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Summary

In this thesis we have generalized the Riemannian line
element iJl:jﬂp/X/M“#ﬁ to the case where J,; 1is a function of
two points X, , X2, and we consider the differential geometry
of the line element As= Jus (6, % Jaxax?

€, 48|

The extremslizing of I,:B !j;pﬁg é? /45 leads to a pair
of curves X', 1), called dyodesics, these curves being obvi-
ous generslizations of the geodesics of Riemannian geometry.

A projective geometry of these paths is then investigated.

We then Introduce a concept of parallel displsecement of
vectors relative to two patthfﬁ?,X:ﬂ)which is directly anala-
gous to parallel dilsplacement in a Riemannian space. Parallel
displacement 1s found to depend in‘a very natursl way on six
fundamentel two-point tensors, the vanishing of these tensors
implying that the space is flat, and for this case the dyo-
desics take the simple formsX};J&5btfor special coordinate
systems.

From the definition of parallel displacement arises s
method for generating new two-polint tensor fields by a pro-
cess equivalent to covarient differentiation in Riemannisan

geometry., Perallel vector fields and ennuples of vectors are

then introduced. It is shown that the ennuples )'8(x) ,? W*/
9& FI7d

form parallel vector fields for the metric spaceds_a)99 3W4n f
Fi 1.

We then define parallel displacement in sub-spaces and intro-
duce & generalized covariant differentiation process, this
last enabling us to develop second fundamental forms for

hyper-surfaces,



It is found that specisl and important types of coordi-
nate systems may be set up independently at the polints M, and
M, . These coordinates enable us to generate new tensors by
a method of extension. An equivalence'problem 1s then studied.

Finally, a line element dSL: ngdeA%f is introduced for
two masses at M,, M,, the}@; satisfying Z;{372;::0 , the T's
corresponding to the Ricei tensor of Riemannian geometry.

The dyodesics obtained for this space approximate the Einstein
solution for the one body problem when the mass of the particle
at M, 1s small compared with that at M,. The motion for two
equal masses differs from that obtained by Robertson in his
solution of the equations of motion obtained by Einstein, In-
feld, and Hoffman. The difference lles in the yet undetermined

perisstron effect for double stars,
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I. An Arithmetic space of n- dimensions,

An ordered set of n real numbers; ( X;Xﬁ-'yX%); is
called an arithmetic point. When no confusion results we
wlll use the letter x to denote this point. The numbers
1j/fA~-/Xn denote the components of the point x. The super-
scripts do not stand for powers, but are used to distinguish
the various components of x,,X}standing for the J th compo-
nent.

Thg totality of all arithmetic points, for a given val-

ue of n, is called an arithmetic space of n- dimensions.
The set of points x satisfying

I n |~ Z
(1.1) (r-xl) e (P x2) e 2 (XM= XD)T < AT A

ars sald to be the interior points of the hypersphere, 2 R

heving 1ts center at (Xé /é;",X:) with radius A.

IT. The space S of n- dimensions.

By a spacels of n- dimensions we shall mean a set of
elements (undefined) with the following imposed topologye.
Certain subsets of S called nelghborhoods wlll be the fundsa-
mental structure and will satisfy the following postulates:
A. Every element of S belongs to at least one neighborhood.
B. The elements of each neighborhood, N, of S, can be put
into one-to-one reciprocal correspondence with the interior
points of some hypersphere 2 of the arithmetic space of n-
dimensions.

C. Let M be an element of the neighborhood N, m the cor-

responding point of 7 end let N' be any neighborhood of M,



2
There exlsts a hypersphere, 0, with center at m such that
all points of N which correspond to points of 7 in 2 1lie
in N'. We illustrate this graphically, (Fig. 1).

Flg. 1
The shaded aresas correspond under N<— J_ .
D. Let N be an arbitrary neighborhood corresponding to the
hypersphere Z:, ¥ a point of N, m its corresponding point of
2:. If ¢~ is any hypersphere with center at m and entirely
contained in 2:, then there exlsts a nelghborhood N' of M,
every element of N' belonging to N end such that every ele-

ment of N' under the correspondence N «~>Z will correspond -

to some point of ¢ . See fig. 2.

Fig. 2

The correspondents of N' under N<» 2 may not exhaust o,



3
E. If M, M' are two distinct elements of S, there exists
two neighborhoods N, N!' containing M, M' respectively, and
such that N and N' contain ﬁ@ elements in common.
E's We can strengthen condition E by postulating that if
M and M' are two distinct elements of S, there exists a

neighborhood N of M not containing M',

The one-to-one reciprocal correspondence between points
of a neighborhood N and the points of a hypersvhere Z_ of the
arithmetic n-space ensbles us to attach a set of n resl num-
bers ( X, x% --, X") to each element of N. Such a corre-

spondence is called a coordinate system.

Thus every neighborhood has a coordinate system attached
to 1t. The intersection of two neighborhoods (elements com-
mon to both neighborhoods) has two coordinate systems attached
to it, see fig. 1. The relationship X< X is called a

coordinate transformation, written

(2;1) . Y ¢ — )"([ {A’l, XL,//YK) J L': //21_../ " y

and is a process by which we pass from one coordinate system
to another,

In general, it will not be possible to find a coordi-
nate system which covers S completely, so that coordinate
systems are essentially localized. Finsally, we impose the
condition that the coordinate transfermation (2.1) be ana-

lyticy

# In most of what follows only differentistion of finite

order r 1is required for the transformations (2.1), i.e. ,

they sre of class Cr.
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Now in what follows we shall be ipterested in considering
palrs of elements of S, say M, and M, . If a s;ngle coordi-
nate sX?tem x describes M, and M, , then by'é%;; we shall
mean-%%; evalusted at M, end similarly;%%é-shall me an ;?}
evaluated at M, . However, from postulate E, we can always
find two independent coordinate systems, , for a neighborhood
of M, and 4z for a neighborhood éf M, « When occasion de-

mands we will distingulsh between the two cases.

IIT. Two-polnt tensors.

We assume that the reader 1s acquainted with the sum-
mation notation convention, tensor analysis, and Riemannian
geometry, The following is a generglizstion of one point
tensorsi. »

Definition., A set of quantities

: “--b, C-
(3.1) 7 ﬂ’

/ M, My )

which are functions of the two points ﬂﬂﬂkj/f~,bz Aéﬁﬁ:l;u,IQA

whose law of transformation under the group of analytic

treansformations
R A AR Y/
(3.2) i : R
, Xll = /(; //;zi [;2; -y X"/
is given by "
(3.3) T”N‘L e /M ,)
ST, —h I's

4 pA
jou ") 2% T My, M, %
yn/ ;n/ -, F- // /’/ 2

will be termed a two-point tensor, of weight p and contra-

1. Dienes, P, (1)
. Michal, A.D. (1)



varlant in the indices a ---b, covariant in the indices 4 (8
relative to the X, - coordinate system, and of welght q end
contravariant in the indices ¢ . --d, covarisent in the indices

7§ relative to the x,- coordinate system. The determinants
X )

s | —{ 8are the ordinary Jacoblans studied in analysis.

2% iz ,
The object obtained by abstraction from the above compon-

enta with respect to the totality of all coordinate systems

whose céordinates are related by (2.1l) is called the tensor T.
Superscripts and subscripts preceding the comma in (31)

refer to the tensorial character of T in the x,~ coordinate

system. The indices following the comms refer to the Xx,-

coordinate system.

oA
Exsmple. The set of quantities /\}which transfrom according
— M
to the law e ., ﬂ7) o,
(3.4) A7 (#, M) = A (7, M. a5

are the components of a-contravarlant vector field in the X, -
coordinate system and behave like a scelar invariant in the

coordinate syatem. To see thls more clearly, we first

congsider the transformations
. — ' n
X:t = Xv (X'/-”/ XI}
(3.5) Y;L' = XLL
whigh leave the coordinates of M, invariamt. (3.4) becomes

— — o Ny M
(3.6) AT (M, M) = AZ(m, M) 2

o
so that the /\J are the components of & contravarlant vector
relative to the transformations (3.5). By considering the

transformations . :
— [3

Xoo= 4 "
(30'7) ) XL‘ _ }/;"//Y;’/ /y:/_.-/ /y?_) P

we see that (3.4) reduces to

— My 5
(3.8) A Am, )= AV S = AT )
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showing the scalar character of/4dzhlﬂuwhen referred to the
x, - coordinate system, In the above discussion we assumed
the independence of the two coordinate systems x, and xz;
sae § 2,

It is clear from the definition of a two-point tensor
that most of the propertlies of the ordinary tensor algebra
can be extended to thls case. For example:

1. 1If all the components of 2 two-point tensor vanish iden-
tically for a particulsar coordinate system, they vanish lden-
tically in every coordinate system.

2. Two tensors of the same type (self-explanatory) may be
added in the usual menner,

3. Any mixed tensor may be "contracted“; providing the
contraction is performed on two indices prededing the comma
or following the comma,

4. The quotlient law 1s eesily verified; for example, if for
arbitrary covariant vectors Z%O%A@khe set of quantities
(3.9) Z‘) (M, M.) 7”:_'::’ :j (1, 1)

are the components of s mixed two-point tensor, then the

B, ab
7’“ b @ ) (M, #.) are also the components of & mixed two-

r T, C

point tensor., A similar remark holds for & summation in M,.

IV. The '"metrict,

We impose a "metric" on the space defined in §§2, 3,
i.e., with the polnt M (%' -, X]) and the point M, [t -, 11),
} ,
along with the tangent space of differentials 44 at M,, dr”

at M, we assoclate a scalar invariant

(4.1) ¢ = ja{,s (/V/// /Wz) d*,d dlz_ﬁ
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We call ja,‘g{/ﬂ,//% the fundamental "metric" tensor. Since ¢
/

is 8 scalar invariant we have
a —_ = — 1/ o« 3
(4.2) g, (i) L5 ak " = oy (M, M) 824,
d B . W
= j (MI Mz_) "—9_/_)_(’/4 24/%/ /,{’,/‘J//;
9.0 ’ X 2L

/

Because of the independence of dff‘, dizv, (4.2) vields

¢ 8
a v M. = 24 ?/ra-
(4.3) iﬁy {ﬂﬂ/ﬂ%/) ;aﬁ /“Q/%f ;z% YA

which shows that the ;aﬁfﬂﬂﬁﬁ/are the components of a two-
/

point tensor, being a covarlant vector relative to M, and

also covariant relative to M,.

We do not assume Z,/p (M, ) = ;,;/.( {/’42, M) .

We 4o assume that ,ﬁd,ﬂ 175 0 .

It is at once apparent that ¢ can be both positive and
e |

negative for we have only to replece 41, by-—/)ga in (4.1)
to chenge the sign of ¢ . We now introduce a non-negative
form given by

2 arar”
(4.4) st = e J, (M, M)AnT4

/

where € 1is 11, so that‘d5230.

It is clear that (4.4) reduces to
V4
d5*= @ Goq (1, 1) 40741,
- e o) drdr”

when M/ and Mz_become the same polint M, so that the line

(4.5)

element (4.5) enables us to speak of the Riemannian geometry
of our space.,

Let x be a coordinate system which covers M, 6 and M, ,
and let r?}{M)be an ennuple of n independent covariant

vectors defined over this coordinate system. The superscript ¢
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distinguishes the n vectors. We can form a special type
of g,,p(Mu M, )by defining
(4.6) o (M, M.) = Z "5 (M) 7S, (M)
with |“5 |#0.
We now show that the ?4/3 defined by (4.6) are actually

the components of a tensor. We have

TN IR Y ED RS A RALS,
- afj "5 M) 5 ) 2 jj’

A )
= 9 [/1'7;,/'7; fi (7//3 ) Q£ 0
“ AT

From the form of (4.6) we see that [ . (M, M. )= 4, (M2 /)
In general, it will require two ennuples, at M, and M, ,
and, moreover, jd’(; (M, /'1;/;4}/5/0/ [ M, M/) + We will have more
to say about this type of metric in pasragrasph 13.

We can construct a two-point tensor j"’/ﬁ as follows.
Let 7L/f 7'v'x}) be the contravarient velocity field of s
fluid in motion, end let }qm (x! ¥, /ybe the Fuclidesn metric
tensor in general coordinates x‘. Then ‘f;‘/f,/ a) /9 ("}fj/f x)
are the components of the covarlant velocity vector field,
Let /V\I_ﬂt)] denote the mean value of the function f/¢/ over

the time interval (t,,ﬁ.), i.e., ¢
(4.8) MUH)] = ft f/z.‘/df /é,—-fo

t
It is clear that !

e, x)dE
(4.9) [7: ?K)] g -é L 7. /

is a covariant vector field, since the integration is per-

formed over t. We define a set of quantities jdf,/x,/ll} by
/

MI 3.1t %) Jp(8,0)]

) M5 1) % 1t,x,j}¢z{ h )M 5l s) ZM’}JJ

(4.10) jd,{s (X, k) =
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It is evident that gfﬂ(fyhj is a two-point tensor field
/

of rank two, & covariant vector field with respect to esach

4
of the two points. The two point tensor field, ¢~

1) 27 ) 9., (0 1)

is called the two-point correlation tensor of fluid mech-

defined by )
4LJ
(4.11) C’7(n n)

snics®. Evidently [, (%)=, (64)s

406
Definition. The quantities 9 (Ms7,) are defined by the
X

matrix equations

4
(4.12) I 9: (M) g, (m,m)l = EN,
where ||E1[ 1s the unit matrlix, so thsat |
T Ja(
(4.13) j:' (Ma, Mi) jm (m,m.) = §,s J

where the ¥ 1s intended to point out the fact that the
point M, is now associated with the superscript preceding
the comma, whlle the point M, 1s associated with the super-
script following the comma., We notice in (4.13) that the
summation is performed over the index ¢ associated with N, .
We have ne right to conclude that the Kronecker delka, ;j; ,
is as yet a tensor. This becomes gpparent when we prove

the following.

Theorem 1, The j:”?ﬂyﬁﬂ)are the components of a two-point
tensor, s contravariant vector at esch point,

Proof. Let A’dﬂwyﬂ@/be an arbltrery multiple point tensor
which is a contravariant vector relative to M, , and a scalar

invariant relative to M,, and whose law of transformation is

2. Karman, T.v. (1)
Michal, A.D. (2)
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given by -
""st

,7 zs

(4.14) (/i) = A" (M M) 7
The reader should realize that it 1s always possible to con-
struct such tensors, for one may take any set A ‘L'ﬂ) and
then the components in any other coordinate system are de-
fined by (4.14). |

Nultiplving (4.,13) by /4 (%”/V)we see that
(4.15) j “(p1, M) e p (M, #1.) Am ) = A ", ”)

so that the left-hand side of (4.11) denotes an arbitrary

contravariant vector field. It is esasily seen that

(4.16) Gy, (m, 1) S Joo (M, M) A C(m, m)
is & covariant Vecter since
(4.17) = g )= & /ﬁ/ﬁ)/j)ﬂ/@:/%/
‘ B, (M., i) = Jgp(#, / )
7 ﬂ Q/Yv?/?;
- Z,v (i, 1/ A ///‘// o5 i ot

o 4
_ ;ﬂ L ) A () 28
/ Q);
Eia
M, M) Tl
@"’j / / / er’

Thus from (4.15), (4.16), (4.17) we see bhat 9" ///; ) By /M//z,

are the compoments of an arbitrary contravariant vector,

so that v 3 - v a};”
(4.18) J. (1) 8, [y M )= Z ", 1), //%,/%/M” .
Using (4.17) we obtain 2@
(4.19) (7 ) Bo, (1,4, %{; = 97 I ) Byt ) 2

true for srbitrary 5;/”'”7 Hence we 1mmediately conclude

that the law of transformation for the‘j A%Jﬂyis given by

_g
(4.20) j //1,//‘1} ; //% #.) j;’: ;’; . esD,
7 /
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a4
We now check that J, : [ﬂg.

Proof.
_ 4 = o
(4.21) Se= 3w m) e, (707%)
- ?"f’*( )ayl X’ ax%xf
* oxEox” 08T 35° onf
? é/ﬁﬁ/m M,) j //% #.) 9* “oxt
* ) AT ohE on"

IS Ko™ % of
T T, —x =

) IALY7 2Ry

verifying that /T is a mixed tensor in M,, and a scealar

invariant relative 1o M,.

