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ABSTRACT

This thesis consists of studies on the topic of relativistic stellar pulsations.

i) A new formalism for the numerical study of g-modes in neutron stars is
developed. This formalism avoids pitfalls associated with previous formalisms when
applied to the study of these low-frequency modes. The formalism involves a new
choice of perturbation variables, the introduction of an “instantaneous gravity”
approximation to the field outside the star, and an energy principle for determining
gravitational radiation damping times. The formalism is used to study g-modes that
arise because of chemical inhomogeneities in neutron star crusts. g-mode frequencies
associated with chemical inhomogeneities are found to be much higher than those
associated with finite temperature.

it) The relativistic Cowling approximation, introduced by McDermott, Van
Horn, & Scholl (1983) and analogous to the Newtonian Cowling approximation,
is refined to make it more accurate in the regime of highly relativistic stars. The
approximation is used to prove a host of useful theorems regarding the non-radial
modes of relativistic stars.

iii) Realistic neutron stars have a solid crust, and this will seriously affect
their g-modes. The first steps toward developing a theory of non-radial relativistic
pulsations in stars with a solid crust is reported on here: the calculation of the shear
strain and stress during a pulsation, the introduction of the shear stress into the
Einstein field equations as a source and to the equations of motion as a force, and
the development of a Lagrangian and variational principle for studying non-radial
relativistic pulsations in stars with a solid crust.

tv) Solar five-minute oscillations are a weak source of gravitational radiation.
The inner part of the solar system is actually in the transition zone of the solar
oscillation gravitational field, and future space-based beam detectors might be able

to measure the solar “transition-zone radiation.” The transition-zone gravitational
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field is explored for four relativistic gravity theories: a spin-zero theory (Nordstgm’s
theory), a spin-one theory (analogous to electromagnetism), a spin-two theory (gen-
eral relativity), and a mixed spin-zero/spin-one theory (Jordan-Brans-Dicke theory).
From the transition-zone gravitational field, it is possible to determine experimen-

tally the spin content of relativistic gravity.
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This thesis is a theoretical investigation of stellar pulsations in the context of
relativistic gravity. The topics addressed range from the pulsations of and grav-
itational radiation generation by “Newtonian” stars (stars where the Newtonian
gravitational potential is everywhere small) in a small but important class of rel-
ativistic gravity theories (Chapter 6), to general features of the pulsational eigen-
modes of relativistic stars in general relativity (Chapter 4), to detailed calculations
of the low-frequency spectrum of neutron star models (Chapters 2 & 3). Chapter
5 of the thesis presents a Lagrangian and the resulting variational principle for the
non-radial pulsations of relativistic stars with an isotropic shear modulus.

The introduction to this thesis begins with a brief HISTORICAL INTRODUCTION
to the study of stellar pulsations, starting with the observational study and identi-
fication of pulsating variable stars, and concentrating in the end on the relationship
of this thesis to other theoretical work in the field of relativistic stellar pulsations.
A TECHNICAL INTRODUCTION then provides a brief review of the relevant theoret-
ical underpinnings of the work presented here. Finally, the work presented in the

remaining five chapters of the thesis is briefly discussed.

HisToORICAL INTRODUCTION

Pulsating stars are a sub-class of intrinsic variable stars, which are in turn a sub-
class of variable stars. A variable star is identified as one whose physical properties
change on timescales less than or on the order of an astronomer’s lifetime: i.e., from
milliseconds for pulsars to decades for long-term variables. The intrinsic variables
are identified as those whose variability is due to internal properties of the star; thus
the class of intrinsic variables excludes eclipsing binaries, or stars whose variability
is due to the interaction of the star with the interstellar medium. Intrinsic variables

are further divided into eruptive variables (e.g., novae) and pulsating variables (e.g.,

the Cepheids).
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Variable stars play an important role in our modern understanding of the Uni-
verse: ;supernova,e are the crucible in which the heavier elements are cooked; the
Cepheids, in their role as the bottom rung of the cosmic distance ladder, help us to
determine the age and size of the universe; and pulsars are the most stable long-term
clocks available to us, have provided us with the first direct evidence for general
relativistic gravitational radiation, and allow us to probe for cosmic gravitational
radiation from the big bang.

For all of their importance, however, the serious observational study of pulsating
variable stars began late in the history of astronomy; it was not until 1596 that
the systematic study of pulsating variables began with the observations of Mira
Ceti; and it was over 60 years before Mira Ceti’s periodicity was firmly established
(Ledoux & Walraven 1958).

Observation and classification of variable stars was initially very slow: In 1784,
when the variability of 6 Cephei was observed (the first example of the Cepheids),
only 3 pulsating variables were known; and by 1844, only 10 pulsating variables had
been identified. It was only after the work of Herschel and Argelander that the rate
of discovery increased: by 1865, 113 pulsating variable stars had been identified
(Ledoux & Walraven). As new technology (e.g., differential photometry) and new
science (e.g., spectroscopy) were brought to bear on the problem of identification
and classification of variables, the rate of discovery increased. Today, there are over
25000 variable stars identified, and over 90% are pulsating variables (Cox 1980).

Variability has been observed in a wide range of stars; however, the single most
important pulsating star, owing to both its proximity and accessibility, is the Sun.
Solar pulsations were first observed by Leighton, Noyes, & Simon in 1960.

The classification of some variable stars as intrinsic, and the identification of
some intrinsic variables as pulsating stars, did not occur until relatively recently.

Initially, explanations of variability were purely geometrical (eclipses, precession of



4
ellipsoidal stars, or general recessional motion); it was not until 1878 that Ritter
suggested the variability of some stars could be due to their free oscillations.

The pulsational hypothesis provides a simple relatiénship between the funda-
mental pulsational period and the mean density of the star; along with an inde-
pendent determination of the mean density of the Cepheids, this period-density
relationship was used by Shapley (1914) to argue for the pulsational hypothesis.
Eddington (1918a,b) established the mathematical foundation and initiated the
study of radial pulsations of stars.

The pulsational modes of a non-rotating gas star can be divided into two types:
radial modes and non-radial modes. The radial modes are “breathing” modes of the
star: the gas motion is purely radial. The non-radial modes (called non-radial only
because they do not involve exclusively radial motion) encompass all of the other
spheroidal pulsational modes, and may be further classified according to the spheri-
cal harmonic order of, e.g., the pressure perturbation. In rotating stars, this simple
classification is complicated first by Coriolis forces and second (in more rapidly ro-
tating stars) by centrifugal forces. In the case of slowly rotating stars, however,
it is possible to identify modes that would be radial if the star were non-rotating;
these modes are referred to as the quasi-radial modes. Also, modes that would
correspond to differential rotation in non-rotating stars have non-zero frequency in
rotating stars (toroidal modes).

At first, the study of stellar pulsations concentrated on radial pulsations. Non-
radial pulsations were studied, but the major theoretical effort was toward under-
standing the radial pulsations. It was not until the relatively recent (1960) discovery
of solar oscillations that the major theoretical effort turned from the study of ra-
dial to non-radial pulsations. The reasons for this are two-fold: radial pulsation
theory is more tractable than non-radial pulsation theory, and the variability in

most stars seems to be due to radial pulsations. The Sun is a notable exception, in
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that its radial and dipole modes have been particularly hard to detect, and this has
stimulated work on non-radial pulsations.

At the same time that the discovery of solar oscillations was increasing the
interest in non-radial stellar pulsations, the entire pulsation theory (both radial
and non-radial) was being extended to encompass general relativity, thus enabling
the treatment of stars where relativistic gravity plays an important role in the
pulsations: white dwarfs, neutron stars, and supermassive stars.

The first step toward a relativistic theory of stellar pulsations was taken by
Chandrasekhar (1964a,b) and Feynman (1964). They developed the theory of ra-
dial pulsations for relativistic stars in the framework of general relativity. Earlier
work had established that a star of mass M under hydrostatic equilibrium can-
not have a (Schwarzschild coordinate) radius R less than 2.25GM/c? (here and
henceforth, G is the Newtonian gravitational constant and c is the speed of light).1
Chandrasekhar and Feynman showed that, owing to general relativistic effects, if
the ratio of specific heats « of the gas composing the star remains always finite, then
the fundamental radial pulsational mode becomes dynamically unstable well before
the mass contracts to this limiting radius: such a star perturbed from equilibrium
will not pulsate, but will collapse at an exponential rate.2 The closer v is to 4/3, the
larger the radius and the smaller the mass where the instability sets in. Since both
white dwarf and neutron stars are predominantly composed of highly degenerate
matter with a 4 close to 4/3, the presence of this instability plays an important role

in determining the maximum mass and radius of white dwarfs and neutron stars.

1 This is the minimum radius for polytropic stars in the limit of incompressibility.
2 The instability of the fundamental radial mode was first shown by Zel’dovich

using a static analysis of the stability of a star; Chandrasekhar’s action principle

provided a dynamical analysts of the radial mode mstability.
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(The definitive analysis of the radial instability in ultrarelativistic stars was due to
Ipser 1970).

The next steps toward the development of the theory of relativistic stellar pul-
sations were taken in the late 60s through the mid 70s by Thorne, Campolattaro,
Price, Ipser, and Detweiler (Thorne & Campolattaro 1967; Price & Thorne 1969;
Thorne 1969a,b; Campolattaro & Thorne 1970; Ipser & Thorne 1973; Detweiler &
Ipser 1973; Detweiler 1975a,b). A general perturbation theory for the non-radial
modes of non-rotating, perfect fluid relativistic spheres was developed, the gravita-
tional radiation emitted by the pulsations was analyzed, and variational principles
were developed to study the eigenfrequencies and stability of the modes. Addi-
tionally, the theory was used to explore numerically a small part of the non-radial
pulsation spectrum of model neutron stars. (The non-radial pulsational spectrum is
discussed in the TECHNICAL INTRODUCTION below). At the same time, the theory
of radial pulsations of relativistic stars was extended to encompass the quasi-radial
modes of slowly rotating stars (Hartle & Thorne 1969; Hartle, Thorne, & Chitre
1972).

The development of a relativistic theory of non-radial pulsations began within
three years of the work on relativistic radial pulsations. It is interesting to note that
the discovery of pulsars and their identification as neutron stars in the fall of 1967
occurred simultaneously and independently of the first published paper on non-
radial pulsations of relativistic stars (Thorne & Campolattaro 1967). Interesting,
perhaps, but not surprising: the observational discovery of neutron stars did not
occur in a theoretical vacuum. Detailed hydrodynamical models were suggesting
that a supernova could leave behind a neutron star remanent, neutron stars were
being considered as sources of galactic X-rays, and supermassive stars were under

investigation in connection with quasars (Thorne & Campolattaro).
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However strongly astrophysical considerations might have motivated the devel-
opment of a theory of non-radial relativistic stellar pulsations, another important
motivation of an entirely different sort was also present. Any (special) relativistic
theory of gravity must predict gravitational radiation, and general relativity is no
exception. After much controversy and numerous false starts, the physical reality
of general relativistic gravitational radiation was conclusively demonstrated (theo-
retically) by Bondi in 1957; however, no self-consistent calculations of the emission
of gravitational radiation from a source with significant self-gravity had ever been
made. The development of a theory of non-radial relativistic stellar pulsations filled
this gap by providing the first rigorous calculation of emission of gravitational ra-
diation from a strong field source. The radial theory of relativistic pulsations could
not serve this purpose: since general relativity is a spin-two theory (i.e., in lin-
earized general relativity, gravity can be expressed as being due to the action of a
spin-two field), only the quadrupole and higher order non-radial modes can radiate
gravitationally in the limit of perturbation theory.

By 1976, observations of some pulsars had uncovered quasi-periodic micropul-
sations in the structure of the subpulses (Boriakoff 1976; Cordes & Hankins 1977).
The millisecond timescales associated with these micropulsations are coincident with
the timescales of neutron star pulsations, and this led Boriakoff to suggest that the
phenomena could be related. Van Horn (1980) reiterated Boriakoff’s suggestion
and noted that additionally, owing to its solid crust, a neutron star would support
toroidal mode oscillations with frequencies that could be related to the drifting
sub-pulses observed in pulsars. In 1982, Van Horn, McDermott, & Carroll pointed
toward the “ringing” phenomena observed in the flux of some X-ray burst sources,
which are associated with accretion directly onto the surface of a neutron star in a

close binary, as being possibly related to low-frequency pulsations of neutron stars.
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As a consequence of all this activity, Glass & Lindblom (1983), and Lindblom
& Degweiler (1983) published the first comprehensive survey of the fundamental
radial and non-radial pulsational modes of neutron star models, examining some 13
equations of state over a wide range of central densities, and Schumaker & Thorne
(1983) developed the theory of torsional oscillations of relativistic stars.

At the same time, McDermott, Van Horn, & Scholl (1983) completed an in-
vestigation into the effects of the temperature structure of realistic neutron star
models on the low-frequency non-radial (g-mode) pulsation spectrum. The radi-
ally varying non-zero temperature structure of a neutron star leads to a spectrum
of low-frequency non-radial modes (g-modes). Previous analyses of neutron star
pulsations had concentrated on the case of zero temperature stars.

The numerical study of g-modes is fraught with difficulties (¢f. Chapter 2), all
related ultimately to the low-frequency character of the modes. In order to make
their numerical study more tractable, McDermott, Van Horn, & Scholl introduced
an approximation to the full theory of non-radial stellar pulsations (Thorne & Cam-
polattaro), which permitted them to calculate the highest frequency g-modes due
to the finite temperature structure of model neutron stars. Their approximation,
termed the relativistic Cowling approximation [because it is a relativistic gener-
alization of the Newtonian Cowling approximation (Cowling 1941)], is equivalent
to the neglect of all the gravitational perturbations in the formalism of Thorne &
Campolattaro.

In 1986, Finn (Chapter 2 of this thesis) reformulated the non-radial pulsations
theory for relativistic stars to make advantageous use of the low-frequency char-
acter of g-modes. The resulting slow-motion formalism enabled him to compute
the g-mode spectrum of relativistic stars without the neglect of the gravitational

perturbations. Finn (1987a and Chapter 3 of this thesis) used the slow-motion
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formalism to compute for zero temperature model neutron stars the influence of
chemical homogeneities on the g-mode spectrum.

The Cowling approximation (Cowling 1941), upon which the relativistic Cowling
approximation introduced by McDermott et al. is based, ig a landmark work in the
theory of non-radial Newtonian pulsations. Within the context of the approximation
(which is simply the neglect of the perturbation to the Newtonian gravitational
potential), it is possible to show rigorously that i) the non-radial pulsational modes
form a nearly Sturm-Liouville system and, using the Sturm comparison theorem,
to i7) classify the non-radial pulsational modes, iii) provide necessary and sufficient
conditions for the stability of the modes, and iv) prove a remarkable number of
powerful node theorems regarding the ordering of the mode eigenfrequencies and
the number of nodes in the corresponding eigenfunctions. Finn (1987b and Chapter
4 of this thesis) has modified the relativistic Cowling approximation of McDermott
et al. to more accurately describe the pulsations of very relativistic stars, and has
used the approximation to show that the same set of theorems that were previously
available only for Newtonian pulsations hold also for relativistic pulsations.

The presence of a solid crust in a neutron star not only introduces torsional
modes (Schumaker & Thorne 1983), but also is expected to modify significantly
the g-mode spectrum: the delicate balance of the gravitational and compressional-
pressure forces in these pulsations makes the much smaller shear-modulus forces
significant. Finn (Chapter 5 of this thesis) has taken the first steps toward extend-
ing the formalism for non-radial relativistic stellar pulsations to encompass rela-
tivistic stars with a crust by deriving the Lagrangian that describes the pulsations

and providing a variational principle that can be used to calculate the pulsational

e'lgenmo&es 0£ moclel neu{ron sfars Wi{]h a crusf.
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TECHNICAL INTRODUCTION

The bulk of this thesis (Chapters 2-5) deals with the general relativistic theory
of stellar pulsations, originally formulated by Thorne & Campolattaro (1967). That
theory is a first-order perturbation theory of the matter and gravitational (metric)
field of a non-rotating, spherically symmetric, perfect fluid sphere. The perturba-
tion theory is an extension of the Regge-Wheeler (Regge & Wheeler 1957) pertur-
bation theory of the Schwarzschild black-hole solution for a spherically symmetric
space-time without matter. This TECHNICAL INTRODUCTION provides a brief in-
troduction to i) the perturbation theory of the matter and space-time containing
a spherically symmetric perfect fluid sphere, and i) the spectrum of non-radial

pulsations of non-rotating stars.

