THE MOTION OF A DIRAC ELECTRON IN A MAGNETIC FIELD

A THESIS

Presented by

Lorenz D. Haff

In partial fulfillment of the requirements for the degree of Doctor of Philosophy.

California Institute of Technology,
Pasadena, Cal.
1931
THE NOTION OF A DIRAC ELECTRON IN A MAGNETIC FIELD.

INTRODUCTION:

A number of papers\(^{1,2,3,4}\) have recently appeared treating the motion of an electron in a magnetic field on the basis of quantum mechanics. The purpose of these investigations was to see if the difference in the values of the specific charge of the electron\(^{5}\) obtained by deflection and by spectroscopic experiments could be explained as a quantum effect. Recent experimental work on free electrons by Perry and Chaffee\(^{6}\) and by Kirchner\(^{7}\) give values for the ratio \(e/m\) very close to the spectroscopic values. However, neither of these experiments involved deflections in a magnetic field so that a quantum mechanical effect might still be present in the magnetic measurements. In fact, Kirchner suggests that Page's investigation might explain the difference between his own results and the older ones of Wolf\(^{8}\).

Page\(^{1}\) obtains solutions of the Schrödinger equation representing a free electron in a magnetic field. He shows that the mean radius of the electron's path for each of these solutions is less than the classical radius given by \(r = \frac{eB}{m}\), except that for one solution his mean radius is equal to the classical. He concludes that if a beam of electrons passing thru a slit is represented by a combination of his solutions the average radius of curvature of the paths of the electrons will be less than that calculated by the classical formula and that the difference is of the right order of magnitude to explain the observed discrepancy in \(e/m\). However, he does not show that a finite beam of electrons can be represented by such a combination of his solutions and in particular he ignores a whole set of solutions of his equation obtained by letting his quantum number \(n\) take on negative values.
For these solutions the mean radius is greater than the classical radius. Hence, his work cannot be considered conclusive. Pleasat(2) used a second order relativistic wave equation and carried out calculations similar to those of Page. The above remarks apply to his work as well.

Uhlenbeck and Young(2) used a different form of solution of the Schrödinger equation, which was first given by Landau(9). They calculated the distance which a beam of electrons incident normally would penetrate into a magnetic field and obtained the classical result.

Kemard(4) showed that in any electromagnetic field the center of gravity of a wave packet obeying the Schrödinger equation would move according to classical laws. From this he concluded that the classical expression could be used whenever an experiment consisted in measuring a mean position of a large number of electrons. He was not able to extend his results to the Dirac wave equation.

In the present work the Dirac equation for the electron is used. Solutions for a homogeneous magnetic field are obtained which are analogous to the solutions used by Uhlenbeck and Young. From these solutions a wave packet is constructed which represents a beam of electrons passing thru a slit into a magnetic field. The motion of this packet is studied.
SOLUTIONS IN THE MAGNETIC FIELD:

We shall use the linear Hamiltonian for the electron in the form given in Dirac's Quantum Mechanics,

$$\left\{ \frac{\not{\mathbf{v}} - \mathbf{A}}{\varepsilon} + \lambda \mathbf{p} \cdot \mathbf{A} + m \mathbf{c} \right\} \gamma = 0$$

(1)

For a uniform magnetic field \(\mathbf{H} \) in the z direction we can write:

$$A_0 = 0, \quad A_z = 0$$

$$A_x = -\frac{i}{c} H y$$

$$A_y = \frac{i}{c} H x$$

Putting \(\gamma = \frac{\mathbf{H}}{2c} \), Equation 1 becomes:

$$\left\{ \frac{\not{\mathbf{v}} - \mathbf{A}}{\varepsilon} + \lambda \mathbf{p} \cdot \mathbf{A} + m \mathbf{c} \right\} \gamma = 0$$

We shall find solutions of this equation which are much like those used by Uhlenbeck and Young.

To do this put:

$$\gamma = e^{\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{r}} e^{\frac{i}{\hbar} \mathbf{A} \cdot \mathbf{r}} \mathbf{Q}(x)$$

(2)

Assuming that \(\gamma \) is independent of \(z \).

