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Abstract

The class of electroactive polymers has been developed to a point where real life

applications as “artificial muscles” are conceivable. These actuator materials provide

attractive advantages: they are soft, lightweight, can undergo large deformation,

possess fast response time and are resilient. However, widespread application has

been hindered by their limitations: the need for a large electric field, relatively small

forces and energy density. However, recent experimental work shows great promise

that this limitation can be overcome by making composites of two materials with high

contrast in their dielectric modulus. In this thesis, a theoretical framework is derived

to describe the electrostatic effect of the dielectric elastomers. Numerical experiments

are conducted to explain the reason for the promising experimental results and to

explore better microstructures of the composites to enhance the favorable properties.

The starting point of this thesis is a general variational principle, which character-

izes the behavior of solids under combined mechanical and electrical loads. Based on

this variational principle, we assume the electric field is small as of order ε
1
2 , assume

further the deformation is caused by the electrostatic effects; the deformation field

is then of order ε. Using the tool of Γ-convergence, we derive a small-strain model

in which the electric field and the deformation field are decoupled which results in a

huge simplification of the problem.

Based on this small-strain model, employing the powerful tool of two-scale con-

vergence, we derive the effective properties for dielectric composites conducting small

strains. A formula of the effective electromechanical coupling coefficients is given in

terms of the unit cell solutions.

Armed with these theoretical results, we carry out numerical experiments about
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the effective properties of different kind of composites. A very careful analysis of the

numerical results provides a deep understanding of the mechanism of the enhancement

in strain by making composites of different microstructures.
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Chapter 1

Introduction

Electroactive polymers (EAP) are polymers that can change their shape in response

to electrical stimulation. These lightweight and flexible actuators can be used in a

wide variety of applications such as robotic manipulators and vehicles, active damping

and conformal control surfaces. Moreover, these actuators can be miniaturized and

incorporated into MEMS (Micro-Electro-Mechanical Systems). In comparison with

other types of active materials such as EAC (electroactive ceramics) and SMA (shape

memory alloys), EAPs can undergo large strains [24, 39, 33, 41], their response time

is shorter [24], their density is lower and their resilience is greater [5]. At the present,

their main limitations are low actuation force and low mechanical energy density.

Broadly speaking, there are three classes of electroactive polymers: dielectric elas-

tomers, ionic polymers and ferric/liquid crystal elastomers. The first class is the

most developed and closest to application [34, 25]. Roughly speaking, they actuate

by squeezing a piece of elastomer between electrodes. The second class, the ionic

polymers including gels and conductive polymers, actuates by the differential defor-

mation induced by the electric-field-induced diffusion of ions. They tend to operate

under small fields, but are slow and require a controlled environment. Ferroelectric

as well as liquid crystal elastomers are new and promising [6, 38], and undergoing

rapid development.

The promising first class is limited by the large electric fields (v100MV/m) they

require for meaningful actuation. The reason for this is poor electromechanical cou-

pling due to the fact that the typical polymers have a limited ratio of dielectric
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to elastic modulus (flexible polymers have low dielectric modulus while high dielec-

tric modulus polymers are stiff) [22]. Recent experimental works suggest that this

limitation can be overcome by making electroactive polymer composites (EAPC) by

combining an elastomer with a high dielectric or even conductive material [43, 22, 23].

Remarkably these works show that the effective electromechanical coupling is signif-

icantly larger than that can be expected naively from the ratio of effective dielectric

to effective elastic moduli. The reason for this high enhancement was pointed out by

Li, Huang, and Zhang [26, 27]. They pointed out that the electromechanical coupling

is nonlinear, and hence the effective behavior of the composite depends on the mean

square of the electric field rather than the square-mean. It follows that the contrast

between component properties promotes field fluctuation, and this in turn results in

the enhancement of the effective electromechanical coupling.

Within the class of electronic polymers two types of coupling between the electrical

and the mechanical fields are broadly distinguished, piezoelectric and electrostrictive.

The piezoelectric effect is a linear (and more generally odd) coupling between the

mechanical stress/strain and the electric field/displacement current. Piezoelectric

systems are reasonably well understood. For heterogeneous systems (composites),

the theoretical implications of the linear coupling have been examined extensively,

especially for small strains (see, e.g., [7]).

Electrostriction is a nonlinear effect where the strains depend quadratically (and

more generally in an even manner) on the applied electric field. It can arise due to

inherent material properties, or due to electrostatic effects through a Maxwell stress.

The dielectric elastomers discussed earlier are electrostrictive effect as a result of

electrostatic effects. From a theoretical point of view, the behavior of the composites

of electrostrictive materials is less known. This provides one of the motivations for

this thesis. Our aim is to develop a general theory for defining, calculating and

understanding the effective properties of electrostrictive composites under small-strain

assumption. This theory builds on the insights offered by Li et al. [26, 27] and gives

an engineer a tool to develop composites with high coupling.

Another motivation of this thesis is a rigorous derivation of a small-strain approx-
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(a)
(b)

Figure 1.1: One dimensional scale analysis.

imation for electrostrictive materials. The difficulties were pointed out by Toupin [37]

and are introduced in Chapter 2 as a formal computation.

The basic idea is apparent in a one-dimensional model calculation. Consider a

piece of one dimensional electroactive polymer as shown in Figure 1.1(a). The natural

length of the elastomer is l0. The current length under voltage V is l. Denote the

strain to be e = δl
l0

, where δl = l− l0. Assume the polarization caused by the electric

field is p. Then the energy of this one dimensional system is

Etotal =

∫ l0

0

W

(
l

l0

)
dx +

∫ l

0

(
α

2
|p|2 − p · V

l

)
dy.

The solutions of this system, the polarization and the deformation, are the minimizers

of the above function. If we minimize E with respect to p, we get p = V
2α

, so that

Etotal = W

(
l

l0

)
l0 − V 2

2αl
.

The two terms are shown in Figure 1.1(b) as Emech and Eelec, and the sum as Etotal.
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Now assume that both V and e are small and expand the energy around V = 0

and e = 0. Assume further that W (1) = 0,W ′(1) = 0. A simple calculation leads to

E ' l0
2

W ′′(1) e2 − V 2

2αl0
+

V 2

2αl0
e + · · ·

The first term on the right hand side is purely mechanical, the second term is purely

electrostatic and the third term is the electromechanical coupling. Note that if both

the electric field and the strain are small, the electromechanical coupling is smaller

than the electrostatic energy, irrespective of the relative magnitude of V and e. Fur-

ther, assume that the deformation is of order ε. If the electric field has the same order,

the coupling term can be neglected. Thus there is no electromechanical coupling with

this scaling.

If, however, the electric field is of order ε
1
2 , things are quite different. The leading

order energy is the electrostatic energy E0 = − V 2

2αl0
, which is of order ε. E0 depends

only on the electric field and does not involve the deformation of the material. The

second order energy is E −E0 = l0
2

W ′′(1) e2 + V 2

2αl0
e. It is the sum of the mechanical

and the coupling terms. In fact, we may view this as the mechanical energy with the

forcing provided by the electric field and it can be looked as a correction term to the

leading order energy. This two-order expansion is also clear from Figure 1.1(b): The

ground state is E0 given by the electrostatics, and the correction is mechanics driven

by the electrostatics. This suggests that we first compute the electrostatic field in the

reference configuration and then use it as the forcing term in the mechanical problem.

The second motivation is to generalize this idea to multidimensions.

This thesis is divided into seven chapters. Chapter 2 is the mathematical de-

scription of the physical problem together with formal computations. We consider

a piece of electroactive polymer attached with two thin layers of conductive elec-

trodes. The starting point is a variational principle which characterizes the behavior

of the electroactive polymer under electrical loads. This goes back to Toupin [37], but

follows the formulation in Shu and Bhattacharya [35], Xiao and Bhattacharya [40].

We define the relevant function spaces and give an existence result for the solution
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of the Maxwell equation. Next, the Euler-Lagrange equations for this variational

principle are derived and analyzed under the small-strain assumption. If we consider

the electrostatic or electrostrictive coupling, the formal Taylor expansion of the Euler-

Lagrange equations suggests that the electromechanical coupling is present only when

the deformation has the same order as the square of the electric field. Specifically,

if the strain is of order ε, then the electromechanical coupling is present only if the

electric field is of order ε
1
2 . On the other hand, if we consider the piezoelectric cou-

pling, formal calculation reveals that the electromechanical coupling occurs when the

deformation field has the same order with the electric field.

By the formal calculation, the small-strain model for dielectric elastomers consists

of two equations. One of them is an elliptic equation in the reference configuration

for the electric field. The second equation is one of linear elasticity with the Maxwell

stress that is known from the solution of the electric field in the first equation acting

as the force term. This decoupling between the electric field and the strain field

provides a significant simplification of the original problem that allows us to carry

out a detailed analysis of the properties of dielectric EAPs.

In Chapter 3, we provide the rigorous proof for the above formal calculation of

dielectric elastomers. The main tool we use in this chapter is Γ-convergence [18, 8, 29].

We rescale the electric field with ε
1
2 and the energy with ε. In the first part of this

chapter, the energy functional is shown to Γ-converge to a limit functional which does

not depend on the deformation. The equation for the electric field is derived after

that as the Euler-Lagrange equation of the limit functional. The main difficultly in

this part of the proof is that the strain field converges only in an integral norm, not

in L∞ norm. Thus the function space on the reference region is not isomorphic to the

function space on the deformed region. We have to deal with this issue with care. In

the second part of this chapter, the order ε correction term of the first order energy

functional is derived. The Euler-Lagrange equation of this correction term gives the

strain equation. In this part, to make the Maxwell stress belong to the dual space of

the strain field, we assume the electric field to be quite regular. In fact, we need the

electric field to be L4 bounded in some compact set containing the reference region.
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This provides some restriction to the geometries and microstructures that one can

consider in Chapter 4.

Chapter 4 is devoted to developing a homogenization theory for the heterogeneous

dielectric elastomers based on the small-strain model. Using the tool of two-scale con-

vergence, we derive a formula for the effective electromechanical coupling coefficients.

From this formula, the effective electromechanical coupling is composed of two parts.

One is the average Maxwell stress, and the second comes from the fluctuation of the

Maxwell stress. The main difficulty of this chapter is to find out the two-scale limit

of the Maxwell stress. We need the local strong convergence of the electric field and

it is proven by combining the two-scale convergence with the local estimate of the

oscillation terms.

In Chapter 5, we derive a simple formula to compute the effective electromechani-

cal coupling for dielectric laminates. Numerical results are provided to show the effect

of some parameters such as the volume fraction and the lamination angle on the effec-

tive electrocoupling of the laminates. An interesting phenomenon is observed which

distinguishes the nonlinear electrostriction effect from the linear piezoelectric effect.

Unlike the linear coupling of piezoelectric composites, the effective electromechanical

coupling of the dielectric laminates can exceed the electromechanical coupling of each

individual component material. More surprisingly, the example suggests that an infi-

nite strain can be obtained by sequential laminates. The numerical experiments are

consistent with the experimental results given by Huang and Zhang [22]. The care-

ful analysis of the numerical results reveals that the key to the enhancement of the

longitudinal strain is the high ratio of the dielectric modulus of the two constituent

materials. This provides a fluctuation of the dielectric modulus for the heterogeneous

dielectric material, which causes the fluctuation of the electric field and thus an os-

cillation of the Maxwell stress. The Maxwell stress in the compliant phase of the

heterogeneous elastomer is very large, and a large shear strain is generated because

of this.

Chapter 6 is devoted to the numerical experiments on particulate composites in

order to highlight fundamental parameters that influence the overall response of the
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electroactive polymer composites. With the guidelines gained from the analytical

study, unit cell solutions are constructed in a finite element code. We computed an

ellipsoidal stiff phase inside a square compliant dielectric material. Numerical results

show that for fixed volume fraction, the larger the ratio of the long axis length to the

short axis length for the ellipsoid, the larger the effective longitudinal strain. This

suggests that fiber like inclusion is a favorable inclusion to enhance the longitudinal

strain. Another factor that affects the longitudinal strain is the distance between the

inclusions. In order to make use of the squeezing effect caused by the fluctuation of

the electric field, it is very crucial to take a right distance between the inclusions.

In Appendix A, we give the rigorous derivation of the small-strain model for

piezoelectric materials.

This thesis is by no means the end of the story. There are still numerous interesting

and open problems about this topic. In Chapter 7, we discuss some of the possible

directions.
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Chapter 2

Variational Principle of
Electroactive Polymers

2.1 Kinematics and Electrostatics

Consider a piece of electroactive polymer occupying a domain Ω ⊂ RN as shown in

Figure 2.1. Assume that this reference region Ω has a relatively good regularity: it

satisfies the strong local Lipschitz condition, and there exists a constant r0, 2 < r0 <

∞, such that Ω ∈ Br0 (see Definition 3.2). We attach two thin layers of conductors C0,

C1 to the material and apply an external electric field. The interaction between the

electroactive polymer and the applied electric field causes a deformation y : Ω → RN

that brings the material to another shape y(Ω). We assume that the deformation is

invertible and J = det F > 0 almost everywhere in Ω, where F (x) = ∇xy(x) is the

deformation gradient.

Denote by p : y(Ω) → RN the polarization of the electroactive polymer per unit

deformed volume and by p0 : Ω → RN the polarization per unit reference volume.

The relation between p(y) and p0(x) is then

p0(x) = det
(∇xy(x)

)
p
(
y(x)

)
= J(x) p

(
y(x)

)
. (2.1)

The polarization of the material together with the conductors generate an electric

field in the entire space. The electrostatic potential ϕe at any point in RN is obtained
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Figure 2.1: Principle of operation of electroactive polymers.

by solving the Maxwell equation





∇y ·
[−ε0∇yϕe + p χ

(
y(Ω)

)]
= 0 in RN\y(C),

∇yϕe = 0 in y(C0),

∇yϕe = 0 in y(C1),

(2.2)

subject to boundary conditions ϕe = g0 on ∂y(C0), ϕe = g1 on ∂y(C1), where g0

and g1 are two given constants. Above, we have denoted C = C0 ∪ C1, and y(C) =

y(C0) ∪ y(C1).

Since g0 and g1 are constants, (2.2) is equivalent to





∇y ·
[−ε0∇yϕe + p χ

(
y(Ω)

)]
= 0 in RN\y(C),

ϕe = g0 in y(C0),

ϕe = g1 in y(C1).

(2.3)

Again, because g0 and g1 are constants, there exist Ω0
y ⊃ y(C0) and Ω1

y ⊃ y(C1) such

that Ω0
y ∩ Ω1

y = ∅. Construct g(y) such that g(y) ∈ H1
0(RN) with compact support

and satisfying

g(y) =





g0 in Ω0
y,

g1 in Ω1
y.
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Then if we define ϕ(y) = ϕe(y)− g(y), ϕ(y) satisfies





∇y ·
[−ε0∇yϕ + p χ

(
y(Ω)

)− ε0∇yg
]

= 0 in RN\y(C),

ϕ = 0 on ∂y(C0),

ϕ = 0 on ∂y(C1).

(2.4)

To define the function space for ϕ(y), denote first

D(O) =
{
φ

∣∣ φ ∈ C∞
0 (O)

}

for any open set O ⊂ RN . Space D(O) is linear. Now, equip D with norm ‖φ‖2 =

(∇φ,∇φ)L2(RN ) and let D(O) be the completion of D(O) under this norm. Then

D(O) is a Hilbert space. For problem (2.4), let us consider D(
RN\y(C)

)
. We say

that ϕ ∈ D(
RN\y(C)

)
is the weak solution of equation (2.4) if

ε0

∫

RN

∇yϕ · ∇yψ dy + ε0

∫

RN

∇yψ · ∇yg dy =

∫

y(Ω)

p · ∇yψ dy, (2.5)

∀ψ ∈ D(
RN\y(C)

)
.

In this space, the bilinear form

L(ϕ, ψ) := ε0

∫

RN

∇yϕ · ∇yψ dy

is a coercive bounded bilinear operator. The integration is on the entire space, because

we extend any function in D(
RN\y(C)

)
to the entire space by zero. ∇yg ∈ L2(RN) ⊂

D−1
(
RN\y(C)

)
and p ∈ L2

(
y(Ω)

) ⊂ D−1
(
RN\y(C)

)
. Therefore, the Lax-Milgram

theorem applies, i.e., there exists a unique solution for the electric potential equation

(2.4) and the solution satisfies

∥∥∇yϕ
∥∥
L2(RN )

6 1

ε0

(∥∥p
∥∥
L2(y(Ω))

+
∥∥ε0∇yg

∥∥
L2(RN )

)
. (2.6)

Remark If ∂y(C) is regular, for example, if it is Lipschitz continuous, then space
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D(
RN\y(C)

)
is equivalent to the space

D1

(
RN\y(C)

)
:=

{
ψ | ψ ∈ L2

loc(R
N), ∇ψ ∈ L2(RN), γ(ψ) = 0 on ∂y(C)

}
.

D1

(
RN\y(C)

)
is a complete Hilbert space under norm ‖ψ‖2 = (∇ψ,∇ψ). In fact,

for any sequence ψi with ∇ψi a Cauchy sequence in L2(RN), there exists w =

(w1, . . . , wN), wi ∈ L2(RN) such that ∇ψi → w, since L2(RN) is a complete Hilbert

space. Now we need to find a function ψ0 ∈ L2
loc(RN) such that ∇ψ0 = w. To do

this, we use the following lemma (see, for example, [13]).

Lemma 2.1 Suppose O is a connected open set with ∂O Lipschitz continuous. As-

sume that ∂O = Γ1 ∪ Γ2, where Γ1 and Γ2 are closed sets with Γ1 ∩ Γ2 = ∅. Γ1 has

positive measure. Then there exists a constant c(O) such that

∥∥u
∥∥
L2(O)

6 c(O)
∥∥∇u

∥∥
L2(O)

,

∀u ∈ H1(O) with γ(u) = 0 on Γ1.

Armed with this lemma, we resume the above discussion. Consider a compact set

D ⊃ y(C). Using Lemma 2.1, ψi form a Cauchy sequence with respect toH1(D) norm

on D. So there exists a ψ0(D) ∈ H1(D) such that ∇ψ0 = w and ψi → ψ0 in H1(D).

By the continuity of trace with respect to H1 norm, γ(ψ0) = 0 on ∂y(C). Enlarging

D, ψ0 is then defined on the entire space RN and it is in L2
loc(RN). Therefore, D1 is

complete and thus D1

(
RN\y(C)

)
= D(

RN\y(C)
)

if ∂y(C) is Liptschtz continuous.

¤



13

2.2 Variational Principle

The total energy of the system described above is

F =

∫

Ω

W (x, F, p0) dx +
ε0

2

∫

RN

∣∣∇yϕe

∣∣2 dy

−
∫

∂y(C)

g(y)
(−ε0∇yϕe + p χ(y(Ω))

) · nC dSy +

∫

y(C)

Wc dy. (2.7)

Here, W is the stored energy per unit reference volume in the electroactive polymer.

It is a function of the deformation gradient F and the polarization p0. Wc is the

elastic energy density of the conductor layers. nC is the outward pointing normal

vector to ∂y(C).

Recalling that ϕe = ϕ + g(y), (2.7) can be rewritten as

F =

∫

Ω

W (x, F, p0) dx +

∫

y(C)

Wc dy

+
ε0

2

∫

RN

∣∣∇yϕ
∣∣2 dy +

ε0

2

∫

RN

∣∣∇yg
∣∣2 dy + ε0

∫

RN

∇yϕ · ∇yg dy

−
∫

∂y(C)

g(y)
(−ε0∇yϕ− ε0∇yg + p χ(y(Ω))

) · nC dSy. (2.8)

Multiplying equation (2.4) by g, we get

ε0

∫

RN

∇yg · ∇yϕdy

= −ε0

∫

RN

|∇yg|2 dy +

∫

y(Ω)

∇yg · p dy

+

∫

∂y(C)

g(y)
(−ε0∇yϕ + p χ(y(Ω))

) · nC dSy. (2.9)

The last term follows because g ≡ g0 on Ω0
y, g ≡ g1 on Ω1

y.
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Plugging (2.9) into (2.8), the energy becomes,

F =

∫

Ω

W (x, F, p0) dx +
ε0

2

∫

RN

∣∣∇yϕ
∣∣2dy

+

∫

y(Ω)

∇yg · p dy − ε0

2

∫

RN

|∇yg|2dy +

∫

y(C)

Wc dy. (2.10)

Remark. To see the physical meaning of the energy more clearly, we split the electric

field into two parts. One is ϕp, the solution of




∇y ·

[−ε0∇yϕp + p χ
(
y(Ω)

)]
= 0 in RN\y(C),

ϕp = 0 on ∂y(C).
(2.11)

Another is ϕext, the solution of





∇y ·
[−ε0∇yϕext

]
= 0 in RN\y(C),

ϕext = g0 on ∂y(C0),

ϕext = g1 on ∂y(C1).

(2.12)

Clearly, ϕp is the electric field induced by the polarization of the electroactive polymer,

ϕext is the external electric field and ϕe = ϕp + ϕext.

Plug ϕe = ϕp + ϕext into F :

F =

∫

Ω

W (x, F, p0) dx +
ε0

2

∫

RN

∣∣∇yϕext

∣∣2dy +
ε0

2

∫

RN

∣∣∇yϕp

∣∣2dy

+ ε0

∫

RN

∇yϕext · ∇yϕp dy −
∫

∂y(C)

g(y)
(−ε0∇yϕp + p χ(y(Ω))

) · nCdSy

−
∫

∂y(C)

g(y)(−ε0∇yϕext) · nC dSy +

∫

y(C)

Wc dy. (2.13)

On the right hand side, we have

ε0

∫

RN

∇yϕext · ∇ϕp dy

=

∫

y(Ω)

∇yϕext · p dy +

∫

∂y(C)

g(y)
(−ε0∇yϕp + p χ(y(Ω))

) · nC dSy (2.14)
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by multiplying equation (2.11) with ϕext. We also have

ε0

∫

RN

∣∣∇yϕext

∣∣2 dy =

∫

∂y(C)

g(y)
(−ε0∇yϕext

) · nC dSy (2.15)

by multiplying equation (2.12) with ϕext. Substituting (2.14) and (2.15) into (2.13),

we get

F =

∫

Ω

W (x, F, p0) dx +
ε0

2

∫

RN

∣∣∇yϕp

∣∣2 dy

+

∫

y(Ω)

∇yϕext · p dy − ε0

2

∫

RN

∣∣∇yϕext

∣∣2dy +

∫

y(C)

Wc dy. (2.16)

The physical meaning of the energy functional (2.16) is now evident. The first term

is the stored energy. The second term is the electric potential energy induced by

the polarization. The third term is the interaction between the polarization and the

external electric field. The fourth term is the external electric field energy and the

last term is the stored elastic energy in the conductive layers. The last two terms

are constants if the external field is fixed, or in other words, the electrode layers are

detached from the material.

¤

We seek to simplify this problem by neglecting the thickness of the two thin layers

of electrodes, i.e., to replace C and y(C) with manifolds of dimension N − 1. To

do this, we need to address two issues. First we neglect the elastic energy of the

electrodes, the last term in (2.10). This is reasonable. Second, we need to ensure

that the electrostatic terms remain meaningful. This requires some care and follows

from the work of Bucur and Buttazzo [10, 11, 9].

Definition 2.1 Let O be an open bounded set in RN , and let Ωn and Ω be open

subsets of O. We say Ωn γ-converges to Ω if for every f ∈ H−1(O), uΩn,f → uΩ,f
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strongly in H1
0(O), where uΩ,f is the solution for the problem




−∆uΩ,f = f,

uΩ,f ∈ H1
0(Ω).

(2.17)

Definition 2.2 The Hausdorff distance between two open set Ω1 and Ω2 is defined

as

dHc(Ω1, Ω2) = d (Ωc
1, Ω

c
2).

Lemma 2.2 ([10]) Ωn → Ω in Hc-convergence is equivalent to Ωn → Ω in γ-

convergence if Ωn is in any of the following list of domain classes:

• The class of Aunif cone of domains satisfying a uniform exterior cone property,

i.e., for every point x0 on the boundary of every Ω ∈ Aunif cone, there is a closed

cone, with uniform height and opening, and with vertex in x0, lying in the

complement of Ω.

• The class Aunif flat cone of domains satisfying a uniform flat cone condition, i.e.,

as above, but with the weaker requirement that the cone maybe flat of dimension

N − 1.

• Acap density, satisfying a uniform capacity density condition, i.e, there exist c, r >

0 such that for every Ω ∈ Acap density, and for every x ∈ ∂Ω, we have

Cap(Ωc ∩Bx,t, Bx,2t)

Cap(Bx,t, Bx,2t)
> c ∀t ∈ (0, r).

• The class Aunif Wiener satisfying a uniform Wiener condition, i.e., for every point

x ∈ ∂Ω

∫ R

r

Cap(Ωc ∩Bx,t, Bx,2t)

Cap(Bx,t, Bx,2t)

dt

t
> G(r, R, x) ∀ 0 < r < R < 1,

where G : (0, 1)× (0, 1)×O −→ R+ is fixed, such that for every R ∈ (0, 1)

lim
r→0

G(r, R, x) = +∞ locally uniformly on x.
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• For N = 2, the class of all open subsets Ω of O for which the number of

connected components of Ō\Ω is uniformly bounded.

The following inclusions can be established [10]:

Aconvex ⊆ Aunif cone ⊆ Aunif flat cone ⊆ Acap density ⊆ Aunif Wiener.

A uniform Wiener conditions is thus the weakest reasonable constraint to obtain a

continuity result in the Hausdorff complementary topology; it is based on a local

equicontinuity property of the solutions on the moving domain.

The above conclusion is also true for our equations in infinite domain. Indeed, we

have the following result.

Proposition 2.3 Let Cη be a sequence of domains (electrode layers) with thickness

η → 0. Assume RN\Cη is in one of the classes in Lemma 2.2. For fixed y(Ω), denote

by ϕη(y) the solution of




∇y ·

[−ε0∇yϕ
η + p χ

(
y(Ω)

)− ε0∇yg
]

= 0 in RN\y(Cη),

ϕη ∈ D(
RN\y(Cη)

)
,

(2.18)

ϕ the solution of




∇y ·

[−ε0∇yϕ + p χ
(
y(Ω)

)− ε0∇yg
]

= 0 in RN\y(Γ),

ϕ ∈ D(
RN\y(Γ)

)
,

(2.19)

where y(Γ) = ∂y(Cη) ∩ ∂y(Ω). Assume y(Cη) → y(Γ) as η → 0 in dHc sense, then

∥∥∇yϕ
η −∇yϕ

∥∥
L2(RN )

→ 0 as η → 0.

