71

Chapter 4

Announce-Listen

In this chapter, we explore Announce-Listen as a scalable form of group communication. We present
the core Announce-Listen algorithm, as well as an enhanced version with caching. We describe the
algorithm’s salient parameters and several important metrics for gauging its performance: consis-
tency, convergence time, messaging overhead and memory usage. We focus on the derivation of a
model for the consistency metric, providing analysis and simulation, then discuss the other metrics
in terms of how they meet consistency requirements. This chapter concludes with an assessment of
previous work on this topic, a summary of our findings, and a discussion of future directions for our

research.

4.1 Core Algorithm

Each process participating in the Announce-Listen algorithm makes announcements at a fixed pe-
riodicity, T (Figure 4.1). An announcement from process p to process ¢ experiences a transmission
delay of Ap, and contains one piece of essential information, a key-value pair that is stored in a table
at the recipient. The key is an identifier for the announcing process and the value is the state that
the process disseminates. For example, a process might announce its location, its load, or even the
time it expects to send the next announcement. Each process also listens for announcements from
other processes. We call this table a registry and the collection of registries at each listener forms a
distributed directory.

Announcements are sent to a multicast group address where they are disseminated simultaneously
to all participating processes (Figure 4.2). Due to a combination of transmission delay and loss in
the network, it may take multiple announcement periods for a particular piece of data originating

at the sender to reach all of the receivers.

72

p: | | k i

announcer \

q:

listener X = update

Figure 4.1: Periodic Announcements and Updates.

The basic algorithm is shown in Program 4.1. Each process acts as an announcer and sends its
state information to the multicast address every T units of time. It accomplishes this by sending
an announcement, then setting an announce timer to expire T units of time in the future. When
the timer expires, the process sends the next announcement. Concurrently, each process acts as a
listener on the same address, listening for announcements from other processes. On the receipt of
an announcement, process state information is stored in the listener’s directory, where it is stored
indefinitely. Specifically, the entry in the registry indexed by msg.key is updated to store the value
msg.value. In our studies we consider every process to be simultaneously both an announcer and a

listener.!

Figure 4.2: Announcing to Multiple Processes.

A more realistic representation of the AL algorithm is that a process caches entries for a limited
time. Thus, we introduce a modified version of the algorithm in Program 4.2 that ages state
information and removes it from the cache upon final expiration. We use this algorithm as the basis

for the analysis in this chapter.

1 Although we use the same address for announcing and listening, an implementation might use separate group
addresses for each of these tasks. The effect of this would be that the process could be an “announce-only” process
for one address, and a “listen-only” process for the other address.

73

ANNOUNCE-LISTEN (T
1 send_announcement ()
set_announce_timer (7))
do
if receive_announcement (msg) then
update_registry_entry (msg.key, msg.value)
if announce timer expired () then
send_announcement ()

Q0 ~J O U i W N

set_announce_timer (7))

Program 4.1: Announce-Listen Algorithm.

ANNOUNCE-LISTEN-WITH-CACHING (T4, TL, mazx_age)
1 send announcement ()
2 set_announce_timer (T4)
3 do
4 if receive_announcement (msg) then
5 update registry_entry (msg.key, msg.value)
6 set_listen timer (msg.key, Tr,)
7 if i = listen timer _expired () then
8 age = age_entry (i)

9 if age > maz_age then

10 remove registry entry (i)

11 else set_listen timer (i, Tp)

12 if announce_timer_expired () then
13 send_announcement ()

14 set_announce_timer (T'4)

Program 4.2: Announce-Listen Algorithm with Caching.

74

The new algorithm relies on multiple timer values: T4, the announcement periodicity, and 7., a
cache entry renewal periodicity. T4 behaves identically to T in the original program, and is used as
the bound on the announce timer that reminds an announcer to send the next announcement. 77,
is the bound on the wake-up timer that reminds a listener either to expire or to renew an entry in
the registry.

A process begins the algorithm by sending an announcement message, then setting the announce

timer to expire in T4 units of time. The process waits for one of three events to occur:

1. If the process receives an announcement, it caches a key-value pair in its registry, as before;
the entry msg.key is updated to msg.value. However, now each registry entry is associated
with an expiration timer. Thus, the listener resets the listen timer for entry msg.key to expire

Ty, units of time into the future.

2. If the listen timer expires, the process did not hear an update from the announcer associated
with the i** entry within the last T units of time. The process ages the registry entry,
incrementing its age by one. The variable age depicts how many consecutive expirations have
occurred for an entry at a given point in time. The expiration process allows max_age such
expirations, before removing the data permanently. Whenever an announcement arrives for a

given entry, the age variable is reset to 0 inside update registry_entry().

3. If the announce timer expires, the process issues its next announcement and resets the announce

timer.

Although there exist variations of AL that send announcements using adaptive announce timers
[55], for simplicity we examine the behavior of the algorithm when all entries use the same fixed
announcement periodicity. Adaptive timers have been used to handle an influx of group members
while keeping the overhead of communication fixed. If the membership grows large, the idea is
to reduce the frequency of messages by increasing the periodicity, T4, resulting in fewer messages.
Likewise when the group size shrinks, the frequency of messaging increases.

There are also implementations that use progressively larger listen timer expiration values be-
tween each round of expiration, but we assume processes use the same fixed listen timer value, not
only between each other, but also between rounds of aging cache data (e.g., step 13 in Program 4.2).

Here, we make the simplifying assumption that T4 = T, = T. However, we assume max_age is
set high enough to allow data to transit the network (e.g., maz_age > 2) and to accommodate the
level of message loss in the network. In effect, announcements are issued at regular intervals of T4
and their state is cached for a duration of up to T, = kT4, where k = max_age, typically a small

integer value.

75
4.1.1 Scalability

Announce-Listen (AL) is an algorithm that uses periodic messaging to propagate local state in-
formation to remote processes. The idea of using announcements, with no form of feedback, is in
contrast to traditional acknowledgment-based messaging, where the receipt of a message triggers
an explicit acknowledgment (ACK) or where the detection of a missed message triggers a negative
acknowledgment (NACK). One motivation behind AL is that an acknowledgment-style handshake
between processes works well between pairs of processes, but can be problematic among groups of
processes. As stated earlier, when a message is multicast to a large group of processes, there is the
potential that implosion may result from simultaneous ACKs. Even when only NACKs are used
to indicate negative vs. positive receipt of a message, implosion may still result when losses are
correlated and simultaneous NACKs might be generated within a whole branch of the multicast
routing tree. Therefore, AL offers groups of processes the potential to avoid implosion and to scale
more gracefully than traditional ACK/NACK messaging.

Another motivation for AL is to allow large groups of processes to be unencumbered by a feedback
mechanism. Whereas Suppression attempts to reduce the number of responses and to spread them
out over the Suppression interval, Announce-Listen attempts to eliminate explicit process interaction
altogether. This is important in scenarios where time is of the essence. The ability to “not wait”
for an acknowledgment removes not only a round-trip time (RTT) of delay, but also eliminates the
considerable extra delay incurred when a message goes unacknowledged and must be retransmitted
several times. AL can be thought of as decoupling the sending process from the receiver process(es),
allowing each to behave asynchronously. Thus, AL not only generates fewer messages by removing
feedback messages, but it also removes the delay associated them.

