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Abstract

An attempt has been made to establish the foundation of molecular level theory of vapor
phase nucleation. We have focused on evaluating the reversible work of cluster formation
and followed two major trends in this direction, namely, statistical mechanical density
functional theory and molecular level simulation.

We applied density functional theory to heterogeneous nucleation onto an ion. Qur prime
interest is to predict a sign preference of nucleation rate, which has been experimentally
observed yet remained inexplicable in the classical framework. The theory indicates that
asymmetry in ion-molecule interaction is directly responsible for the sign preference. The
predicted sign dependence decreases as the supersaturation is increased. Our results from
density functional theory agree well with the existing experimental observations.

Molecular simulation offers an alternative to molecular level approach. A long-standing
issue of fundamental importance in cluster simulation is the precise definition of a cluster.
Thus far, all attempts of defining a cluster had introduced ad hoc criteria to determine
unambiguously whether a given molecule in the system belongs to vapor or to a cluster for
any instantaneous configuration of molecules. From a carcful examination of the context
in which a cluster should be introduced into nucleation theory, we conclude that such a
criterion is unnecessary. Then, we present a new approach to cluster simulation which is
free of any arbitrariness involved in the definition of a cluster. Instead, it preferentially and
automatically generates the physical clusters, defined as the density fluctuations that lead
to nucleation, and determines their equilibrium distribution in a single simulation. The
latter feature permits one to completely bypass the computationally demanding free energy
evaluation that is necessary in a conventional simulation. The method is applied first to
water using the SPC/E model. We then turn to HySO4/Hy0 binary system to obtain a
large section of the reversible work surface. The resulting surface is markedly different from
that in classical theory and indicates that the rate limiting step of stable particle formation

in this system is the binary collision of the sulfuric acid hydrates.
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Chapter 1 Introduction

When a bulk homogeneous phase is brought to a condition of two phase coexistence, the free
energy density of this phase becomes equal to that of the coexisting phase. However, the
free energy barrier that separates these two phases is practically infinite for a macroscopic
system and a formation of the new phase cannot take place unless the barrier is lowered
considerably by an external agency such as the container wall or impurities. In the absence
of such agencies, one must reduce the free energy barrier by lowering the free energy density
of the new phase.

Near the coexistence, the parent phase remains metastable, separated from the more
stable new phase by a finite free energy barrier. Thus, relaxation of this metastable state,
i.e., the phase transition, is an activated process that must take place through spontaneous
fluctuations. If the system is far from the critical point and the free energy barrier is
not vanishingly small, these fluctuations are spatially distant from each other, and hence
statistically uncorrelated. Then, the limit of metastability of the parent phase is marked
by formation of a single spatially localized fluctuation, called a critical nucleus, which is in
unstable equilibrium with respect to further growth and hence can serve as an embryo of
the new phase. In this work, we limit ourselves to the phase transition far from the critical
point. Hence, the word nucleation rcfers to the formation of this critical nucleus.

The subject of nucleation is important in a variety of contexts, such as atmospheric
science, material processing, and cryopreservation. Also, the phenomenon of nucleation is
crucial for the understanding of the dynamics of the first-order phase transition.

One of the quantities of major interest in nucleation theory is the rate of nucleation J
per unit volume and unit time. Since nucleation is an activated process, this rate assumes

a general form:

J = Joe PV (1.1)

where 8 = (kpT)~! with kp being the Boltzmann constant and 7' denoting the absolute
temperature, W is the reversible work to form a critical nucleus in the metastable parent

phase, and Jy is a frequency factor. In this chapter, we briefly review some important
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progresses made thus far in evaluating W™ and Jy. In doing so, we focus on the most
thoroughly studied case of vapor to liquid nucleation. Vapor phase nucleation is the simplest
of all first-order phase transitions, allowing the most accurate quantitative predictions to
be made. Thus, the theory of vapor phase nucleation is subject to the most thorough
experimental verifications. A thorough understanding of the underlying concepts developed
for vapor phase nucleation is the prerequisite in developing a theory of nucleation in other
far less understood cases such as solidification from melt and cavitation in liquid.

Since excellent reviews! ™ already exist on the classical theory, we shall focus on some
of the basic issues and try to provide a new perspective to classical theory. For the sake of
simplicity, the following exposition will be limited to a single component system. We stress
that the expression of W can be readily generalized to a multicomponent system and

that the expression of Jy for a binary system was derived as early as 1950 by Reiss.*

1.1 The Classical Theory

The first quantitative theory of nucleation was developed through a successive effort by
Gibbs, Volmer and Weber, Becker and Déring, Frenkel, and Zeldovich. The theory has
found its final form early this century and is commonly referred to as the classical theory.
Despite its shortcomings, which we shall discuss later, the classical theory is presently the

only practical approach in predicting nucleation rates.

1.1.1 Reversible work of cluster formation

An expression for W™ was first derived by Gibbs® in the framework of his theory of
capillarity. Under a condition typical of vapor phase nucleation, the number of molecules
contained in a critical nucleus is of the order of 100. In such a microscopic droplet, the
thickness of the vapor-liquid interface is comparable to the size of the droplet itself and no
bulk liquid behavior is expected to hold. Nonetheless, Gibbs was able to show that, as far
as thermodynamic properties of the droplet is concerned, there is an exact correspondence
between the droplet and a highly idealized system obtained by replacing the interface of
finite thickness with a membrane without thickness or rigidity and having a tension 7 and
by assuming that the parent phase and the nucleating phase separated by this membrane

both behave as if they are a part of the corresponding bulk phases.
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When an intensive state of the vapor phase is specified, the thermodynamic properties
of a critical nucleus, including the reversible work W7, are uniquely determined by the
condition that the nucleus is in equilibrium with the surrounding vapor. If both the parent
phase and the nucleating phase are isotropic, as in the present case, Gibbs’ formula is

summarized by the following set of equations:>®

¢(T,p") = w(T,p) (1.2)
2
i v Yy
_ = 1.
p-p 5 (1.3)
Tev am 3.0 v 2

where p¥ and ¢ respectively denote pressure and the chemical potential in the vapor phase.
Similarly for p! and y in the liquid phase. « is the surface tension and R is the radius of the
surface of tension. Equations (1.2) and (1.3), along with the uniformity of temperature, can
be interpreted as the conditions of equilibrium for the idealized system mentioned above.
For a given intensive state of the vapor phase specified by (T,p"), Eq. (1.2) determines
p'. Equation (1.3) along with the knowledge of ~, then determines R and Eq. (1.4) finally
yields the the reversible work. We stress that, unless the droplet is large enough, no bulk
behavior is observed even at its center and that p!, for example, cannot be identified with
a mechanical pressure observed in the droplet.

The validity of the method of Gibbs rests on the fact that, when a cluster possesses a
high degrees of symmetry, one can take as a system a part of the cluster and the surrounding
vapor in such a way that its internal energy and entropy are well-defined and various ther-
modynamic quantities of this system can be classified into extensive and intensive variables
despite the microscopic nature of the cluster. This being the case, the thermodynamics
of the system thus defined is isomorphic with that of a macroscopic system. Namely, the
presence of an interface in the former simply introduces a term vA (A = 47 R?) in place of
the —pV term in the latter.