In general relativity, gravitation is a property of the distances between points
in space-time, and the natural state of motion of a particle moving between two
points under only gravitational forces is that which minimizes the space-time (or
proper) distance traveled. The field that describes gravitation is thus the metric, g,
which is just a differential measure of the distance between points. The source of
the gravitational field in the Einstein field equations is the stress-energy tensor of
the matter fields present. Gravitational perturbations are thus equivalently thought
of as metric perturbations, and the perturbed gravitational field is just the metric
perturbation. The source of the metric perturbation is the perturbation of the
stress-energy tensor.

For a perfect fluid, the stress-energy tensor T takes on a particularly simple

form:

T=(p+p)U® U - pg, (2.1)

where p is the energy density (including rest mass), p is the (isotropic) pressure, and

U is the 4-momentum of the fluid. (Here and henceforth, units where @ = ¢ = 1
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are used.) To complete the description of the unperturbed background solution
upon which the Thorne-Campolattaro formalism is based, the metric describing a

space-time containing a static, spherically symmetric star, is given by
g = exp(v)dt? — exp(\)dr? — r2(d6? + sin2 6 dg?), (2.2)

where v and A are functions strictly of r and are given by

dv _ m+ 4rr3p
dr — “r(r—2m)’

exp[A\(r)] = [1 = 2m(r)/r]"}, (2.3)
m(r) = /(;r dr 4xr?p

(¢f. Chapter 23 of Misner, Thorne, & Wheeler 1973). The differential equation for
the potential v is integrated subject to the boundary condition limy—eo ¥ = 0. For
a spherically symmetric space-time, m(r) can be interpreted as the mass within
the coordinate radius r, and in the limit of weak fields v is twice the Newtonian
gravitational potential.

The most general metric perturbation, being a symmetric tensor in four di-
mension, has ten components, while the most general fluid perturbation has three
components (a spatial displacement vector). Since we are interested in only first or-
der perturbations of the spherically symmetric equilibrium background, the angular
dependence of the perturbations can be resolved into spherical harmonic angular
dependence, and the perturbations of each spherical harmonic order and type can
be treated separately. The non-radial perturbations of a star have even-parity: un-
der a spatial-coordinate inversion, the sign of the perturbations behaves as (-—1)1 .
This symmetry reduces the number of metric tensor and displacement vector com-
ponents that are involved in the perturbation: only two independent components

of the displacement vector and seven components of the metric tensor have this

symmetry.
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The metric plays a dual role in general relativity: it not only expresses the
effects of gravitation, it also describes the relationship between the coordinates and
distance. This relationship permits us to choose our 4 space-time coordinates to
eliminate 4 of the 10 components of the general metric perturbation in the same
way that we choose a gauge to eliminate a single component of the electromagnetic
potential A.

The generator of a coordinate gauge transformation is a 4-vector. A general
4-vector has only three components with the (—1)1 spatial coordinate inversion
symmetry of a non-radial pulsation mode; consequently, only three gauge freedoms
can be exploited in simplifying the metric perturbation. Regge & Wheeler (1957)
chose to simplify the metric perturbation by using the coordinate gauge freedom to
eliminate those three metric perturbations that behave as vectors and tensors on the
sphere, and their choice has endured to this day in the theory of relativistic stellar
pulsations. The final, simplified form of the perturbed metric used throughout the

remainder of this thesis has the Regge-Wheeler form

g =exp(v)(1 + HyY,,, )dt? + .(%I_lYlm(dt dr + dr dt) (2.4
—exp(\)(1 — HyY},, )dr? — r2(1 — KY),,)(d6? + sin?0 dg?). |

The (7 — 3 = 4) perturbation variables Hy, Hy, Hy, and K are all functions of only

r and t. In the absence of anisotropic stresses, the Einstein field equations show the

two metric perturbations Hy and Hy to be equal; accordingly, with the exception of

Chapter 5, where the perturbation theory of relativistic stars with a non-zero shear
modulus is discussed, we always make the substitution of Hy for Hs.

The fluid perturbation in the Thorne-Campolattaro formalism is described by

the fluid spatial-displacement vector 2,?, for ease of computation, the two independent

components of { (recall the spherical harmonic symmetry of the non-radial modes)
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are denoted W and V:
? " = exp(=\/2)WY,, /72,

o = V0pYim, (2.5)
£y = VOysYim.
Like the metric perturbations, W and V' are functions of only r and ¢.

The perturbed continuity equation together with the equation of state deter-
mines the perturbations in the energy density é and the pressure & in terms of
the metric and fluid perturbations, thus defining the source term (the perturbed
stress-energy tensor) of the Einstein field equations for the metric perturbation in
terms of the perturbation variables discussed above. Together with the boundary
conditions, which are discussed in Chapter 2, this completes the general technical

description of the Thorne-Campolattaro formalism.

Non-radial stellar pulsations can be classified into three groups, both mathe-
matically and physically. At a given spherical harmonic order ! (I > 1), ignoring
the degeneracy in m, there is a single fundamental mode, or f-mode. In the limit
of a constant density incompressible star, the f-mode is a (fluid dynamical) gravity
wave on the surface of the star. The f-mode is also known as the Kelvin mode,
because it is the only mode present in the pulsation of homogeneous incompressible
fluid spheres studied by Kelvin.

While the f-mode in an incompressible star has many aspects of a surface gravity
wave, Eulerian pressure perturbations (pressure perturbations at fixed r, 8, ¢) play
a significant role in determining the restoring force acting on a perturbed fluid
element. In a compressible fluid star, there is an infinite spectrum of modes with
higher frequency than the f-modes. In these modes the predominant restoring force

is due to the Eulerian pressure perturbation; thus the modes are known as pressure

modes, or p-modes. These modes are acoustic vibrations of the star, with small,
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predominantly radial fluid motions and large Eulerian pressure perturbations. As
long as the star is compressible, the p-modes are always present, and when they
are present they are always stable. The initial investige;,tions of non-radial modes
of relativistic stars (e.g., Thorne 1969a) concentrated on f-modes and low-order
p-modes.

At lower frequencies than the f-mode there are also stable modes; however, in
these modes it is not the Eulerian pressure perturbation that supplies the dominant
restoring force, but rather the unperturbed gravitational field of the star acting on
the Eulerian density perturbations. These modes are known as gravity modes, or
g-modes. In a g-mode, a perturbed fluid element is nearly in pressure equilibrium
with its surroundings, and so the only restoring force present is due to the grav-
itational force acting on the density perturbations. For this reason, the g-mode
spectrum is very sensitive to the gradient of specific entropy in the star, because
the specific entropy controls (in part) the relationship between pressure equilibrium
and density equality. For an adiabatic pulsation, if the specific entropy gradient
is positive on any radial shell of the star, then it will contain an infinite number
of stable g-modes, all with frequencies lower than the f-mode frequency. If the
specific entropy gradient vanishes on any radial shell, then it will contain an infinite
spectrum of neutrally stable (or zero-frequency) g-modes. Finally, if the specific
entropy gradient is negative on any spherical shell of the star, then it will contain
an infinite spectrum of imaginary frequency modes, corresponding to convective
instability. McDermott et al. (1983) made the first study of non-zero frequency
g-modes in relativistic stars.

The specific entropy is not the entire story; in neutron stars, it is not even the
most important story. In an inhomogeneous neutron star, variations in the chemical
composition also play a role in determining the relationship between pressure equi-

librium and density equality. In a neutron star the chemical composition changes
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discontinuously in the crust, and for each discontinuity in the composition there
may be a single g-mode (or discontinuity mode) that can be associated with each
discontinuity, and that mode may be stable or unstable depending on whether or
not the density of the fluid increases inward across the appropriate discontinuity.
[The difficulty in associating a stable (or unstable) mode with a discontinuity in the
density arises when there is an infinite spectrum of stable (or unstable) modes due
to the presence of a specific entropy gradient.] Finn (1987a, and Chapter 3 below)

provided the first study of discontinuity g-modes in relativistic stars.

INTRODUCTION TO THE REMAINING CHAPTERS

Chapter 2 puts the Thorne-Campolattaro theory of relativistic stellar pulsations
into a new form intended to permit an accurate numerical treatment of g-mode pul-
sations. As mentioned previously, the low-frequency character of the g-modes causes
problems when the Thorne-Campolattaro formalism is used to numerically compute
the eigenmodes. The difficulties are essentially of three kinds: i) the perturbation
variables Hy and K become degenerate within the star in the low-frequency limit,
and the small difference between them plays an important role. i) The Eulerian
pressure perturbation becomes vanishingly small in a g-mode pulsation and this
puts constraints on the expansion of a fluid element during a pulsation. This con-
straint fixes the angular displacement of a fluid element in relation to the radial
displacement. 443) The gravitational field of a relativistic star undergoing free os-
cillations must satisfy the Sommerfeld condition of outgoing gravitational radiation
at infinity. In a numerical calculation, this condition becomes one of outgoing grav-
itational radiation in the wave zone, which is at a distance of roughly three or more
wavelengths. As the frequency becomes small, which is the case for g-modes, the
wave zone recedes farther and farther from the star, making it more and more dif-

ficult to impose the outgoing-wave boundary condition. By making use of a new
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set of perturbation variables, a slow-motion approximation to the gravitational field
near the relativistic star, and a conserved energy (obtained from a variational prin-
ciple) for the pulsations, these difficulties are overcome and it becomes possible to
compute the g-modes of relativistic stars with high accuracy.

In Chapter 3, the slow-motion formalism developed in Chapter 2 is extended
and applied to the study of discontinuity modes in zero-temperature neutron stars.
In a truly zero-temperature neutron star the specific entropy vanishes and the fi-
nite frequency of the g-mode pulsations are due entirely to changes in chemical
composition; so, approximating a neutron star as being at zero temperature al-
lows one to study unambiguously the character of the discontinuity eigenfunctions
and frequencies. Two results of this investigation of discontinuity modes are wor-
thy of particular note: one is the very close relationship between the discontinuity
modes in a neutron star and the internal gravity waves in a discontinuously strati-
fied incompressible fluid, leading to very simple yet very accurate formulae for the
frequency and energy in the pulsations. The other is the relatively high frequency
of the pulsations compared to the frequencies of the finite-temperature g-modes
studied by McDermott et al. (1983). Consequently, in neutron stars it may be the
case that the highest frequency g-modes (the ones most likely to be observationally
important) are due to the discontinuities in the equation of state, not to the effects
of finite temperature.

As discussed above, the Newtonian Cowling approximation permits the proof
of a wide range of theorems regarding Newtonian stellar pulsations. Chapter 4
of this thesis refines the relativistic Cowling approximation of McDermott et al.
and uses it to show that many of the same theorems that hold for Newtonian
stellar pulsations hold also for pulsations of relativistic stars. Previous to the work
presented in this chapter, the presence of such theorems for relativistic pulsations

had been conjectured, but never proved.
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At densities ranging from 10% gem™3 to nuclear density, neutron star crusts
are solid and have a non-zero shear modulus. This shear modulus allows the crust
to support non-zero frequency torsional oscillations, and the theory of torsional
oscillations has been developed by Schumaker & Thorne (1983). The presence of
a shear modulus also modifies the character of the non-radial pulsational g-modes;
Chapter 5 reports briefly on work-in-progress toward extending the theory of non-
radial relativistic stellar pulsations to encompass stars that have a solid crust. The
shear stress tensor (which is the new source term introduced into the Einstein field
equations by the solid crust) is presented, and the Lagrangian that governs the
pulsations is derived. From the Lagrangian is derived a variational principle that
may be used to find the eigenmodes of the pulsations.

Chapter 6 of the thesis examines a different type of problem related to rela-
tivistic stellar pulsations: that of the gravitational field of a non-radially pulsating
Newtonian star (the Sun) in relativistic gravity theories. With the exception of the
Hulse-Taylor binary pulsar, tests of general relativity are confined to motion in a
non-dynamical gravitational field. In order to observe directly the character of dy-
namical gravity, it is necessary to be far enough away from a source of gravitational
radiation that the near-zone field has begun evolving into the wave-zone field. Solar
p-mode oscillations with five minute periods are a source of gravitational radia-
tion for which the Earth is in the transition zone where the near-zone gravitational
field has begun evolving into the radiation-zone field. In Chapter 6 (Finn 1985),
the transition-zone field is examined, and it is shown that it would be possible in
principle, though difficult in practice, to determine the spin of the dynamical grav-
itational field from measurements made by space-based interferometers. This work

complements the work of Eardley, Lee, & Lightman (1973), which examines the clas-

sification of relativistic gravity theories based on the radiation-zone field, and also
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the work of Johnson et al. (1980), which examines the near-zone time-dependent

Newtonian gravitational field of the Sun owing to solar oscillations.



19

REFERENCES

Bondi, H. 1957. Nature, 179, 1072.

Boriakoff, V. 1976. Astrophys. J. (Letters) , 208, L43.
Campolattaro, A., & Thorne, K.S. 1970. Astrophys. J., 159, 847.
Chandrasekhar, S. 1964a. Phys. Rev. Letters, 12, 114.
Chandrasekhar, S. 1964b. Astrophys. J., 140, 417.

Cordes, J., & Hankins, T.H. 1977. Astrophys. J., 218, 484.
Cowling, T.G. 1941. Mon. Not. R. astr. Soc., 101, 367.

Cox, J. P. 1980. Theory of Stellar Pulsation, Princeton University Press, Prince-

ton (New Jersey).
Detweiler, S.L., & Ipser, J.R. 1973. Astrophys. J., 185, 685.
Detweiler, S.L. 1975a. Astrophys. J., 197, 203.
Detweiler, S.L. 1975b. Astrophys. J., 201, 440.
Douglass, D. H. 1979. A Close-Up of the Sun, JPL Publication 78-70, Pasadena.
Eardley, D.M., Lee, D. L., & Lightman, A.P. 1973. Phys. Rev. D, 8, 3308.
Eddington, A.S. 1918a. Mon. Not. R. astr. Soc., 79, 2.
Eddington, A.S. 1918b. Mon. Not. R. astr. Soc., 79, 177.

Feynman, R.P. 1964. Unpublished work, quoted and relied upon by Fowler & Hoyle
1964.

Finn, L.S. 1985. Class. Quantum Grav., 2, 381.
Finn, L.S. 1986. Mon. Not. R. astr. Soc., 222, 393.
Finn, L.S. 1987a. Mon. Not. R. astr. Soc., in press.

Finn, L.S. 1987b. Submitted to Mon. Not. R. astr. Soc.



20

Fowler, W.A., & Hoyle, F. 1964. Astrophys. J. Suppl., 91, 201.

Glass, E.N., & Lindblom, L. 1983. Astrophys. J. Suppl., 53, 93.

Hartle, J. B., & Thorne, K.S., 1969. Astrophys. J., 158, 719.

Hartle, J. B., Thorné, K.S., & Chitre, S. M. 1972. Astrophys. J., 176, 177.

Ipser, J.R. 1970. Astrophys. Space Sci., 7, 361.

Ipser, J.R., & Thorne, K.S. 1973. Astrophys. J., 181, 181.

Jackson, J.D. 1975. Classical Electrodynamics, John Wiley & Sons, New York.

Johnson, W. W., Winget, D. E., Douglass, D. H., & Van Horn, H. M 1980. Nonra-
dial and Nonlinear Stellar Pulsations, Tucson 1979, ed. Hill, H.A.,
Springer- Verlag, Berlin, pp. 220-36.

Ledoux, P. & Walraven, Th. 1958. Handbuch der Physik, 51, ed. Fligge, S.,
Springer- Verlag, Berlin.

Leighton, R.B., Noyes, R. W., & Simon, G. W. 1960. Astrophys. J., 135, 474.
Lindblom, L., & Detweiler, S. L., 1983. Astrophys. J. Suppl., 53, 73.
McDermott, P.N., Van Horn, H. M., & Scholl, J. F. 1983. Astrophys. J., 268, 837.