However, the removal of an explicit, tightly-coupled feedback mechanism has a direct impact
on the way in which reliable data distribution can be implemented in such a system. An implicit
form of feedback is possible, for example by piggy-backing feedback information in announcements
themselves (see Section 4.9), but the information is now delayed until such time as an announcement
is scheduled by the recipient (the reporter of feedback) in the direction back to the original sender.

Nonetheless, a compelling argument for AL is that there are applications in which reliable data
delivery is not of critical importance. There are also applications where eventual data delivery is
an acceptable level of service, and still others where we can forego reliability entirely. For instance,
systems with a real-time element, or ones where data changes rapidly, may not require reliable
delivery because by the time data is retransmitted it has changed anyway. An example that falls in
this class of applications is a mobile device that announces location coordinates on a regular basis.

The reasoning behind why AL is a suffiicient alternative is that, through repeated announcements,
a message eventually will reach its intended destination(s), and with repeated announcements the

state at receivers will track the state of the announcer. Thus, for applications that can tolerate a more

76

loose form of communication, guaranteed delivery of every message (in the form of acknowledgments

or otherwise) becomes less necessary.

In short, Announce-Listen offers scalability to groups of communicating processes because it
removes feedback messages thereby avoiding message implosion, and eliminates waiting for feedback
messages. It is beneficial to use AL in lieu of acknowledged messaging in situations where there is
little to no back-channel bandwidth or, even if there is a modicum of bandwidth, where feedback
messages would overrun the sender. AL messaging is resilient to faults in the network and changes in
group membership because state is continually replenished so processes can quickly learn the state of
the system. However, scalability hinges on the fact that data changes happen at a high enough rate
to warrant continual updates. Furthermore, AL is most appropriate for those applications where

the eventual consistency of this loosely-coupled messaging model can be tolerated.

4.1.2 Model Parameters

In addition to T4, the announcement periodicity, and 77, the cache entry expiration timer, there
are several other parameters used in our model: N, the number of processes participating in the
algorithm; A, initially a fixed message transmission delay between processes; p, the probability of

message loss; k, the number of times a cache will age an entry before expiring it entirely.

The update periodicity, the frequency with which the content of announcement messages changes
(separate from process arrivals or departures) is given by the parameter r, where r > T. When
r = 00, the data value never changes, so each announcement contains the same data as the first
announcement. When r = T', the data value changes with each announcement. Although the data
may change more frequently than T', the announcement periodicity, there is no way to distribute it

more quickly. Therefore, initially we assume r > T'.

A process is considered to have departed from the system when it stops making announcements.
Otherwise, a process is considered alive. D(t) is the cumulative distribution function of the prob-
ability that a process departs ¢ units of time after it arrives. A(t) is the cumulative distribution
function of the probability that a process arrives into the system at time ¢. The relationship between
D(t) and A(t) is highly group specific. For instance, in a collaborative session that is scheduled to
begin at a specific time, arrivals are likely to cluster around the beginning of the session, whereas
departures are likely to cluster at the ending time. Membership is very stable during the middle of
the session. In an application with mobile group members, arrivals and departures may be extremely

dynamic.

These parameters are summarized in Table 4.1.

7

| Parameter | Description

Ta announcement periodicity
T cache entry renewal interval
N number of processes participating
A transmission delay
p message loss probability
k maximum entry age
r data change periodicity
D(¥) cumulative probability of process departure
A(t) cumulative probability of process arrival

Table 4.1: Announce-Listen Parameters.

4.1.3 Metrics

There are several metrics by which we can evaluate Announce-Listen. A key metric is the level
of consistency achieved among the N communicating processes as a function of time. Consistency
is a measure of how closely information stored in caches at the listeners compares with the actual
state of the announcers. Consistency is challenged whenever new information arrives into the system
(through an announcement either updating old information or reporting the arrival of a new process)
or old information departs (as might happen when data expires). A common goal for the Announce-
Listen technique is to maximize consistency while minimizing the other metrics: convergence time,

messaging overhead and memory usage.

Given consistency as a function of time, C(t), we can determine the convergence time of the

listeners, #(c,), i.e., the minimum time it takes to reach a particular level of consistency, c,.

We derive a metric for messaging overhead, in terms of the amount of bandwidth consumed by
the algorithm; we predict the number of messaging attempts that are necessary to attain a given
level of consistency and discuss the fraction of those that are redundant due to the update periodicity

(of information inside of announcements) or due to the nature of the multicast distribution.

Additionally, we present a metric for memory usage, the amount of memory consumed to achieve a
certain level of consistency. This metric is particularly useful for properly tuning the cache expiration
strategy for listeners, which must weigh the cost of storing information for too long against storing it
for too short a time. While the optimal cache expiration strategy may be unimportant for memory-
rich systems or ones with secondary storage, it may be critical for devices that are memory poor,

such as hand-held devices or embedded sensors.

Whereas we focused on time and overhead metrics for the Suppression technique, for Announce-

Listen we concentrate on consistency.

78

p: q:
Announcer Listener
arrive o= L
[~ - - _ _ A false
e negative
loss -) ~— inconsistent
- __— state
- T
depart =& - _ _ _— - false
I | positive

Figure 4.3: Listener Errors.

4.2 Consistency: Registry Cost

We can reformulate the issue of consistency by asking how good is the distributed registry built
from processes using Announce-Listen? By good we mean how accurate is the registry. To answer
this question, we define an objective function that attaches a cost to several types of errors: false
negatives, false positives, and inconsistent state. We illustrate these errors using two communicating

processes, an announcer and a listener process as shown in Figure 4.3.

e false negative: p.announcing is true (process p is issuing announcement messages), but state
information (a key-value pair) for p does not appear in the registry associated with the listener

process g, q.registry. The cost of omitting information from the registry is cost,,.

e false positive: process p is a member of g.registry, but it is no longer issuing announcement

messages. The cost of keeping expired information in the registry is cost,.

e inconsistent state: process p is a member of g.registry and is issuing announcement mes-
sages, but the information pertaining to p in gq.registry does not match the information for p
in its own registry, p.registry. The cost of maintaining incorrect information in the registry is

costg.

The severity of these three errors is not the same. While a false positive is misleading, in that it
provides stale information about a process no longer participating in the registry, a false negative
provides no information at all. Similarly, a piece of inconsistent information could be better than
no information. For example, if the registry stores resource location information, a false positive
is potentially useful in that it provides a hint of past history which may be used to track down

the process in the future, if the process resumes announcements to the group at a later time. In

79

this context, wrong state information also has potential benefit, even more so than false positives.
Because the process is actually still participating, the information in the registry, while stale, may
allow the process to track down the correct value through proxying or forwarding entities.

Thus for this example, cost, > cost, > costs and the objective is to minimize the overall cost of
inconsistencies. Other scenarios may differ as this is application dependent. For instance, if a theatre
is announcing its movie schedule, a false positive may mean someone may make an unnecessary trip.
On the other hand, a false negative may mean one simply schedules to see the movie later or

elsewhere.

