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Chapter 3

Suppression with Loss

In this chapter we examine the impact of loss on the model for Suppression that we introduced in
Chapter 2. We revisit the metrics defined earlier but re-evaluate them under lossy conditions. In
addition, we present several new metrics to predict performance when loss occurs. These include
metrics for the effective completion time for the algorithm (Maximum Time Elapsed); the total
number of messages generated during the normal course of the algorithm (Number of Messages
Generated); and an estimate of how many of the messages that are sent are really necessary (Messages
Required) and how many are overhead (Extra Messages with Loss). We discuss several other metrics
that impact CPU performance, which are related to the probability of message receipt.

In addition to studying appropriate metrics, this chapter studies the effects of both fully cor-
related and fully uncorrelated loss. Fully correlated loss occurs when a message is lost closest to
the sender, so its loss is experienced by all receivers. With fully uncorrelated loss, a message is lost
closest to the receivers, thus the losses experienced by each of the receivers may be different. Most
multicast groups will experience loss somewhere between uncorrelated and correlated behavior, so
we calculate both as a way to bound the best and worst behavior. Throughout this chapter and the
remainder of the thesis, we use the terms correlated and uncorrelated to mean fully correlated and
fully uncorrelated, respectively.

Before concluding, we provide an overview of related work, summarize our results, and propose

future directions for our research.

3.1 El[tyn] Re-visited: Time Elapsed with Loss

Because Eltmn] was defined as the earliest time that a message is sent, packet loss does not actually
have any impact on the earliest possible time that a node selects a suppression wake-up time.
However, the message sent by the process that selects the earliest time might be lost by the network.
Therefore, different processes participating in the Suppression (SUP) algorithm might be suppressed

by different messages. For Suppression with loss, we therefore define E[t,;n. ], an “effective” Eltmin],
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that we use for comparisons. FEl[tmin,.] is the expected time of the earliest message sent but not
completely dropped in the network. Therefore, E[tyin.] represents the earliest hope for suppression
by a remote process.

Given a particular vector of times £ = (to,t1, .. .,tN_1), where each t; is the wake-up time selected
by the individual processes, let Toin = (tming s tming s Emings - - - » Emings - - - » bminy_, ) D€ & permutation
of the vector  such that tmin; < tmingy, for 0 <4 < N — 1. Thus, fmm is a function of the ¢;
sorted in non-decreasing order. Note that the value t,,in, is the same as t,,i, (defined in Chapter 2,
Section 2.3.1) and tiny_, is the largest time selected by any of the processes.

In Figure 3.1, we display a Suppression interval of length 7'. Each of N processes selects a time to
awaken, ¢;, and these are shown ordered from ¢in, t0 tminy_,- Under lossy conditions, some subset
of the processes will awaken to find that they have not received a message from any other process;
these processes, indicated with an x, generate a message. The remaining processes, indicated with
an o, are suppressed.

If messages can be lost, then processes might be suppressed by a process other than the one
awakening at tmin,. Furthermore, each process may be suppressed by a different t,,in,;, since a

message received by one process may be lost while in transit to another.

3.1.1 Loss Analysis

We examined both correlated and uncorrelated loss. Simulations showed that correlated loss pro-
duces E[tin,] that is higher than the uncorrelated case. Therefore, we present a detailed analysis
of the correlated case as it bounds the performance of the uncorrelated case and the Suppression

algorithm in general.

Correlated Loss. Let the probability of message loss be given by [. If the message sent at the
earliest selected time t,,;,, arrives successfully, it represents the earliest message to arrive at process
i that might suppress it. Successful arrival happens with probability (1 — ). If instead the earliest
message is lost, we examine the message sent by the process with the next earliest time t,ipn,. If
that message is lost, we examine the next time selected ty,in,, and so forth. We assume that not all
messages are lost. Thus, the expected time of the earliest message sent to process ¢ taking loss into
account is given below. The normalization factor 1/(1 —I) comes from the assumption that not

all messages are lost.
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(1 = Dtmine + (1 = Dltmin, + -+ (1 = Dl¥min,, + -+ (1 = DIV tming_,)
(1=1N)
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_ N
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We need to calculate E[tmin,], the expected value of the kth smallest time given a randomly chosen
vector of NV times. For a particular time ¢; to be the kth smallest, there must be exactly k times
smaller than it, and N — 1 — k times larger than it (note that indices begin at 0). The probability
of this event is (¥, ') P(t;)*(1 — P(t;))V"1~*. Therefore, the expected value is given by:

(o] / Nip(t ( . )P(t)k(l—P(t))N_k_ldt

Substituting E[tmin,] into the equation for E[tmin.], we derive the formula below. We use the
binomial expansion to simplify the equation and let Q(¢) = (1 — I)P(t),q(t) = (1 — I)p(t), where
q(t) = dQ/dt. Note that the resulting formula is similar in form to the expression for Suppression

without loss, and when [ = 0 the formula is identical to the expression derived in Section 2.3.1.

Eltmin.] = 11__l1l\, Z lk/ Ntp( ( )P(t)k(l—P(t))N—k—l dt

0<k<N

_ ;:}L‘/ Ntp®)(IP(t) + (1 — P()N " dt

TN 1
= (l—lN)+(1—lN)/0 (1—Q@)N dt
—TIN + [T (1 - Q)N dt
(1-1N)

3.2 Maximum Time Elapsed

It is common for the Suppression algorithm to be characterized in terms of E[tmin], i-6., when the
algorithm sends its first message. However, it is equally useful, particularly with message loss, to ask
how long it takes for the algorithm to complete. Thus we define E[tmmqz], when the algorithm sends
its last message. Completion time is important when Suppression is followed by another algorithm,
which is often the case.

