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'rHE l'!IOTIOIJ OF A vIRAC ELECTRON I~{ A IwiGiE'rIC FIELD. 

INTRODUCTION: 

A , " (1,2,3,11) h tl d I:; t numoer 01 pap'?.rs ave recen y apr)eare - rea ,-

int; the motion of an electron in a magnetic field on the basis of 

quantum mechm15.cs. The purpose of these investigations vms to see if 

the difference in the values of the specific charge of the olectron( 5 ) 

obtained by deflection and by spectroscopic experiments could be ex-

plained as a qutmtum effect. Recent experimental ·:rork on free electrons 

by Perry and Cha.ffee(G) and by Kirchner( 7 ) give values for the ratio e/m 

very close to the spectroscopic values. ao'.Tever, neither of these ex-

periments involved deflections in a magnetic field so that a quantum 

Iilecha.nical effect might still be present in the magnetic measurements. 

In fact, Kirchner sugr:;ests that Page 1 s investigation ~riight explain the 

difference bet·;reen his ovm results and the olde1· ones of "\•olf( 8 ). 

Page(l) obtains solutions of the Schr8dinger equation rep-

resenting a free eleetron in a magnetic field. He shows that the nean 

radius of the electron's 9e:th for each of these solutions is less than 

the classical radius given by r = lllVc, except that for one- solution his 
err 

mean !'adius is equal to the classical. He concludes that if a beurn of 

electrons passine; thru a slit is represented by a combination of' his 

solutions the averat;e radius of curvcl.ture of the paths of the electrons 

vrill be less than that calcuh:..ted by the classical formula and thfat the 

difference is of the right order of mt::'(;;nitu:le to explain the observed 

discreµa..,.'lcy in e/m. However, he does not sho·u that a finite beam of 

electrons ce..:r1 be represented b;y such a combination o.f his solutions 

and in particulo.r he isnores a whole set of solutions of his equation 

obtained by lettiruJ; his quantum number !il ts.ke on nee;ative values. 
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For these solutions the mean radius is greater than the classical 

radius. Hence, his 'N·ork cannot be considered conclusive. Plesset( 3 ) 

used a second order relativistic wave equation and carried out calcula-

tions similar to those of Page. The above remarks ap:!_)ly to his work as 

vrell. 

Uhlenbeck and Young(Z) used a different form of solution of 

the Schr.Sdine;er equation, ·which was first given by Lm1c.lauC 9 ). They 

calculated the distance which a beam of electrons incident normally 

w·ould penetrate into a magnetic field and obtained the classical result. 

Ke:nnard( 4 ) shovmd that i!l any electromat,;netic field the center 

of gravity of a wave packet obeying the Schr8dine;er equation would move 

according to classical laws. Frorn this he concluded that the classical 

expression could be used whenever an experiment consisted h1 measuring 

a mean pos itian of a large number of electrons. He -vras not able to ex-

tend his results to the Dirac wave equation. 

In the present work the Dirac equation for the electron is 

used. SolutioEs for a homogeneous magnetic field are obtained uhich 

are analagous to the solutions used by Uhlonbeck and Yount:;. From these 

solutions a wave packet is constructed which rep:rescmts a beam of electrons 

passing th:ru a slit into a m&.gnetic field. 'fhe motion of this packet is 

studied. 
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SOLUTIOl~S HT THE lvb.GIL~TIC F'Ii'1'D: 

'.'Ie shall use the linear Hamiltonian for the electron in the 

f • " .,-, • I - t -. , • ( 10) o rm given in .Lilrac s '-'uan um .:'.rncnanic s • 

For a uniforn magnetic field H in the z direction Yle can 

write: 

A = o, A = 0 
0 z 

A iH 
x = -2 y 

Ay = ~fix 

Puttim: w eH E U' tio·:i 1 b om • c~ = Zc, q a· l ec• es. 

{ "::" r r. [o;( fx-W-d') t- cr; (~ ~W-j:J + ffj Ji]+ r; ~ c} t'= 0 

">Te shall find solutions of this equation which are much like 

those used by Uhlenbeck and Young.( 219 ) 

'fo do this put: 

(2) 

Assumine; that -r is independent of z. 

