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Abstract

This thesis describes the growth of photorefractive potassium lithium
tantalate niobate (KLTN) single crystal material and characterization of its
physical and photorefractive properties. The band transport model is used to
discuss the conventional photorefractive effect. The coupled mode formalism
is introduced to determine the interaction of interfering light beams in a pho-
torefractive material. Solutions for intensity coupling and phase coupling be-
tween two beams, as well as diffraction off a dynamic index grating, are pre-

sented for both the copropagating and counterpropagating experimental ge-
ometries. These solutions are obtained for arbitrary photorefractive phase, ¢.

The linear- and quadratic electro-optic effects are discussed. The influence of

electric field application on the electro-optic tensor is described.

The top seeded solution growth method is reviewed. The design and
construction of a crystal growth system is described. The growth procedures
of KLTN are enumerated for several compositions and dopant types. Phase
diagrams of the KLTN system are determined. Structural properties of the
grown crystals are presented. Certain material characteristics of KLTN are dis-
cussed. These include the phase transition temperatures, dielectric properties,

and the optical absorption properties.

Electric field control of the photorefractive effect, beam coupling and
diffraction, is demonstrated for paraelectric KLTN. A theory is developed to

describe the diffraction of beams off photorefractive index gratings in para-



-vi-

electric KLTN. The solutions of the coupled mode equations are used to de-
velop methods of determining the photorefractive phase ¢ in a photorefrac-

tive material. These methods are experimentally demonstrated for several
types of photorefractive material. In addition, they are used to corroborate a
theory describing the magnitude and phase of the net holographic grating in

paraelectric KLTN under applied electric field.

A new effect, the Zero External Field Photorefractive (ZEFPR) effect is
studied, as well as the application of its unique zero phase ( ¢ = 0 ) photore-

fractive gratings. The ZEFPR effect is forbidden by the conventional photore-
fractive theory; its origin is shown to be due to the creation of strain gratings
under spatially periodic illumination. A theory of coordination of microscop-
ic strains by a macroscopic (growth induced) strain is presented. The ZEFPR
gratings are shown to possess identically zero phase when no external electric
field is applied. This property is employed in the implementation of various
new linear phase-to-intensity transduction devices. In particular, an all-opti-
cal phase modulation/vibration sensor (microphone) is described. This de-
vice is expected to have numerous applications in environments where elec-
tric fields cannot be permitted. The possible implementation of ZEFPR grat-
ings in high speed self aligning interferometric data links is discussed, as well
as implementation of a novel self aligning holographic image subtraction de-

vice.

The final chapter is devoted to the solution of beam coupling and
diffraction off of a “fixed” photorefractively written holographic plane grat-
ing. The solutions and mathematical tools developed in this chapter are used

extensively throughout the thesis: in chapters two and five to describe diffrac-
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tion off a photorefractive grating, in chapters seven and eight to solve for the
beam coupling off a grating when one beam is phase modulated, and in chap-
ter nine to study the spectral response of fixed holographic interference filters.
The techniques are presented with sufficient generality to allow application to

numerous other problems, not limited to the ones described here.
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Chapter One

Introduction to the Photorefractive Effect,

Materials, and Applications

1.1 Introduction

The photorefractive effect refers to a light induced change in the index

of refraction of a material. The effect usually allows large refractive index
changes ( An ~ 104) with relatively low intensities of incident light. The pho-

torefractive effect arises through the photoexcitation, transport, and subse-
quent retrapping of charge carriers. When a photorefractive medium is illu-
minated with a spatially nonuniform beam, for example a pattern of dark and
bright fringes caused by the interference of two intersecting laser beams,
charges are photoexcited in the bright areas, and tend to be retrapped in the
dark areas. If a photoexcited charge is retrapped in a bright area of the grating,
it is likely that it will be repeatedly photoexcited until it becomes trapped in a
dark region where photoexcitation ceases. This process eventually leads to a
spatial pattern of trapped charges, and thus an electric space charge field, both
of which mimic the spatial intensity pattern. In the conventional photorefrac-
tive effect it is this space charge field which leads to a change in the index of

refraction via the electro-optic effect.
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The effect was first noticed in frequency doubling experiments in lithi-

um niobate (LiNbO3) by Ashkin! and independently by Chen2. Since the ef-
fect was deleterious to the nonlinear optical experiment, the effect was termed
“optical damage.” Not until Chen? realized how the “damage” could be har-

nessed to provide optical data storage did the effect receive its present name
and attention as anything but a nuisance. Numerous applications were real-

ized for the new effect. One of the first was holographic data storage, where it
was predicted that the ultimate storage capacity would be ~ 1012 bits cm™3.4/
The holographic storage of multiple pages of data was another early applica-
tion, culminating in the simultaneous storage of 500 fixed holograms in one
crystal by Staebler®. Since the photorefractive effect leads to an index grating
which, in general, is not in-phase with the intensity pattern, the coupling of
two beams leads to power transfer between them”. Beam coupling was used to
demonstrate amplification of weak signal beams by factors of several thou-

sand8.

In 1978 Yariv? illustrated that the wave formalism used to describe
photorefractive four-wave mixing was identical to the formalism employed
to discuss nonlinear optical degenerate four-wave mixing. Optical phase con-
jugation of a signal beam is the generation of a light beam with an identical
phase front to the signal, but propagating in the opposite direction!011, The
advantage of using the photorefractive effect would be the possibility of per-

forming optical phase conjugation with low-light intensities. Soon after-

wards, this prediction was verified by Huignard!2. This new application led
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to a resurgence of interest in the photorefractive field. Pattern recognition and

various types of image processing were demonstrated!3-16, as well as optical

distortion correctionl”/18,

However, various factors inhibited the commercial implementation of

photorefractive based technologies. To the author’s knowledge it was not
until recently!® that a single photorefractive device had ever left the laborato-

ry and successfully entered the market. Severe material limitations are re-

sponsible for most devices remaining on the lab bench.

One of the most serious problems for most photorefractives is the ten-

20-24 ;

dency for transmitted beams to “fanout.” Fanout is the process of diffuse

scattering of light from an incident beam into a continuum of directions to-
wards the optic axis of the crystal. The scattering tends to build up over a long
period of time (many times longer than the characteristic grating write time).
The name derives from the broad fan of light which forms pointing toward
the optic axis ( c-axis ). This process is not fully understood but is believed to
result from amplification of scattered light beams partially generated by opti-
cal inhomogeneities on the surface or in the bulk of a material. Potassium
tantalate niobate (KTN) and potassium lithium tantalate niobate (KLTN) do
not display fanout except with application of large electric fields. Fanout di-
verts optical power from the signal beams, reducing the amount of light
transmitted and usually the efficiency of the process being performed.