"
Definition. We define the f #,M)by the matrix equation

(4.22) I ;o/,ﬂ//%//%)ﬁ : ”J«,ﬁ (Mz,/%//l = £ ) *341';:,%):%@,

or by %
(4.23) g (m,4) Gy (1,0 5

By the seme method as used above 1t is easy to show

et v or " on”
- 4,ﬂ — = _ A, { z
(4:.24:) g /M//Ml/ - 2 //‘71//VL/ 5',57‘ }};‘;/ J

o
the j ,p//%/ M, ) being components of a two-point tensor, a

contravarliant vector relative to both M, and M, . It is

73 Ao
also easy to show that ;’ ///9//,/:/;

V. The Dyodesics.

Let us return to (4.4) We assume the j,ﬂ/l., 1) continuous
in ¥, and % and consider the curves X'[¢), X,“/f/, having con-
tinuous first deriveatives, Then cartainly %

PR
ArY Ax.? ’ Ir,  dr.” ,
(5.0) (e pp 15 e I gqﬁ(1&1xlky

is continuous snd hence integrable. With the curves /V’/t/, A1),
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we associate a real non-negstive number, L, given by
z, & B ﬁ,
(5.1) =/ "L’ ) gt
L=, (€fs & % :
If we perform a change of varisble in the parameter t,
say 7,(:7[/t) such that % >o for £, Lf‘- s, then

© Jy s 44’//1_62, /

so that C; 4/, drf 5> o s and 1t 1s apparent that (5.1)
/5 :.

l«
remains invariant tmder such a change of parameter provided

igf is continuous. Hence the change of pareameter given by

/2
(5.2) 5= / (€J.s £ W‘ Lt
is a permissible change of parameter provided
(5-21) Jon

has the same sign throughout the interval Z. % zs é/. When
this is done and the 1 ° , X,* describing the curves are ex-
pressed as functions of s, we have from (5.2),

< 41"
(5.5) € j”’/ﬂ ('('/5// /‘(S}/ 7s Is =1

We now wish to extremalize (5.1) under the assumptions

stated above., Geometricelly, we wish to find the paths,

1 (e /;‘A/f/‘, for Z. 2 <L, , which make (5.1) an extremal,
aﬂ/“/r”’

We only consider the range toet = ﬁ, such theat 7 77

keeps the seme sign.

A more general problem would be the following. Let
/ z MVERVE S , >/ i
¢["('/ 1, 7/ /‘//;/”/XZ) A, I,/~~,Ifi/ﬁ,--—//r;// be a non-
negative integrable function. We look for the functioens

Y ) , X, (¢) which make

(5.4) ] & At

an extremal. The dots stand for the first derivatives with

respect to the parameter t.
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 We assume M[=fka X::.Lfﬂ) are the required functions,
end we consider the '"meighborhing" functions
L) = ), M)
k) = AT R
where « , v are arbitrsry and small, end ¢ 47 //-Ofor t=¢,

(5.5)

end =%, « As such, the integral

Z, : ..
(5.6) T (wyv) = /t b (Fintly, forvth, £ 40 Foarvh) dE
is an extremal for u=V=o0 . From the calculus we must

nave 2% = 2L _o , for y=7=0 o+ Now

I n/;f /@ )b p% _g '/Zf
(5.7) 75/‘%- e TR
ai//u, vz o / / ’(%;’Z“%”K/df'

Integrating the second terms of (5.7) by parts and meking

ugse of the above hypothesis, we obtaln

t/
jta [92,52“ xb/o?///]
é/
4£ Z( 5;? df7 57§,// éﬁf =¢ .

These equations‘must be satisfied for arbitrary values of

(5.8)

vl s %" [t) » so that assuming continuity of the inte-
grand, the x*/t), ﬁf/f/ must satisfy Buler's equations,

A ( 2wy 2L
= =
(5.9) Zz’ Qn 2K,
(25 ) =
ﬂ Py o1 -

Applying (5.9) to (5.1) and choosing s as paremeter,

see (5.2), we obtain

) %j -o B
A A 4 =
c@(;ﬂ;ﬂ *7, 2[/7‘ /r/ /L (o]
(5.10) | %O (;x,ﬁ‘ )('I“/_ ‘gj'f,ﬂ X-,K/V;ﬁzaz

FYad



14

or,
o po) c o - 2 2
j«,r)(/ . 5‘;‘% fd’rr (jdr ;;/3))( x5 =
(5.11)
ksl 7 J wﬂ 2
;iid X, + éiyf A A (’éj ;%vf j’ .
Making use of (4.13) and (4.23) we obtain the system
. 2/ ) .
| X + 9 X f—2 ( 2 g )xuf;o
(5.12) | ~ G
..L . j 990/])( Xl gc,r( a;vlf Qa‘lwﬂ)x /Y =0
* oX, 27

This system is of the type
41{ L‘ L' . .
t X, Yo X, X
45t F( Sy K1 B
LX (X KK
45
The golutions of the 2n second-order differential equations

(5.13)

in the 2n unknowms X, (), 1. (3) exist uniquely in the neigh-

borhoods of X, = &, , X,'= ¢, , when the initial conditions

5 (S.)=

X:f (S°) = a;‘
(5.14) . .

dxll) - b(

As Is=5, f

axt _ )

el b

are given, if we assume the gdﬂg ere analytic. Less strin-

gent conditions are actuslly needed for existence and unlque-

ness.
The curves X,'(s) , 1:°(s) , which setisfy (5.12) will be

called dyodesics or dyo-paths. They always occur in pairs
and should not be confused with the geodesics obtained from

the Riemannien metric tensor %, (MH).
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Definition. A system (pair) of curves satisfylng (5.12)

and such that AX 4 XL - O everywhere slong the paths
%6 35 TS

will be called minimsl dyodesics.

47 d}(b
xs 45

will not form minimal dyodesics, for we need only consider

In general, & palr of curves satisfying jda =0

the case ,(,X = constants, X,"[S) grbitrary. (5.12) will only

be satisfied if

di)(;‘+j*ca—2;p_# 21 d%:o

(5.15) i
/45 opx 45 75 %

which, in general, cannot be satisfied by arbitrary /. /5)

VI. The Linemr Connectlons.

L
Definition. The linear connection /:,/g///%, /'/z)is defined by
7/

, ¢, ¢, Qjajﬁ‘ [/,/,///1
(6.1) [ () = J(4,0) 2% ) )
/
29, L4
so that /
9*} ;Z;? ¢%§ -

Theorem 2. The law of transformation for the /‘;’ is given
S J

" 9’ 9,'/ ?/Y o L/f 1,
— o — 4 ! !

/ 7 1/ + — — .
(6.2) [77} {’ 7’//1"} / / Y /9/ z)l 21 2k 27,

Proof. Differentiating (4.3) we obtain

(643)

v, 91” SV Y Zar) i

q B 2w
26”/” _ 99}(3 91 9X 9/; 4 27 2k, 24
>~ T
"t ox. ox ok

Now multiplying by ; ///,/ /’/L/ we obtain

,—aﬁ’u re £ 5‘
(6.4) j 92&1 _ 2 zar 9)/ a;,,,g 2k 31/‘ J,r
arn " 2y, 21" 257 Qr 2y oy,

—_a -
*26’@1’ g 2" ou/
oS on? IhE onT opor”

3 -—
= ’”9#2/ 26" 21 S Hp”
7 -'—6"7 R 7 !
A A YA A AP Y i
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by making use of (4.23). Our theorem follows at once.
Mcreover, 1f the x, coordinate system remains fixed, (6.4)
reduces to fi: (X’/z):'f;, [)"/ )(y) :() showing the scalar
invariasnce of the linear connection o, relstive to the
point M.
Theorem 3., A necessary and sufficient condition that / y ﬁ"vﬁ&)
be symmetric in i1ts lower indices is that gdﬂ(H.,M;)« m’f h
where ¢/3 (M /f») 1s a scelar relative to M, and a covariantx

vector relative to MZ.

Proof. Since

(6.5) 7‘)# - %/‘ e’
we have )
(6.6) g’m,: 9__;?,7: i’?ﬁ_’“ 2 o
¢ o~ ) AP Y Ay
_ j 2// 25"

T A T _,
se that ;dﬂ is a covariant two-point tensor. Moreover,
/

* 7
(6.7) 2oy 2% o
YA % 27%
which proves the sufficiency argument,
Conversely, assume C/j /7) so that
J
l 2 L,
(6.8) J " j"’f.:/ e
2/;” alf'x, ,
t
snd since /; "r/;’ 0 we obtain “r QZpr « Now rels-
tive to M, we have 2k ?"/
M
(6.9) a o _ FIARNEY4
. gd/ﬁ [/7// M‘)«/ - ;ﬂ‘//( //// /lf; -—’j—/’/'_a 2/’;@

= Jop (1) 2%

so that ;x ~ is a covarliant vector relstive to M,. Since
/
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, .
(6.10) 9”/" _ 99” —~ 0
%0 A

we have that gdlf,\ 1s a gradient relative to M, , becsuse

of the vanishing of the curl of o~ + Hence

2 ¢y (M, My
(6-11) 9,{/9— (M', M;) - ax,d;( ’ )

where ¢r is a scalar relative to M . We must now show

that ¢ = /é;r' s 1.0., ;D',_ is & covariant vector relative
to MZ' Now
" {6.12) _j— - J ¢¢r 9 9),/* 9)(1,1/
L - gy = < T
I Ix* Y oox” on”
so that
s A <
(6.13) 3P, PRV ARV
= — —_— —_—=
ox * ar” an” ax,
- 28, 24"
;ZD( 2 7)0‘

Integrating with respect to }7"( we obtain

(6414) =2, b L YA(E)
2

'
2

Now relative teo M/ we have
(6.15) Fo (T, n)= Bo(r, 1)+ vl xr)

and since 99¢ ‘iz a scalar inverlant relative to M,, we must

have %/IL =Z0 .+ Hence ;é‘/:/(é,u . 960

Definition.
ernition e ;rﬂ (/71,"'1)
(6.16) s (M, M) = j //ﬁ /‘f//
or 9;7/ﬂ j
EYA 7¢ ’""5 i
Theorem 4. The linear connection /7:,,@ transforms ac-
e ;

cording to the law
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(6.161)

——

»
Proof. Differsntiating jr/? - ;L 3 U7 285" we obtain
/

=7 =

‘ 5 5 2 24
(6.17) ;f,/f’ _ _Z‘j/j % ;}/ ,% / A
a5 on” o0 71 i M AT L

,q;' one obtains

Multiplying (6.17) by jz,r__ j &p v,
£ *® 9&? ;/}’;E

(6.18) L e * -~
i ijﬁ jé/’” A3 7L 2,’ A{ oK
¥ —
25" *  on? ohE ;/’“ AP AP
+ jé # 91/ 20 9/ 24
; v e =gwe
gk 2,1_ 5*, ;/(2 2/1' —
- j €M 9;,4,”9)@ ohs 2/; =i QX—L '
; X o7 on SRPIRE | SFORS Y
Theorem 5. /”M, is symmetric in its lower indices if and
only if ;Lp ~ 7€+  where é%/%@/ﬁ/ is = covariant vector
¢ 217 ’

relative to M, and a scalar relative to M,.
The proof proceeds in much the ssme manner es that of
Theorem 3 encountered above,
¢ PXS
In order that /;é and /Zm/ be simultaneously sym-

metric in their lower indices 1t fellows from sbove that of

necessity
(6.19) Jes = el
* “7 T ax” T apf?

Now let W(ﬂymytm a scalar relative to M end to M,. If

(6.20) j*}ﬂ = QXiJiﬁ J

then

(6.21) 24,,2 = 9”%4 (:[}j/s = ai /‘Wx
W 2K
Y ) A

gso that both.,/,A/ are symmetric in their lower indices,

)=, “lmm) A NN
kS Jn% o o an”
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Conversely, assume the /7ﬁ) syrmetrie in thelr lower

indices, From (6.19) we have

(6.22) j‘jﬂ: /j*ﬂ (x, 1) 44" + A,;/’z)
— A /Xz
= 5 lnrn)

where from (6.19)

" — £ 25%' /*r“
(6.22') /;/,,/X,,/;/: /jx//(’r/ ‘/}Z% ‘.

Let us now see if it 1s possible to solve

(6.23) DW(X:,;)_ = 5/4 (x, x)

1 yes

We need Bfiy _ 92?
QXLT - 9/7— d
or 20 28, ¥
2 ar = 2 Ar

9’; 2/2 QLPJ[;
which obviously holds. Hence
(6.24) 2V _ dhe g

91}69[[# 2/Vlo( O(/F I

We hgve demonstrated

Theorem 6, A necegsary and sufficient condition that both
(

linear connections /;@ ’ /7) , be symmetric in their

lower indices is that there exlst a scalar invariant VM, )
2Ty

e

From (6.2) we note that 1f a coordinate system exists

relative to M,, M, such that J, s =

7Y ’7/ 7/
for which 4”@ -0 , then / e, " es, 0 Hence if the
linear connection / 1s asymmetric no coordinete system
[4
can exlist which will cause the symbols ,C;£ to vanish. A

Yy
simlilar remark holds for R
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ir f"(h}, f"[)’z} are contravariant vectors relative
to X and {1 respectively, we may compere the two vectors
as to magnitude, angle between the two, etc.; provided we
can join the points A , /i’;_r by a curve '/} in the space.
To do so we introduce the Rlemannisan metric j,,ﬂg //%M/, assum-
ing symmetry in the indices., Let ,r‘/f) be the geodesic join-

ing 1%, L° obtained by extremslizing

(6.25) f /jm/ﬂ///"f ﬁ“’) dt

é
the parameter t gatisfying ﬂ,ﬂ % é‘_’—r =7 ,

We cen now transport §("[1// glong 1"/6/ through a parazllel
displacement from A to X° . We need only integrate the

system

)% ) /7 ‘
(8.26) —_— f
where /Z/f,/x/ is the Christoffel symbol obtained from the
Riemannian metric dlg//'//‘r/ We now define the cosine of the
angle between 7//11) 77 /X,/ st 1, as follows.

Joplins) T9n9) 70
[9, 50050 5 40T P[4, ) 31057 3)

(6.27) wotlb =

¢ 4
where 7///)(1') is the value of J ’/X/ after parallel displace-
ment slong )C‘[%} to the point 1.” . The sbove results are

relative to the path 1t .

VII. Tensors connected with the dvodesics.,

Interchanging « and # in (6.3) and subtracting we obtain

(7.1) e ‘)5'“'* (93“/,_ i u, o 9*»
% - 217 X7 "o~ an”
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Definition. _
;(' L & 2 2
(7.2) C . (MM)= ;’ / A 2:'_:’.) )
v * o1, 24~
From (7.1) and (7.2) we obtain
—( |
2 —
2% 9)}’6 o’ 2// 9,(/ 2}/ By
=2 2 ol ant
T AP T AR A

—,¢
(7.3) Ca;v

Similerly, we obtain

— 7
— e, 215" 2x" on
(7.4) C,..= C. ===
), YXEEY ¢ X Ix
wileze : . L/ﬂ( Qgﬂ;p 997— )
(7.5) | Co (M, 1) = ] o

Theorem 7., A necessary and sufficient conditign that '/:%’
be symmetric in its lower indices is that»(fé;/ vanish.