The equation for </ is: 

[ ~ +-f. [a;p1 +v-1(!:frt<+7LJ +(: ~c.) rf-= o (3) 
Vie see that the solution for any value of 7 

from that for 7 = o by replacing x by ( x + -JI;;;). 
That is: 

~(1) = ~=o {x+ ~) 
Yfri ting out the component equations for the case 

(~ r~L)f, + ~ # -l. ziu-xf., ~ o 

( ~c +-~c)rf?- t- ~ ~ + t. 2w-x~ -=- o 

{ ~ f-~ c)~ -f :- ~ - ~ 1. w-X f._ = & 

(, \Ar - ./h-L c.) ,,P ; 1::: ~ -t L. z .,,.,.. xtf, =- o 
c ' '1 'I t.." "'7-
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can be obtained 
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Eliminating f, , between the first and last of the above gives: 

Sfi f- t [ ~'--~1-(.?. j- 2w-f -Lf w-l1J ft-:: 0 

Or putting 'f = J. z.{¥- and 

where p is the total momentmn., we obtain 

~z~" .. + ( vr { -~ ~('-) ~ :: o (5) 

!_:$_ +- ()} _ l _ _!_ r .... L.P, ~ D 
Af... .... <+ /'11 

'ifo recognize the first of these as the equation for D \7 given 

in ~'ihittaker and Watson, Modern Analysis(ll). The second is the equation 

for DIJ_
1

• Comparing the first of equations ( 4) with the second reour~ence 

formula for the DJs given in ·;,'hittaker and \iatson: 

we find that if: 

then rf, (-y.) =- i 

It can be shovm in a similar manner that: 

rt-= i e ( V[ -~c) ~ 

': l c ( ~ fA-C) rf, 

(6) 

(7) 

The condition that the z- comDonent of the current be zero 

at x : o makes C real, and if C is real Sz • o for any value of x. 

(8) 
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where the f's are given by (6). -,;;e might point out that if ~ • h. 
~ p 

is the de Brof;lie wave length and 1" = * is the radius of the classical 

circle then 

Hence 'V is the number of de Broglie vrave lengths in a classical half 

circle. Uhlenbeck and Young found that Tl f = ( V + ~)) when Schr8dinr.;er' s 

equation is used instead of Dirac's. 

'rIIE SOLUTIONS IlJ FREE SPACE: 

Put 

where p and u are the momenta in the X and y directions. The momentum 
1 ~2 

in the z- direction is considered zero. Then for field free space we 

exnect solutions of the form ei(f>,Y.t-f'~'J J. 'Ute followini_i set of solutions 

vras found: 

f:= 

(9) 

where A
2 

and A
4 

are arbitrary constants. 

If we consider the functions ( 9) as representi11g a beb ;rnving 

in the +x and +Y direction;:;, WJ cc.n find the :reprosc'nt&.tion of f.c simile.r 
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!vii>.TCHilTG SOLUTIONS: 

Let us supnose that we have a uniform magnetic field of 

strength H in the z direction for all positive values of x, and that 

for x neE:,;ative the field is zero. /fo wish to match solutions of the 

type (8) with thosE• of tyoe (9) for x = o. do see first that p
2 

= ~ 
in order that the solutions be equal for all values of y. We suppose 

thE.~t in the free space there is both an incident beam (p
1 

positive) 

and an enorgent beam (p
1 

nei:;~i.tive). Sett:_ng the sum of these solutions 

equal to the f\.mctions in the field 'iTith x: o gives: 

=fr {A., -fJ.,) +-if,, (A., HJ.,) __b:,_) 
W/t_-f,_..___c_. -.::cf,(~':,, 

A .. +b'l- ~ t. c(~---c)f.,(t~) (10) 

-p. (A .. -r5._) + ~ r~lA .. +B.)-= i C ( It[+~ c) f, l !~) 
~c,. - ,.,_,,,,_ c. 

il.4 + B4 = cfLf ( ~) 
SolvillJ.6 for the B's ·in terms of the A's gives: 

B = YA
4 

) 
4 ) (11) 

B0 
'" = YA2 

) 

vrhere 

I 
, ~ ~+---c_ r1' l-k) 

y = - l p, +- }'· t(,,(%) 

·k ~1--~C-~ I +l f'· - P• cf.,(-!;;;,.) 

(12) 

Since -Che ratio /1/rJ
4 

is pure imaginary from Equations ( 6) we 

see tlw,t Y is a nu:raber divided by its complex conjugate and hence /Y{ : 1. 

Also since D v is even or odd according as V is even or odd, ono of the 

functions f, J rf., is odd, the other even. Hence, their ratio is odd.. Hence, 

if ·we chance tho sign of p
2

, fbecomes That Is: 

1 
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Hs.ving; obtained these solutions Yfe will use them in several 

vrays. We vdlJ fir st c nnsiG.er ~U1 h>.fini te beam incident no:rma lly and 

later vrill construct a vmve packet. 