Misner, C.A., Thorne, K.S., Wheeler, J. A. 1973. Gravitation, Freeman, San

Francisco.
Price, R., & Thorne, K.S. 1969. Astrophys. J., 155, 163.
Regge, T. & Wheeler, J. A. 1957. Phys. Rev., 108, 1063.
Ritter, A. 1878. Wiedemanns Ann., 5.
Schumaker, B. L., & Thorne, K.S., 1983. Mon. Not. R. astr. Soc., 203, 457.
Shapley, H. 1914. Astrophys. J., 40, 448.
Thorne, K. S. 1969a. Astrophys. J., 158, 1.

Thorne, K.S. 1969b. Astrophys. J., 158, 997.



21

Thorne, K.S., & Campolattaro, A.,
Van Horn, H.M. 1980. Astrophys. J., 236, 899. 1967. Astrophys. J., 149, 591.

Van Horn, H. M., McDermott, P.N., & Carroll, B. W., 1982. University of Rochester

preprint.



22

Chapter 2

G-Modes of
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Originally appeared in Monthly Notices of the Royal Astronomical Society, 222,
393-416 (1986).



-23 -

Abstract
A new formalism, designed explicitly for the numerical study of g-modes of
non-rotating, perfect-fluid, relativistic stars, is presented. The formalism
is based on the analysis of Thorne & Campolattaro (1967), but with: (i) a
choice of perturbation variables more suited to the numerical analysis of
the low-frequency g-mode pulsations, (i1) the introduction of an
instantaneous-gravity approximation that replaces the boundary
condition of outgoing gravitational radiation at infinity by a non-radiative,
Newtonian-like boundary condition, and (iii) an energy principle for
determining the damping time of a mode due to gravitational radiation.
The new formalism is applied to the study of g-mode pulsations of neutron

star models with a polytropic equation of state.



- 24 ~

1. Introduction

1.1. MOTIVATION

The general relativistic theory of nonradial pulsations of perfect
fluid stars was developed in the late 1960s by Thorne, Campolattaro,
Price, & Ipser (see Ipser & Thorne 1973 for a complete set of
references). Subsequently, in the 1970s and 80s, this formalism was
refined and improved by Ipser, Detweiler, and Lindblom (see Detweiler &
Lindblom 1983 for a complete set of references). This by-now standard
formalism has found fairly extensive applications in numerical studies

of f-modes and p-modes of neutron stars.

In 1980, Van Horn called attention to the possibility that low-
frequency modes of neutron stars — g-modes and torsional modes —
might be observable in radio pulsar and X-ray burster data.
Unfortunately, the standard version of the formalism is not able to
handle either g-modes (because of low-frequency effects that cause
numerical problems) nor torsional modes (because the formalism
assumes vanishing shear modulus). In response to Van Horn, Schumaker
& Thorne (1983) have developed a variant of the formalism valid for
torsional modes; and McDermott, Van Horn, & Scholl (1983) have
developed a variant (the 'relativistic Cowling approximation’”) usable

for g-modes.

The standard formalism faces two severe numerical difficulties in
numerical studies of low-frequency g-modes. First, there are delicate

numerical cancellations in the low-frequency limit that lead to
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numerical error. Second, the outgoing-wave boundary condition at
infinity becomes very difficult to implement numerically when the

reduced wavelength X=27nc¢ /w of the waves becomes large.

The relativistic Cowling approximation avoids some of the
difficulties of the standard formalism by setting precisely to zero all
Eulerian perturbations of the gravitational field (metric). The purpose
of this paper is to develop an alternative variant for g-modes, a "slow-
motion formalism,” which has higher accuracy than the relativistic
Cowling approximation. The slow-motion formalism achieves its higher

accuracy by retaining all gravitational perturbations.

In the slow-motion formalism, the delicate numerical cancellations
in the low-frequency limit are removed by several changes of
perturbation variables; and the difficulties involved in applying the
out-going wave boundary condition are circumvented by means of an
"instantaneous gravity approximation,” which gets rid of the dynamical
degrees of freedom in the external gravitational field and permits a
simple boundary condition to be imposed at the star’s surface. The
resulting slow-motion formalism makes fractional errors of order
(R/RN)?, where Xis the reduced wavelength of the gravitational radiation,

and X is the radius of the star.

Like the relativistic Cowling approximation, however, the slow-
motion formalism presumes vanishing shear modulus and so cannot be
used to study either torsional mode oscillations or the effects of a solid
crust on compressional modes. In a future paper I hope to generalize

the slow-motion formalism to include a non-zero shear modulus.
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The remainder of §1 establishes the notations and conventions that
will be used throughout this work. In §2 the standard formalism for
studying relativistic stellar pulsations is reviewed and the difficulties
that motivate the slow-motion formalism are discussed. The slow-
motion formalism is presented in §3, and in §4 it is applied to find g-
modes of zero-temperature relativistic polytropes. The conclusions are
presented in §5. Appendix A describes the numerical techniques used to
determine the quasinormal mode eigenfrequencies and eigenfunctions
in the slow motion formalism, and Appendix B describes the derivation

of the key equations of the slow motion formalism.

1.2. NOTATION

This paper relies heavily on the work of Thorne & Campolattaro
(1967), cited henceforth as Paper 1. Equations from Paper I are referred
to by their equation number from Paper I and prefixed by I; eg.,
equation (7b) of Paper I is referenced as equation (I,7b). Except when
explicitly noted otherwise, the notation and conventions of Paper I are
used throughout this work. In particular, geometrised units are used
(G =c =1, ¢f. box 1.8 of Misner, Thorne, & Wheeler 1973) and the
metric signature is (+——-). Primes are used to denote radial

derivatives and commas to denote partial derivatives:
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2. The Thorne-Campolattaro Formalism

2.1. THE STATIC BACKGROUND

The goal of this analysis of stellar pulsations is the determination
of the (complex) eigenfrequencies and eigenfunctions that characterize
the free oscillations of a star. The analysis begins from an exact
solution of the Einstein Field Equations (EFE) corresponding to a static,

spherically symmetric, perfect fluid sphere. The line element of that

solution is
ds? = eV("dt? — eMr)dr2 — r2(d 62 + sin?6 d ¢?). (1)

The exact solution is characterized by two functions, v(r) and A(r). In

terms of the pressure, p, and the energy density, p, these functions are

given by

dv _ o,m+4nr3p

dr " r(r-2m)’ (2a)
e r=1-2m/r, (2b)
%73 = 47117%p, (Re)

dp _ _ptp dv
dr 2 dr -’ (24)

The pressure and the energy density are related through the equation of
state. The normalization of v is chosen so that v = —\ in the region

outside the star. Regularity of the metric requires that m(0)=0. The
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function m(r) is interpreted as the gravitational mass inside a radius r.

2.2. THE EIGENVALUE PROBLEM

Paper I (Thorne & Campolattaro 1967) considers first-order
perturbations, with spherical harmonic order (22, of the fluid and
spacetime geometry about the exact solution (egs. [1], [2]) for a perfect
fluid star. The perturbation of the EFE is carried out in Regge-Wheeler
gauge (Regge & Wheeler 1957). Only the even parity perturbations are
considered: odd parity perturbations correspond to differential rotation

of the perfect fluid and not to pulsations.

In a realistic neutron star, there is a crystalline crust with non-zero
shear modulus. The shear modulus will contribute to the restoring force
for the even parity, compressional pulsations. In addition, the non-zero
shear modulus permits the star to support odd-parity torsional
oscillations. Schumaker & Thorne (1983) have developed a formalism
for studying these shear-modulus-supported torsional modes. In a later
work, I will extend the analysis of compressional modes presented here

to include the effects of a non-zero shear modulus.

In the standard formalism developed by Thorne & Campolattaro
(1967), there are two fluid degrees of freedom, described by the
perturbation variables W and V. Restricting attention to the single
spherical harmonic order { and azimuthal order m, W and V are related

to the displacement £ of a fluid element from its equilibrium position:

W =r2eM¢r /Y, (6,¢), (3a)
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<
It

= —72£0/8,Y,,.(0,9)
= —72¢%/sin%0 047 ,,.(6.9) (3b)

where 0,=0/86, 0,=08/8¢, and Y,.(6,4) is the scalar spherical harmonic.
(Here and henceforth assume that the real part of all complex

expressions is taken).

There are also two gravitational degrees of freedom. These are
described by the perturbation variables K and H, When specialized to

multipole order 4, the perturbed line element is
ds? = e”(l + HQY&m)dtz + ZHlthmdt dr
—eM1 — HyY,,)dr? —r3(1-KY,, )(d 6% + sin?6 d ¢3). (4)

The H defined in this paper differs from the A, of paper I by a time
derivative (cf. [1,7b]; Detweiler & Ipser 1973 eq. [6]). It is algebraically
related to the variables K, Hg, and W. The K, Hy, W, and V given here
also differ slightly from their Paper I definitions: in Paper I the spherical
harmonic dependence was specialized to m =0 and Legendre
polynomials were used to characterize the angular dependence of £”
and £° This restriction is unnecessary; spherical harmonic angular

dependence, with no specialization, is used here.

The perturbed EFE (eq. [I,8a-d], [I,9a-c]) may be combined to form a
coupled set of four first-order ordinary differential equations for K, Hy,
W, and V. To complete the specification of the eigenvalue problem for

quasi-normal modes, boundary conditions are specified at three places:
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at 7 =0, regularity requires K =Ho=W =V =0; at r=% (® the
coordinate radius of the unperturbed star) the Lagrangian pressure
perturbation vanishes; and at infinity the gravitational radiation is
strictly outgoing. The boundary condition at r =0 is required to keep the
physical perturbations regular. The boundary condition at r=%
corresponds physically to the definition of the stellar surface as the
place where the pressure vanishes: vanishing of the Lagrangian pressure
perturbation at r=RX is equivalent to vanishing of the pressure at the
surface of the perturbed star. Finally, the boundary condition at infinity
is the insistence that the star’s pulsations are not driven by
gravitational waves, but instead are free. Subject to these boundary
conditions, the perturbation equations have complex solutions only for
discrete values of complex pulsation frequency o, the "quasi-normal

mode eigenfrequencies.”

The numerical study of pulsational modes in the standard
formalism was first undertaken by Thorne (1969). More recently,
Lindblom & Detweiler (1983) have explored (=2 f-mode oscillations for a
variety of model neutron stars using a modified version of Thorne’s
computational algorithm that produces a more accurate measure of
the damping time of the pulsation (the imaginary part of the complex
quasi-normal mode eigenfrequency). In either of these algorithms the
quasi-normal mode eigenfrequencies, corresponding to strictly
outgoing radiation at infinity and an undriven (free) oscillation of the
star, are found by exploring the associated normal mode

eigenfrequencies, corresponding to equal amounts of ingoing and
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outgoing gravitational radiation at infinity (standing waves) and to

resonantly driven oscillations of the star.

The connection between the normal and quasi-normal modes may
be understood by analogy with a damped simple harmonic oscillator.
Regard each quasi-normal mode of the star as a damped harmonic
oscillator. The free (quasi-normal mode) pulsation of the star in a
particular mode corresponds to the free oscillation of the
corresponding damped oscillator. Associated with each quasi-normal
mode is a normal mode, corresponding to the resonant frequency of the
driven damped oscillator. For a damped harmonic oscillator, the
frequency of the energy resonance is the real part of the quasi-normal
mode frequency. The width of the energy resonance is related to the

imaginary part of the quasi-normal mode eigenfrequency.

In Thorne (1969) the normal mode problem (standing waves at
infinity) was solved numerically for various trial values of the real
frequency w. For each w, the ratio of the star’s pulsation energy to the
energy in one wavelength of standing waves far from the star was
computed. This energy ratio as a function of w showed resonances: each
resonant frequency was identified as a normal mode frequency, and also
as the real part of a quasi-normal mode frequency. The imaginary part

of the quasi-normal mode eigenfrequency was determined from the

width of the resonance.

When integrating the perturbation equations, Lindblom & Detweiler
(1983) also abandoned the outgoing-wave boundary condition in favor

of a standing wave, resonant boundary condition. For each (real) trial
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frequency the gravitational perturbations were integrated far into the
wave zone. There the gravitational radiation was resolved into ingoing
and outgoing waves (with equal amplitudes but different phases), and
the (complex) amplitude of the ingoing wave was determined. When the
real frequency approached a normal mode, the modulus of the
amplitude of the ingoing radiation passed through a minimum and its
phase changed rapidly. Lindblom & Detweiler (1983) found the complex
quasi-normal mode eigenfrequencies by fitting the (complex) amplitude
of the ingoing radiation at frequencies near a normal mode to a
polynomial in frequency. The complex-frequency root of that
polynomial fit was identified as the complex quasi-normal mode

eigenfrequency.

In either case, the complex quasi-normal mode eigenfrequencies
determined by Thorne (1969) or by Lindblom & Detweiler (1983) are the
same as those that would be obtained by an integration with complex

trial frequencies.

2.3. G-MODES IN THE STANDARD FORMALISM

The standard formalism is a complete treatment of linear
perturbations of a perfect fluid star. As such, it is completely capable of
treating p-, f-, and g-modes. In the regime of g-modes, however, there
are difficulties with the numerical implementation of the analytic
formalism. In this subsection, I will describe certain important features
of the g-mode regime and will discuss how they complicate a numerical

analysis of g-modes.
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C—mode pulsations have long periods; the real part o of the

frequency of a g-mode is much smaller than the frequency of the

fundamental mode:

02 < p,, (5a)
pc being the central density of the star. In particular, this implies

(R)? << M/R <1, (5b)

where AL is the star’s mass and R its radius. The imaginary part of a g-
mode eigenfrequency is also small, much smaller than the real part of
the eigenfrequency. One can estimate the amplitude damping time T as
the ratio of the energy in the star’s pulsation to the power in the

gravitational radiation; such an estimate gives

221 = (Q of mode) ~ (R/M)(cR)12>> 1. (8)

A fluid element in a g-mode pulsation remains very nearly in
pressure equilibrium during the entire pulsation — the Eulerian
pressure perturbation vanishes in the limit of a zero frequency g-mode.
Consequently, a chemically homogeneous, isentropic star has only
zero-frequency g-modes (in such a star, there is no distinction between
pressure equilibrium and density equilibrium — a displaced fluid
element is neutrally buoyant). McDermott, Van Horn, & Scholl (1983)
have investigated, in the 'context of their ‘relativistic Cowling

approximation,” finite frequency g-modes of neutron star models that

are presumed chemically homogeneous but not isentropic in the region
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of significant g-mode amplitude. In a future paper, I will apply the slow-
motion formalism to study finite frequency g-modes induced by

chemical inhomogeneities.

Since g-mode frequencies are so small, one measure of the
suitability of a numerical algorithm for studying them is its properties
in the limit of low frequency (oR)? << M/R. One way to investigate that
limit is through the properties of g-modes in a star that has only zero-

frequency g-modes.

For an isentropic, chemically homogeneous, perfect fluid star,
Thorne (1969) has shown that all the g-modes lie at zero frequency and
have a form dictated by the demand that the Eulerian pressure and

density perturbations vanish:

_ larbitrary piecewise L
W(r) = |differentiable function |- ¥ vanishing at r=0, %, (7a)
K=Hqy=0, (7b)
W o=w(r)t, (7¢)
_ e M2 ldw  dp/dr
V= L(l+1) | dr  7vep Wit (7d)

Note that V is determined by W and does not represent a truly

independent degree of freedom of the fluid.

At non-zero frequencies, W represents one fluid degree of freedom,
and the second fluid degree of freedom is the order 0[(c®)2V] difference

between V and its zero frequency limit (eq. [7d]). In a numerical
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calculation, differences of this kind introduce large errors owing to the

finite precision of the computation and are to be avoided.

The two gravitational variables, Hy and K, are sources of numerical
error in a limit different from w-0; in the limit r<<®, the two

gravitational variables become degenerate:

lim Ho~K = 0[(r/R)?K] . (8)

Thus Hg and K describe the same degree of freedom of the gravitational
field in the core of the star. Any dependence of the structure of the
perturbation on the second degree of freedom involves the small
difference between the two nearly equal quantities Hy and K. Again, a

small difference; again, to be avoided in a numerical calculation.

