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Abstract.

The issue of the non-coplanar quasi-static propagation of a crack in
homogeneous and bimaterial sheets is investigated. Through a preliminary linear
analysis, it is shown that the interface crack kinking problem is confronted, in most
practical cases, with difficulties which do not arise in the homogeneous situation : the
crack path as predicted by the maximum energy release rate criterion cannot be
determined uniquely and an additional length parameter, absent in the homogeneous
case, needs to be specified to assure uniqueness. Following that development, the
assumption of small deformations is relinquished and it is shown how the size of the
nonlinear zone imparts possibly the physical significance of the additional length
parameter. The analysis is performed numerically in the homogeneous and bimaterial
cases within the framework of the nonlinearly elastic theory of plane stress and using a
“boundary-layer” approach. Material and geometrical nonlinearities are combined
through the use of the Generalized Neo-Hookean (GNH) model. As the length of the
crack extension becomes comparable to the size of the nonlinear zone, a transition is
observed between the value of the energetically most favorable kink angle predicted by
the linear theory and a unique “nonlinear” value which is found to be independent of the

crack extension length and the far-field loading conditions.

The results of the crack propagation analysis are related to those of a detailed
asymptotic analysis of the structure of the near-tip stress and deformation fields for the
GNH class of hyperelastic materials. The investigation addresses a) the symmetric
(mode I) and non-symmetric (mixed-mode) homogeneous situations, b) the rigid
substrate case and c) the general bimaterial problem which allows for an arbitrary

choice, on both sides of the interface, of the three material parameters characterizing the
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GNH model. The asymptotic analysis allows to quantify the effect of the “hardening”
characteristics on the blunting of the crack and the associated stress and strain
singularities, and shows that the near-tip fields corresponding to a general non-
symmetric loading are, in the homogeneous situation, related to those of the symmetric
(mode I) case through a rotation which depends on the material characteristics and the
far-field loading conditions. A somewhat similar property is obtained in the bimaterial
problem, where the existence of a non-oscillatory and “contact-free” solution is

confirmed for all material combinations.
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Introductory remark.

This doctoral dissertation is organized in five complementary papers, each
containing its own abstract, introduction and conclusion. The first chapter is concerned
with the preliminary analysis of the interfacial crack propagation problem. The
inconsistencies inherent in the linearized analysis presented there motivated the
investigation of the nonlinear effects in interface fracture discussed throughout the
thesis. The second chapter summarizes the results of the nonlinear analysis of the non-
coplanar crack propagation problem in homogeneous and bimaterial sheets of
Generalized Neo-Hookean material. It is shown there by using the finite element
method that the size of the large deformation (or nonlinear) zone constitutes a restriction
in the limiting process associated with the concept of “infinitesimal crack extension”
suggested by the energy release rate criterion, commonly used in crack path prediction
analyses. The results of the nonlinear crack propagation study are explained by those of
an asymptotic analysis of the structure of the strain and stress fields in the vicinity of a

crack in Generalized Neo-Hookean sheets.

The asymptotic results, which are consistent with the finite strain theory of
plane stress, are summarized in the last three chapters. The homogeneous situation is
discussed in chapter 3 for the symmetric (mode I) and non-symmetric (mixed-mode)
cases. The next chapter describes two special bimaterial situations : in the first one, the
two components of the bimaterial specimen have the same “hardening” characteristics
while the second problem deals with the rigid substrate case. These preliminary steps
yield somewhat simpler solutions which allow an easier understanding of the structure
of the near-tip fields. Also presented in the forth paper is a numerical investigation of
the transition process between the two aforementioned interface fracture problems.

Finally, the general bimaterial situation, in which the material parameters characterizing
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the two Generalized Neo-Hookean sheets are chosen arbitrarily, is presented in the fifth

chapter.
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Crack propagation at and near bimaterial interfaces : linear analysis!.

Abstract.

The problem of the growth of a crack located at the interface between two
linearly elastic solids is considered when conditions promoting propagation along
and/or away from the interface prevail. Both a stress and a maximum energy release
rate criterion are examined. It is found that in contrast to the corresponding problem for
crack growth in homogeneous solids no unique propagation direction results when
continuum considerations alone prevail. Uniqueness is established only upon invoking
a presumably material dictated minimum crack extension size. The result for this
linearized analysis are compared with experimental observations on kink fracture

involving two elastomers with small strain capabilities.

1.- Introduction.

Although long standing problems of adhesion mechanics have required
consideration of failure and fracture at and near interfaces, it was only the advent of
composite materials and the improved understanding of fracture in non-monolithic
solids which motivated a widespread interest in interfacial fracture studies. In addition,
the need to better understand the failure characteristics of layered systems such as
epitaxial layers of semiconductors in the electronics industry and electronic packaging

in general require the same technology base for failure prediction and prevention. The

1 This is the written version of an identically titled presentation given in March of 1991 at a
symposium at the California Institute of Technology in honor of J.K. Knowles's 60th birthday.
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early, geology-prompted discovery by Williams (1959) of the general differences
between the stress field at the tip of a crack in a homogeneous, linearly elastic solid and
that at an interface between two elastic solids established the oscillatory character of the
stress field. Although this local crack tip stress field has been confirmed repeatedly in
the sequel (Rice and Sih (1965), England (1965), Erdogan (1965)), the physical reason
for this behavior or its non-physical aspects of material interpenetration along the crack
plane have not been explained satisfactorily to this day. Various ways have been
proposed to resolve this problem : some have eliminated the oscillatory term by
postulating a frictionless contact zone (Comninou (1977a, 1977b), Gautesen and
Dundurs (1987, 1988)), by relinquishing the hypotheses of infinitesimal deformations
(Knowles and Sternberg (1983), Ravichandran and Knauss (1989), Herrmann (1989))
or by introducing a transition layer (Yang and Shih (1990)). Others (Shih and Asaro
(1988, 1989), Shih (1991)) have used a plasticity model to compute the detailed stress
and deformation fields at the crack tip : the mere addition of nonlinear material response
apparently did not eliminate the inconsistency although the region in which the
oscillations occurred was now reduced still more, below physically acceptable (atomic)
dimensions. But the more widely used approach to deal with this problem for some
engineering applications is the concept of small-scale contact (Rice, 1988) which

essentially ignores its presence on the basis of its usually very small size.

The linearly elastic bimaterial asymptotic solution has other features which
distinguish it from its homogeneous counterpart, most of which have been outlined by
Rice (1988). Among these is the lack of self-similarity of the singular crack tip
expansion field. As illustrated by Symington (1987), the bimaterial situation leads to
“rotational stress and deformation fields” at the crack tip, which not only result in the
stress and displacement oscillations extremely close to the crack tip, but also extend to a

region far outside of the contact zone.
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In the past, we have favored the viewpoint that the small zone of mechanical
inconsistency may be simply ignored on the basis of the small physical extent and that
the major role of the special stress field for interfacial cracks is characterized by the
general mixity of stress intensity. We feel now that this is not strictly admissible as an
approximation unless one provides also a suitable reasoning to do so, especially when
such an “approximation” leads to inconsistency in terms of what is accepted as normal
in the fracture of homogeneous bodies. The implication of this statement will become

clear below.

It is the purpose of this paper to outline the effect of the stress field rotation at
the crack tip on criteria to determine the orientation of crack propagation when the latter
moves along or kinks away from the interface, thus amplifying on the results of He and
Hutchinson (1989). We show below that, in contrast to the case of fracture in a
homogeneous body, the determination of kink direction from an interface cannot be
accomplished uniquely without also specifying a fixed crack extension length, in
agreement with the results of Mukai et al. (1990) who studied the effect of the kink
length in the centered interfacial crack case. In the absence of such a length specification
-such as is the case in the homogeneous fracture case- the criteria of maximum
circumferential stress (Erdogan and Sih (1963)) or the maximum energy release rate
criterion (Palaniswamy and Knauss (1978), Wu (1978)) cannot yield unique values for
the kink angle.

The work is carried out numerically when closed form analytical methods are
too difficult. We make use of the available analytical results to certify the requisite
numerical precision. In the next section, we provide a brief description of the Erdogan-
Sih criterion and then deal in section 3 with the energy release rate for the interface
crack, followed in section 4 by a condensed comparison of the results with some

experimental data for this problem.
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But before proceeding to further developments we summarize first the concepts and
major notational conventions for later use. Following established notation, we use

Dundurs’ mismatch parameters (Dundurs (1969)) defined as

Q= Wk, +1) - py(x,+1) _E —E, _ (= 1) = (K, 1)

- ' ) » (1'1)
u,(x,+1)+ u,(x,+1) E,+E, W, + 1)+ py(x,+1)

where subscripts / and 2 refer to the materials above and below the interface

respectively (see figure 3)2, E,, v, and y, are Young's modulus, Poisson's ratio and

shear modulus of material p respectively, E = E in plane stress and E/AI—-V*) in

plane strain, K =(3—v)/A 1+ V) in plane stress and 3 — 4V in plane strain.

The full field expansion of the stresses at the tip of the interface crack as in Sun
and Jih (1987) yields ahead of the crack tip (along the interface)
. K s iK P i€
0,, +io =—==(r/l)", 1.2
22 12|9=0 ‘\/57_5; ( / ) ( )

where K, are the stress intensity factors, / is a characteristic length of the problem

(e.g., the crack length) and ¢ =51—ln[( 1-B)/(1+B)] which is referred to as the
T

oscillatory parameter.

2.- The maximum opening stress criterion.

The problem of crack path prediction in a homogeneous linearly elastic solid has
been extensively studied and its results are widely accepted. Several criteria have been
introduced to relate the local loading conditions (characterized by the homogeneous

stress intensity factors K; and K;) to the value of the crack kink angle; the primary

criteria among these are most readily understood in terms of physical phenomenology,

2 Greek indices take the values / and 2. Summation on repeated indices is implied.
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namely the maximum opening stress criterion (Erdogan and Sih (1963)) and the
maximum energy release rate criterion (Palaniswamy and Knauss (1978), Wu (1978)).
Since these criteria provide fairly similar results in the homogeneous case, experimental
work has not allowed to clearly distinguish between them, although the energy criterion
is physically somewhat more appealing. This similarity in results for the two criteria
does not hold for bimaterial interfaces between linearly elastic solids. Furthermore, as it
will be shown here later, the two approaches must be used with much caution -if they

can be used at all- in most nonhomogeneous cases.

In this section, we examine first the case of the maximum opening stress
criterion. The basic postulate behind this criterion is that the crack will propagate in that

radial direction along which the opening (or circumferential) stress Ggg is maximized. It

can thus be simply expressed as follows :

. . d’c,
{t_r)rg—ﬁew =0 and gﬁﬁ’em <0, (-t<w<m). (2.1)

As mentioned in the introduction, the linearly elastic asymptotic stress field has

a rotating character in those bimaterial cases where € # 0; for the circumferential stress

O g this character is illustrated in figure 1. Recall that for the homogeneous problem
the value of 0'99«/7/_1 (for r/l — 0) is independent of the radius (i.e., all the curves in
fig.1 are superposed). It is clear then that, in the present case, the value of the potential
kink angle as determined by the stress criterion depends on the radius of the circle along
which the “opening stress” is computed. This relationship between the local loading
conditions (characterized by y = tan™(K,/K,)) and the corresponding kink angle @ is
given by the following implicit relation, which is illustrated in figure 2

Alw; €g)
Blw;e)’

tan('y —eln%) = (2.2)

where
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A(w; ) =€ cosh(m —w)c0s3—§)—-+ l;-sinhe(n —-a))sin%al

elo-r)

. @ w 3 W . W W
+e szn-;cos—-—(—-cos——"-28szn—2—-+2£2cos—),

o 3 22 . (2.3)
B(a);e)=£sinh(ﬂ—a))sin—zal——gcoshe(n—a))cosTw

L O ®,3 . o . @
— gflo=) Sin—cos —(—sin— + 2€ cos — + 282 sin—).
2722 2 2

This solution is valid for 0 < @ < 7; 7 has to be replaced by -7 for -7 < @ < 0.

We note first that the curve for € = 0 corresponds to that obtained for the
corresponding homogeneous fracture problem. The radial dependence of the kink angle
@ appears then through a shift eln(r/l) of the corresponding “master curve” described
in figure 2. It would therefore appear that, in contrast to fracture in homogeneous
solids, the maximum opening stress criterion does not produce a unique kink angle in
the bimaterial case, unless an additional characteristic length is introduced; this length
scale might be considered as a material parameter and would correspond to the value of
the shift to be applied. We emphasize, however, that such a length scale is not an
integral part of the fracture or kinking model, but constitutes a kind of “retrofit” to the

linearized theory.

3.- The maximum energy release rate criterion.

The application of the maximum energy release rate criterion to the bimaterial
case will be discussed in terms of analytical and numerical methods. We start with a

brief review of the analytical results available to date.
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Analytical results.

The maximum energy release rate criterion is based on the postulate that the

crack will propagate along that path which maximizes the release of energy. If G(®) is

the energy release rate defined as the variation of potential energy IT corresponding to a

virtual crack advance Alin the direction @, i.e.,

G =—lim AT (3.1)

then this value is maximized for a kink angle " satisfying the relations

2
oG =0 and G

™ o <0, (-r<w <m). (3.2

*
=0

The application of this criterion to the interfacial problem has been first
documented by He and Hutchinson (1989) who used a method based on the
superposition of dislocations which has been proven successful in the homogeneous
case (Hayashi and Nemat-Nasser (1981)). Through an integral representation of the
crack extension and a dimensional analysis, they were able to relate the local loading
conditions at the tip of the extended crack to the stress intensity factors describing the
asymptotic field at the tip of the semi-infinite interfacial crack prior to the extension.
From this numerically obtained complex relationship, they compared the energy release
rate of the kinked crack G(w) to the variation of energy G, corresponding to an
extension along the interface, the analytic expression of which has been derived by

Malyshev and Salganik (1965) as

(¢, +c, (K} +K?Z)
16 cosh® ne

G, (3.3)

where the material constants ¢, =(x,+1 )/up (p not summed) and K, have been

defined in section 1.
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He and Hutchinson (1989) first considered the case 8 = £ = 0, then studied the
effect of a non-zero B. The implicit assumption behind their investigation is that the
energy release rate of the kinked crack is independent of the crack extension length Al,
except in a region very close to the crack tip where the strong oscillations and the crack
face interpenetration mentioned in the introduction take place. They invoked a weak
influence of the second mismatch parameter § which ostensibly only affects in a mild
manner the relationship between the energetically most favorable kink angle @” and the
local loading parameter ¥ (=tan™(K,/K,)). Some typical curves they obtained are

shown in figure 3.

One notes that, in contrast to the maximum opening stress criterion, the
maximum energy release rate criterion predicts that the relation between the kink angle
o and the local loading angle 7 is not one-to-one : for a certain range of loading
conditions, the crack will propagate along the interface, which seems to be more in
accord with experimental observations (see section 4). This result could be exploited to
experimentally determine the interfacial fracture toughness. If the latter is of the same
order as the fracture energies of the two materials, a curve similar to that shown in
figure 3 is expected. If the interface is much weaker than either material, the crack will

tend to propagate along the interface for a much wider range of load mixity conditions.

In the next section, we use the finite element technique to study the effect of
on the kinking behavior of the interface crack in more detail, using He and

Hutchinson's special results to verify the numerical analysis.

Numerical analysis.

The finite element technique has been extensively used in the field of linearly

elastic interfacial fracture mechanics, especially in order to relate the local loading
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parameters (i.e., the interface stress intensity factors K, and K,) to the remote loading
conditions, the geometry and the material properties. In this analysis, the semi-energetic
numerical scheme proposed by Matos et al. (1989) is used, which combines the values
of the nodal crack opening displacements with the values of the J-integral (obtained
through the domain-integration technique) to extract the two stress intensity factors.
This method, which is relatively easy to implement, was shown in Matos et al. (1989)
to provide an accuracy comparable to the more complex and fully energy-based

methods.

The determination of the angular and radial variation of the energy release rate
was carefully investigated in order to analyze the effect on the computed value of
G(w; e, B, Al) of the mesh refinement and distribution, which has been shown by
Maiti (1990) to be of prime importance in the homogeneous case, especially when the
kink angle is large. Since it was not possible, due to the presence of the interface, to
adopt the doubly focussed mesh as suggested by Maiti, we chose the simpler mesh

illustrated in figure 4.

The mesh is composed of approximately 2500 four-node bilinear elements
concentrically focussed at the tip of the crack, the initial length of which was taken to be
unity. The global geometry that was adopted is close to that of the bimaterial specimen
used in the experiments (see figure 7). The problem was also solved by using a
“boundary-layer” approach in which a circular mesh is constructed around the crack tip
and boundary conditions corresponding to a bimaterial K-field are applied along the
outer circle. The second approach, which is applicable as long as the crack extension
remains a small portion of the outer radius, allows to avoid the numerical error
associated with the determination of the stress intensity factors (through the method
described above) and to improve the mesh refinement around the crack tip without

increasing the number of elements. Both approaches yielded identical results. The
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number of nodes and their distribution was slightly varied depending on the length of
the extension Al. The number of released nodes was determined by a preliminary
analysis of the homogeneous situation to allow comparison with analytic results. It was
ascertained that a minimum number of 5 released nodes is needed to guarantee an
acceptable accuracy of the finite element scheme. We therefore selected 6 release nodes,
equally spaced along the crack extension.The smallest element size was of the order of
a tenth of the crack extension length. The question arises as to whether this type of
meshing which suppresses the detail of the oscillation zone has serious consequences
on the numerical results. This possible influence of the oscillation zone on the
computed value of the energy release rate is examined analytically in the appendix for
the special case of interfacial separation. Using the relations developed there, it is
possible to show that the maximum contribution of the contact zone (which is of the
order of 5% 10781 ) to the total energy release rate G is of the order of 2% in the

present analysis summarized in figure 6b.

Two independent methods were used to compute the energy release rate : the
first corresponds to the “potential energy” definition of G described by equation (3.1)

and the second is related to the crack closure work

G = lim—— [* T auPds, (3.4)
a-02 Aldo0 ¢

where T!” are the tractions existing along the crack extension prior to its opening and

Au? are the opening displacements across the unloaded extension. Both methods gave

almost identical values (within 0.0 %) for the energy release rate G.

An idea of the accuracy of the computed value of G may be obtained by
comparing the value of G(w = 0) = G, (extension along the interface) with the value of
the J-integral. The effect of the crack extension length on the obtained precision is

summarized in table 1. As expected, the error on the absolute value of G, increases
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with decreasing crack extension length due to the imprecision associated with higher
crack tip gradients. This problem can be solved by further refining the mesh but such
studies showed that an increase in the number of elements can affect the absolute value

of G, but does not change the ratio G(@w)/G, nor the value of the kink angle

corresponding to the maximum energy release rate.

Al

R G,/J error
1072 1.011 1.1%
1073 1.021 2.1%
104 1.042 4.2%

Table 1.- Details on the precision of the computed values
of the energy release rate as a function of A/,

Results and discussion.

A comparison between numerical and analytical results is presented in figure 5
for the case o =0.5 =0 and for three different crack extension lengths. The
agreement with He and Hutchinson’s analytical results is very satisfactory, except in
the region near @ = 0, were both analyses show some imprecision due to the flatness
of the (G, ®) curve which makes the computation of the maximum relatively difficult.
The independence of the energy release rate G, and therefore of the energetically most
favorable kink angle @°, on the crack extension length Al is obvious for the special

case f=0.

The more general case of 8 # 0 is illustrated in figures 6a and b. In figure 6a,

the angular variation of the energy release rate normalized by the value of the applied J-
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integral is presented for the loading conditions ¥ = —¢5.0° and for three values of Al.

Except in the self-similar case of an extension along the interface (@ = 0)3 , the energy

release rate shows a definite dependence on the crack extension length Al

The complete relationship between the energetically most favorable kink angle
®” and the local loading parameter yis given in figure 6b. If the individual curves are
shifted by €ln(Al/1), one obtains a unique “master” curve, also shown in figure 6b,
which is compared with He and Hutchinson's analytic solution obtained for the same
value of e and 4. The difference that is apparent in figure 6b could not be explained
by the coarseness of the finite element mesh since a much refined mesh (with close to
4000 elements and up to 15 released nodes) yields identical results’ to that obtained
with the coarser mesh. Thus, as was the case for the stress criterion and unlike for the
homogeneous situation, the maximum energy release rate criterion does not provide a
unique value of the kink angle in bimaterial cases when 8 # 0, but again, an additional
length scale is necessary to make this criterion unique. This characteristic length Al”,
which would most likely be considered as a property of the bimaterial combination,
would be determined experimentally by computing the horizontal shift of the master
curve necessary to fit the experimental (@, 7) curve. Thus, as in section 2, this length
parameter is not part of the fracture model, but a retrofit parameter used “to make the
linearized analysis work.” The physical significance of the characteristic length Al" is
still unknown at this point : it could, for example, correspond to a flaw size or an
indicator of flaw distribution. It is also undetermined whether there is a unique

characteristic length for each bimaterial combination or whether each component of the

3 The slight dependence of G, on the length of the extension is associated with the numerical

imprecision described in table 1.

4 The error bars are associated with the imprecision of the determination of the maxima in figure 8 of
He and Hutchinson (1989).

5 marked by asterisks in figure 6b.
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bimaterial combination has its own Al" -though that latter case could lead to non-

unique values of the kink angle @~ for every loading condition ¥.

We note that the dependence of the energy release rate G on the crack extension

length Al has been suggested by Mukai ez al. (1990) who studied the kinking
behavior of a bimaterial crack of finite length; they concluded that a crack extension of a
length which is at least equal to the (initial) length [ of the crack was necessary to make
" appear to converge to a unique value. In the present context of small crack
extension during the kink process, that configurational change is, however,
inappropriate. The effect of Al on the energy release rate has been acknowledged by
Hutchinson in a private communication and in a recent publication by him and Suo

(1991).

4.- Information from experiments.

The issue of interfacial crack propagation has also been studied experimentally
in our laboratories. Here, some of the experimental results are extracted for comparison
with the results of the linear analysis described above. A more complete description of

the experimental procedure is given by Bowen and Knauss (1991a).

The fracture specimen, the geometry of which is given in figure 7, is composed
of two co-cured sheets of Solithane 113, a polyurethane of small strain capabilities
which has also been used previously to study the problem of crack propagation and
kinking for the homogeneous case (Palaniswamy and Knauss (1978)). By adjusting the
relative proportions of the base polymer and its crosslinking agent, the mechanical
properties of the polyurethane are modified : the Young's modulus and Poisson's ratio

of the two components used in the experiment, together with the corresponding plane
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stress® values of the mismatch parameters @, 8 and &, are listed in table 2. Excellent
bond strength was achieved between the two sheets of Solithane by curing the two
compositions almost simultaneously; as shown by Bowen and Knauss (1991b), the
interface toughness was comparable to at least the toughness of the weaker of the two

components.

material 1 material 2
composition Solithane 55/45 Solithane 45/55
E(N/cm’) 319 123
v 0.499 0.499

=044 B=0.11 £¢=-0.036

Table 2.- Material properties of the components used in the experiment
and corresponding mismatch parameters. The composition is given

in terms of the weight ratio “resin/crosslinking agent”

The effect of the far-field loading conditions on the propagation behavior of the
interfacial crack has been examined by rotating the bimaterial fracture specimen with
respect to the loading axis. The relation between the far-field loading angle y (see
figure 7) and the crack tip local loading angle ¥ (= tan™( K,/K,)) has been obtained
numerically using the displacement-based semi-energetic method described in section
3.2 assuming plane stress conditions. It has to be noted that the reference length [ used
in the definition of K,, K, (and therefore ) in (1.2) has been chosen as [ = I cm,

which is approximately half of the initial crack length.

The comparison between the experimental and analytical results is presented in

figure 8 which shows the variation of the kink angle @ with respect to the local mixity

6 Due to the near-incompressibility of the polymer, the plane strain values of the mismatch parameters
are @ =044 B=¢=~0.
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parameter . The solid curve corresponds to the numerical solution (corresponding to

Al/l = 1) and the dashed curve is the shifted analytical curve “fitted to the experimental

points.”