In addition, let Fη be the corresponding energy (2.10) for ϕη and define

F :=

∫

Ω

W (x, F, p0) dx +
ε0

2

∫

RN

∣∣∇yϕ
∣∣2dy +

∫

y(Ω)

∇yg · p dy − ε0

2

∫

RN

∣∣∇yg
∣∣2dy,
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we also have limη→0Fη = F .

Proof Repeating the same arguments that lead to (2.6), we can establish the exis-

tence of the solution for (2.19) in space D(
RN\y(Γ)

)
with

∥∥∇ϕ
∥∥
L2(RN )

6 1

ε0

∥∥p χ
(
y(Ω)

)− ε0∇yg
∥∥
L2(RN )

. (2.20)

The proof of Proposition 2.3 is then exactly the same as in Bucur and Zolesio [11]. ¤

Proposition 2.3 shows that as long as we have some regularity for the electrode

layers–specifically, the complement set of the electrodes is in any of the above A
classes–then we may replace it with a boundary of dimension N − 1.

In summary, we have the following variational principle for electroactive polymers.

Consider an electroactive polymer occupying the reference region Ω ⊂ RN with two

thin conductive layers Γ0 and Γ1 attached to it. Let y : Ω → RN be the deformation

of the material. Assume g(y) ∈ H1(RN) with compact support satisfying g(y) ≡ g0

in some small neighborhood of y(Γ0) and g(y) ≡ g1 in some neighborhood of y(Γ1),

where g0 and g1 are the boundary conditions for the electric field potential. Then the

energy of the described system is

F :=

∫

Ω

W (x, F, p0) dx+
ε0

2

∫

RN

∣∣∇yϕ
∣∣2dy+

∫

y(Ω)

∇yg ·p dy− ε0

2

∫

RN

∣∣∇yg
∣∣2dy, (2.21)

where ϕ is the solution to




∇y ·

[−ε0∇yϕ + p χ
(
y(Ω)

)− ε0∇yg
]

= 0 in RN\y(Γ),

ϕ ∈ D(
RN\y(Γ)

)
.

(2.22)

We seek to find the deformation y(x) and the polarization p that minimize the energy

F in (2.21).
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2.3 Euler-Lagrange Equations

To derive the Euler-Lagrange equations for the above variational principle, let us

first assume p0(x) and y(x) are the minimizers of (2.21) subject to (2.22). Fix y(x)

and consider a perturbation to the polarization p0(x). Let p1(x) = p0(x) + tq0(x),

q0(x) ∈ L2(Ω) and t is a small parameter. Denote ϕ1(y) to be the solution of




∇y ·

[−ε0∇yϕ1 + (p + tq)χ
(
y(Ω)

)− ε0∇yg
]

= 0 in RN\y(Γ),

ϕ1 ∈ D
(
RN\y(Γ)

)
.

(2.23)

By the linearity of the equation, ϕ1(y) = ϕ(y) + tφ(y), where φ(y) is the solution of




∇y ·

[−ε0∇yφ + qχ
(
y(Ω)

)]
= 0 in RN\y(Γ),

φ ∈ D(
RN\y(Γ)

)
.

(2.24)

Define

h(t) =

∫

Ω

W (x, F, p0 + tq0) dx +
ε0

2

∫

RN

∣∣∇yϕ1

∣∣2 dy

+

∫

y(Ω)

∇yg · (p + tq) dy − ε0

2

∫

RN

∣∣∇yg
∣∣2 dy

=

∫

Ω

W (x, F, p0 + tq0) dx +
ε0

2

∫

RN

∣∣∇yϕ + t∇yφ
∣∣2 dy

+

∫

y(Ω)

∇yg · (p + tq) dy − ε0

2

∫

RN

∣∣∇yg
∣∣2 dy.

Since h(t) obtains its minimum at t = 0, we have

0 = h′(t)|t=0 =

∫

Ω

∂W (x, F, p0)

∂p0

· q0 dx +
ε0

2

∫

RN
2∇yϕ · ∇yφ dy +

∫

y(Ω)

∇yg · q dy

=

∫

Ω

∂W (x, F, p0)

∂p0

· q0 dx +

∫

y(Ω)

∇yϕ · q dy +

∫

y(Ω)

∇yg · q dy

=

∫

Ω

[
∂W (x, F, p0)

∂p0

+ F−T (∇xϕ +∇xg)

]
· q0 dx.
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Thus we get an equation for p0 as

∂W (x, F, p0)

∂p0

+ F−T (∇xϕ +∇xg) = 0. (2.25)

Now, fix p0 and let y1(x) = y(x) + tz(x) be a perturbation of y(x), then F1 =

∇xy1(x) = F + tG. Let ψ(y) be the solution to equation (2.22) with deformation

y1(x),




∇y1 ·

[−ε0∇y1ψ + pχ
(
y1(Ω)

)− ε0∇y1g
]

= 0 in RN\y1(Γ),

ψ ∈ D(
RN\y1(Γ)

)
.

(2.26)

If we denote ψ(x) = ψ
(
y(x)

)
, then the equation for ψ(x) in the reference coordinate

is




∇x ·

[−ε0J1F
−1
1 F−T

1

(∇xψ(x) +∇xg(x)
)

+ F−1
1 p0χ(Ω)

]
= 0 in RN\Γ,

ψ(x) ∈ D(
RN\Γ)

.

(2.27)

Similarly, if we denote ϕ(x) = ϕ
(
y(x)

)
, the equation for ϕ(x) in the reference coor-

dinate is




∇x ·

[−ε0JF−1F−T
(∇xϕ(x) +∇xg(x)

)
+ F−1p0χ(Ω)

]
= 0 in RN\Γ,

ϕ(x) ∈ D(
RN\Γ)

.

(2.28)
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Assume t is small and consider the Taylor expansion of F−1
1 , J1 etc.:

J1 = det(F1) = det(F )
(
1 + t tr(F−1G)

)
+ o(t) = J + tJ tr(F−1G) + o(t);

F−1
1 = F−1 − tF−1GF−1 + o(t);

F−T
1 = F−T − tF−T GT F−T + o(t);

J1F
−1
1 F−T

1 = JF−1F−T + t
(
tr(F−1G)F−1F−T − JF−1GF−1F−T

−JF−1F−T GT F−T
)

+ o(t)

= A + tB + o(t),

where

A = JF−1F−T ,

B = tr(F−1G)F−1F−T − JF−1GF−1F−T − JF−1F−T GT F−T .

Thus, equation (2.27) can be written as

∇x ·
[−ε0

(
A + tB + o(t)

)
(∇xψ +∇xg) +

(
F−1 − tF−1GF−1 + o(t)

)
p0

]
= 0. (2.29)

To leading order, we obtain

∇x ·
[−ε0A(∇xψ +∇xg) + F−1p0

]
= 0.

This is exactly (2.28), the solution is ϕ(x).

The second order equation is

∇x · (−ε0A∇xφ) = ∇x ·
[
ε0B(∇xϕ +∇xg) + F−1GF−1p0

]
. (2.30)

The solution for (2.27) is then ψ(x) = ϕ(x) + tφ(x) + o(t).
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Now, define

r(t) =

∫

Ω

W (x, F1, p0) dx +
ε0

2

∫

RN

∣∣∇y1ψ
∣∣2 dy1

+

∫

y1(Ω)

∇y1g · p dy1 − ε0

2

∫

RN

∣∣∇y1g
∣∣2 dy1

=

∫

Ω

W (x, F + tG, p0) dx +
ε0

2

∫

RN
J1F

−1
1 F−T

1 ∇xψ · ∇xψ dx

+

∫

Ω

F−T
1 ∇xg · p0 dx− ε0

2

∫

RN

J1F
−1
1 F−T

1 ∇xg · ∇xg dx

=

∫

Ω

W (x, F + tG, p0) dx +
ε0

2

∫

RN
(A + tB)(∇xϕ + t∇xφ) · (∇xϕ + t∇xφ) dx

+

∫

Ω

(F−T − tF−T GT F−T )∇xg · p0 dx− ε0

2

∫

RN

(A + tB)∇xg · ∇xg dx + o(t)

=

∫

Ω

W (x, F + tG, p0) dx +
ε0

2

∫

RN
A(∇xϕ · ∇xϕ +∇xg · ∇xg) dx

+

∫

Ω

F−T∇xg · p0 dx− t

∫

Ω

F−T GT F−T∇xg · p0 dx

+ t

[
ε0

2

∫

RN
B∇xϕ · ∇xϕ + 2A∇xϕ · ∇xφ−B∇xg · ∇xg dx

]
+ o(t).
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Since r(t) is minimized at t = 0, we have

0 = r′(0) =

∫

Ω

∂W (x, F, p0)

∂F
: G dx−

∫

Ω

F−T GT F−T∇xg · p0 dx

+
ε0

2

∫

RN
B∇xϕ · ∇xϕ + 2A∇xϕ · ∇xφ−B∇xg · ∇xg dx

=

∫

Ω

∂W (x, F, p0)

∂F
: G dx−

∫

Ω

F−T GT F−T∇xg · p0 dx

+
ε0

2

∫

RN
B∇xϕ · ∇xϕ−B∇xg · ∇xg dx

−
∫

RN
ε0B(∇xϕ +∇xg) · ∇xϕdx−

∫

Ω

F−1GF−1p0 · ∇xϕdx

=

∫

Ω

∂W (x, F, p0)

∂F
: G dx−

∫

Ω

F−T GT F−T (∇xϕ +∇xg) · p0 dx

−ε0

2

∫

RN
B(∇xϕ +∇xg) · (∇xϕ +∇xg) dx

=

∫

Ω

[
∂W (x, F, p0)

∂F
+ ε0J

(
F−T (∇xϕ +∇xg)

)⊗ (
F−T (∇xϕ +∇xg)

)
F−T

−(
F−T (∇xϕ +∇xg)

)⊗ p0F
−T − ε0

2

∣∣F−T (∇xϕ +∇xg)
∣∣2 F−T

]
: Gdx,

for any z(x) ∈ H1(Ω). Above, we use (2.30) in the second equality. Therefore, we get

the equation for the deformation:

∇x ·
[
∂W (x, F, p0)

∂F
+ ε0J

(
F−T (∇xϕ +∇xg)

)⊗ (
F−T (∇xϕ +∇xg)

)
F−T

−(
F−T (∇xϕ +∇xg)

)⊗ p0F
−T − ε0

2

∣∣F−T (∇xϕ +∇xg)
∣∣2 F−T

]
= 0. (2.31)

Collecting all the equations and remembering that ϕe = ϕ + g, we get





∂W (x, F, p0)

∂p0

+ F−T∇xϕe = 0,

∇x ·
[−ε0JF−1F−T∇xϕe(x) + F−1p0χ(Ω)

]
= 0,

∇x ·
[
∂W

∂F
+

(
(F−T∇xϕe)⊗ (ε0JF−T∇xϕe − p0)− ε0

2

∣∣F−T∇xϕe

∣∣2
)

F−T

]
= 0.

(2.32)
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These are the Euler-Lagrange equations.

2.4 Formal Derivation of Small-strain Models

Starting from the above Euler-Lagrange equations, under the small deformation as-

sumption, we can get small-strain models for dielectric elastomers and piezoelectric

elastomers by taking different scalings.

2.4.1 Small-strain Model for Dielectric Elastomers

Assume the deformation is of order ε. Let y(x) = x + εu(x). Then F (x) = I + ε∇u,

J = 1 + ε tr(∇u) + o(ε),

F−1 = I − ε∇u + o(ε),

F−T = I − ε∇uT + o(ε).

Assume that the electric field is of order εδ, i.e., ϕe = εδϕ̃e. Then, from the first

equation of (2.32),

∂2W

∂p2
0

∣∣∣∣
F=I
p0=0

p0 +
∂2W

∂p0∂F

∣∣∣∣
F=I
p0=0

ε∇u + εδ∇xϕ̃e + o(εδ) = 0.

Assume
∂2W

∂p0∂F

∣∣∣∣
F=I
p0=0

= 0,
∂2W

∂p2
0

∣∣∣∣
F=I
p0=0

= H−1,

then p0 should have the same order with ϕe. Let p0 = εδp̃0, then we get an equation

of order εδ for p̃0,

H−1p̃0 +∇xϕ̃e = 0.

The leading order in the Maxwell equation is also of order εδ and we get

∇x ·
(−ε0∇xϕ̃e + p̃0χ(Ω)

)
= 0.
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In the third equation of (2.32), the first term is

∂W

∂F
=

∂2W

∂F 2

∣∣∣∣
F=I
p0=0

ε∇u +
∂2W

∂F∂p0

∣∣∣∣
F=I
p0=0

εδp̃0 +
∂3W

∂F∂p2
0

∣∣∣∣
F=I
p0=0

ε2δp̃0p̃0 + o(ε) + o(ε2δ),

where we assume
∂2W

∂F∂p0

∣∣∣∣
F=I
p0=0

= 0.

The second term is

(
(F−T∇xϕe)⊗ (ε0JF−T∇xϕe − p0)− ε0

2

∣∣F−T∇xϕe

∣∣2
)

F−T

= ε2δ
[
(ε0∇xϕ̃e ⊗∇xϕ̃e)−∇xϕ̃e ⊗ p̃0 − ε0

2
|∇xϕ̃e|2

]
+ o(ε2δ).

Now, if we consider an electric field induced strain, the mechanical stress should

balance with the Maxwell stress, thus δ = 1
2
. If we assume

∂2W

∂F 2

∣∣∣∣
F=I
p0=0

= C,
∂3W

∂F∂p2
0

∣∣∣∣
F=I
p0=0

= A,

then from the third equation in (2.32), we get an order ε equation

∇x ·
[
C∇xu + Ap̃0p̃0 + ε0∇xϕ̃e ⊗∇xϕ̃e −∇xϕ̃e ⊗ p̃0 − ε0

2

∣∣∇xϕ̃e

∣∣2I
]

= 0.

For simplicity, we still denote p̃0 , ϕ̃e as p0 and ϕe. The small-strain model for the

dielectric elastomer is then





H−1p0 +∇xϕe = 0,

∇x ·
[−ε0∇xϕe(x) + p0χ(Ω)

]
= 0,

∇x ·
[
C∇xu + Ap0p0 + ε0∇xϕe ⊗∇xϕe −∇xϕe ⊗ p0 − ε0

2

∣∣∇xϕe

∣∣2I
]

= 0.

(2.33)
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From the first equation in (2.33), p0 = −H∇xϕe. Plugging this into the other equa-

tions, we get





−∇x ·
[(

ε0I + Hχ(Ω)
)∇xϕe(x)

]
= 0,

∇x ·
[
C∇xu + A(H∇xϕe)(H∇xϕe) + ε0∇xϕe ⊗∇xϕe

+∇xϕe ⊗ (H∇xϕe)− ε0

2

∣∣∇xϕe

∣∣2I
]

= 0.

(2.34)

The first equation in (2.34) is an order ε
1
2 equation which decides the electric field.

The second equation in (2.34) is an order ε equation. Since the electric field is known

from the first equation, this equation determines the deformation field. This small-

strain model effectively decouples the electric field with the deformation field and

thus provides a huge simplification for the problem.

2.4.2 Small-strain Model for Piezoelectric Elastomers

Now take another scale. Assume the deformation field is of order ε and the electric

field is of order ε too. Let ϕe = εϕ̃e, then from the first equation of (2.32),

∂2W

∂p2
0

∣∣∣∣
F=I
p0=0

p0 +
∂2W

∂p0∂F

∣∣∣∣
F=I
p0=0

ε∇u + ε∇xϕ̃e + o(ε) = 0.

Denote
∂2W

∂p0∂F

∣∣∣∣
F=I
p0=0

= A,
∂2W

∂p2
0

∣∣∣∣
F=I
p0=0

= H−1,

then p0 should have the same order with ϕe. Let p0 = εp̃0, we get an equation of

order ε as

H−1p̃0 + A∇u +∇xϕ̃e = 0.

From the second equation of (2.32), the leading order equation for the Maxwell equa-

tion is also of order ε

∇x ·
(−ε0∇xϕ̃e + p̃0χ(Ω)

)
= 0.
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In the third equation of (2.32),

∂W

∂F
=

∂2W

∂F 2

∣∣∣∣
F=I
p0=0

ε∇u +
∂2W

∂F∂p0

∣∣∣∣
F=I
p0=0

εp̃0 + o(ε),

in which
∂2W

∂F∂p0

∣∣∣∣
F=I
p0=0

= A.

On the other hand,

(
(F−T∇xϕe)⊗ (ε0JF−T∇xϕe − p0)− ε0

2

∣∣F−T∇xϕe

∣∣2
)

F−T ∼ ε2.

Thus we get another equation of order ε out of the third equation of (2.32),

∇ · [C∇u + Ap̃0] = 0.

Putting them together, and still denoting p̃0 , ϕ̃e as p0, ϕe, we get





H−1p0 + A∇u +∇xϕe = 0,

∇x ·
[−ε0∇xϕe(x) + p0χ(Ω)

]
= 0,

∇x ·
[
C∇xu + Ap0

]
= 0.

(2.35)

From (2.35), we can see that the deformation field couples linearly with the polariza-

tion and the electric field. This is a linear model for piezoelectric material.

However, the above derivation is just a formal computation. In Chapter 3, we

are going to prove the small-strain model for the dielectric elastomers using the tool

of Γ-convergence. The rigorous derivation of the small-strain model for piezoelectric

materials will be given in Appendix A.
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Chapter 3

Small-strain Model for Dielectric
Elastomers

This chapter is devoted to making the formal calculation of Section 2.4.1 rigorous us-

ing Γ-convergence. Below, Section 3.1 provides a brief introduction to Γ-convergence.

Section 3.2 lay out the assumptions and the main results of this chapter. In the

remaining two sections, rigorous proofs are provided for these results.

3.1 An Introduction to Γ-convergence

The notion of Γ-convergence is introduced by De Giorgi [19, 17]. The importance of

this notion lies in the fact that, under appropriate technical hypotheses, it implies

the convergence of minimizers which in our case are the deformation field and the

polarization. Below, we briefly recall definitions and some of the properties of Γ-

convergence that are relevant to our development, and we refer to [4, 18, 8, 29, 20, 30]

for an overview and an extensive list of references on the subject.

Let X and Y be two given metric spaces, with X ⊂ Y . Consider a functional F :

X → R̄, and a one parameter family of functionals F ε : X → R̄, with ε ∈ (0, +∞).

Definition 3.1 F ε Γ(Y )-converges to F if, for every sequence εj converging to zero,

the following two conditions hold:
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1. For every sequence uj ⊂ X such that uj → u in Y ,

lim inf
j→+∞

F εj(uj) > F(u); (3.1)

2. there exists a sequence ūj ⊂ X such that ūj → u in Y and

lim
j→+∞

F εj(ūj) = F(u). (3.2)

Condition 1 is often referred as the lower bound condition; condition 2 is often called

the existence of the recovery sequence. The definition above gives a notion of pointwise

convergence. We say that F ε Γ(Y )-converges to F in X or, equivalently, that F is

the Γ(Y )-limit of F ε in X if F ε Γ(Y )-converges to F at every u ∈ X. A key property

of Γ-convergence, which motivated its introduction, is given by the following result.

Proposition 3.1 Assume that F ε Γ(Y )-converges to F in X. Let uε be a sequence

such that

F ε(uε) 6 inf {F ε(v) | v ∈ X }+ ε.

Assume further that uε is compact in Y . Let uεj be any subsequence, say uεj → u in

Y as εj → 0. Then

1. F(u) 6 F(v), ∀ v ∈ X;

2. F(u) = limj→+∞F εj(uεj).

For a proof see, for example, Attouch ([4], p. 39-41).

3.2 Assumptions and Main Results

Through out this thesis, we assume that the reference region Ω has a relatively good

regularity: it satisfies the strong local Lipschitz condition, and there exists a constant

r0, 2 < r0 < ∞, such that Ω ∈ Br0 , where Br0 is defined as follows.
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Definition 3.2 We say that a bounded domain O ∈ RN is of class Br0, 2 < r0 < ∞,

if equation

4v = div ~f (3.3)

has a unique solution v in W1,r0

0 for every ~f ∈ Lr0(O) and ‖∇v‖Lr0 (O) 6 cr0‖~f‖Lr0 (O)

for some constant cr0 independent of ~f.

This definition constitutes a condition of regularity on the boundary of O. It holds

for any value of r0 if the boundary is sufficiently smooth. The proof depends on the

Calderon-Zygmund inequality for singular integrals (see [12] and Theorem 15.3′ of

[2]).

For dielectric elastomers, we have the following assumptions on the stored energy

density W (x, F, p0):

A1. W (x, F, p0) is a nonnegtive function and subject to the condition of frame in-

difference

W (x,QF, Qp0) = W (x, F, p0), ∀Q ∈ SO(N). (3.4)

A2. W (x, F, p0) = 0 iff p0 = 0 and F ∈ SO(N).

A3. W = +∞ if J = det(F ) < δ.

A4. There exists a constant t > 0 such that

lim
|F |→∞

1

|F |t inf
x∈Ω

W (x, F, 0) > 0. (3.5)

Throughout this thesis, we assume this t is big enough to satisfy all the require-

ments of it.

A5. Because of the frame indifference, W (x, F, p0) = V (x, F T F − I, p0). Assume for

fixed p0, V (x, α(F T F − I), p0) increases monotonically with respect to α; for

fixed F , V (x, (F T F − I), βp0) increases monotonically with respect to β.

A6. Define

H−1 =
∂2W

∂2p0

∣∣∣∣
p0=0,F=I

(3.6)
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and assume that there exists a constant c independent of x, F and p0, such that

W (x, F, p0)− 1

2
H−1p0 · p0 > c dist

(
F, SO(N)

)2
. (3.7)

A7. There exists a constant ρ0, such that for |p0| 6 ρ0,

∣∣∣∣W (x, I, p0)− H−1

2
p0 · p0

∣∣∣∣ 6 w
(|p0|

) |p0|2, (3.8)

where w(|p0|) → 0 monotonically as |p0| → 0.

A8. There exist constants ρ1 and ρ2, such that if |p0| 6 ρ1, |G| 6 ρ2,

∣∣∣∣W (x, I + G, p0)− H−1

2
p0 · p0 − 1

2
CGG− AGp0p0 −Bp4

0

∣∣∣∣
6 w1(|G|, |p0|) |p0|4 + w2(|G|, |p0|) |G|2 + w3(|G|, |p0|) |G| |p0|2,

where w1, w2, w3 → 0 monotonically as |p0| → 0 and |G| → 0.

From the scale analysis for dielectric material in Section 2.4.1, the electric field is

of order ε
1
2 . Thus the leading order of the energy is the electric energy which is of

order ε. Rescale the energy with ε and define

F ε =
1

ε

∫

Ω

W (x, Fε, ε
1
2 pε

0) dx +
ε0

2

∫

RN

|∇yϕ
ε|2 dy− ε0

2

∫

RN

|∇yg
ε|2 dy +

∫

yε(Ω)

∇yg
ε·pε dy,

(3.9)

where




∇y ·

[−ε0∇y(ϕ
ε + gε) + pε χ

(
yε(Ω)

)]
= 0 in RN\yε(Γ),

ϕε ∈ D(
RN\yε(Γ)

)
.

(3.10)
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We prove in Section 3.3 that under assumption A1 to A8 above, the functional F ε

Γ-converges to functional

F0 =





1

2

∫

Ω

H−1p0 · p0 dx +
ε0

2

∫

RN

∣∣∇ϕ0
∣∣2 dx

+

∫

Ω

∇g · p0 dx− ε0

2

∫

RN

∣∣∇g
∣∣2 dx

F0 = I,

∞ otherwise,

(3.11)

where ϕ0 satisfies the equation




∇x ·

[−ε0∇x(ϕ
0 + g) + p0 χ(Ω)

]
= 0 in RN\Γ,

ϕ0 ∈ D(RN\Γ).
(3.12)

In fact, we have the following theorem.

Theorem 3.2 (Γ-convergence of the first order energy) Assume Ω satisfies the

strong local Lipschitz condition and belongs to class Br0. Suppose the energy density

W satisfies conditions A1 to A8, then the functional F ε Γ-converges to functional F0

under the norm W1,t for yε and the L2(Ω) weak norm for pε
0.

Proposition 3.3 The minimizer ϕ0(x) for functional F0 exists and satisfies




∇x ·

[(
ε0 + H χ(Ω)

)∇x(ϕ
0 + g)

]
= 0 inRN\Γ,

ϕ0 ∈ D(RN\Γ).

(3.13)

Proof Since ϕ0 is linear with respect to p0, F0 is quadratic with respect to p0. So

the minimizer exists. To derive the Euler-Lagrange equation for F0, denote by p a

perturbation to the minimizer p0, p = p0 + tq, q ∈ (L2(Ω)
)N

. Let φq be the solution

of 


∇x ·

(−ε0∇xφq + qχ(Ω)
)

= 0 in RN\Γ,

φq ∈ D(RN\Γ).

From the linearity of the Maxwell equation, ∇ϕ = ∇ϕ0 + t∇φq.
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Define

I(t) =

∫

Ω

H−1

2
(p0+tq)2 dx+

ε0

2

∫

RN

∣∣∇ϕ0+t∇φq

∣∣2 dx+

∫

Ω

∇g·(p0+tq) dx−ε0

2

∫

RN

|∇g|2 dx.

Since I(t) obtains its minimum at t = 0,

0 = I ′(t)|t=0 =

∫

Ω

H−1p0 · q dx +

∫

Ω

∇g · q dx + ε0

∫

RN

∇φq · ∇ϕ0 dx

=

∫

Ω

(H−1p0 +∇g +∇ϕ0) · q dx.

So p0 = −H(∇g +∇ϕ0). Plugging it into (3.12), we get




∇x ·

[(
ε0 + H χ(Ω)

)∇x(ϕ
0 + g)

]
= 0 inRN\Γ,

ϕ0 ∈ D(RN\Γ).

(3.14)

Alternatively we can write it as





∇x ·
[(

ε0 + Hχ(Ω)
)∇xϕ

0
e

]
= 0 inRN\Γ,

ϕ0
e = g0 on Γ0,

ϕ0
e = g1 on Γ1,

ϕ0
e ∈ L2

loc(RN), ∇ϕ0
e ∈ L2(RN).