A major difficulty in applying the formula arises from the fact that the surface tension
is a function of R, while experimental measurements of the quantity provides its value only
for a bulk interface, corresponding to the limit of R — co. We denote vy in this limit by .
For vapor phase nucleation of water, for example, 10% decrease in «y results in the increase

in J by a factor of 10° under a typical condition. To illustrate the magnitude of the R
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dependence of v, let us apply Eqs. (1.2)-(1.4) for a case of vanishingly small W€, which is
realized when the free energy density of the liquid phase is sufficiently decreased. As W7v
vanishes, either v or R must approach zero to satisfy Eq. (1.4), while the L.H.S. of Eq. (1.3)
remains finite, indicating that v and R vanish simultaneously with W7, Conversely,
under the usual approximation y & v, adopted in lack of the precise knowledge of ~,
the nucleation barrier is considerably overestimated near the spinodal where W7 becomes
negligible.

The radius dependence of the surface tension was studied by Tolman”® and Koenig,°
who derived the following differential equation:

Ology 26(1 + 6q + 36%¢%)

__ , 15
dq 1+ 28q(1 + 6q + 162¢?) (1:5)

where ¢ = 1/R and ¢ is a distance between the surface of tension and an auxiliary dividing
surface. The precise determination of §, which is again a function of R, requires a detailed
description of the interfacial region. Thus, the difficulty regarding the precise value of v is

not resolved but simply transfered to determining 4.

1.1.2 Equilibrium cluster size distribution

The frequency factor Jy reflects the dynamical nature of nucleation process, and its eval-
uation requires a concrete model. The model currently in use dates back to Frenkel!!:12
and Band,'®!'4 who proposed that the metastable vapor phase can be regarded as a gas
mixture of clusters of various sizes, such as monomer, dimer, trimer, and so on. As we shall
see in Sec. 1.1.6, a quantity of central importance in the rate expression is the equilibrium
cluster size distribution, the average number of clusters of different sizes per unit volume.
Our purpose here is to determine this distribution ¢(n) as a function of the cluster size n.
Along the way, we introduce the capillarity approximation that is used exclusively in the
classical nucleation theory.

In the classical picture of Frenkel and Band, a cluster of size n, hereafter referred to as

the n-cluster, can be regarded as a product of the following reaction

n X = X,, (1.6)
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where X denote the constituent molecule of which clusters are made. At equilibrium, we

have

noi(T,p% {¢}) = ¢n(T,p", {c}) (1.7)

where ¢, is the chemical potential of the n-cluster, which is regarded as one of the molecular
species. In the notation employed here, a 1-cluster is identified with a monomer. We have
assumed the most general situation in which the chemical potential ¢, depends on T, p?,
and the number densities ¢ of all sizes of clusters as collectively denoted by {c}. If the vapor
phase is regarded as an ideal gas mixture of clusters, ¢,(T,p",{c}) is given by

bul(Top", {c}) = $0(T,p") + kT log <, (L8)

Ctot

where ¢, is the total number density of clusters of all sizes:

Ncut

Ciot = Z c(n), (1.9)

n=1

where ng,; is the size of the largest cluster permitted in the system. This rather artificial
constraint is necessary to constrain the system to a metastable state; recall that the critical
nucleus of size n* is in unstable equilibrium with the surrounding vapor and would grow
indefinitely unless n is bounded from above. Under a condition typical of vapor phase nucle-
ation, ¢(n*) is many orders of magnitude smaller than ¢(1) and thermodynamic properties
of the metastable vapor is determined mainly by ¢(1). Thus, n.y is commonly chosen to
slightly exceed n* while ensuring that c¢(n.y;) is negligible. As long as these conditions are
met, the arbitrariness in choosing n.,; has no quantitative consequence.

By setting ¢(n) = ¢;or in Eq. (1.8), we see that ¢2(T,p?) is the chemical potential of
pure system composed only of the n-clusters at temperature T and pressure p¥ = kgTc;u.

In classical theory, one assumes that
Sn(T,p") = nu(T,p") + vao A(n), (1.10)

where A(n) is the surface area of the n-cluster usually approximated by

3nut 2/%
A(n) =~ 47 < in ) (1.11)
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with v! denoting the molecular volume in bulk liquid. In other words, the n-cluster is
regarded as a spherical droplet with uniform density (v!)~!. Using Eq. (1.10) in Eq. (1.7),

we obtain
c(n) = cppre PAEM) (1.12)

where we have defined
AG(n) = 1T, p") = &1 (T, 5", {c})] + e A(n). (1.13)

Unless clustering of molecules leads to a significant depletion of monomers, as in the case of
associative molecules,'® molecular species in the vapor is dominated by monomers. Thus,

we may introduce a further approximations

v

n’ = c(1l) ~ ¢ (1.14)

il

and rewrite Eq. (1.12) as
c(n) = nPe PRGN, (1.15)

which along with Eq. (1.13) constitutes the capillarity approximation.

With the ideal gas approximation we have adopted,
$1(T,p" {c}) = $1(T) + kT log p} (1.16)

and

u(T,p*) = $(T) + kT logpy™, (1.17)

where ¢1(T') is the chemical potential of a monomer in the vapor at unit pressure. py and
p]"®? are the partial pressures of monomers in the vapor phase in the metastable state and

at saturation, respectively. Further noting that
pl = kgTn" (1.18)

and

py = kgTn"*, (1.19)
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where n¥% is the number density of monomers in the vapor at saturation, we obtain

n'U

nv7eq

AG(n) = —kgTnlog + Yoo A(n). (1.20)

As long as the monomer is the dominant species, we can approximate n¥ by the net number

density of molecules:

n' ~ Z ne(n). (1.21)
Thus, all quantities in Eq. (1.20) can be readily obtained.

1.1.3 Gibbs’ formula and the capillarity approximation

We briefly comment on the relation between Gibbs’ formula summarized in Egs. (1.2)-(1.4)

and the capillarity approximation.
First, it can be shown that AG(n) given by Eq. (1.13) is an approximate form of W7
given by Eq. (1.4). Recall the Gibbs-Duhem relation at constant T°:

vldp = dp, (1.22)
which can be integrated assuming the incompressibility of the bulk liquid phase to yield

V@ -pY) = (TP - (T, p?)

= o(T,p") — u(T,p"), (1.23)
where we have used Eq. (1.2). With the additional approximations
AT, p") = Yoo (T, P*) (1.24)

and

4 \
%RS ~ nu (T, p"), (1.25)

Eq. (1.13) follows from Eq. (1.4). This implies that Eq. (1.13) is inapplicable for nucleation
of compressible fluid as in the case of cavitation.
Second, note that Gibbs’ formula is applicable only for a critical nucleus. Conscquently,

its approximate version Eq. (1.13) is subject to the same limitation, while in practice,
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Eq. (1.13) is used for clusters of all sizes. When Gibbs’ formula is extended to include
clusters other than the critical (n = n*),1%17 one finds that an additional term proportional
to n —n* arises in Eq. (1.13). The neglect of this additional term leads to a much debated
problem of thermodynamic inconsistency in the case of a binary system.!®?! As we shall
see in Sec. 1.1.6, however, the nucleation rate J is determined by the values of AG(n) at
and near n = n*. Thus, from a practical point of view, such correction to AG(n) as just

mentioned is rather unimportant.