The shift was chosen to match the range of loading conditions for which the
crack propagates along the interface (@ = 0). The comparison with the experimental
results shows good agreement also for negative values of the kink angle (i.e., when the
crack propagates into the soft (lower modulus) material) but the agreement is less
satisfactory when the crack propagates into the hard (higher modulus) material. The
characteristic length Al°, determined from the value of the shift (=€ In(Al"/1)) is
approximately 1.1 mm. As mentioned earlier, the physical significance of this value is
not clear at this time. It is however worth pointing out that there are at least two size
scales that could be considered relative to this value : one is the plate thickness while the
other is a measure of the zone in which deformations are nonlinear. Based on a finite
strain analysis which matches Generalized Neo-Hookean material behavior to the
mechanical response of the two components (Geubelle and Knauss (1992)), one finds
that, in the experiments, the size of the nonlinear zone should be of the order of 0.5 mm
in the softer material and less than 0.1 mm in the harder one. By comparison, the plate
thickness was about 3 mm. The examination of the effects of large deformations on the
propagation behavior of an interface crack is still ongoing and represents a problem that

is too large to warrant inclusion in this presentation.

It might be appropriate at this point to discuss which of the plane stress or plane
strain assumptions are more adequate to study the problem of crack propagation in the
present experimental conditions. We understand that, although the specimen geometry
suggests the use of the plane stress assumption, the stress and strain fields at the tip of
the interface crack are three-dimensional, with conditions more akin to plane strain

prevailing in the immediate vicinity of the crack tip. A three-dimensional numerical
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investigation by Nakamura (1991) has analysed the respective extent of the plane
stress, plane strain and three-dimensional regions. It was shown there that, while the
thickness-averaged value of the energy release rate is very close to the plane stress
solution, a plane strain K-field exists within a radius of approximately 0.5 percent of the
plate thickness near the midplane, for plates having a thickness to crack length ratio
smaller than one. Let K7 and K (& = 1,2) represent the components of the plane
stress and plane strain stress intensity factors respectively. The relationship between the
plane stress phase angle y°(=tan”'(K{/K?)) and the plane strain phase angle
v*(=tan” (K; [K;)) has been recently investigated numerically by Lee and Rosakis
(1991). By assuming, as we will do here, the existence of a plane stress asymptotic

field throughout the plate at a certain distance from the crack tip, they obtained
y° +€%Inh/l=y° +€eInh/l, (4.1)

where h is the plate thickness, [ is the characteristic length used to define the two phase
angles (1.2), and €° and &° are the plane stress and plane strain values of the
oscillation index. This relation suggests that the “master” (®”,) curve corresponding
to the plane strain values of the mismatch parameters (@ = 0.44 €° = 0) has to be
shifted by (&°—¢€°)In(h/l) (=2.4°) to allow comparison with the experimental
results. The shifted “local plane strain” curve is also presented in figure 8. Note also
that, if fully plane strain conditions are assumed, no adjustment of the analytical results
are possible through shifting (= €°InAl/l) at all since the oscillation index is then
almost zero due to the high incompressibility of the two components. Although it seems
likely that the phenomena dictating the propagation behavior of the interfacial crack
involve distances that are much smaller than the thickness of the specimen, the
agreement between the experimental results and the analytical curve obtained by
assuming local plane strain conditions is less satisfactory than for the fully plane stress

situation.
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5.- Conclusion.

The propagation of a crack along and away from a bimaterial interface has been
investigated analytically, using the linear theory of elasticity. Some major differences
with the homogeneous situation have been noted : firstly, the maximum opening stress
criterion and the maximum energy release rate criterion provide very different results in
the bimaterial case, the energy criterion being more in accord with experimental
observations; secondly, unlike in the homogeneous situation, the linear analysis of the
kinking behavior of an interfacial crack necessitates an additional length parameter
corresponding to the initial crack extension to bring the analysis into closer accord with
measurements. This parameter, which constitutes a “retrofit to the theory”, is not part
of the fracture model but should probably be considered to be a property byproduct of
the bimaterial combination. However, the experimentally obtained value of the
additional length scale for the bimaterial specimen investigated in the present work is
found to be orders of magnitude larger than any physically dictated characteristic

length.
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Appendix : A note related to energy release rate computations for

kinking interface cracks.

With the growing importance of composite materials and structures, including
packaged electronic (chip) devices, the need to better understand and control failure
behavior at and near interfaces has taken on also increased engineering significance. In
comparison with fracture of homogeneous solids, the (linearly) elastic analysis of
“brittle” interfacial fracture problems suffers from complications associated with the
appearance of a contact zone very close to the tip of the interface crack and with the
“oscillatory” character of the near-tip stress distribution. In contrast to homogeneous
solids, this stress and deformation field behavior complicates the fracture analysis of
the kinking behavior of an interface crack since it makes the usually so useful quantity

of the energy release rate non-unique when the crack kinks away from the interface.

The question arises then as to whether the dependence of the energy release rate

G on the length Al of the (virtual) crack extension is related to the presence of a contact
or interpenetration zone adjacent to the tip of the interface crack. The objective of the
present note is to somewhat quantify the influence of the small contact zone on the Al-
dependence of the energy release rate. This analysis can, for example, be used in finite
element investigations of the interface crack kinking behavior to determine whether the
discretization of the crack tip region eliminates sufficient detail so as to introduce a

sizable error in the numerical computation of the energy release rate.

At least a partial answer to this question may be provided if one could determine
the contribution to the energy release rate that derives from the immediate vicinity of the
crack tip relative to that for a larger distance along the crack extension. Thus, if the total

advance of the crack is A/, one would be interested in determining what contribution to
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G derives from an arbitrary fraction J of that length, but located immediately adjacent to
the crack tip (figure A.1). We provide an answer to this question in closed form when
the crack propagates along the interface. While we recognize that propagation of a crack
along an interface yields unique energy release rates, while the kink problem does not,
we believe that the present contribution establishes a size scale relation that allows an

estimate of the influence of the contact zone on the computed value of G.

The size r, of the oscillation zone can be expressed as (Rice (1988))
’l—c = exp{—l—(tan'l(ZE )~y —sign(e )n)], (A.1)
£

where ¥ =tan™(K,/K,) and the stress intensity factors K, are defined by relation
(1.2). Assuming that the contact zone represents a fraction & =r,/Al of the crack
extension length A/, it is of interest to know how much of the computed energy release
rate corresponds to this fraction of the extension length. In other words, one tries to

compute the ratio
h(d;¢)=G; /G, (A.2)

where G is the total energy release rate corresponding to the extension Al, and G; is

the fraction of G corresponding to a fraction §.A! of the crack extension.

A relatively simple analytical expression for A(8; €) can be derived when the

crack extension is along the interface (@ = 0°). In this case, one writes

. ] Al
G = fim i ) [0ul) Aug(Al =) jds,
(A.3)

. 1 SxAl
G5=Alfz10—2—A—l— s [Oar(X) Aug(Al—x,)jdx,, (06<1)
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where Au, are the displacement jumps across the crack and o, are the stresses ahead

of the crack tip. The analytical expression of G has been derived by Malyshev and

Salganik (1965) as
G=7tc12(1+482)’ (A.4)
2cosh(me)
where
(c; ) (K] +K]) (A.5)

2 S m(1+4€)cosh(me)

with the material constants c, defined in section 3. Combining the expressions of the

stresses along the interface and the displacement jumps behind the crack tip with

(A.3b), one obtains

- — 1 — -
G = lim <2 JAI Al=x, cos elnAl aJ: dx,+28J‘A Al-x, sin £lnAl aJ: dx,
Al=0 Al 0 X, x, 0 x, x;

(A.6)
The transformation
yzAl—-x, (A.7)
Xy
leads to
2cosh(me)
h(b;€) = ——=IR[1]+2e3[1]}, A8
(0;€) n(1+4£2){ [1]+2e3[1]} (A.8)
where
1 .
1=[" v d (A.9)
ey '

and K[I] and J[I] denote the real and imaginary parts of / respectively. After

integration by parts, (A.9) can be rewritten as
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Lie Lie (1 1 1 1 1
I=82 (1-§)2 +(—+i£) B(—+ie,~—ie) 1—11_6(—+i8,——i8)}, (A.10)
2 2 2 2 2

where B(a,b) is the Beta function and I (a,b) is the incomplete normalized Beta

function (Abramowitz and Stegun (1972)) defined as

Ix(a,b)z%(-%b%), (A.11)
where

B(ab)= [r(1-1)"dr. (A.12)
Using the properties

I(a,b)=1-1,_(ba), (A.13)

B(é-}-ie,é—ie):ﬁt—é—), (A.14)

the final expression of the integral I is obtained as

I l+ie
1=567"(1-§) +(1+ie)—’5——15(1—is,i+ie). (A.15)
2 cosh(me) 2 2

The value of h(6;¢) is then computed by combining (A.8) and the following series

representation of /

! -{+i£ . o
;07 (1-6) I:I+I+21€ an}’ (A.16)

__ né (A.17)
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The &-variation of h(6;¢) is illustrated in figure A.2 for various values of &,
showing very little effect of the oscillation parameter. Furthermore, the result indicates

that the contribution to the value of the total energy release rate over the contact zone is

limited to less then 10% for values of r./Al of up to 0.01.
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II.1

Crack propagation in homogeneous and bimaterial sheets under

general in-plane loading : Nonlinear analysis.

Abstract.

The problem of non-coplanar crack propagation in homogeneous and bimaterial
sheets is investigated within the framework of the nonlinear theory of plane stress and
for the Generalized Neo-Hookean class of hyperelastic solids. The analysis is
performed numerically using a boundary-layer approach and the maximum energy
release rate criterion. The influence of the large deformation effect on the limiting
process associated with the concept of “infinitesimal virtual crack extension” is
examined, together with the possible relation between the size of the nonlinear zone and
the additional length parameter appearing in the linearized analysis of the interfacial
crack propagation problem. As the virtual crack extension is gradually shortened to a
size comparable to that of the nonlinear zone, a transition is observed between the non-
unique value predicted by the linearized theory and a single “nonlinear” value, which is
independent of the crack extension length but also independent of the far-field loading

conditions.

1.- Introduction.

The propagation path taken by a crack subjected to loading that is not symmetric
with respect to the crack plane has been investigated extensively since the early work by

Erdogan and Sih [1] in two-dimensional geometries. Various criteria have been
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proposed to determine the kink angle of the crack : some, such as the maximum
(opening) stress criterion, suggest that the fracture process be dictated by the conditions
existing at the crack-tip prior to its propagation; others, such as the criterion of local
symmetry and the maximum energy release rate criterion [2-6], require the knowledge
of the near-tip conditions during crack propagation. The latter criterion is a
generalization of Griffith energy-balance argument to the non-coplanar situation and
consists in comparing the energy stored in the solid before and after the kinking
process, for a vanishingly small “virtual” extension of the crack. The predicted
propagation angle corresponds thus to that which maximizes the reduction in potential
energy between the two states. Due to its attractive relationship to the fundamental
minimum potential energy principle, the maximum energy release rate criterion is today
the most commonly used principle. Various investigation methods have been proposed
in combination with this criterion such as the use of Muskhelishvili’s complex
potentials and conformal mapping [2,3] or dislocation (Green’s) method [4,5]. More
recently, Maiti [7] examined the crack kinking problem numerically using the finite

element method.

As pointed out by Shih [8], mode-mixity is one of the main characteristics of
the near-tip stress and deformation fields for an interfacial crack. It is therefore natural
that the issue of crack kinking away from an interface has received special attention in
the past few years as substantial progress was made in the mechanics of bimaterial
interface fracture. Almost all investigations [9-13] involve the dislocation method
employed successfully in the homogeneous case under the precepts of linear elasticity
theory. However, as was underlined in [14], the bimaterial situation presents a major
difficulty absent in the homogeneous situation : while, in the monolithic case, it is
possible to compute the energetically most favorable kink angle as the length of the
extension tends to zero, such a limiting process is not possible in general within the

linearized theory for bimaterial cases and a unique kink angle cannot be computed. In
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order to resolve the non-uniqueness issue, an additional length parameter
corresponding to the length of the extension has to be introduced. Note once again that
such a length scale does not appear in the homogeneous case. It has been suggested that
the additional length scale is associated with physical size scales present in the
components of the bimaterial specimen such as the size of the microstructure or of the
fracture process domain. This approach does not seem, however, compatible with the
experimentally deduced additional length parameter! obtained for the particular material

combination used in [14].

In the present paper, we examine whether the length parameter can be somehow
associated with the size of the nonlinear large deformation zone present around the
crack-tip. We thus investigate how the limiting process mentioned above is affected by
relinquishing the assumption of infinitesimal strains and allowing for large
deformations and rotations along with non-linear constitutive behavior. The motivation
behind the present analysis comes from the fact that the length parameter appearing in
the linearized bimaterial situation has been shown to be associated with the
inconsistencies inherent in the linear analysis of the interface crack problem (contact and
overlapping of the crack faces, oscillatory near-tip fields, ...). However, as was first
shown in [15], these difficulties disappear if finite strain effects are taken into account.
We show here that, even in the homogeneous situation, the size of the large
deformation zone introduces a length scale which restricts the limiting process

associated with the maximum energy release rate criterion.

The analysis is conducted within the framework of the nonlinearly elastic theory
of plane stress. Material and geometrical nonlinearities are combined through the use of
the Generalized Neo-Hookean model. Due to the complexity of the field equations and

of the problem geometry, the analysis is performed numerically with the aid of the finite

1 See discussion in section 4 of [14].
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element method. The details of the computational analysis are described in the next
section. Then, the results corresponding to the homogeneous case are discussed in

section 3 while section 4 is dedicated to a survey of the bimaterial situation.

2.- Numerical investigation.

We present next the details of the numerical analysis, within the nonlinear
theory of elasticity, of the maximum energy release rate criterion, and, in particular, of

the spatial discretization and the computation of the energy release rate.

Finite element mesh.

Throughout the present numerical investigation, we are concerned with the
boundary value problem symbolically represented in figure 1. It consists of a circular
domain of radius I, along the outer boundary of which displacement boundary
conditions corresponding to a “linear K-field” are applied. The crack, initially of length
1, is extended by an amount A/ in a direction @ relative to the crack axis?. The ratio of
the crack extension length to the original length is varied between 10 and 107. The
lower limit is justified by the numerical imprecision associated with very high gradients
close to the crack-tip while a ratio of 107 is the maximum allowable value to keep the
“boundary layer” approach meaningful. The latter approach has been chosen instead of
the more conventional “global problem,” such as, for example, the centered crack
problem, for the following three reasons : first, it has been shown to provide similar

results as long as the length of the crack extension Al is small compared to the original

length /; second, because it allows a direct control through the applied K-field boundary

2 Note that, throughout the present analysis, dimensions and angles are defined with respect to the
undeformed coordinates.
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conditions over the loading conditions prevailing at the crack-tip before its extension;
and finally, because the more compact geometry associated with such a boundary layer
approach allows for a better spatial discretization than the global approach for an

equivalent computational cost.

As pointed out by Maiti [7], the design of the finite element mesh is of prime
importance, especially in the crack-corner and branch-tip region, to ensure precision of
the predicted energetically most favorable kink angle. It was suggested there to use a
doubly focused mesh (i.e., focused at the kink corner and at the branch tip) in order to
capture the interaction between the two singularities arising in the post-extension
problem. Since the analysis of the bimaterial situation, for which such a discretization is
not possible for most kink angles, constitutes one of the main objectives of the present
investigation, we have opted for a simpler mesh focused at the original crack-tip only,
as described in figure 2. Numerical precision has however been achieved by increasing
the mesh refinement : the crack extension is represented by /0 equally spaced elements
and the inner annuli are divided into 72 5-degree-sectors. Outside of the inner circle of
radius Al, 25 to 35 elements are distributed geometrically along a radial line, with the
progression factor chosen such that the first “outside” element has a size similar to that

of the 10 “inner” ones. The total number of 4-node bilinear elements was thus 3240 for

Al/l = 107 and 2520 for Al/l=107".

The precision of the numerical scheme was assessed by performing a
preliminary linearly elastic analysis of the homogeneous situation for which generally
accepted results exist. The results are shown in figure 3 which presents the variation of
the kink angle @ as predicted by the maximum energy release rate criterion with
respect to the phase angle y characterizing the local mode mixity at the unextended

crack-tip, defined by

y =tan” (K,/K,). (2.1)
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The numerical values, denoted by symbols and corresponding to 5 values of Al/I, are
compared with the analytical solution (dashed curve). Also shown is the prediction
corresponding to the maximum opening stress criterion which, in the homogeneous
case, gives results very similar to those of the energy-based criterion, especially for
small values of ¥. The agreement between the numerical and analytical results is quite

satisfactory, differing in all cases by at most 1.0 degree.

Computation of the energy release rate.

As mentioned before, the nonlinear analysis of the crack propagation problem is
performed within the framework of the finite strain theory of plane stress, the main
relations of which have been summarized in [15]. The material model used throughout
the present investigation is the so-called Generalized Neo-Hookean (GNH) model
described in detail in [16]. It is characterized by three parameters u, b and n which
determine, respectively, the linearly elastic, “yielding” and “hardening” behaviors of the
incompressible hyperelastic material through the plane stress elastic potential

b ) "
U(I,J)=%{[I+;(I+J2—3)] —1}, 2.2)
with I and J being the two scalar invariants associated with the two-dimensional
deformation.3 The GNH model has been implemented, together with a fully Lagrangian
scheme, in a modified version of the finite element program FEAP [17]. The initial
crack problem is first solved by applying nodal tractions along the crack extension to
keep it closed. Then, these tractions are progressively relaxed until the stress-free kink
is fully open and the associated unloading work is computed. This process is repeated

for various crack extensions to obtain the variation of the energy release rate with

3 See section 2 of [16] for more details.
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respect to the kink angle, and, thereby, to compute the energetically most favorable

crack path.

As mentioned in [14], two methods are used to calculate the energy release rate

G: the first one is based on the potential energy definition

G, = - lim =, (2.3)

where IT is the potential energy contained in the body and, in the present case, is the
integral over the domain of the strain energy density U(1,J) defined in (2.2). For
hyperelastic solids, the energy release rate can be equivalently determined by computing

the closure work of the extended crack

= lm—-f /A"T dAu ds, (2.4)

C.. Als0 Al

where T and Au denote the traction and displacement jump vectors along the crack
extension respectively. By monitoring the nodal tractions and displacements of the M
nodes distributed along the kink during the N unloading steps of the extension process,

and using a simple trapezoidal integration rule, (2.4) is approximated by

M N 2
Cczz‘;lZZZ( IJI+TIJ (Aul.] AuIJ ]) (2.5)
I=1 J=1 a=1

with 7"/ and Aul’ representing the o-component at node I and unloading step J of
the tractions and displacements respectively. The two approaches yield very similar
results (within 0.1%) if a sufficient number of unloading steps are used (5 to 50

depending on the load level).
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3.- Homogeneous case.

Confident of the precision of the numerical scheme, we first investigate the
homogeneous Neo-Hookean situation for which the hardening parameter of the
hyperelastic sheet is unity. Seven values of the local mixity parameter have been
considered (y=0, 10, 20, 30, 40, 50 and 60°). The amplitude of the far-field loading
has also been varied as K =| K |/u1=10" 107, 10?2, 10" and I, where
| K |= m , M is the shear modulus and / is the radius of the circular domain on
which the boundary-layer analysis is performed. For each far-field loading condition, 5
values of the crack extension length Al have been investigated, as mentioned earlier
(Al/1=107, 107, 107, 107 and 107). The results of the 175 cases thus defined are
summarized in figure 4 which presents the variation, with respect to Al/I, of the ratio
o /o, where ®” and @, are the kink angles predicted by the nonlinear and linear
theory respectively.* It is observed that, except in the particular case ¥ = 0° (mode I)
for which, by symmetry, the maximum energy release rate criterion always predicts a
coplanar crack growth, the nonlinear analysis suggests a dependence of the
energetically most favorable kink angle @” on the length of the extension Al. As the
size of the nonlinear zone increases with X, a transition is observed between the ¥
dependent linear value @" and a unique ¥independent value @” = 0°. One can better
visualize the transition process by comparing the length of the extension Al with a
“measure” of the size of nonlinear zone. The length scale characterizing the zone of
dominance of the nonlinear effects that is adopted here is derived from the results of an
asymptotic analysis of the near-tip stress and deformation fields for a crack in a
homogeneous sheet of GNH material under general (mixed-mode) loading conditions
[16]. It was shown there that, in the large deformation region, the stress singularity is

stronger than that predicted by the linearized theory (the norm of the Cauchy stress

4 Recall that, as shown in figure 3, coz is independent of the crack extension length Al.
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tensor varies as the inverse of the distance to the crack-tip instead of the inverse square
root singularity suggested by the linearized theory), and that, under “small-scale
nonlinear yielding” conditions such as those considered in the present boundary-layer
type analysis, a fairly sharp transition is observed between the two asymptotic
behaviors, as symbolically represented in figure 5. The size ry, of the nonlinear zone

has been shown in [16] to be

w1 7

= = 3.1
I 3nn’ ul -1

where 7 is the value of the conservation integral. It is interesting to note that if the
individual curves in figure 4 are shifted by normalizing the crack extension length Al
with respect to the nonlinear zone size r,;, one obtains the single set of transition
curves presented in figure 6. It seems therefore that the load-dependent measure (3.1)
of the nonlinear zone size, which is, in the present analysis, the only length scale
characterizing the large deformation effects on the near-tip fields, unifies all the

transition curves surprisingly well despite its relative simplicity.

Although the transition curves are slightly different for each value of the local
mixity parameter ¥, the six “mixed-mode” curves (¥ # 0°) show a fairly sharp
transition between the two limiting values (@ = 0° and ®" = ®,). This somewhat
surprising result can be explained by the structure of the large deformation strain and
stress fields existing near the crack-tip under non-symmetric loading conditions. It has
been shown, through the asymptotic analysis summarized in [16], that, within the
nonlinear theory of plane stress and for the GNH class of hyperelastic materials, the
near-tip fields corresponding to mixed-mode cases consist of mere rotations of the
symmetric (mode I) approximations, the rotation depending on the “linear mixity

parameter” ¥ through a one-to-one relation which is itself a function of the “hardening”
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exponent’ n. It is therefore natural that, when the length of the crack extension is
chosen well within the zone of dominance of the nonlinear effects, the predicted kink
angle ", which is “measured” in terms of the undeformed coordinates, tends to zero

for all mixity ratios.

The size of the nonlinear zone may thus become a “geometrical lower-bound” to
the concept of virtual crack extension inherent in the maximum energy release rate
criterion : the limit A/ — 0 appearing in the definitions (2.3) and (2.4) of G exists even
if the nonlinear effects are taken into account but the value of the predicted path angle
corresponding to such a limiting process is at variance with experimental observations
[2], although the latter have been obtained in situations in which finite strain effects are
not dominant. To our knowledge, no comparable data addressing the large deformation
companion problem are available at this time. Although we grant that the special GNH
model may represent the physical phenomena in the nonlinear zone imperfectly, the
present analysis indicates that the propagation behavior of the crack is probably dictated

by conditions prevailing outside of the nonlinear zone.

The case n=0.7 has also been investigated for y = 40", showing a very
similar transition curve (figure 6). Although the analysis has been performed within the
framework of the nonlinearly elastic theory of plane stress for the particular class of
GNH materials, we believe that such a behavior should also occur for other classes of
materials, as well as under plane strain conditions where the rotation property of the

near-tip fields has been shown to be valid, too [18].

