(0) = A0 Iy in the high-temperature approximation, where A0 is 

a numerical constant that is derived in Section C.1 of Chapter 4.  Substituting this and 

Eq. (3.13) into Eq. (3.15) yields 

 ( )    

   0( )  3  4 3Q Qi t i tS t A e e+ ω − ω= + +  (3.16) 

for a spin 3
2 .  Fourier transformation of S(t) reveals the triplet pattern noted above in 

which a central transition at dc in the rotating frame is sandwiched by two satellite peaks 

at frequencies ±ωQ /2π.   

Our apparatus can provide a static magnetic field in either of two orthogonal 

directions.  With the sample orientation we have chosen, these place B0 along either of 

the [001] or [110] crystal axes, corresponding to (α, β, γ) = (0, 0, 0) or   4 2( , , 0)π π , 

respectively.  Substituting these angles into Eq. (3.14), we obtain  

   (0, 0, 0)  0Qω = , (3.17) 



Chapter 3  –  Characteristics of a Single AlGaAs/GaAs Heterojunction:  the H-band Luminescence 70 

 

and     

   
14 001

4 2
3( , , 0) 
2 (2 1)Q
e Q C E
I I

π πω =
− =

. (3.18) 

In the former case, NMR evolution is independent of the LQSE.  Thus an experiment 

executed with B0 along [001] during the NMR evolution period serves as a control that is 

to be contrasted with the results of an experiment with B0 along [110].  According to 

Eqs. (3.16) and (3.18), the latter experiment allows for direct measure of the interfacial 

field via a quadrupole splitting that is linear in E001 = εint.  For quantification of this 

result, the values of Q and C14 that correspond to the primary isotopes in GaAs are 

presented in Table 3.1.  The last column presents the predicted splitting per unit electric 

field in the case that corresponds to Eq. (3.18), where B0 is along [110]. 

Table 3.1  The values of the LQSE coupling constant C14 and the nuclear quadrupole moment Q are 
listed for each isotope in GaAs, as are the corresponding quadrupole splittings per unit electric field 
along the [001] crystal axis in the case where B0 is along [110].  As suggested by Dumas et al.,[62] we 
use the largest reported C14 values, as all systematic errors in their determination tend to decrease their 
apparent size.  Furthermore, only the product C14Q corresponding to each nuclear species is measurable 
by LQSE NMR (as reflected in the last column), thus the Q values assumed by Dumas et al. should not 
be replaced by more modern values without correspondingly scaling the C14 values. 

Isotope C14×10-12 [ m-1 ] Q×1029 [ m2  ] (ωQ /2π) / E001  [ kHz / (kV/cm) ] 
69Ga 2.85 1.9 0.65 
71Ga 2.85 1.2 0.41 
75As 3.16 2.9 1.11 

 

ii. ONMR with the H-band 

Before moving on to NMR characterization of the interfacial field, it is important 

to establish the relationship between the NMR signal and the H-band PL, i.e., we must 

show that among all PL features the H-band alone serves as the signal carrier in an 

optically detected NMR experiment.  Recall from the introductory chapter that the only 
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lattice nuclei that contribute to the signal are those located in regions that appreciably 

overlap with the wave function of the luminescent electron.  Therefore, the optically 

detected NMR signal reports on the environment at the sites of localization of electronic 

states that go on to produce optical recombination.  When the PL is well resolved, optical 

filtering trivially establishes knowledge of the NMR signal carrier.  However, in the 

present case, which is represented by the spectrum in Fig. 3.3, such optical resolution is 

not present and we must rely on further PL characterization to demonstrate that the 

H-band component of PL is the ONMR signal carrier. 

Using the Larmor beat detection (LBD) method[9] described in Section B.4 of 

Chapter 1, we rely on the Hanle effect depolarization of PL to optically encode NMR 

evolution.  Thus the optical signal carrier must exhibit some degree of luminescence 

polarization ρ and, furthermore, this quantity must be responsive to a transverse magnetic 

field, such as that provided by the lattice nuclei during LBD.  The underlying physical 

processes that determine this response were discussed in Section B.2 of Chapter 1; 

however, the objective here is simply to measure the PL polarization of individual 

features in order to determine which region or regions of the PL spectrum are viable as an 

NMR signal carrier.  
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The polarization of the PL spectrum of our AlGaAs/GaAs heterojunction is 

shown in Fig. 3.7, and is similar to that observed from a sample of the same type by 

Krapf, et al.[15]  Our result is the difference 

between two spectra in which either the 

right (σ+) or the left (σ-) CP component of 

PL was collected under the conditions used 

for ONMR, as detailed in the figure 

caption.  Selection of a given polarization 

for detection was achieved by adjustment 

of the λ/4 optical element in the detection 

path, as described in Section C.2 of 

Chapter 2.  The spectrum exhibits the 

largest degree of CP in the range 

corresponding to the H-band features.  The bulk excitonic and BAC features also reveal 

nonvanishing polarization.  The reversal of the sign of ρ in the BAC case indicates that 

the corresponding electron spin is antiparallel to that of the electrons yielding other PL 

features. 

In order to quantify the polarization of contributing features, the spectra whose 

difference is shown in Fig. 3.7 were each fit with the set of line shapes used in 

characterization of the PL spectra of Figs. 3.2 and 3.3.  We define the CP of the ith 

individual feature as 

   i i
i

i i

A A
A A

+ −

+ −

−ρ =
+

, (3.19) 

 

FIG. 3.7  Difference between the right and 
left CP components of sample PL.  The 
spectra were collected in the ONMR apparatus 
at 2 K in a 246.5 mT field along the [001] 
growth direction and the propagation axis of 
the right CP excitation. 
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where iA±  is the area of the corresponding component of the fit to the spectrum in which 

σ± light was detected.  The results of this analysis are presented in Table 3.2.  The finite 

polarization of each PL feature indicates that all are apparently viable as optically 

detected NMR signal carriers.  However, an additional clue as to the carrier identity in 

our experiments is revealed by inference of the average spin S  of the recombining 

electrons from Eq. (1.10).  In that expression, we take ξ = 1
2  and the direction of spin 

polarization to be parallel to the unit vector ˆdn  along the detection axis, thus yielding 

S = ρ .  In Chapter 4, I present experiments in which this quantity is independently 

measured via the distribution of NMR Knight shifts due to the same photoexcited states 

that are responsible for optical nuclear polarization (ONP) and optical detection.  These 

indicate that 30.15S = , which closely matches the PL results for the e and d lines, 

while excluding the BAC feature as the NMR signal carrier since it is consistent with a 

Knight shift opposite in sign to that observed.  Finally, exclusion of the bulk excitonic 

features in ONMR experiments is provided by the 832 ± 5 nm optical bandpass filter in 

the detection pathway as described in Section C.2 of Chapter 2.  Convolution of the 

transmittance of this filter with the fit to the total PL spectrum collected under the 

conditions of ONMR yields the integrated relative contribution of each PL feature to the 

total optical signal collected during an ONMR experiment.  As shown in Table 3.2, the 

filter effectively blocks the bulk excitonic features and the e line.  Thus we conclude that 

the d-line of the H-band is the ONMR signal carrier. 
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Table 3.2  Circular polarization ρ of  individual components of the 
heterojunction PL spectrum, along with their relative contributions to 
the collected optical signal during NMR experiments.  As discussed in 
the text, the electron spin polarization S  in the corresponding 
electronic state is equivalent to ρ. 

PL feature ρ, S  
filtered signal 
contribution 

bulk exciton features(a) 0.06 0.02 

e line 0.17 0.05 

d line 0.16 1 

BAC -0.04 3.3 
(a) Fits to the PL spectra include three bulk excitonic features, as 
shown in Fig. 3.2; however, these were treated as a collective 
feature in calculating the corresponding ρ value. 

iii. Measurement of the Interfacial field 

The timeline of the NMR experiment is depicted in Fig. 3.8(a) and follows the 

general sequence (see Section B.4 of Chapter 1 and Section E of Chapter 2) for pointwise 

acquisition of the time-domain signal in t1 with LBD in t2.  A spin-echo pulse 

sequence,[31] in which the evolution period is divided in equal halves by a π pulse on the 

signal nucleus, was used to remove broadening of the frequency domain spectrum by 

field inhomogeneity and reduce that due to heteronuclear dipolar coupling.  During both 

ONP and optical detection, B0 was at 246.5 mT and along the [001] growth direction, as 

is standard in our experiments.  However, during evolution, the field was oriented along 

either [001] (longitudinal), providing the control experiment discussed above, or [110] 

(transverse), where the sensitivity to the interfacial field is given by Eqs. (3.16) and 

(3.18).  In either case, the field is cycled adiabatically at the breaks in the timeline to 

provide 57.8 mT during the NMR evolution period, which is approximately the 

maximum available from our transverse field coils without causing internal arcing. 
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The NMR signal nucleus was 71Ga, which has a 750 kHz resonance frequency in 

the noted evolution field.  The π/2 pulse duration on that isotope was 5.35 µs and the 

evolution increment ∆t1 was 3.3 µs, yielding a spectral width of 303.0 kHz.  Time-

proportional phase incrementation[53] (TPPI) of both the π/2 preparation pulse and the π 

pulse of the echo sequence with phases 

 φ1 = 2π × (30 kHz) × t1        and        φ2 = 2π × (-10 kHz) × t1, (3.20) 

respectively, resulted in a net shift of the signal in the indirect dimension to  

    

  

   

1 2
TPPI

1

2
2 t

φ − φν =
π

, (3.21) 

or, in this case, 50 kHz.  The 71Ga spin lock during optical detection was at an rf field 

amplitude of B1
sig = 0.86 mT (11 kHz Rabi frequency), while concurrent irradiation of the 

75As LBD reference nucleus was at B1
ref = 1.48 mT (10.8 kHz Rabi frequency) and 

~ 25 kHz above its resonance frequency in the 246.5 mT detection field. 

The results of the longitudinal (i.e., the control) and transverse field experiments 

are shown in Fig. 3.8(b).  Evolution in the longitudinal field yielded a 1.28 kHz FWHM 

Lorentzian centered at the TPPI frequency, where the line width reflects the distribution 

of homonuclear dipolar couplings among signal nuclei.  The transverse-field experiment 

yielded a broader line shape with approximately the same area as in the control.  This 

change is attributed to the introduction of quadrupole splitting by εint as discussed above. 
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FIG. 3.8  (a) Spin-echo pulse sequence with field cycling delays. (See Chapter 2, Section E.)  
(b) Optically detected 71Ga spin-echo spectra with evolution in longitudinal or transverse static field.  
Points and lines represent the data and corresponding fits, respectively.  (c) Expanded view of the 
transverse-field spectrum with separate plots showing the three components of the 3:4:3 triplet fit 
function, which exhibits the indicated symmetric splitting. 

Thus, the transverse-field spectrum was fit to a 3:4:3 triplet of Lorentzians, where 

the FWHM of each was fixed at that of the single peak obtained in the control 

experiment.  The result of this fit is plotted with the data in Fig. 3.8(c) and places the two 

satellite peaks at approximately ± 520 Hz about the central transition.  This corresponds 

to εint = 1.26 kV/cm, which is an upper bound on the interfacial field at the sites of the 

electronic recombinations that yield the d line of the H-band.  Smaller field values may 

be at play if εint is inhomogeneous over the ensemble of electron-hole pairs that yield the 

d line, thus providing a distribution of LQSE-induced splittings.  In that case, the satellite 

peaks would exhibit a breadth greater than the FWHM of the control and yield a more 

closely spaced triplet in the fit to the transverse-field data.  
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C. Conclusions 

The NMR measurement of the interfacial field at the sites of H-band (d line) 

recombination is in remarkably good agreement with the expected value in the model of 

Shen, et al., where excitonic recombination should occur in a field near the 1.2 kV/cm 

dissociation limit.  In contrast, the 25 kV/cm field expected at sites corresponding to 

recombination involving 2D interfacial holes would yield a 71Ga quadrupole splitting of 

10.3 kHz, which would be easily resolved in the experiment above.  Therefore, the latter 

model is clearly excluded, and we conclude that the optically detected NMR signal is due 

to nuclei at a distance on the order of 1 µm from the p-channel heterojunction interface.  

There, the recombination of a polarized radial states, such as localized or free excitons, 

yields the H-band PL.  To this point, another possibility remains open:  that the ONMR 

signal is encoded in the spin of a donor-bound electron that delocalizes and forms a 

polarized exciton before recombination to yield the H-band PL.  In Chapter 4, high-

resolution POWER NMR experiments characterize distributions of Knight shifts and 

LQSE-induced splittings of nuclei in spatial overlap with the relevant electronic states, 

thereby distinguishing among these remaining candidates. 
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IV. Imaging Single-Carrier Wave Functions with   
Optically Detected NMR 

Our main goal in implementing ONMR for the study of III-V materials is the 

characterization of local electronic properties in structured samples.  To that end, the 

technique provides two levels of resolution at which the spatial variation of these 

properties can be imaged.  The first selects a local ensemble of nuclei from the bulk 

sample as the dominant source of the NMR signal.  This guarantees that the NMR 

spectrum is, for example, due to the nuclei near a heterojunction interface, or to those in a 

quantum well or dot.  At this level, one probes average properties of the local 

environment, such as the interfacial field measured in the previous chapter.  A more 

finely divided view is available when one can resolve the spectral contributions of 

individual nuclei or subsets thereof in the local ensemble.[24-26,82]  This second level of 

imaging, which is the focus of the current chapter, has been obscured in all previous 

ONMR experiments by the low spectral resolution typical of solid-state NMR in general 

and notoriously associated with optical detection in particular. 

As discussed in the introductory chapter, the POWER NMR approach[24-26] 

provides orders-of-magnitude resolution enhancement over the few kHz dipolar limit in 

experiments where the imaged quantity can be cycled in synchrony with an NMR 

multiple-pulse sequence.  This novel method provides, for the first time, access to the 

noted “second level” of imaging with ONMR.  In this chapter, the prototypical POWER 

NMR experiments are presented in which the cyclic perturbation is provided by laser 

irradiation.  Throughout this work, the sample is that discussed in Chapter 3:  the 

p-channel AlxGa(1-x)As/GaAs (x = 0.36) single heterojunction of  Fig. 3.1.  The d-line of 
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the H-band is the ONMR signal carrier, and, also as discussed in Chapter 3, is due to the 

radiative decay of a bound electronic state that is described qualitatively by a radial 

hydrogenic envelope function, such as 

that shown in Fig. 4.1. 

In GaAs, such a state is 

characterized by an effective Bohr 

radius *
0 ~ 10 nma  and overlaps with 

on the order of 106 nuclear spins in a 

volume bounded at *
02r a=  about the 

corresponding center of localization.  

These spins provide the optically 

detected NMR signal.  With the 

POWER NMR approach, we can image the photoexcited wave function via the varied 

spectral response of these nuclei to optically switched Knight shift and linear quadrupole 

Stark effect (LQSE) interactions.  The former yields a shift of nuclear resonance in 

proportion to the polarized electronic spin density at a given nuclear site, while the 

distribution of LQSE-induced quadrupole splittings in response to the optically switched 

electric field are sensitive to the distributions of both photoexcited electrons and holes.  

Radial resolution of these observables distinguishes between similar states that are 

consistent with the hydrogenic model, such as donor-bound electrons and excitons. 

In this chapter, I present the most detailed NMR electronic-state characterization 

obtained to date.  Experimental results probing optically induced (hyperfine) nuclear spin 

relaxation, Knight shifts and LQSE interactions are successfully modeled in terms of 

 

FIG. 4.1  Cross-sectional schematic representation 
of a hydrogenic radial envelope of a localized 
electronic state in GaAs.  With a Bohr radius 

*
0 ~ 10 nm,a  the electron has effective overlap with 

on the order of 106 nuclei. 
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single-nucleus spin physics summed over sites about a point defect in the GaAs lattice.  

This approach suffices for fitting results at short ONP times, though the experiment also 

provides a basis for including spin-diffusion effects at longer ONP times.  The 2D 

analysis of such an experiment has uncovered the effects of spin diffusion on the NMR 

line shape, which deviate from one’s expectations for isolated nuclei with a range of 

hyperfine interactions.  An analogous experiment with optically induced electric fields is 

additionally sensitive to the fate of the optically induced hole via a linear Stark effect of 

the nuclear quadrupole Hamiltonian, yielding a more complete picture of the defect sites. 

Finally, it is important to note that the experiments and analysis presented here 

represent significant progress in both optical NMR methodology and solid-state imaging 

techniques.  Furthermore, while these advances are used to detail the particular H-band 

electronic system, they are applicable to a wide variety of structured semiconductor 

materials.  Important examples include:  (1) Single quantum dots, which are of interest 

for their optical properties and as test systems for quantum computing,[10-12,83-87] and 

(2) quantum wells and heterostructures, where recent experiments have uncovered 

surprising spin-dependent electronic transport,[13,88-93] and in which studies of exotic 

collective electronic states probe fundamental questions about the behavior of a confined 

Fermi sea.[19,20,22,23,94,95]  In each of these examples, electron-nuclear interactions play an 

important role in the material properties, and ONMR in conjunction with the POWER 

methodology can provide unprecedented detail on the relevant underlying physics. 
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A. Optically Switched Nuclear Spin Interactions 

1. The Magnetic Hyperfine Interactions 

The interaction of a conduction-band electron with the nuclear spins in its vicinity 

is described in part by the magnetic hyperfine Hamiltonian.  This operator includes terms 

describing the contact and dipolar interactions between the electronic and nuclear spins, 

and that between the nuclear spin and the orbital angular momentum of the electron.  

(See, for example, Cohen-Tannoudji.[96])  The Hamiltonians that govern these 

interactions are 

  
       

2, 2
0 03  ( )C i i i

hf B n ig= − Γ µ µ γ Ψ ⋅r  I SH , (4.1) 

 ( )( )( ) 
       

3, 1
0 04 ˆ ˆ  3D i i i i

hf B n i i ig R n n−
π= − Γ µ µ γ ⋅ ⋅ − ⋅I S I SH , (4.2) 

and  ( ) ( ) 
       

3, 1
04  /L i i i

hf n e ie m R −
π= − Γ µ γ ⋅L IH , (4.3) 

respectively, where each expression is in units of Hz, Ri is the instantaneous distance 

between the electron and the ith nuclear center connected along a line with unit vector ˆin , 

and L is the electron orbital angular momentum operator.  As noted in Section B.1 of 

Chapter 1, Γ is the occupancy of the electronic state, g0 is the free-electron g-factor, and 

Ψ(ri) is the value of the electronic wave function at the ith nuclear center in the lattice. 

The contact interaction provides the well-known Knight shift of nuclear 

resonance.  The other interactions are less frequently noted and usually assumed 

negligible.  In this section, I analyze whether this assumption is legitimately applicable to 

the optical NMR experiments presented in this thesis.  Thus, I determine the relative 

magnitudes of these interactions as they exist in radial electronic states, such as those 
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describing electrons or excitons bound at point defects in the lattice.  In GaAs, such states 

have vanishing electronic orbital angular momentum, and thus, , 0L i
hf =H .  For , C i

hfH  and 

, D i
hfH , the spatial dependence of the interactions must be considered, and to that end 

analysis of a donor-bound electron, where 

      

2 2 2( )   ( ) ( )di i i d id rΨ = Ψ = Ω ψr r , (4.4) 

provides a sufficient sense of their relative importance.  In this expression, di is the 

element-dependent electron probability density within the unit cell at the nuclear center 

(see Table 4.1), and 

   
31

4 aΩ =  (4.5) 

is the volume of a GaAs unit cell, where a is the GaAs lattice constant.  The radial 

dependence is given by the hydrogenic envelope function 

 ( )    

1/ 23( ) exp( / )d i d i dr a r a
−

ψ = π −  (4.6) 

with effective Bohr radius 

   ( / )d B ea a m= κ . (4.7) 

Inserting Eqs. (4.4) - (4.7) into Eq. (4.1) and taking S to be along B0 // ẑ  we obtain 

  , ,   C i i C i i
hf n e= − γ ⋅B IH , (4.8) 

where I have defined the contact hyperfine field 

 ( )( )            

13, 2
0 03 ˆexp( 2 / )  C i

e B i d i dg S d a r a z
−

= Γ µ µ Ω π −B . (4.9) 

The dipolar interaction between the nucleus at ri and a donor-bound electron is 

equivalent to that of the nucleus with a point dipole at r = 0 and with effective spin 
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 ( )      
2

0
ˆ4 ( )  .

ir

eff dS r r dr z= π ψ∫S  (4.10) 

Substituting this result for S, ri for Ri and ˆ ˆ cosi in z⋅ = θ  in Eq. (4.2), yields 

  , ,   D i i D i i
hf n e= − γ ⋅ B IH  (4.11) 

where I have defined the dipolar hyperfine field 

 
( )

( ) ( )( )( )
           

      

, 1
0 04

23

ˆ ˆ  3cos

                  1  1 2 / 2 / exp( 2 / ) .