Nevertheless, several applications for the phenomenon have been demon-

strated. These include passive phase conjugation®>2% and optical limiters?’.
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For most applications, however, the effect is considered deleterious to pho-

torefractive performance.

The second major problem in implementing photorefractive materials
is the erasure of holograms which occurs on readout. The process of writing
and erasure are symmetric. Thus when a stored hologram is read out with

plane wave illumination, the plane wave redistributes the trapped charge,

erasing the grating. Several mechanisms for fixing holograms are known.28-
3% The most well known method is the thermal fixing method wherein a

hologram is stored and the crystal is heated to 80-150°C. At these tempera-

tures ionic defects become mobile and drift under the influence of the space
charge field. This charge drift compensates the ionic charge pattern. The crys-
tal is then cooled and uniformly illuminated to redistribute the electronic
charge, revealing the now fixed ionic charge pattern. This procedure has been
demonstrated in LiNbO3 and KNbO;. Other fixing processes including elec-

tric field controlled domain reversal in SBN (strontium barium niobate) have

been documented3>37, and recent results at Caltech indicate that other fixing

mechanisms are possible in SBN without an applied field3 . Fixing in KTN
was observed by writing a grating in the paraelectric phase, cooling the crystal

through its three phase transitions, and then revealing the grating with uni-

form illumination at low temperature3’. Recently, a proprietary technique

has been reported for efficient hologram fixation in LiNbO34O. With the possi-

ble exception of the recently reported proprietary technique, these methods

have proved problematic and have not seen widespread implementation.
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Beyond these fundamental problems are the pure material deficiencies.
Most materials lack either large photorefractive coupling constants or fast
time response. Many materials lose photorefractive sensitivity at wave-
lengths longer than approximately 600nm (this cutoff depends somewhat on
the photorefractive dopant used). Some crystals are excessively fragile, espe-
cially when operated near their phase transition temperature. Finally, most
materials, excepting LiNbO,, are still considered difficult to grow. As a conse-
quence, they are expensive and difficult to obtain. The lead time for a high

quality BaTiO5 sample, as an example, can be over a year.
1.2 Photorefractive Materials

A material must meet several requirements to become photorefractive.
First, it must possess a mid-gap, partially filled, photoionizable impurity
level. Second, it must be linearly electro-optic to exhibit the conventional
photorefractive effect, or quadratically electro-optic to display the electric field
controlled photorefractive effect. A few photorefractive effects exist which do

not rely on the electro-optic effect. These include the photorefractive scatter-

41-47 and the zero external field photorefractive

ing by absorption gratings
(ZEFPR) effect?8. The nonlinear response of materials to electric fields at tem-
peratures near a structural phase transition has also been shown to produce a

photorefractive effect. The dielectric photorefractive effect#*-51 is one exam-

ple.

The materials®? which exhibit photorefractive effects include the oxy-

gen-octahedra photorefractives, the sillenites, and certain semiconductors.
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Some characteristics which are used to distinguish the various materials from
each other are the magnitude of the induced index change, the photorefrac-
tive phase (phase between the index grating and the intensity grating), the re-
sponse time, the dark current and possibility of fixing the grating, and the sen-
sitivity of the material. This last quantity is usually defined as the change in

index per unit of absorbed incident intensity.
1.2.1 Ferroelectric Oxygen-Octahedra Photorefractive Materials

The ferroelectric oxygen-octahedra photorefractives are the most wide-
ly known and studied photorefractive materials. They include the ilmenite
structures, lithium niobate (LiNbO3) and lithium tantalate (LiTaO3), the per-
ovskites potassium niobate (KNbO,), potassium tantalate niobate (KTay_
NP, O3 or KTN), potassium lithium tantalate niobate (Kl_yLina]_bexO3 or
KLTN), and barium titanate (BaTiO,), and finally the tungsten bronzes stron-
tium barium niobate (Sr;Ba,NbO; or SBN), Baz_xerKl_yNabesOls
(BSKNN), and barium sodium niobate (BazNaNbSO]S).

The perovskites, KTN, KLTN, and BaTiO; are characterized by a high
temperature centrosymmetric (cubic) phase and undergo successive transi-
tions to tetragonal, orthorhombic, and finally rhombohedral phases as the
temperature is lowered. Lithium niobate and lithium tantalate have a point

group symmetry of 3m at room temperature and only assume a high symme-
try phase at temperatures above 1200°C (lithium niobate decomposes before

reaching this temperature). SBN is the archetype of the tungsten bronze struc-

ture,and becomes tetragonal in its high temperature paraelectric phase at tem-
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peratures from ~0°C - 120°C depending on composition.

All the ferroelectric oxides are readily amenable to doping by photore-
fractively active species (usually first row transition metals or lanthanides).
They tend to have slow response times and relatively low sensitivities be-
cause of their low carrier mobilities. These materials are the only ones in

which hologram fixing has been observed.
1.2.2 Sillenites

The photorefractive sillenites include the materials Bi;,5i0,; (BSO),
Bi;,GeOy (BGO)*?, and Bi;,TiOy (BTO), and recently, Bi,TeOs>*. They are
noncentrosymmetric cubic materials. They tend to have much smaller di-
electric constants and higher photoconductivities than the ferroelectric ox-
ides, thus the photorefractive sensitivities are higher. The mobilities are
about the same as for the ferroelectric oxides, but the electro-optic coefficients

tend to be smaller.
1.2.3 Semiconductor- and Other Photorefractives

The photorefractive effect has been demonstrated in several semicon-
ductor materials®®. These include GaAs, InP>, and CdFe. The mobilities are
much higher in these materials than in the previous two classes, with similar
electro-optic coefficients, and the sensitivities are the highest for any type of
photorefractive. Semiconductor photorefractives usually respond best in the
near infrared, while the other classes of material discussed respond well in

the visible.



1.3 OQutline of the Thesis

The field of photorefractive materials shows great promise for numer-
ous applications in optical processing and data storage. Unfortunately a lack of
high quality photorefractive materials has restricted the development of sal-
able products and devices. It has been the aim of this thesis to develop and
characterize a new type of photorefractive material, potassium lithium tanta-
late niobate (KLTN), to help overcome the material limitations. In addition,
the unique properties of KLTN, such as its composition controlled phase tran-
sition temperature and electric field controlled photorefractive response, were
studied in order to unveil new applications for which such photorefractives

are well suited.

