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“A Ph.D. does not mean you have mastered the fundamentals of a field,
created new knowledge, or furthered human understanding; these should
be your goals when working on a Ph.D. A Ph.D. means you can choose

to do something difficult and keep at it for five years.”

— Dr. Terry Holcomb, in the presence of an apparently disinterested adolescent.
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Thanks Dad, I really was listening.
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IMPROVED BIASED REGRESSION
WITH PROCESS APPLICATIONS

Tyler Reed Holcomb

Abstract

This work examines biased linear regressors. Two major classes are identified:
Bayesian estimators and restriction regressors. Both classes are useful for process
applications, but the latter lack much of the unifying theory of the former. The
properties of restriction regressors are examined and the characteristics of a “good”
restriction regressor are expressed as a null hypothesis. Based on this characterization
of “good,” a novel restriction regressor is developed directly from the classical statis-
tical concept of significance. This new method is called Significance Regression (SR).
For scalar output problems, the popular Partial Least Squares algorithm (PLS) is a
method for computing SR. For multiple output problems, SR yields a novel algorithm
and PLS is sub-optimal.

SR is described using linear operator theory; this description allows facile gener-
alization. SR is generalized for measurement error models and for robust regression
methods. Analysis of these two extensions in turn provides insight an area that is
currently dominated by useful heuristics with sparse mathematical grounding: scaling
the data.

The theoretical results are illuminated by a variety of examples. First, several of
the key points of the study are examined via simulation. Next, restriction regression
is used in a robust inferential controller for a packed-bed react and for the modeling
of cellular metabolism. Recommendations for implementing significance regression

and suggestions for future research are provided.
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Nomenclature

In general, script letters represent Hilbert spaces, capital letters represent matrices,
lower case letters represent column vectors, and Greek letters represent scalars. Es-
timates are denoted by a tilde, “”. The dimensions of matrices are denoted by
subscripted n’s.

D,

V’ideal
X

};

4

n; X n;
n; X ny
g X Ny

as appropriate
Ng X Ng

Ng X Ny
n; X Mg

g X N;
N X Ny

1 Xny
n; X ny
g X Ny

Ng X N

1y X 1y

matrices

is the symmetric non-singular “input” scaling matrix.
See equation 8.1

is the symmetric non-singular “output” scaling matrix.
See equation 8.2

1s the measurement noise corrupting the input data.
ET =le; ey ... en,] See equation 6.2.

1s the identity matrix.

is matrix of weights for the weighted least squares objec-
tive function. See equation 7.3

1s the output error covariance matrix.

is the “true” regression matrix for vector output prob-
lems. See equation 5.1.

1s the “true” input data. See equation 6.2.

is the matrix whose range defines the search space for b.
See equation 2.8.

1s the estimate of the variance matrix used in algorithm
6.1. See equation 6.11.

1s the estimate of the variance matrix using the unknown
quantity r. See equation 6.8.

1s the input data; each row corresponds to one input sam-
ple. Thus, X7 = [2; z ... @]

is the output data for vector output problems. Each
row corresponds to one output sample. Thus, Y7 =
[yl Y2 .- ?/m} :

is the input measurement error covariance matrix. See
(AT), page 58.
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scalar
scalar
scalar
scalar

is the biased estimate of r. See equation 2.8 .

is the measurement noise corrupting output. See equa-
tions 2.1.

is the measurement noise corrupting the jth input data
sample in the measurement error model See equation 6.2.
is the least-squares optimal predictor. See equation 6.36.
is the component of r in the search space. ¢; = Wy,

is the component of r orthogonal to the search space.
g =W y

is the “true” regression vector. See equations 2.1 and 6.2.
the Ordinary Least Squares (OLS) regressor. See equa-
tion 2.4.

is the asymptotically unbiased estimate of r for the mea-
surement error model. See equation 6.3

is a vector locally defined. Any given v may or may not
relate to any other v.

is the jth input data sample.

is the measured output data for scalar output problems.
See equations 2.1 and 6.1.

is the regression prediction for scalar output data.

is the ith output data sample for vector output problems.
is the vector produced by the ith input for all samples.
Thus, X = [z1 ... zn,].

is the jth component of y. y = [¢1,..., ¥y, ].

is the test statistic for w and a given y. See equation 3.2
is the maximum of 72(w,y) for w € Range(W2,).

is the test statistic for S(-) and a given X and Y. See
equation 4.4

dimensional descriptors

ng is the number of “significant subspaces” to be generated.

n; 1s the number of inputs.

n, 1s the number of outputs.

ns 1s the number of samples.

n, is dimension of the allowable space in which to search for further w;” t
For scalar output problems, n, = n; — ¢ + 1.

N, 1s the rank of W,



|

|-

I

IR
-1l

(W V]

<

&

MSE(+)

.’.>

()

PRESS(-)
Pr{event}

Range(+)

Rank(-)
Span(-)

Tr(-)
Var(+)

@

18
15

XViil

operators

is the absolute value.

is the Euclidean norm. a = /< a,a > .
is the matrix 2-norm. ||Alj; = \/ max,exn: 01 AT Av.
is the Frobenius (matrix Euclidean) norm. [|A|lr = V< AA> =

\ 2 a?,j} where q;; are the components of A.

is the matrix formed by placing W and V side-by-side.

is the inner product. For matrices A and B, < A, B > = Tr(AB7T).

1s the expectation.

is the Mean Square Error. See equation 2.9.

is the PRedicted Error Sum of Squares. See equations 2.10 and 2.11.
is the probability of event occurring.

is the range of an operator. For a matrix, the range is the span of the
column vectors.

is the dimension of the range of an operator.

is the space defined by all linear combinations of the elements in a set.
is the trace, the sum of the diagonal elements of a matrix.

1s the variance.

is the Cartesian (orthogonal) product when applied to spaces and is the
outer product when applied to vectors. For example, ®* @ R = R2*3.
is direct (orthogonal) sum. For example, R?HR? = R? if the two spaces
are complementary.
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the input space.
the space of linear operators mapping from 7 to O. In this study,
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.w.

the output space.
the set of all allowable rank one linear operators. F C M.
the space spanned by the i-1 previously determined “significant

subspaces.”

1s

the set of all possible rank one linear operators orthogonal to the -1

previously determined “significant subspaces.” F & F; = F



Preface

While the author does desire to complete his studies, this was not the primary moti-

vation for this thesis. The primary goal was to use the common language of statistics
to understand a successful chemometric method and to communicate this method to
other areas of applied statistics such as econometrics, technometrics, and biometrics.
In doing so, this work builds a framework by which myriad restriction regressors can
be described, related, compared, and evaluated. This work is also a user’s guide for
those who wish to employ the recently developed significance regression algorithm.
Readers for whom this is the primary objective may wish to go directly to the rec-
ommendations of section 12.2.

An intended implication of this work is the removal of the “hard modeling” vs.
“soft modeling” dichotomy from the debate surrounding the successful but heuristic
partial least squares method. The spread of PLS from chemometrics has been slowed
by “hard modelers,” those who insist on rigorous statistical treatments, being uncom-
fortable with the sensible but ad hoc motivations supporting PLS. (To be fair, work
such as Helland’s and Hoskuldsson’s can hardly be termed ad hoe, but the debate con-
tinues all the same). On the other side of the fence, the “soft-modelers” have been
convinced of PLS’s effectiveness for almost half of a decade and have been impatient
with their “hard” colleagues. The discussion following Stone and Brooks’s recent
article [88] is a good example of the debate. In this work, PLS is derived directly
from the “hard modeling” concept of statistical significance. In this sense, the “soft
modelers” were right all along: PLS really is a “good” method for which the theory
is just now catching-up with practice. On the other hand the “hard modelers” were

also correct. Translating PLS to new problem domains and improving PLS is much



clearer when using a rigorous framework. With this dialectic resolved, the author
looks forward to new synergisms between “hard” and “soft” modelers.

Many important regression results have been omitted; this work is not a general
survey of regression. Numerous successful (and rigorous) regressors are mentioned
only in passing and are not analyzed. Also, no new probabilistic tools are developed
for probing the abstract foundations of regression problems; this work uses ideas
familiar to any with a solid grounding in statistics. And lastly, this thesis is not
a compendium of the author’s graduate experience; numerous successful ideas and

results not germane to the purpose of this thesis have been omitted.
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Chapter 1

Introduction

1.1 The Problem

Fitting straight lines to data constitutes one of the most basic problems in science.
One of the early experiences of all scientists is plotting X-Y data and using a ruler
to “fit” the data. The problem has a long, proud history: Gauss published the
least-squares method for fitting straight lines in 1809 [19] and applied the method
to the triangulation of Hannover in 1826. For this surveying problem, “the least
squares method served notoriously well [88].” Yet the least-squares method for linear
models, termed ordinary least squares (despite it’s extraordinary pedigree and scope
of application), has numerous deficiencies. The following brief example illustrates one
such problem.

When operating a chemical reactor, one is typically interested in the outlet con-
centration of the chemical species being produced; unfortunately, precise composition
measurements are typically expensive and unreliable. Temperature measurements,
which are known on physical grounds to be closely related to the outlet concentra-
tions, are usually readily available, cheap, and reliable. One would like to be able to

determine compositions from temperatures. To aid such an effort one could gather



Temperature No. 1 Temperature No. 2 Composition
1.1 1.0 2.26
—-1.3 —-1.2 —2.44
0.1 0.0 0.06
-2.3 —2.4 —4.52

Table 1.1. Temperature and composition data for a hypothetical chemical reactor.
The data are expressed as deviations from a nominal operating point.

data on temperatures and concentrations from the reactor at various operating condi-
tions; such data for a hypothetical reactor are shown in Table 1.1. Armed with data,

one follows Gauss’s lead by first assuming one’s data conforms to the “classical” model

y=AXr+e (1.1)
where
1.1 1.0 2.26
-13 -1.2 —2.44
N = , = 1.2
X 01 00| @Y 0.06 (12)
—23 —24 —4.52
The “noise” is described by e, while r represents the “linear model” or “linear
- . . . . - 1
predictor” one desires. Intuitively, one might expect that for this data r =
1
might be reasonable. Performing the regression via Gauss’s “notoriously successful”
—11.0 , L . N
OLS method produces 7 = . Not only does 7 seem intuitively incorrect,
12.2

deviates the model used to generate the data (any r whose elements sum to 2) by
40% ! For this problem, OLS is notorious, but not successful. What went wrong?
Inspecting Figure 1.1 reveals the problem. In this figure the two temperatures
measurements for each sample are plotted; each point represents one row of X. One
immediately sees that the temperature samples themselves all lie near a line; the

input data are “collinear.” The collinearity results from the fact that the input



Temperature 2

Temperature 1

[
Figure 1.1. Plot of the two temperatures for the four samples in Table 1.1

(temperature) data are strongly correlated. The effect illustrated here is a general
one: OLS will be unreliable when the input data are collinear (correlated). Nature and
scientists alike rarely practice orthogonal experimental design, so many multivariable
data sets exhibit input correlations and call for “improved” regression methods .
Before rushing to heed this call, two terms need to more clearly defined: regression
and collinearity. Francis Galton, a noted scientist of the prior century, believed that
the laws of inheritance caused population extremes to “regress toward the mean.”
To verify this, the English statistician Karl Pearson performed a linear fit between
the heights of fathers and sons to test Galton’s supposition; thereafter “regression”
became associated with building linear models from data [76, p. 256]. While the

study heredity is an important application of statistics, this work takes a more general



ot

viewpoint and defines regression to be the process of either estimation or prediction.
Estimation is the effort to identify the “true” but unknown parameters of the assumed
model from the data; prediction is the use of data to form a predictor of outputs from
a function of inputs. While estimation and prediction are closely related, one should
keep the distinction clear in one’s mind. The two problems usually call for different
(albeit similar) methods.

The word “collinearity” is used in this thesis in the statistical sense. Strictly
speaking, the temperatures in the above example are not collinear: the columns of
X are linearly independent. However, as Figure 1.1 revealed, the temperatures are
“nearly-collinear” — the data lie near a line. Throughout this treatise “collinear”
will mean that the input data lie near hyper-plane whose dimension is less then n;,
the number of inputs. This “nearness” can be effectively quantified by the condition
number of X; the condition number is defined as the square root of the ratio of the
maximum and minimum eigenvalues of X7 X [21]. Thus, problems with correlations
among the inputs lead to “ill-conditioned” data (data with “large” condition number)

and are considered collinear problems.

1.2 Two General Approaches for Treating
Collinearity

To address the collinearity issue, consider again the ordinary least-squares (OLS)
regressor

7= argmin(y — Xo)l(y — Xu). (1.3)

One could consider changing the objective function, as discussed in chapter 7, but
most “improvements” to OLS result from recognizing that 7 is too “free” to drive

down the least-squares objective function in “unreasonable” ways, and thus some



type of condition needs to be added to equation 1.3 to constrain this “freedom.” The
two general methods for constraining an optimization problem are soft constraints
and hard constraints. When one wishes to keep 7 “near” some region or “away” from
some other region of the search space, but the boundaries are not precise, one adds a

penalty functional f(-) to equation 1.3 to encode this soft constraint:
7= argmin(y — Xo)l(y = Xv) + f(v). (1.4)

However, if the boundaries of the region to which 7 should be restricted, say R, are

known precisely, then one has an optimization problem with hard constraints:
= arg mi’?(y — Xu)T(y - Xv). (1.5)
veER

In this study regressors related to equation 1.4 are called “Bayesian regressors”
because these regressors can be derived directly from a Bayesian viewpoint: the
penalty function encodes one’s prior beliefs about a problem. A large number of
“improved” regressors, including ridge regression [34] belong to this class. These
regressors now have much unifying theory [24] and can be considered reasonably well
understood [59]. Regressors related to equation 1.5 include stepwise regression [14],
principal components regression (PCR) [45], and partial least squares (PLS) [101];
these regressors have been as conspicuously successful as the Bayesian regressors.
However these regressors lack mnch the unifying theory of their Bayesian counterparts.
In some important cases, even the description of an unbiased regressor remains an
open problem [90]. This thesis seeks to move the “hard constraint” regressors a little
closer to “reasonably well understood™ status. To do so, the work focuses on the most
common form of this regressor:

T = arg min (y— Xv) (y — Xv). (1.6)

ve{linear subspace}
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Such regressors will be called “restriction regressors” in this work because the re-
gressor is restricted to be in linear subspace. Stepwise regression, PCR, and PLS are
among the better known restriction regressors. While most recognize that these meth-
ods are related [20, 31] and some attempts have been made to unify these approaches
via elaborate objective functions [38, 88|, much remains to be discovered about the
relations between the various restriction regressors and the relative strengths of the

different methods.

1.3 Thesis Overview

This thesis first examines general properties of biased regressors. After a brief review
of regression, the estimation and prediction properties of restriction regressors are
analyzed. Based on this analysis a key property for a restriction regressor to be “good”
1s presented as a null hypothesis. A test statistic is derived to test this null hypothesis.
Defining a method to maximize “good” in the guise of the test statistic leads to the
derivation of a new restriction regressor, the significance regressor (SR). To ease
generalization, the SR method is defined for both regression and factor analysis using
linear operator theory.

With restriction regressors analyzed and SR defined, the work turns to addressing
the needs of practitioners. First elucidated are vector output problems. As shown
in this analysis PLS is similar to the SR factor analysis method but sub-optimal for
regression. Next, one of the more glaring assumptions of Gauss’s approach is inter-
rogated: what are the consequences if the inputs (X) do have measurement errors?
The SR method is applied to the measurement error model (MEM) to arrive at a new
algorithm for these problems. Moreover, the performance of methods based on the
classical model (equation 1.1) is examined for use with the MEM. After the issues of
measurement errors are illuminated, the difficulties of robustly handling outliers are

spotlighted. A robust SR algorithm is derived that maintains the robustness prop-



erties of M-estimators. In the course of this derivation a SR algorithm for weighted
least squares is also derived. From here the inquiry reveals the skeleton in the closet of
most restriction regressors: scaling. In examining the scaling problem one is reminded
that restriction regressors differ from Bayesian regressors only in the manner in which
the constraints are posed; determining the scaling relies heavily on the practitioner’s
a priori beliefs. However theoretical examination of SR does provide some guidance.

After ispecting the analysis of problems faced by practitioners this work next
looks into real problems. First, the points and claims made in the course of analysis
are illustrated via numeric simulation. Next, restriction regression is used for the
robust inferential control of a packed bed reactor. The resulting robust inferential
controller significantly outperforms a Kalman-filter based controller. Lastly, smaller
but considerably more complicated chemical reactors are investigated: restriction
regression 1s used to build a metabolic model to aid genetic engineering. Here the
methods that were used previously by genetic engineers were simply inadequate; SR
provides the tools to carry the analysis forward. More interesting than the success of
SR metabolic modeling were the unmet challenges: this difficult problem highlighted
both the strengths and shortcomings of the current SR framework.