D i
e B i

i i d i d i d

g S n z

r r a r a r a

π

−

= Γ µ µ θ −

× − + + −

B
 (4.12) 

For comparison with , C i
hfH , we are interested in the maximum of , D i

hfH , which is 

found along θi = 0, where ˆ ˆn z= .  Furthermore, since our interest is in relative magnitudes 

only, choices for the occupancy, average 

electron spin and effective Bohr radius are 

arbitrary here, and I choose the maximum values 

Γ = 1 and 1
2S = , while taking 10.37 nm.da =  

The latter is determined by Eq. (4.7) using κ =13.1 and me = 0.067 m0, as appropriate in 

GaAs; however, note that ,  C i
eB  and ,  D i

eB , expressed as functions of the dimensionless 

quantity (ri /ad ), go with ad
 -3, and so this choice of Bohr radius does not bear upon the 

relative magnitudes of these fields.  The contact hyperfine field is unique for each of Ga 

and As, according to the constants di in Table 4.1.  The resulting radial profiles of the 

relative strengths of ,  ( )C i
e irB  and  

,  ( , 0)D i
e i ir θ =B  for both elements are plotted in Fig. 4.2 

and clearly demonstrate that, for all primary isotopes in GaAs, the contact interaction is 

dominant among the magnetic hyperfine interactions for the radial states treated here.  

isotope di × 10-31  (m-3 ) 
69Ga, 71Ga 5.8 

75As 9.8 

 

Table 4.1  The square of the conduction 
electron Bloch function at the centers of 
the primary isotopes in GaAs.[6] 
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Thus, I exclude the dipolar and orbital angular momentum terms in further treatment of 

optically switched spin interactions. 

 

FIG. 4.2   

Ratios of the radial profiles of the dipolar 
and contact hyperfine interactions for  
the primary isotopes in GaAs about a 
donor-bound electron.  Contributions to 
the ONMR signal from beyond 
(r / ad ) = 3 prove negligible (vida supra). 

2. The LQSE Revisited 

In Chapter 3, the influence of the LQSE on nuclear spin evolution was introduced 

for the case in which a quadrupole splitting appears that is linear in the interfacial electric 

field ε int of a single heterojunction. Such a field is directed along the [001] crystal axis 

and nearly uniform across the ensemble of nuclear spins contributing to the optically 

detected NMR signal.  In the present section, we are interested in the sudden change in 

the local electric field brought on by optical excitation is of interest.  In general, this field 

is neither uniaxial nor uniform at the atomic scale, and the corresponding quadrupole 

splitting is obtained by replacing E100, E010 and E001 in Eq. (3.14) with their position 

dependent counterparts in the optically switched field, yielding 

 [

   

   

    

  

14
,

100 010

2
001

3
( , , )

2 (2 1)

                         sin2  ( ( )sin ( )cos )

                             ( )sin  sin2 .

Q i

i i

i

eQC
I I

E E

E

ω α β γ =
−

× β α + α

+ β α

r r

r

h
 (4.13) 
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Evaluating this expression requires modeling the fates of the electron and the hole 

provided by photoexcitation.  Thus measurement of the photoexcited LQSE is 

complementary to that of the contact hyperfine interaction, which depends only on 

electronic spin density, since hole-nuclear spin interactions are relatively weak.[4] 

B. Radial Resolution of the Optical Knight Shift 

In this section, several POWER NMR experiments for high-resolution 

characterization of optically induced Knight shifts are presented.  The shifts are due to 

the interaction of lattice nuclei with the same electronic state that provides the optical 

NMR signal carrier.  Experimental conditions and parameters that, unless otherwise 

noted, apply to each of the experiments in this section are as follows.  Filtering of the 

photoluminescence was employed as described in Section B.3.ii of Chapter 3, and thus 

the d line of the H-band is the NMR signal carrier.  Whether implemented for ONP, 

optical detection or during NMR evolution, optical excitation was at 802.1 nm, right 

circularly polarized and propagating parallel to B0, thus providing electron spins that are 

antiparallel to B0 // [001] (see Section B.1 of Chapter 1).  Experimental timelines follow 

the usual order for collection of a pointwise time-domain NMR spectrum in t1 with 

Larmor beat detection (LBD) in t2 (Fig. 1.11), while durations of ONP and the spin-

locked optical detection period were tONP = 4.992 s and tlock = 2.256 s.4(a)  The signal 

nucleus was 71Ga at a resonance frequency of 3.2 MHz in the 246.5 mT static field, and 

off-resonance irradiation of the LBD reference nucleus (75As) was employed as described 

                                                 
4(a)  An artifact our programming code for the AWG502 rf synthesizer requires that each segment of the 
experiment timeline be an integer multiple of 200 times the CLSW-16 cycle time.  Thus, for example, we 
use tONP = 4.992 s, rather than 5 s. 
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Section B.3.iii of Chapter 3.  The CLSW-16 multiple-pulse sequence was used during the 

evolution period of all POWER NMR experiments with a standard cycle duration of 

tc = 120 µs.  Radiofrequency homogeneous offsetting was implemented as in Fig. 1.13(b) 

to provide a frequency shift [determined by Eq. (1.35)] in ω1, the Fourier-transformed t1 

dimension.  Typical π/2 pulse times and offset duration ranged from tp = 2.90 – 3.45 µs 

and toff = 100 – 200 ns, resulting in an offset frequency in ω1 of about half Nyquist’s 

frequency of (2 tc )-1.  This homogeneous offset is labeled as the origin of the frequency 

axis in the figures of this chapter. 

1. A Qualitative View of the Electronic Wave Function 

The pulse sequences used for POWER NMR characterization of optically induced 

Knight shifts are shown in Fig. 4.3(a) – (c).  The sequence in (a), which is free of optical 

perturbations, provides the so-called “light-off” control spectrum, while the “light-on” 

sequences in parts (b) and (c) are designed to measure Knight shifts described by , C i
hfH  of 

Eq. (4.1).  Spectra collected using each of the three sequences are shown in part (d) of the 

figure.  In the following, I develop a formal expression for the resulting average 

Hamiltonian describing the optically induced Knight shifts, and then continue with a 

qualitative analysis of the relation between the spectra in Fig. 4.3(d) and the radial 

electronic state shown in the figure inset. 

The rf excitation in each of the sequences (b) and (c) is identical to that of (a).  

However, shaded windows in the light-on sequences indicate the placement of optical 

pulses that introduce the Knight-shift interaction to the average Hamiltonian (0)H , which 
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governs net NMR evolution over integer multiples of tc.  Optically induced contributions 

to (0)H  derive from the secular part of the rotating-frame representation of , C i
hfH : 

 ( )  
        

 

22
0 0 ,3  S ( )i i

KS B n i z ig I= − Γ µ µ γ Ψ r  �H ,  (4.14) 

 
FIG. 4.3 
(a) The CLSW-16 sequence of π/2 rf pulses applied to the signal nucleus during the NMR evolution 
period of the “light-off” experiment.  The corresponding 71Ga spectrum indicated in (d) was obtained 
using tp = 2.90 µs and toff = 100 ns, resulting in a frequency offset of 1186.6 Hz and yielding a 
Lorentzian line shape with a FWHM of 32.3 Hz.   
(b) A “light-on” sequence, in which optical pulses (shaded) arrive in windows 4 and 12 of CLSW-16 
to induce a Knight-shift interaction with photoexcited electrons.  
(c) An alternative arrangement of optical pulses that reverses the shift relative to that obtained from 
(b). 
(d) 71Ga spectra corresponding to the sequences (a) – (c).  The inset correlates the distribution of 
Knight shifts νKS in the spectrum corresponding to (c) with the positions of nuclear spins in the vicinity 
of a center of electronic localization.  Large (small) shifts correspond to sites near to (distant from) 
r = 0, where electronic spin density given by |ψ(ri)|2 is at its maximum.  Similar correlation can be 
made with the spectrum resulting from the sequence in (b).  The convention in labeling the horizontal 
axis defines positive (negative) shifts as towards (away from) the Nyquist frequency in ω1. 

 

where the change in labeling from “C” for contact hyperfine to “KS” for Knight shift is in 

keeping with more standard usage in the solid-state NMR literature.  To obtain the 

average Hamiltonian that corresponds to Eq. (4.14) and the sequences in Fig. 4.3(b) and 

(c), we apply the process described in Section C.1 of Chapter 1.  Therein we substitute 
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 i
KS
�H  for O�  in Eq. (1.27) and evaluate the resulting expression using the toggling-frame 

transformations of  i
KS
�H , which follow the trajectory of Iz that is given in Table A.1 of 

Appendix A.  Inserting these transformations into Eq. (1.28), we obtain 

      
  

(0)
, ,( )KS i KS i z ir I= ± νH , (4.15) 

where the sign is determined by the placement of optical pulses in the light-on sequence 

with ± corresponding to the light-on sequences of Figs. 4.3(b) and (c), respectively.  The 

Knight shift, 

  
          

22
0 03( ) S ( )i

KS i B n ir b gν = − Γ µ µ γ Ψ r , (4.16) 

is referenced to the center frequency of the light-off line shape.  The averaging process 

scales νKS by the light-on duty factor 

 ( )    
1

c j pj
b t t−= τ −∑ , (4.17) 

where the summation is over windows j of duration τj that include the optical 

perturbation.  The appearance of the π/2 pulse duration in Eq. (4.17) accounts for the 

facts that rf pulses cover a finite duration of each window and that rf and optical 

excitation do not overlap, as shown in Fig. 2.6.  For the pulse and cycle times noted 

above, and the τj’s given in Table A.1 of Appendix A, Eq. (4.17) yields 0.1183b =  for 

each of the noted light-on sequences. 

The most important conclusion to be made based on the above experiments is that 

the Knight shift is due to the interaction of the lattice nuclei with a localized electronic 

state.  This is demonstrated by the light-on spectra of Fig. 4.3(d), in each of which a 

distribution of Knight shifts is apparent that corresponds to a bound radial state.  As 
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indicated in the figure inset, nuclei situated near to (far from) the center of localization 

exhibit the largest (smallest) shifts according to variations in electronic spin density at 

those sites [see Eq. (4.16)].  If the electronic state were instead delocalized (even if still 

radial), then lattice nuclei would experience a uniform time-averaged hyperfine 

interaction resulting in narrow-line, light-on spectra that are shifted from, but maintain 

the line shape of the light-off spectrum.  The observed result confirms the expectation 

that the d line of the photoluminescence spectrum is due to recombination of trapped 

photocarriers. 

Finally, we have shown that inhomogeneities in the beam or absorption profiles 

do not lead to spatial variation in photocarrier density, which would provide a 

corresponding macroscopic contribution to the spectral distribution.  One might expect 

such a contribution to vary in shape with excitation power, while we have observed (see 

Section B.3) that only the amplitude, but not the shape, of the distribution scales over the 

range 1 - 20 W/cm2.  Furthermore, our observations of the short-timescale influence of 

spin diffusion (see Section C.1) on the spectral distribution and on signal relaxation times 

strongly evidence the nanoscale origin of the signal.4(b) 

                                                 
4(b)  In Section C.1, we see that spin diffusion influences the 71Ga NMR line shape in Knight-shift-imaging 
experiments at times on the order of t = 2 s, corresponding to a distance scale[97] of (4D t/π)1/2 ~ 10 nm, i.e., 
the GaAs Bohr radius.  This is calculated using an estimate of the 71Ga spin-diffusion constant, 

( ) ( )471 75 71 75 71 75 13 2( Ga) ( As) ( Ga) / ( As) ( Ga) / ( As)  ~  4 10  cm /sD D −= × γ γ × χ χ × , that is based on 
Paget’s[7] measure of D( 75As) ~ 10-13 cm2/s.  The quartic dependence on gyromagnetic ratios γ derives 
from the quadratic dependence (see Abragam,[65] pp. 136-139) of the spin-diffusion rate on the 
homonuclear dipolar Hamiltonian 2 4( )D

II I∝ γH , while the linear dependence on isotopic abundancies χ is 
justified by the fact (see Abragam,[65] p125) that the second moment of the NMR line shape, which is 
likewise quadratic in D

IIH , scales with the occupancy of sites.  As of this writing, there is no existing theory 
for explicit calculation of D for a spin-3/2 isotope. 
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The Knight-shift distribution in Fig. 4.3(d) reflects several factors.  The first is 

qualitatively understood in terms of the number of contributing nuclei with a given shift.  

The relatively few nuclei near the center of localization provide the relatively low-

amplitude, large-Knight-shift component of the signal.  Quantitative assessment requires 

that one additionally accounts for the efficacy of both ONP and optical detection at each 

nuclear site.  Also, the possibility that nuclear spin diffusion spreads order amongst 

distinct nuclei that overlap with the radial wave function must be evaluated.  In Section C 

of the current chapter, I return to these quantitative issues with a detailed model for the 

light-on line shape. 

A remaining point is a technical note on which of the two light-on sequences 

shown in Fig. 4.3(b) and (c) is preferred for measurement of the Knight-shift distribution.  

Each provides a Knight shift that is relative to the rf-induced homogeneous offset 

frequency.  The arrangement of optical pulses in CLSW-16 that yields a shift towards the 

Nyquist frequency is favored over that which provides an oppositely directed shift 

towards zero frequency in the ω1 dimension.  This preference is intended to maintain the 

advantages of the second-averaging process (see Section C.1 of Chapter 1), which are 

diminished near ω1 = 0.  A choice made between sequences (b) and (c) will depend on 

whether right (σ+) or left (σ-) circularly polarized optical excitation is used and on 

whether B0 is parallel or antiparallel to the optical propagation axis.  These factors, as 

discussed in the next section, establish the sign of S  in Eq. (4.16), and thus, together 

with the placement of optical pulses, determine the direction of the optical Knight shift. 
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2. Optical Reversal of the Knight Shift  

The σ+ optical excitation with propagation axis ˆen  parallel to B0 in the previous 

experiments yielded photoexcited electron spins with an average orientation antiparallel 

to B0.  This fact is deduced from the selection rules governing circularly polarized 

excitation in GaAs (see Section B.1 of Chapter 1) and evidenced by the so-called banana 

effect, which was introduced in Section C.2.i of Chapter 2 and is described in detail 

elsewhere.[41,56-58]  The noted selection rules dictate that the average spin orientation is 

reversed with σ- excitation.  The following experiments are designed to confirm that the 

observed optically induced shift is paramagnetic due to interaction with electron spins, as 

befits a shift attributed to the contact hyperfine interaction of Eqs. (4.1), (4.14) and (4.15)

, and that the spin alignment is due to the initial photoexcitation.  Diamagnetic changes in 

chemical shielding upon optical excitation are another conceivable mechanism to be 

evaluated. 

The experiment timeline is shown in Fig. 4.4(a) and is similar to that used in 

field-cycling experiments (see Section E of Chapter 2) in that delays are incorporated 

after the ONP and NMR evolution periods.  The latter break is sandwiched by π/2 store 

and read pulses.  In sequence, these ~ 350 ms delays accommodate plus and then minus 

90° rotation of the λ/4 plate that sits in the optical excitation pathway.  Such rotation 

chooses between an excitation beam with σ+ or σ- polarization.  In all cases, σ+ excitation 

was used for ONP and optical detection, but, when implemented, the noted manipulations 

of the λ/4 plate selected σ- polarization for the excitation during windows of the 



Chapter 4 – Imaging Single-Carrier Wave Functions with Optically Detected NMR  93 

 

CLSW-16 sequence that governed 

NMR evolution.  At all times, B0 and 

ˆen  were roughly parallel. 

Three experiments were 

performed using the timeline in (a), 

each with tp = 2.90 s and toff = 150 ns.  

The first incorporated the light-off 

CLSW-16 sequence to yield the 

indicated spectrum in Fig. 4.4(c), 

which references νKS = 0 to 1.670 kHz 

in ω1 and exhibits a 97 Hz Lorentzian 

FWHM.  The accompanying 

experiments employed the light-on 

CLSW-16 sequence with optical excitation arranged as shown in part (b) of the figure.  

This placement corresponds to the negative coefficient of (0)
,KS iH  in Eq. (4.15).  As noted 

above, σ+ excitation along B0 provides electron spins antiparallel to B0, and thus 0S < .  

This yields νKS > 0 in Eq. (4.16) since all other factors in that equation are positive.  

Inserting this positive νKS into the negative 
 

(0)
,KS iH  provided by the light-on sequence 

yields a negative shift.  This expectation matches the corresponding σ+ spectrum 

indicated in Fig. 4.4(c).  In contrast, σ- excitation with the light-on sequence of (b) yields 

0S >  and a positive shift, matching the σ- spectrum indicated in the figure.   

 
FIG. 4.4  (a) Timeline of the experiment designed 
to measure the dependence of the optically induced 
Knight shift νKS on circular polarization of the 
excitation beam.  (b) The particular arrangement of 
optical pulses during CLSW-16 for light-on 
experiments.  (c) Resulting spectra, where the CP 
that corresponds to each light-on result is indicated.  
The labeling convention on the horizontal axis 
matches that of Fig. 4.3(d).  
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Based on these results, we conclude that the observed shift behaves as expected 

for contact-hyperfine-mediated interaction between the photoexcited spins and lattice 

nuclei.  The symmetry of the shifts with reversal of circular polarization rules out 

significant light-induced changes in chemical shielding.  Furthermore, the shift direction 

is consistent with the observed photoluminescence polarization of only the H-band and 

bulk excitonic features, as alluded to in Section B.3.ii of Chapter 3.  Therein, this point 

was used to argue that the band-to-acceptor carbon transition is excluded as a candidate 

ONMR signal carrier in our experiments, settling the notion that the d line is the relevant 

photoluminescent feature. 

Finally, recall the point made in Section B.1 that positive Knight shifts are 

preferred.  Since, as noted in Section C.2.i of Chapter 2, antiparallel electron-spin 

orientation is optimal for ONP and optical detection, all POWER NMR experiments for 

characterization of optical Knight shifts presented ahead were executed with σ+ excitation 

along B0 to yield this condition.  However, in each Knight-shift imaging experiment, the 

arrangement of optical pulses during CLSW-16 that is shown in Fig. 4.3(c) is used in 

order that signal intensity occur in the spectral range [say (4 tc)-1 < ω1 > (2 tc)-1] where the 

line narrowing is most effective. 

3. Optical Power Dependence of the Knight Shift 

The dependence of the Knight shift on the time-averaged occupancy of the 

electronic localization site is expressed by the factor Γ in Eqs. (4.14) and (4.16).  With 

goal of quantitative spectral modeling in mind, it is desirable to analyze Knight shift 

distribution data for which this Γ is a known parameter and, furthermore, equal to its 
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maximum, thus providing the highest possible resolution of spectrally distinct 

contributions to POWER NMR spectra.  In the experiments of the present section, the 

measurement of the optical power dependence of the observed Knight shift distribution is 

presented.  The resulting spectra determine the approximate power at which the 

interaction saturates, thus locating the desired maximum occupancy, Γ = 1. 

A series of experiments was performed on a timeline identical to that used in the 

previous section and shown in Fig. 4.4(a).  In the present case, delays of ~ 400 ms 

accommodated GPIB switching of the optical power output of the laser diode.  The 

CLSW-16 sequence was implemented with tp = 2.90 s and toff = 150 ns, yielding a light-

off spectrum that references νKS = 0 to 1727.3 Hz in ω1 and exhibits a 41.2 Hz Lorentzian 

FWHM.  For all experiments here, the σ+ excitation was at ~10.3 W/cm2 during ONP and 

optical detection; however, the range 0.55 – 21 W/cm2 was used for excitation during 

light-on POWER NMR experiments with the optical pulse arrangement of Fig. 4.3(b).  