1.1.4 Law of mass action

At first glance, the capillarity approximation seems inconsistent with the law of mass action

since Eqgs. (1.15) and (1.20) indicate that
c(n) ~ ()" (1.26)
Here, we shall examine the implication of the capillarity approximation in the light of the

law of mass action, which states that

o) _ alV 1

() Aq/V)™

where V' is the volume of the vapor and g, is the partition function of the n-cluster. As-

suming a simple spherical molecule for simplicity, ¢, is given by
= L[ et (1.28)
Qn - A3nTL' I .

where A is the thermal wavelength and U, is the interaction potential of n molecules whose

coordinates are collectively denoted by r". Equation (1.28) indicates that

. (1.29)

Also, noting that
n' = — (1.30)



for an ideal gas, we obtain from Eq. (1.27)
c(n) =n"exp{—B[—kpT logq, — n¢ + kT log(n"V)]}.) (1.31)

Comparing Eq. (1.31) with Egs. (1.13) and (1.15), we find

I+ YeeAn) (1.32)

—kpT log v
n

Note that the L.H.S of Eq. (1.32) is the Helmholtz free encrgy of a cluster confined in the
volume (n?)~!. Thus, the capillarity approximation implies that this free energy is given in
terms of the chemical potential of the bulk liquid and the bulk surface tension.

Lothe and Pound?* 2% pointed out that the validity of Eq. (1.32) is rather questionable
and that a proper consideration is lacking in the capillarity approximation of the contribu-
tion to the free energy of a cluster arising from its translational and rotational degrees of
freedom as a whole. A proper correction to Eq. (1.32) is confronted with the difficulty due
to the fact that the expression nu + v, A(n) presumably reflects all of the 3n mechanical
degrees of freedom and hence that the contribution is already partially accounted for in the
capillarity approximation. According to Lothe and Pound, when the capillarity approxima-
tion is corrected to fully rather than particlly include the contribution from translational
and the rotational degrees of freedom of the cluster, the correction amount to a decrease in

AG by as much as 40kpT under a condition typical of water nucleation.

1.1.5 Fluctuation picture and reaction picture

In the point of view employed by Gibbs, a cluster is regarded as a density fluctuation in
a uniform vapor. Thus, the reversible work of cluster formation in this fluctuation picture
represents the excess in free energy over its value for the uniform vapor due to the presence
of the cluster. In fact, W"¢" becomes zero at R = 0. In the capillarity approximation, which
is an approximate version of the Gibbs’ formula as discussed in Sec. 1.1.3, AG(n) becomes
zero at n = 0. On the other hand, in the point of view of Frenkel and Band discussed at
the beginning of Sec. 1.1.2, a cluster is regarded as a product of the reaction Eq. (1.6). In
this reaction picture, AG(n) would have to be zero at n = 1. Thus, the use of Eq. (1.13) in

this picture, as is done in classical theory, is in principle inconsistent.
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It may prove fruitful to elucidate the relation between these two pictures. In fact, both
the fluctuation picture and the reaction picture appear quite reasonable in the case of vapor
to liquid nucleation. Hence, we expect that the rate theory appropriate for the fluctuation
picture and that for the reaction picture will yield a consistent description of the nucleation
phenomenon. We shall, however, stick to the classical theory and employ the capillarity
approximation in our exposition of the rate theory given in Sec. 1.1.6, even though the

latter is formulated exclusively in the language of the reaction picture.

1.1.6 Rate theory

Since monomers are dominant over other sizes of clusters under a condition typical of vapor
phase nucleation, we may assume that a cluster changes its size either by acquiring or loosing
a monomer. In a single component system, this model leads to the following equation for
the number density f(n,t) of n-cluster at a given instant ¢:
?jg = K'(n—1)f(n—1,t) ~ K (n)f(n,t)
—K (n)f(n,t) + K~ (n+ 1)f(n+ 1,1

= Jn—-1-n)—Jn->n+1), (1.33)

where K (n) and K~ (n) denote the rates for an n-cluster to acquire a monomer and lose

a monomer, respectively. The expression
Jn—1—-n)=K"(n~1)f(n-1,t) — K (n)f(n,t) (1.34)

is the net rate at which an (n — 1)-cluster becomes an n-cluster. In writing Eq. (1.33), we
assumed that KT (n) and K~ (n) are both independent of time. The assumption does not
hold for the growth process, for example, where a significant depletion of monomers causes
K™ (n) to decrease with time.

Expressions for K (n) and K~ (n) are nccessary to solve Eq. (1.33). A reasonable

approximation for K (n) is suggested by kinetic theory of gas as

R .
K+(n)NWA( ), (1.35)
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where m is the mass of a monomer and A(n) is the surface area of the n-cluster and is

usually approximated by
A(n) ~ 4nR? (1.36)

with R calculated from Eq. (1.25). The evaporation rate K (n) is, to a good approximation,
an intrinsic property of the cluster, of which we have no detailed knowledge. To circumvent
this difficulty, one assumes that the principle of detailed balance is valid in the vapor phase

constrained in the metastable equilibrium:
Kt(n)e(n) = K~ (n+ 1)e(n + 1), (1.37)

Strictly speaking, this is an assumption since the principle of detailed balance is only suffi-

cient but not necessary for equilibrium. Using Eq. (1.37) in Eq. (1.34) we obtain

Jn—1-n) = K™(n—De(n —1) {fc(&ill’)t) - fC(Z;)t) } , (1.38)

which can be used in Eq. (1.33) to obtain

8f(n7t) — K+(n—1)c(n—1){f(n_1’t) _ f(nat)}

ot e(n—1) c(n)
_K*(n)e(n) {fc(zl;) S (EZ:LI{;) } . (1.39)

Equation (1.39) can be solved numerically with proper initial and boundary conditions.