Drawing from this practical experience, the theoretical results are compiled into a
general procedure for performing restriction regression. The procedure incorporates
the collinearity, measurement error, and robustness results produced in this study
but 1s less complicated than some currently popular restriction regressors. Finally,

glimpses are given of several promising avenues of future research.
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Chapter 2

Biased Linear Regression

2.1 Introduction

This chapter examines the “classical” linear regression model
y=Xr+e, (2.1)

where X € R™*" and y € R"* are known, r € R is an unknown vector, and e € R"
is an unobservable error vector. Unless otherwise stated, £ (¢) = 0 and £ (6ef ) = o]
where & () denotes the expectation. Moreover, this work will assume that X and y

have been “centered.” so that the full model 1s actually

1 1
(y—vo |t )=(X=1|: |al)y+e (2.2)
1 1

The “centering” variables xy and vy represent either pre-specified nominal values
0 (
or the sample means of X and y respectively. While Moran has shown that if X

consists of samples from a multivariate distribution use of the sample means can
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cause unreliable estimation [65], this work will proceed using “mean centering” when
a relevant “nominal point” is not available. “Mean centering” is widely used, and
moreover, frequently correct [86].

For the “classical” model (equation 2.1) the minimum-variance unbiased estimate
of r has long been known to result from ordinary least-squares (OLS) regression,

namely

o= arg 13}%}},(3/ — Xo)T(y — Xv) (2.3)
= (XTX)7'XTy. (2.4)

Equation 2.4 assumes (X7 .X) is non-singular; this assumption is maintained through-
out this thesis. The variance of 7, Var(rr) = o0?(XTX)"!, can be unacceptably large,

»

especially if X is “ill-conditioned.” If the condition number [21] is “large,” then at
least one direction in (X7 X)~! (relatively) magnifies o2 and causes “large” variances
in 7. Thus collinear input data tend to produce unreliable regressors when OLS is
used.

A natural approach for improving upon OLS is to “discourage” various values of

7 by adding a quadratic penalty function to the optimization:

o

= arg 13%&1( (y — Xo)l(y — Xv) + 0T Av (2.5)

= (XTX + 4)7'xTy (2.6)

where A € R"*" is a positive semi-definite matrix. Such regressors will be called
Bayesian regressors in this study. These regressors include the generalized ridge
regressor [25], the mixed estimator [91], the linear minimax estimator [70], and the
Bayes estimator for a zero mean a priori distribution for r [55]. See Gruber [24] for
extensive analysis of these regressors and how they relate to one another.

A different but widely used approach is to impose linear equality constraints on
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the solution to equation 2.3. This constrained optimization problem is

b = arg i — Xv)T(y — X 2.7
arg _ain (y — Xv)(y — Xv) (2.7)
= WWIXTxw)"'wixty (2.8)

where W € R"*"w and WTW = I. Such regressors will be called restriction regressors
in this study, are analyzed in general in section 2.3, and are the basis for this thesis.
Clearly, the two methods are simply different sides of the same coin: if 4 = aWW T
then as a — oo equation 2.5 and equation 2.7 become equivalent. Although these
two general approaches lead to very different regression methods, all methods that
can be described by either optimization remain fundamentally linked.

Another important class of constraints are linear inequality constraints (e.g., all
parameters should be non-negative). This type of constraint arises frequently in
modeling problems where the parameters have physical meanings. For instance, if
one was performing regression on stress and strain data to compute a modulus of
elasticity, one would typically only countenance positive numbers as “answers.” Since
these are by definition “hard” constraints, equation 2.7 is the natural departure point
for such an investigation. Indeed, if linear inequality constraints are added to equation
2.7 then the minimization becomes the well-studied quadratic programming problem,

for which efficient algorithms are widely available [15].

2.2 Measures of “Improvement”

In addition to being “optimal” in the sense of equation 2.3, OLS is an “unbiased”
estimator: & (7') = r. However, both Bayesian regressors and restriction regressors
are “biased” estimators since in general & (b) # r. Thus a more general quantita-

tive measure of “improvement” than the variance is needed to compare the various
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regressors. The two most common such measures are the mean squared error (MSE)

and the predicted error sum of squares (PRESS). The MSE is defined as

MSE(7) = & ((7 — r)(7 = 7)") (2.9)
while the PRESS is defined as

PRESS(b) = (7 — y)"(§ — v) (2.10)

where 7 = Xb. Typically the X and y used for evaluating the PRESS are different
from the X and y used to create b. To increase understanding of the PRESS, consider

computing the PRESS using a new set of data, X,.,. Then

£ (PRESS(D)) = & (Ta( (b~ )" XL, Xew(b— 1) ) + & (Tx(e)). (2.11)

new

In this light, the PRESS and MSE are clearly related. As shown by Gruber [24] this
relation can be made precise by means of Theobald’s Theorem [92]. Let by and by be

estimators of the parameter vector € R™. Then
E((by = )by =1)7) <€ ((by = )(ba = )T) (2.12)
if and only if for every positive semi-definite matrix 4 € Rxm
E((by =) Aby = 1)) < € ((by— )T A, — 1)) . (2.13)

For any two matrices 4, B € R**" A > Bis A — B is a positive semi-definite
matrix. Therefore if

MSE(b;) — MSE(b,) (2.14)
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is a positive semi-definite matrix, then & (PRESS(BI)) > & (PRESS(EQ)); the con-
verse may not be true. Additionally, one can see that using equation 2.11 involves
assuming future inputs will be “similar” to past inputs. If X X,., is descriptive of
future X'’s, then equation 2.11 is clearly a measure of predictive performance. How-
ever, if the future inputs will have markedly different characteristics, or if the point
of computing b is to estimate r, then the PRESS may give misleading indications.

Therefore the suitability of the PRESS or MSE will depend on the application. See,

for example, chapters 12 and 13 of Ljung [56].

2.3 Properties of “Restriction Regressors”

A variety of widely-used regression methods are restriction regressors, including step-
wise regression [14] and Principal Components Regression [84]. For stepwise regres-
sion each column would consist of unit vectors describing coordinate axes. For exam-

ple if one chooses to use the second and third of three variables, then

00
W=110
01

For principal components regression W would be built from the principal compo-
nents of X. These two methods are widely used and accepted. However, a so-called
“soft-modeling” tool, the partial least squares (PLS) [101], is currently considered by
many practitioners to provide superior prediction [20]. Though not immediately ap-
parent in some descriptions, PLS is a restriction regressor [30]. Additionally, several
restriction regressors have been put forward recently including continuum regression
[88] and a related method due to Lorber and coworkers [58]. Many of these methods
have been successful on specific examples. However, these methods have heuristic
motivations and are difficult to describe, analyze, or compare using classical statisti-

cal methods. Additionally this lack of a statistical foundation has led many of these



methods to rely on cross-validation to answer questions traditionally analyzed by hy-
pothesis testing. To lay the foundation evaluating these various methods this section
outlines general properties shared by all restriction regressors; however, a compara-
tive study of these various methods in light of these results is beyond the scope of
the current effort.

Throughout the remainder of this section, assume that W € R"*" has been
chosen independent of the error e and that the columns of W are orthonormal. Ad-
ditionally, define W+ such that [W WHT[W W] =T and r = W, + Wg,, where

¢1 € R and ¢ € R, One outstanding property of restriction regressors is
Var(F) > Var(WW7TF) > Var(b). (2.15)

One expects that since b can only vary over a subspace of R™ that the variance of a
restriction regressor would be less than the variance of the OLS regressor. However,
even when 7 is projected into Range(11) the variance of the resulting regressor still
dominates the variance of the corresponding restriction regressor. This key fact, which
is the source of much of the MSE and PRESS advantage of restriction regressors, is
proven in appendix 2.3. When the bias (& (i) - 7)) is “small,” the variance advantage
of restriction regressors can lead to dramatic improvements over OLS.

Since b is computed with the constraint b € Range(W), one expects b to be a
biased estimate of r. However, in addition to being unable to account for any of the
r € Range(W4), b has an additional hias due to trying to “stretch” in Range(W)
to account for the “missing” r. This “stretching” occurs because the least squares
estimator when the search space is restricted to a subspace of R is not the projection
of 7 into the search space. Consider for the moment the case 02 = 0. Then

b= axg%@gm,)(z/~Xb)T(y—~Xb) (2.16)

= WX xw)"'wrxTxp,, (2.17)
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which is different from the projection of r into the search space, WW7r. In general

& (?)) = WWITXTXW)'WTXT Xy, Thus, there will typically be two bias terms.

E(b—r) = (WWIX"XW)'WIXTX — I)r (2.18)
= (WWIXTXW)"'"WIXTX - )(Wq, + W) (2.19)

= WWIXTXW) "' WIXTXWg, — Whes. (2.20)

3

The first bias term is due to the “stretching ” of b to account for variations in the
output attributable to ¢, that can be partially described from Range(W), while the
second bias term is the direct contribution of ¢,. The two terms can never “cancel
out” since they have complementary range spaces. However for the special case of
PCR, WIXTXW*! = 0.

Consider the situation where b has been constructed and a new input vector ey
1s available. Computing the PRESS using ¢, leads to

E((r tnew + new = W anen)?) = (oI (WOVTXTXW) T WIXTX — I)r)2

“new

+ 2F WWIXTXW)y "W, wo? + 02 (2.21)

“new

= (ol (VT XTXW) T WX T X W gy — W)

“new

+ 2l WWIXTXW)Y "W e, o? + 02, (2.22)

“new

Clearly, when ¢, = 0 the bias terms vanish and b is superior to 7. For prediction,
even if there is a large bias term, the prediction bias will still tend to be small if 2.,
is not collinear with the bias. Thus restriction regressors are attractive for prediction
problems even when one cannot assure that the bias is “small.” One should note that
requiring T, € Range(W) does not assure unbiased prediction; there may still be

bias arising from the “stretching” term.
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Next, consider b as a point estimator for r. In particular, evaluate

Tr (MSE(B) = Tr (€ ((r—b)(r—5")) (2.23)
= |(WWIXTXW)'WIXTX — I)r|? (2.24)

+ o2Te (W(WIXTXW) W)

I

NWWIXTXW) T WIXTX WL — Whe|® (2.25)

+ T (WWTXTX W) W)

As in the point prediction problem, two bias terms associated with ¢, appear. For
the restriction estimator to have an MSE advantage over OLS, ¢; must be “small.”
Thus a successful restriction regressor (in the MSE sense) must strive to satisfy r €
Range(W).

Move next to the problem of estimating an interval within which r7 z,,.,, lies with a
certain probability. If one assumes that ¢ is normally distributed, then one can use 7 in
the classical manner and declare that #7200 — 17 ' new has a zero-mean normal distri-

T

bution with variance @ (XTX) 12,02 Using, b, one can easily see that r7z,e,, —

277«3:,16{0 has a normal distribution with mean z? wW(w TXTXW )"1WTXTX — I)r

new

and variance 2l W(WTXTXW)"'WT¢, .02 Since r enters explicitly into the
mean of the distribution, this cannot be used directly for a practical interval pre-
dictor. However if one is willing to conjecture that the bias is “small,” then one
can assume ' ¥,em — ~bT:r,w,, has a zero-mean normal distribution with variance
al JWWIXTXW) ' WTe, w02 Under this assumption (which is equivalent to
¢ = 0), one has a smaller prediction interval using b than when using 7 since
(XTX) ' > W(WIXTXW)"'WT | as shown in the appendix 2.3.

Lastly, turn to the problem of constructing a region of R™ within which r lies

with a certain probability. The classical approach is based on the observation that if
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e 1s normally distributed then

(7 — 'r)TXTX(f’ - )

o

€

(2.26)

has a x? distribution with n; degrees of freedom. Ome can adapt this approach
to restriction regressors in a variety of ways, but the resulting confidence regions
are generally more conservative, This outcome is not surprising. The traditional
confidence bounds provide a region which contains r with a certain probability. A
restriction regressor may choose a “better” point estimator from this region than the
OLS point estimate, but the restriction regression process typically does not alter the

original confidence region.

2.4 Issues for Constructing Restriction Regres-
sors

Returning to the issue of building the biased regressor, the difficulty with equation
2.8 1s that one must specify W. One approach for specifying W is to choose W so as

to optimize the MSE:

WME = arg min MSE(b). 2.27
arg min MSE(b) (2:27)
The solution is WMSE — m [2]. This “optimal” solution is interesting but not very

useful because r is unknown, leaving the question of how to choose W unresolved.
Still this “optimal” solution, as well as the properties discussed above, highlight the
key feature one desires from a restriction regressor: that ¢o = W LT = 0.

Instead of computing the MSE-optimal W directly, one could try to build W
incrementally by some other criterion in the hope of constructing a W such that
r € Range(W). Consider for the moment an additional vector w such that Ww = 0

and [Jw|| = 1. One then asks: does using the search space Range([W|w]) lead to a b
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with an MSE less than or equal to the MSE of b using the search space Range(W)?

The answer is “yes” if

€

(wTr)? > Tr ([W}w] ({Wgw}TXTX){W[w])"1 (W] — W(WTXTXW)"‘WT) ol
(2.28)

The left hand side clearly reflects the bias removed from b and the right-hand side
reflects the variance added to b by including Range(w) in the search space. Although
equation 2.28 is not directly useful because r appears explicitly, it points the way:
directions for which w’r = 0 should not be included in the search space, and directions
for which w’r is “large” and the variance is “small” should be included in the search
space. These two observations provide the motivation for the particular restriction

regressor developed in the next chapter.
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2.5 Appendix: Reduced Variance of “Restric-
tion Regressors”

Section 2.3 claims Var(WW77) > Var(b). The proof below is based directly on
lemma 3.1 of Wahlberg[94].
Theorem 2.1 For the model in equation 2.1 and any given W such that WTW = I,

Var(WWTF) — Var(b) is always a positive semi-definite symmetric matriz.

Proof. First, recall

Var(WW7Try = wiwh (X" X)"'ww'e? and (2.29)

Var(h) = WIVIXTXW)"1WwTo2, (2.30)

Let Range(V') equal the null space of WTXTX. Then W'XTXV = 0 and [W | V]

is full rank. Next,

(XTX) = W v TR V)T vy (2.31)
(WIXTXW)~! 0
= [W]V) W V)T (2.32)
0 (VIXTXV)!
= WWIXTXw)"' w4 vt XX vty (2.33)

Pre- and post-multiplying equation 2.33 by WiV o, vields

WWHXTXO)'TWiTe? = Wi xXTxw)-'wles? (2.34)

+ WwIvvIXTXvy " vTw w2
which becomes

Var(WWT#) — Var(b) = WiwTv(vTxXTx vy~ tvTwwTs2, (2.35)
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Noting that WWTV(VIXTXV)"'VTWWT is symmetric and positive semi-definite
completes the proof. O
Since Var(WW77#) dominates Var(b) by a positive semi-definite matrix, one may

invoke other matrix results [38, page 471] and further state:

Tr (Var(WW77)) > Tr (Var(h)) (2.36)
|[Var(WWT#)|l, > |[Var(b)]|2, and (2.37)

[Var(WWT#)|2 > |[Var(b)]|2. (2.38)
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Chapter 3

Significance Regression for Scalar

Output Problems

3.1 Derivation

The previous chapter discussed the estimation and prediction properties of restriction
regressors. This chapter derives a specific regressor that is “optimal” in well-defined
sense. The statistical framework underlying the derivation allows the development of
significance tests as an alternative to cross-validation for determining ny = Rank(W).
Moreover, the resulting regressor has additional useful properties beyond the proper-
ties in the previous chapter.

The linchpin of all these results is equation 2.28, which states clearly that if a
particular subspace, described by w, is orthogonal to r then this subspace should be
excluded from the W of the restriction regressor (equation 2.8). The idea translates

directly into the null hypothesis

H, <ryw>=0 (3.1)



where < r,w > is the vector inner product, »7w. For this null hypothesis, a natural

test statistic is

: < Tow >
_ ) 3.2
) = RS (32)
where
Var < 7,0 > = & ((< Fow > =E(< 7w > ))2) (3.3)
= (< (XTX)' X e w > ?) (3.4)
= w'(XTX) wol. (3.5)

Under the additional assumption that the errors are normally distributed, one

can easily see that 7 and 7(w,y) are normally distributed. If the noise variance o’

is unknown, then the unbiased estimate &2 = ——(y — X7)T(y — X7) may be used

Ng—n

instead; for normal errors, &2 arises from a Y? distribution. Since 7(w,y) varies as
the error vector e projected into Range(XX'), while &2 varies as the error vector e pro-
jected into the orthogonal complement of Range(XX'), the two terms are independent.
Throughout this chapter &2 can be used in place of o? and the relevant distribu-
tions modified in the obvious manner. If &2 is used in equation 3.2 then 7(w,y) is
associated with the Student’s -distribution. Using these distributions one can use
classical significance testing procedures to evaluate H} and to identify w that should
be excluded from W.