The value Eltga.] is defined as the expected time selected by the last process that actually
generates a message (Figure 3.1). This is appreciably different than the maximum ¢; selected by all
processes. In other words, timaz 7# tminy_., and when [ # 1 we would expect that tee < tminy_:-

In the lossless case, Eltmin] < Eltmaz] < E[tmin] + A, meaning the last message is sent within
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Figure 3.1: tmee: The Maximum #,;,; Sent.

A of the earliest message. However, with loss, multiple messages may be necessary to suppress a
group of processes. Thus, the time of the last message sent, E[tmaz], is no longer defined in terms
of the time of the earliest message sent, E[tmin]. In either case, E[tmaz] + A can be thought of as
delineating a point in time beyond which all processes are considered suppressed, i.e., the expected

time after which all nodes are in agreement to halt the algorithm.

3.2.1 General Form

Consider Pr(tmaz = tmin,], the probability that the maximum time elapsed equals the k** value
in the vector fmin. The likelihood that t,,in, is the last suppression message actually sent is the
probability that the k* process does not receive a message from any earlier processes and that all
later processes receive at least one message from one of the earlier processes or the k* process. A

process k may not receive a message from another process for one of several reasons:

e the other process never sent a message because it was suppressed,
e the message was sent but was lost, or
e because the message arrived late (it was generated after t,n, — A).

In general, we can write

E[tmaa:] = Z tmz’n;c X Pr[tmaa: = tmink]
0<k<N

3.2.2 Zero Delay

The calculation of E[tp,s] is subtle since the event (tmaz = tmin,) consists of two parts that are
interdependent: process k must lose all messages sent before it, and every process after k£ must not
lose all the previous messages from processes {0,...,k}. These parts are dependent because they
both rely on particular messages actually being sent (or not) by processes {0,...,k —1}.
Furthermore, the calculation of E[t;e,] is complicated by the combined effects of both message

loss and delay. We attempt to differentiate between their effects on E[t,q,] by understanding how
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| Event | Probability |
tmaz =to | (1 =1)2
tmaz = t1 | 1(1 —1?)
tmaz = t2 | 1((1 = 1) +1?)

Table 3.1: Zero-Delay Event Probabilities.

the system behaves when each is set to 0. In Chapter 2, we studied Suppression with zero loss. Here
we isolate the effect of loss by setting the transmission delay to as close to zero as permitted by the
network simulator.! The result of setting A as close to zero as possible (and also very small relative
to T') is that communication with other processes happens virtually instantaneously. This makes it
statistically improbable that a message is generated within A of other messages and thus we can
observe the impact of loss on the algorithm.

Consider a three node example that illustrates the difficulties of modeling Pr{tmqez = tmin, |- For
simplicity let us assume that fmm =, that the processes 0, 1, 2 select wake-up times ¢; in ascending

order. Let us also assume that there is zero delay in the network.

tmax = tg- Process 0 generates the last message sent if message 0 was received by processes 1 and

2. Each of these events occurs with probability (1 —[). Therefore, Pr{t, . = to] = (1 —1)2.

tmax = t1. Process 1 generates the last message sent if message 0 was not received by process 1
(which happens with probability 1), and either message 0 was received by process 2 or message 0
was lost by process 2 and message 1 was received by process 2 (which is equivalent to saying process

2 did not lose both messages sent, (1 — 12)). Therefore, Pr[tma, = t1] = 1(1 — 1?).

tmax = t2. Process 2 generates the last message if process 2 lost message 0 (occurring with prob-
ability 1), and process 1 never sent a message (because it received the message from process 0,
with probability (1 — 1)) or process 1 sent a message (because it lost the message from process
0, with probability /) and it was lost by process 2 (which occurs with probability [). Therefore,
Prltmas = ta] = (1 = 1) + 12)).

The probabilities for these events are summarized in Table 3.1. The example highlights that we
must take into account that some messages are never sent due to having been suppressed previously!
In contrast, the process that selects the minimum time always sends its message. We must be
careful not to assume when process k loses all previous messages that all k¥ messages were actually
generated; some of them may have been suppressed by other messages. In fact, there willbe 1 < ¢ < k

messages generated. Moreover, when we consider that all processes beyond process k& do not lose

1Tt is impossible in ns to have zero delay, so we characterize it as approximately zero. Although we set link delay
to 0, there is a small amount of time consumed for switching delay through nodes. We offset this by making the T'
interval sufficiently large to mask the effects.
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all the messages sent, we must be careful not to double count the loss by assuming that all k£ + 1
messages were generated.

Simulation results showed that uncorrelated loss produces E[tq,] that is higher than the cor-
related case. Therefore, we present a detailed analysis of the uncorrelated case as it serves as an

upper bound on the performance of the algorithm.

Uncorrelated Loss. Let us derive Prltmas = tmin,] more precisely in the case where there is
zero transmission delay in the network. t,,q2 is equal to tpin, when process k loses all messages
that were sent from 0 < j < k, and processes k +1 < j < N — 1 receive at least one message from
processes 0 < j < k that generate messages (Figure 3.2). This can be decomposed into a set of
disjoint events, each event being the case when processes in the range 0 < j < k generate ¢ messages,

where ¢ ranges from 1 to k.