Here, we focus on the steady state solution of Eq. (1.39) since the solution can be
obtained analytically and further reduced to a general form of Eq. (1.1) with a reasonable
approximation. A steady state is realized by removing a critical nucleus from the system
as soon as it is formed and introducing the same amount of molecules into the system in
the form of monomers. The steady state approximation is relevant, for example, if large
clusters are removed from the system by gravity and no appreciable depletion of monomer
concentration is observed. In the steady state, we have

0f(n,t) _
=0 (1.40)

for any n. Eq. (1.33) then indicates that J(n — n + 1) is a constant independent of n and



12

that the constant is the steady state nucleation rate Jg,:

s = K (n)e(n) {f(”) _fnt } . (1.41)

Dividing Eq. (1.41) by K (n)e(n) and taking the sum over n, we obtain

Neut

) f(new + 1) (1.42)

1
T ngl K+(n)c(n) B C(l) C(ncut + 1) .

If nucleation does not lead to a significant depletion of monomer concentration, we may set

f()
——= =1 1.43
Moreover, since a cluster with its size greater than n* are constantly removed from the
system,
1
Jew +1) _ (1.44)
e(Newt + 1)

Using Eqs. (1.43) and (1.44) in Eq. (1.42), we obtain

Neut 1 -1
Jes = LEW} : (1.45)

It is worth noting that the nucleation rate is given in terms of the equilibrium property
c(n) even though nucleation is a dynamical process. Further approximation is necessary
to reduce Eq. (1.45) to a general form of Eq. (1.1). Note that ¢(n) has a sharp minimum
at n = n*, while K*(n) varies relatively slowly. Thus, we can approximate the latter by

K™*(n*) to obtain
" Ncut 1 -1
n=1

Teut -1
= n’KT(n*) { Z eﬁAG(n)} (1.46)
n=1

where we have used Eq. (1.15). Replacing the sum over n by integration from n = —oo to
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n = oo and expanding AG(n) around n* where AG(n) is maximum, we obtain

oo 2 -1
Jss ~ nKt(n*) { /_Oo dn exp {,@AG(n*) + g%(n — n*)ﬂ }

v . 8 PAG(n) _ -

which has a general form of Eq. (1.1). Using Eq. (1.20), we see that

*

Jos ~ <”—)n : (1.48)

n’l}?eq

i.e., the nucleation rate depends strongly on the supersaturation S = n¥/n%®. This in-
dicates that one can identify, in experiment, the critical supersaturation, the value of S

beyond which the nucleation rate becomes noticeable.

1.1.7 Current status of classical theory

As mentioned earlier, classical theory is used in virtually all practical situations. This
predominant use of the theory is quite understandable. First of all, classical theory predicts
the nucleation rate J using parameters that are widely available, such as n%?, v!, and 7ec.
Secondly, classical theory is quite successful in predicting the critical supersaturation.

In Sec. 1.1.4, we pointed out that the Lothe-Pound theory predicts the value of AG lower
than the classical prediction by as much as 40kgT,?*>26 which translates to a correction
factor of the order of 10'7 in nucleation rate. This enormous correction factor destroyed
the apparent agreement between the experiment and the theory regarding the value of the
critical supersaturation and triggered numerous work on both experimental and theoretical
fronts. The new experiments revealed that some substances such as water follows classical
theory while others such as ammonia follows the Lothe-Pound theory.?6 On the theoretical
fronts, numerous papers have appeared claiming to disprove the Lothe-Pound theory.?” 3!
However, these works are based entirely on the misinterpretation of the original theory
and merely brought confusion. As a result, it has become a major trend to simply dismiss
the theory and no satisfactory resolution of the problem exists to date. The Lothe-Pound
theory is conceptually, if not quantitatively, relevant to all kinds of nucleation, as long as

the free energy of a cluster is evaluated using bulk thermodynamic quantities as is done in
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Eq. (1.10).

Recently, measurements on the rate of nucleation itself have become available, revealing
that classical theory is systematically in error predicting too low a rate at low temperature
and too high a rate at high temperature. Thus, attempts have been made to “improve”
the capillarity approximation by adding various correction factors to AG(n) or by assum-
ing a certain functional form of AG(n) based on an ad hoc self-consistency requirement.
Such attempts, however, are quite unsatisfactory since they usually result in only a minor
correction to the predicted nucleation rate. More importantly, the theory of capillarity, as
summarized by Egs. (1.2)—(1.4), is already closed as it is, except for the Lothe-Pound factor,

thereby precluding any ad hoc attempt to improve it.

1.2 Molecular Level Approach

To overcome the shortcomings of classical theory from a fundamental point of view, there
has been a great interest in capturing the molecular level details of nucleation. There
are two major trends in this direction, namely statistical density functional theory and
molecular level simulation. Since these approaches are explained in detail and applied to
investigate particular systems in the following chapters, we shall limit the review given here

to minimum.

1.2.1 Density functional theory

Statistical mechanical density functional theory3? was first applied to homogeneous nu-
cleation by Oxtoby and Evans.??® In this approach, the grand potential (—pV in a uniform
system) of the system is written as a functional of spatially varying order parameters. Then,
the stationarity condition of the grand potential determines the order parameters for the
critical nucleus and the corresponding grand potential follows from the functional. When
a cluster possesses a high degree of symmetry and the intermolecular potential is relatively
simple, this approach is computationally far less demanding compared to simulation, al-
lowing one to investigate a much wider range of the parameter space. Thus, one usually
employs model potentials that capture the essential features of the molecules under con-
sideration. When the results are compared against predictions from classical theory, which

uses bulk thermodynamic quantities obtained from the same theoretical framework, one can
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isolate the deviations from the classical predictions arising from the molecular level details.
Although the approach is more approximate compared to molecular simulation, the theory
is extremely powerful in addressing the deviations in a semi-quantitative manner and has
been employed to investigate several interesting systems®* 2 for which no simulation has
been performed. The theory was recently applied to a ternary system.*?

In Chapters 2 and 3, we apply density functional theory to study heterogeneous nucle-
ation onto an ion. The phenomenon of ion-induced nucleation plays an important role in
atmospheric condensation, particularly in the ionosphere. Also, a possibility is suggested
recently of developing highly sensitive detection methods that take advantage of this phe-

nomenon. 4446

1.2.2 Molecular simulation

A typical value of the free energy barrier of nucleation (AG(n*)) ranges from 10kgT to
100kgT. Hence the concentration of a critical nucleus is 107° to 107% times that of
monomer. Also, the time scale required for a cluster to change its size by either acquiring
or losing a single monomer is about 10 times longer than the characteristic time scale of vi-
brations of molecules in the cluster. Therefore, a direct molecular simulation of a nucleation
event requires that simulation be performed with prohibitively large number of molecules
for a very long period of time. Thus, conventional molecular level simulation relies on the
reaction picture of Frenkel'"? and Band'® 4 discussed in Sec. 1.1.2 and focuses on evaluat-
ing the free energy of the clusters of various sizes using Eq. (1.28). In principle, simulation
can be applied regardless of the complexity of the intermolecular interaction. However, the
free energy of a cluster is usually evaluated by integrating its internal energy obtained at
different temperatures from separate simulations.*” This aspect renders the approach com-
putationally demanding and, as a result, virtually all of the simulations are limited to a
single component system with simple interaction potentials.