The quoted optical power densities were calculated from the measured laser power output 

scaled by (0.96)6 to account for reflections from the three quartz windows (six surfaces) 

of the optical cryostat, and using the measured 350 ± 50 µm diameter incident spot size.  

This dimension introduces a systematic uncertainty of ± 25 % in the power densities. 

The results of the light-on experiments are shown in Fig. 4.5, where the enlarged 

view at right highlights the clear trend of increasing Knight shift with excitation power 

across the observed spectral distribution.  The apparent saturation level is 10.3 W/cm2, at 

which a slightly reduced shift is observed on the low-frequency (more positive) side 

relative to the next-highest power level at 21 W/cm2, but where the observed distribution 

slightly exceeds that spectrum on the high-frequency (more negative) side, indicating that 
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the differences observed between these two results are near the limits of noise 

contributions.  Thus it is reasonable to take Γ = 1 at 10.3 W/cm2 for our sample. 

In addition to these experiments, we have measured the optical power dependence 

of ONP and optical detection to reveal that the NMR signal strength also saturates near 

10.3 W/cm2 under the same experimental conditions.  Thus, there is no advantage to 

operation at a higher power density, as such would only increase the optical shot noise in 

the experiment.  Thus 10.3 W/cm2 fluence was used during ONP, evolution and detection 

periods in all experiments presented subsequently for quantitative analysis. 

 

FIG. 4.5  (a) Dependence of the Knight shift νKS on incident optical power density.  (b) Expanded 
view of the same spectra, highlighting the overall increase in the distribution of Knight shifts with 
laser power.  The legend indicates the incident optical power density for excitation in selected 
windows of the CLWS-16 sequence. 

 

C. Quantitative Spectral Modeling 

Interpretation of the above Knight-shift distribution spectra as images of the 

electronic wave function requires that we consider the modes of nuclear spin relaxation 

during each of the three segments of the experiment timeline.  This enables prediction of 
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the signal amplitudes that, together with the spectral distribution introduced by |Ψ(r)|2 in 

Eqs. (4.15) and (4.16), provides an analytical expression for the NMR signal.  During 

both ONP and optical detection, we must account for no fewer than three physical 

processes:  quadrupolar relaxation, optically induced hyperfine relaxation and spin 

diffusion.  An unanticipated process, rf-induced relaxation due to fluctuations in the 

phase of the spin-locking field during detection, is also considered.  In contrast to the 

ONP and detection periods, an NMR evolution period t1 that is governed by CLSW-16 

includes a spin diffusion process that is attenuated to a negligible level, while 

quadrupolar and hyperfine relaxation are unimportant on the timescale of t1.  Thus, all 

relaxation during t1 in a Knight-shift imaging experiment is accounted for empirically 

through observation of the linewidth of the accompanying light-off spectrum, a quantity 

that is taken to be independent of nuclear site.   

Finally, as noted in the previous section, the optically detected NMR signal is due 

to nuclear spin interactions with a localized electronic state.  Thus the starting point for 

spectral modeling in the present section incorporates the electronic state Ψd(r) of 

Eqs. (4.4) - (4.7).  This choice determines the spatial dependence of both νKS of 

Eq. (4.16) and the relaxation processes that govern ONP and optical detection.   

The remainder of this section is organized as follows.  In Section C.1, the 

influence of spin diffusion during the optical detection period is uncovered in an analysis 

of the full two-dimensional (ω1 and t2) data set obtained in Knight-shift imaging 

experiments of the type described above.  This analysis determines the approximate time 

scale at which the role of spin diffusion becomes significant, while additionally 

extracting the time constant for non-optically induced signal relaxation during t2.  In 
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Section C.2, an analytical expression for Knight-shift distribution spectra is developed in 

terms of the single-spin (i.e., diffusion-free) relaxation problem.  Measurements of the 

relevant time constants are presented for both 69Ga and 71Ga.  Summation of the 

diffusion-free model over nuclear sites suffices for fitting spectra collected at short ONP 

times.  Section C.3 presents the results of such experiments with tONP as short as 144 ms, 

while the simulations presented there complete characterization of the radial electronic 

state via the Knight-shift imaging experiment.  Finally, in Section C.4, the one-to-one 

relationship between the Knight shift and the position of a nuclear site that is established 

in the shortest-ONP-time experiment provides a basis for following the effects of spin 

diffusion.  A mathematical model is developed for conversion of the frequency domain 

spectrum into an empirical weighting function that, when longer ONP times are used, 

replaces the analytical expression developed in Section C.2. 

1. Spatially Resolved Relaxation:  the Effects of Spin Diffusion 

The spin-diffusion process presents perhaps the greatest theoretical challenge 

towards gaining a sufficient understanding of the evolution of nuclear spin order during 

ONP and optical detection.  Its effects are clearly evidenced with an alternative analysis 

of the data collected in a Knight-shift imaging experiment of the type described in 

Section B above.  In the usual data work-up procedure, the signal transients in t2 (the 

optical-detection period) are each integrated to yield a corresponding point in t1.  As a set, 

the t1 points constitute the time-domain NMR signal.  However, the integration over t2 

buries the effects of signal relaxation during that period; thus it is informative to bypass 

the integration and instead analyze the full 2D data set.   
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The first step in this alternative approach is Fourier transformation of the t1 

dimension, which yields a frequency-domain spectrum at each value of t2.  A plot of the 

resulting 2D data from a Knight-shift-imaging experiment is shown in Fig. 4.6.  The 

second step is to characterize the frequency dependence of signal relaxation in t2 by 

fitting slices cut through the data at constant Knight shift νKS, i to the form 

   
  2 2 , 2 , 2 1 ,( , )  ( ) exp( / )KS i KS i iS t A t T ρν = ν − , (4.18) 

where A2(νKS, i ) is an arbitrary scale factor and T1ρ, i is the overall relaxation time 

constant for the spin-locked optically detected NMR signal corresponding to the ith slice. 

 

FIG. 4.6  71Ga Knight-shift distribution spectrum with additional 
dimension (t2) of optical detection.  The spectrum was collected using a 
timeline similar to that of Fig. 4.4(a), but without the delay periods and 
accompanying store and read π/2 pulses, while the relevant arrangement of 
σ+ optical pulses during CLSW-16 is given in Fig. 4.6(c).  The 
corresponding light-off spectrum with Lorentzian FWHM of 39.9 Hz 
references νKS = 0 to 2124.3 Hz in ω1.  For both light-on and off 
experiments, tONP = 4.992 s, tp = 3.45 µs and toff = 200 ns. 
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Of interest now is the dependence of T1ρ on the observed Knight shift, which is 

uncovered by dissection of nuclear spin relaxation during optical detection.  The first of 

two contributing processes, with time constant 1
BT ρ , accounts for spatially uniform, or 

background, nuclear spin relaxation, the dominant mechanism of which is phonon-driven 

quadrupolar relaxation.  The second process is optically induced (hyperfine) relaxation, 

which, according to relaxation theory,[98,99] (see also Abragam,[65] pp309-11, 328-31) is 

characterized by the inverse time constant 
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where J (1)(ωI - ωS ) is the normalized spectral density of fluctuations with correlation time 

τc and at the difference between the electron and nuclear (angular) Larmor frequencies, 

ωS and ωI, occurring in the ( I+ S- + I- S+ ) part of C
hfH .4(c)  This factor is common to all 

nuclear sites and contains both repopulation dynamics of the optically relevant state and 

electron spin relaxation.  According to Eqs. (4.1) and (4.16), the proportionality of 

( )-1
1

optT  to the square of  
C
hfH may be rewritten in terms of  

       ,KS C
hfb S

ν = H  (4.20) 

                                                 
4(c) Abragam’s[65] equation relating a relaxation time constant T1 to a spectral density J(ω), expressed here 
in Eq. (4.19), pertains to a two-state fluctuation of the corresponding Hamiltonian.  By factoring out Γ in 
our expression, we remain within the two-state context: that of a nuclear hyperfine interaction with an 
electron that is either spin up or down, but always present.  This is appropriate to our experiments since 
Γ = 1.  Paget[7] scaled his expression relating T1

opt to J (1) (ω) by Γ, which is an incorrect consideration of 
possible three-state dynamics for cases where Γ ≠ 1.  
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where we recall that b is the light-on duty factor of the POWER NMR experiment.  

Inserting Eq. (4.20) and 1
2S =  into Eq. (4.19) yields 

 ( )  

       

2-1 2
1 2 222

2( ) .
1 ( )

copt
KS KS

cI S

T
b S

 τπν =   ν
 + ω − ω τ 

 (4.21) 

Finally, the inverse of the measured time constant, without accounting for the influence of 

spin diffusion, is 

 ( ) ( ) ( )    

1 11
1 1 1( ) ( )opt B

KS KST T T
− −−

ρ ρν = ν + , (4.22) 

and exhibits quadratic dependence on νKS given by Eq. (4.21). 

Consider, however, the opposite extreme, where spin diffusion is fast compared to 

the noted relaxation processes and thus cannot be ignored.  Here, the signal with a given 

Knight shift due to its association with nuclear spin evolution at a single lattice site 

during t1 freely diffuses during t2.4(d)  Thus, the spin order associated with a single site is 

detected as that order migrates across the set of lattice sites corresponding to the full 

distribution of Knight shifts and relaxation times T1ρ(νKS).  In this case, all signal 

contributions reflect a spatially averaged hyperfine relaxation process during t2 that is 

characterized by a uniform time constant, i.e., one that is independent of νKS. 

In Fig. 4.7(a), the (T1ρ)-1 values obtained from the 71Ga data in Fig. 4.6 are plotted 

vs the square of corresponding Knight shifts.  The fast-diffusion, uniform-relaxation limit 

and the negligible-diffusion extreme of Eqs. (4.21) and (4.22) are also depicted.  The 

observed behavior is intermediate between these extremes.  At the low-Knight-shift side 

                                                 
4(d)   Recall that, as noted in the opening remarks of Section C, spin diffusion is ineffectual during a t1 
period governed by the CLSW-16 time-suspension pulse sequence. 
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of the plot, the measured T1ρ, i follow the diffusion-free limit, while fast diffusion is 

approached at higher Knight shifts.  This apparent increase in the influence of spin 

diffusion with νKS is understood as follows.  According to Eqs. (4.16), (4.21) and (4.22), 

νKS and | r
∂
∂ T1ρ

-1 | have quadratic and quartic dependence, respectively, on the radial, 

exponentially decaying |ψ(ri)|.  Thus the maximum of each quantity occurs at r = 0, the 

center of electronic localization.  When spin order diffuses over nuclear sites in a given 

distance range, the corresponding range of sampled time constants T1ρ(νKS) is much 

larger in the vicinity of these maxima than it is for spin order that diffuses on the same 

distance scale, but far from r = 0.  Thus, at a given diffusion rate, the apparent effect, as 

witnessed by our measured T1ρ values, is greatest in the large-Knight-shift regime near 

the center of localization and vanishes at small Knight shifts. 
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We can conclude from this 

analysis that spin diffusion does make 

a significant contribution to the 

dynamics on time scales of order 2 s, 

which is the duration of t2 

corresponding to the data analyzed 

above.  Furthermore, the linear fit to 

measured T1ρ values for small Knight 

shifts (∆νKS  200 Hz) in Fig. 4.7 

intercepts the abscissa to yield 

71
1 ( Ga)BT ρ  = 4.8 ± 0.4 s, while a 

similar experiment and analysis 

yielded 69
1 ( Ga)BT ρ  = 2.9 ± 0.1 s.  We 

note, incidentally, that for background 

relaxation due solely to homogeneous 

fluctuations in the quadrupolar 

interaction, one expects that T1ρ ~ T1, 

while the above analysis shows that T1ρ << (T1 ~ hours).  Furthermore, such relaxation 

would yield 
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FIG. 4.7  Frequency dependence of NMR signal 
relaxation during t2 for (a) 71Ga and (b) 69Ga.  Data 
points with error bars at 95% confidence result 
from fits of constant-Knight-shift slices of the data 
in Fig. 4.6 to Eq. (4.18).  Lines correspond to the 
hypothetical cases of negligible and fast nuclear 
spin diffusion.  Qualitative comparison of (a) and 
(b) indicates that spin diffusion may be more 
efficient for 69Ga, possibly due to its higher isotopic 
abundance (69.4%), although the dipolar interaction 
responsible for spin diffusion is stronger for 71Ga. 
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whereas, insertion of the measured time constants into the left-hand side of Eq. (4.23), 

yields (0.61 ± 0.06).  These observations suggest that rf-induced relaxation stemming 

from phase noise in the digitally synthesized rf is dominant during t2 in our experiments.  

In fact, we have observed dramatic dependence of signal relaxation during t2 on the clock 

source used in the digital rf synthesis. 

Finally, we note that the starting point in the above analysis, Eq. (4.19), is 

rigorously valid only for the dynamics of a spin- 1
2  nucleus.  This ignores the possibility 

that distinct time constants may govern relaxation between the pairs of states of a spin- 3
2  

nucleus, 3 1
2 2,m = ± ±  and 1 1

2 2,m = + − , that are separated by ∆m = ±1.  Lambert 

and Weitekamp[100] have completed a preliminary investigation of this issue.  However, 

above and in the following section, the assumption that the spin- 1
2  expression is taken to 

be sufficient, as inclusion the noted spin- 3
2  dynamics is beyond the scope of this thesis. 

2. Characterization of the Diffusion-Free Signal Dynamics 

On time scales much less than the two-second period analyzed above, it proves 

sufficient to model relaxation during ONP and optical detection in the absence of spin 

diffusion.  To that end, I focus on short (fraction of a second) ONP time experiments in 

remaining Knight-shift imaging experiments for characterization of the localized 

electronic state.  However, before presentation and analysis of such experiments, it is 

necessary to formalize the diffusion-free relaxation problem and to present measurements 

of the time constants 1
optT  and T1Q that characterize optically induced and quadrupolar 

relaxation, respectively, during the ONP period. 
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i. The Diffusion-Free Optically Pumped and Detected NMR Signal 

The relaxation process that yields the optically induced nuclear polarization 

P(tONP, r) is described by the differential expression 

       

     
0 0

1 1

( , ) ( , )( , )
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ONP ONP

ONP opt
Q

d
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P P t r P P t rP t r
T r T
− −= +  (4.24) 

where 0
optP  and 0

TP  are the limits of optically induced and thermal nuclear spin 

relaxation.  The radial dependence of Eq. (4.24) derives from hyperfine relaxation, 

which, according to Eqs. (4.4), (4.6), (4.16) and (4.21), is characterized by the time 

constant 
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where C is a constant of the hyperfine interaction, and where, in expressing the rightmost 

equivalence, the radial envelope of a donor-bound electron is assumed.  Solving 

Eq. (4.24) for the initial condition P(0, r) = 0 and inserting Eq. (4.25) into the result 

finally yields 
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The relevance of the chosen initial condition to experiment is guaranteed by the sequence 

of kill pulses leading the ONMR timeline. 

The optically detected signal S2(t2, r) is described by the differential equation 



Chapter 4 – Imaging Single-Carrier Wave Functions with Optically Detected NMR  106 

 

 ( ) ( )( )       
2

1 1

2 2 1 1 2 2( , ) ( ) ( , )opt Bd
dt S t r T r T S t r

− −

ρ= + . (4.27) 

Inserting Eq. (4.25) for 1 ( )optT r  into the solution to this expression yields 
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The relevant form of the initial condition S2(0, r) is determined by nuclear spin evolution 

during ONP and t1, and by the position-dependent efficiency of Hanle-effect optical 

detection.  The latter is set by the strength of the hyperfine interaction, which, according 

to Eqs. (4.1), (4.4), and (4.6), is radially dependent, as expressed in full by the 

exponential decay 2 / dr ae−  of |ψ(r)|2.  Thus, we have 

 ( )  
               

1 2 /( )
2 0 1(0, ) ( , ) cos ( ) dr ar t

ONPS r A P t r e r t e−−π ∆ν = ω  , (4.29) 

where A0 is an overall scale factor, and ω(r) and ∆ν(r) are the experiment-dependent 

frequency and Lorentzian FWHM of the signal in ω1.   

ii. The Time-Constants for Optically Induced and Quadrupolar Relaxation 

Evaluation of the contributions of 

1 (0)optT  and T1Q to optical polarization in 

the diffusion-free formalism, requires 

measurement of the optically detected 

NMR signals of 71Ga and 69Ga vs tONP and 

t2 at t1 = 0.  Constant 5.040 s reference 

(75As) and miscellaneous (non-signal Ga 

isotope) nuclei ONP times were used in 

 
FIG. 4.8  Timeline of rf excitation of the 
signal-nucleus for characterization of its 
ONMR signal dynamics.  Saturation of signal 
nucleus magnetization by the kill sequence 
restarts the clock on its polarization time, 
yielding 2

sig
ONP ONPt t= .  The reference and 

miscellaneous nuclei, which are unaffected by 
the kill sequence, receive 

,
1 2( )ref misc

ONP ONP ONPt t t= + , while the dephasing 
time, τd = 1.5 ms, is negligible in comparison to 
the ONP periods.  A similar arrangement with 
kill pulses on the reference and miscellaneous 
nuclei is used to yield ,sig ref misc

ONP ONPt t> . 
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these experiments.  Isotope-specific ONP times were set by inserting kill sequences at 

appropriate points along the ONP segment of the experiment timeline as shown in 

Fig. 4.8.  The combination of Eqs. (4.26), (4.28) and (4.29) provides the expression for 

the resulting radially dependent signal: 
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It is furthermore reasonable to assume that  

 ( )      
4 /
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over the range of r in which nuclei make a nonvanishing contribution to the signal.  This 

is evident as 0
optP  is on the order of the average photoexcited electron spin polarization,  

   

3
02 ~ 10 T

eP S P= , (4.32) 

in our experiments, and since we expect that 1 (0)optT  is on the order of ms[7] while T1Q is 

on the order of hours in GaAs at 2 K.  Thus, Eq. (4.30) reduces to 
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where 0
optP  has been absorbed into the overall scale factor A0. 
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The 2D data was collected over the variable ranges tONP = 0 to 30 s and t2 = 0 to 

2.25 s under the standard conditions for ONMR:  most notably, B0 ~ 226 mT and along 

both [001] and ˆen , with σ+ excitation thus yielding electron spins antiparallel to B0.  The 

results were fit to the integral expression 

             
2

2 1 0 2 20
( , ) ( , , )maxr

ONP ONPS t t A A r S t t r dr= + ∫ , (4.34) 

where the overall offset parameter A1 is necessitated by the dc character of the signal in 

the spectrometer’s audio stage.  In order to include all nuclear sites that make an 

appreciable contribution to the optically detected NMR signal, the cutoff rmax = 70 nm 

sufficed in the numerical evaluation of the integral.  Implicit in Eq. (4.34) is the 

approximation that the lattice includes a continuous distribution of nuclei.  This 

approximation was found to be satisfactory by comparison with direct summation in 

other calculations. 

A standard nonlinear least-squares routine was used to execute a four-parameter 

(A0 and A1, 1 (0)optT  and T1Q) fit to each of the 71Ga and the 69Ga data sets using the 

measured values of 1
BT ρ  reported in Section C.1.  Again, it is important to distill the data 

set in such a way that the time constants resulting from the fit to Eq. (4.34) are relatively 

free of the effects of spin diffusion.  This was achieved by focusing the analysis on the 

data at short-timescales as follows.  The data set corresponding to the full range of 

contributing tONP and t2 values for a given isotope was fit to yield a set of best-fit 

parameters, which in turn were used as the starting point for fitting a truncated version of 

the same data set.  For example, data up to only a reduced maximum value of tONP was 

included in optimizing the second fit.  This regression process, and a complementary one 
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in t2, was applied repetitively, each time using the results of the fit as starting parameters 

for the subsequent smaller (i.e., shorter-time) data set. 

The results of this regression analysis are plotted in Fig. 4.9 for both 71Ga and 

69Ga.  For each isotope, the smallest truncated data sets yielded a rough plateau of 

1 (0)optT  in the plane of maximum tONP and t2 values ( max
ONPt  and 2

maxt ) included in the fits.  