Thorne & Campolattaro (1967) used a fifth-order system of
differential equation for K, Hy, W, and V. Subsequently, Ipser & Thorne
(1973) showed it could be replaced by an equivalent fourth-order
system. More recently, Detweiler & Lindblom (1985) have pointed out
that the fourth-order system of equations is singular for some 7, 0<r <®
whenever w?31(l+1)p./2. While not important for the study of g-modes,
whose frequencies satisfy w®<<p,, this singularity can affect the study of

f-modes, complicating the validation of a numerical computer code.

The resonant standing-wave boundary condition is also a source of
difficulty in the low-frequency, g-mode regime. The standard formalism
requires that the perturbation equations be integrated well into the

wave-zone (or>>1) before this boundary condition may be applied.
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Since the frequency tends to zero for g-modes, both the effort and the
error involved in this integration become large. Since the imaginary
part of the eigenfrequency is fractionally so small compared to the real
part, a small fractional error in the real frequency can seriously affect
the estimate of the damping time. More seriously, since the imaginary
part of the eigenfrequency approaches zero much more rapidly than
the real part (eq. [6]), the resonances used by Thorne (1969) to locate
eigenfrequencies become exceedingly narrow, the widths become
exceedingly difficult to resolve numerically, and the resonances my
even be impossible to find in a numerical search. Similar problems

plague the algorithm of Lindblom & Detweiler (1983).

To summarize, in the low-frequency (g-mode) regime a numerical
implementation of the standard formalism suffers from a choice of
variables that do not represent the independent degrees of freedom of
the gravitational field and fluid motion, from the necessity of applying
the boundary condition of outgoing waves far (r > 1/0) from the star,
and from the difficulty of resolving narrow resonances. In the first
difficulty, the important physics of a small but finite Eulerian pressure
perturbation is not recognized by the implementation; and in the
second and third the method of application of the boundary condition
obscures the physics it represents — resonant frequencies and

gravitational radiation damping of the perturbed star.
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3. The Slow-Motion Formalism

The slow-motion formalism introduced herein consists of three
distinct parts: (i) a new choice of perturbation variables, (ii) an
instantaneous-gravity approximation for simplifying the outgoing-wave
boundary condition, and (i#ii) a prescription for determining the
complex eigenfrequencies of the quasi-normal modes. The formalism is
designed to eliminate the difficulties enumerated in the previous
subsection. The first step in that direction is the new choice of

perturbation variables.

3.1. CHOICE OF VARIABLES

Referring to equations (I,C3) and (I,C4), V may be expressed in

terms of K, Ho, W, and the Eulerian pressure perturbation:

1
T +1)

v

' 2 2
—e My L _o-Ney T g 7T (g oiok)], 9a
D - 5 (Ho+2K) (9a)

or, with equation (I,9¢),

___ 1 g .1
V = o7 | ptp +2H0] , (9b)
where
B=0p/Yin. (9¢)

Here and henceforth, the harmonic time dependence e ~**t is assumed

for all the perturbation variables.
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(fomparing equation (9a) with equation (7d), it is apparent that g
represents an independent degree of freedom of the fluid in the low
frequency limit: it is part of the small difference between the finite
frequency V and the zero frequency limit for V. In the slow-motion
approximation, B replaces V as a perturbation variable: the small
quantity § is calculated directly from its own differential equation, not

indirectly as the small difference between V and its zero frequency limit

(7d).

The singularity in the perturbation equations is also due to an
unfortunate choice of perturbation variables. The algebraic constraint

that links K, Ho, 8, and H is (cf. Detweiler & Lindblom 1985)

(£+2)2(é-—1) -+ 3:”’ +4Tr7'2p Hy=
L———M————)—ngltl — (wr)Re ‘V—e"(%+4ﬂr2p)(%m—+4m‘2p—1) K

+ -;}'— (wr)2e _(>\+,,)_4%1_)_ ™ 1 4rr2p

— 8np'e “MRW —-8mr2g.

The derivation of equation (10) is stated in Appendix B.

The coeflicient of H, in the constraint equation (10) is not positive
definite in the star when w?2/((+1)p./2; consequently, this constraint
equation should not be used to eliminate H; from the perturbation

equations. The coefficient of Hj is positive definite, however, so H, may
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be eliminated from the perturbation equations without introducing a

singularity.

Eliminating H, introduces H, as a perturbation variable; however,
for the same reason that V is not a wise choice of variable in the low-
frequency limit, A, is not a suitable perturbation variable: in the limit
of zero frequency, equation (10) becomes

167(p+p)er/?

Huy= =05 ' (11)

Like V, at low frequencies H; is determined predominantly by #. The
slow-motion approximation introduces the new variable

_16m(p+p)e?/?

J G+ 1) : (12)

H,

which vanishes in the zero frequency limit. Now, however, in the core of
the star K~J'/2; thus, in the small  limit K and J do not represent
truly independent degrees of freedom of the gravitational field. To
remedy this final deficiency, the slow motion approximation introduces

the new variable F in place of K:

F=Hy—-K. (13)

In terms of the new perturbation variables F', J, W, and B, the

perturbation equations are

i 2y 167(p+p)wie veMR
F wle vJ =y W—v'(F+K), (14a)
, 1, ., . A 1272 (p+p)
= () — + - K 14b
J 5 (v'=\)J +2e*|1 [(H—l) ( )




F-E g (14¢)

. eM2(p+p)we v ll_ 8rr2(p+p)

2 |7
! 2 {(t+1) p
w=-P T |1 14d
04 YP (wr)ev p+p g (14d)

F+

2 (wr)2ev

2,M/2
I / 1+ f{+1)
2 (wr)Re v

r2eM?2 [3+ (i+1)

In these equations the Eulerian density perturbation is represented by
J7x

—Op _ptp g p 7TV a2y 15a
S T ’ (152)

while 7 and 7, represent the effective adiabatic index of the pulsating
fluid and the adiabatic index reflected in the radial profile of pressure

and density in the unperturbed star:

Ap p+
= e 5
o = dp/dr p+p

dp/dr p
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The metric perturbation A, which appears in the perturbation equations
above and which I shall use below, can be computed from equation (10)
in terms of the new fundamental variables F, J, W, 8 with equations (12)
and (13):

2

+e? K ‘ (15¢)

(wr)2e "’+——2;Cn 1:’—%-47”‘2})

_l167m(p+ple M3(wr)Pe v W
{{+1) T

+ [(wr)?e ‘”(”“Lg—%—l)—

—Z}—+47T7”2p

((+2)(1—=1) . 3
5 +

F—-8nr?B.

;r:n, +47mrep

Detailed instructions for deriving these perturbation equations are

given in Appendix B.

The introduction of these new perturbation variables solves the
problems of the singularity in the differential equations, and the small
differences between nearly equal quantities in a numerical study of g-
mode pulsations. The second feature of the slow-motion formalism is
an instantaneous-gravity approximation to simplify the boundary

condition at infinity.
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3.2. INSTANTANEOUS-GRAVITY APPROXIMATION

G-mode pulsations satisfy cR<<1; consequently, the pulsating star
is deep in its own near-zone gravitational field. In the near zone,
retardation across the body of the star is negligible: the dynamical
aspect of the gravitational field may be viewed as a small correction to
an otherwise instantaneous field (the correction to the instantaneous
field at the surface of the star is of fractional order 0[(¢®)?], Finn 1985;
radiation reaction forces a correction of fractional order 0[(oR)3+1],
Ipser 1971). This observation is formalized in the “instantaneous
gravity boundary condition” (§ XII.A of Thorne 1980), an approximation
to the boundary condition of strictly outgoing gravitational waves at
infinity: the gravitational field exterior to the star is taken to be the w=0

limit of strictly outgoing gravitational waves.

The zero frequency limit of the vacuum gravitational perturbation
has been studied in detail by Fackerell (1971). The perturbation
equations simplify considerably in this case: the differential equation
for K may be solved eixactly (Ipser 1971; Fackerell 1971); the remaining
gravitational perturbation J (note that outside the star H,=J) is
described by a simple first-order ordinary differential equation with X

as a source.

There are two linearly independent solutions for K (and thus two
solutions for J) in the zero frequency limit; only one corresponds to the
zero frequency limit of outgoing waves at infinity (Ipser 1971; Fackerell

1971):
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2| e
o (r) == BRI 02 (22 -1) 4[5 (- 1)) /20 (22 1) (162)
2D
_ M | dv
J(r)=h(r)v(r)+k(r)|1 o (16b)
~ZAD 1 gy r/M>1,
[ i N
where '

associated Legendre function

Qr(z) = of the second kind ’ (16¢c)

=7 /24, (16d)
_ (+2)=1)(r2=3M1)—6M73

h(r)= [(l+2)(l——1)r+6M]?T—2M) ' (16e)

,2

k)=l (16¢)

d 1, d+1) 4 =Y

de |2 2@ Az 1) ”'x-af[{(”’ (16¢)
v(x)N—-z(%D—l-j—;% for »>>24,

and D is the amplitude of the gravitational perturbation.

This solution tends to zero as r »; the second (discarded) solution

diverges as r »«. The choice of solutions may be understood in terms of
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the resonant boundary condition. Recalling that in the near zone
r<1/0, the radiation field of finite but small freéuency o and the zero
frequency limit of that field are similar, consider the behavior of the
gravitational field near the surface of the star for real frequencies both
on and off resonance. On resonance, the gravitational field immediately
outside the star decreases rapidly in magnitude with increasing
distance from the star, thereby causing the energy in the pulsation to
be large compared to the energy in one wavelength (or several) of the
gravitational field; off resonance, the situation is reversed: the field
increases rapidly with distance from the star causing the energy in one
wavelength (or several) of the field to be far larger than the star’s
pulsation energy. In the zero frequency limit, it is this local behavior of
the field near the surface of the star that is preserved; consequently,
the solution that dies out at infinity, equation (18), corresponds to the

boundary condition of resonance.

G-mode frequencies satisfy (wR)*<<#/R. For sufficiently low
frequency, there always exists a regime where simultaneously (wr)2<<1
and M<<r. At such frequencies, the results of Finn (1985) for the weak
field, near-zone limit of gravitational radiation may be applied to
quantify more precisely the fractional error made in the instantaneous
gravity approximation. After a gauge change to remove the unphysical
~7 divergence of Hy and H; and the asymptotically constant value of K
in the limit 7> (Price & Thorne 1969), K must behave as ~h!2(wr),
where h{wr) is the spherical Hankel function with asymptotic form ~

exp(iwr)/wr. The error made in going to the limit w-0, wr »constant is
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of fractional order (wr)?/2(2(~5). Consequently, the error in K at r=%

in the instantaneous gravity approximation is expected to be of

fractional order -

fractional error committed by o (0R)?
instantaneous gravity approximation| "~ 2(2(~5)" (17)

For a 10 km radius, 14ty neutron star, equation (17) applies for all

modes with period 2 1 ms; thus, equation (17) applies for all g-modes.

The instantaneous gravity approximation reformulates the
outgoing wave boundary condition at infinity as a boundary condition at
the surface of the star: namely, that the ratio ' /J at the surface of the
star, determined by integrating the perturbation equations within the
star subject to the boundary condition of regularity at »=0 and
vanishing Lagrangian pressure perturbation at r =R, takes on the value
appropriate to the zero frequency limit of the outgoing-wave boundary
condition (equivalent to the zero frequency limit of the resonant
boundary condition). The zero frequency limit of ' /J for a particular (
depends only on ®/4 and so may be tabulated once and applied to any
star. This reformulation of the boundary condition at infinity avoids the
difficulty of integrating the gravitational perturbation far from the
star’s surface out to the wave zone, and indeed becomes more accurate
with lower frequency. The other two boundary conditions, that the
perturbations vanish at =0 and that the Lagrangian pressure
perturbation vanish at r=X, remain unchanged in the slow motion

formalism.
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At this stage, both the differential equations (eq. [14]) and
boundary conditions have been specified: a complete eigenvalue
problem exists. The eigenfrequencies may be found by any standard

technique; the technique I have used is described in Appendix A.

3.3. DETERMINING THE QUASI-NORMAL MODE EIGENFREQUENCIES

The eigenfrequencies found by solving the perturbation equations
(14) with the instantaneous gravity boundary condition are real,
because in the zero frequency limit there is no energy carried off by
gravitational waves and thus no damping of the pulsations. The third
distinct part of the slow motion formalism is a prescription for
determining the (complex) quasi-normal mode eigenfrequencies from

the real solutions of the eigenvalue problem stated above.

In the slow-motion formalism the real frequency solutions to the
stated eigenvalue problem are taken to be the real part of the
associated quasi-normal mode eigenfrequencies. The damping time of
the pulsation (the reciprocal of the imaginary part of the quasi-normal
mode eigenfrequency) is given by twice the ratio of the energy in the
pulsation to the energy flux in gravitational waves (cf. Detweiler 1975).
This requires an expression for the energy in the pulsations and an

expression for the power in outgoing gravitational radiation.

The difference between the eigenfunctions in the star determined
using the instantaneous gravity boundary condition and the true
eigenfunctions of a quasi-normal mode is of fractional order 0[(cR)?]

(eq. [17]). Thus, even though the instantaneous gravity boundary
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condition explicitly assumes that there is no gravitational radiation
present, the eigenfunctions calculated may be used to determine the
power in gravitational waves by asymptotically matching the near zone
field, determined by the values of the gravitational variables F and J at
r=R, to the wave zone field and determining the amplitude of outgoing
gravitational radiation. The time-averaged power radiated as
determined by this procedure is (Ipser 1971, eq. [25a])

dé _ 1 ((+2)(¢+1)
dt ~ 4nm [—-1)

(18)

ottip €
(1)1}
where D is defined by equation (16a) in terms of the amplitude of the
gravitational perturbation K at the surface of the star. The error in the

power calculated by this procedure is of fractional order 0[(w®)?] in the

true power.

Detweiler & Ipser (1973) derived a variational principle for non-
radial pulsational modes; associated with that variational principle is a
conservation law for the pulsational energy in the star. The time rate of
change of that pulsational energy, as given by the variational principle,
is equal to minus the power carried off by gravitational waves. Equation
(25) of Detweiler & Ipser gives the energy in the pulsations (note a factor

of /. is missing from the final surface integral of Detweiler & Ipser

1973,eq. [25]):

R
80 Rut)= [|or [2dr e 0-/2l 03B ) | I joyyy gy Ve (19)
0 A
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where S is the relativistic Schwarzschild discriminant,
S =p'=ypp/(p+p) .

In light of the many errors elsewhere in the literature on stellar
pulsation energy, I have carefully rederived this Detweiler & Ipser (1973)
expression and found it to be correct aside from the factor of % in the
surface integral. As given above, it differs from Detweiler & Ipser (1973),

equation (25) only by modest changes of notation and the correction

and evaluation of the final surface integral.

The integrals above are carried out to a radius .,>1/w from the

star. Outside the star, the gravitational perturbation variables are

calculated from equations (16).
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In terms of the pulsation energy (19) and power radiated (18), the

amplitude damping time of the quasi-normal-mode pulsations is
Im(w)=t=-Ld81 . (20)
T 2

In the slow-motion formalism Im(w) is evaluated numerically using
equations (18)-(20).

To summarize, in the slow-motion formalism variables that are
independent in the low frequency limit are chosen; the dominant, non-
dynamical character of the gravitational field is exploited to convert
the boundary condition of outgoing radiation at infinity into a boundary
condition that may be imposed on the surface of the star without

reference to a distant infinity; and the damping time of a pulsation

mode is found by using an energy principle.

4. Demonstration -- G-Modes in Polytropes

This section discusses the performance of the slow-motion
formalism on stellar models with a simple equation of state. Model
stars with g-modes of non-zero frequency are created by artificial
means. The discussion is intended to demonstrate the performance of
the formalism; in a future paper the formalism will be applied to study
more realistic equations of state, and the physical sources of finite-

frequency g-modes will be considered in detail.

The slow-motion formalism is designed to study long period g-mode

pulsations; it is not expected to yield accurate results (especially
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damping times) for f-modes, and is certainly not applicable to p-mode
pulsations, where the dynamics of the gravitational field play a major
role. Validation of an implementation of the slow-motion formalism is
complicated by the lack of overlap with any previous numerical

calculations in the g-mode domain that are expected to be more

accurate.