In calculating the partition function g, defined by Eq. (1.28), the integration must be
taken over all possible configurations of molecules consistent with the condition that the
n molecules form a cluster. This leads to a long-standing issue of a precise definition of
the cluster, which must be specified before any simulation is performed. All of the existing
methods, therefore, introduce a priori criteria to unambiguously determine, for any instan-

taneous configuration of molecules, whether or not a given molecule belongs to the cluster
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or vapor. It is by no means obvious, however, that the clusters thus defined are identical
to those actually participating in a nucleation event. Thus, in a series of papers, Reiss et
al.*3753 made an attempt to identify the physical clusters, defined as density fluctuations
that lead to nucleation. In addition to the concept of the physical cluster, we note the im-
portance of the “observational situation”5*5° to which clusters are subject. Since a typical
cluster consists of only about 100 molecules, the very concept of cluster implicitly assumes a
situation where our measurement is sensitive to the behavior of individual molecules. Thus,
statistical mechanical quantities associated with the clusters, such as their equilibrium dis-
tribution, cannot be defined without specifying precisely how these quantities are measured.
To understand this, recall that it is the insensitivity of a macroscopic measurement to the
microscopic details that permits us to define statistical mechanical quantities of a macro-
scopic system without any reference to the exact experimental setup.5 5 It follows that the
cluster cannot be defined independent of the actual nucleation process and how we describe
the process in our theoretical framework.

In Chapter 4, we challenge this problem of a cluster definition by employing the fluctua-
tion picture of Gibbs. First, we examine the context in which a cluster should be introduced
into nucleation theory and conclude that an a priori criterion as mentioned above is un-
necessary. Then, we present a new approach to cluster simulation which is free of any
arbitrariness involved in the definition of a cluster. Instead, it preferentially and automati-
cally generates the physical clusters and determines their equilibrium distribution in a single
simulation. The latter feature permits one to completely bypass the computationally de-
manding free energy evaluation that is necessary in a conventional simulation. The method
is applied first to water using the SPC/E model in Chapter 4. We then turn to HoSO4/H,0

binary system in Chapter 5.
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Chapter 2 Ion-Induced Nucleation: A Density Functional

Approach

Density functional theory is applied to ion-induced nucleation of dipolar molecules. The
predicted reversible work shows a sign preference, resulting in a difference in the nucleation
rate by a factor of 10 to 102, for realistic values of model parameters. The sign effect is found
to decrease systematically as the supersaturation is increased. The asymmetry of a molecule

is shown to be directly responsible for the sign preference in ion-induced nucleation.

2.1 Introduction

The presence of ions has been shown to greatly enhance the rate of nucleation of liquid
drops in a supersaturated vapor.’662 The phenomenon of ion-induced nucleation plays an
important role in atmospheric condensation, particularly in the ionosphere. While both
positive and negative ions increase the nucleation rate, a variety of substances exhibit a
dependence of the nucleation rate on the sign of the ion.5%%% No theory currently exists
that is capable of predicting this sign dependence.

One of the key quantities in estimating a nucleation rate is the reversible work to form
a critical nucleus from a metastable state. Unlike the case of homogeneous nucleation,
the metastable state relevant here is identified as the one with a vapor-solvated ion. The
earliest attempt to calculate the reversible work of ion-induced nucleation is due to Thom-
son,% based on the theory of capillarity, where a nucleus, either critical or metastable, is
represented as a bulk liquid enclosed by an interface of zero thickness with an ion placed
at the center. The reversible work is then given in terms of the thermodynamic quantities
such as the surface tension, dielectric constants of the bulk phases, etc. The reversible work
depends on ¢?, where g is the ion charge, and has no dependence on the sign of q.

Physically, the dependence of the ion-induced nucleation rate of a substance on the sign
of the ion charge must arise from some asymmetry in the molecular interactions. Such
asymmetry should, in principle, manifest itself in a sign dependence of the relevant ther-

modynamic quantities such as the surface tension. Several attempts have been made to
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incorporate molecular characteristics within the framework of the capillarity theory,?? 6465
where a certain structure in the interfacial region is inevitably assumed. A somewhat differ-
ent approach was taken by Rusanov and Kuni,%9% in which the surface tension is related
to the ion charge and the distance between two dividing surfaces located in the interfacial
region. The reversible work predicted by the theory shows extreme sensitivity to this dis-
tance,% a slight change of which results in a reversal of the sign preference in the nucleation
rate. It has also been noted® that, except for its inability to explain the sign effect, the
best predictions of the reversible work, when compared with experimental data, come from
the original Thomson’s equation.

Clearly, even a qualitative description of ion-induced nucleation requires a theory based
on a statistical mechanical treatment, which assumes an intermolecular potential as the
fundamental information required to evaluate the relevant thermodynamic potentials. One
of such approaches is to directly evaluate the partition function of a nucleus by Monte Carlo
simulation. Recently, major progress has been made in this direction for homogeneous nu-
cleation by Reiss and co-workers.*3 53 An alternative, and computationally less demanding,
approach is to use density functional theory. The theory was first applied to homogeneous
nucleation in a one-component system by Oxtoby and Evans.?® In this theory, the grand
potential © (equal to —pV for a uniform system) is written as a functional of order pa-
rameters such as the average number density of molecules. The critical nucleus is obtained
from the stationarity condition of the grand potential with respect to the density profile.
Recently, the theory has also been applied to binary homogeneous nucleation.®

In this work, we present a density functional theory for ion-induced nucleation of dipolar
molecules. Asymmetry is introduced into a molecule by placing a dipole moment at some
fixed distance from its center. As a result of the asymmetric nature of the molecules and
their interactions with the ion, the reversible work acquires a dependence on the ion charge.

The outline of this paper is as follows. In Sec. 2.2, we first briefly review some of the
important results from the general framework of density functional theory, and then develop
a density functional for the grand potential in terms of two order parameters, the number
density of molecules and the average dipole moment. Bulk properties are derived from the
density functional. Sec. 2.3 describes the solution methods to determine the equilibrium
profiles. The reversible work of nucleation is obtained from the equilibrium profiles and

reported in Sec. 2.4. Finally, some concluding remarks are given with a brief discussion in
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Sec. 2.5.

2.2 Density Functional Theory

2.2.1 The model and some general results

Let us consider a system of spherical molecules each of which has a dipole of moment py
located at some fixed distance a from its center. For simplicity, the dipole moment is
assumed to be pointing in the radial direction with respect to the center of the molecule,

as shown in Fig. 2.1. Suppose that the interaction potential ¢ (1,2) between one molecule

j — th molecule

T

Tion

ion

Figure 2.1: Model of a dipolar molecule and an ion. The molecule has a dipole moment
po pointing outward with respect to its center at a distance a from the center. An ion is
represented as a point charge placed at the center of a hard sphere of radius 7;4y,.

at r; with orientation Rl and the other at ry with orientation ]?,2 can be written as

(;5(1,2) = ¢d (’r‘lz) +¢att (T‘lz) +¢p(1,2), (2.1)
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where r12 = |ro — rj|. We use the notation j to represent both the translational and

orientational coordinates of molecule j. ¢¢ (r12) is the hard sphere potential given by

+oo ifryp <d
¢ (r12) = ' (2.2)

0 otherwise.

¢ (r19) is the perturbative attractive potential whose explicit form is chosen to be

¢ (r1z) = —¢ <~C~i—>6, (2.3)

T12

where ¢ is a positive constant. ¢P (1,2) is the dipole-dipole interaction between molecules 1

and 2, and is given by

2
o (1,2) = % 1+ Ry = 3(Ry - 012)(Bs - 112) |, (2.4)

where u; = r; + af?j, w1 = |ug — uyf, and G412 = (uz — uy)/u12. To avoid complications
due to possible overlap of two dipoles, we choose a to be smaller than d/2.