As shown in section 2.3, one would like to identify w for which “rTw is ‘large’
and the variance is ‘small.”” Omne can do this directly by computing w for which

the absolute value of the 7(w,y) to be “large.” In this sense the “most significant

subspace” is described by

w™(y) = arg max |7(w,y)|. (3.6)

weER™



Since

arg max |7(w,y)| = arg max (r(w,y))?, (3.7)

('r(w,y))2 will be used for the derivation. Equation 3.2 reveals that w{* will not be
unique; multiplying any w by a scalar will not affect the value of (7(w,y))?. Still, the

necessary condition for an unconstrained extremum

VU (T(u"??/))Z‘tly()pc(u) = 0 (3.8)
1 E

must be met. Computing the gradient of (7(w,y))* gives

a2
Y, (r(w, ) = V- (wir)” (3.9)
b ' CwT(XTX )~ lwe?

2R (XTX) T we? = 2(w”F)HXTX ) wa? (3.10)
B (wT (XT,\) Twe?)? ‘

and applying equation 3.8 gives
wi(y) = XTX7 = X1y, (3.11)

As revealed in section 2.3, an important goal for any restriction regressor is to
determine a W such that » € Range(W). Therefore W may need to have more than
one column. Consistent with section 2.3, one searches for w that maximize (7(w, y))2
and are orthogonal to the current W;_y = [w{™]...|w{]. Then the ith “significant
subspace” 1s described by

w™ = arg max r(w.y))?. 3.12
' g wERange( I'-(Vl/}.,l 1""'{, ) ( ( ‘ /)) ( )

Invoking the necessary condition for a constrained extremum yields

(I-W,, W) Y, (r(w.y))?

= 0. (3.13)

opt g
w, (w)
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As shown in appendix 3.5, the PLS loading vectors satisfy equation 3.13. Thus one
can use the PLS “soft modeling” algorithm to find ny “significant vectors;” the issue
of computing the solution to equation 3.13 has already been solved. While several
different (but equivalent) PLS algorithms exist, Helland’s algorithm [29] is the most

straightforward and is used here.

Algorithm 3.1 (SR. Significance regression for scalar output problems)

= (XTX)'xTy (3.14)

Wo = 00", W, eR™ (3.15)
DO 1= 1.ng

v= (I-W,_ W ) (XTX)7F (3.16)

=  (I-Wi_ Wl ) (XTX)—1XTy (3.17)

WP (y) = ﬁeET[ (3.18)

W= [ww]- - |w?®] (3.19)

END DO.

3.2 Choosing ng

The above developments have assumed that n, is known; however, in practice ng needs
to be determined. In the PLS context, the most popular method is cross-validation
[98]. For any given ng, b is computed with a subset of the available data, and the
PRESS is computed for that b using the remainder of the data. Next the PRESS for
different n4’s is compared to determine the “best” value of ng. b is then recomputed
using all available data and the “best” ng.

As discussed in section 2.2, the PRESS is an intuitively appealing measure when

one is building predictors, but may not necessarily be the best measure for evaluating
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estimates of r. The PRESS also has other potential drawbacks. If the data are sparse,
withholding a portion of the data may be problematic. The technique of “one-out
cross-validation” [87] largely overcomes sparseness problems by withholding a single
sample in the data, computing a b, computing the PRESS for the withheld sample,
and repeating this process for each sample in the data set. While this can be an
effective approach for evaluating various values for ng, the computational demands
of one-out cross-validation can be excessive [57]. Clearly practitioners would benefit
from the development of additional techniques for choosing nq4.

As shown in section 2.3, a useful condition for any restriction regressor to satisfy

is ¢z = 0. This leads directly to the null hypothesis
HY <row > =0 Yw € Range(I — W;_,Wl)) (3.20)
for evaluating if ny = ¢ — 1. Let (”r;f’”t(g,/))2 = (T(w?m,y)Y. If
Pr{ t* < (7',-0”'(3/))2 } > Qihreshs (3.21)

where e 15 some pre-specified significance threshold (90%, say) and #? is drawn
from the distribution for (7’{”’5(3/))2 when Hg’i holds, then 7—(?& can be rejected and
Since W;_; depends on y, evaluation of this distribution will often be involved.

However, an approximate but useful distribution for (77**(y))? will now be developed

i
for testing Hg’i. The development rests on the key simplifying assumption that W,_,
was specified independent of e¢. Additionally, the remainder of this section assumes
that the elements of ¢ are independently identically normally distributed; if w 1s
specified independently of y then 7(w,y) has a Gaussian distribution. Moreover,

7(w,y) has a unit normal distribution under H.

We know from algorithm 3.1 that w{"(y) = X7y / ||XTy||. Turning attention to
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t . .. . . . .
the (77" (y))? that results from maximizing the significance criterion,

o . op 2
(" )? = (r(w?(y).)) (3.22)
(yTJX"(‘\"T‘X")"IJL"Ty)Q 3 23
yT X (XTX)1 XTyo? (3.23)
‘T,/Y ,XT.Y '"IJ’(TI
_ oy X( a2> y (3.24)
((X7X)5r 4+ (XT.\')-%XT@)T ((XTX)5r + (XTX)"3XTe)
puod 0,3 .
(3.25)

Thus (77" (y))? has a non-central \? distribution with n; degrees of freedom and non-
centrality parameter r” X7 Xr. Once again, if 52 is used in place of o2, then (7" (y))?
has a non-central F distribution with (n;.n, — n;) degrees of freedom. Notice that
when r" XT X7 is large, (7" (y))? has a small variance relative to 7 X7 Xr. This
small variance is reflected in w{™ (y) = XTXr + XTe. As »TXTX7r becomes large,
wiP (y) is less influenced by e. When H."' holds (r = 0), then

(W) = XXX (3.26)

2
O¢

and (77" (y))? has a \? distribution with n; degrees of freedom. Thus, under the

null hypothesis Ha', (77" (y))? has a familiar distribution; however, if a direction
exists which strongly refutes HZ, then SR will tend to identify this direction, and the
subspace represented by w{”(y) will tend to be weakly affected by e.

Now consider the (7"'(y))? resulting from determining w{® € Range(] —

W,oiWI ). Assume for the moment that W;_; is independent of ¢ and let

Range(W:,) = Range(I — W,_, WL ) and Wk lTW’f; , = 1. Then

o -1
w(y) = WE, (WA (YT X) WA WA, (3.27)
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and (777(y))? has a non-central \? distribution (as above) with np = n;—i+1 degrees
of freedom and non-centrality parameter r’ Wi, (W;ﬁ J(XTx)-twk )‘1 wi, 'y
Once again, if HZ* holds, then (77”'(y))? has a \? distribution, but if a direction
strongly violates the null hypothesis, w{™ (y) will be relatively unaffected by e.

These observations have tangible implications. If one wishes to evaluate Hé"'
using (777 (y))?, one can consider approximating the distribution of (77"*(y))? with a
x? distribution with n, degrees of freedom. In fact, such an approximation is valid in
several asymptotic limits. Clearly, as the noise vanishes, the dependence of w:” t(y)
on e vanishes. That is

lim Span (Wo”'( )) = Range ([ TXrl.. [(XTX)"T]) . (3.28)

cr-w»O

Thus, when the noise is small enough, the independence assumption is justi-
fied. The independence assumption can also be justified when n, is large. Con-
sider again w{" (y) and the condition that the input data is persistently exciting

(lim,,, oo ;};XI X = A for some non-singular 4)., Then

LT,
Tim wf(y) = lim \,T*’ (3.29)
gy e R (3.30)
T %;_\'7'4\’7“+,—3:4YT6” .
Ar
: (3.31)

In this limit, w{*(y) is independent of ¢, and (75" (y))? has a non-central y? distribu-
tion with n; — 1 degrees of freedom. One can also show that all w{™(y) obey similar
limits. Thus (7”(y))? has a non-central \? distribution with n, degrees of freedom
in the limit of large n,.

The above arguments have motivated using the independence assumption for com-

t ¢ . .
puting the distribution of (77" (y))?. However, before one risks using such an assump-



29

tion, one needs to know when and how the assumption will break down. When

rTWwit, (I/V gﬁ'LT(XTX)"lI‘Vil) B W,

") becomes comparable to n, (the dimension
of the search space, n, = n; —i+1), the independence assumption will be incorrect for
wi™ (y) and (77 (y))? when j > i. Consider briefly the extreme case r = 0, XTX = I.
Then (m{"(y))? ~ Xi; However the independence assumption completely breaks
down for w3 (y): (r57(y))? = 0. This simplified example illustrates a larger point:
as the independence assumption begins to break down, the earlier directions “steal”
variance from later directions, and the correct distributions of (77%(y))? for later direc-
tions will have smaller tails than the distributions computed using the independence
assumption.

Thus, one may usefully approzimate the distribution of (777 (y))? with a y? distri-
bution with n, degrees of freedom so long as the non-centrality parameter dominates
the variance for earlier directions; encouragingly, these are precisely the directions
which SR seeks. Moreover, the independence assumption breaks down in a known
manner: the independence assumption leads to distributions with tails that are too
heavy. When using the independence assumption with equation 3.21 to choose ng, a
test using the independence assumption will choose an ng less than or equal to the
ng determined using that same test with the distribution that properly accounts for
the dependence of w{™(y) on e.

Another implication of the observations stated above concerns the dependence of
W o= [w]... [wP] on e. As discussed, SR violates the independence assumption

essential for the derivation of the results of section 2.3. However, the w{” for which

the independence assumption that the distribution of (777(y))? is independent of e

1

opt
?

. . . t . .
1s reasonable are the same w;” for which the assumption that w{"" is independent of

e is reasonable. Thus section 2.3 is approximately valid for SR for W consisting of
opt

w;"" where the non-centrality parameter dominates the variance.

For ease of computation, one may empirically “over-simplify” the above signifi-
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cance test. When H¢" and the independence assumption hold, n, and n, are “large,”

and a 50% significance threshold is used. the \? test (or F-test) for Hg’i becomes:
8
reject Hé' if (7’{"""(3}))2 > ny. (3.32)

Even when the assumptions are not met, the ease of the “over-simplified” significance
test may militate in favor of its use.

The significance tests developed here should not be viewed as a replacement for
cross-validation, but as a complement. Often the two approaches will give similar
determinations of ny. However, the cross-validation techniques and significance tests
rest on different assumptions and have varying computational needs. Significance
tests will tend to impose less computational burden, but cross-validation will tend
to be less impacted if the data deviate from the noise assumptions. Moreover, other
approaches for determining n, can be developed from the viewpoint developed in this

chapter.

3.3 Some Properties of SR

Because of the statistical basis for SR, one can investigate properties for this regression
method beyond those discussed in section 2.3. This section discusses further results
specific to SR. Computing the expectation value of W (y) is involved. However,
for the sake of determining the expected value of the search space, one can use the

results in section 3.5 and state

& (Range(1V;)) = Span <5 ([w?’”} . }wf’)t’])) (3.33)

= Span (5 ([XT,A'\"F{ .

(XTX)#)) (3.34)

= Span ({X‘TX'I"{ e ‘(,Y(I".Y)ir]> . (3.35)
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¢ . . ) , .

Thus, W (y) provides an unbiased estimate of the “true” search space. Alternatively,
s Wi \Y) P

consider the behavior of W' (y) as n, is increased. Assume that the input data is

persistently exciting, that is lim,, ;}—X X = A for some non-singular A. For any
8

w,
T2
— : 1 (w”7)
n}‘;]}—&o(‘r(u)’y)) = wT(XTX ) wo? (3.36)
T5)\2
. ns(w'r)
= o W (EXTX) Two? (3.37)
o if wlr #0
- #0 (3.38)

0 fwlr=0

When n, is large enough, (7(w,y))? will be large enough to overcome any given
threshold for “significance” for all directions where w?r # 0. This means that if
the criterion in equation 3.21 is used to determine ngy, then for n, sufficiently large
r € Range(W,,) and b is an unbiased estimator of r.

Beyond the above asymptotic result, one can make other statements about bias.

. i . . 2+l . .
Obviously, b is an unbiased estimate of r whenever He"*! is true. Moreover, SR

strives to choose W), so that r € Range(W),,), so SR regressors will tend to have the
advantages discussed in section 2.3 for restriction regressors when the bias is “small.”
In fact, empirical work by Cinar [68] and Mejdell [63] has shown that assuming the
prediction bias is “small” can be a good assumption for SR, so SR may yield smaller
prediction intervals than one would compute using classical methods, as discussed in
section 2.3.

To see further benefits of using a restriction regressor directly derived from a
statistical foundation, consider the heteroscedastic case, that is £ (6€T) = o?P. The
SR method begins by computing the minimum-variance unbiased estimator and its

variance. Thus, the additional error information is naturally incorporated into the

procedure. PLS does not make use of this additional information, so PLS is not
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equivalent to SR in this case. If one draws draws an analogy to generalized least
squares and rescales the data X, cscqted = P~:X and Yrescaled = P '*lfy, then performing
PLS on the scaled data is equivalent to SR. Thus PLS rests on the assumption of

homoscedasticity.

3.4 Why not use the PRESS?

SR was derived directly from the MSE without considering prediction objectives.
Thus one might consider deriving a similar regressor explicitly for prediction. For

this objective, a reasonable null hypothesis might be
Hy < Xr,Xw > =0. (3.39)

For this null hypothesis, a natural test statistic is

<X, Xw > wr XT X7 ‘
TPRESS\W,Y) = e = . 3.40
(w,9) vVar < X7, Xw > \/'l,oTXTXu)Gg (340)

Equating the gradient to zero reveals that w = 7 maximizes equation 3.40; this
approach has reproduced the OLS estimator.
A more intriguing question would be to use H> as the basis for a “prediction
1 0

.. . . . t ST
significance” test for choosing ny. Substituting w{” = X7y into 7prrss(tw,y) under
: 1 ;

eTXXTe

vy Analyzing

H3 reveals that the resulting test statistic is distributed as
such a distribution would lead the current investigation astray and is therefore left

as a suggestion for future work.
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3.5 Conclusion

This chapter derived the significance regressor, SR, from a null hypothesis, ’Hg’i,
directly related to improving the MSE of restriction regressors. The popular and
successful PLS algorithm was seen to maximize the value of a test statistic for this
null hypothesis. Next, a new significance test for evaluating Hg’i and determining ny
was developed. As an algebraic formality, one can always reject %?,"' with probability
one for any non-singular X'; see the final developments in the ensuing appendix.
However if the date cannot muster the strength to reject Hg’é, which is known to
be (formally) false, then one should be wary of using that same data to estimate
components of unknown parameters in that subspace. SR was shown to have several
useful properties including asymptotic unbiasedness and, in some cases, unbiased
prediction. Moreover, SR was derived from a firm statistical viewpoint instead of

heuristic motivations, so one can directly generalize the results of this chapter.
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3.6 Appendix: Equivalence of SR and PLS for
the Scalar Output Case

This appendix links the significance regression method (SR) to PLS for scalar output
problems. In particular, a proof is developed that shows Helland’s formula for the
PLS loading vectors satisfies the necessary condition for the significant subspaces
for scalar output models. A “significant vector” is understood to be one of the ng
vectors w;”" that satisfies equation 3.13. However, also consider the “algebraically-

opt

significant vectors.” These are the n 4 vectors wi™ that satisfy equation 3.13 for which

T(w,y) # 0.
First let i — 1 previously determined “significant” vectors be the columns of Wf}‘{.
Applying the necessary condition of equation 3.13 to the gradient of (7(w,y))?, de-

scribed in equation 3.10, yields the condition
T (}f (T(woptv?/

(I = WEEWE) (7 — =
T 2(’

2
)> (XTX)y'w?y =0, (3.41)

that must be satisfied in turn by each additional significant vector w{*(y).
Next consider Helland’s method [29] for computing PLS loading vectors for scalar

output problems.

Algorithm 3.2 (Helland’s PLS algorithm for scalar output problems)

F oo (XTX)~ I X7y (3.42)

Wpts — 0]~ Jo]", WPl e pm (3.43)
DO = 1,714

o= (- WX T X (3.44)

Wt = (3.45)

o]l
WP = [ |wh™] - - ") (3.46)



END DO.

Now the theorems linking PLS and SR can be stated. Theorem 3.1 shows that
the PLS vectors are also “algebraically-significant vectors” when they exist. Addi-
tional discussion shows that there are almost surely as many “algebraically-significant

vectors” as there are inputs.