If t max =t min,» UP to k prior messages sent

Tmin|0,1|2l |k| IN.1|
||
0<i<=k N-k-1  processes suppressed
messages sent and lost by one of the i+1 messages sent

Figure 3.2: Prltmaz = tmin,, given i messages sent].

Given that exactly ¢ messages were sent, process k must have lost ¢ messages, which occurs with
probability I*. Additionally, all N — k — 1 processes with later wake-up times than process k each
must have been suppressed by an earlier process, meaning that each did not lose all of the ¢ 4+ 1
previous messages sent. Also, the probability that ¢,,4: = tming = tmin is equal to the likelihood that
all subsequent N — 1 processes receive the first message sent. These observations are summarized

by the following equations:

Prltmae = tminyJa=0 = Z Prlexactly i messages sent] x I'(1 — ["T1)N—F=1
1<i<k
Pr[tmaw = tming]A:O = (]- - l)N_l

We now determine the probability that exactly ¢ messages are sent by processes 0 to £k — 1. Let
P(i,n) be the probability that exactly 7 messages are sent by n processes. Note that the probability
Prlezactly i messages sent)] is simply P(i, k).

P(i,n) can be broken down into two disjoint parts: (a) Process n — 1 sends a message, and
processes 0 < j < n — 1 send (i — 1) messages; (b) Process n — 1 does not send a message, and

processes 0 < j < n — 1 send 7 messages. In case (a), process n — 1 must lose the (i — 1) messages
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sent, which happens with probability I:~. In case (b), process n — 1 must receive at least one of the

i messages sent, which happens with probability 1 — I*. Therefore, we can write:

P(i,n) = Prlexactly i messages sent by n processes]

= Pli—-1,n—=1)xI"+P@i,n—1) x (1 =19

Since the process with the earliest selected time always sends a message, P(0,n) = 0 for n > 0. We
can also compute P(i,1), because this is the likelihood that each process sends a message, i.e., each

process loses all messages sent by any earlier process. Therefore,

PO,n) = 0
P(Giyi) = 1'-12-13-..171
— l(i—l)i/2
Thus,
E[tmaw]Azo = Z tmin;c X P"'[tmaw = tmink]Azo
0<k<N
= Z timing, X Z Prlexactly i messages sent] x 1'(1 — ["T1)N k-1
0<k<N 0<i<k
T N -1 k N—k—1
= > Nipt){ PO (1= P() dt x
0<k<N /0
Z P(Z,k) x lz(l _ li+1)N7k71
0<i<k
This formula matches our intuition. When there is no message loss in the network (I = 0),

Eltmaez]A=0 = tmin,, and when all messages are dropped (I = 1), E[tmaz]a=0 = tminy_1-

3.3 Number of Messages Generated

We define the metric E[# messages] as the total number of messages that are generated by the
algorithm. In the lossless case, this metric is simply E[# messages] = E[# extra] + 1, as the
algorithm generates only one useful message and the rest extra messages. Given the derivation for

E[# extra] from Chapter 2, E[# messages] in the lossless case is:

E[# messages|i—o = 1+ E[# extrali—o

T
N-P(A)+ N/ p()(1 = P(t — AN dt
A
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In the lossy case, multiple messages may perform suppression by affecting different subgroups of pro-
cesses, thus we need to revise how E[# messages] is calculated. If we can determine the probability

that ¢ messages are sent, then:

E[# messages] = Z i X Prlexactly i messages sent]
1<i<N
Uncorrelated Loss. Simulations conclusively show that uncorrelated loss leads to higher message
generation. Thus we present an analysis of the expected number of messages generated in the
uncorrelated case. From Section 3.2.2, we know the probability that ¢ messages are sent in the

zero-delay case, and therefore E[# messages|a=o is:

E[# messages|a=o = Z i X Prlezactly i messages sent]
1<i<N

= > ixP(i,N)
1<i<N
Although we do not present an analytic solution for E[# messages], we offer E[# messages]|a=o as

an approximation.

3.4 Number of Messages Required

We also define the average number of useful messages, E[# required]. We can think of E[# required)
as being the number of messages required to fully suppress a group of size N. This is equivalent to
the number of messages generated when there exists no transmission delay. This assertion holds true
because if all messages are received instantaneously, there are no extra messages generated due to
transmission delay and all messages are therefore necessary for the Suppression algorithm to work

properly. The definition for E[# required];=p a=q becomes:

E[# required)i—pa—q¢ = E[# messages]i—p a=o

The implication is that regardless of the value of A, the number of required messages remains

constant for a given level of loss.

Uncorrelated Loss. Uncorrelated loss leads to higher numbers of required messages. The analysis

for E[# required] is identical to and follows from the previous section:

E# required)i—pa—q¢ = E[# messages]i—p,a—o

Z i X Prlexactly i messages sent]
1<i<N



3.5 E[# extra] Re-visited: Extra Messages with Loss

Whereas E[# messages| characterizes the network traffic and E[# required] the necessary traffic,
E[# extra] can be thought of as network overhead in the system.