DISTRIBUTION OF GFR.ltENT n; TEE FIELD FOR AN IXFil;ITE 

INCIDEl~T BEAM. 

Let us find the current densities inside the field. 

Fron Dirac: 

SiI:.ce the product Al tP is pure imasinary from ( 6) and 
If 4 11 

hence fi rf4 = - ~f 1° 

Similarly, - s~ ::- fd; f'-= -L (u- Cf'l( rt: f, -f; rt.,) 
If v:e use our expressions for the if' s in terms of the D's 

vre have: 

(14) 

Since D and D,, are successive solutions of the Heber 
)7-1 v 

equation (5), they have n different number of zeros between x = o 

and x = (' • (There are no zeros for X/'Y'.) Therefore, S is negative 
y 

for sorrie values of x. In fact, the diste.nce bet;reen succesdve regions 

of nego.tive S is of the order of /l, the de Brc::;lie vrave length. This 
y 

is apparently an effeet of spin since Uhlenbeck and Yo-.mg found an 

eXpression for S which is t0,.lwo.ys positive (or zero). 
- y 

Let us f'incl·the avere.g;e x- coordinate of the current, defined by: 
"" jx~h_ 

1;~~ 
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z_I 
Clas sic ally ~ = -

Jy '(rL-'f.."L 

(2) 
andx-~r. 

In evi:}.luating -x usine; the quantum mechanical expressions 

vie shG.11 need the integrals: 

1~,,Dv_, Jr 
Tfo shall evs.luate these integrals f'or v even. The methods 

are much the sarD.e for v odd and the fir..al value of .X is exactly the 

same. 

By multiplying the first. of Equations (5) by Dv-l' the second 

by D\? Dnd subtracting and then integrating; vre find: 

i L /), ]~ el ,,_, JD., 
t>- t>,,D,,_, Jr = [t>.. "'r - D.,_, Tr .._ 

Ma.kine; use of the recurrence formulae given in V1hittakor and 

Watson, ru1d rem8!llberinc thc_t D is an odd function 
v-1 

( D (o) a o) and 
)}-1 

that all the D's vanish exponen"cially at x = 00 vre have: 

Ir({)z~Jc:.. 1'({-~v) 
(15) 

Usinf; -t;he recurrence formulae vre find: 

J. ;D,t>,")f ~ t L{D,_,J'-,lr ~ {l•ni µJ (16) 

fror:i. Yrhittaker Emd Watson. 

Putting into our expression for x and taking account of the 

factor chnngint; x to 1 vre have: 

_, 11.F Ut) !] ._lV{l-7'}-x =- 'f Y-;;:.. v! 
By using Stirling's formula 

we obtain: 

the classical value. Hence the result ae;rees 'Nith the cle_ssical value 

to the extent that Stirling's fonn.ula holds. '.l'he error in Stirlini::;' s 
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formula is of the order Jy and since v is of the order ic8 to io10 

this deviation is entirely negligible. 

By using a Wentzel-Brillouin-Kre:;·,1ers(Z,,lZ) approxirne.tion near 

x = Y' (See Uhl en beck and Young) f 
4 

and tP
1 

can be expressed in the form: 

~ ~( I)!:-( X )~ I. \ ') .. / " I :1 -2 " ~ I - -IF v-- ~ ~ r"r I± z'., (17) 

the nlus sign being used for cf 
4 

and the minus for 1
1
. We find that the 

last maximum of 5,r 
" 

is between: 

x :: ~ -') 
Y' (t t-~V- 7 -t-:l,}1 (maximum of tf) 

4 

and x = r ( ( l -t ii ~ ~ V- I) (maximum of tfl) 

and the current 11vill fe.11 to .001 times its maximum value in going a 
J +-7:: 

distance of the order 2: Y' V ~ 

We have found that if an experiment consists of measuring the 

average x coordinate of the current the difference between classical 

and quantum. mechanical results will be of the order of 1 part in V vrhile 

if the maximum x coordinate is used the difference will be of the order 
\. 

1 part in ).P. In either case it is too small to observe. 

TiifO INCIDENT BEA.11,IS. 

We shall combine two incident berons such as those found above 

(Equations (9), ·with momenta. p1 , p
2 

and p1 - p
2

• The constants A
2 

and A
4 

will be the same for both beams. This is the first step in the construe-

tion of a vrave packet. It vrill be simpler to make a wave packet from 

these solutions than from the original solutions (9). 