The proof follows from definition (7.2) snd Theorem 3,
A similar statement holds for C,;; in connection with the
symmetry of é:;. ‘

The C % as defined by (7.2) and (7.5) are two-point
tensors. The transformation laws for the /fi and Ca could
have been obtalned from the inveriant character of the differ-

ential equations of the dyodesics,

VIII. The dyodesics, continued.

Masking use of (6.1), (6.15), (7.2), (7.5), the equations
of the dyo-paths (5.12) take the forms
Ry L, - ‘8 L, Xy P
‘ /Y/ ')L /:F/ *I ll 7L CA;F X/ Xl =0
(8.1) . or ¢ L aas
7T~ A A =0
/)"(ﬁ 2 C‘Y/ﬂ / 2 .
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We notice in (8.1) that only the symmetric parts of
0(/-"/ . ﬂ): contribute to the double suxt(zs, s0 _thaLt there
is no loss in generality in replacing Z@/ by ;f//z/éf/ﬂ@y, etc,
Theorem 8, A first integral of the system (8.1) is

(8.2) j d/(, /{ Vi f
98 45 /5'
Proof. We have // dl*
% l d’)’; a4 M
8.3) & AX, o“ 4N
( ) ds (ja‘l(ﬁ IJS jlﬁ d‘jz /.f 74ﬁ AS S
2; a0 dX/ dX, JIL
" x"’ 75 ds s
a o~
+ ?ja/’ 4{/[ d/l- {{L .
. o A4S Js IS
2705 4 EYA
Replacing /5; T by their values from (8.1) we obtsain

. e - a// Ky
(8.4) fs‘(j«, s M/ Jor 1 [ f' ARAE Cm A //;/
VRN o o
~ dﬂ /l/ [ ) Az /,/1-—.— I”/

)07

o X T 'ﬂ J FOPPI .
7+ Q(j,ié A A ”; 7 & 'f; (Lﬁ'{/?—‘r

2 21 .

The right-hand side of (8.4) reduces to

a7 R
(845) 29, v A
[ ?/g - 9“//5 ﬂ 27/‘)’ Cr Ao A

“(3_223 7”9”);(/// (ff?..,f 9;”“‘) W

LDXLT 94’:, 9/(

by making use of (4.13), (4.23), (6.1), (6.15), (7.2), (7.5).
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The right-hand side of (8.5) vanishes because of the skew-
C T s o T }
character of the coefficients of X, Xz and X, X, . ?.£.D.
The equations of the dyodesics take a more simple form

when the Christoffel symbols (linear connections) are sym-

¢ <
metric, for from Theorem 7 we have C;;S: C;FIO so that (8.1)

7 /

becomes . ( ‘-0

v L Y P

X, t //:(ﬂ/ Xl X’ =0
(8.6) "L ) ’“ ’ﬂ:O

2' + /q)x'g °

These differential equations are not independent since the
Christoffel symbols are functions of A, X2 ,

The particuler form (8.1) for the differential equatlons
of the dyodesics depends on the parsmeter s, If we make an

arbitrary analytic substitution,,&é&%ft, we have

of
I A Wx,/f({;%)l+ AN A
(8.61) DT N A T /s 45

Substituting (8.6') into (8.1) we obtain

< ¢ s e/bd —
Xp(dhy, an 4% fay,"’dx,(/ / ;’2 */5/
(Bt Ut e & m @ e

(8.7) it . )
{ ¢ ¢ ¥ J‘ Ay, d]; d;f
AN [dty: | Ay, At pd ﬁ/n ~
F(”)*ﬁﬁ*cxﬂa@' Cu 7t 27 =
or
o s an’ Y ananf s 4%
ot T oEtCs ko dst
¢ - AE\2
h Ax
" [7)
(8.8)
JLX}L' . /7)6 &Kﬁﬂ+ [)L ﬁ“{éﬁ B /1f
At 245 A f e 2t It 752

ant At )?
T (%)
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The right-hand sides of (8.8) are independent of i.
These are the equations independent of the paramoter. Irf
the left-hand sides of (8.8) are set equal to Z(¢) , then

the snalytic substitution ([ <>S ylelds

| 4K | ,
J oL 45
(8.9) T £t/ b
: - s gz
i,);/; 1 #
s0 that setting g
Jl
Tt i
(8010) JI/ — fl [0}
7N
and integrating, we obtain 4
(8.11) LA ] Fle)de + BB
dt
or t \j?ﬁh)d&
(8.12) | S= A+ B / c dv,

which reduces (8.9) to (8.1).

Whenever the parameter 8 is used in connection with
the minimal dvodesics we shall assume that s 1s the para-
meter ldentified with equations (8.1).

We next ask if there is a coordinate system for which

the equetions of the dyo-paths are linear in the parameter s,

2,

. . "
i.e., for which djf::o or X“ﬂ:4;5*él? If such a coor-
dinate system exists, we must have
( .
/7,(,/ /{/ /—Cﬂl//"
- . ﬂ s ¢ -0
3¢ + /r /’/z-
]Kﬂ /’/1— XJ (

A
(8.13)

for arbitrary Xf‘ s J@x « Because of the independence of

s A

-
X, 5 X we immediately conclude that of necessity

(8.14) 4 s’ /~ i
[y LR = e T C (o,
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)
From Theorem 7 the vanishing of the C = implies the symmetry

)
of the /'4 in their lower indices, and conversely, so that

from (8.14) we have

(8.15) /7):/,» =

as necessary conditions for the dyo-paths to be linear in the
parsmeter s, From (6.1), (6.15) we see that (8.15) implies
?%ﬁ E.oonstants. |

Conversely, if a coordinate system exlsts for whlech the
linear connections vanish, then the /EL are symmetric in
their lower Indices in all other coordinate systems (see note
after Theorem 6), so that from Theorem 7 we have Cdﬂ ( .p"
We have now proved
Theorem 9. A necessary and sufficient condition that the
dyodesics be linear in the parsmeter s in some coordinate
system A, 1 1s that the linear commectlons 4;; , /Z;:
vanlish for this coordinate system.,

Let us now return to the law of transformetion for the

linear connections. We have

(8.186)

We now differentiste these equations with respect to Z;T,

and obtaln P
- o 2,4 3 4
* — f /14, = ZA T T a v
PY A s 2% A 20,721 2x

7 217 ;// 21
dl’?l :u ?X
/’7dl —9:—(/_ 2/‘// .
/86 9)?'“ gi’;rc?Xl

2 B
4, 21& 9//
P 28" 21,7k,
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Now we interchange 7/ and ¢~ and subtract, so that

’-’\/ —A 4 . . /\
(8.18) (Ww, 9/16' X, =2 2N a7 P J/,
azr 9)?:/ 9_)?;31 " “% 9}:0)}/— “7 ?"/ )X/
J o
(9/;,: ;/;;)px, o o,
= Py — ——, =
on7 ox2 /21 2" 24 )
7 2
r e A ox 2N
. % X 2 /Y"a _ /7 J —_/_ /
L rh = _,_,7
AT A" 2%, a4 2

We now eliminate the second derivatives by means of (8.16)

and thus obtain

PR S
i oy, ” /Qo/, LT 2K 24
819 R L = = =&
(819) A% Yl a1 2x 2y
where o
7 % 7% o 7, % 7%
‘ 2 py 2 L = ey ey,
3.200 K. = 77 557 > O
4 / [
? e

A similar result holds for /Y)ﬂy/ in connection with /),g,r.

of,
The vanishing of /7 ' in some coordinate system implies

d

that the tensor ﬁﬂﬁ be & zero tensor. Thus

Theorem 10. A necessary condition that their exist some

coordinate system for which the dyodesics are linear in the
parameter s is that o

o )
- = 0
(8.21) @M?) = @m

IX. The Projective geometry of paths.

We now lnguire under what circumstances a set of dif-

ferentlial equations

41 A Xarf , Y anX a’)’, ~
(9.1) P A I R A
I . )¢ AN d’/; S //,g, s

DT T 7 g A
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can represent the same dyo-paths as (8.1)%7 If the pair of
curves )Cizw“/f) s A= Y#) are dyo-paths for (8,1) and (8.1},
then they satisfy equations of the type (8.8) and similar

equations obtained from (9.1). Eliminating second derivatives

we obtain
3
4 L, d)’ JI / ),;; /
(/Zﬂj —A'(/’J (’( ?2‘2 Jame e uij(/ah
= o faced
dX, _ T oL re/z
= b7 1.
(2.2)

)( )t d’x‘{gfﬁl : ‘(/ ﬁ({
(/Z«,e )vm) A IF (Cd/f’ dﬁ’ At 4t .

—

A€
p
Now define
Y, 4 Y £
Jio, = Lus, = Py, Boo = b %
C" "D 95,, Y
(9.3) W T e Pes 2
""])" ) €& _
)-«6 A "’f" ¢)/e = (h*//gﬂ
)¢ T 3
wp = Dya = Voo ,@’; =1 445
Equations (9.2) now become
¢ ¢ g 4
‘ '%; ar" Ak, 60// ?‘, I a7 (7 jaforchenged
) df M”(M ‘ ¢) ¢ X/r,“d/fﬂ,f - v
T 2 w7 L e o
or,
4 oY a4y A /I’L K -0
(gp“ﬂ/”{é,,"ﬂﬂ/fjf,)%#’*’( 7@6 H BT
(9.5) , . 5 ' i ¥y g
ANV A1 //, A a{' 2 AL,
(l/)a(ﬂ J)6 7;4‘4 ) d,f /.(P J yj(,/g )€ %## ‘
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Equations (9.5) are to hold for arbitrary and independent

o

o
ax, , an + This implies

E W | oy ah v
(0 0 =940/ /m Je, o i) =
oo (Bl ) (4 L)
(90 52~ ”)’J,')v‘/sﬂ,“f!" 9oy (% I 9,',@1 )=e
< )J ¢ )7
(4 g ) S ) e
We have assumed /172 s /L,:,;/ ’ j;/; /_\)4/ , symmetric since

only thelr symmetric components contribute, Settingi:e and

summing we obtain

RS O
(9;*7) /7,;;: *A,;; = /;]( fe J;

Co=Dyy = Yo i |

(-0 =% 4

Hence if equations (8.1) snd (8.1) are to represent the same
set of dyo-paths, eguations ($.7) must hold. Conversely,
let [(yﬁ/ ) (/ﬁ/}) 1/,%/ V,ﬂ] represent any arbitrary two-point

functions satisfying (9.7). From (9.7) we have

([ 2K AA; b A axf
(/Zﬁ,"/lm x [(w w0 ) aF TF _ 29 ax? o dn’
. E =B Gt LR TE
(9.8) AE
5 sy Al ag’ An
(/;},(,y“-/'\n(ﬂ) A TE *([ Af .//Lf 5 //f%% 2

At
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for any pair of dyo-paths A’,“/t‘) , XL(./f} satisfying (8.8), so
that equations (9.2) are satisfied. Subtracting equations »
(9.2) from (8.8) we obtain similar equations in the A)‘- andD:P.
We thus obtain that every set of dyo-paths with respect to

) )
the f’n R [34- , 1s a set of dyo-paths with respect to the A= R

)
D 4 o and conversely. Hence

Theorem 1l., A necessary and suffilclent condition that (8.1)

and (9.1) shall represent the same system of dyo-paths is
that a set of two-point functions [‘ﬂ,’ , q?ﬁ/ l/,,‘/ IZ“] shall
exlst satisfying (9.7).

If the A’A, D'a  are related to the ['% , (e by
equations of the type (9.7) we say that thev are obtainabdble
one from the other by a projective change of li'near and
tensor connection.

Setting L=d in (9.7) end sumring, we obtain

(

/"J ) '_sz/; = (%H)%

%/
71 ¢ O
(9.6 /)(/-@ = /\,;p = (a 1) f/:'
LI Y -
Cclﬂ - Dt,ﬂ = l,ﬁ)/g
)L. )" _ n
Co(,i = Va o T (//d)
and eliminating (& s, ... s 9tce, in (9.7), we obtain
J
Y ;
4y Y _ 50( ( ”r” ) ) 5,9 (,)u) P‘/)
Ty~ Dy = 22 (L= Dy )+ 2 (1 - A
| ). )¢ >* " /M} " S
(9'10) )’7)5(/5 o ZX’)*P = g’% (WJ/"‘/’ bYa'zl 7 ;;'f? /;,«u /J;/u
g L 5‘/ ( ) ,«/)
_— —_ L _
Ca(/] Daj,g ;:1 (M//g Q/ﬂ

2 1 " ”* ’A)
- Dul(ﬁ = 5,/9 ((,{,Aw A h B
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so that the quantities

77_L, _ ¢, ~ j'{j’ F/*/ _ &;’ /7/4,

ag, — ae, nry A5 nis MY

/ " _ ” - d(;:(‘- /7JM ) J);‘ -

(11) ):’ﬂ )"{i 71%(// j/ npy L2
Ee«,'ﬂ = (ﬂé B ‘{% C/“,:g
¢ ,¢ I “
l:;,ﬂ - Cw _’i’f Czjﬂ

are independent of projective changes of the affine and
tensor components in the ,/Ti, and Cué/ « From (9.11)
we see that the 77;., [ 2» are projectively obtainable
from the //',3/ s (e .

We may now write the equetlons of the dyo-paths in-
dependent of projective changes as

41.7‘ 77_L/ ;(/,.(/1/& [L/ d”:d{’j/_"_pra

(9.12) v G dp Ay ap Ap &

&L ) /)(~ /1}0//_/!{'6 s [)(' &/j/’#//zﬂ:()
A/’ By /4 7/7 /f )

Xs A possible application : Motion of two bodies.

In the general theory of relativity we find that the
motion of particles are the geodesics and that in free space
the Einstein law, ﬁ%-=£> , enables us to compute the ;# ,
ﬁ% =0 Dbeing a system of second order differential equations
in the ;Ej « This law was highly successful in predict-
ing the motion of an Infinitesimal particle in the field of
a stationary mess M, provided spherical symmetry was assumed,

plus the assumption that at great distances from ¥ the orbits
should resemble straight line paths.
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In the case of two masses we cannot add the fields due
to both objects since the Ricci tensor A%;'is not linear in
the ;Ej-. Moreover, if this were possible, the geodesics
would vield the motion of a third infinitesimal particle
under the field of essentially two fixed masses, whereas we
are concerned with the motlon of the two gravitating objects.
At first glance, the dyodesics lead one to believe that here
is & possible method for attacking this problem. We shall
attempt to obtaln a geometric invariant solution of the two-
body problem in paragraph 18.

Let us assume a line element
(10.1) 45>z J.s it

where we assume g, = 7 /'/ A=/
a0
— [ A
Jopp = O f TFE
and furthermore we assume that

z "7’//4 ///,im
sta G dntant e s

Let us choose

o for (FF.

_ - G M J _ EwM
ﬁg4 - ﬁhffbﬂ"l’ .7;:;%;Z/®1 )
where r, = [in) 74(,,;’/’%/,;;3)2‘7%’) 1 = 2—{)4//;7‘//:/7—7‘0/&3/?/}%

r, being assoclated with m, r, with M. If we assume 4, xm.,,

the dyodesics satisfy

(10.2)

A1 g A e,
(10.3) /}7’_ 2/,;L. 1] z =
475 by gt =
2 j;;? AN A
and calling L4:,h¢;ii, we have épproximately
2 S 7
&, A0 - & /
/—/7, = Z 744— a2 3
(10.4) AL 7 //,4/7 4,

%777’ = = ;ﬁ_)f,(_,_ ,{G—'—
e %77/4 (/1‘;{1‘11’/)‘13 J

M?
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the Newtonian equations of motion for earth and sun about
thelir center of mass.,

Example. As an example of the theory that has been set up,

let us attempt to find the dyodesics for the line element

AA
(10.5) 457 € dn, dnn I fy 48, 4By = A s by 58 A4, " AL 4L
<[ Mk e
where c =7 4 T -
We have
A
— C 0 O o}
o "‘/l(/z':« 6 [¢]
(10.6) | ): |
2{/‘6 0 0 N, S 8, fe 8y °
o 0 o] #A
e
- g’)\ ) o o )
~t
o —[/!,/h/ (o} 0
aony (97) < (17" y
) </ B o 0 (A suBsBy) 0
-
o ° o C/
/ﬂll 2C . C ¢ ) C;‘-
We now compute the w7 ap «s 7 4/ .
We have .
{, “r 2;%/‘ “ }ch' ’
(1008) /:ﬂ = ; :)}ffa’ = j ;’/’r’ﬁ » 1 not summed.
: 7/ / .