In chapter two a band transport model of the photorefractive effect is
described. Solutions for both a single charge carrier and two charge carriers are
presented. Photorefractive two beam coupling and diffraction are discussed
for holograms written with beams propagating in the same direction (coprop-
agating or transmission geometry) and in opposite directions (counterpropa-
gating or reflection geometry). The electro-optic effect is described in chapter
three. The linear electro-optic effect and its contribution to the photorefrac-
tive effect is discussed first. The distinction between the clamped and un-
clamped electro-optic coefficients is derived. Effects of an applied electric field
on the index ellipsoid are discussed. A study of the quadratic electro-optic ef-
fect follows, including the effective linear electro-optic coefficients induced by
an electric field in a quadratic medium. Symmetry properties of the linear and

quadratic electro-optic tensors are discussed. Lastly, the rotation of the c-axis



-9-
under application of an electric field in a Kerr material is derived.

Chapter four illustrates the design and construction of a crystal growth
system and the growth of paraelectric KLTN with the top seeded solution
growth (TSSG) method. Sample growths are described and a range of feasible
compositions elaborated. Determination of the compositions of the grown
KLTNs along with the seeding temperatures and the flux compositions allows
the construction of phase diagrams for the KLTN system. These phase dia-
grams are presented. Structural characteristics and material properties of the
TSSG grown KLTNs are enumerated. The influence of composition on the
type and number of phase transitions is discussed, as well as the influence of
composition on the phase transition temperature; dielectric properties of sev-
eral compositions of KLTN are presented. The optical absorption properties

are also examined as functions of crystal composition.

Chapter five describes results of experiments demonstrating the electric
field control of the photorefractive response in the paraelectric phase. Crystals
in the paraelectric phase exhibit no linear electro-optic effect so the conven-
tional photorefractive effect can be modulated by an external field. In diffrac-
tion experiments, voltage controlled diffraction efficiencies of 75% are report-
ed. This is the highest reported value for a photorefractive known to the au-
thor. A theory is developed to describe the diffraction off a dynamically writ-
ten grating when the coupling constant g changes between the writing and
the reading phase. The theory is shown to agree well qualitatively with ex-

perimental data.

Chapters six and seven describe the zero external field photorefractive
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(ZEFPR) effect and its device applications. The ZEFPR effect was discovered

in paraelectric KTN and KLTN>728 but was not identified as a new photore-

fractive mechanism until recently8. It is expected to exist in many photore-
fractives but was observed in KTN/KLTN first because the conventional pho-
torefractive effect which would otherwise dominate the ZEFPR effect, is for-
bidden in these materials. Experiments described in chapter six allow the con-
clusion that the ZEFPR effect is due to a valence state dependent Jahn-Teller
relaxation of the oxygen octahedra surrounding the photorefractive centers.
This relaxation yields strain gratings in-phase with the intensity pattern.
Finally, the strain gratings result in a refractive index change via the photoe-
lastic effect. The ZEFPR effect is unique in the respect that the index grating is
identically in-phase with the intensity pattern. This property is shown, in
chapter seven, to be the basis of numerous novel devices. The development
of a ZEFPR based vibration sensor/ microphone is described. This sensor is
all-optical and self aligning, no electric signals are required for operation. It
has potential applications for sound/vibration sensing in environments
where electrical signals cannot be tolerated or are impractical. These include
corrosive or explosive environments. Two other devices are theoretically de-
scribed in chapter seven: a high speed self aligning interferometric data link,
and a self aligning image subtraction device. Both devices would operate by

implementation of the ZEFPR effect.

Chapter eight discusses several methods of determining the photore-

fractive phase and coupling constant of a material. The photorefractive phase

¢ is the material parameter which determines the nature of the coupling be-
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tween two interfering beams in a photorefractive crystal, i.e., the relative pro-
portions of phase coupling and intensity coupling. The coupling constant de-
termines the overall magnitude of the coupling. The methods are used to de-
termine the photorefractive phase of crystals of LINbO3 , BaTiO3, and KLTN.
A theory is derived to describe the interaction of a ZEFPR grating with a con-
ventional electro-optic grating as a function of applied field. The predicted
coupling constants and photorefractive phases are shown to agree with exper-

imentally determined values.

Chapter nine essentially develops a new and exact mathematical for-
malism for solving certain first-order coupled equations. In this chapter, re-
sults are derived that have been implemented in chapters two, five, seven,
and eight. The results in all of these prior chapters hinge on the development
of the mathematical tools in chapter nine. In addition, the mathematical
method is applied in chapter nine to the solution of frequency response of the
reflectivity from fixed photorefractive gratings written in the counterpropa-

gating (reflection) geometry.

In chapter nine, the treatment describes the beam coupling and diffrac-
tion of beams off a fixed dynamically written holographic grating. The grating
can be written in either the copropagating or the counterpropagating geome-
try (transmission or reflection mode). The analysis for counterpropagating ge-
ometry is applied to solving the spectral response of fixed holographic grating
interference filters. A numerical study is also reported. The copropagating
analysis is applied to the vibration response of beam coupling to a dynamical-

ly written grating. The diffraction off a grating is also derived. These last two
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results are the ones referred to in chapters two, seven, and eight. The coprop-
agating analysis is also the basis of the theoretical treatment of chapter five de-
scribing the diffraction off a fixed photorefractive grating with a non-constant

coupling value g.
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Chapter Two

The Photorefractive Effect

2.1 Introduction

The photorefractive effect can be defined as a change in the refractive
index of a material caused by illumination with light. The incident light
photo-excites free carriers preferentially in regions of high intensity where
they undergo transport, are repeatedly trapped and re-excited, and are finally
trapped in a region of low-light intensity (see Fig. 2-1). The result is a space
charge field spatially correlated with the intensity pattern creating an index of
refraction pattern (grating) via the electro-optic effect. Two beams propagating
in a photorefractive medium can interact with each other by coherent scatter-
ing from the grating formed by their interference. The phases and the intensi-
ties of the two beams can be coupled. This chapter describes the band transport
mechanism of the photorefractive effect, and the formation of the space
charge field. The coupled mode equations are used to calculate the influence
of index gratings on propagation of beams through the material. Since the
index gratings are written dynamically, the solution for the interaction is per-

formed self-consistently.

The photorefractive effect!:23 was first noticed in frequency doubling



21-
experiments in LiNbO;by Ashkin?. Soon thereafter Chen>~7 reported the ef-

fect in KTN and proposed that a space charge field could be formed by pho-
toexcitation of electrons, subsequent drift in an electric field, and retrapping in
regions of low-light intensity. This work is the basis of modern theories on
the effect. Since then, the role of defects and transition metal dopants®10 has

been recognized as the source of the photoionizable charge carriers. Three

transport processes have been identified: thermal diffusion!l, drift1213 (when

an external field is applied), and the photovoltaic effect!415.