He find for the combined bemns: 

- 9 -



Similarly: 

(18) 

:Now let us find the functions representing the emert;ent bean1s. 

Put Y: il 
e • Then 

Pz) : VA4 : 

-p2) !:: y. A4 

e..nd similar expressions for B
2

• 

We obtain: 

t= 
(19) 

For p
2 

small compared to p
1 

the emergent berun is-displaced 

along the y axis a distonce 1. r . 
Pz 

Using equations (6) we 

Y{ f_._c cf, ( ~) 
f., (~) 

Hence, we vvi sh to find 

find: 
f) r b- i-w) v...,_, "- r --
P-v ( f- 2 vv) 

'fo evaluate j we must :make some approximations. 

(20) 

Two independent 

approximations are involved. We assume ths.t p
2 

is small compared to p
1 

, 

and that v is large compared to 1. Let us consider the differential 

equation ( 5) for the Dv• If Y is large compared to 1 and S is small 

compared to zVV vre see that an ap:proximate solution can be obtained in 
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the form: 

D = a cos (Vi> j + () 
Let us again consider the case ).) even. Then D"' is an even 

function m cl D an odd one and we can -write: 

that: 

\) -1 

Dv : a cos V'Vf 
(21) 

D)) - l - b sin ~ ! 

Usine; Whittaker and Watson's e:icpressions for D we can show 

.L_ /).,,_,("!) 

r-7> o 1 Q.(1) 

Hence for small Y : 

_, 

'H l>v-• { r) -=­

Dyl~) (22) 

A better anuroximation can be obtained by using the Hentzel­

Brillouin-Kramer' s method ( 2 ,l 2 ). 

!>,,,_,(?) = ( - ~ y- ~h [rVztw-1)-~' t--i(zv-1)~-r ~) 
I - ~O .., ' 2. vv-~ S 

and °'-- G::r:z..l {? (z(zi.>+r)-:i ... + i.(z ~+1) ,-a..:._ _,z J J.} 
Dy( 'J) - -1'.:-)~ <f Y+L 

( 2(:0.\>i-I) 

These hold for considerably larger values of ) than do 
z.I 

Equations ('$). If vre assume )} is large compared to 1, but do not 

restrict '! we obtain: 

'fV Dv_J j) _ _/_ / [ ,r.::-:-::;;: -' f l 
- f4--- 7; 'f V'fY-f"" _,. L/Y~ ~ j (23) 

J).,,(-r,) 

Put this expression equal to -tan <T vrhen r= ~-dv 
f' 

V!e see that 

if we expand the arcunent in terms of r and neglect terms of higher 

order than the 1st in J , Equation (2;.:;) reduces to (22). This expansion 

will be considered later. 

Using Equation ( 23) vm obtain: 
i J 1 - i (tan c + sec 6 tanu-) 

e = 1 + Ubn t: + sec c tano-) 
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Hence: 

-ta.11 S" : tan t- + sec E. tan (J = 
2-

sin~ ~ u +~a 
cos t: cos er 

Now tan e = p
2
/p

1 
ond if p

2 
is very small corn.pared to p1 , 

is a very small angle. If we neglect c al together vre obtain too 

small a value for -tan £ since we decree.Se the numere,tor a.ncl increase 
2 

the denominator of the fraction. On the other hand, if we decrease the 

denomi:na.tor by subtracting sin er sin €:. and decrease the numerator only 

by a second order term in t: by multi plying the ls.st term by cos ~ we 

obtain: 

-tan ~ -2-
sin €-cos u + cos 6- sintr s tan ( rr+ (:;) 
cos t: cos <r - sin t:- sin CT 

Neglectint; €- altogether gives: 

-tan d - tan er 2-

Hence, ·Ne can say: 

(24) 

All the above arguments hold for cos()" negative if we interchange the 

'Hords decrea.se and increase. 

Now let us evaluate CJ • 

E:l."Panding in povi-ers of _J_ gives: 

<T= t [r,~[!--1:{,1;.).:~ J +<1V(!_,. •-/: (~)\--Jj 
= 2 )} { /v-v - / (-f V'j/. --- J 

Putting r = ~ 2 Vy gives: 
p p 2. 

