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Summarg

The object of this thesis was the study of a differential
geometry for a Hausdorff space endowed with an affine linear
connection and a non-holonomie linear connection. The coordinate
spaces were taken to be Banach spaces. In Chapter II we define
the notion of a non-holonomiec contravariasnt vector field, and by
means of the non-holonomic linear connection introduce the opera-
tion of covariant differentiation. It was then found that many
of the formal tensor theorems carried over to such spaces,

For certain types of Hausdorff space it is possible to
develop a normal representation theory, and by means of it to
obtain normal non-holonomic vector forms. This then enables us
to generalize the Kichal-Hyers replacement theorem for differ-
ential invariants.

Chapter IV is concerned with the determination of non-
holonomic linear connections., This leads to the consideration
of interspace adjoints for linear functions.

In the main the results cobtained in this thesis are
generalizations of results obtained for finite dimensional spaces
by AJD. lichal and J.L. Botsford. However the projective theory

developed in Chapter V is new for spaces of Ffinite dimensicn.
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INTRODUCTION

The study of a differential geometry for function spaces
was begun in a paper“’by A, D, Michal. From this Professor Michel
was led to more general considerations in which the geometric spaces
were taken Hto be Hausdorff spaces and the coordinate spaces were
taken to be Banech spaces. Since these studies were first initiated
the literature on the subject has become quite extensive, and for this
reason it would be impossible to give even a reasonably short swmary
of the field. However I have tried to give short surmaries of same
of the definitions and theorems that it has been necessary for me 1o
use, These theorems are stated without proof, and in many cases the
statement of the theorems is taken over verbatim.

In one of his paper;ajProfessor Michal points out that further
generalisations are possible. He suggested the study of a geometry
with a linear connection whose law of transformation is more. general
than that of an affine linear comnection. It is this suggested gener-
alisation that I have tried to carry out.

I should like to thank Professor lichal for not only suggesting
this problem to me, but also for the many hours he has spent in helping

me carry out this investigation.

(#)- See Michal fé]
@J. See Michal [1].



CHAPTER I

This chapter will be devoted to giving & short swumary of
some of the concepts involved in obtaining a differential geometry
for a Hausdorff space with coordinates in a Banach space. lost of
these results can be found in Michel [1], Michal [2], and iichal-
Hyers [l] .
Section 31._:}_ Coordinate systems and transformations of coordinates.

Let H be a Hausdorff space, and let Up be a fixed neighborhood
of H., Ve assume that Uy can be mapped homeomorphically on an open set
S of a Banach space B, and further that all neighborhoods U CH can be
mapped homeomorphically on open sets Z C S, We call the mapping
function x(P), (which maps a neighborhood U homeomorphically on an open
set 7 ) a coordinate system. The neighborhood U is called the geometric
domain of x(P), and the open set Z= is called the coordinate domain of
x(P).

Suppose that x(P) and X(P) are two coordinate systems with

o

intersecting geometric domains U, and U, respectively. If Z, and Z'z

{
are the coordinate domains of x(P) and X(P) respectively, then the
intersection U,U; of U, and Uy will be mapped onto a point set Z‘, cz,
by x(P), and onto a point set 25 C Z’a by X(P). Since U,U, is an

] ¢
open set, we have by Bohnenblust [1] pp. 42-44 that both Z, and Z,

are also open sets, Thus we see that two coordinate systems with inter-

secting geometric domains induces a homeomorphism X = X(x) taking the



open set Z' into the open set Z; . Ve call this a transformation
of coordinates, and say that Z. and 3, are the damains of definition
of x(x) and x(X) respectively.

Def. 1.11. A transformation X = X(x) taking an open set of a Banach

space E into an open set of E will be called a regular transformation
if ¥ = X(x) and its inverse x(X) are Fréchet differentiable throughout
their respective domains.

The class of transformations of coordinates previously dis-
cussed does not allow us to provide a very extensive geomefry for H.
For this reason we assume that all transformations of coordinates are
regular transformations, and further that X(x; {x; £x) exists contin-
uous in x at each point of the domein of definition of X(x).
222, E;EE. Let P, be any chosen point of the Hausdorff space H. A
geometric object whose component § (the map of the object in E) in

the coordinate system x(P) is related to its component § in the

coordinate system ':E(P) by

4 =5xl2); ) (1.11)

(3)
will be called a contravariant vector associated with B, .

Def. 1.13. A geomeiric object whose component in the coordinate
system x(P) is ‘f(x) a function on £ to E, and such that -f(x) is
related to the component ‘f (X) of the geometric object in X(P) by

(3) Ve assume of course that P, is in the geometric domains of both
X(P) and %(P ).



F(x) = E(x;fu) (1.12)

(4)
is called a contravariant vector fielad.

Def. 1.14. Let { eand f be two arbitrary contravariant vectors.
A geometric object whose components [1(1; f, {;) s /ﬁfi: fi ﬁ;) s
are bilinear functions of the vectors will be called a linear connec-
tion if, in the intersection of two Hausdorff neighborhoods the com-

ponents have the law of transformation
[(z,£ 4)- Lix; (x5 5))- Xx; 8, 4). (1.13)

With these definitions it is possible fo prove the following
two theorems,
Theoren 1l.11. Let the billinear function fi/zjfj _?fz/ in the contra-
variant vectors be the component in the x(p) coordinate system of a

geometric object. Then, a necessary and sufficient condition that

S0+ (%, s, 5 ) (1.14)

be the component in the x( ,D) coordinate system of a contravariant
vector field for every Fréchet differentiable contravariant vector
field £(X) is that f/l;f, #2) be the component of a linear connec-
tion,

Theorem 1,12, Let /’/IJ {:f,) be the components of a linear connection

and /£ x, %, ﬁJ'--J %.) a function with the following properties:

(4) Here we assume that x(P), Z(p) have intersecting geometrical domeins
which induces a regular transformation of coordinates x = x(x).



(1) T is a contravariant vector field valued multilinear form in
the "n" arbitrary vectors ¢, f, - s
4 J
N . s/ N .
(i1) the partiel Fréchet differential F/x} 3‘; j;J —--Jﬁ}- Jx) exists
and is continuous in x.

Then the function
Flr & 8 flfx)= Fla g 4y fu i 02 ) 2 Fl 45 £, Tl 5 dn) iy £ )
£ (% Flx 4 £.),8x)

is a contravariant vector field valued multilinear form in f;j ﬁj - ﬁ Jx.

-

(1.15)

We abbreviate expression (1.14) to f/x/fx) and call it the
covariant differential of ¢ (x). Similaerly A/x ¢ - fu /Ix) of
(1.15) is called the covariant differential of F.

When the coordinate transformetions possess continuous third
Fréchet differentials and the component of the linear connection
/4//1/. f,/ 3‘: ) possesses a continuous first Fréchet differential it is

possible to show that

Blo 6 4,5) /54,4, 8)-/1x 4,4 1)
FIU 5 KL= T, 1 %) £) 09

is the component of a contravariant vector field valued trilinear form.
e call AB(x ¥ & %/ the curvature form.
When no ambiguity occurs we shall speek of the component

//’/zj f Ji/’ as being the linear connection. Similar terminology



will be used in the case of other geometric objects.
Section l.2. Abstract normal coordinates.

In order to introduce abstract normal coordinates it is
necessary to place some further differentiability restrictions on
our coordinate transformations.

Def. 1.21. Let E and E, be Banach spaces, and let X be a bounded
convex region of E, A function F(x) on X to B, is said to be of class
C(M uniformly on X if,

1) F(x;4x; fx; --- 5 4x) exists and is uniformly continuous
in x with respect to its entire set of arguments for // exfl</
i=1---k, k= l---)uJ and x in X,

2) there exists a constant I, such that

//F/lj};xjj;Xj"'/'jzX)// S My bzt Wy )i~ 114y x M

()
for all x in X, end k = 1,4, --, n.

Def. 1.22. Let Eand E; (i =1,2--- n) be Banach spaces. A function
F(x) on a subset Z C £ to E, is said to be of class ™’ locally
uniformly at x, if there exists a neighborhood of x, on which F(x) is
of class C(M uniformly. A& function F(x,y, ,yzl.u}};,) multilinear in

Y, 3¥2, - ¥, on > E,-- E, to E is said to be of class C('” locally
uniformly at x, if there exists a neighborhood X of x, such that

F(x,¥,, - ¥,,) is of class C™ uniformly on ¥ =5, 5, s

4

(5) Although this is not the original definition as given in Hildebrandt
and Graves [1], it is equivalent to it. See lLichal-Hyers [27.



where =; is the open set nyci<i.
Def. 1.23. A regular transformation X = X(x) will be said to be of
¢lass Kb”) if the functions X(x) and its inverse xz(X) are of class ™’
locally uniformly at each point of their respective domains.
Rif.' L_.?é’ A set of coordinate systems shall be said to form an
allowable K(M set of coordinate systems if the following postulates
are satisfied.
1. The transformetion of coordinates from one coordinate system of
the set to another of the set is a regular transformation of class Km}.
2. Any coordinate syster: obtained by a regular transformation of
class K(”) from a coordinate system of the set is in the set.
3. If x(P) is a coordinate system of the set with geometric domain
U and coordinate domain 2. , then the correspondence X(P) taking a
Hausdorff neighborhood U, C U into an open set Z, C Z is also a
coordinate systemn of the set.
4, The coordinate system which maps the fundamental Hausdorff neigh-
borhood U, onto the fixed open set S is in the set.
C onsider a Hausdorff space H which possesses allowable K(’W)
(1 2 2) coordinate systems and a linear connection /%, f, £ ).
We also maeke the following restrictions.
(a) The fundamental open set S of E contains the zero of E.
(b) The linear connection is of class C(M locally unifommly

3 £d
on the coordinate domain ' of an allowable X coordinate system

x(P).



ifichal-Hyers [l] then show that for any q of Z' there exists
Such that
neighborhoods X, of g and ¥, of OT the differential system

i
V}éZZ)’[’ 7 ﬁ(&’ﬁ‘f)g): 0, xw)-/é,/ééz/a =% {1.21)
has a unique solution x = f(p,4f) for any p ¢ X, and any fe Y,.

ther for any o<4s</ the function f£(p,4f) is of class ¢’ uni-
formly in (p,{ ) on X,Y,. The image £(P &, 4) of f(p,sf) in the
coordinate system X(P) is a parameterised curve in E. This is called
a path.

Def. 1.25. A4 coordinate systen }(P) in which the equetions of paths

through a given point P, (with coordinate y = O) take the formy =4¢
is called a normal coordinate system with center P, .

Michal~Eyers [17 prove the following two important theorems
on normel coordinate systems.

Theorem 1.21. Suppose that the hypotheses (a) and (b) are satisfied.

Then corresponding to each point ge 2 there is a constant <¢7e
@)
and a funetion h(p,x) of class C™ uniformly on Ea((q)“ ) such that

)
{~ for

Tor any p in (q), the transformation y = h(p,x) is of class X
x € (p). and defines a normal coordinate system y(P ) with center P,
where p = X(5 ).

The solution f£(p,4f) of (1.21) for s =1 and ¥ = y becomes

f(p,y). The function h(p,x) of theorem 1.21 turns out to be the inverse

of f{p,y). From this theorem we see that if P, is any point in the

(4) The open sphere /[ x-X i< is denoted by (x ) or £(i). ).



{ntaj .
geometric domain of an allowable X coordinate system x(P), then

x(P) determines a normal coordinate system y(P) with center B, , where

y(P) = h{p,x(P)). (1.22)

- )
It should be noticed that y(P) is not in general an allowable X

coordinate system.

Theorem 1.22. Let assumptions (a), (b), be satisfied, and let x(P),

x(P) be two allowable thﬁ coordinate systems vwhose geometric domains
have a point P, in common. Suppose that y(P), ¥(P) are the nomal coor-
dinate systems with center P, determined by x(P) and X(P) respectively.
Then there exists two open subsets S] and ;j of the coordinate domains
of y(P) and y(P) respectively such that

1) C>€c2} 5 C)é’{fj

2) the linear transformation

¥ = Z{p;y) "~ (1.23)

l.ﬂfa

takes S} ?ﬁ SZ'

The latter theorem thus tells us that under a general trans-
formation of allowable wa;) coordinate systems the corresponding trans-
formation of normal coordinates is linear. This property and some
other properties which normal coordinate systems have provide a great

simplification of many of the proofs of tensor theorems. e list some

of these properties which we shall make use of later on.



q)

1. Let the linear connection /(X 5 4 ) be symmetric in _r‘,/ Z .
Further let 4/'1(;% },/ :ﬁ,, / be the components of the linear connection

in a normal coordinate system y(P). Then

74(0, A, Aa )= 0 for all A, Aa in 3.

2. Let My) = £(p,v) ) and Y(x) = h{p,x), then

(a)  ddo; ,y/- .57}

(o) Udo; iy hy)e -/ 7p, Ry

(e} / f /,"/_' ;ﬂ)c /= c'“x—/

(a) /'(;p/' ik iaxs = Dipy ok, ans

In concluding this chapter I should like to give a summary
of the notation that shall be carried over to the succeeding chapters.
That is the following letters shall always be used with the same mean-
ing.
1. U is a geometric domain of a coordinate system.
2. U,y is a Tixed Hausdqrff neighborhood which can be mapped homeomor-
phically on a fixed open set of S C E.
3. E is the coordinate domain of a coordinate system.
4, S is a fixed open set of the Banach space E which contains all the
coordinate domains of all coordinate systems.
5. X{P) is a coordinate systenm.
6. x is a point in the coordinate domain of the coordinate system x{P).

7. ¢ 1s the component of an arbitrary contravariant vector.

8. f(x) is the component of a contravariant vector field.



/0

ag. F(x f:/ J’.z/ is the component of a linear connection.
10. arf(x) , or f(x; £'x) means the Fréchet differential of f(x).
11. B(x, ¢ 3’;) f; ) shall mean the component of the curvature form

based on the linear comnection /X, £, 7).
12, f(p,s$ ) is the unigue solution of

”%f s /’:”&f,jﬁ,’r o, Xls)z p, (‘Z‘j s
13. h{»,x) is the inverse of f(p,y).
14. y(p) is a normal coordinate system.
15, y ic o point in the coordinate domain of the normal coordinate
system y(p,3 .
16, +f( y ) means the component of the arbitrary contravariant vector {
in the normal coordinate system y(P; .
17. ’T’/;y, ?j, }1) is the comdonent of the linear conmection in
the normal coordinate system y(P} .

In what follows we shall assume [ (X, §, fa) to be

symmetric in 3’, and 3:; .
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CHAPTER IT

ection 2.1l. Representations and changes of representation.
Def. 2,11. Two 3anach spaces 3,, 3p are sald o be equivalent(l) if
there exists a mapping funciion on B, to 3, with the following
properties.

1. £{Y) is linear in Y and ranges over the whole of 32.

2. f£{Y) is solvable in ¥ with inverse f-'(Z) a function on B,

to 3,.

Suppose that we have a Hausdorff space H with cocrdinates in a
Penesch space & which satisfies all the assumptions of the previocus
chapter. OSuppose moreover that to each point P of I we can associate
a Banach space Bp such that,

(a) any two of the Banach spaces Bp,’ and sz are equlvalent
each other;

(b) each Banach space Bp is equivalent to a fixed Banach space E,.
22£.=§é£§‘ Let P be a Tixed point of X, and suppose that Bp is the
associated Banach space. e denote an element of By by Tp. 4 vector
coordinate systenm 1s a mappinsg function K(P,Yp) with the following
properties.

(). For fizxed P, X(P,¥p) has values in E, and ranges over the
whole of #H,.

(1) This definition is not the same as that given in Banach 1 .
Benach requires /()N = Y/,
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(ii). K(P,Yb) is sclvable linear in Yp with inverse
¥y = Yp(P,X ) a function on E, to Bp.

The values of X(P,% ) whick lie in B, we call the vector
coordinates of By.

Suppose that X(P,,Y?l) and X(PR’Y?Q) are two vector coordinate
systens Tor the spaces BQ and sz respectively. OSince Bp‘ is eguiva-
lent ‘o BPR there exists a function ng = f(Ybl) which is solvable

<7

linear in ¥y . Thus
-1

L= Z(P,12(p (P, %)), (2.11

If we let (¢ (P, ,P,,X) = X(P,£(Yp (P, ,X))), we see that g?{E , P, X)

< =4 ~

is a solvable lirear function of X on E, to E,. That is any two vector

<1

£

coordinate systems induce a linear automorphism X = ;ﬂ(P,,;c,X) of E .
This we shall call a transformation of vector coordinates.
gesi;. ___2_1}_2 4 representation shall mean,

(a). a coordinate system x(P) with geometric dowain U,

(b). ZTor each point P &« U we have assoclated one vector coordin-
ate systenm X(P,YP) with the associated space B,.