A hopping model for charge transport in BaTiO; has been suggested by
Feinberg!®. In this model, the charges hop from filled to vacant sites when ex-
posed to optical radiation. Although the model is statistical, for short hopping
lengths the results are similar to those obtained with the band transport
model. For large hopping distances the results depend strongly on the statis-
tics of the hopping. This model has not seen a great deal of attention since it is
difficult to ascertain a plausible physical justification for the statistical behav-

ior required to obtain good correlation with experiments.
2.2 Band Transport Model

The band transport model requires the photogeneration of charge carri-
ers. The atomic species which generates the charge carriers (the donor species)

must be stable in the crystal in at least two valence configurations. We write

Np = I\ID+ + NDO where ND is the total donor ion concentration. The more

negative of these two states, designated as NDO can act as an electron donor al-
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Figure 2-1 Diffusion Limited Photorefractive Mechanism (previous page)

The photorefractive effect is a change in the refractive index of a mate-
rial caused by illumination with light. Two incident laser beams A(z) and B(z)
interfere in a photorefractive material. Free carriers are preferentially photo-
excited in regions of high intensity where they undergo transport, are repeat-

edly trapped and re-excited, and are finally trapped in a region of low-light in-
tensity. The steady-state charge distribution p creates a space charge field. In

the diffusion limited case the charge modulation is in phase with the intensi-

ty pattern. The field is shifted exactly one-quarter grating wavelength because

divE = 4np/e. Thus the phase between the intensity pattern and the space

charge field is ¢ = /2.

Figure 2-2 Drift Limited Photorefractive Mechanism (next page)

The light intensity pattern forms a space charge field as in Fig. 2-1, but
the large applied field (drift limited case) prevents the charge from accumulat-

ing exactly in phase with the intensity minima; instead it is shifted by a phase
T/2, so that the space charge field is shifted by ¢ = n from the intensity pattern.
This can be shown by considering the conductivity which must be in phase

with the intensity. Since the current ] = 6E must be uniform in the steady

state, we conclude that E. is exactly out of phase with the conductivity o.
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Figure 2-3 The Band Transport Model

The energy diagram for the single photorefractive species, two charge

carrier band transport model. A mid-band dopant level is occupied with Np

= N*p + N, dopant ions. An electron (hole) is photoexcited from an N9,
(N*p)ion by incident radiation to the conduction (valence) band where it dif-
fuses and/or drifts under an applied field before being retrapped at an N*p

(NOD) site.



-26-
lowing photoexcitation or thermal excitation of charge to the conduction
band leaving an ionized Np™ site behind. The mobile charge is retrapped at

one of the more positive sites, called ND+, turning it into an unionized NDO

in the process. At the same time, hole mobility can occur when a hole is pho-
toexcited from an Np™ site to the valence band and is retrapped at an ND0
site. These processes are illustrated in Fig. 2-3. Charge neutrality is preserved
by postulating a number of non photoactive acceptor sites N, =Np* whose

only purpose is to provide the two species of ions N . If no Np* sites existed,

the excited charge would always be forced to recombine with the N* site

from which it was photoexcited. This would eliminate any transport.

The designations Np* and NDO are meant to convey the relative ion-
ization state. In practice, the NV site is always positively ionized. In the mate-
rials discussed in this thesis, the two stable states of ions are given by Cul*

and Cu?* or Fe?" and Fe3*. In both cases, the less positively charged of the

two ionic species acts as the donor while the more positive acts as the trap.

The earliest recognized form of transport was thermal diffusion.

Amodei realized!! that in the diffusion dominated case a space charge is set
up with magnitude E_. = kTK/e which is shifted by one quarter of a wave-
length relative to the intensity grating. K is the grating wavevector, T is the
temperature, and k is Boltzman’s constant. Fig. 2-1 illustrates the diffusion
dominated formation of space charge. The crystal is illuminated with a peri-

odic (sinusoidal) intensity pattern. Charges tend to accumulate in the dark re-
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gions. By Poisson’s equation E_. ~ [ p dz, the space charge field is exactly n/2

out of phase with the intensity pattern.

The transport caused by the drift in an electric field leads to a different
result. In Fig. 2-2 the case for the drift dominated case is illustrated. The inten-
sity pattern is again taken to be sinusoidal, and it is known that in the steady
state the current must be constant to prevent the build up of charge within
the crystal (continuity equation). Since the local conductivity is taken to be
proportional to the excitation rate, i.e., to the intensity, the space charge field
must be inversely proportional to the intensity. Only in this way can the

product of the conductivity and the field (the current) remain constant.

Glass et al. were responsible for equations describing the photovoltaic
current!4. All non centrosymmetric crystals can display a photovoltaic effect
in which a photocurrent is generated without the application of an external
field. When charges are photoexcited they are generated with a preferred di-
rection of motion. The retrapping of electrons can also proceed anisotropical-
ly, thus contributing to the current. The effect was explained as an asymmetric
charge transfer process. A directional photocurrent can result if the orbitals of
the defect ions overlap asymmetrically with the host lattice ion orbitals along
the polar axis. This condition is only forbidden in centrosymmetric materials.
Since the photovoltaic effect yields a current in the same way as does applica-
tion of an electric field, it also holds that, in the steady state, the current must
become uniform by the continuity conditions. Thus the space charge field
must be exactly out of phase with the intensity pattern by the same argument

as in the drift dominated case above.
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In photorefractive materials it can happen that any one of these trans-
port processes is dominant, in which case the space charge field behaves as in-
dicated in the preceding paragraphs. In general, however, two or three of the
mechanisms play a significant role and the solution of the space charge field
is determined by a set of rate equations. The development and solution of the

photorefractive rate equations follows.
2.2.1 The Rate Equations

In the following section the rate equations for the space charge field are

solved neglecting the photovoltaic contribution. It is noted that electrons are

excited into the conduction band at a rate [B,+ s, I/(hv)] (N - Np¥), and they
combine at a rate y,nNp*. Similarly, the excitation rate for holes is given by

By, + s,1/(hv)] Np* and the recombination rate by v, p (N - Ng*). The vari-

ables are defined on the next page. The rate equations for electrons and holes

are written as

on _je _ I * +
E Ve = (se__hv + Be) (Np-Nb) - v n Np (2.1a)
)R VR R N + o N&
i \% e (Shhv + Bh) ND Yh P (ND ND) (21b)

The continuity equation is given by

V] = Vi + Vi = e%(n-NB-p). (2.2)

The current equations for electrons and holes are

jo = ne e E+eDe Vn+xese (Np-Np) I (2.3a)
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jh = peuhE+eDth+KhsthS I

(2.3b)

Equations (2.3a,b) are often expressed using the Einstein relation eD = kT,

where T is the temperature. Finally, the Poisson equation gives

E=P - _ ¢ _NE -
V-E oo 880(n+NA NB - p).

