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THE MOTION OF A DIRAC ELECTRON IN A MAGNZTIC FIELD,

T RODUCT ION:

(1,2,5,4) have recently appeared treat-

A number of papers
ing the motion of an electron in a magnetic field on the basis of
guantum mechanics. The purpose of these investigations was to see if
the difference in the values of the specific charge of the electron(s)
obtained by deflection and by spectroscople experiments could be ex-
plained as a gquantum effect. Recent experimentsl work on free clectrons

s
by Perry and Chaffee\b) and by Kirchner (7) give values for the ratio qﬁn
very close to the spectroscopic values. However, neither of these ex-
periments involved deflections in a magnetic field so thalt a guanbum
mechanical effect might still be present in the magnetic measurements.
In fact, Kirchner suggests that Page's investigation might explain the
difference between his own results and the older ones of HOlf(g).

Page(l) obtains solutions of the Schrddinger equation rep-
resenting a free electron in a magnetic field. He shows that the mean
racdius of the electron's path for each of these solutions is less than
The classical radius given by r =<ﬂ;& except that for one solution his
mean radlus is egual to the classicals. He concludes that if a bewm of
electrons passing thru a slit is represented by a combination of his
solutions the average radius of curvdtufe of the paths of the electrons
will be less than that calculated by the classical formula and that the
difference is of the right order of magnitude to explain the observed
discrepancy in Qﬁﬁ. However, he does not show that a finite beam of
electrons can bhe represented by such a combination of his solutions

and in particular he ignores a whole set of solutions of his eqguation

obtained by letting his cuantum number m teke on negative values.
I/ (=] 4 o
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For these solutions the mean radius is greater than the classical
radius. Hence, his work cannot be considered conclusive. Plesset(s)
used a second order relativistic wave equation and carried out calcula=-

tions similar.-{to those . of Page. The above remarks apnly to his work as

Uhlenbeck and Young(g) used a different form of solution of
the Schrldinger equation, which was first given by Landau(g), They
calculated the distance which a beam of electrons incident normally
would penetrate into a magnetic field and obtained the classical result.

Kennard(é) showed that in any electromagnetic field the center
of gravity of a wave packet obeying the Schrddinger equation would move
according to classical laws. From this he concluded that the classical
expression could be used whenever an experiment comnsisted in measuring
a mean positim of a large number of electrons. Ie was not able to ex=-
tend his results to the Dirac wave equation.

In the present work the Dirac equation for the electron is
used. Solutions for a homogeneous magnetic field are obtained which
are analagous to the solutions used by Uhlenbeck snd Young., From these
solutions a wave packet is constructed which represents a beam of electrons
passing thru a slit into a magnetic field. The motion of this packet is

studied,



SOLUTIONS IN THE MaGNZTIC FIFLD:

We shall use the linear Hamiltonian for the electron in the
(10)
L]

form given in Dirac's Quantum lMechenics
W e — ) } -
X v & . e + c = O
{c (’cAof—/?(‘T Ib+°A fz ¥ (1)
For a uniform magnetic field H in the z direction we can

write:

A =0, A =0
2

o
. 1.
Ax - _:ﬂ-dy
1.
Ay = =Hx
Putting w = e, Equation 1 becomes:
Zc

w
{ < + ‘ﬁ' [@(FX—WJ) + OB (}%rw/() +03/b}]+@m6} y’:o
VWie shall find solutions of this equation which are much like

those used by Uhlenbeck and Young.(?"g)

Yoo B R gy (2)

Assuming that “// is independent of z.