When there is no transmission delay and no loss, E[# extra] equals zero and only the earliest
message is generated. When loss is present, but there is no delay, E[# extra] still equals zero; we
know from Section 3.4 that all messages generated are required messages. When delay is introduced
between processes, but there is no message loss, E[# extra] is calculated as the number of processes
for which ¢; falls within A of E[ts] (Chapter 2). The first message sent is “useful” in that it is
the only one that suppresses processes in the system; the remaining messages are redundant. These
extra messages result due to transmission delay and are mistakenly sent due to an earlier message
not arriving in time.

With delay and loss present, the calculation of E[# extra] is more subtle. E[# extra] still
reflects the number of messages that are sent due to transmission delay of the earliest message sent.
However, it also captures the number of messages that are within A of any other processes generating
messages, rather than strictly within A of the minimum time selected. Thus, the interplay between
transmission delay and loss contributes to E[# extra], as the impact of A and [ are no longer
separable. For example, a message generated by a process is considered extra if it is received but
does not suppress any other process and if after it is sent the local process receives a message with

an earlier t;.

nodeg node; nodes
select
random delay € €
t; €[0...T] T
to no msg t1 = tmin to
received,
sendmsg A
no msg b
received,
send msg A
- o msg
A - received,
. T suppress
T extra msg send

Figure 3.3: Suppression Algorithm.

For example, consider the three processes depicted in Figure 3.3. Assume that Ty, = (t1, to, t2)-
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If ¢4 is within A of ¢p, then process 0 does not receive message 1 in time to avoid sending its message.
If process 1 actually receives the message from process 0, then message 0 is considered an extra
message — because process 0 does not suppress other processes and it eventually receives an earlier
message than its own. However, if the message from process 1 was dropped before it reached process
0, then message 0 is not considered extra. Note that the number of messages is a count of the
extra messages sent (vs. received). Although there are N messages received, there is only 1 message

generated. Copies are made at the branching points in the network.

Correlated Loss. Simulations show that correlated loss leads to many more extra messages
than uncorrelated loss. This is in part a consequence of uncorrelated loss resulting in higher
E[# messages] and E[# required]. It is also due to the fact that for correlated loss, all mes-
sages up to and including the first successfully delivered message are considered required (as all
processes lose or receive the same messages), and any successfully delivered messages within A of
the first successfully delivered message are classified as extra.

Because of the complexity of deriving E[# extra|, we simply relate it to E[# messages]. We
can determine the impact of a given transmission delay, A = d, on the algorithm overhead, by
subtracting the number of required messages generated when A = d from the total number of

messages generated when A = d. We assume all other parameters are kept constant.

E[# extra)j—pa=q¢ = E[# messages|i=p r=q — E[# required]j=p an=d

E[# messages)i=p,an=da — E[# messages]i—p an=o

We have already derived E[# messages|;=p a=o analytically in the uncorrelated case. Here we

present the analysis for the correlated case:

E[# required] Z k x Pr[k messages sent]

1<k<N
= > kx(@-nrt
1<k<N
= (1-1) > kxi*!
1<k<N
__ N
= M _NIN
1=

In other words, the probability that k¥ messages are sent is the likelihood that k& — 1 messages were
lost and the k** message was successfully received.

As we have not derived an expression for the more general E[# messages]i=p A=4, to find
E[# extrala=q, we subtract the analytic results for E[# required]a—=q from the simulated results

for E[# messages|a=q-
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3.6 Other Metrics

There are two related metrics that measure the impact of the reception of messages, but which we
do not model here. The first is E[# messages received], the number of messages actually received
on average. With message loss, the number received may be less than the number generated or
sent. In the correlated loss case, all receivers will experience the same number of messages received.
However, in the uncorrelated loss case, E[# messages received] may be different on a per node
basis. Therefore, it becomes an averaged quantity. In effect, E[# messages received] gauges CPU
resources used, as it represents the average number of interrupts a node receives. We also define
E[# extra received], the number of extra messages received, which measures the CPU processing
overhead experienced by the system. It too becomes an averaged metric in the uncorrelated loss
scenario. On a per node basis, E[# extra received] = E[# messages received] — 1, assuming that

one’s own Suppression message is included in the number of messages received.

3.7 Distributions

Below, we examine the following probability distribution functions: a uniform distribution, and
a decaying exponential distribution. We calculate the bounds for metrics derived in the previous
sections of this chapter: Eltmin. ], the effective minimum delay; E[tmin, ], the kth smallest wake-
up time; Eltmaz]a=o0, the maximum time elapsed; and E[# messages|a—o, the total number of

messages generated.

3.7.1 TUniform Distribution

For this case, p(t) = 1/T, and P(t) = t/T. Let ¢ = (1 —1) and Q(t) = c¢P(t). Then ¢(t) = ¢p(t) and
q(t) = dQ/dt.

—TIN + [F(1= Q)N dt

E[tmine] = (l—lN)
=TIV 4 [T (1 cP@#)N dt
- (1—1%)

- wlem (a l—Nz;I) - v )|

Eltmin,] = /OT Nitp(t) (Nk_ 1) P(t)k (1 - (%))N_k_l dt
- [ @)
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T(k+1)

(N+1)

E[tmaw]Azo = Z tmin;c X Pr[tmaz = tmink]Azo
0<k<N

Z trming, X Z Prlezactly i messages sent] x [}(1 — [FF1)N-k=1
0<k<N 0<i<k

= Y 72(\;“:11)) x > P(i,k) x I{(1 = [H)N=k=1

0<k<N 0<i<k

E[# messages|a=o = Z i x Prlezactly i messages sent]
1<i<N

= > ixP(i,N)

1<i<N

3.7.2 Decaying Exponential Distribution

For this case, p(t) = e~t/*/a, P(t) = 1—e~%/®. Let ¢ = (1—1) and Q(t) = cP(t). Then ¢(t) = cp(t)
and ¢(t) = dQ/dt.