Hence if 4, (', /, all different, /;ﬁ‘/ -0, and if 4=¢ ,
P

9 ; ¢ }/“
& }7;73' -
Similarly,

/7./(. — / 6(' 2%;‘
L .
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We obtain
2L A 773’ _ 24
//5 - 2/1/ 7 2/12'
72 / A
s = A, e
3 / 7 L
(10.9) /% = A (10.10) 23T e
Ve /
17 - ” /7’4 _ oM
“, " Ny y /¥ 7 A,
3
— 50%9/ ) 73
/’;;L/ ﬁ,;a = 5,1—91_ .
Also
’ C [’ B ;C/p ij;ﬂ _ an;d)
(10-11) g, - /—,X;o( ;)/1’5
) jz/t( 9&.‘- er,‘) , 1 not summed.
i e
This implies 8 ) P
Y Le ) : .
[,”/J = "j _é//j 5, t£T
(10012) 911‘-
) [/L. &y
C‘/"( = j 52_&—;7 / £ J (‘/‘-. =@ .
We find that 2K
’ ~A / ->
(o =€ 2 Ly, = —€ P2
4 -A & ' ¢ —A 9 w B
C;; = ~€ b /5“"9; [3’3 - Ny S A
4 /"“)‘ 2/4 )/ /“")‘ 2_/:
6414 = £ Ny ' 64/4 = C N
z, z
C}/g = —,4«_9/ C(Og‘l« [;3 = ——6(019/524.(9;
(10.13) Cx . L - (10.14) 2 ,
2! - /\1 ) 5,2 = /’l;'
3/ - 1 13 /
CJI - /72. /‘(3 = 71:;
sy = o6y | (2] = ot
qu o ot M
L7V ' = -
A3 /nd Hy

Two of the equations (8.1) for the dyodesics become,

2 . . c . .
476, 4 _L,g//l/—mé,cwé‘,;e%,c Len =o

e A 7

(10.15) 43 & >
2 . - - P - - :0

g%p_z; /—/-’LL gzﬁL——af)&/ ;‘«ngﬁ_ /'7’5'92/2"/ .
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If initislly, £:0,= T4, 8,=6.=0 _ then
(10.16) g =6 = "

satisfies (10.15) and the initial conditions. From our

general uniqueness theorems, we concur that &, and g,

remain identically -

We elso obtaln, using §:6,z7,
i/ /! 2@ /A P —
(10.17) Tt oA, MGt e )0
. . - - _ o
%;-/—”:AL%,-/--;’%/’/yz" J
which imply
s, 49, A
7L [ 3 7—"‘ =
/5)- A1 ‘(
(10.171)

14 af Ak (2A)_,
Jsr T #w s -

Integrating equations (10.17') we obtain
:/Z,:M"

4¢, = conaf
L RA i’L;%’;

(10.18)

.

Also,
Lt A, WA s A% , At dm _
(10.19) A2 * on, IS A5 Vo As TS PTE 7s 75
b g, o Ay, T At Al o
/J 1 ﬁ/];, s d.f EYIRr/ A~ 4572 J i1

Integrating (10.19) we obtain

At -
——= C
(10.20) /i '€
d Atz
- =G 5

Finally we have

0/)7'/ A //I/
(10.21) w7t oalzn) — €

-A Sy 4y, C’/.’,\Z/ fﬁ’ 4t o
ol P
AN, 21

, //1; S e Ih g g A
/J" 9/]; 75

w ¢ amwm oam’,
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along with a first integral,

‘ 0% 2rf
(10.22) L T
?4/f6 AS  AS z 7
or
A dr, AR, A9 49, AT AL
(10.23) - C 73 ds Ax T A2 .

Making use of (10.18) and (10.20), (10.23) becomes

M Ar, Ai b /7 -
10.24 A B c, C =
( ) - € i Vi o ~ C,C £ ¥4 3

and since A=-s« ,

(10'25) f{/f’_/— éfi_i %. // —_— - éiéz — C,Cz_ =

~ (/ 7 _
A 6‘/1/ 4‘/1,, AN #2, ’;"Az .

(10.21) now hecomes

~/
/}L‘, ”%(/z, { V.4 4/172 *//’ MM /‘74[2_0
Asz SPTRRTNY WS . M) g2

(10.26) /—M 4 %D
A% /»;/m, /,a) . M; Y- "G,
ﬂ(Jl 4‘/’ ‘5(/17— A /L/ 6(/)2 17(42 ‘
From (10.26) we see that 1f‘ initielly r,= z;, %’:;;C, then

successive derivatives of », , »

, are equal at $= 0, so that

(10.27) =l o=
More generally, if

= Fla, xn, X, 1)
(10.28) .
7[()(1/)(,/ X'z,, /V,)
sueh that x=41. , 1;=i; , 8t 5=0 , then by considering

C < fln a0, 0)
which has & unique solution £=9%./5) under the given initial
conditions, we see immediately that,ﬁzl@:tﬁlgj satifies

(10.28) and the initial conditions.
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Now as & further initisl condition we take_?%}ﬁ*l—/",

%:% at 5=0, so that /;,3/12217 » Equation (10.25) now
becomes 2
M
(10.29) (%) + (/- EE)? - “b o
Using ds:%'{f, (10.29) becomes
+ Yolh
hodr)* M)h o=/~ Ea
(10.30) //—1—,, 75 #//— ) € 6 an )
and letting 4= £ , we obtain
du > vy 1.2 GG _ _ L //-/"’u
(10.51) (% b Hu)ut - L= - e
so that upon differentiation we obtaln
A, ow = M, Zpmut

5 F
(10.32) Ag? 4h> 7 7

_[/.:é// ~ 3/'%‘/“LJ

the well-known Einstein equation for the motion of an in-

finitesimal plaenet moving in the fleld of a flxed mass /‘/4 .

XI. Parallel dlsplacement.

Consider the pair of curves )’,'./t/, L), end let 7"//‘/,},
'f"/;y,}, be the components of two contravarliant vectors with
components B;L" along 1,'l¢/ , 2’( along 4'/¢). There is no loss
of generality In assuming that these two vectors are genera-
ted from a single contraveriant vector field, 3’( s with
components T" along 4‘%), and components 3’". along l;‘./f/; S0
long as the two curves do not intersect one another. We

shall only treat of this case by consldering curves 1in the

neighborhoods of M,, M,.



37

Definitlon, We say that 3¢ is parallely displaced relative

to the curves A'Mt), Xilt), 1f 3° satisfies the egquations
¢ o 4 L o, or°
43" 4 s A4k, c, 7L _ o
] # lin § + by 3T F

(11.1) af A
435" 2C sk 1P 27 Ax7
# /)74//3 E‘) z C (9 }' M" =0 .

Theorem 12. The tangent vector é%-of the dyodesicg is para-

llely displaced relative to these paths,

The proof is immediately evident 1f we replace t by s

¢ 4/»(," ’¢ rt
and § by 5 ? b by 7 *

We now investigate the invarisnge of (11l.1l) under co-
ordinate transformations. We have,

| ds” e 4 Y ogd dif_ 4 (=0 or ¢
11.2 o —_— = 3 /

—p = - _ N/ —_ B

., (ﬁ% " ar X 9)17‘) AR )
Y % T =, - — =% “IL =y

3 A T Y A

— - : i~ g
. Z-r@, YT AR 1 %:C YA ISP X

Y. 5;?% ;E? EEE 9L" At 2%7
=z € —_— — — —C, —0, ¢
N S B A S T MG S
or e At ™ e
: =Y
—a &47’7( 2’ i 21" )X,ﬁ)
+3° m grar T ral R i

i
«J
A=
————
A
et
+ 5
33
S \ﬂ\
et
K
*~
\‘\(\
e SN,
()
S
AR
~_%
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We obtaln a similar result for the second equation
of {(11.1)., Hence the left-hand sides of (ll.l) transform
like contravariant vectors, so that (11l.1) is an invariant
under coordinate transformations.
Now let U,k)be the componenfs of a covariant vector with
components U, along 1t), 4, along A, ‘#), snd let u_,?‘ be a

scalar invariant under a parallel displacement along /‘/6/, }(,‘//.

Then
| 4
(11.3) /”d f/ Ua, ——}: p 57 M =9,
along £9%/so that using (1l.1) we have
' o ; o ( é
11.4 J 4‘(,/ ¢, - /{ﬂ J ‘ ) //2___
( ) ? / MJ ﬂo{p} &(L) ﬁ - T C“’/ﬂ L{LJ AC ~ 0,
along with
g ¢ A’
« AU 7)( AY. 7 //,/
(11.5) ij ( va /;m’ %c' Z/é - 6
for arbitrary'fﬁ, }’d. Hence A, 1s parallely displaced
along 1/t , X,‘./f/ if
p(é( 7 %/ﬂ f":, » //V:.ﬁ_. o
l(/ . / _ =
2 [07((5) KT) A C”/F o A
(11.8) p B
L
///(jo( _ /'7)d~ % 4/9;’ é’r % =0

T sdf T 4T G« T A ‘

If we are glven two curves ﬁﬁ@/,{fﬁﬁ glong with the
initial vslues (yf', yf) for 7-%,, 1t follows from differential
equation theory that we can solve (11l.1) for the fb; ?’( .
We must show that the §J', f)(thus uniquely'determined are
actually the components of contravariant vectors. ILet the
solutions of (1ll.1l) be

{
A with )= 5 .

7= 47 g )= 5

(11.7)
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There are many ways by which we can choose
(11.8) FL} i 5“'.“”'/ Xlt-”/ 177
302 g A )

such that ;
v 7 (/;’/.f)/ X M), -, 4,"/6}) = ¢ f/z‘/

(11.8%) {"'(x;/z‘/, 1HE), -, x:/;)): 2’1t) . |
Let f?@y, fﬁag}be such a representation. Multiplying (11.1)

s
byf_y:_. we obtain
)

e g (507 ) o T )

= ¢
by making use of (6.2). Hence 34%__2"2§;~, which estab-

1

lishes that T5 is a vector. A similar result holds for f

Now at a point we say that two vectors are parallel,
or have the same direction, if their corresponding components

—t
are proportional. Thus the vector § () qefined by

—_ L
(11.10) < (x)= ¢ k) ¥ en)
is said to be parallel to 5". A similar remark holds for
(11.11) ) An) T )
Now if (3° g’ ) sre parallely displaced along y7 ff/ 5l
we obtain from (11.1) » vy
=4 —ao g 4 =% // z
43 /79 A S 7
(11.12) 7(;{_‘ .-/- a4, 5 Zi[’ L7 ,éf’ ‘éé
—_ . o
4% i T’ Ay e A
7&*5{45.%*@/3{% 7
)/‘

Dividing (11.12) by 7, ¥ »
pressions independent of 1. Vectors satisfying (11.12) sre

said to be parallely displaced relatlive to 5%9,£§ZL Horeover,

1f'§b" ' gatisfy (11.12), then H_ L5

75 5 satisfy (11. ’ en ; = Z/’ f
J‘._ ./, /ﬂ.
=43

will sstisfy (11l.1)
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We now extend the definition of parallel displacement,
Let 3§ LI(X'//Y»} be a two-point contravariant vector, contra-
variant relative to ¥, , and a scalar relative to 42 ., Let
%> /" %)be contravariant relative to f, and a scalar relative
to A . .
Definition. We say that 7%(,/,},?)}/(5)’;} are parallely dis-

placed relative to the curves 1ElE) , Lilt) 19

-4
A3, nY 5% an” Fo AL o
(11.13) I

a3
» XAyL 6 Ar~
% ,L/;I«r,ﬂ.j/ Z’:/—fdjﬂg’ /=0
everywhere along /), KL o ..
Equation (11.2) shows the invariance of (11.13) under
coordinate transformations.
R
We say that ?"/r,//,/, Y %, %) ere parallel if
—t ¢
(11.14) T oh) = 2lan) F Ol n)
t/
whero/; is a scalar relative to f and /i . If 3 A,,/,/ gsatis-
—¢
fiss (11.13) then ¥ /¥, 5/ will satisfy (11.12).

XII. Parallel displacement around infinitesimal closed paths,

Let us find the change in the components of a vector
(f", 3°) as we move around the infinitesimal closed paths

1) ,4;‘/:5} , 0<ts/ o From (11.1) we have
| & / “)dﬁﬁ
(2a1) S = YT W)= g T - § (T

Expending /7 ,C , § in Taylor series' about f=o , we

obtain
( 4/3/) (r’- //a}) / //zr’f;%//* T
"(ﬂ/ T
a4,
[4 '
(12.2) Ch-lel) /9% (X)) / (6= ) #
a,0 le 4

(3%, - (7] (562 img- (G £ 50
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ol
where in the expansion of § “we have used (11,13).

Hence (12.1) becomes (except for infinitesimals of

higher order)

ans 550 = ()7 dat - (5 (L) plaman)
(59 (%) fir-at )25l
W7ﬁ&/?ljmﬁﬂM444dyﬁ%}mf

(o) 7)) )

(i) (T

() 5 plae

= (6] (59, flaz

i
s “fo) A" = - =20
Now, } /4/ :/}%% '/%%IC} / ’

gso that (12.30 reduces to

- {J / 7; rﬂ{ g
Qz.4)  JEO- }/[_ e 7] drar
% NN YA i

//) <, 7 [,

(7 / zaﬂ ] 23
L0 %% Jo
- /?dj/a %M - C; [:Ja },}r/,f -

9)(;
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}J(ﬂyé) &X’JX ~%M54LW:<3
(12;5) }gd(xf/((’a) é)(;d)/'” +§/ an’ =

fa(xz)aﬁ}nm +/[_1(,/X

so that interchanging 7,4 1n (12.4) and using (12.5) we

Also,

obtain
aver 550 = -4 (7Y (R, S0
/ 5 4 s V=)
4[5 (S %/)/’ A=)
., 0
-;/5% //OW/ jf(/ 4y v Pan?)
"/f//f ////,%/ ,/)
where
’ 2/’ /7" L, 7, L 77
/Fd;”?: i i;(,? ey Vo, ~ 7 e
(12.7) jd/;/‘r - gf;//ﬁ - 9;—;%; # [7;3* “’f’-— (3'; C(/j,.
7:(;1 = 2/4/‘/ . ; ql«?‘ pa (7_¢ 451 QZ ﬁ?'J/

.

oh ;x
We now exhibit the tensor character of R, S, T« Refer-

ring back to §8 we see thatzﬁkg is a tensor. From (7.4)

upon differentiation, we obtain

¢ £, ) - —t w . 7
’ = # 20 Ox
(12.8) J [f,a' _ 95,«1,7 QX,A 21, ,9)’;7 2)’,’,% Céf /é /r YA ;
. =t —_— e e e, =T — — 7 -—-————___/& — )
o ot ¢ KT oK 5" 7 24 o 25

Interchanging Ay and subtracting, we see that

(12.9) Qfdﬂ }C /
A .7:(}
gre the components of a tensor. This proves the tensor

h F 5,4
character o .
o(/‘ﬂ'
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Finelly, we can prove the tensor character of A“;, by
appealing to the guotient law or by investigating 7;;,_
directly as regards its law of transfermation.

Similar results hold for [§' which lead to the ten-

X9 $1
sors K’ xﬂv’ ‘erp , 74,@ , where
7)(. )( ‘
ﬁ)t _ 2/”(" /}:m +/7} ﬁ /;;t ;7‘
» IXBT ‘912 9)/213 «f
12.9' )( - 9 st ,(. }
( ) Sics 9?”* 2Cn 4 (]S w - (5 (
. X,
5¢ 2/7" )L. : <
T = )‘Yﬂ }C « s4 7

r JF%= )= G’for all infinitesimel closed paths we

must have (and conversely),

L L, —— 4 .
ﬁdﬂ,ﬂ- = ,,(//_ga‘: /pr/j/ﬁ‘ - 0
(12.10) _ _
N A e A
/?)a(ﬂf - \J:(ﬂ/r - /qr/ﬂzr -

Definition. If (12.10) holds we say that the space is flat,

If the equations of the dyodesics are linear in the
paremeter s, we must have (Theorem 9) /74 —67 which
imply C;;:C;;=D. Hence
Theorem 13. If.the equations of the dyodeslics are llnear

in the psrasmeter s, the space is necessarily flat.