To do this put:

The equation for (/ is:
W o '
e e lapgrrry)] tome)d =0 ()
We see that the solution for any value of 7 can be obtained

from that for 7: o by replacing x by ( x 4 Z’{;_ )

dn= 4 (x )

Writing out the component eguations for the case 7: o :
7"fw»c.) = + -
( /c 1 + T ot = 2k x =0

(WC+MC)¢L }-_Lé f(;é, .'_,_'Zw—x% =0

(zhf—#—mc)(ﬂ_i-%—_ é_g%—_izw')‘ﬁ_"e
(Y = me)fyr % 4+ comrdizo

(4)



Elimineting Cﬂ , between the first and last of the above gives:

& I

Or putting f: XZFand

V—qw—t( "'”'}Ci) :H_,l;;k -
where P is the total nmomentum, we obtain
z
Lhr (ot de)4
2
i[I(éz w(v-Lt-grdi=0

We recognize the first of these as the equation for D

{
in Whittaker and Watson, Modern Analysis\ll).

(5)

v Biven

The second is the equation
for D

vl Comparing the first of equations (4) with the second recurrence

formula for the D Js given in Whittaker and Watsons
/
D)+ LD, (s)-v Dl (s)=0

we find that ifs
% (X) = Aa Dv(?/

‘:.L"—MC) (6)
then (ﬁlx):é (___L_\;_’;__: a DV_,(S’)

It can be shown in a similar manner that:

=0 C (¥ -~e)
:g.-: (C(E+ )4 ()

The condition that the 2z~ component of the current be zero

at X = o makes ¢ resl, and 1f C is real Sz = o for any value of X.

We can write the solutions:
V= ed%x; et %(Y* z)
!
X? ‘ \f—r—-mc * ﬂ—
x) ‘ty aC(.W+MC)(p(X+ )

Y, =
V= o ¢ (x+ %)
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where the (f's are given by (6). Ve might point out that if Am

S

is the de Broglie wave length and 7" = g is the radius of the classical

cirele then

Tya=vA
Hence V¥V is the number of de Broglie wave lengths in a classical half
circles Uhlenbeck and Young found that wr= (V 4 -:j)/\ vhen Schr8dinger's

equation is used instead of Dirac's,

THE SQLUTIONS IN FREE SPACE:

2 2,0
Put p2 - P12 -+~ P22 = W/c-" —mC

where pl and p2 are the momenta in the X and v directions. The momewtum
in the z~- direction is considered zero. Then for field free space we

‘
expect solutions of the form e_f(})'x"("? ). The following set of solublons

_— %(P.X*f’.;)
¥ = - ,E—«,Z’——%*mc A. €
e%(}o,xf'h‘*)

Y= A (9)
A S
= - 2
; e A e L (prtry)
i = 4

where Az and A4 are arbitrary constants.

was found:

If we consider the functions (9) as representing a besin moving
in the <4~x and =~y directions, we oo find the representation of « similar
1

seem moving in the -x end -y directions by using different constants

32 and B, and by replacing P by Py

]
(%3]
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MATCHING SOLUTIONS:

Let us supnose that we have a uniform magnetic field of
strength H in the z direction for all positive values of x, and that
for x negative the field is zeroc. We wish to match solutions of the
Lype (8) with those of tyoe (9) for x = o. We see first that Py =)z
in order that the solutions be equal for all velues of y. e suppose
thet in the free space there is both an ineident beam (pl positive)
and au enmcrgent beam (pl negative). Setting the sum of these solutions

egual to the functions in the fleld with X = o gives:

ﬁ(Aq‘E.,)”'L'}’;(AL’*E*) - %(:‘%)

Wit

A+B, = (% -~)d(E) (10)
—/n.(AL-BL)Jrc)a(AurB,): o W d |5

“’/c,”"’“'c—
Ay + B, = 904(.2&:;

Solving for the B's "in Terms of the A's gives:

B = Y
4 E g (11)

where
| -¢ By W tome il‘(—%}‘)‘
Y = £ P 4(5) :_fzgj)_ (12)
_ e tme TR
%7" p ¢4 (%E)

Since the ratio f%é/ is pure imeginary from Equations (6) we
of

| +¢

see that Y is & number divided by its complex conjugate and hence ,Y{ = 14
Also since D, 1is even or odd according as VWV is even or odd, one of the
functions 42)4% is odd, the other even., Hence, their ratio is odd. Hence,
if we change the sign of P9 Y becomes -L'. Thet Is:

1

Y(Pls - p,) = ?‘(plgpg = Y(pl, pg) (1

N
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Having obtained these solubtions we will use them in several
weyse Vvie will first consicder an infinite beam incldent normally and

later will construct a wave packet.