(3.15)

The Euler-Lagrange equation is

∫

Ω

(H−1p0 +∇g +∇ϕ0) · q dx = 0 (3.16)

for any q in (L2
(
Ω)

)N
. ¤
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Next, let us consider the ε order correction of the first order energy. Specifically,

define

F ε
r =

F ε −F0

ε

=
1

ε

[
1

ε

∫

Ω

W (x, Fε, ε
1
2 pε

0) dx−
∫

Ω

H−1

2
p0 · p0 dx

+

∫

yε(Ω)

∇yg
ε · pε dy −

∫

Ω

∇xg · p0 dx

−ε0

2

∫

RN

|∇yg
ε|2 dy +

ε0

2

∫

RN

|∇xg|2 dx

+
ε0

2

∫

RN

|∇yϕ
ε|2 dy − ε0

2

∫

RN

|∇xϕ
0|2 dx

]
, (3.17)

where ϕε satisfies (3.10) and ϕ0 satisfies (3.13). Define F0
r as

F0
r :=

∫

Ω

1

2
C∇u∇u + A∇up0p0 + Bp4

0 dx +

∫

Ω

H−1

2
q0 · q0 dx +

ε0

2

∫

RN

∣∣∇xφ
0
∣∣2 dx

+ ε0

∫

RN

(∇u +∇uT − tr(∇u)I)∇g · ∇xϕ
0 dx−

∫

Ω

∇uT p0 · ∇xϕ
0 dx

+
ε0

2

∫

RN

(∇u +∇uT − tr(∇u)I)∇xϕ
0 · ∇xϕ

0 dx−
∫

Ω

∇u∇xg · p0 dx

+
ε0

2

∫

RN

(∇u +∇uT − tr(∇u)I)∇xg · ∇xg dx, (3.18)

where φ0 is the solution to




∇x ·

(−ε0∇xφ
0 + q0 χ(Ω)

)
= 0 in RN\Γ,

φ0 ∈ D(RN\Γ).

We have the following result.

Theorem 3.4 (Γ-convergence of the second order energy) Under the same con-

ditions as in Theorem 3.2, if we assume further that there exists a constant w > 0 and

a compact set K ⊃ Ω such that ∇ϕ0, the solution of equation (3.13), is in L4+w(K),

then F ε
r Γ-converges to F0

r .
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Besides the above Γ-convergence results, we also have the following compactness

results.

Proposition 3.5 Assume Ω satisfies the strong local Lipschitz condition and belongs

to class Br0. Suppose the energy density W satisfies conditions A1 to A8 and uε = 0

on Γ3, a part of the boundary with positive measure. Then if F ε is bounded, there

exists a constant c, such that

∥∥pε
0

∥∥
L2(Ω)

< c,

∥∥∥∥
Fε − I

ε
1
t

∥∥∥∥
Lt(Ω)

6 c.

Proposition 3.6 Under the same conditions with Proposition 3.5, assume further

that there exists a constant w > 0 and a compact set K ⊃ Ω such that ∇ϕ0, the

solution of equation (3.13), is in L4+w(K). Then if F ε
r < c, there exists a constant c̃,

such that ∥∥∥∥
pε

0 − p0

ε
1
2

∥∥∥∥
L2(Ω)

< c̃ and

∥∥∥∥
Fε − I

ε

∥∥∥∥
L2(Ω)

< c̃.

Armed with all these results, we get the small-strain model as follows.

Theorem 3.7 Under the same conditions as in Proposition 3.6, if yε, pε
0 satisfies

F ε(yε, pε
0) ≤ inf

zε∈W1,t(Ω)

qε
0∈L2(Ω)

F ε(zε, qε
0) + ε,

uε = 1
ε
(yε − x) weakly convergent to u in W1,2(Ω) and ϕε weakly convergent to ϕ0,

then ϕ0 is the solution of equation (3.13), and u is the solution of

∇x ·
[
C∇xu + A(H∇xϕe)(H∇xϕe) +∇xϕe ⊗

[
(ε0I + H)∇xϕe

]− ε0

2

∣∣∇xϕe

∣∣2I
]

= 0.

(3.19)

Proof According to Proposition 3.1, this theorem is the direction corollary of Propo-

sition 3.5, 3.6 and Theorem 3.2, 3.4 provided u is the minimizer of functional F0
r .
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Actually, Recalling ϕ0
e = ϕ0 + g, F0

r can be rewritten as

F0
r =

∫

Ω

1

2
C∇u∇u + Bp4

0 dx +

∫

Ω

H−1

2
q0 · q0 dx +

ε0

2

∫

RN

∣∣∇xφ
0
∣∣2 dx

+

∫

Ω

A∇u
(
H∇xϕ

0
e

) (
H∇xϕ

0
e

)
dx +

∫

Ω

HT∇uT∇xϕ
0
e · ∇xϕ

0
e dx

+
ε0

2

∫

RN

(∇u +∇uT − tr(∇u)I
)∇xϕ

0
e · ∇xϕ

0
e dx.

Minimizing F0
r first with respect to q0, we get q0 ≡ 0 and ∇xφ

0 ≡ 0. Next, minimizing

F0
r with respect to u, the minimizer exists and satisfies equation (3.19). ¤

(3.13) is exactly the first equation in (2.34) recalling ϕe = ϕ + g, while (3.19)

is exactly the second equation in (2.34). Thus we derive rigorously the small-strain

model for dielectric elastomers. The proof of Proposition 3.5 and Theorem 3.2 is

given in Section 3.3, the proof of Proposition 3.6 and Theorem 3.4 is given in Section

3.4.

3.3 The First Order Limit Energy Functional

Proposition 3.8 (Lower bound for the first order energy) Assume Ω satisfies

the strong local Lipschitz condition and belongs to class Br0. Suppose the energy den-

sity W satisfies conditions A1 to A8, then for any sequences yε → x in W1,t(Ω) and

pε
0 ⇀ p0 in L2(Ω), we have

lim
ε→0

F ε > F0.

Before the proof of Proposition 3.8, we give some convergence result about the defor-

mation first.

Lemma 3.9 Denote by K a compact set in RN . Let yε(x) be a sequence which

satisfies supp(yε−x) ⊂ K and Jε > δ for all ε. Assume yε(x) converges to x strongly

in W1,t. Let s1 be the constant satisfying 1
s1

+ 1
r0

= 1
2
, s2 be the constant satisfying
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1
s2

+ 2
r0

= 1, then

∥∥F−T
ε − I

∥∥
Ls1(K)

→ 0 and
∥∥JεF

−1
ε F−T

ε − I
∥∥
Ls2 (K)

→ 0,

if t > t1 = max(4s1, 4s2).

Proof

∥∥F−T
ε − I

∥∥
Ls1(K)

6
∥∥F−1

ε

∥∥
L2s1 (K)

∥∥I − Fε

∥∥
L2s1 (K)

=
∥∥∥ 1

Jε

cof(Fε)
∥∥∥
L2s1(K)

∥∥I − Fε

∥∥
L2s1 (K)

→ 0 if t > 4s1.

∥∥JεF
−1
ε F−T

ε − I
∥∥
Ls2 (K)

6
∥∥cof(Fε)F

−T
ε − I

∥∥
Ls2(K)

6
∥∥(cof(Fε)− I)F−T

ε

∥∥
Ls2 (K)

+
∥∥F−T

ε − I
∥∥
Ls2 (K)

6
∥∥cof(Fε)− I

∥∥
L2s2 (K)

∥∥F−T
ε

∥∥
L2s2 (K)

+
∥∥F−T

ε − I
∥∥
Ls2 (K)

→ 0 if t > 4s2.

¤

Proof of Proposition 3.8

Since Ω satisfies strong local Lipschitz condition, by Stein extension theorem (see,

e.g., Stein [36] or Adams [1]), yε − x can be extended to the entire space RN such

that

(i) E
(
yε − x

)
= yε − x a.e. in Ω;

(ii)
∥∥E(yε − x)

∥∥
W1,t(RN )

6 c
∥∥yε − x

∥∥
W1,t(Ω)

,

where E is the extension operator. We can make yε − x ≡ 0 outside some compact

set Ky.

Assume there exist two open sets Ω0
x ⊃ Γ0 and Ω1

x ⊃ Γ1, such that Ω0
x ∩ Ω1

x = ∅.

Define g(x) ∈ C∞0 (RN) to be a function satisfying g(x) ≡ g0 in Ω0
x and g(x) ≡ g1 in

Ω1
x. Let gε(y) = gε

(
yε(x)

)
= g(x), then gε(y) ≡ g0 inside yε(Ω0

x) ⊃ yε(Γ0), gε(y) ≡ g1

inside yε(Ω1
x) ⊃ yε(Γ1) and ∇yg

ε
(
y(x)

)
= F−T

ε (x)∇xg(x). Clearly, gε(y) ∈ H1
0(RN)
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with compact support. Denote by K a big enough compact set in RN , such that

K ⊃ {
Ky ∪ supp

(
g(x)

) ∪ supp
(
gε(y)

)}
.

To prove the lower bound of the first order energy, we examine the energy term

by term.

term a :=
1

ε

∫

Ω

W (x, Fε, ε
1
2 pε

0) dx

=
1

ε

[∫

Ω

W (x, Fε, ε
1
2 pε

0) dx− 1

2

∫

Ω

H−1εpε
0 · pε

0dx

]
+

1

2

∫

Ω

H−1pε
0 · pε

0 dx

> 1

2

∫

Ω

H−1p0 · p0 dx as ε → 0. (3.20)

Equation (3.20) comes from (3.7) in assumption A6 and the lower semicontinuity of

the functional 1
2

∫
Ω

H−1pε
0 · pε

0dx.

term b :=

∫

yε(Ω)

∇yg
ε · pε dy =

∫

Ω

F−T
ε ∇xg(x) · pε

0 dx

=

∫

Ω

(F−T
ε − I)∇xg · pε

0 dx +

∫

Ω

∇xg · pε
0 dx

→
∫

Ω

∇xg · p0 dx as ε → 0. (3.21)

Equation (3.21) comes from Lemma 3.9 and the fact that pε
0 ⇀ p0 in L2(Ω).

term c := −ε0

2

∫

RN

∣∣∇yg
ε
∣∣2 dy

= −ε0

2

∫

RN

JεF
−1
ε F−T

ε ∇xg · ∇xg −∇xg · ∇xg dx− ε0

2

∫

RN

∣∣∇xg
∣∣2 dx

= −ε0

2

∫

RN

(
JεF

−1
ε F−T

ε − I
)∇xg · ∇xg dx− ε0

2

∫

RN

∣∣∇xg
∣∣2 dx

→ −ε0

2

∫

RN

∣∣∇xg
∣∣2 dx as ε → 0.

The last step is from Lemma 3.9.
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Now the only thing left to prove is

lim
ε→0

∫

RN

∇yϕ
ε · ∇yϕ

ε dy >
∫

RN

∇xϕ
0 · ∇xϕ

0 dx. (3.22)

The difficulty here is that Fε is not in L∞, so the function space D(
RN\yε(Γ)

)
is not

isomorphic to function space D(RN\Γ). To overcome this difficulty, we regularize p0.

Specifically, we introduce ϕ0
j ∈ D(RN\Γ) to be the solution of




∇x ·

[−ε0∇xϕ
0
j − ε0∇xg + pj

0 χ(Ω)
]

= 0 in RN\Γ,

ϕ0
j ∈ D(RN\Γ),

(3.23)

where pj
0 ∈ C∞(Ω) and ‖pj

0 − p0‖L2(Ω) < 1
j
. Clearly,

lim
j→+∞

∥∥∇ϕ0
j −∇ϕ0

∥∥
L2(RN )

= 0.

Since Ω is in class Br0 , following the same idea in [31], we will prove in Lemma 3.12

that ∇ϕ0
j ∈ Lr0

loc(RN). Now, denote ϕε
j

(
yε(x)

)
= ϕ0

j(x), ϕε
j

(
yε(Γ)

)
= 0 and for any

compact set D, ∫

D

∣∣ϕε
j(y)

∣∣2 dy =

∫

(yε)−1(D)

Jε

∣∣ϕ0
j(x)

∣∣2 dx < c

and ∫

RN

∇yϕ
ε
j · ∇yϕ

ε
j dy =

∫

RN

JεF
−1
ε F−T

ε ∇xϕ
0
j · ∇xϕ

0
j dx < cj.
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Above, we used the fact that JεF
−1
ε F−T

ε ∈ Ls2(K) and ∇ϕ0
j ∈ Lr0

loc(RN). Now,

term d :=
ε0

2

∫

RN

∇yϕ
ε · ∇yϕ

ε dy

=
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

ε
j

∣∣2 dy + ε0

∫

RN

∇yϕ
ε · ∇yϕ

ε
j dy

− ε0

2

∫

RN

∣∣∇yϕ
ε
j

∣∣2 dy (3.24)

> −ε0

∫

RN

∇yg
ε · ∇yϕ

ε
j dy +

∫

yε(Ω)

pε · ∇yϕ
ε
j dy −

∫

Ω

pj
0 · ∇xϕ

0
j dx

+ ε0

∫

RN

∇xg · ∇xϕ
0
j dx + ε0

∫

RN

∇xϕ
0
j · ∇xϕ

0
j dx

− ε0

2

∫

RN

∇yϕ
ε
j · ∇yϕ

ε
j dy (3.25)

= ε0

∫

RN

∇xg · ∇xϕ
0
j − JεF

−T
ε ∇xg · F−T

ε ∇xϕ
0
j dx +

ε0

2

∫

RN

∇xϕ
0
j · ∇xϕ

0
j dx

+
ε0

2

∫

RN

(I − JεF
−1
ε F−T

ε )∇xϕ
0
j · ∇xϕ

0
j dx

+

∫

Ω

pε
0 · F−T

ε ∇xϕ
0
j − pj

0 · ∇xϕ
0
j dx (3.26)

= ε0

∫

RN

(I − JεF
−1
ε F−T

ε )∇xg · ∇xϕ
0
j dx +

∫

Ω

pε
0 · F−T

ε ∇xϕ
0
j − p0 · ∇xϕ

0
j dx

+
ε0

2

∫

RN

∇xϕ
0
j · ∇xϕ

0
jdx +

∫

Ω

(p0 − pj
0) · ∇xϕ

0
j dx

+
ε0

2

∫

RN

(I − JεF
−1
ε F−T

ε )∇xϕ
0
j · ∇xϕ

0
j dx. (3.27)

(3.25) comes from (3.24) by dropping the first term in (3.24) and applying (3.23) and

(3.10). In (3.27), the first and the last integral go to zero for fixed j as ε → 0 from

lemma 3.9. As to the second integral, we have

∫

Ω

(
pε

0 ·F−T
ε ∇xϕ

0
j−p0 ·∇xϕ

0
j

)
dx =

∫

Ω

(pε
0−p0)·∇xϕ

0
j dx+

∫

Ω

(F−T
ε −I) pε

0 ·∇ϕ0
j dx → 0

for fixed j and ε → 0.
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The fourth integral satisfies

∫

Ω

(p0 − pj
0) · ∇xϕ

0
j dx > −∥∥p0 − pj

0

∥∥
L2(Ω)

∥∥∇xϕ
0
j

∥∥
L2(Ω)

> −c

j
.

Putting them together, we get

lim
ε→0

ε0

2

∫

RN

∇yϕ
ε · ∇yϕ

ε dy > ε0

2

∫

RN

∇xϕ
0
j · ∇xϕ

0
j dx− c

j
.

Let j → +∞, on the right hand side,

lim
j→+∞

ε0

2

∫

RN

∇xϕ
0
j · ∇xϕ

0
j dx → ε0

2

∫

RN

∇xϕ
0 · ∇xϕ

0 dx.

In the end,

term d =
ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy > ε0

2

∫

RN

∣∣∇xϕ
0
∣∣2 dx as ε → 0.

Thus we proved

lim
ε→0

F ε = lim
ε→0

(term a + term b + term c + term d) > F0.

¤

Proposition 3.10 (The recovery sequences for the first order energy) Under

the same assumption as in Proposition 3.8, there exist a sequence yε → x in W1,t(Ω)

and a sequence pε
0 ⇀ p0 in L2(Ω) such that limε→0F ε = F0.

Proof Let yε ≡ x. For p0, we construct pε
0 as

pε
0 =

{
p0 if |p0| 6 Qε

0 otherwise

with Qε → +∞ to be decided. We have pε
0 → p0 because

∫

Ω

∣∣pε
0 − p0

∣∣2 dx =

∫

|p0|>Qε

∣∣p0

∣∣2 dx → 0 as ε → 0.
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If we take Qε < ρ0ε
− 1

2 , then from assumption A7,

1

ε

∫

Ω

W (x, I, ε
1
2 pε

0) dx 6 1

2

∫

Ω

H−1pε
0 · pε

0 dx + w(ε
1
2 Qε) Q2

ε.

Let Qε = min
{
ε−

1
4 , w(ε

1
4 )−

1
4

}
. Since w(|p0|) → 0 monotonically as |p0| → 0,

lim
ε→0

1

ε

∫

Ω

W (x, I, ε
1
2 pε

0) dx 6 1

2

∫

Ω

H−1p0 · p0 dx.

The opposite inequality holds because of the lower semicontinuity of the functional

1
2

∫
Ω

H−1pε
0 · pε

0dx, thus

lim
ε→0

1

ε

∫

Ω

W (x, I, ε
1
2 pε

0) dx → 1

2

∫

Ω

H−1p0 · p0 dx.

The convergence of the other terms in the energy is obvious since pε
0 → p0 and yε ≡ x

¤

Proof of Theorem 3.2 By the definition of Γ-convergence, Theorem 3.2 is the

direct conclusion of Proposition 3.8 and Proposition 3.10 .

¤

Now, let us prove one of the compactness results.

Proof of Proposition 3.5

Assume there exist Ω0
y and Ω1

y such that Ω0
y ∩ Ω1

y = ∅, Ω0
y ⊃ yε(Γ0), Ω1

y ⊃ yε(Γ1)

for all ε. Define function g(y) ∈ C∞0 (RN) as a fixed function in y-space, satisfying

g(y) ≡ g0 in Ω0
y and g(y) ≡ g1 in Ω1

y. Let gε(y) = g(y) for each ε. In this case, the

energy functional becomes

F ε =
1

ε

∫

Ω

W (x, Fε, ε
1
2 pε

0) dx +
ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy− ε0

2

∫

RN

∣∣∇yg
∣∣2dy +

∫

yε(Ω)

∇yg·pε dy,

where ϕε is the solution of




∇y ·

[−ε0∇yϕ
ε − ε0∇yg + pεχ

(
yε(Ω)

)]
= 0 in RN ,

ϕε ∈ D(
RN\yε(Γ)

)
.

(3.28)
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In the energy, the term ε0

2

∫
RN |∇yg|2dy is a constant since g(y) is independent of ε.

Now if F ε 6 c, there exists a constant c̃ such that

c̃ > F ε +
ε0

2

∫

RN

∣∣∇yg
∣∣2 dy

=
1

ε

∫

Ω

W (x, Fε, ε
1
2 pε

0) dx +
ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy +

∫

yε(Ω)

∇yg · pε dy

> 1

ε

∫

Ω

W (x, Fε, ε
1
2 pε

0) dx− c
∥∥∇yg

∥∥
L∞(RN )

∥∥pε
0

∥∥
L2(Ω)

.

From (3.7) in assumption A6,

W (x, F, 0) > c dist
(
F, SO(N)

)2
. (3.29)

In addition, from assumption A4, there exists a constant M and c such that if |F | >
M ,

W (x, F, 0) > c |F |t > c̃ dist
(
F, SO(N)

)t
. (3.30)

From (3.29) and (3.30), there exists a small enough constant β0 > 0 such that

W (x, F, 0) > β0 dist
(
F, SO(N)

)t ∀F. (3.31)

(3.31) together with assumption A5, we get

c̃ > 1

ε

∫

Ω

W (x, Fε, ε
1
2 pε

0) dx− c
∥∥∇yg

∥∥
L∞(RN )

∥∥pε
0

∥∥
L2(Ω)

> 1

ε

[
1

2

∫

Ω

W (x, Fε, 0) dx +
1

2

∫

Ω

W (x, I, ε
1
2 pε

0) dx

]
− c

∥∥pε
0

∥∥
L2(Ω)

> 1

ε

[
β0

2

∫

Ω

dist
(
Fε, SO(N)

)t
dx +

1

4

∫

Ω

H−1εpε
0 · pε

0 dx

]
− c

∥∥pε
0

∥∥
L2(Ω)

.

From rigidity theorem [16], we can find a rotation Rε
0 ∈ SO(N) such that

∫

Ω

dist
(
Fε, SO(N)

)t
dx > c

∫

Ω

dist(Fε, R
ε
0)

t dx.
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Since the material is pinned on Γ3, Rε
0 = I and

c̃ > 1

ε

[
β0

2

∫

Ω

dist
(
Fε, SO(N)

)t
dx +

1

4

∫

Ω

H−1εpε
0 · pε

0 dx

]
− c

∥∥pε
0

∥∥
L2(Ω)

> 1

ε

[
c β0

2

∫

Ω

dist(Fε, I)t dx +
1

4

∫

Ω

H−1εpε
0 · pε

0 dx

]
− c

∥∥pε
0

∥∥
L2(Ω)

> 1

ε
· c β0

2

∥∥Fε − I
∥∥t

Lt(Ω)
+ c

∥∥pε
0

∥∥2

L2(Ω)
− c

∥∥pε
0

∥∥
L2(Ω)

.

Therefore, there exists a constant c, such that

∥∥pε
0

∥∥
L2(Ω)

< c,

∥∥∥∥
Fε − I

ε
1
t

∥∥∥∥
Lt(Ω)

6 c.

Thus, if F ε is bounded, Fε → I in Lt(Ω) and pε
0 is uniformly bounded in L2(Ω). This

gives the compactness of the electric and the deformation field.

¤

Now, let us prove the local regularity of ϕ0
j .

Definition 3.3 Let q be a number such that 1 < q < ∞. Define q′ by 1
q

+ 1
q′ = 1.

Further, define q∗ by 1
q∗ = 1

q
− 1

N
if q < N and to be any number in the range

1 < q∗ < ∞ if q > N .

Consider differential equation

∇ · (a(x)∇v(x)
)

= div ~f(x) + h(x) in O, (3.32)

where O is a bounded domain of class Br for some r, 2 < r < ∞. Assume there exist

constants M and λ1 such that for any ξ ∈ RN , a(x) satisfies the following condition





λ1|ξ|2 6
(
a(x) ξ , ξ

)
,

|a(x) ξ| 6 M |ξ|.
(3.33)
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Define quantity θ by means of the equation

1− θ = min
c>0

(M2 + c2)
1
2

λ1 + c
. (3.34)

Since the ratio in (3.34) is less than 1 for large values of c, we have 1− θ < 1. Denote

c1 the value of c at which the minimum in (3.34) is attained. Setting λ = λ1+c1
M+c1

.

Theorem 3.11 (Meyers’ theorem [31]) Assume that equation (3.32) holds with

a(x) satisfying all the above conditions. Then (3.32) has a unique solution in W1,p
0 (O)

for every vector field ~f(x) ∈ Lp(O) and every function h(x) ∈ Lq(O) with q∗ > p,

provided r′ 6 Q′ < p < Q 6 r.

Here Q > 2 depends only on O and constant θλ in such a way that Q → r as

θλ → 1 and Q → 2 as θλ → 0. The solution satisfies

∥∥∇v(x)
∥∥
Lp(O)

6 c
{∥∥~f(x)

∥∥
Lp(O)

+
∥∥h(x)

∥∥
Lq(O)

}
, (3.35)

where c is a constant depending only on O, θλ, p, and q.

Lemma 3.12 (The local Lr0 regularity of ϕ0
j ) Assume ϕ0

j is the solution of




∇x ·

[−ε0∇xϕ
0
j − ε0∇xg + pj

0 χ(Ω)
]

= 0 in RN\Γ,

ϕ0
j ∈ D(RN\Γ),

(3.36)

in which pj
0 ∈ C∞(Ω), g(x) ∈ C∞0 (RN), Ω ∈ Br0. Then for any given compact set

D ⊂ RN , there exists a constant c such that

∥∥∇xϕ
0
j(x)

∥∥
Lr0(D)

6 c
{∥∥∇xg

∥∥
Lr0 (D)

+
∥∥pj

0χ(Ω)
∥∥
Lr0 (D)

}
. (3.37)

Proof Equation (3.36) satisfies the hypothesis of Meyers’ theorem. But we have an

unbounded domain. Therefore, we need to prove it.
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Let ζ(x) be an infinitely continuously differentiable function such that

ζ(x) =

{
1 for |x| 6 1

2
,

0 for |x| > 3
4
.

Assume Ω ⊂ supp
(
g(x)

) ⊂ D ⊂ BR. Let ξ = ζ
(

x
2R

)
, then

ξ(x) =

{
1 for |x| 6 R,

0 for |x| > 3
2
R.

Denote by ψ0
j the unique solution of equation (3.36) in space H1

0(B2R\Γ). Then by

Meyers’ theorem, ψ0
j ∈ W1,r0

0 (B2R\Γ). Here p = r0 since λθ = 1. Set φ0
j = ϕ0

j − ψ0
j ,

then for any ψ ∈ H1,2
0 (B2R\Γ), we have

∫

B2R

ε0∇xφ
0
j · ∇ψ dx = 0. (3.38)

Now consider v(x) = ξ(x)φ0
j(x). v(x) = φ0

j(x) for |x| 6 R and v(x) = 0 for |x| > 3R
2

.

For any ψ ∈ H1,2
0 (B2R\Γ), we then have

∫

B2R

ε0∇
(
ξ(x)φ0

j(x)
) · ∇ψ dx

=

∫

B2R

ε0∇φ0
j · ∇

(
ξ(x)ψ(x)

)
dx−

∫

B2R

ε0ψ∇φ0
j · ∇ξ − ε0φ

0
j ∇ξ · ∇ψ dx.

The first integral on the right hand side is zero because of (3.38). Thus v(x) satisfies




∇ · (ε0∇v

)
= ∇ · (φ0

j ε0∇ξ
)

+ ε0∇ξ · ∇φ0
j in B2R\Γ,

v ∈ H1
0(B2R\Γ).

(3.39)

∇φ0
j ∈ L2(B2R), hence φ0

j ∈ LN∗
from embedding theorem. Therefore, v ∈ W1,p1

0 (B2R\Γ)

for all p1 6 min(N∗, r0) = r0 from Meyers’ theorem. Thus φ0
j(x) ∈ W1,r0

0 (BR\Γ) and

so ϕ0
j ∈ W1,r0

0 (BR\Γ). In the end, we get ∇ϕ0
j ∈ Lr0(D). ¤
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With the same idea to prove Lemma 3.12, we can prove the following local regu-

larity result for the minimizer of F0.