Theorem 3.1 The PLS loading wvectors satisfy the necessary condition for all
algebraically-significant vectors. That is, if there are ny algebraically significant vec-

i #ig - .
tors, then WP = W™ Vi =1,... n4. Moreover, any vector satisfying the necessary

pls
i .

condition for the ith significant vector is a scalar multiple of w

Proof. The theorem is proven inductively.

For : = 1: Substituting the first PLS loading vector Eg’g;%%;ﬁ into expression 3.10

yields

Vo (r(w,y))* =

2 (7T (XTX)F)rT (NTX)(XTX) ™ = GT(XTX)R)HXTX) ) (XTX)ia?

(T(XTX)(XTX) 1 (XTX)i52)?

273(71'1’<_\'TX),f;)?ozg _ 2I~'<7~"T(,YT‘¥‘)7:)25'3
(rT(XTX)ra?)?
= 0.

Thus, the first PLS loading vector satisfies the necessary condition for the first sig-

nificant vector.

Assume true for ; —1: From algorithin 3.2, the first column of I/Va-p_z % 1s known to be
W‘%;}‘f;ﬂ Moreover, the jth column is Y4_, ay (X7 X)¥7. The scalars oy ; # 0V k <
J k <ibecause (XTX)*7 is linearly independent of (XTX)/7 Vj # k, j,k <i (due
to the existence assumption) and < (N7 X)** (XTX)F > #£0 Vj,k <i. The jth

column of W™ is also S7_; ay (X7 X)¥F because W = W/} by assumption.
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For i, « < nyu: From the i-1 step, W,y = I"Vfiﬁ = I’Vﬁfﬁ. The necessary condition for
the 7th significant vector, Equation 3.41, becomes

geTu’?npt ” o
(I - W,y WE))i= (I - IV_J%@F{‘,I)W(XT X)) twd?, (3.50)

Notice that the left-hand side (LHS) of equation 3.50 cannot be zero. If it were, then
the ¢th algebraically-significant vector could not exist.

Now describe w" as the sum of w?* and some non-zero vector v € Range(] —
W,y W1 ). This v is distinct from the v in equation 3.44. Then wiP = w? '* 4 v, and
equation 3.50 become

~9 9
T opt

(I - W, W)= —-Ww,,, Wl 1)??%}7;7’7(‘&1 X))t (wfl + v) : (3.51)

By extension of the argument from the ¢ — 1 step, wf['s = Yo ari(XTX)F where
g is still non-zero. Multiplying w?* by (XTX)™! produces i, ap(XTX)F17
which, after multiplying through the projection matrix (I —W; ;W1 ) yields oy (1 —

W, WL ,)#. Thus equation 3.51 becomes

222
TET " o

(I =W Wr )i = 775?77 (a1 = Wi, WE )7+ (1= Wi WE)(XTX) ).
X (3.52)

Consider now the second term of the RHS. If { YT X7, ... (XTX)"#} spans R™,
then one can quickly see that (I — W, WT )(XTX)"'v is always non-zero. Addi-
tionally, one can show that if {XTX7, ... (XTX)"7} does not span R™, then the
additional basis vectors needed to span R" are eigenvectors of X7 X orthogonal to the
columns of W;_;. Thus, (I — W,_ ;W7 }(XTX) ' # 0 Vo € Range(I — I"’Vg-_lﬂfizl).
The LHS of equation 3.52 and the first term of the RHS are both vectors pointing

in the same direction, namely (I —W;_ WL )7, so a vector v € Range(I — Ir”f*"i,,l‘!f’{/ﬁl)

. . 1 . . .
satisfying v # nw!™* for any scalar n # 0 would make equation 3.50 insoluble. However
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¢ . . . “ .
wi” exists by assumption so equation 3.50 must have a well-defined solution and v

{ .
therefore equals nw?"® for some scalar 7. Since
1

&)
[ EL‘U)'p

¢ . . .
. exists that satisfies equation 3.50,

i
o w;”

o . . . . pls
" must be a vector pointing in the same direction as w!’, and

e equation 3.50 is invariant to the length of w™,

wiP

= puw? " for any 1 # 0 must satisfy equation 3.50. O

The PLS loading vectors satisfy the necessary condition for the significant vectors
for any ng < ny4. Since both PLS and SR compute b using equation 2.8 and the
same search space, Range(1V,,,), the two methods yield the same b. Thus PLS is a
useful algorithm for computing the SR search space. However, the above proof raises
the question: how many algebraically-significant vectors exist? Drawing directly from
Helland’s results one knows that n 4 (which Helland calls M) is equal to the minimum
number of right singular vectors of X (principal component vectors of X') required to
form a basis for 7. See theorem 1 and theorem 2 of Helland [30]. Since ny < n; only
if 7 is orthogonal to one of the right singular vectors of X, ng = n; almost surely in

practice.
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Chapter 4

Linear Operator Description of

Significance Regression

4.1 Introduction

Significance regression will be generalized in this chapter to encompass the analysis
of any linear operator mapping between Hilbert spaces. Two methods are developed:
a regression algorithm and a factor analysis algorithm. These algorithms provide a
unifying approach for a wide array of models and problems; the SR algorithm in the
prior chapter was limited solely to the classical regression model described by equation
2.1. With this description, the results of the prior chapter will be easily generalized
to other models and objective functions. This chapter will neither motivate SR nor
“prove” any general results; rather, this chapter is descriptive. In doing so, the
key features that make significance regression successful are described in a general
framework, making the application of SR to other models direct. A brief example
concludes this chapter that illustrates the use of significance regression for a problem

not normally associated with the classical regression model.



39

4.2 The General Null Hypothesis

Consider

y = R(x) (4.1)

where 2 € 7 is an input, y € O is an output, R € M is an unknown linear mapping,
and Z and O are Hilbert spaces. M is the space of linear operators defined by
M = O @ T where @ is the Cartesian (orthogonal) product. Observations of both
the input, z, and output, y, may be corrupted by noise. For many problems, n;
observations of (x,y) pairs may be available. Thus, let X and Y be the Cartesian
ne-tuples X = {x1,22,...,2,,} and Y = {y1,92,...,Yn, }. Notice X € R" © T and
Y € R @ O. Typically the appropriate inner product for R™ @ O will be the sum
over the inner product of samples ( e.g., < Y.V > =Y <y, yi > ).

Next, one poses the null hypothesis:
Hy < R(+),5()>=0 (4.2)
for some S(-) € M. First, one computes the “best” regressor R € M, say by

minimizing the square of the 2-norm of the error:

R(-) = arg B?l)iel}\/t <Y -YYV-Y> (4.3)

where Y = {B(a,). B(x3).....B(x,.)}. A natural test statistic for M is

_ < B().S() >
VVar(< R(-),5(-) > )

7(S(-). X.Y) (4.4)

Notice that 7 is invariant to scalar multiplication of S(-): 7(aS(:),X,Y) =

7(S(+),X.,Y) for any non-zero o € R.
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4.3 Regression

Next, consider the regression problem. This problem includes both estimating the
“true” R(-) and creating a B(-) that is useful for predicting y from observations of z.
One proceeds by searching for the “most significant” subspaces of M, represented by

the S(-) € M, that maximize |7(S(-),X,Y")|. Since

o . . rox; — . v . ‘r ~\\ 2 — opt A )
arg aax |7(S(), X, Y)| = arg max (7(S().X.Y))" =85"(),  (49)

one will usually prefer to work with

(1(S(). X. 7)) = S F050 >)

_ : ; ) (4.6)
Var(< R(+),5(:) > )

As noted above, 7 is invariant to scalar multiplication of S(-), so Sy"(-) will not
be unique. Assuming the relevant derivatives exist, a necessary condition for the
optimum 1s

Vot (T(S(-). X.Y))? 0. (4.7)

SPPH() -

When equation 4.7 is meaningful, it vields

_ 2Var (< S(+),R(+) >)

VsyVar (< S(+), R(+) > ) Sy < 5() Rk) >

Vo)< S().R() >

S7P()
(4.8)

After one determines S7** (whose span is the first “significant subspace”), additional
“significant subspaces” are found by repeating the optimization subject to the con-
straint that all S77'(-).S57'(-).... must be orthogonal. A “significant subspace” is
a subspace spanned by an S?'(-). Lastly, the “improved” regressor, B(-), is found
via repeating the optimization described in equation 4.3 subject to the constraint
the B (+) Lie in the space formed from the direct sums of the “significant subspaces.”

(Alternate statement of the same idea: B(-)is constrained to be a linear combination
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of the SP'(+) ). The algorithm to compute ny significant spaces is
i & 1 g

Algorithm 4.1 (General significance regression algorithm)

(. — are mi }fm)?,ymf'> 4.9
() 8 3, < .
S ={}, St=M (4.10)
DO ! =1,ny

SPP() =arg max (7(S(-),X,Y))’ (4.11)

' S()eS,
Si =8y P Span(S*(-)) (4.12)

END DO

B(") = arg B(1~I)1€i§nd <Y -V, Y -Y > (4.13)

where Y = {B(x), B(x3),....B(x,,)}. and Si, S} are complementary Hilbert spaces
such that S;H S+ = M for i = 0,...,ny. Although equation 4.13 is a constrained op-
timization, the constraints are linear equality constraints so one can typically project
the problem into S,, and solve an unconstrained problem. Algorithm 4.1 does not
reveal how to define ng; in practice, one has a variety of choices including cross-

validation. A useful null hypothesis for the ith significant subspace 1s
H': < R(),S()>=0 VS(-)eSiH,. (4.14)

If one can reject Hy', then ng > 1.

4.4 Factor Analysis

Often in multivariate analysis one hypothesizes that the “true” structure of a prob-
lem can be described in a lower dimensional subspace. Attempts to determine such

structure are typically called “factor analysis.” Let w; € I, ¢; € O, and t; € R".
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Then this verbal belief for linear problems can be equivalent to assuming that the X

and Y are described by

X = 10w+t Qwy ... ta, @ wn, + Ex, (4.15)
Y = ,Blt] & ey + ﬂgfz Geg oo ﬂ“dt"d & Cny + EY (4.16)

where the 3; are scalars, Ex € R © I, E, € R" @ I are “noise,” and @ is the
appropriate outer product. While the derivations are rigorous, the motivations for
the objective functions that drive the various factor analytic methods are notoriously
subjective [23] [89, p. 225]; thus no motivation will given here for using SR to com-
pute the “factors” w;, ¢;, and #; other than to note that these factors will describe
“significant” linear relations between the inputs and outputs.

To compute these factors from (7(S(-), X,Y))?, one computes the maximum in
equation 4.11 subject to the constraint that S(-) be a rank one linear operator. The
set of rank one linear operators in M can be readily parameterized as F = {F(-) €
MIF()=c< - w, > YweTI.ce Q). Let by € R be b; = [A1,5,.-., 5] Then

the algorithm to compute ny significant factors is:

Algorithm 4.2 (The General SR Factor Analysis Algorithm)

R(- = T }}‘}, — if 4.17
() arg %1%11\4 <} , > (4.17)
DO i = 1,n4
FP'() = arg max (T(F(.),X’Y))z (4.18)
F() € F st

<Fi(), Py > =05 <,
<FELFC) > =1

o =<l > <uan > < e, > T (419)
bi = arg lnél»n < } _ Z ﬂj oi)t ;Y Z /3] opf JX (420)
i = =

END DO
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where F"(X) = {Ff’”(:lrl),F'f’)‘(:zfg),...,F;’pt(mm)} is a Cartesian n,-tuple. This
particular algorithm states the unnecessary constraint < F(-), F(-) > = 1. However,
since one usually performs factor analysis intending to “interpret” the factors, factors
are typically normalized. The user is free to choose a different normalization than
the one used here.

Some factor analysis choose ng by testing E, and/or E, against the null hypothesis
that these objects are only noise. Omne can certainly adapt these method to the SR

factor analysis approach. Another natural null hypothesis to help determine ng is
HY' . < R(),F()>=0 VYF()eF st.<Fj(-),F(-)>=0 Vj<i (421)

The special constraints on the search space of the factor analysis problem allow one
to state additional null hypothesis. Define the spaces Wit = {w € I| < w,w}” ‘> =

0Vj <i}and Gt = {c € O] < ¢, ¢ > =0Vj < i}. Using these spaces,

(’{}i . (R() , o< w, s > ) =0 Ywé€ W{L» (4‘22)
,Hg,i : (R(:) ., c<w,- > > =0 Vece C;L, and (4'23)
o R(z)=0 Ve e Wi (4.24)

may be computationally simpler. H," and HE follow directly from
. 1 \ ! 0 0 y

F()=c<-w;>. If Hg’i holds then

< R(x).c<a,wp>>=0 Y& Wi, (4.25)

For any @ in the orthogonal complement of Wi, expression 4.25 is also zero because
9 . A6 Ti g8 9,i
w; € Wi, Therefore Hy' = Hy'. All three null hypotheses Hy"*, Hy"* and Hy" are
. " /6 . . . 6.1 .
sufficient conditions for Hy': rejecting these does not necessarily reject Hy"'. Still, for

any given problem, computational tractability may make these sufficient conditions
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. . . {7‘"
more practical than the logically rigorous Hy".

4.5 A System Identification Illustration

The remainder of this thesis works with Z and O that are finite dimensional vector
spaces; the results of this chapter are not essential for the ensuing development.
However, this chapter is useful for translating the results of this thesis to problems
beyond the usual statistical regression problems. This section presents a brief (and
naive) example of using significance regression for system identification. No claim is
made that the SR system identification method developed here is useful; investigating
such a claim would carry this study far beyond its proper scope. The example does
succinctly demonstrate the implementation of SR in a new area via the operator
theoretic description of this chapter.

The notation used here will deviate from the standard notation of this thesis so
as to conform to Ljung’s notation [56]. Consider a linear system g that relates the

input u(?) to the output y(¢) via the convolution

o

y(t) = > g(thu(t —k)+v(t) t=0,1,2,... (4.26)

k=1

where v(t) is a zero-mean noise process with spectrum @, (w); the spectrum is defined

in Ljung [56]. The discrete Fourier transform (DFT) of the input and output is

1

N
Un(w) = ?\rZu(t)c“"“’t and (4.27)
<V =1
- 1 al —lw
Yy(w) = = > y(t)e™™ (4.28)
Vo=l

where w = 27k/N, k = 1,2,...,N. Recalling that the Fourier basis is orthonormal,

define the inner product to be < Yy (w).Un(w) > = 3, Yn(w)Un(w). Estimate the



DFT of ¢g(t) as

Gn(w) = arg (gtgl(g) < Yn(w) = Gn(w)Un(w), Yy (w) — Gy(w)Un(w) > (4.29)
- ;Z ((:’)) (4.30)

The minimization is performed by imposing the following ordering on the complex
numbers: for any two complex numbers @ and b, @ > b if |a| > |b] or if |a| = |b| and
arg(a) > arg(h). Gy(w)is known as the empirical transfer-function estimate (ETFE).
If u(t) is a realization of a stochastic process, then the ETFE is an asymptotically
unbiased estimate of the transfer function and the estimates at different frequencies
are asymptotically uncorrelated. [56, p. 150].

éN(w) is known to be noise sensitive. Typically, the ETFE is “smoothed” by
assuming that the “true” transfer function is a smooth function of w. Such an ap-
proach, also known as regularization, is explicitly Bayesian and can be interpreted as
relating to the ridge regression approach of section 2.1. SR provides an alternative

method. Consider a new function Wy (w) and the null hypothesis
HY < Gyl(w), Wa(w) > = 0. (4.31)

The variance needed for the test statistic 1s

N
Var (< Gy(w). Wy(w) > ) = 3 (Wa(w) &, (w). (4.32)

w=1

From here, one can use algorithm 4.1 to compute the SR transfer function estimate.

The “smoothing” methods have a long history linked to a strong and pervasive
engineering heuristic, so believing that the simplistic SR method presented here rep-
resents a step forward for system identification methods is optimistic. However, prob-

lems in which the “smoothing” assumption is not well motivated may benefit from an
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SR-based method. An example is the identification of the resonant modes in lightly
damped structures. For these structures the Bode plots are known to be “spikey”; the
smoothness assumption still holds, but in a weaker sense. For control purposes, one
is often interested in the location and magnitude of these modes; since “smoothing”

will tend to “knock down” these spikes, the SR approach may be more appealing.