To obtain & different representation we can change the coordinate
system, change the vector coordinate system or do both.

Def. 2.14. A change of representation shall mean the coupositeé of,

s

. & change of coordinate systems x{P) to x(P),

. Tor each point P in the intersection U,U, of the gesouetrical
1 &2 =
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domains of x(P) and x(P) we change the vector coordinate system

ZP,Yp) to X(P,Yp).
For each point P of U, U, the change of vector coordinate
systems induces a linear automorphism X = {ﬂ (P,X) of E,. Since

) =

5\

P = P(x) under the coordinate system x(P) we can let Q (P(x),

by

{x,X). Thus for each x in the domain of definition of X(x), M(x,X)
is a solvable linear function of X on E, to E,. ‘e call the transforma-~
tions x = x(x) and X = M{x,X) induced by & change of representation a
transformation of representation.
Def. 2.15. Let Z(x) be a regular transformation mapping an open seit
2, € F  homeomorphically onto an open set 5, € £, anad suppose that
¥(x,X) is a function on Z.B, to B, . e shall call the pair of
functions x(x), L(x,X) a regular transformation of representation if,
() for each x¢ Z, , 1(x,X) is a solvable linear function of X
with inverse I(x,X);
(b) 1(x,X) and N(X,X) possess continuous Fréchet differentials at
each point of their domains of definition.

e shall assume throughout that all ftransformations of repre-
sentation arising from a change of representation are regular trans-
formations of representation.

Def. 2.16 {a). Suppose that two transformations of representation induce



4

& trensformation of representation X = x(x), X = i(x,X), and let P
be a point in the intersection of the geometrical domains of the
coordinate systems x(P) and x(P) which are involved. A non-holonomic
contravariant vectof))is a geometric object associated with Po whose
meps in the given representations are elements V(x(P,)) and V(%(®,))

of Z, respectively, and which are related by
V(z(R)) = M(x(®),V(x(P,))). (z.12)

e call the meps of geometric objects under a given representa-
tion the components of the geometric objeet. It will be noticed that
the components may be elementis of E or of E,. A geometric object with

components in E, will be called a non-holononic geometric object.

(3)
Def. 2.16. A non-holonoriic contravariant vector field 1is a geometric

object whose component in any given representation is V(x) & function
on > to I,, and such that under a change of representation the compon-

ents are related by
V(X) = M(x,V(x)). (2.13)

Def. 2.17. Let V be an arbitrary n.h.c.v., and ¥ an arbitrary con-

travariant vector. Consider a geometric object whose component

evevy
X(x,7, £ ) in enmp—simem representation is a bilineer function of the

(). This is abbreviated to n.h.c.v.

(3). This is abbreviated to n.h.c.v.f.
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vectors on EE, X to Z,. Such a geometric object is called a non-
. . R 2 P == & 7
holonomic linear comnection if its components I(x,V,§ ), X(x,V,% )

in two representations are related by
KE,T,8) = U=x,K(x, 7,8 ) - i(x,V; §) (2.14)

under a change of representation.

Theorem 2.11. Let X(xz,7V,f ) be a bilinear function of V, § on EE,E

to E,. Then & necessary and sufficient condition that
J7(x) + K(x,7, Jx) (2.15)

be the component of & n.h.c.v.f. for every Frécret differentiable
n.h.c.v.f. V(x) is that K(xJV,f’) be the component of & n.h. linear

connection.

Proof of necessity. If (2.15) is the component of a n.h.e¢.v.f. we have

JV(R) + B(x,V, £8) = i(x, IV + K(x,7, Jx)). (2.16)
But T(x) = 1(x,V(x)). (2.17)
Hence §7 =1z, §V) + M(x,V(x); §x). (2.18)

(4). Abbreviated o n.h. linesr connection.
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This proves the necessity, and the sufficlency is proven by reversing
the steps.

For the expression (2.15) we use the notation V(x| Jx) and
call it the covariant differentizl of V(x).

Theorem 2.12. Let X(x,V, §3 be a n.h. linear connection, and

,f, ,fg,-' : ‘fn,'*.T,J~-~ Vg) be a n.,h.c.v.f. valued multilinear form in
the arbitrary contravariant vectors jb 3, -f,,,)and the arbitrary n.h.c.v.

Vy,---,Vg. TFurther suppose that F(x, f, N an, P Va3 Jx) exists

J

continuous in x. Then

( f,' :f V:JJVSI o(x) = F(X, f ,";ﬁgv;_,‘”JVS;J‘X)

X,
Z.F f Sz, § ,fX):i;,)"' -fn., V- -sz)

(=1
2 (2.19)
! ) ! bt < -
‘2:;, Flx,® oy Fny Vo, Ve HKx 0 Ix), Ve 5 -, Vs)
+ &z F(X;!;'";f; yU,---,Vs), I x)
is & n.h.c.v.f. velued multilinear form in 3, {;) £ ExT, - Vs

We give the proof for the case n =35 = 1. The proof Tor the general

case does not differ from this very much.

Proof. Since F(x, £, V) is a n.h.c.v.f. we have
Fx, §,V) = i(x,F(x, 8, V). (2.20)

Using the Tact that f) V are both arbitrary we obtain on taking differ-

entials of (2.20) that
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V4% = 1(x,F(x,V, ¢ Ix)) + (x,F(x, 8, V);d =)

SFE,LETH -MESL,LT). (2.21)

From the law of transformation of the linear connection ['(x, €, §x)

we see that

TE, (K, £, 72),7) = FEE(xGx),T) - FEEx £; 4 x),7)

= lx,P(x, Mx, €, /x) ,7))- F(z, If V). (2.22)
Similarly we can verify
F(%, § ,E(7,7, §%) = W(x,P(x, £ ,K(x,V, %)) - 35 ¢, V), (2.23)

K(E,F(E €,7), F3) = 1K, F(x, .7, I0) - 15 Pix, €05 =),

Substituting in (2.19) we obtain

F(Z, ¢,V /)53 = x,F(x, £,V Ix)). (2.25)

This shows that F(x, {,V | {'x) is a n.h.c.v.f.  That
;onous

F(x, ¢,V ) [ x) is a trilinear function of { ,V, J x from well known

’ (§)
theorems on Frechet differcntials of multilinear forms. We call
Flx, £ ,---,%.,%,--,7% | fx) the covariant differential of F.

Theoren 2.13. If in the hypotheses of theorem 2.12, F is taken to be

)
a conbravariant vector field valued multilinear form, then

($)- See liichal |6].

(6). ¥ will of course have values in E.
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Tz, ¥, ,"'Jﬁ,—\f,)w' Vol §x) =F(x, £, £,V, - V3 J x)
W-
= ZE(X’ I f“-,’ F(Xy f; ,(,rX), fd”s";f‘,v;)"' v,;)
[=]]
p.
-ZF(X’E’?::'“:.(;,’V/{" Vl.'-, ,K( z;JX) Y :',vs)
+ f(x,?(x,j’;‘ ’-6 ,""Jf”’v;}”' vs)a Jx)

is a contravariant vector field valued multilinear form in

f; ,'“';_ﬁ,: [X,V/,"'_;Ys .

The mroof is similar to that of the preceedins theorem.

Theorem 2.14. If in the hypotheses of theorem 2.12, F is taken to be

)
a scalar valued multilinear form, then

F(X,{ ',fw,'\c"'Jv_;,[X) =F(Xs£9“',f“7v;"nlv.;;fx)
- ZF(X,E s "f_la F (x, fa,tfx {-H 9_';ﬁt’vl"..1v$)
A

- ZF(X, 3’; s ” "ﬁ,vgs "',Vc‘—/ H (XVL: JX) C4r ’.-.va)

=y
is also a scalar valued multilinear form in §,, -, 4,V,, -5 V;, {x.
Section 2.2. The non-holonomic curvature form.
o ]

Let V(x) be a n.h.c.v.f. possessing a continuous second Frdchet
differential, and let X(x,V, f) possess a continuous first Fréchet
" differential., In order that this latter condition be invariant to
changes of representation it is necessary to assume that the M(x,)f)
of the transformations of representation all have continuous second

Frechet differentials. By means of theorems 2.11, 2.12 we can verify

(7) By a scalar valued form F(x, £ o ﬁ V, - Vi) we mean a form which
has the law of transformation F(%,f§ , Q,V;—-- V, ) =
F(x, §iy - b, Y~V ). The form can have values in Z,E, or the

real membeRa, humpeys.
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that
Tz (6 /4= - Tz o= /6 = = 1{x7,4 %, &x) (2.21;
where
Tz, V, 4 ox, &x) o= Wx5,V, 4 % hx) - W(x,V, 4 x5 4 %) (2.22)

- =, U=V, 4 %), fx) - x,0(x,7, 6 %), I x).

Thus ¥(x,7, {,x, %) is e skew-symmetric n.h.c.v.f. valued trilipear
form in 7, {, z, &x. This we shall call the non-holonomic curvature
form.

The following theorers shall prove useful later on.

Theorem 2.21., Let {ﬂ(x,"v’) be the component or & contravariant vector

o o ST R em ey Ty £ enmatn mmananr n Ty b T gmae s A ot ;

field valusd iinear Tormi in the crbisrary n.o.c.v. Voo Jurticr suppoue
N { e

KNS -, T [ R N T o [ AT

et 00,73 € £ eoniste contlnuous in x, 2/ then

pkxyi/f/{:{/ - Xa“T/i j ) = "'fa"\?'i,»'—\ﬁ j/ ’3:!) +

B(X? 5’0 (X,V) 3 ?: ’ 5:; )

Let  ¢{x7,§) = 2(x,7/4], then
plx VI /5) =g T4 /4) = ;‘ﬂ(xﬁf:fffﬁ g =il T 5l 4

P, [ g, 500+ Ml ghaToh ), 8. (2.24)

(8) The range of x is of course the coordinate domain of the repre-
sentation in which we take the component.



Calculating these various terms we obtain

PxVIEI6) = - p(xX(x,V, 8 54)) + ,O(x,K( xE(xV 6 ), 8))

s [Mx, P, £ 55D+ [ix T, (210, 4), %) + (terms symetric
in f ,%). (2.25)
Hence
Pl VL ) - P VIGIE ) = -p(xExV, §,4)) +
B(x, 2(x,7), % ,%a) (2.26)

Theorem 2.22. Let G(x,f) be the component of a contravariant vector

field valued linear form in the contravariant vector fJ and let F(x,V)
be a contravariant vector field valued linear form in the n.h.c.v. V.
Suppose that G and T both possess continuous first Fréchet differen-
tials. Then the covariant differential of P x,V) = G{x,7(x,V)) is
given by

/’ x,V/§) (x,F(x, V)| ) + &(x,F(x,V[£)). (2.27)

Proof.

By theorem 2.13 we have

PlxVIf) = PlxVi¢) - KV, ) + [x, p(x ,§), (2.28)
and

%, 8,18 ) = Gx,§;8) - Glx, (=, £, 6)) + [T (x,6(x,f ), £)(2.20)

(x,VI5) (x,V;€) - F(x,X(x,7,£)) + P{x,F(xV),5). (2.201)

From (2.28) we obtain



2)

PxVIf) = Glx,F(x, V)5 ) + G(x,F(x,V;¢)) - &(x,F(x,X(x,7,§)))

+ (x,6(x,F(x, 7)), €). (2.292)
By means of 2.29, £2.291 and 2.292 we can verify that
P x,T1E) = &(x,F(x, V) + &(x,F(x,7/£)).

Section gég. Allowable K(m") representations.

In order to develop a normal representation theory we shall
have to assume that a certain subset of our representations possess
certain additional properties.

Def., 2.31. A regular transformation of representation X(x),M(x,X) is

class
. ) |
said to be oer it

(a)

J

x(x) is a reguler transformation of class K'“' in the
sense of Chapter I;
- (m)
(b) M(x,X) and its inverse N(X,X) are of class C locally
uniformly on the domains of definition of x(x) and x(X) respectively.
. (mtr)
Def. 2.32. A set of representations shall be called an allowable X
set of representations if
I. Zach coordinate system X(P )} of a representation of the set is an
1) .
allowable K coordinate gystem;

II. the transformation of representation arising from the change from

one representation of the set to another of the set is a regular trans-
mtil

hid

formation of representation of class K H

III. any representation obtained from a representation of the set by a
(m+
regular transformation of class K’n,) is in the set.

[



A

— (mt1)
Theorem 2.31. Let x(pP ) and x{Q) be two allowable X ~ coordinate

syctems with intersecting geometrical domains. Further let

.
v

x(P% ,X(P,Y,) and E(TZI‘?(Q,Y ) be two allowable g™ representations
gen~reting the transformations of representation X = x(x), X = I x,%).
If V(x) the component of a n.h.c.v.f. is of class C v locally uniformly
on 2, (the domain of definition of X(x)), then the component V(i) is
of the same class on Z.: (the domain of definition of ={T,), providing
n< M+ 1.

The proof follows from s theorem of Hildebrandt and Grewves (:17

‘n/
on functions of class C uniformly. If n < m a similar theorem holds

for K(x,V,f ) the component of the non-holonomic linear connection.

Section 2.4. Iomal representation theory.

. (n#3) .
Let x(P) ,X(P) Yp) be an allowable K representation (n = 3).

‘e shall assume that the n.h. linear connection X(x,V,€ ) is of class

n)
¢™ locally uniformly on J the coordinate domain of x(P). Thus for

any point g of Z there exists a neighborhood X, of g for which K(X,V,f)
is of class C(” uniformly in x on X,. Similarly there exists a neilghbor-

el

hood X, of g on which the affine comnection [7(x,f,%) is of class
)

C’w uniformly in x. If X is the intersection of X, and X,, then

x,V,§) and [z, £,%) are both of class ¢ uniformly in x on Z.

We shall be interested in the differentlial system

av . dx
Fro .:‘I(X,V,-—a-s-) = 0, V(p) = Vo, (2.41)



@)
along & path x = £(p,4f). Trom Zichal-Hyers [ 1] we know that

there exists neighborhoods Lo C X of ¢ and ¥, of 0 such that for
any p € X,, I ¢ Y, and 0 < s ¢ 1 the functions f(p,sf) and

A ;,4!) = /l//, s f) are of class ¢ uniformly in the pair
(p, ). From this we can prove the following theorem.

Theorem 2.41. Let a,p, § ,¥,,X, be the same as in the preceeding

discussion. Then for any choice of /)E_X,) {€L/ there exists a
function R( ¥ ,p,s,V.) with the following properties.

(i) R(¢,p,s,V,) is the unigue solution of (2.41) along the
path x = £(p,4f ).

(ii) TFor each such ¢ ,p and any s (0 « s< 1), R(¥,p,s,% )
is solvable linear in V,.

(iii) For anmy O< s s 1, R(¥,p,s,V ) is of class ¢™  uni-
formly in the pair (p,f ) on XY, .

We can replace (2.41) by the equivalent integral equation.

Vis)= Vo= [Kifipe0, Ve, p. e e (22

Equation (2.42) is of the same type as equation (3.9) of lichal-
Fyers [3]. By an argument that is exactly the same as that used in

this paper it will follow that a solution

V= R( ; ’p3syvo ) (2045)

of (2.41) will exist and will have the properties stated in the theorem.

(1). See section 1.2.



It is easily seen that under a change of parameter 1 = Xl_ s,
the equation of the path becomes x = £{p,t{A¥)), and (2.41) remains

invariant. e thus obtain

K[ﬁ © LV )= f(/},\f/\l_&, V)= Rip, {3, ©w). (2.44)

Hence we see that the solution of (2.41) can be written R(p,,és",vo) =
R(p,s¢,1,V,). Fors=1ad €=y, R(p,y,% ) is a solvable linear
function of V,, and is of class C(M uniformly in (p,y) on X,Y¥,.

n+2) .
representation from

Let x( ,‘-,X(P’YP) be the allowable X
which we started, and let P, be any point in the geometric domain of
x(P). Choosing p = x(P, ) we have by iichal-Hyers [1] that x(p; deter-
mines a normal coordinate systemiis)ith center P, and whose coordinate
domain is contained in Y,. It is easily verified that the function

*X(P,Y,) defined implicitly by
X(PK)-= K//J;/f), Xie k)

is for each P in the geometric domain of }/f’] a vector coordinate
system for the assoclated space BP' Thus any such normal coordinate

systen ?(F) and the vector coordinate systens "’X(P,Yp) form a repre-

sentation.
Def, 2.41. A representation y(/o), *X(P,YP) as obtained above shall

be called a normal representation with center P, determined by the

) ) X
allowable K representation x(P),X(P,¥p).
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e see that the transformation of representation induced by
the change of representations x(P), X(P,Yp) to the corresponding

normal representation y(P), *X(P,Y}) is
x = £(p,¥), X = R(p,7,"%) (2.45)

Since the point p = x(P,) is a fixed point in the discussion we shall

delete it from (2.45) and write

x= M(y), X = Ry, (2.46)
We shall write the inverse transformations as

y = Yx), *x=Rr ' (x, X) (2.47)

Def. 2.42. A n.h.c.v.f. Z(x) shall be said to be a vector field

parallel to a n.h.c.v. 2, along a curve x = x(s) if

(10}

A2 26 b )0, Z(p)= Lo (2.47)
o #/(/x, U’;ZZ//_O’ //6 3

whera p = x{0).