The equation for \(\mathbf{Q} \) is:

$$\left\{ \frac{\not{\mathbf{v}} - \mathbf{A}}{\varepsilon} + \lambda \mathbf{p} \cdot \mathbf{A} + m \mathbf{c} \right\} \mathbf{Q} = 0$$

(3)

We see that the solution for any value of \(\eta \) can be obtained from that for \(\eta = 0 \) by replacing \(x \) by \((x + \frac{\rho}{2} \mathbf{H}) \).

That is:

$$\mathbf{Q}(x) = \mathbf{Q}(x + \frac{\rho}{2} \mathbf{H})$$

Writing out the component equations for the case \(\eta = 0 \):

$$\left(\frac{\not{\mathbf{v}} - m \mathbf{c}}{\varepsilon} \right) \mathbf{Q}_x + \frac{i}{\hbar} \frac{\partial}{\partial x} \mathbf{Q}_y - i 2\mathbf{w} \times \mathbf{Q}_x = 0$$

$$\left(\frac{\not{\mathbf{v}} - m \mathbf{c}}{\varepsilon} \right) \mathbf{Q}_y + \frac{i}{\hbar} \frac{\partial}{\partial y} \mathbf{Q}_x + i 2\mathbf{w} \times \mathbf{Q}_y = 0$$

$$\left(\frac{\not{\mathbf{v}} - m \mathbf{c}}{\varepsilon} \right) \mathbf{Q}_z + \frac{i}{\hbar} \frac{\partial}{\partial z} \mathbf{Q}_y - i 2\mathbf{w} \times \mathbf{Q}_z = 0$$

(4)

\[-3 - \]
Eliminating ϕ, between the first and last of the above gives:
\[
\frac{d^2}{dx^2} \phi + \frac{1}{c^2} \left(\frac{w^2}{c^2} - \omega^2 \right) \phi = 0
\]

Or putting $s = x/c$ and
\[
\nu = \frac{1}{c} \left(\frac{w^2}{c^2} - \omega^2 \right) = \frac{1}{c} \omega_0 \nu
\]
where p is the total momentum, we obtain
\[
\frac{d^2}{ds^2} \phi + \left(\nu + \frac{1}{c} - \frac{1}{c} \right) \phi = 0
\]
\[
\frac{d^2}{ds^2} \phi + \left(\nu - \frac{1}{c} - \frac{1}{c} \right) \phi = 0
\]

We recognize the first of these as the equation for D_0 given
in Whittaker and Watson, Modern Analysis, p. 111. The second is the equation
for $D_{\nu-1}$. Comparing the first of equations (5) with the second recurrence
formula for the D_{ν}'s given in Whittaker and Watson:

\[
D_{\nu}(s) + \frac{1}{2} s D'(s) - \nu D_{\nu}(s) = 0
\]

we find that if
\[
\phi(s) = a \cdot D_{\nu}(s)
\]

then
\[
\phi(x) = i \left(\frac{\nu + \omega_0}{\sqrt{\omega_0}} \right) a \cdot D_{\nu}(s)
\]

It can then be shown in a similar manner that:

\[
\phi = i C \left(\frac{\nu - \omega_0}{\sqrt{\omega_0}} \right) \phi
\]
\[
\phi = i C \left(\frac{\nu + \omega_0}{\sqrt{\omega_0}} \right) \phi
\]

The condition that the z-component of the current be zero
at $x = 0$ makes C real, and if C is real $S_z = 0$ for any value of x.

