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Abstract

Advances in fabrication, modern sensor and communication technologies, and computer

architecture have enabled a variety of new networked sensing and control applications.

However, many difficulties are inherent with these systems, for example, the constrained

communication and computation capabilities, and limited energy resources, which are fre-

quently seen in a wireless sensor network. As a consequence, the networks typically induce

many new issues such as limited bandwidth, packet loss, and delay. Estimation and control

over such networks thus require new design paradigms beyond traditional sampled-data

control, as the aforementioned constraints undoubtedly affect system performance or even

stability. In this thesis work, I consider the problem of state estimation over networks. As

communication, computation, and energy are scarce resources in such networks, I focus on

optimizing the use of them. When the state estimation is carried out over a sensor network,

I consider the problem of minimizing the sensor energy usage and maximizing the network

lifetime. When the state estimation is carried out over a packet-delaying network, I consider

the problem of minimizing the buffer length at the remote state estimator. In each scenario,

a certain desired level of estimation quality is guaranteed.
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Chapter 1

Introduction

1.1 Background

Advances in fabrication, modern sensor and communication technologies, and computer

architecture have enabled a variety of new networked sensing and control applications. In

many of these applications, there is an economic incentive towards using off-the-shelf sensors

and standardized communication solutions. A consequence of this is that the individual

hardware components might be of relatively low quality and that communication resources

are quite limited.

Networked sensing and control applications are found in a growing number of areas,

including automobiles, autonomous vehicles, environmental monitoring, industrial automa-

tion, power distribution, space exploration, surveillance, and transportation. For example,

Alice is an autonomous vehicle that was developed at California Institute of Technology

for the 2005 DARPA Grand Challenge [11]. The sensors mounted on Alice include an iner-

tial measurement unit (IMU), global positioning system (GPS), velocity and measurement

range sensors, and stereo vision. To allow the vehicle to autonomously navigate through its

environment, sensor data are fused to provide Alice an estimate of its own state and of the

environment around it. The heterogeneous set of sensors is connected with the computation

platform through an Ethernet local area network providing an architecture for networked

estimation and control.

Wireless sensor networks constitute another important class of networked sensing and

control applications, which have attracted much attention in the past few years. Sensor

networks have a wide range of applications, including environment and habitat monitoring,

health care, home and office automation, and traffic control [13]. This area of research
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brings together researchers from computer science, communication, control, etc. [12]. A

typical wireless sensor network consists of a large number of sensor nodes and some base

stations [18]. Sensor nodes are usually battery powered and have limited computation ca-

pabilities. They interact with the physical world and collect information of interest, e.g.,

temperature, humidity, pressure, air density, etc. Depending on the routing protocol as

well as the available resources (network bandwidth, node energy, etc.), the collected data

are transmitted to their final destination, usually a fusion center, at appropriate times. For

example, the Pursuer-Evader game (Figure 1.1) carried out at UC Berkeley [47] consists of

hundreds of tiny sensor nodes which are capable of measuring the state of incoming evaders.

The measured information is sent back to a computational unit via multi-hop communica-

tion paths, and corresponding control laws are computed and sent to the pursuers.

Figure 1.1: Pursuer Evader Game. Photo Courtesy: UC Berkeley

Although tremendous progress has been made in the past few years in making sen-

sor network an enabling technology, many challenging problems remain to be solved, e.g.,

network topology control and routing, collaborative signal collection and information pro-

cessing, synchronization, etc. Estimation and control over such resource-constrained net-

works thus require new design paradigms beyond traditional sampled-data control. For

example, consider the problem of state estimation over such a network using a Kalman
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filter. The Kalman filter [24] is a well-established methodology for model-based fusion of

sensor data [2, 15, 16, 23] that has played a central role in systems theory and has found

wide applications in many fields such as control, signal processing, and communications. In

the standard Kalman filter, it is assumed that sensor data are transmitted along perfect

communication channels and are available to the estimator instantaneously, and no interac-

tion between communication and control is considered. This underlying assumption breaks

when networks, especially wireless networks, are used in sensing and control systems for

transmitting data from sensors to controller and/or from controller to actuator.

Many difficulties are inherent in these networked sensing and control systems, for exam-

ple, constrained communication and computation capabilities, and limited energy resources,

which are frequently seen in a wireless sensor network [13]. Communication between net-

work nodes is limited, particularly, if nodes are located physically far way from each other.

It takes time to transfer information from one node to another. As a consequence, the net-

works typically induce many new issues such as limited bandwidth, packet loss, and delay.

These constraints affect system performance or even stability, and cannot be neglected when

designing estimation and control algorithms; this has inspired a lot of research in control

with communication constraints.

The rapid developments of networked sensing and control technologies enable drastic

change of the architecture and embedded intelligence in these systems. The theory and

design tools for these systems are not fully developed, but there is a lot of current research,

some of which is described next.

1.2 Related Work

The problem of state estimation and stabilization of a linear time invariant (LTI) system

over a digital communication channel that has a finite bandwidth capacity was introduced by

Wong and Brockett [53,54] and further pursued by others (e.g., [7,33,38,49]). Sinopoli et al.

[45] discussed how packet loss can affect state estimation. They showed there exists a certain

threshold of the packet loss rate above which the state estimation error diverges in the

expected sense, i.e., the expected value of the error covariance matrix becomes unbounded

as time goes to infinity. They also provided lower and upper bounds of the threshold

value. Following the spirit of [45], Liu and Goldsmith [29] extended the idea to the case
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where there are multiple sensors and the packets arriving from different sensors are dropped

independently. They provided similar bounds on the packet loss rate for a stable estimate,

again in the expected sense. Packet losses are characterized as a Markov chain and some

sufficient and necessary stability conditions under the notion of peak covariance stability

are given in [20,55]. The drawback of using mean covariance matrix as a stability measure is

that it may conceal the fact that events with arbitrarily low probability may make the mean

value diverge. Different from [20,45,55], the stability of the Kalman filter was investigated

via a probabilistic approach in [41].

One way to deal with the problem of asynchronous generation of sensor data is to use

event-triggered control instead of conventional time-triggered control [3, 25]. How to effi-

ciently encode control information for event-triggered control over communication channels

with severe bandwidth limitations was discussed in [4]. A scheme based on multi-description

coding for lossy networks, but limited to the estimation, was considered by Jin et al. [21].

A compensation scheme in the controller for the variations on the transport layer that

such routing protocols give rise to was presented by Witrant et al. [52]. A robust control

approach to control over multi-hop networks was discussed in [37].

Kalman filtering under certain information constraints, such as decentralized implemen-

tation, has been extensively studied [44]. Implementations for which the computations are

distributed among network nodes were considered by Alriksson and Rantzer [1]. The in-

teraction between Kalman filtering and how data is routed on a network seems to be less

studied. Routing of data packets in networks is typically done based on the distance to the

receiver node [5]. Some recent work addresses how to couple data routing with the sensing

task using information theoretic measures [22]. A heuristic algorithm for event detection

and actuator coordination was proposed by Ngai et al. [35]. For control over wireless sensor

networks, the experienced delays and packet losses are important parameters. Random-

ized routing protocols that give probabilistic guarantees on delay and loss were proposed

in [6, 27].

The problem of Kalman filtering for systems with delayed measurements is not new and

has been studied even before the emergence of networked control [39,57]. It is well known

that discrete-time systems with constant or known time-varying bounded measurement

delays may be handled by state augmentation in conjunction with the standard Kalman

filtering or by the reorganized innovation approach [59–61]. Although sensor data are usually
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time-stamped and thus transmission delays are known to the filter, the delays in networked

systems are random in nature. Thus, the state augmentation and the reorganized innovation

approaches are generally not applicable.

For the problem of randomly delayed measurements, Ray et al. [39] presented a modifi-

cation of the conventional minimum variance state estimator to accommodate the effects of

the random arrival of measurements, whereas a suboptimal filter in the least-mean-square

sense is given in [57]. In [30], a recursive minimum variance state estimator was presented

for linear discrete-time partially observed systems where the observations are transmitted by

communication channels with randomly independent delays. Using covariance information,

recursive least-squares linear estimators for signals with random delays were studied in [34].

Furthermore, the filtering problems with random delays and missing measurements have

been investigated in [40, 48, 51] via the linear matrix inequality and the Riccati equation

approaches, respectively.

More related work can be found in a recent survey of networked control systems in [17].

1.3 Summary of Contributions and Overview of Thesis

The main contribution of this thesis work is to tackle the aforementioned networked con-

trol problems by optimizing the limited resources of those networks while guaranteeing a

certain level of desired estimation quality. In particular, I consider minimizing the sensor

energy usage, maximizing the network lifetime, and minimizing the buffer length, with each

corresponding to a class of networked sensing and control applications. The scenarios and

algorithms investigated are:

• (Chapter 3) Optimal estimation algorithm over a sensor tree is presented with a

closed-form expression on the steady-state error covariance.

• (Chapter 4) A sensor tree reconfiguration algorithm is presented to minimize the

sensor energy usage.

• (Chapter 5) A sensor tree construction and scheduling algorithm is presented to max-

imize the sensor network lifetime.

• (Chapter 6) Kalman filtering over a packet-delaying network is considered, and the

minimum buffer length at the remote estimator is determined.
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For all the scenarios considered in the thesis, a certain level of estimation quality is

guaranteed.

After a short introduction to Kalman filtering and modified Kalman filtering in Chap-

ter 2, we first present the optimal estimation algorithm when the sensor communications

are represented by a tree in Chapter 3.

Figure 1.2: State Estimation over a Wireless Sensor Network

Then we consider the sensor energy minimization problem in Chapter 4, where sensor

measurement data are sent to a fusion center over a multi-hop wireless network (Figure 1.2).

The quality of the state estimate depends not only on the sensor quality but also on the

communication delay, i.e., the number of hops a sensor measurement needs to take until it

reaches the fusion center. Many short hops take longer time than few long hops. On the

other hand, few long hops require larger transmission power since the required transmission

power grows rapidly with the distance between the wireless nodes. Hence, there is a trade-off

between the state estimation quality and the overall energy cost. The proposed solution is

to optimize the network path for the sensor data such that the overall transmission energy

is minimized, but guarantees a specified level of estimation quality. The resulting local

sensor topology has the structure of a tree for which the fusion center is the root. When

the process is given by a linear system, the optimal estimator is given by a chain of Kalman

filters due to the communication delays.
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We further consider the network lifetime maximization problem in Chapter 5, where we

first motivate that by minimizing the overall energy cost is not sufficient to maximize the

network lifetime. Therefore we propose a sensor tree construction and scheduling algorithm

that maximizes the network lifetime.

Figure 1.3: State Estimation over a Packet Delaying Network

In Chapter 6, we study the performance of a Kalman filter under random measurement

delay (Figure 1.3). The probability distribution of the delay is assumed to be given and we

give a complete characterization of filter performance via a probabilistic approach. Due to

the limited computation capability of the filtering center and also in consideration of the

fact that a late-arriving measurement related to the system state in the far past may not

contribute much to the improvement of the accuracy of the current estimate, it is practi-

cally important to determine a proper buffer length for measurement data within which a

measurement will be used to update the current state and beyond which the data will be

discarded. The buffer provides a tradeoff between the filter performance and computational

load. In this thesis, for a given buffer length, we give lower and upper bounds for the prob-

ability at which the filtering error covariance is within a prescribed bound, i.e., Pr[Pk ≤ M ]

for some given M . The upper and lower bounds can be easily evaluated by the probabil-

ity distribution of the delay and the system dynamics. An approach for determining the

minimum buffer length for a required performance in probability is given and an evaluation

on the number of expected filter updates is provided. Both the cases of sensor with and

without computation capability for filter updates are considered.

Finally, in Chapter 7, concluding remarks are given, and we discuss some directions of

future work along the line of this thesis.
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Chapter 2

Preliminaries and Definitions

In this chapter, some definitions are provided which are used frequently in remaining chap-

ters. A brief introduction to the Kalman filter and the modified Kalman filter is also

included, upon which the main results of later chapters rely.

2.1 Definitions

The following definitions are frequently used throughout later chapters. Z+ denotes the set

of nonnegative integers. IRn is the real n-dimensional vector space. IRn×n is the set of n by

n real matrices. Sn
+ is the set of n by n positive semidefinite matrices. When X ∈ Sn

+, we

simply write X ≥ 0; when X is positive definite, we write X > 0.