Theorem 2.42. Let x(P), X(P,%,) and %(P),X(P,T,) be two allowable "’

representations which induce the transformation of representations

x = x(x), X = ¥(x,X). Suppose moreover that these representations
determine the normal representations y(P),+X(P,YP) and ¥(P}, *E(P,Yb)
respectively, and suppose the latter have the same center P, . Then

the transformation of representation induced by the change from

(10). Tirst discussed in llichal [6].
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one normal representation to the other is

x(p;y),

I’-(ps < )

(1) ¥

(ii) "X

where p = x(f ).
The proof of (i) is given in Hichal-Hyers [1]. To prove (ii)
we let Z(x) be a vector field parallel to an arbitrarily chosen initial

value Z, along a path x = f(p,4f). The component *Z(y) of Z(x) in

the normal representation is given by
Z(x) = R(y, 2(y)). (2.48)

But since Z(x) is a parallel vector field we have

: _ A/ (2.49)
(260 1 K s 2, )0, 2005, 2 flp )

Since the solution of (2.49) was shown to be unique, we rust have

B3
H
n

R(y,%0). By the solvability of R(y,Z,) we obtain that

*Z(y) = Z,along a path.

+2)

b
Under the change of allowable K representations (2.49)

becomes
/,12{1:/ P - :'_ 2.4:91)
ot Kz, Z,%:)_— 0, Z=Mp 2 ), /(/,,

Repeating the argument we obtain *Z(?) = 2;, and hence

YTy = Mp,taly)), (2.492)

along & path.
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L.

e can tabulate the transfomiations of representation that

arise from the various changes of representation as follows.

+

1. x(P),X(P,%) to y(P),” X(P,Yp) induces x = MU(y),X

R(y,*X) (2.493)

2. %(P),%(P,Y ) to F(P),'X(P,¥,) induces ¥ = 4(F),% = R(7,'D) (2.494)

il

3. x(P),X(P,Y,) to E(P),X(P,Y,) induces X = X(x),X = M(x,X). (2.495)

From these we can obtain
X = RU(EE(x,R(y, X)) (2.496)

Since "Z(y) is a n.h.c.v.f. (2.496) is the law of transformation from
*7(y) to *Z(§). Thus for 'Z(y), (2.496) must reduce to (2.492). 3By
the arbitrariness of 'Z(y) = Z, we rust have (2.496) reduces to (ii)
for all velues of 'X.

Section 2.5. The differentials of R(y,V,) and R (x,V,).

In order to obtain explicit expressions for the differentials
of R(y,X,) we define the funetions K (x,V,§ , f, -, £, by the follow~-
ing relation.

KT, 4, 5 = LR 6) - K EET )L 6 - S 6, L))
(2.51)

.A.*(X J f "ij) =%i[}:f‘l (X,V,f . f;-.,) ;tl - u.f’(X, ;(X,\f {4.) f.,"'_} 1;/)
£-t
o : .
- Z' I\“t-[ (X,V, f, s T ?:4 4 F(X, _f,_' ’fﬂ' )J f;'l-lJ T i‘-l)/] t< n.
P J means the sum of terms obbained by a cyelic permutation of

the § 's. TFrom previous discussion we know that R(y,V,) and R (x,V,)

are 0f class C“L) uniformly on their domains of definition. Hence they
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have continuous Fréchet differentials of order '"n". By a well known

I, / . .
theoren on Frechet differentials we have

/(9/0, ¥,dy)- j//e/ﬂfyj V) . (2.52)
AL

=0

Since R(s §y,V,) is a solution of (2.41) we obtain

Rlo, W, Jy)= - Kip, Vo, y) (2.53)

I7 we denote the t'th Frechet differential of R(yJV') evaluated at

v =0 by Rt(o) M}' &/qj &}/J o féy) we similarly obtain

/ef/oj %'/\7/’/};.--}{}):z{‘fﬂ/;/‘]%)[ (2.54—)

By induction it is easily verified that

;2 < e ] . 2.55
/ef/l)/ Mj'/}jé’ﬂ,““i‘f/}:”{f [k/%/de;’- J/;) ( )
Each member of (2.55) is a homogeneous polynomial of degree t in d y.

av
By the properties of the polar of & homogeneous polynomisl, it follows

that

) ; 2.56)
Rl Vjhy by, - s hy)help Uy hey)
To obtain the differential of the inverse R™/(x,V,) we bhave the

identity R™/ (x,R(y,%,)) = X.. TFrom this we easily verify that

R/ (p,V,) =V, (2.57)

JiJ). See  lartin [1].
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(€3}

and /e"//—b v -dx) = A/("ﬁ, V., £x)

The following properties of normal representation ere impor-

tant in the zpplicetion of normal representations.

If V(x) is the component of a n.h.c.v.f. in an allowsable K("'m
representation, and if +V(y) is its component in the corresponding
normal representation, then V(x) = R(y,?V(y)). From this we obtain
V(p) =¥V(0 ). That is the value of the component in an allowable
KM‘=1 representation is equal to its value in the corresponding normsl
representation at the center of the normal representation. Similarly

the components of the linear connection in the two representations are

related by

K/I/ [Z/z):. f/y} 7(/%,*%//))'/(9';%'/;)* (2.59)

From this we obtain

+i s,
/(‘;OJV’J&K;): 0) (2.591)

for all V, € &, and dy ¢ E.
In concluding this section I would like to briefly sumarize
some of the properties of normal representations which will prove use-

ful later on.

1. K(o,l/oﬁ 1.
2, R, Vojix)= —K(},V,fx),

6o Rulo, Yy dxs hap oo s dexde - Ke (5, Ve o) o 2.
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2o R(p¥)-Ve.

R7(pVos 2= K(ps W, 0%)
Be *K(oJ Va);})=0-

7o If V is the component of an asrbitrary n.h.ce.ve , and 'V(y) is

5

L]

its component in a normal representation, then "'V(O) =7V, and
(05 £y) = K(p,7, §¥).
8e The component XK(x,V, fx) of the linear connection in an allowable
Lne) . . +, + .
K" 'representation is related to the component "XK(y,”V, fy) in
the corresponding normal representation by
K(x,7, £x) = Ry, K(y,"V, §¥)) - R(y,"V; §v).
Section 2.8+ Tensor extensions of multilinear forms.

——

Let F(x,V,, - ,Vs, % ,---,%.) be the component in an allowable

futa)
K ) representation x(P), X(P,¥,) of a nshec.v.fs valued rmltilinear

form in the arbitrery neheceve V --,V% , and the arbitrary conta-

YR
veriant vectors {, -, { « Further let y(P), *X(P,YP) be the normal
representation with center p = x(Pa ) determined by the representation

x(P), X(2,%,).

Defe 2461s The k'th extension F(x,V,, = ,V, §, -~ % |l s faey) Of ¥

is defined at each point "p" of the coordinate domain of x(P) by

+ *s " y: P
F(P’VI ,““avs :f, ,ﬁy"fﬂ]z&"', Ml.) = F(y"]; *7 , o f {. P2 s““ 1:0 (2001)

]

+ 1. . . + . - s
where "F(y,V,,--- ,*V, ,’g »- - 5§, ) are the components of F in the normal

representation with center p = x(P,).

hold
(12) The results in sections 2.6 2nd 2.7 Wlll only for
allowable K™ representations
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Theorem 2.61., The §'th extension of a n.h.c.v.f., values form F

8o defined above is a n.h.c.v.f. valued form in the arbitrary

n.h.c.v. V,,--- Vs, and thc arbitrary contravariant vectors f,‘“_-, fj._,«g‘

£

Proof.

ey, * +, ty RV 4,7 7 "
Let f‘[;l MJ"’, l{’ }:_," . %) and F(;} %J ‘3/} 5, - s )
be the components of F in two normal representations with the same

center p = x(P, ). By theorem 2.42 we have
FOLW,- 0, %5 )+ /\7//:, Fog, ¥~ %, 5.)). (262)

Teking differentials of (2.62) and evaluating at y = O we obtain

Flp, Vi, ) bl g )T Flp Yo 4 1 e, 5 ).

Since p = X(P, ) is any point of the coordinate domain of X(P) the
theorem is proven.

Theorem 2.52. The first extension of T is equal to the covariant

differential of F.

By equations (2.46) the components F(X,V,J--- Vs f:,-",f;) and

.t *
V,, §, --- §.) are related by

J

+
F(y,"V, sy T

FO Y0 ) KU, %0 5 50)) 9

/ /

From this we see



Ja

/ y) ’ 4 2 4

Flo v K4 f;):/{(yj ?[y,ﬁ/ [5 3 )4y )

O "ot
F Ky, /zy,V, ; By )2 Ry, F oy Ve Yty ) I %)

« =/

l, _/ l_,

7‘24/@/;1%/% W ST, Blaidy) B, 5D,

(2.64)

Evaluating at y = O, and using the properties listed in section (2.5)

we obtain

’

777/ v, i zjf%..," Fip W W2, fséx)

-ZF// W ooy Vi Kb Vo b, Veu U 55 22 )

(2.65)

~.1g /:/ﬂ 1'/ Vi ? ", "J/—'(% % /XJ}LH R “)

s J /

FRU Fp V-, U4, s ) 420,

Thus the Tirst extension evaluated at y = 0 is equal to the covariant
differential evaluasted at x = p. 4s before the center of our normal
representation can be any point of the coordinate domain, and hence
the theorem is proven.

Def. 2.62. Let K 4 y ) be the components of the linear
connection in & normel representation with center p = x(P, }. The

functions C,(x,V, £ .- &,) defined at each point of the coordinate
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domain of X(P) by
[f//’, V3, fen) k(y/ Vi fooe ;f;ﬁ);“ (2.66)

are called non-holonomic normsl vector fomms.
By a proof similar to that of theorem 2.42 it can be shown

that C.(x,V, {, ---{,) is a n.h.c.v.f. valued multilinear form in

V: f‘/ ) ;;f/.
Theorem 2,63. The first non-holonomic normasl form is given by
e — ]
Cix V5 4)- AHOGY S 5. (2.67)

Proof. TFrom the law of transformation of linear connections we have

/(/1’,’ EVE /f(;j K (9, VA }I//_—((% *VJ. 7). (2.68)

This leads to

RKle, VL 54) = Rly iy % 550) 1 R0y, Kty V305 5)
# RO KU V5 %05)) + 819, K (Y, 51y 540))
TRV SR R85 - R VG %))

Evaluating at y = O we obtain
SV O SRR ) 4., 4 £ ko ;o s g )
Kip V54 Kig, V364, # Kath 13, 400Ky KbV 1) 1)

K p Vg3, 14, 0).

Substituting for Ka(p,v,fj , 3;) we have



,:_5‘/)

C(/»,Mf, %)= 7(/;,‘[{ 7% %-— £/, V54 ) (2469)

As before "p" is any noint in the coordinate domain of x(P),
hence the theorem is proven.
By the skew symmetry of H(x,V,{ ,%,) we can write (2.67)

in the form

G Ve 5)-ClouVg4)-Halsa) (2691)

Theorem 2.64e Let T(x,V,, - ,V,) be the component of & neheCev.fs

valued multilinear form in the arbitrary n.heceve V;,--- V,, in an
allowable K( M“representation. Suppose moreover that F has a continuous

second Fre/chet differential, Then

Flo Vo Vo l£8 )=+ [Fa s Ve 1515) #F6 V-, U 15 12D/,

Proof for m=l, Caleulating F(x,V/¥% /f{.) we obtain

FOVIEIL) = FO 4 5)-Flu K V £ ) o )-Flg, K T 4,5 5.))

# Kz F, VIS 0)+ K Fiu Ve s) 5)- Fla KRV %), 5)
PR K K 5 ) 3 ))- Ko Flao ko 1 5)) 8 )-Flo W T 5, 5))
F Akl Y [l 4, 5))) - KUx, Flav) /s 5, £ ) FK, e Vi 5), 5 )

TR, Flo Koy 8 )) 5 )+ Kl Kow Fos V), 4 ) 5 ).
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e/
In the normal representation determined by our allowable K

representation we have
# ¥ £+ + + .+ 4 - ,
FiyViiis 42 PO TG00 F U R 05, 22)) HL HUp Fp V3, 5 ) (2-092)

By the symmetry of the second Fréchet differential and the skew

symmetry of H(x,V, {,%;) we obtain

7/ fl‘r. + ‘1“ i , r #1, /)'- + i /'.,/ h,yf{: + d P;’
IV S hah, s £ Pty Vs 50 )t Y, 9‘/”/5’/1;10'

This of course implies

e Y — e s ! o ., .
LIPS I s FO V15 15} = 7o Vs, g

Theorem 2.65. Let H(x,V, %, 7] be the components of the non-holonomic

3 ‘)"+a 3
curvature form in an allowable X representation. Then

d ‘ - N s, 7’ .’ 4 ) I oy . 4 oL
//(’(’/ // .)5,) YRVt f-//('lj ., 4, jd-/)//'i/_/i(‘)'j iy oa, wl xS L
Proof. In the normal representation with center p = x(P,) determined
e
$d
by our allowable K representation we have

;Z/};;+lr T - Bt f g e

2V, A, s TA ‘:‘/"J 1y _J"//',’il/ - /\1/1 v, JJ/’ o/
' (2.693)

i + + *y * f Y 7" bt + + +
- “ V v - / : - ! - i 175 5
/A(',%'J/\.‘ﬁ«,ff/ 21/, st /ﬁ(ﬁ'//(/*/i,gj,g_jj,).

Taking Frébhet differentials of (2.693) and avaluating at y = 0 we
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obtain

*1

Hiy v 3 55 )= v i,

Fo ;

%/'?;7' f[y/

This implies

L5550 M L8 550 e v, 5%, e

Using theorem 2.62 we obtalin

10,1 4,5 14) # 11 U 4, 414+ M V5, 415 <0

Section 2.7. A replacement theorem.

The following replacement theorem is a generalization of a
replacement theorem given in Michal-Hyers [l]. We use a similar
notation and state the theorem in a similar way.

Let /Q’m-.f(/'l/d"“f"/(4,“;5’3»'))}/72 W)y B A I, T, Y i)
by a functional whose arguments are multilinear functions /4,--;,f%;)
and whose value is & multilinear funection of fl‘-; f; Lﬁ'; .

Def. 2.71. Let

FO 8 5 Y ta )

/?4,.; {/”/,,,o//,F/zﬁ,;a;p;),~-/"/x,:3,f?;&--~;, ) Kb 1,1 Ko o o) sk 5, 6565540
| Il st U e ),

be the components of a n.h.c.v.f. valued linear form & of a contra-

any
variant vector field valued linear form in sa=alismable - Trepre-

sentation. T will be called a differential invariant if under a



(s7)

change of representation "R" as a functional retains its form,

V{nﬂ)
A

Theorem 2.71, The component in an allowable I representation of

every differential invariant can be expressed in fterms of the
normal vector forms Ax(x,¥ , ", n,;)(u:and the non~holononic
normal vector forms Cf(x,T,p, y e ,/%,,) by the following process,
(i) /M (x,d , o) and 'K(X,T,,d.) are replaced by zero.
(11) (=, %, %395 -3 7;,,) is replaced by A}(x, AP AR b;',,).
(111) K(x,T, d, ; &3 — 3 4o, )is replaced by C,(x,T,d ,--- , %wn ).

The proof follows directly by eveluating at the center of
a normal representation.

AS an example of this process we take the non=-holonomic

curvature form, Since
H(x,7,§ , 4) = X(x,V,§;86) - K=V, 558) + K(x.K(x,7,%),8)

“K(x,5(x,V,%,), 5),

we obtain by replacement

H(x,V,8,5) =0, (xV,4,5) ~C(x,V, 4,4 )e

(13) See iiichal-Hyers Ll] R
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CHAPTER TIT

we shell zssume that both Dansch spaces B snd I possess laoner produchs.
This will enable us to introduce the notions of covariant and non-
holomic covariant vec‘tors"i?

The first section of this cheapter will be devoted to briefly
sunmarizing the properties of adjoints of linear transformations. 4
nore complete discussion can be found in kichal [2], Iichal-Hyers [5]
and Stone [l] e take over many of the definitions from these refer-
ences verbatim.