To demonstrate the slow-motion formalism, neutron star models

with polytropic equations of state
p=/cp1“/” (21)

were constructed. This equation of state is chosen for two reasons: (i) to
eliminate equation-of-state side-effects that could obscure the
validation of the code; and (ii) Balbinski et al. (1985) have studied f-
modes in model neutron stars constructed from this equation of state
with n=1 and k=100 (p and p measured in units of km™2) using the
algorithm of Lindblom & Detweiler (1983); this permits a comparison
with the slow-motion formalism in a regime where the formalism is

marginally accurate.

Table 1 gives the vital statistics (central density, radius, and mass)
of the static models constructed from the equation of state (21) (with
n=1, k=100; p and p in units of km™2 as in Balbinski et al. 1985) at
three different densities. Table 1 also shows the periods and damping
times of the quadrupole f-modes as I have calculated them using the
slow-motion formalism (denoted SM in the Table) and as calculated by

Lindblom & Detweiler in Balbinski et al. (1985) (denoted BSDL in the
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Table). To judge the magnitude of the expected errors, the quantity

(wR)? is tabulated in the final column for each model.

Both the periods and the damping times as generated by the slow-
motion formalism show good agreement with the non-slow-motion ones.
This gives confidence that the slow-motion formalism as described

above has been correctly posed and implemented.

To study the performance of the slow-motion formalism in
determining characteristics of g-modes, it is necessary to provide a
mechanism for generating g-modes at non-zero frequency. This is done
by enforcing a non-zero ¥ =y—y, (¢f. eq. [15a]). In a real physical
situation, this difference is generated by deviations from isentropy or

by chemical inhomogeneities.

In a realistic neutron star model, ¥ is expected to be significant
only at densities pg2x10! g em™3 (¢f. Meltzer & Thorne 1966;
McDermott, Van Horn, & Scholl 1983). In order to demonstrate the slow-
motion formalism under somewhat realistic conditions, ¥/v, — 1 was
set to a constant, non-zero value in a 1 km "surface layer' of the models
studied. No physical effects were used to determine the choice of ¥ in
this region; ¥ was adjusted to probe the ability of the slow motion
formalism to find g-mode periods in what is expected to be the
physically relevant regime T,2100 ms (¢f. McDermott, Van Horn, &
Scholl 1983).

To estimate the frequency of the first g-mode, the Brunt-Vaisala
frequency (cf. Cox 1980) may be reexpressed to show that, to order of

magnitude, the first g-mode frequency is expected to satisfy
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(o ﬂe)2~i—[%—] £ (22)

averaged over the star. For the model studied (Table 1), this formula

gives Ty =27/wy2100ms if we choose 9/7,=10"3 within 1 km of the

surface.

Table 2 shows the first six (=2 g-mode periods and damping times
for the Table 1 model with central density 1015 g cm™3, and with
9/70—1=1073 within 1 km of the surface. The period of the first g-mode
is consistent with the crude estimate provided by equation (22);

subsequent modes are nearly equally spaced in period.

Also tabulated is the pulsational energy determined by equation
(19). In evaluating equation (19), the perturbation is normalized to

¢"/R=1 at the surface, and the energy scales as the square of this

quantity.

Damping time is expected to scale with w, R, 4, and the number of
radial nodes n in the eigenfunction W is expected to scale roughly as
(cf. Misner, Thorne, & Wheeler 1973, exercise 37.13)

2n —1
(oR)

21
re(F) R (24)

M

The final column of Table 2 expresses 7 in terms of this expected
scaling. The damping times are found to scale roughly in the expected

fashion, although the higher modes damp a bit more slowly.

Figure 1 shows F and K for the gg mode of Table 2. Note the

difference in magnitude between F and K. In the non-slow-motion
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formalism F' is computed as the difference between H, and K (eq. [13]);
in the slow-motion formalism F is a fundamental variable and is
calculated directly from its own differential equation (eq. [14a]). The
non-slow-motion formalism must work much harder than the slow-
motion formalism to achieve the same fractional accuracy in F. The

abrupt turn-on of ¥ is responsible for the abrupt change of K near

1—-7 /R~10-1,

5. Conclusions

The slow-motion formalism provides a new framework for studying
non-radial pulsations of relativistic stars in the limit of low-frequency —
a framework particularly well suited for numerical work. The key
features of the slow-motion formalism are (i) a choice of perturbation
functions that exploit the low-frequency limit to isolate the
independent degrees of freedom of the gravitational field and fluid
motion; (i1) an instantaneous gravity approximation that recognizes
the unimportance of the dynamics of the gravitational field to the
structure of the perturbation and permits the outgoing-waves boundary
condition, which must be applied far from the star, to be reformulated
as a boundary condition at the surface of the star; and (ii1) an
expression for the damping time of a quasi-normal mode in terms of
the surface value of the gravitational perturbations and an integral

over real eigenfunctions.

An implementation of the slow-motion formalism shows it to be

capable of locating and studying g-mode eigenfrequencies in polytropic
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stars. Eigenfrequencies can be estimated crudely and are found to
agree with the numerical calculations; damping times scale with
frequency and mode number as expected. Though the slow-motion
formalism is not expected to be very accurate in the regime of f-modes,
and not at all applicable to the regime of p-modes, f-mode
eigenfrequencies and damping times computed with the formalism

show good agreement with the f-mode calculations of Balbinski et al.

(1985).

Future work will apply the slow-motion formalism to study more
realistic equations of state and realistic sources of non-zero g-mode
frequency, and will extend the formalism to include the effects of an

isotropic shear stress.
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Appendix A: Computing quasi-normal modes in the slow-motion

formalism

This appendix is devoted to a detailed description of the author’s

numerical implementation of the slow-motion formalism.

1. THE STATIC BACKGROUND

The static background is described by the line element of equation
(1). A fourth-order Runge-Kutta integrator is used to integrate
equations (2) from the center of the star to the surface. An adaptive
step-size algorithm (cf. Gear 1971) is used to insure that the increment
at each step involves a fractional error below a given level (10~ for the
calculations reported here). Pressure p, density p, mass m, potential v,
and adiabatic index 7y, are recorded initially on a "data grid” of typical
resolution 30 meters, independent of the step size chosen by the
integrator; near the surface, data are recorded more frequently, with a
minimum data-grid size of 5 cm. The resolution of the data grid is
increased whenever the integrator finds that more than 1000 steps are
required to move between data grid points. (Over the bulk of the star,
the step size required for a fractional accuracy of a part in 107% is
larger than 30 m — thus, the expected accuracy of the integration is
better than a part in 107%.) Integration is terminated when the data grid
resolution increases beyond 5 cm (i.e., when data are recorded more
often than every 5 cm), or when the density falls below that of 56Fe. All
the variables are then extended analytically to a surface at zero

pressure by matching onto a polytropic "atmosphere’ (¢f. Lindblom &
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Detweiler 1833):
p=pol(R-7)/R]"*1, (A1)
p=pol (R—7)/R]™.

(The atmosphere is taken to be polytropic even if the interior is not.)

The parameters pg, po, n, and R are determined by insisting that dp /dr,

p,p, and yo=1+1/n be continuous.

2. SOLVING THE EIGENPROBLEM

In this section, I first describe the general procedure for finding the
quasi-normal modes of a model star, and then return to focus on each

part of the procedure in more detail.

2.1. THE GENERAL PROCEDURE

For a given trial frequency, the boundary condition of regularity at
=0 chooses a two-parameter family of solutions to the differential
equations (14). Each of these two solutions is integrated separately
from the core of the star to the star’s midpoint. At the surface of the
star, the instantaneous gravity boundary condition and the boundary
condition of vanishing Lagrangian pressure perturbation also
determine a two-parameter family of solutions. Each of these solutions

is integrated from the surface of the star to the midpoint.

If the trial frequency is an eigenfrequency, then the eigenfunctions

F,J, W, and B are continuous at the midpoint. In the region between
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7=0 and the midpoint, the eigenfunctions are given by a linear
superposition of the two core solutions; in the region between the
midpoint and 7r=R, the eigenfunctions are given by a linear
superposition of the two surface solutions. To determine if the trial
frequency is an eigenfrequency, a linear superposition of the two
surface solutions and of the two core solutions is sought for which the

four eigenfunctions are continuous. Only for an eigenfrequency does

such a solution exist.

Having found an eigenfrequency, the integral expression equation
(14) is evaluated with the tabulated eigenfunctions to find the energy in
the pulsations. The power radiated in gravitational radiation is
evaluated with equations (18), (16), and the value of K at the surface of

the star; and the damping time is determined from equation (20).

2.2. THE CORE SOLUTIONS

The differential equations (14) are singular at the core of the star:
it is possible to expand the perturbations as well as certain quantities

that describe the unperturbed star in a power series about r=0 to

obtain

F= F0+—7:23F2+0 (r4) |r+=, (A2a)
J= JO+—7§—J2+O(T4) —y (A2D)
W= W0+1';~W2+o (4 |rr, (A2¢)
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2
B= 50+%52+0(T4) e, (A2d)
2
K= Ko+ 5-Ka+0(r4) |7, (A2e)
,,.2 7.4 6
1/=Vo+‘~2-'l/g+z!—l/4+0(’r ), (Agf)
7"2 4
P=pot5pet0(r?), (A2g)
and
7'2 4
p=pot—5-pz+0 (r?). (A2h)

The quantities pg, po, and vq are the values of p, p, and v at r=0. The

remaining quantities that describe the unperturbed star are

ve=8m(po+3po)/3, (A21)
va=167 | 8 po(3p o) + L2722 (a2))
P2=—47m(00+p0)(Lo+3p0)/3. (A2k)
and

pe= p;’;iopz- (A21)

The perturbation equations (14) may be evaluated to yield a linear

system of equations that is solved numerically to determine the
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coefficients in equations (A2a-e). The expansions (A2a-e) select a two-
parameter family of solutions to the differential équations (14); the two
parameters that specify a solution are taken to be W, and Jo. In order
to obtain starting values for the integration, the system is solved twice,
once with Wo=2"*and J(=0, and once with ¥ ,=0 and J,=%"* The linear

system of equations is

18mw2e ~(po+p )

(l+2)Fo'—"— l(l“*‘].) Wo*UgKo‘-Coze ““Jo, (ASa)
{+1)(po+p o)

IBo=0w?e " (po+p oy I o— ( 4’00 Po) ;. (A3D)

ng“éjz‘—l“cfg, (ASC)

v QZQ -
En‘;ﬂFg=“V2FO—V4KO+—2-?——‘—JQ

_ Brw?e 7(pa+p p+(po+p 0)(BMpe—3v3) /3) W

i+1) 0
Va wle Brw?e ~*(po+p o)
g Kem T {i+1) Ve (A3d)
(+3) , _ 16mpo  24m(po+po) |,  4m(3po—po)
z Je=lo 3 (L+1) Ko 3 Jo
16792 16m(po+po)
- +K 5, A3e
Y({(+1) " O yp ol 1) BotKe (A3e)
L 41 (po+po)
2 87pg/3+w?e v




-62 -

. 9(¢+2)(1=1)(2m(9p2+207(3p g+p0)2) /45— wle ~Vou, /4)
(Bw?e ~»+B7pé) 0

(BwRe "+2m((+1)(3p o +po))
30(3w?e " +8mpg )2

x(45vawRe ~V°—72mpy—160m2(3p g +p0)?)

4 —w?e (vy/2+87po/3) +(l+1)(p 2+p2/5) J

81mpg/3+wRe ~¥° 0

Brrwle ~ve
+
{(t+1)(8mpg+3we ¥

) 3(p2+p2)=(0o+p o) (3va+8mpy)

_ (Potp0)(—45vzwPe " +72p,m+160m2(3p g +pg)?)
5(3w?e ~V+8mpg)

Wo

320212 /5+12873(3p o+pg)3/9—4mrowie V0

+9
(3wRe ~v°+8mpg)?

0

wfe v /2+{({+1)(3p o+po)T/3 J o+ Bmete (potpo) w
87po/3+w?e ¥ *T U 1) (Brpo/B+w%e ) C

~ 4 g, (tr2)(=1)
87po/3+we o 2 4(87mpo/3+we ~°)

Fa, (A3f)

(¢+3) Kz | —p2—p2+(Bmpo/3+vz)(po+p0)

[L+1) Bz i+ B2y 8o

W o=
27 2wZe v | potp g 2 (Po+p0)?
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Wit‘h this power-series solution, starting values for a fourth-order
Runge-Kutta integration are found at a non-zero starting radius »,. The
Runge-Kutta integration is performed with an adaptive step-size
algorithm (Gear 1971) that keeps fractional errors below a given level (a
part in 107* for the calculations reported here). To insure stable
numerical performance, the integrator never crosses a data-grid point
with a step; however, it may take multiple steps within a data grid zone.
Within a grid zone, p and p are logarithmically interpolated on the
distance from the surface. The choice of 7, is made to be consistent with
the fractional accuracy of the integrator. Values of the two integrated

solutions are recorded at every point of the data grid.
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2.3. THE SURFACE SOLUTIONS

Two boundary conditions are applied at the surface of the star to
determine the two-parameter family of solutions that are integrated to
the midpoint. The instantaneous gravity boundary condition fixes the
ratio F/J at R, but it does not determine the relative values of ¥ and J
with respect to either § or W. The boundary condition of vanishing

Lagrangian pressure perturbation is

. e M2

lrl_l:% B+p’——7—:2-—W=O, (A4)
and thus determines the ratio of 8 to p# at R. The remaining freedom is
represented in the relative values of 8/poW and F/J. As W/R3>>J /R, F
for g-mode pulsations, the two independent solutions that are
integrated are chosen to have initial values at ® of {W=0,J/=%}] and
(W=R3, F=/=0} (in the first solution, F is chosen to satisfy the
instantaneous gravity boundary condition on F /J). The second of these
solutions is the predominant part of the actual eigenfunction; the first

solution is a small correction.

To determine the value of F/J, equation (16g) is numerically
integrated for a given { and the table of values of v /Ml is kept. Once a
static model (i.e., ®/2#) has been specified, the value of F/J is
determined via equations (16) and (15c¢). I wish to emphasize that the
integration of equation (16g) does not require anything other than a
choice of {, and that once v /4l has been tabulated it can be used to

determine F' /J as a function of ®/2.4L.
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A;pplication of the boundary condition of vanishing Lagrangian
pressure perturbation is complicated by a singularity of the differential
equations (14) at R: i.e., in equation (14d) p vanishes at r =% while W
does not, and also B8/p is divergent as r-R. The boundary condition
(A4) is applied by reexpressing equations (14c¢), (14d), and (15a) in
terms not of the Eulerian pressure perturbation 8 but the Lagrangian

pressure perturbation X:

o —M2
X=B+p'=———W, (A5a)
ax_ v 1+-M x—|2 11— (i+1) I N P (A5b)
dr 2 (wr)Be—v 2 (wr)ev T

. i+1) wle V(p+p) fi+1)

+ 1+ K- 1+ J
P 2(wr)Re v ‘ 2 2(wr)2e v

1 8nr3(p+p)
{L+1)

—B—EE— er2|4m(p+3p ) —w2e v
,

__e_)\/z_y_'_ 2+7’V’ 1— é(l+1) W,
T 4 (wr)Re v
AW _ 2 s L1+ 1)yp X . )
———— R 1— + ABe
dr 4 (wr)ReV(p+p) |72 2(wr)Re~V ( )
2_A/2
LA Py PR (23 (F+K)|,
2 (wr)Re v
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X _ e M?
u=(o+p) - = p eTZ W. / (A5d)

Vanishing of the Lagrangian pressure perturbation and regularity
of the perturbation requires that X /p remain ﬁnite as the surface of
the star is approached and p ~0. The ratio X /p at R is then X'/p’ and is
evaluated with equations (A5b) and (2d):

X _ _X_ (A5e)
D P
= — .l_ 1-— [(é'f_l) 1' F+ 1+__££H*1L K
2 (wr)Re—v| TV 2(wr)Re v
—_ wzex/2~v+e—7\/2_v_l_ 2+TV’ 1— l(é+1)
T2y T 4 (wr)2e v
2 —
cefe | _wrn) |,
v 2(wr)2e v

With this expression for X and expression (A5e) for X /p, all references
to X/p may be eliminated from the perturbation equations near the

surface, leaving a non-singular set of equations.