0- = 2 p 2 y [i - f { f) r --- ] (25) 

If p
2 

is so srr.all compared to p that the square of P2fP may be 

nee;lected we have: 
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Now sin E : £.2. • 
p 

Hence G is small compared to rr in the 

same way that 1 is small compared to ).) . Since vre have already neglected 

terms of the order I we shall neglect l::- compared to er This gives: --\} • 

d= -2 () = -4 v p 2fP (26) 

Neglectinr; the c in expressions (18) and (19) we see that 

the wave functions are the same for the incident and emergent beams ex-

cept for (a) the negative signs on r 1 and y3 and in the exponent T.rhich 

make the currents be in opr;>osi te directions and (b) the phase angle cf 

in the cosines. Hence, if Yi is the maximum of the incident beam and 

Ye the maxirnum. of the emergent bea.111 then 

Ye - Yi = 
Putting in the value of tf from ( 26) gives: 

We have neglected terms of' the order Yv hence this result 

may be in error by a term of order /l • Hence to wi thi:r: distances of the 

order of a de Broglie wave length the maximum of the emergent berun vd.11 

be displaced just twice the radius of the classical circle from the 

maximum of the incident beam. 

COUSTRlJCTIOlT OF A HAVE PACKET. 

The functions ·we have been considering had a cosine dependence 

on y and hence extending an infinite distance in both directions. How-

ever, by using a Fourier integral over such solutions vtfe can find functions 

which are zero except in the region: 

-~y~ y :S 4Y• These will be of the form: 

,v-= ... . : :_, ~'·f:1 F: -zA./p~) p e i ~.~ ~ b1- J b.._ (28) 
L, '"' w A- ,. 

=<> <= t-~c. 
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Y1bere P 
2 

is the maximum value of p
2

• 

With similar expressions for ~2 , ~3 • 71!;_
4

• A
4 

is 

considered a function of p
2

• Since each component here will give an 

emergent beam of the form ( 17) we can write the functions for the total 

emergent berun: 

(29) 

We have shown that for p 2 sufficiently small ~--is independent 

of p
2

• Hence the incident beam is reproduced at a distance ye- Yi= 

above the point of incidence. This means that if we pass electrons 

- ;f..f 
Pz 

thru 

a slit into a magnetic field they vtlll come out at a distance ZY' away, 

the uncertainty being of the order of a de Broglie wave length. 

The functions in the field will be of the form: 

r; = e i "'? J p~ in I. ( x t 'J;;,_) ) 1 ( 30) 

and similar expressions -:;r -y;-, if;, ![;,, where the A's and f 1 s are con-

nected by the relations (10). 

We can now dispense with the device of a field ending abruptly 

at x: o since the functions (30) will represent a packet of the same 

form even though the fic-Jld extends beyond the slits at x = o ruid hence 

the functions will have the sa:i.e form at this point. The use of such a 

discontinuous field is merely a convenient way of studyini:; the solutions 

at x : o. 

We must now examine how large vre can make P 
2 

• We vrant Yp 
to be small compared to unity. 1'.t the same time we can conclude either 

from the theory of Fourier integrals or from Heisenberg's uncertainty re-

le.tion that: 
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Hence ~ must be large compared to one or e;;y is 18.rge compared 
t:: 

to il • 

This is usually true since a slit .1 mm. wide would be a 

ver-J narrovr one while )... is of the order of 1 .!. Hence 
6 

~ ..,__ 10. ). ..__. 

This means also that the uncertainties introduced by the approximations 

used vr:i..11 be small compared to the uncertainties coming from a finite 

slit v.ridth. Hence, when applied to the motion of an electron in a mag-

netic field quantum mechanics will give the same results as classical 

for the value of the ratio e/m. 
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SUivJMi:.11.Y: 

Solutions of the Dirac vrave equation are obtair1ed represent­

ini::; the motion of an electron :1.:r: a uniform 1.ugnetic field. These 

solutions are used to calculate the maximun penetration of the electrons 

into the fielcl e.ncl also the avere.ge x coordinate of the current. Both 

results ap;reo \Tith the classical result to distances of the order of a 

de Broglie wave lenr;th. 

The solutions were then combined to represent a beam of 

electrons passing thru a slit. It was shown that the deviation of this 

bea-m from the classical path was also of tlrn order of a de I3roe;lie 

wave length. It was necessary to impose the condition that the slit 

be wide compared to an electron wave length - a condition amply ful­

filled in all epplications. This meims that the slit must be so wide 

that diffraction of the electrons can be neglected. 

The conclusion is drawn that in all experiments which have 

been performed the differences between the classical and the quantum 

prGdictions will be too small to be obs0rved. 'rhe differences in paths 

predicted vdll in all cases be of the orde1· of an electron -vrave length. 

In conclusion, the author -;'rishes to thank Dr. W. V. Houston, 

vrho directed this research, for continued advice and encouragement 

during its development. 
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