Sectin Eué Inner products and adjoints of linear functions.

Def. 3.11. Let B be & Banach space. A function [_x,y] on B® to the

real numbers shall be called an inner product if
1. [x,y] is bilinear in X and y,
2. [x.v] = [v.2],
3. [x,x) > 0, and [x,x] = O if and omly if x = O.

Def., 3.12. 4 function T™(x) on B to B is said to be the adjoint of a

linear funetion T(x) on B to B if
1. T*(x) is linear in x,

2. [o(x),y] = [x,T(y)] for all x,ye B.

/1) A more general treatment of these notions can be given by means of
an inter-space inner product which Professor l‘ichal has introduced.
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Adjoints have the following properties.
(a) If T(x) has and adjoint T*(x), then the adjoint is unique.
(b) If T,(x) and T,(x) have adjoints T *(x) and T,*(x) respectively,

{(b,) {T,(Ié(x))} * exists and is equal to T,*(T,*(x));

(bg) fa T, (x) + Db Tg(x)j * exists and is egqual to

a T’*(x) + b T, *(x).

(¢} If T(x) has adjoint T*(x), then (T*(x))* exists equal to T(x).
(d) ZLet T;(x) be a sequence of linear functions convergent to a limit
function T(x), and suppose that T *(x) exists for each i. If T *(x)
converges to M(x), then T*(x) exists and is equal to li(x).
(e) Let T(x) be a solvable linear function with adjoint T*(x). If
one of {T"(x)}* or {T*(xU-I exists the other does also and the two
are equal.

The following notation is used for adjoints of multilinear
forms. If M(x,f,f,, ", fu) is a multilinear function of
on B"+‘ to B and if for each X, 7 considered as a linear function of N
f,; has an adjoint, then we denote the adjoint by /L;)f(xa £, '{‘,‘”)ﬂ‘-u A, f?'*';";f? )
With this notation it is possible to show that adjoints have the follow-
ing property.

(f) Let S be a subset of a Banach space B, and let T(x,y) be a linear

function of y on SB to B, If for each x of %ﬁf(x,y) has an adjoint

(2) I do not believe that it 1s necessarily true that FZO*(x,ﬁJf»"ﬁq,ﬁ)i@-;f;)
preserves the continuity in f, 4., %, 4, -~ 5
Throughout this thesis this will be assumed to be trme.
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L(x,y), and if both T(x,y) and L(x,y) have Frdchet differentials at
each point of 3, then T, (x,y; /%) exists and is equal to L(x,y; dx).

Seetion 3.2. Non-holonomic covariant vector fields, and non-holonomic

covariant linear connections.

7e have assumed previously that the transformations of repre-
sentation ¥ = X(x), X = M(x,X) arising from any change of representation
were ragular transformations of representation. e now place the
following restrictions on all transformations of representation. These
are to hold at each point of the domain of definition of X(x). |
1. Z(x; §x) has an adjoint X%, (x; dx).

2. x(x; fix; Lx), and T (x; 4x; 4x) both exist continuous in x.

5. X%, (x; {x) is a solvable linear function with inverse X7y (x; 4%, .
4. HM(x,X) has an adjoint Iffy, (x,X).

5. I‘.i’fz) (x,X) is a solvable linear function with inverse N’fz) (x,%).

6. M(x,X; Ix), ﬂz;) (%,X; 5%, We(xX; M), )[(_:(55; 4§ x; %) exist

and are continuous at each point of their domains of definition.

In order to save on terminology we shall now call any transfor-
mation of representation which has all of these properties a regular
transformation of representation.

It will be noted that all the assumptions of lLichal [‘3] are
made here. Hence the notion of a covariant vector can be introduced.

The law of transformation of a covariant vector 7 is

ﬁl Xgy (f)' %) (3.21)

every
‘e shall assume that in amy coordinate system x(P) the
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component ['(x,% , %) of the affine linear connection has an
adjoint GZf(x,y »§ )e The law of transformation of /3¥(x, ¥,¥ ) con

be shown to bhe

JOHETLE) = xE T, .0 ) ¢ RE s B (3.22)

()

Def, 3e21s Let x(P), X(P,Yb) and X(P), X(P,Yk) be any two representa-
tions generating the regular transformations of representation X = X(x),
X = (x,X)s &4 geometric object whose components 7(x(P,)), TZ(®))

in the two representations are elements of the Banach space =, , and

are related by

Hx(B ) = N5 (R(B ), T(x(B))) (3.23)
is called a non-holcnomic covariant vectoru)associated with P, e

To distinguish between the immer products of E and Z, we shall
denote the inner product of the former by [x,y] , and that of the
latter by V,W} .
Def. .24, A geometric object whose component W(x) ( a function on =
to E, ) in any representation is related to its component T(%) in

any other representation by

W(E) = 10k, (%,7(x)) (3424)
)
is called a non-~holoncmic covariant vector field.

Theorem 3,21, Let V be the component of an arbitrary Ne.heCeve o &

(3) This is abbreviated t0 Neh.C.Ve
(4) Abbreviated to n.hecevl.f.
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necessery and sufficient condition for {%,}} to be invariant under all
changes of representation is that 7 be the component of & NeheCeVofe
Proof. If the trensformetion of representation is X = X(x), X = 1(x,20)
and {V,ﬁ} is inveriant, then

Jv,} = Iv,9} = {I.C(x,V),'ﬂ' = V%, (x (x, 7} . (3.25)
By the arbitrariness of V we must have 7 = qu)(x,ﬁ). This implies
¥ o= nw)(i,x). Thus the necessity is proven, the sufficiency is obtained
by raversing the steps.
232: 2;223 Consider a geometric object whose component L{x .,§ is a
bilinear function of'ﬁ,f on Z E/E to & in every representation. This
shell be called & non-holonomic covariant linear connection if, under
2 change of representation the components L(x,Y , £) and-i(i,ﬁ,f )
are related by,

LT, ) = 1, (FL0x,0, 1)) « 10 (£555) . (5.26)

Theoren 3.22. Suppose that in every representation the component

X(x,V,§{ ) has an adjoint X5 (x,7,§ ). Then K%, (x,7, £) is the component
of a non-holonomic covariant linear connection.

Proof. Let x!P), X(P,%,) and X(P), X(P,¥p) be two representations
cenerating the transformetion of representation X = i(x),‘f = 11(x,X)

Then

(5) As before we are assuming the linearity in { is preserved.
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{/((% Z j‘jj WJZ i i V) /\79)*(/(-, /<:-U¥-£ x, Lfd—j/,/[

By the law of transformation of linear connections we have

LKV 3 WS = 0V ke ox WS 3)= Moy (o, 075 3))

wosce LU S, 070 U s - AN KT EH- M Wy -2

Since V is an erbitrary n.h.c.v. (3.27) implies

¥ T - . ¥ -
- ey poro * P
/ZJ (%, A (X, [ffs’// = Ky (X0, 5 '%j (L, l’: i/

solving we find that

* - * N

e T gt e ey R s (3.28)
/4«.7) (lyh) j/"/LQJ‘I,&JJ(Izh‘ij/"'/i{JJ ll,/‘Zd){'x/WJ'—"J/'
Since I, (%,W) and iljy, (x,V) are inverses we obtein

— ¥ »
3 U O R ¥ - -
/\(Jj (ZJ. h/,; )'5 7 /i_p]/ L,ZJ A;&d, (I/ V"‘/ g j/ 7‘/{/&:?} ( )LJ Lf/;« j /.

This proves the theoren.

Theorem 3.23. Let L(x,V, § ) be a bilinear function of V,§ on Z'}SIZ
to E,. Then & necessary and sufficient condition for
fu(x) - L(x,7(x), §X (5.29)

- 3 L - . \ .
to be a n.h.c.v.f. for every ifrechet differentiable n.k.c.v.f. .‘(x)J

is that L(x,¥, f) be the component of a n.h. covariant linear connection.
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e write (3.29) as W(x |{x) and call this the covariant
differential of W.

Theorem 3.24. Let F(x,8 - £,%,- s %o Vs 5, i) De

g mmltilinear form in the arbitrary contravariant vectors {;, Ls - fur
’

the arbitrary covariant vectors,v,)-- U the arbitrary n.h.c.v.

V,,-"",V, and the arbitrary n.h.¢.v. 7,,--,7;. Suppose also that

T possesses a continuous first Fréchet differential. Consider

) M 'a’r‘l)

/ J

PO s o M 1 o M, Wl )< Pl g5y 3,0 Y,
»
—‘AEZ’ /E/)‘, £, S, /'/)g};; ix) f;'n/--; Fu, A, T, V- K) I‘/bz M)

»
) . *
/5’5/’95,-; B 0, 5, 5 5 o B T W W)

L
2 e Vo e W B, Ll W,
+ A

For simplicity we write (3.291) as F(x,---/§ x

e J() 4.+1 ‘M‘)

(). If ¥ is a contravariant vector field and R = /7 (x,F, /£ x) then
F(x,--- |§%) is also a contraveriant vector field valued multilinear
form in the f 's, 7 's, V's, W's and / x.

(b) If T is a covariant vector field and R = - /"’fz) (x,7, § x), then

T(x -+ )4 x) is also a covariant vector field valued rmltilinear form
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in the §'s, g's, V's, ¥'s and § x.

(e). If ¥ is a n.h.c.v.f. and R = XK(x,F, §x), then F(x, --- /4§ x) is

a n.h.v{f. valued multilinear form in the ¢°'s, q's,:"ﬂ's, and dx.
(d) If F is a n.h.c.v.f. and R = -L(x,7,§x) (a n.h. covariant linear
connection), then F(x,---//x) is a n.h.c.v.f. valued multilinear form
in the §'s, p's, V's, W's and ¢ x.

(e) If F is a scalar form and R = 0, then F(x,--- /§x) is also a
scalar valued multilineer form in the ¢{'s, g's, V's, W's and Jz.

We call F(x,--- [/ x) the covariant differential of F.

Theorem 3.25. Let F(x,#, Jx) (a bilineer function of W,{%x on

7.8, to E,) be the component in a given representation of a geometric

object. Then a necessary and sufficient condition that the relation

{K(K,V) Jx;,‘.ﬂ' = {_V,F(x,'ﬂ, Jx)}

be an invariant of all representations for all n.h.c.v. V and all
n.h.¢.v. 7T is that F(x,W, dx) be the componenss of a n.h. covariant
linear connection.

Proof of necessity.

it
LKEV S W =10 Faw, &:)f

then

. 1My K ¥ ), W =AM, Vo, W = L i, V) o, it

LV, Fo,w, 2a) = M) o, W5 f = 1, M0, £, i 5l

Since V is arbitrary we must have



Y

. r n . ,'*‘ = . T ray
/“uj M Jx)- Mg;l)t, erj x) = Moy (x, Fl, W, x)/.

rY . 4 Y Y ry
Solving and using a well known theorem on Frechet differentials of
()

/4)
inverse functions we obtain

= = ¥ . * -
FUEW )= Moy (B Flxw, )t M, (5 W, %),

This proves the necessity. The sufficiency is then easily obtained.

Theoren 3.26. A necessary and sufficient condition for

SV WE= LV, W+ v, wousof,

for all Fréchet differentiable n.h.c.v.f. V(x) and n.h.¢.v.f. ¥(x) is
that the non-holonomic covariant linear connection L(x,, §x) be the
adjoint of XK(x,V, {x).

The proof is easily obtained by substituting for V(x (d x)
and T(x )§x), the expressions £V + XK(x,V, fx) and 47 - L(x,¥, Ix)
respectively.

Because of theorems 3.22, 3.25 and 3.26 we shall assume that
the n.h. linear connection K(x,V, {x) has an adjoint K(;) (x,W, §%) in
every representation, and shall take K(Z) (x,%, £x) to be our n.h.c.
linear connection. 4£lso we shall assume that K(:) (x,7, §x) possesses
a continuous second Fréchet differential at each point of the coordin-
ate domain.

Seetion 3.3. Non-holonomic coveriant curvature form.
E - -~ - - ]

(¢). Michal-Elconin [ l].
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Let 7{x) be a non-holoncnmic covariant vector field possess-

inz a continuous second Fréchet differential. If we calculate

we obtain

Wxibxtfax)-Wixihxi fix)

W) 5x152) - Wixthrinn)=- fix W ix 5x),
#
where

x A *
/ e - AE R . ~
'{(XJ M’ ,;',)(J Jl} = AQ) (/LJ uj,é/J ){)) AQJ/IJM;.Z./ )ﬁ//

;¥ x ; *

’ r ) ] S A TOPEE
/'/\_U()-_, &g) (X, A/J J’.z{, ) - Ray (X Koy 1, W, 5,/ 50/,

" e
e define ,/,/{,ZJ M Gk Ak ) to be the non-holonomic curvature form.
It is obviously a n.h.c.v.f. trilinear form in M’?J‘J S

Theorem 3.31l. The adjoint HL:) (x,9,% , 32 ) of the n.h. contravariant
e — —

curvature form H(x,V,{ ,3, ) exists and is equal to £(x,W,3 ,%).

Proof.

Since
7’:/((1, T_/f{]j lvsz =} vV, /<w*cx, W s )_/')
we obltain

Zk()(/”lg’jlj)fdz I"/{/Z = i '[/Jf &;_)*(LJ Tﬂ,; j, ) )‘djji. (3.31)

Also

o y . YT ]_ : *, *, N Ly o \4';
i A ll/ A (,l) f’//)}r// j,}/: 14":/ < i-&,/\;) (&, /\,\j ()‘11"3}34514.(5"32)

/

Hence every term of
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H(l/ L’}r ;‘,, )507 ) = /(Lx/ ‘L/fjlj_j-l/ _ /\ {,L) [}rj,-zJ: 5,/

Lo . - N ) : Te . .
A R LS L, Gas T RAAN A s 50/

has an adjoint. It is then easy to verify that

Z tn, Z;i,l sa/, —ifwr_/z - iLi /’V"('xl ny 5., 2 j_/’ (3.33)
¥

This of course implies }{ﬂl'l, u’: >’2 L) = /%Jj(lj ‘r’t‘j $i SV
Section 3.4. Allowable; éﬁm representations.

In order to make the normal representation theory that we
developed in the previous chapter apply to non-holonomic covariant
vector fields it is necessary 1o show that the transformations of
representation arising from a change 1to normal representations are
regular transformations of representation.w To do this we shall
assume that a certain subset of our representation possess certain
properties.

_Ilgi. ‘2;3;_]; Let Z_', be an open subset of our Bamach space E and let
x = x(x), X = M{x,X) be functions with the following properties.

1. x(x) is a regular transformation of class KM'U in the sense of
Jichal-Hyers LB], taking Z', homeomorphically into an open subset
2 CE.

2. (x,X) is a solvable linear function of X on J,E, to E,, with

inverse N(x,X) a function on Z,E, to &, .

*.
3. Por each point x¢& 2, , M(x,X) has an adjoint M, (x,X).

(7) Regular in the sense of this chapter.



(49

4o For each point x¢ 2 , MiU(X,X) is a solvable linear function
with inverse Nﬁj(f,x).
5. 1(x,%), 1%, (x,%), N(%,X) and 1% (£,%) are all of class ¢
locally uniforuly at each point of there domain of definition.
If x(x), ¥(x,X) possess all of these properties we shall
(n+9)

call them a regular transfomation of representation of class k .

b
Defe 3442 A set of allowable K ﬁyrepresentations shall be called

ue)
allowable k¥ if the following are true.
1. The trensformations of representation arising from the change

ntal

from one allowable klfarepresentation to another is a regular

. . futd
transformation of representation of class k o
2. Bach coordinate system x(P) of an allowable km"}representation is
an allowsble ﬁnﬁlcoordinate system in the sense of liichal-Hyers [5] .

(ned )

3, The representation obtained from an allowable k?* representation

1a)
is an

by a regular transformation of representation of class én
allowable ﬁu"[representation.

7e shall assume that our geometric spaces possess a set of
allowable kfﬂjrepresentations. It should be pointed out that we
do not assume the set T of all representations forms an allowable
k‘wnset of representations, but merely that there exists a subset
of T that does form such & set.

Section 34,56 Extension of the normal representation theory.
—

‘Je shall assume that the affine linear connection /A(Z,Q-g«>



satisfies hypotheses I - IV of ilichal-Hyers [5] Then all of their

theory on normal coordinate systems of class km will apply to our
¥

geometrical Hausdorff space H. In addition we require K(z) (x,‘:’s.’,f )

(w) ,

to be of class C (nz3) locally uniformly on 7, the coordinate

(e td) . . utd)
domain of an allowable k coordinate system of an allowable k
representation. By the same method used in section (2.4) we can prove

the following theorem.