=TIV + (1 - Q)N dt

E [tmine]

1=
=TIV + [P —eP($))N dt
B (=)
_a[-TI"N  (1-DVN
- N[(l—lN)a*(l—lN)]
* N -1 k N—k—1
Bltwn] = [ o) (™ )Pt - )t

/Oo Nt (N -1 (1 _ e—t/a)k e—tN—R)/a gy
0 k

While we are unable to produce a closed form solution to the integral for E[t,n, ], in Section 3.8

we numerically integrate the formula and display results for when N is an integer.

E[tmaw]Azo = Z tmin;c X Pr[tm(w = tmink]Azo
0<k<N
= Z timing, X Z Prlexactly i messages sent] x 1'(1 — ["T1)N k-1
0<k<N 0<i<k

> tming X Y P(iyk) x (1 — 1FFH)N 7k

0<k<N 0<i<k
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| Metric | Description |

tmin earliest time sent
tminr earliest time sent and received, t,in,
tmaz latest time sent

avg tmin | average earliest time received
avg tmqee | average latest time received

Table 3.2: Time Metrics Simulated.

E[# messages|a=o = Z i X Prlezactly i messages sent]
1<i<N

= > ixP(i,N)

1<i<N

3.8 Analysis and Simulation

In our initial simulations, N, T and A were fixed. FEach simulation was run 1000 times when
N < 100, 100 times when 100 < N < 500, and 20 times when 500 < N < 1000.2 Each node chose
a delay time, t;, based on the Unix srandom() function that had been seeded with the simulation
start time. The simulations specifically explored the behavior of the Suppression algorithm with
increasing packet loss probabilities, ranging from 0 to 1 in increments of 0.1.

Below, we compare performance along several axes. First we study the impact of loss on the
various performance metrics; time and messaging overhead. We follow this with an analysis of the
differences between correlated and uncorrelated loss. In addition, we contrast the uniform versus

exponential distributions, expanding upon the results in Chapter 2.

3.8.1 Time Metrics

In Table 3.2 we summarize the values we tracked in our simulations for the Suppression with Loss
algorithm. We were interested in definitive values for the earliest (¢,,i,) and latest (¢,,,.) messages
sent, as well as the earliest message both sent and received (tminr = tmin. ). In addition, we tracked
the average values (avg tmi, and avg tp,ge) across all processes, since uncorrelated loss causes

different processes to receive different messages.

Minimum Time Elapsed. Uncorrelated loss leads to smaller simulated t,,inr (tmin. in our anal-
ysis) than correlated loss for small N (Figure 3.4). However, the values converge with large N, and
the point of convergence shifts upward (in N) as [ increases (Figure 3.5). Simulations show that the

uncorrelated t,,;n- values are identical to t,,,;, in the lossless case, up to a large percentage of loss

2For the simulation variable t,,;5,, which identifies the earliest time of a message both sent and received, and
which is discussed in the next section, the normalization factor was the number of iterations where not all messages
were lost.
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(Figure 3.6). This suggests that there is always one process within the group of participants that
receives the smallest time selected, other than the sender of the message. However, once loss levels
are extremely high, the group size N must be higher to counteract the effects of message loss.

In the correlated loss case, the analytic results for ¢,,;,, match the simulation results for .5,
which is evident in Figures 3.4, 3.5, and 3.6. Thus t,,;,, serves as a good upper bound on the
behavior of t,,inr-

Nonetheless, the averaged values (avg tmin) are very close for uncorrelated and correlated loss.

For uncorrelated loss, avg tpin slightly underestimates t,,:,, for small N, and overestimates it for

large N.
Uniform Distribution, ratio=0.1, T=1, loss=.4, iter=1000
0.45 > T T T T T I T 1
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Figure 3.4: E[tminr] vs. N (I = .4): Correlated vs. Uncorrelated.

Maximum Time Elapsed. As the number of processes N increases, the value t,,,, becomes
asymptotic; above a certain number of processes the same E[tpqes] (or E[avg tmez]) results (Fig-
ure 3.7). Not surprisingly, as packet loss [ increases, the point at which the curves flatten out
increases, i.e., it requires the participation of many more processes before the asymptote is reached.
In effect, greater numbers of N are required to offset the impact of greater I.

For the parameters selected, the asymptotic value begins at A = .1 for all ¢,,,, values (average,
definitive, correlated and uncorrelated), and increases as [ increases. As expected, when there is little
loss, the message with the minimum time will reach and suppress most other processes, except for
those selecting a t; within A of the minimum time. As more messages are dropped, fewer processes
receive the message containing the minimum time, thus resulting in additional messages generated,

which results in the last message being sent further out in time.
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As packet loss increases, values of 4, and avg t,,,4, diverge, with average values being lower than
definitive values and correlated loss values being lower than uncorrelated loss values (Figure 3.8).
At loss rates of | > .5 (Figure 3.9), the average and definitive values for uncorrelated loss begin to

diverge significantly.