We are frequently dealing with systems with parameters (A,C,Q,R), where A ∈ IRn×n

and C ∈ IRm×m are the system and sensor measurement matrices, Q ∈ Sn
+ and R ∈ Sm

+

with R > 0 are the process and measurement noise covariance matrices respectively, e.g.,

in Eqn (2.7) and (2.8). We define the function h[A,Q] : Sn
+ → Sn

+ as

h[A,Q](X) , AXA′ + Q. (2.1)

As we shall see shortly, applying h to the previous error covariance matrix corresponds to

the time update of the standard Kalman filter. Similarly, we define the function g[A,C,Q,R] :

Sn
+ → Sn

+ as

g[A,C,Q,R](X) , AXA′ + Q − AXC ′[CXC ′ + R]−1CXA′, (2.2)
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and the function g̃[C,R] : Sn
+ → Sn

+ as

g̃[C,R](X) , X − XC ′[CXC ′ + R]−1CX. (2.3)

Then g and g̃ correspond to the measurement update for the a priori and a posteriori error

covariance matrices respectively in the standard Kalman filter. We simply write h[A,Q] as h,

g[A,C,Q,R] as g or gC , and g̃[A,C,Q,R] as g̃ or g̃C when there is no confusion on the underlying

parameters [A,C,Q,R]. It is easy to see that

g = h ◦ g̃. (2.4)

We denote λi(A) as the i-th eigenvalue of A and ρ(A) as spectral radius of A, i.e., ρ(A) =

maxi |λi(A)|. We say A is stable if ρ(A) < 1, and A is unstable if A is not stable. For

functions f, f1, f2 : Sn
+ → Sn

+, f1 ◦ f2 is defined as

f1 ◦ f2(X) , f1

(
f2(X)

)
, (2.5)

and f t is defined as

f t(X) , f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

t times

(X). (2.6)

For a random variable X, we write its expectation value as E[X] and its conditional prob-

ability given another random variable Y as Pr[X|Y ].

2.2 Kalman Filter and Modified Kalman Filter

Kalman Filter Preliminaries

Consider the following linear discrete time system:

xk = Axk−1 + wk−1, (2.7)

yk = Ckxk + vk. (2.8)

In the above equations, xk ∈ IRn is the state vector, yk ∈ IRm is the observation vector,

wk−1 ∈ IRn and vk ∈ IRm are zero-mean white Gaussian random vectors with E[wkwj
′] =
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δkjQ ≥ 0, E[vkvj
′] = δkjR > 0, E[wkvj

′] = 0 ∀j, k, where δkj = 0 if k 6= j and δkj = 1

otherwise. The Kalman filter in its most general form can assume time-varying A and Q.

The special form we look at here suffices for deriving the optimal estimation algorithms in

later chapters.

Assume a linear estimator receives yk and computes the optimal state estimate at each

time k. Define the following terms at the estimator:

x̂−

k , E[xk|all measurements up to k − 1],

x̂k , E[xk|all measurements up to k],

P−

k , E[(xk − x̂−

k )(xk − x̂−

k )′],

Pk , E[(xk − x̂k)(xk − x̂k)
′],

P ∗ , lim
k→∞

P−

k , if the limit exists,

P , lim
k→∞

Pk, if the limit exists.

It is well known that x̂k and Pk can be computed as

(x̂k, Pk) = KF(x̂k−1, Pk−1, yk, Ck, Rk),

where KF denotes the Kalman filter given by the following update equations:

x̂−

k = Ax̂k−1, (2.9)

P−

k = APk−1A
′ + Q, (2.10)

Kk = P−

k C ′
k[CkP

−

k C ′
k + Rk]

−1, (2.11)

x̂k = Ax̂k−1 + Kk(yk − CkAx̂k−1), (2.12)

Pk = (I − KkCk)P
−

k . (2.13)

It can be shown that P−

k and Pk evolve as

P−

k = g[Ck−1,Rk−1](P
−

k−1), (2.14)

Pk = g̃[Ck,Rk](P
−

k ). (2.15)



11

When parameters Ck and Rk are not time-varying, i.e., Ck = C and Rk = R, we have

the following lemma regarding the properties of the steady state error covariances.

Lemma 2.1 When Ck = C,Rk = R, the pair (A,
√

Q) is stabilizable and (A,C) is observ-

able, P ∗ and P exist and satisfy the following equations:

P ∗ = g(P ∗), (2.16)

P = g̃(P ∗), (2.17)

P = g̃ ◦ h(P ). (2.18)

Proof: By standard Kalman filtering analysis, if (A,
√

Q) is stabilizable and (A,C) is

observable, then Eqn (2.14) converges to a unique value for any initial condition P0 ≥ 0.

Therefore Eqn (2.16) and (2.17) simply follow from Eqn (2.14) and (2.15) by letting k → ∞.

Eqn (2.18) holds as

g̃ ◦ h(P ) = g̃ ◦ h
(
g̃(P ∗)

)
= g̃ ◦ g(P ∗) = g̃(P ∗) = P .

�

Modified Kalman Filter

In many networked control applications, the measurement packet yk is sent via an unreliable

communication network, e.g., yk can be dropped by the network possibly due to network

traffic, channel fading, etc. In this case, the optimal linear estimator is known to be given

by a modified Kalman filter (MKF) [45].

Let γk be the indicator functor for yk, which is defined as follows.

γk =







1, if yk is received at time k,

0, otherwise.

We write (x̂k, Pk) in compact form as

(x̂k, Pk) = MKF(x̂k−1, Pk−1, γkyk),
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which represents the following set of equations:







x̂−

k = Ax̂k−1,

P−

k = APk−1A
′ + Q,

Kk = P−

k C ′[CP−

k C ′ + R]−1,

x̂k = Ax̂k−1 + γkKk(yk − CAx̂k−1),

Pk = (I − γkKkC)P−

k .

Notice that if γk = 1 for all k, then MKF reduces to the standard Kalman filter, i.e.,

Eqn (2.9)–(2.13). When γk = 0, it is easy to show that

Pk = P−

k = h(Pk−1).

Properties of h and g Functions

Many useful properties of the h and g functions defined earlier in this chapter are presented

below.

Lemma 2.2 For any X,Y ∈ Sn
+, and X ≤ Y ,

1. h(X) ≤ h(Y ).

2. g(X) ≤ g(Y ).

3. g̃(X) ≤ g̃(Y ).

4. g̃(X) ≤ X.

5. g(X) ≤ h(X).

Proof: h(X) ≤ h(Y ) holds as h(X) is affine in X. The proof for g(X) ≤ g(Y ) can be

found in Lemma 1-c in [45]. As g̃ is a special form of g by setting A = I and Q = 0, we

immediately obtain g̃(X) ≤ g̃(Y ). Next we have

g̃(X) = X − XC ′[CXC ′ + R]−1CX ≤ X,

and

g(X) = h(X) − AXC ′[CXC ′ + R]−1CXA′ ≤ h(X).
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�

When the measurement matrix C is invertible, the function g exhibits a very nice prop-

erty. When we apply g to any X ≥ 0, we have a bounded value. The following lemma gives

this bound.

Lemma 2.3 Assume C−1 exists and let M = C−1RC−1′. Then for any X ≥ 0, g̃(X) ≤ M .

Proof: For any t > 0, we have

g̃(tM ) =
t

t + 1
M

≤ M.

For all X ≥ 0, since M > 0, it is clear that there exists t1 > 0 such that t1M > X.

Therefore

g̃(X) ≤ g̃(t1M) ≤ M.

�

Recall that P is the steady state error covariance. Suppose the Kalman filter enters the

steady state, so that Pk = P . When a sensor measurement packet is lost at time t, only

time update is performed, i.e., Pt = h(P ). Intuitively, we shall get a larger estimation error.

The following lemma verifies this intuition.

Lemma 2.4 P ≤ h(P ).

Proof:

h(P ) = h ◦ g̃(P ∗) = g(P ∗) = P ∗ ≥ g̃(P ∗) = P ,

where the first and the last equality are from Eqn (2.17), and the third equality is from

Eqn (2.16). The inequality is due to Lemma 2.2. �

2.3 Math Preliminaries

The following three lemmas are well known, and they are stated without proofs. Those lem-

mas will be used to establish the properties of many algorithms introduced in the remaining
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chapters. The first lemma is the Matrix Inversion Lemma, which provides an alternative

formula for computing the inverse of a matrix.

Lemma 2.5 (Matrix Inversion Lemma) Let X > 0. If X = B−1 + CD−1C ′, then the

inverse of X can be written as

X−1 = B − BC(D + C ′BC)−1C ′B.

The second lemma is the Schur Complement lemma. It provides a set of equivalent

relationships for a positive definite matrix M .

Lemma 2.6 (Schur Complement) Let

M =




A B

C D



 .

Then the following three conditions are equivalent to each other.

1. M > 0.

2. A > 0 and SA , D − CA−1B > 0.

3. D > 0 and SD , A − BD−1C > 0.

The last one is the Block Matrix Inversion lemma, which, as its name suggests, inverts

a block matrix using the Schur complement of the matrix.

Lemma 2.7 (Block Matrix Inversion) Let

M =




A B

C D



 > 0.

Then M−1 can be computed as

M−1 =




A−1 + A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A



 ,
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or it can be computed as

M−1 =




S−1

D −S−1
D BD−1

−D−1CS−1
D D−1 + D−1CS−1

D BD−1



 .
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Chapter 3

Kalman Filtering over Multihop

Sensor Trees

3.1 Introduction

In this chapter, we consider the problem of state estimation over a sensor network. When

the sensor communications are represented by a tree, the optimal estimator is shown to be

given by a chain of Kalman filters due to the communication delays.

The problem of Kalman filtering for systems with delayed measurements is not new and

has been studied even before the emergence of networked control [39,57]. It is well known

that discrete-time systems with constant or known time-varying bounded measurement

delays may be handled by state augmentation in conjunction with the standard Kalman

filtering or by the reorganized innovation approach [59–61].

The optimal estimation scheme that we propose in this chapter is computationally effi-

ciently, and it gives insight into how each sensor (with different delays) contributes to the

overall estimation accuracy. Hence it enables us to construct minimum energy sensor tree in

Chapter 4. As we show in Chapter 6, this scheme also enables us to borrow tools developed

for Kalman filtering over packet dropping networks to analyze Kalman filtering over packet

delaying networks.

The rest of this chapter is organized as follows. We first introduce the mathematical

problem in Section 3.2. Then we present the optimal estimation algorithm with a closed-

form expression on the steady-state error covariance in Section 3.3. An example is provided

in Section 3.4 to demonstrate the optimal estimation algorithm. Some useful inequalities

are presented in the last section.



17

3.2 Problem Set-up

Consider the problem of state estimation over a wireless sensor network (Figure 3.1). The

process dynamics is described by

xk = Axk−1 + wk−1. (3.1)

Figure 3.1: State Estimation Using a Wireless Sensor Network

A wireless sensor network consisting of N sensors, i.e., {S1, · · · , SN}, is used to measure

the state. When Si takes a measurement of the state in Eqn (3.1), it returns

yi
k = Hixk + vi

k, i = 1, · · · , N. (3.2)

In Eqn (3.1) and (3.2), xk ∈ IRn is the state vector, yi
k ∈ IRmi is the observation vector for

Si, wk−1 ∈ IRn and vi
k ∈ IRmi are zero-mean white Gaussian random vectors with E[wkwj

′] =

δkjQ ≥ 0, E[vi
kv

i
t
′] = δktΠi > 0, E[vi

kv
j
t
′] = 0 ∀t, k and i 6= j, E[wkv

i
t
′] = 0 ∀i, t, k. We assume

that (A,
√

Q) is controllable, and (A,Call) is observable, where Call = [H1; · · · ;HN ], i.e.,

the joint measurement matrix of all sensors.

Each sensor can potentially communicate via a single-hop connection with a subset of

all the sensors by adjusting its transmission power. Let us introduce a fusion center which
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Figure 3.2: An Example of a Sensor Tree

we denote as S0, and consider a tree T with root S0 (see Figure 3.2). We suppose that there

is a non-zero single-hop communication delay, which is smaller than the sampling time of

the process. All sensors are synchronized in time, so the data packet transmitted from Si

to S0 is delayed one sample when compared with the parent node of Si. We also assume

that Si aggregates the previous time data packets from all its child nodes with its current

time measurement into a single data packet. Therefore only one data packet is sent from

Si to its parent node at each time k.

Let us define the following state estimate and other quantities at S0 for a given T :

x̂−

k (T ) , E[xk|all measurements up to k − 1],

x̂k(T ) , E[xk|all measurements up to k],

P−

k (T ) , E[(xk − x̂−

k (T ))(xk − x̂−

k (T ))′],

Pk(T ) , E[(xk − x̂k(T ))(xk − x̂k(T ))′],

P−
∞(T ) , lim

k→∞
P−

k (T ), if the limit exists,

P∞(T ) , lim
k→∞

Pk(T ), if the limit exists.