Consider an open system, for which the grand potential €2 is the proper thermodynamic
potential. In density functional theory, € of the system is given as a functional of order

parameters such as the position-orientation distribution function p(r, R) defined by
A N A~ A
p(r,R) = <Z 5(r—rj)5(R~Rj)> . (2.5)
j=1
Later, we shall use the particle density distribution function
N
n(r) = <Z 5(r — rj)> (2.6)
j=1
and the orientation distribution function
m(r, R) = p(r, R)/n(r). (2.7)
From the definition Eqgs. (2.5) - (2.7), it follows that

n(r) = / dR p(r, ) (2.8)
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and
/dRm(r, R)=1. (2.9)

In terms of p(r, R), € is given exactly by3?

+-;— //dl d2 p(1) p(2) AldAg(l,Q;A) [6(1,2) — ¢r (1,2)],
(2.10)

where F,.[p] is the intrinsic Helmholtz free energy of the reference system in which molecules
interact via potential ¢, (1,2). p is the chemical potential of the system. v(r, R) is the
external potential, which arises from the ion-molecule interaction in our study of ion-induced

nucleation. g(1,2; ) is the pair correlation function of the system with intermolecular

potential,

6x(1,2) = ¢ (1,2) + X[ (1,2) — ¢r (1,2)]. (2.11)

We take a fluid of hard spheres as the reference system, for which F;[p] can be decomposed

into the ideal gas contribution,
rideal [ g1 — kBT/dl p() {log [ A% p(1) | — 1} (2.12)

and the excess free energy F*¢[p] due to the hard sphere exclusion. kg is the Boltzmann
constant, 7" is temperature, and A is de Broglie’s thermal wavelength. Following the previous
work on homogeneous nucleation by Oxtoby and Evans,®® we introduce the local density

approximation, under which
Fe¢[p] = /dr1 f¢(n(ry)). (2.13)

To approximate the excess free energy density f¢*¢(n(r)) per unit volume of the reference

system of density n, Carnahan-Starling’s formula’ 7! is employed:

f”c(n) = ]{IBTH ——(—]_—:———y—)Z_7

where y = (7/6)d®n. Because little is known about the pair-correlation functions of in-
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homogeneous fluids in which molecules assume orientational degrees of freedom, some ap-

33

proximation is required. Following Oxtoby and Evans,” we employ the approximation:

9(L,2;0) ~ H(r12 — d), (2.15)
where H is the Heaviside step function and independent of A. It follows that

alp = kBT/dlp(l){log [A2p(1)] -1 +/dr1 Fe5eney)
— [t p(1) [ = o(1)
+% // d1d2 p(1) p(2)H (r12 — d)[ ™ (r12) + &P (1,2)]. (2.16)

The equilibrium distribution for p(r, }AE) is determined by the stationarity condition of the

grand potential:
—— = 0. (2.17)

From Egs. (2.16) and (2.17), we obtain

k5T log [ A% p(1) | + u“(n(r1) = [ = v(1)]
+ [@p@H (1 - d)¢™ (ra) + & (1,2)] = 0, (218

where we have defined p®¢(n) = 0f%*¢/0n. The solution of Eq. (2.18) can be used in
Eq. (2.16) to evaluate € of the system.

In our study of ion-induced nucleation, an ion is taken as a point charge placed at the
center of a hard sphere, which itself is supposed to be fixed at the center of a cluster. The
ion-molecule interaction can be treated as an external potential, which is composed of the

hard core repulsive potential and

—poRR - E(u), (2.19)

where E is the electric field due to the ion. It will be readily observed from Eqs. (2.16),
(2.18), and (2.19) that flipping the dipole moment embodied in each molecule and simulta-
neously reversing the direction of the electric field (by changing the sign of the ion charge)
leaves p(r, R) and  unchanged. However, for a given direction of the dipole moments, both

p(r, R) and € change when the sign of the ion charge is changed.
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2.2.2 Approximate formulae

The solution of the full distribution function p(r, ﬁ) requires inordinate computer time and
memory. To reduce the computational task, we make a further mean field approximation,
where the orientational degrees of freedom R is replaced by an order parameter p(r) defined
by

p(r) = / dRm(r, R)R. (2.20)

As a result of interactions with other molecules and the external field, the molecule at r
orients itself in various directions with a certain probability m(r, R) On average, however,
the molecule can be described as having a dipole moment p(r). For a specified functional
form of p(r), the distribution function m(r, R) consistent with this p(r) is not unique.
Therefore, some approximation must be employed to introduce p(r) instead of m(r, R)

Without any loss of generality, Eq. (2.7) may be introduced into Eq. (2.16):

Qln(r),m(r,B)] = kpT / din(r)m(1)log m(1)
£ [ des faln(e0) = [ dinfem(U) = v(1)]
—{-—;— // drq drg n(rl)n(rz)H(ru —d)¢att(T12)

+% / dl d2n(r))n(r)m(Dm(2)H(rs — d)¢P(1,2),
(2.21)

where f;(n) is the Helmholtz free energy density per unit volume of the reference system,

and is given by
fa(n) = kgTn {1og(A3n) - 1} + £ (). (2.22)

In the first term of Eq. (2.21), the quantity
—kB/d}A%m(r, R)logm(r, R) (2.23)

represents the entropy of a molecule at r associated with its orientational degrees of freedom.

In order to express this quantity in terms of p(r), we choose a particular m(r, R) as an
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ansatz. In our mean field approximation, we take

m(r, R) = %exp <%> ) (2.24)

the orientation distribution function of a molecule in an auxiliary uniform electric field Eq.

Z is the normalization constant determined by Eq. (2.9):

. poR - Eg
Z = /dRexp( T )

kT | (pOEO)
= ——=—sinh{—7—]. 2.25
poky kgT (2.25)

Namely, for every point r in the system, we assign m(r, ]:Z) which would be obtained if the
molecule were subject to the uniform external field Eg and there were no interaction among
molecules. The auxiliary electric field Ey to be imposed on the molecule is determined so

that it yields the specified p(r) given by Eq. (2.20):
1
p(r) = -t coth z, (2.26)

where z = poEo/kpT and p(r) and Ej are parallel to each other. For the ansatz of m(r, ]?)

employed here,
R A - i
—/dR m(r, R)log m(r, R) = log (; sinh z) — zp(r), (2.27)

which, along with Eq. (2.26), serves as a parametric representation of the orientational
entropy (divided by kp) of a molecule. It is more convenient, however, to represent this
quantity as a function of p(r) only. For this purpose, the R.H.S. of Eq. (2.26) and the
logarithmic term in Eq. (2.27) are expanded in power series of z. Inverting the former

series for p(r) and substituting the resulting series in the latter, one finds

- / dRm(r, R)logm(r, R)

B 3wy — L payt— 9 e 1539 0

(2.28)
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0 0.2 0.4 0.6 0.8 1

Figure 2.2: Orientational entropy per molecule (divided by kp). The Padé approximation,
Eq. (30), is compared with the ’exact’ result using the parametric representation, Eqs. (26)
and (27).