4.6 Summary

This chapter presented a linear operator theoretic description of significance regres-
sion. The null hypothesis that drives the method was formulated for linear operators
mapping between Hilbert spaces. This null hypothesis was then used as the basis
for a biased regression algorithm and a factor analysis method. The additional con-
straints imposed by the factor analysis method led to the formulation of additional
null hypothesis sufficient for the general null hypothesis. The utility of the the gen-
eral description was illustrated by using the linear operator framework to generate a

(naive) system identification method.
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Part 111

Generalizations and
Improvements for Significance

Regression
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Chapter 5

Multiple Output Significance

Regression

5.1 Introduction

The methods of chapter 3 dealt only with scalar output problems. This chapter uses
the linear operator description of the prior chapter to extend significance regression
to problems with multiple outputs. Sections 5.2, 5.3 and 5.4 work with vector output

problems of the form

Y = XR+ E, (5.1)

where Y € R™X" is known, R € R"*" is an unknown regression matrix, and
E € R"*" is an unobservable matrix of errors. For simplicity of development, fur-
ther assume that the elements of E are zero-mean, independent, and homoscedastic
random variables: £ (E) = 0, & (ETE) = nyol and & (EET> = n,0%l. The inde-
pendence and homoscedasticity assumptions can be readily relaxed; see section 8.5 for
further discussion. First the vector output regression algorithm and factor analysis
algorithm are developed. Next, the relationship between PLS and SR is analyzed,

followed by a brief discussion of the SR approach to tensor problems.
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For the input space Z = R™ and output space O = R"°, the natural inner product
for M = R"X"  the space of linear operators mapping from 7 to O, is the tensor
inner product. This inner product is defined as < 4, B > = Tr(AB”) and is the inner
product that defines the matrix Frobenius norm: /< A, A > = [|A]|p.

Following the description of section 4.3, the null hypothesis of interest is

H' <R,S>=0 (5.2)

where S € R"*" For this null hypothesis, a natural test statistic is

HSY) = s RS z (5.3)
\/Va‘r <R, S >
B Tr(RST) (5.4)

VT (ST(XTX)1S) o2

With these definitions one can directly develop SR algorithms for both regression and

factor analysis.

5.2 Regression

One can develop SR directly from 7(5,Y) using tensor operations. However, a much
simpler approach is available. By noting that R"*™ is isomorphic and isometric to
R™e™ one can recast the vector output problem as a scalar output problem and use
the results of chapter 3. To use the scalar output algorithms, the input data matrix

and the output data matrix need to be suitably redefined. Normally,

T v
1 T

Y = Do X = and Y = XR+ E. (5.5)

3



To conform to equation 2.1, ¥, E, and R must be transformed into column vectors.

Considering the columns of R = [ry| -+ |ry,], let

" ™
. - . R M r
Ystacked == : and Istacked = : (")6)
Yn, Tn,

where Ygackea € R and 7 gackea € R, Create €gqckea from E is the same manner

that Yeracked Was created from Y. Moreover, build X aekea € R *™ " such that

1y XN
0 0
0 111 0
g

0 0 !

D0 0

0 :zf:{ 0

«ermckrﬁd = I . (57)

0 0 ¢

zi 0 0

0 a*;i 0
0 0 ... af

Then equation 5.1 data can be described by

Ustacked = A stacked Vstacked + Cstacked- (58)
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Equation 5.8 is consistent with equation 2.1, so algorithm 3.1 can be used. After the
SR process is completed, byqackea must be “unstacked” in the reverse manner from
Y 8

which 74qckeq Wwas built 1n equation 5.6.

5.3 Factor Analysis

As described in chapter 4, a common objective of multivariable analysis is to develop
a lower dimensional description of data in which the “useful” information has been
preserved. For example, principal components analysis has long been used to identify
a small set of “loading vectors” that encompass the greatest portion of the variance of
a set of data. More recently, several practitioners have recommended PLS when one
is interested in variances of input data that explain variances in the output variables.
[20, 62]. The approach has been found particularly effective for multivariable stochas-
tic process control [51, 71]. To address this desire, the SR factor analysis algorithm
for vector outputs is now developed.

To evaluate vectors w € R™ and ¢ € R™ using 7(S5,Y), one parameterizes the
rank one matrix (linear operator) as S = we!. Equation 5.4 then becomes

wl Re

T(w,c,y) = (5.9)
v

wl(XTX)'w Te o?

which, if normal errors are assumed, arises from a normal distribution for any given

w and c. Next, one solves for the optimal w and ¢. The we! parameterization yields
V() .

Vs(:) = . Solving
Ve ()

Ve T4 (w,c,Y) =0 (5.10)

Sert(y)



for w*(y) one finds

w = XTX R (y) = XTY ! (y). (5.11)
Solving
id 2
V. (r(w,c,Y)) some(ry = 0 (5.12)
and dropping the arguments results in
- optTR ,opt
RTwort = B«—Tjw—co”t. (5.13)
coptt copt

Substituting w"! from equation 5.11 one finds that ¢°P* satisfies

RTXTXRe™ = o 7}

. -

P (5.14)

Sopt(Y)

Thus finding the eigenvector of maximum eigenvalue in equation 5.14 yields the ¢
needed for equation 5.11. Since & (I}TXTX}?) and &£ (YTY) have the same eigen-
vectors when the data conform to equation 5.1 one can see that in using the “most
significant subspace” one is selecting the ¢ that explains the greatest variance in the
output data. This is in contrast to PLS, where ¢ is chosen as the eigenvector of
YTXXTY with maximum eigenvalue.

To find additional “significant vectors,” one repeats the process enforcing the
orthogonality constraint < S{(Y), S ‘(Y) > = 0. Due the to we! parameterization,
< SPUY), SPUY) > = 0f < wP(Y), 0w (Y) > = 0 or < "(Y), (V) > = 0.
The method developed below relies on the two assumptions: n; > n, and
<w(YV),w(Y) > =0 Vi # j. An equivalent method for the case n; < n, can be
developed by invoking the alternate second assumption

< PHY ), EPHY ) > =0 Vi # 5.

2

Any matrix W;_; € R"*"™ can be factored as W;_; = QqrRqr where Qqr €
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RX" is an orthogonal matrix and Rqgr € R™ ™ is an upper triangular matrix. A
property of the QR decomposition is that if one partitions Qqr = [Qqr,1, Qqr,2) such
that Qqr,1 contains the first n, columns of Qqr, then the columns of Qqr 2 describe
the null space of WT,. Let the columns of W;_; be w{™(Y) through w{(Y) and

VV,& . = Qqr.2. For this problem the necessary condition for a constrained extremum

1s

W, Y, (r(w,¢,Y))? T 0, (5.15)
which gives rise to the eigenvector equation

o2rlq=WE " XTXRRTW2E, ¢ (5.16)

where ¢ € R" and the arguments have been suppressed. The ¢ which is the eigen-
vector of maximum eigenvalue in equation 5.16 yields w{(Y) = Wi, ¢. The full

algorithm is

Algorithm 5.1 (SR-Factor. Factor analysis for vector outputs)

R = (XTX)"'xTy (5.17)
W = 0 ... 0% Ww,erm (5.18)
DO« = 1 to ny

Perform QR factorization of W,

Wi_1 = Qqr, Ror (5.19)

Wi,  =last n, =n; — 1+ 1 columns of Qqr (5.20)
q = eigenvector of maximum eigenvalue of

Wt "XTXRRTWHE, (5.21)

WP (Y) =Wk /IWE (5.22)

(YY) = RTw™ (5.23)
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Wi = [ g ] (5.24)

i

END DO.

5.4 Relationship to Partial Least Squares

As noted above, a currently successful algorithm for factor analysis is partial least
squares (PLS); a review of PLS is in appendix A. The factors derived from PLS have
also been used successfully for defining restriction regressors. Moreover PLS is closely
related to SR; the only difference between algorithm 5.1 and PLS is in the specification
of ¢/”'. Equation 5.11, which determines w{*, corresponds to the formula for PLS for
determining w™ (see equation A.53).

SR chooses vectors that explain the greatest variance in Y7Y when equation 5.1
describes the data. To see this, use the alternate but equivalent second assumption
< PUY ), EP(Y) > = 0 Vi # j. Under this assumption, the condition for a con-

strained extremum gives rise to the eigenvector equation
22 _ L Tpr Ty peol
oltiq=C-, RR X" XRC;, q (5.25)

where C- | spans the space of allowable ¢{”(Y). Since

£(ct,"RIXTXRCH,) =€ (¢}, YTYCE,), (5.26)

SR computes the vector in Range(C*,) that explains the greatest variance in Y7Y.
PLS chooses vectors using the slightly different criterion Y7 XXTY = IMZT(XTX)zR,
so PLS can be viewed as a very close approximation to the SR method for building
“significant factors.” Less formally, the difference between SR and PLS is that SR
adheres strictly to the model ¥ = X R 4+ E and assumes any variation in Y is either

a linear function of the variance in X or zero-mean noise. PLS works under the



assumption that there may be “factors” of Y that are not linear functions of X [35].

The difference between the SR method for regression and PLS is more substan-
tial than for factor analysis and can be easily seen by considering the S used in the
two approaches. In PLS, S is constrained to only those matrices that can be de-
scribed we®; thus, S is rank one and has only n, + n; free parameters. However in
SR regression, S is allowed to be any matrix, and thus has n, x n; free parameters.
Generally, S will be full rank (after all, S = aX7Y). However to describe a full
rank S from the PLS vectors, one must build at least n, PLS directions, assuming
ni > n,. Building a full-rank S;?}f s from the first n, PLS loading vectors leads to
(T(S;’f}fs,}’))z > (T(Sf’) t,Y))2; PLS is sub-optimal for determining the “most signif-
icant subspace.” Another PLS variant, “one-at-a-time” PLS (OAT-PLS) is closely
related to SR. In OAT-PLS one ignores the vector output problem and solves n,
“independent” single-output problems. However, OAT-PLS is also sub-optimal for
determining the “most significant subspace.” See [35] for further discussion of OAT-

PLS and also the properties of PLS for vector output problems.

5.5 Tensor Problems

Tensors, which are sometimes referred to as “multi-way arrays” or “matrices of ma-
trices,” are generalizations of matrices that allow one to work with a richer class
of problems than is encompassed by multivariable regression. As improvements in
computer technology have made larger and richer data structures more readily avail-
able to practitioners, more researchers have been pondering tensor data descriptions
[77, 99]; tensors are particularly interesting for problems where multiple sensors are
being used [10].

For tensors an appropriate inner product can still be described by < A, B >

= Tr(ABT). That is, for any tensors A,B € RUX-X"w_ < 4 B > =



it ring @iy vsingDir,.ing- If one desired to build a tensor restriction regressor, then the
tensors can be “stacked” and one can use algorithm 3.1 and the results of Chapter
3. If one desired to build “significant factors,” then one would define a tensor S from
the outer product of a vector from each of the component vector spaces and optimize
equation 7(S5,Y). Such an approach generates “power-law” algorithms famihiar to

PLS researchers.

5.6 Summary

The application of the SR method to multiple output problems was carried out.
After defining the necessary inner product and null hypothesis, the vector output
regression problem was seen to be equivalent to the scalar output problem; by properly
“stacking” the vector output problem one can use algorithm 3.1 and the results of
chapter 3. Because the vector output problem can be so easily reduced to the scalar
problem, only the scalar problem will be considered in the remaining chapters. The
SR factor analysis method for vector outputs was shown to be almost identical to
the conspicuously successful PLS algorithm. PLS’s deficiencies for regression were
highlighted via this comparison. Lastly, the issue of tensor data problems was briefly

examined. For regression, the tensor problem also “stacks” to the scalar problem.
?



Chapter 6

Measurement Error Model Significance

Regression

6.1 Introduction

The classical model (equation 2.1) assumes that the inputs (the explanatory variables)
are known without error. However practitioners must often work with data where all
the measurements are corrupted by measurement noise, not just the variables than one
wishes to regress onto (the dependent variables). This chapter addresses regression
problems where the data are assumed to be described by the measurement error model

(MEM)

y = Tr+e, and (6.1)

XN = T+ E. (6.2)

In this formulation, T € R"**™ represents the “true” but unobservable explanatory
variables, while X' € R"*" and y € R™ represent the n, observations of the ex-

planatory and dependent variables, respectively. Since this work focuses on collinear



problems, the main results will be most applicable to problems where the condition
number [21] of TTT is “large.” The unobservable errors affecting the explanatory and
dependent variables are E € R"X™ and e € R™, respectively. The assumptions used

in this treatment are:

(Al) E and T are stochastically independent.

(A2) The elements of T' are fixed (but unknown) variates.

(A3) E(E)=0,E&(e)=0.

(A4) E and e are stochastically independent.

(A5) The fourth moments of all the components of E and e exist.
(A6) lim,,, . ;%;TTT = My exists and is non-singular.

(A7) Each row of E, e, is stochastically independent and identically dis-
tributed, with & (C,e;f) = ¥ and ¥ non-singular. Likewise, the ele-
ments of e are also stochastically independent and homoscedastic with

& (ezeT) = o?l.
(A8) In addition to (A6), as n, — oo, TTT — n,Mry.

Further define My = My + £. (A4) can be readily relaxed, but at the expense of
more involved notation. (A2) can be relaxed by assuming that all limits are regular
with probability one. For this more general assumption, all of the results of this
chapter hold “conditioned on T.” See Schneeweiff [83] for further discussion of these
assumptions, their implications, and how to relax them.

For this model an asymptotically unbiased estimate of r is

ey = (XX —n,5) 7' X Ty (6.3)
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Under the additional assumption of normally distributed errors rypm is the maximum
likelihood estimate of r [44, 55]. Schneeweif} [83] has also determined the asymptotic
properties of Fypm. Specifically, \/n;(Fmem — 1) has an asymptotically normal distri-

bution with variance

Var., (\/ns(?’MEM - T)) = n};{-l}};o ng(szEM - T)(fMEM — T)T (6.4)
= M7 (SrTS 4+ o?My) M7 (6.5)
Consider for the moment the “no input noise” case, ¥ = 0. Then

Var, (\/H;(YMFM - 7)) = o?M7z'. If collinearities exist among the explanatory vari-
ables then My will be “nearly” singular and the variance will tend to be large; this
effect is well-known for classical least-squares regressors. The input noise adds addi-
tional variance (M7'Srrf$M ;") while maintaining vulnerability to ill-conditioned
data (02M7'MxM;'), so cleatly one needs to be able to address this problem for

the MEM as well.

6.2 Significance Regression Method

For treating collinearity via significance regression one considers the null hypothesis
Hy <w,r>=0 (6.6)

for which a natural test statistic is

< W, FMEM >

\/Var(< W, TNEM > )

Tideal (w 5 ‘X7 Y ) -
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Computing Var(< w,7mgm > ) is involved; however, one can use equation 6.5 to

discern that as n, — oo

1 .
Var(< w,fmpm > ) — ——wIZ\/IEl(ErrTE + 2 Mx )M w = Vigear. (6.8)

B

Thus, in principle one can use a t-test based on equation 6.7 to evaluate H}? for any
given w when n, is large. However, V4., includes several terms that must themselves
be estimated. First, one must determine My. By (A2) the T are fixed variates. One
may therefore assume that the values of T are repeated as n, — oo, consider Mr to
be ;};TTT, and approximate My as ;%XTX. A more difficult problem is the explicit
appearance of the unknown vector r in equation 6.8. A useful choice is to use the
MLE estimate fyppm in place of r, acknowledging that this alters the distributional
properties of 7(w,X,y). This substitution has not had major consequence in the
various simulation studies conducted thus far; see section 9.3 for further illustration.

With these approximations, the new approximate test statistic is

< W, TMEM >

(TX »~ ~ P ,'T - Ed ” .
\/ﬁ-;uﬂ()an;\ — )Y SrveMigEn S + gg-_\.nwf.)(gz:& —)lw

m(w,X,y) = (6.9)

Applying algorithm 4.1 to the measurement error model using the quantities defined

here, the significance regression algorithm for measurement error models is:

Algorithm 6.1 (SR-MEM. )

ﬁMEM = (‘XTX' - nsE)”l‘XTy (6.10)
1 (XTX B
V = ;—; ( n _ E) (ET’ME;\/IT‘;\FAEME (6411)
T %~ T v ~1
o ,x) (A X _"E)
T N Ng
W =000, WyeR" (6.12)

DO : =1,nq
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(I = Wia WL )V =" ymm

w(X,y) = — 6.13
(o0 = =W W Vo] (619
W, = [wP |wsP| - - - |wi?) (6.14)

END DO
b = W,,(WI (XX — n,S)W,,) "' WT XTy. (6.15)

The w" and the associated (777/(X.y))? = (7(w{,X,y))? have several useful

properties. First, assume w;” " was computed using Vigeqr. Then

(7 gmm w?m)z
( tdsal 1(‘/‘L ! )) = B opt (616)
wi’ Y ideal '
~T L 2
— (Fvem Videa ™MEM) (6.17)
T e Viae Videat Vigea™ME '
"MEM Yideal ¥ ideal Videql” MEM
. ~T -1 o~
= TMEM Videat "™MEM (6.18)

which asymptotically approaches a non-central y2-distribution with n; degrees of
freedom; when H}? holds for w{™, then (7h,,(X,y))* approaches a central y*-
distribution. Based on this observation, one can approximate the distribution of
(r7P(X,y))? as being a non-central y2-distribution with n; degrees of freedom. As
developed in chapter 3, one can likewise approximate the distribution of (777(X,y))?
with a non-central y?-distribution with n, = n;—i+1 degrees of freedom. This approx-
imation will breakdown when the value of the non-centrality parameter approaches
n,. Importantly, SR seeks the directions for which the non-centrality parameter dom-
inates the variance. When the approximation fails, the non-central y*-distribution
will have too heavy of a tail relative to the “true” distribution.