The variables used are defined (in order of appearance)

I = incident light intensity

hv = optical energy of incident photon

Be (By,) = thermal generation rate for electrons (holes)

Se (s, ) = photoexcitation cross section for electrons (holes)

Np = density of defect ions = N9+ Np*

Z
v
+
1

= density of ionized defect ions

0
Np

density of unionized defect ions

Yo (yh ) = recombination rate of electrons (holes)

o]
"

free electron density

Il

p = free hole density
je (i) = total electron (hole) current density

e = electronic charge

(2.4)
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E = electric field
Ho (Hy, ) = electron (hole) mobility

De (Dh ) = diffusion coefficient for electrons (holes)

Ko (k) = photovoltaic coefficient for electrons (holes)
¢ = relative dielectric constant
gy = permittivity of free space

p = total charge density.

The equations given above are used to solve for the space charge field

when the material is illuminated with the intensity pattern given by

Ix) =1 (1 +me'Kx4+c.c.) (2.5)
where m is the modulation index. If the intensity pattern is caused by coher-
ent interfering beams then m is given by m = (I 12)1/2/ I where 1;and ]I,
are the intensities of the individual interfering beams and I = 1; +1,. Kis the

grating wavevector K = 2n/A_ which is also directed along x. When m<<Ithe

g

spatial dependence of n, p, Np*, and E can be approximated by linearized
Fourier expansions. In the following analysis only terms at the fundamental
spatial frequency are included. In the case of large modulation depth, higher
order harmonics of these quantities should be considered!”18. It should be

noted that if one of the interfering beams is an image containing numerous

spatial frequencies, the modulation depth of the image as a whole might be
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quite high while the modulation depth of any individual spatial frequency re-

mains small. In this case, the model for m<<1 would still apply.
2.2.2 Single-Charge Carrier Solution

The simplest case of the band transport model is the case of only a sin-
gle type and species of charge carrier, usually considered to be the electron.
Most materials can be approximated by this case. All parameters describing
holes in equations (2.1) through (2.4) are set to zero: p =y}, =sy, = B, = 0. The

photovoltaic contribution is neglected. The following identities hold in this

case:

IND _ dn _ gle (2.6)
ot ot e

The set of equations (2.1), (2.3), and (2.4) given above reduce to

ai(n _N3) = pe{E .Vn + nV-E + 1%c—T—Vzn (2.7)
t
b - (s L+ Be] (No-NB) - ye n N (2.8)
ot hv
. = -._€_ - N&
V-E e (n + Na - NB). (2.9)

Linearized Fourier expansions.are postulated as the solutions for Np*, n, and

E. They are of the form
N = Npo + _12.N;5,1 eiKx + c.c. (2.10a)

n = ng + 12—n1 eiKx 4 ¢ c. (2.10b)
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E = E+ -12—E1 elKx + coc. (2.10c)
Since the crystals are charge balanced N*p ; - ng - N, = 0. In addition the ap-

proximations Np >> N, >> n, and N+D,l =~ N >>n; are used. After some

work a solution for the space charge field is obtained!20

Eq = -im EN(?O +iEq (1-e) (2.11)
Eo + i (Ex + Eq)
En=&Na(p Na Eq = keTK (2.12a,b)
e K ND =

where Ey is the charge limited space charge field, E 4 is the thermal field, and

Ejis the spatially uniform applied field. The time constant?! Tis given by

T = t0E0+i(Eue+Ed) (2.13)

E() + 1 (EN+ Ed)

- hv Na 2.14
0 se Io (1 + Be hV/(SeIO)) Np ( )

where

E, = YNa, (2.15)
Ue K

The time constant for approaching the steady-state value of the space charge

field is inversely proportional to the incident intensity. When an electric

field is applied the response time 1t becomes imaginary so that the space

charge field oscillates before reaching the steady state.

2.2.3 Two-Charge Carrier Solution



-33-
Here the case of a single photorefractive species with two charge carri-
ers - both the electron and the hole- is considered. Equations (2.1) - (2.5) apply

in this case. The solution for the space charge field has been obtained in the

steady state with no applied field?223.24, 1t is

Ea[0h - Oo) (2.16)

Ec = 1mE
% N (Ed+ EN) (Gh+0'e)

where En and E, are the same as above. The electron and hole conductivities

are given by?

- _ € Hte Se Ip [Np )
G = NeE U= -1 2.17
¢ e hv e (NB ( :
— _elpsnly (ND )’1
Ch, = De = =17 . (2.18)
" pehn hv v, \Np

When the electron and hole conductivities are equal, no space charge field
can be written in the steady state. Whenever the hole mobility is nonzero,
the space charge field given by (2.17) will be smaller than that predicted by the

single-charge carrier solution (2.11).
2.2.4 Photorefractive Index Change

The space charge field modifies the index of refraction of the material
via the electro-optic effect. As described in further detail in chapter three, the

index ellipsoid is modified by an amount

1

nij

ABij = A = Tjjk Ek + gijkl 8(2) (Ek-l)(ﬁl-l) EkEl (2.19)

where ABij are the electric field induced changes in the “axis lengths” of the
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index ellipsoid, and n;; are the components of the index of refraction tensor.

Tijk and Bijk1 are, respectively, components of the linear and quadratic electro-

optic tensors, while g and E; are the dielectric constant and electric field along

the axis i. The approximation g -1 = g is usually made.

In noncentrosymmetric materials, ry; is nonzero, in general. The

i]
quadratic coefficients are often neglected in these materials. If the space charge
field is directed along the c-axis, as it is in the symmetric geometry (Fig. 2-4),

equation (2.19) reduces to

A—12—) = Tij3 Esc (2.203)
nij

3
Anj; = -r_‘io_riﬁ Esc (2.20b)

where ng is the nominal index of refraction with no applied field, and we
have used the relation A(1/n2) =-(2/n3) An. Also, the convention of designat-

ing the c axis the “3” axis has been followed.

For centrosymmetric materials, i.e., ones with a center of inversion, the
linear electro-optic coefficient is required to be zero (see chapter three). Thus
the quadratic electro-optic effect is the lowest order effect allowed. If the space
charge field is directed along axis 3 and an external field E is applied along
the same axis, then E; =E_. + E;. The change in the refractive index due to

E,. alone is given by

3
Ani{(Eg+Ex) - Anji(Eo) = “Eogim (esof ( (B + Eof - B} ). (221a)
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Since we are interested in an index grating with the same spatial dependence
as the intensity pattern, that is, eiKz the Esc2 term is ignored. The useful,

Bragg matched part of the index grating reduces to

Anij = n8 £ij33 (8380)2 Esc Eo. (2.21b)

Thus the Bragg matched contribution to the index grating is present only

with, and is proportional to, an af)plied electric field.