Meanwhile, T1Q diverged at all points on the grid corresponding to 2
maxt  6 s, indicating 

that the corresponding relaxation rate is negligible in comparison with that of the 

optically induced effect for the nuclei contributing to the signal at short ONP times.  The 

time constants for optically induced relaxation are estimated from the average of the fit 

results at shorter times, i.e., those where max
ONPt  = 0.696 – 1.896 s and 2

maxt  = 0.4 – 1.0 s, 

respectively.  This yields 1 (0)optT  ~ 16 ms and 90 ms for 71Ga and 69Ga, with standard 

deviations of 9% and 12%, respectively, in the sets contributing to these average values.  

These results correspond to 1 ( )opt
dT a  = 0.87 and 4.9 s, for 71Ga and 69Ga.  In a more 

indirect estimate pertaining to a similar radial electronic system, Paget[7] reported 

1 (0)optT  ~ (80 ± 50) ms for 75As, which, appropriately scaled by the (γ75As d75As / γα dα)2, 

yields similar values to those reported above:  1 (0)optT  ~ (72 ± 45) and (120 ± 72) ms for 

α = 71Ga and 69Ga.  Others have reported much longer time constants;[13,101] however, 

their measurements likely reflect either optical pumping of bulk nuclei via delocalized 

states or spin diffusion into the bulk from spins near confined electronic states. 
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FIG. 4.9  Plots of 1
optT , the time constant for optically induced relaxation, as extracted from fits of 

Eq. (4.34) to 69Ga and 71Ga optically detected NMR signals as functions of tONP and t2.  Each data 
point in the above surfaces results from a particular fit in which the data set was truncated at max

ONPt  
and 2

maxt  in the two time dimensions.  The grid is composed of the cross between the sets   
{0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 1.9, 2.25}max

ONPt =  and 2 {0.696, 1.176, 1.896, 3.960, 6.120, 8.640,maxt =   
10.872, 12.600, 14.112, 17.352, 20.592, 24.480, 29.664},  where all values are given in seconds. 

3. Quantitative Knight-Shift Imaging  

With the time constants governing nuclear spin relaxation during ONP and optical 

detection in hand, I now present the results of Knight-shift-imaging experiments 

performed as a function of ONP time on the NMR signal nucleus.  The shortest-ONP-

time results are quantitatively fit according to the diffusion-free signal dynamics 

governed by the measured time constants 1 (0)optT  and 1
BT ρ , and the observation that the 

relaxation rate corresponding to T1Q is vanishing on the time scale of these processes.  

The relevant expression for the single-nucleus, optically pumped and detected NMR 

signal is obtained by inserting Eqs. (4.26) and (4.29) into Eq. (4.28), accounting for the 

inequality of Eq. (4.31), and setting ( )1 1(0) / 0opt
QT T = , to finally yield 



Chapter 4 – Imaging Single-Carrier Wave Functions with Optically Detected NMR  111 

 

 
( )   

          

        

 

1

2 1

( )
2 1 2 0 1

/ ( ) 2 /
4 /

1

( , , , ) cos ( )

                                 1 exp ,
(0)

i

i d

i d

r t
ONP i i

t T r r aONP
r aopt

S t t t r A e r t

t e e
T e

ρ

−π ∆ν

− −
+

 = ω 
  −× −  

  

 (4.35) 

which incorporates the expression 

 ( ) ( )( )     

111 4 /
1 1 1( ) (0) dr aB opt

iT r T T e
−−− +

ρ ρ= + . (4.36) 

In Knight-shift-imaging experiments, the evolution frequency, 

 ω(ri) = 2π ( νKS(ri) + νoff  ), (4.37) 

at the ith nuclear site is determined by Eq. (4.16) for νKS(ri) and νoff, the rf-induced 

homogeneous offset frequency corresponding to Eq. (1.35).  Furthermore, the FWHM 

∆ν(ri) of single-site contributions is taken to be spatially uniform and equal to that of the 

Lorentzian fit to the spectrum obtained in an accompanying light-off experiment. 

i. Short-ONP-Time Knight-Shift Images 

The results were obtained using the standard timeline for pointwise time-domain 

evolution in t1 with LBD in t2.  Light-on experiments incorporated the POWER NMR 

sequence of Fig. 4.3(c) with σ+ excitation at ~10 W/cm2, and ˆen  parallel to B0, thus 

providing electron spins antiparallel to B0 // [001].  Using tc = 120 µs, tp = 3.45 µs and 

toff = 200 ns, provided, according to Eq. (4.17), the light-on duty factor 0.10916b = . 

A series of 71Ga spectra with varying ONP times were collected back-to-back 

during a continuous experimental run of 180 minutes plus tune-up time.  For the signal 

nucleus, tONP = 0.144, 0.240, 0.720 and 3.000 s in this series of light-on experiments, 

while tONP = 3.000 s was incorporated in the lone light-off experiment.  Each of these 

incorporated miscellaneous (69Ga) and reference (75As) nucleus ONP times of 4.992 s, 
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with isotope-specific ONP times set as described in Section C.2.  Time-domain spectra in 

t1 were obtained by integrating the signal transients in t2 from 2 0.100 smint =  to the end of 

the optical detection period at 2 2.280 smaxt = .  These limits reflect the exclusion of data 

from 2 2
mint t< , a period that is skewed by ringing of the spectrometer filters, and a 

detection period that is halted before the signal decay is complete.  The latter limit is 

intended to reduce the contribution of resistive heating in the rf coils to the l-He boil-off 

rate during spin-locked detection.  Furthermore, keeping this limit short is additionally 

important since problematic spin diffusion gains prominence at larger values of 2
maxt . 

The resulting spectra are shown in Fig. 4.10.  The best fit to the light-off spectrum 

is a 32.3 Hz FWHM Lorentzian that references νKS to 2119.5 Hz in ω1.  Each of the light-

on spectra exhibits the qualitative features (see Section B.1) of a Knight-shift distribution 

due to interaction with a radial electronic state.  Quantitative analysis of the frequency 

dependent increases in signal amplitude with tONP requires comparison with the analytical 

model for diffusion-free dynamics. 
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FIG. 4.10  71Ga Knight-shift-distribution spectra as a function of tONP. (a) Light-on and (truncated) light-
off spectra collected at tONP = 3.000 s. (b) Light-on spectra collected at the indicated short ONP times 
where the influence of spin diffusion is diminished. 

ii. Simulation and Fitting Procedure 

The time-domain spectra that were Fourier transformed to yield the above Knight-

shift distributions were simulated and fit using the analytical signal expression, 

 ( )     

2

2
1 2 1 2 2( , )  ( , , , ) max

min

t

ONP ONP it
i

S t t S t t t r dt= ∑ ∫ , (4.38) 

where the summation is over Ga sites in one radially bounded octant of the lattice about 

the center of electronic localization.  Inserting Eq. (4.35) into this expression we obtain 

 ( )  
           

1
1 1( , , ) ( , ) cos ( ) ,i t

ONP i ONP i i
i

S t t r A t r e r t−π ∆ν = ω ∑  (4.39) 

where the single-site amplitude is given by  
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and Eq. (4.36) for T1ρ(ri). 

The octant of lattice sites over 

which Eq. (4.39) is summed was 

obtained as follows.  Figure 4.11 

depicts the zincblende crystal structure 

of the GaAs lattice, which is formed by 

the two interpenetrating fcc sublattices 

of Ga and As.  Four of the Ga sites are 

highlighted in the figure along with 

their coordinates in units of 2
a , where a 

is the GaAs lattice parameter.  

Incrementation of the x, y, or z index of one of these “seed” positions by +2 locates 

another Ga site.  Repetition of such incrementation at each index of each seed generates 

the complete Ga sublattice in the octant of interest.  For the purpose of the present 

calculation, it is sufficient to include only those sites within a 70 nm radial boundary, 

outside of which the contribution to the optically detected NMR signal is negligible. 

In calculating the time-domain signal with Eq. (4.40), we incorporate the position-

dependent frequency of Eqs. (4.16) and (4.37), using the donor-bound radial electronic 

state of Eqs. (4.4) – (4.7).  Relevant experimental parameters and measured constants that 

were presented in previous sections are compiled in Table 4.2.  Therein, the values 

corresponding to both 69Ga and 71Ga are listed; however, only the 71Ga values are 

necessary for simulation of the spectra shown in Fig. 4.10. 

FIG. 4.11  The zincblende crystal structure of 
GaAs.  The coordinates of the four Ga “seed” sites 
discussed in the text are indicated in units of ½ the 
lattice parameter a.  The center of electronic 
localization defined to be at (0, 0, 0). 
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Table 4.2  Constants and parameters relevant to simulation of Knight-shift distribution spectra. 

Constant or 
Parameter Units 71Ga  69Ga Source 

1 (0)optT  ms 16 90 Section C.2 

1
BT ρ  s 4.8 2.9 Section C.1 

ad  nm 10.37 same Eq. (4.7) 

a nm 0.565 same Kittel[79] 

Ω 10-29 m3 4.51 same Eq. (4.5) 

di 1031 m-3 5.8 same Paget, et al.[6] 

γn MHz / T 12.98 10.22 _______ 

Γ none 1 same Section B.3 

b none 0.10916  same (a)Section C.3.i 

νoff kHz 2.1195 
_______ (b)Section C.3.i 

∆ν Hz 32.3 _______ (b)Section C.3.i 
(a) Parameters of the CLSW-16 sequence determine b. 
(b) The Lorentzian fit to the light-off line shape determines νoff and ∆ν. 

Two free parameters remain:  the overall scale factor A0 and the average 

electronic spin S .  A grid search over these was executed for each of the ONP times 

used in obtaining the light-on spectra above.  The optimum values were located according 

to a minimization of the χ2 value obtained by comparison of the tONP = 144 ms time-

domain data and simulation.  Of the light-on spectra presented in Fig. 4.10, this is the 

least perturbed by spin diffusion, and thus offers the best comparison with the analytical 

model for the NMR signal.  Contours of the grid search are shown in Fig. 4.12, while its 

detailed description is contained in the caption.  The minimum of χ2(tONP = 144 ms) is 1.0 

and located at 0.15S =  and A0 = 0.86, where the latter quantity is the unitless ratio of 

the t1 = 0 point of the simulation to that from the experimental data.  Remarkably, this 

value of S  is identical within experimental accuracy to those of the e and d lines of the 
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H-band, which were obtained in independent PL experiments and reported in Table 3.2.  

The minimum χ2 values and corresponding parameters at each ONP time are given in 

Table 4.3.  As noted therein, and as apparent from the contour plots of the grid search, the 

tONP = 144 ms minimum almost directly overlaps those of the tONP = 240 and 720 ms data.  

This indicates that the influence of spin diffusion remains small at these time scales.  

However, the minimum for the tONP = 3 s data is located more distantly in the parameter 

space and yields the worst χ2 value in the group, which is presumably attributable to the 

failure of the diffusion-free modeling of signal amplitudes in Eq. (4.40). 

Table 4.3 The χ2 minima resulting from grid search over <S> and A0. The values 
<S>min and (A0)min locate the minimum at each value of tONP.  The last column provides 
the χ2 value for simulations at each ONP time using the parameters in the shaded 
(tONP = 144 ms) row.  The last decimal place in each fit result is shown as a subscript 
and, while not significant for measurement, give a sense of the variation from fit to fit. 

tONP  (ms) best χ2 
minS  ( )0 minA  

χ2 at tONP = 144 ms 
minimum  

144 1.00 0.153 0.780 1.00 

240 1.26 0.150 0.776 1.26 

720 1.59 0.148 0.830 1.82 

3000(a) 4.31 0.122 0.860 12.49 

(a) The χ2 minimum for the tONP = 3 s data was located in the coarse grid search. 
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FIG. 4.12  Contour plots of the χ2 values obtained by comparison of the time-domain spectra 
that correspond to the light-on results in Fig. 4.10 with simulated spectra obtained from the 
analytical model discussed in the text.  Coarse and fine 2D grids were used in the search over 
the parameters S  and A0, covering the ranges:  (1) coarse: {0.05 0.395}S = −  and 

0 {0.2 1.25}A = −  with increments of 0.01 and 0.05; and, (2) fine: {0.125 0.174}S = −  and 
0 {0.65 0.85}A = −  with increments of 0.0025 and 0.01. 

Fourier transformations of these time-domain simulations at the χ2(tONP = 144 ms) 

minimum are plotted along with the frequency domain data in Fig. 4.13.  Good 

agreement at the three shortest ONP times is immediately apparent, while the inset shows 

the experiment and simulation at tONP = 3 s, where, most notably, the analytical model 

undershoots the amplitude in the small-Knight-shift, large-radius regime.  We attribute 



Chapter 4 – Imaging Single-Carrier Wave Functions with Optically Detected NMR  118 

 

this failure to the influence of spin diffusion, which carries optically pumped spin order 

from regions that are relatively near to r = 0 out to the extremities of the electronic state. 

 

FIG. 4.13 
71Ga Knight-shift-distribution spectra 
(points) and corresponding simulations 
(lines).  The parameter set used in each 
of the simulations is that which yields 
the minimum χ2 in comparison of the 
time-domain simulation and spectrum 
at tONP = 144 ms. The inset highlights 
the failure of the analytical model at 
longer ONP times due to the influence 
of spin diffusion. 

In addition to providing an image of the localized electronic wave function via the 

Knight shift’s dependence on |Ψ(r)|2, the fit result at tONP = 144 ms establishes an 

important one-to-one relationship between frequency (νKS) and radial position (r / ad ).  

This relationship is reflected in the labeling of the uppermost horizontal axis of Fig. 4.13 

and is expressed by inserting Eqs. (4.4) – (4.7) for |Ψ(r)|2 into Eq. (4.16) for νKS(r) and 

inverting the result to yield 

 ( ) ( ) ( )     
1
2/ ln (0) ln ( )d KS KSr a r= ν − ν   , (4.41) 

where 

 ( ) 
              

132
0 03(0) S  ~  2.5 kHzi

dKS B n ib g d a
−

ν = − Γ µ µ γ Ω π  (4.42) 
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in these experiments.  We have developed a novel scheme that takes advantage of this 

result in order to convert radially resolved Knight-shift-distribution spectra into an 

empirical radial-weighting function that replaces A(tONP, r) of Eq. (4.40).  In the next 

section, the empirical function is developed using the tONP = 3 s Knight-shift-distribution 

spectrum presented above.  The result is of use in predicting the outcome of experiments 

in which spin diffusion may contribute and where the relation between position and 

frequency may be other than one-to-one.  One such experiment is presented in Section D, 

where I detail the results of our characterization, via the LQSE, of the radial distribution 

of the electric field that is associated with the photoexcited electronic state. 

Finally, in light of the above results, an additional comment on the optically 

induced relaxation dynamics discussed in Sections C.1 and C.2 is warranted here.  The 

correlation time τc of fluctuations in the spin state of electrons trapped at the optically 

relevant defect is related to T1
opt and νKS by Eq. (4.21).  Furthermore, noting that from 

Eqs. (4.4), (4.6), (4.16) and (4.25), 

     

2 2
1 1( ) ( ) (0) (0)opt opt

KS KSr T r Tν = ν , (4.43) 

we may rewrite Eq. (4.21) as 

  

                 

2
22 2

122

2( ) (0) (0) 1 0.opt
c cI S KST

b S

 πω − ω τ −  ν τ + =
 
 

 (4.44) 

Thus, in order that a physical (i.e., real) value of τc result from Eq. (4.44), it must be that 

              

2
2

122
~ (0) (0)opt

I S S KST
b S

 πω − ω ω ≤  ν 
 
 

. (4.45) 
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Inserting our results that 1 (0) 16 msoptT = , 0.15S = , and νKS(0) = 2.5 kHz, and the 

corresponding parameter 0.10916b = , one finds the electron Larmor frequency 

corresponding to the maximum in Eq. (4.45): 

 νS  
max  =  (ωS 

 max/ 2π)  ~  586 MHz. (4.46) 

Division of this result by the GaAs conduction-band electron gyromagnetic ratio, 

 γe  =  (ge / g0 ) γe 
free,  (4.47) 

where 0.44eg = − , yields the corresponding maximum field of ~95 mT, which is 

~150 mT larger than the static field used in the experiments presented in this thesis.  

However, this apparent discrepancy is explicable as follows.  In calculating the total field 

experienced by the localized electrons that are relevant to the present work, one must 

account for the influence of the optically pumped nuclear fields n
αB  [see Eq. (1.20)] of 

each isotope α present in GaAs.  These have been shown to be on the order of tens to 

hundreds of mT each.4(e)  Furthermore, since the photoexcited electron spin is pumped 

antiparallel to B0 in our experiments, the n
αB , which follow the electronic orientation, 

tend to cancel B0.  This fact provides a plausible explanation for the surprisingly small 

upper bound on the electron Larmor frequency of Eq. (4.46) obtained when using our 

measured values for 1 (0)optT , S , and νKS(0).  Furthermore, given that the n
αB  are of the 

appropriate order of magnitude to sufficiently cancel (or overcome) B0, this calculation of 

the expected maximum field adds credence to the results of our relaxation experiments 

and to the fitting of the Knight-shift imaging spectra. 
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This analysis also highlights complexity in the phenomenon optically pumped 

nuclear spin relaxation that has not previously been considered.  As noted in Paget’s 

treatment of this problem,[7] determination of τc requires knowledge of each of 1 (0)optT , 

ωS and the magnitude of the hyperfine interaction.  However, explicit inclusion of the 

effects of the n
αB  was not discussed in his accompanying calculation of τc.  Since Paget’s 

experiments were performed at relatively high field and, furthermore, showed no 

apparent variation of measured 1 (0)optT  values over the range B0 = 600 – 900 mT, such 

omission may be valid in his application.  However, at fields where the n
αB  are 

comparable to B0, their consideration gains importance.  In such case, full rigor requires 

that one additionally consider the growth of the n
αB  during ONP, which may yield 

corresponding time dependence in 1 (0)optT .  Explicit inclusion of such feedback in the 

nuclear-spin-relaxation dynamics is beyond the scope of this thesis.  However, it is 

worthwhile at present to add the following comments aimed at gaining some sense of the 

significance of this omission. 

If one takes Paget’s[7] the calculated result, τc ~ 25 ps, at face value, then, in the 

case where n
α

α∑ B  vanishes so that 

     0 ~    2I S S e Bω − ω ω = π γ , (4.48) 

the denominator in Eqs. (4.19) and (4.21) becomes 

 ( 1 + (ωI - ωS )2 τ2 ) ~ 1.06 (4.49) 

                                                                                                                                                  
4(e)   Marohn, et al.[9] estimated nuclear spin polarization Pn  ~ 10% under similar conditions on the same 
sample as that used here, while Eq. (1.20) provides, as Paget[6] found, | Bn ( 75As, 69Ga, 71Ga)  / Pn | = 1.8, 
0.9 and 0.8 T, respectively. 
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for the experiments presented in this thesis.  This result is exact at the start of ONP, 

which we recall is preceded by a saturation sequence, and, furthermore, should express 

the maximum deviation of the calculated quantity from unity provided that 

 0    n
α

α
+ ∑B B   d  B0, (4.50) 

or equivalently, 
 n

α
α∑ B   d  2 B0. (4.51) 

According to the estimates of the n
αB  provided in footnote 4(d), this condition should 

hold at all times during both ONP and optical detection.  Thus, even in our relatively low-

field experiments, the product ( )2 2
I S cω − ω τ  in Eqs. (4.19), (4.21) and (4.44) may be 

presumed negligible and, by association, so may the time dependence of 1 (0)optT .  

However, to solidify this notion, a modified repetition of the experiments of Section C.2 

for measure 1 (0)optT , including investigation of its dependence on B0, is indicated. 

4. Empirical Radial Weighting 

In the diffusion-free model, each of the factors determining the amplitude 

contributions A(tONP, ri) of single nuclear sites to the optically detected NMR signal 

depends on |Ψ(r)|2.  Thus, the analytical expression for A(tONP, ri) in Eq. (4.40) is 

rendered invalid when experiment timescales are sufficient for diffusion to transfer 

nuclear magnetization across sites where |Ψ(r)|2 is distinguishable.  In lieu of a separate 

analytical form that includes the complicated process of spin diffusion on a lattice of 

spins 3
2 , an experimental method of determining A(tONP, r) is desirable.  To this end, we 

have developed an approach that utilizes the one-to-one relationship between r and νKS of 
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Eq. (4.42), as established in short-ONP-time experiments, to convert any long-ONP-time 

Knight-shift spectrum into an image of the radial distribution of optically detected NMR 

signal amplitude at that value of tONP. 