From the parametric representation Egs. (2.26) and (2.27), it can be shown that

—/df%m(r, R)logm(r, R) ~ log[l — p(r)?]
as p(r)? = 1. (2.29)

To recapture such limiting behavior, we employ the Padé approximation, by which the

R.H.S. of Eq. (2.28) is resummed as

—/df%m(r, R)logm(r, R)
1 1 53 211
— 27 _ = 2 4 6 8
log 47 + log[1 — p(r)”] — 5 p(r)” + 55 p(r)” + 7575 P(r)” + 7556 p(r)

57" (p(r)), (2.30)

Q

where the coefficients of p(r)?* are determined so as to ensure the matching of two expres-
sions at the small p(r) limit. In Fig. 2.2, Eq. (2.30) is compared with the ’exact’ result
using parametric representation given by Eqs. (2.26) and (2.27). As is seen from Fig. 2.2,
the two representations are indistinguishable.

The remainder of the terms in Eq.(2.21) can be treated similarly. To further simplify
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the equation, we have expanded v(1) and ¢*(1,2) around a = 0. Retaining the terms up to
O(a/d), we obtain

Q[n(r), p(r)] =
—kBT/drl n(ry)s” " (p(ry)) +/d1‘1 fa(n(r1))

3 OE,
_/dr1 n(ry) {u + poPa(r1) {Ea(rl) + £ dzg

Pﬁ(rl)} }

+% // dridryn(ri)n(re)H(ri2 — d)¢att (712)

1
+3 / dry dryn(ri) n(rz)H(ri2 — d)

3 0%,

X {‘I’Zg(rlz) tra [py(r2) —Pw(rl)]}z?a(fl)l’ﬁ(rz),

r=ris

(2.31)

where, for clarity, we use tensor notation to represent electrostatic terms. Qgﬁ(r) is defined

by

d, 3z
8 5(r) = po® {%f - 7‘_*5 B } : (2.32)

and z,, is the a-th component of r in Cartesian coordinate system. In arriving at Eq. (2.31)

we have used the following relation:

[ @t ) o g = [ = 0P bap + Epa()pate) + OGY  (239)

by employing the ansatz for m(r, R) given by Eq. (2.24). As before, the stationarity condi-

tion of 2 determines the equilibrium profiles for n(r) and p(r):

5n(r)) =0 and 5p(r1) =0, (2.34)

subject to boundary conditions imposed by the hard core interaction with an ion. Written

explicitly,

0 = —kpTs”(p(r1)) + paln(r1))

3 OE,
- {u + popa(rs) {Ea(rl) + £ 925

Pﬁ(rl)} }
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+/dr2 n(re)H(ryy — d)p (r12)

+ / dron(ry)H(r3 — d)

3 0%,

X {<I>§5(r12) + =0 —%7— [py(r2) — Pw(rl)]} Pa(r1) pa(rs)

r=ris
(2.35)
and
dsort pa(rl) 6 6Ea
0 = - — po | Ba(r1) + »
dp(r1) p(r1) Do (r1) 54 bz 5 . pp(r1)
+/dr2 n(re)H(r12 — d)
» 3 0%,
x| Pag(riz) + za By |, [py(r2) — 2py(r1)] p Po(r2),

(2.36)

where use has been made of the fact that both 9E,/0xg and 0%, 5/, are invariant with
respect to any exchange of indices and that @) ,(—r) = ®}5(r) while 07 5/07y|r=r,, =
—8@25/817“:”1. We have defined pg(n) = 0fq/0n.

In our study of ion-induced nucleation, the system is spherically symmetric about the

center of an ion. Taking this as the origin, the electric field is given by

x
Eo(r) =473, (2.37)

where g is the ion charge. For the particular choice of ¢**(ris) in Eq. (2.3), integrations
with respect to the polar and azimuthal angles in Egs. (2.31), (2.35), and (2.36) become
analytically tractable, reducing the dimensionality of the integrals to two for Eq. (2.31),
and one for Egs.(2.35) and (2.36). We may now discretize the domain of r. It can be shown
that the terms arising from the dipole-dipole interaction become identically zero unless 7;

and 79 satisfy

(7’1,7"2) S {Tion +d/2 <71 < Tion +3d/2 and Tion —f—d/2 <ry<ry +d}

or {rion +3d/2 <7 <r,andry —d <ry <r;+d}, (2.38)



28
where 79 is the radius of the system boundary. The condition (2.38) results from the volume
exclusion represented by H(ri2 — d). The contribution due to the dipole-dipole interaction
is then expected to be small, and neglected as a first approximation. The validity of this

approximation will be examined in Sec. 2.4. The grand potential now becomes

Qfn(r), p(r)] =
—47rkBT/7°12drln(rl)s‘m(p(m)) +47r/7‘12 dry fa(n(r1))

—47 / r1? dry n(ry) {ﬂ =+ Pog plr) [1 - g17(7“1)} }

7‘12 5 71

c(r1,r2)
+47r/7'12 drin(ry) {71'/7’22 dre n(rg)/ i d(cos 8) qﬁatt(mg)}.
-1

(2.39)
Note that
d 1 1

satt — dﬁ [_ jl . 2.40
9% (rz) = € d(cos@) | 4drirs (112 + 7122 — 2r179 cos §)? (240)

¢(ry,79) is unity except when r1 and ry satisfy the condition (2.38), in which case

2 2 _ 2

(ryr) = LT (2.41)

2T1T2

The sign preference of the grand potential is clearly seen in Eq. (2.39). Consider a
system in equilibrium and suppose that the sign of the charge ¢ is reversed. If a were zero,
the system would establish a new equilibrium state by simply reversing the sign of p(r)
without changing its magnitude or n(r), since the grand potential is invariant with respect
to simultaneous reversal of ¢ and p(r). However, for any nonzero value of a, 2 is no longer
invariant and the system has to modify both n(r) and the magnitude of p(r) as well as
its sign to establish a new equilibrium state, which in general affects the value of 2. The

equilibrium profiles for n(r) and p(r) are determined by

0 = —kpTs™(p(r1)) + pa(n(r1)) - {# +p0q%%_) {1 B g %p(m)n

2 elrir2) att
+27r [ ro* dron(rs) d(cos 0) ¢**(r12) (2.42)
-1
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and

ds°™  pog 12 a
0=—kpT —— 1l - = — . 2.4
pT s = 24 [1- 2 L o(r)] (243)

Note that Eq. (2.43) is now independent of n(r) as a result of ignoring the dipole-dipole

interaction.