The cost of ¢’s registry, Cost(q), is given by:

Cost(q) =
(# p = p.announcing A (Vv :: (p,v) € q.registry)) * costy, +
(# p = "p.announcing A (Fv :: (p,v) € g.registry)) * cost, +
(# p = Qv (p,v) € q.registry) A (p,v) & p.registry)) * costs

Cost(q) is a random variable that depends on which processes are in the system, and on which
messages are lost by the network. Therefore, we evaluate AL by examining the average cost of a
registry, E[Cost(q)].

Below we derive the likelihood of false positives, false negatives, and inconsistent state. First we
create a model of the listener state transition probabilities. Next we relate it to an estimate of any
given registry entry being in error, then revise these estimates to accommodate process departures
and discuss the impact of process arrivals.

Once we can approximate the degree of error on a per entry basis, we can deduce the overall
consistency in a given registry, and from that we can extrapolate the overall consistency of a collection

of distributed registries participating in the Announce-Listen algorithm.

4.2.1 Listener State Transition Probabilities

A model of the listener process is depicted in Figure 4.4, which displays listener state transition
probabilities.

When a listener receives an announcement with probability 1 — p from a remote process, the
process becomes newly Alive, i.e., the announcer’s state is entered into the listener’s registry. Once
registered, the remote process refreshes its state periodically by sending renewal messages. These
renewal messages are received with probability 1 — p, and dropped with probability p. If dropped,
the listener cycles through k Not Sure states before marking the announcing process as Departed,

i.e., expiring the announcer’s state from the registry. As the listener progresses from one Not Sure

1-p

Departed

1-p

Not Sure
age =1

Last Tl'y
age =k —1

Figure 4.4: State Transition Probabilities.

state to the next, the listener becomes progressively less certain as to the state of the announcer.
The state Last Try is the last state in which the listener maintains a valid registry entry for the
announcer. If the listener regains communication with the announcer, the announcer is considered
Alive again and its state is refreshed.

Each state is also associated with the age of the entry, which appears as a state name in Figure 4.4.
For an entry to have age = m, m listen timers must have expired and the m*" timer expired at
time mTy, (relative to when the entry was inserted into the registry). The age changes to (m + 1)
at time (m + 1)T7, if no announcements were received in the interval [mTy,, (m + 1)Tr]. That means

all announcements sent in [mTr, — A, (m + 1)TL, — A] were lost. The number of announcements is:

0 = [(m+1)TL—AJ_[mTL—AJ
o TA TA
Therefore, the state transition probability from age = m to age = m + 1 is p*. When T = Thq,

a = 1, giving the probabilities shown in Figure 4.4.

4.2.2 FError Model

Figure 4.5 associates listener actions with each state transition and depicts the listener’s event-driven
caching and aging strategy. We use the convention that state transitions are labelled with %, where
A is an event that occurs, and B is the consequence of the event occurring. The diagram also offers
another way to think about the listener model, by comparing it to the model maintained by the

announcer.

81

recv msg
from new proc recv msg

\ register re-register

T

Departed
An—k

Less Sure
QAn—2

expire=k
reset k

unregister

recv msg timer expired

+=

refresh age++

Figure 4.5: Event-Driven Caching and Aging Strategy.

82

A
T | —
(n—k)T (n—2)T (n—1)T nT T (n+1)T
12

Figure 4.6: Boundary Condition at A.

When a listener receives an announcement from a process not currently in the registry, it registers
the announcer as being Alive. The listener refreshes the announcer’s registry entry with the receipt
of each subsequence announcement message. If the listen timer 77, expires, the listener ages the
announcer’s state information and becomes Not Sure of the announcer’s current state. The listener
is willing to progress the announcer through k — 1 stale states. If k expiration periods pass, the
announcer is considered Departed from the system and its entry is removed from the registry. At
such time as a new message is received from the announcer, the listener re-registers the announcer

as being Alive once again.

If an announcer process begins at time 0, then the number of announcements sent to a listener
process by time t is effectively n = |¢/T"]. If the listener stores what it thinks is the current state
of the announcer, and the announcer has issued n announcements, then ideally the listener state is

h announcement. However if the n" announcement is

an, the data value sent in the announcer’s n'
lost, the listener may contain a previous data value from an earlier announcement. The probability
that the listener has cached old state from the m** announcement, a,,, is the probability that the
listener actually received the mt® announcement and lost all subsequent announcements between m

and n, the current announcement:

Pr[listener state is a,,] = Prlreceived m*" announcement]

Prmissed all states after an]

—1M

(1-p)*xp

Now consider the fact that the listener ages the announcer’s entry through & old states before removal
from the registry: states a, through a,_xy1, which also appear as state names in diagram 4.5. The
cost of being in one of these states is captured by its distance from the Alive state, a,. If the
listener state is ay, then the cost is given by n — s. If the distance n — s > k, then the announcer is

considered Departed and its state expired.

An application may have different requirements regarding the consistency of the registry. We
would like to calculate the likelihood that the error in the registry is less than some tolerance e,

denoted Pr[Err < e], where 0 <e < k.

83

Given the current time ¢, we know that a|; 7| is the last message sent by the announcer. This
message takes time A before it can be received. We consider two cases: ¢ < A + [%|T and
t>A+ L%JT In the former case, we can never be consistent with the announcer because of the
network delay. The boundary condition that arises at the listener is displayed in Figure 4.6.

Therefore, Pr[Err < €] is evaluated separately in each of these intervals. The probabilities of
the listener process being in each of the states are shown in Tables 4.2 and 4.3. The tables are
similar, except that when ¢ is within A of the Announce message, the listener could not possibly

have received the last message, a,,, regardless of whether or not the network loses the message.

State Name e | P[Err =¢€]
an Alive 0 0

Gn-1 Not Sure 1 1—p

Gn—2 Less Sure 2

(1-pp
an—kt1 | Last Try | k—1| (1—p)pF~2
Ak Departed E | pFt

Table 4.2: Inconsistent State: nT <t < nT + A.

State Name e | P[Err =¢€]
an Alive 0 1-p

Gn-1 Not Sure 1 1-pp
Ap—2 Less Sure 2

(1-pp°

an—t+1 | Last Try | k—1| (1 —p)pt?
Ak, Departed k p*

Table 4.3: Inconsistent State: nT + A <t < (n+ 1)T.

The probability within each interval that Err < e is a sum of the probabilities that Pr[Err = i
for i from 0 to e. The probability of the current time ¢ falling within (versus after) A of the nt?
announcement is proportional to the ratio of the transmission delay to the announcement periodicity

A/T (versus 1 — A/T). By within A, we mean ¢t < A + | £]T. By after A, we meant > A+ | £|T.