The mathematical formalism for this conversion is developed in Appendix C, 

while its step-by-step application to the previous results at tONP = 3 s is shown in 

Fig. 4.14.  The procedure requires as input a Knight-shift-distribution spectrum at the 

ONP time of interest, knowledge of its underlying linewidth and the measured value of 

S , the result is an empirical replacement for A(tONP, r).  Substituting r for the 

generalized coordinate ξ and Eqs. (4.4) – (4.6) and (4.16) for νKS(r) in Eq. (C.20) of 

Appendix C, we obtain the radial weighting for the total signal: 

           
2 2 /

1 1( ) ( , ) ( , )dr a
ONP d ONPN r A t r r e S t−= α ν� , (4.52) 

where α is a constant for the overall scale, N1(r) is the radial density of nuclear spins 

given by Eq. (C.21), and the linewidth-deconvoluted Knight-shift distribution spectrum 

 1( , )d ONPS t ν�  is obtained as described in the caption of Fig. 4.14.   

Figure 4.14(d) and (e) provides comparisons of the analytical and empirical 

functions at tONP = 3 s.  Part (d) includes a plot of the data that corresponds to Eq. (4.52), 

as well as the empirical weighting function, which is a fit to that data, and the diffusion-

free analytical function, which is given by the product of Eq. (4.40) and the quadratic 

radial dependence of N1(r).  The empirical function reveals a redistribution of signal 

amplitude, relative to the analytical case, that matches the expectation that spin diffusion 

transfers optically pumped spin order from small to large r.  The single-site weighting 

functions, obtained by dividing out N1(r), are plotted in part (e) of the figure. 
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FIG. 4.14  Procedure for obtaining an empirical radial weighting function from a Knight-shift-distribution 
spectrum.  Here, we treat the tONP = 3 s data presented in Figs. 4.10 and 4.13.  (a) Plots of the time-domain 
spectrum S(t1) and the inverse decay,   1te +π ∆ν , of the corresponding light-off spectrum.  (b) The linewidth-
deconvoluted time-domain spectrum Sd (t1), which is the product of the two plots in (a).  The lines connecting 
data points in both (a) and (b) serve only as a guide to the eye.  (c) The linewidth-deconvoluted frequency 
domain spectrum Sd (νKS) that results from Fourier transformation of (b) and subsequent referencing of 
νKS = 0 to the homogeneous offset frequency in ν1.  Data in the shaded region is used in determining the 
empirical signal weights.  (d) Radial weighting, [N1(r / ad ) A(r / ad )], for the total optically detected NMR 
signal.  The data points were obtained by conversion of the amplitudes in (c) according to Eq. (4.52), while 
the frequency axis was converted to one of radial position using Eq. (4.41) with the parameters of Table 4.2 
and 0.15S = .  The empirical weighting function is a fit of two Gaussians to the combination of this data 
and a point inserted at r = 0, where the signal vanishes.  The analytical function is the product of r2 and 
Eq. (4.40) and is normalized here to yield the same total signal intensity as the empirical function.  (e) The 
single-site radial weighting functions, which are the product of the weights in (d) and ( N1(r) )-1 ∝ r-2 [see 
Eqs. (4.52) and (C.21)].  Parts (d) and (e) include similar results obtained from data collected at tONP = 5 s. 
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Replacing A(tONP = 3 s, ri) in Eq. (4.39) with the empirical function of Fig. 4.14(e) 

in simulation of the Knight-shift-distribution spectrum according to the procedure of 

Section C.3.ii, we obtain the result plotted in Fig. 4.15.  The corresponding data and the 

earlier simulation that incorporated the diffusion-free analytical weights are also shown.  

The success of the new method is clear, as it yields apparently perfect overlap (χ2 = 1.) of 

the data and simulation.  The true 

utility of the empirical weighting 

function, however, is its application 

with ONMR experiments in which the 

spectral observable does not exhibit a 

one-to-one relationship with the 

positions of contributing nuclei.  In 

such a case, independent knowledge of 

the spatial dependence of the NMR 

observable, combined with the 

empirical function for the amplitude 

contributions, enables one to predict 

the experimental results with no 

adjustable parameters.4(f) 

                                                 
4(f) The scale factor α in Eq. (4.52) is set by scaling the time-domain simulation to match the amplitude of 
the t1 = 0 point with that of the observed spectrum, and thus is not a free parameter. 

 

FIG. 4.15  Comparison of 71Ga Knight-shift-
distribution spectrum (points) with simulated 
results (lines) obtained using the analytical and 
empirical models for radial weighting.  The inset 
indicates the influence of spin diffusion, which 
manifests in increased signal intensity in the small 
Knight-shift (large r) regime due to the transfer of 
optically pumped nuclear magnetization from near 
the center of localization out to the extremities of 
the electronic state.  The empirical model 
successfully accounts for these effects. 
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D. The Radial Electric Fields of Localized Electronic States 

The POWER NMR measurements of the spatially varying Knight shift presented 

in the previous section demonstrate that the relevant electronic state is localized, and, 

furthermore, strongly indicate that the state is characterized by a radial wave function.  

However, distinct radial models, such as those corresponding to either a donor-bound 

electron or exciton, may be consistent with the observed distribution of Knight shifts.  

Meanwhile, these two particular cases do differ in the origin of the valence vacancy with 

which the photoexcited electron recombines to yield luminescence.  In the excitonic case, 

a photoexcited hole accompanies the electron to the localization site, where the pair then 

recombines.  In contrast, a donor-bound electron recombines at the localization site with 

a thermal vacancy that is initially spatially uncorrelated with the electron.  Thus, as far as 

nuclei near the trapping site are concerned, optical excitation provides only an electron in 

the latter case, while both an electron and a hole arrive with photoexcitation and 

localization of an exciton. 

In order to distinguish between these contending models and solidify our picture 

of the relevant electronic state, we require an experiment that is sensitive to the fate of the 

photoexcited hole.  As noted in Section A.2 of the present chapter, POWER NMR 

characterization of the photoexcited LQSE measures the light-induced change in the local 

electric field, a quantity that reports on the presence of either type of charge carrier.   We 

are left then with the task of distinguishing the spectral effects of an electric field that 

derives from either a bound electron or a bound electron-hole pair. 

The remainder of this section is organized as follows.  In Section D.1, the radial 

dependence of the localized photoexcited field for each of the noted electronic models is 



Chapter 4 – Imaging Single-Carrier Wave Functions with Optically Detected NMR  127 

 

derived, highlighting the measurable distinction between them.  In Section D.2, POWER 

NMR experiments for high-resolution characterization of the optically induced LQSE are 

presented.  These entail synchronization of optical pulses and the CLSW-16 sequence in 

a way that is similar to that used for characterization of the Knight-shift interaction, but 

here with B0 oriented along [110] for sensitivity to the LQSE.  The results are compared 

with spectral predictions that are based on our knowledge of the angular dependence of 

the LQSE (see Section A.2), the empirical site-by-site amplitude-weighting model 

developed in the previous section, and the two contending models for the radial electronic 

state.  Finally, in Section D.3, I propose an additional experiment, also characterizing the 

LQSE, which promises further insight into the nature of the electronic state characterized 

here, and which is of general utility for POWER NMR characterization of any quantum-

confined electronic system via the LQSE. 

1. Calculation of the Photoexcited Electric Field 

For either a bound exciton or electron, the localized radial electronic state is 

described by a ground-state hydrogenic envelope centered at r = 0.  Gauss' law provides 

the expression for a radial electric field, 

     

   

2

0

( )( )
4

q rr r−ε =
πκ ε

, (4.53) 

due to a confined spherical charge distribution centered at r = 0, where q(r) is the fraction 

of the total charge bounded by the sphere of radius r.  It remains then to determine the 

form of q(r) for each of the contending electronic models.  For this purpose, the 

electronic state is sufficiently described by an envelope function ψ(r), i.e., we can ignore 

locality at the atomic level, such as the division of carrier density between Ga and As 
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sites in the unit cell, which was needed in calculation of the Knight shift.  In general, the 

effective point charge at r = 0 experienced by a nucleus at ri is 

          

2 2
0 0 0 0

( ) ( ) sinir

iq r q r r d d dr
π π

= ψ θ φ θ∫ ∫ ∫ , (4.54) 

where the distribution of a single carrier with charge q0 is given by |ψ(r)|2.  In the 

following, I evaluate the specific cases where ψ(r) describes either a donor-bound 

electron or exciton. 

i. The Donor-Bound Electron 

The envelope wave function for the electron is ψd (r) of Eqs. (4.6) and (4.7).  

Replacing ψ(r) with ψd (r) in Eq. (4.54), and inserting the result of the integration into 

Eq. (4.53) yields the radial electric field of a donor-bound electron: 

 ( ) ( )( )( )         

   

22

0

( ) 1  1 2 / 2 / exp( 2 / )
4d i i i d i d i d

er r r a r a r a−−ε = − + + −
πκ ε

. (4.55) 

ii. A Fixed-Center-of-Mass Exciton 

Derivation of the field distribution due to a trapped exciton is more complex.  The 

most rigorous model for a bound exciton involves solution of a three-body problem that 

incorporates the excitonic pair and the fixed charge at the center of localization.4(g)  The 

simplest model assumes an infinite hole mass, such that the electron and hole components 

of the exciton are described, respectively, by the donor envelope ψd (r) of Eq. (4.54) and 

a point charge that coincides with the center of localization.  Here, I develop a model of 

intermediate complexity in which a bound exciton is described in a coordinate system 

wherein the center of mass of the electron at re and the hole at rh is taken to be fixed in 
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space at the center of localization.  In the center-of-mass coordinate system, the exciton is 

described as a fictitious relative particle with the reduced mass, 

 ( ) 11 1
x e hm m

−− −µ = + , (4.56) 

of the electron-hole pair, and with a spatial distribution given by the radial envelope 

 ( ) ( )   

1/ 23( ) exp /x x x x xr a r a
−

ψ = π − , (4.57) 

where 

   ( / )x B xa a= κ µ  (4.58) 

is the effective Bohr radius of the relative particle, and 

 rx = ( re - rh ). (4.59) 

Using the relation 

 me re = mh rh  (4.60) 

we have 

 ( )    , ,e e e er= θ φr      and     ( ) ( )     2, ,e
h e e e

h

m r
m

π 
= θ + φ + π 
 

r , (4.61) 

where the origin r = 0 of the polar coordinate system locates the coincident centers of 

mass and localization of the electronic state.  The combination of the expressions for 

these coordinates and Eq. (4.59) indicates that 

 ( ) ( )          1 / 1 /x e e h h h er r m m r m m= + = + . (4.62) 

Inspection of Eq. (4.62) reveals that the probabilities that the electron or hole is located 

within a region bounded by a spherical surface centered at r = 0 and with radius ri are 

                                                                                                                                                  
4(g) Excitons are also known, for example, to trap on neutral donor sites,[68,69] in which case the solution of 
a four-body problem that accounts for the presence of a second trapped carrier is required. 
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equivalent to the integrated excitonic probability density out to values of the relative 

coordinate of 

 rx
e  =  ri (1 + me / mh) (4.63) 

and rx
h  =  ri (1 + mh / me),  (4.64) 

respectively.  Thus, according to Eq. (4.54), the total individual-particle charges 

experienced by a nucleus at ri and due to the electron and hole in this excitonic model are 

          

2 (1 / ) 2

0 0 0
( ) ( ) sini e hr m m

e i xq r e r r d d dr
π π +

= − ψ θ φ θ∫ ∫ ∫  (4.65) 

and          

2 (1 / ) 2

0 0 0
( ) ( ) sini h er m m

h i xq r e r r d d dr
π π +

= + ψ θ φ θ∫ ∫ ∫ . (4.66) 

To find the corresponding contributions εx, e (ri) and εx, h (ri) to the distribution of the total 

electric field distribution, we insert Eq. (4.57) into Eqs. (4.65) and (4.66) and evaluate the 

integrals.  Inserting those results into Eq. (4.53) and noting that 

 ( )     
1 1 1 /h x h ea a m m− −= +      and      ( )     

1 1 1 /d x e ha a m m− −= + , (4.67) 

where 

    ( / )h B ha a m= κ , (4.68) 

and ad is the familiar Bohr radius of a donor-bound electron, we obtain 

 , ( ) ( )x e i d ir rε = ε  (4.69) 

and ( ) ( )( )( )         
 

   

22
,

0

( ) 1  1 2 / 2 / exp( 2 / )
4x h i i i h i h i h

er r r a r a r a−ε = − + + −
πκ ε

. (4.70) 

According to Eqs. (4.68) and (4.70), in the limit where  hm → ∞ , the total field 

distribution 

     , ( ) ( ) ( )x i d i x h ir r rε = ε + ε  (4.71) 
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of the fixed-center-of-mass exciton correctly reduces to that of a the donor-bound 

electron combined with a fixed positive charge at r = 0. 

The radial profiles of the electric field corresponding to a donor-bound electron 

and a fixed-center-of-mass exciton that includes either a light or heavy hole are plotted in 

Fig. 4.16.  Large differences exist between the profiles that correspond to each model, 

including changes in sign and 

magnitude of the field.  In the following 

sections, the comparison of POWER 

NMR measurement of the optically 

induced LQSE with its simulation based 

on the profiles in Fig. 4.16 is used to 

distinguish between the contending 

electronic models. 

2. POWER NMR Characterization of the Photoexcited Electric Field 

i. Experimental Conditions and Parameters 

Results were obtained using the standard timeline for pointwise evolution in t1 

with LBD in t2.  The inclusion of field-cycling delays [see Fig. 4.4(a)] allows for 

adiabatic reorientation of B0 such that it is parallel to [001] and the optical propagation 

axes during both ONP and detection, but along [110] during the NMR evolution period, 

as appropriate for sensitivity to the LQSE.  The ONP time for each of the three primary 

isotopes in GaAs was 4.992 s, while 71Ga and 75As served as signal and reference nuclei, 

respectively.  The duration of the detection period was 2 2.256 smaxt = , while, as in the 

 

FIG. 4.16  Electric-field profiles for relevant 
localized radial electronic states.  Note the change 
in scale after the break in the vertical axis. 
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Knight-shift experiments of Section C, data from times  2 2 0.100 smint t< =  was excluded 

in integrating t2 transients to obtain points in the 1D time-domain spectrum in t1. 

Comparison of spectra obtained with light-on and off versions of the CLSW-16 

sequence provides the desired characterization of the photoexcited electric field.  In the 

light-on case, the arrangement of optical pulses 

matches that shown in Fig. 4.17.  For each 

experiment, we used σ+ excitation at 

~10 W/cm2, a longitudinal field for ONP and 

detection of 246.5 mT, and a transverse 

evolution field of 57.8 mT, which corresponds to a 71Ga resonance frequency of 750 kHz.  

For the particular results presented in this section, parameters of the rf excitation include 

tc = 120 µs, tp = 4.00 µs and toff = 200 ns.  Thus, according to the noted placement of 

optical pulses and Eq. (4.17), the light-on duty factor is b = 0.2. 

ii. NMR Evolution under the Photoexcited LQSE 

The single-site rotating-frame Hamiltonian 
 ,Q i

�H  that governs LQSE-induced 

nuclear spin evolution is obtained by insertion of the Euler angles     4 2( , , ) ( , , 0)π πα β γ = , 

which correspond to the noted orientation of B0, into Eq. (4.13) for ωQ, i (α, β, γ), and that 

result into Eq. (3.13), to yield 

 ( )          
   

2
, , ,

1
4 2 2 4 2( , , 0) ( , , 0)QQ i i z iIπ π π π= ω�H  (4.72) 

in units of (radÿs-1), where 

     

     
14 001

, 4 2
3 ( )( , , 0) .

2 (2 1)
i

Q i
e Q C E

I I
π πω =

−
r
=

 (4.73) 

FIG. 4.17  The CLSW-16 sequence of rf 
pulses and optical pulses placed in 
evolution windows with labels matching 
those of Table A.1 in  Appendix A. 
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Except for the dependence of the electric field E001(ri) on nuclear position relative to the 

center of localization, this expression for ωQ, i is identical in form to that of Eq. (3.18), 

which describes the influence of the interfacial field on nuclear spin evolution in a spin-

echo experiment with the same orientation of B0.  Because the interfacial field is not 

optically switched, its bearing on NMR evolution is averaged to zero by CLSW-16. 

The average Hamiltonian that corresponds to Eq. (4.72) and the sequence of 

Fig. 4.17 is developed according to the process described in Section C.1 of Chapter 1.  

Executing that prescription with the toggling-frame trajectory of Iz 
2 provided by 

Table A.1 of Appendix A, yields 

 ( ) ( )  

            

2 2,(0)
,, , ,

1 1
2 22

Q i
Q iQ i z i z i

b
I I

ω
= = ν

π
H  (4.74) 

in units of Hz.  Inserting 3
2I =  into Eq. (4.73) and comparing with Eq. (4.74), we have 

         
1

, 14 0012 ( ) /Q i ib e Q C E hν = r , (4.75) 

where the nuclear quadrupole moment Q and the constant C14 of the LQSE are given in 

Table 3.1.  The total average Hamiltonian, 

 ( )          

2(0)
,, ,

1
2 Q ii off z i z iI I= ν + νH , (4.76) 

that corresponds to the light-on sequence includes the homogeneous offsetting term 

provided by the modification of CLSW-16 presented in Fig. 1.13.  Incidentally, although 

the optical excitation during the light-on sequence is circularly polarized, the Knight-shift 

interaction does not contribute to (0)
iH , since the average photoexcited spin vanishes in 

the transverse field, and because, even if 0S ≠ , (0) 0KS =H  for this particular 

arrangement of optical pulses during the CLSW-16 sequence. 
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Single-site contributions to the NMR signal at times t1 = (n tc ) are given by 

 ( ) ( ){ }
  

      

         

1
1

(0) (0)
1 1

( ) ( , )

                Re exp (0) exp

t
i ONP i

i i

S t A t r e

Tr I i t i t

−π ∆ν

+

=

 × − ρ + H H
, (4.77) 

where ρ(0) = Iy is the initial density operator provided by the (π/2)x preparation pulse on 

optically pumped nuclear spin magnetization and ∆ν is the Lorentzian FWHM of the 

corresponding frequency domain light-off line shape.  Inserting matrix representations for 

the spin operators in Eq. (4.77), we obtain 

 
( )

( ) ( )

  
          

        

1
1 , 1

1 , 1

( ) ( , ) 3cos 2 ( )

                             4cos 2 3cos 2 ( ) .

t
i ONP i off Q i

off off Q i

S t A t r e t

t t

−π ∆ν = π ν − ν
+ πν + π ν + ν 

 (4.78) 

According to this result, each nuclear site contributes homogeneously to a central 

transition at the offset frequency, but also provides position-dependent satellite peaks at 

(νoff ± νQ, i ).  Thus, we expect that the ensemble of sites that contribute to the total 

optically detected NMR signal provides a distribution of satellite intensity, which, 

according to Eq. (4.75) for νQ, i, is determined by the site-by-site components along the 

[001] crystal axis of possible radial electric fields shown in Fig. 4.16.  

Simulation of the experiment proceeds according to the site-by-site summation 

(see Section C.3.ii) of Eq. (4.78).4(h)  At the 4.992 s ONP time used in the experiment, 

spin diffusion contributes to the signal dynamics during ONP and detection.  Therefore, 

an empirical form of A(tONP, ri) is required to determine the radial distribution of signal 

intensity in simulation.  The weighting function results from application of the procedure 

                                                 
4(h) The summation described in Section C.3.ii is over the positive octant of the lattice only.  Care must be 
taken in application of that site-counting procedure to simulation of the LQSE, since νQ, i ∝ E001(ri) [see 
Eq. (4.75)] changes sign in certain other octants.  The symmetry of Eq. (4.78) indicates that single-octant 
summation is sufficient in the present case; however, this is not true in general. 
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described above in Section C.4 to a Knight-shift-distribution spectrum collected with 

tONP = 4.992 s, as appropriate for modeling the present experiment.   

No adjustable parameters of either the LQSE spin Hamiltonian or the electronic 

state were used in simulation.  However, the central peak frequency in the light-on 

simulation was varied by ±2 Hz about νoff = 1278.7 Hz from the light-off experiment.  