5 See figure 19 in [16].
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4.- Interface crack problem.

We turn next to the large deformation investigation of the interface crack
propagation problem. Let (1", b, n” ) and (u'?,b¥,n'”) be the material parameters
characterizing the upper and lower Generalized Neo-Hookean sheets, respectively.
Detailed asymptotic analyses of various bimaterial problems [19,20] have shown that,
as was the case in the homogeneous situation, the deformation fields existing near the
tip of an interface crack between two sheets of GNH materials consist in the rotation of
a “canonical bimaterial field,” the rotation being a function of the far-field conditions
and the geometrical and mechanical characteristics of the bimaterial specimen. For
example, in the particular case where both components have similar “hardening”

)=

behaviors (i.e., n'” = n'” =n), the near-tip field is given by [19]

y=0y", 4.1)

where y is the deformed coordinate vector field, @ is an orthonormal tensor and y” is

the “canonical” deformation field

*~ p .
{yl cr’g(0;n), 42)

ys ~ar™j(0) f(6;n)+k r'i(6;n)+d rij(6)h(6;n),

in which the asymptotic exponents m, p, t and g are a function of n and have been
given in figure 2 of [19]; the angular functions f(6;n), g(6;n), h(6;n) and I(6; n) are
continuous on [-7m,7m]; a, ¢, d and k are scalars and j(@) is the step function

characterizing the concentration of the deformations in the weaker component as

1 (0£0< ),
negP2n=1)

(6)= (1 ( (0 (4.3)
£= fﬁ(@bm] (-m<6<0).
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It is therefore expected that, due to the structure (4.1)-(4.3) of the near-tip fields, the
nonlinear analysis of the maximum energy release rate criterion yields results similar to
the homogeneous situation : when the crack extension length A/ is chosen within the
zone where the near-tip approximation is valid, one obtains an energetically most
favorable kink angle which does not depend on Al but also on the far-field loading
conditions. In the “boundary-layer” analysis adopted here, the latter are characterized
by the complex stress intensity factor K = K, +i K, associated with the linearized

bimaterial asymptotic solution.®

The numerical investigation described in section 3 for the homogeneous case
has been repeated for exemplary purposes in the bimaterial situation with
uPu® =2, b /b =1 and n'” =n® =n=0.8. The corresponding values of the
“linear” moduli mismatch parameters? are @ = 0.333, = 0.083 and € =—-0.027. The
nonlinear mismatch parameter & introduced in (4.3) is equal to 3.175. Ten loading
conditions have been considered (K =1 K | /u@+/i= 10~, 107, 102, 107 and 1,
and y = 0’ and —30°) with, for each case, the same values of Al/I as in section 3. The
results are summarized in figures 8a (for y = -30°) and 8b (for 7y = 0°), showing, as
was the case in the monolithic situation, a transition between the linear values of @”
(obtained for small K) and the unique nonlinear value® which is found to be
@ = -30°. Note that since the value predicted by the linear theory depends on Al, a
transition curve similar to that presented in figures 6 and 7 does not exist. Although the

“unique kink angle” associated with the large deformation zone depends on the material

6 The definition of the bimaterial stress intensity factor used here is similar to that described in section
1 of [14] : the length scale that needs to be introduced in order to determine the phase angle 7 has been
chosen as the radius / of the circular domain represented in figure 1.

7 See section 1 of [14].

8 Note that, in the case Al/] = 10, the size of the nonlinear zone corresponding to the largest value
of K is of the order of the length of the crack extension. This explains why the transition between the
“linear” and the “nonlinear” values of @ is not completely shown in figures 8a and 8b.
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combination, the trend observed in the present problem is applicable to other bimaterial

situations because of the aforementioned “rotation property” of the near-tip fields.

The nonlinear analysis of the crack extension problem thus seems to restrict the
limiting process (Al — 0) which, in the linearized analysis, did not provide a unique
value of the energetically most favorable kink angle. But the independence of the (large
deformation) kink angle on the far-field loading conditions seems to indicate also that
conditions prevailing outside of the nonlinear zone determine the propagation behavior
of the interface crack. It is therefore possible that the size of the nonlinear zone might
provide an indication for the additional length scale necessary to obtain an agreement
between analytical and experimental results, for situations where the large deformation
effects are not negligible. The values deduced from the experimental observations

described in section 4 of [14] do not contradict this possibility.
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Figure 8. Variation of @ with respect to the amplitude K of the applied far-field loading
in the bimaterial situation for various values of the crack extension length Al/l showing
a transition between the “linear” value (obtained for K < 107™) and the unique
“nonlinear” value which is independent of y: (a) ¥ =-30°, (b) y =0".
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Finite strains at the tip of a crack in a sheet of hyperelastic material :

I. Homogeneous case.

Abstract.

This paper describes an asymptotic analysis of the strain and stress fields at the
tip of a crack in a sheet of incompressible hyperelastic material. The investigations are
carried out within the framework of finite elastostatics and for the class of Generalized
Neo-Hookean materials. Both the symmetric (mode I) and non-symmetric (mixed-
mode) cases are considered. It is shown that the latter situation corresponds locally to a
rigid body rotation of the symmetric fields. The effect of the “hardening” parameter on

crack tip blunting is investigated analytically and numerically.

1.- Introduction.

Most fracture mechanics investigations beyond the scope of the linearized
theory of elasticity involve modifications of the linear constitutive relation in favor of
more complex and realistic material models, while retaining the kinematic assumption
of infinitesimal deformations (see, e.g., [1-4]). But these analyses often yield strain
fields which are locally unbounded, in contradiction to the underlying assumption that

justify the kinematic linearization.

In the past two decades, several analytical investigations have been documented
which study the effect of relinquishing the small deformation assumption on the near-

tip fields. The first of these analyses, by Wong and Shield [5], investigated the case of
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a crack in a biaxially loaded sheet of Neo-Hookean material, in the framework of finite
strain plane stress theory of elasticity. The method of successive approximations
employed there required however that the deformations be large across the whole sheet.
In two successive papers, Knowles and Sternberg [6,7] conducted an asymptotic plane
strain analysis of a symmetrically loaded traction free crack in a slab of compressible
hyperelastic material. The constitutive model adopted in their investigation was dictated
by the large strain behavior of the material and allowed for a wide range of “hardening”
(and “softening”) characteristics. An additional indication of the finite strain effect on
the near-tip fields was given by Knowles [8] in his investigation of the large antiplane
shear deformations at the tip of a crack in a homogeneous slab of Generalized Neo-
Hookean incompressible material. These pioneering works are summarized in two

survey papers [9,10].

More recently, the general plane strain problem (mixed-mode loading) was
studied by Stephenson [11] and by Le [12] for the incompressible and compressible
cases respectively. The impossibility of an antisymmetric (mode II) solution within the
framework of nonlinear elasticity, as was first observed in [11], was further analyzed
by Knowles [13] who showed that, due to the nonlinear effects, crack opening is to be
expected when mode II loading is applied away from the crack tip, even if the amount

of loading is small.

Finally, motivated by the recent resurgent interest in bimaterial fracture, two
asymptotic analyses of the near-tip stress and strain fields for an interface crack
between two hyperelastic materials were produced. In [14], Knowles and Sternberg
studied the case of a bimaterial sheet made of two Neo-Hookean materials. They
showed that, in this case, the oscillatory singularities appearing in the linear asymptotic
solution are not present when the infinitesimal strain assumption is relinquished and

that a smooth opening of the crack is obtained regardless of the far-field loading
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conditions. Similar conclusions were obtained by Herrmann [15] in his finite plane
strain investigation of an interface crack between two slabs of compressible material.
The material model used in [15] is more general than the Neo-Hookean model used in
[14] and allows for a difference in the hardening behaviors of the components of the

bimaterial combination.

Our objective in this series of papers is to perform an in-depth study of the
problem of a crack in a homogeneous and bimaterial sheet made of a class of
incompressible hyperelastic materials. The constitutive model used throughout this
work is the so-called Generalized Neo-Hookean (GNH) model, introduced by
Knowles [8] in his investigation of the finite strain antiplane shear case. This material
model presents enough complexity to capture a fairly wide range of material behaviors
but, at the same time, its simplicity makes it accessible to an asymptotic analysis.
Furthermore, it includes, as a special case, the Neo-Hookean model previously used by
Knowles and Sternberg [14] in their bimaterial asymptotic solution which has been
confirmed numerically by Ravichandran and Knauss [16] and which can be used as a

reference for later comparison purposes.

In this first paper, we consider the situation of a crack in a homogeneous sheet
of GNH material. This preliminary analysis, which deals with both the symmetric
(mode I) and non-symmetric (mixed-mode) cases and contains information relevant to
subsequent papers on bimaterial fracture problems, starts with a review of the relations
governing the plane stress nonlinearly elastic theory and a brief presentation of the
GNH model in section 2. The asymptotic analysis for the symmetrically loaded crack
will be summarized in section 3 while the mixed-mode situation will be delineated in
section 4. The fifth section will contain a discussion of the results and their implications
on the crack blunting and propagation behavior; that section concludes with the results

of a “small-scale yielding” boundary-layer type numerical analysis.
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The next paper [17] covers some special cases of the bimaterial situation : in the
first of these, both components are assumed to possess the same ‘“hardening”
characteristics; in the second problem, one of the components is considered as rigid.
These “intermediate steps” of analysis allow us to better understand the effect of
blunting and elastic modulus mismatch on the interface crack-tip fields. In the third and
final paper [18], the general (and more complex) case of two bonded GNH sheets is
considered. In all cases, at least the first two terms of the asymptotic expansion are
obtained and a full-field numerical investigation using the finite element method is
performed in order to connect the resulting asymptotic solution to the far-field loading

conditions.

2.- Finite plane stress elastostatics - Generalized Neo-Hookean

model.

Throughout this work, we shall deal with finite plane stress deformations in a
sheet made of a class of homogeneous, isotropic, incompressible, hyperelastic
materials, in the absence of body forces. As a preliminary to the asymptotic analysis,
the present section contains a brief review of the basic relations governing the nonlinear
theory of plane stress elastostatics and a presentation of the material model. A more
complete description of the nonlinear equilibrium theory of plane stress can be found in

[14].

Consider a body B which, in an undeformed configuration, occupies a thin
cylindrical region D, the mid-plane of which is denoted by I1. By introducing a
Cartesian coordinate system on IT, one can associate with every point of the plane a

two-dimensional position vector! x characterized by the material (or undeformed)

1 Throughout this paper, letters in boldface denote two-dimensional vectors and second-order tensors.
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coordinates ( x;, x,). Let? y, denote the spatial (deformed) coordinates of the mid-

plane points, defined by the mapping
y=y(x)=x+u(x), (xeIl), (2.1)

where y represents the deformed position vector and u the displacement vector. We
assume that the mapping y is twice continuously differentiable and has a unique inverse

on I1 The deformation-gradient field F associated with y is given by
F=Vy=1+Vu, (2.2)

where 1 is the unit tensor and the gradient is computed with respect to the undeformed
configuration. Let G denote the corresponding left Cauchy-Green deformation tensor

and 7 and J, the associated scalar invariants defined as

G=FFT,
I=trG=Y,5Y5p= /15 + Aﬁ, on 1], (2.3)

J=detF = Yi1Ya2 = Y12Y21 = A, = /A,

where A, are the in-plane principal stretches and A is the transverse stretch. The

relation between the in-plane and out-of-plane stretches is motivated by the isochoric

property of the deformations associated with the incompressibility of the material.3

Let T denote the true (Cauchy) stress field accompanying the deformation. The

equilibrium equations in the absence of body forces are

divt=0, =7, on IT", (2.4)

2 Greek indices range over the values (1,2). Summation on repeated indices is implied, unless specified
otherwise.
3 See [14] for more details.
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where IT" is the image of IT under the deformation y. In terms of the nominal (Piola)

stress field o related to T through

oc=1F7, on I7, (2.5)
the equilibrium equations (2.4) can be written as

div =0, oF'=F¢, on IT. (2.6)*

The relationship between nominal and true stresses is also the subject of the
following results : let I"be a regular arc in I[Tand I” “=y(I) its deformation image in
IT", and let n and n" be the oriented unit normal vectors on I'and I' respectively,

then (2.5) implies
=0 onI’" & on=0 onrl. 2.7)

This fundamental result indicates that traction-free boundary conditions can equivalently
be applied on the undeformed geometry without a priori knowledge of the

deformation.

To conclude this presentation of the basic relations governing the nonlinear
plane stress theory for incompressible homogeneous hyperelastic material, we
introduce the plane stress elastic potential U, a function of the two scalar invariants /

and J such that
o=2UF+JUFT, on I, (2.8)

where U, and U, designate the partial derivatives of U(I,J) with respect to I and J

respectively. The choice of the elastic potential will strongly influence the form of the

4 Unlike T, 0 is not, in general, symmetric.
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solution. Throughout this analysis, we are concerned with the Generalized Neo-

Hookean (GNH) model, the three-dimensional elastic potential of which is given by

W(I,,I,) = 5‘%{[1 + 5(1, - 3)} - 1}, (2.9)

where I, and I, are the three-dimensional scalar invariants associated with the
deformation (see section 2 of [14] for more details on the transition between the three-
dimensional and the plane stress equations). In (2.9), u (the shear modulus), b and n
are the three material parameters which determine the linearly elastic, “yielding” and
“hardening” behaviors of the material, respectively, as shown later in this section. The
corresponding plane stress elastic potential is given by
b n
U(I,J):-Zf‘g{[u;(n J‘2-3)} —1}. (2.10)

As mentioned before, this material model has been introduced by Knowles in
his asymptotic analysis of the antiplane shear (mode III) case [8]. It has also been used
by Rosakis and Rosakis [19] in the finite elastic analysis of the screw dislocation
problem and by Rajagopal and Tao [20] in their investigation of the inhomogeneous
deformation of a GNH wedge. Note that the Generalized Neo-Hookean formulation
reduces to the Neo-Hookean one when n=1. Combining (2.8) and (2.10), the nominal

stresses become
Ous =LA [y s = XE0€p V00 1 (2.11)

where A=1+b(I+A*-3)/n and €48 is the two-dimensional alternator

(€, =€, =0, €, =-€, =1). The Cauchy stresses are given by (2.5) and (2.11) as

Tog = HA" (Yo, V5, —AB0s }. (2.12)
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Finally, the equilibrium equations (2.6), written in terms of the deformed coordinates,

yield, for this class of materials,

w2 bn=1) al X PYE
A 2{ . [axﬂ+&ﬁ]()’a.p“AjeauEﬁv)’,,,v)+A(V2ya_.-é;;-eaﬂeﬂvyu,v =0,(2.13)

where A, I and A have been defined in (2.3) and (2.11).

In order to understand the physical significance of the material parameters
introduced in the GNH model, it is instructive to examine the response in a three-

dimensional homogeneous deformation corresponding to a uniaxial stress parallel to the

x,-axis. In such a case, the deformations are
I = xz/'\/x» Y =Ax, Ys = xs/‘/-i" (2.14)

where A is the uniaxial elongation in the x,-direction. The engineering (nominal)
uniaxial stress is readily found to be
(#+3-9] (-2)
Co=pulI+=|A+=-3 A-=| 2.15
2 ﬂ[ " 2 PE (2.15)

The effect of the “hardening” exponent n is illustrated in figure 1. The stress-strain
curve will keep a positive slope as long as n21/2. It can be shown that the equations of
equilibrium lose their ellipticity when n<1/2. Throughout this analysis, we will
consider only the elliptic situation (n>1/2), excluding thereby the appearance of shocks

and discontinuities usually associated with hyperbolic problems [21, 22].

The effect of the parameter b on the uniaxial stress-strain curve of GNH
materials is demonstrated in figure 2 for n=0.6, showing that b controls the “extent of

linearity,” or, equivalently, the “yielding level” of the material.
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3.- Local analysis of the symmetric (mode I) crack problem.
Problem formulation.

The global crack problem, illustrated in figure 3, consists of a crack of length 2/
embedded in an infinite sheet of GNH material under uniaxial tension. The coordinate

system is chosen on the mid-plane such that the crack line Lis

L={x| -1<x,51,x,=0} (3.1)
and the (undeformed) domain I7 is the whole ( x,, x,) plane exterior to L.

The determination of the full-field solution to the global crack problem consists
of finding a deformation field y(x) which is twice continuously differentiable on 17,
continuous up to L and continuously differentiable up to the interior of the segment L
and satisfying the equilibrium equations (2.13). Furthermore, the associated nominal

stress field has to conform to the traction-free boundary conditions along 4 i.e.,
Ou(lx|<t, x,=0%)=0. (3.2)

In addition, the deformation has to satisfy the kinematic loading conditions at infinity
§(x)=Fx+0(1I), as x2+x2 — oo, (3.3)

where
[;]= A0 A,>1, (3.4)
0 A,

with /'fa denoting the principal stretches at infinity. This particular choice of F insures
a symmetric (mode I) loading of the sheet. The more general mixed-mode loading

situation will be considered in section 4.
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The full-field solution to the global crack problem described above is too
complex to be expressed in analytical form. However, taking for granted the existence
of a solution to the global crack problem, it is possible to perform an asymptotic
analysis of the stress and strain fields in the immediate vicinity of the crack tips. As will
be shown later in this section, the only length scale appearing in this purely local
analysis is associated with an energy parameter (the J-integral) which is itself related to
the amplitude of the far-field loading, the specimen geometry and the material
characteristics of the GNH sheet. We can therefore define a generic geometry that will
be used throughout this asymptotic investigation and which could be applied in various
“global” situations : it consists of a semi-infinite crack embedded in an infinite sheet of

GNH material as shown in figure 4. The crack line L is now expressed as
L={x| x50, x,=0}. (3.5)

In the local analysis that follows, it is more convenient to replace the Cartesian

coordinates ( x,, x,) by the corresponding polar coordinates (r, 8) defined in figure 4.

The “redefined” local crack problem consists thus in determining a deformation
¥(x) satisfying the same continuity requirements and equilibrium equations as in the
global problem, but with somewhat different boundary conditions : the stress-free

conditions along the crack faces become

C,,(r.80=17)=0, (r>0), (3.6)

while the far-field loading conditions can be expressed locally as the symmetry

requirements

y,(r,8) =y,(r,-0),

3.7
y,(r,8) = —y,(r,=0). 3.7
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Asymptotic analysis - first term.

The existence of a solution to the local problem is conditioned by the choice of
asymptotic representation of the deformation field; we assume that, in the vicinity of the

crack-tip, the deformation y(x) has the form

’6 =r? 6 d E]
{y,(r )=rPv(6)+o(r?) (r—0,-7<6<7), (3.8

y,(r,8)=r"v,(8)+0o(r"),

where the angular functions v,(8) € C*( [-x, 7] ). We also require that the exponents

m and p satisfy
mandp > 0, mand/orp < 1. (3.9)

The inequalities (3.9) are motivated by the anticipated fact that not all deformation
gradients remain bounded as r — 0, while the displacements have to be finite at the

crack tip.

It is possible to proceed directly to the asymptotic analysis without further
restriction on the value of the exponents m and p. However, one can simplify the
analysis greatly by considering the following two arguments : first, we can adopt the
heuristic considerations introduced by Knowles and Sternberg [6] leading to the

inequality
p>m, (3.10)

motivated by an examination of the shape of the deformed crack boundaries. The case
p<m corresponds to a cusp-like opening of the crack while the deformed crack would
be wedge-shaped in the vicinity of the tip if p=m. The only physically acceptable
situation, reinforced by various experimental observations, is such that the crack opens

smoothly, as predicted by (3.10). The second simplifying argument involves the a



II1.12

priori estimation of the exponent of the lower order term (m) through the use of the
conservation integral J, introduced by Rice [23] and generalized by Knowles and

Sternberg [24]. The reasoning is based on the fact that the asymptotic solution must

satisfy the path-independence of J defined by

I= [ (Wn, ~0ogngya,)ds, (3.11)

where W is the elastic potential defined in (2.9) and I' is any smooth contour with
outward normal n surrounding the crack tip, starting from the lower crack face and
ending on the upper one (figure 4). By choosing a vanishingly small contour and
examining the radial dependence of the lower order terms of (3.11) after substituting

the asymptotic representation (3.8), one must impose
m=1-1/2n (3.12)

in order to ensure a finite limit to the J-integral which is consistent with the assumed
existence of a solution to the global problem described earlier. This reasoning allows us
to transform the eigenvalue problem associated with the lower order term (in r™v,(8))
into a mere differential equation. The same argument was used by Rice and Rosengren
[2] in their investigation of the elasto-plastic (HRR) asymptotic field and was examined

by Knowles and Sternberg [6].5

We can now proceed to the determination of the other asymptotic quantities p,
v,(6) and v,(8). By examining the order of every term appearing in the equilibrium
equations (2.13) with the aid of (3.10), it can be shown that (2.13) can be reduced to

(n—I)—ngy,,NIVZya:o, (r—=0,-n<6<n), (3.13)

B

5 See discussion at the end of section S in [6).
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where I =y, ; y, 5. Substituting (3.8) into (3.13), the equilibrium equations yield the

following differential equations

B, D, +(n-1)[2p(m-1)B,v,+B,v,] =0,
P (3.14)
B.D, +(n—1)[2m(m~1)B, v,+ B, v,] =0,

where () denotes d( )/d6 and
B, (8)=m®v;(6)+v;(6),
D, (6)=p*,(6)+V,(6), (3.15)
D, (8) = m’v,(6)+7y(6).

The boundary conditions are asymptotically satisfied by

v, (27) =0, (3.16)

while the symmetry of the deformations requires that

v,(0)=0 (v,(8)is even),

v,(0)=0  (v,(6)is odd). (3-17)

As mentioned above, the second of (3.14), together with (3.16) and the second of

(3.17) form an eigenvalue problem in (m,v,(6)) which has been reduced through
(3.12) to a nonlinear differential equation which seems to be common to various finite
strain situations : it was first solved by Knowles and Sternberg [6] in the compressible
plane strain case for a quite different material model; the same equation was then
encountered by Knowles [8] and Stephenson [11] in the incompressible anti-plane

shear and plane strain situations. Its solution is given by

v,(6) = a f(6;n), (-r<O<m) (3.18)8

where a is an undetermined constant and

6 For normalization purpose, we choose fim;n)=1.
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=1 8 2k? cos’ 6/2 "
6:n)= +kcos@)|n sin—| 1 - ———| , 3.19
f(6;n) [n(a) cos )] sm2|: 70 ] ( )

with
k=1-1/n, (3.20)
o =(1-k’sin’6)". (3.21)

The angular function f(6;n) is represented in figure 5.

Substitution of (3.18)-(3.21) into the first of (3.14) results in the second-order
linear differential equation

G+ k’sin@
T (1-k%sin’0)

7rVi+p(p—k)v, =0, (3.22)

which, with (3.16) and the first of (3.17), forms an eigenvalue problem for ( p,v,(6)).
Our efforts to obtain a closed-form solution to this eigenvalue problem have been

unsuccessful so far. However, the WKB theory [25] can be used to obtain a fairly

good approximation of p and v,(6) for n>0.55. The details of the computation are

summarized in the appendix.

The eigenvalue problem (3.22) can also be readily solved numerically. The
variation of p and m with respect to n is shown in figure 6, while the angular variation

of v,(6) is presented in figure 7 in the form
v,(0) =c g(6;n), (3.23)

where g(6;n) has been normalized such that g(0;n) =1 and c is a scalar. Note that,
for 0.5<n<1, the first asymptotic term for both y, and y, generates unbounded

gradients as the crack tip is approached, since both m and p are less than unity.
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Domain of validity of the asymptotic solution.

It is appropriate at this point of the analysis to discuss the domain of validity of
the asymptotic solution described above. As mentioned in the preliminary presentation
of the GNH material model, the hardening exponent n must be strictly greater than 1/2

to ensure the ellipticity of the equilibrium equations (2.13).

But an examination of the order of the terms constituting (2.13) which led to the
asymptotic form (3.13) of the equilibrium equations introduces an additional restriction

on the values of n for which the asymptotic solution (3.8), (3.12), (3.18)-(3.21) and

(3.23) is valid. The lower-order term for the second deformed coordinate y,(r,6) is

valid for all values of n>1/2. But the most restrictive assumption

Yip = 0" ) >> Ne, g0y, =0(r’ "), (3.24)
used in the derivation of (3.13), requires that

p<l+1/4n. (3.25)

This condition is represented by a dotted line in figure 6. The acceptable range for the

hardening exponent for the approximation of y,(r,8) to be valid is thus

1/72<n<7/5. (3.26)

For higher values of n, the nature of the first asymptotic equilibrium equation changes
drastically and the separable form (3.8) of the near-tip solution is not expected to be

applicable.
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Additional terms.

The linearized theory of elasticity suggests the appearance of only one singular

~1/2
)

term (O(r™’7)) in the asymptotic expansion of the near-tip stress and strain fields. In

this section, we examine whether higher-order terms in the asymptotic expression of
the deformations cannot also lead to singular values of the strains in the nonlinear

situation.