Pr[Err < e | within A] = Z PrErr = i]within A
i=0
= Q-p)A+p+p*+---+p°)

= 1= pe+1

e
Pr[Err <e|after A] = ZPT[ETT = i)after A
i=0

84
= (1-pA+p+p*+--+p7)

€

A
Prlwithin A] = =
rlwithin A T
T-A
Prlafter A] = T
PrlErr <e] = Pr[Err <e|within A]* Prlwithin A]+ Pr[Err <e | after A]* Prlafter A]

1—p* —p*(1 —p) (%)

4.2.3 Departures

Tables 4.2 and 4.3 are based on the condition that the announcer process is alive and they assume
that the announcer only leaves at the state Departs. In fact, the announcer may have departed
earlier. Therefore, we need to refine the earlier tables and take the departure distribution probability,
D(t), into account, focusing in particular on the probability of the announcer being alive at time ¢,
D(t) =1— D(t).

Below we consider the current time ¢ falling in the interval after A, as well as within A. In each of
these intervals, we present examples of different states and explain that each state represents multiple
possibilities, i.e., each leads to different types of errors that arise in the system (false negatives, false
positives, and inconsistent state).

Appendix A contains Tables A.1 and A.2 summarizing the observations below. Although not in

the tables, we discuss the impact of the rate of data change, r, on the analysis in Section 4.3.

After A. Correct states in the system only occur when the current state at the announcer and
listener are identical; when the listener considers the announcer Alive and the announcer process
is not dead, or when the listener thinks the announcer Departed and the announcer has departed.
According to Figure 4.5, this happens in state a,, when the announcer is alive and the message
was received successfully by the listener. This also happens in state a,_j when the announcer has
departed and the listener finally expires the announcer’s state.

For example, here is how we can refine the Departed state by considering departure probabilities,
when t occurs after A. When a process is not alive at time ¢, it could have departed at anytime in the
interval [0, t]. Therefore, the probability of a process not being alive at time ¢, X, is the sum of the
probability that the process died at time (n — k)T (the earliest point at which the listener could have
detected the departure), plus the probabilities that the process departs within any announcement

interval between (n — k)T and the current time ¢. If the process departs in an intermediate interval,

85

it must also have been preceded by message loss for the listener to be in state a,,_.

(D((n—k+1)T)—D((n—k)T)) xp+

(D((n —k+2)T) —D((n—k+1)T)) xp> +

(D(t) = D(nT)) x p*

Another departure from Tables 4.2 and 4.3 arises when the listener process receives an announce-
ment message. In that case, there is no falsely believing the announcer has departed. Thus, a false
negative error is not possible. Likewise, a false positive error is not possible when the announcer is

actually departed from the system, since we cannot falsely believe the announcer is alive.

Within A. When we consider the interval within A, there is only one correct state in which the
listener and announcer match. This occurs in state a,—j (Figure 4.5) when the announcer has
departed and the listener detects it. In that state, it is not possible to have a false positive error
where the listener falsely believes that the announcer is alive when it is not. However, it is possible
for a false negative to occur if ¥ messages have been lost and the announcer is actually still alive.
Except for that case, a false negative error is not possible because a message is always received;
therefore, the listener cannot falsely think the process has departed. Finally, it is not possible for
the listener to be within A of the announcement and for its registry to contain the correct data
value for the announcer, since the listener has not received the update message yet.

The calculation for the probability of a process not being alive at time ¢, Y;, is similar to that of
X;. However, there is one fewer message to account for because a message could not have possibly

reached the listener yet, due to network transmission delay, A.

Y; = D((n-kT)+
(D((n—k+1)T) = D((n — k)T)) x p+

(D((n—k+2)T)—D((n—k+1)T)) x p* +

(D(t) = D((n = 1)T)) x p**

4.2.4 Overall Registry Consistency

We have seen how to calculate the probability of false positives, false negatives and inconsistent

state for one announcer’s registry entry. Since each of these corresponds to an error in the registry

86

state, the total probability of error per entry is given by:
Pr[Err] = Pr[False =]+ Pr[False +] + Pr[Inconsistent State]
The expected cost per entry is given by:
Elcost] = Pr[False =] cost, + Pr[False +] * costp, + Pr[Inconsistent State] x costs

At time t, Pr[Err] is the probability of error for one registry entry given one announcer, and
Pr[C] = 1— Pr[Err] is the likelihood of its consistency. We can use Pr[C] to derive Pr[Cy], the

probability of consistency for one listener registry with N announcers.
PriCy] = (1 - Pr[Err)N-!

Note that the state for the local announcer is never inconsistent, thus the usage of N — 1. We also
can differentiate between different types of inconsistency based on the number of announcements

that have been missed, as shown in Appendix A.

4.2.5 Arrivals

If we look at each registry entry and start time at ¢ = 0, the tables are accurate (Tables 4.2 and 4.3,
and Tables A.2 and A.l). However, when we look at global registry consistency, each entry may
have a different start time. Thus, let us examine the impact of the arrival distribution on Pr[Err(t)],

the probability of error at time t.

Let A(u) be the distribution for process arrivals into the Announce-Listen algorithm. If a process
arrives into the system at time u, then for that process the new probability of error at time ¢ is

shifted in time becoming Pr[E(t — u)].

Consider an example in the discrete realm. Process ¢ (0 < i < N) arrives at time 7 (relative to

time 0 when the algorithm begins) and each stays through time A, the last arrival time.

Average Pr[Err(t)] = Pr[Err(t)]-uo+ Pr(Err(t —1)]-u1 +

Pr[Err(t —2)]-us+ ...+ Pr[Err(t — N = 1)] - un
In the continuous domain, the average probability of error at time ¢ becomes the integral

Average Pr[Err(t)] = /A A(u) - Pr[Err(t — u)]du
0

87
4.3 Inconsistent State: Analysis and Simulation

In this section, we focus on the likelihood of inconsistent state. We discuss our intuition about the
behavior of the system, then ground it in analysis for » > T, i.e., the periodicity of data changes
is greater than or equal to the announcement periodicity. We derive expressions for the expected
probability of single entry consistency, as well as overall registry consistency. We validate these

results using simulation.

4.3.1 Analysis

Assuming T and A are identical across announcers, Pr[one entry is inconsistent] can be determined
by summing the entries in the table in Appendix A that correspond to inconsistent state.

First, consider our intuition about the case where D(¢) = 0, the numbers of late arrivals are
0, and » = T, meaning each announcement contains new data. Either an announcement is lost
en route to the listener with probability p or it is received with probability (1 — p). In the event
that a message is received, the registry is inconsistent for that entry for a period of A/T in each

announcement interval. Accounting for the fact that the message may not be received, we posit that

S| b

Prlone entry is inconsistent] = p+ (1 —p) x

Now let us actually model the impact of r > T and compare the results. There are fewer
inconsistent state errors due to the fact that error only increases when we cross an “r boundary.”
In other words, a,, could be the first announcement in a cluster of r/T identical announcements. If
we assume the cache is infinite, then the number of announcements that have arrived at the listener
by time ¢ will be n = |¢/T"]. As performed in Section 4.2.2, to arrive at Pr[Err < e | within A] or
Pr[Err <e|after A], we just add the columns of the tables. Only now, the columns are infinitely

long and lead to the results:

PrlErr < e | within A] = 1— plt/TI-1

Pr[Err <e|after A] = p(1—pt/TI7Y)