This accounts for possible drift4(i) of the signal-nucleus resonance frequency from one 

experiment to the next.  This yields small changes in the Rabi frequency ω1, and hence, 

according to Eq. (1.35), in the homogeneous offset frequency.  The center frequency 

yielding the best fits to the light-on data is (νoff – 1.7 Hz).  Finally, the simulations used 

the underlying linewidth, ∆ν = 20.3 Hz, measured in the light-off experiment. 

                                                 
4(i) The primary suspect for drift of the resonance frequency is drift in the position of the laser spot on the 
sample relative to the center of the longitudinal field magnets.  This may be due, for example, to a minute 
increase in the elevation of the cryostat (and probe) as boiloff reduces the volume of l-He therein. 
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iii. Predicted and Experimental Results 

The light-on POWER NMR spectrum is plotted with the light-off reference data 

and simulations of each in Fig. 4.18(a).  A broad distribution of electric-field-induced 

quadrupole splittings, most clearly evidenced by the amplitude reduction at νQ = 0, is 

apparent in the light-on spectrum.  

The simulations shown in the figure 

predict the results in the cases where 

the photoexcited electronic state is a 

donor-bound electron or a fixed-

center-of-mass exciton.  Part (b) of 

the figure highlights differences 

between the light-on simulations that 

incorporate these two models.  The 

buildup of satellite amplitude near 

the baseline for the donor-bound 

electron differs from the observed 

spectrum, which is closely matched 

by the fixed-exciton model.  In the latter case, fast exchange between light- and heavy-

hole excitons was assumed such that the radial field is given by 

 ( )    
1
2( ) ( ) ( ) ( )d lh hhr r r rε = ε + ε + ε , (4.79) 

where εlh (r) and εhh (r) are obtained by inserting mlh and mhh into Eqs. (4.68) and (4.70) 

for the component of the radial field due to the confined hole. 

 

FIG. 4.18  (a) The light-on and off 71Ga POWER 
NMR spectra (points) measuring the photoexcited 
LQSE and corresponding simulations (lines) 
calculated using the noted electronic models.  
Quadrupole splitting νQ is referenced to the light-off 
line position.  (b) Expanded view highlighting the 
higher quality of the simulation that incorporated a 
fast-exchange fixed-center-of-mass exciton. 
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Table 4.4 contains the χ2 values corresponding to the difference between the 

frequency domain data and light-on simulations for various models of the electronic state 

including those shown in Fig. 4.18.  The rank order of the electronic models according to 

χ2 is the same for several repetitions of 

the experiment.  The donor-bound 

electron model is excluded from 

contention by these results.  The model 

of a fixed-center-of-mass exciton 

provides the best fit to the data with the 

light-hole and fast-exchange cases 

yielding nearly identical χ2 values.  

However, it is not possible to distinguish between such fine degrees of this simple model.  

Simulation with more realistic many-body states such as a neutral-donor-bound exciton 

may improve agreement between experiment and the excitonic simulation.  Such 

relatively complex states share a radial distribution of electronic spin density and 

photocarrier field with those tested here and more easily reconcile with current 

knowledge of the H-band electronic states.[29,67] 

3. An Alternative LQSE Reference:  Homogeneous Quadrupolar Offsetting 

One difficulty in interpreting the above experiments for measurement of the 

photoexcited electric field is that the satellite intensity provided by the LQSE is spread 

out near the base of the central transition.  Since, to first-order, that peak is unaffected by 

quadrupolar effects,[102] both the light-off reference spectrum and the light-on 

Table 4.4 The χ2 minima (with first non 
significant digit in subscript) resulting from 
comparison of the light-on frequency domain data 
shown in Fig. 4.18 with corresponding simulation 
of the photoexcited LQSE. 

s χ2 

donor-bound electron 9.1 

heavy-hole fixed-COM exciton  
(mh = 0.465 m0) 

4.3 

light-hole fixed-COM exciton  
(mh = 0.0.82 m0) 

2.9 

fast-exchange fixed-COM exciton 2.9 
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measurement of the photoexcited field present most of their signal intensity at νQ = 0.  

Here, I propose an improvement upon the experiment, wherein the reference experiment 

is modified such that the corresponding spectrum includes homogeneously shifted 

satellite peaks.  Thus, the spectral components that report on the spatially varying LQSE 

are resolved from the insensitive central transition. 

The new approach requires the modification of CLSW-16 shown in Fig. 4.19.  In 

this scheme, B0 remains along the [110] crystal axis; however, both the light-off and 

light-on versions incorporate externally applied rf electric-field pulses given by 

 ( )     0 ˆ( ) cos Et E t z= ωE , (4.80) 

where ẑ  is the unit vector along the [001] axis and the phase of the rf electrical pulses 

and that of the nuclear rotating frame are set to zero.  With ωE set to twice the nuclear 

Larmor frequency and the pulses arranged during windows of CLSW-16 as shown in 

Fig. 4.19(a), we have the contribution 

 ( )          
  

2(0)
, ,

1
4 2 2 4 2( , , 0) ( , , 0)off

Qoff i Q z iIπ π π π= ωH , (4.81) 

to the total average Hamiltonian,  where 

 ( )        14 04 2( , , 0) /12off
Q e Q C Eπ πω = =  (4.82) 

and E0 is the positive amplitude of the applied cosinusoidal field.  This result was 

obtained by inserting the Eq. (4.80) into Eqs. (B.18) and (B.21), discarding the remaining 

time-dependent parts of Q
�H  and averaging the toggling-frame representations of the 

time-independent terms as appropriate to their incorporation in the sequence in 

Fig. 4.19(a). This procedure is described in detail in one of our recent publications[25] and 

recounted ahead in Sections B.1 and B.2 of Chapter 5. 



Chapter 4 – Imaging Single-Carrier Wave Functions with Optically Detected NMR  139 

 

 

FIG. 4.19  Modified pulse sequences for 
POWER NMR measurement of the 
photoexcited LQSE with homogeneous 
contribution to the satellite offsets.   (a) Light-
off and (b) light-on versions.  The rf magnetic 
modification of Fig. 1.13(b) is assumed for each 
sequence. 

In the light-off reference experiment,   
 

(0)
, 4 2( , , 0)Qoff i

π πH  and the usual (magnetic) 

rf-induced offset term, (0)
offH  of Eq. (1.35), are the lone contributors to the total average 

Hamiltonian.  The result is a 3:4:3 symmetric triplet centered at νoff with satellites 

separated from the central transition by 

 ( ) ( )       0 0/ / 2 69 Hz / (kV/cm)off off
Q QE Eν = ω π = , (4.83) 

which is obtained from Eq. (4.82) using the C14 and Q values that correspond to 71Ga and 

which are listed on Table 3.1.  The corresponding light-on sequence is shown in 

Fig. 4.19(b) and adds the site-dependent contribution 
 

(0)
,Q iH  of Eq. (4.74) to the average 

Hamiltonian.  The arrangement of optical pulses is identical to that in the previous 

section (see Fig. 4.17) and, since optical and rf electrical pulses occur in separate 

windows, enables one to probe the photoexcited states unperturbed by the applied electric 

field. 
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Simulated light-on and 

light-off spectra corresponding to 

the proposed sequences are shown 

in Fig. (4.20).  Empirical radial 

weighting at tONP = 5 s and a 10 Hz 

Lorentzian FWHM of single-site 

contributions were used to 

calculate the results in parts (a) 

and (b) of the figure.  As seen in 

part (a), the central transition of 

the light-on and light-off 

simulations directly overlap, while 

LQSE-induced structure appears 

only at the satellite peaks.  Part (b) 

of the figure highlights the 

distributions of satellite intensity 

in light-on simulations including 

the photoexcited LQSE due to 

either a donor-bound electron or 

fast-exchange, fixed-center-of-

mass excitons.  These two cases 

are clearly distinguished in the 

simulation, benefiting from their separation from the uninteresting central transition.  

 
FIG. 4.20  Simulated results of POWER NMR 
experiments for measurement of the photoexcited LQSE 
with homogeneously offset quadrupolar reference 
satellites.  (a) Long-ONP time simulation obtained using 
empirical radial weighting.  (b) Expanded view of (a) 
highlighting the differences between the light-on 
simulations corresponding to the fast-exchange fixed-
center-of-mass exciton and donor-bound electron 
models.  (c) Similarly expanded view of simulated short-
ONP time result. 



Chapter 4 – Imaging Single-Carrier Wave Functions with Optically Detected NMR  141 

 

Finally, part (c) of the figure shows the same simulations, but executed at tONP = 700 ms 

with the analytical amplitude weighting of Eq. (4.40).  Qualitatively, the results show 

that, even barring reduction of the signal-to-noise ratio at short ONP times, it is more 

difficult to distinguish the electronic models using a short ONP time experiment.  This is 

instructive for future experiments of this type, and, it must be stressed, highlights the 

utility of the empirical radial weighting model developed in Section C.4 and which is 

required to model the more informative long-ONP-time experiments. 

E. Conclusions 

I have presented the results of the first-ever high-resolution POWER NMR 

experiments.  These have been used in conjunction with optically detected NMR to 

spatially image quantum-confined electronic states in GaAs.  Radially resolved spectra 

characterize the microscopic spatial variation of the spin density and electric field 

associated with single photoexcited electronic states.  Measurements of the relaxation 

constants governing the processes of ONP and spin-locked Larmor-beat optical detection 

of NMR complement the POWER NMR experiments.  The resulting understanding of the 

diffusion-free signal dynamics enabled successful modeling of short-ONP-time Knight-

shift distribution spectra in terms of single-spin physics summed over thousands of 

nuclear sites.  The comparison of experimental and simulated POWER NMR Knight-shift 

images demonstrates that the photoexcited state responsible for the optical NMR signal is 

localized and radially symmetric with the Bohr radius expected for either a donor or an 

exciton.  Further characterization of the nanoscale variation of the photoexcited LQSE 

supports the conclusion of Chapter 3 that excitonic recombination provides the H-band 
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luminescence in our single heterojunction sample, while excluding donor-bound electrons 

from contention.   

The relatively long (~5 s) ONP times used for measurement of the photoexcited 

LQSE require a dynamic model of the NMR signal that accounts for the influence of spin 

diffusion during ONP and optical detection.  Our novel empirical model for site-by-site 

weighting of contributions to the NMR signal accomplishes this feat.  It is also 

noteworthy that our direct observations of the effects of spin diffusion on a spatially 

resolved signal present an opportunity for quantification of the corresponding dynamics 

and comparison with possible first-principle dynamics. 

Finally, I have proposed a novel POWER NMR experiment for improved 

characterization of the photoexcited LQSE.  The method is also applicable in experiments 

designed[103] to uncover the mechanism for recently observed[13] optically induced nuclear 

spin transitions, which we have suggested[25] are due to interactions of lattice nuclei with 

photoexcited electric fields similar to those characterized in this thesis 
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V. A Method for Atomic-Layer-Resolved Measurement 
of Polarization Fields 

In this chapter I describe an NMR method of probing the dielectric response of 

quantum-confined carriers to an alternating electric field.  The content here and in the 

related Appendices B and D is based directly on one of our recent publications.[25] The 

new method, which is applicable to non-centrosymmetric sites with nuclear spins 1
2I > , 

utilizes an rf electric field to induce a linear quadrupole Stark effect (LQSE) at a multiple 

of the nuclear Larmor frequency.  This perturbation is to be synchronized with an NMR 

multiple-pulse line-narrowing sequence according to the POWER NMR approach of the 

previous chapter.  The application here extends that methodology to include conversion 

of nonsecular (off-diagonal) terms in the nuclear spin Hamiltonian into diagonal, first-

order observables, which, in the present case, are quadrupole splittings of the nuclear 

resonance.  A simulation of the 69Ga spectrum for the nuclei within the 2D electron gas of 

a 10 nm quantum well predicts resolution of the NMR signals of individual atomic layers 

due to the spatial dependence of the polarization response of quantum-confined carriers 

to the applied field. 
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A. Introduction 

In the early 1960s, Bloembergen and others studied the LQSE of the nuclear spin 

Hamiltonian in bulk GaAs, whereby an electric field gradient is induced at nuclear sites 

in proportion to the electric field at those sites.[60,61,80]  Characterization of the spatial 

variation of the LQSE expected in single epitaxial structures requires high NMR 

sensitivity and spectral resolution.  In recent decades the phenomena of optical nuclear 

polarization, equilibrium and optically induced Knight shifts, and several methods of 

optical detection have resulted in great gains in sensitivity, spatial selectivity and spectral 

resolution relative to the traditional solid-state NMR experiment.[3-5,7-9,11,13,94]  This has 

allowed application of optical NMR to III-V heterostructures,[9] quantum wells[16,17,19,21,22] 

(QWs) and quantum dots[11].   

Of particular relevance here are advances from our group enabling high-

resolution time-domain optically detected NMR.[8,9]  As noted in the previous chapter, the 

highest spectral resolution is achieved in experiments where perturbations of the sample, 

such as the electric field in the LQSE, are synchronized with time-suspension NMR 

multiple-pulse sequences to measure differences between the perturbed and unperturbed 

spin Hamiltonians:  the POWER NMR approach.  In the experiments presented in 

Chapter 4, we probed the shallow point defects at which optical excitations localize in 

AlGaAs/GaAs heterojunctions using two different examples of POWER NMR with 

secular, optically-induced spin Hamiltonians.  The radial distribution of optically 

switched electron density was observed as a high-resolution Knight shift distribution, and 
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the associated changes in radial electric field were measured by the diagonal terms of the 

LQSE.[26] 

Here we introduce a novel technique within the general class of POWER NMR, 

whereby a radiofrequency (rf) LQSE is used to measure a third electronic property, the 

polarization response to an rf electric field.  In particular, we propose measurement of the 

response expected for electrons in an n-type GaAs QW.  Our approach relies on 

conversion of nonsecular (off-diagonal) terms in the nuclear quadrupole Hamiltonian HQ 

into an effective secular observable (a first-order splitting in the sample’s NMR 

spectrum) by varying the electric-field-induced interaction at twice the nuclear Larmor 

frequency in selected windows of a time-suspension[50,51] NMR multiple-pulse sequence.  

Both this transformation of a nonsecular perturbation into a high-resolution secular 

observable and the proposed localized measurement of dielectric response are novel 

aspects of this work.   

On bulk samples in experiments where resolution was limited by dipolar 

broadening, the rf LQSE has been used previously to depolarize nuclear spins in 

GaAs,[63,104] while the inverse of the rf LQSE has been used to realize electrically 

detected nuclear quadrupole resonance.[64,105]  In contrast, we predict that, by employing 

POWER NMR and isotopic dilution, our technique can yield NMR line shapes with 

atomic-layer resolution that report on the rf LQSE in a GaAs QW sample.  

Generalizations of this spin physics may be useful in other situations where rf 

perturbations modulate nonsecular spin interactions.  
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An outline of the remaining text follows.  In Section B, I derive the average 

nuclear spin Hamiltonian pertinent to POWER NMR manipulation of the rf LQSE.  This 

development is grounded in the presentation of the physical basis for the general LQSE 

and the corresponding rotating-frame Hamiltonian in Appendix B.  In Section C, I 

develop the form of the rf polarization response of n-type carriers in a QW and determine 

nuclear spin evolution due to synchronization of this response with NMR multiple-pulse 

line narrowing.  The form obtained for the polarization response is justified by a second-

order perturbation-theory treatment of a particle-in-a-box model presented in 

Appendix D.  Finally, in Section D, I present and discuss the simulated NMR spectrum, 

predicting resolved features due to individual atomic layers. 

B. Fundamental Concepts 

The normally truncated terms of the rotating-frame quadrupole Hamiltonian Q
�H  

of Eq. (B.18) are the terms of interest here for extending POWER NMR to include the 

conversion of nonsecular terms into diagonal, secular observables.  If the electric-field 

perturbation of the LQSE oscillates at ω0 or 2ω0, then either the 2, 1V ±′  or 2, 2V ±′  

coefficients, respectively, are time dependent in a way that partially cancels the time 

dependence of their corresponding rotating-frame operators, yielding a new static, but 

off-diagonal, observable in Q
�H .   

Brun et al.[63,104] took advantage of this resonance phenomenon to characterize the 

combined influence of B0, thermal spin-lattice relaxation and rf-electric-field-induced 

∆m = ±2 transitions at 2ω0 on the equilibrium magnetization of 69Ga, 71Ga and 75As in 

bulk GaAs, including its angular dependence.  Investigation of ∆m = ±1 electric 
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transitions by the rf LQSE at ω0 is problematic, due to possible incidental excitation of 

∆m = ±1 magnetic transitions.  However, we note that recent unexplained observation[13] 

of optically induced NMR transitions with light pulsed at either ω0 or 2ω0 may be due to 

the rf LQSE induced by the photocarrier electric field. 

1. The Double-Quantum Spin Hamiltonian 

In the present work, we are interested in the 2, 2T ±
�  interaction of Q

�H , which is 

described by Eqs. (B.9), (B.15), (B.18) and (B.20) of Appendix B.  This “double-

quantum” component of the quadrupole interaction may be reintroduced into the secular 

Hamiltonian using an external electric field, 

 0 0 ˆ( ) sin(2 ) Et E t z= ω + φE , (5.1) 

that is parallel to B0 and the [001] crystal-growth axis, which define ẑ .  E0 is the positive 

amplitude of the applied field and φE its phase with respect to the rotating-frame phase 

φrf.  Before considering the possible additional response in a structured sample (e.g., of 

the electrons in an n-type QW), which we leave to Section C of the current chapter, we 

now consider the uniform effect of E(t) on the spin system.  Inserting Eqs. (B.21) and 

(5.1) into Eq. (B.18), and substituting for the Euler angles, α = β = γ = 0, that correspond 

to this orientation of B0, we obtain the part of Q
�H  that is proportional to 2, 2T ±

� : 

 ( )      0 0
    

  

14 0 -2 2
2 0 2, 2 2, 2 sin(2 )  e   e

2 (2 1)
i t i t

Q E
i e Q C E t T T
I I

ω + ω
− += ω + φ −

−
�

=
H , (5.2) 

where we have defined the rotating-frame phase φrf = 0.  Truncating the remaining time-

dependent parts of 2Q
�H  yields 
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 ( )   

  

14 0   
2 2, 2 2, 2    

4 (2 1)
E Ei i

Q
e Q C E T e T e
I I

+ φ − φ
− += +

−
�

=
H , (5.3) 

which, using Eq. (B.9), becomes 

 ( )   

  

2 214 0
2  ( ) cos ( )sin

4 (2 1)Q x y E x y y x E
e Q C E I I I I I I
I I

= − φ + + φ
−

�
=

H . (5.4) 

Though secular, 2Q
�H  remains off diagonal.  In the next section, I describe how, using 

POWER NMR, 2Q
�H  can be converted into a convenient diagonal form, and, it must be 

stressed, isolated from other spin interactions as the dominant source of spectral structure. 

2. High-Resolution Evolution under the rf LQSE by POWER NMR 

In order to best characterize the rf polarization response to E(t) at 2ω0 by way of 

Eq. (5.4), we would like to eliminate, in so far as it is possible, other contributions to the 

linewidth.  These may include static contributions to the secular quadrupole interaction 

from the equilibrium bonding environment (absent in the bulk GaAs lattice, but not 

necessarily so in structured epitaxial samples), from crystal strain or even from the LQSE 

due to static electric fields.  Direct dipolar interactions of the target spin with like and/or 

unlike nuclei are ubiquitous, and here undesirable.  Finally, a distribution of the Zeeman 

interaction due to inhomogeneity of the applied field, susceptibility effects or hyperfine 

fields can contribute to the linewidth.   

As in Chapter 4, these deleterious contributions to the spin Hamiltonian are 

effectively removed in an evolution period governed by the time-averaged Hamiltonian 

(0)H  provided by a time-suspension[50,51] pulse sequence such as CLSW-16.  This 

sequence averages to zero the chemical shift interaction, dipolar couplings, heteronuclear 

J-couplings and quadrupolar terms that are not switched during the pulse sequence, 



Chapter 5 – A Method for Atomic-Layer-Resolved Measurement of Polarization Fields 149 

 

leaving only the rotationally invariant homonuclear J-coupling between spins i and k, 

with Hamiltonian 

  
ik

J ik i kJ= ⋅I I�H . (5.5) 

Figure 5.1 depicts the POWER NMR modification of CLSW-16 that is relevant 

for application during the evolution period of the proposed experiment timeline.  The 

LQSE perturbation at 2ω0 is included during the 

shaded windows of the sequence using the same 

value of φE in all application windows.  The 

contribution (0)
2QH  of 2Q

�H  to the total average 

Hamiltonian is obtained using the procedure outlined in Section C.1 of Chapter 1 and the 

toggling-frame trajectory of double-quantum spin operators listed in Table A.1 of 

Appendix A.  This procedure provides 

    

  

2(0) 14 0 21
2 3 ( ) cos

4 (2 1) z EQ
e Q C E I
I I

= − φ
−

I
=

H  (5.6) 

as the dominant term in (0)H  for the proposed experiments.   