The perturbation equations for F, J, and W are numerically
integrated directly from the surface with the approximation X /p, 8/p
constant for a small distance. That distance is a fraction of the scale
height of 8/p at the surface, a fraction chosen to be consistent with the

fractional accuracy (a part in 1074) of the Runge-Kutta integration. For
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the solution with initial value W =0 at R, 8/p vanishes at r =%, and grows
linearly with -7 . Since for g-modes this solution is a small correction
to the F'=J =0 solution, the scale height in this case is determined from
the {W =R3, F =J=0{ solution. The reciprocal of the scale height of 8/p
at R in the case {W=R%3, F =J =01 is

1 _B/p) _ v RBwPerY  F oappX 1

scale height B/p 2 V' Y7o oW (A6)

evaluated at r=2X.

After the two surface solutions are started in this fashion, the
integration continues in 7', J, ¥, and X until X =g for one of the surface
solutions. From that point onward, the variables used in the integration
are £, J, W, and B. For g-modes, this change of variables typically

occurs as soon as the X /p, B/p constant assumption is dropped.

Once the X /p, §/p constant assumption is dropped, the solutions
are tabulated at every data grid point and at intermediate points, to
insure that there are a minimum (typically 10 to 20) number of data
points per e-folding distance from the surface. This is necessary
because the eigenfunctions vary rapidly near the surface. Figure 2
shows the rapid variation in W and g/p with log((R—7)/R) for the gg
mode of Table 2. The point closest to the surface is the first point where
B is allowed to vary independently of p. The abrupt "turn-on” of a non-

zero ¥ is responsible for the abrupt change in W and B/p at
(R—7)/R=10"1.
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Near the surface of the star, linear interpolation is not adequate to
represent p and p, particularly as 8/p and X /p are constant sources to
thé perturbation equations in this region. Logarithmic interpolation on
the distance from the surface is used to determine p and p between
points of the data grid. This procedure is more faithful to the true

behavior of p and p near the surface than is linear interpolation.

2.4. CRITERION FOR AN EIGENFREQUENCY

At the midpoint of the star, four solutions of the perturbation
equations are brought together and the demand is made that some
linear combination of the core solutions match smoothly onto some
linear combination of the surface solutions. As the perturbation
equations are homogeneous, however, this problem is overdetermined
and will have a solution only for special values of the frequency w — the

eigenfrequencies.

To have some measure of how close the trial frequency is to an
eigenfrequency, the demand for continuity of ¥, J, W, and B at the
midpoint is weakened: the unique core and surfacé solution (up to an
overall scale) that matches F, J, and § smoothly at the midpoint is

determined, and a measure of the discontinuity in ¥, the quantity

w core w surface

™
I

* A?
Wcore+ Wsurface ( )

is determined (W .ore and Wgyriace are the values of W, determined by the

core and surface solutions, at the midpoint). Only at an eigenfrequency
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will & vanish. In practice, ¢ hovers about 1 when far from an
eigenfrequency, passing through «, changing sign, and then passing
through 0 near an eigenfrequency. The accuracy to which & should
vanish for an eigenfrequency is taken to be the fractional accuracy of

the integrator (a part in 107 for the calculations reported here).

2.5. DETERMINING THE ENERGY IN THE PULSATIONS

Before determining the damping time, the energy in the pulsations
must be determined. Equation (19) for the energy requires an upper
bound R.. for the integration. The upper bound should be taken far out
in the wave zone (r>>1/0, o the trial frequency) to insure that the power
radiated as computed from the variational principle is the true power in
gravitational radiation. In the slow-motion formalism, R.. is take to be
1/0, as this is where the instantaneous gravity approximation breaks
down. For small (wr)? the choice of R. is not very critical since the
contribution to the pulsation energy from the near-zone gravitational
field is a small fraction of the total pulsational energy: for small (wr)?

equations (14d) and (15¢) establish
W /R ~ K. (AB)

An order of magnitude calculation of the contribution of the vacuum
integrals in equation (20) to the energy in the pulsation gives (recall the

normalization of the perturbation £ /=1 at r=R&):

contribution of vacuum o Q1) DR e+1)
T 4m gErt 16w

(WR)4R . (A9)
integral pulsational energy
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This is to be compared with the energy in the pulsation, which scales as
M(wR)?. Thus, the errors committed by the instantaneous gravity

approximation in the evaluation of the energy integral are at worst of

order

fractional errors committed o
in the evaluation of energy |~ 0[(wR)?] . (A10)

Evaluation of the integrals in equation (20) is performed via the
trapezoid rule; there are a sufficient number of data grid points
available to make the gain in accuracy of a more sophisticated

integration technique superfluous.

2.6. COMMENTS ON ACCURACY

The adaptive step-size algorithm used maintains the fractional
error of the increment between steps below a fixed level of 1074 in these
calculations. Over most of the star the resolution demanded of the data
grid (data points at least every 30 meters, see subsections 2, 3, 4)
enforces a step size much smaller than necessary for that accuracy. As
a crude check on the accuracy of the eigenfrequencies, the number of
points per e-folding near the surface was halved and the maximum
fractional error of the integrator was reduced to 1073 and several high
order g-modes reevaluated. Fractional changes in the periods were well
below 107%; fractional changes in the damping times were at the 10-4

level.
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APPENDIX B -- DERIVATIONS OF KEY EQUATIONS

This appendix describes the construction of the constraint
equation (10) and the perturbation equations (14). The descriptions are

based on the equations of Paper I; Paper I is neéessary to follow the

derivations.

The algebraic constraint that describes the relationship between &,
Ho, Hy, B, and W (eq. [10]) is found in the following fashion:
i) eliminate V from the perturbation equations (I,8) and (I,9) with
equation (9b), and use the resulting (1,8) and (1,9) in what follows,
ii) eliminate K from equation (I,8a) with equation (I,9a),
iii) eliminate W' from the result with equation (I,9¢),
iv) eliminate H o' from the result with equation (1,8¢), and

v) eliminate K’ from the result with equation (I,8b).
The perturbation equation for F' (eq. [14a]) is just equation (I,8¢)
with equations (13) and (12) (the definitions of F and J).
To derive equation (14b) for J'
i) combine —(zd;a—(I,Bb) with (1,8a) to eliminate K", Hy', and W',
ii) eliminate K’ from the result with (I,8b),
iii) reexpress H ; with equation (12),
iv) eliminate W' with equation (I,9¢), and
v) reexpress V and H, with equations (9b) and (13).
To find equation (14c)
i) eliminate V from (I,9b) with equation (9b),

ii) eliminate H o' with (I,8¢),
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iii) eliminate K’ with (I,8b),
iv) eliminate W' with (1,9¢), and
v) reexpress Ho and H; with equations (13) and (12).

Finally, equation (14d) for W' is just equation (,9¢) with V and H,

reexpressed with equations (9b) and (13).
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Table 1. Quadrupole f-mode periods and damping times for selected

n =1 polytropes with p (km™2)=100[p(km~2)]2.

Central Density Radius Mass® Period Damping Time (w®R)?
(1018g cm™39) (km) (km) (ms) (sec)

SMP  BDLS® SM BDLS

3.0 8.86 1.87 404  .348 0849 .108 21
2.0 9.67 1.66  .438 412 .149 155 21
1.0 10.8 1.18 877 564 474 435 15

& Recall that in geometrised units the Sun’s mass is 1.477 km.
b Computed by the author with the slow-motion formalism.
¢ Computed by Balbinski et al. (1985) with no slow-motion

approximation.



Table 2. Quadrupole g-modes

Pe=101%g cm™3,

Mode Period

(ms)
1 50.38
2 93.84
3 1367
4 1793
5 2218
6

264.3

2 Normalised to £7/R=1 at surface of star.

Damping

time T
(sec)
1.734(+17)
2.038(+20)
9.286(+21)
1.444(+23)
1.220(+24)

7.151(+24)
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Pulsation

Energy?
(1053 ergs)
23.2
14.0
9.84
7.59
6.16

5.19

for the model in Table

T

wR ]4
2n—1
(1013 sec)
2.13
2.61
3.36
4.58

6.07

7.92

1

with
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Figure Captions

Figure 1.

Gravitational perturbations /' and K (cf. eq. [13], [4]) vs. logarithmic
fractional distance from the surface of a neutron star model (cf. §4,
Tables 1, 2) with polytropic equation of state (eq. [21]) and central
density p,=1.0x10"1% g cm™3. This is the gg mode of Table 2. Note the
magnitude of F relative to the magnitude of K — in the standard
formalism F is calculated as the small difference between H, and K,
leading to large numerical errors. The slow-motion formalism
calculates F directly, avoiding the numerical errors of the standard
formalism. The abrupt change in K near 1-r/®~10"! is due to the
abrupt “turn-on” of ¥ (¢f. §4). For more details on the choice of

perturbation variables, see the discussion in §3.1.

Figure 2.

Fluid perturbation W /&3 (c¢f. eq. [3a]) and 8/p (cf. eq. [9]) versus
logarithmic fractional distance from the surface of a neutron star
model (cf. §4, Tables 1, 2) with polytropic equation of state (eq. [21])
and central density p,=1.0x107!® g cm~3. This is for the gg mode of Table
2. Note the rapid, large amplitude variations of W and /p near the
surface of the star. Note also how §/p asymptotes to a constant as r>R.
G-modes are very sensitive to conditions at the surface of the star and

care must be taken in treating the surface numerically. The abrupt
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change in 8/p near 1-7 /R~10~! is due to the abrupt "turn-on" of ¥ (cf.
§4). For more details on the numerical treatment of the surface, see

Appendix A, §2.3.
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Chapter 3

G-Modes In
Zero Temperature Neutron Stars
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Abstract

It is well known that in an isentropic, perfect-fluid star, chemical
inhomogeneities perturb some g-modes away from zero frequency. Here
this phenomenon is studied for the idealized case of zero-temperature,
perfect-fluid neutron stars. In realistic neutron stars, the chemical
composition changes discontinuously several times at densities below
neutron drip. Associated with each of these discontinuities are non-
zero-frequency g-modes, referred to as discontinuity modes. There are
only a finite number of discontinuity modes at fixed spherical harmonic
order (. In contrast, deviations from isentropy due to finite temperature
in a neutron star also perturb some g-modes away from zero frequency.
At fixed spherical harmonic order {, there are a countable infinity of

these finite-temperature modes.

The essential physics of discontinuity modes is captured by a
simple physical analogy with gravity waves at the interface between two
incompressible fluids. This analogy is exploited to provide estimates of
the pulsation frequencies, energies, and damping times. The estimates
are compared with detailed numerical calculations for simple model
stars based on a polytropic equation of state, and for more complex
model stars based on the equation of state of cold and fully catalyzed
nuclear matter. The numerical calculations are done using the slow-
motion approximation to the full theory of non-radial pulsations of
relativistic stars. The highest frequency discontinuity modes in model
stars based on the equation of state of cold and fully catalyzed nuclear

matter have frequencies greater than the highest frequency finite-
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temperature modes found by McDermott, Van Horn, & Scholl (1983);
thus, chemical inhomogeneities in real neutron stars may be more
important than finite temperature effects in determining the high-

frequency end of the g-mode pulsation spectrum.
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1. Introduction

1.1. MOTIVATION

Van Horn (1980) noted that certain observed neutron star
phenomena take place with timescales that suggest g-mode pulsations
of neutron stars. This led to the study of neutron star g-mode
pulsations, a study that in recent years has revealed a rich spectrum of
phenomena, which has been compared to the spectrum of terrestrial

seismic modes (McDermott et. al. 1985).

In chemically homogeneous, zero-temperature (and hence
isentropic) stars, all the g-modes are at zero frequency. Realistic stars,
however, are neither chemically homogeneous nor isentropic.
Deviations from isentropy due to finite temperature perturb some
modes away from zero frequency. Such modes are referred to as
"finite-temperature modes”. Similarly, deviations from chemical
homogeneity perturb some of the modes to non-zero frequency. These

modes are referred to as "discontinuity modes.”

In normal stars, discontinuity modes are unimportant and it is
finite-temperature modes (modes due to a non-isentropic temperature
gradient) that determine the g-mode spectrum. McDermott, Van Horn, &
Scholl (1983) initiated work on g-mode pulsations of relativistic stars

with a study of finite-temperature modes in neutron stars.

This paper examines discontinuity modes in neutron stars.

Deviations from chemical homogeneity are particularly significant in
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the surface regions of a neutron star. In the density regime
107 g cm™3gp 10! g cm™3, the composition of a neutron star is thought
to undergo a series of discontinuous transitions. Associated with each of
these transitions are discontinuity modes. Discontinuity-mode
frequencies are characteristically higher than the finite-temperature-
mode frequencies found by McDermott, Van Horn, & Scholl; thus,
chemical inhomogeneities in neutron stars may be more important in
determining the high-frequency end of the g-mode spectrum than the

effects of finite temperature.

The remainder of §1 describes the conventions and notation used
throughout the remainder of this paper. The physical origins of g-modes
are discussed in §2. Section 3 specializes to discontinuity modes,
developing analytic results and intuitions necessary and useful for
studying discontinuity modes. Results of numerical calculations, using
the author’s slow-motion approximation to the theory of non-radial
pulsations of relativistic stars, are presented and discussed in §4.
Conclusions are presented in §5. Appendix A is dedicated to a
discussion of special problems arising in the numerical study of

discontinuity modes.

1.2. CONVENTIONS AND NOTATION

All the numerical work described in this paper was carried out
using the author’s “slow-motion formalism.” The slow-motion
formalism was developed explicitly for studying g-modes in relativistic

stars, and is described in Finn 1986. The reader is referred there for a
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discussion of the conventions related to the formalism. Several

particular conventions are noted here, however.

The metric signature used in this work is (+———), and geometrised
units (G=c=1, ¢f. box 1.8 of Misner, Thorne, & Wheeler 1973) are used
throughout. Primes are used to denote a derivative with respect to the

Schwarzschild-like radial coordinate r:

- a
r=r (1.1)

and square brackets about a quantity mean the discontinuity in that

quantity:

[plr=limtp(r +&)—p(r—e)} . (1.2)

The coordinate ("Eulerian”) displacement of a fluid element
undergoing pulsational motion is denoted £ The stellar pulsations
studied in this paper are all first-order perturbations about a static and
spherically symmetric solution to the Einstein Field Equations; the line

element representing that equilibrium solution is
ds?=e¥r)dt2—eMr)dr2—r2(d #2+sin?6d ¢?) . (1.3)

The perturbations are resolved into spherical harmonic angular
dependence Y,, and exponential time dependence exp(—iwt) with
complex frequency w=0-i/7 (¢ and 7 real). Since the equilibrium
configuration is spherically symmetric, the perturbations at given

angular order / are 2(+1 degenerate. When discussing the number of
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pulsa}tion modes in a star, fixed angular order { is always assumed and

the degeneracy in m ignored.

2. G-Mode Pulsations

In the discussion that follows, it is useful to identify a

characteristic angular frequency related to the passage of sound waves

around the circumference of a star:

wozzfﬁ__ﬂ_‘ ‘;e‘ 2..1)_

Pe
2
- 4 —1\2 l(l‘}'l) 10 km
(1.7x10%s71) 5 %
De 10 gecm~3 (2.1)
5x10% dyne cm™? Pe . .

In equation (2.1), p., p., and R represent the central energy density,
central pressure, and radius of the star. The characteristic frequency wg

increases with { as L ={{({+1)}!/? because of the increasing number of

transverse nodes in the stationary sound wave.

In 1941, Cowling recognized that the Eulerian perturbation of the
gravitational potential could be safely neglected in the study of
Newtonian stellar pulsations (the "Cowling approximation”). The Cowling
approximation permits the spectrum of Newtonian non-radial stellar
pulsations to be separated analytically into three distinct regimes: the
p-mode regime, the f-mode regime, and the g-mode regime. At fixed

spherical harmonic order /, the p-mode (pressure mode) regime is one
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of high frequency (wp,2ws), with the fluid displacement predominantly
radial, characterized by large Eulerian pressufe perturbations, and
reminiscent of longitudinal pressure waves. At each{, a star has a single
f-mode (fundamental mode), characterized by Cowling as having a
radially unchanging sign of the radial fluid displacement and the
Eulerian density perturbation. The f-mode frequency is wsAwe/l and lies
below the lowest p-mode frequency. The g-mode (gravity mode)
spectrum forms a low-frequency regime (|wy|?Sw§), characterized by
large transverse fluid displacement and small Eulerian pressure
perturbations. At fixed {, the single f-mode separates the g-mode and

the p-mode spectra.