If a,, is the second announcement in a series of /T similar announcements, we can drop the first
line in both columns and then sum the remaining columns. If a,, is the k" announcement in a series

of r/T similar announcements, 1 < k < r/T, we drop the first (k — 1) lines. The sums become

PrlErr < e | within A] = ph~t — plt/TI-1

Pr[Err <e|after A] = p ("' —plt/TI-1)

88

Therefore,

A
Prlone entry is inconsistent, given k] = (T) (pk_1 —p“’/TJ_l) +

(1 B %) » (pkfl _th/ijl)

o) (4522)

We take the mean for k over 1...7/T,
r/T

1 1-pA
Prlone entry is inconsistent] = r/—T X Z <pk—1 _th/TJ—1) (% +p)
k=1

T(A=pA N (L=pT 1y
r T 1-p T

When we assume ¢t > T, the expression becomes

T ((1-pA 1—p/T
Prlone entry is inconsistent] ~ - (% —|-p) (Tpp)

(-7« 125 0-)

2

We can see from these results that when the data change rate, r, is large, the same message gets
announced multiple times and the loss probability goes down exponentially. We also can check this

formula against our intuition for » =T and find that the results match.

T
Prlone entry is inconsistent],—r = (1-p)+—p
r

(1-p)+p

ND | >

From Prlone entry is inconsistent] we calculate the expected number of incorrect entries in the
registry,
N-1

E[# incorrect entries|,=r = Z Prlone entry is inconsistent],—r

i=1

= (p+a-px D) x -

as well as the expected fraction of inconsistent entries in the registry, E[% inconsistency|,=r, and

consistent entries in the registry, E[% consistency],=r.

E[% inconsistencyl,—=r = (E[# incorrect entries],=r)/N

E[% consistencylr=r = 1— E[% inconsistency|r=r
(V-1

=1 +(1—p) x A x
B P Py N
In the next section, we validate these results with simulation. We concentrate on the results for

r =T, as they serve as a worst case scenario.

4.3.2 Simulation Results

Each simulation was run 50-100 times using the ns simulator [6]. As in the Suppression simulations,
we used a star topology with participating processes at the edges of the star, resulting in fixed delays
between all processes. We observed the behavior of AL with between 2 — 10 nodes, in increments of
one node, and between 20— 100 nodes, in increments of 10 nodes. We also simulated loss probabilities
between 0 and 1 in increments of .1.

We experimented with a fixed announce timer T' = T4, as well as with T adjusted by mean-
zero white-noise; with fixed and random sample intervals for when to observe the simulation; and
with snapshot and event-driven simulations (assess the state of the system at random points in time
versus only when significant events occurred). The results for these configurations were qualitatively
similar.

Therefore, for our experiments, we chose to use an announce timer 7' that was adjusted in each
interval by mean-zero white-noise; the announce timer value was selected from the uniform interval
[.6T,1.5T], rather than being kept rigidly “fixed”[28]. We did this to avoid bursts of congestion when
all processes announced simultaneously. We calculated the state of the system by using event-driven
simulations, where error in a listener registry was evaluated with the receipt of each message.

The exact content of each announcement message is shown below in Table 4.4. The key identifies
the process making the announcement and the value is state shared by the process. The seqno
provides a sequence number (message count) for the announcements from the process, allowing the
listener to detect losses in the data stream, whereas the version tracks the number of times the
content has changed since the process began announcing. We send both seqno and version to
more accurately determine wrong state; it may happen that a message is lost but the data in an
announcement does not change between the last and next message received. An announcement
message also contains the time it was sent, from which the listener can determine round-trip time
delay (see Section 4.9), as well as the expected time of the next announcement, from which the
listener can adapt its cache entry expiration strategy to variable timer periods.

However, in the simulations discussed below, every announcement constituted a data change

90

| Field | Description
key process identifier
value process state
seqno sequence number

version version of data
send_time | time message sent
next_time | anticipated next transmission

Table 4.4: Announcement Message Content.

(r = T) and data was never expired from the cache (k = o0). The actual state stored by each
listener about each announcer was extremely simple; a key-value pair consisting of a unique source
identifier and the data version number < source id, data version## >. We were not interested so

much in the state information sent, as we were interested in the version of the state.

The registry was examined during “steady state,” i.e., those times when N (the membership) was
constant. In particular, the system was examined at a point after all processes arrived (within a very
short time of ¢+ = 0) and before they departed (within a short time of an agreed-upon completion
time). Thus, any inconsistencies in the system were due to transmission delays or packet loss rather
than A(t) or D(t). We studied this behavior because it emerges in several existing applications. For
instance rendezvous style meetings that are slated to begin (or end) at a set time and systems where
nodes simultaneously reboot at initialization (or leave concurrently when there is a failure). They
have the property that arrivals (and departures) cluster around specified times. In these systems,
group membership remains fairly static in between session initiation and completion. We show some

representative results below.

In Figure 4.7, we show a comparison of the simulation vs. the analysis, with 7" =1, A = .1,
the data change rate r = 1 and p = 0; the simulation validates the analysis. This experiment was
repeated by varying 2 < N < 100, .001 < A/T < .5, 0 < r < 10, and the results matched under

these circumstances as well.

Figure 4.8 displays the impact of increasing A /T (the network delay relative to the announcement
period) on the level of simulated consistency, E[c]. As A/T increases, consistency decreases. This
can also be seen in Figure 4.9, which depicts the change of A/T over several orders of magnitude.
Holding A/T constant, Figures 4.10, 4.11 and 4.12 show that as r increases (i.e., the rate at which
data change slows relative to the announcement periodicity T'), consistency increases. When data
changes with every announcement, r = T', and there is no loss in the system, p = 0, the probability
of an inconsistent entry reduces to A/T. This analysis is validated in the simulations in Figures 4.10,
4.11 and 4.12, which are scaled versions of each other. The graphs show the effects of decreasing

A/T on the expected level of consistency.

91

T=1, delta=.1, ratio=.1, r=1, p=0, iter=100
0.95 T T T T T T
sm <
analysis
0.945 h

0.935 b

E[% consistency]
o
©
w
T
|

0.925 b

0.915 b

Figure 4.7: Simulation vs. Analysis: Inconsistent State.

delta=.1, p=0, r=1, iter=100
0.95 T T T

L raio=0.1 —— |
08 ratio=02 ——

0.75 |© ratio=05 ——

06 - o 7

0.55 | | | | | | 1
2 3 4 5 6 7 8 9 10

Figure 4.8: Simulation: Inconsistent State (Large ratio = A/T).

delta=.1, p=0, r=1, iter=100

1k i
098 1 ratio=.001 ——
ratio=.01 ——
0.96 5
<
m
0.94 - -
0.92 - 3
09 - =
10 20 30 40 50 60 70 80 90 100

Figure 4.9: Simulation: Inconsistent State (Small ratio = A/T).