We drop the dependence on T , i.e., we write x̂−

k (T ) as x̂−

k , etc., if there is no confusion

on the underlying T . In this chapter, we are interested in computing x̂k and Pk for a given

T .
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3.3 Optimal Estimation Over a Sensor Tree

Assume T has depth D. Define Yk−i+1
k as the set of all measurements available at the fusion

center for time k− i+1 at time k, i = 1, · · · ,D. For the tree example in Figure 3.2, at time

k, the fusion center has

Yk
k = {y1

k, y
2
k},

Yk−1
k = {y1

k−1, y
2
k−1, y

3
k−1, y

4
k−1}.

We immediately notice that Yk−i
k−i ⊂ Yk−i

k , i.e., more measurements for time k − i are

collected at k compared with at time k − i. For example, Yk−1
k−1 = {y1

k−1, y
2
k−1} are the only

available measurements at time k − 1. However at time k, the available measurements for

time k − 1 changes to Yk−1
k . Hence we can obtain a better estimate of xk−1 at time k than

at time k − 1. This inspires us to recompute the optimal estimate of the previous states

and use them as input to generate the current estimate. That is the basic idea contained in

Theorem 3.1, where we recompute the optimal estimate of xk−D+1, · · · , xk−1 at time k and

then make use of the updated estimates to compute the current estimate x̂k. Figure 3.3

shows the overall estimation scheme at time k.

Let Sij be the node that is j hops away from S0. Define

Γj , [H1j
;H2j

; · · · ], j = 1, · · · ,D

Ci , [Γ1; · · · ; Γi], i = 1, · · · ,D

Υj , diag{Π1j
,Π2j

, · · · }, j = 1, · · · ,D

Ri , diag{Υ1, · · · ,Υi}, i = 1, · · · ,D.

Intuitively, Γj is the joint measurement matrix and Υj is the joint noise covariance from

all sensors that are j hops from the fusion center. Ci is the joint measurement matrix,

and Ri is the joint noise covariance from all sensors that are j or less than j hops from the

fusion center. With these definitions, the following theorem presents the optimal estimation

algorithm over a sensor tree.

Theorem 3.1 Consider a sensor tree T with depth D.
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Figure 3.3: Kalman Filter Iterations at Time k

1. x̂k and Pk can be computed from D Kalman filters as

(x̂k−D+1, Pk−D+1) = KF(x̂k−D, Pk−D,Yk−D+1
k , CD, RD)

...

(x̂k−1, Pk−1) = KF(x̂k−2, Pk−2,Yk−1
k , C2, R2)

(x̂k, Pk) = KF(x̂k−1, Pk−1,Yk
k , C1, R1).

2. P−
∞ and P∞ satisfy

P−
∞ = gC2

◦ · · · ◦ gCD−1
(P ∗), (3.3)

P∞ = g̃C1
◦ gC2

◦ · · · ◦ gCD−1
(P ∗), (3.4)

where P ∗ is the unique solution to gCD
(P ∗) = P ∗.

Proof: 1) We know that the estimate x̂k is generated from the estimate of x̂k−1 together

with all the available measurements at time k through a traditional Kalman filter. Similarly,

the estimate x̂k−1 is generated from the estimate of x̂k−2 together with all the available

measurements for time k − 1 at time k, etc. This recursion for D steps corresponds to the
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D Kalman filters stated in the theorem.

2) Follows directly from Eqn (2.14) and (2.15). �

Remark 3.2 The estimation algorithm presented in Theorem 3.1 readily extends to a

general graph that represents the sensor communications. The fusion center only needs to

keep track of the measurement data up to previous time k − D + 1. Thus in a distributed

setting, every node acts as a fusion center and the system robustness (against sensor failure)

is increased.

3.4 Example

We consider an integrator chain in this section. The discrete time system dynamics is given

by Eqn (3.1) with

A =




1 0.1

0 1



 .

and with process noise covariance Q = 0.3I. There are two sensors available. The measure-

ment equations are given by

y1
k = [ 0 1 ]xk + v1

k = H1xk + v1
k,

y2
k = [ 1 0 ]xk + v2

k = H2xk + v2
k,

with covariances Π1 = 0.25 and Π2 = 0.5. Consider the following two sensor topologies

(Figure. 3.4).

Figure 3.4: Integrator Chain Example
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The first one is the star topology, i.e., the two sensors communicate with the fusion

center directly, which corresponds to the centralized Kalman filter. The second one is a line

topology (a special tree), and the measurement data from sensor two to the fusion center

get delayed by one step. For this example, it is easy to calculate that

P ∗ =




0.1838 0.0103

0.0103 0.1822



 ,

which is the unique solution to P ∗ = g[H1;H2](P
∗). As a result, for the star topology,

P∞(star) = g̃[H1;H2](P
∗) =




0.0825 0.0021

0.0021 0.0822



 ,

with Tr
(
P∞(star)

)
= 0.1647. For the line topology,

P∞(line) = g̃[H1](P
∗) =




0.1835 0.0047

0.0047 0.0823



 ,

with Tr
(
P∞(line)

)
= 0.2658.
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Figure 3.5: True State and its Estimates
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Figure 3.6: Error Covariances

We plot the first component of the true state and its estimates based on the two sensor

topologies in Figure 3.5. We also plot the corresponding error covariance in Figure. 3.6. As

those figures demonstrate, the simulations agree well with the theory developed.

3.5 Some Useful Inequalities

We conclude this chapter by presenting some useful inequalities that will be used in the

next chapter.

Lemma 3.3 Assume 1 ≤ i ≤ j ≤ D and P ∈ Sn
+. Then

C ′
i[CiPC ′

i + Ri]
−1Ci ≤ C ′

j[CjPC ′
j + Rj]

−1Cj. (3.5)
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Proof: We first prove for i = 1 and j = 2. When i = 1 and j = 2, we can write Eqn (3.5)

as

Γ′
1[Γ1PΓ′

1 + Υ1]
−1Γ1

≤




Γ1

Γ2





′ 






Γ1

Γ2



P




Γ1

Γ2





′

+ R2





−1 


Γ1

Γ2





=




Γ1

Γ2





′ 


B M

M ′ G





−1 


Γ1

Γ2





where B = Γ1PΓ′
1 + Υ1, G = Γ2PΓ′

2 + Υ2, and M = Γ1PΓ′
2. Since B > 0, G > 0, and




B M

M ′ G



 > 0,

from Lemma 2.6, the Schur complement

SB , B − MG−1M ′ > 0.

From Lemma 2.7, we obtain




Γ1

Γ2





′ 


B M

M ′ G





−1 


Γ1

Γ2





=




Γ1

Γ2





′ 


X1 −B−1MS−1

B

−S−1
B M ′B−1 S−1

B








Γ1

Γ2





= Γ′
1B

−1Γ1 + X2X
′
2

≥ Γ′
1B

−1Γ1.

where X1 = B−1 +B−1MS−1
B M ′B−1 and X2 = Γ′

1B
−1MS

−
1
2

B −Γ′
2S

−
1
2

B . Having proved the

case i = 1, j = 2, the general case easily follows if we write Γ1 := Ci and Γ2 := Cj \ Ci. �

Corollary 3.4 For all i = 1, · · · , n − 1, and all X ≥ 0,

gCi+1
(X) ≤ gCi

(X).
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Corollary 3.5 For all i = 1, · · · , n − 1, and all X ≥ 0,

g̃Ci+1
(X) ≤ g̃Ci

(X).

We can interpret Corollary 3.4 and 3.5 in the following sense. For an estimator, the

more information it has (i.e., more sensors), and/or the less delay the measurement data

arrive, the more accurate it can predict the process state. We will use these inequalities to

guide us looking for the minimum energy sensor tree in the next chapter.
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Chapter 4

Minimizing Sensor Energy

4.1 Introduction

Given a tree T that represents the sensor communications with the fusion center, we have

seen in Chapter 3 how the optimal state estimate x̂k can be computed at the fusion center,

and we have derived a closed form of the steady-state error covariance in Eqn (3.4).

As stated in Chapter 1, the communication between the sensor nodes is limited, par-

ticularly if nodes are located physically far way from each other. It takes time to transfer

information from one node to another. Most nodes are battery powered, and hence to ex-

tend the life time of such nodes, data are communicated over a multi-hop wireless network,

instead of a single-hop network. The quality of the state estimate at the fusion center thus

depends not only on the sensor quality but also on the communication delay, i.e., the num-

ber of hops the sensor measurement data need to take until they reach the fusion center.

Many short hops take longer time than a few long hops. On the other hand, a few long hops

require larger transmission power since the required transmission grows rapidly with the

distance between the wireless nodes. Hence, there is a trade-off between the state estimation

quality and the overall energy cost. In this chapter, we consider the energy minimization

subject to performance constraint.

Sensor network energy minimization is typically done via efficient MAC protocol de-

sign [32], or via efficient scheduling of the sensor states [28, 50]. Yu et al. [58] proposed

a scalable topology and energy management scheme in wireless sensor networks. The in-

teraction between Kalman filtering and how data is routed on a network seems to be less

studied. Routing of data packets in networks are typically done based on the distance to
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the receiver node [5]. Some recent work addresses how to couple data routing with the

sensing task using information theoretic measures [22].

The solution we propose is to optimize the network path for the sensor data via the

Tree Reconfiguration Algorithm such that the overall transmission energy is minimized, but

guarantees a certain level of estimation quality. The resulting local sensor topology has

the structure of a tree for which the fusion center is the root. In case sensor node failure

happens, or new sensors join, or existing sensors leave to serve other applications, the tree

can be reformed dynamically, which increases robustness of the overall system.

There are several potential application areas of the work presented in this chapter,

including building automation, environmental monitoring, industrial automation, etc.

The rest of this chapter is organized as follows. After the mathematical framework is set

up in Section 4.2, we state the energy minimization problem in Section 4.3, and propose the

Tree Reconfiguration Algorithm to minimize the energy usage of the sensors. The algorithm

is presented in detail with a performance analysis. Examples are provided in the end to

illustrate the algorithms developed.

4.2 Problem Set-up

Consider the problem of state estimation over a wireless sensor network (Figure 5.1).

Figure 4.1: State Estimation Using a Wireless Sensor Network
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Plant and Sensor Models

The process dynamics and sensor measurement equations are the same as in Eqn (3.1)

and (3.2), i.e.,

xk = Axk−1 + wk−1,

yi
k = Hixk + vi

k, i = 1, · · · , N.

For a tree T that represents the sensor communications with the fusion center (S0),

we have defined the estimation quantities [x̂k(T ), Pk(T ), etc.] in Chapter 3.2. For the

remaining of this chapter, Node(T ) means all the nodes of T , which is a subset of all

sensors {S1, · · · , SN}; FamT (Si) is the subtree of T that is rooted at Si; ParT (Si) is the

parent node of Si in T ; Edge(T ) is the edges of T , i.e.,

Edge(T ) ,
{
(Si, Sj) : Si ∈ Node(T ), Sj = ParT (Si)

}
.

Figure 4.2: Sensor Tree Example Revisited

Example 4.1 For the tree in Figure 4.2, we have that Node(T ) = {S1, S2, S3, S4}, FamT (S1) =

{S3, S4}, ParT (S3) = S1 and Edge(T ) = {(S3, S1), (S4, S1), (S1, S0), (S2, S0)}.

Sometimes we write Si ∈ T to mean Si ∈ Node(T ). For all notations, we drop the

subscript T when the considered tree follows from the context.
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Sensor Energy Cost Model

We assume that the sensor nodes are battery powered. Sensors spend energy in many

ways, i.e., packet transmission and reception, idle listening, computing, etc. [13]. By using

appropriate MAC protocol, e.g., the TDMA protocol, packet transmission and reception

dominate the total energy usage. Given a tree T that represents the sensor communications

with S0, define ei
tx(T ) as the energy cost for Si sending a measurement packet to its parent

node and ei
rx(T ) as the energy cost for Si receiving a measurement packet from one of its

children, and we write ei(T ) = ei
tx(T ) + ei

tx(T ) as the total energy cost for Si in T . The

transmission power ei
tx(T ) typically grows rapidly with the distance to the receiver. An

estimate of ei
tx can be be computed based on the wireless technology. A common model

is that if the distance between Si and Par(Si) is di, then ei
tx = βi + αi(di)

ni , where βi

represents the static part of the energy cost and αi(di)
ni the dynamic part. The path-loss

exponent ni is typically between 2 and 6. The receiving energy ei
rx(T ) is about the same

for each sensor, therefore without loss of generality, we write ei
rx(T ) = erx. Then the total

energy cost of T per time is given by

e(T ) =
∑

Si∈T

ei
tx(T ) + |T |erx, (4.1)

where |T | denotes the number of sensor nodes in T .