Aside from the small imaginary part of a complex eigenfrequency
associated with radiative boundary conditions (e.g., damping owing to
gravitational radiation) and other damping or driving mechanisms
(viscosity, phase lags in opacity, etc.), a stellar model always has a real
frequency f-mode and p-mode spectrum. The same is not true of g-
modes: when damping mechanisms are ignored, a given stellar model
may have any combination of real frequency g-modes, imaginary-
frequency g-modes, or zero frequency g-modes. The squared frequency
of a star’s g-modes are closely related to its stability against
convection: real, imaginary, and zero frequency modes correspond to
convective stability, instability, and marginal stability. The g-modes
present in a star depend on the radial variations in the specific entropy

and chemical composition.
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The importance of the specific entropy in a g-mode pulsation may
be seen by following a fluid element undergoing a small, slow (compared
to the local sound speed), radial displacement outward. As it rises, the
element expands, remaining nearly in pressure equilibrium. Two fluid
elements in pressure equilibrium but with different specific entropies
have different densities. When the specific entropy of the surrounding
unperturbed fluid is greater than that of the displaced element, the
displaced element’s density is greater than that of the unperturbed
fluid; thus, the star’s gravity provides a force to restore the displaced
element to its original location (stability to convection). When the
radial entropy gradient is equal to or less than zero, the displaced fluid
element is of equal or lower density than the unperturbed fluid and
gravity provides either no force (marginal stability) or a force to

increase the displacement (instability to convection).

To first order in small quantities, the buoyancy force-per-unit-
volume fy acting on a fluid element displaced for a small radial

distance ér in a Newtonian star is

fN=ng‘Ci£ Fip ~—/1;-§§ ]67" : (2.2)
where
energy
o= density] , p =(pressure) ,
(positive)

Newtonian m(r)
9N=|gravitational |~ ,

acceleration

© % dp/drp
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Lagrangian d Lagrangian
Ap = |pressure =L sr | Ap= density . (2.3)
: dr .
perturbation perturbation

The derivatives dp /dr and dp/dr are evaluated in the unperturbed star
and the fluid element is presumed to maintain pressure equilibrium
with its surroundings so that Ap =(dp /dr)ér. The Lagrangian density
perturbation Ap typically reflects an adiabatic displacement with
chemical composition held constant —though in the rare case that heat
can flow in and out of a fluid element or reactions can occur in it on the

timescale of a pulsation period, Ap is influenced accordingly.

The quantity

1 14p (2.4)

(with the subscript N for Newtonian theory) is related to the
Schwarzschild convection criterion. The relativistic generalizations of

Sy and Ay are

f=g(p+p)aer2sr | (2.5)
—o-a2AP |1 1 Ap
A=e dr | 7ep p+p Ap |’ (2.6)
where

_p+p dp/dr

Where A <0, the local buoyancy force is restoring and the star is stable
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against convection; where 4 20, the star is neutrally stable or unstable

against convection. The quantity 4 is referred to as the relativistic

convective stability discriminant.

The relativistic buoyancy force density f (eq. 2.5) determines a
frequency characteristic of local fluid oscillations. The relativistic
Brunt-Vaiséla frequency N,

N3=—4g= [ , .
9™ Gorp)e 7or (28)

is the locally measured frequency with which a fluid element "bobs”

about its equilibrium location.

The perturbation enters into the local pulsational frequency

through the term Ap/Ap in A. The first law of thermodynamics

expressed in terms of Ap is

Ap=TAs + Y u;An,; (2.9)
7

where the temperature T, the entropy density s, the chemical potential
#; (including the rest mass) and the baryon density m; for chemical
species 1, are measured by local observers. When the temperature
vanishes, p is a function only of the m; and is independent of s;
consequently, only when the chemical composition of a perturbed fluid
element differs from that of its surroundings (ni/n]- not constant
throughout the star) are A and N non-zero. Thus, only when the zero-
temperature star’s chemical composition is not homogeneous does a

perturbed fluid element, which typically maintains its own composition
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because nuclear reactions proceed so slowly, experience a buoyancy
force that perturbs g-modes to finite frequency. The remainder of this
paper 1is concerned with the pulsations caused by chemical

inhomogeneities in zero-temperature stars.

3. Analytic Results

3.1. G-MODES FROM RADIALLY VARYING COMPOSITION — INTRODUCTION

In a g-mode pulsation, a displaced fluid element remains (roughly)
in pressure equilibrium with its surroundings at all times; therefore, for
a restoring force to act on the displaced element, pressure equilibrium
must not correspond to density equality. As discussed in §2, in an
isentropic zero-temperature star, variations in the chemical potentials
Mi control the relationship between density equality and pressure
equilibrium for a perturbed fluid element; in order that they not
correspond, the star’s composition must vary with radius and a radially
displaced fluid element must not alter its composition to match its
surroundings. Gravity then provides a buoyancy force acting on the

displaced fluid element.

The composition of a real neutron star does vary radially from
surface to core. During the star’s past history, shell burning, accretion,
and flash nuclear burning built up layers of varying composition on the
surface of the star, leaving a characteristic radial composition profile
related to the star’s progenitor and thermal history; even zero-

temperature neutron stars made of fully catalyzed nuclear matter have
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a distinctive radial composition profile.

Thus, the radial composition in a neutron star is layered: layers of
homogeneous chemical composition lie one on top of another and at the
interface between the layers, the composition chénges abruptly. In a
zero-temperature star, only a fluid element displaced across one of

these boundaries feels a restoring force owing to gravity.

For there to be finite-frequency discontinuity-mode pulsations, it is
also necessary that a displaced fluid element not adjust its composition
to its surroundings during a pulsation. This is the case when the
timescale for nuclear-reaction-induced composition change is much

greater than the period of the pulsations.

Except in regions where shell burning or flash nuclear burning is
occurring, at densities below neutron drip (pgrp = 4.3x10!! g cm™3),
pyconuclear reactions govern the evolution of a neutron star’s
composition, and the corresponding reaction rates are all on the order
of the age of the universe (Meltzer & Thorne 1966). This is apparent

when one considers the thermal history of a neutron star.

An isolated neutron star cools rapidly after formation; within 105
years, the internal temperature is less than 107°K (Tsuruta 1979). At
these temperatures, and at densities below Pdrip, the zero-temperature

pyconuclear reaction rates apply (Salpeter & Van Horn 1969).

A steadily accreting neutron star reaches an equilibrium state
within ~10° years after the onset of accretion. In this equilibrium state,

energy generation by nuclear burning balances energy loss by photons
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and neutrinos. For a mass accretion rate ~3x10-194 5 yr-1, the base of
the hydrogen burning shell is at a density py~10%gcm=3 and
temperatures everywhere are less than Tg3x108°K (Fujimoto et al.
1984). At densities above py, the nuclear reaction rates are well

approximated by the zero-temperature pyconuclear reaction rates

(Salpeter & Van Horn).

Accretion is rarely steady (in X-ray bursters it varies on timescales
of days), and so this equilibrium state is seldom achieved: however,
temperatures in the interior of a neutron star reflect the average
accretion rate, not the transients; so pyconuclear reaction rate still

apply above shell and flash burning densities.

Calculations of the equation of state of cold and fully catalyzed
nuclear matter provide an éxplicit example of composition
discontinuities in a neutron star. In the density range
107 g cm™3K p< parip» Salpeter (1961) and later Baym, Pethick, &
Sutherland (1971) found that the chemical composition of cold and
fully catalyzed matter varies discontinuously with pressure in a series
of first-order phase transition. The calculations of Baym, Pethick, &
Sutherland differed from those of Salpeter primarily by the inclusion of
the eflects of the Coulomb lattice, and revealed 11 discrete composition
transitions. Within any given region the composition is homogeneous;
at certain pressures the energetically stable nucleus changes and the

chemical composition of fully catalyzed nuclear matter reflects that

change.
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A change in chemical composition appears as a density
discontinuity in a cold and fully catalyzed neutron star. The star’s
composition is homogeneous between each discontinuity, and to a
slightly perturbed fluid element, pressure equilibrium corresponds to
density equality. At the radii where the composition changes, perturbed
fluid of one composition crosses into a region of different composition
and pressure equilibrium no longer corresponds to density equality;
thus, the perturbed fluid element feels a buoyancy force. The resulting

non-zero frequency modes are called discontinuity modes.

Naive applications of the usual techniques for calculating g-mode
pulsation frequencies fail when applied to discontinuity modes. The
remainder of §3 extends the author’s slow-motion formalism to permit
treatment of discontinuity modes, and develops a physical model of the

modes to anticipate the numerical results presented in §4.

3.2. APPROXIMATIONS AND ASSUMPTIONS

The calculations reported in this paper approximate neutron stars
as zero-temperature, perfect-fluid spheres composed of fully catalyzed
nuclear matter. The calculations were carried out using the slow-motion
formalism, described in Finn (1986). Realistic neutron stars are not at
zero temperature, they are not composed of fully catalyzed nuclear
matter, and they are not perfect-fluid spheres. While large magnetic
fields and rapid rotation modify significantly the pulsation spectrum of
a neutron star, they do not change the underlying mechanism of the

pulsations. In this section, the approximations that neutron stars are
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zero-temperature and composed of fully catalyzed nuclear matter are

discussed.

This paper is concerned with discontinuity modes, not finite-
temperature modes; thus, the direct effect on the g-mode pulsational
spectrum of a specific entropy gradient at finite temperature is ignored.
A non-zero temperature affects the g-mode pulsational spectrum in
another way, however: it causes diffusion across the boundaries
separating regions of different composition, altering the chemical
composition gradients from those of a zero-temperature star. In the
density regime 107 g em™3<p < parip, the nuclei are tightly bound in a
Coulomb lattice and this thermal diffusion is negligible; thus, the

composition transitions are well approximated as discontinuous.

Neutron stars are not composed of fully catalyzed nuclear matter:
the nuclear processes that change atomic number take place on too
long a timescale in neutron stars (Zel’dovich & Novikov 1971). The
actual chemical composition of neutron stars at densities below Pdrip
depends on the history of the star. Nonetheless, it is reasonable to
approximate a neutron star as composed of fully catalyzed nuclear
matter at densities p2108gcm™3, above the place where nuclear
burning of accreted material typically occurs: discontinuity mode
character depends only on the fractional density discontinuities and
their locations, and in a realistic star these are at least as large as those

in a star composed of fully catalyzed nuclear matter.

The assumption that neutron stars are composed of fully catalyzed

matter thus avoids features of the discontinuity mode pulsational
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spectrum peculiar to particular neutron stars and environments, and

draws attention to generic features of the spectrum.

The effect on the pulsation spectrum of a crust with a non-zero
elastic shear modulus is also ignored in this paper. Thus far, the
formalism for studying fully general-relativistic stellar pulsations has
been extended to include an isotropic shear modulus only for torsional
(odd-parity) pulsations (Schumaker & Thorne 1983); in a forthcoming
paper, I will extend the formalism to permit an isotropic shear modulus

in the even-parity pulsation case.

The assumption of perfect fluidity eliminates viscosity as a damping
mechanism for the g-mode pulsations. Throughout this paper, all
damping mechanisms except for gravitational radiation are ignored.
Particularly for g-mode pulsations, gravitational radiation is an
ineffective damping mechanism for the pulsations; in more realistic
neutron stars, electromagnetic radiation damping (owing to the
“‘shaking’” of a magnetic field locked in to the neutron star) and viscous
damping are much more significant (for the effects of electromagnetic
damping, cf. McDermott et al. 1984; for the effects of viscosity and
thermal conductivity, ¢f. Cutler & Lindblom 1986). The gravitational
radiation damping times discussed in later sections are thus not to be
interpreted as estimated pulsational damping times for realistic
neutron stars. The damping times reported here are significant as a
measure of the distribution of pulsational energy between the fluid
motion and the gravitational perturbations, and also in the context of

gravitational radiation theory, where they provide a non-trivial example
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of the productions of weak gravitational radiation in a strong field,

compact object.

3.3. BOUNDARY CONDITIONS AND PULSATIONAL ENERGY FOR
DISCONTINUITY MODES

The eigenproblem (eigenequations and boundary conditions) for g-
mode pulsations in the slow-motion formalism as formulated in Finn
(1986) assumes a continuous density distribution and thus requires
modification to handle discontinuity modes. In particular, boundary
conditions must be specified at the locations of the density
discontinuities, and the expression for the pulsational energy (Finn
1986, eq. 19) must be modified. This subsection reviews the slow-motion
formalism and extends it to allow the evaluation of g-modes for stars

with discontinuous equations of state.

A principal difference between the slow-motion formalism and
previous formalisms for studying g-modes is the choice of perturbation
variables. The slow-motion formalism recognizes the low-frequency
character of g-mode pulsations, and the perturbation variables are

chosen accordingly:

W=rleM2er/y, (3.1)

B=0p /Y j=—(wPe "V+H,/2)(p+p) , (3.2)
=y, _16meMZ(p+p)

J=H, D) W, (3.3)
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F=H,-K . (3.4)

The fluid’s radial displacement function W and Eulerian pressure
perturbation @ represent the fluid degrees of freedom. The quantity V

appearing in equation (3.2) is related to the transverse displacement of

the fluid:
VE—’I‘ZEG/GQYM
=—72¢9/5in20 8,7, . (3.5)

The variables F and J embody the gravitational perturbation.
Equations (3.3) and (3.4) express them in terms of the metric
perturbations Hy and K in Regge-Wheeler (1957) gauge: the perturbed
line element in Regge-Wheeler gauge, specialized to even-parity

perturbations with no anisotropic stresses, is

dH
ds 2=eV(1+HOYW)dt2+7t—1 dt dr —eM1-H oY, )dr2~r23(1-KY,)d0? . (3.6)

Note that the definition of H; used here differs from the Regge-Wheeler

definition by a time derivative.

Where the equation of state is discontinuous, some of the
perturbation variables are discontinuous; correspondingly, the
differential equations that govern the perturbations require boundary
conditions in the form of jump conditions on the perturbation variables
across the discontinuities:

e —M\/2

r?

[W]=0 . [Bl=%lo) oW
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[Fl=0 . [7]=-[p)igmen | (3.7)

These conditions are arrived at by straightforward "pillbox" integration
of the differential equations (Finn 1986, eqs. 14a-d). The jump condition
on the Eulerian pressure perturbation g is equivalent to the continuity
of the Lagrangian pressure perturbation across the density
discontinuity.

In the slow-motion formalism, the damping time of a pulsational
mode owing to gravitational radiation is the ratio of the pulsational
energy to the power in gravitational radiation. The pulsational energy is
the conserved quantity associated with a variational principle
developed for relativistic stellar pulsations by Detweiler & Ipser (1973).

The expression for the energy in the pulsations is (Finn 1986 eq. 19):

R
g(U,ﬂw,t)E‘/“UT Izdr e()\“‘V)/z .gﬂiz—ﬂl
0

W2 Yz
IT2| +(¢+1) ] 7,1

32nre

{({+1)e > 1
‘ML}HHZ“%[ZHOKHKIZ]}

Re
_1._ 2 (V+>\)/2 ___&_ 2 e_—__A_ ’ I :
+2_£7‘ dre p70[p+pf +87TK(HO+UHO)

yAeM? |+ e N

2
, p'W |2+H ot
(p+p)?p r?
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A+1) 3 2_e ™ 2
HEEE — o) [1Ho 2= £ | K|
Ll P Wz (3.8
+ —p ' ,
Here w is the Eulerian density perturbation
_L+p |5, dp e“"/ZW _e-N2R Y
and 7y is the adiabatic index for the pulsating fluid:
=4p ptp 3.10
= p (3.10)
where (¢f. eq. 3.1)
Lagrangian Lagrangian
Ap = |pressure =B+ dp exp(=A/2) W , Ap=|density . (3.11)
. dar 7'2 .
perturbation perturbation

Note that vy#v, unless the star is isentropic and chemically

homogeneous. The integral is evaluated throughout a sphere of radius

R > R.