We can write the solutions:

\[
\psi_0 = e^{i \frac{\nu x}{c}} e^{i \frac{\omega_0 x}{c}} \phi_0(x, \frac{\nu}{c})
\]
\[
\psi_0 = e^{i \frac{\nu x}{c}} e^{i \frac{\omega_0 x}{c}} C \left(\frac{\nu + \omega_0}{\sqrt{\omega_0}} \right) \phi_0(x, \frac{\nu}{c})
\]
\[
\psi_0 = e^{i \frac{\nu x}{c}} e^{i \frac{\omega_0 x}{c}} C \left(\frac{\nu - \omega_0}{\sqrt{\omega_0}} \right) \phi_0(x, \frac{\nu}{c})
\]
\[
\psi_0 = e^{i \frac{\nu x}{c}} e^{i \frac{\omega_0 x}{c}} \phi_0(x, \frac{\nu - \omega_0}{\sqrt{\omega_0}})
\]
\[
\psi_0 = e^{i \frac{\nu x}{c}} e^{i \frac{\omega_0 x}{c}} \phi_0(x, \frac{\nu + \omega_0}{\sqrt{\omega_0}})
\]

- 4 -
where the $\phi's$ are given by (6). We might point out that if $\lambda = \frac{h}{p}$
is the de Broglie wave length and $r = \frac{2\pi}{\lambda}$ is the radius of the classical
circle then

$$\pi r = \nu \lambda$$

Hence ν is the number of de Broglie wave lengths in a classical half
circle. Uhlembeck and Young found that $\pi r = (\nu + \frac{1}{2})\lambda$ when Schrödinger's
equation is used instead of Dirac's.

THE SOLUTIONS IN FREE SPACE

Put $p^2 = p_1^2 + p_2^2 = \frac{1}{m} \nabla^2 - mc^2$

where p_1 and p_2 are the momenta in the x and y directions. The momentum
in the z-direction is considered zero. Then for field free space we
expect solutions of the form $e^{i(p_1 x + p_2 y)}$. The following set of solutions
was found:

$$\psi = -\frac{i}{2\sqrt{2} \pi} A e^{i(p_1 x + p_2 y)}$$

$$\psi = A e^{i(p_1 x + p_2 y)}$$

$$\psi = -\frac{1}{\sqrt{2} \pi} A e^{i(p_1 x + p_2 y)}$$

$$\psi = A_2 e^{i(p_1 x + p_2 y)}$$

where A_2 and A_4 are arbitrary constants.

If we consider the functions (5) as representing a beam moving
in the $+x$ and $+y$ directions, we can find the representation of a similar
beam moving in the $-x$ and $+y$ directions by using different constants
A_2 and A_4 and by replacing p_1 by $-p_1$.

- 5 -
MATCHING SOLUTIONS:

Let us suppose that we have a uniform magnetic field of strength H in the z direction for all positive values of x, and that for x negative the field is zero. We wish to match solutions of the type (8) with those of type (9) for $x = 0$. We see first that $p_2 = p_1$ in order that the solutions be equal for all values of y. We suppose that in the free space there is both an incident beam (p_1 positive) and an emergent beam (p_1 negative). Setting the sum of these solutions equal to the functions in the field with $x = 0$ gives:

\[\frac{-\mu(A_1 + B_1) + i\mu(A_1 - B_1)}{\psi} = \Phi_1(\frac{p_1}{\psi}) \]

\[A_1 + B_1 = iC(\frac{p_1}{\psi})\Phi_1(\frac{p_1}{\psi}) \quad (10) \]

\[\frac{-\mu(A_1 - B_1) + i\mu(A_1 + B_1)}{\psi} = iC(\frac{p_1}{\psi})\Phi_1(\frac{p_1}{\psi}) \]

\[A_1 + B_1 = \Phi_1(\frac{p_1}{\psi}) \]

Solving for the B's in terms of the A's gives:

\[B_1 = \frac{\Phi_1(\frac{p_1}{\psi})}{\psi} \]

\[B_2 = \frac{\Phi_1(\frac{p_1}{\psi})}{\psi} \]

where

\[\gamma = \frac{1 + i\frac{p_1}{\psi}}{1 - i\frac{p_1}{\psi}} \quad \text{(12)} \]

Since the ratio Φ_1/Φ_1 is pure imaginary from Equations (8) we see that γ is a number divided by its complex conjugate and hence $|\gamma| = 1$. Also since B_1 is even or odd according as γ is even or odd, one of the functions Φ_1, Φ_2 is odd, the other even. Hence, their ratio is odd. Hence, if we change the sign of p_2, γ becomes $\frac{1}{\gamma}$. That is:

\[\gamma(p_1, -p_2) = \frac{1}{\gamma(p_1, p_2)} = \gamma(p_1, p_2) \quad (13) \]

- 6 -
Having obtained these solutions we will use them in several ways. We will first consider an infinite beam incident normally and later will construct a wave packet.