4.3 Minimizing Sensor Energy

Problem of Interest

Since the sensors operate on batteries, it is natural to let the network operate at an energy

level that is as low as possible. Thus we are interested in the following problem:

Problem 4.2 How should the tree T be established such that the total network energy cost

is minimum yet the network provides a guaranteed level of estimation quality? i.e.,

min
T∈Tall

e(T )

subject to

P∞(T ) ≤ Pdesired
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where Tall is the set of all sensor trees, and Pdesired ∈ Sn
+ is given.

Solving the previous problem via exhaustive search is impractical, as |Tall| grows even

faster than exponentially as a function of N . Thus we consider the following Tree Recon-

figuration Algorithm to approximate the optimal solution.

Tree Reconfiguration Algorithm

In this section, we present the Tree Reconfiguration Algorithm (Figure 4.3) which solves

Problem 4.2 efficiently, but at the price of losing optimality in some cases.

Figure 4.3: Tree Reconfiguration Algorithm

The Tree Reconfiguration Algorithm (Figure 4.3) consists of three subroutines. The first

subroutine is called by executing the Tree Initialization Algorithm to form an initial tree

T0 (the top rectangular block). Depending on whether T0 provides the required estimation

quality, two other subroutines are called by executing the Switching Tree Topology Algo-

rithm (the middle-right rectangular block) and the Minimum Energy Subtree Algorithm

(the bottom rectangular block), respectively. These algorithms are presented in detail next.
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Tree Initialization Algorithm

Let T0 denote the tree which represents the initial connection of the sensors with S0. T0 is

constructed via the Tree Initialization Algorithm presented graphically in Figure 4.4.

Figure 4.4: Tree Initialization Algorithm: Intuitive Idea

The idea is that S0 first establishes direct connections with its neighbor sensors using

minimum transmission power level ∆e. After that, its neighbor sensors establish further

connections with their own neighbor sensors also using minimum transmission power level

∆e. This process continues until a tree of depth D is formed. Let S(t) be the sensors added

to T0 at or before step t, ∆S(t) be the set of sensors added at step t, and V∆e(Si) be the

set of sensors that are reachable by Si using ∆e energy. The Tree Initialization Algorithm

is presented in its flow diagram form in Figure 4.5 with

V∆e(Σ) ,
⋃

Si∈Σ

V∆E(Si).

Switching Tree Topology Algorithm

For a given tree Tt, if P∞(Tt) 
 Pdesired, the tree needs to be adjusted in a way that the

estimation quality is improved. The Switching Tree Topology Algorithm provides such a

way (Figure 4.6).

We define π(Tt, Si) as the operation that Si breaks connection with Par(Si) and connects

directly to S0, i.e., Node
(
π(Tt, Si)

)
= Node(Tt) and

Edge
(
π(Tt, Si)

)
= Edge(Tt)

⋃

{Si, S0} \ {Si,ParTt(Si)}.

Further define S2hop , {Si ∈ Tt : Par(Par(Si)) = S0}. The algorithm is then given as

follows.
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Figure 4.5: Tree Initialization Algorithm: Flow Diagram

Algorithm 1 Switching Tree Topology Algorithm

Init: Tt.
Compute

Sp = arg min
Si∈S2hop

P∞(π(Tt, Si)).

Return Tt+1 := π(Tt, Sp).

Minimum Energy Subtree Algorithm

For a given tree T with P∞(T ) ≤ Pdesired, the Minimum Energy Subtree Algorithm finds

the subtree T ′ rooted at S0 with the property that P∞(T ′) ≤ Pdesired, and e(T ′) ≤ e(T̃ ) for

any subtree T̃ of T rooted at S0. The idea is that all possible subtrees T̃ rooted at S0 and

Figure 4.6: Switching Tree Topology Algorithm: Intuitive Idea
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satisfying

P∞(T̃ ) ≤ Pdesired

are found in an efficient way utilizing the structure of T . Then the subtree T ′ which has

the least overall energy cost is returned. The details are as follows.

To make the presentation clear and easy to follow, we divide the algorithm into several

key steps and provide an example to illustrate each step. Before introducing the algorithm,

let us define

S(i1i2 · · · ip) , {Si1 , Si2 , · · ·Sip},

Ω(i1i2 · · · ip) , T \ S(i1i2 · · · ip),

where it is assumed i1 ≤ i2 ≤ · · · ≤ ip. We consider the following example to demonstrate

the algorithm.

Figure 4.7: Tree T and Some Subtree T̃ s

Example 4.3 Consider the tree T with four sensor nodes in Figure 4.7. Assume the

following:

1) T provides enough estimation quality, i.e., P∞(T ) ≤ Pdesired.

2) No single sensor provides enough estimation quality, i.e.,

P∞(S(i)) 
 Pdesired, i = 1, 2, 3, 4.

3) Among the two sensor pairs, only {S1, S4} can provide enough estimation quality,

i.e.,

P∞(S(ij)) ≤ Pdesired iff {i, j} = {1, 4}.



34

4) Any three sensors except {S2, S3, S4} can provide enough estimation quality, i.e.,

P∞(Ω(i)) ≤ Pdesired, i = 2, 3, 4.

5) The energy cost of single hop communication is ∆e.

By the above assumptions, it is easy to see that the minimum energy subtree T ′ is given

by T̃4 with e(T̃4) = 2∆e.

Let us examine the case when we take T as an input to the Minimum Energy Subtree

Algorithm which consists of the following key steps.

Step 1

• Init: T

• l := 0,Dl := {Sip ∈ T : P∞(Ω(ip)) ≤ Pdesired}.

In this step, D0 holds all single-sensor nodes without which the remaining sensors still

satisfy the accuracy requirement. Therefore in Example 4.3, D0 = {S2, S3, S4}.

Step 2

• l := l + 1,Dl := Dl−1

• ∀ Sip ∈ Dl−1 with P∞(Ω(ip)) ≤ Pdesired

- ∀ q > p and Siq 6∈ Fam(Sip),

if P∞(Ω(ipiq)) ≤ Pdesired, Dl := Dl

⋃
S(ipiq).

In this step, D1 holds all single-sensor or two-sensor pairs without which the remaining

sensors still satisfy the accuracy requirement. The third line of step 2 eliminates the redun-

dancy in listing the subtrees as S(ipiq) = S(iqip), and if Sip is removed from a tree, so is

Fam(Sip). Therefore in Example 4.3, D1 = {S2, S3, S4, S(23)}.
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Step 3

• l := l + 1,Dl := Dl−1

• ∀ S(ipiq) ∈ Dl−1 with P∞(Ω(ipiq)) ≤ Pdesired

- ∀ o > q and Sio 6∈ (Fam(Sip)
⋃

Fam(Siq)),

if P∞(Ω(ipiqio)) ≤ Pdesired,

Dl := Dl

⋃
S(ipiqio).

Similar to step 3, D2 holds all single-sensor, two-sensor pairs or three-sensors without

which the remaining sensors still satisfy the accuracy requirement. The algorithm continues

in this way until Dr = Dr−1 at some step r ≤ D.

Step r + 1

• Return T ′ = argminΩ(·)∈D e(Ω(·))

In Example 4.3, D2 = {S2, S3, S4, S(23)} = D1. Hence the algorithm stops and returns

T ′ = Ω(23) = S(14) = T̃4 with P∞(T ′) ≤ Pdesired and e(T ′) = 2∆e.

Performance Analysis of the Algorithms

The performance of the Tree Reconfiguration Algorithm is summarized in the following

theorem.

Theorem 4.4 (1) Given a tree Tt, the Switching Tree Topology Algorithm returns Tt+1 ∈
Tall such that

P∞(Tt+1) ≤ P∞(Tt) .

(2) Given a tree T with P∞(T ) ≤ Pdesired, the Minimum Energy Subtree Algorithm

returns T ′ ⊂ T rooted at S0 such that

P∞(T ′) ≤ Pdesired and e(T ′) ≤ e(T̃ )

for any other T̃ ⊂ T that is rooted at S0.
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(3) If ∃ T ∈ Tall such that P∞(T ) ≤ Pdesired, then the output T ′ from the Tree Reconfig-

uration Algorithm satisfies P∞(T ′) ≤ Pdesired.

Proof: (1) We provide the proof for the line topology (Figure 4.8). It is straightforward to

extend the proof for a general tree. For Tt, P∞(Tt) is given by Eqn (3.4) as

Figure 4.8: Switching Tree Topology

P∞(Tt) = g̃C1
◦ gC2

◦ gC3
◦ · · · ◦ gCD−1

(P ∗),

where P ∗ ≥ 0 is the unique solution to

gCD
(P ∗) = P ∗.

For Tt+1, P∞(Tt+1) is given by

P∞(Tt+1) = g̃C2
◦ gC3

◦ gC4
◦ · · · ◦ gCD−1

(P ∗)

= g̃C2
◦ gC3

◦ gC4
◦ · · · ◦ gCD−1

◦ gCD
(P ∗)

≤ g̃C1
◦ gC2

◦ gC3
◦ · · · ◦ gCD−2

◦ gCD−1
(P ∗)

= P∞(Tt)

where the inequality is from Corollary 3.4 and 3.5.

(2) Suppose T ∗ = (S∗,Edge(T ∗)) is the subtree that has the least energy cost with

P∞(T ∗) ≤ Pdesired. Let ∆S = S \ S∗ = {Si1 , Si2 , · · · , Sim} with i1 ≤ i2 ≤ · · · ≤ im. Then
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∆S ⊂ Dr, as P∞(T ∗) ≤ Pdesired. We also have S(i1i2) ∈ Dr as

P∞(T \ S(i1i2)) ≤ P∞(T ∗) ≤ Pdesired.

Similarly, S(i1i2 · · · im) ∈ Dr and so T ∗ = T \ S(i1i2 · · · im) is returned by the Minimum

Energy Subtree Algorithm as we assume T ∗ is the subtree that has the least energy cost.

(3) Let T ⋆ denote the star tree, i.e., all sensors communicate with S0 directly. It is easy

to verify that P∞(T ⋆) ≤ P∞(T ) for all T ∈ Tall. If there exists T such that P∞(T ) ≤ Pdesired,

we must also have P∞(T ⋆) ≤ P∞(T ). Suppose at t1, P∞(Tt1) ≤ Pdesired, then it is clear

that P∞(T ′) ≤ Pdesired. Otherwise, the Tree Reconfiguration Algorithm continues until

direct connections between all sensors with S0 are established, in which case P∞(Tt) =

P∞(T ⋆) ≤ Pdesired. Hence P∞(T ′) ≤ Pdesired. �

A TDMA Scheduling Scheme

In this section, we present a TDMA scheduling scheme for practical implementation of the

Tree Reconfiguration Algorithm, which is similar to the scheduling phase in [10]. Assume

each discrete time is divided into some equal length time slots, e.g., in wireless HART

protocol [19], there are 100 time slots per second. The advantage of TDMA scheme is

that sensors only need to communicate during its own time slot and hence save energy by

avoiding the idle listening. The scheme consists of the following two phases.

1. The fusion center calculates the (Si,Par(Si)) pair according to the Tree Reconfigura-

tion Algorithm. It then assigns one time slot to each (Si,Par(Si)) pair, i.e., Si will

communicate with Par(Si) at the specified time slot.

2. At the beginning of every M times, the fusion center broadcasts the communication

schedule to all sensors.

Notice that the fusion center broadcasts every M times for several reasons. Firstly,

synchronization is a very difficult in general wireless sensor networks due to the drift of each

individual clock, etc. This scheme solves this problem as long as M is sufficiently small,

as all sensors can then synchronize their clocks with the fusion center at the beginning of

each M cycles. Secondly, existing sensors might cease working possibly due to running

out of battery, hardware failure, etc. In these cases, the fusion center can calculate a new
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Figure 4.9: Different Trees Formed by the Tree Reconfiguration Algorithm

schedule based on the remaining sensors and broadcasts the new schedule at the beginning

of the next cycle. Similarly, new sensors might join the network for the same or different

applications. The fusion center can again calculate and broadcast the new schedule.

4.4 Examples

Three sensors are available to measure the state of a process (see Figure 4.9). Assume that

if Si is connected to Si−1, i = 1, 2, 3, the energy of communication is ∆e; if Si is connected

to Si−2, i = 2, 3, the energy is 4∆e and if S3 is connected to S0, the energy is 8∆e. Without

loss of generality, for the remaining of the examples, we only calculate the total transmitting

energy. We consider two scenarios in this section.

Tree Reconfiguration with Time-Varying Disturbances

The discrete time system dynamics is given by Eqn (3.1) with

A =











1 0.1 0.05 0.0002

0 1 0.1 0.05

0 0 1 0.1

0 0 0 1











.
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The measurement equations for the three sensors are given by

y1
k = [ 1 0 0 0 ]xk + v1

k,

y2
k = [ 0 1 0 0 ]xk + v2

k,

y3
k = [ 0 0 1 0 ]xk + v3

k,

with Π1 = 0.25,Π2 = 0.5, and Π3 = 0.5. Assume Si is i hops away from S0 (Figure 4.9).