Note that, though derived from Eq. (5.4), (0)
2QH  is diagonal due to transformation 

by the sequence shown in Fig. 5.1.  Thus, for experiments that sample the magnetization 

only after an integral number of repetitions of the cycle, the effect of (0)
2QH  is analogous 

to that of the familiar static, secular quadrupolar Hamiltonian.  For a spin 3
2I = , Eq. (5.6) 

yields the familiar triplet pattern in the NMR spectrum given by Eq. (3.16).  However, in 

the present case, the angular frequency separating the satellite transitions from the central 

transition is 

 

FIG. 5.1  Arrangement of rf electrical 
pulses at 2ω0 during the CLSW-16 
sequence. 
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14 0 cos
6Q E

e Q C Eω = φ
=

, (5.7) 

and henceforth, we choose φE = 0. 

C. Application to n-Type QWs 

The goal of this section is to describe a specific example, wherein the polarization 

response of quantum-confined electrons to E(t) is observable with the POWER approach 

via rf-LQSE-induced quadrupole splittings.  As above, the directions of both B0 and the rf 

electric field are parallel to the [001] crystal axis.  We evaluate the field at each layer of 

the quantum well as the sum of a homogeneous part, as would be present due to an 

applied voltage drop across bulk GaAs, and a part which is due to the 2D electron gas, as 

distorted by that homogeneous part.  In Appendix D, the distribution of n-type carriers in 

the QW is calculated with a particle-in-a-box model of the ground-state electronic 

envelope ψ(z) perturbed by the electric field.  This wave function gives rise to the 

spatially varying part of the internal polarization field Eint through Gauss' law 

       

 

2
int ,

0

( , ) | ( ) |e
int zz

x yE z∂
∂

ρ⋅ = = ψ
κε

E∇∇∇∇ , (5.8) 

where ρe(x, y) is the sheet density of charge in the QW.  Only the electric field of the 

quantum-confined space charge is included in Eint and the QW is taken to be 

symmetric.5(a)  The perturbation theory treatment in Appendix D yields 

                                                 
5(a) The later assumption yields little effect on subsequent calculations presented here.  We have calculated 
that if the initial QW wave function ψ (z) were perturbed by a large 10 kV/cm inherent slant in the QW 
potential, the largest resulting fractional shift of any single quadrupole satellite in the rf LQSE spectrum of 
a 10 nm GaAs QW would be only 2×10-2.  If, however, it is desired to characterize such deviations from the 
flatband condition, POWER NMR experiments in which the carrier density is modulated in synchrony with 
NMR multiple-pulse line narrowing are more appropriate. 
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 ( ) ( ) ( )         
1/ 2 1/ 2

0 0
  

2 ( ) cos sin 2 sinE
z z

aaz a a c t− π πψ = − ω + φ , (5.9) 

where 

  0
0 2 4

128  
27 

em ac Φ=
π=

, (5.10) 

2a is the width of the QW, and 0 02  a eEΦ =  is the linear rise in the box potential from 

z = -a to z = a provided by E(t) in Eq. (5.1).  It is sufficient to treat E(t) as a stationary 

perturbation to the 1D particle-in-a-box potential since it is weak and its frequency is 

much smaller than the lowest spatial Bohr frequency.  After inserting Eq. (5.9) into 

Eq. (5.8), we integrate the resulting expression with respect to a dummy variable in place 

of z from -a to z and from z to a.  The latter of these two results is subtracted from the 

former, yielding 

 

( ) ( ) ( )
( ) ( )( )( )
( ) ( ) ( )( )( )

     

   

     

2 2 2
0 0

2 2
0

0

1

0

1
0 3

e

0

( , ) 21
 2 4

2 2
4

4 3
2 2

( , )  sin sin

                               cos 4 2 sin

                               sin 2 cos cos

int

E

E

x y c a c az z
a a a

c a z z
a a

c a z z
a a

E z t z

t

t

−−ρ π π
κε π

π π
π

π π
π

= + + π −


+ ω + φ −

+ ω + φ + .

 (5.11) 

There are three distinct components of Eint(z, t) :  a time-independent component on the 

first line of Eq. (5.11), and components at 4ω0 and 2ω0.  Each of the three terms induces 

an electric-field gradient with corresponding time dependence; however, we can ignore 

the contribution of the electric field oscillating at 4ω0, which is both small and off-

resonance, and of the dc term, which induces a stationary component in 2, 2V ±′  that does 

not cancel the time dependence of 2, 2T ±
� .  The total electric field oscillating at 2ω0, 

including the component  
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 ( ) ( )( )( )   
0 1

2 3
e

0

( , ) 4 3
 22( )  cos cosx y c a z z

aaE z −ρ π π
κε π= +  (5.12) 

from the last line in Eq. (5.11), is resonant with 2, 2T ±
� ; thus, we must replace E0 in 

Eqs. (5.6) and (5.7) with ( ) 0 2 ( )E E z+ . 

The contribution of E0(t) to 

the total electric field oscillating at 

2ω0 is spatially homogeneous, 

inducing a uniform contribution to 

nuclear quadrupole splitting 

independent of z.  However, the 

spatial dependence of  2 ( )E z  adds 

atomic-layer-dependent fine 

structure to the uniform 

contribution.  The uniform effect 

provides two advantages: 

(1) spectral resolution of the 

informative satellites from the unshifted central transition, and (2) calibration of the 

system response to a known voltage drop.  The amplitude of the distribution of  2 ( )E z  

across the QW is depicted in Fig. 5.2, while the corresponding LQSE-induced quadrupole 

splitting for 69Ga, calculated from Eq. (5.7), is indicated on the right-hand vertical axis. 

 

FIG. 5.2  The amplitude of E2(z), which is the 
component of Eint(z, t) that is sinusoidally time 
dependent at twice the Larmor frequency of the NMR 
signal nucleus.  The result was calculated for a 
symmetric 10 nm GaAs QW, assuming 
ρe(x, y) = 1.6×10-3 C/m2, which corresponds to 
1012 electrons/cm2, κ = 13.1 and me = 0.067 m0.  The 
amplitude of E0(t) used to obtain the result shown here 
was 30 kV/cm.  The corresponding calculated 69Ga 
quadrupole splitting of Eq. (5.7) and induced by the 
total field [E0(t) + E2(z, t)] is given on the right-hand 
vertical axis. 



Chapter 5 – A Method for Atomic-Layer-Resolved Measurement of Polarization Fields 153 

 

D. Results and Conclusions 

The time evolution of the transverse nuclear magnetization up to time t = n tc , 

where tc is the duration of the CLSW-16 sequence, is calculated using the density matrix 

formalism as 

 [ ]†( )  ( ) (0) ( )I t Tr I U t U t+ += ρ  (5.13) 

with 

 (0)( ) exp(  )U t i t= − H . (5.14) 

The initial condition ρ(0) of the density matrix is taken to be Ix, as results from a (π/2)y 

preparation pulse prior to the start of the cycle.  

In order to estimate the residual linewidth, we must consider the contribution to 

(0)H  of the homonuclear J-coupling represented by ik
J
�H  in Eq. (5.5), which enters due 

to the non-equivalence of spins in adjacent atomic layers.  Potter and Wu have used a 

novel echo-decay analysis of 69Ga and 71Ga NMR signals to estimate that for nearest-

neighbor interactions of like spins (i.e., two-bond couplings) Jik (69Ga)/2π = 41 Hz and 

Jik (71Ga)/2π = 60 Hz.[106]  Using these values, spectral features resulting from the 

homonuclear J-coupling have been included in a simulation where J
ik�H  is truncated to a 

diagonal form by the difference in quadrupole coupling between layers.  A given spin 

couples to a given number (between 0 and 12) of same-isotope nearest neighbors, thus 

spectra for each case, weighted both for the isotopic abundance of the species and for the 

number of ways to permute the given number of like nuclei among the twelve nearest-

neighbor positions, were added.  The envelope of the resulting distribution of frequency 

domain peaks was replaced by a best-fit Lorentzian.  We expect that this gives an upper 
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bound to the width that would result from the actual many-body dynamics, which is not 

tractable with known methods.  Using this approach, a 200 Hz FWHM linewidth is 

estimated for 71Ga when present at its natural isotopic abundance of 39.6%.  Such a 

linewidth obscures some of the atomic-layer information in simulation of the resulting 

71Ga spectrum, as shown in Fig. 5.3(a).  However, the same linewidth-estimation 

procedure predicts a 10 Hz FWHM of the 69Ga signal for a sample with 5% 69Ga isotopic 

abundance, which is sufficient for atomic-layer resolution [see Fig. 5.3(b)].  Recall from 

Fig. 1.12 that linewidths < 5 Hz FWHM have been obtained experimentally with CSLW-

16, proving that the other interactions can be removed to this degree in GaAs. 

In simulation of the NMR experiment with the timeline shown in Fig. 5.1, we 

weighted each atomic layer’s contribution to the signal expressed in Eq. (5.13) by the 

square of the QW’s unperturbed ground-state envelope function at that layer.  This is 

appropriate to optical detection methods based on the hyperfine coupling.  However, as 

shown in Section C of Chapter 4, more complex weighting may be necessary to 

quantitatively account for amplitude variations due to optical nuclear polarization, spin 

diffusion, and hyperfine relaxation.  Spectrally resolving individual layers would 

facilitate the investigation of these effects, by making information contained in the 

amplitude and frequency of the lines readily separable. 

We summed the contributions from three separate calculations with 35, 36, and 37 

atomic layers of Ga  (~ 10 nm quantum wells) weighted by ½, 1 and ½, respectively, to 

obtain some sense of how predicted spectral features would be sensitive to the thickness 

variations typical of state-of-the-art epitaxial growth.  The portion of the simulated 69Ga 

(5% isotopic abundance) frequency domain spectrum containing satellite features is 
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presented in Fig. 5.3(b), where the atomic-layer-resolved fine structure of the positive 

frequency quadrupole satellite is clear.  The uniform contribution to the quadrupole 

splitting of about ~6.5 kHz due to the homogeneous rf LQSE of E0(t) is apparent in the 

simulated result, which is aliased around a Nyquist frequency of 4.16  kHz that 

corresponds to a practical CLSW-16 cycle time of 120 µs. 

 

FIG. 5.3  (a) The simulated distribution and linewidth of 71Ga quadrupole satellites of a 10 nm (36±1 
atomic layers) GaAs quantum well (QW) with natural isotopic abundance.  Central transition features 
(not shown) overlap at zero frequency in the rotating frame.  The field distribution assumed in the 
simulation is the response of a quantum-confined carrier density of 1012 cm-2 to an applied rf electric 
field of 46 kV/cm along the [001] growth direction.  The 200 Hz linewidth estimate of contributing 
features is discussed in the text.  (b) The same simulation, but for 69Ga with 5% isotopic abundance 
(10 Hz individual linewidths) and a 30 kV/cm rf electric field.  Many of the resonances due to 
individual atomic layers are resolved.  Pairs of atomic layers that are located symmetrically across the 
QW center contribute identically overlapping satellites to the simulation.  The largest amplitude 
feature corresponds to the contribution of the pair at the center of the 36-layer QW, while the smallest 
amplitude features correspond to atomic layers at the QW edges.  Because the contribution of a 36-
layer QW is combined with ½-weighted 35 and 37-layer contributions to the simulation, some features 
appear as closely spaced triplets with each line arising from a layer in a QW of each width.  Finally, 
note that because the simulation is aliased about the 4.16  kHz Nyquist frequency, the depicted 
structrure is a reflection of the true frequency ordering of spectral lines into a mirror at the Nyquist 
frequency.  Hence, the lines at right have the smallest net quadrupole splitting resulting from the 
partial cancellation of the applied field by the polarization response [E2(z) of Fig. 5.2 ]. 

The simulations of Fig. 5.3 predict that atomic-layer-resolved spectroscopy 

should be possible in quantum wells using the rf LQSE with POWER NMR to provide an 

unprecedented local probe of electric fields and spin interactions.  The analysis assumes 
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that the LQSE coefficients measured in the bulk are also appropriate to a quantum well, a 

question that deserves fuller theoretical examination.  From simple electrostatics, the 

contribution to the quadrupole interaction due to the field gradient of the envelope of the 

electron gas itself is negligible, in contrast to the effect calculated here, which is mediated 

by the LQSE dominated by covalent electrons.  The particle-in-a-box model could readily 

be modified to include the finite well depth, which would result in finite NMR amplitude 

at and beyond the interface with the AlGaAs barrier.  However, for several layers around 

the interface, it is anticipated that the heterogeneity of the bonding will lead to static 

quadrupole interactions whose tensors are unknown, but likely of a sufficient magnitude 

(  20 kHz ) that the multiple-pulse line narrowing as presented may fail for these few 

layers.  Detailed simulation of these effects is possible and would aid in resolving and 

identifying the NMR transitions of interface layers, which has not been possible with 

methods applied to QWs to date. 

Finally, it is worth noting that this new approach to high-resolution NMR may 

have useful analogs quite independent of the LQSE.  For example, analogous nonsecular 

terms induced by sound waves (strain) are the basis for inducing transitions in nuclear 

acoustic resonance.  The present work suggests a high-resolution analog based on the 

POWER approach. 
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Appendix A.  Toggling-Frame Operators from the 
CLSW-16 Sequence 

Contributions to the average Hamiltonian (0)H  that governs nuclear spin 

evolution over an integer multiple of CLSW-16 cycles are transformations of rotating-

frame operators into the toggling-frame interaction representation.  As described in 

Section C.1 of Chapter 1, such transformation of an arbitrary rotating-frame operator O�  

for the ith evolution window is given by 

      
†

T, T, T,i i iO U O U= � , (A.1) 

where T,iU  and its Hermitian conjugate †
T,iU  are the unitary propagation operators 

corresponding to the π/2 pulses of CLSW-16.  Finally, the corresponding average 

Hamiltonian is 

 
 

 
(0) 1

c T,i iO i
t O−= τ∑H , (A.2) 

where τi is the duration of the ith window and tc is the duration of the cycle. 

The propagators T,iU  for the CLSW-16 sequence are listed in Table A.1.  The 

corresponding toggling-frame representations of all operators needed for transformation 

of Hamiltonians relevant to spin interactions discussed in this thesis are also presented.  

These include:  (1) rf
�H  of Eq. 1.32, which describes rf excitation used for homogeneous 

offsetting, (2) KS
�H  of Eq. (4.14), which governs the optically induced Knight shift 

interaction, and (3)  ,Q i
�H  of Eq. (4.60) and 2Q

�H  of Eq. (5.4), which respectively describe 

the dc and double-quantum linear quadrupole Stark effect (LQSE) interactions.  The 

operators relevant to the single-quantum LQSE are included for completeness.
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Appendix B.  The Linear Quadrupole Stark Effect 

A. Electric-Field-Induced Quadrupole Interactions 

The linear quadrupole Stark effect (LQSE) is a crystalline or molecular system’s 

linear response to an electric field observed as the quadrupole interaction on nuclei with 

spin 1
2I >  at a site lacking inversion symmetry.   The nuclear quadrupole interaction 

exists between the charge distribution ρn(r) of a nucleus and an electric potential V(r) 

arising from fields of other nuclei, the sample’s electron distribution, or an applied 

electric field.  When V(r) is expanded in a Taylor series about the nuclear position 

(r = 0), the overall energy of this interaction is given by the integral over the nuclear 

volume,[102] 

 
3 3

, n n

31
n2,

  (0) ( ) d    ( ) d  

                                          ( ) d   ... .

V i ii

ij i ji j

E V V x

V x x

ρ = ρ + ρ

+ ρ +

∑∫ ∫
∑ ∫

rr r r

r r
 (B.1) 

The Cartesian position coordinates xi and xj , where i and j range over 1, 2 and 3, are 

arbitrary and the coefficients of the expansion are the derivatives  

 
  

 
0

i
i r

VV
x

=

∂=
∂

 and  
  

  
0

 ij
i j r

VV
x x

=

∂=
∂ ∂

. (B.2) 

Since the first term in Eq. (B.1) is independent of nuclear orientation, it has no bearing on 

the NMR Hamiltonian, while the second vanishes by the inversion symmetry of the 

nucleus.  The third term describes the energy of the nuclear quadrupole interaction, which 

is of interest here. 
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When an electric field E is applied to the sample, the components Vij of the 

electric-field-gradient tensor may be expanded as a Taylor expansion about | E | = E = 0: 

 
   0 ,( ) ...ij ij E ij k kk

V V C E== + +∑ , (B.3) 

where the first term gives a component of the intrinsic electric-field-gradient tensor and 

the second describes the LQSE relating the Vij to E via the third-rank tensor C with 

components  

 
 

,
 0

ij
ij k

k E

V
C

E
=

∂ 
=  ∂ 

. (B.4) 

Both the matrix of (Vij)E = 0 and the C tensor describe properties of the crystalline or 

molecular sample and, therefore, must be invariant under symmetry transformations 

within the point group of that system.  In the case of bulk GaAs and the other III-Vs with 

zincblende symmetry, the crystal lattice belongs to the Td point group, which, along with 

the equivalence of the coordinates, indicates that all components of (Vij)E = 0 must vanish, 

that Cij,k ≠ 0 only for i ≠ j ≠ k, and that these non-zero components are equivalent.[104]   

The C tensor itself may be broken up into two contributing factors: 

 , , , ,ij k ij k ij mn mn kmn
C R S d= +∑ , (B.5) 

where the coupling of the fourth-rank strain tensor S and third-rank piezoelectric tensor d 

describes the induced electric-field-gradient due to a relative shift of the Ga and As 

sublattices with E, and the third-rank tensor R describes the polarization-induced 

distortion of covalent electronic states in the crystal lattice.  It has been shown[60,61,104] 

that the polarization of covalent electronic states is the dominant mechanism underlying 

the LQSE in GaAs, and some literature explicitly drops notation of the S tensor 
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contribution by equating C to R.  However, the LQSE experimentally includes both 

terms.   

Finally, we complete the form of the electric-field-gradient tensor, making the 

particular choice of associating k = 1, 2 and 3 with the [100], [010] and [001] crystal 

axes, respectively, using the Voigt notation (i.e., 11 = 1, 22 = 2, 33 = 3, 23 = 4, 13 = 5 

and 12 = 6) to collapse the j and k indices of C into a single index and recalling that 

C14 = C25 = C36 .  Thus, according to Eq. (B.3) and the GaAs lattice symmetry, the 

components of the induced electric-field-gradient tensor are 

 Vii = 0   and   Vij = Vji = C14 Ek (B.6) 

for i, j and k a permutation of the three axes. 

B. The Nuclear Quadrupole Hamiltonian 

In order to understand and manipulate the role of the LQSE in NMR evolution, 

we now review the general form of the spin Hamiltonian HQ corresponding to the nuclear 

quadrupole interaction in terms of the spherical tensor basis of operators Tk,q with the 

convention[33]  

 21
2,0 6

 (3 ( 1))zT I I I= − + , (B.7) 

 1
2, 1 2 ( )z zT I I I I± ± ±= +∓  (B.8) 

and 21
2, 2 2  T I± ±= . (B.9) 

Here Ix, Iy and Iz are the components of the dimensionless nuclear spin angular 

momentum operator and I± = Ix ± i Iy.  The spherical tensor coefficients that correspond to 

the Tk,q are 
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 3
2,0 6

   0zzV V= = , (B.10) 

 2, 1 14 1 2 ( )  - ( )zx zyV V iV iC E iE± = ± =∓ ∓   (B.11) 

and 1
2, 2 14 32  ( )   xx yy xyV V V iV iC E± = − ± = ± , (B.12) 

where the rightmost equivalence in each of Eqs. (B.10)-(B.12) follows from Eq. (B.6).  