DISTRIBUTION OF CURRENT IN THE FIELD FOR AN INFINITE INCIDENT BEAM.

Let us find the current densities inside the field.

From Dirac:

\[-S_y = -\bar{\mathcal{F}} \cdot \nabla \mathcal{F} = -\bar{\mathcal{F}} \cdot \nabla \mathcal{F} + \bar{\mathcal{F}} \cdot \nabla \mathcal{F} + \bar{\mathcal{F}} \cdot \nabla \mathcal{F} + \bar{\mathcal{F}} \cdot \nabla \mathcal{F} \]

\[= \bar{\mathcal{F}} \cdot \left(\bar{\mathcal{F}} \cdot \nabla \mathcal{F} - \mathcal{F} \cdot \nabla \mathcal{F} \right) + \mathcal{F} \cdot \left(\mathcal{F} \cdot \nabla \mathcal{F} - \bar{\mathcal{F}} \cdot \nabla \mathcal{F} \right) \]

\[= (1 + c^2 \mathcal{F}^2) \left(\bar{\mathcal{F}} \cdot \nabla \mathcal{F} - \mathcal{F} \cdot \nabla \mathcal{F} \right) = 0 \]

Since the product \(\mathcal{F} \cdot \nabla \mathcal{F} \) is pure imaginary from (6) and hence \(\bar{\mathcal{F}} \cdot \nabla \mathcal{F} = -\mathcal{F} \cdot \nabla \mathcal{F} \).

Similarly, \(-S_z = -\bar{\mathcal{F}} \cdot \nabla \mathcal{F} = -i (1 + c^2 \mathcal{F}) \left(\mathcal{F} \cdot \nabla \mathcal{F} - \bar{\mathcal{F}} \cdot \nabla \mathcal{F} \right) \)

If we use our expressions for the \(\mathcal{F} \)'s in terms of the \(D \)'s we have:

\[S_y = (1 + c^2 \mathcal{F}^2) \frac{\partial \mathcal{F}}{\partial x} a \frac{\partial}{\partial x} D_y D_y \]

(16)

Since \(D_{y1} \) and \(D_y \) are successive solutions of the Weber equation (5), they have a different number of zeros between \(x = 0 \) and \(x = y \). (There are no zeros for \(y > y' \).) Therefore, \(S_y \) is negative for some values of \(x \). In fact, the distance between successive regions of negative \(S_y \) is of the order of \(\lambda \), the de Broglie wave length. This is apparently an effect of spin since Uhlenbeck and Young found an expression for \(S_y \) which is always positive (or zero).

Let us find the average \(x \)-coordinate of the current, defined by:

\[\bar{x} = \frac{\sum S_y}{\sum S_y} \]

- 7 -
Classically $J_y = \frac{2I}{\sqrt{\pi \hbar^2}}$ \,(2) and $\bar{x} = \frac{\hbar}{\bar{x}} r$.

In evaluating \bar{x} using the quantum mechanical expressions, we shall need the integrals:

$$\int_0^\infty D_\nu \rho_\nu \, d\nu \propto \int_0^\infty D_\nu D_\nu \, d\nu$$

We shall evaluate these integrals for ν even. The methods are much the same for ν odd and the final value of \bar{x} is exactly the same.

By multiplying the first of Equations (3) by $D_{\nu-1}$, the second by D_ν and subtracting and then integrating we find:

$$\int_0^\infty D_\nu D_\nu \, d\nu = \left[D_\nu \frac{dD_{\nu-1}}{d\nu} - D_{\nu-1} \frac{dD_\nu}{d\nu} \right]_0^\infty$$

Making use of the recurrence formulae given in Whittaker and Watson, and remembering that $D_{\nu-1}$ is an odd function ($D_{\nu-1}(\nu) = 0$) and that all the D_ν's vanish exponentially at $\nu = \infty$ we have:

$$\int_0^\infty D_\nu D_\nu \, d\nu = \frac{\Gamma(\nu+1)}{\nu!}$$

Using the recurrence formulae we find:

$$\int_0^\infty D_\nu D_\nu \, d\nu = \frac{\Gamma(\nu+1)}{\nu!} = \frac{1}{\nu!} \Gamma(\nu+1)$$

from Whittaker and Watson.