These distributions are used to determine ny. For each 7, one should test if there

are any more “significant subspaces” to be found. If no such subspaces exist, then
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one should choose ny = 1. This motivates the null hypothesis

HM <w,r>=0 forall we& Range(I — W;,_,WL)). (6.19)

Under ‘Hy>"', the non-centrality parameter of the distribution for (777((X,y))? is zero,
so one may use a Y’ test for determining ny. If one can reject ’Hég‘i, then ng > ¢. The
nq determined using the approximate \? test described here will be less than or equal
to the ng one would determine using the “true” distribution since the approximate
distribution has too heavy of a tail.

Although b will typically provide a biased estimate for r, bis in fact asymptotically

unbiased. For any w,

PR 2
HPE}JO(T(?'U’?J))2 = n%ig}éo (wu;]\{]/?s:) (620)
oy d 5 2
= lim w (6.21)
na—oo  powlVw
oo if wlr#£0
o ? . (6.22)

0 ifwlr=0

When ng is large enough, (7(w,y))? will be large enough to overcome any given
threshold for “significance” for all directions where w’r # 0. This means that if
the y? test described above is used to determine ng, then for n, sufficiently large

r € Range(W,,,) and bis an asymptotically unbiased estimator of r.

6.3 Classical Regression Model Methods

One does not always know the value of ¥. However, this section will show that
one can still successfully use techniques derived for the classical model, equation 2.1,
for collinear data described by the measurement error model. Using the classical

ordinary least-squares (OLS) regressor 7 for a measurement error model produces an
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asymptotically biased estimate of 7 since limy,, o (7 — ) = —M5'Sr # 0. However,
7 is an asymptotically unbiased estimate of the least-squares optimal predictor p; see
claim 6.1 and claim 6.2 of section 6.4, Berkson [1], and Schneeweifi{83] for further
discussion. Moreover, 7 acts as a “natural ridge regressor.” rygpm can be described
by

FMEM = arg Igsieg'(y — Xv)T(y — Xv) — no’ So. (6.23)

To form an MEM ridge regressor, add the “soft” constraint

FMEM = arg Iéflgi;ll'(y — X0)(y = Xv) — no' So 4+ 0T Av (6.24)

for any positive semi-definite 4 € R"*"  Letting 4 = n,% produces a “generalized
MEM ridge regressor” 7 = (XTX — n, % +n,8) ' X7y, Just as ridge regression has
a mean-squared-error (MSE) advantage over OLS for the classical model for noisy
and/or collinear data, so this MEM ridge regressor, 7, can have an MSE advantage

over ryeMm. Define

MSE(v) = € ((v = r)(v —1)") (6.25)
for v € R™. Note that

1

MSE(fypn) — — M7 (Sr"S + oMy )M7'  and (6.26)

L3

MSE(#) — iM‘,;l(szE + ol Mx)X7 4+ M S TS MG (6.27)

Ng

as ny, — 00; equation 6.27 is verified in claim 6.4. A necessary and sufficient con-
dition for MSE(7) < MSE(#mgwm) is developed in claim 6.5. As shown in claim 6.6,
two conditions that favor MSE(#) being less than MSE(#ygpm) are r7 My Mypr
being “small” and o? being “large.” These conditions can be loosely described as
“poor signal-to-noise (SNR) ratio.” Notice that even if all the individual inputs have

“good” SNR (the diagonal element of My is “large” relative the corresponding diag-
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~1/2 heing “small” in the crucial r

onal element of ¥), collinearity may result in M7 ¥
direction.

While 7 may be preferable to 7y for collinear data, 7 has its own well known
difficulties with collinearity. Given that significance regression is a successful method
for mitigating collinearity difficulties in the classical model, what is outcome of using

SR for the MEM? A key difference will be in the selection of W. SR proceeds by

assuming

Vary, (vns(F — p)) = a2 M3". (6.28)

However as shown in claim 6.3,

Vare (Vs (F = p)) = lim n (7 —p)(F —p)" (6.29)
= Mg"Y(Sr'S + o?Mx)Mx! (6.30)
= MJSrrTSM + o2M5! (6.31)

where pis the “optimal predictor” defined in claim 6.1. While equation 6.31 does differ
from equation 6.28, the primary difference occurs in the My'Sr direction. Thus if one
uses the “classical” algorithm 3.1 instead of SR-MEM, one can reasonably proceed
assuming that the ignored measurement errors often will not make the SR estimate
unduly unreliable: the direction selection process is only affected in one direction,
and the least-squares estimate constrained to Range(W) can compare favorably to
the asymptotically unbiased estimate. Further discussion of this point as it relates
to scaling is given in section 8.6, while the point is demonstrated via simulation in

section 9.3.



6.4 Summary

This chapter examined collinear problems where both the input and output data are
corrupted by measurement noise. The general SR regression method of chapter 4
was used with the measurement error model (MEM) to produce a significance regres-
sion method appropriated for this case. This approach assumes that the input error
covariances are known; often they are not. The properties and performance of regres-
sors derived form the classical (no input noise) model were investigated for the MEM.
The OLS regressor was shown to be a biased estimate of r, but an asymptotically
unbiased estimate of the “optimal predictor” and a “natural ridge regressor.” The
SR-MEM algorithm was shown to be a modest correction to the SR method of chap-
ter 3. These observations suggest that while the SR-MEM method is desirable when
all the error covariances are known, one can usefully address collinear MEM problems
using methods derived for the classical model; knowledge of the error covariances is

not essential.
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6.5 Appendix: Proof of Claims

This appendix presents the arguments that verify several claims made in section 6.3.

Most of these claims are straightforward; they have been relegated to the appendix

so that the requisite algebra would not distract from the main points. Any mention

of Schneeweif} refers to [83].
Claim 6.1 The least-squares optimal predictor is p = (-T—;:I +X)

Ng

A useful quantity to compute is
p= 111;1%1;'?;‘1; & ((‘!/ - Xo)T(y — X?_))) .

First compute the expectation:

T
=117,

(6.32)

& ((y — Xo)T(y - Xv)) = & ((T?‘ +e—(T+E)) ! (Tr+e—(T+ E)z‘)) (6.33)

= ITTTr + nwf — 27Ty + TT T To

Computing the gradient and equating it to zero,
\Aa ((’t/ — Xv)(y — X‘v)) = 27" Tr + 27" Tv + 2n,Sv = 0,

implies

T T
T +2)'}T Tr.

Mg Mg

=

(6.34)

+n3vfzv.

(6.35)

(6.36)

Claim 6.2 The OLS regressor asymptotically equals the least-squares optimal predic-

tor. That s limy,, oo™ = LMy, oo -
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Jim p o= n{i_@w(XTX)”XTy (6.37)
- lm_ (%(TTT +TTE + E'T + ETE)) - (6.38)
(;1-(:1* + B (Tr + v))
= Mx'Mgr (6.39)
= n{i_rpoo p. (6.40)

]

Claim 6.3 (‘ /s (T — p)) has an asymptotically normal distribution with zero mean

and variance M3 (SrrTS + o2 My )M3'.

This claim is an algebraic variation of a result due to Scheenweil using the alge-

braic relation y = Xr — Er 4 e. Also define E, = [¢| E] and g = [L | —r]”.

F—p = (XTX)'XTy—p (6.41)
T x\ —1 Ty ,’T (»”T
— (“\ ‘X) (‘\ Ar~—~ﬁ Erm{*“\ €+E?‘~ET) —p (6.42)
Ng Ng Ng g
XTx\' /1t E'T T'E E'E TTE ETE
= r+ r 4 r+ r— r— r (6.43)
N N Ng N N Ny Mg
T T
+"T'—E+E +E’r’-—3r)~p
ns ns
XT'xX\' (TTE. ETE,
= ( ) ( g+ g+ 27') + (6.44)
N N »
X'xX\"'/1'T E'T TYE ETE
+ + + Y
Ng N4 N Ng Ng
Now

hm

Ny OO

XT'xX\' /Tt ET'T TTE ETE
+ + + —

g

E) r (6.45)
M (Mrp + S)r — M3'Sr

Ng Ny Mg Ng

1l

= r—My'Sr (6.46)
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= lim 7 (6.47)
= lm p. (6.48)

When equation 6.44 is pre-multiplied by /n, the second line of equation 6.44 still
asymptotically vanishes due to (A8). Moreover, the (—T—gf;‘ﬁq + E%gﬁg + Er) portion of
equation 6.44 is identical to the (I, ®+')col H:W’ S+ WV - Ewy} term of equation
4.1 of Schneeweiff. From here one follows Schneeweifl’s development to verify the

claim. O
Claim 6.4 Asn, — oo, MSE(7) — ;%:AIEI(E?‘T’TE+0’2Mx)]t‘f£1 + M S TS My

This claim 1s a direct extension of claim 6.3.

MSE(7) = €((F =) =n)) (6.49)
= E((F—r = My'Sr+ Mg Sr)(F —r — My'Sr + Mg'Sr)") (6.50)
= Le r " I\ (F J-1.0\T -1 1 ~ —1 AT
= ;i:é (ns(rm7 + Myr)(F—r+ Mg'r) )“’MX ﬁg(/ﬁ(? - M) )

1

\/ﬁ_g (ﬁ(r —r+ M;lzr)) PTEMPT + M S TEMPT. (6.51)

As ng — 00,

E((F =7+ MF'Sr)(7 —r + Mz'Sr)") — LA TS 4 MM (652)

N,

and

& (Vi —r+ Mz'n)") =0 (6.53)

by the same argument used in claim 6.3, so the claim holds. O

Claim 6.5 For large but finite ny MSE(fypm) — MSE(F) 4s a positive semi-definite

matric.
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This claim does not hold for all problems, but does hold for many collinear and/or
noisy problems. The following “proof” develops a (tautological) necessary and suffi-
cient condition for the claim to hold.

Defining Xp = X D, for any non-singular Dy,

F(Xp,y) = Di'F(X,y) and (6.54)

ivem(Xp,y) = Di'fvem(X,y). (6.55)

Thus both 7 and 7ypy are scale invariant. Recall that for any two matrices A and B

of the same dimensions

A>B <& DAD > DBD (6.56)

for any non-singular symmetric D where “4 > B” means A — B is a positive semi-
. . -1
definite matrix. Choose Dy = £7%. Then the rescaled problem has ¥p = I. Under

this scaling, as ny — oo

MSE(fmpm) — %ﬂf;l(rrT +o2M3 )My, and (6.57)
MSE(F) — M7 + o My)M: + Mg mT M5 . (6.58)
N
Thus for n, large,
I\’ISE(‘F}\/EM) - NISE(f) - —1— (ﬁf{wl(?‘?"‘r -+ 0'3]\[}?1)]‘4{1"— (659)
N

M (T + err]\«ﬁ[;\?l)Mgl) — Mt M
= %j\[;leﬁI;l —(1+ %)M;WTMQ. (6.60)

4% (M7 MMzt — M.

N,
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The third term (with the %%— co-efficient) of equation 6.60 is always positive definite.
However the sum of the first two terms is an indefinite matrix: these terms may sum
to the null matrix, to a rank one matrix with either a positive or a negative eigenvalue,
or to a rank two matrix with one positive and one negative eigenvalue. The positive
definite third term may or may not overcome the negative eigenvalue, depending on
the values of the parameters; therefore the right-hand side (RHS) of equation 6.60
may or may not be positive semi-definite. The claim is true if and only if the RHS of

equation 6.60 is positive semi-definite for appropriately rescaled data. O

. . ) .  a? n o222
Claim 6.6 Claim 6.5 holds for any large but given ng of ;75 2 3L, EYSICIWEE
: Lar wol . . .
where v; are the eigenvalues of 72 MpY¥~2 with corresponding eigenvalues A; > 0

Tk
and p; = vI L2y,

A sufficient condition for claim 6.5 to hold is

2
1
% (M Mx M7 = M) > (14 )Mz re? M (6.61)

when the data have been rescaled such that ¥ = I. Since the LHS of equation 6.61
is positive definite, Farebrother’s 1976 result (Theorem 2.5.2 of [24]) reveals that

equation 6.61 holds if and only if

2
Te

ns+1

> "Mt (M MMt - MzY) T Mg, (6.62)

Since the v; are also the eigenvalues of My with corresponding eigenvalues A; + 1,

one can diagonalize the matrices and substitute My = A and My = A + I where



A = Diag(Ay,..., ;). Then

- - T
P1 £1
L > (A+I)7! (A""‘(./\+I)A"1 - (A+I)"1)”1 (A+I)™!
ng+1 7
i Pn; ] Pn;
(6‘63)
T
) P1 1 o1
o , 20 +1 ‘

[ > : -1 M ) mmz -1 . 6.64
iyl 2 : (A+1) (Dmg((ki«kl)kf)) (A+1) : ( )
i p?l{ g pn,

0.2 n§ pzAiZ

(6.65)

> .
ne+1 = 2 (A+1)(2N +1)

1

Notice that inequality 6.65 will hold when A; is “small” for any direction for
which p; “large,” or , equivalently, when rT My Mzr is “small” for properly scaled
data (D, = ©72). For unscaled data this condition is

o?

e > T M Myr. 6.66
ne 1= T o (6.66)




Chapter 7

Robust Significance Regression

7.1 Introduction

The development thus far has assumed that ordinary least squares is the desired
objective function. However, one may also wish to address weighted least squares ob-
jective functions. Thus the weighted least squares significance regression algorithm is
developed. Next the issue of robustness is addressed. Here robustness is defined to be
tolerance for outliers and/or deviations from the assumed distribution. Significance
regression is shown to have poor robustness properties; however robustness can be
achieved by choosing a better objective function than least-squares. Such regressors
are call M-estimators and possess both a strong theoretical foundation and a suc-
cessful history of practical use. The M-regressors can be expressed using a weighted
least-squares objective function but are unreliable for collinear data. In this chapter a
robust significance regressor is developed using M-estimation to generate the weights
for the weighted least-squares significance regression method. The resulting restric-
tion regressor inherits the robustness properties of the M-estimator while maintaining

SR’s ability to treat collinearity.



73

7.2 Weighted Least Squares Significance Re-
gression

Consider again the classical linear model
y=Xr+e (7.1)

but where &€ (eel) = 2P for some non-singular symmetric P. Moreover, consider
e O b

the weighted least-squares problem,

FwLs = arg %’%iey*(y — XY M(y — Xv) (7.2)
= (XTMX)'XT My (7.3)

for some non-singular M. Additionally assume that A is symmetric positive-definite;
most physically interesting weighting matrices will conform to these additional as-
sumptions. As is well-known, 7wrs is the minimum-variance unbiased estimator of r
when P = M~%. However, one may not always be interested in the minimum-variance
unbiased estimator (as in the robust regressors developed below), so this problem is
worth studying in its own right. Notice that 7wps maintains the same weakness for
collinearity as r.
Following the development in chapter 4, the null hypothesis of interest is

< w,r > = 0 for which a natural test statistic in the weighed least squares context is

(wliwrs)

(7.4)

T(w,y) = )
’ Var(w? ywis)

Computing the necessary variance

Va,l‘(waWLS) = wl€ ((7*WLS —7r)(rwLs — 7‘)’7‘) w (7.5)



leads to

T(w,y) =

= wl€ ((XTMX)“IXTMeeTX('XTMX)*I) w

74

= clwT(XTMX) ' XTMPX(XTMX)'w

wlFwis

Vol (XTMX) ' XTMPX(XTMX) Two?

(7.6)

(7.7)

(7.8)

From this test statistic the weighted least squares significance regression algorithm

1s:

Algorithm 7.1 (SR-WLS)

TWLS =
Var(fwis) =
Wy =

DO =

END DO

bwis =

(XTMX)'XT My

(XM XTMPMX(XTMX)™!
0, W,eR™

1,nq4

(I = Wiea W) (Var(Fwis)) ™ Fwes
v
[l

[y [w3™] - ™

W, (WL XTMXW, ) 'W XTMy.