Proposition 3.13 Assume Ω is in class Br0, then there exists a number r1 6 r0

such that the solution for equation (3.13) has higher local regularity: ∇ϕ0 ∈ Lr1(Ω).

Proof Define ζ(x) and ξ(x) as in Lemma 3.12. Denote by ψ0 the unique solution of

equation (3.13) in space H1
0(B2R\Γ). Then by Meyers’ theorem, ψ0 ∈ W1,p

0 (B2R\Γ),

for any 2 < p < Q 6 r0. Here, Q depends only on N and λθ
(
ε0I + H(x)χ(Ω)

)
. Set

φ = ϕ0 − ψ0, then for any ψ ∈ H1,2
0 (B2R\Γ),

∫

B2R

(Hχ(Ω) + ε0I)∇xφ · ∇ψ dx = 0.

Now consider v(x) = ξ(x)φ(x). v(x) = φ(x) for |x| 6 R and v(x) = 0 for |x| > 3R
2

.

Then for any ψ ∈ H1,2
0 (B2R\Γ),

∫

B2R

(
Hχ(Ω) + ε0I

)∇(
ξ(x)φ(x)

) · ∇ψ dx

=

∫

B2R

(
Hχ(Ω) + ε0I

)∇φ · ∇(
ξ(x)ψ(x)

)
dx

−
∫

B2R

(
Hχ(Ω) + ε0I

)
ψ∇φ · ∇ξ − (

Hχ(Ω) + ε0I
)
φ∇ξ · ∇ψ dx.

The first integral on the right hand side is zero, so v(x) satisfies




∇ · [(ε0I + Hχ(Ω)

)∇v
]

= ∇ · [φ(
ε0I + Hχ(Ω)

)∇ξ
]
+∇ξ · (Hχ(Ω) + ε0I

)∇φ,

v ∈ H1
0(B2R\Γ).

(3.40)

∇φ ∈ L2(B2R), hence φ ∈ LN∗
(B2R) by embedding theorem. Therefore, v is in

H1,p1

0 (B2R) for all 2 < p1 < min(N∗, Q). Thus φ(x) ∈ H1,p1

0 (BR) and then ϕ0 ∈
H1,p1

0 (BR). In the end, we get ∇ϕ0 ∈ Lr1(Ω) for any 2 < r1 < p1 6 r0. ¤

Remark Here, p1 depends only on Q, while Q depends on the quantity λθ. If

λθ → 1, p1 → r0; if λθ →∞, then p1 → 2.
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In the second order energy part, to make ∇ϕ0 · ∇ϕ0 ∈ H−1(Ω), ∇ϕ0 has to be a

little bit more regular than L4(Ω). That requires strong assumptions on λθ. However,

the above conclusion is a general result for any distribution H(x). For particulate

composite, we have better regularity for H(x).

3.4 The Second Order Limit Energy Functional

Proposition 3.14 (Lower bound for the second order energy) Assume Ω sat-

isfies the strong local Lipschitz condition and belongs to class Br0. Suppose the energy

density W satisfies conditions A1 to A8. Assume further that there exists a constant

w > 0 and a compact set K ⊃ Ω such that ∇ϕ0, the solution of equation (3.13), is in

L4+w(K). Let yε be any sequence satisfying yε → x in W1,t and ∇uε = 1
ε
∇(yε−x) ⇀

∇u0 in L2(Ω). Let pε
0 be any sequence such that qε

0 = ε−
1
2 (pε

0 − p0) ⇀ q0 in L2(Ω).

Then for the functional defined in (3.17), we have

lim
ε→0

F ε
r > F0

r ,

where F0
r is defined in (3.18).

Proof Again, examine the energy term by term.

term 1 :=
1

ε

[ ∫

yε(Ω)

∇yg
ε · pε dy −

∫

Ω

∇xg · p0 dx

]

=
1

ε

[ ∫

Ω

F−T
ε ∇xg · (p0 + ε

1
2 qε

0) dx−
∫

Ω

∇xg · p0 dx

]

=

∫

Ω

F−T
ε − I

ε
∇xg · p0 dx +

1

ε

∫

Ω

∇xg · ε 1
2 qε

0 dx + ε
1
2

∫

Ω

F−T
ε − I

ε
∇xg · qε

0 dx

=

∫

Ω

F−T
ε − I

ε
∇xg · p0 dx + ε−

1
2

∫

Ω

∇xg · qε
0 dx + o(1).

Note that we have

F−1
ε − I

ε
=

F−1
ε (I − Fε)

ε
= F−1

ε

I − Fε

ε
,
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I−Fε

ε
⇀ −∇u, and F−1

ε → I, thus

F−1
ε − I

ε
⇀ −∇u.

Similarly,
F−T

ε − I

ε
⇀ −∇uT and

Jε − 1

ε
⇀ tr(∇u).

Therefore,

term 1 → ε−
1
2

∫

Ω

∇xg · qε
0 dx +

∫

Ω

(−∇u)T∇xg · p0 dx.

term 2 :=
1

ε

[
ε0

2

∫

RN

∣∣∇xg
∣∣2 dx− ε0

2

∫

RN

∣∣∇yg
ε
∣∣2 dy

]

=
ε0

2

∫

RN

I − JεF
−1
ε F−T

ε

ε
∇xg · ∇xg dx

→ ε0

2

∫

RN

(∇u +∇uT − tr(∇u)I)∇xg · ∇xg dx.

To address

term 3 :=
1

ε

[
ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy − ε0

2

∫

RN

∣∣∇xϕ
0
∣∣2 dx

]
, (3.41)

denote ϕ0
yε

(
yε(x)

)
= ϕ0(x), then ϕ0

yε

(
yε(Γ)

)
= 0,

∫

D

∣∣ϕ0
yε(y)

∣∣2 dy =

∫

(yε)−1(D)

Jε

∣∣ϕ0(x)
∣∣2 dx < c

for any compact set D, and

∫

RN

∇yϕ
0
yε · ∇yϕ

0
yε dy =

∫

RN

JεF
−1
ε F−T

ε ∇xϕ
0 · ∇xϕ

0 dx < c.
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Above, we used the fact that ∇ϕ0 ∈ L4+w and Fε → I in Lt(Ω) for t big enough.

Thus ϕ0
yε(y) ∈ D(

RN\y(Γ)
)
. Therefore,

ε0

2

∫

RN

∇yϕ
ε · ∇yϕ

ε dy

=
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε

∣∣2 dy + ε0

∫

RN

∇yϕ
ε · ∇yϕ

0
yε dy − ε0

2

∫

RN

∣∣∇yϕ
0
yε

∣∣2 dy

=
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε

∣∣2 dy − ε0

∫

RN

∇yg
ε · ∇yϕ

0
yε dy +

∫

yε(Ω)

pε · ∇yϕ
0
yε dy

−
∫

Ω

p0 · ∇xϕ
0 dx + ε0

∫

RN

∇xg · ∇xϕ
0 dx + ε0

∫

RN

∇xϕ
0 · ∇xϕ

0 dx

− ε0

2

∫

RN

∇yϕ
0
yε · ∇yϕ

0
yε dy

= ε0

∫

RN

∇xg · ∇xϕ
0 − JεF

−T
ε ∇xg · F−T

ε ∇xϕ
0 dx +

ε0

2

∫

RN

∇xϕ
0 · ∇xϕ

0 dx

+
ε0

2

∫

RN

(I − JεF
−1
ε F−T

ε )∇xϕ
0 · ∇xϕ

0 dx +
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε

∣∣2 dy

+

∫

Ω

pε
0 · F−T

ε ∇xϕ
0 − p0 · ∇xϕ

0 dx

= ε0

∫

RN

(I − JεF
−1
ε F−T

ε )∇xg · ∇xϕ
0 dx +

ε0

2

∫

RN

(I − JεF
−1
ε F−T

ε )∇xϕ
0 · ∇xϕ

0 dx

+

∫

Ω

pε
0 · F−T

ε ∇xϕ
0 − p0 · ∇xϕ

0 dx +
ε0

2

∫

RN

∇xϕ
0 · ∇xϕ

0 dx

+
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε

∣∣2 dy.

Thus,

term 3 =
1

ε

[
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε

∣∣2 dy

]
+ ε0

∫

RN

I − JεF
−1
ε F−T

ε

ε
∇g · ∇xϕ

0dx

+
ε0

2

∫

RN

I − JεF
−1
ε F−T

ε

ε
∇xϕ

0 · ∇xϕ
0 dx +

∫

Ω

F−1
ε − I

ε
p0 · ∇xϕ

0 dx

+ ε−1/2

∫

Ω

qε
0 · ∇xϕ

0 dx + ε1/2

∫

Ω

F−1
ε − I

ε
qε
0 · ∇xϕ

0 dx. (3.42)
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Similar to the idea in Proposition 3.8, we define φ0
j(x) as the solution of




∇x ·

(−ε0∇xφ
0
j + qj

0χ(Ω)
)

= 0 in RN\Γ,

φ0
j ∈ D(RN\Γ),

in which qj
0 ∈ C∞(Ω) and ‖qj

0 − q0‖L2(Ω) 6 1
j
.

Denote φε
j

(
yε(x)

)
= φ0

j(x), then φε
j(y) ∈ D(

RN\yε(Γ)
)
. We have

1

ε

[
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε

∣∣2 dy

]

=
1

ε

[
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε − ε

1
2∇yφ

ε
j

∣∣2 dy

]
− ε0

2

∫

RN

∣∣∇yφ
ε
j

∣∣2 dy

+
1

ε

ε0

2

∫

RN

2(∇yϕ
ε −∇yϕ

0
yε) · ε 1

2∇yφ
ε
j dy

> ε0

ε

∫

RN

(
ε

1
2∇yϕ

ε · ∇yφ
ε
j − ε

1
2∇yϕ

0
yε · ∇yφ

ε
j

)
dy − ε0

2

∫

RN

∣∣∇yφ
ε
j

∣∣2dy

=
1

ε

∫

RN

[(
−ε

1
2 ε0∇yg

ε + ε
1
2 pε

)
· ∇yφ

ε
j − ε

1
2 ε0∇yϕ

0
yε · ∇φε

j

]
dy − ε0

2

∫

RN

∣∣∇yφ
ε
j

∣∣2 dy

=
1

ε

∫

RN

ε
1
2

[
−ε0JεF

−1
ε F−T

ε ∇xg · ∇xφ
0
j + F−T

ε ∇xφ
0
j · p0 + ε

1
2 F−T

ε ∇xφ
0
j · qε

0

− ε0JεF
−1
ε F−T

ε ∇xϕ
0 · ∇xφ

0
j

]
dx− ε0

2

∫

RN

JεF
−1
ε F−T

ε ∇xφ
0
j · ∇xφ

0
j dx

=

∫

RN

F−T
ε ∇xφ

0
j · qε

0 dx− ε0

2

∫

RN

JεF
−1
ε F−T

ε ∇xφ
0
j · ∇xφ

0
j dx

+ ε
1
2

∫

RN

ε−1
(−ε0∇xg · ∇xφ

0
j +∇xφ

0
j · p0 − ε0∇xφ

0
j · ∇xϕ

0
)
dx + o(1)

→
∫

RN

∇xφ
0
j · q0 dx− ε0

2

∫

RN

∣∣∇xφ
0
j

∣∣2 dx as ε → 0

→ ε0

2

∫

RN

∣∣∇xφ
0
∣∣2 dx as j → +∞. (3.43)
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Now we can estimate term 3.

term 3 =
1

ε

[
ε0

2

∫

RN

∣∣∇yϕ−∇yϕ
0
yε

∣∣2 dy

]
+ ε0

∫

RN

I − JεF
−1
ε F−T

ε

ε
∇g · ∇xϕ

0 dx

+
ε0

2

∫

RN

I − JεF
−1
ε F−T

ε

ε
∇xϕ

0 · ∇xϕ
0 dx +

∫

Ω

F−T
ε − I

ε
p0 · ∇xϕ

0 dx

+ ε−1/2

∫

Ω

qε
0 · ∇xϕ

0 dx + o(1) (3.44)

> ε0

2

∫

RN

∣∣∇xφ
0
∣∣2 dx + ε0

∫

RN

(∇u +∇uT − tr(∇u)I)∇g · ∇xϕ
0 dx

+
ε0

2

∫

RN

(∇u +∇uT − tr(∇u)I)∇xϕ
0 · ∇xϕ

0 dx−
∫

Ω

∇u p0 · ∇xϕ
0 dx

+ ε−1/2

∫

Ω

qε
0 · ∇xϕ

0 dx.

Finally,

term 4 :=
1

ε2

∫

Ω

[
W (x, Fε, ε

1
2 pε

0)−
εH−1

2
p0 · p0

]
dx

=
1

ε2

∫

Ω

[
W (x, Fε, ε

1
2 pε

0)−
εH−1

2
pε

0 · pε
0

]
dx

+
1

ε

∫

Ω

H−1

2
(pε

0 − p0) · (pε
0 − p0) dx +

1

ε

∫

Ω

H−1(pε
0 − p0) · p0 dx

= termA + termB + termC .

On the right hand side,

lim
ε→0

1

ε

∫

Ω

H−1

2
(pε

0 − p0) · (pε
0 − p0) dx = lim

ε→0

∫

Ω

H−1

2
qε
0 · qε

0 dx >
∫

Ω

H−1

2
q0 · q0 dx.

termC =
1

ε

∫

Ω

H−1(pε
0 − p0) · p0 dx = ε−

1
2

∫

Ω

H−1qε
0 · p0 dx.

TermC will be a part of the Euler-Lagrange equation (3.16).

Now look at termA,

termA :=
1

ε2

∫

Ω

[
W (x, Fε, ε

1
2 pε

0)−
εH−1

2
pε

0 · pε
0

]
dx
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where pε
0 = p0 + ε

1
2 qε

0.

Since the deformation field is not in L∞, we use truncation lemma to separate the

fast growing part from the deformation field so that we can use Taylor expansion.

Lemma 3.15 (Truncation Lemma [16]) Let O be a bounded Lipschitz domain in

RN . Then there exists a constant c depending on O such that for every M > m > 1

and every function u : O −→ RN with ∇u ∈ L2(O;RN2
), there exists a λ ∈ [m,M ]

and a function uλ : O −→ RN such that |∇uλ| 6 λ and

λ2
∣∣{uλ 6= u}

∣∣ 6
c
∥∥∇u

∥∥2

L2(Ω)

ln(M/m)
.

Applying the truncation lemma to uε with m = 1, M = Mε yields truncation

function vε, which satisfies

∣∣∇vε
∣∣ 6 λε, 1 6 λε 6 Mε,

and

λ2
ε

∣∣Zc
u(ε)

∣∣ 6 c

ln(Mε)
, where Zu(ε) :=

{
x|uε(x) = vε(x)

}
.

For some suitable number Qε → +∞ which is to be decided later, define two sets

Zp(ε) and Zq(ε) as

Zp(ε) =

{
x ∈ Ω :

∣∣p0(x)
∣∣ 6 1

2
Qε

}
,

Zq(ε) =

{
x ∈ Ω :

∣∣qε
0(x)

∣∣ 6 1

2
Qε

}
.

Denote Zc
u(ε), Zc

p(ε), Zc
q(ε) to be the complements to Zu(ε), Zp(ε), Zq(ε) in Ω respec-

tively. For simplicity, we write them as Zu, Zp, Zq, but they depend on ε.

Assume Qε and Mε satisfy

Qε < ρ1ε
− 1

2 and Mε < ρ2ε
−1,
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then

∣∣ε∇uε
∣∣ =

∣∣ε∇vε
∣∣ 6 εMε < ρ2 in Zu,

∣∣ε 1
2 pε

0

∣∣ =
∣∣ε 1

2 p0 + εqε
0

∣∣ 6 ρ1 in Zp ∩ Zq.

Now we can use Taylor expansion on termA.

termA =
1

ε2

∫

Ω

[
W

(
x, I + ε∇uε, ε

1
2 (p0 + ε

1
2 qε

0)
)− εH−1

2
(p0 + ε

1
2 qε

0) · (p0 + ε
1
2 qε

0)

]
dx

=
1

ε2

∫

Zu∩Zp∩Zq

[
W − εH−1

2
(p0 + ε

1
2 qε

0) · (p0 + ε
1
2 qε

0)

]
dx

+
1

ε2

∫

Zc
p∪Zc

q

[
W − εH−1

2
pε

0 · pε
0

]
dx +

1

ε2

∫

Zc
u∩Zp∩Zq

[
W − εH−1

2
pε

0 · pε
0

]
dx

>
∫

Zu∩Zp∩Zq

1

2
C∇vε∇vε + A∇vε(p0 + ε

1
2 qε

0)(p0 + ε
1
2 qε

0) + B(p0 + ε
1
2 qε

0)
4 dx

−
∫

Zu∩Zp∩Zq

w1

(
ε|∇vε|, ε 1

2 |pε
0|

) |pε
0|4 + w2

(
ε|∇vε|, ε 1

2 |pε
0|

) |∇vε|2dx

−
∫

Zu∩Zp∩Zq

w3(ε|∇vε|, ε 1
2 |pε

0|) |∇vε||pε
0|2dx

>
∫

Zu∩Zp∩Zq

1

2
C∇vε∇vε + A∇vεp0p0 + B(p0)

4 dx

−
∫

Zu∩Zp∩Zq

∣∣A∇vεε
1
2 qε

0(p0 + ε
1
2 qε

0)
∣∣ dx

−
∫

Zu∩Zp∩Zq

∣∣B(
(ε

1
2 qε

0)
4 + 3(ε

1
2 qε

0)
3p0 + 6(ε

1
2 qε

0)
2p2

0 + 3(ε
1
2 qε

0)p
3
0

)∣∣ dx

−
∫

Zu∩Zp∩Zq

w1

(
ε|∇vε|, ε 1

2 |pε
0|

) |pε
0|4 + w2

(
ε|∇vε|, ε 1

2 |pε
0|

) |∇vε|2dx

−
∫

Zu∩Zp∩Zq

w3(ε|∇vε|, ε 1
2 |pε

0|) |∇vε||pε
0|2dx

>
∫

Zu∩Zp∩Zq

1

2
C∇vε∇vε + A∇vεp0p0 + B(p0)

4 dx

− c
(
Mεε

1
2 Q2

ε + ε2Q4
ε + ε

3
2 Q4

ε + εQ4
ε + ε

1
2 Q4

ε

)

−(
w1(εMε, ε

1
2 Qε)Q

4
ε + w2(εMε, ε

1
2 Qε)M

2
ε + w3(εMε, ε

1
2 Qε)MεQ

2
ε

)
.
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Take

Mε = min
{

ε−
1
4 , w1(ε

3
4 , ε

2
5 )−

1
4 , w2(ε

3
4 , ε

2
5 )−

1
4 , w3(ε

3
4 , ε

2
5 )−

1
4 , |Zc

p|−
1
4 , |Zc

q |−
1
4

}
,

Qε = min
{

ε−
1
10 , w1(ε

3
4 , ε

2
5 )−

1
8 , w3(ε

3
4 , ε

2
5 )−

1
4

}
,

then

Mεε
1
2 Q2

ε + ε2Q4
ε + ε

3
2 Q4

ε + εQ4
ε + ε

1
2 Q4

ε → 0 as ε → 0,

and

w1(εMε, ε
1
2 Qε)Q

4
ε + w2(εMε, ε

1
2 Qε)M

2
ε + w3(εMε, ε

1
2 Qε)MεQ

2
ε → 0 as ε → 0.

Thus we get

termA >
∫

Ω

(
1

2
C∇vε∇vε + A∇vεp0p0 + Bp4

0

)
dx

−
∫

Zc
u∩Zp∩Zq

(
1

2
C∇vε∇vε + A∇vεp0p0 + Bp4

0

)
dx

−
∫

Zc
p∪Zc

q

(
1

2
C∇vε∇vε + A∇vεp0p0 + Bp4

0

)
dx

=

∫

Ω

(
1

2
C∇vε∇vε + A∇vεp0p0 + Bp4

0

)
dx

−
∫

Zc
p∪Zc

q∪(Zc
u∩Zp

⋂
Zq)

(
1

2
C∇vε∇vε + A∇vεp0p0 + Bp4

0

)
dx.

The second integral in the above formula goes to zero. Actually,

∫

Zc
p∪Zc

q

1

2
C

∣∣∇vε
∣∣2 dx 6 c

( |Zc
p|+ |Zc

q |
)
M2

ε 6 c
( |Zc

p|+ |Zc
q |

) 1
2 → 0,

∫

Zc
u

1

2
C

∣∣∇vε
∣∣2 dx 6 c λ2

ε

∣∣Zc
u

∣∣ 6 c

ln Mε

→ 0,

∫

Zc
u∩Zp∩Zq

B p4
0 dx → 0 and

∫

Zc
p∪Zc

q

B p4
0 dx → 0,
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because |Zc
p|+ |Zc

q | → 0 and |Zc
u ∩ Zp ∩ Zq| → 0. Further,

∫

Zc
p∪Zc

q∪(Zc
u∩Zp∩Zq)

A∇vεp0p0 dx

6 c

(∫

Zc
p∪Zc

q∪(Zc
u∩Zp∩Zq)

|p0|4 dx

) 1
2
(∫

Zc
p∪Zc

q∪(Zc
u∩Zp∩Zq)

∣∣∇vε
∣∣2 dx

) 1
2

→ 0.

Therefore,

termA =
1

ε2

[∫

Ω

W (x, I + ε∇uε, ε
1
2 p0 + εqε

0)−
εH−1

2

(
p0 + ε

1
2 qε

0

)
·
(
p0 + ε

1
2 qε

0

)
dx

]

>
∫

Ω

1

2
C∇u∇u + A∇up0p0 + Bp4

0 dx

because ∇vε ⇀ ∇u.

Putting all the terms together and using the Euler-Lagrange equation (3.16), we

get for any ∇uε ⇀ ∇u and qε
0 ⇀ q0,

F ε
r > F0

r =

∫

Ω

1

2
C∇u∇u + A∇up0p0 + Bp4

0 dx +

∫

Ω

H−1

2
q0 · q0 dx

+
ε0

2

∫

RN

∣∣∇xφ
0
∣∣2 dx + ε0

∫

RN

(∇u +∇uT − tr(∇u)I
)∇g · ∇xϕ

0 dx

+
ε0

2

∫

RN

(∇u +∇uT − tr(∇u)I
)∇xϕ

0 · ∇xϕ
0 dx

−
∫

Ω

∇u p0 · ∇xϕ
0dx−

∫

Ω

∇uT∇xg · p0 dx

+
ε0

2

∫

RN

(∇u +∇uT − tr(∇u)I
)∇xg · ∇xg dx.

This completes the proof of Proposition 3.14 ¤

Proposition 3.16 (Recovery sequences for the second order energy) Under

the same assumption in Proposition 3.14, we can find a sequence yε satisfying yε → x

in W1,t, ∇uε = 1
ε
∇(yε − x) ⇀ ∇u in L2(Ω) and a sequence pε

0 satisfying qε
0 =
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ε−
1
2 (pε

0 − p0) ⇀ q0 in L2(Ω), such that

lim
ε→0

F ε
r (yε, pε

0) = F0
r (u, q0).

Proof If ∇uε ⇀ ∇u and qε
0 ⇀ q0, term1 and term2 converge from the proof of

Proposition 3.14. We now prove that if qε
0 → q0, term3 also converges. From (3.42)

and (3.43), to do that, we only need to prove

1

ε

[
ε0

2

∫

RN

∣∣∇yϕ
ε −∇yϕ

0
yε − ε

1
2∇φε

j

∣∣2 dy

]
→ 0 as ε → 0, j → +∞. (3.45)

First, let us find out the equation for ∇yϕ
0
yε in the y-space for each fixed ε. ∀ψ(y) ∈

D
(
RN\yε(Γ)

)
, we define ψ

(
y(x)

)
= ψε

x(x), then ψε
x(x) ∈ D(RN\Γ), since ψε

x(x) ∈
L2(RN), ∇xψ

ε
x(x) = Fε∇yψ(y) ∈ L2(RN) and ψε

x(Γ) = ψ
(
yε(Γ)

)
= 0.

Now we have

∫

RN

ε0

Jε

FεF
T
ε ∇yϕ

0
yε · ∇yψ(y) dy

=

∫

RN

ε0∇xϕ
0 · ∇xψ

ε
x dx

=

∫

RN

−ε0∇xg · ∇xψ
ε
x + p0 · ∇xψ

ε
x dx

=

∫

RN

(
−ε0

Jε

FεF
T
ε ∇yg

ε · ∇yψ + Fε pyε

0 χ
(
yε(Ω)

) · ∇yψ

)
dy,

where pyε

0

(
y(x)

)
= p0(x)

J(x)
.

Because D
(
RN\yε(Γ)

)
is dense inD(

RN\yε(Γ)
)
, ε0

Jε
FεF

T
ε ∇yϕ

0
yε ∈ D−1

(
RN\yε(Γ)

)

and Fε pyε

0 ∈ D−1
(
RN\yε(Γ)

)
, the above equality holds for any ψ(y) ∈ D(

RN\yε(Γ)
)
.

Thus the equation for ∇yϕ
0
yε is

∇y ·
[
ε0

Jε

FεF
T
ε ∇yϕ

0
yε +

ε0

Jε

FεF
T
ε ∇yg

ε − Fεp
yε

0 χ
(
yε(Ω)

)]
= 0.
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Similarly, φε
j satisfies

∇y ·
[
ε0

Jε

FεF
T
ε ∇yφ

ε
j − Fεq

ε
jχ

(
yε(Ω)

)]
= 0,

where qε
j =

qj
0(x)

Jε(x)
.