Theorem 3.51. Let p, §,4,%X,,7, be the same as in theorem 2.41. Then

there exists a unique function G(p,4f ,1,) with the following properties.
(i) TFor any choice of fe J, and pe X, > Gp, 83, W) is the

unique solution of
%_Z{/-, ﬁ;)*(z,wf):ol W(;,)_—WOJ (3.51)

along the path x = £(p, 4§ ).
(ii) TFor each such p, ¥ and v<€4<1t , G(p,s4 ,7,) is solvable
linear in W,.
(iii) G(p, €, ) is of class o™ uniformly in the pair (€ ,p) for
each such ¢ and p.

As before we delete the fixed point p and obtain by placing
€ =7y and 4= 1 the function G(y)‘.“:’o) = G(p};; W,). Consider now the
function R(yJV‘,) of section 2.4 {expression 2.46). ‘e note the follow-
ing facts.

1. R (d;) V. ) is a solution of
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éﬁﬂV%/{”(X, Zﬁ): o, ‘L/r{,,k) -1

along the path x = f(p,sy) forany ye Y, .

2. G(sy,W,) is a solution of

* A
&%"’/’AQ) (x, Mj—f): 9, Wip) We

along the path x = f£(p,sy) for anxy y € ¥, .

From these we can verify that

AL LRy v, oy Wlf = e

Integrating from 0 to 1 we obtain

LR 1Y) iy Wo)f = LU W F. (3.52)

But G(y)?-f‘,) is solvable linear in ¥W,, and hence if we denote its

inverse by G ' (v,W,), (3.52) implies

‘[K(X%M)j W} = 1V, (,"(7’(;/0)]- (3.53)

This means that R"zz) (y,%,) exists and is egual to ¢ (v,9,). Obviously
R*s) (¥,%,) is a solveble linear function of .

Suppose x(P), X(P,Y,) is the allowable kMa representation
from which we started. By lichal-Hyers [3] the coordinate systenm
x(P) determines a normal coordinate system y(P) with center B, = B(p),
and moreover the induced transformation of coordinates x = f(p,y) is

. » .
a regulsr transformation of coordinates of class k . The function
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Ti4(P,Y,) defined implicitly by

— , +

Xiey)= Ry, X (£ L))
is a vector coordinete system for the associated Banach space Bp,
for each P in the geometric domain of y(P). Thus y(P), *X(P,Yﬁ) is
a representation and also is a normal representation in the sense of
section 2.4. Moreover the induced transformations of representation
x = f(p,y), X = R{y,?X) will now be regular transformations of repre-
sentation as defined in section 3.2. In what follows all normal

representations referred to shall be of the type just discussed.

Theorem 3.54. Let x(P),%(P,Y,) and %(P),X(P,Yp) be two allowable

ned) . . . . X .
k representations with intersecting geometrical domains. Further

*hey
suppose that zewe generate the transformations of representation

% = x(x), X=xX. If y(P),'x(P,5,) and F(P), Z(P,¥,) are two
normal representations with same center p = x(P,) determined by the
two allowablel:w“l representations respectively, then the components
*i(y) and.*ﬁ(?) of a n.,h.c.v.f. in the normal representations are

related by

HF) = W, (5,79().

Proof:

The trensformation of representation from x(P),X(P,Y ) to

the normal representation determined by iﬁjis

x = f(p,y), X=R(y,™). (3.54)
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Since W(x) is a n.h.c.v.f. we have

: o, (3.55)
W)= Ky (x, W) .
Similarly
» =" +HF -
Wii) = Ry (L, Wigs) (5.56)
Since h—/—(i/: M)r(’x.j h/{l)) we can ob.tain

+Wc’y') = /Q_J(y", /lé;*u: /t;,*’(xj Wiy)))). (3.57)

But in theorem 2.42 we showed that

Mip &) - K—(). Mix, Ry, X)) (5.58)

Thus

/Z.vj (/, xX)= ﬁu)*(;/ / @«J*lxj /a: ‘/( X, £))) ,

Yoo ¥ L L L

wt M, (f X)L p E)e Ko (5N R o F))). (550
Applying this to (3.57) we obtain

+‘—~’_v *"*‘4 .

Wigl= M (), " Wig))
which proves the theorem.
Seetion 3.6. The differentials of G(y,%,) and of its inverse.
]

The remaining sections of this chapter are merely extensions

of some of the theorems obtained in the previous chapter. As the
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proofs are almost identical they shall be omitted.
Let us define the functions J.(x,W7,f s By s 5e)s (t<n),
by the following recurrence relation.
LA, 5) =42 [R5 5 5) « Ky lnh, (50, £), %)
- ®y (7, M=, 2,50 ]
(3.61)

Tolx, 0,5, 5e) = AP L= AL s )
KT £ ) = F T £ T T T 8]
where P[--;] rieans the sum of terms obtained by a cyelic permutation
of 3, ", St

‘e can then obtain the following results.
(1) Glo,We) = Voo
(2) G(o,7,;8x) = K5, (p,",d%).
(3) Gloy,3ys 473~ i) = Te(0sWo b7, L¥: = 5 47
(4) T3 Z)(o,l.-’,,f ) = o, for all ', ¢ B, and § ¢ Z
(8) G'(p,We) = e
(6) G'(p,id,;fx) = = o § A %) e
(7) If 7 is the component of an arbitrary NeheCeVe in a given
allowable km’”representation, then its component £i1(y) in the
corresponding normal representation is such that

(a) Tu(o) =,

(b) *Wo; y) = =XK* (p,7,87).

s
(8) Ve write the inverse of G(y,7T.) as G (x,7,), where x = £(p,¥)e
Thus x = p corresponds HO ¥ = Oe
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(8) By the law of transformations of linear connections we have

¥*

Koy LW Sy )= ey, Koy Cp, W74 ) ) # 0 0g, Wi ta)

Section 3.7, Tensor extensions of multilinear forms.
i — .}

Let x(?), %(P,Y,) be an za.llo*;v&a.ble.‘ﬂ?’"""I representation, and

suppose thet F(x,V,, " ,V,,¥, , Tsf s My 5% 1s a multi-

linear form of the arbitrary n.h.c.v. V,, @E, n.h.c.v. Wy Vs

hidd

contravariant vectors Q—«; 5& and covariant vectors m,~-) s in this

representation. We shall consider the following cases.

(1). F is
(2). T is
(3). T is
(4). T is

(5). T is

a n.h.c.v.f.

a n.h.c.v.rf.

a contravariant vector field.
a covariant vector field.

a scalar field.

Suppose also that p = x{P,) is any point of the coordinate domain of

x{P), and y(P), +§(*’1ﬁ) is a normal representation with center p = x(P,)

determined
ronents of
Def. 3.71.
Fix V-

each point

ZZ"I; MJ M"J }’1'/ T ?Sl }

nte) < -
by the allowable k " representation. Further let the com-
- . . s . e t + 7 tn L h
F in this representation be /(((7/ I{J-—J U, W, W A, %
In all cases the k'th extension

- $us) of T is defined at

[7] "— 41—11

p of the coordinate domain of x(P) by

L VT PSS N DN [ 0 T R S Ry IO

s 2y

Theorem 3.71l. The k'th extension of any form F of type (1) - (8) is

again a rultilinear form in the V's, W's, f's and 7 's of the same type.

5, I ).
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Theorem 3.72. In all cases the first extension of F is equal to its
s

covariant differentisl.

Def. 3.72. The j'th normal covariant form P, i (x, 9, 8,4 - S}u
. ST J
defined at each point p = x( Po) by

+*..

5

R TR VLSt SR
f}, i/é/ g J>1J J/ y Jf/ &A/ L7) o IJ Vi J J=

Theoren 3.75. The normal non-holonomic covariant vector forms are all

n.h.c.v.f.

Ffuest
Theorem 3.74. The seeend normal vector form P, (x,W,f ,f ) is equal to

L.g ~
L1 5, ),

Theorem 3.75. Let F(X,V,)- -+ VW, -+ W) be the components of a

n.h.c.v.f. valued multilinear form in the arbitrary n.h.c.v. V, - 7,

7

(ntd}
and the arbitrary n.h.c.v. %, .-- 7, in an allowable k representation.
P
Ir F(x,V,l-— VoW, 3 4x; £x) exists continuous in x, then

/_(‘VI,VJ'"JMJ M W. I3, 5.:) o Fex i W, Wil s, /5. )
7L/-—"l/ ?/Z./ Z,M'}M“/}J/-?/)JZ'

The same theorem is true if ¥ is & n.h.c.v.f.

Section Z.8. Replacement theoren.

Let

/«o‘ﬂj (’/, /‘(', “/‘).)/J/ ( 16:/ /’{‘JJ 33{ o /ij/ { F’J’/L“)J /, (/q/ "{jJ —--/’:ql-/ (lA’,/ VoLJ" Uiu,t. )_' /J, (Z‘;Yj/!bb (Z; ‘/,)”-.2

'({‘{/;/ '/—’e///{' J u Jy“) Lb,l{rlliﬂr»n:‘/

.-'j 1(2 }/,«1 /I(‘IAI}.‘.

/
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be a functional whose arguments are multilinear functions f£,,-- -, Q. ,
and whose velue is a multinear function of &, -, 4, %, 7,V » »Vr
A

Defs 3.81s 4 multilinear form

F(x’ fl’“"f.\ ’7| s ”]/.,’v; 37 Ve :Y‘VI,"' :"\':L-) =

de...[(F(x °/:s“{a ﬂ ﬂ,;ﬁ;)a" /"(X’Tl;fﬁz;@;"";%w),/q X0 /ﬂ
/’(:’I%(x ﬂ’¢ ;f})"" 7/(;')*(::’%7 Wa;‘/;; ) C(X 2 ¥ ) : 7>~(X’Z¢~; ;‘4 ':%/)7
Ig-u (x,750), - (3)(x T"’ 4. fé ” AESEE AN Pt ”/4,’Vl 57 s Vs )

where ¥ is of type (1) - (5), will be called a differential invariant

if R as a functional is invariant *to changes of representation,

(ndds
Theorem 3,8l. The component in an allowable k  representation of every

differential invariant can be expressed in terms of the normal contra-
veriant forms A;(X,f ," ,fwa), the normal covariant vector forms
Ay (B 586, - » $;4)» the normal n.h. contravariant vector forms

C}(X,V,g’, y 7T ,;}H) and the normal n.h. covariant vector Torms

E} (%,7,5 -~ , _(“) by the following replacement process.
1o [T(x, 4,4 ), /;j (x, £ ,,/¢ X(x,Z,7) and K%, (x,T, #) are replaced
by zero.

o [ (X d s dsd s 3d,,) is Teplaced by A (x,e , -~ ,-ﬁu).
3e /; (x,ﬁ ,& ;@ 3 - ;6’” is replaced by n.,j; (x, 2 ,4 s —--,g,;).
4, K(X sV Y5 - ;bﬁ,) is replaced by J(x,%}‘,g 7 Y )e

5. L{:fu(x },7(, 3% 5 ;%) is replaced byl; (x,T},U,-~~-,>}+1).

(9)e See llichal-Fyers [’37.
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CEAPTER IV

_ W)
Section 4.1. Interspace adjoints.

232'-2&&&‘ Let E and E, be Banach spaces with inmer products [x,y]
and {Y;q]- respectively. A linear function T(x) on & to E, is
said to have an interspace adjoint T*(V) if

1. V) is a linear function on E, to E;

2. {?(x),Vi} = E;,T*(Vi] for every x ¢ L ard Ve k.
Def. 4.12. Let £ and E, be Banach spaces with inner products [x,v]
and iV,W}- respectively. A linear function T(V) on 8, to £ is said
to have an interspace adjoint T*(x) if

1. T*(x) is a linear function on E, to %L ;

2

[x,T(V)] = -fl’*(x),v} for every x¢ £ and V €&,
With these definitions we can show that all the properties
listed for ordinary adjoints are also true for interspace adjoints.

Theorem 4.11. Let the components of a n.h.c.v.f. be in any representa-

tion a linear function T(f ) of the arbitrary contravariant vector
on E to BE,. If T*(V) exists in every representation, then T*(V ) is

the component of & covariant vector field.

Proof.

(). The interspace adjoints defined in this section are different to
those that cen be defined by means of the Lilchal inter-space inner
product.



y¥

- ¥

[fJ I (17)]: 1 7:’?'/:, V_]“ = i/\éftxj res) l"f =), VF=(s ™v)f.
But

LJJ FPovif= | £ajs), Tvi[- L3, x (x: ol
Hence
¥ - =
[ W)= a7V
This implies
TV 2 £; TV
which proves the theoren.

Theorem 4.12. Let the components of a covariant vector be a linear

function T(}) on E, to E in any representation. If T*(¢ ) exists in
every representation, then T*( ¢ ) is a n.h.c.v.rf.

The proof is similar to that of theorem 4.11.

In this chapter we shall consider the same geometrical spaces,
and shall carry over all of the assumptions made in the previous chapters.
We shall resirict our representations to yield only:igg;sformations
of representation E(x),m(k,x) such that;

1. x(x) and x(X) have continuous Fréchet differentials of order n + 2
at each point of their domain of definition; |
2. the funetions Ii(x,X), Mfz)(x,X), N(X,X) end NTQ)(E,X) each have
continuous Fréchet of order u + 1 at each point of their domain of
definition,

This will of course make the Hausdorff space H an (n + 2) differentiable

manifold in the sense of lidchal Eﬁ]. In addition we shall assume the
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existence of a non-holonomic covariant vector field with component
R(x,V) and a coveriant vector field with component X(x,?{) such

that each point x of the coordinate domain of every representation
the fodlowing things are true.

44 e R(x,V) is a solveble linear function of the arbitrary nohe.ceve V
on 7UE, to E, , with inverse X '(x,V) .

Ay e {R(x,v),v} > 0, and {R(x,v),v]- = 0 implies V = O,

a5« ArEWWF = 1y, ,R(X,V&)} for all V,, V, « E,.

(a)
Ly e R(x,V;fx) exists and has an interspace adjoint R’(“g)(x,v, HA I
Ay o R(x,V;d{x) and %x,v, 5V, ) possess continuous Fréchet

differentials of order {p-l1), where p < n+l,

B, « ¥{x,7) is a lincar funetion of the arbitrary n.h.c.v. ¥

L=t

on Z'BE, 0 E ,
By X(x,‘:l) = 0 has only a finite number of linearly independent
solutions, and there exists a fundmental set Tf,‘(x), r=1,2,-,8,
such that

(a) T,L(x; £ ;%) exists continuous in x,

(p) {R'(x, Z;‘_),T,J- = ;A’k (Xroenecker delta).
B; « Y(x,’) has an interspace adjoint ')(’:j(x, f)e

By o ¥ (x,R(z, b’l:j(X, £))) is a solvable linear function of § .

(2) Ye carry over the notation F¥ (x,4 ,- , %, 7,%w, -, L)
to mean the adjoint {either kind) of the function considered
as a linear function of the itth place, Ve also retain the
assumption that the adjoint remains linear in all the §'s,



3y, Y (x,%), and x;(x,g ) both possess continuocus Fréchet aif-
ferentials of order p.

3, ¢ {x,%;{) has an adjoint };(ij W, 7/ which has continuous
Fréchet differentials of order (p - 1).

»
Theorem 4.13. If postulates A, - B, are satisfied, then our geometric

space H is a general Riemannian differential geometry in the sense of
iichal [3].

Proof. To prove this theorem we merely have tc show the existence

b

of a metric form g(x, § ) with the following properties.

1. ﬁ”’ ¢ ) has continuous Fréchet differentials of order p.
2. /3, 7x,3)] 1is positive definite in 3.

5. gix,$) is solvable linear in ¢.

4.

J x, 3/ is self adjoint.

 *

i (1/ j;,ij exists and is continuously differentiable up to

order » -~ 1.

.3). Je shall give infinite dimensional examples where this is true.



e choose
;(1, §)e ¥ix Kix %0x 1)) (4.11)

(1), (3), (4), (5) are all easy to verify. To prove (2) we

must show that

s L O R N

[Y/XIF(/"_} }'L"J (1,!)))) /-, .j’ = | (4.12)
implies % = 0. But

s ¥ T 7 s * oy . ¥ /
[ )fl).j K(xj %, (.:J'j‘)/,l’ NEE RS X, [x.’,!))J Y, (13 /f (4.13)

[

Thus by A, we have that (4.12) implies .4, 4,5/ =¢, But if Z)*u, j)-=oJ
then Y(x, fulﬂ;)*/.i,jj,;,j =, Hence by B, we have s = 0.
This completes the proof of the theorem.
e shall now fake the metric g(x, {) of the general Riemannian
geometry to be (4.11), and we shall write the inverse of g(x, §) as
G(x,7” ). Henceforth also the affine linear commection [/ (x, 5, SaJ

of H shall be taken t0 be the abstract Christoffel symbols based on
N)

;(x,ﬁ ).