(7.9)
(7.10)

(7.11)
(7.12)
(7.13)

(7.14)

(7.15)

The SR-WLS regressor, IVJWLS, is similar to performing SR on data that has been

scaled by D, = M3 (see section 8.2). That is, let Xy = M3X and Ym = 1’\{%3/, and

then perform normal SR using Xy; and yps. The distinction appears in equations

7.10 and 7.12. Under such a scheme, the variance described in equation 7.10 would

be the same, but would not be used in equation 7.12. Instead, equation 7.12 would

be replaced by

w = (I = Wi, WE Y XTMX) Fwrs.

(7.16)
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Thus the “rescaled SR” approach loses all information about P; if the rescaled errors
(M }Te) are not homoscedastic and independent, the method will suffer.

Once again, the issue of how to choose ng arises. One can use cross-validation [87]
and the WLS objective in equation 7.2. Alternatively, one could pursue a statistical
test. 7(w,y) is normally distributed if e is normal, Mg of chapter 3 holds, and w is
independent of y. Unfortunately (7"*(y))? has a more involved distribution. Also, the
motivation for using a weighting matrix M # P~! will probably also impact how one
choose ng. For example, one typically tries to use the x? distribution when building
a statistical test for choosing ny. However, a major motivation for developing the
SR-WLS algorithm is to lay the foundation for robust significance regression — and
the x? distribution is a poor description of data with outliers. Thus, the issue of
choosing nq is left open for moment.

SR-WLS has applications beyond being a step in the derivation of a robust SR
method. The least-squares objective works with an absolute error description; how-
ever in many applications one is interested in minimizing a relative error objective. If
one is building a predictor of chemical composition, a predictor that provides excellent
precision of the concentration of the most common chemical at the expense of pre-
dictive ability for the trace chemicals will not always reflect the practitioner’s desires.
If the y values were themselves corrupted by relative errors, then the data would be
heteroscedastic and the scaling suggestion to be discussed in section 8.5 would apply.
However, if the errors really were homoscedastic, one could employ a weighted least-
squares objective using weights computed from y. Letting y = [t1,%2,... ©n,]T, the

least-relative-squared error objective is

g T 2
=5 (%) (a0

=1

which immediately gives rise to the diagonal weighting matrix M with the jth diag-



onal component of 1/1;.

7.3 Robust Regression

Robust estimation is supported by a rich and successful corpus of theory; only brief
portions of the theory needed to develop a robust significance regressor are touched
upon here. The interested reader is referred to Huber [40, 42] and Tukey [33] for
further development, as the claims made here are derived from these sources. Some
might object that these approaches are not particularly relevant: since most practi-
tioners will examine their data and reject obvious outliers, why develop outlier resis-
tant regressors? Huber answers this question by claiming “only the best among these
rejection rules can more or less compete with other good robust estimators. .. Rules
based on the studentized range, for example, are disastrously bad [42, p. 3].”

To address robustness, two questions need to be addressed: What is “robustness,”
and how does one measure it? In this development a limited definition of robustness
is used: a regressor is robust if it (1) is insensitive to small deviations of the error
distribution from the assumed distribution and (2) remains bounded in the face of
small numbers (less than 30%, say) unbounded gross errors. Quantifying the first
part of the robustness definition is beyond the scope of the current effort; chapter
2 of Huber [42] is good starting point. However the point can be briefly illustrated
using Tukey’s famous example [69]. Consider the problem of estimating the variance
of a distribution. Consider a sef of data {¢y,...,¥,,}. Two common measures of

scatter are the mean absolute deviation

1 1 / N
or =~ >l =¥ (7.18)
=1



and the mean square deviation

1 -
oy = ,|— (wz — 1}/_))2 (719)

n =1

where ? is the sample mean. For normally distributed errors, o, is the “efficient”
estimator in the sense of the Cramer-Rao bound. However, consider the case where
all samples are independently drawn from normal distributions with the same mean,
but with probability € an observation is drawn from a “bad” normal distribution
with three times the deviation (square root of the variance). To compare the two

estimators, use the asymptotic relative efficiency,

ARE(e) = lim Var(o,)/ (€ (02))°

, 7 7.20
A (o) (€ (o)) (7:20)

Of course, for € = 0 the ARE is less than one: ARE(0) = 0.876. This is the source of
the common claim that the mean square deviation is “12% more efficient.” However
for 0.002 < € < 0.998 ARE(e) > 1; if only two observations per thousand deviate from
the normality assumption underlying the o3 claim to efficiency, o, is not the efficient
estimator. Thus, o, is seen to have poor robustness in the first sense. In fact, many
maximum likelihood estimators derived assuming a normal distribution for the errors
have poor robustness in this sense.

The second portion of the robustness definition is quantified via the concept of the
“breakdown point.” As defined by Hampel [26], the breakdown point of an estimator
1s the largest possible fraction of the observations for which there is a bound on the
change in the estimate when that fraction of the sample is altered without restriction.
Thus, a necessary condition for robustness is a non-zero breakdown point. Notably,
most of the estimators derived from the common (unweighted) least squared error
objective, including 7 of equation 2.4 and b of equation 2.8 have a zero breakdown

point: if any given observation is altered without bound, the estimator is also altered
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without bound.

There are numerous robust estimators to choose from; here the class examined
is the M-estimators. M-estimators minimize the maximal asymptotic variance over
the relevant family of distributions when such a statement is meaningful [41], typi-
cally have high breakdown points [33], and have been shown to have superior robust

regression performance. [42]. Quoting from Goodall [22],

The M-estimate gy, (y1,...,%n,) for the function p(- ;x) and the sam-

ple vq,...,%,, is the value of y that minimizes the objective function

1oy p(4; ).

A necessary condition M-estimators must satisfy is

X5z p(v4; 1)
ou

~0, (7.21)

which can be expressed as

S By p) = 0 (1.22)

i=1

where U(y);;p) = 2elbn)

or L/)—-«p»; typically p(t;; 1) is differentiable with respect to p

i
almost everywhere.

The two most familiar M -estimates are the sample mean, derived from p;(¢);; u) =
1(1;—p)?, and the sample median, derived from py(¢;; ) = [1;—p|. Importantly, any
M -estimator can be redescribed by the weighted least squares objective p3(1);; i) =
%’?(Q/Jj — 1) where w; = %—f—'ﬁ%‘l To develop robust regressors, an additional constraint
will be added to the functional form of p: p(v;; 1) = p(A;) where A; = 1; — . Also,
for regression, one must be able to define what 1s “large” and what is “small” for the

sake of identifying outliers. This is done via the scale parameter oyobust, Which 1tself

is a robust variance estimator. Defining the j-th observation of the output (y) to be
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1;, the unique robust regressor frohust and scale parameter oyobust is defined by

) and f_jg( A )xo (7.23)

=1 Orobust

S (2

j=1 Orobust

Aj Aj Aj Aj
where ¢ (200) = 2200 (500) - o (7250)
5 Trobust drobust\I, Trobust p Orobust and A w" .’L' Trobust

Solving the equations 7.23 can be done via the following iteratively re-weighted

least squares (IRLS) algorithm:

Algorithm 7.2 (Robust M-Regression)

i = 0 (7.24)
o= (XTX) 1 XTy (7.29)
oo = I1X70 — yll (7.26)
NnNg — N,

Aj= Yj—ajfo Vi (7.27)

i . (¥(4,/ C’O))
Mg = Diag | ——2—= 7.28
’ & ( Aj/ oo (7:28)

DO
i= i+1 (7.29)
fi= (XTM_, X)'XTM;_yy (7.30)
Aj= i~z Vi (7.31)
- O~ 1 P
o; = o na Z§ ( ) (7.32)
5 : (Aj/ i)
M} = ———— 7.33
F = Ding (11 (1.3)
UNTIL convergence

Mrobust = Mi (734)
Orobust = Oy (735)

FIfobust = ry (736)
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where o is the £ (¢(-)) when the argument is a unit normal random variable. For
Huber’s commonly-used “proposition 2” objective function (described below) o =
0.258. This algorithm is adapted from Huber’s Algorithm H [42] and has been proven
to converge uniquely. In fact, this algorithm converges quickly, typically in less than
ten iterations.

An open question is the choice of p(-). A common and successful [11] M -estimator

uses Huber’s “proposition 2” objective function:

A2 A
. g e I
( AJ ) — 20robust fOI' l"robust! - 1 . (7'37)
Trobust l aj; 1 for f Ag‘ [ > 1
Trobust 2 Orobust

One can see that the resulting M-estimator uses the mean, which is “efficient” (in the
classical sense) but not robust, when the error is “small,” and uses the median, which
1s robust but not “efficient,” when the error is “large.” In fact, the “proposition
2”7 estimator is the maximum likelihood estimate when the samples are indepen-
dently drawn from a normal distribution contaminated by the “unique symmetric
asymptotically least favorable distribution [40].” For particularly heavy-tailed error

distributions, a better p(-) is Tukey’s biweight [33]:

( N ) Lo (1-% or |-l =1 (7.38)
p - | -
Trobust 1 for l =4 >1

P Trobust

One should keep in mind that the theory supporting M-regressors assumes in-
dependent and a priori homoscedastic errors; therefore one should always scale that
data such that P = ¢?] before using algorithm 7.2. More importantly, M-estimators
in general, and these two in particular, are not the minimum-variance unbiased es-
timators; achieving the minimum-variance property comes at the direct expense of

robustness. However, both the “proposition 2” and Tukey’s biweight objective func-
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tions lead to unbiased estimators with breakdown points of almost 0.5 [22].

7.4 Robust Significance Regression

While the algorithm 7.2 produces robust regressors, it inherits OLS’s weakness for

collinear problems. As shown in the variance,
Var(7 = (X Mrobust X) ™ X7 Mobust P Miobust X (X7 Mygpuse X) ™ 7.39
al(rl‘()btlst) - (4 robust~ ) A Mrobust robust< (4’ robust ) 3 ( . )

the estimate will often be unreliable in the directions for which the eigenvalues of
XTMX are small. On the other hand, SR, which does treat collinear problems
successively, has a breakdown point of zero and is therefore not robust. The next
step is to combine the two desirable properties; the clear and simple manner to do

this 1s via SR-WLS.

Algorithm 7.3 (SR - Robust)

1. Rescale data such that P = o?].
2. Choose an M-estimation objective function, p(-),
3. Compute M ghuse and Opopust With algorithm 7.2.

4. Use algorithm 7.1 to generate Z)robust'

Notice that the resulting restriction regressor,

brobust = arg __min  (Xv —y) M (Xv -y 7.40
bust gveRaleg,}(lwn d)( v—y) M( y) ( )
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has the same breakdown point as 7opus and inherits all of the robustness properties
of the M-estimator when r € Range(W,,,). Thus using significance regression does
not cause any “loss of robustness” but does maintain the ability to treat collinearities.

Algorithm 7.1 does not firmly specify how to choose ny. As mentioned in section
7.1, one could use cross-validation with the robust objective function in equation
7.40. However, one can also develop a useful alternative based on the significance
regression framework. Following the approach in Chapter 3 is useful in broad stroke,
but dubious in detail; the “statistical” method put forward in section 3.2 for choosing
ng relies on the \* distribution, which is known to be a poor description of data
that contains outliers and or deviates from the normal distribution. As noted in
section 3.2, and demonstrated in chapter 9, a very simple and effective decision rule
is: if (7(w{,y))? > n,) then ng > i. Use of this decision rule directly can still be
dangerous, since one typically employs &2, which is not robust. However, using the
scale parameter oyohust allows one to define a “robust” significance regression objective

function

T 2
2 (w Trob st)
(’Trobuat(zva ?1)) - QUT(XTJYB"';IZUJQ (741)

robust

. .. . ¢ . .
from which one can use the decision rule: if (fropust(wi” ,y))? > n,) then ng > i. This
decision rule does not rest on theoretical derivation; in particular, it is not equivalent
to the 50% F-test for large n,. However, as will be demonstrated in chapter 9, it does

provide a useful ad hoc rule.

7.5 Summary

This chapter developed a novel robust restriction regressor, SR-Robust. This regres-
sor employs the objective functions that make the M-estimators tolerant of outliers
and distributionally robust while using the SR method to treat collinearities. By

choosing among the well-analyzed M-estimation objective functions, one can “tune”
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the method if one knows that the error distribution is “heavy-tailed” or if one has
other special knowledge of the error distribution. The computation of the SR-Robust
regressor involves using the weighted-least-squares significance regression algorithm
(SR-WLS), also developed in this chapter. SR-WLS can be used to address other

objectives, such as buidling predictors that minimize relative error.



84

Chapter 8

Scaling for Significance Regression

8.1 Introduction

An essential step in the use of any biased regressor is the scaling of the data; unlike
the unbiased regressor 7, biased regressors are profoundly affected by scaling. Despite
this importance, scaling methods for restrictions regressors are inadequately under-
stood. The first section illustrates the importance of scaling and states some common
objectives for scaling methods. Next, the close link between scaling and one’s a priori
beliefs is examined. The final three sections develop scaling methodologies to address

the stated objectives.

8.2 Scaling Objectives

All “real” data is always scaled: whether the quantity in question is a length, a
time interval, or a percentage, measured quantities always carry some type of unit.
The choice of units can have a dramatic impact on biased regressors. Consider, for
example, significance regression. Let z; be the vector of inputs for the i-th input;

that is, let X = [z1]...]z,]. Then w{" = X7y = [zfy zTy...2Ty]". The “most
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significant” vector is formed from the covariances between the individual inputs and
the output. Herein one can see the effect of scaling; if one of the z; is multiplied
by a large constant, say by choosing units of microns instead of kilometers, then
that input will figure much more prominently in the “most significant” vector. The
problem is pervasive; most other biased regressors, including ridge regression [85] and
PCR [45], are just as semsitive. Clearly, one would like to mollify such effects. The

“mollification” is typically done by scaling the data, as in

X = DyXywwD: (8.1)

y = D?yraw (8~2)

where Dy € R™*™ and D, € R™*"™ are non-singular and referred to as the input
scaling and output scaling, respectively. In this study, D; and D, are also assumed
to be symmetric and positive definite; this assumption can be relaxed, but is met in
virtually all scalings used in practice.

The primary objectives of most scaling regimes are
1. to be computationally inexpensive,
2. to remove “scaling” (measurement unit) effects from the raw data,

3. to account for correlated and heteroscedastic output errors (different samples

having different error variances), and
4. to mitigate the effects of input measurement errors.

The first objective is a matter of practicality; if computing a “good” scaling requires
an order of magnitude more computations than the regression itself, then one must
question if the scaling is an aid for the regression process or a replacement. For this
reason scaling matrices are usually diagonal matrices computed from readily available

quantities. The second and third objectives can be adequately addressed with existing



86

theory. The fourth objective is almost always approached via heuristics; scant theory
exists to guide the user. After discussing several general aspects of scaling, each of

these objectives will be addressed in turn below.

8.3 Aspects of Scaling

The meaning of scaling for ridge regressors is well understood: the scaling incorporates
one’s a priori beliefs about r. Using an explicitly Bayesian interpretation, if one
believes a priori that r has a distribution with mean 0 and dispersion A™', then the

Bayesian (or ridge) regressor is [24]
b= arg bzg}i\gg lly — Xb|| + b Ab. (8.3)

If scaling D, is applied to both the data and the prior, then

b = Diarg min ly — XDyb|| + b" Dy ADyb (8.4)
e aro min o — Y T Ap. =
= argmin [ly — X[ + 07 Ab; (8.5)

the Bayesian regressor is scale invariant. However, if one scales the data only, then

b = Darg min [ly — X Db + b" Ab (8.6)
= argmin ||y — Xb]| + b D7YADT . (8.7)

The scaling changes the prior; for most ridge regressors, A = I and the scaling is the
prior [61]. As shown in chapter 2, ridge regressors and restriction regressors arise from
applying different but related styles of constraints to the same optimization problem;
thus, the scaling for ridge restriction regressors also reflects the user’s a priori beliefs

about r.
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One should be wary of devoting too much effort to computing “optimal” scalings;
as shown through the Bayesian description, the choice of scaling and the regression are
inseparable. For example, a scaling that always meets the second objective and that
is provably “optimal” for certain squared-error objective functions is D = (XTX)™!.
Under this scaling, w” = D;XTy = (XTX)"'XTy = #. By use of a particular
scaling, significance regression has been contorted to exactly mimic OLS. This will
rarely be regarded as “improvement.” Also, given the considerable computational cost
of computing the matrix inverse, this scaling fails the first objective. The remainder
of this study will reflect current scaling practice and focus on diagonal Dj.