DISTRIBUTION OF CURRENT IN THE FILELD FOR AN INFIKITE

INCIDENT BEAN.

Let us f£ind the current densities inside the field,

From Diracs

SV AY - W *V”V”»c Zy + ¥
70+ C Y TN T

1+ (4 4)

Since the produet 42 ?ﬂl is pure imaginary from (6)

-~

—
hence ﬂ [fé = - (&/1.

Similarly, =-§ - f'a(;y/‘: 1+ C’}l)(?fﬁ —f:%)

If we use our expressions for the gf's in terms of the D's
we have:

W, =
Sy = 1+ oY) ““D (1)

Since DV- and D, are successive solutions of the Veber
equation (5), they have & different number of zeros between x =z o

and X =y . (There are mno zeros for X>V.) Therefore,‘sy is negative
for scme values of x. In fact, the stence between successive regions
of negative:;y is of the order of ){, the de Brcglie wave length. This
is appesrently an effect of spin since Uhlenbeck and Young found an
expression for‘S* vwhich is always positive (or zero)s

Y )
Let us find the average x- cocordinete of the current, defined by:
o0

A
Ay

>
o

X = e

J

st
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2
Classicaelly § = z I (2)
y ‘(Y-L_X'l.

In eveluating X using the quantum mechanical expressions

and i—- —%Y‘o

we shall need the integrals:
0 >
/D\,Dv_' /f “J/ D.,D,.,,Yo(f
We shall eveluate these integrals for V even. The methods
are much the same for 2 odd and the final value of X 1is exactly the
samne.
By multiplying the first of Equations (5) by Dv 1’ -the second

by D, end subtracting and then integraﬁing we finds

4
/DD,,X?— [D AD" -n.4 M

Making use of the recurrence formulae glven in VWhittalker and

v

Jetson, and rencmborln thet DV 1 is an odd function (Dv 1 (0) = 0) and

that all the D's vanish exponentially &t X = @0 we have:
v

e E e 9

Using the recurrence formulae we find

f;Dva,,Jf = {IEDVJVE’ = —i(?—n)%l).’ (16)

from Whittaker end Watson |
Putting into our expression for X end taking account of the

factor changing x to ¥ we have:

we obTslins

the classical value. Hence the result agrees with the classical value

to the extent that Stirling's formula holds. The error in Stirling's
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formule is of the order % and since V is of the order 1C=8 to 1010

this deviation is entirely negligible.

(2,12)

By using a Wentzel-Brillouin-Kremers approximetion near

x = y° (See Uhlenbeck and Young) 494 and Cﬂl can be expressed in the form:

-2 A ’;’( X j ’
w T2V 3(/;/“zv> j ',‘Vli:'{’{:‘ (17)
The vlus sign being used for (p4 end the minus for cfl,We find that the

last meximum of Sv is between:

]
X = )"(,+ y ’7)’) (maximumofa&)

-z

~ ’ 2 %
and Y'( (4293 4» (maximum of l)
and the current will fall to 001 times its maximum value in going a
3z L g

distance of the order - Y V3

Ve have found thet if an experiment consists of measuring the
average X coordinate of the current the difference between classical
and quentum mechenical results will be of the order of 1 part in V while

if the maximum X coordinate is used the difference will be of the order

1 \
1l part in Y?*. In either case it is too smell to observe.

TWO IHCIDENT BEAMS.

We shall combine two incident beams such as those found above
(Equations (9), with momenta p1 s p2 and pl = Do The constants AZ and A4
will be the same for both beams. This is the first step in the construc-
tion of a wave packet. It will be simpler to mske a wave packet from

these solutlons than from the original solutions (9).

We find for the combined beams:

V(}’ F»)?”f”(,b., }7) = w/f,hg {,b&n +F4-~f£j




Put faﬂ,ez pz/bl. Thens

Voo 2pb T Llyee) i

o 2 he® by

L2

) 3
95 = 2Ll e (B o) (16)
Vi = zhy eFpp

Now let us find the functions representing the emergent beams.