The dynamics in the simulation include control input as well, i.e., xk = Axk−1 + Buk +

wk−1, which is computed via the standard LQG control procedures. In this example B =

[0 0 0 1].

Suppose it is required that Tr(P∞) ≤ 10 for this system. Notice that we can simply

replace P∞ ≤ Pdesired with Tr(P∞) ≤ Tr(Pdesired) in all previous algorithms. Initially,

assume Qk = Q0 , 0.2I for all k ≤ k1 = 200. After T0 is set up, S0 computes Tr(P∞(T0)) =

4.1297 < 10. Thus it starts to run the Minimum Energy Subtree Algorithm to find out T ′.

In this case T ′ = T0 \ S3 with Tr(P∞(T ′)) = 9.6411 and e(T ′) = 2∆e.

We model the disturbance to the plant as changes to Qk. Suppose at time k1 + 1,

Qk changes to 4Q0 and will last for 100 time steps. We assume the changes in Qk are

known to S0. In the actual implementation, we can estimate the value of Qk using various

available schemes (e.g., see [31]). In this case, T0 \ S3 no longer provides enough accuracy

as Tr
(
P∞(T ′)

)
changes to 34.9300. Thus S0 executes the Tree Reconfiguration Algorithm

again to find the desired tree. Now only the star topology T2, with Tr(P∞(T2)) = 9.6369,

provides enough accuracy. The price to pay for reconfiguring to T2 is that e(T2) = 13∆e.

Figure 4.11 shows how the different tree locations change in the energy-error diagram for

these scenarios. Later when Qk changes back to Q0 at k2 = 300, T2 is reconfigured to T0\S3

correspondingly.

Figure 4.10 shows the evolution of the fourth component of xk and the estimation error

ek without and with the tree reconfiguration. As we can see from the lower half of the figures,

the state and the estimation error remain almost the same after the tree reconfiguration,

while if the tree is kept the same, there is a big fluctuation in the state and the estimation

error during the times when Qk changes to a higher value.



40

0 200 400 600 800
−50

0

50

k

x k4

T0 − S3

0 200 400 600 800
−50

0

50

k

x k4

T0 − S3
T2

0 200 400 600 800
−15

−10

−5

0

5

10

15

k

e k4

T0 − S3

0 200 400 600 800
−15

−10

−5

0

5

10

15

k

e k4

T0 − S3
T2

Figure 4.10: x4
k and e4

k without/with Tree Reconfiguration

Figure 4.11: Changes of Tree Locations in Energy-Error Diagram

Tree Reconfiguration with Time-Varying Performance Requirement

In this example, the dynamics of the process and sensor measurement equations are as

follows:

xk = 0.9xk−1 + wk−1,

y1
k = xk + v1

k,

y2
k = xk + v2

k,

y3
k = xk + v3

k,
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with Q = 1,Π1 = 1.5,Π2 = 1, and Π3 = 0.5. Suppose the following performance require-

ment is received by the fusion center:

P∞ ≤ 0.75, 1 ≤ k ≤ 100,

P∞ ≤ 0.25, 101 ≤ k ≤ 200,

P∞ ≤ 1.0, 201 ≤ k ≤ 300,

P∞ ≤ 0.75, 301 ≤ k ≤ 500.

Then the fusion center can find the corresponding minimum energy tree that fulfills the

performance requirement. The intuitive idea is presented in Figure 4.12.

Figure 4.12: Tree Reconfiguration with Time-Varying Performance Requirement

Figure 4.13 shows the simulation result when the fusion center uses the same tree

(T0 \ S3) all the time, and when it reconfigures the trees according to the performance

requirement. It is easy to see that when 101 ≤ k ≤ 200, the total energy usage increases

from 2∆e to 13∆e. However, the error becomes much smaller; when 201 ≤ k ≤ 300, the

total energy usage reduces to just ∆e. Although in this case the error becomes much larger,

the performance specification is still satisfied.
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Figure 4.13: State and Error Evolution without/with Tree Reconfiguration
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Chapter 5

Maximizing Network Lifetime

5.1 Introduction

In the previous chapter, we study the problem of minimizing sensor energy usage when

considering estimation over a sensor network. In this chapter, we study the lifetime max-

imization problem. Sensor network lifetime maximization problem has been a hot area of

research over the the past few years, as one of the critical constraints of such networks is

limited energy resources available. Xue and Ganz [56] showed that the lifetime of the sensor

networks is influenced by transmission schemes, network density and transceiver parameters

with different constraints on network mobility, position awareness and maximum transmis-

sion range. Chamam and Pierre [8] proposed a sensor scheduling scheme to optimally put

sensors in active or inactive modes. A sensor transmitting scheduling was suggested by

Chen et al. [9]. Lai et al. [26] proposed a scheme to divide the deployed sensors into disjoint

subsets of sensors such that each subset can complete the mission, and then maximized the

number of such disjoint subsets. Similar approaches can be found in [36] where the sensors

are partitioned into groups which are successively scheduled to be active for sensing and

delivering data.

The solution we propose is to construct a set of sensor trees which all provide the guar-

anteed estimation quality and then schedule those sensor trees appropriately to maximize

the lifetime of the whole network.

The rest of this chapter is organized as follows. After introducing a motivating example,

the mathematical framework is set up in Section 5.2. Then the sensor tree construction and

scheduling algorithm is introduced in Section 5.3, followed by an example to demonstrate

the algorithm.
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5.2 Problem Set-up

Figure 5.1: State Estimation Using a Wireless Sensor Network

Again consider the problem of state estimation over a wireless sensor network (Fig-

ure 5.1). The process dynamics, sensor measurement equations and sensor energy models

are the same as in Section 4.2, i.e.,

xk = Axk−1 + wk−1,

yi
k = Hixk + vi

k, i = 1, · · · , N,

and the total energy cost of a tree T is

e(T ) =
∑

Si∈T

ei
tx(T ) + |T |erx.

A Motivating Example

Example 5.1 Consider the following network with N = 2. Assume both T1 and T2 in

Figure 5.2 satisfy

P∞(Ti) ≤ Pdesired, i = 1, 2.
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Further assume that

P∞(Si) 
 Pdesired, i = 1, 2.

Let eij be the total energy cost for Si in Tj, i, j = 1, 2, and let Ei be the initial energy for

Si. Consider the following parameters.

E = [eij ] =




10 1

1 10



 , E1 = E2 = 1000.

Figure 5.2: Network with Two Sensors

If we measure the lifetime of the network (denoted as L) as the first time that a sensor

dies due to running out of battery, then it is easy to see that L = 100 when the Tree

Reconfiguration Algorithm is executed, as T1 is the only tree used.

It turns out that we can increase L by mixing the use of T1 and T2. Let 0 ≤ α ≤ 1

denote the portion of times that T1 is used, we can show that if 0 < α < 1, then L > 100.

It is also easy to verify that L attains its maximum value at 181 when α = 0.5.

From this example, we see that simply minimizing the total energy usage of the sensors

may not maximize the network lifetime, which is the focus of this chapter.
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Problem of Interest

Let Θ be the set of all scheduling policies on Tall, i.e.,

Θ , {θ : Z+ → Tall}.

Let θ(k) = T θ
k ∈ Tall. As θ(k) determines the energy consumed by Si at k, given an initial

energy level Ei for Si, L can be calculated using θ. We are interested in finding a scheduling

policy θ such that L is maximized. We also require that the estimation quality at the fusion

center reaches certain desired level. In mathematical form, we are interested in solving the

following network lifetime maximization problem

max
θ∈Θ

L(θ)

subject to

P∞(T θ
k ) ≤ Pdesired.

Let Td−depth denote the set of trees which have depth d. Then it is easy to see that

|Tall| =

N∑

d=1

|Td−depth|

> |T2−depth|

=
N−1∑

j=1




N

j



 jN−j .

For example, when N = 10, |T2−depth| ≈ 2.24 × 106, therefore it is computationally in-

tractable to consider all trees in Tall and all scheduling policies in Θ when N is large. We

thus propose the following two steps to approximate the optimal solution to the network

lifetime maximization problem.

Step 1: Construct an appropriate T ⊂ Tall.

Step 2: Schedule T appropriately.

Step 1 finds a set of trees which satisfy the estimation quality constraint as well as

provide different energy costs for each Si. Step 2 provides the optimal scheduling θ∗ by
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restricting θ on T . As T is only a subset of Tall, the resulting θ∗ may not be globally

optimal in general. In the next few sections, we give details for the above two steps.

5.3 Constructing and Scheduling Sensor Trees

Step 1: Construct Sensor Trees

The proposed Tree Construction Algorithm consists of three main subroutines which are

the Random Initialization Algorithm, the Topology Improvement Algorithm and the Tree

Reconfiguration Algorithm. The overall algorithm is presented in Figure 5.3.

Figure 5.3: Tree Construction Algorithm

Random Initialization Algorithm

Define the following quantities:

Sj−hop , {Si : Si is j−hop away from S0},

Sc(T ) , {Si : Si is not in T}.

The intuitive idea of the Random Initialization Algorithm is that Sj−hop, j = 1, · · · ,D are

randomly determined in sequence until all Sis are included in the tree.
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Algorithm 2 Random Initialization Algorithm

D := 0
T := {S0, ∅}
∀j Sj−hop := ∅
Sc = {S1, · · · , SN}
while (Sc 6= ∅) do

D := D + 1
Pick nD from (1, |Sc|) uniformly randomly.
l := 1
while (l ≤ nD) do

Pick any Sp ∈ Sc and any Sq ∈ S(D−1)−hop uniformly randomly.
Connect Sp to Sq.
Sc := Sc \ {Sp}
T := T ∪ {Sp, (Sp, Sq)}
SD−hop := SD−hop ∪ {Sp}
l := l + 1

end while
end while

After the execution of the Random Initialization Algorithm, an initial tree of depth D

is constructed with |Sj−hop| = nj, j = 1, · · · ,D, and
∑D

j=1 nj = N .

Remark 5.2 If n1 = N , then the algorithm returns T ⋆, i.e., all sensor nodes connect to S0

directly.

Topology Improvement Algorithm

Since the previous algorithm randomly constructs the initial tree, some sensor communica-

tion paths may be established inefficiently, i.e., some sensors use more energy yet need more

hops to communicate with S0. The Topology Improvement Algorithm aims to remove this

inefficiency.

When Si is connected to Sp, we define τip as the number of hops between Si and S0,

and eip as the transmission energy cost of Si. Similarly we define τi0 and ei0 for Si in the

initial tree constructed by the Random Initialization Algorithm.

We consider modifying the path of Si in the initial tree, where Si ∈ Sj−hop, j ≥ 2, only

if there exists Sp in the same tree and Sp ∈ Sj−hop, j ≤ τi0 − 1 such that either eip < ei0

or eip = ei0 and τip < τi0. In these cases, Si is connected to Sp. The first condition

corresponds to reducing the energy cost of Si yet not making the hops between Si and S0

larger; the second condition corresponds to making the hops between Si and S0 smaller
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yet not increasing its energy cost. Define Fi as the indicator function for Si, where Fi = 1

means that Si has already been examined for possible improvement and Fi = 0 otherwise.

The full algorithm is presented below.

Algorithm 3 Topology Improvement Algorithm

∀i Fi := 0
∀Si ∈ Sj−hop, j ≤ 1, Fi := 1
while ∃Fi = 0 do

Fi := 1
Σ := {Sp : Sp ∈ Sj−hop, j ≤ τi0 − 1, eip ≤ ei0}
if Σ 6= ∅ then

τiq := min{τip : Sp ∈ Σ}
if eiq < ei0 or (eiq = ei0 and τiq < τi0) then

reconnect Si to Sq

update Sj−hop, j ≤ τi0

end if
end if

end while

Notice that Fi is set to be 1 for all Si ∈ Sj−hop, j ≤ 1, as for those sensor nodes that are

one hop away from S0, no improvement can be made that further reduces the energy cost

(and maintains the same hop numbers) or reduces the hop numbers.

At this step, we have constructed a set of M randomized initial trees. We then use them

as input to the Tree Reconfiguration Algorithm presented in Section 4.3 to make sure that

each tree provides the desired estimation quality.

Step 2: Schedule Sensor Trees

The Random Initialization Algorithm and Topology Improvement Algorithm aim to create a

set of sensor trees T with different energy cost of individual sensors (due to the randomness).

The Tree Reconfiguration Algorithm changes the resulting sensor trees and guarantees that

for all Tj ∈ T ,

P∞(Tj) ≤ Pdesired.