Let us write the additional terms as

{y,(r, 6) ~crig(6;n)+r'w,(6), (3.27)

y,(r,0) ~ar” f(6;n)+r'w,(8),

where m, p, f and g have been given analytically or numerically before, a and ¢ are

scalars, s>p,g>m and w,(6) is even while w,(8)is odd. After lengthy but

elementary computations, one finds that the only term capable of generating singular

terms’ is the term of order r? which can be written as
w,(8) =dh(8;n), (3.28)
where d is an undetermined constant and h(8; n) satisfies
B,D, + 2D,E, +(n—1)(2g(m—1)B;h+ Bh+ 2m(m+q—2)f E, + 2f E,)= 0, (3.29)
with the boundary conditions h(0) = h(7)= 0 and where
B, =f’+m’f, D,=f+m’f, E,=mqfh+fh. (3.30)

The eigenvalue problem (3.29)-(3.30) has been solved analytically by Knowles and

Sternberg [6] who introduced the following transformation

7 j.e., such that its order is at most unity.
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1-k \/1+ksin26—-a)c0s9
cos{ = ,

N2 W+ kcosB (3.31)
V({)=[w+kcosB] " h(6),

where k and @ are given by (3.20) and (3.21) respectively. Note that {(8 =0) = m/2
and {(0=rx)=0.

By using (3.31), (3.29) becomes

4ng(ng—-n+1)

V() + -

V() =0, (3.32)

which, with the transformed boundary conditions
V(0)=V(r/2) =0, (3.33)

readily yields

g=(n—1+~n>+16n-8)/2n, (3.34)

h(0;n) =n%(w+ kcosB8)*(4cos’ L — 3cos), (3.35)

where the multiplicative constant term in (3.35) has been added to obtain h(z;n) =1
(figure 8) and where the relation between 6 and { is given by (3.31). A visualization
of the variation of g with respect to the hardening exponent n is given in figure 6,
showing that, for n<9/14, the second term also generates unbounded strains at the

crack tip. It can be shown that, as n approaches 1/2, additional singular terms appear in

the asymptotic expansion of the second deformed coordinates y,. The condition for
validity of this higher-order term is identical to that of the first asymptotic exponent,

ie.,

g<1+1/4n. (3.36)
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A discussion of the stress and strain fields associated with the derived
asymptotic solution together with a numerical verification of the results is presented in
the fifth section of this paper. In the next section, we summarize first the investigation

of the non-symmetric (mixed-mode) case.

4.- Local analysis of the mixed-mode crack problem.
Introduction - problem formulation.

As mentioned in the introduction, two investigations of the general mixed-mode
case, within the framework of finite elasticity have been produced so far, both
concerning the plane strain case : the first one by Stephenson [11] for the
incompressible situation and the last one by Le [12] who solved the compressible case.
Both analyses yielded the somewhat surprising result that the near-tip deformation field
is obtained through a mere rotation of the canonical symmetric (mode I) asymptotic
field, the amplitude of the rotation being dictated by the far-field loading conditions. In
both cases, this result was obtained through an argument based on the plane strain
assumption which rules out any deformation normal to the plane of investigation. In
this section, we examine whether a similar result is to be expected in the plane stress

situation, in which a stretch transverse to the mid-plane is possible.

Let us first recall a result obtained by Stephenson [11] who showed, by

investigating the effect of an antisymmetric displacement field
u,(x,,x2)=u,(x,,—x2), uz(xpxz)z-uz(xp—xz) (41)

on the equilibrium equations, that the mode II crack problem fails to admit an
antisymmetric solution about the plane of the crack under the nonlinear theory of finite

plane strain. Although this important property was proven in the particular case ofa
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Mooney-Rivlin material, the author conjectured that it would be valid for “every
legitimate choice of the plane-strain elastic potential” ([11], p.74). A numerical

confirmation of this property in the GNH situation is presented in section 5.

The formulation of the global mixed-mode crack problem is similar to the
symmetric situation described in section 3, except that the far-field deformation tensor
F does not possess the diagonal form (3.4) but allows for loading in shear. The local
crack problem is also identical to the mode I situation except that the symmetry

requirements (3.7) do not apply.

First asymptotic term.

We start again from the general expression of the first asymptotic term in

separable form
Yu(1,6) ~r"v,(8), (no sum on ), 4.2)

where m_ > 0 and at least one m, < 1 and where v, € C*([-x,7]). One can simplify

the analysis of this term somewhat by noting that (4.2) may be replaced, without loss

of generality, by
Y (1,6)~r"v,(6). (4.3)

This simplification, suggested in [11], is justified by the fact that if {y, 6} is solution

of the problem, so is {Qy, @} for all proper orthogonal tensors Q.

As was the case for the symmetric case, the conservation of the J-integral

defined by (3.11) yields

m=1-1/2n. (4.4)
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After substituting (4.3) into the asymptotic equilibrium equations (3.13), one obtains a

system of coupled second-order differential equations

B, +(n—1)Bv, +mB{2(n—1)(m~1)+m}v, =0, (4.5)

where

B(6)=m?v,(8)v,(6)+,(6)v,(6). (4.6)

The boundary conditions along the crack faces remain

v, (tm)=0. 4.7

The solution to (4.5)-(4.7) can be written as
v (8)=a,f(0;n), (-n<£0<mrm), (4.8)

where a,, are two scalars left undetermined by the present local analysis8 and f(6;n)

is given by (3.19)-(3.21) and is shown in figure 5.

This first asymptotic term, however, yields an identically vanishing Jacobian
and thus does not constitute a one-to-one mapping. Furthermore, it does not define the
near-tip variation of the transverse stretch. These reasons motivate the search for a two-

term expansion of the elastostatic crack-tip field.

Higher-order terms.

Motivated by the same argument that led to (4.3), we will seek a two-term

approximation of the form

Vo (1,6) ~a,r" f(6;n)+r'w,(6), 4.9

8 See discussion in section 5.
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where s>m and w,(0) € C*([-m,7]). An examination of the respective orders of the

various terms constituting the equilibrium equations (2.13) shows that the same
asymptotic form (3.13) can be used for the second term in (4.9) provided that the

exponent s satisfies

3
m<s<

=]+—. (4.10)

Under these restrictions, (3.13) yields the following system of coupled linear second-
order differential equations
(al +a} )H;(w,)+2a}H;(w,)+ 2a,a,H;(w,) = 0,
(4.11)
(“12 + af)H,’(wz) + 2a,a,H;(w;) + 2a;H3(w,) = 0,
where a, are the multiplicative constants of the first term and H,(w) are two linear

differential operators given by

H;(w)=B,D, +(n—1)(2s(m—1)B,w+ B,w),

.. (4.12)
Hi(w)=DE, +(n—1)(m(m+s-2)fE + fE,)
with
B,=f2+m2f2, szmsfw+fw, @13)
D, = f+m’f, D, = +sw. '
Together with the asymptotic boundary conditions
w,(tr)=0, (4.14)

(4.11)-(4.13) constitutes an eigenvalue problem for s and w,(8), under the restrictions

(4.10).
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Without any loss of generality and motivated by the introductory remark

concerning the impossibility of a purely antisymmetric solution, we assume that a, # 0

so as to define
a, = a,/a, (4.15)

and use the linearity of the operators H, (w) to rewrite (4.11) as

(]+a,22)H,S(w,)+2a,2H§(a,2w,+w2)=O, (4.16)
(1+ak,)H;(w,)+2H;(a,w, +w,) = 0.
Combining the relations (4.16), the asymptotic equilibrium equations can be uncoupled

as

(1+ap,) Hi(w,—a;,w,) =0,
, . 4.17)
(1+a;,) Hy(a,w,+w,) =0,
where H;(w)=(H, +2H,)(w). Noting that H;(w) and Hj;(w) are the same
differential operators as the ones encountered in the symmetric (mode I) case in the

determination of the first term of y, (3.14a) and the second term of y, (3.29), we can

write the asymptotic expansion as

{y,(r,O) ~ar"f(O;n)+akr'l(0;n)+a,crfg(6;n)+a,dr'h(6;n), (4.18)

yo(r,8) ~ a,r" f(6;n)+a,kr'l(6;n)—a,crfg(6;n)+a,dr'h(6;n),

where a,, k, ¢ and d are undetermined constants. In (4.18), (z,(6;n)) and

(g, h(6;n)) are the first two solutions of the eigenvalue problem
Hj(w) =0, (-rn<0<m), (4.19)
with

w(trn)

I
N

(4.20)
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which satisfy the restriction (4.10). The latter can be solved by using Knowles and

Sternberg’s transformation (3.31) : g and h(8;n) have been given by (3.34) and
(3.35) while ¢t and [(6; n) are similarly obtained as

t=(n—I+n*+6n-3)/2n, (4.21)

1(6;n)=n'(w+kcos®) (2cos’¢ - 1), (4.22)

where the expression for {(6) is given by (3.31). The variation of ¢ with respect to n is

illustrated in figure 6 and /(6;n) is shown in figure 9.
Finally, p and g(6;n), which are solutions of
Hj(w)=0, (<6< m), (4.23)

together with (4.20), have been computed numerically in the previous section and are

shown in figures 6 and 7 respectively.

5.- Discussion of the asymptotic results - Numerical

investigations.

The section contains first a discussion of the asymptotic deformation field
described by (4.18), together with a study of the structure of the associated near-tip
stress fields. We then present the results of a numerical investigation of the symmetric

and non-symmetric cases.
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Structure of the deformation field.

A major result of the analysis of the mixed-mode situation is that, like in the
plane strain case, the general (non-symmetric) solution is obtained by a rotation of the

symmetric (mode I) field. Let y* denote the latter, i.e.,

S~ caPg(6;:n),
YI g(6;:n) 5

y, ~ a7 f(6;n)+kr'l(6;n)+d.r’h(6;n),

where a,, c., k. and d. are constants which depend on the far-field loading

conditions, the geometry and the material properties.® The general field is given by
y=0y", (5.2)

where the orthogonal tensor @ corresponds to a rotation angle 6 given by the mode

mixity of the first asymptotic term
tan6 = —a,,, (5.3)
where a,, = a,/a,, i.e.,

1{ a; a 2_ 2, .2 _ 2 2
=— , a’ =a;+a; =a,(1+ay,). 54
0-1(% 2 ral=ara). G4
The relation between the nonlinear mode mixity parameter a,, and the far-field mode
mixity will be examined numerically later in this section, using a “small-scale yielding

boundary- layer” approach.

The result (5.2) has an important implication for the nonlinearly elastic analysis
of the propagation behavior of a crack under general loading conditions [26]. It has to

be also noted that, unlike in the linearized analysis, the near-tip field contains more than

9 Note that k. = 0 in the mode I case since /(6; n) is even in 6. But the term of order r' appears in
the mixed-mode solation.
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one singular term, especially as n tends to 1/2 where various asymptotic terms have

comparable importance (m, ¢ and g tend to 0 simultaneously as n approaches 1/2 ).

Before we proceed further with the discussion of the structure of the stress and

strain fields, we non-dimensionalize the asymptotic results (5.1) by normalizing the

length quantities r and y, as

p=rfl, Mo = Yo/l (3-5)

where /. is a characteristic length defined as

1

L =al™. (5.6)

<

We then rewrite the symmetric asymptotic fields (5.1) as

n; ~.p’g(6;n), 5.7)
M~ p"f(6:n)+k.p'l(6;n)+ d.p?h(6; n), '
where ., k. and d. are dimensionless constants defined by
ol =t ot
G=ca™, k=kal", d.=dal™". (5.8)

As mentioned before, the Jacobian of the transformation was left undetermined by the
first asymptotic term in the non-symmetric case. It can be shown that the term of order
r' and r? do not contribute either to the value of J to the first order. Using (5.2), one

obtains

J= det[Faﬁ] = det[E;ﬁ], (5.9)
where F' = Vy' is the mode I deformation gradient tensor. Combining (5.7) and (5.9),
one obtains

J=X"~ep™"?pfg—mfg). (5.10)
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The angular variation of the Jacobian is shown in figure 10. Note that the Jacobian
vanishes as 6 approaches #m, which suggests that the approximations (5.1)-(5.2)
deteriorate near the crack faces, along which the transverse stretch is left indeterminate
by the present local analysis. It is nevertheless possible to obtain an estimate of the
radial variation of A along the crack faces through the approach used in [14], which is

based on a modified form of the Cayleigh-Hamilton relation!®
2U,U,M - (4U} + U} )N + (4U; - U; )J = 0, (5.11)

where U, and U, are the partial derivatives of the elastic potential U(1,J) defined in

(2.10), M =040, and N =detjo,4 . Along the crack faces, (5.11) reduces to
2pFap [Cas]

2UU,M+(4U; -U})J =0, (8=1%m), (5.12)
where

M=o} +0l, ~ WAyl +y:,), (r—0), (5.13)
in which

A=1+b(I+X -2)[n~bl/n, (r—0). (5.14)

By substituting the expressions of U, and U, together with the symmetric asymptotic

solution (5.7) into (5.12)-(5.14), there results
—Ami+(1-25) p' ~ 0, (r—0, 8=%m),  (5.15)
where m = 1-1/2n. Using the fact that in a tension field the transverse stretch

vanishes as the crack tip is approached, (5.15) readily yields the following estimate

along the crack faces

10 See section 2 of [14] for the details of the computation leading to (5.11).
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14n
A-L_
“m

(r—=0, 6=%r).  (5.16)

As shown in [14], a more general estimate of A that holds uniformly for ~x <8 <7

and includes (5.10) and (5.16) can be obtained using (5.11).11

Analysis of the near-tip stress field - characteristic length.

We turn next to the expression of the near-tip stress field. Since the general
situation corresponds locally to a mere rotation of the “canonical” symmetric case, we
focus on the latter. The nominal stresses are given asymptotically, with the aid of

(2.11) and (5.7), by

o[~ (bfn)" " Iy, p, (5.17)
where

I=y,:y,5~p" B, (5.18)
with

B,(6)=m’f(6)+ f?(8)=n"m’(kcos6+w)™", (5.19)

in which k and @ have been defined in (3.20) and (3.21) respectively. Combining
(5.17)-(5.19) with (5.7), there results, finally

11 See the discussion at the end of section 3 in [14] for more details.
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o,/u~b"" c,‘p‘”"z B;"(pcoseg-—sineg'),

p+— 2

O, /U~b"" C.p" a7t B (psin@g+cosBg),
Jonl P ! (5.20)

o, /u~b"" pEZ" B;"(mcosef—sinef),

0 /p~b"" p%" B} (msin f + cos6 f),

where B,(6) has been defined in (5.19) and B,(6)=g°(6)+ p’g*(6). The true

stresses are given by

T/l ~ (b )n ]-*2 PZN__} Bn- Bg’

T/l ~(bn)~ p™ B; (5.21)

TplU="T,/H~ (b/n)’l ]—* +__2 B;—I(mpfg+fg'),

Figures 11 and 12 illustrate the angular variation of the nominal and Cauchy stresses
respectively for - < 6 < 7. As the “hardening” exponent n decreases and the material
approaches the “perfectly plastic” (“non-hardening”) limit (n — 1/2), the deformations
and the stresses tend to concentrate into the first and fourth quadrants
(-m/2<6 < m/2) as pointed out by figures 10 and 12. Note also that the stress
singularities predicted by the nonlinear theory are stronger than the inverse square root

singularity suggested by the linearized asymptotic elastic analysis. Furthermore, the

radial dependence of the true stresses is different for each component 7,4, the strongest
singularity (O(r™)) corresponding to the stress component perpendicular to the plane
of the crack. The stress singularity is even stronger when the stress components are
expressed in terms of the deformed coordinates. Let R be the dimensionless deformed

distance to the crack tip. Along 6 =0, (5.7) yields

R~Z.p’, (5.22)

which suggests that
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T, =0(p”)=O(R™"?). (5.23)
Along other rays (6 # 0), the singularity is even stronger since

R~p"f(6;n) and m< p. (5.24)

The characteristic length [, defined in (5.6), which appeared in the nonlinear
analysis and was used in the non-dimensionalization (5.5), can be related to the value
of the conservation integral J, defined in (3.11) and which can be, in turn, associated
with the far-field loading conditions, the geometry of the global crack problem and the

material characteristics. A substitution of (5.7) into (3.11) yields, after tedious but

elementary integrations,

J= 2ub"" L J(n), (5.25)
where

J(n)=m""'n""z[4, (5.26)

and 4, b and n are the material characteristics introduced in (2.9). The latter expression
is illustrated in figure 13. The relation (5.25) allows, with the aid of (5.5), to express
all the stresses in terms of the energy parameter J. For example, the most singular true
stress component becomes

j mZn r-—l

~ . 5.27
J(n) n" w+kcosb ( )

722

In addition to its effect on the various stress distributions, the hardening
parameter n greatly influences the shape of the deformed crack near its tip. More
precisely, it is possible, by varying the value of the hardening exponent, to study the
phenomenon of crack blunting associated with a reduction of n. The shape of the upper

face of the crack after deformation can be expressed as
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n, ~ (C.g(min)) "I (5.28)

The latter relation is symbolically represented in figure 14, showing that (5.28) is able
to capture the blunting of the crack as the material behavior approaches the “perfectly

plastic” characterization (n — 1/2).

Numerical investigation.

A detailed numerical investigation, using the finite element method, has been
performed with the following two objectives : first, we examine whether a full-field
numerical solution can capture the analytical asymptotic fields; next, we analyze the
relation between the far-field loading conditions and the local nonlinear mixity

parameter a,, introduced in (4.15).

A modified version of the finite element program FEAP [27] which included the
GNH material description (2.9) and a fully-Lagrangian approach was used for the
computations. A concentrically refined mesh with up to 3000 4-node bilinear elements
was created around the crack tip. As mentioned before, the nonlinear asymptotic
solution is characterized by the appearance of more that one singular term. A high mesh
refinement is therefore sometimes necessary to capture the expected singular behavior.

The ratio of the smallest element size to the largest has been chosen of the order of 10-8.

The effect of the hardening exponent n on the blunting of the crack can be
visualized in figure 15 by comparing the deformed shape of the crack for n = 0.55 and

n = 1.0 in the mode I loading case.

A comparison between the numerical and asymptotic solutions is presented for

the deformed coordinates y, (figure 16a) and y, (figure 16b) under mode I loading and
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the in-plane transformation Jacobian J(r,8) (figure 17) in the mixed-mode situation,

showing good agreement in both cases.

The relationship between the far-field loading conditions and the near-tip mode
mixity defined by a,, = a,/a, has also been investigated numerically in the case of
“small-scale finite yielding.” The approach used here is similar to the method
considered by Shih [3] in his analysis of the small-scale yielding mixed-mode HRR
fields, in which a circular domain surrounding the crack tip is discretized into a
concentric finite element mesh. The outer contour of the domain is then subjected to
loading conditions corresponding to a plane stress K-field characterized by a mode-

mixity parameter

2
L =;L_‘tan I(KII/KI)’ (5.29)

where K, and K, are, respectively, the mode I and mode II stress intensity factors
relevant to linearized elastostatics. The material properties appearing in the computation
of the latter are chosen as the linearized values of the GNH materials (shear modulus
and Poisson’s ratio v = 0.5). The size of the nonlinear zone can be estimated by the
reasoning illustrated in figure 18. The radial dependence of the norm of the Cauchy
stress tensor ahead of the crack tip (along 6 =0 ) shows a fairly well defined transition

between the nonlinear asymptotic solution

TegTop ~_f_(£)'l(£’_2)n 1 (5.30)
g ui\i) n ) 4mIm) '

and the value predicted by the linearized theory

JTaﬁ‘taﬁ ~\/’§ (L)-l/z\/z 531
U n \I ul’ )
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in which the characteristic length / has been chosen as the radius of the circular domain
on which the boundary layer analysis is performed and F(n) is given by (5.26). A

good estimate of the size ry, of the zone in which the nonlinear effects are preponderant
is thus obtained by combining (5.30) and (5.31) to render, with the aid of (5.26),

e __ 1 J

= — 5.32
I 3nn* ul ( )

The relation between the linear mode mixity parameter {, and the nonlinear

parameter defined as

$n = %tan“’(a,z) (5.33)

is shown in figure 19, for various values of the hardening exponent n. Due to
numerical instabilities, the “perfectly plastic” situation (n— 0.5) could not be
investigated successfully so far. The “partial results” shown in figure 19 confirm
however the trend observed in the small strain analysis (see figure 9 of [3]!2) : as the
hardening exponent decreases, the nonlinear mode mixity increases for a given value of
{,. But, unlike in the infinitesimal strain investigation and, as was mentioned in the
opening remark of section 4 concerning the impossibility of an antisymmetric
deformation field, the nonlinear mode mixity parameter {,, corresponding to a pure
mode II far-field loading takes a value less than unity for all values of the hardening

parameter n.

6.- Conclusion.

An asymptotic and numerical analysis of the near-tip finite deformation fields in

a homogeneous sheet of Generalized Neo-Hookean material has been presented. Both

12 Note that, in [3], the perfectly plastic situation corresponds to n = e.
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the symmetric (mode I) and non-symmetric (mixed-mode) situations have been
investigated. It was shown that the general case is asymptotically obtained by a mere
rotation of the canonical symmetric fields, as it had been observed previously in the
finite plane strain analysis. By varying the value of the hardening parameter appearing
in the GNH material characterization, the phenomenon of crack blunting and its effect
on the stress fields can be established. The nonlinear asymptotic analysis also reveals
that there exists more than one singular term and that the leading singularity is stronger

than that predicted by the linearized theory.

The asymptotic results have been captured numerically through a full-field
nonlinear finite element investigation which also yielded, through a “boundary-layer
small-scale yielding” analysis, the relation between the nonlinear and linear mode
mixity parameters. The latter study confirms that the large deformation theory excludes
the existence of an purely antisymmetric (mode II) deformation, at least for the class of

materials considered here.
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Appendix.

In this section, an approximation of the solution of (3.22) is computed using the

WKB method. The eigenvalue problem to be solved consists of finding

p>m=1-1/2n (with 1/2<n<1)and g(8)e C*([0,x]) satisfying

k’sin@

g+———8+plp-kjg=0, (A.1)
with

§(0) = g(m) =0, g(0)=1,

k=1-1/n, w=(1-ksin’6)". (A2
Using the transformation

8(8) = (@ + kcos6)*w(6), (A.3)
(A.1) can be rewritten in the more suitable form

v+ Q(8; pv=0, (A.4)
where

0(6: p) = plp—t)~ 2238 K50 (A5)
The boundary conditions (A.2) become

W0)=v(m)=0, vO0)=(I+k)™*". (A.6)

The general solution of (A.4) using the WKB approximation is

~1/4

w8) ~ A Q(6) cos“:Q}/i )dt] +BQ(6) sin[ J':Qﬁ )dt]. (A7)
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The application of the homogeneous boundary conditions (A.6a) yields the following

relations for p

(0(0) (Q(m))" sinl [/ JOTtsde| = 0, (A8)
from which results
[7Jow) di = jx, (j=0%£1%2..). (A9)

Various estimations of the integral on the left side of (A.9) yield different
approximations of the eigenvalue p. As a first approximation, assuming that p is large,

we can write
Q(6)~ p(p—k), (A.10)

which yields the first approximation of the first eigenvalue (j=1)

_k+Nk +4

p (A.11)

P:
A comparison between this lower-order approximation and the numerically obtained
values of p is presented in figure A.1, showing a good agreement for n 2> 0.7.

12
A better approximation of the eigenvalues can be obtained by developing Q(6)

in a two-term Taylor expansion

if2 k2
Q(@) ~ VP(P" k){l—m(2c0s6+w "'(03)}. (A.12)

Then (A.9) is readily shown to provide the second approximation of the first eigenvalue

[1.2 2
=k+ k*+w(k) (A.13)

P > ’

where
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k? I
k)y=I1+ _|[1-—|1- . A.14
w(k) J 2[ 7=1—k2) (A.14)

As shown in figure A.1, a better agreement with the numerical values is achieved by
using the latter approximation, except when n tends to 0.5 for which the WKB theory

predicts an infinite value for p.

The WKB method also provides an estimation of the first eigenfunction. In

order to satisfy (A.6), v(6) must be chosen as

~174 g 2
w8)~ A Q(6) cos[po(t )dt], (A.15)
where
A=(1+k)*pp—k)-k23". (A.16)

Substituting (A.12) into (A.15), one gets, after integration and with the help of (A.3),

2(6) ~ (@ +kcosB)*A Q(6) cosz(6),  (0<6<m), (A.17)

where

28)=p(p—k)16~- k’ 5in@ tan"(«/l—kztane)

8p(p-k)|” ® N “6lp (A9

in which k, w, A, Q(6) and p have been defined in (A.2), (A.5), (A.13), (A.14) and

(A.16). A comparison between the WKB-approximated and the numerically computed

values of g(@) is shown in figure A.2 : an acceptable agreement is achieved for

n20.56.
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Finite strain at the tip of a crack in a sheet of hyperelastic material :

II. Special bimaterial cases.

Abstract.