To write HQ in its most general form, we allow for arbitrary reorientation of the static 

magnetic field B0 from [001] in three successive rotations by the angles γ, β and α about 

the crystal-fixed [001], [010] and [001] axes, respectively.  This rotation is represented by 

the transformation  

     

  

2
( ) 2

2, 2,
2

( , , ) ( )i p q
q p pq

p
V V e d

+
− α + γ

= −

′ α β γ = β∑ , (B.13) 

of the coefficients of Eqs. (B.10)-(B.12), where the 2 ( )pqd β are reduced Wigner rotation 

matrix elements.[33,107]  These spatial and spin tensor elements are inserted into the 

general form of the nuclear quadrupole spin Hamiltonian[33] 

 
  

2

2, 2,
2

( , , )   ( 1)   
2 (2 1)

q
Q q q

q

eQ V T
I I

+

−
= −

′α β γ = −
− ∑=

H  (B.14) 

where Q is the nuclear quadrupole moment, e is the unit of electron charge, =  is Planck’s 

constant divided by 2π, and the expression is in units of (radÿs-1).  Literature values of Q 

for each nuclear isotope in GaAs are listed in Table 3.1, along with the measured values 

of C14 for the Ga and As sublattices in bulk GaAs.[62] 
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Table B.1  The reduced Wigner rotation matrices, 2 ( ),pqd β  relevant 
to transformation of HQ with reorientation of B0 with respect to the 
GaAs crystal axes as discussed in the text.[33,107] 

2 2
22 2 2( ) ( )d d− −β = β  4

2cos β  
2 2 2 2
21 12 2 1 1 2d d d d− − − −= − = − =  1

2 (sin )(1 cos )− β + β  
2 2 2 2
20 02 20 0 2d d d d− −= = =  3 2

8 sin β  
2 2 2 2
2 1 1 2 21 12d d d d− − − −= = − = −  1

2 (sin )(cos 1)β β −  
2 2
2 2 22d d− −=  4

2sin β  
2 2

11 1 1d d− −=  1
2 (2cos 1)(cos 1)β − β +  

2 2
1 1 11d d− −=  1

2 (2cos 1)(1 cos )β + − β  
2 2 2 2

10 0 1 01 10d d d d− −= = − = −  3
2 (sin )(cos )− β β  

2
00d  1 2

2 (3cos 1)β −  

  

The influence of HQ on NMR evolution is best evaluated in the rotating frame 

defined by the phase φrf and angular frequency ω of the applied rf magnetic field in a 

pulsed NMR experiment, where, in practice, ω = ω0, the nuclear Larmor frequency.  The 

direction of B0 defines the z-axis.  To enter the rotating frame, we transform the T2,q 

operators according to 

 †
2, 2,( ) ( )   ( )q rf q rfT t U t T U t=� , (B.15) 

where 

 0( ) exp[ ( ) ]rf rf zU t i t I= ω + φ  (B.16) 

and its Hermitian conjugate † ( )rfU t  are the unitary operators appropriate to this 

transformation.  It is straightforward to show that 

 †
0( )   ( ) exp[  ( )] q q

rf rf rfU t I U t i q t I± ±= ± ω + φ , (B.17) 

while Iz commutes with ( )rfU t .  Thus, according to Eqs. (B.7) – (B.9), and (B.14) –

(B.17), the rotating-frame quadrupole Hamiltonian is 
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2

2, 2, 0
2

( , , )  ( 1)    exp[  ( )]
2 (2 1)

q
Q q q rf

q

eQ V T i q t
I I

+

−
= −

′α β γ = − − ω + φ
− ∑�
=

H . (B.18) 

Only the term proportional to T2,0 in Eq. (B.18) is stationary in the rotating frame, while 

effects of the oscillating terms on the spin system average to zero over time and are thus 

normally truncated to obtain the  first-order form of Q
�H .  The T2,0 term gives rise to the 

dc LQSE.  Inserting Eqs. (B.10) – (B.12) for the V2,p and the 2
,0 ( )pd β values in Table 3.1 

into Eq. (B.13), we find 

 23
2,0 14 100 010 0012( , , )  sin 2  ( sin cos ) sin  sin 2V C E E E′  α β γ = β α + α + β α  , (B.19) 

which, inserted into Eq. (B.18), yields the dependence of the secular LQSE on the 

orientation of the magnetic field and the components of the electric field in the crystal 

frame.  This is needed, for example, to describe the influence of the heterojunction 

interfacial field on the NMR line shape, as discussed in Chapter 3, as well as the optically 

induced POWER LQSE experiments of Chapter 4.  For the case where E100 = E010 = E001, 

Eq. (B.19) reduces to a particular case previously presented in the context of macroscopic 

dc E-fields.[60,61] 

The normally truncated terms of Q
�H  are the terms of interest for extending 

POWER NMR to include the conversion of nonsecular terms into diagonal, secular 

observables, as in Chapter 5.  Inserting Eqs. (B.8) – (B.12) for the T2,±1, T2,±2 and V2,p, and 

the 2
, 1( )pd ± β and 2

, 2 ( )pd ± β  values in Table 3.1 into Eq. (B.13), we obtain 

 
[

]

 
 

 

 

2, 1 14 100

010

1
001 2

( , , )  (cos 2  sin   cos  cos )
                                     (cos 2  cos   cos  sin )
                                     ( sin 2  sin 2   sin  cos 2 ) ,

iV C e E i
E i
E i

γ
±′ α β γ = β α ± β α

+ β α β α

+ β α ± β α

∓∓
∓  (B.20) 



Appendix B – The Linear Quadrupole Stark Effect  165 

 

and 

 
[  

 

 

   

21
2, 2 14 1002

010

2
001

( , , )  ( sin 2  sin   2 sin  cos )
                                   ( sin 2  cos   2 sin  sin )

                                   ( (cos 1) sin 2   2 cos  co

iV C e E i
E i

E i

γ
±′ α β γ = − β α β α

+ − β α ± β α

+ β + α ± β

∓ ∓

s 2 ) .α 

 (B.21) 
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Appendix C.  The Empirical Radial Weighting Function 

In this appendix, the mathematical formalism for obtaining an empirical function 

for weighting nuclear site-by-site contributions to an optically detected NMR signal is 

developed.  This procedure may be used to convert a Knight-shift-distribution spectrum 

at a given ONP time into an empirical replacement for A(tONP, r) of Eq. (4.37).  The 

present derivation is general in that the form of the wave function Ψ(r) describing the 

electronic state that is responsible for the Knight shift is left unspecified.  The input 

required to generate an empirical weighting function consists of the Knight-shift 

distribution spectrum, the underlying linewidth of individual contributions to that 

spectrum, |Ψ(r)|2 and the corresponding average electronic spin S .  Therefore, while 

my interest for this thesis is primarily in application to a radial electronic state (see 

Sections C and D of Chapter 4), this novel weighting scheme is equally applicable to 

calculation of ONMR signals that derive from interaction of nuclei with electronic spins 

in a variety of quantum-confined systems, including quantum wells and dots. 

The derivation begins with a general expression for the time-domain ONMR 

signal in t1: 

 ( )        
13 ( )  

1 1( ) ( ) ( ) cos ( ) t
j

j
S t d A t e−∆ν

 
= δ − ω 

 
∑∫ rr r r r r , (C.1) 

where 

 ω(r) = ωhf |Ψ(r)|2 (C.2) 

is the position-dependent angular frequency of the Knight-shift, ωhf is the magnitude of 

the hyperfine Hamiltonian at the maximum of |Ψ(r)|2, and ∆ν(r) is the FWHM of the 
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(presumably) Lorentzian contribution of a nucleus at r to the corresponding frequency 

domain spectrum.  The signal in Eq. (C.2) is a summation of contributions from nuclear 

sites located at positions rj, while δ( r-rj ) is a Dirac delta function. 

If the linewidth ∆ν(r) is spatially uniformC(a) then it may be deconvoluted from 

the time-domain spectrum by multiplication of Eq. (C.1) by   1te+π ∆ν , to yield 

 ( ) ( )         
3

1 1( ) ( ) cos ( )d j
j

S t d A t
 

= δ − ω 
 
∑∫ r r r r r . (C.3) 

The Fourier transform of this linewidth-deconvoluted signal is 

 
( ) ( )

( ) ( )( )

         

  
                                                                                

1 1

3
1 1

1/ 2
1 1

( ) ( ) cos ( )

2 cos ( ) ,

d j
j

i t

S d A t

dt e t
∞

− + ω

−∞


ω = δ − ω




× π ω 


∑∫

∫

r r r r r

r

�

 (C.4) 

which is equivalently written as 

 
( )

( ) ( ) ( )( )

         

  
                                                                                            

1 1 1 1

3
1

1 ( ) ( )
1

2( ) ( )

2 .

d j
j

i t i t

S d A

dt e e
∞

− − ω −ω − −ω −ω

−∞

π 
ω = δ −




× π + 


∑∫

∫ r r

r r r r�

 (C.5) 

In this expression, we recognize the Fourier transform representation[108] 

 ( ) ( )  
     

1 1( )1
1 1( ) (2 ) i tdt e

∞
− ±ω −ω−

−∞

δ ω ± ω = π ∫ rr  (C.6) 

of a delta function in angular frequency space, which, upon substitution into Eq. (C.5), 

yields 

                                                 
C(a)  Conditions under which the line width may not be spatially uniform are described in footnote 1(b) 
(Section C.2 of Chapter 1). 
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 ( ) ( ) ( )( )              
3

1 1 12( ) ( ) ( ) ( ) .d j
j

S d Aπ  
ω = δ − δ ω − ω + δ ω + ω 

 
∑∫ r r r r r r�  (C.7) 

A more convenient expression of 1( )dS ω�  is in terms of the frequency ν1 = (2π)-1ω1 and 

the frequencies νhf and ν(r) with angular counterparts ωhf and ω(r).  Substituting the 

relationship[108] 

 ( ) ( )    1 1
1

22 ( ( ) ) ( )πδ π ν ± ν = δ ν ± νr r  (C.8) 

for ( )1( )δ ω ± ωr  in Eq. (C.7), we obtain 

 ( ) ( ) ( ) ( )( )            

1/ 2 3
1 1 1( ) 8 ( ) ( ) ( ) .d j

j
S d A−  

ν = π δ − δ ν − ν + δ ν + ν 
 
∑∫ r r r r r r�  (C.9) 

The apparent contribution of two frequencies ±ν1 in this result is an artifact of Fourier 

transformation of the non-quadrature signal of Eqs. (C.1) and (C.3), thus one of the 

d-functions in Eq. (C.9) is subsequently dropped as a non-contributor to the ONMR 

signal.  Furthermore, justification of this exclusion is also reasoned physically using the 

fact that a Knight shift due to interaction with a single sort of electronic state, while 

differing in magnitude among the ensemble of nuclear spins, does not vary in sign. 

In most cases, the spatial dependencies of ν(r) and A(r) in Eq. (C.9) are 

determined by a single scalar variable.  For example, ONMR signals related to the system 

investigated throughout Chapter 4, wherein the electrons responsible for the Knight shift 

are trapped on point defects and characterized by a radial envelope ψ(r), are determined 

by ν(r) and A(r) of Eqs. (4.16) and (4.37).  Similarly, in the case that such electrons are 

confined to a quantum well that has an isotropic in-plane distribution of carriers, the 

envelope ψ(z) is appropriate and we have     { ( ), ( )} { ( ), ( )}A z A zν → νr r .  With these 
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important examples in mind, we now reduce spatial dependence of the ONMR signal 

such that it is given by an arbitrary scalar variable ξ.  In this reduction, we make use of 

the relationships[109]  

 ( ) ( ) ( ) ( )      

1
( , )j j j jJ

−
′ ′ ′′ ′′δ − = ξ δ ξ − ξ δ ξ − ξ δ ξ − ξr r r

�
 (C.10) 

and 

        
3 ( , )d J d d d′ ′′= ξ ξ ξ ξr r

�
, (C.11) 

where  ( , )J ξr
�

 is the Jacobian that relates integration over spherical coordinates r to that 

over the arbitrary coordinates   ( , , )′ ′′ξ = ξ ξ ξ
�

.  Inserting Eqs. (C.10) and (C.11) into 

Eq. (C.9), assuming a positive Jacobian and replacing A(r) and ν(r) with A(ξ) and ν(ξ), 

we obtain 

 
( )

( ) ( ) ( ) ( )

      

         

1/ 2
1

1

( ) 8

                             ( ) ( ) ,

d

j j j
j

S d d d

A

− ′ ′′ν = π ξ ξ ξ

 
′ ′ ′′ ′′δ ξ − ξ δ ξ − ξ δ ξ − ξ ξ δ ν ξ − ν 

 

∫ ∫ ∫

∑

�

 (C.12) 

which, using the δ-function normalization property, becomes 

 ( ) ( ) ( )            

1/ 2
1 1( ) 8 ( ) ( ) .d j

j
S d A−  

ν = π ξ δ ξ − ξ ξ δ ν ξ − ν 
 
∑∫�  (C.13) 

It proves useful to define the function 

 g(ξ) = ν(ξ) - ν1, (C.14) 

and exploit the relationship[108] 

 ( )( ) ( ) ( ) 

1
,k k

k
g g

−′δ ξ = ξ δ ξ − ξ∑  (C.15) 

where the summation is over all values of ξ = ξk at which ( ) 0kg ξ =  and 



Appendix C – The Empirical Radial Weighting Function 170 
 

 

 ( )    

  

( ) 0
k

k
d

dg
ξ = ξ

ν ξ
ξ

 ′ ξ = ≠  . (C.16) 

The interest here is in the case where a one-to-one relationship exists between ξ and ν, 

and thus, considering Eq. (C.14), the only term that contributes in Eq. (C.15) is that 

where ξk = ξ(ν1).  Inserting Eqs. (C.14) and (C.16) into Eq. (C.15) yields  

 ( ) ( ) ( )   

  1

1

1 1
( )

( )( ) ( )d
d

−

ξ = ξ ν

ν ξ
ξδ ν ξ − ν = δ ξ − ξ ν , (C.17) 

which we in turn insert into Eq. (C.13), to obtain 

 ( ) ( ) ( ) ( )           
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1
1/ 2

1 1
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−
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Executing the integration, we have 

 ( ) ( ) ( )     

  1

1
1/ 2

1 1
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( ) ( ) 8 ( )d
j

d
dS A

−
−

ξ = ξ ν

ν ξ
ξ

 ′ν = π ξ ν 
 

∑� , (C.19) 

where the sum has been primed to indicate that it is to be carried out only over those sites 

where ξ = ξ(ν1).  Furthermore, since there are no indexed factors on the right-hand side 

of Eq. (C.19), we recognize that the summation merely amounts to counting the number 

N1( ξ(ν1) ) of sites for which ξ = ξ(ν1).  Therefore, the desired expression for the single-

spin time-domain weighting function is 

 ( ) ( ) ( ) ( )     

  1

11/ 2
1 1 1 1

( )

( )( ) 8 ( ) ( ).d
d

dA N S
−−

ξ = ξ ν

ν ξ
ξξ ν = π ξ ν ν  

�  (C.20) 

Determination of N1( ξ(ν1) ) is specific to the system studied.  In the case of a radial 

electronic state, where ξ → r, the number of spins in an onion skin of infinitesimal 

thickness dr is 

 N1(r) = 4π Ω-1 r2 dr, (C.21) 
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where Ω is the volume of the appropriate unit cell.  In the case of a quantum well with an 

isotropic in-plane carrier distribution and uniform width, the relevant dimension is the 

growth direction z and N1 is spatially uniform.
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Appendix D.  Perturbation-Theory Derivation of the QW 
Polarization Response 

The QW is modeled as an infinite one-dimensional potential well, centered about 

z = 0, where z is position along the growth direction.   The quantum-confined eigenstates 

ψn(z) of the symmetric well can be categorized into even (n = j) and odd (n = k) states 

given by 

   1/ 2
2( )  cos( )j
j z

az a− πψ =  (D.1) 

and 

   1/ 2
2( )  sin( ),k

k z
az a − πψ =  (D.2) 

where j = 1, 3, 5, …, k = 2, 4, 6, …, and 2a is the width of the QW.  The energy of the nth 

state is 

 
2 2 2

* 2 8n
nE

m a
π= = . (D.3) 

An E field applied across the QW introduces a linear term in the potential well 

( 0
1

2( ) ( )az z aΦ = Φ +  from z = -a to z = a ), which is treated as a small perturbation to 

the symmetric box Hamiltonian. 

The first-order perturbation-theory correction to the wave function describing the 

ground state is 

 
( ) (0)(0)

0 1(1) (0)
1 (0)  1 (0)

1

2  
( )    ( )n

nn
n

z
az z

E E>

 ψ Φ ψ
ψ = ψ 

−  
∑ , (D.4) 

where the superscripts (i) indicate ith-order perturbation corrections to the wave function 

and energy solutions of the Schrödinger equation.  By symmetry, only the states ψk
(0)(z) 
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of odd parity will contribute to the first-order correction of the even ground-state wave 

function.  Inserting the expression for ψk
(0)(z) from Eq. (D.2) and the corresponding 

energy given by Eq. (D.3) into Eq. (D.4) yields 

   

 

6 * 3/ 2 / 2
0(1)

1  2 4 2 3
 2

2 ( 1)( )   sin( ) .
( 1)

k

k
k z

a
m a kz

k
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∑=
 (D.5) 

The term contributing at k = 4 is only 1.6% of the magnitude of the term at k = 2.  

Truncating the above series at k = 2 yields 

  

7 * 3/ 2
0(1)

1 2 4

2( )   sin( ).
27

z
a

m az π− Φψ =
π=

 (D.6) 

The sufficiency of the first-order perturbation-theory treatment of this problem is 

validated by derivation of the expression for the second-order correction to the ground-

state wave function, which is 

 ( )
(0) (0) (0)(0)2 1(2) (0)

1 (0) (0) (0)  1   1 (0)
1 1

0
2
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nl
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z z

z z
E E E E> >

Φ  ψ ψ ψ ψ
ψ = ψ 

− −  
∑ ∑ . (D.7) 

Substituting the explicit forms of the zero-order wave function and energy expressions 

into Eq. (D.7), and then taking parity considerations (n = j with j > 1 only, and l = k only) 

into account, provides the expression 
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=
 (D.8) 

The size of the second-order correction to the ground-state wave function can be 

calculated neglecting terms other than that with ( j, k) = (3, 2), which is more than 30 
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times greater than the magnitude of the second-largest term in Eq. (D.8).  This 

approximation yields 

   

 

26 * 2 1/ 2
0(2)

1 2 4
3
2

2( )   cos( ).
450

z
a

m a az
−

πΦ ψ =  π =
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The relative size of the coefficients of the second-order correction of Eq. (D.9) to those of 

the first-order correction of Eq. (D.6) is 

 
 

 
 

 

 

* 2
0 36 -1 -2 2 *

0 02 4

48   (1.62 10  J m ) /
25
m a a m mΦ = × ⋅ Φ

π=
 (D.10) 

where m0 is the electron rest mass.  The three parameters determining the validity of the 

first-order perturbation-theory treatment are Φ0, a, and (m*/m0).  In the case of a 10 nm 

GaAs QW, where (m*/mo) = 0.067, the relative size given in Eq. (D.10) is 

~ ( 2.7×1020 J-1 × Φ0 ), which limits Φ0 to be less than 1.8×10-20 J if the second-order term 

is to be < 5% of the first-order correction.  This limit corresponds to an applied E field of 

~115 kV/cm, which is well above the magnitude of the E field to be applied to the sample 

using the method we present; thus, the first-order perturbation-theory treatment is 

sufficient. 

The normalized form of the QW ground-state wave function is then 

 ( ) ( )  

 

1/ 22 1/ 2 1/ 2
1 0 0 2( )  1 ( ) cos( ) sin( ) ,z z

aaz a c a a c− − π πψ = + −  (D.11) 

where c0 is given by Eq. (5.10) and a2c0
2 ≈ ( 4.5×1037 J-2 × Φ0

2 ).  Even in the case where 

the maximum, first-order-perturbation-theory-limited field of 115 kV/cm is applied to the 

QW sample, 2
0 ( ) 1a c � , and so the normalization coefficient in Eq. (D.11) is set to 

unity.
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