In the uncorrelated case, the shape of the t,,,, curve changes substantially when the message
loss [ is high. The value of t,,,, increases at first, plateaus, and eventually decreases again to reach
an asymptotic value. To explain this phenomenon we consider the probability that there exists a
straggler process. We define a straggler as a process that loses all messages sent except its own.
Consider the scenario where all processes send messages. Let [ equal the probability that a message

is lost and N — 1 equal the number of other processes (besides self). The probability that a process
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is a straggler:

P; = Prfa process is a straggler]

lN—l

The probability there exists a straggler in a group of N processes is the same as 1 minus the

probability that no stragglers exist in the group.

P,

Prthere exists at least one straggler in a group of N processes]

1_(1_PS)N

1— (1 _ lN—l)N
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Figure 3.10: Probability of a Straggler in a Group of Size N.

These calculations show that small group sizes are prone to stragglers, as are groups with high
loss rates (Figure 3.10). In the Suppression algorithm even smaller numbers of processes actually

generate messages, so this phenomenon is even more pronounced.

Note also that, as N grows, the value of the largest t,,n, increases. For example, when time
selection is from a uniform distribution, the largest t,,in, approaches the bound on the timer interval
T. The impact of a single straggler on t,,,, is potentially greater with larger N, but has a lower

probability.

For uncorrelated loss, as | — 1, avg t;q. approaches the mean of the distribution (Figure 3.9).
This occurs because, when all N messages are dropped in the network, each node does not receive
any of the N — 1 announcements of its peers. In that case, a node’s locally selected time becomes
the suppression time, as well as the minimum time received. Basically, each node reverts to using
its own value for suppression. Each process i awakening at ¢; sends its message. Although none of
the messages are received, each individual node believes it has suppressed the others. In fact, there
is no way for a process to distinguish between when it has suppressed all its peers and when all the

peers’ messages have been lost.
For correlated loss, as I — 1, avg tmqs approaches the analytic results for ., (Figure 3.9).

Uncorrelated loss consistently produces a larger than or equal ¢,,4, than the value produced under
correlated loss. With small [ the uncorrelated and correlated loss graphs converge as N increases
(Figure 3.8). With increases in [, convergence no longer occurs not even at larger N (Figure 3.9).

However, the individual plots are still asymptotic.

Finally, we note that the simulations match the analysis presented earlier (Figure 3.11).
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Figure 3.11: E[times] vs. N: Simulation vs. Analysis

Averages. We observe from the graphs that, regardless of loss model, avg tpmin > tmin and
avg tmaer < tmaez- When packet loss occurs, some processes will lose the message containing the
definitive minimum time sent, thus the average becomes higher than ¢,,;,, because additional sup-
pression messages will be generated which have later times. Likewise, when some processes lose the

message containing the definitive maximum time sent, the average becomes lower than ¢,,,;-

3.8.2 Messaging Overhead Metrics

In Table 3.3, we summarize the metrics tracked in our simulations for the Suppression with loss
algorithm. The parameter num represents the number of messages sent, extra indicates the number
of extra messages generated, and required, the number of messages necessary to completely suppress
all participating processes. The avg num parameter tracks the average number of messages received
by the processes, as each process may receive different numbers of messages in the case of uncorrelated

loss. The results reported below apply equally well to both uniform and exponential random timers.

| Metric | Description |

num number messages sent

extra number extra messages sent
required | number required messages sent
avg num | average number messages received

Table 3.3: Messaging Overhead Metrics Simulated.

Messages Generated. Regardless of message loss level, E[num].orr < E[num]y,., and becomes
more apparent with larger N and with greater loss (Figures 3.12 and 3.13). In addition, the average

number of messages received is approximately the same for both the uncorrelated and correlated
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cases. E[num] > E[avg num] > E[required] holds across all . As A increases in size, Elextra]
becomes a larger component of E[num].

In Figure 3.14, we show that simulations validate the analysis of E[# messages]|a=o.
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Figure 3.12: E[num] vs. N (I =.1): Correlated vs. Uncorrelated.
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Figure 3.13: E[num] vs. N (I =.7): Correlated vs. Uncorrelated.

Extra and Required Messages. In Figures 3.12 and 3.13, we also observe that E[required],. >
E[required]corr, and because of the inverse relationship between required messages and extra mes-
sages (due to the definition of required messages), Elextral.orr > Elextraly.. As 1 — 1, the ratio
of required messages to messages sent rapidly approaches 1, meaning many more messages are
needed for Suppression to work properly. More importantly, E[required] becomes asymptotic as

N increases, for all [. The implication is that beyond some N, the same number of messages are
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necessary for Suppression to operate correctly.

In addition, E[extralcorr is nearly constant across loss levels (Figure 3.15). This phenomenon
is due to the fact that, in the correlated case, there is only one message that suppresses all the
processes; if it reaches one remote process, it reaches all of them. Therefore, the number of extra
messages will be the number of messages arriving within A of the message that suppresses the
sender. This number is a function of the density of the t,,:,, values and the ratio of A to T'; for
example, with a uniform distribution where the expected values of the ¢; are equally spaced, one
would expect that a A/T ratio of .1 would lead to N/10 extra message arrivals, which corresponds

with simulation results.

3.8.3 Loss Models

To summarize our observations relating to the loss model, we note that uncorrelated loss produces
lower E[tmin.], as well as higher E[tpqz]. This is due to the fact that probabilistically it is likely
that at least one process other than the sender receives the earliest message generated, and proba-
bilistically when N is large enough there will exist an outlier process that does not receive multiple
messages sent. Thus, probabilistically uncorrelated loss will produce longer delays before the last
message is sent.