Similarly:

put vz ot? . Then
, il
By(pys pp) = vy = Aye -
- -3
By(pys =pp) = Ty = Ago

end simllar expressions for BZ.

We obtains

%= e ¥ (50
%- =

2 A, e“dt%m(f,;ghf) (19)
%: o ce—gm(%+[¢)
W zA‘,e—iEgén(,%'}'pr)

For Py small compared to Py the emergent beam is-displaced

ks

along the y exis a distence £4 , Hence, we wish to find S e

D
Using equations (6)2We finds
Mime dl) oy Dalpw)

—_— T Y
Poo (55 i D)
To evaluate [J we must meke some approximations. Two independent

approximations are involved, Ve assume that p, is small compered to Py o
and thet ¥V is large compared to 1. Let us consider the differential
ecuation (5) for the D,o If V is large compared to 1 and € is small

compared to zVywe see that an approximste solution cen be obtained in

- 10 =



the forms

D = 4 cos (¥ 4a)
Let us agein consider the case vV even. Then D, is an even

function smd D 1 an odd one and We can write:
v

D, = a cos V»¢

(21)
Dv-l = b sinvsg

Using Whittaker and Watson's expressions for D we can show
thet:

L D\,.,(‘f___) - __)
2o 30(3)

Hence for small ¥ :

w0 0B . s
D,(%) -V T (22)

A better aporoximation cen be obtained by using the Wentzel-

Brilliouin-Kramer's method( 2,12) .

- a .
DV“'(?) - (l-f-’_tgo)% AA\{? {fm\ i—z(z-v—')/a.:J'Lf g

Y-

Y
s

and -
o J Tviy_st +2(2vh) 2l i
D.() = =y, Cent T ovt |

These hold for comsiderably larger values of ¥ than do

2l
Equations ®)., If we assume y is large compared to 1, but do not

restrict ¥ we obtains

VD\)—, ) ! =
Lﬂéi = =l g {sUm v AT

Put this expression equel to -tang when ¥= ,%z\fu')‘ . Ve see that

if we expand the arpunent in terms of ¥ and neglect terms of higher
order than the lst in ¥ , Equation (2Z) reduces to (22). This expansion
will be considered later.

Using Equation (23) we obtain:
id 1 -1 (tan € <= sec & tans)
¢ =1 4 i{ten e -+ sec ¢ tano)

- 11 -



Hence:

'ta—ll-;z_ = tan €4 sece tang = Siné &= 0 + A0
cos e cosQ

Now tan € = pg/pland if Py is very small compared to pys
is a very small angle. If we neglect € altogether we obtain too
small a value for -tan .2{ since we decresse the numerator snd increase
the denominator of the fraction. On the other hand, if we decrease the
denominator by subtracting sin ¢ sin € and decrease the numerator only
by a second order term in ¢ by multiplying the last term by cos € we

obtain:

~ten § = _Sin € cos 0 4 cos € sinl _ tan (r+e€)
cOS & COSO - 31in e sinG

Neglecting € altogether gives:

~tan 4 = teno
2

Hence, we cen says

g<L-fQo+e (24)

All the above arguments hold for cos 0 negative if we interchange the
words decrease and increase.

Now let us evaluate O .

=} (s rav R

Expanding in powers of \fr gives
2Ny

R S 25 [ L ey PR €Sy (3)+1f

S-S

Putmng; ¥=_2 p2 2Yy  gives:
o= 2 2v[:_- /m)*'"J (25)

It Py is s0 small compared to p that the square of pz/p may be

neglected we have:

- 12 -



seme wey

terms of

the weve
cept for

make the

Now sin ¢ = 25,. Hence & is small compared to o~ in the
that 1 is small compared to y . Since we have already neglected
the order /% we shall neglect & compared to 6 ., This gives:

= =20 = -4 Vp,mp (26)