E[c]

E[c]

E[c]

92

ratio=.1, iter=50, p=0

0.99

0.98

0.97
0.96
0.95
0.94
0.93
0.92

0.91

0.9

0.89 1 1 1 1 1 1 1 1 1

Figure 4.10: Simulation: Data Change Rate (A/T = .1).

ratio=.01, iter=50, p=0

------ e et

0.999 = H H H = H
e — — S—, e— — — —;

K

0.998

0.997

0.996

T

O DOUTEWNE

- =

I
10 20 30 40 50 60 70 80 90 100
N

Figure 4.11: Simulation: Data Change Rate (A/T = .01).

ratio=.001, iter=50, p=0

0.9999

0.9998
0.9997

0.9996

0.9995
0.9994
0.9993
0.9992

0.9991

0.999

0.9989 I I I I I I I I I
0 10 20 30 40 50 60 70 80 920 100

Figure 4.12: Simulation: Data Change Rate (A/T = .001).

93
4.4 Convergence Time

Convergence time is defined as the minimum time before which the Announce-Listen algorithm
reaches a particular level of consistency. It is a function of group size, announcement periodicity,
transmission delay and packet loss.

Consider the lossless case. When there is no loss and transmission delay is a fixed amount, A,
announcements are trivially calculated to take A units of time to reach all listeners. Each announce-
ment reaches destination registries simultaneously. When transmission delay varies between pairs
of processes, the time it takes for an announcement to propagate to all registries is bounded by the
maximum A;;, where A;; is the pairwise delay between the announcer process ¢ and listener process
j(Vi,j::0<14,j <N).

When loss is introduced, the calculation for convergence time depends on knowing the number
of attempts (retransmissions) it takes to send an announcement successfully. In this regard there is
some resemblance to the Suppression metric for E[# messages]. For Suppression, we ask how many
messages does it take to suppress a group of N processes. In the case of Announce-Listen, we are
interested in knowing how many attempts, E[# attempts], are needed for a given announcement to
reach all N listeners.

Below, we provide a rough estimate of propagation time to provide some intuition about the
metric. On average, each announcement reaches only a subset of the listeners of size (1 — p)N. So
we can determine the number of iterations i or rounds of repeat announcements it takes to cover
the whole set. On average, the 15 message reaches N (1 — p) processes, the 24 reaches N(1 — p)p
additional processes, the 37 reaches N (1—p)p? and so forth. Therefore, after 4 attempts, the number
of listeners that the message has reached is N(1 —p’) = N(1—p) + N(1—p)p+...+ N(1 —p)p~!,
whereas the number of listeners the message has not reached is Np'.

Let us define € as the acceptable fraction of the membership N that goes unreached; ¢ therefore
defines a target level for inconsistency. The goal for convergence is for the fraction of unreached
membership to be less than the acceptable level of inconsistency, or Np* < eN. When we solve for i,
and note that 0 < p <1 and 0 < € < 1, the number of iterations it takes for Np® to get sufficiently

small is

log(e)
log(p)

E[# attempts] >

For instance, if the goal is for all processes to hear a given announcement, i.e., that the number of
unreached processes should be less than one (Np? < 1 = eN), then € = 1/N, and the number of
attempts must be larger than

log(x)
log(p)

E[# attempts] >

94

When it is acceptable for a percentage of processes not to receive the announcement, e.g., £ = .1,

log(.1)
log(p)

E[# attempts] >

Once E[# attempts] is parameterized properly, the time it takes for the registry to reach a
consistent state, E[convergence time], is bounded in the worst case by the time between the first
and last announcement, plus the one-way transmission delay for the last message to arrive at the

furthest listener (Figure 4.13):

E[convergence time] = (E[# attempts] —1) X T4 + Apaa
(l"g € 1) X Tg + Ao
log(p)

This is an oversimplification because we have assumed that the content of the message does not
change between announcements, which may not be the case. If there is a premium on having the
registry attain a certain level of consistency by a given time (i.e., having announcements reach a
certain percentage of listeners), but each announcement contains new content (r = T4), then it
may not be possible to reach a certain level of consistency given p and A. In that case, it will be
necessary to adjust r or to use an alternate form of dissemination than AL (i.e., a more reliable

transport protocol).

0 Ta 2Ty
L 1 1
p: i‘ i =
announcer AN
(E[# attempts] — 1) x T4
+Amaw
q: e
listener
x = update Ao

Figure 4.13: Convergence Time.

4.5 Messaging Overhead: Bandwidth

How does Announce-Listen consume network bandwidth? There are two aspects to answering this.
First there is the question of how much bandwidth does AL require to achieve a certain level of
consistency. Second, there is the question of how much of the bandwidth is wasted, i.e., is consumed
by messages that are not necessary or that are redundant.

Let us consider the operational requirements given the periodicity of data changes, r. In Sec-

95

tion 4.4, we derived E[# attempts], the number of messages required by AL to achieve a level of
consistency of 1 —e. We use that knowledge to determine E[# wasted], the number of messages

unnecessarily sent.

e No Change. As stated in Section 4.2.2, if an announcer process begins at time 0, then by time
t the process has sent n = |t/T4| messages. When there is no change in the announcements,

E[# wasted] = |t/Ta| — E[# attempts].

e Each Announcement is an Update. If each announcement is an update of the state
information (r = T4), then all announcements are necessary and no bandwidth is considered
wasted; E[# wasted] = 0. The caveat is that if p is high, there may be a permanent level of

inconsistency in the registry, because p/N of the processes never receive the announcement.

e Data Changes Slower than T4. When r > T4 (and 7 is an integer multiple of T4), there
will be r announcements that repeat the same data before the content in the announcement
changes. If r > E[# attempts], then there will exist E[# wasted] = E[# attempts] —r rounds

of redundant announcements.

So far, we have assumed no new arrivals into the system. Static announcements are always useful
for newcomers in the case where r > T'. The implications are (1) the E[# wasted] calculations above
should be adjusted to reflect the number of new members during each announcement period, and
(2) after E[# attempts] messages are sent, an announcer should adjust r to be a function of A(t).
One way to accomplish this is to actually adjust T4 instead. Of course, convergence time would
now be a function of any new announcement periodicity.

Now let us discuss the impact of multicast on the level of redundancy of each announcement. An
announcement is deemed entirely unnecessary and a waste of bandwidth if it does not update the
registry entry for any listeners. Unnecessary messages are akin to extra messages in the Suppression
algorithm. However, it is more complicated to determine which messages are actually necessary,
due to the multicast nature of announcements. Due to message loss, some listeners will receive
an announcement, while others do not. If the same announcement is re-issued, even though the
announcement provides a useful update for those listeners who did not receive the announcement
earlier, it will be redundant for others in the group who have received it already. Therefore, band-
width can be wasted not only as a result of the lack of data change in announcements, but also
due to the multicast nature of the distribution tree. Therefore, E[# attempts] — 1 of the required
messages for consistency are only partially necessary: in other words, each time a message is sent,
on average, the message reaches only (1 — p)N of the nodes and does not reach pN of the nodes.
The first message is necessary, but the subsequent messages are potentially redundant for any nodes
that have already received it. Although we do not present an exact result here, we raise the issue

for comparison with the non-multicast case.

96

On the other hand, if a process that receives an announcement unsubscribes from the group

address immediately afterwards, then there is no redundancy.