In paraelectric materials the relative dielectric constant obeys the Curie-
Weiss law and near the Curie temperature can reach values as high as 10° 26,
This can lead to large index gratings when a field is applied. When the exter-

nal applied field is time varying the photorefractive response is modulated.

This has been demonstrated in KTN?® and KLTN at frequencies up to 20kHz.

2.3 Photorefractive Beam Coupling

When two beams interfere in a photorefractive medium they create an

index grating as described above. This index grating is shifted in phase with
respect to the intensity grating by an amount ¢%. In chapter one it was men-

tioned that this nonzero photorefractive phase leads to energy transfer be-
tween the two beams. The intensity coupling allows several interesting appli-
cations. These include the amplification of a weak signal beam by a pump
beam as well as optical signal processing. But most importantly, the possibility
of gain affords the possibility of oscillation, just as with a laser.

Photorefractive resonators and phase conjugate reflectors are two of a host of

devices2® which utilize this characteristic.
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The magnitude of the intensity coupling, known as the two beam cou-
pling coefficient, is often the basis of characterization for photorefractive ma-
terials. Yet the two-beam intensity coupling is only half of the story, and this
fact must be stressed: The dynamic coupling of the beams affects the phases of

the beams also. The true variables which describe the interaction are the pho-

torefractive phase ¢ and the coupling constant g (see below); using these fun-
damental variables, the two-beam intensity coupling coefficient is given by I’
=2 g sind (the amplitude coupling coefficient is given by g sin¢). Meanwhile
the phase coupling is described by a coefficient g cos¢. Unfortunately, most
experimental results conspire to yield only the value gsind as a parameter, so

it is difficult to experimentally separate g and ¢. This may explain the tenden-

cy to conceptually lump the two variables into one. Also, many characteris-
tics of beam coupling and diffraction are calculated ignoring the change of
amplitude of the index grating throughout the material. Instead, the diffrac-

tion, for example, is usually taken to be given by the Kogelnik solution for a
fixed amplitude grating?®. These problems are addressed below and again

more fully in chapter nine.

In this section the coupled mode equations are developed from the
wave equation. Then the equations are used to describe coupling from a thick
constant amplitude index grating. This analysis was first performed by
Kogelnik. Subsequently, we consider scattering off the dynamic gratings writ-
ten with the photorefractive effect. Both copropagating and counterpropagat-

ing (transmission and reflection) geometries are examined.
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2.3.1 Coupled Mode Equations, Fixed Grating

We consider two coherent optical beams

E(r) = %— A(r) e -iKire + 12- B(r) e -ik2T €, + c. c. (2.22)

where e;, e, and ky, k, are the polarization and propagation directions of
the two beams. For simplicity, the polarizations are taken to be parallel; in the

general case, the coupling between the beams would be multiplied by the fac-

tor el‘ez .

The beams propagate in a medium with a spatially modulated index

grating
n(r) = nyp + EZL cos[K-r + 0] (2.23)

where ¢ is the net shift in phase between the index grating and the intensity

grating, i.e., ¢ includes the individual phases of beams A and B. The beams

obey the scalar wave equation

VE+o2uer) =0 (2.24)

where the high frequency dielectric constant is given by

e(r) = gon3(r) = g [ ng+ lz(n() nle'i(K'r +9) +c.c)l. (2.25)

Equations (2.22) and (2.23) are used in (2.24) using

’A < dA (2.26)
dr? dr
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to obtain

L(—2ik1 dA i3 A)e ikper o+ ococ. 4
2 dr1

L(-zik2 dB _3 B) e-ikar 4+ ¢ c. +
2 dr2

i(K-r +¢)

®? 1 gg [ n§ + %(nonle i +c.c)] X

{_A_ e-ikyr 4 % eikarycoc| = 0. (2.27)

It is clear by inspection that cumulative power exchange takes place only

when

ki-ky-K = 0. (2.28)

Note that the power exchange reverses sign with a phase matching length AL
= n/(1kq - ky - KI). Thus only synchronous terms need to be considered in

(2.27). Using k; = o p gy n (2.27) simplifies to

A'(z) cosP = 1__%& ¢ B(z) - & A (2.292)
B'(2) cosp = ‘—_g-{-“— e A) - ¢ B). (2.29b)

The loss terms are added phenomenologically to account for optical absorp-
tion, A is the wavelength in the medium, B is the half angle of beam inci-
dence inside the material (see Fig. 2-4), and z is the distance along the bisector

of the beam angles, z = r{, cosp. For convenience, z is redefined to be the

scalar distance along the beam propagation direction, z -> z cosfB. This en-
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ables one to avoid carrying the factor cosp through all the formulas. As a con-

sequence one must take the effective thickness of the crystal as L = d/cosp,

where d is the true thickness of the crystal.

To solve (2.29) the optical absorption term is eliminated by the change
of independent variable A(z) = A(z) exp[ 0z/2] and B(z) =B(z) exp[ az/2].

The resultant equations are differentiated and are substituted into the result
of the differentiation to obtain simple second-order equations. The boundary
conditions are A(z=0) = A(0) and B(z=0) = B(0). A(0) and B(0) are real because
the phases of the two beams have already been incorporated into the index
grating; this simply means that the only relevant quantity is the relative

phase between the intensity interference pattern and the index grating. The

solution for A and B is easily shown to be3!

A(z) e**2 = A(0) cos(g z/2) +ie'® B(0) sin(g z/2) (2.30a)
B(z) %2 = B(0) cos(g z/2) + i e A(0) sin(g z/2) (2.30b)

from which the intensities are given by

A ez = A%(0) cos?(g z/2) + BX(0) sin*(g z/2)
- A(0) B(0) sin(g z) sino (2.31a)
B(z)? €% = B%(0) cos(g z/2) + A%(0) sin’(g z/2)
+ A(0) B(0) sin(g z) sind. (2.31b)
We note that the beam coupling is nonzero for all values of ¢, except for the

special case ¢ = 0 and A(0) = B(0). This is at first surprising, because it will be
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shown that in the case of dynamic holography the intensity coupling must be

zero when ¢ = 0 for all values of A and B.