Neglecting the & in expressions (18) and (19) we seec that
functions are the same for the incident and emergent beams ex-

(a) the negative signs on ?Vi and }P% and in the exponent which

currents be in opposite directions and (b) the phase angle J

in the cosines. Hence, if Vi is the maximum of the incident beam and

Yo the maximum of the emergent beam then

ve-vie - Eg

Putting in the velue of J from (26) gives:

Y, -y =4vE _2VA - 27 (27),
D 7T

We heve neglected terms of the order /4, hence this result

mey be in error by a term of order A o UHence to within distances of the

order of a de Broglie wave length the meximum of the emergent beam will

be displaced just twice the radius of the classical circle from the

maximum of the incident beam.

CONSTRICTION OF A4 WAVE PACKET.

on y and

ever, by

The functions we have been considering hed a cosine dependence
hence extending an infinite distance in both directions. How-

using a PFourier integral over such solutions we can find functions

which are zero except In the region:

=AYy y S Ay. These will be of the form:

RS T Pa. .
Z_/: _ »;;:;. / —zAp P eff’-“ e bp Ve,bL (28)

< t~~c

Yo
- 13 -



Where p2 is the maximum vealue of PZ'

With simil si S 4 i
ar expressions for 19? ]f;s, }f;4. A4 is
considered a function of Poe Since each component here will give an

emergent beam of the form (17) we cen write the functions for the total

%, =/ Zf/ﬁ(wc 2% e 74 S

We have shown that for Py sufficiently small éﬁ;is independent

emergent beam:

of Pye Hence the incident beam is reproduced at a distance Vo~ ¥i= - fJ"
2

above the point of incidence. This means that if we pass electrons +thru

e slit into a moagnetic field they will come out at a distance 2y away,

the uncertainty being of the order of a de Broglie wave length,

The functions in the field will be of the form:

Y-e Tyj H‘/(ﬁj’)/‘? (50)

and similar expressions for 2? ?[”, where the A's and ¢ s are con~

nected by the relations (10).

We can now dispense with the device of a field ending abruptly
at x = o since the functions (30) will represent a packet of the same
form even though the field extends beyond the slits at x = 0 and hence
the functions will have the ssme form at this point. The use of such a
discontinuous field is merely & convenient way of studying the sclutions
at x = 0.

We must now exemine how large we cen make Pz. e wrant @;%
to be small compered to unity. At the sawe time we can conclude either
from the theory of Fourier integrals or from Heisenberg's uncertainty re-

letion that:
A e»f»
r x v

- 14 -



Hence A_“‘}:,E must be large compared to one or Ay is large compared
to A .
x
AAy:$>?j:a)l

This is usually true since a slit <1 mme. wide would be a
very narrow one while Ais of the order of 1 8. Hence %¥»q, 106.
This means also that the uncertainties introduced by the approximations
used will be small compered to the uncertesinties coming from a finite
slit width. Hence, when applied to the motion of an electron in a mag~
netic field gquantum mechanies will give the same results as classical

for the value of the ratio e/h.
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SUMMEARY ¢

Solutions of the Dirac wavé equation are obtained represent-
ing the motion of an electron in a uniform magnetic field. These
solutions are used to celculate the maximun penetration of the electrons
into the field and azlso the average x coordinate of the current. Both
results agree‘with the classical result to distances of the order of a
de Broglie wave lengthe

The solutions were then combined to represent a beam of
electrons passing thru a slit. It was shown that the deviation of this
beam from the classicel path was also of the order of a de Broglie
wave length. It was necessary to impose the condition that the slit
be wide compared to an electron wave length - a condition amply ful-
£illed in all spplications. This means that the slit must be so wide
that diffraction 6f the electrons can be neglected.

The conclusion is drawn thet in all experiments which have
been performed the differences between the classical and the quantum
predictions will be %too small to be obscrved. The differences in paths
predicted will in all cases be of the order of an electron wave length.

In conclusion, the author wishes to thank Dre. W. V. Houston,
vho directed this research, for continuéd advice and encouragement

during its development.
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