Putting into our expression for \bar{x} and taking account of the factor changing x to \bar{x} we have:

$$\bar{x} = \frac{1}{\sqrt{2\pi}} \left(\frac{\nu(\nu)}{\nu^2} \right)^{\frac{1}{2}} \Gamma(\nu+1)$$

By using Stirling's formula

$$n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \quad \text{as} \quad n \to \infty$$

we obtain:

$$\bar{x} = \frac{\hbar}{\bar{x}} r$$

the classical value. Hence the result agrees with the classical value to the extent that Stirling's formula holds. The error in Stirling's
formula is of the order $\psi^{1/\nu}$ and since ψ is of the order 10^0 to 10^{10}
this deviation is entirely negligible.

By using a Wentzel-Brillouin-Kramers approximation near
$x = \psi$ (see Uhlenbeck and Young) ϕ_4 and ϕ_2 can be expressed in the form:
$$\omega \left[\psi \left(1 + \frac{1}{2} \psi + \frac{1}{4} \psi^2 \right) \right]^{1/2} \left[1 - \frac{\psi}{1 + \psi} \right]$$
(17)
The plus sign being used for ϕ_4 and the minus for ϕ_2. We find that the
last maximum of ψ is between:
$$x = \psi \left(1 + \frac{1}{2} \psi + \frac{1}{4} \psi^2 \right)$$
(maximum of ϕ_4)
and
$$x = \psi \left(1 + \frac{1}{2} \psi - \frac{1}{4} \psi^2 \right)$$
(maximum of ϕ_2)
and the current will fall to .001 times its maximum value in going a
distance of the order $\frac{\pi}{2} \psi^{1/2}$.

We have found that if an experiment consists of measuring the
average x coordinate of the current the difference between classical
and quantum mechanical results will be of the order of 1 part in ψ while
if the maximum x coordinate is used the difference will be of the order
1 part in $\psi^{1/2}$. In either case it is too small to observe.

TWO INCIDENT BEAMS.

We shall combine two incident beams such as those found above
(Equations (9)) with momenta p_1, p_2 and $p_1 - p_2$. The constants A_2 and A_3
will be the same for both beams. This is the first step in the construc-
tion of a wave packet. It will be simpler to make a wave packet from
these solutions than from the original solutions (9).

We find for the combined beams:
$$\psi_i = \psi_1 (p, p) + \psi_2 (p, -p) = \frac{-2A_1}{\sqrt{\nu - \epsilon}} e^{i A_3} \left\{ p \cos \theta \frac{p_2}{\epsilon - \nu} + p \epsilon \frac{p_1}{\epsilon - \nu} \right\}$$
Put \(T = p_2/g \). Then:

\[
\psi = -\frac{2 A_1 p}{\psi + c} e^{-i\frac{p}{\psi} g x} e^{i\frac{p}{\psi} g (h_2 - e)}.
\]

Similarly:

\[
\psi = 2 A_1 e^{i \frac{p}{\psi} g x} e^{i \frac{p}{\psi} g h_2}
\]
\[
\psi = 2 A_1 p_2 e^{i \frac{p}{\psi} g x} e^{i \frac{p}{\psi} g (h_2 - e)}
\]
\[
\psi = 2 A_1 e^{i \frac{p}{\psi} g x} e^{i \frac{p}{\psi} g h_2}
\]

Now let us find the functions representing the emergent beams.

Put \(Y = e^{i f} \). Then

\[
B_4(p_1, p_2) = YN_2 = YA_2 e^{i f}
\]
\[
B_4(p_1, -p_2) = YN_3 = YA_3 e^{-i f}
\]

and similar expressions for \(B_5 \).