4.6 Memory Overhead: Expiration Strategy

The cost of the registry depends in part on the data-aging model, which directly affects memory
usage. The data expiration strategy can age data slowly (when % is large) or quickly (when k is

small). Increasing k by adding more Not Sure states to the algorithm leads to:

e Fewer False Negatives. As a consequence of a longer expiration period, a listener waits
longer before it declares an announcer Departed. This helps those processes that are actually

alive, but whose announcement(s) might be experiencing packet loss or delay due to congestion.

e More False Positives. If an announcer stops announcing (because it has departed), then
the listener holds the information longer. If false positives are costly to store or a listener
needs to hear about departures in a more timely fashion (needing to know before k rounds of

timeouts), then an explicit Departed announcement can offset the delay [13] [54].

Another way to look at the k expiration states is to think of them simply as providing a longer
expiration timer. The aggregate expiration time (the total time an entry is cached, ¥Tr,) should be
long enough that an entry is not falsely removed because of delay or loss in the network. Therefore,
to maintain a high level of consistency, an entry should remain in the cache at least as long as
E[convergence time]. Thus a policy to maintain high consistency sets the cost function to be small
for recently stale data (within this bound), but increases it beyond this point; a consequence is that
entries are expired and removed, but not before knowing definitively that an agreed-upon value has

been reached.

4.7 Related Work

The idea of examining Announce-Listen probabilistically first appeared in [53]. At that time, the
phrase Announce-Listen was coined to describe the class of protocols that rely on sender processes
to periodically announce data and receiver processes to passively listen for updates. In this thesis,
we specifically extend that work to more formally consider the range of errors that can arise in
distributed registries built from AL. In addition, we incorporate other key parameters into the
analysis that contribute to the operation of the algorithm. The goal has been to expose the principal
variables affecting the system, in order to predict how they will behave under different operational

conditions.

97

Raman et al. [49] develop an analytic model for the AL primitive based on classed queueing
networks [7]. The focus of their research was to understand when adding feedback to Announce-
Listen is beneficial for consistency. Although the model may be effective in capturing certain system
phenomenon, it is entirely separate from the simulation results presented. Thus, although their
model may be accurate, there are no simulations to validate it. In addition, as pointed out in their
paper [49], the model is not analytically tractable when extended to perform two-level scheduling,
which they propose based on the simulations.

One goal of our work is to conclusively validate our model and analysis through simulation.
Once we can trust the model, it has predictive value. Given various parameters, we know how the
system will behave. Given a particular performance metric to optimize, we know how to tune the
system parameters to reach that optimization and the kind of impact those settings will have on
other performance metrics.

There are other differences with the approach in [49]. We examine steady state, where the
number of processes in the system is stable though the data in the announcements may change.
Raman et al. do assign lifetimes to data, which translate to processes coming and going in our system.
They characterize the system in terms of job rates and average behaviors, e.g., the rate at which new
information arrives into, or information leaves the system, as well as the average probability that data
is lost by one or more processes. We focus instead on individual announcements and individualized
parameters, e.g., N, A, Ty, T1,, p, T, k. As aresult, we directly expose the parameters that affect the
performance of the algorithm, and we can differentiate between individual announcer’s parameters
and hence between policies toward individual announcements. For example, the expiration time for
each entry is presented as a given at the outset of their model. By exposing p, k and T, parameters
in our model, we can understand how long it is appropriate to cache a value before removal. This
allows us to correlate memory and consistency requirements. In general, by creating a model with
parameters exposed, then we can adapt them as need be.

To combat the problem that some announcements are repeated (r > T') and will consume band-
width unnecessarily, they discuss creating two separate queues. One to announce new data and
another to announce old data, i.e., already announced at least once in the past. In their system,
data migrates from new to old after the very first time it is sent. Afterwards, old data is only
retransmitted upon request. Their research explores the appropriate ratio of bandwidth to allot to
the two types of data.

Our analysis technique suggests that the appropriate point for the new-to-old transition should
occur after E[# attempts] announcements, or beyond E[convergence time], the point in time that
all N listeners have received the data. This would save the retransmission delay of the NACK to be
received and queueing delay to switch the data from old to new queue.

Both studies are interested in the consistency metric as a driving force behind AL. However, the

98

metrics for latency slightly differ: they define an average latency from the instant a new or updated
key-value pair is introduced into the system to the first time it is received correctly; we define
the convergence time as the average time beyond which an updated key-value pair has successfully
reached all participating processes. This difference results because we are considering an N process
system, whereas they consider the behavior of two processes.

Sharma et al.[55] focus on adapting the periodicity of announcement messages, in order to keep
bandwidth usage below a fixed threshold. They propose techniques for receivers to estimate senders’
update intervals, both of which effectively reduce bandwidth usage over the lifetime of announcers.
As there is typically a correlation between announce timers and listen timers, the techniques to
adapt announce timers are coupled with modifications to the expiration strategies of receivers.
Although our work does not investigate the usage of adaptive announce timers, adaptive timers are
complementary in spirit to the goal of proper parameterization of the AL algorithm and could be

incorporated into the model proposed in this chapter.

4.8 Summary of Results

In this Chapter, we discussed the usage of the Announce-Listen algorithm as a means to disseminate
state information among groups of processes and to create a replicated distributed registry. We
highlighted that AL is part of the protocol spectrum that does not rely on any feedback mechanisms
for communication among processes.

We identified several metrics to gauge the performance of such an algorithm: consistency, conver-
gence time, network overhead and memory usage. We focused primarily on the metric of consistency
and pinpointed three different types of errors that arise and work against it: false negatives, false pos-
itives and inconsistent state. We derived a model of the probability of these types of errors occurring
and calculated the likelihood of any given registry entry being in error, Prone entry is inconsistent].
From this, we were able to deduce the overall consistency in a given registry, E[% inconsistency], and
the overall consistency of a collection of distributed registries participating in the Announce-Listen
algorithm.

We cast the other metrics in terms of how they meet consistency requirements. We presented an
analysis of the convergence time, E[convergence time], as a function of the number of attempts it
will take to reach N participating registries, E[# attempts], noting that parameters for r and Ty
may need adjustment to attain a given level of consistency. Based on the update periodicity, r, the
network overhead metric, E[# wasted], can be expressed in terms of E[# attempts] as well. In our
discussion of memory overhead, we described a method to parameterize the cache so that entries
were not prematurely expired: ensure that kT, > E[convergence time].

Our main contribution with regard to these metrics is establishing a working model that can be

99

used to parameterize them. Although other researchers have studied some of these metrics in the
past, they have done so only with simulation and without the accompanying analysis to support or
predict their findings. In addition, our new analytic model for AL exposed several key parameters not
accounted for in previous models: timers both for announcement periodicity and cache expiration,
transmission delay, and group size. With a sound model in hand, algorithms based on AL can be

fine tuned to operate comfortably within the range for which they were designed.

4.9 Future Work

Extensions to the Model: Sporadic Listening, Proxies and Hierarchies. The model thus
far has assumed that announcements are periodic and that listening is continuous. What happens
if the listening interval is bounded? An example of such a system is a sensor network where sensors
turn listening on briefly, then off again in order to conserve power. By giving up persistent listen-
ing, a process may need to rely on other processes more capable of listening full-time. When the
intermittent process awakens, it can request updated information from the proxy cache.