[ ﬁ}l
Let us now consilder a space with symmetric /:/ s '>af
—/J(

‘ «
which is flat. Since Cv,:c;;:O, the vanishing of Z%Z ,/%ﬂr

imply
(12.11) e - 2l 0
21,7 2X,
Hence
§ Y [y
(12.12) [s, = /a ()

7= /7 ()

158 BL/
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From ordinary Riemannlan geometry we know that a nece-
ssary and sufficient condition that coordinate systems 4 , V),
6, e 'y
exist such that /,%/X,}, 4:",/1/:/ venish is that/g,@ ), /ﬁﬂf}/ vaenish,
Hence we have shown

Theorem 14, A necesgsary and sufficient condition that a

2
space with symmetric ﬂ,,,g /7,(/5 consist of dyodeslics linear
in the paremeter s for some coordinate system is that the
space be flat,
/% ana A%
From the definition of the /2 and /12 we can readlly
prove that
9 2¢
(12.13) Kt = K we = €
for all metrics ja'ﬂ . This does not affect any of the above
7 . ; ‘ X

theorems or statements. The proof of (12.13) now follows.

L Qﬁ(/ 2 Y < 7 ¢ 7
(12.14) Exr = v T #+ /Z‘”j /ﬂr;/ //7;; /:”3

Yy

4

where ﬁ,,/; = j v ’)/‘*’/‘

e '9/';}3'
Hence 2 2
‘{ élé 2/";6 22/6
(12.18) f' = 2? - Al
*7, P /A
— - 4738
o7 ox” g ox’ @ " S

Now jt/éj‘,/a :j)e Ge 2
g0 that i ;‘M %; j ’/ B
and = ’;J/;le

and hence (12.15) reduces te

(12.16) /'”)d;;; _ _’; ‘/'«/ A QJZA ‘;Zé —/—; 7 /7:‘ QJZ/‘ {_j_a’:é

LICS v
. /’7/ /7Z /’7 //77; /’79/7?‘-/7(/ 7
- 7 Y77, A3, 74, 1«7, 77, e, 7 s
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X111, Intrinsie derivatives.

Definition. Let ;fd be a contravarlant vector with compo-
y .
nents }:‘5, ¥’ along 4“%), 1,'(t), rvespectively. We define the

o of
intrinsic derivatives of § , § along these curves by the

equations
7 4 d¥Y y e q4x? 4 <G L1,
(13.1) % = ——ﬁ’ + /:’(,aJ ¥ 7}" + C,gﬂ ¥ At
* J"= /fj )4' 5 d/}/ a ’6/(1,
S AN M N S

SE
From (13.1) we have

Jg‘/_ aj I3 d% /’Cﬁ // a 4/’/1'6

3?‘ (;xﬂ s 3 e t G I
(13.2)

473‘ 294 //Lﬁ j" j/jp(,l’/‘(
/ )"(ﬁ }‘ ZE— * ( J A

From (11.2) we know that i¥Y and JF are contravariant vec-
E FE v

Yo dy 4y .
tors, and since (.S )% s (7 f)ﬁ% , are tensors, the
quotient law tells us that

Lo 9}4 /79 %
(1363) gjé: - '57” 40, -f

2t — ‘;f j:
are tensors., J 8 9)(;

, defined by (13.3) are celled

Definition., The f,«, s f
V-4

/Jﬂ
the covariant derivatives of }" and§ with respect to /

and &ﬁ s respectively. The semi-colon will denote covariant
differentiation,

The above results could have been obtained from our
knowledge of the transformetion laws of the /75/ .

Let us find the intrinsie derivative of a genersl ten-
sor f;:) s along%‘/fj. Let AAJ ,it’, ﬂ’b , be general vectors
along X,‘Z%/whose intrinsic derivatives venish. We now con-

4t n
sider the scalar invariant 4 ’°j ’p,uj E; , and obtain
J
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. ”%f.
(15.4)  H(A8°D, %) - o % ( ol (AT
,5’0/1- J/q)ﬁ/ 4 AZ,

—- AA‘D/,_! (//tl Z},}: Z‘/ xg 2, /I//

4% / ///f’ e 268
by making use of (11.1), (11. 6). Hence

4 (a0t )< R [T 57 (4

A A 5 d.)’,,, /41’6 A}’)
grt, {c‘,s, Z{% p,e @ a’/i‘ﬁ; (t,ﬁ 4/;]
From the quotlent theorem we obtain the intrinsic deriva~

(13.5)

tive
(13.6) /57 poar, A5
<t *32@ w2 7 Con ar
A4

It 1s immedietely evident that

N

n, pR3 / - 47
(13.7) - 95 2V 4
}t it Toxe £, Wg 7z, ‘ﬂ; ”@ é

is a tensor (covariant derivative),

The gsneralization to any tensor 1s at once apparent
from the forms of (1:5.6); (13.7). Thus j,-f,j denotes the
covariant derivative of Fi with respect to xe .

We also extend the definition of the intrinsic deriva-
tive as follows. TLet f?“ﬂ?be a contravariant vector in A, ,
g2 scaler in X, , and let }’109%J be a contravariant vector
in % , and a scalar in { . The intrinsic derivatives of §?,

?“ , relative to,ﬁﬂ),/fﬁ/ are defined by equations (13.1).

From (13.,1) we have
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I3 [
s 9'5 ) L/ a(/ /‘/[

: 56
(15.8) 7]( /1‘
—————- /”ﬂ ;vqé
25" Axf
Since 7-°_ A and,z?

(13.3) defines a tensor (covariant derivative).

write (13.8) as

57 v, 5t
(13.81) JE S5 A *
¢ .
J ot akf )
TE S8 T * Jus
where
L 9'5
(13.8%) Su = @,LCMF
Example.,
_ g
Jops 0 57
21X,
6

Now jxrzjé

24”49 J;, . Hence

Jor

8o that jmizﬂ: J;;. Thus

7

j = d/ﬂ _
N5, r

(13.9)
‘ X

Returning to parallelism, we see that (11.12) may be

sxpressed as follows,
(13.10)

where f": ¥91,1.) »

A
. Let/ _ be the inverse of 7 ’

VA
=S iy
= Doy

A
2“', 2 7 /r/)/’/7

a5’
(T

/J}ﬁ* < jM

Ve may
A5’
4t
wrl
At
. ¢ ,

}} = QEL # éﬁ

y %5, oy P 7

, and similarly

7ﬂ/;0’

are vectors, we can agein conclude that

-

~
80 that
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We may re-express (13.10) as

Sa‘)[ }J(Lg: Axﬁ (J} , [,ﬂ ‘f /ﬂu’; ij' /'n/efclan,cJ.

(13.11) 3[ 32t AX CJ‘ f)f’ 1!,]:
[m,w"*’,«"-cﬂ i3 .

*

Ir §°, ’S-" are to be parallely displaced along all curves
1ty , x,"lt) , (13.11) shows that we must have
4o rhtd
S };ﬁ, =5 giﬂl
24 Ty s¢ yJ
L

) Hed,
f?l -gﬁ)(s ? )E*,ﬂ
| )¢ 35-
- FR

\

(13.12)

\I

“r{
S
.i’fj
i

From (13.12) 1t follows that 3,; ¢»would have to be independ-
ent of i so that

7] Vi
(13.13) f,ﬁ 781

/s ‘

It cen easily be shown that -,% is & covariant vector, i.e.,

W= Yslp)e 1t follows that

L, ¢
Theorem 15. A necessary condition that b ! s }’ be parallely
displaced along all curves 1s that covarlant vectors ;% s t‘;ép

2/ 0 ,l/ﬂ) s Sha/f exist such that
L L
S = 22 F_
¢ )t
(13.14) f” = 1, }

(, Y
Ses = 2 Ko I
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Ir ,(/ﬂ/ andz%lg are gradients, then

b 91’"‘¢/ L
(13.15) 5 = i
5 = 2t g
j )P e - > "
where g v Ly, e Ml
,%a = -——;?7?" ’9ﬁ5’ Y2
!
Hence . ¢
L — _L/ / ’ 71«7#9 =0
(sﬁ’/jﬂa T4 gjﬂ" J: 2, /
(13.186)

(578).8 =0

Moreover, if 1X¥ R ,kﬂ , are also gradients, we obtaln

f/j-t/_ /;/ ;Zn@ dl;
(13.17) sl g £E
Jl
i / // _ / 7 Ar°
5€ &5 . JU’" ;Té—— ?
I G (X, 1) Qi lh, )
where 2 Ky = e s ik = —‘TEZE——_~ .
It 1mmediately follows from (13.17) that (13.10) will
be satisfied. In general the quantity 2 W A’ will
;u;ﬂ, 7,‘1‘:- .

depend on the path so that the vectors y?é R Ei&é , will not
return to their initial values after being‘parallely dis-

placed around an infinitesimal closed path. If, however,

it happens that 75--,.;(,1,), and = ;C&J then (13.17) may
be written
. ¢ L
(57 5 AnSf
(13.18) e U F g 4t
(%) 3 Ak
;e(—,z; ¢ At
8o that

(13.19)
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5
Thus the vectors 5 /x, x,}'i s f (X %)= 7 satisfy
Y 7Y }:"‘/ )7 o —
23 4 =0 '’ ‘_
2x€ as, .?-Z"" + C,;/,' } =
(13.20) as-’b }(,' — 4o =3¢ ¢ oy
/2 =0 23 4+ (5 =o
P 5 ax’ Co 3 -
Since equations (13.20) are satisfied we must have
Pl )
2§ 2’5’
YA
— 1"‘/
7 /7 f 2%
(13.21) A
225¢ -1
23 ? 7
and these squations yield
— —_— e ¢
— (/ L ‘, _ e . = J J = 0
(13.22) S "Ry = 11 J.,,,M = T s .

—

If (13.22) holds for arbitrary values of § , S ,
at #, , M. , we see that the space is flat and that the vec-
tors }.'_" , ;C_’L', when subjected to parallel displacements around
infinitesimal closed paths, will return to their initial
'values. So _55_:_ ¢ F Evcj and '§)c.'—: g ?,‘ will do the same.
Converselny, 1f the space 1s flat we can solve (13.20) for
the ¥, §’° uniquely with arbitrary initial conditions
at M, Mr o
Definition. A set of vectors f x,/, ¥’ 7 X/, satisfying

Etl = 35'5 +/:/3 f‘J:O

|

/'F/ 7X
| PRE) IN
(13.23) fM - 3x, a,_; b
t _ )A%_//&/ J
502 23 4 (3= =25TE
‘)ﬂ ax,;ﬂ /ﬂ 9)’

s I TLEY % ;gnﬁfx/ }/"
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are sald to form parallel vector fields relative to the

points of M, ,. . The substitution

X xn) = § )/ B )
(13.24) f"'(x.,x,) _ ‘?’C(X-,X-)/cﬁ,(x,)
reduces (13.23) to (13.20), so that if the parallel vector
fields exist (with erbitrary initial values), the space is
necessarily flat., Conversely, if the space 1s flat we can
solve (13.23) for §" , f’( by choosing ¢ =4/ . We have
now proved‘

Theorem 16. A necessary and sufficient condition that there

exist a set of contravariant vectors forming parallel vector
fields with arbitrary components at the fixed points M, , M.,

is that the smace be flat,

Let z; ¥7° gatisfy (13.23) and let us determine the
curvesX,H}, X[H) by solving
| A 7 e ) A A A’
(13.23%) ;;} - £ = - '7'; = —?7, = = _f’-" = )
Then multiplying (13.23) by ﬁ;,, ﬁ%% , and adding, replacing

75 by 7# ’ f" by é%; from (13.23%), we obtain

4 4 ar*ar’ GoAakZan? Al B (te) 4
— F /7 - =5 - - - __
At? B, AT 4F a3 At Jf At P

L /7"‘ d 4r? 5"' an dsf A lu b)) AR
st s g7 ar T Cas T g 4F 0
At ” . A

so that from § 8 we have the following.

Theorem 17. The curves of a congruence of curves determined

by a field of parallel vectors are dyodesics,
Returning to (13.22) we see that if 2n independent vec-
[ ’l.- ' .
tors ¢ J ', ~5 exist, the index € ranging from 1 to n and

denoting the different vectors, such that (13.,22) 1s satisfied,
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s L
then the space is flat, for we may consider § R,,(;;;"‘D as
e

/] d,
n equations in the n unknowns A=/,  , with determinant [, ¥ /3"0
y .

o
from the linear independence of the , 5§ . Thus the only

¢ s

{
solution is Ra= /?,(/;5-0. Also J,/;,r = ---0= d/,;rﬂ’. Hence

Theorem 18, A necessary and sufficient condition that the

A
space admit n linearly independent parallel vectors 5 along
with n linearly independent parallel vectors §°° 1s that the

space be flat.

‘I
The n linearly independent vectors 4 l (M) ape said
to form an ennuple. Let us now define n linearly independ-

ent covariant vectors ‘AL, by the equations

L g
(13.25) « X I‘AL, = [d;
| oA _ L
Moreover, . ) }‘;/ = Jg,
(13.28)
for define C;' by
. J ¢
P S
(13.27) (, = 2
and multlply by ”)\g to obtain
¢ A
A ! -
(13-28) lL} ng /1;} J
go that
. ¢ P
(13.29) oo g since #0
G-, 5.

o
Similarly, let 4/“, MM, ‘%‘./M,JM»/ be linearly inde-

pendent vectors. Now let '

L - (:"/ KK

. (M, M)

Bods, LA

denote the components of any mixed two-point tensor field.

(13.30) 4

The quantities

oy Ry .- Ug
S (mrm)= & ‘
p'.,.ﬂsl 7o T Jl"'?&,“/"”{“ (G [

% oe w4
. }‘ o

[

L,L,‘ Koo Ke 4,
(13.31) ( ’ X

are invariants, i.e., ( = (. .«



- B3
¢' E

Multiplying bY}gl s--- 5 otc., we obtaln
J [ 7 7 t ’ e
13.32) A, ., =
( ) 2]”'25 /1[.,.1“ (ﬁ', ,,,ﬂ‘/ ARE Tee o /l /()Iu B

g0 that the components of any two-point tensor are express-
ible in terms of invariants mnd the components of an ennuple
(contravarient, covarisnt) at M,, and the components of an
enmuple (contravariant, covarlisnt) at M,.

We now define the invariants (not to be confuded with

tensors) )’v’ (M,IH,/ ,}’ (ﬂ,ﬂh , by the equations

/07'/ 11
. >/7r /] j) /\‘, )
(13.33) g i

v s’
X;;'f = T/‘/'JJ' /An' e ‘

These are the generalizations of Ricci's coefficients of

rotation. From (13.26) we have ‘
t v “ r
T /\ o= )701' v /\ /\7!
I 4
(13.34) . : ) .

st )/’ »* ]
7/“)),7' = Lo 2/ /A’J

Now ' ; ) 5
(13.35) }L’. a 9,)’#7/(’%%
) . 7 j #) 71/ 7. J
so that on multiplying by 7,]43 we obtain X
i 4 > 97
(13.36) /Z;}/ = T/lr/ 7/1 . }/ — /](,-; -)—E;"
, r 7
= =~ 7/10. t) ) e, 1,) )4) /LrJ

/ 3/:7'

A similar result holds for /;’;;..
Conversely, given an invariant ;é , and defining /Z;)
by (13.36) for all coordinate systems, 1t can be shown that

t
the /7’ transform in the usual manner. Hence any ennuple of
74
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v
independent vectors and any set of invarlants )’7;_ determine

4
a linear connection /Z'g: , and any linear connection is so

determined from (13,36),

We now conslder the j,ﬂ defined by
n P ad |
: r , X
4 =y

“ - : -
where r)\‘) ’ /t‘,[_g are ennuples at M, , M,, respectively, see (4.6).
d/
Using (13.25) we see that; # defined by

s <
(13.38) ]d = ) . oA
V£

‘ d
yields jd)ijﬂ/{r:jﬁ;'. Hence

13,390 /dl’ = o ng
(, 5439) T4 T ?/\’2

>/f 99‘/1

#
3N 20 Ty
TPz }

)77

1]

¢
- 2%:_)

by differentiating ,5 ) g /ﬂr: );3’ « Comparing with (13,38),
/
(13.34) we see that

.