Moreover, correlated loss leads to an optimal message ordering. Because all messages are either
lost or received, each message sent will be in T}y,;, order. The first message will be sent at tmin,-
If that is unsuccessful, it will be followed by one sent at t,in,, followed by at t,,in, and so forth.
Uncorrelated loss doesn’t have that property. The earliest message, while lost by some processes,
may be received by others. Therefore, ¢,,;,, would be followed by ¢,,:,,, where i is at best equal to
1, but will be the minimum of the remaining unsuppressed processes.

As a result, uncorrelated loss leads to higher E[messages] and E[required], whereas correlated

loss leads to higher E[extral.

3.8.4 Distributions

As in the lossless case, the uniform distribution performs better than an exponential distribution
with regard to timing metrics, but performs worse with regard to messaging overhead metrics. These
findings typically are more pronounced the larger the loss.

This makes more sense in light of what we know about the distribution of E[tpn,]- As k increases,
the expected values for ¢,,;,, remain equally spaced from each other in the uniform distribution,
while they are increasingly further apart for the exponential distribution (Figures 3.16 and 3.17).

For a metric such as E[tmqz], the expected time of the last Suppression message generated, this

can result in substantial performance differences between the uniform and exponential distribution,
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Figure 3.17: E[tmink,]| vs. k: Uniform vs. Exponential (Large N).

depending on the loss model. Thus, if #,,,, is an important delimiter for an algorithm, then the
choice of an exponential distribution should be reconsidered. Although the differences are most
notable with N < 40 in the correlated case (Figure 3.18), in the uncorrelated case the differences
are noticeable up to group sizes N = 100 for moderate loss levels (I = .4), and even higher as p

increases (Figure 3.19).

An interesting phenomenon is that the average number of messages received decreases as loss rate
increases. This holds for both distributions. Although we only display a graph showing correlated
loss, this also holds for uncorrelated loss (Figure 3.20). In the uncorrelated case, each process receives
one message that constitutes the earliest Suppression message plus it receives any other messages

generated as a function of the local process having a t; within A of ¢,,;,.. As p increases, fewer
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Figure 3.19: E[tmqez] vs. N: Uncorrelated Loss.

of the extra messages successfully get through and the overall average number of messages received
drops. As p — 1, the average number of messages received should approach 1, as fewer and fewer
extra messages are delivered successfully. In the correlated case, fewer extra messages are delivered,
but proportionally fewer of the Suppression messages are delivered as well, since with uncorrelated
loss each process may receive multiple Suppression messages before the algorithm completes.

Similarly, as p — 1, E[# extra] decreases, regardless of distribution. As stated previously,
uniform distributions, which exhibit better response times, produce more extra messages than the
exponential distribution, particularly with uncorrelated loss.

For a particular level of message loss, the number of required messages is constant across dis-
tributions. In other words, the uniform and exponential distributions lead to identical E[required]

(Figure 3.21). This is due to the fact that required messages are defined as the number of messages
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generated by the algorithm when there is zero delay present; in Section 3.4 we show that this metric
is purely based on P(i,N), a function only impacted by message loss. Therefore, the distribution

for the Suppression interval is rendered immaterial.

3.9 Related Work

Observation of the MBone revealed that there were three general classes of loss that occur [37]; (1)
25% of receivers suffered no loss throughout the day, (2) of those experiencing loss, the median loss
rate was between 5-10% for the majority of the day, and (3) a full 25% of the receivers experienced
loss rates greater than 15% all afternoon. Essentially, the loss distribution was very long tailed,
with large amounts of relatively low loss rates. A full 80% of all nodes reported loss rates less than
20%. Yet, these results suggest that simulations with only single packet losses easily underestimate
realistic loss conditions [27] [50] [47].

Handley’s results [37] corroborate findings in an earlier study conducted by Kurose et al. [59],
which found that loss on backbone links was small, as compared to the average loss observed by a
receiver. That is, much of the loss occurred at the edges of the network close to senders or receivers.
The result is that the pattern of loss is closer to the extremes: fully correlated or fully uncorrelated.

Both studies confirm the existence of loss correlation. However, Handley [37] also found that
there always exists a small number of receivers suffering very high uncorrelated loss.

Although there have been several studies that analyze the performance of Suppression with loss
(in the context of reliable multicast protocols, in the form of two back-to-back Suppression phases),
loss is modeled in fairly simplified terms [27] [50] [45].

While Floyd et al. offer a detailed examination of the effects of topology on Suppression, they
only study the impact of a single loss of original data, not the loss of repairs and requests [27]. Even
though this is a good first step toward understanding the impact of loss on Suppression, it falls short
of realistic conditions. Raman et al. [50] extend the work in [27], focusing on understanding the
impact of large group size on the number of duplicate NACK messages. Again, the loss model only
studies the effects of single packet losses on the algorithm.

Nonnenmacher and Biersack [45] simulate slightly more complicated loss scenarios, in terms of
where the losses occurs (i.e., between the sender and receivers or between the receivers themselves
during a repair), and the full range of loss levels; however, they do not provide accompanying
analysis.

Birman et al. analyze a bimodal reliable multicast protocol under probabilistic failures [10] [39],
but only examine independent identically distributed losses.