Theorem 4.14. The function
T ——

e

PRV )z Gl Y, Rin V) (4.14)

has the following properties.

(). See ilichal [5]
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%,

1. ,/Q(X,V) is the component of a contravariant vector Tfield and is
is a linear function of the arbitrary n.h.c.v. V.
2. 2(x,V) possesses an interspace adjoint

2* o, F S
DA )= KX, qa, (&2, 704 1))

» . i
)(1, Ya (x,5// s,

o
T, G )

. * .
5. o(x,V; fx) possesses an adjoint 6} (a, V' x).

It is easy to verify (1), (2) and (5). To show (3) we have

- ‘ * i j
Jix $7 = 2Ux Kix ax3)))
Thus

PR . ) _ R 3 v o R
PTGl giys)) = ek, M x, Koo N a5 ) )] 2 e (a5 )

Similarly we can show (4).

Theorem 4.15. The equation /2 (x,V) = 0 has only & finite number of

linearly independent solutions. Turther T = R"(x,'tj,,)) ( 124 -, 3),

)

are a set of linearly independent solutions of ©(x,V) = 0, and

i /—_;’ Ag(,g /‘k/_/ __;ik

~ - -
tf9()¢j / 1'/: -‘)(,l)/« (X C,.]) = X, \_‘(1) (/)= OJ (1= 4,4~ 3),

N » I3 3
Thus T J(r =1.-.3}) is a solution. Since

t

4 . - & o
Z e / l() (x, L("-'/J

(=7 ess
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we have the T™are linearly independent because the €, are. All
that remains to show is that » (x,V) = 0 can have no other solution
which is linearly independent of the '_"m. This we do by contradiction.,
Suppose V, is a solution of 2 (x,V) = 0 which is linearly independent
of the TA‘. Then it is easily verified that W, = R(x,V,) is a solution
of ¥{x,%) = 0. But

&
G Lot "AHW /{J(JL «:—; Ce T +Csp, I,/) (4.15)
e
Hence (4.15) would say that we have (s + 1} linearly independent solu-

tions of Y(x,7) = 0. This contradicts B,.

Finally £ Zg, 4 -'(;z} "y, _/Z =/, P implies
- - i b - Y - é
i ‘i'»o, / ../'Z: i- ((Zj / 1/: / ./Z:

Theorem 4.16. The following identities are truse
(@) X (2, Vi) V- 4 fo V)
(b) 2, Y, W) =W - £/’f Wl

R 7]

Proof of (a) . Let )(;) (x, 2x, V)= £. Thus 2 (n, X, u,/f(z,V//j: e,

By theorem (4.14) we obtein Jtx,V/= 2z &) . That is £ -/

is a solution of @ (x,V) = 0. By theorem (4.15) we must have
1V - -4 , ,
= Z ./ where a,'s are constants.

That is

H
<!
b
*
Ny
&
e
~
\
S
L]
H
[e}]

y* . :
o W VI

<)
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By taking inner products we obtain

*
~, , i - /. - Va - 4.17
{ufgj (x, ’('z, V//j 4 _/] =9 E, Lk_}' F Uy, ( )
But
" \‘4.*- . - ) H
i "'6?] le/ J{jiz,fj/i Lk_[A = L"f)(l) L"J/ _\[Jj c—k/j.’ 0 (4.18)
Hence
% a2 4
bay (2,2, 07) = V- 241V G} %
13/

The proof of (b) is similar to that of (a).

Theorem 4.17. The following identities are true,

Lo Gl(xp): Pl R 20, 7.))

P

<4
2 R, V) = 3T, gen i) # 2 LG VE G

3. If 7V is a solution of »(x,V) =¢ , then
-~ ¥ 2 s —é"l . y A
V=it 22 La,/IT
A=t
4. If W is a solution of /4 = J (x,¥), then

T * ‘: 5 1 -
W= g, + 2 0r;wlc,.

Proof of 1.

[

If 6(}(,7) is defined by (1) we have

o . | _ , 2.19)
90, 00y 10)= > (a, Rix, %y, P, R (2, 0, 12,1)))))) (

/

By theorem 4.16 we have



* . L -1 ; & " . ; . |
Ly (x 200 k7, 370 021 K 3 )2 A0, K ir 8l f T2

But

i gt - . x ., . ;o
2l:(“‘./ K} {lj ng*lx} }7))_/- = i r,/ (3] (1/ ‘//f = i //{1‘/ r /J 7_/- 0.
Hence

, - . . _ = 2 P
Six by M Kia K 1 (0, 1)))) = 71

Similarly G(x,z(x,¢ )) = 3 , and this proves 1.
The proof of the other identities is similar to the proof of
l.

Section 4.2. Determination of a n.h. linear connection.

|

In this section we shall take the linear forms ) (x,W), R(x,V)
and R(x,V) to be the same as in the previous section. Let F, (x,{)
(r = 1/',3) be the components of "s" arbitrary covariant vector fields
in a given representation. Our problem will be to determine a n.h.

linear connection in terms of these linear forms.

Theorem 4.21. There exists a unigue n.h. linear connection with com-

ponents X(x,V, € ) such that at any point "x" of the coordinate domain

of the given representation the following things are true.

1. X(x,V,{) has an adjoint Z¥(x,%,f).

2. RxViIs$) = K, V50 - Kix kb s))- /\(aj(l,/((l, Vis)=C.
B Y, Wii)= TinWrs) +a Koy W) -7 o, Y W3 ) =

A’ -
:;? [7; WJZ Folr, i),

E"T' 4 ——£ _ s 5 ; 7
[ Gy ()Llj// J JZ : [L‘_c,c/‘j’/‘/\af(x/ in, $) ,"‘j 20 (1, k20,



hedd

Loreover X(x,V,{) is ziven by

/{()J [/ )= - t( V_/lf(l i /- Zi‘«VJZ/e/ .z)u/ (As/// (4.21)
TP &f(/n,fl(;z,;)/} l{/z It +Xa; ()l 2, VJ,5 ) - )iaj(l, V) 3.

L9

13
-~

It should be pointed out that ﬂ(x, 3, 3a) is the abstract
%)
Christoffel symbol based on the netric form g(x,§ ).
Proof. Ve rust first prove that X(x,V, § ) as defined by (4.21) is

he component of a n.,h. linear connection. In any other representa-

tion we have

S e - J
/(uc V‘J‘“? 2_4,,,1_/‘/ L5 Z 1, VIR & 0L Fuid, i1/
(-3)

F LGRSV b S i s ) ) - B Ak s

= e vl 5 »JJM'J/ (n, (X, V),j //" Gy (Y, )75/

From the laws of transformation of the terms involved we can show the

following things.

"2 LS TFT 550+ -2 {6,V Mg T2 to Wl e 22)

2R (B8 A )= Mis, 2 16, b b Ry 15

J\VI\

[2 f /i-ljf/) V}f /176‘ Z iw[l/;_(X,f/)J V} T/L/. (4.25)

los (7 I7(%, 26,7} 1)) = M, & o, Pl 266, V) $9))- 162 Eopvhps) =7
%o (£, FEVIE) =M 8 (000, V)i5)) + Mix, %) (g 00000); £)

F M0 % 0,08V £)) -5, (T i, T ) - BE p, Vi 5))-
(5). See iichal [3].

(4.27)



By use of these and also of theorem 4.16 we can show

/(/)ZJZf/: Mix, ki V5))-MEV; £)+ Zf{;@i/g 7-5))

(4.28)
+ X% (2, TE V& £))- X5, (£ o, Vi £)-Mix, 6 Vo).
Since

f (% V)= Xix AU, V}g (4.29)

we have

ﬁ/@ 17J' 5/ # ;/7_{'32; V/i}f—/)—f(xjyrzz, V), 5)= f(x/:;@ vig)), (4.291)

Hence
5z, (& Vi £))10 (5 i Vi V-1’5 Ecpe 10 £)) (£.202)
= M(x % (x o0, ).
Hence

K T 5)= Mix, ks yf2)-/Mx, V; 5),

and K(x,V, ) is the component of a n.h. linear connection. ‘e nust
further verify that X(x,V,f ) as defined by (4.21) has the properties

(1) - (4) of this theorem. To prove (1) we merely note that

¥ < - - & . » '
K, (W 5)- -Z, TG ) WAL, - 2 1R 2 (x, g 5)) WL

(4.293)
F2ATIWIR G ko) w4 6, U Yo W) £))- 3G, Y W £,

I shall omit the proof of (A) as it is long but straightforward. To



prove three we have by means of (4.293) that
¥ 2. _ a*
Ylx, k) O, 0 5))= Z 2T WA G, )+ oy (e Y W) £ = Vi W 5.

Hence

YW $)= 2 AT WEE i, 5.
Since

* &
~ - E L é o= ] = ) )
/‘g) /X, Ca, f}: .A% 77 (z,‘.f/l L,.,} A +ﬁ7x/6{z,f))-/@,7% Y Q;f))) (4.204)
we have

J* _ - . . ) .
1t 6)-ko T, 517 ‘f 1ai;£) 7 ‘Fri T%:¢) G F 0. (4.295)

Hence {4) has been shown.

Thus there does exist one linear connection which possesses
properties (1) - (4). In order to show the linear connectlon is
unique let us suppose that another linear connection K,(X,V,f ) exists
and has these properties. e shall have to make use of the following

lemmas.

—

Lema 1. (a Y('lj Cotnfs)) = - [1(113/'} 1204 &

J s J

(b) Catx/)3) = - éf()(, Folx 3] .

Proof of (a)

Since X(XJ (.(x))= o We have
J

T, ) F T Coen;s)) =0,

From this we can show



Y(x,Cof5)s =2 (x, culnis)/.
By property (3) we have
?([}_/ [—t (L/j/) - ,/’:; [X/ 5 /'

The proof of (b) follows directly from (&), theorem 4.16 and our

fourth property.

Lemma 2. T v Yy * . St
EmERTe— /‘,(JXJ/JS‘/: -/—‘j_‘/’))—/( [,Lj ‘_{b’ (/EJ/‘*L [1‘,)}}/-
Since

(ovi(x)= /{(xj 7wy,
hence

- » x ‘ (4.296
Coqnyg g= /chj / ()4-/3//1"/((1, I3 7. ( )

Using our second property we have

-t -1
; = s . -t = -~
/] (Xisy / (,LJ,/f-/\,‘(;,/,J > /= /( (A tolxls//.

Thus by means of lemmna 1 we obtain

-1 o=/

/ e . ) » ‘ »* - ‘
/KII)(, N A A5 K (x, V; l/c/ s u.,j///J

which proves lemma 2.

By property three we have

hY - ' ¥ o ; 1 ¥ o P 5T vy, .
”/[x/ “/,‘»3 JoE I R (X I'i’/ 5/‘/5_/@0 (2, Yx, %ij/:;“j' Z’fJ ” ~//':, x5 /.

/

<
>
Hence

/ ¥ . *-, A ’é\’ o * - o .
o (&, 20 Ky (4,35 ) RO AP WAORY). (4.297)

n_* ,1* PR f‘*' ¥ - ‘q
£ W w3 ) e Y, S



By theorem 4.1¢ we obtain

W (£,0,8 ) = Z{A‘P} (x,7,% ), T}z’m,f Z{ J_ (5% (x, 4 ))
’ ﬂ:) (x, (:; (x, ¥ (x,7),5)) - 275 (%7 x,","r;f

(4.,298)

Calculating the adjoint we obtain

. A
580 = LR (00« T fp (mTalx, £ ) T 0"
© Y E (x, ] x,EO(x,V),f )y - 25::) (x, :,J(x,V);f).

@y

By means of lemma two we can finally show

£, 57,00 = - LTl s 6 - 20 TF R (5 g (B g0
&
* Zip(;: (X,E“m(x,f‘ ))’V} TN+ Jga:) (X, ["(X, ?(X’V)’f) -

17
- YaE PV, (4.299)

Comparing {4.299) with (4.21) we see X, (x,V,f ) = X(x,V,¥) and hence
the linear connection is unique.

Theorem 4.22. The following identity holds.

(x,V]¢ ) —GX,Z:{; R ]— Tz, f)).
_P_I;?‘Of. By definition
2(x,V) = G(x, ¥(x,R(x,7))).

Thus by theorem 2.22 we have

P (x,VI§) = 6lx, Y (x,R(x,V))] §) + Glx, ¥ (x,R(x,V){$))

+ Glx, ¥ (x,R(x,V/§)))



)
By llichal-Mse=e (3] G(x,7/f) = 0, and by theorem 4.21 R(x,V/¥) = O.

Hence

ffl”; Vii)= & (x, Yix, Kix, V)is)). (4.2091)

Using property three of theorem 4.21 we obtain

Pin, V'13) = (2, ;2 Y R VI ooy 5.
Section 4£.3.

It would be of interest to caleculate the curvature form based
on the linear connection of theorem 4.21. In order to do this it is
necessary to assume that [, (&, ; 5, J, 1261, ¢, exist continuous
in x.

Theorem 4.3l. The curvature form H(x,V, ‘{ {;) based on the linear con-

nection of theorem 4.21 is given by

/-/[1 LK,(,’ ,é.,) ‘i?: i— E: @ tl /£1,U' $154)" /-Ltlj Sa /)//)f /"'”

L"'

PR
) . 7 S Y T
a Z;, TR o), ol P, g ))) = LR (), el /-m(z,xu))]]{ZZ,Vf/
et (4.51)
4 ) . & o \/,*/ F x
# Z ) Gis) VE Y (1 6x, b 32))) —JZ'i GUrlg ), VE Yo &, tx 0% 3,)))
}:; : =1

= * ‘ ) )
e Z ld, I Y (x, Gt Frix, 815 ) Fy (5 ) s /’/’)
J=t 4

+ )({/ (x, gu X2, V), 3, f.;))

[

(t). This is 'brue of course since we are using the abstract Christoffel
symbol as our affine connection.
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where Z?(%}}V ﬁﬁ j;,/ is the curvature form based on the Christoffel
? . -
symbol / (X 5, 33 )
To prove this theorem we need the following lemmas. Through-~
out we shall be using the linear connection of theorem 4.21.

Lemma 1.

Riouwis)=c.

The proof of this is a direct consequence of theorem 4.21.

Lemrma 2.

9=l r . A S
/L/(X, /'f 3, L): K ( X, & (%, f:(’)g $ald,) - Fou (1, i,/f;z)))

(4.32)
P , 77k
=1 ¢ 3 . . o g H . e * -
+ /;24 } LA s ), o P, ;’_{))_/_ WALEY) u/zjh,u,x,)),/j I,
=1l
Proof.
From the definition of the n.h. curvature form we have
-1 - < H -1 < ~ - .y
/7/{1, VA LN ANV S WY ROV S (4.33)
By lemma 2 of theorem 4.21 we have
_— -1 o ¥
T (x)8)=-K(x 2 (x fan3))). (4.34)

Lemma 1 of this theorem tells us that

T it )R o 8 biin, n12 )R & o Ross i), (a.ss)



By means of theorem (4.22) we have

&
¥ . - , .
,%,('X,?]/f] "'% Z/:()(,{)j (;u,n)_/‘d, )
Hence (4.35) becomes

s - -1 ¥ - i A ‘ ' - ,
ToCats, 75 ) - K i, 2, /L(x)ﬁ/f;)))“i; Liatn ) =0t roen5,0) ] T

/7

and therefore

‘ SR P - * : : s i)
//{zj /oy ) R i fula, 2 l5 ) Foix 3 137))

J

4 A‘ | ) .
/ 27: [UZ(AZ/; G, £, ))/- Lhin b)) in, /;0«,:,/)]/ I

Lemma 3.

*
S ¥ . . . :
/%) (% & 3, 5 )<~ (o, Foen 4i73)=Foun 2,140 )/

(4.36)
5 |
= [ L5s, 1) otn Fon 10)] - Lo ) - in Fio, 1 ))ff i -

By definition

» |
Floyix, &3, 0= AGnsn)-Gogngs) ) =T

Since
Tolx)= Kix, /" (x))
we have 7. (x 1§ /5%2) = /{ (x, ya ?x /3 /;ﬂ,))_ (4.38)

Hence
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*
- i V), . ~ ‘ y H
Hosta, &35 )= Kix, Hog 185 4] . (2.50)

By use of lemma 2 of this theorem we obtain the result (4.36).

Proof g£ theorem 4.31.