é)
(13.40) - l;;}“, -

From (13.21), (13.22) we conclude that the Riemann ten-
t, FY4 ‘
s0ors ﬁdp} s /?,Wmust vanish for the metric defined by (13.37).
/
More generally than (13.37) we may consider the metric

;,‘/ﬂ defined by
‘ & ¢
f

€ 0
where the <5/ are constants such that the form (gp/'l A g posi-

tive definite. It 1s easy to show that the ﬁ/ﬂ transform
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like a two-point tensor. We define

' <8 7 o )
(13.42) ; = C I /\

va 7 ’ a0 “ ‘
where (r (,.ﬂ=;,u , 8o that / ﬂjo-=c[,5 o It 1s easy to

show that
., . w)\ IpA )
(13.43) /,! = = Ag a)rJ
{
so that /?;/:/f” . Similarly ,€M .

-
Let us consider the ennuples 9?/"” ’ 9¢/X,;/ and con-
;)’, Py

sider the metric

2864,) 2Pk

(18.44) Jap = b4 Y on°
2 X
2N

o0, % nf

¢ ' ’

where }/: (;)' 40/1//) ‘7,%//,/.

/ 3 )<

From Theorems 6,7 we conclude that (‘/’ = (zx/ﬂ“
Hence, see (12,7)

¢ )('
),, - 501/:/0‘ =

-(lp T
(13.45) ‘
agr /a’/ﬂf 7
;' [4
since x,a/:/:pl (r) » see (13.43), which implies
/ / .
)L
/7" 25w - 0
(13.46) “w _— o — =7 .
oxn’ ’ o

Hence the space is flat, so that from Theorem 16 we

conclude that ')&;/X/ R ﬂ‘/‘/ form parallel vector fields
24 ot

for a space defined by (13.45).
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XIV. Parallel displacement in sub-spaces.

"Let us conslder the two dlstinet points M,, M, of an
n-dimensional space admitting the metric ;Qﬂﬂ%ﬁg. Let X,
be a coordinate system for e neighborhood of M, end let 1z
be a coordinate system for a nelghborhood of M,. We now

consider the transformations
kol
RES LR AN S

(14.1) )(;z /;(/73/, Zj:;‘“/ j:)j ws LRy 5 LT,

Each set (75'32'“’77) determines & point (X 4% ---, 4]},
but not conversely, since wm«n , so that we may consider
the allowsble totallity of (jfj?i-u,jr) as determining & sub-
spece of the enveloping spsce described by X in the neigh-
borhood of M,. Similarly the set (7j,;;,.vyf) determines
2 sub-space of the same enveloping space in the neighborhood
of M,. There 1s obviously no loss in generality in assuming
that the two sub-spaces are part of a single sub-space,
elements in the neighborhood of M, having components (¥, /... 4"),
end elements in the neighborhood of M, having components
Fa, oz, - 1) |

We now define Agj(%77, the metric for the sub-space, by

the equation

ds? = jd,ﬁ (e, 0 ) A5 < 4" = Adj Ay dy?

(1402) J

under the transformations (14.1).

We shall use (Greek letters for the n~dimensional space

and Latin letters for the m-dimensional sub-space glven by (14.1).
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From (14.2) we have

S AT ), Ay < ag?
A AV T A S PR
(14.3) Frs PRy Z L5 0 A
so that
21’ 91
. ; = //(l L
(14-4) /14/; /71 %,/ jaj/d / 9; 971
The dyodesics in the sub-space are obtasined by extrema-
lizing
; ‘) ,
(14.5) p Ay 1;;/
{ / “I ZE JE 4t

From the method of obtaining the dyodesics we immediately see
that the differential equsations of the dyodesics will have
the same form as (8,1), with the linear connections and ten-
sors of (8.1) replaced by the seme symbols obtalned from the
metric tensor lqjeﬁﬁj. Let us now find the relationship

between these quantities, Differentiating (14.3) we obtain

(14.6) R N AL O J T
* 79,“ P R 97 597 W29 dp? -
Hence ; e
72, / ‘
/744/ /7 ’ = A/1« 4 A 24 - E,é_l'z.il:f
o 29" 29, "
(14.7) 2, d
_ ;, 777 Py ;uz o ;7 20
| 7/1 w gl %ZK %Z %Z- L¥ aZK%Z‘ agu
Moreover,
(14.8) iy e ( *Jyn 72@7 75" on o
9%'( 2?12 ?1,11/ ;ILM 5;(7;‘_( ;;/l' 9—3:7' J
80 that
» 7 AT AR
(14.9) hao C 0 5)= 4 C7lo,n) 2 20 28
! 2 B A 2y, 29 297
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We are now in a position to find the relationship be-
tween the intrinsic derivatives of & vector as measured by
observers in the full space and observers in the sub-spsace.
Let a5'be the components of a contrevariant vector in the

o
sub~space and let A"be its components in the full spsace.

We have d
(14.10) AC 0 n) = 4 A a;;—' g
so that
ﬂl, 1 ’
(14.11) A A da” 1" 2" dy?
) AL T AE age T aytayt
From (13.1) we have
- % A « / 2;10/ / e » «, A‘///—v
(14.12) AT AT on e 20 7/7‘ 4%{4( 4 h
St At ;Zé ?749(7 P2 fav, # v At
Af 32‘ ;;,/4,;7/ * ;;, 2;}7 2T Y a”;t ;;; a
Hence . p
& % Y ),(
W 9> St ?,7 ’7:
‘ 2" ’/d ),v’g 7 A o
VRS A VS S S
A Logpie el Ry o)
Rl A
‘ A 37/ 7;)7 p(,f J;’ J
and
| " d [ 4 A AN
(14.14) g M JAT A WAL va Cn.é,/p{f
1,6 )J;” St A Af & 7
da" ‘ ,d;ff 4 Jy’]
= h. S S A/ N2
PLlue T ey, T Gk Coi ©
- hoa 347
= e S

by making use of (14.,7), (14.9).
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Similerly, )
wisn” . Ja
(14.15) ;,ﬂ 29° §€ VLS

From (14.14), (14,15) we immedlately have the following.

Theorem 19, If a vector field in a sub-space 1s parallely

displaced along a palr of paths 1In the full space, and if
the pair of paths lle in the sub-spesce, then the vector
field is parellely displeced along the paths relative to

the sub-spsace.

Theorem 20, If a palr of paths are dyodesics in the full

space, they are also dyodesics in any sub-space in which

they lie.
£
These theorems follow from the fact that é§;47implies
' ' 5
i@ , see (1l4.1#).

XV. Generalized covariant differentistion.
Let V,, be a sub-space of V, , see $14, and let C, , C,

be any two curves in V, .
(15.1) c,: M=) 5 o =)

In V, the curves are £(s), X)) . Now 1let A, X /(;) A . &, /;;
b*&bnj B’ a.h), be vector fields which ere parallely dis-
placed along C,, C, relative to V,. Similarly, let (7%[A
C’?%%/be vector fields in V, parallely displaced along C, ,

C,, respectively, relative to V, . From (11.1), (11.6) we have
Yy _ 117 A zzﬁ" .. A, %": 0

(15.2) & #c;: 5,/)%,9 -,L (r, 59‘_/ %ﬂro
o fgk 21

with similer equations for the 4 ,C}L.
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4, :
Let Zhrg be a tensor fleld defined along C,, C,, such
that D is 2 mixed tensor field in V, relative to X and a
scalar relative to I, , a covariant vector in V, relative to g,
LSy %
& scalar relative to Y, . The product A« 87C l%gis 8 scalar
invariant function of 8 along C, and C,. Its derivative

with respect to s 1s slso a scalar invariant. Differentiating

this product we obtain

» . e e AdAy 2% o D7
(15.3) 5(_;//4% B ( Jﬁﬂ)/ = =3 g C 7,
* .{é /2.,/ [ 0a't

43

¢, 7 d/
+ .é.(.s‘_— /L{J 5 /Dr‘c;

d, .
+ ‘/Dﬂ; ,4,‘/56[ 7

A J

and using (15.2) we obtain
(15.4) /Adﬁfﬂj /ZBC [
u, Sy %4 /xf/
*Dm/cﬂ/;}‘—”' “r TS

- D d/ //;;9’/ /f [a- ;}Eﬂ/

dﬂ’

Ay, /J i
s
ol (. ot )
4, K Js .
From the quotient law we hsve that
a B8 7 o495
” Ay v A /ﬂ / ._,2
(15.5) =T Zq, 0, % LDl Sy

RS

is @ tensor of the seme type as [) . (15.5) may be written
20 #, B i
v, T DN T Y 4 A9~
(15.8 ) ;—7( # //7"/5./ D‘r‘/ ;JK - C/S Q 3 _!—k - //) ﬂj ; d‘t /;"
J A 7 / ?7/ /, ;y;/( /J
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04
and since Z QD 45"

are tensors, the expression in

77 /J

parenthesis, denoted by ZL; X is & covarlant tensor of sec-

ond order in the ;h/. We call it the tensor derivative of
Py ‘

'Dré with respect to %K

, the colon representing this type
of generalized covarisnt differentiation.

Definition.
% _ 7 a'? y Jlﬂ “ NN O Zn%

(15.7) Dﬂ.‘/ 2K - 2 +//‘7ﬂ/ Q"/ 2y,k - ﬂr”/ Q‘S 3;7,k <&, VG,

Example. .Ldis an invarisnt for transformations of J, -7/«
Hence

of
4 2%, .
(15.8) X .0 = ;oo for eachd ,
’ 7
For each « , 1. 1s a covarlant vector relative to J, .
7
Hance o p o
2, 3 5% o a4
LAY o A A
2 297 2, 25¢ v 77 )
J _
since E!% is a contravariant vector relstive to 4, , since
§ LYo oy
(15.10) ohs 2k
7 % 2y,
We re-write (15.9),
(15.9%) " o ol AN
*r X/: ‘J/ - J:I'JJ';; # B, !, s )
Returning to sub-spaces we have
99 K, 29 « K/
(15.11) 5 .
Fusik, = jw ZA

/J,{:r
Ju 20 7,,,,// 2

ao

’)Z/‘:O
We now take the generalized covariant derivative of

« 8
Aﬁa' = ;Lwd'n:g A
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with respect to 4% and obtain
o« yZi T
4 q 4 X - 0
20 /)( # /f,/." /-.«/~
. —_— . . g . . J
(15.12) ;"'//5 292 SRV “% 7 7
by meking use of (15.9%), (15.11]) and the product rale for

differentliating products of tensors.

We now define generalized normals to the hypersurfaces
(m=m-1 ) at M,, M. |
Definition. The set of quantities /)/d'//f,, ) , A/IV/Q’L/satis-

fying
o P
Jog VW =1
Ay oy B
jd,ﬂ /V 91‘;' =0
(15,13) °ds
Gup 1?0287 2 0

24,2
5,4
;/%4 M) W 2=/
are called the generalized normasls to the hypersurface at M/ s M,

We notice that (15.13) consists of 2n equations in the

;
oa
on unknowns ¥ 4V .

From (15.13) we see that

"()
o s _
(15.14) /(/":L. . //’%’ 1, X = _/Z;k, 4

will satisfy (15.12). Moreover, flaxl are uniquely defined by
/7 oA . 4 m - ]
/( oz X..‘
(15.15) —/Z-LK/ /M’/ /‘7:-/ = ja{/ﬂ /1/ [A//:LJKJ %CC /,'LJ s 7
from (15.13)

We notice that the flul [H,11.) are a generalization of the

second fundamental form occuring in Riemannian geometry.
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XVI. ©Normal coordinates. Dyodesle coordinates.

We consider the points MM/, M./), with their local
3, /s

coordinate systems L » 4 , and assume that the linear con-

nections ;1 ,4;‘ are symmetric in thelr lower indices. Let
/7

us now keep A_fixed,»;sb,, so that (8.1l) reduces to
+ ’ ‘ /' K
S ) G,

4s* 7% 5 75 .

(16.1)

Equation (16.1) has a unique solutionA“ﬁ)subject to the con-

ditions A'[)=1x 5‘ /”[/ } If we perform a change of variable

at {; , we have /" /X,};) /hl’;}: so that the solutions of

(16,1) are independent ofkthe coordinate system used at M,.
The solutions of (16.1) are the minimel dyodesics

through M, which correspond to the point M,. In & small

neighborhood of M, no two of these dyodesics will Intersect

from our general uniqueness theorem. Gilven any polnt M in

a neighborhood of M/; there will exlst & unique minimal

dyodesic joining M, to M. We can loéate the point M by

the two parametersfe'and S, Hence the equatlons

(16.2) 45 : FUs , u=zlaeeun

determine a one-to-one non-singular transformation of coor-

dinates,

(16.3) 7/": 7,"/)(,2;}/.../ x) , Lzlzye,m

in the nelghborhood of M,. We exhibit this transformation

in (16.6). Now similarly by considering the minimal dyodesics

through M, which correspond to the fixed point M, ; we can

obtain

(16.4) AP AP

M
S

w
~
S
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where
(16‘5) 71‘ = 7,_‘. /'Yz’,/;"', /Y:) R l= L2, .-,
is & non~-singular transformation of coordinastes in the neigh-

borhood of W, . ‘

It is important to note that the dyodesics (16.2) do not
correspond to the dyodesics (1l6.4).
Definitlon. The coordinate systéms;;,;g as defined sbove

are calledvnormal coordinates at M, , M, , respectively, with

poles at M,, M,.
The solution of (16.1) may be written
W)= xl FF0s =L ) Fo5Vsrs--
4 Y A3 7

(16.6) - c, S
R AR T AN VAP A

We immediately obtaln

2,0 .
ort 5 _‘3,{’.. . N 54 /M, Ms)
=t = S ;o 29%g? IK, '

(16 'r{-) 99/2 A4=0 ;’ ’ J 27/. S0 .

2
9| g gl = g
;);1' rEr - 7 / 9,{") nf',7 $zo 4

Let us now transform the X by a transformation (3.2) to
coordinates Z?énd 1et‘E[be the normal coordinates at M, which
correspond to the E‘L The analytic relationship between the
4 and Ziis found as follows. |

Let % =%%/be the solution of (16.1) subject to the initlal

conditions
o « 7
(16.8) XI“: X'L 3 %: f Ffor $=0 .

Under the transformation x‘:£4%), we obtain ¥, =¥l as the

solutions of

- —7— ~K
AX =Y ans &y )
(16.9) ; 4 /;K} {‘?}/'7;,) 5 As v
AS
subject to the conditions _
- _ = 46 =4
6.10 , = _i — or =
(1 ) A A ) ST ¥ for 5=0,
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where z
g. 4- — 4 /“_,
(16.11) n'i=An) =5 / j
Multiplying (16.11) by s, we find
—d, ., A

or

—a o A% /)
(16.13) o= 4 ], /9)0 "

along a curve C, and since there exists a unique minimal path,
joining M, to a nelghberhing point M, (16.13) holds through-
out & neighborhood of M '

All the sbove results which have been proved at ¥,, will
obviously hold at M, for the corresponding quantities involved.
Moreover, even 1f the linear connections are not symmetric in
their lower indices, (16.1) still holds, and we can obtain
the results of (16.7) by considering only the symmebtric parts
of the connections. |

We are now In a position to obtain new tensors from a
given tsensor by a process which we shall simply call 'extension!

of & tensor. Let us consider the two-point mixed tensor

‘ s
(16.14) T ey 5o > ln, 1)
J
and let its components be denoted by
: Ao p b b
(16.15) t o s

P S

when referred to normal coordlinates at M , M,.

~d"“‘p -3
ir T, 7}5 /},Z) are the components of T with respect

to the j , 7 normal coordinate systems, then

l?m”)%ﬁt‘””” ) 7%

—-/u---'l/’ &
79, g ¥ 8, - )
e 77,"’ A

(s.16)  to.g ey




66

> 1 '
and in view of the fact that ;%,-u,.§3- are constants, see
‘ J 21

(16.13), we find

.—-"/A-'n‘l/l("'b #...P 4.-»}’1

2l g et 2417 1ot Y o ob e
(16.17) ! __;’ = }?—fﬁ} /”_2./ roo§, v 30 9}7; _;Ze

9 —-—
29, el N Qj/¢ 2‘7/’7 71,34 .