An asymptotic analysis of the strain and stress near-tip fields for a crack in a
sheet of Generalized Neo-Hookean materials is presented in this second in a series of
three papers. The analysis is based on the nonlinear plane stress theory of elasticity and
concerns two special cases of the interface crack problem : in the first situation both
components have the same “hardening” behavior; next, we investigate the particular
case of a sheet of Generalized Neo-Hookean material bonded to a rigid substrate. The
transition between the two special cases is studied in detail. The analytical results are

also compared with a full-field finite element solution.

1.- Introduction.

The multiplication of engineering applications involving bimaterial and multi-
material components has motivated in the past decade an extensive interest in the
mechanics of interfacial fracture. But this impetus has been impeded for a long time by
the appearance of inconsistencies in the linearly elastic asymptotic solution to the
interface crack problem : as was first noted by Williams [1] and confirmed by early
work of Rice and Sih [2] and England [3], the singularity observed in the bimaterial
situation is, in most cases, complex. This peculiarity has various undesirable

consequences on the predicted near-tip fields : the deformation loses its consistency
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(i.e., is not one-to-one), the crack faces overlap and the stress components change sign
(i.e., alternate multiply from tension to compression) as the crack tip is approached,

thus generating what may be called an (artificial) contact zone.

In order to cope with the presence of such a contact zone, various approaches
have been suggested. The most widely used one, on which most linearly elastic
analyses of bimaterial fracture are based,! is the so-called concept of “small-scale
contact,” introduced by Rice [5]. This approach suggests that the effect of the contact
zone can be neglected and the bimaterial asymptotic solution accurately represents the
actual near-tip fields if the size of the contact zone remains a small fraction of the zone
of dominance of the asymptotic field. Another approach consists in including the
influence of the contact zone on the asymptotic fields [6-9] by assuming frictionless
contact between the crack faces over some portion of the crack length. Aravas and
Sharma [10] showed that the two aforementioned investigations are not incompatible
and that their domains of applicability depend on the relative extent of the contact zone
with respect to the size of the asymptotic K-field and the length of the crack. They also
demonstrated that the asymptotic solution still presents difficulties in the form of
material interpenetration very close to the crack tip, even when that contact is taken into

account.

Recent investigations summarized in [11] have included the effect of
elastoplastic nonlinearity on the interface crack tip fields. It is shown for these small-
deformation analyses that, although the near-tip fields can be characterized by a local
“plastic mixity parameter” and show a fair amount of similarity with the mixed-mode
homogeneous case, there is no bimaterial equivalent to the separable HRR asymptotic
fields and that a nonlinear stress-strain relation mitigates but does not eliminate the

inconsistencies associated with the linearly elastic solution. The extension of

1 See, for example, the review article by Hutchinson and Suo [4].
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Comninou’s elastic analysis of the contact problem to the elastoplastic case has been
performed by Aravas and Sharma [10,12,13] who showed, through asymptotic and
numerical investigations, that a separable HRR-type solution is possible if frictionless
contact is assumed between the crack faces. The domain of validity of the different
asymptotic solutions is determined by the relative importance of the various
characteristic lengths of the problem : geometric length scale (e.g., crack length), extent
of the K-field, size of the plastic zone and of the contact zone and dimension of the

large deformation/fracture process area.

The issue of the presence of inconsistencies in the near-tip fields has been also
investigated by Knowles and Sternberg [14] who showed that, by relinquishing the
assumption of small deformations, a smooth opening of the crack near its end is
obtained. Their analysis, which has been corroborated numerically by Ravichandran
and Knauss [15], focused on the effect of geometrical nonlinearities (large
deformations) by investigating the case of an interface crack between two sheets of
incompressible Neo-Hookean materials. Material nonlinearities have been added by
Herrmann [16] who studied asymptotically the plane strain case of an interface crack
between two bonded slabs of compressible hyperelastic materials, allowing for

different “hardening” behaviors across the interface.

In this paper, an asymptotic and numerical analysis of the interface fracture
problem within the finite strain theory of plane stress is presented for two special
bimaterial situations : first, the two components are assumed to have similar
“hardening” behaviors; then, we explore the case of a sheet bonded to a rigid substrate.
The present work constitutes the second of a series of three papers relative to the
combined effect of geometrical and material nonlinearities on the near-tip fields for a
class of hyperelastic materials. The first paper [17] deals with the homogeneous case

while the third one [18] concerns the general bimaterial situation for which a difference
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in “hardening” behaviors is allowed for the two components. The two special cases
described in the present paper have been chosen because, despite their relative
simplicity compared to the general bimaterial situation, they contain most of the
characteristics inherent in the nonlinear interface near-tip fields. Furthermore, the
second bimaterial situation delineated in this paper, in which a sheet of hyperelastic
material is bonded to a rigid substrate, cannot be obtained directly from the general
problem depicted in [18] due to the presence of different types of bond conditions along

the interface.

The material model used throughout these investigations is the so-called
“Generalized Neo-Hookean” (GNH) model which has been discussed in some detail in
the first paper. But, in order to render this paper self-contained, it appeared useful to
briefly mention in the next section the main characteristics of the material model,
together with a reminder of the basic relations associated with the nonlinear plane stress
theory of elasticity. Sections 3 and 4 are dedicated to an asymptotic analysis of the two
special bimaterial situations described above. Finally, the fifth section contains a
comparison of the obtained asymptotic fields with a full-field finite element analysis,

together with a discussion of the transition between the two special bimaterial cases.

2.- Basic relations of finite plane stress elastostatics -

Generalized Neo-Hookean model.

This section summarizes the fundamental relations governing the nonlinear
elastostatics theory of plane stress for a class of homogeneous isotropic incompressible
hyperelastic materials. The details of the computation, together with a list of related
references, can be found in [17]. The notations employed throughout the present paper

are identical to those used in [17].
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Let IT represent the undeformed mid-plane cross-section of a thin sheet of
hyperelastic material and let IT" denote the associated deformed configuration obtained

through the deformation
y=¥(x)=x+u(x), on I (2.1)

where? x and y are the undeformed and deformed coordinate vectors respectively and u

is the displacement field. The mapping y(x) is assumed to be twice continuously

differentiable and uniquely invertible on I1. The nominal (Piola) stress field o
associated with the deformation satisfies, in the absence of body forces, the equilibrium

equations
dive=10, on I (2.2)

The true (Cauchy) stress field is denoted by T and is related to the nominal stress

tensor by

*

t=0F", on IT, (2.3)

where F =Vy is the deformation gradient tensor field. It has to be noted that, while
rotational equilibrium requires that T be symmetric, @ is, in general, not symmetric.
Finally, assuming that the material is hyperelastic, homogeneous and isotropic, the

constitutive relations take the form

o=2U,F+JUFT, on I, (2.4)

where I and J are the scalar invariants associated with the deformations and defined by

I=tr(FF" )=y, 105

3
J=detF=2"= - -
=detl = b y1,1y2,2 y1,2y2,1’

2 Throughout this paper, boldface quantities denote two-dimensional vectors or second-order tensors.
3 Greek indices take the value 1 and 2 and summation on repeated index is implied, unless specified
otherwise. Furthermore y,, 5 denotes dy, /dxg.
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and where U, and U, are the partial derivatives of the plane stress elastic potential
U(I,J) with respect to I and J respectively. In (2.5), A denotes the transverse streich,

which is equal to the inverse of the in-plane Jacobian J since the incompressibility of

the material requires that the deformations be isochoric.

The material characterization which will be used throughout this analysis is the
Generalized Neo-Hookean (GNH) model, first introduced by Knowles [19] to study
the nonlinear effects in the antiplane shear (mode III) case. It necessitates the

introduction of three material constants, a shear modulus £, a “hardening” exponent n

and a “yielding” parameter b, which define the plane stress elastic potential U(I,J) as

U(1,J) = -2‘-‘5{[14— %(1 +J2- 3)]" - 1}. (2.6)
Substituting (2.6) into (2.4) and with the aid of (2.3), we have the expression for the
nominal and true stress components

Oop = HA™ (Yo p = KEqpYuv } 2.7)

Tog = HA" 1Y, 5, =N} (2.8)

where A is the transverse stretch, €., is the two-dimensional alternator (g,, = €,, = 0,

£, =—€, = 1), 6,4 is the unit tensor and
A=1+b(I+X-3)/n. (2.9)

The equilibrium equations (2.2) is rewritten in terms of the deformed coordinates y, as

n— b(n"’l) aI BAZ a//Lj
A 2{ . (axﬂ +8xﬁ)(ya,[i ‘13£a,,€pvyﬂ,v)+A[V2ya —gx—;eaueﬂvyﬂvv =0. (2.10)
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Note that, when n = 1, the GNH model reduces to the Neo-Hookean characterization
which was used by Knowles and Sternberg in [14]. In this case, the equilibrium

equations (2.10) reduce to

3

2 = —
Viy, = o, EauEpvYuv- 2.1D
The physical significance of the three material parameters p, b and n has been
illustrated in section 2 of [17] through a description of the behavior of this class of
hyperelastic materials under uniaxial tension (see figures 1 and 2 in [17]). It is shown
there that the engineering (nominal) stress increases with the elongation as long as
n > 1/2. Tt can be shown that n = 1/2 is the limiting value of the “hardening” exponent

for which the equilibrium equations (2.10) loose their ellipticity. Throughout the

present work, we will rule out non-elliptic situations, and thus assume n > 1/2.

In the next two sections, a local analysis of two special bimaterial fracture
problems involving the class of incompressible materials described above is
summarized : first, the case of an interface crack between two sheets with similar
“hardening” characteristics is investigated, followed by the problem of a sheet of GNH

bonded to a rigid substrate.

3.- Local analysis of the near-tip fields for an interface crack

between two GNH sheets with the same “hardening” characteristics.
Problem formulation.

The bimaterial geometry on which the local analysis is performed is represented
in figure 1. The mid-plane of the two bonded semi-infinite GNH sheets are denoted by

H™ and H®. The Cartesian system is chosen such that the crack line is expressed as
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L={x| x50, x,=0}, 3.1)

and the interface consists of the remainder of the x,-axis. The undeformed domain ITis
the whole (x,,x,) plane exterior to .£. The material properties of the upper and lower
sheets are (U, b, n) and (u®,b?,n?) respectively. Our objective in this
section is to obtain an asymptotic representation of the near-tip fields, in terms of the
local polar coordinates (r,8) defined in figure 1, which satisfies the equilibrium
equations (2.10) together with the bond conditions

Yo (1,07 ) =y, (r,07),

(r>0), (3.2)
0,107 ) =0,,(r,07),

and the traction-free conditions along the crack faces

O,(rtr)=0, (r>0), 3.3)

in the special case when the two “hardening” exponents are identical across the

interface, i.e., N =n® =n.

In addition to the aforementioned conditions, we require that the asymptotic
deformation field be non-oscillatory and that the transverse stretch A vanish (or
equivalently, the transformation Jacobian become unbounded) as the crack tip is
approached in both semi-infinite sheets. The latter condition implies that not all the
deformation gradient components remain bounded as r — 0. Note that a vanishing
value of the transverse stretch signifies that the bimaterial sheet undergoes an extreme
thinning at the crack tip. Finally, the deformation field has to satisfy certain continuity
requirements on each half plane which would justify the various differentiations

involved in the equilibrium equations and the boundary conditions.
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First-order term.

We turn now to the computation of the asymptotic term of near-tip deformation

field, which is assumed to take the form

Yy (r,0) ~r"" v (8), (r>0), (3.4)%

where the superscript in parentheses “(k)” denotes the component number (k=1,2).

Summation over this “material index” is never implied. Thus (3.4) is equivalent to

¥y (r,8) ~ v (8), (0<6<m), G5)
Y2 (r,0) ~ r"“v2(9), (- <6<0). '

Various considerations lead to a direct estimation of the exponents m™®’ : firstly,
in order to prevent oscillations in the near-tip solution, m” and m® must be real.
Furthermore, to satisfy the boundedness of the displacements at the crack tip together

with the requirement on the transverse stretch A, we impose
0<m® <1. (3.6)

The matching conditions along 8 = 0 are rewritten with the aid of (3.4) as

1) 2 -
r" V0t ) =V 00),

(3.7)
y(2n- ])(m“)—-I)M(I)(0+) y(2n- 1)(m(2)-1)M(2)(0 ),

where

n-1
M,(0)= u(s) (1 vp(0)v5(0) +5(0)V5(0)) v, (0).  (3.8)°

4 Throughout this paper, the asymptotic equality symbol “~” has the standard meaning.
5 Henceforth, for brevity purpose, the material index “(k)” will be dropped unless clarity requires it.

Thus, in (3.8), M,(8) denotes M;I)(O) for 056 <7 and M;”(e) for =<0 <0. In the

same equation, () denotes differentiation with respect to 6.
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Since v,(0) and M, (0) cannot vanish simultaneously, (3.7) yields
m®P =m® =m. 3.9

The relation between the first asymptotic exponent m and the “hardening”

parameter n can be obtained by using the conservation integral 7 [20] defined as

I= [ (Uny = 0ogngy, ,)ds, (3.10)

where I'is any regular contour surrounding the crack tip and crossing the interface
(figure 1), n is the unit outward normal to I"and U is the elastic potential introduced in
(2.6). An investigation of the leading order of the integrant in (3.10) leads to

1
=]-—, 3.11
" 2n ( )

which satisfies the inequalities (3.6).

In order to determine the angular distributions v(*’(8) of the first asymptotic

term, the leading terms of the equilibrium equations (2.10) are extracted with the aid of
(3.4) and (3.11) to yield the following asymptotic form

(n-z)gx!—ya,ﬁuvzya =0, (r—0,-r<8<nm) (3.12)
B

where I=y, ;7,5 By combining (3.4), (3.11) and (3.12), the system of coupled

nonlinear second-order differential equations in v, (6) is obtained as

2n—1

4n?

BV, +(n-1)Bv, +

Bv, =0, (3.13)

4

where

B(68) =m’v,(8)v,(6)+v,(0)v,(8). (3.14)
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Note that these equations are similar to those governing the first term of the mixed-
mode solution for the homogeneous problem [17]. The asymptotic form of the stress-

free conditions (3.3) along the crack faces is

V() =0. (3.15)

The general solution of (3.13)-(3.15) has been obtained in [17] using previous results

of Knowles and Sternberg [21] and is
vi(8) = al f(6;m), (3.16)

where a{" are four undetermined constants and f(6;n) is given by

=8 2k cos? /21"
6;n)= +kcos@)|2n sin—|1—-——| , 3.17
f(6;n)=[n(®w+kcos6)] smz[ oo } (3.17)
with
k=1-1/n,

3.18
w=[1-Ksin’6]", G-18)

and is represented in figure 5 of [17].

Since fP(0*;n)= f*(07;n) =0, the first matching condition (3.2a) is

satisfied. The continuity of tractions across the interface (3.2b) provides the following
(2)

o

relations between 4" and a
1 b(]) n? (1)2 " 1 2 b(z) 2)° 2)? i 2
uO| Z=(a +a™)| al =u® (e +a?)| o, (3.19)
n n

which yields

) (1)
/R S (3.20)
a; a; ¢
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where
'u(l) b(l) n-1 %n-—]
E= .ﬁm(m) . (3.21)

We can thus write the first term of the asymptotic expansion as
Ya(1,0) ~a, j(6) f(6:n)r", (3.22)

where a, are two constants left undetermined by the present local analysis® and which
depend on the far-field conditions, the geometry of the global crack problem and the
material characteristics of the bimaterial combination; f(68;n) and m are given by

(3.17) and (3.11) respectively, while j(8) is the step-function

1 for 0<6<m,

J0)= {’g’ for —r<0<0, (3:23)

in which &, defined in (3.21), is a function of the material constants u®, »* and n.

It can readily be shown that the Jacobian J of the transformation described by
(3.22) vanishes identically, which contradicts the consistency requirement of the
solution and leaves the transverse stretch A = J” undetermined. It is therefore
necessary to obtain a second term in the asymptotic expansion of the near-tip

deformation field.

Second-order terms.

Motivated by the first-term analysis described above, we assume that the two-

term asymptotic expansion has the form

6 See the relation between a,, and the conservation integral 7 later in this section.
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Ya(r,0) ~ a, j(0) F(6;n)r™ + " w (8), (3.24)7

(k)

where s/ > m. An examination of the order of the various terms constituting the

equilibrium equations (2.10) leads to the same asymptotic form (3.12) which, in turn,

yields, with the aid of (3.24) and assuming a, # 0,

(1+al,)H;(w,)+ 2al,H;(w,) + 2a,,Hj(w,) = 0, 329
(1+a%)H: (w,) + 2a,,H(w,) + 2 Hi(w,) = 0, '

where a,, =a,/a, and H,(w) are two linear second-order differential operators

similar to those encountered in the general (mixed-mode) homogeneous situation

H;(w)=B,D,+(n—1)(2s(m—1)Bw+ B,w),

. (3.26)
Hj(w)=D,E, +(n—-1)(m(m+s-2)fE,+fE,),
with
B, =f+m’f’, E =msfw+fw,
. (3.27)
D, = f+m’f, D, =W +s’w.
Note that, due to (3.20),
ay =ajy =ay,. (3.28)

The traction-free boundary conditions along the crack faces are equivalently written as

(tm)=0. (3.29)

As was the case for the first asymptotic term, the matching conditions along 8 =0

impose the equality of the exponents

s =5 =g, (3.30)

7 Recall that summation on the material index “(k)” is never implied.
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Furthermore, the system of coupled differential equations (3.25) can be “decoupled” by

using the linearity of the operators H,(w) and may be rewritten as

Hj(w,—a;;w,) =0, (3.31)
Hi(a;,w,+w,) =0,

where H;(w)=(H; +2H;)(w). The new form (3.31) of the equilibrium equations

suggests that there are two sets of solutions of w,(8) : either we have

W, = a;,w,, with Hj(w,) =0, (3.32)
or

W, = —a,w,, with H;(w,;) = 0. (3.33)
Finally, the bond conditions impose

w’ (0" )=w?(0), (3.34)

poY ! 1 .
u‘”(—) 1(r,0°) (a, j(0%) f(0:n) + W (07)) =

n , (3.35)
pAY ™ n-l .
u(z)(____) I(r,O')(aaj(O')f(O;n)"' WLZ)(O_ )),
n
where j(0%) and j(0") are equal to  and  respectively, and
- 2 .2 . ms=2 7 ¥
I(r,0) = pom 2“/3 ag J(0) f(0) + 2j(0)r Zf(O)aﬂ WB(O) (3.36)

+ r25—2(s2wﬁ(0)wp(0) + WB(O)W[;(O))'

In (3.35) and (3.36), f (0;n) can be expressed in terms of the “hardening” exponent n

as

f(O;n)=(2n-1)"|2n. (3.37)
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The equations (3.32) and (3.33), together with the boundary conditions (3.29), (3.34)

and (3.35), constitutes two eigenvalue problems in (s, wg") ), the solution of which is

fairly similar to the mixed-mode homogeneous case. The first four terms of the

asymptotic approximation of the deformation field are
Yo(1,0) ~ a,r"j(8)f(0;n)+ c€ gagr’g(0;n) + ka,r'l(6;n) + da,r’ j(6)h(6;n),(3.38)

where g, is the two-dimensional alternator, j(6) is the step function defined in

(3.23), ¢, d and k are three undetermined constants. The exponent p and the angular

function g(@;n) are the solutions of the eigenvalue problem defined by (3.29) and

(3.33) with
w(0") =wP(07)=0. (3.39)

The solutions have been obtained numerically and are presented in figure 2 of the

present paper for p and figure 8 of [17] for g(6;n). On the other hand, (1, {(6;n)) and
(g, h(6;n)) are, respectively, the first even and first odd solutions of (3.29) and (3.32)
satisfying s > m. They have been obtained in [17] using a transformation established

by Knowles and Sternberg [22] and are given by

t=(n—1+\n>+6n-3)/2n,

(3.40)
1(6;n)=n'(@ +kcos6)'(2c0s2.’:— 1),
and
g=(n—1+~n’+16n-8)/2n, Gan

h(0;n) =n®(®+kcosB)" (4cos’ { — 3cos{),

with
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cost = 1—k1+ksin’6—wcos6
V2 o +kcos@
k=1-1In, (3.42)

w=(1-Ksin’6)".

The exponents  and g are shown in figure 2 while the angular functions /(6;n) and

h(8;n) are presented in figures 9 and 8 of [17], respectively.

As outlined in section 3 of [17], the domain of validity of (3.38) is defined by

the requirement on the exponent of the higher-order terms (see figure 2)

s< I+ 1/4n. (3.43)8

Discussion of the asymptotic results.

Before discussing the structure and properties of the asymptotic field, let us

non-dimensionalize (3.38) by defining as in [17]

p=r and 1,=2¢ (3.44)

[ <

where [, is a characteristic length

=(a} + azz)llzu—m) =gl = g%, (3.45)
The asymptotic solution (3.38) is then rewritten as
N(r,6) ~ T p" j(B) f(6: n) + Te 5a,p"8(6; ) + ka@,p'l(6; n) + da,p? j(B)h(6; n), (3.46)

where @, ¢, k and d are dimensionless undetermined constants defined as

o

8 Note that the lower-order term is valid for all n>1/2.



a, =a,/a, c=ca™", k=ka™, d=da"™". (3.47)

The characteristic length /. can be related to the far-field conditions and the material

properties through the conservation integral J introduced in (3.10)

T=uP D" (14+&)T(m), (3.48)
where & is given by (3.21) and

J(n)=m""n""x/4 (3.49)
is illustrated in figure 13 of [17].

As was the case for the general non-symmetric (mixed-mode) homogeneous
situation,? it can be shown that the obtained asymptotic field (3.46) is a mere rotation of

a “simpler” canonical bimaterial field y* such that

y=0y', (3.50)
where Q is the rotation tensor defined by the angle
0" =tan™ (-a,/a,) = tan™ (-a,/a, ), (3.51)

and y is given in its dimensionless form by

* =P 9,. )
{771 cpfg(6:n) (3.52)

n, ~Pp"j(6)f(6;n)+k p'l(6;n)+d p?j(6)h(6;n).

An important result of the asymptotic analysis developed here is to give an
indication of the effect of the “hardening” parameter on the deformation distribution
across the interface : as indicated by (3.21) which defines the dimensionless nonlinear

modulus mismatch parameter £, as the “hardening” exponent n decreases, the

9 See section 4 of [17].
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mismatch in (linearly) elastic properties is amplified, tending to an infinite value when

the material behavior approaches the “perfectly plastic” situation (n — 0.5). Note also
through (3.21) that the mismatch in “yield stress,” described by the ratiol® b /b
has an effect similar to the mismatch in linearly elastic properties p” / u®. The

concentration of deformations in the weaker component!! can be illustrated by the

angular distribution of the Jacobian J(r,8) of the transformation
J=X"~cp™"j(8)(pfg-mfg), (3.53)
which is shown in figure 3 for & = 3.

The effect of the “hardening” exponent n on the near-tip field can be analyzed
by examining the shape of the deformed crack. As indicated by (3.52), the upper and

lower crack faces deform as

n=-b ", (n,20), along @=r,
P * (3.54)
n, =-b -? , (N, S0)  along 8 =-r,

where!2 b = g(;n)|=|¢ g(—m;n)|. The relations (3.54) are illustrated in figure 4
for the case u™”/u® =1/2 and b’/b® = 1. The corresponding values of the

nonlinear mismatch parameter & are given in table 1

n 0.55 0.60 0.75 1.00
p/m 8.16 4.47 2.55 2.00
'S 9.8 10 0.0313 0.25 0.50

Table 1.- Values of £ and p/m vs n used in figure 4.

10 Recall that an increase of b corresponds to a decrease of the “elastic limit” or “yield stress”.
11 The lower sheet will be considered as weaker if £>1 and stronger if £<1.
12 ¢ is assumed that T # 0.
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The asymptotic representation developed above can thus capture the effect of the
“hardening” exponent n on both the crack blunting process and the deformation
distribution across the interface. It also confirms the result obtained by Knowles and
Sternberg in the Neo-Hookean case [14] : the finite elasticity theory does not
predict any interpenetration of the crack faces which are found to open smoothly
for the class of GNH materials. The deformed interface is expressed, in the (7,,7,)
coordinate system, as

« Ip

m =bn;)”, along 6 = 0, (3.55)
where b=-k¢ _'/p( 2n-1 )' and the variation of #/p is illustrated in figure 2.