By theorem Z2.21 we have

K, 073, 132 ) =12, VT3 15 )= 21, Hex 3, 32 ) B0, AT 5,5 ) 4550
Thus

* ~, ¥ ‘ . .
Lo x e o 1, 2:)) = (3, By 273, 540/
(4.392)

. ¥
T ey UK, g U550 ) - g b 4 /f;))-

By theorem 4.16 we obtain

5':’ - / v -C A * o > N y
/iy 4 5] =2 e, b, 4 /// Lo, B A ) g 5 ))

(4.393)

N , o .
g (X, Y V)3 15) - Y Vgl 1)),

By theorem 4.22 we have

d-
, -1 - - -
p()‘/ V/g’) = (;’(l/ 2—7 2‘ "1«) LJZ/-L(XI }))
R
Hence
/ = / (4.394)
- ¢ H , w, "1 3 -~ . 7 ‘,'_" H .
(’J(}(/ 6!/ /2/ /)}.2 / o (.lj 4‘.’}4 Z ‘-} (1/)}4/J V‘_/L /'} (2, j, //
/1:/ k ,.
3
- < - 1] oy , )
/7o, 2L, Vi e, 5/4)).

y
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Also

- , 5 Lok ,
'[ca/ Hin 'l 3, 5 /f Sy 3, 5, VF. (auses)

By lemma (3), (4.394) and (4.395) we obtain that H(x,7V, 3,,¢,) is
equal to the expression given in (4.31).

It might be pointed out that if 7 (x,W) = O has only one
linearly independent solution then the second texrm on the right hand

side of (4.31) is zero.
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CHAPTER V

In this chapter I should like to consider projective non-
holonomic tensor theory. Most of this theory is new for finite
dimensional spaces.

Section LJ; Curl differential equations.

Let B be a Banach space, and let S denote the open set /XN <K .
Suppose that F(x,{ ,% ) is a function on sB® to B satisfying the follow-
ing conditions.

1. Tor each x €3, F(x, % ,%) is a bilinear function of f, and ;.
2. Fx,%,585%; j,) exists contimuous in x for each x « S.

We shall be interested in differential eguations of the form

o o, (5.11)
P, %, 46) 60,5 5] Fue 4, 4a) .

7e seck solutions ¢, f) of (5.11) which are linear in § , and which
will possess certain differentiability conditions.

Theorem 5.11. A necessary and sufficient condition for a solution

Jtr,§) of (5.11) to exist which is linear in ¥ , and for which
e, 5050 48) exists contimnuous in x for x S is,
(8)  Fnd, $a) = ~FTixn 2, 4,

) Fin, 3,5 5 ) FFr 32,3 504 F (2 55,5 % )< 0.
The necessity of the conditions is obvious. To prove the

sufficienty we show that

?ﬂ(x/ §)= /, TSTR S ) AT (5.12)
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is a solution of (5.11) which meets the required eonditions.
Let x be any element of S, and let ¥ be any element of B.
Then for any t such that /£/<'@%%%%y and any o such that
oso¢ /| , we have T (x+téf,) is in 3. By the hypotheses on ¥ we
have 2{ Flaprer) § 2etsa) exists and is continuous in @ ¢)
for all such ¢ and t. Thus by theorem 1.8 of Michal-Elconin [27] we

must have

Pl 5 6] = || of Flokeehi) 4 xetss)) a0 (5.13)

Ceo

-
By a well known theorem on Frechet differentials we obtain

- f’ ' ‘
Pt 5) = | T lrx g xifdr b ] rr a5, da A (5.14)

By the skew-symrmetry of F we have

/ ] I S /! + . . . §
/{%3,/‘,’6/'}5‘//4}1/{,):[ TN F oz, 3, X’}L)ffm”‘,ﬁ, J’.U'}//,(5/{5)

7 /,'M'Fz;n, 3, a AT

By integrating by parts we see
st
Jo DT 3, 2 )AT= Fix 5, ) # )y 7 f(rx, 4, § ; a)de (5+28)
By (5.15), (5.16) and condition (b) of this theorem we see
%%9fjj}]‘fﬁﬂﬁ/i/:/lgi/ﬁ)_ (5.17)

Hence //z,j’) as defined by (5.12) is a solution of (5.11). It is

obvious from the hypotheses on F that this solution meets the
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differentiability conditions of the theorem.

Theorem 5.12. The most general solution ¢, £/ of (5.11) which

meets the conditions of theorem 5.11 is of the form

P 5) < //a §+ ) TFlrx, 5 aldT (5.18)

where f(x) is any function possessing a continuous third Fréchet differ-
ential for each x & S.
To prove this theorem we need the following lerma.

Lerma. The most general solution ¥7x§/ of

V(35 )= Yin s -4 ) =0 (5.19)

which is linear in § , and which possesses & continuous second Frechet

differential for eéch x in SJis of the form

Wix 5= //‘x/- §) (5.191)

) /
where f(x) is any funttion possessing a continuous third Frechet dif-
ferential for each x <& S

Proof.

By the symmetry of the second Fréchet differential it is
readily seen that Y7x, § ) as given by (5.191) is a solution of (5.19)
which meets the required conditions. Suppose now theat YW, 5) is
any solution of (5.19) whibh meets these conditions. Let us then

consider the differential equation
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x ul
/f //1/ = Vi 5. (5.192)

By theorem 3.2 of kichal-Elconin [2] we have that (5.192) always has
a solution f(x), and that this solution will have a continuous third
Fréchet differential for each x « S. Thus every solution 97/113’)
of (5.19) which meets the differentiability condition must be of the
form

G r) = :/1&; 5.

Proof of theorem 5.12.

By theorem 5.1l we have
//
Glx, 5= L T, s dT

is a solution of equation (5.11). If 44 §) is any other solution
of (5.11), then lr, ) - Fix, §) is a solution of (5.19). Thus

by our lemma we must have

N S (5.1903)
GUI% ) - £ ://x; 5.

Thus the most general solution of (5.11) which satisfies the differen-

tiability conditions must be of the form

- /
Plx, §) = ;//x; F)F Lo (T §,x)d T
where f(x) is any function possessing a continuous third Frechet

differential for each x ¢ S.

X . g 7/
R /f fﬁx} is another notation for the Frechet differential
of f(x) with increment
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It is interesting to know under what conditions will equation
(5.11) have a unique solution. Suitable boundary conditions are
suggested by the following theorenm.
Theorem 5.13. Let Ax, 5°) ve any linear function of ¥ on SB to B
which possesses a continucus first Fre’che‘c differential for each x & S.
There always exists a function f£(x) on & to B such that

1. f(x;7{) exists continuous in x for each x ¢ 5,

2. f{x;x) = y’(x,x) for each x of S,

Proof
Define
. !
/ (x)= [ PATr X)da (5.194)
Then
) /’ . Py
//1,'3 )= L TN 25 5)dT £ Firn 50 AT
Hence 4
- ! /
///,z/- x)= /) TG lra, x; 20 A5+ [ §iTn, xid7- (5.195)
Thus

e 7y> l ) N .
Sisi) = L lrgten s)de posy. 53

I3

Property (1) is obvious from the hypotheses of the theorem.

Theorem 5.14. Let g{x) be any given function on S to B and for which

gl(x;£;4£:% ) exists contimuous in x for each x & 5, then there exists

a unique solution ;4;(,;') of (5.11) which meets the differentiability
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conditions of theorem 5.11, and such that gﬂ(x,x) = g(x;x) for
each x ¢ 3.

Proof. Let

/
Pz, 57 = g 5) # S Fir, £, 20 dr (5.197)

By theorem 5.12, @(x,f) is a solution of (5.11). Noreover by the
skew-symmetry of F(x, £,5,) we have ¢(x,x) = g(x;x). To show g, f)
as given by (5.197) is unique we assume there exists another solution
7 (x,§) of (5.11) which meets the conditions of theorem 5.14.

By theorem 5.12 we have that % (% £/ must have the form
G )= foe; 5 £4 TFrx, § 20 AT (5.198)
By assumption ¢ (x,x) = g(x;x). Hence we must have
(x;x) = glx;x).
Tor any o<o </ We have
//fljz)—‘ Jlrz;x! (5.199)
Thus

/5{ //o'x) =;§ glrx) (5.1991)

Hence by integrating from O to 1 we obtain

%/;): ;(1)4- (J
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where C is an sdditive Banach constant. This of course implies
£(x; €) = g(x; ) and hence Fx, £/= Frx 5]

(&)
Section 5.2. Normed ring with contraction.
b — . ——

Suppose that B is a Banach space, and let us consider the
totality R of linear functions /Z(x) on B to B, The following nota-
tion is used. The linear function ,[(x) when thought of as an element
of R shall be denoted by L. If N(x) is a linear function on B to the
real numbers, then N(x)o( is a linear function on B to B for any fixed
o of B. All linear functions of the form N{x)® will be denoted by
N(»* ) when thought of as elements of R, DProfessor liichal points out
that R can be made into a Banach ring with a2 unit in the following way.
The norm function of R is taken to be the modulus of the linear trans-
formation, and the ring product L,L, is defined by the iteration of
the two linear transformations in B. With these definitions the unit

I of the ring is the identity transformation.

22£‘~2&§i‘ A Banach spacé B will be called a space with a contraction
ring R if there exists a linear function [L] on R o the real numbers
with the follqwing properties.

1. [LILEJ = [1?1”7

2. [N(%)4]

real numbers.

N(«), where N(x) is a linear function on B to the

Section 5.3. Projeetive non-holonomic theory.

In this section we shall assume that our geometrical spaces

(2)- This section is a short summary of lLiichal [7].
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satisfy the assumptions made in Chapters one and two. In addition

we assume that the Banach space E 1is a space with a contraction ring
R and also that E possesses an inner product {Fgﬁd}

Def. 5.31. Let x = x(t) be the coordinate equation of & curve in the
Banech space E, and suppose that V(x) is the component of & n.h.c.v.f.
in a given representation. If K(x,V, f) is the component of a n.h.
linear connection in this representation, then the defining equations

of parsllelism along the given curve are

LV 460V, g ) - <V 53

where o (x) is an arbitrarily chosen numerically valued scalar field.

Theorem 5.31. The defining equation of parallelism (5.31) can be

written in the equivalent form

V., i/ : .32
[y w] (& ke vge)- 13 4P ki) fy, >
where W is an arbitrary element of E .

Proof. Taking the inner of each side of (5.31) with W we obtain

. ~ (5.33)
LW 4¥e ks de)} = ooy 1 WF
Eliminating (x) between (5.31) and (5.33) we obtain (5.32).

Conversely if equation (5.32) holds in every representation then we take

= ) W— 7 |
Lo)- LW AV ko %_;guf )
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and it is quite easy to show from the laws of transformation that
A (x) is a numerically valued scalar field.

Theorem 5.32., Let Z' be the coordinate domain of any given represen-

tation, and suppose that the component of a T(x,V, f) of a n.h.c.v.T.

every
in $kds representation is & bilinear function of the n.h.c.v.V and

the contravariant vector £ on S.E,B to ®,. If we think of T(x,V,¥ )
as an element of the contraction ring R we denote it by T(x, *, £,

Then [‘I‘(x, ¥,§ )] is a scalar valued numerical linear form in ¥.

Proof.
Since
f(/fj I;J §)- Mx, 7 (x, Mz, V) §)) (5.34)
we have
T x §) = M x) Tix »,£) Wiz, v) (5.55)

By the properties of the contraction function we have
LT A;j"j_/: LMix, v) Mz, +) 7 (x, * ;")j (5.56)

Since 1(x,V) and N(X,V) are inverse functions we must have
u(x,*)N{x,*} = I, where I is the unit of the normed ring R. Thus

(5.36) implies

[Tix x 5)] [y, £/, (5.87)
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and hence T(x,¥,§) is a scalar valued numericel form.

Since the function T(x, , f) is obviously additive in f, we have
only to show that T(x, *, ¢ ) is continuous in ¥ in order to complete
the proof of the theorem. Since T(x,V, ¥ ) is b¢linear in V and

we have for each x of 2,

W7ty £ < garnVitnsl (5.38)

Since T(x,V, f) is a linear function of V for each x ¢ Z, and each

§ ¢ EJ we have

T V;5) 1 < Q(z, 5] U5 (5.89)

where Q(x, §) is the least number which will make (5.39) true. Thus

(5.38) and (5.39) imply

Qly £) < gocs 450 (5.391)
By definition
N7, s)0= aixz). (5.392)
Thus
(5.393)

// T()'J */)’/// € //l)//f”-

This implies T(x, #, {) is linear in ¥ , and hence [T(x, ¥,5 )] is

also linear in §.
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From the defining equations of parallelism it is obvious
that this notion depends on the choice of our linear connection. It
is of interest to know under what conditions we can change our linear
connection and still have the parallelism of our n.h.c.v.f. invariant.
A change of linear connections which preserves parallelism is called
a projective change of non-holonomic linear connections.

Theorem 5.33. The most general projective change of linear connection

is of the form
K V,5)= Kix V,5) + @x5)V
where ¢be) is a scalar valued numerical linear form in ¥.
Proof. Let K(x,V,§ ) and K'(x,V, §) be two linear connections which

have exactly the same perallel n.h.c.v.f. If we define
- 14 - ;
V)= KoV s) Kl 5) (5.394)

then it is easily shown that a(x,V,§ ) is the coumponent of a n.h.c.v.f.
and also that it is bilinear in V and ¥ . If V(x) is any parallel

n.h.c.v.f. along a curve J(=x/¢{) we have

1Y VJZ/;?VM/{)Q Z%}/: {{,f{%w Klx, Zﬁx)] y o (o500

and

[KVJZ /42V+K/'(3¢,T[‘;éfj/=[h[ ka'/%lf/‘)jlli/:(5'596)

d
A 2

Subtracting these equations we obtain
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1y w/ alr, V&« j = { atz, ] 4z ). wilV. (5.397)

Since (5.397) must hold for all curves, we have % is arbitrary.

e replace .g}; by § in (5.397). That is

17 W]a(x,][;"): law, V 5), Wf (5.398)
must hold for all V,W € B,, x ¢ F and §& £. Placing V = V, + T,
we obtain
{VJ WJZ ax, U §)+1U Wiaa W)= ten ] s) Wil (5.399)

F+ Lacx, V5,50, WY,

Thinking of this as a linear function of V, we have in the contraction
ring R
{VJW] A%, £) + 1 *, Whaa V$):da, ¥ f}/zf+ {atx, v.5) W FY. (5.8901)

By pefforming contraction to each side of (5.3991) we obtain

[VJ Z/][ﬂfx) ¥, g’)]= id,(xvl{f)"h/][_[] (5.3992)

If we let o« = [1]) we have by the positive definiteness of the inner

product that if «#¢ , then

XY, £)= [M)] v, . (5.3993)
o«

A/’/XJ Z;/f/ = k7 (x [Z’j’) £ Px, 1) V; (5.3994)
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where @z, f) = [« (1;(""/ 27 . By theorem 5.32, ¢z, r) Wwill have

the properties stated in theorem 5.33.

Section _5_:__4: Projective non-holonomic invariants.

Definition 5.41. A geometric object whose component remains invariant
under a projectivé change of non-holonomic linear connections is
called a projective nonsholonomic invariant.

Theorem 5.41, Let H(x,V,f,,£,) be the non-holonomic curvature form

based on the non-holonomic linear comnection X(x,V,f ). If

Bx, 5,4 )= IHe % £, 7], toen
Qi V£ £ )- M ij’) //x 19

is the component of a projective non-holonomic invariant.

Proof.

By theorem 5.33 the most general projective change of non-

holonomic linear connections is of the form

K 5) =Ko £)r00 £)

Thus the non-holonomic curvatufe form ,f ‘(x, V/ 5, £/ based on

¥ (x,7,£) is given by

H, V5 &)= Ha i £ )#/;// L8]l f))V(a.m
Thus

B, £) - pOa5, £ )elpr g5 8) -t ; )04, (5.42)

From (5.41) end (5.42) we obtain
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AN,V 6, 4) = BHY=x,V, §,%) - B'(x, 8,6 )V=0(x7,5,4).
3
Hence 2Q(x,V, 3’,,_{1) is the component of a projective non-holonomiec
invariant.

Theorem 5,42, If the funetion K(x, » ,¥) has a continuous third

Fréchet differential, then the following identities are true.

1. p&x2,5)] = o

2. pUx,3,,4) = -ﬁ(x,:?;,f).

3. AxV,5,5) = -axT, 4, 5.

4 Blx 5,518 = [Hx*,4,414)] .

5  pUx,1,535) « p(x,£,4:%) + B(x,4,435%) = 0.

The proof of the first three of these identities follows directly

from the definitions of the functions involved. To prove (4)

we have

H(x,V, %, 5 1%) = B(=x,Y,5 ,4;: %) - B=Xx7,5),%,%4)

+ K(x,B(x,V,§, ,%), %) -H=x,V, /(x,4,5 ), %) ~BExV, 8,z £,.5)) .