Evaluating at the origin of normal coordinates, using (16.13)

we obtaln

.._.——/“_..vja.,.é

v
= Y P 3k g dorfp, o m 24 Y, X
(T, 4) = } i—/ /v—"I (n) .0 :

(16.18) 7"'] < s £Ié 21X, PXz r...JJu.-..u'[e ErAL ;’T{m ;ft
S AT 3
where
— eV pend
_T—..A”"v Ao By {_ i) 9 t JS £ /7],‘1}/
f] X, A - i e S S
(16.19) B ‘ / s
73, st ]e 24 sz0

the stroke!¢ denoting the first extension of T relative to N, .
J

It is at once epparent that

| , J-blt,«.---v, A b
/,(...1// a--- - .-.‘ﬁ
(16.20) T 3, 5o bbb Uty 76:’; %
7' N , e €y kj ' " Z ;(7/5:_-_ )7/ RJZ' ‘.. )7}‘ SO

is a tensor, the 7@"“4 extenslon relative to M, and the /% ex~
tension relative to M,.

The sum of the extensions of two tensors is an extension
of their sum, and the extension of products 1s obtained by
the rule for repeated differentistion of a product in the

elementary calculus,

Making use of (16,7) we can find the explicit form of

T,¢J . Now p .
, e, a-- b _ / oA //3/ 2_){’: }Z _/_,,(--'/3)/1.,‘: /Xn,z(..) 8—)’,}_” 321
(16.21) Z:r_ d /5',71-) - ‘;Tj‘/ 79, e W, WU 2, Y ol

-7, C-

so that differentiating (16.21) snd evaluasting at the origin

of normal coordinates, we obtain



e, &b eV G-h
. T/A...ﬂ)j 4."'L _ ? /0_-__7} C--’J /7k/ 7_'/“ / _
(16.22) r-.-7, C"’dlej = ?)’,é - ré} K T, c-ond
X -
e Bnnh A A
S
+ 7;7/ s /ZC') # 7; 7:, c:/
7,_/“7// 4a.--4 /7,%
- /D 7~ .7/ c..-d /'(éj .

We note that the first extension of T relative to M, is
the flrst covarient derivative of T relative to M, .
Since in normal coordinates the components of the linear

connections transform like tensors, we can obtain the exten-

gions of these connections. We have

l — 7 ;7/ / |
(16.23) /’; (59 ) = 1, "9, 9.) 57 _2?,/“ ,
so that

. _ L/ o .

S —_
(16.24) ox _ 2 237 247 25 24,°
27,2 29,¢ 977 aj;’( 29,7 23/-1 D
from which we can infer
PR A
J - / /
(16.25) . /;", /1) 7,/6 ;17 9,( o7,

We can thus generate a whole clagss of tensors

¢, ¢
. F / ‘
(16.26) 74,14, 5 5&//'1, 5 gﬁ,/lj”‘ ) _-_/e/c./.-.

where

/L'fj
] 3 /7, %
(16.27) /7 Ut/ = ( o (97 m/

18y RPNy A
Now thajl";g",s satisfy

(16.28) ”;57; ﬁ (9, //,7, "7 , M, £1xed,

so that
(16.29) /4/« /ﬁ, /%)7/ =0,

on multiplying (16.28) by s « If (16.29) is expanded in a
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power series, we find
' ]k 3/74 bk

A 4 / L 5 £,
(16.30) 0:9:://7///’/;/2;;, = (;‘1/7,%}/0 5 5T ;;1//0? 575

the/ﬂé ahd their partliel derivatives being evalusted at the
origin of normal coordinates. Since (16.30) must hold for

[4
arbltrary 5 we infer at once that

v
= 0
o I
. ‘/ /
(16.31) 72/ L 7/}4/ Q/Ze]
29,¢ 9 779
and in general,
L/
| ) /;/9 =0
(16.52) SNsm—=2) =9
;‘7/ -.'ﬂ’j/ [o}

in which S( ) stands for the sum of 8ll the Qifﬁéfif terms
obtaineble from the one written in the parenthesis by re-
placing the pair of subscripts ;L;Aﬁ by any palr from the
set /kxﬂ'“//m .

From (16.25), (16.26) we see that (16.32) may be re-

placed by
; 4
(16.33) S(Ge1aa.) =0
The normal tensors (16.26) are represented by
¢, l/ i _ t/
A;kﬁ/ = ﬁ;’@//’e) A;klﬂ ) GKJ /Jf

L, l/ l/ l/

(16.34) Aron, gk)/mj A s = /7. ], om
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From
. e 2/
(16 .34%) /Z’s [9,%) = G / 7/ I ’L/ /j ’

we see that the linear connection /;,(j is completely deter-
mined by the system of tensors in (16.34)., It 1s rasther
obvious that similar results hold for /j‘;,:'.

The A% obviously satisfy the identities

¢, <
A;K,@--'SJ = AK]I—--ﬁ)

4

Aﬂ/i/z--»s, = 2‘27"-%
where p.. f 1s any permutatlon of L5

We can now return to the explicit form of (16.20).
Differentiating (16.21) the required number of times in Y and
4, end evaluating at the origin will involve higher deriva-
tives of X‘ and X' with respect to the ;7,‘7. , 73‘ , respectively.
We can use (16.6) and the corresponding equation in X,‘., 4. to

obtain these derivatives, these derivatives involving the A=,

‘D
To obtain /"/,w) we nobte thsat

s )’ ¢ > O ¢
e n; )X ) ; Dj/ 2 X 2:7/
’ W) T —
(16036) /;,(J /71, j’v/ = //371/ //r/ 9‘7/7 )7/ 2)’/ ‘7‘7/3 J(7/ 9)60'
30 that
= ¢ 9/) ’ ¢, /’; l/‘ /’; /7 4
- I~ /] -
(16.37) 2 | = gy s, ;,; (;;J /:/, 742,
2:7"[ 0 2,
where . 93),/ ¢ / ,
/7 _ —_—
(16.38) ;/«4 = ;ZJ)J*;Z’

which is obtained from (16.6) and is not a tensor. It is

sy to show that 4 J
easy show tha ‘ - / 2/7 /7 / /,z,//’,/
(16.39) gkﬁ/ = ’BL / ;—— — sk, #L, ~L,
where P( ) denotes the sum obtained by permuting cyclically

the free indices //f/ end adding the resulting terms.



70

Zxample. Let us compute d7/,€0’ « We have
p /

FY Y
(16.40) ;;7 /i// 7;/ /Z,V//'/,/’/ 394 557 7
J, 7/
g0 that
") 2 M -~
(16.41) ;ﬂ7_ ggvpxii ;g J M 2&)
poy n’
257 P T A 79%31," 2.7
and
2 - 2 P
(16.42) 2 Jur ) ) A e Y
797297 ox%orC 2% 4% 7 21,7

b 2y T A A
9%@ azﬂ ;ﬁ? éfﬁi?
j 2°4" 2’/)’;)_
“v ,Zﬁ%zd éZE%ZT
b Y IHT T ok
orC 202, 377 T

Eveluating at the origin of normal coordinates, we infer that

sz,,jr 7}4,4' /7’1/

7) A 7
- 9;#/7 = 9;,«
Now g 22 ﬂd (
(16.44) = 7Y @
* ‘7;ﬂ/’7 = j‘/7 Az, - ;‘/.7 ;XL;’ 7

L
since Cd#;:f’. It is easy to show that (16.44) reduces to
(16.43) so that

1}

(16.45) 7;;

07 Zr,’/“/ﬂ)f .

The equations (16,29) may be used to completely char-
)
acterize the normsl coordinsates y/ at M/ associated with the
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fixed point M,. From (6.2) we infer

2, & )o 7
2% — 56 & M K,
(16.46) ——— = /7 i) 2 = hm) — L,
wrr o Ge = E
and from (16.29) we conclude that
2, €
(16.47) —_— /’ /»/, ) 22
;ZV?Z’* % /= ;7;7/’* 2; /.

These differentisl equations uniquely determine a
functional relation between the,h“and the;z‘subject to the
. ,
initial conditions Y=o , 2 = f), for 4] . In fact
?J “ c .
successive differentiation of (16.47) leads to (16.8). We
have, of course, assumed é;, symmetric.,

We may also charact@#rize the normal coordinates %f by

use of the metric ;Qﬂzﬁzﬂ&/ . We first notice that
(16-48) ; /// /W;,/ ﬁé‘ = [0”57(“’/5
“5 4s

are first integrals of (16.1)., If we differentiate the left-
hand side of (16.48) and use the fact that
Jng _ 2}67/}b/%i/
5
¥

3 =
74 nw,

(16.49)

we can infer that .

) y v,

' A [; /1,//’7:./ QZ‘ = ; //;//’/;/__i ””jo‘p‘/ 9"/// //7
(16.50) a3 L I a5 T P

S [ Y]
"// As* 4 7/ 75 75
by meking use of (8.1), (18.1l). &2 . We agaln assume

the linear connections symmetric in their lower indices,
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Now let V@ﬁl@gZ/be the components of the metric ten-
sor in normel coordinates 7, /, « We shall keep the point
M, fixed allowing only /, to vary. From (16.48) we conclude

that along a minimal dyodesic satisfying (16.1) we must have

Ay’ 1"
(16.51) %4,/6 /7,/ MJ—} 7§L = /%/g/ﬂoﬂa/y_?{l B
or
/’1
(16.52) %ﬁ /y///‘/;/ j/’“J — /}é//; } />
and multiplying by s, !
/A—
(16.53) Y s (9, /‘7»/7/’“ = /%/ﬁ)o g
Similarly, P
g _
(16.54) }é‘//; //%j 7’/ 72 - /}ﬁ//’/’ 7" -

The equations (16.53), (16.54) characterize the [ , [
as being normal coordinates at M,, M, respectively. To see
this we first differentiaste (16.53) with respect to;y—and

T
then multiply by‘Z . This leads to
Y 4,1 -
/"// / }
(16.55) 57 29" Ul m) 7= (Vo) I

and so from (16.53) we have

(16.56) : 2 Youlonh) 7“30— )
—— / /
. s 29"
end similarly, ’
My Ja
(16.57) Wl 9) 4~ 9"
24"
But for symmetric connections, (16.56), (16.57) lead to
’/7,/%/;/;":
(16.58)

ﬁ" (1, s /70’2

by (6.1) and the fact thet 204 r(21%) 9;«7/%7 Conversely, if
EA ’I/Vz.
(16.58) holds we can easily deduce (16 53), (16.54)., 442
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We can generate an infinite class of metric tensor

differential invariants, called the metric normael tensors,

whose components ;QﬂL&WfMyM“,Mﬂs are given as functions

LS

of the coordinates 17, . by the equations

n+S
9 1‘/}4/3
W5 = —-_——-———-—*—‘—’_i—'—-—r__”""
(16.59) ;A,/J}ﬂ,--— /,1, My g ( Dg/j’_._ 99,1"' s L. 3Y, ¢ 0 .

These quantities occur in & very natursl manner in the ex~

pansion of'%aéﬁh%yin Tavlor series about 7f:j::0. Thus

‘ Yy b 4 r
(16.60) Y, ,[4,9.) = (V) + :',[/?«/MM,L 99" 2 Joalns ) 4K */2%/,,; &
+._.
We see from (16.5¢) that the gmngth)m“ums satisfy the

-

algebralc identities

(16.61) Jag 1t by memy = a1t 805
where #--- 72 are any permutations of/ --. L. , and },--4, are
any permatstion of »,---my , Purthermore, on further diff-
erentiation of (16.56), (16.57) followed by evaluation sat

the origin of normsl coordinates, we find the identities
S Fusltyt, ) = 0

é(;‘/ﬂ/g h,...m,):oj

where S/ stends for the sum of terms obtained from the one

(16.62)

in parenthesls by g cyeclic permutation of the indices ad,ln
Similarly for S, by permuting A ™ --- ™ ,

- Let us now consider any sequence of sets of numbers
(16.63) j“ﬂ B gmplr@ p) ;%ﬂ/67 AN
satisfying the algebralc identltles (16.61), (16.62), and
such that (16.60) converges. We only consider those sequences
which'yield symmetric linear connections when we solve for

1”gﬁ/?U?ﬂ) from (16.60). From (16.60) we have
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. H
Wap ) (Bapion). '?/7 Y (j«,ﬂ/rn,)o 379, 4

297
by meking use of (16.62). Hence
o Y o 3 PR
Warlh? g - 9 [ (Guten) 3707+ 2 00clens 50T
N 1

p!
= '91’! [/Wo/,,s (‘31,") - ‘/’d,/s ("’,0)]
from (16.60). Again from (16.60) we obtain

(16.64)

(16.65)

5 d
(16.66) %,ﬂ (9,°) :)td = 1’&4,/3{"”} 7:‘(* z'lf (j«‘ﬂ/m}o l‘j”?’ G4 ;
80 that from (16.62) we infer that
(16.66%) Y, 5 (9,°) 9= Yaplor) 9 ,
and similarly
(16.66%x) Vyolop) 30 = Frle W

(16.66%) and (16.66%%) exhibiting the fact that the ¥ , 7,
are normal coordinates.

If I ls a set of algebralc equations satisfied by the
set (16.63), I not being a consequent of (16.61) and (16.62),
then since the conditions of convergence of (16.60) are
inequalities, we could choose the set (16.63) in such a way
that I was not satisfied, while at the saﬁe time satisfying
(16.61), (16.62). Ve have just shown that a metric space
would exist such that the set (16.63) could be generated
not satisfying I. Hence all algebraic identities satisfled
by all the metric normsl tensors are consequénces of (16.61);
(16.62). We say that the identities of (16.61) and (16.62)
constitute a complete set of identlitles of the components

,?4ﬁllr~lk,”r"”k of the metric normal tensor,

We have shown that, see (16.45)

(16.67) Tager = Jorjar
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Hence the complete set of algebraic identities satisfied
by 2;@r7 must be the same as the complete set satisfied
by ],,,1/,3;0- . From (16.62) 1t follows that
| Tasyrr # Tpuer =9
(16.68)

7—4/9’/r7 # 7:ﬂ,7r =0,

Hence by covariant differentiation

7:(ﬁ/r7;;) + /ﬁd/r'rj;)’zo

(16.69) -0
Jar,o7; 59 %Z'I’WJ’J i
Now ]
_ PTupr7
(16.70) Tas,er gy = LT 4 ¥

where # 1is a polynomial in T and the /72 ., Evaluating at

the origin of normal coordinates, we have

, ¢
(16.71) 7:4”;;; = V!9 Awsyyr
or

#, /) 4,
(16.72) 7:pjr)?) = asg, T -
Hence the complete set of algebrsic ldentitles satisfied by
— R v
7 7, 1s the same as the complete set of identitles satis-
4875 45 ‘

fied by '4W%ﬂ" We can repest this process for all T.

Definition. If a coordinate system 4, and a coordinate system/,

exist at M, and M, such that é;gﬂ%/ﬁf=czjﬂﬁﬁﬂin these coor-
dinates, we call such a system of coordinstes, dyodesic,with
poles at M,, M,. |

From (6.2), (6.16) we see that the existence of a dyo-
deslc coordinate system implies that the Christoffel symbols
be symmetric at the poles. Hence, in general, for asymmetric

connection no dyodesic coordinate system will exist. It is
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very simple to show the existence of dyodesic coordinates
for symmetric connections. The normal coordinates discussed
above are special cases of dvodesic coordinstes. We can
generate dyodesic coordinate systems by considering the

following transformations

7 . . Tk
/Y," = ’Yl‘//‘ll’/ * 7/‘ - -ﬂ-/:/ /g/(// y My 7/6’ y/ 7 E[ylj
(16.73) (e i) g /“‘)M ) 47 ;} . 5l%)

P )jk
whereiﬁ%/,ZQW/are arbitrary subgect to the conditions that

the first and second partial derivatives vanish for;;:;f:O.