Before moving on to the main results, one peculiar form of scale invariance for
SR is noted. The above scaling description used the regression viewpoint. From
the factor analysis viewpoint, w{’ is interpreted as a basis vector for the x;. Thus,
to “unscale” the first significant vector is to perform a change of basis back to the
original basis:

u’(l)m - Di‘l(ﬂyrawl)l )Tyraw - X,;C,wymw- (88)

Thus the first significant vector for factor analysis is scale invariant. However, the
scaling chosen does impact the orthogonality constraint, so the later significant di-

rections are not scale invariant.

8.4 Removing the Effect of Units

As noted in the introduction, a major motivation for scaling is to remove the effect
of different units for the various inputs. This objective can be concisely stated as
follows: one desires an input scaling regime, say the matrix function D (-), such that

for any diagonal positive A

X = /Yy'aw D (*Xr'awA) (89)
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yields the same X. This objective proves remarkably easy to meet. The two most
popular methods are auto-scaling (AS) and significance scaling (SS). AS involves di-
viding each z; by the standard deviation of that z;; that is, D7? equals the diagonal
elements of X7X. With AS the “most significant” vector is formed from the correla-
tion co-efficients between the individual inputs and the output, providing a heuristic
motivation for using autoscaling when the inputs are uncorrupted by measurement
noise. Indeed, many leading authors use AS (“standardized variables”) without com-
ment or justification [58, 88].

When the inputs are known to be corrupted by noise, another common scaling
is SS [62]. When the input measurement errors are independent and homoscedastic,
SS involves dividing the z; by the standard deviation of measurement error for that
input. Since a change of units multiplies both the signal and the noise by the same
constants, SS also meets the objective for removing the effect of units. Thus, the two
most popular input scalings meet the first and second objectives. However, as will
be shown in sections 8.6 and 9.5, the scaling approaches differ markedly when input

measurement errors are present.

8.5 Accounting for Heteroscedasticity

Often not all of the samples will have the equal error covariances or will not be
independent. For the classical model, equation 2.1, this is mathematically stated as
& (ecT) = 02P where P € R":X" is symmetric and non-singular. For the classical

case, the minimum variance unbiased estimator, 7 has long been know to result from
-1
D, = P72, (8.10)

Since the SR algorithm explicitly uses 7, one should use this scaling whenever the

assumptions of the classical model hold.
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The other form of heteroscedasticity is more difficult. All of the results in chap-
ter 6 for the measurement error model were derived under the assumption of ho-
moscedasticity; however, the input errors may be heteroscedastic. For example, an
experimenter may improve her/his techniques with experience, so later measurements
will be more precise. If one faces this problem, analysis of SR-MEM and SR-Robust
suggests two possible approaches; neither is rigorous. The first approach 1s to rely on
robust regression. As briefly discussed in chapter 7 and elaborated in Huber [42] and
Hoaglin et al.[33], robust estimators are robust to both outliers and perturbations of
the distribution. If one views the heteroscedastic samples as being drawn from the
perturbing distribution, then use of algorithm 7.3 is reasonable.

The second approach insists on using the results for the classical model. Recall

the measurement error model from chapter 6:

y = Tr+e, and (8.11)

X = T+ E. (8.12)

These equations are algebraically equivalent to

y=(X—E)r+e=Xr+(e— Er). (8.13)

Thus the measuremt error model can be made to appear similar to the classical model

that drives the SR algorithm; continuing that similarity suggests that

(S

D, = (£ ((e — Er)(e — Er)"))) (8.14)

1s a useful scaling. This scaling reduces to the optimal scaling when E = 0, produces
a scaling proportional to the identity matrix when the samples are independent and

homoscedastic, and embodies the intuitive idea that “cleaner data should be given
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greater weight.” Of course r is unknown and must be estimated. Since the estimate of
r will only affect Dj, the estimate used for r is not crucial and 7 (which is input-scale

invariant) is a reasonable starting point.

8.6 Mitigating Input Measurement Errors

Rigorously treating input measurement errors was detailed in chapter 6. However,
common practice dictates the use of input scaling and the classical model; moreover,
section 6.3 showed that the SR method for the classical model can be effective for
the MEM. Thus this section will investigate input scaling as an approach to the
MEM for the sake of both custom and extending the results of section 6.3. This
section will use the assumptions of chapter 6, including the assumption that the
measurement errors are homoscedastic and independent between samples, although
the input measurement errors may be correlated for any given sample. For these
assumptions, significance scaling becomes D, = N3,

As noted above, the input scaling is an embodiment of ones a priori beliefs about r.
Thus AS can be interpreted as the belief “all inputs are equally useful,” while SS can
be interpreted as the belief “the usefulness of an input is inversely proportional to its
measurement noise level.” One should choose between AS and SS based upon which
belief seems more appropriate. While one might hope for stronger theoretical support
than the vague semantics proffered thus far, the literature offers little support. When
Wegscheider attempted to systematically study certain scaling effects, he found “there
was no accessible prior knowledge..., nor were literature recommendations available
[43].” In Mejdell’s successful use of a restriction regressor for control of a distillation
column, he was unable to locate a rigorous motivation for any scaling scheme and
ultimately designed his own scaling regime based solely on intuition derived from

control theoretic experiences[63].
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Given the importance of the issue and the lack of compelling theory, SR-MEM will
be used to provide two theoretical “anecdotes” in support of significance scaling with
significance regression whenever other o priori knowledge is lacking. These results
are indicative rather than compelling, but do provide more theoretical guidance than

is currently available. As derived in chapter 6, for n, large

Var(#) — o2(XTX) ' 4 n (XTX) 'S TR(XT X)L, (8.15)

However in SR one only makes use of the full rank (X7 X)™! term; the rank one
(XTX)~'Sr is omitted. Here one sees the effect of the input measurement noise on
significance regression: SR will underestimate the variance of 7 in the (X7X)"'Zr
direction. Under SS, & = I and (XTX)"'Sr € Range(W) if only if ng = n;; signif-
icance regression naturally avoids the “extra-noisy” direction. However, this is not
particular motivating since any given significant vector can be arbitrarily close to
(XTX)~!'Sr (that is, have a direction cosine arbitrarily close to unity). Recall that
the significance regression objective,

(wTr)?
wl(XTX) lwo?’

(8.16)

seeks the direction where the ratio of signal (w?7) to variance is greatest. Thus, SR
will have a greater preference for the direction where (X7X)™!'Sr has the greatest
relative impact than SR-MEM would indicate is appropriate. This direction of this
bias 1s

TivT yvy-1v.,.)2
© (X A)TE (8.17)

arg min -
& Jewn T (XTX)-1vo?

This will cause the distribution of w{”(y) to be asymmetric about X7 Xr — unless
Y = I. Thus when SS is used with SR, the search for the significant directions is

biased towards r relative to using SR-MEM. A basic requirement for a restriction
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regressor to be “good” is r € Range(W), so the “bias” significance scaling introduces

in the search for significance directions is also “good.”

8.7 Conclusions

This chapter examined scaling regimes for restriction regressors, and significance re-
gression in particular. The output scalings should be chosen to render the data
homoscedastic. Input scalings are a reflection of one’s a priori beliefs about r. When
no such beliefs prevail, existing theory provides only a weak guide. However the
theory underpinning significance regression encourages using auto-scaling when the
inputs are known without error and using significance scaling when the inputs are

corrupted by measurement noise.
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Part IV

Process Applications
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Chapter 9

Synthetic Examples

9.1 Introduction

The above development focused on theoretical understanding and derivation. This
chapter presents numerical studies that illustrate the utility of the new results for
problems with multiple outputs and clarify the relationship between the various re-
gressors. The results of the previous chapters for vector output problems, the mea-
surement error model, robust regression, and scaling are illuminated. In the past,
some novel estimators have been “proven” using a specific example. Often much of
the ensuing debate centered around the “validity” of the chosen example and the
“meaning” of the numerical results. In this chapter, the examples are simulation
studies using purely synthetic data. The data are not claimed to correspond to any

2

particular “real world” process; rather, the data were generated to conform to the
model assumptions and to illustrate the relative effectiveness of various methods for
problems that satisfy the model assumptions. The “real world” successes of PLS
[62, 63, 75] and the results of the following two chapters are suggested as evidence of

the practical utility of SR since the two methods are closely related.

Two measures were employed to evaluate regressor performance. Since the exam-



ples were synthetic, R was known and a point estimate of the trace of the MSE could

be computed for each example. The measure was

~

Tr( (B~ R)(B-R)")
Tr(RRT) .

RM Sysg = \J (9.1)

The Tr(RR”) term was included to produce a relative error and allow averaging over
all one thousand examples.

The second measure was computed based on the PRESS (PRediction Error Sum
of Squares). For each example an additional one hundred samples (X, e, Yoew) Were
generated from the identical distribution as the training data, but the Y, were not

corrupted by error (E,., = 0). Then

‘Xneu:é - y;zeu;)T(szetm)B - Y;ww) )

RM Sprgss = J Tr((

(9.2)
Ns No
Since the data were generated with the constraint
TI‘(Y,S;U Yoew —1 (93)

Ng N

the RM Sprpss was averaged over the examples without normalization. For each
simulation, the rank (relative performance) of each regressor was recorded: rank = 1
if no other regressor did better for that example, rank = 2 if one other regressor did
better, and rank = 3 if two other regressors did better. If two regressors had the same
performance to within 0.1% they were given the same rank. The average rank with
respect to both MSE and PRESS was computed.

All examples had ten inputs (n;, = 10). The examples for the vector output and
robust studies had four outputs (n, = 4), while the MEM and scaling studies used
scalar output examples. For each case study, one thousand distinct examples were

examined to mitigate sampling effects in the numerical results. Each example was
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generated by the appropriate method presented in appendix B. Since both input vari-
ances and the values of the regression parameters varied over five orders of magnitude
and since there were typically large variances in the input data that had little effect
on the output, this exploration shed light on the relative strengths and weaknesses of
the four methods for a class of problems that has historically bedeviled OLS. Thirty
samples were available for training (n, = 30) for all examples. Where cross-validation

was used to determine ng4, ten-way (three-out) cross-validation was employed.

9.2 Vector Outputs

The first suite of simulations examined estimation and prediction for the vector output

problems. The regression methods investigated were
e ordinary least squares (OLS, equation 2.4),
e partial least squares using cross-validation (PLScv, appendix A),
e significance regression using cross-validation (SRev, algorithm 3.1), and

e significance regression using equation 3.21 and the approximate distribution for

(777 (y))? defined in section 3.2 (SR).

The examples were generated via the routine described in appendix B.1

The results of the first test, which compared SRcv to PLScv, are shown in Table
9.1. Since PLScv and SRcv are similar, one should not be surprised that the two
methods had similar results and outperformed OLS in all measures. As discussed in
section 5.4, PLS is not optimal for determining the “most significant subspace” of
Rrixne This is reflected in the MSE results; the RM Sysg for PLS was almost eight
times that of the RM Sysg for SRev. This difference did not appear to be crucial
for prediction; SRcv and PLSev produced almost identical results as measured by

RM Sprgss.
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method

“f?MSanE rank R]\ffSpREss rank

OLS
PLScvy
SRev

860
8.0
1.1

3.0
1.4
1.3

0.36
0.19
0.19

3.0
1.4
14

Table 9.1. Comparison of PLS and SR using cross-validation over 1,000 examples of

synthetic data.

method | RM Susg rank RM Sprpss rank
OLS 860 3.0 0.36 2.8
SR 0.9 1.5 0.27 1.7
SRev 1.1 1.2 0.19 1.2

Table 9.2. Comparison of the 90 % significance test and cross-validation over 1,000

examples of synthetic data.

method | RM Sysg rank RM Sprrss rank
OLS 860 3.0 0.36 2.8
SR 0.9 14 0.25 1.7
SRev 1.1 1.2 0.19 1.2

Table 9.3. Comparison of the “over-simplified” significance test and cross-validation

over 1,000 examples of synthetic data.
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The second test compared cross-validation to using equation 3.21 with the ap-
proximate distribution (F- distribution) developed in section 3.2 operating with a
90% significance criterion. These results are shown in Table 9.2. The two methods
used the identical algorithm to compute B. SR and SRcv have similar RM Syisg, even
though SRcv used ten times more computations than SR. Thus, in terms of RM Sysg
the significance test performed almost as well as cross-validation and was much less
computationally demanding. Interestingly, the RM Sysg, for SR reported in Table 9.2
was less than one-eigth of the RM Sysy; for PLScv reported in Table 9.1. These num-
bers are directly comparable since both were generated using the same one-thousand
synthetic examples. Next the “over-simplified” significance test of section 3.2 was

. . . . . . . 24 - t
investigated. This criterion is: reject Hg" if (777

(y))* > n,. For large n, and n,
this is a crude approximation to the 50% significance threshold. Table 9.3 shows the
results; the “over-simplified” method had similar results to the approximate test with
a 90% significance test. For these simulations the results were relatively insensitive
to the choice of the significance level. In terms of the RM Sprgss, cross-validation
was clearly superior to the approximate significance test.

These numerical explorations illustrated several points. For the purpose of predic-
tion partial least squares is virtually identical to the significance regression. However,
SR was clearly superior for estimation in these problems. Less computationally de-
manding alternatives to cross-validation can be developed from the classical viewpoint

of significance, but more work is needed on these significance tests. In particular, the

relationship between desired objective (e.g. RM Susg or RM Spriss) and choice of
significance test needs further work. Still, even the current SR approach using approx-
imate significance test outperformed PLS for estimation while using only one-tenth

the computational effort.
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9.3 The Measurement Error Model

Next examined were the methods and claims of chapter 6. The regression methods

investigated were

asymptotically unbiased estimation (MEM, equation 6.3),

e ordinary least squares (OLS, equation 2.4),

e the MEM significance regression method (SR-MEM, algorithm 6.1), and

the classical model significance regression method (SR, algorithm 3.1).

22" and to determine

In all cases, a 90% significance threshold was used to evaluate H,
nqg. Each example was generated by the method presented in appendix B.2. The
examples tended to be collinear in that the singular values of T' (the square root of
the eigenvalues of T7T) and the values of the regression parameters varied over five
orders of magnitude; moreover there were typically large variances in the input data
that had little effect on the output. The same one thousand examples were used in
all studies. All errors were independent and homoscedastic; however the variances of
the errors for each input varied by one order of magnitude. In all examples, thirty
samples were used to compute the regressor (ny, = 30).

The performance loss due to using fvpm in place of r for determining V' was
investigated. Since the examples were synthetic the true r could be used to compute
V. In 872 of the 1,000 examples the use of rypy in place r affected the RMS by
less than 0.1%. Use of r improved the RM Sysg in only 63 of the remaining 128
problems. Use of #ypym actually lead to a lower RM Sysk, but the difference was
primarily attributable a single “fluke” example. These synthetic examples support
the conjecture that using 7 in place of r causes only “slight” performance degradation.

Next studied was the effectiveness of SR-MEM; these results are in Table 9.4.

SR-MEM had an RM Sysg, three orders of magnitude less than that of MEM. Clearly
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method RM Sysg rank
MEM 3.200 2.0
SR — MEM 1.3 1.0

Table 9.4. Comparison of MEM-based methods over 1,000 examples of synthetic
data.

method | RM Sysg  rank
MEM 3,200 2.0
OLS 120 1.0

Table 9.5. Comparison of asymptotically unbiased estimator versus least-squares
estimator over 1,000 examples of synthetic data.

method RM Sysg  rank
MEM 3,200 2.8
SR 56 1.5
SR — MEM 1.3 1.3

Table 9.6. Comparison of SR-MEM and SR methods over 1,000 examples of synthetic
data.

method RM Sprgss rank
null estimator 1.00 4.0
OLS 0.145 2.8
SR 0.103 1.6
SR — MEM 0.103 1.6

Table 9.7. MEM prediction performance over 1,000 examples of synthetic data.
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SR-MEM mollified much of the difficulty caused by the correlations among the inputs.
Next, the “ridging effect” of using 7 for estimating r was examined; these results are
shown in Table 9.5. In this example, the performance degradation due to bias was
more than offset by the reduction in variance: OLS reduced the RM Sysk by two
orders of magnitude. Last studied was the effectiveness of using SR, which was derived
assuming the classical model, with the F-test described in section 3.2. This test is
not rigorously correct for MEMs. However this F-test is used here since the purpose
of the simulation was to investigate the performance of a method based entirely on
the classical model for data generated using a measurement error model. As shown in
Table 9.6, SR was almost as good as SR-MEM. Thus, if one does not have knowledge
of the error covariances but the data exhibit collinearity these simulations suggest
that one can use SR without undue performance loss relative to SR-MEM and with
considerable performance benefit relative to the asymptotically unbiased estimator.
Although not shown here, similar results were obtained if a 95% or 50% significance
criterion was used. Consistent with the results of section 9.2 the performance of SR-
MEM and SR did not strongly depend on the choice of significance level for these
examples.

Omne might object that none of the estimators did better than the null estimator:
u