At the density discontinuities, p' and u are infinite; hence the
integrand of equation (3.8) is infinite and cannot be integrated
numerically. At each discontinuity 7;, the singular contributions to the

integrand are
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‘ 17‘1"'8
lim—= [ dr rRe WtN/R2H 1+ K2
m ZT:L oM P?’olp+p}

A/2 ;
T Z LA P VN A (3.12)
(o+p)%p’ 72

A straightforward calculation shows the integrand of equation

(3.12) to be a continuous quantity times p’, which is trivially integrated

to give
1 ~N/2
~Levey| Ve Ty g ollo],. (3.13)
2 2r?

This, then, is the contribution to the energy in the pulsations from the

singularity at r; in the integrand of equation (3.8).

The final expression for the energy in the pulsations, valid in the

presence of equation of state discontinuities, is thus

N 'y =N/2
8(0.Rert)= 3 o /2 | =W +Ho|[p)»
1 ==

+f[07' |Rdr e(A-v)/2 —(&;j—l

!;@-Izﬂ(tﬂ)l%lz}

A
_M'Hl’i’._ 1 (RH K+ |K |?)
32mre 3_m

1 [2g,e (wr)/2 | Mz, yAexp(\/2) e M2 o,
+5 Jridre PYol o5y 1%+ (otp )2 |+ o'W |
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i+1 3 e 1
FHou+ |43 Hol*+=—K'(Hy+V'Hg—=K"
I P 4(,0 ) {|Hol s K (Ho'+V'Hg SK)
r2 e ~M2 -A
+I- WH o—~p ' E— | W |2 3.

5 2 opr4| | o (3.14)

The N discontinuities in the equation of state are located at T, and f is

defined to mean

r1—8& R N—1TiriTe

S=im | [+ [ +% []. (3.15)
e~0 0 rvte  i=1 rite

Expression (3.14) is also valid in the presence of deviations from

isentropy at a finite temperature, in which case A does not vanish. The

remainder of this paper is concerned with zero-temperature stars, so 4

does vanish.

3.4. NUMBER OF G-MODES

In the Cowling approximation, the Newtonian perturbation
equa‘tions can be cast as a second-order wave equation that is a Sturm-
Liouville equation in two different limits. In the limit w?/wg>>1, the
equation describes the p-mode regime, and in the limit w§/l?>>1, it
describes the g-mode regime. The Sturm-Liouville nature of the
Newtonian perturbation equations permits strong statements about the
behavior of pulsation frequencies and eigenfunctions, and many of the
qualitative results from the Newtonian analysis should also hold in the

relativistic case.
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The qualitative nature of the g-mode spectrum in Newtonian stars
is understood when the Newtonian convective discriminant Ay is
continuous. There are a countable infinity of real frequency (stable) g-
modes when anywhere in the star 4y<0. This spectrum of stable g-
modes has a maximum frequency, and an accumulation point at zero
frequency. When anywhere in the star 4y >0, there is a countable infinity
of imaginary frequency (unstable) g-modes with a maximum growth
rate (|w| bounded) and an accumulation point at zero growth rate.
Finally, there are an infinity of zero-frequency (marginally stable)
modes when there is an extended region where Ay=0. The proof of these
results relies on the Sturm-Liouville character of the Newtonian
equations in the Cowling Approximation; the results are generally
believed to be true also in the relativistic case, with Ay replaced by 4,

but a rigorous proof has been given only for the case 4=0 (Thorne

1968).

This paper is concerned with zero«temperature stars where the
chemical composition varies discontinuously but is otherwise
homogeneous. Here the relativistic convective discriminant 4 vanishes
everywhere except at the radii 7;, where the composition changes
discontinuously. At these radii, the adiabatic index v (eq. 3.10) remains
finite while the index 7, (eq. 2.7) vanishes; thus, 4 is infinite at »,. If the
lower density fluid is above the higher density fluid, then 4 is negatively

infinite at r;, and it is positively infinite if the fluids are inverted.

In the Newtonian case, it is strictly true that at fixed spherical

harmonic order { there is one and only one non-zero frequency g-mode
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for each point 7; where 4 is infinite and negative (Gabriel & Scuflaire

1979); below, I show that this result also holds in the relativistic case.

To begin, consider the Newtonian case. The linearized perturbations
of the continuity and Euler equations govern the linear pulsations of a
Newtonian zero-temperature, self-gravitating perfect-fluid sphere. To
maintain contact with the relativistic case, use analogously defined

variables:

Eulerian pressure
By=0p /Y in= perturbation  WNE=rHT /Y, V=TR0/0,Y,, - (3.16)

The subscript N reminds us that these perturbation variables are

Newtonian analogs of the relativistic slow-motion variables 8, W, and V.

Assuming time dependence exp(—iot), the linearized continuity

equation is

By Wy  Wn' 1) P Wy
I'p Ay r? " rz 2 |t r? =0 (3.17)
and the linearized Euler equations are
Wy Wy
—gRo— = By —a |-L—B v —pA .
op g =B glrpﬁN pANTZ] , (3.18)
v
Gzp—g—:—@é— . (3.19)
a T

The adiabatic index I' and the Newtonian convective discriminant Ay

appearing here are
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1 1 Ap
“|Tep o Bp

d
df : (3.20)

Note that the adiabatic index @' differs from the index 'y that
characterizes the star’s equilibrium distribution:
_p dp/dr

o= pdp/dr (3.21)
There are three kinds of boundary conditions on equations (3.17-

19). At =0, regularity requires that Wy, Vy, and By vanish. At r=R

(where ® denotes the surface of the star), the Lagrangian pressure

perturbation By+Wyp'/r? must vanish. Finally, at each point r; where

the density is discontinuous and Ay is infinite, there are jump

conditions on the perturbation variables:

[Wy]=0, and [Byl=gn[pe]Wy/r2 , (3.22)

where gy denotes the positive Newtonian gravitational acceleration.
These jump conditions are analogous to the relativistic jump conditions
(eq. 3.7).

The continuity and Euler equations (3.17) and (3.18) combine to

form a second-order linear differential equation for By:

_ of+gyAy
02

d
dr

(1)

gnp
5N = —Bn 2 Fp ]5

I'p

+ (c®+gndn) 2
of+gNAy T

ng
—Apy

ﬁN"’ 61\7 (3.23)
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Restrict attention to the case of a zero-temperature star where 4y
vanishes except at a finite number of points where the density changes

discontinuously. With the change of variable

By (r)=e X"y (r)/r | (3.24)
x(r)= ngp , (3.25)

equation (3.23) becomes a Sturm-Liouville equation for -

1 d _NaY {+1) Jc_)_ QN o2

exp(_x> dT {exp( X) d,r } Tz ( ) 1// (326>
with boundary conditions
¥=0 (3.27)
atr=0andr =R&, and

14|y

pdri|r

o d [y (3.28)

W1=eXp) 257 L |4

at the discontinuities ;.

Since ¥ satisfies a Sturm-Liouville equation and gy >0, there is a
minimum frequency o¢§>0 for which the differential equation and
boundary conditions are satisfied. There are also a countable infinity of

frequencies 0*>0§ for which the differential equations and boundary
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conditions are satisfied. If there were no discontinuities in the equation
of state (Ay=0 everywhere), then the minimum frequency og would be
the f-mode frequency, and the semi-infinite spectrum  of
eigenfrequencies o >0y would be the p-mode spéctrum‘ (When 4y=0
everywhere, all the g-modes are at zero frequency and correspond to
solutions for which the Eulerian pressure perturbation By vanishes, but
the motion of the fluid does not. For these g-modes 8y=0 implies Y¥=0

and the preceding analysis is oblivious of them.)

Return to the case where discontinuities are present. At frequencies
02ggn/7, the coefficient of ¥ in equation (3.26) is positive definite, so
the behavior of ¥ is exponential (as opposed to oscillatory) throughout
the star. Expressing the mass of the star as.(, the condition g?<gn /T is

equivalent to
T2Lgn/TRM/ R, (3.29)

Thus, the frequency below which ¥ is everywhere exponential is of the
order of the frequency of the stars f-mode; i.e., ¥ is exponential in the
g-mode regime. Also, for sufficiently small ¢® the behavior of ¥
determined by the equation (3.26) is independent of ¢2. As a result, the
boundary condition at each discontinuity (eq. 3.28) is an equality
between a quantity constant in ¢® ([¢]) and a quantity monotonic in ¢2.
Consequently, for each discontinuity in p there is only one o2, in the
regime 0%°<p,, for which the differential equation and boundary
conditions are satisfied, i.e., only one g-mode. (Newtonian discontinuity

modes are discussed more completely in Gabriel & Scuflaire 1979.)
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Physically, this result is expected. The perturbation equation (3.23)
is a wave equation and Ay is part of an effective potential for the waves.
Where there are discontinuities in p, 4y is a delta function and the
effective potential resembles a delta-function potential well. The

trapping of modes by a delta-function potential well is a familiar result

from elementary quantum mechanics.

More precisely, for ¢® small compared to p., the wavefunctions
described by equation (3.23) are non-oscillatory: in regions where 4,
vanishes, ¥ is exponential and has at most one zero. Since the boundary
conditions at =0 impose one zero on ¥, unless there is a region in the
star where Ay<0, ¥ does not also vanish at r=%. To develop a second
node in the wavefunction, as required by equation (3.27), there must be
a region where Ay is sufficiently less than zero over a sufficiently large
region. In the present case, Ay is infinitely negative over an infinitesimal
distance, and at most one zero of ¥ can be fit into the region where Ay is
negative (i.e., ¥ can have different signs across r;); correspondingly,
there can be at most one eigenfrequency associated with the delta-

function in 4y.

The Newtonian perturbation equations also take on Sturm-Liouville
form for 0®<<p, when Ay is a continuous and non-zero function (eg.,
Ledoux & Walraven 1958). The Sturm-Liouville equation is then an
eigenequation with eigenvalues 1/0%, and a similar analysis shows that
when Ay<0 over an extended region of the star, then for sufficiently
small 0% the wavefunction has an arbitrarily large number of nodes in

the region A5 <0.



- 108 -

The twc principal features of the Newtonian problem that restrict
the number of discontinuity modes remain unchanged in the relativistic
case. One feature is the local applicability of the convection criterion
throughout the star; the other is the delta-function nature of 4 in the
presence of density discontinuities. The local applicability of the
relativistic convection criterion guarantees that 4 <0 is a necessary
condition for local oscillatory behavior of the wavefunctions. The delta-
function nature of 4 insures that no more than one node forms in the
wavefunction per discontinuity in p. Both of these features are local
phenomena and are independent of spacetime curvature. Thus, because
the 4 <0 only at isolated points, and because everywhere A vanishes the
wavefunction is exponential, in the relativistic case there is also at most

one discontinuity mode associated with each discontinuity in 4 .

In the late stages of preparation of this paper, I realized that in the
relativistic Cowling Approximation (McDermott, Van Horn, & Scholl
1983), the relativistic perturbation equations can be placed in Sturm-
Liouville form. Among other things, this will permit a more elegant
proof of the above results in the relativistic case. This proof will be
included in a paper, currently in preparation, on the relativistic

Sturm-Liouville equations.
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3.5. ESTIMATED FREQUENCY, ENERGY, AND DAMPING TIMES

To estimate discontinuity-mode frequencies, consider a simpler but
analogous problem. In a mixture of two incompressible, immiscible
fluids stratified in a uniform gravitational field, there are gravity waves
associated with the interface between the fluids. These gravity waves are
a simple idealization of the discontinuity modes in a neutron star. The
next several paragraphs establish the analogy, which is used throughout

the remainder of the paper.

The density discontinuities in neutron stars occur at densities
below pgrip- In a typical neutron star these discontinuities are close to
the surface of the star: P <pPgrip When 1-r/R<1/10. Consider, as an
idealization, a neutron star of radius & and mass M, with a single
density discontinuity at radius 7. The coordinate distance from the
discontinuity to the surface of the star is Ar =®—r,, and for small
Ar /R << 1 the proper distance from the discontinuity to the surface of
the star is h =Ar eM22Ar (1-24L/R)~1/2.

Denote the density above and below the density discontinuity as p,

and p_:
p+Elin(r)1p('ro+8) , p_EliIgp(ro—a) . (3.30)
E-r R d

Note that p,<p_. Denote the positive difference in the densities by
Ap=p_—p,. The gravitational acceleration in the radial direction

measured by a stationary observer at the discontinuity is —g , where

-1/2

= o oo ..'ﬂ_
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A (3.31)

it

an

&

The "hats” on the coordinate indices, e.g., f, refer to the physical

components in an orthonormal frame (Misner, Thorne, & Wheeler 1973).

Restrict attention to the discontinuity mode of spherical harmonic
order /. The reduced wavelength of the wave pattern in the 8 direction is

1/k =2ro/L=2R/L, where L2={({+1).

The stratified-fluid problem is characterized by the boundary
conditions on, and the densities of, the upper and lower fluids. Assume
the fluids to be infinitely extended in the z and Yy directions. Since the
discontinuity in the neutron star is located much closer to the surface
of the star than to the center, take the lower of the two fluids to be
infinitely deep, and the upper fluid to have a depth A and a free surface.
Let the density of the upper fluid be p, and the density of the lower fluid
be p_. Set z=0 at the fluid-fluid interface, let g be the uniform
gravitational acceleration in the —z direction, and consider gravity
waves of wavenumber & in the x direction on the interface between the

two fluids.

In the stratified-fluid problem, the two fluids are incompressible;
hence, the velocity field ¥ is equal to the gradient of a scalar field ¢. The
space and time dependence of ¢ is ~exp{i(xk +zk,—0t)}, where the

continuity equation relates k and k,:

0=V-0=V2¢=—(k2+k2)¢ . | (3.32)
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The frequency of the gravity waves at the fluid-fluid interface of the

stratified fluid is readily shown to be (cf. Landau & Lifshitz 1959)

2 _ Ap exp(—kh)sinh(kh)
ore=gk p++Apexp(—kh)cosh(kh)” : (3.33)

The frequency o,, is analogous to the frequency of the discontinuity
modes as measured by an observer located at the discontinuity in the
neutron star, while the frequency calculated in the slow-motion
formalism is the frequency observed far from the star (0.). The two

frequencies are related by a redshift factor a =exp{v(r,)/21:
ol=020?

= a?gk Ap exp(—kh)sinh(kh) '
p++Apexp(—kh)cosh(kh)

(3.34)

For small A7 /R, the redshift factor is a = (1-24/R)1/2.

In the neutron star, for small Ar /R the proper distance h from the
discontinuity to the surface of the star is related to the pressure scale
height hy, = -p /{p'(1-24/R)'/?} at the discontinuity: A =(n+1)h,. Here
n is the polytropic index effective in the outermost regions of the star,
and n-0 for an incompressible star. Denoting the pressure at the
discontinuity by py and recalling k =L /R,

+1
(n+1)pg = (n+1)p R PO

L
kh 2kh, (n+1) 2= =2 (1-2M/R)1/? 3.35
o ) % gp. Mp+( /R) ( )

For smalln and{ kh << 1.
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For small kh and Ap/p_, equation (3.34) simplifies to

o= azgk%&kh

%gN;c%"—k AT (3.36)

Note that the frequency measured at infinity o., is independent of the
surface redshift of the neutron star. Equation (3.36) corresponds to an

estimated discontinuity mode period of

% 3/2
10km

Recall that M y=1.477 km is the mass of the sun.

Mo 1/10 1/10 |'/*

2T ~
T =5.5 ms M BpJo. Ar/R

O

Wi+1)

—1/2[

(3.37)

Denote the amplitude of the vertical displacement of a fluid
element in the stratified fluid by {(2). When kh << 1, the ratio ¢(0)/¢(h)

is —p_/Ap. The same should hold in the neutron star:
& (ro)/€(R)=~p_/Np . (3.38)

The stratified fluid model approximates the spherical symmetry of
the neutron star by plane symmetry. This is valid only when the
discontinuity-mode eigenfunctions do not penetrate the star far enough
to see significant deviations from plane symmetry. In the region above
the discontinuity, the eigenfunctions penetrate a coordinate distance
Ar to the surface of the star, and in the region below the discontinuity
they penetrate to a distance 1/k. 