Since the equation for ∇yϕ
ε is

∇y ·
[
−ε0∇yϕ

ε − ε0∇yg
ε + pyε

0 χ
(
yε(Ω)

)
+ ε

1
2 qεχ

(
yε(Ω)

)]
= 0,

we get

∇y ·
[
ε0∇yϕ

ε − ε0∇yϕ
0
yε − ε0ε

1
2∇yφ

ε
j

]

= ∇y ·
[
−ε0∇yϕ

0
yε − ε0ε

1
2∇yφ

ε
j − ε0∇yg

ε + pyε

0 χ
(
yε(Ω)

)
+ ε

1
2 qεχ

(
yε(Ω)

)]

= ∇y ·
[(

ε0

Jε

FεF
T
ε − ε0

)
∇yϕ

0
yε +

(
ε0

Jε

FεF
T
ε − ε0

)
ε

1
2∇yφ

ε
j

]

+∇y ·
[(

ε0

Jε

FεF
T
ε − ε0

)
∇yg

ε

]

+∇y ·
[
−Fεp

yε

0 χ
(
yε(Ω)

)
+ pyε

0 χ
(
yε(Ω)

)
+ ε

1
2

(
qεχ

(
yε(Ω)

)− Fεq
ε
jχ

(
yε(Ω)

))]
.

On the right hand side, ε0

Jε
FεF

T
ε − ε0I is of order ε, so is I − Fε. Therefore,

1

ε

∥∥ ε0∇yϕ
ε − ε0∇yϕ

0
yε − ε0ε

1
2∇yφ

0
yε

∥∥2

L2(RN )

6 c
∥∥ qε − qε

j

∥∥2

L2(yε(Ω))
→ 0 as ε → 0, j → +∞,

because

∫

y(Ω)

∣∣qε(y)− qε
j (y)

∣∣2 dy =

∫

Ω

1

Jε

∣∣qε
0(x)− qj

0(x)
∣∣2 dx → 0 as ε → 0, j → +∞.

Thus we get (3.45) and the the convergence of term 3.
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Now, the only thing left is term4. term4 = termA + termB + termC.

termB =

∫

Ω

H−1

2
qε
0 · qε

0dx →
∫

Ω

H−1

2
q0 · q0dx

if
∥∥qε

0 − q0

∥∥
L2(Ω)

→ 0.

Next, we need to construct ∇uε ⇀ ∇u and qε
0 → q0 such that termA converges.

Define Zp =
{
x ∈ Ω : ε

1
2 |p0(x)| 6 εs

}
for some s to be decided.

Define Zq =
{
x ∈ Ω :

∣∣q0(x)
∣∣ 6 1

2
Qε

}
for some Qε to be decided.

We construct qε
0 as follows

qε
0 =





q0 if x ∈ Zp ∩ Zq,

−ε−
1
2 p0 if x ∈ Zc

p,

0 if x ∈ Zc
q ∩ Zp.

(3.46)

Then qε
0 → q0. Actually,

∫

Ω

∣∣qε
0 − q0

∣∣2 dx 6
∫

Zc
q

∣∣q0

∣∣2 dx +

∫

Zc
p

∣∣−ε−
1
2 p0 − q0

∣∣2 dx

6 2

∫

Zc
p

1

ε
|p0|2 dx + 2

∫

Zc
q∪Zc

p

∣∣q0

∣∣2 dx

6 2

[∫

Zc
p

|p0|4 dx

] 1
2

1

ε

∣∣Zc
p

∣∣ 1
2 + 2

∫

Zc
q∪Zc

p

∣∣q0

∣∣2 dx. (3.47)

If p0 ∈ L4+w,
∣∣Zc

p

∣∣ (εs− 1
2 )(4+w) 6

∫

Zc
p

|p0|4+w dx → 0.

By choosing s small enough such that (1
2
− s)(4 + w) > 2,

∣∣Zc
p

∣∣ 1
2 ε−1 → 0.

Thus the right hand side of (3.47) goes to zero and qε
0 → q0 follows.

We construct the recovery sequence uε as the truncation of u for m = 1, M = Mε

to be decided. Assume Mε < ρ2ε
−1, then ε∇uε < ρ2 on the whole domain Ω. If we
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take Qε < εs− 1
2 , then p0 + ε

1
2 qε

0 < εs + ε
1
2 Qε. Now we can use Taylor expansion on

termA.

1

ε2

∫

Ω

[
W

(
x, I + ε∇uε, ε

1
2 p0 + εqε

0

)− εH−1

2

(
p0 + ε

1
2 qε

0

)
·
(
p0 + ε

1
2 qε

0

)]
dx

6
∫

Ω

1

2
C∇uε∇uε + A∇uε(p0 + ε

1
2 qε

0)(p0 + ε
1
2 qε

0) + B(p0 + ε
1
2 qε

0)
4 dx

+

∫

Ω

w1

(
ε|∇uε|, ε 1

2 |pε
0|

) |pε
0|4 + w2

(
ε|∇uε|, ε 1

2 |pε
0|

) |∇uε|2 dx

+

∫

Ω

w3

(
ε|∇uε|, ε 1

2 |pε
0|

) |∇uε||pε
0|2dx

6
∫

Ω

1

2
C∇uε∇uε dx +

∫

Zc
q∩Zp

A∇uεp0p0 + B(p0)
4 dx

+

∫

Zp∩Zq

A∇uε(p0 + ε
1
2 q0)(p0 + ε

1
2 q0) + B(p0 + ε

1
2 q0)

4 dx

+

∫

Zc
q∩Zp

w1

(
ε|∇uε|, ε 1

2 |p0|
) |p0|4 + w2

(
ε|∇uε|, ε 1

2 |p0|
) |∇uε|2 dx

+

∫

Zc
q∩Zp

w3

(
ε|∇uε|, ε 1

2 |p0|
) |∇uε||p0|2 dx +

∫

Zq∩Zp

w3

(
ε|∇uε|, ε 1

2 |pε
0|

) |∇uε||pε
0|2 dx

+

∫

Zq∩Zp

w1

(
ε|∇uε|, ε 1

2 |pε
0|

) |pε
0|4 + w2

(
ε|∇uε|, ε 1

2 |pε
0|

) |∇uε|2 dx

6
∫

Ω

1

2
C∇uε∇uεdx +

∫

Zp

A∇uεp0p0 + B(p0)
4 dx

+ c
(
Mεε

sQε + ε2sMε

)
+ c εs‖p0‖4

L4(Ω)

+ c
(
w1(εMε, ε

s)‖p0‖4
L4(Ω) + w2(εMε, ε

s)M2
ε + w3(εMε, ε

s)Mε‖p0‖2
L2(Ω)

)
.
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In the right hand side,

∫

Ω

1

2
C∇uε∇uε dx =

∫

Zc
u

1

2
C∇uε∇uε dx +

∫

Zu

1

2
C∇u∇u dx

=

∫

Ω

1

2
C∇u∇u dx−

∫

Zc
u

1

2
C∇u∇u dx +

∫

Zc
u

1

2
C∇uε∇uε dx

6
∫

Ω

1

2
C∇u∇u dx + c

∫

Zc
u

∣∣∇u
∣∣2 dx + c

∣∣Zc
u

∣∣λ2
ε

→
∫

Ω

1

2
C∇u∇u dx,

∫

Zp

A∇uεp0p0 dx 6
∫

Zp∩Zu

A∇up0p0 dx +

∫

Zc
u

∣∣A∇uεp0p0

∣∣ dx

6
∫

Ω

A∇up0p0 dx + c

(∫

Zc
u

∣∣∇uε
∣∣2 dx

) 1
2
(∫

Zc
u

|p0|4 dx

) 1
2

+

∫

Zc
u∪Zc

p

∣∣A∇up0p0

∣∣ dx

→
∫

Ω

A∇up0p0 dx,

and ∫

Zp

B(p0)
4 dx →

∫

Ω

B(p0)
4 dx.

Choose

Mε = min
{
ε−

s
4 , ε−

1
4 , w2(ε

3
4 , εs)−

1
4 , w3(ε

3
4 , εs)−

1
4

}
,

Qε = min
{
ε−

s
4 , w3(ε

3
4 , εs)−

1
4 , εs− 1

2

}
,

then

c
(
Mεε

sQε + ε2sMε

)
+ c εs‖p0‖4

L4(Ω)

+ c
(
w1(εMε, ε

s)‖p0‖4
L4(Ω) + w2(εMε, ε

s)M2
ε + w3(εMε, ε

s)Mε‖p0‖2
L2(Ω)

)

→ 0 as ε → 0.
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Therefore, we proved that

termA =
1

ε2

∫

Ω

[
W

(
x, I + ε∇uε, ε

1
2 p0 + εqε

0

)− εH−1

2

(
p0 + ε

1
2 qε

0

)
·
(
p0 + ε

1
2 qε

0

)]
dx

→
∫

Ω

1

2
C∇u∇u + A∇up0p0 + B(p0)

4 dx.

Putting all the things together and remembering the Euler-Lagrange equation (3.16),

we thus complete the construction of the recovery sequences. ¤

Proof of Theorem 3.4

Again, this is the direct conclusion of Proposition 3.14 and Proposition 3.16 by the

definition of Γ-convergence.

¤

Now, let us prove the other compactness result.

Proof of Proposition 3.6

Still analyze the energy F ε
r term by term.

term 4 =
1

ε2

[∫

Ω

W (x, Fε, ε
1
2 pε

0)−
εH−1

2
p0 · p0 dx

]

=
1

ε2

∫

Ω

W (x, Fε, ε
1
2 pε

0)−
εH−1

2
pε

0 · pε
0 dx +

1

ε

∫

Ω

H−1

2
(pε

0 · pε
0 − p0 · p0) dx

> c

ε2

∫

Ω

∣∣Fε − SO(N)
∣∣2 dx +

1

ε

∫

Ω

H−1

2
(pε

0 − p0) · (pε
0 − p0)

+
1

ε

∫

Ω

H−1(pε
0 − p0) · p0 dx

> c

∥∥∥∥
Fε − I

ε

∥∥∥∥
2

L2(Ω)

+ c

∥∥∥∥
pε

0 − p0

ε
1
2

∥∥∥∥
2

L2(Ω)

+
1

ε

∫

Ω

H−1p0 · (pε
0 − p0) dx.
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Above, the first inequality comes from (3.7) in assumption A6. The second inequality

comes from the rigidity theorem and the boundary condition.

term 1 =
1

ε

[∫

yε(Ω)

∇yg
ε · pε dy −

∫

Ω

∇xg · p0 dx

]

=
1

ε

[∫

Ω

F−T
ε ∇xg · pε

0 dx−
∫

Ω

∇xg · p0 dx

]

=
1

ε

∫

Ω

(F−T
ε − I)∇xg · pε

0 dx +
1

ε

∫

Ω

∇xg · (pε
0 − p0) dx

> −c

∥∥∥∥
Fε − I

ε

∥∥∥∥
L2(Ω)

+
1

ε

∫

Ω

∇xg · (pε
0 − p0) dx.

Since ∇xg ∈ L∞(RN) and

∫

RN

∣∣∣∣
I − JεF

−1
ε F−T

ε

ε

∣∣∣∣ dx > −c

∥∥∥∥
Fε − I

ε

∥∥∥∥
L2(Ω)

,

term 2 =
1

ε

[
ε0

2

∫

RN

∣∣∇xg
∣∣2 dx− ε0

2

∫

RN

∣∣∇yg
ε
∣∣2 dy

]

=
ε0

2

1

ε

[∫

RN

∣∣∇xg
∣∣2 − JεF

−1
ε F−T

ε ∇xg · ∇xg dx

]

=
ε0

2

1

ε

[∫

RN

(I − JεF
−1
ε F−T

ε )∇xg · ∇xg dx

]

> −c

∥∥∥∥
Fε − I

ε

∥∥∥∥
L2(Ω)

.

Finally, recalling qε
0 = ε−

1
2 (pε

0 − p0) in (3.44), we have

term 3 > −c

∥∥∥∥
Fε − I

ε

∥∥∥∥
L2(Ω)

+
1

ε

∫

Ω

(pε
0 − p0) · ∇xϕ

0 dx.
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Putting all the inequalities together,

c > F ε
r = term 1 + term 2 + term 3 + term 4

> c

∥∥∥∥
Fε − I

ε

∥∥∥∥
2

L2(Ω)

+ c

∥∥∥∥
pε

0 − p0

ε
1
2

∥∥∥∥
2

L2(Ω)

− c

∥∥∥∥
Fε − I

ε

∥∥∥∥
L2(Ω)

+
1

ε

[∫

Ω

H−1p0 · (pε
0 − p0) +∇xϕ

0 · (pε
0 − p0) +∇g · (pε

0 − p0) dx

]
.

From Euler-Lagrange equation (3.16), the last term is zero. Hence there exist a

constant c̃ such that

∥∥∥∥
Fε − I

ε

∥∥∥∥
L2(Ω)

6 c̃ and

∥∥∥∥
pε

0 − p0

ε
1
2

∥∥∥∥
L2(Ω)

6 c̃.

¤
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Chapter 4

Homogenization of the Small-strain
Dielectric Model

4.1 Introduction of the Main Results

In Chapter 3, we derived a small-strain model for deformable dielectric elastomers.

The electric field ϕe(x) satisfies





∇x ·
[(

ε0 + Hχ(Ω)
)∇xϕe

]
= 0 in RN\Γ,

ϕe = g0 on Γ0,

ϕe = g1 on Γ1,

ϕe ∈ L2
loc(RN), ∇ϕe ∈ L2(RN).

(4.1)

The strain field satisfies





−∇ · (C∇u + Ã∇ϕe∇ϕe

)
= 0 in Ω,

(
C∇u + Ã∇ϕe∇ϕe

) · n = f on Γ2,

u = 0 on Γ3.

(4.2)

For simplicity, from now on, we will just drop the subscription e, denote by ϕ our

electric field with inhomogeneous boundary condition. And we will also drop the tilde

on tensor A. Now suppose we have a composite with periodic microstructure. Assume
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Hε(x) = H
(

x
ε

)
, Cε(x) = C

(
x
ε

)
and Aε(x) = A

(
x
ε

)
. Denote by ϕε the solution of





∇x ·
[(

ε0 + Hεχ(Ω)
)∇xϕ

ε
]

= 0 in RN\Γ,

ϕε = g0 on Γ0,

ϕε = g1 on Γ1,

ϕε ∈ L2
loc(RN), ∇ϕε ∈ L2(RN).

(4.3)

Denote by uε(x) the solution of





−∇ · (Cε∇uε + Aε∇ϕε∇ϕε
)

= 0 in Ω,

(
Cε∇uε + Aε∇ϕε∇ϕε

) · n = f on Γ2,

uε = 0 on Γ3.

(4.4)

The effective property of periodic dielectric composites is studied in this chapter. We

will prove first the following result,

Theorem 4.1 When ε → 0, ϕε, the solution of (4.3), two-scale converges to ϕ0(x),

the solution of the following equation





∇x ·
[(

ε0 + H0χ(Ω)
)∇xϕ

0
]

= 0 in RN\Γ,

ϕ0 = g0 on Γ0,

ϕ0 = g1 on Γ1,

ϕ0 ∈ L2
loc(RN), ∇ϕ0 ∈ L2(RN),

(4.5)

in which H0 is defined as

H0
ij =

1

|Y |
∫

Y

Hij(y)−Hik(y)
∂χ̂j(y)

∂yk

dy, (4.6)
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where χ̂j is the unit cell solution satisfying





−∇y ·
[(

ε0I + H(y)
)∇yχ̂j

]
= −

N∑
i=1

∂
(
ε0δij + Hij(y)

)

∂yi

in Y,

MY (χ̂j) = 0,

χ̂j periodic in y.

(4.7)

Assume further ∇ϕε is uniformly bounded in L4(Ω), then we will derive the following

homogenized equation for the deformation field.

Theorem 4.2 When ε → 0, uε, the solution of (4.4), two-scale converges to u0(x),

the solution of the following equation





−∇ · (CH∇u0 + AH∇ϕ0∇ϕ0
)

= 0 in Ω,

(
CH∇u0 + AH∇ϕ0∇ϕ0

) · n = f on Γ2,

u0 = 0 on Γ3.

(4.8)

In (4.8), CH is defined as

CH
ijkh =

1

|Y |
∫

Y

Cijkh(y) + Cijlm(y)
∂χkh

l

∂ym

dy, (4.9)

where χkh is the solution of the unit cell problem satisfying





− ∂

∂yj

(
Cijlm

∂χkh
l

∂ym

)
=

∂Cijkh

∂yj

in Ω,

χkh Y − periodic,

MY (χkh) = 0.

(4.10)

AH is defined as

AH
ijkh =

1

|Y |
∫

Y

Bijkh(y) + Cijlm(y)
∂χ̃kh

l

∂ym

dy, (4.11)
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in which

Bijkh = Aijkh − Aijlh
∂χ̂k

∂yl

− Aijkl
∂χ̂h

∂yl

+ Aijαβ
∂χ̂k

∂yα

∂χ̂h

∂yβ

, (4.12)

χ̃kh = (χ̃kh
1 , . . . ., χ̃kh

N ) is the solution of the equation





− ∂

∂yj

(
Cijlm

∂χ̃kh
l

∂ym

)
=

∂Bijkh

∂yj

in Ω,

χ̃kh Y − periodic,

MY (χ̃kh) = 0.

(4.13)

We will use the tool of two-scale convergence. In the following, Section 4.2 is a brief

introduction to two-scale convergence. For details, we refer to [3] and [13]. Section

4.3 is the proof of Theorem 4.1. Since the domain for the Maxwell equation (4.3) is

unbounded and the matrix εI + H(x
ε
)χ(Ω) in (4.3) is not exactly periodic, we will

write down the complete proof, although the method we use here is standard. Section

4.5 is the proof of Theorem 4.2, in which we used the local strong convergence of the

electric field. We derived that property in Section 4.4.

4.2 Introduction to Two-scale Convergence

Let O be an open set in RN and Y = [ 0, 1 ]N be the closed unit cube. We denote by

C∞] (Y ) the space of infinitely differentiable functions in RN that are periodic in Y .

Then L2
] (Y ) and H1

] (Y ) are the completions of C∞] (Y ) with respect to the L2(Y ) and

the H1(Y ) norms respectively.

Definition 4.1 A sequence of function vε in L2(O) is said to two-scale converge to

a limit v0(x, y) belonging to L2(O× Y ) if , for any function ψ(x, y) ∈ D
(O; C∞] (Y )

)
,

we have

lim
ε→0

∫

O
vε(x) ψ

(
x,

x

ε

)
dx =

∫

O

∫

Y

v0(x, y) ψ(x, y) dydx.

Allaire has shown [3] the test functions in the definition above can be enlarged to

an “admissible” test function set Aad. A function ψ(x, y) ∈ L1(O × Y ), periodic in
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y, is an admissible test function if ψ(x, y) is measurable and

lim
ε→0

∫

O

∣∣∣ψ
(
x,

x

ε

)∣∣∣ dx =

∫

O

∫

Y

∣∣ψ(x, y)
∣∣ dydx.

Allaire has proved [3] that if ψ(x, y) ∈ L1
(O; C](Y )

)
or L1

]

(
Y ; C(O)

)
, then ψ(x, y) ∈

Aad. If ψ(x, y) = ψ1(x)ψ2(y), in which ψ1(x) ∈ Ls(O), ψ2(y) ∈ Lr
](Y ), r and s

satisfying 1
r

+ 1
s

= 1
2
, then we also have ψ(x, y) ∈ Aad.

For a two-scale convergence sequence vε, we have the following property

Proposition 4.3 Let vε be a sequence of functions in L2(O), which two-scale con-

verges to a limit v0(x, y) ∈ L2(O×Y ). Then vε converges also to v(x) =
∫

Y
v0(x, y) dy

in L2(O) weakly. Furthermore, we have

lim
ε→0

‖vε‖L2(O) ≥ ‖v0‖L2(O×Y ) ≥ ‖v‖L2(O). (4.14)

One of the main result in the theory of two-scale convergence is the following propo-

sition.

Proposition 4.4 ([13]) If vε(x) is a bounded sequence in H1(O) that converges

weakly to a limit v(x) in H1(O), then vε two-scale converges to v(x), and there exists

a function v1(x, y) ∈ L2
(O;H1

] (Y )/R
)

such that , up to a subsequence, ∇vε two-scale

converges to ∇xv(x) +∇yv
1(x, y).

4.3 The Two-scale Convergence of the Electric Field

Potential

In this section, we will prove Theorem 4.1.

Proof Using the same method to get (2.6), we have for each ε, the solution of

(4.3) exists and satisfies
∥∥∇xϕ

ε
∥∥
L2(RN )

6 c, in which c depends only on H(y),

ε0, the boundary condition, but not on ε. Now, for any integer n, ϕε is uni-

formly bounded in H1(Bn\Γ). According to Proposition 4.4, there exists a function

ϕ0
n ∈ H1(Bn\Γ), such that ϕε ⇀ ϕ0

n in H1(Bn\Γ), and another function ϕ1
n(x, y) ∈
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L2
(
Bn\Γ;H1

] (Y )/R
)

such that ∇ϕε two-scale converges to ∇xϕ
0
n + ∇yϕ

1
n. Increase

n, we get another ϕ0
n and ϕ1

n, but they are the same on their common region. In

this way, we can find a subsequence ϕε and two functions ϕ0(x) ∈ D1(RN\Γ) and

ϕ1(x, y) ∈ L2
loc

(
RN\Γ;H1

] (Y )/R
)

such that ∇ϕε ⇀ ∇ϕ0 in L2(RN), and ∇ϕε two-

scale converges to ∇xϕ
0 +∇yϕ

0 for any test function ψ(x, y) ∈ Aad that has compact

support with respect to variable x. Actually, for any compact set K ⊂ RN ,

ϕε → ϕ0 in L2(K),

∇ϕε ⇀ ∇ϕ0 in L2(K),

∇ϕε two-scale converges to ∇xϕ
0 +∇yϕ

1.

From Proposition 4.3, for any compact set K,

∥∥∇xϕ
0 +∇yϕ

1
∥∥
L2(K×Y )

6
∥∥∇ϕε

∥∥
L2(K)

6
∥∥∇ϕε

∥∥
L2(RN )

.

Therefore, ϕ1 ∈ L2
(
RN\Γ;H1

] (Y )/R
)
.

ϕε is the solution of equation (4.3) if for any ψ ∈ D(RN\Γ),

∫

RN

(
ε0I + Hεχ(Ω)

)∇xϕ
ε · ∇xψ dx = 0. (4.15)

Now for any φ0 ∈ D
(
RN\Γ)

, φ1(x, y) ∈ D
(
RN\Γ; C∞] (Y )

)
, using φ0(x)+ εφ1(x, x

ε
) as

a test function in equation (4.15), we have

0 =

∫

RN

(
ε0I + Hεχ(Ω)

)∇xϕ
ε ·

(
∇xφ

0(x) +∇yφ
1
(
x,

x

ε

)
+ ε∇xφ

1
(
x,

x

ε

))
dx

=

∫

RN

ε0∇xϕ
ε ·

(
∇xφ

0(x) +∇yφ
1
(
x,

x

ε

)
+ ε∇xφ

1
(
x,

x

ε

))
dx

+

∫

Ω

Hε(x)∇xϕ
ε ·

(
∇xφ

0(x) +∇yφ
1
(
x,

x

ε

)
+ ε∇xφ

1
(
x,

x

ε

))
dx.
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Since ε∇xφ
1(x, x

ε
) → 0 in L2 and ∇ϕε two-scale converges to ∇xϕ

0(x) +∇yϕ
1(x, y),

∫

RN

ε0∇xϕ
ε ·

(
∇xφ

0(x) +∇yφ
1
(
x,

x

ε

)
+ ε∇xφ

1
(
x,

x

ε

))
dx

→ 1

|Y |
∫

RN

∫

Y

ε0

(∇xϕ
0(x) +∇yϕ

1(x, y)
) · (∇xφ

0(x) +∇yφ
1(x, y)

)
dydx.

As to the other term, first ∇ϕε two-scale converges to ∇xϕ
0(x) + ∇yϕ

1(x, y) on

the smaller region Ω. Second H(y) ∈ L∞] (Y ), ∇yφ
1(x, y) ∈ D

(
RN\Γ; C∞] (Y )

)
, so

H(y)∇yφ
1(x, y) and H(y)∇xφ

0(x) are both in L1
]

(
Y ; C(Ω)

)
, and can be looked as the

test functions for the two-scale convergence of ∇ϕε on Ω, therefore,

∫

Ω

Hε(x)∇xϕ
ε ·

(
∇xφ

0(x) +∇yφ
1
(
x,

x

ε

)
+ ε∇xφ

1
(
x,

x

ε

))
dx

→ 1

|Y |
∫

Ω

∫

Y

H(y)
(∇xϕ

0(x) +∇yϕ
1(x, y)

) · (∇xφ
0(x) +∇yφ

1(x, y)
)
dydx.

Putting these together,

∫

RN

∫

Y

(
ε0I + H(y)χ(Ω)

)(∇xϕ
0(x) +∇yϕ

1(x, y)
) · (∇xφ

0(x) +∇yφ
1(x, y)

)
dydx = 0

(4.16)

Using exactly the same method in Chapter 9 of [13], it is easy to obtain the existence

and the uniqueness of the solution for (4.16).

Choosing φ0 ≡ 0 in (4.16),

−∇y ·
(
(ε0I + H(y)χ(Ω)

)(∇xϕ
0(x) +∇yϕ

1(x, y)
)

= 0. (4.17)

If x /∈ Ω, (4.17) becomes

−∇y · ∇yϕ
1(x, y) = 0

with ϕ1(x, y) periodic in y and zero mean on Y . Thus if x /∈ Ω, ϕ1(x, y) ≡ 0.

However, if x ∈ Ω, (4.17) is

−∇y ·
[(

ε0I + H(y)
)∇yϕ

1(x, y)
]

= ∇y ·
[(

ε0I + H(y)
)∇xϕ

0(x)
]
. (4.18)
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If we define χ̂j as the solution of





−∇y ·
[(

ε0I + H(y)
)∇yχ̂j

]
= −

N∑
i=1

∂
(
ε0δij + Hij(y)

)

∂yi

in Y,

MY (χ̂j) = 0,

χ̂j periodic in y,

(4.19)

ϕ1 can be expressed as

ϕ1(x, y) = −χ(Ω)
N∑

j=1

χ̂j(y)
∂ϕ0

∂xj

+ ϕ̃(x). (4.20)

Next, choosing φ1(x, y) ≡ 0 in (4.16),

−∇x ·
∫

Y

(
ε0I + H(y)χ(Ω)

)(∇xϕ
0(x) +∇yϕ

1(x, y)
)
dy = 0. (4.21)

Plugging (4.20) into (4.21), the equation for ϕ0(x) is then

−∇x ·
[(

ε0I + H0χ(Ω)
)∇xϕ

0(x)
]

= 0, (4.22)

where

H0
ij =

1

|Y |
∫

Y

Hij(y)−Hik(y)
∂χ̂j(y)

∂yk

dy. (4.23)

¤

4.4 The Local Strong Convergence of the Electric

Field

Now, assume that ∇ϕε is locally uniformly bounded on Ω in L4 norm, then ∇ϕε con-

verges strongly on the smaller region Ω. This fact is very important in the derivation

of the homogenized equation for the deformation field. Since this strong convergence

is not for the entire domain, but only valid locally on Ω, we can not use the similar
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results in the theory of two-scale convergence. Here, we will prove it by combining

the local fluctuation estimation with two-scale convergence.