When only one beam is incident on the grating, i.e., B(0) = 0, equations
(2.31) give the diffraction from the grating. The transmitted and diffracted in-

tensities are

Az ez = A%(0) cos(g z/2) (2.32a)
B(z)? e% = A%(0) sin*(g z/2). (2.32b)

Comparison with (2.31) yields the interesting observation that when ¢ =0

the output intensities of (2.31) are precisely the sum of the diffracted beams
which result from incident beams A(0) and B(0) separately. In other words,
when the index grating and the intensity grating are in phase, the two inci-
dent beams do not affect each others’” intensity diffraction; each beam diffracts
as it would if the other beam were not present. Nevertheless, intensity cou-
pling does occur ( A(0) # A(L) ) unless A(0) = B(0) because each beam diffracts
an intensity proportional to its own incident intensity. This point will be re-

ferred to in the next section.

In the preceding paragraphs we have described the coherent scattering
of two beams incident on a constant amplitude index grating at the Bragg
angle. The scattering associated with photorefractive gratings is more complex
because the index grating is created by the interfering beams themselves. Thus
when the grating causes power or phase transfer between the beams, the
index grating is affected. In the succeeding paragraphs, this problem of scatter-

ing from a dynamically written grating is treated self consistently.
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2.3.2 Copropagating Geometry, Dynamic Grating

When two beams as in (2.18) interfere within a photorefractive materi-

al (Fig. 2-4), an index grating is written
n(z) =no + 1 (An(z)e%ei® 2 + c.c.) (2.33)

where K is the nominal grating wavevector created by the incident beams,
with K =Kkq -k, so that K =2k sinf. The magnitude of the index modulation
is independent of the total incident intensity; it only depends on the beam in-

tensity ratios of A(z) and B(z) and is given by32

An(z) = ny A(z) B'(z)/ I(2) (2.34)
where nq is a material parameter equal to the peak to peak index modulation

when |A(z)| = IB(2)| (see Fig. 2-5). I(z) is the total intensity I(z) = |A(z2)12 +

IB(z)12. When An(z) is defined in this way, ¢ becomes the phase between the

index grating and the intensity grating.

After a similar analysis to that leading to (2.29), the coupled equations

are obtained:
A'(z) cosP = Lﬂfﬂ ei® B(z) - ta. A(z) (2.35a)
B'(z) cosB = LEKAH—*. e Az) - £ B(2), (2.35b)

Using the value for the dynamic grating in (2.34), (2.35) is rewritten as
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2
A(z) cosPp=1geit |B(*Z)|- A@@) - & A(z) (2.36a)
I(z) 2
2
B(z) cosp=1igeit O B(z) - € B(z) (2.36b)
I(z) 2

where the coupling constant is defined as g = nn/A. Note that since g is de-

fined in terms of n, rather than An, it becomes a pure material parameter, the

dependence on the relative beam intensities being factored out. Also (2.36) is
different from (2.29) in that the dynamic grating has canceled the phase de-
pendence of B(z) in (2.36a) and of A(z) in (2.36b). This property leads to a dif-

ferent method of solution.

The method of solution of equation (2.36a) and (2.36b) is straightfor-
ward. The cosfB term is eliminated as before by defining z to be the distance
along the propagation directions. The optical absorption term is eliminated by

the change of independent variable A(z) = A(z) expl 0z/2] and B(z) = B(2)

exp[ az/2 ]. Then solutions of the form

A(z) = a(z)e'® B(z) = b(z)ei% (2.37)
are postulated where a(z) and b(z) are real. Equations (2.36a, b) can be separat-
ed into two equations each describing the evolution of the amplitude and

phase of the two beams:

a(z) = - sind g b(z)? / 1(z) a(z) (2.38a)

b(z) = + sind g a(z)* / I(z) b(z) (2.38b)
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Refractive index grating
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(reflection) geometry

Figure 2-4. Beam Coupling Geometries

The beam incidence angles for copropagating and counterpropagating

geometries. The grating wavevector is K, = 2k sinf} in the copropagating case,

8

and Kg =2k cosP in the counterpropagating case.
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n(z)
/'y Index change when
=1
ny An
n, - —Y :
2n Anf4m Z
Index change when
L<1,

Figure 2-5 Parameters of the Index Grating

The parameters used to describe the index grating in the coupled mode

equations. An is half the peak to peak modulation of the grating and is a

function of the relative beam intensities with An = n,4 (1112)1/2 /1. nq is a ma-
terial parameter independent of the incident beams. The coupling constant

g=nn/A.
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(1(@) = coso g b(z)* /1(2) (2.392)
{2(z) = coso g az)? / 1(z). (2.39b)
Equations (2.38a,b) are solved by converting them to equations for intensities
using Il,= (az), =2 aa’, and similarly for I,. Note that these “intensities” are
not the true optical intensities, but are related to them by the multiplication

of expl az ]. Use of the identity b(z)? = I(z) - a(z)? in (2.38a) and b(z)? = 1(z) -

a(z)? in (2.38b) yields simple Bernoulli equations33 which are readily solved

to yield true intensities

I,(z) = eol LI+1) (2.40a)
I; + 1, etl2 '
Liz) = cor 2(i+T) (2.40b)

Il e-Fz + 12
where A(z) = [I;(2)]'/%expli{;] and B(2) = [12(2)]1/2exp[i§2], and I' = 2gsin¢ is
the power coupling coefficient. As above, L is the effective thickness of the

crystal: L =d/cosB. We have defined Iy =1;(0) and I, = 1,(0). Inspection of

(2.40) reveals that when ¢ = 0, there is no intensity coupling and, in the ab-
sence of absorption, I;(z) = L.(0). Since the intensities are constant the dynamic
index grating will have a constant amplitude so one might naively expect
(2.40) (with ¢ =0) to correlate with the constant amplitude grating case (2.31).
The analysis above shows that the two equations disagree except when I; =1,.
Since the grating leading to (2.31) was Bragg matched to the incident beams,

one must conclude that the grating of (2.40) is not Bragg matched except in the
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case Iy =1,. The amount of Bragg mismatch in (2.40) is such that I,(z) = L,(0). It
follows also that the diffraction off a dynamically written grating will be maxi-

mum for beams not of the same frequency as the writing beams. Maximum
diffraction for ¢ = 0 occurs for a frequency mismatch of AB =-g (I, - I})/(2)

(see below and chapter 9). This fundamental result seems to be ignored in the

literature.