Such a process may also require that a proxy make announcements on its behalf. This leads
to the idea of proxy processes that not only collect, but also re-distribute information on behalf of
multiple processes. A proxy announcer becomes a secondary (versus primary) source of information.
However, in a distributed registry that includes proxy services, multiple announcers may announce
the same information, and an algorithm for conflict resolution will need to be devised.

We are interested in investigating the tradeoffs between the various conflict resolution approaches:
to embed additional information in announcements such as timestamps, versioning of data, or the
“distance” from the actual information source. Distance might measure how many levels of indirec-
tion exist between the node that owns the information and the one propagating the information, or
supply a topology measurement of delay time or number of hops. Are there substantial differences
in the impact on the consistency in the registry? Furthermore, we want to understand the effect of
redundant announcement messages on consistency, i.e., the likelihood that process p is in g.registry,
when it should or should not be.

Finally, to what extent can we build a hierarchical multicast registry, and parameterize it based

on the metrics we have derived in the non-heirarchical case? Are the metrics additive?

Approximate Knowledge. In the future, we would like to explore alternate caching strategies.
The idea is to store more state information than a single key-value pair. A simple approach is to

extend the cache to store more than one data value per entry. Cache policies might include:
e Cache j values per announcer in general, where j is small or is a function of memory constraints.

e Store all observed data values within the aggregate expiration timeout period.

100

By storing multiple key values, the registry can track the percentage of time a given announcer
spends in each state. When the registry is queried for information pertaining to a given process, these
statistics might dictate the order in which it returns the possible options and that the application
subsequently tries each of the entries. The registry could also track the degree to which state values
change, oscillate or go unreported. These statistics would help to estimate the proper registry
response when a query for information follows the recent expiration of data.

Although there is no way to distribute updates more quickly than T' (thus we assume r > T'),
we can use the knowledge of past history to predict the “direction” in which the data is going (e.g.,
akin to estimating the trajectory of an object) based on where it has been in the past. For example,
if the state information for a process cycles through a small set of values, past history may allow us

to predict the next value, even in the face of expired data.

Estimation of Transmission Delay. We have made the assumption that transmission delay, A,
is easy to determine and that there are out-of-band means to calculate it. However, this assumption
may not be true, nor is a fixed A value necessarily reliable.

We propose to explore the use of announcements themselves to derive estimates for one-way
transmission delays between processes. This, in turn, could be used to parameterize the Announce-
Listen algorithm, as well as other algorithms when AL is coupled to them (e.g., as in the case of
Leader Election, Chapter 5).

There are really two types of A values of interest to each process: pair-wise A, the pair-wise
transmission delay between a given process and every other process, and group-wise A, an average
transmission delay that is calculated from all the pair-wise values a given process has collected.
In order to make these estimations, a process must be both an announcer and a listener. We can

imagine at least three uses for A calculations:

e Parameter Adaptation. Because, realistically speaking, A is not rigidly fixed, we can use
A estimates to adapt the parameters of the AL algorithm itself. For example, if the registry
convergence time must be below a given threshold, and p and A,,,, are given, then adjusting
T4 may assist with that. In the future, we would like to understand the utility of incorporating
this type of feedback into the operation of the algorithm. Although there exist many other
adaptive multicast algorithms, we have not seen this technique incorporated into AL for the
express purpose of consistency or convergence times. Sharma’s work [55] focuses on adaptive

timers to optimize bandwidth metrics (to keep usage below a given threshold).

e Process Selection. The idea is for each process to derive pair-wise A values from announce-
ments (we explain the process below), then to calculate a group-wise A estimate, and subse-

quently to share the group-wise A information within announcements with other processes.

101

On receiving other process’ information, a listener can compare its group-wise A with other
processes’ calculations. A process will be able to assess its relative “distance” from the rest
of the group, i.e., if it is an outlier or topologically close to most of the processes. Outliers
are less likely to receive announcements in time, and are therefore less likely to be consistent
and more likely to remain inconsistent longer. Under the Suppression algorithm (Chapters 2
and 3), they generate more extra messages, whereas under Leader Election (Chapter 5) they

are more prone to falsely elect a leader and less likely to re-elect in a timely fashion.

A process can use the group-wise calculations to determine if it makes sense for it to become
an early awakener in the Suppression algorithm or a leader in the Leader Election algorithm.
In short, if a process’s group-wise A lies above other processes’ group-wise estimate, then it
refrains from responding quickly to SUP or LE, i.e., to try to suppress other announcements,
or to become leader. Likewise, if a process is positioned well within the group of processes, its

Suppression timer is shortened for SUP and LE.

In [53], a similar technique was used to calculate group-wise ttl’s in order to scope multicast

sessions properly.

e Subgroup Establishment. We could also use the group-wise A calculation to encourage
listeners with nearly identical values to become associated with the same “class,” where all the
processes within a “class” share network characteristics and belong to a separate subaddress.
From our Suppression analysis, we know how fixed-A systems behave and could predict and

parameterize these groups well.

In addition, the diameter of the processes within a “class” is now well-known and could be
used to establish at which layer in the multicast registry hierarchy a subgroup belongs. The
expectation is that, now that the groups are homogeneous in some network parameters, metrics

pertaining to consistency are additive/subtractive as we go up/down the registry hierarchy.

The process for calculating pair-wise A values is as follows. Listeners are already caching information
from specific announcers. If announcers were to include the local time that the message was sent,
as well as the sequence number of the announcement (i.e., the number announcement since time
t = 0), then a listener could echo this information back to the announcer when it becomes time for
the listener to announce its own information. In addition, the listener must include how much time
passes since the receipt of the announcement and when the listener issues its next announcement.
Because announcements are multicast, the calculations targeted for different listener processes will
be included in the same messages.

In Figure 4.14, we show that even though the exchange of announcements between two processes
are asynchronous, it is now possible to ascertain round-trip times, and subsequently approximate A

from that. Node 0 sends an announcement at time sqg, which is received at listener process 1 at time

102

ro; the announcement includes time sy. When node 1 subsequently makes its own announcement,
it echoes back the time sy as well as 7y to node 0, timestamping its own message as being sent at
time s;. On receipt of the announcement from node 1, node 0 is able to approximate the one-way

A between the two processes:

Agr =~ ((r1—s0) — (51 —10))/2

Likewise, when node 0 issues its next announcement, it piggybacks the necessary information for
node 1 to obtain A;g. Variants of this technique are used in such protocols as RTCP and SRM
[54][27].

nodeg node;
S0 —
Ao1
L -
— —— 31
ANTH
r

Figure 4.14: Roundtrip Time Estimate: Calculating Pair-wise A.

ACK- and NACK-based Schemes. We would like to identify the conditions under which mul-
ticast AL outperforms ACK/NACK messaging schemes, or vice versa. More specifically, we want to
find the r for which ACKed messaging is a better choice than AL. By “better,” we mean to evaluate
the performance of different metrics, such as consistency, convergence time, and overhead (network

and memory).