Proposition 4.5 Assume there exist a compact set K ⊃ Ω and a constant c, such

that
∥∥∇xϕ

ε
∥∥
L4(K)

< c, then

∇ϕε −∇ϕ0 −∇yϕ
1
(
x,

x

ε

)
→ 0 in L2(Ω). (4.24)

Proof Construct function ξ(x) ∈ C∞0 (RN) satisfying supp(ξ) ⊂ K and ξ(x) ≡ 1 in

Ω. First we prove that there exists a constant c such that for any Θ ∈ (
D(K\Γ)

)N
,

lim
ε→0

sup
∥∥ξ(x)∇ϕε − ξ(x)∇ϕ0 +∇χ̂ε

iΘi

∥∥
L2(K)

6 c
∥∥∇yϕ

1 +∇yχ̂iΘi

∥∥
L2(Ω×Y )

, (4.25)

where χ̂ε
i (x) = χ(Ω)χ̂i

(
x
ε

)
. In fact,

ε0

∥∥ξ(x)∇ϕε − ξ(x)∇ϕ0 +∇χ̂ε
iΘi

∥∥2

L2(K)

6
∫

K

(
ε0I + H

(x

ε

)
χ(Ω)

)(
ξ∇ϕε − ξ∇ϕ0 + χ(Ω)∇χ̂i

(x

ε

)
Θi

)
·

(
ξ∇ϕε − ξ∇ϕ0 + χ(Ω)∇χ̂i

(x

ε

)
Θi

)
dx

=

∫

K

(
ε0I + H

(x

ε

)
χ(Ω)

) (
ξ∇ϕε − ξ∇ϕ0

) · ( ξ∇ϕε − ξ∇ϕ0
)
dx

+

∫

Ω

(
ε0I + H

(x

ε

)
χ(Ω)

)
∇χ̂i

(x

ε

)
Θi · ∇χ̂j

(x

ε

)
Θj dx

+2

∫

Ω

(
ε0I + H

(x

ε

)
χ(Ω)

) (
ξ∇ϕε − ξ∇ϕ0

) · ∇χ̂i

(x

ε

)
Θi dx.

Note that H(y)χ̂i(y)ΘiΘj can be the test function for the two-scale convergence of

χ̂j

(
x
ε

)
and ϕε. Therefore,

∫

Ω

(
ε0I + H

(x

ε

)
χ(Ω)

)
∇χ̂i

(x

ε

)
Θi · ∇χ̂j

(x

ε

)
Θj dx

→
∫

Ω

∫

Y

(
ε0I + H(y)

)∇χ̂i(y) Θi · ∇χ̂j(y)Θj dydx
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and

2

∫

Ω

(
ε0I + H

(x

ε

)
χ(Ω)

)
(ξ∇ϕε − ξ∇ϕ0) · ∇χ̂i

(x

ε

)
Θi dx

→ 2

∫

Ω

∫

Y

(
ε0I + H(y)

)
ξ (∇ϕ0 +∇yϕ

1 −∇ϕ0) · ∇χ̂i(y)Θi dydx

= 2

∫

Ω

∫

Y

(
ε0I + H(y)

)
ξ∇yϕ

1 · ∇χ̂i(y)Θi dydx.

Meanwhile,

∫

K

(
ε0I + H

(x

ε

)
χ(Ω)

)
(ξ∇ϕε − ξ∇ϕ0) · (ξ∇ϕε − ξ∇ϕ0) dx

=

∫

K

(
ε0I + H

(x

ε

)
χ(Ω)

)
∇ϕε · ξ2(∇ϕε −∇ϕ0) dx

−
∫

K

(
ε0I + H

(x

ε

)
χ(Ω)

)
∇ϕ0 · ξ2(∇ϕε −∇ϕ0) dx

= −
∫

K

(
ε0I + H

(x

ε

)
χ(Ω)

)
∇ϕε · ∇ξ(ϕε − ϕ0)2ξ dx (4.26)

−
∫

K

(
ε0I + H

(x

ε

)
χ(Ω)

)
∇ϕ0 · ξ2(∇ϕε −∇ϕ0) dx

→ −
∫

Ω

∫

Y

(
ε0I + H(y)χ(Ω)

)∇ϕ0 · ξ2∇yϕ
1(x, y) dydx (4.27)

=

∫

Ω

∫

Y

(
ε0I + H(y)

)∇yϕ
1 · ξ2∇yϕ

1 dydx. (4.28)

Above, (4.26) comes from equation (4.15). (4.27) is because ϕε − ϕ0 → 0 in L2(K).

(4.28) comes from (4.18).
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Putting these together, we obtain

ε0

∥∥ξ(x)∇ϕε − ξ(x)∇ϕ0 +∇χ̂ε
iΘi

∥∥2

L2(K)

6
∫

Ω

∫

Y

(
ε0I + H(y)

)∇yϕ
1 · ξ2∇yϕ

1 dydx

+ 2

∫

Ω

∫

Y

(
ε0I + H(y)

)
ξ∇yϕ

1 · ∇χ̂i(y)Θi dydx

+

∫

Ω

∫

Y

(
ε0I + H(y)

)∇χ̂i(y)Θi · ∇χ̂j(y)Θj dydx

6 c
∥∥∇yϕ

1 +∇yχ̂iΘi

∥∥
L2(Ω×Y )

.

Now consider

∥∥∥ξ(x)∇ϕε − ξ(x)∇ϕ0 + χ(Ω)∇χ̂i

(x

ε

)
∇iϕ

0
∥∥∥

2

L2(K)

6
∥∥∥ξ(x)∇ϕε − ξ(x)∇ϕ0 + χ(Ω)∇χ̂i

(x

ε

)
Θi

∥∥∥
2

L2(K)

+
∥∥∥−∇χ̂i

(x

ε

)
Θi +∇χ̂i

(x

ε

)
∇iϕ

0
∥∥∥

2

L2(Ω)

6
∥∥∥ξ(x)∇ϕε − ξ(x)∇ϕ0 + χ(Ω)∇χ̂i

(x

ε

)
Θi

∥∥∥
2

L2(K)

+
∑

i

∥∥−Θi +∇iϕ
0
∥∥2

L4(Ω)

∥∥∥∇χ̂i

(x

ε

)∥∥∥
2

L4(Ω)

6 c
∥∥∇yϕ

1 +∇yχ̂iΘi

∥∥
L2(Ω×Y )

+ c
∑

i

∥∥−Θi +∇iϕ
0
∥∥2

L4(Ω)
(4.29)

6 c
∥∥−∇yχ̂i(y)∇iϕ

0 +∇yχ̂i(y)Θi

∥∥
L2(Ω×Y )

+ c
∑

i

∥∥−Θi +∇iϕ
0
∥∥2

L4(Ω)
(4.30)

6 c
∑

i

∥∥−Θi +∇iϕ
0
∥∥2

L4(Ω)
.

Above, (4.29) comes from the estimate (4.25) and the L4 boundedness of χ̂i(y). (4.30)

comes from (4.20).
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If we choose Θi → ∇iϕ
0 in L4(Ω), then

∥∥∥ξ(x)∇ϕε − ξ(x)∇ϕ0 +∇χ̂i

(x

ε

)
∇iϕ

0
∥∥∥

2

L2(K)
→ 0 as ε → 0.

ξ(x) = 1 in Ω, so

∥∥∥∇ϕε(x)−∇ϕ0(x)−∇yϕ
1
(
x,

x

ε

)∥∥∥
2

L2(Ω)
→ 0 as ε → 0.

¤

With this result, we can prove the two-scale convergence of the Maxwell stress.

Consider the electromechanical coupling tensor Aε(x) = A
(

x
ε

)
, A(y) is Y periodic in

y and is L∞ bounded. For any test function v(x, y) ∈ (C∞0 (Ω;H1
] (Y )/R)

)N
, we have

lim
ε→0

∫

Ω

Aε∇ϕε∇ϕεv
(
x,

x

ε

)
dx

= lim
ε→0

∫

Ω

Aε∇ϕε
(
∇ϕε −∇xϕ

0 −∇yϕ
1
(
x,

x

ε

))
v

(
x,

x

ε

)
dx

+ lim
ε→0

∫

Ω

Aε∇ϕε
(
∇xϕ

0 +∇yϕ
1
(
x,

x

ε

))
v

(
x,

x

ε

)
dx

= lim
ε→0

∫

Ω

Aε∇ϕε
(
∇xϕ

0 +∇yϕ
1
(
x,

x

ε

))
v

(
x,

x

ε

)
dx (4.31)

→ 1

|Y |
∫

Ω

∫

Y

A(y)
(∇xϕ

0 +∇yϕ
1(x, y)

)(∇xϕ
0 +∇yϕ

1(x, y)
)
v(x, y) dydx,

in which (4.31) comes from Proposition 4.5. The last step is because ∇ϕ0∇ϕ0 two-

scale converges to itself and we can use A(y)∇χ̂j∇χ̂iv(x, y) as the test function for

this convergence, because A(y)∇χ̂j∇χ̂iv(x, y) ∈ L1
]

(
Y ; C(Ω̄)

)
.

4.5 The Two-scale Convergence of the Deforma-

tion Field

Before the proof of Theorem 4.2, we will give some basic notation, assumption and

existence result in the homogenization theory of elasticity as in [13] first.
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In the component form, equation (4.2) is





∂

∂xj

(
Cijkh

∂uk

∂xh

+ Aijkh
∂ϕ

∂xk

∂ϕ

∂xh

)
= 0 in Ω,

(
Cijkh

∂uk

∂xh

+ Aijkh
∂ϕ

∂xk

∂ϕ

∂xh

)
nj = fi on Γ2,

u = 0 on Γ3.

(4.32)

Above, we used the classical notation about fourth order tensors as follows. If C =

(cijkh) is a fourth order tensor, ξ = (ξij), ξ1 = (ξ1
ij) are square matrices, we set





Cξ =
(
(Cξ)ij

)
=

(
(cijkhξkh)ij

)
,

C ξ ξ1 = cijkh ξij ξ1
kh,

|ξ| =
(∑N

ij=1 ξ2
ij

) 1
2
.

Definition 4.2 Let α, β ∈ R, such that 0 < α < β and let Ω be an open set of

RN . We denote by Me(α1, α2, Ω) the set of the fourth order tensor C = (cijkh) which

satisfies





c(x)ijkh ∈ L∞(Ω) ∀ i, j, k, h = 1, . . . , N,

cijkh = cijhk = ckhij ∀ i, j, k, h = 1, . . . ., N, ∀ x ∈ Ω,

α1| ξ |2 6 C ξ ξ ∀ symmetric matrix ξ,

|Cξ | 6 α2| ξ | ∀ matrix ξ.

As in the classical elasticity theory, introduce the linearized strain tensor e defined

by

e(u) =
(
eij(u)

)
, eij(u) =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

Then for any C ∈ Me(α1, α2, Ω),

(
Ce(u)

)
ij

= cijkh ekh(u) = cijkh
∂uk

∂xh

= C∇u. (4.33)
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Define space V by

V =
{
v

∣∣ v ∈ H1(Ω), γ(v) = 0 on Γ3

}
.

Set V = (V )N and equip V with norm

∥∥v
∥∥
V=

(
N∑

i=1

∥∥∇vi

∥∥2

L2(Ω)

) 1
2

,

then V is a Hilbert space with inner product

(u, v)V =
N∑

i=1

(∇ui,∇vi

)
L2(Ω)

∀ u, v in V .

Observe that V ′ = (V ′)N .

Now, assume C = (Cijkh) ∈ Me(α1, α2, Ω) and f = (f1, . . . ., fN) ∈ (H− 1
2

(
Γ2)

)N
,

thanks to equation (4.33), the weak form for equation (4.4) is

∫

Ω

C(x) e(u) e(v) dx +

∫

Ω

A(x)∇ϕ∇ϕ∇v dx = 〈f, v〉(H−1/2(Γ2))N ,(H1/2(Γ2))N , (4.34)

for any v ∈ V .

Define bilinear form by

Lu(u, v) =

∫

Ω

C(x) e(u) e(v) dx.

Then Lu(u, v) is a bounded bilinear map because C(x) ∈ L∞(Ω).

On the other hand, since C(x) ∈ Me(α1, α2, Ω), we get

α1

∫

Ω

∣∣e(v)
∣∣2 dx 6 Lu(v, v), ∀ v ∈ V .

From the second Kohn inequality,

Lu(v, v) > α1

∫

Ω

∣∣e(v)
∣∣2 dx > c ‖v‖2

H1(Ω).
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In addition, f ∈ (H− 1
2 (Γ2)

)N ⊂ V ′, and A(x)∇ϕ∇ϕ ∈ L2 ⊂ V ′, hence the Lax-

Milgram theorem applies, a unique solution exists and satisfies

‖u‖V 6 c
( ∥∥f

∥∥
(H−1/2(Γ2))N +

∥∥A(x)∇ϕ(x)∇ϕ(x)
∥∥
L2(Ω)

)
. (4.35)

Now, let us prove Theorem 4.2 in this framework.

Proof Since ∇xϕ
ε is locally uniformly bounded in L4 norm, from (4.35), uε is

uniformly bounded in
(H1(Ω)

)N
. Thus we can find a subsequence and a function u0

such that uε ⇀ u0 in
(H1(Ω)

)N
. Moreover, there exists u1(x, y) ∈ L2

(
Ω;H1

] (Y )/R
)N

such that up to a subsequence, ∇uε two-scale converges to ∇xu
0 +∇yu

1(x, y). Now

consider

v0(x) ∈ (C∞0 (Ω)
)N

and v1(x, y) ∈ (C∞0 (Ω;H1
] (Y )/R)

)N
,

we have v(x) = v0(x) + εv1(x, x
ε
) ∈ (H1

0(Ω)
)N

. Using this as a test function for

equation (4.34), we get

∫

Ω

Cε(x) e(uε) e(vε) dx +

∫

Ω

Aε(x)∇ϕε∇ϕε∇vε dx = 〈f, vε〉(H−1/2(Γ2))N ,(H1/2(Γ2))N .

(4.36)

First, ∫

Ω

Cε(x) e(uε) e(vε) dx =

∫

Ω

Cε(x) e(vε) e(uε) dx.

Second, e(uε)ij = 1
2

(
∂uε

i

∂xj
+

∂uε
j

∂xi

)
two-scale converges to

1

2

(
∂u0

i

∂xj

+
∂u0

j

∂xi

+
∂u1

i

∂yj

+
∂u1

j

∂yi

)
=

(
ex(u

0)
)

ij
+

(
ey(u

1)
)

ij
,

where

(
ex(u

0)
)

ij
=

1

2

(
∂u0

i

∂xj

+
∂u0

j

∂xi

)
,

(
ey(u

1)
)

ij
=

1

2

(
∂u1

i

∂yj

+
∂u1

j

∂yi

)
.

Since C(y) ∈ (L∞(Y )
)N2

, Cεe(vε) can be used as the test function for the two-scale
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convergence of e(uε), we then get

lim
ε→0

∫

Ω

Cε(x) e(uε) e(vε) dx =
1

|Y |
∫

Ω

∫

Y

C(y)
(
ex(u

0) + ey(u
1)

)(
ex(v

0) + ey(v
1)

)
dydx.

We already know from the end of Section 4.4 that

lim
ε→0

∫

Ω

Aε∇ϕε∇ϕε∇v
(
x,

x

ε

)
dx

=
1

|Y |
∫

Ω

∫

Y

A(y)
(∇xϕ

0 +∇yϕ
1(x, y)

)(∇xϕ
0 +∇yϕ

1(x, y)
)

(∇xv
0(x) +∇yv

1(x, y)
)
dydx.

In addition,

lim
ε→0

〈 f, vε〉(H−1/2(Γ2))N ,(H1/2(Γ2))N = 〈 f, v0〉(H−1/2(Γ2))N ,(H1/2(Γ2))N .

Hence by passing to the limit in equation (4.36) as ε → 0, we finally get

1

|Y |
∫

Ω

∫

Y

C(y)
(
ex(u

0) + ey(u
1)

)(
ex(v

0) + ey(v
1)

)
dydx

+
1

|Y |
∫

Ω

∫

Y

A(y)
(∇xϕ

0 +∇yϕ
1(x, y)

)(∇xϕ
0 +∇yϕ

1(x, y)
)

(∇xv
0(x) +∇yv

1(x, y)
)
dydx

= 〈 f, v0〉(H−1/2(Γ2))N ,(H1/2(Γ2))N . (4.37)

Let us show that (4.37) is a variational equation in the space

Hu :=
[H1(Ω)

]N × [L2
(
Ω;H1

] (Y )/R
)]N

,

and that the hypotheses of the Lax-Milgram theorem are fulfilled. Indeed, endowing

the space Hu with the norm

∥∥V
∥∥2

Hu
=

∥∥v0
∥∥2

(H1(Ω))N +
∥∥v1

∥∥2

(L2(Ω;H1
] (Y )/R))N , ∀V = (v0, v1) ∈ Hu,
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the bilinear form defined by

Lu(U, V ) =
1

|Y |
∫

Ω

∫

Y

C(y)
(
ex(u

0) + ey(u
1)

)(
ex(v

0) + ey(v
1)

)
dydx

is then continuous on Hu.

Since C(y) ∈ Me(α1, α2, Y ),

Lu(U,U) > α

|Y |
∫

Ω

∫

Y

N∑
i,j=1

(
ex(u

0)ij + ey(u
1)ij

)2
dydx. (4.38)

Observe that

∫

Ω

∫

Y

N∑
i,j=1

(
ex(u

0)ij + ey(u
1)ij

)2
dydx

=
∥∥ex(u

0)
∥∥2

L2(Ω)
+

∥∥ey(u
1)

∥∥2

L2(Ω×Y )
+ 2

∫

Ω

∫

Y

N∑
i,j=1

ex(u
0)ij ey(u

1)ij dydx.
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On the other hand,

2

∫

Ω

∫

Y

N∑
i,j=1

ex(u
0)ij ey(u

1)ij dydx

=
1

2

N∑
i=1

∫

Ω

∫

Y

N∑
j=1

(
∂u0

i

∂xj

+
∂u0

j

∂xi

)
∂u1

i

∂yj

dydx

+
1

2

N∑
j=1

∫

Ω

∫

Y

N∑
i=1

(
∂u0

i

∂xj

+
∂u0

j

∂xi

)
∂u1

j

∂yi

dydx

=
1

2

N∑
i=1

∫

Ω

∫

Y

N∑
j=1

∂

∂yj

((
∂u0

i

∂xj

+
∂u0

j

∂xi

)
u1

i

)
dydx

+
1

2

N∑
j=1

∫

Ω

∫

Y

N∑
i=1

∂

∂yi

((
∂u0

i

∂xj

+
∂u0

j

∂xi

)
u1

j

)
dydx

=
1

2

N∑
i=1

∫

Ω

∫

∂Y

N∑
j=1

(
∂u0

i

∂xj

+
∂u0

j

∂xi

)
u1

i nj dSydx

+
1

2

N∑
j=1

∫

Ω

∫

∂Y

N∑
i=1

(
∂u0

i

∂xj

+
∂u0

j

∂xi

)
u1

jni dSydx

= 0.

Above, we used the periodicity of u1(x, y) with respect to variable y.

Therefore, (4.38) becomes

Lu(U,U) > α

|Y |
(∥∥ex(u

0)
∥∥2

L2(Ω)
+

∥∥ey(u
1)

∥∥2

L2(Ω×Y )

)

> c
(∥∥u0

∥∥2

(H1(Ω))N +
∥∥u1

∥∥2

(L2(Ω;H1
] (Y )/R)N

)

= c
∥∥U

∥∥2

Hu
.

This gives the coerciveness of Lu(U,U). Furthermore, the following mappings are
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linear and continuous on Hu,

1 : (v0, v1) → 〈f, v0〉(H−1/2(Γ2))N ,(H1/2(Γ2))N ;

2 : (v0, v1) →
∫

Ω

∫

Y

A(y)
(∇xϕ

0 +∇yϕ
1(x, y)

)(∇xϕ
0 +∇yϕ

1(x, y)
)

(∇xv
0(x) +∇yv

1(x, y)
)
dydx.

Now, we can apply the Lax-Milgram theorem to obtain the existence and the unique-

ness of (u0, u1) ∈ Hu as a solution of (4.37). Choosing first v0 ≡ 0 and after v1 ≡ 0,

we see that equation (4.37) is equivalent to the following problem,





−∇y ·
(
C(y)∇yu

1
)

= ∇y ·
(
C(y)∇xu

0 + A(y)(∇xϕ
0 +∇yϕ

1)(∇xϕ
0 +∇yϕ

1)
)
,

−∇x ·
∫

Y

C(y)(∇xu
0 +∇yu

1) dy = ∇x ·
∫

Y

A(y)(∇xϕ
0 +∇yϕ

1)(∇xϕ
0 +∇yϕ

1) dy,
[∫

Y

C(y)(∇xu
0 +∇yu

1) + A(y)(∇xϕ
0 +∇yϕ

1)(∇xϕ
0 +∇yϕ

1) dy

]
n = f on Γ2,

u = 0 on Γ3.

(4.39)

Recalling that

∇yϕ
1 = −

N∑
j=1

∇yχ̂j
∂ϕ0

∂xj

,

then

A(y)(∇xϕ
0 +∇yϕ

1)(∇xϕ
0 +∇yϕ

1)

= A(y)ijαβ

(
∂ϕ0

∂xα

+
∂ϕ1

∂yα

)(
∂ϕ0

∂xβ

+
∂ϕ1

∂yβ

)

= Aijαβ

(
∂ϕ0

∂xα

− ∂χ̂k

∂yα

∂ϕ0

∂yk

)(
∂ϕ0

∂xβ

− ∂χ̂h

∂yβ

∂ϕ0

∂yh

)
(4.40)

= Aijαβ
∂ϕ0

∂xα

∂ϕ0

∂xβ

− Aijαβ
∂χ̂h

∂yβ

∂ϕ0

∂yh

∂ϕ0

∂xα

− Aijαβ
∂χ̂k

∂yα

∂ϕ0

∂yk

∂ϕ0

∂xβ

+ Aijαβ
∂χ̂k

∂yα

∂χ̂h

∂yβ

∂ϕ0

∂yk

∂ϕ0

∂xh

.
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If we define

Bijkh = Aijkh − Aijlh
∂χ̂k

∂yl

− Aijkl
∂χ̂h

∂yl

+ Aijαβ
∂χ̂k

∂yα

∂χ̂h

∂yβ

, (4.41)

and let χkh = (χkh
1 , . . . ., χkh

N ) be the solution of





− ∂

∂yj

(
Cijlm

∂χkh
l

∂ym

)
=

∂Cijkh

∂yj

in Ω,

χkh Y − periodic,

MY (χkh) = 0,

(4.42)

χ̃kh = (χ̃kh
1 , . . . ., χ̃kh

N ) be the solution of





− ∂

∂yj

(
Cijlm

∂χ̃kh
l

∂ym

)
=

∂Bijkh

∂yj

in Ω,

χ̃kh Y − periodic,

MY (χ̃kh) = 0,

(4.43)

then u1(x, y) can be expressed as

u1(x, y) = χkh(y)
∂u0

k

∂xh

(x) + χ̃kh(y)
∂ϕ0

∂xk

(x)
∂ϕ0

∂xh

(x). (4.44)

Plugging (4.44) into the second equation of (4.39), we get

− ∂

∂xj

[
1

|Y |
∫

Y

Cijlm(y)

(
∂u0

l

∂xm

+
∂χkh

l

∂ym

∂u0
k

∂xh

+
∂χ̃kh

l

∂ym

∂ϕ0

∂xk

∂ϕ0

∂xh

)
+ Bijkh

∂ϕ0

∂xk

∂ϕ0

∂xh

dy

]
= 0.

Now, define

CH
ijkh =

1

|Y |
∫

Y

Cijkh(y) + Cijlm(y)
∂χkh

l

∂ym

dy (4.45)

and

AH
ijkh =

1

|Y |
∫

Y

Bijkh(y) + Cijlm(y)
∂χ̃kh

l

∂ym

dy, (4.46)
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the homogenized equation for u0(x) is then





−∇ · (CH∇u0 + AH∇ϕ0∇ϕ0
)

= 0 in Ω,

(
CH∇u0 + AH∇ϕ0∇ϕ0

) · n = f on Γ2,

u0 = 0 on Γ1.

(4.47)

¤
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Chapter 5

Numerical Results of Lamination

5.1 Basic Formula for Laminates

In this chapter, we will apply our reduced model to one of the idealized micro-

structures: the laminated and sequentially laminated structures. The simple mi-

crostructure of laminates allows us a simple computation for the effective properties.

The motivation of this study is threefold. First, in small deformation elasticity and

electrostatics, in the linear (e.g., [32]) and the nonlinear (e.g., [14, 21]) regimes, these

materials are extremal. Thus the results for these microstructures provide straight-

forward estimates for the possible range of actuation strains, energy densities and

breakdown fields. Second, the understanding of the lamination results shed some

light on more complicated microstructures. Finally, we note that in plane strain con-

ditions, laminated structures can provide good approximation for fiber composites.

Thus for example, these results can be used to determine the response of EAPCs with

carbon nanotubes inclusions.

We note that this chapter is similar to the independent work of deBotton et al.

[15].

Let us now consider a laminate composite made out of two electroactive polymer

materials as in Figure 5.1. One of the constituent material has a relatively low electric

and elastic modulus and is referred as the compliant material. The other one has a

relatively high electric and elastic modulus and is referred as the stiff material. We

denote by θ the lamination angle. It is the angle between the interface of the two
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Figure 5.1: Two dimensional laminates.

constituent materials and the positive direction of the x1 axis. The tangential vector

of the interface is t = (t1, t2) = (cos θ, sin θ), and the normal vector of the interface is

n = (n1, n2) = (− sin θ, cos θ). We take the distribution of material properties as

Dielectric constant Hij = Hc
ijχ

c + Hs
ijχ

s,

Elastic modulus Cijkl = Cc
ijkl χ

c + Cs
ijkl χ

s, (5.1)

Electromechanical coupling Aijkl = Ac
ijkl χ

c + As
ijkl χ

s,

where χc is the characteristic function of the region occupied by the compliant mate-

rial and χs is the characteristic function of the region occupied by the stiff material.