We describe next the nominal and true stress fields derived from the canonical

deformation field (3.52). The leading term of the Piola stress components 0';, is given,

in a dimensionless form, by

’%(I;I)_ - .b;:i HE p”*f’zf(;—;(pcose g—sinf g),

%(Ijz). ~ 2:.;.). ’HE p'”f'zfn(f—;(psineg +cos0 g),

)

:(2*11) ~ é(nl_) " p'zI?"B}'"(mcosef—sinO f), (3.56)
Z(% - % . pz—ln"lB}“’ (msin@ f+cosB f)

where
B,(6)=m’f(6)+ f*(6) = m’n"*(kcos@+w)""", (3.57)

with k and @ defined in (3.42). The true (Cauchy) stress components T;ﬁ are given by
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[ (1 n—1 B +-].-

%”[L) Byie L p™n,

H n Jj(6)

oo (Y ol
‘u?f) =u‘2’]’ ~( . ) B 't(pmfg+fep >, (3.58)
’[* b(]) n-1 o y

= (2] g

Note that, as was the case for the homogeneous situation, the most singular component
is 7,, (=0(p™')), the singularity of which is stronger than that predicted by the
linearized theory. It has to be noted also that the asymptotic solution described by
(3.50)-(3.52) satisfies the continuity of displacements across the interface for all
orders, while the continuity of tractions is only satisfied to the leading order (relations
(3.56)). A measure of the error introduced can be obtained by examining the jump in

the main traction component @, across the interface, the first two asymptotic terms of

which are

* + n-1 2(t-m) ~2 2.2 n-1
o,(p,0%) (b Lyl "R EI(0)
-~ " 1+ : , (3.59
P ( " p* f0) 05 F(0) (3.59)

where j(0")=1 and j(0")=&. Since t>m and p << 1, the second term in the right-

hand-side parenthesis in (3.59) is small and the traction jump can be approximated by

_O0u(p0")=0(p,07)  1-1/E
== =, (3.60)
Cn(P,0" )+ 0, (p,07) CHI+1[E

22

where

_ 2/10)
T (n-Dk*1Y0) pHm” (3.61)

The latter can be evaluated with the aid of (3.11), (3.21), (3.37), (3.40) and (3.42),

and is illustrated in figure 5 for the situation where the lower-half component is much



IvV.21

weaker than the upper-half (£ = 1000). Note from (3.60) that, as expected, no traction
jump is detected in the homogeneous case (& =1) but neither in the bimaterial
situations for n=1 (Neo-Hookean case) and n — 1/2 (limit of the “perfectly plastic”
case). As indicated in figure 5, for a given value of &, the traction discontinuity across

the interface attains a maximum for n = 0.85.

A comparison of the asymptotic solution with a full-field numerical analysis
obtained through the finite element method, together with further discussion of the local

results, is presented in section 5.

4.- Local analysis of the near-tip fields for an interface crack

between a GNH sheet and a rigid substrate.

In this section, we summarize the results of the asymptotic analysis of the stress
and deformation fields at the tip of a crack lying at the interface between a sheet of
Generalized Neo-Hookean material and a rigid substrate. This case does not constitute a
special limit case of the bimaterial problem described in section 3 primarily because the
matching conditions along the interface do not revert to the boundary conditions for this
special problem. The limiting process by which this case is obtained is somewhat more

complex and is examined in detail in section 5.

Problem formulation.

Figure 6 illustrates the geometry of the bimaterial system on which the local
analysis is carried out. A semi-infinite sheet of GNH material, the mid-plane of which
is denoted by H, is bonded to a rigid substrate. A Cartesian coordinate system is

chosen such that the crack tip is located at the origin, the rigid substrate corresponds to
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the lower half plane and the interface crack line is the negative x,-axis. Let y, b and n
denote the three material parameters characterizing the elastic potential U(I,J) of the

GNH sheet. The local analysis is again more conveniently performed in terms of the

polar coordinates (r,8) defined in figure 6 and can be formulated as follows : determine
the asymptotic form of the near-tip fields which satisfy the equilibrium equations (2.10)

together with the stress-free conditions along the crack faces

Oor(1,7) =0, (4.1)

and the bond conditions along the interface

u,(r,0)=0, 4.2)

where the displacement field 4 has been introduced in (2.1). Furthermore, the
deformation field must be non-oscillatory and such that the transverse stretch A defined
in (2.5) vanishes as the crack tip is approached. Finally, the local field y must satisfy
continuity requirements compatible with the various differentiations involved in the

analysis.

First-order term.

The analysis of the first asymptotic term is very similar to the bimaterial case

described in section 3. Starting from the assumed form

Yu(1,60) ~1r"v,(8), (0£0<rm), (4.3)

one immediately deduces the expression of the exponent m through the following

considerations

- the boundedness of the displacements at the crack tip imposes m>0.
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- not all deformation gradients must be finite at the crack tip, which implies

m<l.

- the path-independence of the conservation integral 7 defined in (3.10)13
furnishes, as before,

mzl—i, (n>1/2). 4.4)
2n

The determination of the angular function v, (@) is identical to that in the first bimaterial

situation : the asymptotic equilibrium equations (3.12) yield the same system of
differential equations (3.13) which, together with the asymptotic form of the stress-free

boundary conditions along the crack face

V() =0, (4.5)
provides the same solution

vo(0)=a,f(6;n), (4.6)

where f(6;n) has been given by (3.17) and (3.18), and a, are two constants left

undetermined by the present local analysis. The solution satisfies the bond condition

(4.2) since f(0;n)= 0 but does not constitute a one-to-one mapping of the near-tip
region since the Jacobian J of the transformation (4.3) vanishes identically. The latter

fact justifies the necessity of obtaining again a second term in the asymptotic expansion.

Higher-order terms.

Substituting the assumed separable form for the second term

13 The only contribution to 7 comes from the GNH sheet by integration along the contour I"* shown
in figure 6.
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Yo (r,0) ~a, f(O;n)r" +r'w,(6;n), (s>m), 4.7)

into the equilibrium equations, we obtain the same asymptotic expression (3.12) which,
in turn, leads to the same system of coupled second-order differential equations
(3.25).14 The boundary conditions along the crack faces (4.1) are asymptotically

equivalent to
Wy(m;n)=0. (4.8)

But the bond conditions (4.2) provide a different requirement on the values of w,(6)

at 8 =0 :if s # I, we have the homogeneous conditions

w,(0;n) =0, for s # 1, 4.9)
while, if the exponent of the second-order term is unity, (4.2) imposes

w,(0;n) =1, w,(0:n) =0, for s = 1. (4.10)

As was the case in the first bimaterial problem, one can use the linearity

property of the differential operators to uncouple the system (3.25) into

H;(w,)=0, @.11)
H;(w,)=0,

where
Wy =W, —a,w,, (4.12)

W, = a;,w,; +W2,

in which a,;, = a,/a, and the linear differential operators H;(w) and H;(w) have

been defined in (3.26) and (3.31).

14 As was the case before, we will assume, without loss of generality, that a, # 0.
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The solution to the case s # I/ has been obtained earlier since the boundary

conditions (4.8) and (4.9) are equivalently written in terms of w,(6;n) through (4.12)

as
W, (m:n) =0, (4.13)
Wo(0;n) = 0.

The eigenvalue problem (4.11b) and (4.13) thus yields, with the aid of (4.12),
w,(6;n)=da,r'h(6;n), (4.14)

where g and h(6;n) are given by (3.41) and (3.42), and d is an undetermined
constant. Note however that the second-order term described by (4.14) does not
contribute to the Jacobian of the transformation and that the above solution is valid as

long as the exponent g satisfies

q<]+-—]—. 4.15)
4n

The latter inequality is represented by a dotted line in figure 2.

The second-order asymptotic term which has a non-vanishing contribution to
the Jacobian J, while being compatible with the bond conditions (4.10), is thus
determined by the solution for which s = 1. Using the linearity of the uncoupled

system (4.11), we define

w,(0;n) =w,(6;n), w,(0;n) =a,,w,(6;n), (4.16)
which satisfy
Hl(w,)=0,
1) (4.17)15
H;(w,) =0,

15 The differential operators H_.(w) are given by (3.26) and (3.31) with s = I.
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with the boundary conditions
W,(mn)=0, W(0n)=1. (4.18)

The angular functions w, (6, n) are expressed, with the aid of (4.12) and (4.16), as

W, +a’w
9’. — 1 12 2,
T (4.19)
wz(e;n)=a12(w_1_w2) .

1+d.,

The solution to (4.17a) with (4.18) has been obtained numerically and the first auxiliary

angular function w,(6;n) is shown in figure 7 for various values of n. A closed-form

expression for the other auxiliary angular function W,(6;n) is found using the

transformation (3.42) which turns (4.17b) into

” 4
W, (0)+=——Wy({)=0, (4.20)
2n-1
where
w,(6;n)
W, =2 421
(8 (0 +kcosB) ( )
The boundary conditions (4.18) are equivalent to
4 1
W, (0) =0, W(r/2)=—. 422
> (0) 2(7/2) Tk (4.22)
Solving (4.20) with (4.22) renders w,(6;n) as
7,(0:n) = @ +kcosO 4n . 4.23)

4 cos 2n—1
(1+k)cos ,/ rr "
2n—-1 2
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The expression (4.23), which is illustrated in figure 8 for various values of n, indicates

that w,(6; n) tends to infinity for particular values of the “hardening” exponent n given

by

-2

J .
n=n=—> — (j=3,5,7, ... (4.24)
2(j*-2)

For these values of n, the asymptotic representation (4.7) of the near-tip deformation
field is not valid and a different form has to be introduced. Note, however, that no

difficulty arises in the particular case a,, = 0, for which one has, for all values of n,
w,(0;n) =w,(0;n), w,(8;n)=0. (4.25)

The general situation for which n = n, with a,, # 0 will be examined later in this
section. Note also that the Jacobian J, the expression of which is the main objective of

the higher-order local analysis, does not depend on the second auxiliary angular

function w,(6; n) and is therefore valid for all values of n > I/2
J(r,0)=y,1Y22 = Y1.2Y21 ~ "m—l(fwz —mfw.l)' (4.26)

The angular variation of J(r,0) is presented in figure 9 for various values of n.

Discussion of the asymptotic solution.

The first three terms of the asymptotic solution for the rigid substrate problem

are thus
Vo (1,8) ~a,r" f(6;n)+rw, (6;n)+da,r’h(0;n), 4.27)

where a, and d are undetermined constants, m is given by (4.4), f(6;n) by (3.17)

and (3.18), g and h(6;n) are described by (3.41) and (3.42), w,(6;n) by (4.19) and
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(4.23). The first two terms are valid for all values of n > 1/2 while, due to (4.15), the
domain of validity of the last term is limited to 1/2<n < 41/52 = 0.79. In order to
facilitate the analysis of the near-tip field, it is convenient to rotate the coordinate system

and rewrite (4.27) as
y=0y, (4.28)

with the component of the rotation matrix Q defined as

_1fa a4)_a 1 a,
[Qap]_— (_al az)— ( 1)’ *.2%

12 . * .
where a = (a} +aj) " > 0and a,, = a,/a, . The “unrotated” canonical field y is then

[ ~ dyrwy(6;n),
{)’1 arwy(6;n) (4.30)

y; ~ar” f(O;n)+a;rw,(6;n)+adr?h(6;n),

in which d, =a,/a and w,(6;n) are the auxiliary angular functions introduced

earlier.

Following the non-dimensionalization in section 3, we may write again

*

p=1 N, ==%, I =a’l'™™ =g*, (4.31)

[4

so that the reference field y* becomes

S ~d, pw,(6;n),
{771 2PW; 4.32)

n; ~ p"f(8;n)+a, pw,(6;n)+d p? h(6; n),

where

£
[
3

|

Qa
]
[w
e
i
3
N

(4.33)
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The characteristic length /, is related to the far-field conditions, the geometry of the
global fracture problem and the material properties through the conservation integral 7

which is found to be
I=ub""1 F(n), (4.34)
where 7(n) is given by (3.48).

The effect of the “hardening” exponent n on the opening of the crack near its tip

can now be studied by writing the relation governing the shape of the deformed crack

« o Jim
n =-aWw(min)n; along 6 =r. (4.35)

The effect of a decreasing “hardening” exponent on the blunting of the crack is thus
similar to that illustrated in figure 4 for the first bimaterial case. Once again, the current
asymptotic solution (4.32) is found to be oscillation-free and to provide a smooth

opening of the crack near its tip.

Finally, the expression of the nominal and true stress fields is similar to that

found in the previous section (equations (3.55) and (3.58) with 8 € [0,7] ) except for

the following components

* n-1 1
(Z’ ~ (2) a, p» 'By ' (cos6 W, — sin® w,),
n
* n-1 1
o;-tz ~ (2) 4, pn ' B} (sin® W, + cos 6 W),
n
by, L, (4.36)
(2 g ey o 4,

n-1 1 .
T _Tu (2) a,p> Brl(mfw, + fw,).
n
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Special case n=n, =9/14.

As noted earlier, the asymptotic solution (4.27) of the rigid substrate problem
suffers some apparent inconsistencies for some specific values (4.24) of the
“hardening” exponent n, the first one being located at n, = 9/14 = 0.643. At these
values, the second auxiliary function w,(6;n )‘ described by (4.23) is unbounded. The
problem arises because of the interaction between two second-order terms : as n tends
to n. = 9/14, for example, the exponent g of the homogeneous second-order term
r®h(6;n) tends to I, which makes it interact with the singularity of the
nonhomogeneous term rw,(6;n). Since the boundary conditions at 6 =0 are not
compatible (w,(0;n) =1 versus h(0;n) = 0), a separable solution of the type (4.7)
does not exist for these particular values. In this paragraph, we develop the modified
second-order asymptotic solution for the special case n=n.=9/14. The other
particular cases can be solved in a very similar way. We will assume that a,, # 0 since
it was shown earlier (see equation (4.25)) that the particular case of a,, = 0 does not

present this difficulty.

Following Knowles and Sternberg [22], the analysis starts with noticing with

the aid of (4.23) that w,(6; n) has a pole of order 1 at n = n., which motivates

w,(0m) ~ 28 (437)
n-n,
where z,(6;n,) is finite for all @in [0, 7 ]. We therefore rewrite (4.27) as
Y (1,60)~a,r"f(6:n)+rw,(6;n)+ r"ﬁa(e;n), (4.38)

where we assume that
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We(6;n) =

0;
é(nn)+c(9 n),

(4.39)
(im) = - 5’1(9 ") 4 ny(6im),

*

in which &,(8;n), £,(6;n) and n,(6; n) are finite at n = n,. The choice of (4.39a) is

motivated by (4.37) while (4.39b) is introduced to ensure a finite value of y, at n = n..

Realizing that a term “r Inr” is generated by computing

zim("g" O:n) riE, (G:n)} (4.40)

n—n, n—n,

we assume the asymptotic expansion at n = n, = 9/14 in the form
Ya(1,0) ~ a,r™ f(6; n.)+rv, (8) + rinrw,(6), (4.41)

where m, = 1-1/2n, while v,(0) and w,(6) must satisfy the equilibrium equations

(2.10) and the boundary conditions (4.1) and
v,(0) =1, v,(0) =w,(0) =w,(0) = 0. (4.42)
The stress-free conditions along the crack face (4.1) are asymptotically equivalent to
w,(m)=v,(7)=0. (4.43)

The computation of the various terms of the asymptotic equilibrium equations (3.12)

yields, for w,(8), the relations

Hl(w,—a,w,)=0,
1( 1 12 2) (4.44)
Hal(anWI +w,) =0,
where H](w) and H](w) have been given in (4.17). Since the boundary conditions

(4.42) and (4.43) are homogeneous for w, (8 ), the solution to (4.44) is



V.32

w,(0)=dah(6;n.), (4.45)

where d is an undetermined constant, 4, = a,/a and h(8; n) has been described earlier

in (3.41).

The differential equations for v, (6) are

HII(VI —apy,)=0,

; (4.46)
Hi(ayv, +v,)=-F(a,w,+w,),
where
. 2( n*—n+1 )
F(w)=4(n—-1)mffw+2mfDw+———-Bw, (447)
in which D, and B, have been defined in (3.27). Using the fact that
W, = apw,, (4.48)
(4.46) is rewritten, with the aid of (4.45), as
HJI(V1 —apv,) =0,
(4.49)

H;(ayv, +v,) = ~da,(1+ap,) F(h(6;n.)).

Due to the boundary conditions (4.42), a solution of the type v, = a,,v, is impossible.

Introducing the definitions
v (8)=v,(0)-a,v,(0),
1*() 1(0)—a;,;v,(6) 4.50)
v,(0)=(a;v,(0)+ Vz(e))/am
which can be inverted as
* 2 *
v1(9)=v1(9)+a’§v2(6),
1+aj,
. . 4.51)
vz(e)__:an(vz(e)_‘ﬁ(e))’

1+a,22
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the system of differential equations (4.49) and the boundary conditions (4.42)-(4.43)

become
Hi(vi(8)) =0,
11 ( ! (0)) (4.52)
H3(v3(8)) = —c F(h(6; n4)),
with
vo(r)=0, v, (0)=1, (4.53)
da,(l1+a’
a;
The first of (4.52) and (4.53) readily yield
v,(8)=w,(6;n.), (4.55)

where W,(6;n) has been obtained numerically earlier (see figure 7). The general

solution to (4.52b) can be written as

V,(8) = n.(®+k.cos0)(Acos(3£(0))+ Bsin(3£(6)))+v, (6;c), (4.56)

where the transformation £(€) and the function @(6) have been defined in (3.42), A
and B are two constants and v, (;c) is a particular solution of the non-homogeneous
problem (4.52). An examination of the solution (4.56) and the boundary conditions
(4.53) shows that the non-homogeneous problem has a solution for a unique value of ¢

which is found numerically to be
c=c,=0.9042. (4.57)

For that particular value of ¢, which, in turn, specifies the unknown constant d through
(4.55), the problem has an infinite number of solutions since the scalar A in (4.56) is

left undetermined by the boundary conditions. The solution is therefore expressed as
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v,(6)=7,(6)+ Ah(6;n,), (4.58)

where v, (6) is shown in figure 1016 and corresponds to the value of ¢ specified by

(4.57) while A is left undetermined.

Through a reasoning similar to that leading to (4.28)-(4.30), one can rewrite the

solution to the special case n =n, = 9/14 as

y=0y, (4.59)

where the rotation matrix Q is given by (4.29) and the “reference field” y~ is now

expressed as

y;(r, 8)~a,rw,(0;n.),
(4.60)

y;(r, 8)~ar”f(6;n.)+ad.rinr h(0;n.)+4q, r(\72*(6)+ Ah(();n,)),

with a, and A are undetermined constants, a = (a; a4 )I/2 and 4, =a,/fa; m, f(6;n),
d. and h(6;n) are given by (3.17), (3.18), (3.41), (4.4), (4.54) and (4.57) while
w,(6) and v, (6) are shown in figures 7 and 10 respectively. It is important to note
that, if a, = 0, (4.60) yields the expected result (4.25) and that the expression of the
Jacobian associated with the deformation (4.59)-(4.60) is identical to the formulation

(4.26) which does not present any difficulties for any value of n.

5.- Further discussion of the local results - Numerical

investigation.

The results of the local analysis of the two bimaterial problems have been

discussed separately at the end of sections 3 and 4. In this section we study how the

16 Note that 7, (7) has been arbitrarily chosen as 0.
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transition from one solution to the other takes place as the material characteristics of the
two components are varied. The transition process is investigated with the aid of the
full-field solution of a finite-element analysis of two bimaterial problems. The

numerical results are also compared to the asymptotic approximations.

Numerical analysis.

The finite element mesh used throughout the numerical investigation is similar
to that introduced in the homogeneous problem (see section 5 of [17]). The effect of a
decrease of the “hardening” parameter n on the shape of the deformed crack in both
bimaterial problems are shown in the next two figures. In figure 11, the first bimaterial
situation is illustrated for n = 1.0 and n = 0.6 showing an amplification of the material
mismatch as n is reduced, as indicated by the value of the nonlinear mismatch parameter
£ (E=333for n=1.0and &=411.5 for n=0.6). As was qualitatively illustrated in
figure 4, most deformations are concentrated in the softer material as n decreases. The
second effect of the “hardening” exponent on the shape of the deformed crack, the
phenomenon of crack blunting, which is somewhat apparent in figure 11b, is more
clearly illustrated in figure 12, which corresponds to the rigid substrate situation for the

same values of n (n=1.0 and n=0.6).

A comparison between the asymptotic results and the full-field numerical

solution is shown in figure 13 which presents the angular variation of the deformed

coordinates y, in the bimaterial case with n = 1.0 and n = 0.6. The angular variation

of the in-plane Jacobian with respect to 6 for various values of the “hardening”

exponent n - including the special case n = n, = 9/14- is presented in figure 14 for the
rigid substrate situation, showing a good agreement between the asymptotics and the

numerics.
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Transition from the bimaterial case to the rigid substrate case.

It is interesting to note that the asymptotic exponents appearing in the near-tip
approximations (3.52) and (4.30) depend only on the value of the “hardening”
exponent n. This fact explains why similar terms (O(r™ ) and O(r?)) can be found in
the solution of both problems. The first asymptotic term for the “rotated” deformed
coordinate y; is however different for most values of n : it is O(r”) in the first problem
and O(r) in the rigid substrate case. This peculiarity appears to be incompatible with
the intuitively accepted notion that the rigid substrate case is a particular limit of the
bimaterial situation for which £’ /1” tends to zero. The limit, or rather transition
process, can however be better understood by examining the radial variation of the

m+p~

Jacobian of the in-plane transformation, which is O(r ?) in the bimaterial situation
and O(r™™") in the rigid substrate case.!? As shown in figure 15, three distinct regions
can be defined : in the first one (A), the deformations are large in both components and
the near-tip fields can be approximated by the first asymptotic solution (3.52). In the
third region (C), the deformations are small in both materials and linear elasticity is
applicable. In the transition region (B), the deformations are small in the hard material
and remain large in the soft component : as illustrated in figure 15, this situation
approaches the rigid substrate case. The “gap” between the two curves in the hard and
soft components in region (A), and hence the extent of regions (A) and (B), is dictated
by the nonlinear mismatch parameter £ defined in (3.21) : as & increases, the size of
region (A) decreases while that of (B) increases and the rigid substrate situation

constitutes the limiting case for which £ — 0 and the zone (A) is of vanishing

dimension.

17 Relations (3.53) and (4.26).
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6.- Conclusion.

In this paper, the asymptotic analysis of the near-tip finite deformation fields in
a bimaterial sheet of Generalized Neo-Hookean material has been obtained for two
special cases : in the first one, the “hardening” characteristics of the two components
have been assumed to be identical while the second problem relates to the problem of a
crack at the interface between a GNH sheet and a rigid substrate. In both cases, at least
three terms of the approximation series were computed, confirming the existence of a
separable, non-oscillatory and contact-free solution near the tip of the crack, which is
found to open smoothly. The asymptotic solution also allows to study the effect of the
“hardening” exponent on the blunting of the interface crack and on the mismatch in
material properties across the interface through the introduction of a nonlinear mismatch
parameter. The latter shows that, as the “hardening” behavior of the bimaterial
specimen becomes weaker and approaches the “perfectly-plastic” (“non-hardening”)
situation, the difference between the two components is amplified and the situation
tends to the rigid substrate case. The details of the transition between the two bimaterial
situations have also been studied through a full-field finite element analysis of both

problems.
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Finite strains at the tip of a crack in a sheet of hyperelastic material :

IIl. General bimaterial case.

Abstract.

In this last in a series of three papers, we summarize an asymptotic analysis of
the near-tip stress and deformation fields for an interface crack between two sheets of
Generalized Neo-Hookean materials. This investigation, which is consistent with the
nonlinear elastostatic theory of plane stress, allows for an arbitrary choice, on both
sides of the interface, of the three parameters characterizing this class of hyperelastic
materials. The first three terms of the approximation series are obtained, showing the
existence of a non-oscillatory and contact-free solution to the interface crack problem.
The analytical results are compared with a full-field solution obtained numerically using

the finite element method.

1.- Introduction.