By the second property of the contraction function we obtain

[5G, %, 4,515)] = [Ex*, £, 58] -[B@*, M x1,5),5)]

fatx, €, g, (x5, 5 0]

This implies the fourth identity. The fifth identity follows directly

from the Bianchi identity of the curvature form.

_Def. 5,42, Our geometriczl spaces will be called locally projectively

flat if there exists a projective change of non-holonomic linear
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connections which yields a non-holonomic linear connection whose non-
(3
holonomic curvature form H'(x,V, f, , £ ) vanishes locally.

Theoren 5.43. If the function X(x,* , f ) possesscs a continuous

third Fréchet differential, then a necessary and sufficient comiition
that our geometrical spaces be locally projectively flat is that
AUx,V, %, &) venish locally.
The condition is obviously necessary because H'(x,7,5, %)
vanishing locally implies the seme for #'(¢ £, % J.  But
&(1/ V) fI’J §, ) is a projective non-holonomic invariant, and hence
Ux,V, ¢ , §») also vanishes locally. To prove the sufficiensy we con-

sidexr the differential equation

P, $;6)-9lc 6,5 )= ~Fp 5,5 ) (5.45)

By theorem (5.42) - A8(x £, £/ satisfies the hypotheses of theorem
7
5.11. Hence (5.43) will always have locally a solution #/x f). If

we make the projective change of non-holonomic linear connections

Ky s) =t 5)tpns) V. (5.44)

we have

(5.45)

HOY L5 )= 1oy 5, L) (o5 ; 5 J-gtn, 5, £))V

By (5.43) we obtain

(3)- By locally we mean that for any point x, there exists a neighbor-
hood for which Hx,v. £ 5)=0



HV £ 5)=Ho 05 £)-36,5, 01 @0 Y%, £)=0- (5.40)

Hence the condition is also sufficient.

Q,ﬁ- Enmuple theory.

Def. 5.41. Let the component B(x,V) of a Banach invariant linear
forégbe a linear function of the arbitrary n.h.c.v. Von Z E, to E,
in any representation. If B(x,V) is a solvable linear function of V
with inverse A(x,¥ ), we shall call the pair of functions B(x,V) ,A.(x,f)

the components of an ennuple.

Theorem 5.41l. If B(x,V),A(x,Y) are the components of an ennuple, then

A(x,Y ) is the component of a n.h.c.v.f. valued linear form in the

Banach invariant ¥ .

Proof.
In any other representation we have that the components
B(%,7),A(X,¥ ) are inverse function. This means
A(Z ez, V)= V=M, V). (5.41)

If we let

Y = B, V)= B V)= & (5.42)
we have

Alz 7)< Mix, Al x)). (5.43)

{4). By Banach inveriant we mean B(X,V) = B(x,V) under any change of
representation.
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which proves the theorem.

Theorem 5.42. The component F(x,7, -~ V,, {, -, ) of any n.h.c.v.f.

velued linear form in the arbitrary n.h.c.v. V,’-—' V,. and the arbi-
trary contravariant vectors s’,’:«—, {w can be expressed in terms of the
components of a Banach invariant and the components B(x,V;A(x, ¥ )

of an ennuple.

Proof.

Define the function R(x,V, - Vy, %, -, f) by

)

/6/1 Voo Vo 8t )= Bl Fl Y~ W, £, 5)) (544

7

Clearly R is the component of a Banach invariant linear form in V, -- V.,

gl

-~ L. Solving (5.44) we obtain
J

[(I/VJ“,/Z, 55 )=Al R V- V. £, -, %)), (5.45)

4
which proves the theorem.

Theorem 5.43. Let B(x,V),A(x,Y¥ ) be the components of an ennuple

and suppose that both of these functions possess continuous first

Fréchet differentisls. Then the components X(x,V,€ ) of any non-holono-

mic linear comnection can be expressed in terms of the components of

the ennuple and the components R(x y f) of a Banach invariant valued

linear form in the Banach invariant ¥ and the contravariant vector f.
ennvple

Conversely every such ewespsc and every such Banach invariant form

determine & non-holonomic linear connection.
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Proof. Let XK(x,V, %) be the component of any linear n.h. linear

comnection., Obviously

Rx¥,8)= Bl At yit)- Blx, An ;)1 Ko Atx ), ) ) (5:46)

is the component of a Banach invariant linear form in the Banach invar-

iant X , and the contraveriant vector f . But (5.46) implies

/(&,A[x,}'),f): AT ) FAG Rix Y, )] (5.47)

Letting V = A(x,¥ ), we have ¥ = B(x,V) and hence

KixV,5) Al B V) $)+AG R 8r) 7)) (O

This proves the first part of the theorem. To prove the second we
merely have to show that K(x,V,{ ) as defined by (5.48) is the compon-~
ent of a n.h. linear connection for any ennuple and any Banach invariant
R(x,¥,¥ ). This can be shown from the transformation laws of the
terms involved.

By the preceding theorem we see that if we choose Ri(x, 7,f) = 0,
then K(x,V,f ) = ~-A{x,B(x,V); £) is the component of a mnon-holonomic

linear connection. Using this non-holonomic linear connection we have

Al yis)= Alx y; £) - Alx, Bin, pin,0)) ; £) = 0
Since
Hix Algr), 5,4 ) = AGGT 1515 ) = A, 01515 ) =
we have by the solvability of A(x, r ) that the non-holonomic curvature

form based on this linear connection vanishes.
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CHAPTER VI

In this chapter we shall give a few instances to which the
theory developed in the preceeding section applies. Since many of
the finite dimensional instances are well known I shall give only
examples in which one or more of the spaces is infinite dimensional.
E&amgle i;

Let T be any arbitrary real Hilbert space whose elements we
shall denote by f,g;—- , and let T, be the Hilbert space of one rowed
infinite matrices X = (X',X* ---- ), where Xd is a sequence of real
numbers such that ié?(X‘)L converges. Stone [l] has shown that T
and T, are equivalent.

We choose the Hausdorff space H to be the affine space A, of
n dimensions, and also take E = A,. An element P of A, will then bp
P = (x',xj-—~Jx") where the x! are real numbers. To each point P of
A, we associate the space T, and choose E, = J,;. Ve use the following
notation.

1. Small greek letters o4 - shall have the range 1,2,3,- @.
2. OSmall latin letters a,b,c,-- shall have the range 1,2, - n.
3. The sumation ccnvention‘will apply in each case.

4. The imer product of T, is [ X Y]— = gfdfd.

5. The imner product of A, is [x,y]- z—",u;»‘

&«

6. Capital letters X,Y,Z --- are elements of T,.
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By definition a vector coordinate system X(P,f) for the
space T is a linear homeomorphic mapping of T on Tg. Such will of
course exist because T is equivalent to Tp. A representation is
simply a coordinate system x(P) for A, and a family of vector coordin-
ate systems X(P,f). We have seen that any two representations induce

transformations of representation of the form

i(:i‘(z;Jz")J Z‘:/V(E,X)I (6.1)
where 1(P,X) is for each P a solvable linear transformation on Ty %o
:‘ e _& i - ~ -, 2 k)
To. If X = (X*,X°,--- ), and X = (X',X%,--- ), then by Riesz [1] we
mist have

¥ /7:(x;-~-,x”)f (6.2)

The totality of all representations is too general & class to
support much of a differential geometry. For this reason we restrict
ourselves to representations for which the following things are true.

Apgd
1. The partial derivatives %.fﬂﬂgilij all exist continuous in

dx™ . x4
(x', --- ,X°) &t each point of the coordinate domain, where
r=1,2,- " ,m+3,
oo "T I 4 &
2. The series 3_.:, E'a-'( %&z“’-) convérge uniformly in x = (x', ~,x )

for x in any closed region of the coordinate domain and r = 1,8, - m+3.

(1) Since the transformation is solvable we also must have

w LAV 2 E) < mE )
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9¢

, . Cmta}
— [A -, . o .
X =X (x:—- )X ) 1s a regular transformetion of class C

in the sense of Veblen and Whitehead.

With these restrictions it can easily be verified that the

transformations of representation (6.1) are regular transformations

of

(i) @)
class k

Clearly in this case all elements of T will be non-holonomic

contravariant vectors. If %(X',Xf—u ) is the component of a

scalar field in a given representation, and if 2/ exists such that

X

o0 N
Z’@jﬂ) converges, then W = (;—If., 3¢ _.. ) 1is the component of a

x, 7
vecbor 2%

non-holonomic covariantffield.

be

- A
Let M//}: (I{/:H(’x,'-;x')l M(dlfﬂ”"v,“" )

an infinite number of covariant vector fields for which;

w—.l L oo o0 — 3 a had [N
m-ZAV < 2 (7 Wc‘“):’)-‘/f,rzgr/ for all X of T, ;
- Ad)
)ch (;}“;ﬁj exist continuous in x = (x;—er”) for s=1,2, m+l;
Y- x4
o0 n Sh/"l x
2 (/&17_ o converges uniformly in x = (x'.- x7)
& T=s by -agn( I LK

for s = 1,2,-w m+l, and x in any closed region of the coordinate domain.

T
By Riesz [1] there will exist quantities Ag (xjx)-*™J

such that

[4

T o () wa®
/%@,LV: = Wa 6 - J}.

Then we can show that

K(X_/ij): _ (2—&;1 h/z(_-(;f}er if’_fe;/ Wr(wf, T )

2x? 7

o
(@). Clearly My constant will satisfy all of these conditions. This

case would correspond to an infinite flat affine space in the sense
of Veblen and Whitehead [1].
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is the component of a non~holonomic linear connection which is of
class C“M locally uniformly in xz. The theory of chapters I, II, III
and V will apply to this example. It can be seen that it will not

be too difficult to construct another example of this type where the
Hausdorff space H is also taken to be a Hilbert space.

fxample ___3__

Let us suppose that all spaces involved are the same space
namely the Banach space E., loreover let us assume that E is a general
Riemannian space in the sense of Michal [3], p. 55. By definition a
coordinate system x(P) for E is a homeomorphic mapping of an open set

2" of © onto an open set Z, of E. Suppose we restrict our class of
admissable coordinate systems to those for which x(P; {?) ana P(x; §x)
exist and are continuous in their arguments over their respective
domains of definition(.a) With this restriction it is clear that
x(P),x(P; {P) is a representation. Noreover given two such representa-
tions x(P),X = x(P;§P), and X(P),X = X(P; JP), then these will induce

transformations of representation of the form
% = %(x), X = %(x;X) (6.3)
If we consider only representations of this type then our non-holonomic

(3) Clearly the totality of all linear homeomorphisms.of B will be
included in this class. MNoreover if we assume that the identity
transformation of B is an allowable K™ coordinate system we can
show that all allowable X’ coordinate systems satisfy this
condition.
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contravariant vectors are contravariant vectors, and similarly non-
holonomic linear connections become affine linear commections. In
this case most of the theory of Chapters I, II, III and V will be
equivalent to theory developed by Professor liichal for such spaces.
Chapter IV however will be new theory for such spaces. lloreover for
spaces of this type the hypotheses made in that chapter can always be
satisfied. We can see this in the following way.

We now use § and 7 to denote non-holonomie contravariant
vectors and non-holonomic covariant vectors respectively. R(x, £) of
Chapter IV is chosen to be the metric form g(x, ) of the Riemanmian
differential geometry, and ¥ (x,7) is chosen to be 1 . In this case
all of the postulates of Chapter IV are satisfied and the linear connec-
tion determined in this chapter reduces to the abstract Christoffel
symbol of the second kind.

Professor Michal has given several infinite dimensional examples
of spaces of this type.(4)' It might be pointed out that even though all
the spaces are taken to be the same the theory developed here is not
equivalent to that of Professor iichal unless we resirict our representa-
tion in a manner similar to what we did in this example.

Ixample 3.
We take @ to be the Banach space of continuous functions on a

closed interval (a,b) as given in Iiichal-Hyers [S] pp. 329-332. The

(4) See liichal [4], and Michal-Hyers [5]
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assocliated spaces and the Bamach space B, are chosen t0 be the

Banach space of continuous functions X(n) defined on a closed inter-
)

val (c,d). Wle use the following notation.
1. ILatin letters m,n, --- shall be variables ranging over (a,b).
2., Greek letters 4« v, -- shall be variables ranging over (c,d).

3. An element x(m) of E is written by the lichal convention as x"

or x,, and similarly X(m) of E is written x“or Xus

n
4, A repetition of an index once as a superscript and once as & sub-
script shall mean Riemann integration over the corresponding interval.
5. The inner product {X,Y} of E, is x* Y, .

We shall restrict our representations to induce transformations

of representation of the form

»

— o

2" 270) X = T e e T Moo E), 8
where the following things are true.

1. x™(x") satisfies the conditions of lichal-Hyers [3], p. 330.
Tus S x27= K () ix7 e Ko (x7) i

2. The rth Fréchet differentials of the coefficient Md(x"‘) ,Iﬁ; (z™)
exist unifomly in their parsmeters, are continuous functions of x°
uniformly in their parsmeters,and are of Volterra type where
r=1,2,-- (m+2).

(5). 1X(p) // is taken to be mex. [ X(p)|. Other operations are
defined in the usual way.
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3. The Fredholn determinant U{ (z’“')/ #o0 , end M ) #o.
Thus M(x,X) will be solvable linear in X

Since M(:) (x,7) = ¥ W, + M.,\/«/(, , and D( {) - D(M“ )
% 0, it follows that M(E)(x,w) is a solvable linear function of W.
This will imply that the transformations of representation {6.4) are
regular transformstions of representation of class kMWa)

We choose the affine linear connection [*(x, f,f ) to be

that given in Michal-Hyers EB] p. 331 and assume the non-holonomic

linear connection to have the form
- 4 o™ A , rty/d
Kix V.5) =Ky VST +RIET (6.5)

where A}jt/luj s kﬁf(”nj heve Fré%het differentials of order "r",
which exist uniformly in their parameters, are of Volterra type and
are continuous functionals of x" uniformly in their parameters,

(r =1,2,---,w+l).

With these restrictions it can be shown that the form of (6.5)
is invariant to changes of representation, and that the theory of
chapters I, II, III and V will imply to these infinite dimensional
function spaces.

Example i;

Let us consider the spaces of example 3 and suppose that we
take the intervals (a,b) and (c,d) to be the same. Iioreover we shall
choose K™(x*) and ﬁ“(x”) to be both equal to one. Y (x,w) of

Chepter 4 is taken to be of the form

o) summation .
(¢)- The parenthesis in ﬁ Wy means the mumexeddon convention does

not apply.



Yl W)= We + @81 W (6.6)

8,
where §4(x") has Fréchet differentials of order (p + 1) which exist
uniformly in their parameters and are of Volterra type. In order for
¥(x,W) to be a covariant vector field ;f&a{z"‘) must have the law of

transformation

_ﬂs 8 T 4 P T o 8 ¢ 6.7
yol - ﬂt *éa ﬁ-{ 7‘/7{8/0( ‘/'/‘ngéd ;ﬂr *‘/éd fMgl(gf’M:éd ( )

— of
where kf is the resolvent kernel of X s (x™). It mizght be noticed

o — o A T
that if we choose liy = K; , then x$ +uf +ulk =0, and (6.7)

é u . . . R
would say that ﬂ V,gf is an invariant to changes of representation.

We can see that

r .
)g} /xj f/: f'l.,t ;ﬂ/;‘f‘e_ (6.8)

We choose R(x,V) to have the form

(6.9)

/f{‘zl V/= VM* /‘i«.u Vuj /e,uu = Ky
and shall assume [‘(V‘“j% * Kus V*“V”2 0. This will of course
imply that the Fredholm determinant D(R, ,) # O and hence R(x,V) will
be a solvable linear function of V. The coefficient functional

R x™ will be assumed 1o have Fréchet differensials of order (p + 1}

MY (
each of which exist uniformly in the parameters, are continuocus
functionals of x™ uniformly in the parameters,and are of Volterra

type.
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e can calculate Y/X/ /{(xj )(;}*/X, f/)/ to be of the form

Y(x Rix ¥, (x,£)))= f»"/u,: . (6.91)

where

Joa® AL Ry 0 B b R ¢ R+ LW A4

and shall assume [7€?u;,)¢°‘
It is of course well known thet the integral equation Wi + ﬂQ?ﬁé'=0
can have only a finite number of linearly independent solutions for
Wa, 8nd these can be made orthonormal by the usual orthogonalisation
process.,

In this case all the hypotheses of chapter IV will be satis-
fied and the theory of the whole thesis will apply to this example.

Other instances of this type can be given, and alse instences

in which E, is a finite dimensional space also exist.
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