Note the tensor H here is ε0I +H in the previous chapters. The volume fractions are

λc and λs respectively. λs = 1− λc.

The reduced model in Chapter 3 gives the equation of the electric field

∇ · (H∇ϕ) = 0 (5.2)

subject to 〈∇ϕ〉 = Ē. The solution for (5.2) with H in (5.1) is piecewise constant.

Denote the electric field ∇ϕ in the two materials by Ec and Es respectively, equation
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(5.2) reduces to 



λcEc + λsEs = Ē,

(Ec − Es) · t = 0,

(HcEc −HsEs) · n = 0.

(5.3)

The physical meanings of the above equations are clear. The first equation says

that the average electric field is Ē. The second equation comes from the fact that

the electric field is continuous along the interface. The third equation says that the

electric displacement is continuous across the interface.

Equation (5.3) has four unknowns with four equations and the solution can be

verified to be

Ec = BcĒ =
(
I − nnT + antT + cnnT Hs

)
Ē,

Es = BsĒ =
(
I − nnT + antT + cnnT Hc

)
Ē, (5.4)

where

a = − nT (λsHc + λcHs) t

nT (λsHc + λcHs) n
, (5.5)

c =
1

nT (λsHc + λcHs) n
.

Thus the average electric displacement is

HE = λcHcEc + λsHsEs

= λcHcBcĒ + λsHsBsĒ = (λcHcBc + λsHsBs) Ē. (5.6)

Therefore, the effective dielectric constant for this laminate is

H̄ = λcHcBc + λsHsBs. (5.7)
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With the electric field solved, the equation for the elastic field u is

∇ · (C∇u + A∇ϕ∇ϕ) = 0 (5.8)

subject to 〈∇u〉 = ε̄. Again, the above equation has a piecewise constant solution. If

we denote the strain tensor by εc and εs in the two materials, (5.8) reduces to





λcεc + λsεs = ε̄,

tT (εc − εs) t = 0,

(Ccεc + AcEcEc − Csεs − AsEsEs) n = 0.

(5.9)

The first equation specifies the average strain. The second equation is the kinematic

compatibility. The third equation gives the traction continuity. From the first equa-

tion of (5.9),

εs =
ε̄− λcεc

λs
. (5.10)

Plugging (5.10) together with (5.4) into the second and the third equation of (5.9),

we get the equation for εc,





tT εct = tT ε̄ t,

(λsCc + λcCs) εcn = Csε̄ n− λs
(
AcBcĒBcĒ − AsBsĒBsĒ

)
n.

(5.11)

In Cartesian coordinates the strain and stress tensor are represented as 2 × 2 sym-

metric matrices. To solve (5.11) conveniently, we represent them as three dimensional

vectors, where each element of the vector is related to a corresponding element of the

matrix. Accordingly the constitutive relation linking the stress and strain components

can be rewritten as




τ11

τ22√
2 τ12


 =




C1111 C1122

√
2 C1112

C2211 C2222

√
2 C2212√

2 C1211

√
2 C1222 2 C1212







ε11

ε22√
2 ε12


 . (5.12)
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Remark 5.1 Above, we give a way to transform a fourth order tensor into a sec-

ond order tensor. For the elastic modulus, since it has a symmetry property as

Cijkl = Cjikl = Cklij, we get a symmetric matrix. But for the electromechanical

coupling tensor, we only have Aijkl = Ajikl = Aijlk, its corresponding matrix could be

nonsymmetric.

For any 2× 2 matrix ξ, denote by ξ̌ the vector created from ξ as follows

ξ̌ =




ξ11

ξ22

1√
2
(ξ12 + ξ21)


 .

Then if we let T be the row vector generated from matrix t tT , the first equation in

(5.11) can be rewritten as

T ε̌c = T ˇ̄ε, (5.13)

where ε̌ and ˇ̄ε is the column vector form of tensor ε and ε̄.

Define

D(i)
mn = As

ijkl B
s
km Bs

ln nj − Ac
ijkl B

c
km Bc

ln nj,

W
(i)
kl =

(
λs Cc

ijkl + λc Cs
ijkl

)
nj, (5.14)

V
(i)
kl = Cs

ijkl nj,

and denote by d(i), w(i), v(i) the row vector form of matrix D(i), W (i) and V (i) respec-

tively. We now construct matrices using these row vectors as follows:

R =




T

w(1)

w(2)


 , S =




T

v(1)

v(2)


 , P =




0

λsd(1)

λsd(2)


 .

Note that 0 is a 3 component vector in the expression of P .
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Using these new notations, equation (5.11) can be rewritten as

R ε̌c = S ˇ̄ε + PẼ (5.15)

with Ẽ the column vector form of matrix ĒĒT . Clearly, the solution for equation

(5.15) is

ε̌c = R−1S ˇ̄ε + R−1PẼ. (5.16)

Let Q be the matrix form of the fourth order tensor

λc Ac
ijkl B

c
km Bc

ln + λs As
ijkl B

s
km Bs

ln,

the average total stress is then

ˇ̄τ = λc τ̌ c + λs τ̌ s

= λc Čc ε̌c + λs Čs ε̌s + QẼ

=
[
Čs + λc

(
Čc − Čs

)
R−1S

]
ˇ̄ε

+
[
λc

(
Čc − Čs

)
R−1P + Q

]
Ẽ. (5.17)

Thus we obtain the effective tensor C̄ and Ā as

ˇ̄C = Čs + λc
(
Čc − Čs

)
R−1S,

ˇ̄A = λc
(
Čc − Čs

)
R−1P + Q. (5.18)

Now, assume an external electric field Eext is applied on this composite. Let Ěext

be the column vector for matrix EextE
T
ext. The electric field induced strain for the

laminate is then given by:

strain = −( ˇ̄C)−1 ˇ̄A Ěext. (5.19)

We can compute the effective property for any rank-n laminates by iteration.
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5.2 Numerical Results

Consider a rank-1 laminate made out of a homogeneous stiff material (2) with a high

dielectric constant and a homogeneous compliant material (1) with a low dielectric

constant. Assume that both materials have the same electrostatic strain response

(i.e., the ratios of the shear to the dielectric modulus are the same). For numerical

studies, we consider the following values consistent with experimental observations as

in [15]:

h(1) = 10ε0, h(2) = 1000ε0;

α(1) = 108 MPa, α(2) = 108 MPa; (5.20)

µ(1) = 10 MPa, µ(2) = 1000 MPa .

Above ε0 is the free-space permittivity (8.85× 10−12 Fm−1), α is the Lame modulus,

µ is the shear modulus. We take the Lame modulus (thus the bulk modulus) very

large, so that the materials are nearly incompressible.

As mentioned in Zhang et al. [42], a large external electric field is needed to gain

a practically meaningful strain. A simple computation shows that for the above pure

materials, the longitudinal strain is 2.212% under an external field of 100 MV/m.

Now, let us examine the longitudinal field-induced strain for the rank-1 laminate.

Assume in formula (5.19) that the external electric field is in the [0, 1] direction. We

are considering the longitudinal strain in the vertical direction, the [1, 0] direction.

Figure 5.2 shows the longitudinal field-induced strain ε11 as a function of the lam-

ination angle θ and the compliant material volume fraction λ(1). we see that the

maximum longitudinal strain is achieved at λ(1) = 0.5, θ = 0.66π and has a value of

2.4768%. This means we can achieve as much as a 12% increase of the longitudinal

strain compared to each of the constituent material by making a rank-1 laminate.

We also observe that the longitudinal strain depends significantly on the lamination

angle θ, but little on the volume fraction of the compliant material. To be accurate,

the longitudinal strain depends on the relative angle between the applied electric field
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Figure 5.2: Effective longitudinal field-induced strain for rank-1 laminates

and the interface. If we fix the interface at θ = 0, apply an electric field of different

directions to the laminates, we get exactly the same strain in the electric field perpen-

dicular direction as Figure 5.2. This means the rank-1 laminate is highly anisotropic.

If we apply the electric field in the right direction, we can gain a large strain. In

some other directions however, we get very small strains, even much smaller than the

constituent materials.

While λ(1) and λ(2) are the volume fractions of material (1) and (2) in a compos-

ite respectively, we introduce new notations λc
n and λs

n when we consider multirank

laminates. Assume a rank-n laminate is composed of two materials (homogeneous

or heterogeneous). One of them has a relatively small elastic and electric modulus.

We denote its volume fraction by λc
n. The other one has a relatively large elastic and

electric modulus. We denote its volume fraction by λs
n. We extend this notation to

rank-1 laminates by letting λc
1 = λ(1) and λs

1 = λ(2). Further, we define θn to be the

lamination angle of a rank-n laminate.
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Figure 5.3: Two ways to construct a rank-2 laminate.

Now consider a rank-2 laminate. There are two ways to make the laminate. One

is to laminate the rank-1 composite with the pure compliant material (1), as shown

in (a) of Figure 5.3, the other is to laminate the rank-1 composite with the pure stiff

material (2), as shown in (b) of Figure 5.3. For choice (a), no matter how we choose

the volume fraction and the angle, we can get at most 2.72% for the longitudinal

strain. However for choice (b), if we laminate the rank-1 composite (λc
1 = 0.98,

θ1 = 0.66π) with the pure stiff material, a very high longitudinal strain of 8.124%

(increased 267.27%) can be achieved at λc
2 = 0.04, θ2 = 0.24. Figure 5.4 is the

longitudinal strain for the rank-2 material as a function of the lamination angle and

the volume fraction for the compliant material.

Observe that a much larger longitudinal strain can be obtained from the rank-2

laminate compared to the rank-1 laminate for the same amount of compliant material

at λ(1) = 0.04. Further, the rank-1 composite depends significantly on the lamination

angle, but little on the volume fraction of the compliant material. In contrast, the

rank-2 laminates depend on the lamination angle as well as the volume fraction of

the compliant material. We now explain the underlying reason for these differences.

Inside the laminates, the electric fields satisfy equation (5.3). This results in

fluctuation of the electric field. The electric field in the compliant material is quite

different from that in the stiff material. Figure 5.5 is the norm of the electric field in

the compliant material for rank-1 laminates. We can see that the electric field in the
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Figure 5.4: Effective longitudinal field-induced strain for rank-2 laminates

compliant material gains a very large increase when λc is very small. The direction of

the electric field also changes with the angle of the laminates. However, the electric

field in the stiff material behaves quite differently. Figure 5.6 is the norm of the electric

field in the stiff material. To explain the difference between the electric fields in the

compliant material and the stiff material, let us look at (5.4). The main contribution

for each electric field comes from the last term in (5.4). For the compliant material

this term is approximately

hs

λshc + λchs
∼ 1

λs hc

hs + λc
. (5.21)

Because of the large ratio of the dielectric constants of the two materials, when λc is

small, this term becomes very large. Meanwhile, the contribution of this term to the
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Figure 5.5: The norm of the electric field in the compliant material for rank-1 laminates

electric field in the stiff material is approximately

hc

λshc + λchs
∼ 1

λc hs

hc + λs
. (5.22)

Again, because of the large value of hs

hc , this term almost contributes nothing to the

electric field in the stiff material. Thus the electric field in the stiff material is always

smaller than the average electric field.

In the expression of the effective coupling (5.18), the second term is

Q = λcAcEcEc + λsAsEsEs. (5.23)

This is the average of the Maxwell stress. As we have shown, the electric field in

the compliant material increases significantly when λc is small. However, since there

are two small factors in front of the product of EcEc, the average Maxwell stress

behaves the same way as the effective compliance modulus. Figure 5.7 shows the 11
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Figure 5.6: The norm of the electric field in the stiff material for rank-1 laminates

component of the average Maxwell stress and the 1111 component of the effective

compliance. Clearly the average Maxwell stress and the elastic modulus behave in

the same way qualitatively. Physically, when λc becomes smaller, the Maxwell stress

becomes bigger. But the whole material becomes stiffer. Therefore, this part of the

contribution to the effective longitudinal strain does not change very much with the

volume fraction of the compliant material.

The first term in (5.18) is the contribution from the fluctuation of the Maxwell

stress as we can see from its equation (5.9) (or equation (5.11)). Basically, the differ-

ence of the Maxwell stress in the two materials provides a stress for the small scale

deformation in the laminate. The force in the compliant material on any surface with

normal vector n is

− λs
(
AcEcEc − AsEsEs

)
n. (5.24)

Let η be the angle between this force and the normal vector n, Figure 5.8 gives the

norm and the angle η of the force as a function of the lamination angle θ and the
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Figure 5.7: The 11 component of the average Maxwell stress and the 1111 component of the
effective compliance in rank-1 laminates.
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Figure 5.8: The norm and the angle of the surface traction in rank-1 laminates.

volume fraction λc. In the first figure, the force becomes very large when λc is small.

This is natural, because now we do not have a small factor λc in front of the big

product EcEc. However, in the rank-1 laminates, the small scale deformation caused

by this force turns out to be very small. The answer lies in the angle η of the force.

From the second picture of Figure 5.8, the direction of the force is exactly the
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same with the normal vector of the interface. Actually,

AcEcEcn

= hcEc ⊗ Ecn = hcEc
(
Ec

)T
n

= hc (Ec · n)
(
I − nnT + a ntT + c nnT Hs

)
Ē

= hc (Ec · n) Ē + hc (Ec · n)
(
a tT Ē + c nT HsĒ − nT Ē

)
n

= hchsc
(
n · Ē)

Ē + hc (Ec · n)
(
a tT Ē + c nT HsĒ − nT Ē

)
n. (5.25)

Similarly,

AsEsEsn

= hsEs ⊗ Esn = hsEs (Es)T n

= hs (Es · n)
(
I − nnT + a ntT + c nnT Hc

)
Ē

= hs (Es · n) Ē + hs (Es · n)
(
a tT Ē + c nT HcĒ − nT Ē

)
n

= hshcc
(
n · Ē)

Ē + hs (Es · n)
(
a tT Ē + c nT HcĒ − nT Ē

)
n. (5.26)

Deducting (5.26) from (5.25), we end up a vector along n direction. Now the force

is along n direction, but the first equation in (5.11) says that there is no strain in

t direction. In addition, the material is incompressible. Putting these together, it

is difficult for this big force to contribute anything to the strain in the compliant

material and the stiff material.

Thus, in the rank-1 laminate, the main contribution of the longitudinal strain

comes from the product of the average Maxwell stress and the effective compliance

modulus. From the above analysis, it does not depend on the volume fraction very

much, but depends on the direction of the interface. The contribution from the small

scale oscillation is small. Now, look at the rank-2 laminate. In this laminate, one of

the materials is the rank-1 composite with 2% stiff material. This laminate is soft and

has a low dielectric constant. Thus, we still have high contrast between the dielectric
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Figure 5.9: The norm of the electric field in the compliant material and the stiff material for
rank-2 laminates.

modulus of the two materials. Therefore, as shown in Figure 5.9, the norm of the

electric field in the compliant material and the stiff material still behaves the same

way as in the rank-1 laminates. So are the average Maxwell stress and the effective

compliance (Figure 5.10). The contribution of the average Maxwell stress term to the

longitudinal strain is shown in Figure 5.11. The qualitative property of this part is

the same as that in the rank-1 composites.

However, the contribution from the small scale oscillation is quite different in the

rank-2 laminates. Figure 5.12 shows the norm and the angle η of the force on the

interface in rank-2 laminates. From the first figure, the norm of the surface traction

increases significantly when λc is small just as in the rank-1 laminates. However, the

direction of the force is no longer the same as in the rank-1 case because of two reasons.

First, the dielectric constant is no longer isotropic for the rank-1 laminate. Second,

the electromechanical coupling for the rank-1 laminate is not related to its dielectric

constant anymore. Now, if we choose the right lamination angle, there is a big shear

stress in the compliant material and the compliant material will generate a large shear

strain under this big shear stress. Thus the fluctuation of the Maxwell stress creates

a small scale deformation field in the laminates. This is a major contribution to the

longitudinal strain.

Clearly, in the rank-2 laminate, between the two terms composing the effective
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Figure 5.10: Average Maxwell stress and effective compliance in rank-2 laminates.

longitudinal strain, the contribution from the small scale oscillation is much larger

than that from the average Maxwell stress. But to generate the small scale defor-

mation, using a compliant material with an anisotropic dielectric constant is very

crucial. We did not get a big increase in the longitudinal strain in the rank-1 lam-

inate, but we create a compliant material with anisotropic electric property, which

has a relatively bigger component in the direction of the external electric field. This

reminds us to use an anisotropic material in the rank-1 laminates. Actually, if we

use a compliant material with dielectric constant as H
(1)
11 = 10ε0, H

(1)
22 = 20ε0, the

longitudinal strain for the rank-1 laminates is shown in Figure 5.13. We gain a strain

as large as 12.5952% when λc
1 = 0.02, θ1 = 0.78π in this case. Of course, it is very

crucial to choose the right lamination angle as well as the volume fraction.

In the previous rank-2 material, the ratio of the stiff material is about 96%. It

is not a practical material to use. However, this composite can be used as a stiff

material to laminate with the pure compliant material again. The longitudinal strain

for such rank-3 laminates is shown in Figure 5.14. Again the longitudinal strain does

not depend on the volume fraction significantly for the same reason as in the rank-1

laminates and we gain a longitudinal strain of 10.241% at λc
3 = 0.9 and θ3 = 0.52π.

This material is a compliant material.

Now, laminate this compliant material with the pure stiff material again, and we
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Figure 5.11: Contribution of the average Maxwell stress term to the effective longitudinal strain

get rank-4 laminates. The effective longitudinal strain is shown in Figure 5.15. Again,

for the same reason as in rank-2 laminates, a dramatic increase in the longitudinal

strain is achieved at λc
4 = 0.06, θ4 = 0.16. With the strain increased to 29.632%,

that is 13.4 times of the strain generated by the pure materials. This material is

a stiff material again. And we can laminate it with the pure compliant material.

If we keep doing this alternate lamination, the effective longitudinal stain increases

very quickly. Figure 5.16 shows the strain as a function of rank n. The stars are

the effective longitudinal strain as a function of the rank n, the bottom line is the

function f(n) = 3
n+1

2 . It appears that the strain becomes unbounded with increasing

n.

The alternate lamination as shown in Figure 5.17 is very crucial in this process. If

we keep laminating the rank-n composite with the compliant material, we will not get

any increase of the strain after several steps. The reason is as follows. The effective

longitudinal strain depends very much on the fluctuation of the electric field, which is

generated by the high contrast of the dielectric constants. If we keep doing lamination

with the compliant material, we will end up laminating two compliant materials with

low dielectric constants eventually. Therefore we do not get the fluctuation of the
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Figure 5.12: The norm and the angle of the surface traction in rank-2 laminates.

electric field any more.

During the alternate lamination, the same pattern occurs. Whenever we laminate

the hard composite material with the pure compliant material, the effective longi-

tudinal strain behaves similarly to the rank-3 laminates. It depends significantly on

the lamination angle, but little on the volume fraction. Whenever we laminate the

soft composite material with the pure stiff material, the effective longitudinal strain

behaves similarly to rank-2 laminates. We gain a dramatic increase in the strain, and

it depends both on the volume fraction and the lamination angle.

This exciting potentially unbounded strain is only a theoretical result. In practice,

it is hard to make multirank laminates. Besides, there is always a breakdown field

for each material. From the above analysis, we gain a very high longitudinal strain

because a very high electric field is generated inside the compliant material. Actually,

in the above rank-2 laminate, the electric field in the compliant material is about 10

times of the external electric field. Therefore, the effective breakdown field for the

composite decreases. In the above process, each time we gain a dramatic increase

of about 300% in the effective longitudinal strain, the breakdown field decreases by

1/10.

Clearly, if both materials have their own breakdown fields, no matter how we

construct the microstructure, the average longitudinal strain can never exceed the
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Figure 5.13: Effective longitudinal strain of the rank-1 laminates composed by an isotropic stiff
material and an anisotropic compliant material.
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Figure 5.14: The effective longitudinal strain for rank-3 laminates
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Figure 5.15: The effective longitudinal strain for rank-4 laminates

Figure 5.16: The longitudinal strain as a function of the rank.
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Figure 5.17: Alternate lamination to get an infinite strain

maximum value of the longitudinal strains that the two materials can achieve under

their own breakdown fields.

To illustrate the importance of the high contrast of the dielectric constants, we

compute two extreme cases. In the first one, we choose two materials with h(1) = 10ε0,

h(2) = 10h(1) and µ(1) = 10 MPa, µ(2) = 10µ(1). Figure 5.18 gives the longitudinal

strain for the corresponding rank-2 laminates. We get a maximum strain only to

2.4571%.

In the second case, we laminate two materials with h(1) = 10ε0, h
(2) = 1000h(1)

and µc = 10 MPa, µ(2) = 1000µ(1). The effective strain is shown in Figure 5.19. In

rank-1 laminates, the maximum strain is 2.48%, achieved at λc
1 = 0.52, θ1 = 0.34π. In

rank-2 laminates, the maximum strain is 38.3807%, achieved at λc
2 = 0.02, θ2 = 0.2π

and λc
1 = 0.98, θ1 = 0.66π.
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Figure 5.18: The longitudinal strain of rank-2 laminates with low contrast of dielectric modulus.
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(b)

Figure 5.19: The longitudinal strain of the rank-1 and rank-2 laminates with high contrast of
dielectric modulus.
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Chapter 6

Numerical Results for Particulate
Composites

In Chapter 4, we derived the effective property for the dielectric composites with

periodic microstructure. (4.45) and (4.46) give the effective elastic modulus and

the effective eletromechanical coupling coefficient. If we apply a 100 MV/m external

electric field in [1, 0] direction on the composites, the effective longitudinal strain in

[0, 1] direction is

C−1
22ij AH

ij11. (6.1)

From (4.46)

AH
ij11 =

1

|Y |
∫

Y

Bij11(y) + Cijlm(y)
∂χ̃11

l

∂ym

dy, (6.2)

where

Bij11 = Aij11 − Aijl1
∂χ̂1

∂yl

− Aij1l
∂χ̂1

∂yl

+ Aijαβ
∂χ̂1

∂yα

∂χ̂1

∂yβ

. (6.3)

As we can see from (4.19), the physical meaning of χ̂1 is the small scale electric field

in the unit cell generated by the oscillation of the dielectric constant if the average

electric field is [1, 0]. Thus from (4.40), Bij11 is the distribution of the Maxwell stress

in the unit cell if the average electric field is [1, 0]. χ̃11 is then the deformation field

in the unit cell caused by the oscillation of the Maxwell stress Bij11 as we can see

from (4.43). Therefore, AH
ij11 is composed of two terms; the first term is the average

Maxwell stress in the unit cell, the second term is the contribution from the small

scale oscillation of the Maxwell stress.
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Before the more general computation of particulate composites, we use this for-

mula to compute the effective strain of the lamination geometry. Numerical experi-

ments show that the results given by the finite element computation match with the

results in chapter 5 for at least 6 digits. This provides a simple test for our finite

element program.

Consider a unit cell [0, 1]× [0, 1] and a composite with a microstructure as follows.

In the unit cell, the stiff material inclusion is surrounded by the compliant material.

The stiff inclusion has a geometry of ellipsoid. The properties of the two materials

are similar to those in the laminate computation. We take

h(1) = 10ε0, h(2) = 1000ε0;

α(1) = 5000 MPa, α(2) = 5000 MPa; (6.4)

µ(1) = 10 MPa, µ(2) = 1000 MPa .

Choose the axis lengths of the ellipsoid as a = 0.40, b = 0.09. The volume fraction for

the stiff material is about λ(2) = 0.1131. By the numerical computation, the effective

longitudinal strain is 3.31%. Compared with the 2.209% strain of the pure compliant

material, this gives an almost 50% increase. Figure 6.1 shows the electric field caused

by the oscillation of the dielectric constant in the unit cell. Figure 6.1(a) is the first

component of the electric field. Figure 6.1(b) is the second component of the electric

field. Clearly, the oscillation of the dielectric constant causes a fluctuation of the

electric field in the unit cell. The electric field in the stiff material is small. However,

there are two hot spots near the ends of the ellipsoid in the compliant material.

Because of this high electric field, the compliant material near that area is squeezed

significantly, as we can see from (a) of Figure 6.2. At the same time, because the

material is incompressible, it is then hardly stretched in the [0, 1] direction as shown

in (b) of Figure 6.2.

Keep the volume fraction and increase the length ratio of the axis of the ellipsoid.

Let a = 0.48, b = 0.075, we get an effective longitudinal strain of 7.29%. It is more

than three times of the original strain. This means the longer the long axis of the
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(a) (b)

Figure 6.1: The electric field caused by the oscillation of the dielectric constant.

ellipsoid, the bigger the effective longitudinal strain. The reason behind this can be

seen very clearly from Figure 6.3 and 6.4. In Figure 6.3, the longer the long axis

of the ellipsoid, the narrower the region between every two ellipsoids, the higher the

electric field in that region due to the same reason as shown in (5.21) and (5.22). In

Figure 6.4, the higher the electric field in the compliant material, the harder the soft

material is squeezed in [1, 0] direction and stretched in [0, 1] direction. Thus we get a

larger effective longitudinal strain.

Another factor that affects the longitudinal strain significantly is the distance

between the inclusions. Figure 6.5 and 6.6 is the electric field and the deformation

field in the unit cell if the distance between two a = 0.48, b = 0.075 ellipsoids is 1
3
. We

get a longitudinal strain of only 5.6% in this case. The reason is as follows: when

the distance of every two ellipsoids becomes smaller, the material becomes very hard

to be squeezed. If we look at (b) of Figure 6.6, the compliant material between the

two ellipsoids is being pushed up and pulled down simultaneously, these two effects

cancel each other and weaken the squeezing effect. Table 6.1 is the longitudinal strain

for different distances between the ellipsoids. The strain increases with respect to the

distance at first, then goes down at a certain distance. This is reasonable, because

once the distance is too large, part of the compliant material between the ellipsoids is

out of the squeezing zone. Thus the longitudinal strain will decrease with the increase
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(a) (b)

Figure 6.2: ε11 and ε22 caused by the fluctuation of the Maxwell stress.

Figure 6.3: The electric field caused by the oscillation of the dielectric constant.

of the distance after that.
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Figure 6.4: ε11 and ε22 caused by the fluctuation of the Maxwell stress.