We obtain:

\[
\psi = 2 A_1 e^{-i \frac{p}{\psi} g x} e^{i \frac{p}{\psi} g (h_2 + f + e)}
\]
\[
\psi = 2 A_1 e^{-i \frac{p}{\psi} g x} e^{i \frac{p}{\psi} g (h_2 + f)}
\]
\[
\psi = 2 A_1 e^{-i \frac{p}{\psi} g x} e^{i \frac{p}{\psi} g (h_2 + f + e)}
\]
\[
\psi = 2 A_1 e^{-i \frac{p}{\psi} g x} e^{i \frac{p}{\psi} g (h_2 + f)}
\]

For \(p_2 \) small compared to \(p_1 \) the emergent beam is displaced along the \(y \) axis a distance \(\frac{p_2}{D_2} \). Hence, we wish to find \(f \).

Using equations (6) we find:

\[
\psi = \frac{D_2}{p_2} \frac{e^{i \frac{p}{\psi} g x}}{e^{i \frac{p}{\psi} g (h_2)}} = e^{i \frac{p}{\psi} g x} \frac{D_2}{p_2} \frac{e^{i \frac{p}{\psi} g (h_2 - e)}}{e^{i \frac{p}{\psi} g (h_2 - e)}}
\]

To evaluate \(f \) we must make some approximations. Two independent approximations are involved. We assume that \(p_2 \) is small compared to \(p_1 \), and that \(\psi \) is large compared to \(1 \). Let us consider the differential equation (7) for the \(B_5 \). If \(\psi \) is large compared to \(1 \) and \(f \) is small compared to \(2\psi \) we see that an approximate solution can be obtained in
the form

\[D = \alpha \cos (\nu \gamma + \phi) \]

Let us again consider the case \(\nu \) even. Then \(D_\nu \) is an even function and \(D_{\nu-1} \) an odd one and we can write:

\[D_\nu = \alpha \cos \nu \gamma \]

\[D_{\nu-1} = \beta \sin \nu \gamma \quad (21) \]

Using Whittaker and Watson's expressions for \(D \) we can show that:

\[\frac{\partial}{\partial \gamma} \frac{D_\nu(\gamma)}{D(\gamma)} = -1 \]

Hence for small \(\gamma \):

\[\frac{\partial}{\partial \gamma} \frac{D_{\nu}(\gamma)}{D_{\nu}(\gamma)} = -\alpha \gamma \frac{\partial}{\partial \gamma} \gamma \quad (22) \]

A better approximation can be obtained by using the Great-Cremer's method (2,12).

\[D_{\nu}(\gamma) = \frac{\alpha}{(i - \frac{\pi}{2\nu \gamma})} \sin \frac{\nu}{2} \left\{ \nu \gamma (2x(\nu \gamma) + 2x(\nu \gamma + \frac{\pi}{2\nu \gamma})) \right\} \]

and

\[D_{\nu}(\gamma) = \frac{\alpha}{(i - \frac{\pi}{2\nu \gamma})} \cos \frac{\nu}{2} \left\{ \nu \gamma (2x(\nu \gamma) + 2x(\nu \gamma + \frac{\pi}{2\nu \gamma})) \right\} \]

These hold for considerably larger values of \(\gamma \) than do Equations (2). If we assume \(\gamma \) is large compared to 1, but do not restrict \(\gamma \) we obtain:

\[\frac{\partial}{\partial \gamma} \frac{D_{\nu}(\gamma)}{D_{\nu}(\gamma)} = -\alpha \gamma \frac{\partial}{\partial \gamma} \gamma \quad (23) \]

Put this expression equal to \(-\alpha \gamma \frac{\partial}{\partial \gamma} \gamma \). We see that if we expand the argument in terms of \(\gamma \) and neglect terms of higher order than the 1st in \(\gamma \), Equation (24) reduces to (23). This expansion will be considered later.