Although finite-strain analysis is very successful in coping with the difficulties
inherent in the linearized analysis of the interface fracture problem (such as oscillatory
fields, complex singularities, crack face overlapping and wrinkling?), this approach has
been rarely used so far in bimaterial fracture mechanics since the early work by
Knowles and Stemberg [2] who, through an asymptotic analysis of the near-tip fields

for a crack at the interface between two sheets of Neo-Hookean material, showed the

1 See [1] for a more complete review of existing work.
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existence of a separable, non-oscillatory and contact-free solution. The plane strain
compressible situation was later investigated by Herrmann [3] for a wider class of
hyperelastic materials, allowing for a different “hardening” behavior across the
interface. In the present paper, we extend the plane stress incompressible analysis
described in [2] by combining material and geometrical nonlinearities through the use of
the Generalized Neo-Hookean model. Although it is simple enough to allow for an
asymptotic analysis of the near-tip fields, the latter model presents sufficient complexity

to capture a fairly wide range of material behaviors.

The present work constitutes the last of a series of three papers relative to the
effect of geometrical and material nonlinearities on the stress and deformation fields
near the tip of a crack in a sheet of Generalized Neo-Hookean material. The first paper
[4] dealt with the symmetric (mode I) and non-symmetric (mixed-mode) cases for a
homogeneous solid. In the second paper [1], two special bimaterial situations were
investigated : in the first one, the “hardening” behaviors of both components were
assumed to be identical, and, in the second, one component of the bimaterial sheet was
considered as a rigid substrate. These two particular cases were chosen because the
relative simplicity of the asymptotic solutions allowed for an easier understanding of the
main aspects of the nonlinear bimaterial solution, including the effect of the “hardening”
parameter on the material mismatch. Furthermore, because of an incompatibility in the
interface conditions, the rigid substrate situation cannot be obtained directly as a limit
from the general case and the transition process required special consideration. In the
present paper, the general - and therefore more complex - bimaterial situation is
examined, for which a difference in “hardening” characteristics on both sides of the
interface is allowed. Although most of the basic relations have been detailed in [4] and
[1], section 2 contains a brief presentation of the fundamental equations of plane stress
elastostatics for the Generalized Neo-Hookean class hyperelastic materials for

completeness purposes. The third section summarizes the computation of the lowest-
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order asymptotic term while the next terms are derived in section 4. Then, a discussion
of the asymptotic solution is presented together with a comparison of the near-tip
approximation with the results of a finite element investigation of the bimaterial problem

formulated on a bounded domain.

2.- Nonlinear plane stress theory and Generalized Neo-Hookean

materials.

Our objective is to study the deformation of a sheet of hyperelastic,
homogeneous, isotropic, incompressible material in the absence of body forces. Let IT
denote the mid-plane of the sheet in the undeformed configuration and IT" the same
mid-plane in the deformed configuration, related to II by a one-to-one, twice

continuously differentiable mapping y(x) such that
y=y(x)=x+u(x), on IT, (2.1)2

where x and y are the undeformed and deformed position vectors respectively and u is
the displacement field. Associated with the mapping y(x) are the deformation tensor

field F =Vy and the corresponding scalar invariants / and J

I=tr(FF")=y, .y, g
) BB (22)
J=detF=A"=y,,%,,=YYs0

where A is the transverse stretch and is, by virtue of the incompressibility of the

material, equal to the inverse of the in-plane Jacobian J. Also associated with the

2 A more complete description of the origin and physical significance of these relations can be found in
[4]. The notations used here are identical to those used in [1] and [4]. Boldface characters represent two-
dimensional vectors and matrices. Greek indices take the values (1,2) and summation over repeated
indices is implied.
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deformation are two stress tensor fields, the nominal (or Piola) stress tensor ¢ and the

true (or Cauchy) stress tensor 7, related by
t=0oF". (2.3)

We also assume the existence of a plane stress elastic potential U(1,J) which allows to

express the stresses in terms of the deformations as

o=2U,F+JU,FT, on I (2.4)

where U, and U, are the partial derivatives of U(I,J) with respect to I and J
respectively. The equilibrium equations are

dive=0,

IT 2.5
oF" = Fd, on 2.5)

Throughout this analysis, we are concerned with a special class of
incompressible, homogeneous, isotropic, hyperelastic materials, the so-called
Generalized Neo-Hookean (GNH) materials, characterized by the following expression

of the plane-stress elastic potential

n

U(1,J)= Zﬁb{[u .’Z(1+ J2_ 3)]" - 1}. (2.6)

The physical significance of the three material parameters £, b and n appearing in (2.6)
has been described in [4] through an examination of the uniaxial response of this class
of materials. They are referred to as the shear modulus (1), the “yielding” parameter (b)
and the “hardening” exponent (n). It was shown there that the latter parameter has to be
greater than 1/2 to guarantee ellipticity of the equilibrium equations which, with the aid

of (2.4), (2.5) and (2.6), are written as

- b(n -1) ol o’W ak?
A 2{ [axﬁ * o, )(ya’ﬁ = Neq Vv )+ A[sza =G Sty |1 =027

n
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with 7 and A defined in (2.2), €, 18 the two-dimensional alternator3 and

A=1+b(I+X -3)/n. (2.8)

Throughout the present analysis, we deal with values of n varying between the
“perfectly-plastic” situation (n — 1/2) and the Neo-Hookean case (n=1). Finally, the

stress-strain relations for this class of hyperelastic materials are

Cup =LA [V s = X0 Vuu b
8 {Yep aulpvYpv } 2.9)

Top = LA™ Y0,5, N0 },

A and A having been introduced in (2.8) and (2.2), respectively, and 50,/, is the unit

tensor.

3.- Lower-order asymptotic analysis of the near-tip fields for an

interface crack between two GNH sheets.

In this section, we present the analysis leading to the first term of the asymptotic
approximation of the deformation field near the tip of an interface crack between two
sheets of GNH materials. The work summarized in this section followed an earlier
analysis by Herrmann [3] of the bimaterial fracture problem : although the latter
concerned the compressible plane strain case for a completely different class of
hyperelastic materials, it happens that the relations leading to the first asymptotic term

are similar to the present situation.

3 = = - _p =
ie, €,=€,=0, &,=-¢,, =1
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Problem formulation.

The local analysis of the interface fracture problem is carried out on the
bimaterial geometry illustrated in figure 1 and which consists of two bonded half-planes
H and H®. A Cartesian coordinate system is chosen in the mid-plane of the
bimaterial sheet such that the interface lies along the positive x,-axis while the semi-
infinite crack line is represented by the negative x,-axis, the crack tip being located at

® b™ n™ )4 denote the material parameters characterizing the two

the origin. Let (u
GNH sheets H™ . The local polar coordinates (r,8), defined in figure 1, are used
throughout the present analysis which aims at obtaining an asymptotic approximation of
the near-tip fields, consistent with the equilibrium equations (2.7), the constitutive
relations (2.9), the matching conditions along the interface

Ya(1,07) = yo(1,07),

0 » 3-1
5., (1,0°) = Gy (r,0) (r>0) 3.1

and the traction-free boundary conditions along the crack faces

C,,(r,1t7m) =0, (r>0). (3.2)

As was the case in the investigation of the special bimaterial situations reviewed in [1],
we look for a solution such that the asymptotic field be non-oscillatory and singular,
i.e., that the Jacobian of the in-plane transformation be unbounded as the crack tip is
approached from either side of the interface. Finally, the solution must satisfy certain
continuity requirements on each half-plane H® in order to justify the differentiations

appearing in the equilibrium equations and the boundary conditions.

4 As was the case in [1], the superscript “(k)“ written in parentheses corresponds to the upper (/) and
lower (2) materials and is never summed over.
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The procedure used to determine the first asymptotic term consists of studying
each half-plane independently and then connecting the asymptotic solutions through the
bond conditions (3.1). Since the computation of the first asymptotic term has been
detailed in [3], the next subsections only review the main steps of the lower-order

analysis.

Solution for each half-plane H™ .

Starting from the following assumed separable form of the deformation field
yH(r,8) ~r"viHe), on HY (k=1,2), (3.3)5

)

where the exponents m™ must be real to avoid the appearance of oscillations and

satisfy the inequalities
0<m® <1, (3.4)
in order to ensure bounded displacements but admit unbounded gradients at the crack
tip.
Examination of the order of each term appearing in the equilibrium equations

(2.7) leads to the asymptotic relations

(n—l)gx!—ya,p+1‘72ya=0, (r=0,-<0<m), (3.5°
B

where the scalar invariant I has been defined in (2.2). Substituting (3.3) into (3.5), the

system of coupled nonlinear second-order differential equations results

5 Recall that no summation on the material superscript “(k)* is implied. The symbol “~”
conventionally represents the asymptotic equality.

6 In order to avoid cumbersome notations, the material index “(k)” will henceforth be omitted unless
needed for clarity.
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BV, +(n-1)Bv, +m(2(n-1)(m—1)+m)Bv, =0, (3.6)
where (") denotes d( )/d6 and
B(6)=m"v,(6)v,(8)+7,(8)v,(6). (3.7)

The stress-free boundary conditions (3.2) are equivalently written, with the aid of (2.9)

and (3.3), as

Vv (tm)=0. (3.8)

The solution to (3.6)-(3.8) is expressed as

vie) = a;")f!k)(e;n("),m(")), (3.9)
where a{" are four undetermined constants and f*/8;n™,m™®) satisfy

G""(f®) =o, (3.10)

in which the differential operator G™ is

G’"(f)=f+m2f+(n—1)(2m(m—1)f+-§’1f), (3.11)
!

with

B,(6)=m’f*(6)+ f(8). (3.12)
The boundary conditions (3.8) are rewritten as

fAm:n®Pm®”) =0, fA-mn®m?)=0. (3.13)

The solution to (3.10)-(3.13) on each half-plane has been found by Herrmann

[3] using a transformation into the phase plane suggested by Knowles and Sternberg
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[S]. Without loss of generality, we henceforth assume that the lower component has a

weaker “hardening” behavior than the upper-half material, i.e.,

n® <n®. (3.14)
It is possible to show (see [3]) that the corresponding asymptotic exponents satisfy a
similar inequality

m® <m®. (3.15)

Furthermore, the first asymptotic exponent of the lower-half sheet can be determined

following the reasoning already used in [1] and [4] : the conservation of the Jintegral

defined by

I= [ (Un,—cogngye,;)ds, (3.16)

in which I'is a regular contour of outward normal »n surrounding the crack tip (figure
1) and U is the plane stress elastic potential introduced in (2.5), yields, with the aid of

(2.6), (2.9) and (3.3), the familiar result
m® =1-1/2n?, (3.17)

which satisfies (3.4). The solution to (3.10)-(3.13b) in the lower-half plane is found to
be

2_‘_{ 2 2

]2
] , (3.18)

where n=n?, m=m® is given by (3.17) and
k=1-1/n,

3.19
o=[1-ksin0]". G-19)

The solution in the upper half plane has the form
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F6:nm) =K cosw(8)|1-2C=D_coyo " (3.20)
m(2n—1)

where the transformation y/(6) is implicitly given by

m-—1

T-0=y- Ktan™ (Ktany ), (3.21)
with n=n”, m=m® and
12
K= m(2n=1) . (3.22)
(m—-1)(2n-1)+1

The constant X in (3.20) is chosen such that f(7;n™”, m™”) =1, ie.,

-1
lzu—m‘”)

__2(nP -1
m(l)(zn(f) _ I)I

K= Iz (3.23)

Application of the bond conditions along the interface.

The continuity conditions (3.1) across the interface yield an expression for the

asymptotic exponent m” and a relation between the undetermined scalars’ a*

oy _ 4nIn® —qn® 4]

= RO T (3.24)
and
a(D _p(2
=& e " o 625

where the constant & depends on the six material parameters (1™, b*’,n™® ) through

7 See [3] for the details of the computation leading to (3.24) and (3.25).
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n(? -1 I=n(?
S b2 o o
g _H [ <f(z)(0 ,-nm’mm)) FXO* n D )

- u(2) ') n? (3.26)

-

,(mu)z f”’?O’“; n m) + f‘”?O*; n® m™) ) ’
with f(0*;n,m) and f(0*;n,m) determined from (3.18) and (3.20). The relations
(3.17) and (3.24) are illustrated in figure 2 for 1/2 < n® < n < 2. It is important to

note that combining (3.14), (3.17) and (3.24) yields

1)51— ! < m®

(2 _7_
m* =1 o = )

(3.27)

2n*?

and that the equalities hold if and only if n/”’ = n® = n. Note also that in the latter

case? the first term of the asymptotic expansion reduces to
m? =m® =m = 1/2n, (3.28)
Ya(1,0) ~a, j(8) f(6;n)r", (3.29)

where f(6;n) is described by (3.18) and the angular step function j(€) takes the
value

1 for 0<6<m,

J(0)= {J,‘ for —n#<0<0. (3.30)

In (3.30), the nonlinear mismatch parameter & takes then the simple form

u(l) b(l) n-1 %n—l
g=zﬁbm) , (3.31)
Note finally that, if n” # n¥, (3.25) indicates that the relation between a¢” and a(?

depends on the “intensity of loading,” since it may be written as

8 The special bimaterial case for which both components have identical “hardening” behaviors has been
detailed in section 3 of {1].
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(¥~ (2 D)
~2p(d) w7
al) =g aff)al(f) ) -1 q(? (3.32)

The second factor on the right-hand side of (3.32) can, in turn, be related to the value

of the Jintegral defined in (3.16)

]=u(z’b”’"m'](af,”a”)) T, m®),  (n™>n®), (3.33)

where
Inm)=m*""'n""n/4. (3.34)

Thus, with the aid of (3.33), (3.32) is equivalent to

2) Lty

n!

J o7 (2 P=1) (2)
u? " I, m?) G O3

1-2n'% —

(1) 527:‘“-1

Note that (3.35) reduces to (3.29)-(3.31) when n”’ = n® since the factor involving

the Jintegral then tends to unity. The angular functions f *)6;n'*) m™*)) of the first
asymptotic term are shown in figure 3 for n¥ =0.51, 0.6 and 0.8, together with the

corresponding values of the asymptotic exponents m(” and m®

It is worth noting that the continuity of displacements is ensured across the

interface to the leading order only since
fAO ;n?,m?) =0. (3.36)
But, as shown in figure 3, if n” > n?, one has

F0 0™ m™) 20, (3.37)

9 Note that, since U” = o(1/r) for 6 >0 when 1™ >n®, the upper-half sheet does not
contribute to the value of the J-integral.
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and additional higher-order terms in the lower-half sheet have to be introduced in order
to guarantee displacement continuity along 6 = 0. This fact constitutes a first
motivation in obtaining other terms in the near-tip approximation series. But the main
reason to justify the computation of additional asymptotic terms is the fact that the
Jacobian of the in-plane transformation defined by (3.3) vanishes identically on both
sheets, leaving the transverse stretch A10 undetermined by the present lower-order

analysis.

4.- Higher-order terms of the near-tip approximation of the

deformation field.

We summarize next the local analysis leading to higher-order terms of the
asymptotic series which approximates the near-tip fields for the interface crack.

Motivated by (3.3), we assume the following separable form for the deformed

coordinates y,
i) 0
Y (r,60) ~a r £ 0 n®,m™ ) + r* W), 4.1)

where m™® have been given by (3.17) and (3.24),1! f™(6;n™®, m™) by (3.18) and
(3.20) and the relation between the scalars a(” and a{” has been expressed by (3.25)

and (3.26). In (4.1), we require that the exponents p™ of the higher-order term be real

and satisfy

p® >m®, (4.2)
10 gefined in (2.2).
11 As was the case for the first asymptotic term, we will -without loss of generality- only consider the

situation for which n”) 2 n(z) .
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while the angular functions w(*(@) are twice continuously differentiable on their
respective domains. Furthermore, both a, cannot vanish simultaneously in (4.1).12
Therefore, and without loss of generality, we assume that a*’ # 0. Substituting (4.1)
into the asymptotic equilibrium equations (3.5), there results a system of coupled

second-order linear differential equations

(1+al,) H?(w,)+ 2a;, HY(w,)+ 2a,, H! (w,) = 0,

) (4.3)13
(1+a;,) HY (w,)+2a,, H(w,)+ 2 H}(w,) =0,

where we have introduced the scalar a,, = a,/a, 4 and the differential operators

H!(w)=B,D, +(n—1)(2p(m—1)Bw + B,w),

. (4.4)
H}(w)=D,E +(n—~1)(m(m+p-2)fE, + fE,),
in which
B,(8) = £*(8) + m’f(6), E,(6)=mp f(8) w(6)+ f(8) w(6), ws)
D,(8) = /(6)+m’£(8), D,(8) =(6)+ p’w(6). '

As was the case in [1] and [4], the linearity of the operators H? (w) turns (4.3) into

(1+al) HY (w, - a,w,) =0,

(4.6)
(1+ajy) HY(a;w, +w,) =0,
where
HY(w)=(H} +2H! )(w). 4.7)
The stress-free boundary conditions (3.2) are asymptotically equivalent to
wl(r) =0, w(-r) =0. (4.8)

12 ee (3.25) and (3.32).
13 The system is identical to that encountered in the homogeneous case [4], but, due to the presence of
different boundary conditions, it will yield a different solution.

14 Note that, due to (3.35), a'¥ = oY = a,,.
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The continuity conditions across the interface provide the additional information
necessary to determine the asymptotic exponents p’. It has been shown in the
analysis of the first asymptotic term that, if n” # n®, the continuity of displacements
across the interface is satisfied to first order only.!3> The mismatch in “hardening”
properties therefore suggests the appearance of higher-order terms necessary to ensure
complete displacement continuity across 6 = 0. This first type of additional terms,
referred to as “hardening mismatch terms,” is not present in the simpler case

investigated independently in [1] where n” = n®.

Other higher-order terms, which appear “independently,” satisfy the
displacement continuity along the interface. As shown later, only these “independent”
terms contribute to the in-plane Jacobian which was left undetermined by the lower-
order local analysis presented above in section 3. The computation of the two sets of

higher-order terms is summarized in the next two subsections.

“Hardening mismatch” higher-order terms.

As mentioned in the introductory remark, the lower-order analysis of the
deformations in the upper-half plane generates a non-vanishing displacement along the

interface
yr,0%) ~al r” £ 0t n®,m?), (4.9)

where m” has been given by (3.24) and f(0*;n'”,m'”), computed through (3.20),
vanishes if and only if n” =n®. Therefore, the terms described in the present
subsection do not appear when the “hardening” characteristics of the two components

of the bimaterial specimen are identical. We thus assume here that n” > n”, which by

15 See the remark at the end of section 3.
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)

(3.27) implies m” >m®_ In order to compensate the non-vanishing displacement

(4.9) along the interface by the first local term of the upper-half plane, the second

lower-order asymptotic term of the lower-half sheet must be chosen such that
p@ =m®, 4.10)

and
W;z)(o_) =al(11) f(I)(0+;n(1);m(1)). (4-11)

Note with the aid of (3.27) and (4.10), that the asymptotic exponent p™*’ satisfies the

requirement (4.2). Relations (4.9) and (4.10), combined with (4.6)-(4.8), allow to

solve for the angular functions w{*(@) of the second-order mismatch term in the lower-

half plane. Defining the auxiliary angular functions w(’(@) as

Wwi8) =w(8) —aPwi?e),

(4.12)
wi8) = afwi(8) +wi™(@),
which can be inverted as
(2yg) < WLA0) +aW(B)
WI ( ) - (2)42 ’
1+(a}y)
~(2) (2) 5(2) (4.13)
w(8) = Wy (8) —ai’ W, (8)
: 1+(a?)? ’
one can rewrite the system (4.6) as
Hp(z) w(z) =0’
roon7) on [-7,0], (4.14)

pl 2)

H™ (W) =0,

with the boundary conditions

w(-m) =0, (4.15)
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wgz)(o-) = a(I)f(l)(0+) a§2) gl)f(l)((y =0,

~(2), (2) (1) (L 0+ (D) (L n+ 1) 2\ o (Dt (4.16)16
W07 ) =a a,” f7A07) +a;  fUA07) =ay” (1+ap,)f07).
The first equations of (4.14)-(4.16) yield
wiP(8) =0, on [-7,0], (4.17)

while (@) can be solved analytically with the aid of a transformation introduced by

Knowles and Sternberg [6] and previously used in [1] and [4]

WE) = (0+kcos8) " W),

11— kx/]+ksm9 wcos6 (4.18)

cost(8) = A2 o+ kcosO

where k and @ have been defined in (3.19) and p® is given by (3.24) and (4.10).

Through (4.18), the differential equation (4.14b) is transformed into

d' W) 4n(2)p(z)(n(2) D _p@ 4

e n® _ ] W) =0, (419

while the boundary conditions (4.15) and (4.16b) become

d -
—W*0) =0,
g (4.20)

W (r)2) = (1+k)7" o (1+a}y) F107).

Defining

_ 4n(2)p(2)(n(2)p(2) __n(2) +])
- 2n® —]

, (4.21)

the solution to (4.19) and (4.20) results as

w _ " (2) _ a”
16 Recall that aj,’ = = = (2) = ay,.
2
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-p¥ (1) 2 (1)
W-z(z)(c) - (1+k)" a (I;an)f (0”) cos j&. (4.22)

cosj-z-

The auxiliary angular function w{*(6) is then obtained by combining (4.18), (4.21)
and (4.22). Note that the solution (4.22) becomes invalid as the pair (n”,n‘®) tends to
values such that the parameter j in (4.21) is equal to an odd integer, as represented in
figure 4. A similar problem has been encountered in the rigid substrate situation
analyzed in section 4 of [1]. It was shown there that the separable form (4.1) for the
second term of the near-tip approximation series is not valid and that a different form of
the asymptotic deformation field (containing a logarithmic singularity) has to be
introduced. Similar treatment of the second-order term would be necessary here for
these special values of (n”,n”). However, since, as shown later, the “hardening
mismatch terms” do not contribute to the expression of the in-plane Jacobian, which is
the prime motivation for investigating higher-order terms in the near-tip expansion,

such treatment will not be attempted here.

The near-tip approximation series, including the “hardening mismatch” lower-

order term, is thus far, for the lower-half plane, (when n” >n®)
ygz)(r, 9) - agZ)rm(z)f(z)(e; n(z), m(Z)) + rmm W;Z)(e)’ on [—7[, 0]’ (4.23)

where a(? are two undetermined constants,!” m® =1-1/n®, m® is given by
(3.24), f7X8) is described in (3.18) and the angular functions w’*(8) are obtained by

combining (4.13), (4.17), (4.18) and (4.22) as

wi(8) =a’w6), (4.24)

where

17 Related to the value of the J-integral through (3.33).
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o+kcosOY' o) )
T ) = cos(jL(6)), (4.25)

cosj—z—

W(Z)(e) =(

with j, k, @ and {(6) defined in (4.21), (3.19) and (4.18b). As was mentioned
before, the mismatch term ensures displacement continuity across the interface, in
combination with the first term of the approximation series for the upper sheet.
However, it also creates a traction discontinuity along 6 =0 which has to be

compensated for by a higher-order “hardening mismatch” term in the upper-half plane

¥ (r,0) ~ aPr™” fO(0: 1, mP )+ r*"w(9),  on[0,m]. (4.26)

The details of the computation of this additional mismatch term are given in

appendix A. We only mention here that the higher-order asymptotic exponent p is

such that

pP =2m?P —m®, (4.27)

Note once again that the higher-order mismatch terms appearing in (4.23) and (4.26)
exist only if 2"’ # n® and are introduced in order to ensure displacement and traction
continuity across the interface. Another objective of the introduction of higher-order
terms in the near-tip asymptotic series was to obtain an estimation of the in-plane
Jacobian, left undetermined by the lower-order local analysis. It is interesting to note
that the additional term in (4.23)!8 does not contribute to the expression of the Jacobian

since the latter is expressed in the lower-half plane, with the aid of (4.23) and (4.24),

by

— VI (D) (1 _
J(r, 6) - (a§2)agl) - agz)agl)) (m(Z)f(Z)W(Z) __p(Z)f(Z)w(Z)) Fmte 2_ (4.28)

18 A similar result is obtained for the upper-half plane : as shown in appendix A, the additional
“mismatch term” appearing in (4.26) leads to a vanishing value of the in-plane Jacobian.
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The first multiplicative term in (4.28) is identically equal to zero since a{) =af?. As
shown in the next subsection, an estimation of the Jacobian can only be obtained by

introducing another type of higher-order terms, referred to as “independent terms.”