The phases of the two beams are readily determined from equations

(2.40a,b) and (2.39a,b) to be
Ci(2) = -12— cotd In[I; + I, e+l 7] (2.41a)

Co(z) = -g cosd z - —12— cotd In[I; + I e*T 7], (2.41b)

Equations (2.40) and (2.41) are used in (2.34) to determine the index

grating written in the material. It is given by

An(z) = m V1 I (1) eT224 I, e¥Tz2 ) 00 -1 (2.42a)
When ¢ = 0, special care must be taken when using (2.42a). It is easier in this

case to backtrack to equations (2.41) to determine An. The index grating in this

case reduces to

An(z) = n _.___“1112 expligz(l-1;)/ 1. (2.42b)

The influence of the phase coupling has modified the index grating by a pha-
sor exp[igz (I, - I{)/1] in the zero phase case. Thus as predicted above, the

index grating is no longer Bragg matched to the (uncoupled) beams which
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wrote the grating. This Bragg mismatch, in the ¢ = 0 case, is just enough to en-

sure that the transmitted intensities are equal to the incident intensities, un-
like (2.31) where the more intense beam diffracted more strongly and ampli-

fied the weaker beam.

The diffraction off the gratings (2.42) is derived in chapter 9; it is ob-
tained by solving the differential equations (2.35) with (2.42) inserted. The re-

sults for the transmitted and diffracted intensities are given by

[I%erz+1%+ 2L L eT%2 cos[ g cosod zﬂ

; I
Ii(z) = eoz 1 (2.433)
Il+12 11+IQCFZ
2 Iz _ Iz/2 ~¢
Lz) = e-o 5L [e +1-2e'%% cos[ g cosd z]]. (2.43b)
I]+12 Il+12€rl

Two special cases deserve attention. When I; =1, =1, (2.43) reduces to

L)/ = ¢ ;Z (1+ cos[g cosd z]/cosh[g sind z]) (2.44a)
I(z)/T = & ;Z (1- cos[g coso z]/cosh[g sind z]). (2.44b)

When ¢ = 0 and the index grating amplitude is constant (2.43) reduces to

Lzl = ez (1 - (14 11112)2 sin?(g /2] (2.45a)
1+ 12
I(2)/l} = e %2 (14 h 112)2 sin [g z/2]]. (2.45b)
1+ 12

Comparison with (2.32) shows exactly how the Bragg mismatch reduces

diffraction. When I, =1,, (2.45) reduces to (2.32).

2.3.3 Counterpropagating Geometry, Dynamic Grating
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We perform a similar analysis to that done in the previous section for

beams coupled by an index grating written in the counterpropagating geome-

try (Fig. 2-4). Here the beams write an index grating with wavevector K=k -
ky. and K =2 k cosP. In exactly counterpropagating geometry K = 2k. In anal-

ogy to work leading up to (2.29) we obtain for this case
A'(z) cosp = 1—7%:4& ei® B(z) - % A(z) (2.463)

B'(z) cosP = M_}:A_n_ e Az) + £ B(2) (2.46b)

Using the dynamic grating as before we write

2
A(z) cosP =i geit B@)I” Alz) - & A(z) (2.47a)
1(z) 2
2
B(z) cosp = -i g e I—A—(ZLI B(z) + & B(2). (2.47b)
1(z) 2

It is difficult to obtain solutions of (2.47) when optical absorption is considered
except for certain values of ¢ (see chapter 9); in this section the equations are
solved for the case a = 0. The solution proceeds similarly as before with ex-

pressions for the intensities and phases of the two beams given by

Ii(z) = % ( c24vielz 4 c) (2.48a)
h(z) = -12- (Ve2+v2e T2 - ¢) (2.48b)
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wi@) = Llg coso z - cott coth ' [V 1+(v/c)%eT7]) (2.49a)

Sl

wa(z) = - Lg coso z + cotd coth [V 1+(v/c)%e 7)) (2.49D)

where the definitions ¢ = I;(z) - I,(z) and v? = 41;(0) [,(0) = 41,(z) L,(2) e

are used. Also I;(z) = 1 A(2) 12 and I,(z) = 1B(2) |2, From (2.48) and (2.49) we

readily calculate the index grating in the material

An(z) = n !e-rz/z +igcosdz (2.50)

where all parameters are as in the previous section.

From (2.50) it is seen that the Bragg mismatch caused by the phase cou-
pling is given by the phasor expli g cos$ z] regardless of the relative intensities
of the two beams. Thus the reflection (diffraction) maximum off the grating
occurs at a frequency shift A = (g/2) cos¢ = 2nn AL/A? for any combination of
beam intensities. This property would be of importance in the manufacture
of holographic interference filters (chapter 9). As a numerical example, if a
grating is written in the counterpropagating geometry with 656nm laser
beams in a material with g cos¢ = 10/cm and an index of refraction n= 2.0, the
diffraction maximum will be shifted approximately 0.15A. Since the full
width at half maximum (FWHM) response of such a grating scales inversely
with the length, a crystal with a length L > 5mm may show little or no reflec-
tivity at the frequency with which the grating was written. These results as-

sume that the temperature of the crystal is kept constant.

The diffraction observed from the grating (2.46) is relatively easy to de-
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termine when the Bragg mismatch term is absent or the grating is constant
amplitude. This occurs under three conditions: 1) when ¢ =n/2, 2) when
the frequency of the reading beam is shifted to compensate the g cos¢ term, or
3) when the grating is constant amplitude (either ¢ = 0, or ¢ = 0). In other cases
the solution is quite difficult. The general solution for the diffraction is given

in (9.39,40,41) with the modifications 1 =-cot[¢]/2 and B = 1/4. It is too long to

reproduce here.

When ¢ = /2, the solution, as stated above, simplifies considerably.

One obtains

A@) = Craf1+[Yf e +Co (Y eTem (2.51a)
Bz) = C3q/1+[Yf e +CyfY)eTon (2.51b)
where the coefficients are given by
\/ 1+(LfeT

Cy = A(0) L (2.52a)

VI BF AT e i e

c c
(z)e-rz/z

C = -A(0) ¢ (2.52b)

Vb Ao Bf e - e
Cs = 2C Cs = 2C (2.52¢,d)

The cases when the index grating is constant amplitude are also inter-
esting in that they simplify to conventional looking results3* and are of peda-

gogic value. This condition occurs either when ¢ =0, ie, 11(z) =15(2), or



-51-
when ¢ = 0 with arbitrary intensity. These cases are illustrated and described

in detail in chapter 9.
2.4 Summary

The band transport model of the photorefractive effect was discussed.
Photorefractive rate equations were introduced and solved to yield the pho-
torefractive space charge field magnitude and phase. Limiting cases dominat-
ed by the effects of diffusion, drift, and the photovoltaic effect were men-
tioned. The coupled mode equations were derived and solved in both the co-
propagating and counterpropagating geometries. The solutions for the two
beam coupling as well as the phase coupling allowed the determination of the
index gratings. Formulas for the diffraction off the index gratings were pre-
sented. They are thrashed out in detail in chapter nine. Several important
differences between coupling off a fixed grating and dynamic coupling were

discussed.
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