Denote eij as the total energy cost (transmission and receiving energy) for Si in Tj , and

tj(θ) as the time that Tj is used for a policy θ, so the network lifetime L(θ) is given by

L(θ) =

M∑

j=1

tj(θ).
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Therefore the network lifetime maximization problem can be written equivalently as

max
tj

M∑

j=1

tj

subject to
m∑

j=1

tjeij ≤ Πi, i = 1, · · · , N

tj ≥ tmin, j = 1, · · · ,M

where tj ≥ tmin is added to make sure the estimation process enters steady state after some

transient period. This problem can be solved efficiently via linear programming, as both

the objective function and constraints are linear functions of the variables.

5.4 Examples

In this section, we provide an example to demonstrate the theory and algorithms developed

so far. We start by describing the process and sensor models.

Process and Sensor Models

We consider the process in Eqn (3.1) with

A =











1 0.1 0.05 0.0002

0 1 0.1 0.05

0 0 1 0.1

0 0 0 1











,

and Q = 0.1I. There are three sensors available. The measurement equations are given by

y1
k = [ 1 0 0 0 ]xk + v1

k,

y2
k = [ 0 1 0 0 ]xk + v2

k,

y3
k = [ 1 0 1 0 ]xk + v3

k,
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with Π1 = 0.5,Π2 = 0.25, and Π3 = 0.1. Assume the sensors are placed in a line (Figure 5.4)

with relative distance

d10 = 2, d21 = 1, d32 = 1,

where dpq is the distance between Sp and Sq.

Figure 5.4: Initial Sensor Topology

Let etx(Sp, Sq) be the energy cost for Sp transmitting a packet to Sq and erx(Sp, Sq)

be the energy cost for Sq receiving such a packet from Sp. We use the following simplified

energy model

erx(Sp, Sq) = 1, etx(Sp, Sq) = d2
pq,∀1 ≤ p, q ≤ 3, p 6= q.

Assume the initial energy Ei available at Si is known and given by

E1 = E2 = E3 = 2000.

Tree Construction Algorithm

Let the performance specification at the fusion center be

Tr(P∞(Tk)) ≤ 2.5 ∀ k.

We pick M = 4 for this example. Figure (5.5)–(5.8) demonstrate the use of the Tree

Construction Algorithm. As a result,

T = {T1, T2, T3, T4}

is returned with

Tr(P∞(T1)) = 1.7076,Tr(P∞(T2)) = 1.8038,

Tr(P∞(T3)) = 2.4744,Tr(P∞(T4)) = 1.6437,
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and energy cost

E = [eij ] =











4 10 1

1 11 1

0 9 16

5 1 16











.

Notice that during the construction of T1, only the Switching Tree Topology Algorithm

modifies the input tree. For T2 and T4, only the Topology Improvement Algorithm modifies

the input tree. For T3, both the Topology Improvement Algorithm and the Minimum

Energy Subtree Algorithm modify the input tree.

Figure 5.5: Tree 1

Figure 5.6: Tree 2
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Figure 5.7: Tree 3

Figure 5.8: Tree 4

Tree Scheduling Algorithm

Using the notations in Section 5.3, let tj be the time that Tj will be used. Assume tmin = 20.

In order to maximize the lifetime of the network, we solve the following scheduling problem:

max
tj

4∑

j=1

tj

subject to
4∑

j=1

tjeij ≤ 2000, i = 1, 2, 3

tj ≥ 20, j = 1, 2, 3, 4.

Define the following quantities

z , [t1 t2 t3 t4]
′,

f , [−1 − 1 − 1 − 1]′,

Φ ,




E′

−I



 ,

b , [2000 2000 2000 − 20 − 20 − 20 − 20 ]′.
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We then write the above maximization problem in compact linear programming (LP)

form as

min
z

f ′z

subject to

Φz ≤ b

which can be easily solved via standard LP toolbox. The following optimal value of z is

obtained as a result1:

z∗ = [150 20 20 94],

and the maximum network lifetime L∗ is given by

L∗ = −f ′z∗ = 284.

Let L(j) denote the lifetime of the network when Tj is always used. It is easy to compute

that

L(1) = 200, L(2) = 181, L(3) = 222, L(4) = 125,

and hence the network lifetime is indeed enhanced by the Tree Scheduling Algorithm.

True and Computed Error Process

In the previous section, we calculate the optimal scheduling policy for T . We then run a

Monte Carlo simulation based on the optimal time that Tj is used. Figure 5.9 shows the

average Pk and ||ek||2 as a result of 1000 runs. The performance specification is clearly

satisfied.

1Since tj can only be an integer, we replace z∗

i as the largest integer κi such that κi ≤ z∗

i .
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Chapter 6

Minimizing Buffer Length

6.1 Introduction

The Kalman filter has played an important role in system theory and has found wide ap-

plications in many fields, such as control, signal processing, and communications. In the

standard Kalman filter, it is assumed that sensor data are transmitted along perfect com-

munication channels and are available to the estimator either instantaneously or with some

fixed delays, and no interaction between communication and control is considered. This ab-

straction has been adopted until recently when networks, especially wireless networks, are

used in sensing and control systems for transmitting data from sensors to controller and/or

from controller to actuator. While having many advantages such as low cost and flexibility,

networks also induce many new issues due to their limited capabilities and uncertainties

such as limited bandwidth, packet loss, and delay. On the other hand, in wireless sensor

networks, sensor nodes also have limited computation capability in addition to their limita-

tions in communications. These constraints undoubtedly affect system performance or even

stability and cannot be neglected when designing estimation and control algorithms, which

has partially inspired this thesis work. We devote this chapter to the study of Kalman

filtering over a packet delaying network.

The problem of Kalman filtering for systems with delayed measurements is not new and

has been studied even before the emergence of networked control [39,57]. For the problem

of randomly delayed measurements, Ray et al. [39] presented a modification of the conven-

tional minimum variance state estimator to accommodate the effects of the random arrival

of measurements whereas a suboptimal filter in the least mean square sense is given in [57].

The filtering problems with random delays and missing measurements have been investi-
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gated in [40, 48, 51] via the linear matrix inequality and the Riccati equation approaches,

respectively. We study the problem from a probabilistic angle, which is different than most

existing approaches.

The probability distribution of the delay is assumed to be given and we aim to give a

complete characterization of filter performance. Due to the limited computation capability

of the filtering center, and also in consideration of the fact that a late-arriving measurement

related to the system state in the far past may not contribute much to the improvement

of the accuracy of the current estimate, it is practically important to determine a proper

buffer length for measurement data within which a measurement will be used to update the

current state and beyond which the data will be discarded.

The buffer provides a tradeoff between performance and computational load. In this

chapter, for a given buffer length, we give lower and upper bounds for the probability at

which the filtering error covariance is within a prescribed bound, i.e., Pr[Pk ≤ M ] for some

given M . The upper and lower bounds can be easily evaluated by the probability distri-

bution of the delay and the system dynamics. An approach for determining the minimum

buffer length for a required performance in probability is given, and an evaluation on the

number of expected filter updates is provided. Both the cases of sensor with and without

necessary computation capability for filter updates are considered.

6.2 Problem Setup

System Model

We consider the networked control systems shown in Figure 6.1, where a sensor measures

the current state of a process and sends the measurement data (or preprocesses the data and

sends its local estimate of the state) via a packet delaying network to a remote estimator.

The process dynamics and sensor measurement equation are given as follows:

xk = Axk−1 + wk−1, (6.1)

yk = Cxk + vk. (6.2)

In the above equations, xk ∈ IRn is the state vector, yk ∈ IRm is the observation vector,

wk−1 ∈ IRn and vk ∈ IRm are zero-mean white Gaussian random vectors with E[wkwj
′] =
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δkjQ ≥ 0, E[vkvj
′] = δkjR > 0, E[wkvj

′] = 0 ∀j, k. The pair (A,C) is assumed to be

observable and (A,
√

Q) is controllable.

Depending on its computational capability, the sensor can either send yk or preprocess

yk and send x̂s
k to the remote estimator, where x̂s

k is defined at the sensor as

x̂s
k , E[xk|y1, · · · , yk].

The two cases correspond to the two scenarios in Figure 6.1, i.e., sensor without/with

computation capability.

Network Delay Model

After taking a measurement at time k, the sensor sends yk (or x̂s
k) to a remote estimator

for computing the state estimate. We assume that the measurement data packets from the

sensor are to be sent across a packet delaying network, with negligible quantization effects,

to the estimator. Each yk (or x̂s
k) is delayed by dk times, where dk is a random variable

described by a probability mass function f , i.e.,

f(j) = Pr[dk = j], j = 0, 1, · · · . (6.3)

For simplicity, we assume dk1
and dk2

are independent if k1 6= k2. Notice that the i.i.d

packet drop with drop rate 1 − γ considered in the literature can be treated as a special

case here, i.e.,

f(0) = γ, f(∞) = 1 − γ, f(j) = 0, 1 ≤ j < ∞.

Figure 6.1: System Block Diagram
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Thus the theory developed in the paper includes the packet drop analysis as well, e.g.,

partial result in [14,41,42] can be considered as a special case here.

Problems of Interest

Define the following state estimate and other quantities at the remote estimator:

x̂−

k , E[xk|all data packets up to k − 1],

x̂k , E[xk|all data packets up to k],

P−

k , E[(xk − x̂−

k )(xk − x̂−

k )′],

Pk , E[(xk − x̂k)(xk − x̂k)
′].

Assume the estimator discards any data yk (or x̂s
k) that are delayed by D times or more.

Given the system and the network delay models in Eqn (6.1)–(6.3), we are interested in the

following problems:

1. How should x̂k be computed?

2. What is the relationship between Pk and D?

3. For a given M ≥ 0 and ǫ ∈ [0, 1], what is the minimum D such that

Pr[Pk ≤ M |D] ≥ 1 − ǫ.

In the rest of the chapter, we will provide solutions to the above three problems for each

of the two scenarios in Figure 6.1.

6.3 Sensor without Computation Capability

In this section, we consider the first scenario in Figure 6.1, i.e., the sensor has no computa-

tion and sends yk to the remote estimator. Assume C is full rank and initially assume C−1

exists. The general C case will be considered in Section 6.4.

Let γk
t be the indicator functor for yt at time k, t ≤ k, which is defined as follows:

γk
t =







1, yt received at time k,

0, otherwise.
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Further define γk−i ,
∑i

j=0 γ
k−j
k−i , i.e., γk−i indicates whether yk−i is received by the

estimator at or before k.

Optimal Estimation with Delayed Measurements

As yk−i may arrive at time k due to the delays introduced by the network, we can improve

the estimation quality by recalculating x̂k−i utilizing the new available measurement yk−i

(similar to the algorithm presented in Theorem 3.1). Once x̂k−i is updated, we can update

x̂k−i+1 in a similar fashion. This is the basic idea contained in the flow diagram in Figure 6.2.

Theorem 6.1 summarizes the main estimation result.1

Figure 6.2: Optimal Estimation: Sensor without Computation Capability

1If A−1 exists, one may also use the out-of-sequence-measurement algorithm to include the delayed packets

for estimating x̂k, i.e., by rewriting yk−i = CA−ixk + ṽk. By stacking all the measurements together, only

one MKF is needed at each time.
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Theorem 6.1 Let yk−i, i ∈ [0,D − 1] be the oldest measurement received by the estimator

at time k. Then x̂k is computed by i + 1 modified Kalman filters as

(x̂k−i, Pk−i) = MKF(x̂k−i−1, Pk−i−1, yk−i)

(x̂k−i+1, Pk−i+1) = MKF(x̂k−i, Pk−i, γk−i+1yk−i+1)

...

(x̂k−1, Pk−1) = MKF(x̂k−2, Pk−2, γk−1yk−1)

(x̂k, Pk) = MKF(x̂k−1, Pk−1, γkyk).

Furthermore, D̂, the average number of MKF used at each time k is given by

D̂ =
D−1∏

i=1

(
1 − f(i)

)
+

D∑

j=2

D−1∏

i=j

(
1 − f(i)

)
f(j − 1)j + f(D − 1)D. (6.4)

Proof: We know that the estimate x̂k is generated from the estimate of x̂k−1 together with

γkyk at time k through a modified Kalman filter. Similarly, the estimate x̂k−1 is generated

from the estimate of x̂k−2 together with γk−1yk−1 at time k through a modified Kalman

filter, etc. This recursion for i + 1 steps corresponds to the i + 1 modified Kalman filters

stated in the theorem. Let D̂k be the number of MKF used at each time k. Notice that

1 ≤ D̂k ≤ D. Thus

D̂ =

D∑

j=1

jPr[D̂k = j].

Consider Pr[D̂k = 1]. Since D̂k = 1 iff γk
k−i = 0 for all 1 ≤ i ≤ D − 1, we have

Pr[D̂k = 1] = Pr[γk
k−i = 0, 1 ≤ i ≤ D − 1].