“Independent” higher-order terms.

In addition to the mismatch terms described in the previous subsection, the

system (4.3) has another set of solutions of similar separable form
Vo ~a, " f(O;n,m)+r" w,(6), (4.29)19

with p > m. As suggested by the equivalent uncoupled system (4.6), there are two

possible sets of solutions ( p,w,(8)) : the first one is such that

W, = a;w,, with H?(w,) =0, (4.30)
while the second set of solutions is given by

W, = —a,w, with H](w,)=0. (4.31)

It can be shown that the latter solution only contributes to the Jacobian of the in-plane
transformation20 and is therefore the focus of the present subsection. The two-term

expansion of the near-tip deformation field is thus
Yol(1.6) ~ay 1" f(O;n,m)+ceza,r” g(6;n,m), (4.32)

where ¢ is an undetermined constant, €5 is the two-dimensional alternator and

(p™,g™\8) ) is the solution of

19 Recall that the material index “(k)” (k=1,2) is omitted unless required for clarity purposes.
20 The solution corresponding to (4.30) is presented in Appendix B.
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H(g®) =0, on [-m, 7], (4.33)
§r) =g%(-n) =0. (4.34)
The additional relations necessary to determine the asymptotic exponents p™’ are

provided by the continuity conditions (3.1). In order to satisfy the continuity of

displacements across the interface, we impose
(D) . (2 _ 4.35
p =p”=p, (4.35)
together with

D (1)8(1)(0+) _C(Z)a(2) (2)(0 ). (4.36)21

With the aid of (2.3), (2.11) and (4.32), the tractions along the interface are expressed
as

(1)

Gy (r,0=0") = A"r
0,,(r,0=0")=APr

- —-m()
(1+CPre= 4 o(rm ")),

@ - (no sum on &), (4.37)22
(1+ CéZ)rp—m +o(rf™")),

(2)

where

b nel n-1 .
A, =/ (;) (a,a,) Bf(O) a, f (0),

s=(m-1)(2n-1), (4.38)
C,=c &y Z f:;gj (no sum on @),

with B,(8) defined in (4.5). Since it was assumed that m™” >m and since we

require that p > m‘”, we have

0<p-m® < p-m?. (4.39)

21 Note that (4.36) constitutes only one relation since, by (3.35), a(” = a(z).

22 Note that the first asymptotic term satisfies the continuity of tractions across 8 = 0 since

ALY = ALY ang sV =52
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Therefore, in order to minimize the jump in tractions across 8 = 0, g*Y8) has to be

chosen such that C{" =0, i..,
§0*) = 0. (4.40)

Thus (p,g"(0) ) is the solution of the eigenvalue problem (4.33) with the boundary
conditions (4.34a) and (4.40) and under the restriction p > m. Once p is determined,
£*(8) is computed for -z < 6 < 0 by solving (4.33) once more with (4.34b) as
boundary condition.?3 The eigenvalue problem for (p,g’(6)) and the differential
equation in g*Y8) have been solved numerically. The variation of the asymptotic
exponent p with respect to (n””,n?) is illustrated in figure 5. Note that, when
n” = n®, the solution coincides with the solution described in section 3 of [1].24 The
angular functions g’(8) and g*6) are plotted in figure 6, for n* = 0.51, 0.6 and
0.8. It is interesting to note that, as the “softer” (bottom) material tends to the
“perfectly-plastic” or “non-hardening” case (n¥ — 0.5), the higher-order exponent p
approaches the lower-order exponent m” when n” >n'*, as can be seen by
comparing figures 2 and 5. A detailed asymptotic analysis, summarized in Appendix C,
actually shows that, in the limit case for which n®¥ — 0.5 with n” > n?, the angular
function of the second asymptotic term for the top material g/’Y@) approaches that of

the first asymptotic term f46; n”, m”) introduced in (3.20).

In the next section, the near-tip deformation fields are discussed and compared

to the results of a full-field finite element analysis.

23 For normalization purpose, we set g(0*) = g*07) = 1.
24 See figure 2 of [1] for the variation of p with respect to the “hardening” exponent 7.
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5.- Discussion of the asymptotic results and numerical

investigation.

We start by summarizing the asymptotic solution developed in the previous two
sections. For n” > n?, we obtained

H (D) _p(2) __
(1)(,. 9) a(l) m f(l)(e n (1)) +a(1) 2mt —m (1)(9)

+C(1)€ap a[(il)r g(l)(e,.n (1)) +k(1)a(1) 11(1)(9 n (1))

(5.1)

(2 1y
ygz)(r, ) ~ ag:?) rm ) f(z)(G; n(”, m? )+ ac(xl) r'"( W(Z)(9 ) 5.2)

+c? €45 al(iz) rP g(Z)(e; n(2), m(Z)) +k(? ay) r 1(2)(0,' n(Z), m(2)) ,

where £, is the two-dimensional alternator, m™*’ are given by (3.17) and (3.24),
F*(8) by (3.18) and (3.20), w6) by (4.25), w0) is described in Appendix A, p
and g™(0) are shown in figures 5 and 6 respectively, t and I*Y@) are given in
Appendix B, and a$*’, ¢* and k' are undetermined constants related to the far-field
loading conditions, the geometry of the global crack problem, the mechanical
properties of the bimaterial specimen and to each other through (3.35), (4.36), (B.6)
and (B.13). The deformation fields (5.1) and (5.2) may be rewritten as a rotation of a

“reference field” defined by
y=07, (5.3)

where the rotation matrix depends on the “mode-mixity” of the first asymptotic term

[0.4] =( % “) (5.4)

—a; a4
and

(5.5)

(4 _

{ 3r,8) ~ " a® r* g8),

5721)(7’,6) - a(l) rm”f(l)(e) +a(1) r2m ——(1)(6) +k(1) (1) r l(I)(e)
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{ 2)(r 0) ~ (2) P (2)(9)’
(5.6)

32r,0) ~a® ™" £2(6) +a” r" FH(6) + k¥ a¥ r' 17(6),
with

(k) _(a(k) (k))

(1) a® (5.7)
d a
« (1) (2) :

The asymptotic solution of the general bimaterial problem is somewhat more
complex than the approximation series found in [1] for the special case n”’ =n® due
to the presence of terms associated with the mismatch in “hardening” properties of the
two sheets, which makes the discussion of the structure of the asymptotic field more
difficult. However, most of the conclusions reached in [1] are still applicable in the

general bimaterial situation.

The most important result of the present analysis is the confirmation of the
existence of an oscillation-free, contact-free field near the tip of the interface crack, first
demonstrated by Knowles and Sternberg [2] in the particular Neo-Hookean case and
confirmed by Herrmann [3] in the compressible plane strain situation. The asymptotic

solution also predicts a smooth opening of the crack

- ()
$rm) ~ B0 [ m
(5.8)

()
352, —m) ~ b2 i -mf

where b are two positive constants. The relations (5.8) also allow to study the

@ and n® on the shape of the

blunting effect of the “hardening” parameters n
deformed crack. Since m™ /p > m'® /p, the blunting effect is stronger in the softer
(bottom) material, the strongest effect being detected when the two hardening

exponents are similar or close to each other.
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The nonlinearly elastic asymptotic solution is also characterized by the
appearance of more than one singular term, unlike in the linearized theory. The
strongest singularity (O( ™)), which occurs in the softer material, is independent of
the “hardening” characteristics of the other sheet while all other asymptotic exponents

are function of the “hardening” parameters of both components of the bimaterial sheet.

Substituting the asymptotic expansions (5.1) and (5.2) into (2.2), the leading-
order expression of the Jacobian of the in-plane transformation (and, therefore, of the

transverse stretch A) is obtained as

J(r,8)~c (al+a;)(pfg—mfg)r™" . (5.9)

The angular distribution of the Jacobian is illustrated in figure 7 for various values of

(n(l) n(Z))
N .

The asymptotic results presented in previous sections have been compared with
the results of a full-field finite element investigation of the bimaterial problem. The
finite element mesh is similar to that used in the homogeneous case (see section 5 of
[4]). In the numerical example discussed below, the only material mismatch between
the two GNH sheets concerns the “hardening” parameters n® (i.e., u” =u® and
b = b*). The far-field loading conditions correspond to a purely symmetric (mode
I) case. Figure 8 presents the shape of the deformed crack for two combinations of the
“hardening” exponents n™’. Although the far-field loading is symmetric, a slight
mismatch in “hardening” parameters introduces a mixity in the near-tip deformation
field. This fact is further illustrated in figure 9 in which the nonlinear mixity parameter

a,, is plotted versus n” (with n® = 0.6).

The angular variation of the deformed coordinate y, is shown in figure 10, for
the case n® =0.6 and n'” = 0.6, 0.65, 0.8 and 1.0. The agreement between the

numerical and analytical solutions is very good for the bottom (softer) material where
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the deformations are especially large, while it is not as satisfactory in the top (harder)
material where the strains are more limited and where the asymptotic exponents of the
higher-order terms have values that are similar to that of the first term (for example,
when n” = 0.8, one has m® =0.375, m” =0.722 and p = 0.800) and thereby
introduce a more significant correction to the near-tip field. In figure 11, the radial
variation of the Jacobian J(r,8) is presented on a logarithmic scale for various
bimaterial combinations and compared with the corresponding predicted value of the
asymptotic exponent. Note that the size of the “zone of agreement” between the
analytical and numerical solutions is much smaller in the bimaterial case (n'” = 0.6,
n” = 0.8 and 1.0) than in the homogeneous situation?S (n” =n'” = 0.6). Finally,
the angular variation of J(r,8) along a circle defined close to the crack tip is presented
in figure 12, showing a satisfactory agreement, especially in the lower (softer) material
where most of the deformations are concentrated. As the ratio n” /n® increases, the
strains distribute in a more uneven fashion across the interface explaining why, as was
the case in figure 10, the agreement between the numerical and analytical results

diminishes in the harder material.

The analysis of the special bimaterial case in [1] for which both components

D =p™® = p) has shown how, as n

have the same ‘“hardening” characteristics (n
decreases, a mismatch in the linearly elastic properties (1 /) or in the “yielding”
properties (b” /b?) is amplified, as indicated by the expression of the nonlinear
mismatch parameter & in (3.31). This trend is also applicable in the general case where
n” # n®, as quantified by (3.26) and illustrated in figure 13 which presents the
angular variation of the deformed coordinate y, in the case u” /u® =2, b /b =1
and for two combinations of the “hardening” exponents (n”,n*) = (0.6, 0.6) and

(1.0, 0.6). The concentration of strains in the lower material, which is already present

in the first case (for which a®/a‘” = 32) is amplified in the second situation. But, as

25 Represented by the circles and the continuous line in figure 11.
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shown in (3.35), the “deformation gap” between the upper and the lower sheets also
increases as the “intensity of loading,” denoted by the value of the conservation integral
J, increases. Thus, as the softer material approaches the “perfectly plastic” situation,
the bimaterial problem tends toward the situation of a GNH sheet bonded to a rigid
substrate. The latter special case has been investigated in section 4 of [1] and the
transition process from the bimaterial problem to the rigid substrate case has been

detailed in section 5 of the same paper.

6.- Conclusion.

An asymptotic analysis of the near-tip deformation fields for an interface crack
between two sheets of Generalized Neo-Hookean materials of arbitrary properties has
been presented. The investigation has been carried out according to the nonlinear
elastostatic theory of plane stress for isotropic, hyperelastic materials. The asymptotic
solution shows no sign of oscillation or contact close to the crack tip, confirming
thereby the result obtained by Knowles and Sternberg [2] in the particular case of two
sheets of Neo-Hookean materials and by the authors [1] in special bimaterial problems
involving GNH sheets. The analysis presented in this paper has focused on the effect
of a mismatch in the “hardening” characteristics across the interface on the structure of
the near-tip fields. It has been shown that such a mismatch generates the emergence of
additional terms in the near-tip approximations, which are introduced in order to satisfy
the displacement and traction continuity conditions along the interface. The mismatch in
“hardening” behavior also accentuates the disparity in strain distribution across the
interface. The asymptotic results have been compared with those of a detailed full-field
numerical investigation, showing that sufficiently refined numerical analyses can give

reasonably close results.
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Appendix A.

In this appendix, the higher-order asymptotic term for the upper-plane,
associated with the mismatch in “hardening” characteristics (n” > n‘*’) and introduced
in equation (4.26), is presented. As mentioned in section 4, this higher-order term has,
for objective, to compensate for the traction discontinuity across the interface arising
from the mismatch in “hardening” exponents. The approximation series in the lower

half-plane, defined by (4.23)-(4.25), introduces, along 6 = 0", the tractions

— (2) (2) _,,(2) (2) ()
ocr,8=0)=CPr (1+DPr"" ™" +o(r’ )), (nosum on @), (A.1)

where
(2)

PN
b . _ 2P nl?_
G =p? (_n”)) a?(F0))" T (aP e (A2)

a(I) a(z) a(l) W’(Z)(O—)
DY =|2(n? 1)L L _4Za_ |22 . (nosumon ), (A.3
« [ (n ) PEME] F0) ( ) (A3)

(7
14 4 aa

s@ =(m? -1 (2 - 1), (A4)

with f(6) and w{?(@) defined in (3.18) and (4.25), respectively. Note that, with
the aid of (3.17), (3.24) and (4.10),

) (2)

n’—n
(2) __m(2) =

e e (A5)

p

On the other hand, the approximation (4.26) in the upper-half plane leads to the

interface tractions

] (1) (1) (1) )
c)r,0=0") =C"r"" (1+D" r*" ™" +0o(r! ™)), (nosumona), (A.6)

where
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(1) (1) b(“ " (1) fy yt (1)2 (1)2 + '(1)2 + -1 (5 (1) \n'" =1
= | 2| fron(m £ o) + 100 | e, )

(D) (D £y gty (D) Uy 0* Ky ot A0 Uy ot . +
D(1)=2(n(1)—1)(m pOFN0) ) wio") + FN0T) aP wiY0") ) lyor)

(ag)agl))(mu)zf(z)?(o»() +f'(1)2(0+) ) af,l)f(l)(0+) ,
(A.8)26
s =(m® - 1)(2n" - 1), (A9)

with £7(@) defined by (3.20). The choice of m” in (3.24) and the relations (3.32)
between the scalars a’” and a’” ensure the continuity of tractions to the leading order
(i.e., sV =s® and C” = C”). The unknown asymptotic exponent p’”’ and the
angular functions w(”(8) are therefore determined such as to minimize the traction
jump across the interface to the second-order. With the aid of (A.1) and (A.6), one

obtains

P =m® + p® —m® =2m® —m®. (A.10)

Combining (4.6), (4.7), (A.3) and (A.8), and realizing that D{* = D{”, one rewrites

the differential system in w('(8) as

wi(8) = al’ w8), (A.11)
H' (w?)=0, (A.12)
¢, w0 +e,w0*) =b, (A.13)
wlr) =0, (A.14)

where

. Z(n(l) —I) m(l)p(l) f(l)(0+)
1 B (0+)
N

) (A.15)

26 No sum on .
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__2(n=1) f707) 1

N R T, (A.16)
_ a(l) W(2)(0-)

b =a—§2—)—(2n(2) -1)%, (A.17)

in which a{” /a$¥ can be expressed through (3.35), w*(6) has been introduced in

(4.25) and

B (8) =m™ fV(8) +fV(0). (A.18)

f(l)

Note that this higher-order mismatch term vanishes when n” = n‘® and that, due to
(A.11), it does not contribute to the expression of the Jacobian of the in-plane

transformation.
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Appendix B.

The second appendix focuses on the computation of the higher-order asymptotic

terms corresponding to the relations (4.29) and (4.30), i.e., of the form
V,(r,8)~a,r"f(6:n,m)+a,r'w(®), (B.1)
where t > m and w(8) satisfies
H;(w)=0, on [-m, 7], (B.2)

with the linear second-order differential operator H;(w) defined in (4.7). The traction-

free boundary conditions along the crack faces are equivalent to
wm) =w¥-r) =0. (B.3)

As was suggested in section 4, the continuity of displacements along 8 = 0 requires

t( k)

that the asymptotic exponents ¢~ be equal on both sides of the interface, i.e.,

1V =1 =t >m® 2m®. (B.4)?7

The displacement continuity condition also imposes that

aPw0") = aPw0"), (B.5)

which, in view of (3.35), can be rewritten as

a2 _pthh

D 2nh ) 1
e )J w0"), (B.6)

1-2n'¥

W0 ) = £ J

(#(2)(b(2))n’“—1’7(n(2)’

where 7 is the conservation integral introduced in (3.16) while £ and 7(n,m) have

been defined in (3.26) and (3.34) respectively.

27 Recall that it has been assumed that > n(z) .
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The tractions along the interface are
0,4, (1,0) ~ A, r" D1+ Mr'™™), (B.7)

where A, are given by (4.37) and

< W(0) , 2(n=1) (mt £(O)w(0) + f(0)w(0))
£(0) m’f*(0)+ £*(0) '

(B.8)

Since
O0<t-m?P <t-m®, (B.9)

we choose (2, w”(0) ) such that M” = (. The traction continuity condition yields, in

terms of w'/8),
c, w0*) +tc,w™0%) =0, (B.10)

where the constants ¢, and ¢, depend on the material properties as

¢, = m(1)2 f(1)2(0+) + (2n -1 f(1)2(0+) ,

_ (B.11)
¢, =2mP(n? -1 fN0*) fH07).

Note that, if 2"’ =n®, fU%0") = 0 and (B.10) reduces to
w(0") = 0. (B.12)

In that case, one also has m™ =m® and w’(8) = w*(6).28 In the general situation
(n™ >n'®), one has thus to solve the eigenvalue problem in (£,w”(6)) on [0,7]
constituted of (B.2), (B.3a) and (B.10) under the restriction (B.4). The latter has been
solved numerically and the variation of the eigenvalue ¢ with respect to (n”,n?) is

shown in figure B.1.

28 See the analysis of the special case n(l) =n'? in section 3 of [1].
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The angular function of the corresponding lower-order asymptotic term has the

form
w(@)=kl(6;n,m), (B.13)?°

where k" and k® are undetermined constants related to each other through (B.6) and

1(6;n,m) is shown in figure B.2 for some values of the (n”,n®). Note that 1*/)
can be obtained analytically using the transformation introduced by Knowles and

Sternberg [6] and already used in section 4

17/9) =(a)+(1—1/n)c0s6)' cos(j{(f))’ (B.14)
2—-1/n COSj—
2
where {(8) is given in (4.18) and j is described by
(2) (2) 4 _ (2
.2=4n t(n'“t—n +I). (B.15)

2n® ~ ]

Finally, note that, due to its form (B.1), the higher-order term presented in this
appendix has no effect on the leading order of the Jacobian of the in-plane

transformation.

29 1%9) and 1”8 ) are normalized such that I''Y m) = I’ -m = 1.
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Appendix C.

We study here the behavior of the higher-order solution described in figures 6
and 7 in the limiting situation in which the “softer” material approaches the “perfectly
plastic” situation. Our objective is to show that, when n* — 0.5 and n” > n®, the
value of the second asymptotic exponent p tends to that of the first one m™® (as
indicated by the “well” appearing in figure 5 in the neighborhood of n‘” = 1/2) and the
angular function g/{8) approaches f’Y8), which has been introduced in (3.18). We

also show how this limit process takes place. Let

n® =é+£, C.1)

where 0 < € << 1. Assuming that n” >n‘®, one finds, with the aid of (3.24), that

2e
=7~ 2
m®) = 1-——+ O(e"). (C.2)

By combining (3.20)-(3.22), (C.1) and (C.2), f‘ Y0*) is approximated by

: 27E
(n*) =
fH0) ==+

O(€%). (C.3)

The latter relation shows that as n‘” tends to 1/2 the boundary conditions for f40)
approach those for g48). Since the differential equations for the two angular
functions (3.10) and (4.33) are similar, the corresponding solutions will tend to each

other. In order to analyze the limit process, we write
8(6)=f(0)+€4(6), (0s6<m), (C.4)
and

PV =m® +8e. (C.5)
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Substituting (C.4) and (C.5) into (4.33) yields, for the leading order,

(1)

H'(g) =28 (mP+(n? -1)(m? 1)) fO, (C.6)
where the differential operator HY(w) has been defined in (4.4).

The boundary conditions, expressed in terms of the auxiliary function £(8), are, with
the aid of (C.3) and (C.4),
: 1 ; 2
§(0)=-=f(0) = ~————,
£ 2n —1 (C.7)
g(x)=0.

The eigenvalue problem (C.6)-(C.7) in (6, £(6)) has been solved numerically.
The variation of & with respect to the “hardening” parameter of the upper material n‘"”
is presented in figure C.1 for various values of £ which appears in the differential
equation (C.6) through n” and m” (relations (C.1) and (C.2)). As expected, the
analysis is not valid as the upper material approaches the “perfectly plastic” limit too,
since § — oo as n”’ — 1/2. Let us recall at this point that the present analysis is valid
only when30 n” > n®_ Note that §(6) is not uniquely determined for a given pair

(n” ). It can be written as
&(0)=3(6)+Ag(b), (C.8)

where A is an undetermined constant, g(0) satisfies (C.6), (C.7) and has a specified

value at a given value of 8 (6 = 0, for example) while 2(0) satisfies

H" (3)=0, on [0,7], (C.9)

together with

§0)=3(m)=0, §0)=1 (C.10)

) ()

30 The analysis loses its validity as early as (C.2) when 1" = n
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Note also that, since it was shown that p” — m”, §(6) tends to g'*{8) described in

section 4. Note finally that, since the eigenvalue & appears in the forcing function in

(C.6), the particular choice of g(0) or g(x) has an influence on the obtained value of
0. This influence is however of second-order, as confirmed by the analysis of the
special case for which the upper sheet is made of Neo-Hookean material (i.e.,

n™ = I). In this particular case, (C.6) and (C.7) reduce to

§+m’g =28 costm(n-9)), (C.11)
with

2(0) =-2nm, g(m)=0. (C.12)
Specifying the value at @ = 0 as

8(0)=g,, (C.13)
one finds

6=2+(2n-2+3,)¢, (C.14)
which shows that the effect of g, on the eigenvalue & vanishes as £ — 0.

Some examples of angular functions g(68) for typical values of n” are

presented in figure C.2, for € = 0.001 and g, = 0.
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(@

f(6:n.m)

-1.2 :
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——————— n=0.8 mi=0.722
BlF e ni=1.0 mi=0.833
----------- nt=3.0 m!=0.967

(b)

__,1.2 1 1 l 1 4
~-180 -120 -60 0 60 120 180

6 (deg.)
Figure 3. Angular variation of the first asymptotic term /6 ;n, m) with corresponding
values of the exponents m™ : (a) n? = 0.51 (m'¥ =0.0196), (b) n'” =0.6
(m'? =0.167), (c) n'® =0.8 (m'® =0.375). Note that, since f*Y8) depends

on n‘® only, all curves are superposed for - < 8 < 0.
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corresponding values of the exponent p : (8) n'” = 0.51, (b) n'? =06, (c) n'? =0.8.
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J(r.8)/c a2 pmtp-2

-180 =120 -60 0 60 120 180

J(r,0)/c a2 pMtp-2

- 2 1 1 l 'l 1
-180 -120 -60 0 60 120 180

(b)

Figure 7. Angular variation of the in-plane Jacobian J(r,8) for the same (n'”,n”)

combinations as in figures 2 and 6 : (a) n'” = 0.51, (b) n” = 0.6, (c) n'” =0.8.
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Figure 8. Effect of the mismatch in “hardening” parameter of the near-tip strain field :
deformed mesh under symmetric (mode I) far-field loading for (a) n? =n? =06
and (b) n” = 0.6 and n'’ = 1.0. The length scale [ corresponds to the radius
of the circular domain along the boundary of which the symmetric
(mode I) boundary conditions are applied.
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Figure B.1. Higher-order asymptotic exponent ¢ vs. (n”,n?) for 0.5<n? <n” <1 :
a) three-dimensional view and b) contour plot. To enhance the visualization, the values
of t have been repeated symmetrically with respect to the axis n”? = n®.
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Figure B.2. Angular variation of the lower-order asymptotic term 1Y@ ; n,m) with
corresponding values of the exponent ¢ : for (a) n? =06, ®) n'” =08.
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