Whereas several previous studies concentrate on the impact of single losses and/or losses close to

the source [27] [50] [45], this thesis studies multiple simultaneous losses (that occur anywhere in the
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system), it looks at the full spectrum of loss rates, and it considers uncorrelated loss and correlated
loss.

Although there are other studies, such as the ECSRM [33] and SHARQFEC [41] protocols, that
study the scalability of Suppression and simulate the effects of multiple losses on it, the research does
not focus on the analytic derivation of performance metrics. Nonnenmacher’s work derives metrics
analytically for Suppression in the lossless case [46], however no analysis of metrics is presented for

either the lossy case or the combined loss and delay case.

3.10 Summary of Results

In this chapter we analytically derived Suppression metrics under the combined conditions of loss
and delay, or simply in terms of loss with zero-delay when the analysis proved intractable. We
re-examined the metrics introduced in Chapter 2 and introduced several new metrics to characterize
the performance of Suppression.

We revisited the meaning of the metric E[t,n], offering a more realistic definition of the minimum
response time of the algorithm, E[t;,.], the expected time of the earliest message sent but not
completely dropped in the network. In other words, the earliest hope of Suppression by another
process. To complement this, we presented a bound for E[t;.:], the expected time after which
all processes are considered suppressed, i.e., the completion time of the algorithm. We defined the
vector fmin, an ordering of the Suppression wake-up times selected, and calculated E[tmin,], for
0 < k < N, for each probability density function. The comparison explained why the uniform
distribution outperforms the exponential distribution for time-related metrics, and vice versa for
overhead-related metrics.

On closer examination of E[# extra] we found that it is just one component of E[# messages],
the total number of messages generated by the algorithm. Although we were unable to derive a
closed form expression to describe E[# messages] analytically, we were able to observe its behav-
ior in simulation and offered a recurrence relation to explain E[# messages|a—o, the number of
messages generated in the zero-delay case. We postulated that E[# messages] is at least as great
E[# messages|a—o-

E[# extra] was redefined more broadly as the overhead of the algorithm, whereas E[# required)
was established as the expected number of messages required to fully suppress a group of size N.
Another way to think about E[# required] is as the number of messages generated when there exists
no transmission delay. The implication is that the number of required messages remains constant
across all A. More importantly, the number of required messages is the same across distributions,
as it only has a loss component and no delay component. Finally, E[# required] is asymptotic.

That is, beyond a certain N, the same number of messages are necessary for Suppression to work
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properly. In the next section, we discuss the important implication of this result; perhaps a redesign
of the Suppression algorithm would optimize performance further.

Our analysis of the metrics was validated through extensive simulations, which employed a more
sophisticated and more realistic loss model, compared to all known studies of Suppression analytically
and all of which limit the number of dropped messages, the placement of the loss in the topology,
or the level of lossage. For each metric, we presented bounds for worst-case performance, after a
thorough examination of both the correlated and uncorrelated loss scenarios. Finally, our simulation

and analytic results matched.

3.11 Future Work

As stated in Chapter 2, there are refinements that would be beneficial to make to the model. In
particular, we would like to re-evaluate these metrics under conditions of variable delay.

Presently, we have expressions for E[# messages];=¢ and E[# messages|a—o, which are comple-
mentary. However in the future, we would like to derive an expression for E[# messages] with both
delay and loss present in the system. This in turn would allow an analytic solution for E[# extra].
In addition, it would be helpful to have a closed form solution for E[t;:n,] in the exponential case
when making the assumption that IV is an integer. Similarly, a general expression is sought for
Eltmaz] in the presence of both delay and loss.

An interesting byproduct of knowing E[# required], given the other system parameters p, T, N,
and A, is that we can calibrate a believability factor. In other words, a node must decide whether
or not to believe that the correct course of action is to suppress itself when it receives a suppression
message from another node. Or should it send its message anyway? For instance, if E[# required],
the number of messages required to suppress all NV nodes is three, and a receiver has only received
two messages before it awakens and must choose whether to suppress or to send its own message,
then perhaps it should send its message anyway.

To examine this thread of reasoning, we could create a new parameterized Suppression algorithm
that sends a certain number of messages at wake-up, as shown in Program 3.1. The number of
messages to send at wake-up would be based on a function g(m) where m is the number of messages
already received. While this approach may be quite effective when A/T is small, it may be much

less so as A becomes a substantial part of the timer interval, T'.

Alternatively, to minimize E[t,,q4.], the node that awakens earliest could issue E[# required] mes-
sages immediately. Another scheme could send the E[# required] messages from different senders
by basing the to-send-or-not-to-send decision on a probabilistic estimate. For instance, if the time

t; selected by node i is smaller than E[tmin, ], where r = # required, then issue a message immedi-
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SUPPRESSION-PARAMETERIZED (d, T, N, A, p))
1 ¢ =random(d, T)
2 sleep(t)
3 m = nummessages._received()
4 r =requiredmessages (d, T, N, A, p))
5 if (m <r) then
6 send message(g(m))

Program 3.1: Parameterized Suppression Algorithm.

ately, thus sending the messages from different topological regions. Because E[# required] becomes
constant beyond a particular group size, these algorithms would be robust to large fluctuations in
group membership. These approaches of course may lead to additional extra messages (or other
drawbacks). Future investigation should explore if there are benefits across the different loss models

and random timer distributions.
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