From (16.73) we irmediately obtain
g

TN . 274, .-
"7'/; y /

7 . ~ 3
?g/ ;=2 g / /,f };/,1 “j:j B ' ’

2 = - T

29,7

(16.74)

From (6,.,2), (6.16) we see that
¢ - 0
/—’k, /71,7‘-) /3:1 zo

< 0
),7/‘ (yly//j'ja *

From the definition of covariant differentiation it is

(16.75)

clear that whensver the connectlions are symmetric, the
components of the flrst coveriant derivatives are the ordin-
ary derivatives when evaluated at the poles of a dyodesic
coordinate system,

L

When the connections are symmetric we have C%F: (ﬂp=0,

see Theorem 7, so that from (8.1) we obtaln

T ¢ 1 [y
(16.76) 49, = d——:—)L =0 .t s=0,
45 AS*t

and the equations of the dyodesics sare

¢ ¢

9 = 3,8 4 ‘:'53"““

4

(16.77) | -
Y5 o4 St

[}
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XVII. An equivalence problem.

Let us suppose that a space admits of two metrie forms
& 3 a - 3
(17.1) f}w Ar® A ; Jup A, AT,
We ask if their exists a point transformatlon
-X-—'(. - ZL/X,)
1702 ——(.' _-L'
( ) X,, = X2 /x")

which carries one form into the other? If this is possible

we say that the two forms are equivalent.

Now if the two forms are equivalent, (17.2) must exist
such that

' ~d o
..__I, — - X[,XL

(47.3) oo (1) 57 o7 Jorr X1
We define — y

| LA
(17.4) o

* 4'772{] - U’f

2% 4

so that (17.3) becomes

— « 8
(17.5) | Yoy = Jup B VT

Now (17.2), (17.4), (17.5) imply

A,
X _ L
x5 g
—d
2%,
2%
77:
2%
P |
QXz - 0
N _
: Ine = /7"’ l«(.(- - /;
(17.6) w7

d
Ko

257

. =7
we - v -7/
wr o T

o
Ve
2X,
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subject to

(17.7) Yoy = Jaa Yr Vs )

. . - l,0 .
) (97 af 97 ¢ - ’ ;;ﬂ'k
- 77 = 4
where /;,k/ = 7 SrE ’ /;;,« j;« YR .

Conversely, 1f solutions to (17.6) exist satisfying (17.7),

then obviously (17.2), (17.4), (17.5) are satisfied. By a
solution to (17.6) we mean that functlons A 7, ug , vy ,
exist satisfying (17.6), these quantities being functions

of the independent variables L[, X:; Hence our problem of

aquivalence becomes equivalent to the following.

Consider the system of differential equatidns

d
22 4 A=142,-,K
(17'8) -;}_ﬂ— = % /Z) X/ 2 ﬂ= //‘2/"'/”' -

We seek solutions

(17.9) z7= 240X )

of (17.8) which satisfy a system of equations

(17.10) fj”)/sg x)=79.

It can be shown that the condition for the exlstence of such
2 solution is given by the followings.

A necessary and sufficient condition that the system of
differentiasl equations (17.8) admit a solution (17.9) satis-
fying equations (17.10) is that there exlst an integer NZ1
such thet the first N sets of equations of the sequence
(17.11) FAM/Z, =0 /i/z//%)f/= o,
are algebraically consistant considered as equatlions for the

«
determination of the,?'as functions of the independent vari-

st
ables A°, and that all their solutions satisfy the/##/ set of

3., Veblen, Oswald (1)
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2
equations in (17.11), where F/\ is the set of equatlons

consisting of (17.10), the equations of integrability of
: 2 d a_d
J2 22

(17.8), 1'Q°’5F£ﬁ'_’iﬁiﬁ , and the equations obtained by

differentiating (17.10) with respect to 4 and eliminating
the derivatives on“ by means of (17.8). 5‘“’;0 for K=/
is the set of equations obtained by differentiating the set
of equations /:;//;}0 with respect to ,}"5 and eliminating the
derivatives of Zd by means of (17.8).

Applying this theorem to (17.6), (17.7), we find that

(+)
/") consists of

— o p
") Jor = Jug Ue VT )
(7 -7 ul = (7% 7 )ul
@ (77, - 7,/)14‘- = (1 ~ Va7 T
n d 777 779 /31;7
(3) {/7 2t lf‘- = ser ~ o Ve Vo
— of
W, 4 R R I &
H') ou ¢ = ? ey V. Ur MT
9)’,,& 3"‘/' €
»¢ 1%
o eyt o ety
-V, 24 . Usr
1€ ox?
“”) /QrTéj u’l. - /«v¢/ 4 ! €
. —_ y v #
(17.12) T d _ g VU
(7) RJ r7é Ve = R)/"’?{, Ve Vr e
— a vy
= V., U
(8) 7‘;7/' £ Z‘/"/} yj L(r 7 €

—_ M #
(7/ j’@?}}é :;/‘,‘V/'/}’ ur Z/; U-é ‘
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If the connections are symmetric then (2), (3) of (17.12)
are automatlically satisfied., Also (8), (9) are satisfied
since 757) efO’ see (13.9). Moreover, (6), (7) are always

P73

i, , ¢
satisfied sime @,,5207 , see (12.,13). Since C",/f:(‘/’:o for

7,
syrmmetric connections, F\' congists of

7

— d B
. Jor = dap o 7/”4/ 4
¢, n —n, ~
(17.13) Toio U = Ty U w, Vs

. A % M
Tr);ﬁ re o= 7;/41) Ur Vs Z/;gl
see (1? ‘7) for the definition of‘7‘

F is obtained by diff‘erentiating (17.13) and elimina-

ting Z_‘i% , etc., by means of (17.6).
Iz

We notice that 1f J,, = cosfax | then J 044 4r" will be
equivalent to j:p/},dd}:é provided the /;,:: are symmetric in

( .
their lower indlices and provided 7; ’a = 7'" =0, see (17,13),

L4
and compare with Theorem 14,

The set (17.13) may be replaced by
— o P4
Jor= Gap 4o V7

(17.14) Tror = Topas e u; v
where 7_7': «p ::7:"':“’ u: “r i pkb
: ,.,:

0T Taper g ke 5 Tt B e
Repeated differentistion of (17.14) end elimination of 5;_‘% ,
etc., by means of (17.6) leads to the sets ‘t

90- = 5«% hy Vf T:”/xp: ﬁ:«w“? M‘:U{Uﬁ
(17.18) — ‘@ b_ns Taners6 = Tobass 9 Usuti

/dp}f'?: 7;b/llj b(‘ u/j Vd.v_t

Now by the ssme tvpe of reasoning performed in the differential
invarient theory of Riemannien geometry 1t can be shown that

the set (17.16) may be replsced by the gquivalent sequence
jf,? = gdp “r Uy
3 70
(17.17) Jaales = Juv 5 Ui Up Vg Vp
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XVIII. The two-body problem, continued.

We first investigate the contracted tensor M_’ﬂ ,
' J

see (12.7). We have

7 It

7y /’ / s
(18.1) / a') = = ?Ejf_ _ 96#; ”J[Z "Cﬂj ﬁ?
40,0 /ﬂ o1 PP * 7O a8 7E ar;

Let us make the same assumptions for the;,/a as in %10, and
Y

assuming that the products /C are small, we obtain

" 7 g
(18.2) 7., = ? a4 _ Y
. 44 9'{/,"- "2)34
Now
7 s 2;‘73/" 7214
6%4 - / 9/‘74 - 9/,//'3
(18.3) >

~7Y% 7248 )
/gs :; ’ /4//”_
/ 9[.7'

This yields

T, o~ // 50 2,
(18.4) ’ 25
=~ — Z 2 oz
wWron”
If we now imnose the condition, see (10.3), (10. 4:),
(18.5) rt it Dt
on’ 75"

we obtain upon setting 7;:+=” s the equation

4 g‘/
(18.8) Z 4/1 - 0, (Laplace's equation).
=1 ;/(jr i
p] 7
We notice that j44 as given by (10.2) satisfles j{’;‘ 2?4
pa

provided #:zMmA, , and ‘moreover, Zd/’ ];, ZP74 0, Hence it
seems reasgonsable to choose a8 our invarisnt lasw for deter-

mining the /ﬁ,//s s the tensor laws

’ =0

(18.7)

X a;
where Z,}J,: Z:,gr
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¥or our line element we choose

' ala, /t,.} (1,1 ) i, ns) v, 1)
(18.8) //511' -C //I/‘{/lz- -€ M dBidO: ~ ¢ A 58, 9"‘9 ‘prlfz *€ dt’ 4

Let us first investigate the differential equations of

the dyodesics involving 29, , b. . From (8.1) we have
B #5 XTAS+ Cpy AT A =0
(18.9) . 2 b oca &
-8 22 —~ 0
9,, 7‘/:);/‘/’/1.11. 7‘[“'//91,
The only/’2 invelved are A

(18.10)
2 / 4 22,
PJ:/ = ;’: * P
)
Among the (< we have
2 -~ s
- - - 3
[a; = c ¢ - , € B , "
2 A - 2 r . =+ g =L
(18,11) [z, = a4 c 2//,/5 MA) = 4, 25
2 _ ,
ij = - ré”pc«&,_ cr.n9,
Clr= A 20
Hence 1,
- G, &b,
8 + A },9,,2/,( /5;*94/’9/"@ "8, B g 4=
(18.12) ;o 5 ent, 4 f= 0
&z./' L/"; /9/1-., ‘L* }94/ %z /5;;, -

If initlally 8:=6,=% R 19/=9>_=0, then £:6.= A satisfies
(18,12) and the initial conditions, so from our uniqueness

theorem is the solution of (18.12)., Our line element becomes

A AA v
(18.13) As*= — dr, Mo A, 12 ET 4G 4R+ dE 4Ly
We obtain
b, 24 2/ 2A
//i// - /‘:// = om
;l - ._./.. ,?.C . 2 / ;/4
AT (0= i B
3 _ v 3 2w
/oa,j/ = *?—/'7' 5 ﬂls = 2Ny s
~A / -2 sl ]
é’/ - ___5,“ //%//L 5/71}/1/ [él:_f" //1"”/ ;,,,) 2
*2 .
(18.14) Iy 2~ A 21/ C,/ _ 81) A o
C-’;] = 21 33 an,
sr_ 2, 4
(;)l = ;_//%* /74» C’l’ o, * A
7
3 2V v
Cs', = Sa C,, an, .
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The equatlions for the dyodesics tzke the form

. -2 )‘t/ dt/ dt;. =
A2 22 A, 2—-/’/5* /H'/I"‘ z 4f49% C 7

: + 7 Py s/ 75 J% 57; Js s
as5* d &, AL
(18.15) . w2 M )dh AY L T2 Ao A0
dA ;22 “”} e TS5 T B m
As* ?"t
2 4% dr A9 Mz _ o
{ﬁ = (;’ + J/’,/ /I Jl ',—/}/I,, AS /5
(18.16) as* ’
. /’ﬁz 41, - O
A2 L oy 22 ) 4B Zag WA =%
T Hnt 5 e 4
Adt, 41 — (@}
At 2V by A, % AL, 41 =
7‘,’;’ 7+ o1, Is IS £ oa Is 73
(18.17)

ov A, Aty = o
1t 9-,/ n, /‘ﬁ.z £
ddf*— F o ds 48 4 dj %

We see that (18.16) becomes

A 4| LAy, s é&/.f/-“-/=0
Tt al A gs T s A
(18'18) /l ;. / a, 60"2 //‘V =
;%7@’%577?* 7 = /

so that a single integretion yields

\ N, s ‘lf he
A, As 7{?: he R

where we have chosen the constant of integration, h, to be

the same in both terms of (18.19) by imposing the initial

conditions ;’f- ‘:";’ » A= +T , at $=0 . The integration

of (18.17) immedistely yields

) #/ B C_'l/
(18.20) 75 <
_1/
At _

o )
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Before determining the ), » ,7, we impose the following

conditions

(1) W vY—>e as M7

(2) j.,/., - £ gatisfies V/t};ﬁ=7:2,4=0
(18.21) along with = on = M 5%

when evaluated at /‘/ﬂff"ﬂ

(3) The solutions to (18.15) shall yield
7"’\/1‘| = M, .

Examining (18.15) we see that wA,= MMy will satisfy

~ thess equations provided

2
(1) ME=rE
(18.,22) I by '
(2) M o = A s for Mg=m2y
¥
Now setting 7Zf:'7;ﬂ = 0 we obtain
91/\ - 0
?/'/9/’1-
(18.23) 27 _ 0
o1, 972
; v _ o
on, 213 ’

The most general solutions of (18.23) are
| N
(18.24) Ao,V = 76//‘1///1/) + %/,,« ( 1))

so that

' 2 :F-/; : .
(18.25) J.=C ¢ = #g,) A1)

We find that

g (-
(18.26) 744 = & - ( /»;M)/Z) /’~+M)/17—

/

satisfies (18.21).
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Now we congider

(18.27) "= (1 /%7//“ Z?/

which satisfies
A _

L = O
(1) 2/1,0/12
S > ®
(2) u=e as M/
(18.28) o S
';2;7 ’7,’7(/-; 71;/ o /7-( My = Ny
O =t ) T A
713 A% -
Hence (2) of (18.22) and (18.23) are satisfied by this (non-
unique)/M .

Finally, we choose

’ i ey
(18.29) A= e

in order that for wm<</M , the Einsteln one-body solution will
be approximated. The A of (18.29) satisfies

i-) _
(1) i%i% =0
(18.30) (2) XA -—>o0 gg /NN
(3) m = Bh for TN

We now return to a first integral for the dyodesics,

namely . P
Ar" dx _ see [8.2)
(18.31) Jus 7 T ’
or
A s #df 44 v AE A
(18.32) - & 7—5"%—4/4»6 A mre FE=l.

Making use of (18.19), (18.20), 52 =4, , we obtain

A i dﬂyl /14/12 —4 -/
— Ny st Raciad ,E = 7
(18.33) C a7 - _/_c;';L £ G C ’/’)

/
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2

and replecing 45 by £;C,~£g‘4% from (18,19), we obtain
Making use of (18.29) we infer
24 "y
A A1, Z c -, C, 211 -~ - e
(18.35) //211 ;;{7 - /I/L 4 AT MhbHEZ -
We now define
/
(18.36) V= Z;
bz
80 that
Z
. / / C/C)- _ ,-;/1{_ /- K"Z v
(18.37) ,, “'“’) TahE wmhl )]
/%MV

Neglecting terms of the order of V V s ---, otc., we obtain

Av £, Cyom M Vils
(18.28) (7 ol S ) - G 2 mﬁ/]

v
Differentiating with respect to 4 and factoring outaigg we

obtain
v ), ﬂ: +3Myl[/+ /:’;/,
(18.39) g (1e2)%,> (1+ )%

For 7 <<M | (18.39) becomes

/Vha

' <
(18.40) ////2,'/’ = 5= ) , <1,

AV v V.44 /,3/14//2‘ hej/a?[u;vj

Thls is the Einstein solution for the motion of an infinitesi-
mal particle moving in the field of a polnt gravitational

mass M.

If M=m , we obtein, neglecting sz_<< 1,

W
4, [—47(3//%4//41/

(18,41) e
/
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The orbit differs from the classieal orbit only in the
advance of perlastron equsl to that which an infinitesimsl
planet describing the same relative orbit would undergo in
the field of a star having a mass equal to f;-the mess of one

of the double stars.
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XIX. Possible future work.

1. The investigation of a Finslerlan two-point metric,
d'fz: jojﬂ (Xr/ X‘,/Xz-, /'rz,)d»",“ﬂ/f)
where jﬁp is homogeneous of degree zero in iL,J&‘.
2, An investigation of conformsl metrics,
up 1) = Plx,20) 3, (572, |
S5« A generalizaticn to & metric depending on m-points,

« -
where j,,,l/ 4>, - [/(: Xepmee xh/ ax, ldX:( ~-—1xj~

4., Applications to physlcs.

The effects of a physical experiment depend on two polnts,
the observer and the ebserved.

Applications to a unified field theory, see Annals of Math,
1944, A. Einstein,

The investigation of non-static line elements in § 18,

The investigation of the simlilarity of
A v andax* (c “odn®)ar” o

7RI O T “r I/ Ts =
with the equations of motion of a charged particle given by
A Tl X e ¢ ax”
/5"/‘/;’«7,—"“/‘;:/:4 7J“:ov

where /;‘ is the electromagnetic field tensor.
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