Using Equation (23) we obtain:

\[\frac{\partial}{\partial \gamma} \frac{1}{1 + \left(\tan \frac{\nu}{2} + \sec \frac{\nu}{2} \tan \gamma \right)} = \frac{1}{1 + \left(\tan \frac{\nu}{2} + \sec \frac{\nu}{2} \tan \gamma \right)} \]
Hence:
\[
-\tan \frac{\delta}{2} = \tan \theta + \sec \theta \tan \sigma = \frac{\sin \theta \cos \sigma + \sin \sigma}{\cos \theta \cos \sigma}
\]

Now tan $\frac{\delta}{2} = \frac{p_2}{p_1}$ and if p_2 is very small compared to p_1,

a very small angle. If we neglect θ altogether we obtain too
small a value for $-\tan \frac{\delta}{2}$ since we decrease the numerator and increase
the denominator of the fraction. On the other hand, if we decrease the
denominator by subtracting $\sin \sigma \sin \theta$ and decrease the numerator only
by a second order term in θ by multiplying the last term by $\cos \theta$ we
obtain:
\[
-\tan \frac{\delta}{2} = \frac{\sin \theta \cos \sigma + \cos \sigma \sin \theta}{\cos \theta \cos \sigma - \sin \theta \sin \sigma} = \tan (\sigma + \theta)
\]

Neglecting θ altogether gives:
\[
-\tan \frac{\delta}{2} = \tan \sigma
\]

Hence, we can say:
\[
\sigma < -\frac{\delta}{2} < \sigma + \theta
\]
(24)

All the above arguments hold for $\cos \sigma$ negative if we interchange the
words decrease and increase.

Now let us evaluate σ.
\[
\sigma = \frac{1}{4} \left(\frac{1}{\sqrt{v_3}} + \frac{1}{\sqrt{v_1}} \right)
\]

Expanding in powers of $\frac{1}{\sqrt{v_3}}$ gives:
\[
\sigma = \frac{1}{8} \left\{ 1 + \frac{1}{\sqrt{v_3}} \frac{1}{\sqrt{v_1}} + \frac{1}{\sqrt{v_3}} \left(\frac{1}{\sqrt{v_1}} \right)^2 + \cdots \right\}
\]
\[
= \frac{1}{2} \left\{ \frac{1}{\sqrt{v_3}} - \frac{1}{\sqrt{v_1}} \left(\frac{1}{\sqrt{v_1}} \right)^2 + \cdots \right\}
\]

Putting $\frac{1}{\sqrt{r}} = \frac{p_2}{p_1}$ $2\sqrt{r}$ gives:
\[
\sigma = 2 \frac{p_2}{p_1} \left\{ 1 - \frac{1}{2} \left(\frac{p_2}{p_1} \right)^2 + \cdots \right\}
\]
(25)

If p_2 is so small compared to p that the square of p_2/p may be
neglected we have:
\[
\sigma = 2 \sqrt{\frac{p_2}{p}}
\]
- 12 -
Now $\sin \varepsilon = \frac{P_0}{p}$. Hence ε is small compared to σ in the same way that l is small compared to ν. Since we have already neglected terms of the order ν we shall neglect ε compared to σ. This gives:

$$\mathfrak{s} = -2 \frac{\pi}{\nu} \frac{P_0}{P}$$

(26)

Neglecting the ε in expressions (18) and (19) we see that the wave functions are the same for the incident and emergent beams except for (a) the negative signs on \mathcal{F}_1 and \mathcal{F}_2 and in the exponent which make the currents be in opposite directions and (b) the phase angle \mathfrak{s} in the cosines. Hence, if y_1 is the maximum of the incident beam and y_0 the maximum of the emergent beam then

$$y_0 - y_1 = -\frac{\mathfrak{s}}{p} \mathfrak{c}$$

Putting in the value of \mathfrak{s} from (26) gives:

$$y_0 - y_1 = \frac{2\sqrt{2}}{p} \mathfrak{c} = 2r$$

(27)

We have neglected terms of the order ν hence this result may be in error by a term of order λ. Hence to within distances of the order of a de Broglie wave length the maximum of the emergent beam will be displaced just twice the radius of the classical circle from the maximum of the incident beam.