As Pr[γk
k−i = 0] = 1 − f(i), we obtain

Pr[D̂k = 1] =

D−1∏

i=1

(
1 − f(i)

)
.

Similarly, for 2 ≤ j ≤ D − 1, we have

Pr[D̂k = j] =
D−1∏

i=j

(
1 − f(i)

)
f(j − 1)
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and when j = D,

Pr[D̂k = j] = f(D − 1).

Therefore we obtain D̂ in Eqn (6.4). �

Remark 6.2 Notice that in the first MKF, γk
k−i = 1 and hence γk−i = 1. As a result, we

simply write γk−iyk−i = yk−i.

Lower and Upper Bounds of Pr[Pk ≤ M |D]

Since dk is random and described by the probability mass function f , γk
k−i (i = 0, · · · ,D−1)

is also random. As a consequence, Pk computed as in Theorem 6.1 is a random variable.

Define γ̂i(D) as

γ̂i(D) ,







∑i
j=0 f(j), if 0 ≤ i < D,

∑D−1
j=0 f(j), if i ≥ D.

Recall that γk−i indicates whether yk−i is received by the estimator at or before k, so it

is easy to verify that

Pr[γk−i = 1|D] = γ̂i(D). (6.5)

Define M , C−1RC−1′. Then we have the following result that shows the relationship

between Pk and M .

Lemma 6.3 For any k ≥ 1, if γk = 1, then Pk ≤ M .

Proof: As γk = 1, we have Pk = g̃ ◦h(Pk−1) ≤ M , where the inequality is from Lemma 2.3.

�

Remark 6.4 We can also interpret Lemma 6.3 as follows. One way to obtain an estimate

x̃k when γk = 1 is simply by inverting the measurement, i.e., x̃k = C−1yk. Therefore

ẽk = C−1vk and P̃k = E[ẽkẽ
′

k] = C−1RC−1′ = M.

Since Kalman filter is optimal among the set of all linear filters, we conclude that Pk ≤
P̃k = M .
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We defined P ∗ and P earlier in Chapter 2 as the a priori and a posteriori steady state

error covariance when the network is perfect, i.e., the estimator has yk at each time k, and

we have shown in Lemma 2.1 that P ∗ and P satisfy

P ∗ = g(P ∗),

P = g̃(P ∗),

P = g̃ ◦ h(P ).

For M ≥ M , define k1(M) and k2(M) as follows:

k1(M) , min{t ≥ 1 : ht(M ) � M}, (6.6)

k2(M) , min{t ≥ 1 : ht(P ) � M}. (6.7)

We sometimes write ki(M) as ki, i = 1, 2 for simplicity. The following lemma shows the

relationship between P and M as well as k1 and k2.

Lemma 6.5 (1) P ≤ M ; (2) k1 ≤ k2 whenever either ki is finite, i = 1, 2.

Proof: (1) P = g̃(P ∗) ≤ M where the inequality is from Lemma 2.3. (2) Without loss

of generality, we assume k2 is finite. If k1 is finite, and k1 > k2, then according to their

definitions, we must have

M ≥ hk1−1(M) ≥ hk1−1(P ) ≥ hk2(P ),

which violates the definition of k2. Notice that we use the property that h is nondecreasing

as well as h(P ) ≥ P from Lemma 2.2 and 2.4. Similarly we can show that k1 cannot be

infinite. Therefore we must have k1 ≤ k2. �

The following lemma will be used to establish the lower bound of Pr[Pk ≤ M |D].

Lemma 6.6 Assume P0 ≥ P . Then for all k ≥ 0,

Pk ≥ P .
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Proof: Since MKF is used at each time k,

Pk = f̂k
k ◦ f̂k

k−1 ◦ · · · ◦ f̂k
1 (P0) ≥ P ,

where f̂k
k−i = h or f̂k

k−i = g̃ ◦ h depending on the packet arrival sequence2. The inequality

is from Lemma 2.2. �

Define Nk as the number of consecutive packets not received by k, i.e.,

Nk , min{t ≥ 0 : γk−t = 1}. (6.8)

Further define

θ(ki,D) ,

ki−1∏

j=0

(
1 − γ̂j(D)

)
. (6.9)

It is easy to see that

θ(k1,D) ≥ θ(k2,D).

Lemma 6.7 Let k1, k2 and Nk be defined according to Eqn (6.6)–(6.8). Then

Pr[Nk ≥ ki|D] = θ(ki,D), i = 1, 2. (6.10)

Proof:

Pr[Nk ≥ ki|D] = Pr[γk−i = 0, 0 ≤ i ≤ ki − 1|D] = θ(ki,D).

�

With all the supporting lemmas stated so far, we have the following main result of this

chapter, which gives lower and upper bounds of Pr[Pk ≤ M |D].

Theorem 6.8 Assume P ≤ P0 ≤ M . For any M ≥ M , we have

1 − θ(k1,D) ≤ Pr[Pk ≤ M |D] ≤ 1 − θ(k2,D). (6.11)

Proof: We divide the proof into two parts. For the remaining of the proof, all probabilities

are conditioned on the given D. (1) Let us first prove 1 − θ(k1,D) ≤ Pr[Pk ≤ M |D], or in

2Notice that we use the superscript k in f̂k
k−i to emphasize that it depends on the current time k. For

example, if dk−i = i + 1, i.e., γk−i = 0 and γk+1
k−i = 1, then f̂k

k−i = h and f̂k+1
k−i = g̃ ◦ h.
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other words,

1 − Pr[Nk ≥ k1|D] ≤ Pr[Pk ≤ M |D].

As γk = 1 or 0, there are in total 2k possible realizations of γ1 to γk as seen from Figure 6.3.

Figure 6.3: Nk ≥ k1

Let Σ1 denote those packet arrival sequences of γ1 to γk such that Nk ≥ k1. Similarly

let Σ2 denote those packet arrival sequences such that Nk < k1. Let Pk(σi) be the error

covariance at time k when the underlying packet arrival sequence is σi, where σi ∈ Σi, i =

1, 2. Consider a particular σ2 ∈ Σ2. As γk−k1+1 = 1, from Lemma 6.3, Pk−k1+1 ≤ M .

Therefore we have

Pk(σ2) ≤ hk1−1(Pk−k1+1) ≤ hk1−1(M) ≤ M,

where the first and second inequalities are from Lemma 2.2 and the last inequality is from

the definition of k1. In other words,

Pr[Pk ≤ M |σ2] = 1.
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Therefore we have

Pr[Pk ≤ M ] =
∑

σ∈Σ1∪Σ2

Pr[Pk ≤ M |σ]Pr(σ)

=
∑

σ1∈Σ1

Pr[Pk ≤ M |σ1]Pr(σ1) +
∑

σ2∈Σ2

Pr[Pk ≤ M |σ2]Pr(σ2)

≥
∑

σ2∈Σ2

Pr[Pk ≤ M |σ2]Pr(σ2)

=
∑

σ2∈Σ2

Pr(σ2) = Pr(Σ2) = 1 − Pr(Σ1) = 1 − Pr[Nk ≥ k1],

where the first equality is from the total probability theorem, the second equality holds as

Σ1 and Σ2 are disjoint, and the third inequality holds as the first sum is non-negative. The

remaining equalities are easy to see.

(2) We now prove Pr[Pk ≤ M |D] ≤ 1 − θ(k2,D), or in other words

Pr[Pk ≤ M |D] ≤ 1 − Pr[Nk ≥ k2|D].

Let Σ′
1 denote those packet arrival sequences of γ1 to γk such that Nk ≥ k2, and Σ′

2 denote

those packet arrival sequences such that Nk < k2 (Figure 6.4).

Figure 6.4: Nk ≥ k2

Consider σ′
1 ∈ Σ′

1. Let

s(σ′
1) = min{t ≥ 1 : γk−t = 1|σ′

1}.
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As σ′
1 ∈ Σ′

1, we must have s ≥ k2. Consequently,

Pk(σ
′
1) = hs(σ′

1)(Pk−s(σ′

1)) ≥ hs(σ′

1)(P ),

where the inequality is from Lemma 6.6. Therefore we conclude that

Pk(σ
′
1) � M.

Otherwise

hs(σ′

1)(P ) ≤ Pk(σ
′
1) ≤ M,

which violates the definition of k2. In other words,

Pr[Pk ≤ M |σ′
1] = 0.

Therefore we have

Pr[Pk ≤ M ] =
∑

σ∈Σ1∪Σ2

Pr[Pk ≤ M |σ]Pr(σ)

=
∑

σ′

1∈Σ′

1

Pr[Pk ≤ M |σ′
1]Pr(σ′

1) +
∑

σ′

2∈Σ′

2

Pr[Pk ≤ M |σ′
2]Pr(σ′

2)

=
∑

σ′

2∈Σ′

2

Pr[Pk ≤ M |σ′
2]Pr(σ′

2)

≤
∑

σ′

2∈Σ′

2

Pr(σ′
2) = Pr(Σ′

2) = 1 − Pr(Σ′
1) = 1 − Pr[Nk ≥ k2],

where the inequality is from the fact that

Pr[Pk ≤ M |σ′
2] ≤ 1 for any σ′

2 ∈ Σ′
2.

�

Computing the Minimum D

Assume we require that

Pr[Pk ≤ M |D] ≥ 1 − ǫ, (6.12)
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then according to Eqn (6.11), a sufficient condition is that

θ(k1,D) ≤ ǫ. (6.13)

And a necessary condition is that

θ(k2,D) ≤ ǫ. (6.14)

For a given M , define

ǫ1(M) , θ(k1, k1 − 1), (6.15)

ǫ2(M) , θ(k2, k2 − 1). (6.16)

Sufficient Minimum D

Notice that θ(k1,D) is decreasing when 1 ≤ D ≤ k1−1 and remains constant when D ≥ k1.

Hence if ǫ < ǫ1(M), no matter how large D is, there is no guarantee that Pr[Pk ≤ M |D] ≥
1− ǫ. If ǫ ≥ ǫ1(M), then the minimum Ds which guarantees Pr[Pk ≤ M |D] ≥ 1− ǫ is given

by

Ds = min{D : θ(k1,D) ≤ ǫ, 1 ≤ D ≤ k1 − 1}. (6.17)

Necessary Minimum D

Similarly, θ(k2,D) is decreasing when 1 ≤ D ≤ k2 − 1 and remains constant when D ≥ k2.

Hence if ǫ < ǫ2(M), no matter how large D is, it is guaranteed that Pr[Pk ≤ M |D] < 1− ǫ.

If ǫ ≥ ǫ1(M), then the minimum Dn such that it is possible that Pr[Pk ≤ M |D] ≥ 1 − ǫ is

given by

Dn = min{D : θ(k2,D) ≤ ǫ, 1 ≤ D ≤ k2 − 1}. (6.18)

Example 6.9 Consider Eqn (6.1) and (6.2) with

A = 1.4, C = 1, Q = 0.2, R = 0.5.
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We model the packet delay using a poisson distribution with mean d, i.e., the probability

mass function f(i) is given by

f(i) =
die−d

i!
, i = 0, 1, · · ·

where d = E[dk] denotes the mean value of the packet delay.

When M = 50, it is calculated that k1(M) = k2(M) = 7, hence θ(k1,D) = θ(k2,D) and

θ(7, 6) = 0.0313. Thus we can find the minimum D that guarantees Pr[Pk ≤ 50] ≥ 1 − ǫ

for any ǫ ≥ 0.0313. For any ǫ < 0.0313, no matter how large D is, Pr[Pk ≤ 50|D] < 1 − ǫ.

When M = 150, it is calculated that k1(M) = 8 and k2(M) = 9, hence θ(k1,D) >

θ(k2,D). We also find that θ(8, 7) = 0.0042 and θ(9, 8) = 0.0003. Therefore if ǫ > 0.0042,

we can find minimum D that guarantees Pr[Pk ≤ 150] ≥ 1 − ǫ; if ǫ < 0.0003, no matter

how large D is, Pr[Pk ≤ 150|D] < 1 − ǫ.
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Figure 6.5: θ(ki,D) for Different M

6.4 Sensor with Computation Capability

In this section, we consider the second scenario in Figure 6.1, i.e., the sensor has necessary

computation capability and sends x̂s
k to the remote estimator. All variables in this section,

e.g., γk
t , γk, etc, are assumed to be the same as in Section 6.3 unless they are explicitly

defined.
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Consider the case when the Kalman filter enters steady state at the sensor side, i.e.,

P s
k = P . It is clear that the optimal estimation at the remote estimator is as follows: If

γk = 1, then x̂k = x̂s
k and Pk = P s

k = P . If γk = 0 and γk−1 = 1, then x̂k = Ax̂s
k

and Pk = h(P ). This is repeated until γk−D+1 is examined. The full optimal estimation

algorithm is presented in Figure 6.6.