Figure 6.5: The electric field caused by the oscillation of the dielectric constant.

distance 0.25 0.333 0.5 0.7 1.0 1.2
strain 3.75 5.60 5.90 6.72 7.29 6.34

Table 6.1: The longitudinal strain as a function of the distances between inclusions
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(a) (b)

Figure 6.6: ε11 and ε22 caused by the fluctuation of the Maxwell stress.
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Chapter 7

Conclusion

Electroactive polymers (EAPs) offer unique capabilities in the form of flexible and

lightweight actuators. However, current EAPs suffer from either high operation field

(such as SRI dielectric elastomer) or inadequate strain level (such as the electrostric-

tive PVDF terpolymers, transverse strain of ∼ 5%). Recent experimental work sug-

gests that this limitation can be overcome by making composites of flexible and high

dielectric modulus materials. One approach is to make electroactive polymer com-

posites (EAPC) by combining an elastomer with a high dielectric or even conductive

material [43, 22, 23]. This thesis provides a theoretical study of such composites.

The first accomplishment is the rigorous derivation in Chapter 3 of an approximate

model of deformable dielectric EAPs which preserves the quadratic elelctrostrictive

coupling between strain and electric field. We start from a finite deformation model of

a deformable dielectric EAPs [37] and perform an asymptotic development under the

assumption that the strain is of order ε and the electric field is of order ε
1
2 . We show

that the leading order energy is the electrostatic energy assuming no deformation.

The next order correction is the elastic energy under the forcing induced by the

electrostatic fields through the Maxwell stress. The analysis is carried out using the

notion of Γ-convergence and Γ-development.

The resulting model is described by two equations. The first is the classical

equation of electrostatics. The second is linear elastostatics where the forcing is

determined by the solution to the first. Notice that the coupling is one way: the

electric field affects the deformation but not the other way. Further, both equations
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are linear; however the forcing term in the elastostatic equation depends nonlinearly

on the electric field. Finally, the result shows why the electrostrictive coupling is

necessarily weak: the leading order energy is independent of deformation.

The second accomplishment of the thesis is a rigorous periodic homogenization

theory in Chapter 4. The analysis used the two-scale convergence method developed

by Allaire [3]. Recall that the elastic forcing depends quadratically on the electric

field. Consequently the overall deformation depends on the square of the electric

fluctuation. This can be very large in a heterogeneous material and accounts for

the unexpected experimental observations. This result is consistent with that of Li

[27, 26] and [15].

This result is complemented with a study of laminate composites. Numerical com-

putations and analysis reveal several important facts about the laminate composites.

First, a larger longitudinal strain can be obtained by laminating compliant material

and stiff material with high dielectric contrasts. Second, between the two terms com-

posing the effective electromechanical coupling, the contribution from the oscillation

of the Maxwell stress plays a key role to enhance the effective longitudinal strain. The

mechanism is as follows. The composites have different dielectric properties which

cause the fluctuation of the electric field. A much larger electric field is then gen-

erated in the soft material. On the other hand, the electric field together with the

Maxwell stress in the hard material are relatively small. Thus we get a big jump of

the Maxwell stress between the two materials. This provides a force for a small scale

deformation field which contributes significantly to the effective longitudinal strain.

While the fluctuation of the electric field provides a mechanism to increase the longi-

tudinal strain, it also decreases the effective breakdown field. Another suggestion is

that an infinite longitudinal strain can be achieved by making sequential laminates.

Finally the thesis describes numerical experiments on particulate composites with

periodic microstructures. For different geometries, we compute the unit cell solu-

tions, and then the effective longitudinal strain using the effective properties derived

in Chapter 4. Numerical results shows that we can get a much larger effective longitu-

dinal strain from fiber like inclusions. The mechanism here is still the oscillation of the
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electric field as in the laminate case. The difference is that there is a strong squeeze-

stretch effect besides the shear stress. This squeeze-stretch effect is not present in

the laminate composite and maybe the reason for the larger strain of the particulate

composite than the laminate composite.

While this thesis gave a theoretical framework for the dielectric elastomers, it

is by no means the end of the story. One promising direction is to incorporate

the breakdown field. As we analyzed in Chapter 5, if both materials have their

own breakdown fields, no matter how we construct the microstructure, the effective

longitudinal strain can never exceed the maximum value of the longitudinal strains

that the two materials can achieve under their own breakdown fields. However, this is

a very loose bound. Thus the maximum effective longitudinal strain and the optimum

microstructure under the constraint of breakdown fields is an interesting and open

problem. A second open problem is the validity of the assumptions that lead to the

approximate model in this thesis.
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Appendix A

Small-strain Model for
Piezoelectric Material

A.1 Assumptions and Results

For piezoelectric elastomers, we assume the energy density function W satisfies A1

and A5 in Chapter 3 plus the following conditions:

B1. Assume that there exists a constant c independent of x, F and p0, such that

W (x, I, p0) > cp0 · p0 (A.1)

and

W (x, F, 0) > cdist(F, SO(N))2. (A.2)

B2. Denote

∂2W

∂p0∂F

∣∣∣∣
F=I
p0=0

= A,
∂2W

∂p2
0

∣∣∣∣
F=I
p0=0

= H−1,
∂2W

∂F 2

∣∣∣∣
F=I
p0=0

= C.

We assume
1

2
C(∇u)2 +

1

2
H−1p2

0 + A∇u p0 > 0, (A.3)

for any ∇u and p0. In addition, the functional

I0
1 :=

∫

Ω

1

2
C(∇u)2 +

1

2
H−1p2

0 + A∇u p0 dx (A.4)
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is lower semicontinuous.

B3. Assume there exist constant ρ1 and ρ2 such that for |p0| 6 ρ1, |G| 6 ρ2, we have

∣∣ W (x, I + G, p0)− H−1

2
p0 · p0 − 1

2
CGG− AGp0

∣∣

6 a(x) w1

(|G|, |p0|
) |p0|2 + b(x) w2

(|G|, |p0|
) |G|2.

Here w1, w2 → 0 as |p0| → 0, |G| → 0 monotonically, a(x), b(x) ∈ L1(Ω).

From the scale analysis for piezoelectric material in Section 2.4.2, if both the electric

field and the deformation field are of order ε, then the electric energy and the elastic

energy are all of order ε2. We rescale the energy by ε2 and define

Iε :=
1

ε2

∫

Ω

W (x, F ε, εpε
0 ) dx +

ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy

−ε0

2

∫

RN

∣∣∇yg
ε
∣∣2 dy +

∫

yε(Ω)

∇yg
ε · pε dy, (A.5)

where ϕε satisfies




∇y ·

[−ε0∇y(ϕ
ε + g) + pε χ

(
yε(Ω)

)]
= 0 in RN\yε(Γ),

ϕε ∈ D(
RN\yε(Γ)

)
.

(A.6)

Define I0 to be

I0 :=

∫

Ω

1

2
C(∇u)2 +

1

2
H−1p0 · p0 + A∇up0 dx

+
ε0

2

∫

RN

∣∣∇ϕ0

∣∣2 dx +

∫

Ω

∇g · p0 dx− ε0

2

∫

RN

∣∣∇g
∣∣2 dx, (A.7)

in which ϕ0 is the solution of




∇x ·

[−ε0∇x(ϕ
0 + g) + p0 χ(Ω)

]
= 0 in RN\Γ,

ϕ0 ∈ D(RN\Γ).

(A.8)
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Then we have the following theorem:

Theorem A.1 Assume Ω satisfies the strong local Lipschitz condition and belongs to

class Br0. Suppose the energy density W satisfies conditions A1 to A5 and B1 to B3,

then the functional Iε Γ-converges to functional I0 under the norm W1,t for yε and

the L2(Ω) weak norm for pε
0.

In addition, we have the following compactness result.

Proposition A.2 Under the same condition as in Theorem A.1, assume further the

material is pined on part of the boundary. Then if the energy functional Iε is bounded,

there exists a constant c, such that

∥∥∥∥
F ε − I

ε

∥∥∥∥
L2(Ω)

< c and
∥∥pε

0 − p0

∥∥
L2(Ω)

< c.

In addition, we have F ε → I inLt(Ω).

As a direct corollary of Theorem A.1 and Proposition A.2, we have

Theorem A.3 Assume Ω satisfies the strong local Lipschitz condition and belongs to

class Br0. Suppose the energy density W satisfies conditions A1 to A5 and B1 to B3.

If yε, pε
0 satisfies

Iε(yε, pε
0) ≤ inf

zε∈W1,t(Ω)

qε
0∈L2(Ω)

Iε(zε, qε
0) + ε,

uε = 1
ε
(yε − x) weakly convergent to u in W1,t(Ω) and pε

0 weakly convergent to p0 in

L2(Ω), then

1. I0(u, p0) 6 I0(v, q0), ∀ v ∈ W 1,2(Ω), q0 ∈ L2(Ω);

2. limε→0 Iε(x + εuε, pε
0) = I0(u, p0).

A.2 The Γ-limit of the energy functional

Proposition A.4 (Lower bound of the energy functional) Assume Ω satisfies

the strong local Lipschitz condition and belongs to class Br0. Suppose the energy



124

density W satisfies conditions A1 to A5 and B1 to B3. Then for any sequences yε → x

in W1,t(Ω), ∇uε = 1
ε
∇(yε − x) ⇀ ∇u in L2(Ω) and pε

0 ⇀ p0 in L2(Ω), we have

lim
ε→0

Iε > I0.

where Iε is defined in (A.5) and I0 is defined in (A.7).

Proof In this proof, we take gε(y) as gε
(
yε(x)

)
= g(x), the same as in the proof of

Proposition 3.8 and 3.14.

Exactly as in the proof of Proposition 3.14, we still have

∫

yε(Ω)

∇yg
ε · pε dy →

∫

Ω

∇xg · p0 dx as ε → 0, (A.9)

− ε0

2

∫

RN

∣∣∇yg
ε
∣∣2 dy → −ε0

2

∫

RN

∣∣∇xg
∣∣2 dx as ε → 0, (A.10)

and

lim
ε→0

∫

RN

∇yϕ
ε · ∇yϕ

ε dy >
∫

RN

∇xϕ
0 · ∇xϕ

0 dx. (A.11)

The only thing we need to prove is that for any uε ⇀ u in H1(Ω) and pε
0 ⇀ p0 in

L2(Ω),

lim
ε→0

1

ε2

∫

Ω

W (x, F ε, εpε
0 ) dx >

∫

Ω

1

2
C∇u∇u +

1

2
H−1p0 · p0 + A∇u p0 dx. (A.12)

Applying the truncation lemma to uε with m = 1, M = Mε yields truncation function

vε, which satisfies
∣∣∇vε

∣∣ 6 λε, 1 6 λε 6 Mε,

and

λ2
ε

∣∣Zc
u

∣∣ 6 c

ln(Mε)
, where Zu =

{
x : uε(x) = vε(x)

}
.

Now, define another set Zp for some Qε → +∞ to be decided later by,

Zp =
{

x ∈ Ω : |pε
0(x)| 6 1

2
Qε

}
.
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Denote by Zc
u, Zc

p the complements of Zu, Zp in Ω respectively.

Assume

Qε < ρ1ε
−1, Mε < ρ2ε

−1,

then

∣∣ε∇uε
∣∣ =

∣∣ε∇vε
∣∣ 6 εMε < ρ2 on set Zu,

∣∣εpε
0

∣∣ 6 Qεε < ρ1 on set Zp.

From assumption B3

1

ε2

∫

Ω

W (x, I + ε∇uε, εpε
0) dx

=
1

ε2

∫

Zu∩Zp

W (x, I + ε∇uε, εpε
0) dx

+
1

ε2

∫

Zc
u∪Zc

p

W (x, I + ε∇uε, εpε
0) dx

>
∫

Zu∩Zp

1

2
C∇vε∇vε +

1

2
H−1pε

0 · pε
0 + A∇vεpε

0 dx

−
∫

Zu∩Zp

a(x) w1

(
ε|∇vε|, ε|pε

0|
) |pε

0|2 + b(x) w2

(
ε|∇vε|, ε|pε

0|
) |∇vε|2 dx

>
∫

Zu∩Zp

1

2
C∇vε∇vε +

1

2
H−1pε

0 · pε
0 + A∇vεpε

0 dx

−c
(
w1(εMε, εQε) Q2

ε + w2(εMε, εQε) M2
ε

)
.

Choose

Mε = min
{
ε−

1
2 , w2(ε

1
2 , ε

1
2 )−

1
4 , |Zc

p|−
1
4

}
,

Qε = min
{
ε−

1
2 , w1(ε

1
2 , ε

1
2 )−

1
4

}
,

then w1(εMε, εQε) Q2
ε + w2(εMε, εQε) M2

ε → 0 as ε → 0.
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Thus we get

1

ε2

∫

Ω

W (x, I + ε∇uε, εpε
0) dx

>
∫

Ω

1

2
C∇vε∇vε dx +

∫

Zu∩Zp

1

2
H−1pε

0 · pε
0 dx

+

∫

Zu∩Zp

A∇vεpε
0 dx−

∫

Zc
u∪Zc

p

1

2
C∇vε∇vε dx.

Observe that

∫

Zc
p

1

2
C∇vε∇vε dx 6 c

∣∣Zc
p

∣∣ M2
ε 6 c

(|Zc
p|

) 1
2 → 0, as ε → 0,

and ∫

Zc
u

1

2
C∇vε∇vε dx 6 c λ2

ε

∣∣Zc
u

∣∣ 6 c

ln Mε

→ 0.

On the other hand, we have pε
0 χ(Zu ∩ Zp) ⇀ p0. Actually for any h(x) ∈ (L2(Ω))N ,

∫

Ω

h(x) · p0(x) dx = lim
ε→0

∫

Ω

h(x)pε
0(x) dx

= lim
ε→0

∫

Zu∩Zp

pε
0(x) · h(x) dx + lim

ε→0

∫

Zc
p∪Zc

u

pε
0(x) · h(x) dx,

∫

Zc
p∪Zc

u

pε
0(x) · h(x) dx 6

∥∥pε
0

∥∥
L2(Ω)

∥∥h(x)
∥∥

L2(Zc
p∪Zc

u)
→ 0, as ε → 0.

Hence ∫

Ω

h(x) · p0(x) dx = lim
ε→0

∫

Zu∩Zp

pε
0(x) · h(x) dx,

which means pε
0 χ(Zu ∩Zp) ⇀ p0. From this and the weak convergence of ∇vε to ∇u,

together with the lower semicontinuity property in (A.4), we get

lim
ε→0

1

ε2

∫

Ω

W (x, F ε, εpε
0) dx >

∫

Ω

1

2
C∇u∇u +

1

2
H−1p0 · p0 + A∇up0 dx. (A.13)

Putting (A.9), (A.10), (A.11), and (A.13) together, we have limε→0 Iε > I0. ¤

Proposition A.5 (The existence of the recovery sequences) Under the same
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condition with Proposition A.4, there exist a sequence yε → x in W1,t(Ω), ∇uε =

1
ε
∇(yε − x) ⇀ ∇u in L2(Ω) and a sequence pε

0 ⇀ p0 in L2(Ω), such that

lim
ε→0

Iε = I0.

where Iε is defined in (A.5) and I0 is defined in (A.7).

Proof First, (A.9) and (A.10) still hold for any sequences ∇uε ⇀ ∇u in L2(Ω) and

pε
0 weakly convergent to p0 in L2(Ω). Next, let us prove that

lim
ε→0

ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy =

ε0

2

∫

RN

∣∣∇xϕ
0
∣∣2 dx as ε → 0, (A.14)

if pε
0 → p0 in L2(Ω).

Denote ϕε
j

(
yε(x)

)
= ϕ0

j(x), ϕ0
j ∈ D(RN\Γ) is the solution of (3.23). Let us derive

the equation for ∇yϕ
ε
j in the y-space for each fixed ε and j. Actually, ∀ψ(y) ∈

D
(
RN\yε(Γ)

)
, define ψ

(
y(x)

)
= ψε

x(x), then ψε
x(x) ∈ D(RN\Γ). This is because

ψε
x(x) ∈ L2(RN), ∇xψ

ε
x(x) = Fε∇yψ(y) ∈ L2(RN) and ψε

x(Γ) = ψ
(
yε(Γ)

)
= 0.

Now we have

∫

RN

ε0

Jε

FεF
T
ε ∇yϕ

ε
j · ∇yψ(y) dy =

∫

RN

ε0∇xϕ
0
j · ∇xψ

ε
x dx

=

∫

RN

−ε0∇xg · ∇xψ
ε
x + pj

0 · ∇xψ
ε
x dx

=

∫

RN

(
−ε0

Jε

FεF
T
ε ∇yg

ε · ∇yψ + Fεp
ε
j · ∇yψ

)
dy,

where pε
j

(
y(x)

)
=

pj
0(x)

J(x)
.

Since D
(
RN\yε(Γ)

)
is dense insideD(

RN\yε(Γ)
)
, ε0

Jε
FεF

T
ε ∇yϕ

ε
j ∈ D−1

(
RN\yε(Γ)

)
,

Fεp
ε
j ∈ D−1

(
RN\yε(Γ)

)
, the above equality holds for any ψ(y) ∈ D(

RN\yε(Γ)
)
. Thus

the equation for ∇yϕ
ε
j is

∇y ·
[

ε0

Jε

FεF
T
ε ∇yϕ

ε
j +

ε0

Jε

FεF
T
ε ∇yg

ε − Fεp
ε
j χ

(
yε(Ω)

) ]
= 0. (A.15)
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Denote by φε
j the solution of




∇y ·

[−ε0∇yφ
ε
j − ε0∇gε + pε

j χ
(
yε(Ω)

)]
= 0 in RN\yε(Γ),

φε
j ∈ D

(
RN\yε(Γ)

)
,

(A.16)

then the equation for ϕε − φε
j is




∇y ·

[
ε0∇yϕ

ε − ε0∇yφ
ε
j + (pε

j − pε) χ
(
yε(Ω)

) ]
= 0 in RN\yε(Γ),

ϕε − φε
j ∈ D

(
RN\yε(Γ)

)
.

(A.17)

Thus

∥∥∇yϕ
ε −∇yφ

ε
j

∥∥
L2(RN )

6
∥∥pε − pε

j

∥∥
L2(yε(Ω))

6 c
∥∥pε

0 − pj
0

∥∥
L2(Ω)

6 c
( ∥∥pε

0 − p0

∥∥
L2(Ω)

+
∥∥p0 − pj

0

∥∥ )

→ 0 as ε → 0 and j → +∞.

On the other hand, the equation for φε
j − ϕε

j is

∇y · (ε0∇yφ
ε
j − ε0∇yϕ

ε
j)

= ∇y · pε
j χ

(
yε(Ω)

)− ε0∇y · ∇yg
ε − ε0∇y · ∇yϕ

ε
j

+∇y ·
[

ε0

Jε

FεF
T
ε ∇yϕ

ε
j +

ε0

Jε

FεF
T
ε ∇yg

ε − Fεp
ε
j χ

(
yε(Ω)

) ]

= ∇y ·
[(

ε0

Jε

FεF
T
ε − ε0I

)
∇yϕ

ε
j +

(
ε0

Jε

FεF
T
ε − ε0I

)
∇yg

ε + (I − Fε) pε
j χ

(
yε(Ω)

) ]
.

The right hand side of the above equation goes to zero as ε → 0 for any j.
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Now

∥∥∇yϕ
ε
∥∥
L2(RN )

6
∥∥∇yφ

ε
j

∥∥
L2(RN )

+
∥∥∇yφ

ε
j −∇yϕ

ε
∥∥
L2(RN )

6
∥∥∇yφ

ε
j

∥∥
L2(RN )

+ c
( ∥∥pε

0 − p0

∥∥
L2(Ω)

+
∥∥p0 − pj

0

∥∥
L2(Ω)

)

6
∥∥∇yϕ

ε
j

∥∥
L2(RN )

+
∥∥∇yϕ

ε
j −∇yφ

ε
j

∥∥
L2(RN )

+ c
( ∥∥pε

0 − p0

∥∥
L2(Ω)

+
∥∥p0 − pj

0

∥∥
L2(Ω)

)

6
∥∥∇xϕ

0
j

∥∥
L2(RN )

+
(∥∥∇yϕ

ε
j

∥∥
L2(RN )

−
∥∥∇xϕ

0
j

∥∥
L2(RN )

)
+

∥∥∇yϕ
ε
j −∇yφ

ε
j

∥∥
L2(RN )

+ c
( ∥∥pε

0 − p0

∥∥
L2(Ω)

+
∥∥p0 − pj

0

∥∥
L2(Ω)

)
.

In the right hand side, for each fixed j, as ε → 0

∥∥∇yϕ
ε
j

∥∥
L2(RN )

−
∥∥∇xϕ

j
0

∥∥
L2(RN )

→ 0,

∥∥∇yϕ
ε
j −∇yφ

ε
j

∥∥
L2(RN )

→ 0,

∥∥pε
0 − p0

∥∥
L2(Ω)

→ 0.

Next, let j → +∞,
∥∥p0 − pj

0

∥∥
L2(Ω)

→ 0. Thus we get
∥∥∇yϕ

ε
∥∥
L2(RN )

6
∥∥∇yϕ

0
∥∥
L2(RN )

.

This means as long as
∥∥pε

0 − p0

∥∥
L2(Ω)

→ 0,

lim
ε→0

ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy =

ε0

2

∫

RN

∣∣∇xϕ
0
∣∣2 dx as ε → 0.

Now, The only thing left is to find a sequence uε ⇀ u in H1(Ω) and pε
0 → p0 in

L2(Ω), such that

lim
ε→0

1

ε2

∫

Ω

W (x, F ε, εpε
0) dx =

∫

Ω

1

2
C∇u∇u +

1

2
H−1p0 · p0 + A∇up0 dx.

Define Zp =
{

x : |p0(x)| 6 1
2
Qε

}
for some Qε to be decided.

We construct pε
0 as

pε
0 =

{
p0 if x ∈ Zp,

0 if x ∈ Zc
p.
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Then pε
0 → p0 in L2(Ω) since

∫

Ω

∣∣pε
0 − p0

∣∣2 dx =

∫

Zc
p

∣∣p0

∣∣2dx → 0 as ε → 0.

We construct the recovery sequence uε as the truncation of u for m = 1, M = Mε to

be decided. Assume Mε < ρ2ε
−1 and Qε < ρ1ε

−1, then ε∇uε < ρ2 and εpε
0 < ρ1 on

the whole domain Ω. Now we can use Taylor expansion.

1

ε2

∫

Ω

W (x, I + ε∇uε, εpε
0) dx

6
∫

Ω

1

2
C∇uε∇uε +

1

2
H−1pε

0 · pε
0 + A∇uεpε

0 dx

+

∫

Ω

a(x) w1

(
ε
∣∣∇uε

∣∣, ε
∣∣pε

0

∣∣) ∣∣pε
0

∣∣2 + b(x) w2

(
ε
∣∣∇uε

∣∣, ε
∣∣pε

0

∣∣) ∣∣∇uε
∣∣2 dx

6
∫

Ω

1

2
C∇uε∇uε +

1

2
H−1pε

0 · pε
0 + A∇uεpε

0 dx

+ c
(
w1(εMε, εQε) Q2

ε + w2(εMε, εQε) M2
ε .

)
.

Take

Mε = min
{
ε−

1
2 , w2(ε

1
2 , ε

1
2 )−

1
4

}
,

Qε = min
{
ε−

1
2 , w1(ε

1
2 , ε

1
2 )−

1
4

}
,

then

w1(εMε, εQε) Q2
ε + w2(εMε, εQε) M2

ε → 0 as ε → 0.

Therefore,

lim
ε→0

1

ε2

∫

Ω

W (x, I + ε∇uε, εpε
0) dx

6 lim
ε→0

∫

Ω

1

2
C∇uε∇uε +

1

2
H−1pε

0 · pε
0 + A∇uεpε

0 dx

=

∫

Ω

1

2
C∇u∇u +

1

2
H−1p0 · p0 + A∇up0 dx. (A.18)
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(A.18) comes from the fact pε
0 → p0 and ∇uε → ∇u. Actually,

∫

Ω

∣∣∇uε −∇u
∣∣2 dx =

∫

Zc
u

∣∣∇uε −∇u
∣∣2 dx

6 2

∫

Zc
u

∣∣∇uε
∣∣2 +

∣∣∇u
∣∣2 dx → 0 as ε → 0.

This completes the proof. ¤

A.3 The Compactness of the Electric and Elastic

Fields

Now, let us prove the compactness result for the piezoelectric material.

Proof of Proposition A.2

In this part, we take gε(y) the same as in the proof of Proposition 3.5 and 3.6. That

is, assume there exist Ω0
y and Ω1

y such that Ω0
y ∩ Ω1

y = ∅, Ω0
y ⊃ yε(Γ0), Ω1

y ⊃ yε(Γ1)

for all ε. Define function g(y) ∈ C∞0 (RN) as a fixed function in y-space, satisfying

g(y) ≡ g0 in Ω0
y and g(y) ≡ g1 in Ω1

y. Let gε(y) = g(y) for each ε. Then the quantity

−ε0

2

∫

RN

∇g(y) · ∇g(y) dy

is a constant. As in the proof of Proposition 3.5, if Iε 6 c, there exists a constant c̃
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such that

c̃ > Iε +
ε0

2

∫

RN

∣∣∇yg
∣∣2 dy

=
1

ε2

∫

Ω

W (x, F ε, εpε
0) dx +

ε0

2

∫

RN

∣∣∇yϕ
ε
∣∣2 dy +

∫

yε(Ω)

∇yg · pε dy

> 1

ε2

∫

Ω

W (x, F ε, εpε
0) dx− c

∥∥∇yg
∥∥

L∞(RN )

∥∥pε
0

∥∥
L2(Ω)

> 1

2

[
1

ε2

∫

Ω

W (x, F ε, 0) dx +
1

ε2

∫

Ω

W (x, I, εpε
0) dx

]

−c
∥∥∇yg

∥∥
L∞(RN )

∥∥pε
0

∥∥
L2(Ω)

> 1

2

[ c1

ε2

∥∥F ε − I
∥∥t

Lt +
c2

ε2

∥∥εpε
0

∥∥2

L2(Ω)

]
− c

∥∥∇yg
∥∥

L∞(RN )

∥∥pε
0

∥∥
L2(Ω)

.

Thus there exists a constant c such that

∥∥pε
0

∥∥
L2(Ω)

6 c,

∥∥∥F ε − I

ε

∥∥∥
L2(Ω)

6 c,

F ε → I in Lt(Ω).

¤
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