Construction of a Wave Packet.

The functions we have been considering had a cosine dependence on y and hence extending an infinite distance in both directions. However, by using a Fourier integral over such solutions we can find functions which are zero except in the region:

$$-\Delta y \leq y \leq \Delta y.$$ These will be of the form:

$$\mathcal{F}_j = \int_{-\infty}^{+\infty} \int_{-\Delta y}^{\Delta y} e^{i k x} \mathcal{A}_j \mathcal{P}_j \mathcal{R}_j \, d\mathcal{P}_j$$

(28)
Where p_2 is the maximum value of p_2^*. With similar expressions for p_{12}^*, p_{13}^*, p_{14}^*, a_3 is considered a function of p_2^*. Since each component here will give an emergent beam of the form (17) we can write the functions for the total emergent beam:

$$\bar{\nu}_e = \int_{0}^{\infty} \frac{A_h(k) A_i(k) p}{m c} e^{-i k x} \cos(p_2^* x + p_2^*) \, dp_2^* \quad (29)$$

We have shown that for p_2^* sufficiently small $\bar{\nu}_e$ is independent of p_2^*. Hence the incident beam is reproduced at a distance $y_0 - y_1 = -\frac{d}{p_2^*}$ above the point of incidence. This means that if we pass electrons thru a slit into a magnetic field they will come out at a distance $2y$ away, the uncertainty being of the order of a de Broglie wave length.

The functions in the field will be of the form:

$$\bar{\nu}_f(x) = e^{i \omega x} \int_{-p}^{p} e^{i \frac{p}{m c} y} \Phi_i(x + \frac{p}{m c}) \, dp$$

and similar expressions for $\bar{\nu}_2$, $\bar{\nu}_3$, $\bar{\nu}_4$, where the Φ_i's and Φ'_i's are connected by the relations (10).

We can now dispense with the device of a field ending abruptly at $x = 0$ since the functions (20) will represent a packet of the same form even though the field extends beyond the slits at $x = 0$ and hence the functions will have the same form at this point. The use of such a discontinuous field is merely a convenient way of studying the solutions at $x = 0$.

We must now examine how large we can make p_2^*. We want $\frac{p_2^*}{p}$ to be small compared to unity. At the same time we can conclude either from the theory of Fourier integrals or from Heisenberg's uncertainty relation that:

$$\Delta y \frac{p}{x} \ll 1$$
Hence \(\frac{\Delta x}{x} \) must be large compared to one or \(\Delta y \) is large compared to \(\lambda \).

\[
\Delta y \gg \frac{\Delta x}{p} \approx \lambda
\]

This is usually true since a slit .1 mm. wide would be a very narrow one while \(\lambda \) is of the order of 1 \(\AA \). Hence \(\frac{\Delta x}{x} \approx 10^{-6} \).

This means also that the uncertainties introduced by the approximations used will be small compared to the uncertainties coming from a finite slit width. Hence, when applied to the motion of an electron in a magnetic field quantum mechanics will give the same results as classical for the value of the ratio \(q/m \).
SIRKLEY.

Solutions of the Dirac wave equation are obtained representing the motion of an electron in a uniform magnetic field. These solutions are used to calculate the maximum penetration of the electrons into the field and also the average x coordinate of the current. Both results agree with the classical result to distances of the order of a de Broglie wave length.

The solutions were then combined to represent a beam of electrons passing thru a slit. It was shown that the deviation of this beam from the classical path was also of the order of a de Broglie wave length. It was necessary to impose the condition that the slit be wide compared to an electron wave length - a condition amply fulfilled in all applications. This means that the slit must be so wide that diffraction of the electrons can be neglected.

The conclusion is drawn that in all experiments which have been performed the differences between the classical and the quantum predictions will be too small to be observed. The differences in paths predicted will in all cases be of the order of an electron wave length.

In conclusion, the author wishes to thank Dr. W. V. Houston, who directed this research, for continued advice and encouragement during its development.
REFERENCES:

10. P.A.M. Dirac, Quantum Mechanics, Oxford University Press (1930).