Figure 6.6: Optimal Estimation: Sensor with Computation Capability.

Notice that in the first scenario (Figure 6.2), i.e., sensor has no computation capability,

we examine the sequence from γk
k−D+1 to γk

k , while in the the second scenario, (Figure 6.6),

we examine the sequence from γk to γk−D+1.

Different than in Theorem 6.8, where we give lower and upper bounds of Pr[Pk ≤ M |D],

with sensor having computation capability, we can give the exact expression of Pr[Pk ≤
M |D]. The closed form expression is given in the following theorem.

Theorem 6.10 Assume the Kalman filter enters steady state at the sensor side so that

P s
k = P . Then for any M ≥ P , we have

Pr[Pk ≤ M |D] = 1 − θ(k2,D). (6.19)

Proof: For the remaining proof, all probabilities are conditioned on D. Let σ′
i and Σ′

i, i =

1, 2 be defined in the same way as in the proof of Theorem 6.8 (see Figure 6.4). Clearly for

any σ′
2 ∈ Σ′

2,

Pk(σ
′
2) ≤ hk2−1(P ) ≤ M.
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The first inequality is from the fact that γk−k2+1 = 1 and hence Pk−k2+1 = P . The second

inequality is from the definition of k2. In other words,

Pr[Pk ≤ M |σ′
2] = 1.

Similar to the proof of Theorem 6.8 , for σ′
1 ∈ Σ′

1, let us define

s = s(σ′
1) , min{t ≥ 1 : γk−t = 1|σ′

1}.

As σ′
1 ∈ Σ′

1, s ≥ k2. Therefore

Pk(σ
′
1) = hs(P ) � M.

In other words,

Pr[Pk ≤ M |σ′
1] = 0.

Therefore

Pr[Pk ≤ M ] =
∑

σ′∈Σ′

1∪Σ′

2

Pr[Pk ≤ M |σ′]Pr(σ′)

=
∑

σ′

1∈Σ′

1

Pr[Pk ≤ M |σ′
1]Pr(σ′

1) +
∑

σ′

2∈Σ′

2

Pr[Pk ≤ M |σ′
2]Pr(σ′

2)

=
∑

σ′

2∈Σ′

2

Pr[Pk ≤ M |σ′
2]Pr(σ′

2)

=
∑

σ′

2∈Σ′

2

Pr(σ′
2) = Pr(Σ′

2) = 1 − Pr(Σ′
1) = 1 − Pr[Nk ≥ k2].

�

Computing Pr[Nk ≥ k2|D] follows exactly the same way as in Section 6.3. Since we

have a strict equality in Eqn (6.19), in order that

Pr[Pk ≤ M |D] ≥ 1 − ǫ,

for a given ǫ, a necessary and sufficient condition is that

Pr[Nk ≥ k2] ≤ ǫ. (6.20)



72

Therefore the minimum D∗ that guarantees Eqn (6.20) to hold is given by

D∗ = min{D : θ(k2,D) ≤ ǫ, 1 ≤ D ≤ k2 − 1}. (6.21)

Notice that since θ(k2,D) ≥ θ(k2, k2 − 1) = ǫ2(M), D∗ from the above equation exists if

and only if ǫ ≥ ǫ2(M) where ǫ2(M) is defined in Eqn (6.16).

When C Is Not Full Rank

We use Theorem 6.10 to tackle the case when C is not full rank for the first scenario, i.e.,

sensor without computation capability. Since (A,C) is observable, there exists r (2 ≤ r ≤ n)

such that 









C

CA

· · ·
CAr−1











is full rank. In this section, we consider the special case when r = 2, and in particular, we

assume




C

CA





−1

exists. The idea readily extends to the general case.

Unlike the case when C−1 exists, and yk is sent across the network, here we assume that

the previous measurement yk−1 is sent along with yk. This only requires that the sensor

has a buffer that stores yk−1. Then if γk = 1, both yk and yk−1 are received. Thus we can

use the following linear estimator to generate x̂k

x̂k = A




CA

C





−1 


yk

yk−1



 .

The corresponding error covariance can be calculated as

Pk = AM1A
′ + Q,

where

M1 =




CA

C





−1 


CQC ′ + R 0

0 R








CA

C





−1′

.
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Therefore once the packet for time k is received, i.e., γk = 1, we have

Pk = AM1A
′ + Q , P̃ .

Now if we treat P̃ as the steady-state error covariance at the sensor side, i.e., by letting

P s
k = P̃ , and define

kv , min{t ≥ 1 : ht(P̃ ) � M},

we immediately obtain

Pr[Pk ≤ M |D] = 1 − θ(kv,D). (6.22)

Remark 6.11 Though we give the exact expression of Pr[Pk ≤ M |D] in Eqn (6.22), we

have to point out that θ(kv,D) ≥ θ(k2,D), as P̃ ≥ P due to the optimality of Kalman filter.

Thus the case that sensor has computation capability leads to better filter performance,

which is illustrated from the vector system example in the next section.

6.5 Examples

Scalar System

Consider the same parameters as in Example 6.9, i.e.,

A = 1.4, C = 1, Q = 0.2, R = 0.5

and

f(i) =
die−d

i!
, i = 0, 1, · · ·

Figure 6.7 shows the values of f(i) for 0 ≤ i ≤ 20 for d = 3 and 5, respectively.

Sensor without Computation Capability

We run a Monte Carlo simulation for different parameters. Figure 6.8 to 6.10 show the

results when D and d take different values. From Figure 6.11, we can see that both smaller

d and larger D lead to larger Pr[Pk ≤ M |D], which confirms the theory developed in this

chapter. We also notice that when d = 3, the filter’s performances using D = 10 and D = 5
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Figure 6.7: Poisson Distribution with d = 3 and d = 5
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Figure 6.8: Pr[Pk ≤ M |D = 10], d = 5
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Figure 6.9: Pr[Pk ≤ M |D = 10], d = 3
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Figure 6.10: Pr[Pk ≤ M |D = 5], d = 3
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only differ slightly (though the former one is better than the latter one), which confirms

that using a large buffer may not improve the filter performance drastically.

Sensor with Computation Capability

We run a Monte Carlo simulation for the case when the sensor has computation capability.

Figure 6.12 shows the result when D = 10 and d = 5. As we can see, the predicted value of

Pr[Pk ≤ M |D] from Eqn (6.19) matches well with the actual value.

Vector System

Consider a vehicle moving in a two dimensional space according to the standard constant

acceleration model, which assumes that the vehicle has zero acceleration except for a small

perturbation. The state of the vehicle consists of its x and y positions as well as velocities.

Assume a sensor measures the positions of the vehicle and sends the measurements to

a remote estimator over a packet delaying network. The system parameters are given

according to Eqn (6.1)–(6.2) as follows:

A =











1 0 0.5 0

0 1 0 0.5

0 0 1 0

0 0 0 1











, C =




1 0 0 0

0 1 0 0



 .

The process and measurement noise covariances are Q = diag(0.01, 0.01, 0.01, 0.01) and

R = diag(0.001, 0.001). We assume the same delay profile as in the scalar system example

with D = 5 and d = 3.

We run a Monte Carlo simulation for both cases when the sensor has or has not com-

putation capability. As we can see from Figure 6.13, the predicted values of Pr[Pk ≤ M |D]

from Eqn (6.19) and Eqn (6.22) match well with the actual values. We also notice that

when sensor has computation capability, the actual filter performance is better than when

sensor has no computation capability, as stated in Remark 6.11. In Figure 6.13, the M in

the x-axis means M × I4, where I4 is the identity matrix of dimension 4.
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Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

In this thesis I consider the problem of state estimation over a (sensor) network. With

optimizing the network resources being the objective, I study the following three problems.

1. How we can minimize the sensor energy usage?

2. How we can maximize the network lifetime?

3. How we can minimize the buffer length at the fusion center?

To answer those questions, I first study the problem of optimal estimation over a static

sensor tree in Chapter 3. I show that the optimal estimator is a chain of Kalman filters

and the length of the chain corresponds to the depth of the tree. Closed-form expression

on the steady-state error covariance is also obtained, which tells us that how each sensor

contributes to the overall estimation.

In Chapter 4, I look at the sensor energy minimization problem, and I propose the Tree

Reconfiguration Algorithm to find the minimum energy tree T subject to the constraint that

P∞(T ) ≤ Pdesired. The Tree Reconfiguration Algorithm consists of three subroutines with

the first one generating the initial sensor tree, the second one switching the tree topology if

the estimation constrain is violated, and the third one finding the minimum energy subtree.

In Chapter 5, I study the network lifetime maximization problem, and I propose the

Tree Construction and Scheduling Algorithm. The algorithm constructs a set of sensor trees,

{T1, · · · , TM}, that fulfill the estimation quality constraints, i.e., P∞(Tj) ≤ Pdesired ∀ 1 ≤
j ≤ M , yet with different energy cost of individual sensor node due to the randomness
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introduced by the algorithm. Those trees are then scheduled in an optimal way such that

the network lifetime is maximized.

Finally in Chapter 6, I consider minimizing the buffer length when state estimation is

carried over a packet delaying network. As random delays of the measurement data are

typically seen, I study the problem from a probabilistic angle, i.e., the minimum buffer

length D is found subject to the constraint that Pr[Pk ≤ M |D] ≥ 1−ǫ for a given M and ǫ.

When the sensor does not have computation capability, lower and upper bounds are found

for Pr[Pk ≤ M |D]; and when the sensor has computation capability, exact expression is

found for Pr[Pk ≤ M |D]. Therefore, given M and ǫ, we can find the sufficient and necessary

buffer length D that guarantees Pr[Pk ≤ M |D] ≥ 1 − ǫ.

7.2 Future Directions

There are many interesting directions to go along the line of this thesis work, and they are

briefly stated below.

Topology versus Performance: An important and interesting problem is to study

the tradeoffs between different sensors, controllers, and actuators topologies and system per-

formances, as the topologies determine how to deploy the different nodes, and re-deploying

in general incurs very high cost. If sensor energy is not a big concern, but rather the quality

of the estimation when the communication link is not reliable, it would be interesting to

study the tradeoff between the estimation quality, the underlying graph that represents the

sensor communication, the quality of the communication link and the energy cost of the

sensors. The quality of the communication link can be represented by the average packet

drop rate, so the higher the drop rate, the poorer the quality of the link. This will lead

to a unified framework between the analysis of packet drops, delays, sensor topologies and

system performance.

New Algorithms and Better Bounds: For the first two problems considered in the

thesis, it would be interesting to find better algorithms that approximate the global optimal

solution. Due to the complexity of the problem itself, we do not have a detailed performance

analysis of the algorithms proposed for the network lifetime maximization problem, as we

did for the algorithms in the energy minimization problem. It would be nice to have some

performance description of the algorithms (possibly with some extra conditions). For the
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third problem, it would be interesting to find tighter bounds on Pr[Pk ≤ M ]. Current

efforts are moving towards this direction.

Protocols versus Performance: Existing network infrastructure have many differ-

ent communication protocols for different applications (TCP, UDP and etc). It is natural

to imagine that such complex system of systems might utilize several different protocols

simultaneously. It would be interesting to first characterize the effect that different com-

munication protocols have on system performances. For example, TCP guarantees message

delivery over a network while UDP does not. However, the time that TCP takes to send

a message is usually longer than UDP. In some time critical applications, eg, in an rescue

scenario, it might be better to use UDP than TCP. It is important to understand and char-

acterize under which circumstance one protocol is better than the other to determine when

and where each protocol is more applicable. New protocols to enhance system performance

are also needed. Current protocols have not been designed specifically for use in a feedback

control system. Future communication protocols should be optimized for this setting.

Sensor Scheduling and Fundamental Limitations: Sensor scheduling within sen-

sor networks is an interesting problem. Some earlier work [43] (not included in the thesis)

was toward this direction. In general, it would be interesting to find out the optimal sensor

scheduling scheme that achieves desired system performance, minimizes total sensor en-

ergy/maximizes network lifetime, and subject to communication/computaiton constraints.

It would also be interesting to find the fundamental limitations in effective sensor

scheduling, e.g., what is the minimum number of sensor communication channels needed in

order to produce a bounded estimation error? given all the constraints, what is the best

performance of the system? etc.

Closed loop control: Closing the loop using the estimation algorithms developed in

this thesis is also interesting. If the separation principle holds, i.e., the estimator has full

knowledge of the control inputs to the process, then the estimation algorithm is still optimal

in the closed-loop setting similar to the work on TCP-like LQG control over packet dropping

network [46]. The UDP-like communication protocol makes the closed-loop performance

analysis much harder yet more interesting.
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