2.2.3 Bulk properties

In the absence of the external field, the thermodynamic properties of a homogeneous system
can be easily derived from Eq. (2.16). Since such a system is isotropic as well, we may set
p(r, R) = n/4m in Eq. (2.16), from which the Helmholtz free energy density per unit volume

of the system of density n is obtained:

fTn) = —p+un
= —kpgTnlogdm + fy(n) — % n?. (2.44)

Note that Q = —pV for a homogeneous system. ¢ is defined here by

_ﬁ/ dld2 H(?"lz hd d) [d)att("'m) + ¢p(1’ 2):|

:-4w/ﬁnH&m—®WWﬁﬂ, (2.45)

)
I

where we have used the fact that the integral of ¢*(1,2) is zero. For the particular choice

of ¢ (r19) given by Eq. (2.3), one has

eds. (2.46)

Eq. (2.44) is a fundamental equation of the isotropic system, from which by well known

thermodynamic relations, one obtains
MEM=—@H%M+MW—fm; (2.47)
T

P(T,m) = npia(n) = fa(T,n) = =n’. (2:48)
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Eq. (2.47) is identical with Eq. (2.18) applied to the isotropic system at v(r, R) = 0. These

results could also have been obtained by setting E = 0 and p = 0 in Eq. (2.31).

T T 1 T

1k y — Gas-Liquid Coexistence Curve
> Spinodal Curve ------

T/T.
0.9

0.8
0.7
0.6

0.5

n

Figure 2.3: The gas-liquid coexistence curve and the spinodal curve calculated for the

system composed of the dipole molecules. Density is normalized by d—3.

At a given temperature, the coexisting bulk densities are determined by

w(T,n?) = pu(T,ng);

pl(T7 nleq) = pv(Tv nsq)a (2'49)

where the subscripts ; and , refer to liquid and vapor, respectively. The spinodal curve

which divides the metastable and unstable regions in T' — n phase diagram is obtained by

Op

5 =0 (2.50)

The critical point is located in the phase diagram by Eq. (2.50) and

&p
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with a numerical solution

™
Ye = Edsnc
~ (.13044;
1 w2d?
~ 14135 —
kgT, ( « )
1
— 26503 (-) (2.52)
€

The T — n phase diagram is shown in Fig. 2.3.

2.3 Solution Method for the Equilibrium Profiles

Given T/T, and supersaturation S, defined as the ratio of the metastable vapor pressure
and the equilibrium vapor pressure, we can calculate, via Eqs. (2.47)-(2.49), the chemical
potential p of the system and the densities of the bulk liquid n; and vapor n, at that
chemical potential. As mentioned in Sec. 2.2.2, Eq. (2.43) is independent of n(r) and can
be easily solved numerically. The solution is substituted in Eq. (2.42), which is now an
integral equation for n(r) only and can be solved by iteration. In the case of homogeneous
nucleation, the equation to determine the density profile n(r) has two solutions. One is
that of a metastable vapor, namely n(r) = n,. The other is that of a critical nucleus, which
corresponds to a saddle point in functional space. When an ion is present in the vapor, the
metastable profile exhibits solvation of the ion. This metastable nucleus was obtained by

starting from the initial guess n(r) = n,. Iteration can be repeated until the quantity

AE/dr

becomes sufficiently small. The iteration process applicable to a critical nucleus is described

00

e (2.53)

in detail by Oxtoby and Evans.?3 As the initial guess, we take the step function:

o <R
n(r) = (2.54)

n, otherwise.

If R is too small, the nucleus shrinks as the iteration proceeds, while it grows if R is too

large. Starting from several values of R, it is possible to find R* such that the nucleus
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neither shrinks nor grows as the iteration is repeated. Our solution method differs from
that proposed by Oxtoby and Evans®? in some details. Instead of monitoring the behavior
of 2 as a function of iteration number, we monitored A. R* was identified with that which
yields, after some steps of iteration, n(r) that minimizes A. Then, this n(r) was used as the
initial guess in solving Eq. (2.42) more accurately by the Newton-Raphson method, which
was repeatedly applied until A becomes sufficiently small.

Finally, the boundary of the system is taken to be a sphere, the radius of which is
sufficiently large so that n(r) attains its limiting value n, there. As a result of the long
ranged nature of the monopole-dipole interaction, p(r) may not reach its limiting value of
zero even at rg. The truncation error thus introduced, however, exactly cancels out when
the difference is taken, as in the case of the reversible work calculation, between two states

with the same value of n,.

2.4 Results and their Implications

It is advantageous to normalize the equations by model parameters: d for the length scale;
kgT, for the energy scale. When the dipole-dipole interaction is ignored, the dipole mo-
ment pg and the charge ¢ of an ion can be lumped together to form a single dimensionless

parameter:

_ _Dog
X= ot (2.55)

which is the ratio between the monopole-dipole interaction energy at separation d, the
diameter of a molecule, and the thermal energy at the bulk critical point. x > 0 corresponds
to nucleation either around a positive ion of molecules each with dipole pointing outward
from its center, or around a negative ion of molecules each with dipole pointing toward its
center.

Typical values of x are of the order of 10. When py = 1D(Debye), d = 34, T, = 10°K,
and ¢ = e, where —e is the charge of an electron, x ~ 3.9. Our choice of parameters is
x| = 5, a = 0.1d, and the ionic radius rj,, = d. Later, the effect of the values of these
parameters on the reversible work of nucleation will be examined.

The absolute value of the average dipole moment distribution p(r) is shown in Fig. 2.4.

The sign of p(r) is the same as that of x. Near the ion, dipoles tend to line up with the



33

1 T r . . : .

x=-5 —

rion:1 a=0.1 X=5 ......
0.8 | \ .

Ip(r)]
0.6 |
04 F ]
0.2 F T/T.=0.45 i
Tion ¥o
T/T. = 0.65
1 I N P =

0 2 4 6 8 10 12 14

Figure 2.4: The magnitude of an average dipole moment distribution at two different tem-
peratures. 7o is the radius of the system boundary. Distance is normalized by d.

electric field, showing r—2 decay for larger distance, as it should. What is not shown in
the figure is the case of x = 0, when Eq. (2.43) has a trivial solution p(r) = 0. Figure 2.4
shows that at a given distance r from the ion, the magnitude of the average dipole moment
is always larger when x < 0. This is readily understood as follows. Suppose for a moment
that the dipole moment is placed outward with respect to the center of each molecule. The
dipole moment in a molecule at r tends to point toward a negative ion, thereby decreasing
its distance from the ion, while it will point away from a positive ion, increasing its distance
from the ion. For a given value of |x| and at the fixed ion-molecule distance, the monopole-

dipole interaction is therefore stronger when x < 0 than when x > 0. As seen from

Eq. (2.43), T/T, affects p(r) through the parameter x(T/T.)*. Increasing T/T, has the
same effect as decreasing , as shown in Fig. 2.4. Stated differently, the entropic contribution
becomes more important at higher 7'/7,, and the system prefers a less ordered state.

The number density distribution n(r) is obtained from Eq. (2.42). Figure 2.5 shows the
solution at T//T, = 0.65 and supersaturation S = 3. Density profile for the case of x < 0 is
shown in Fig. 2.6 at the same temperature for several values of supersaturation. Figs. 2.7
and 2.8 show similar results at 7'/T, = 0.45.

As mentioned in Sec. 2.3, a metastable profile shows solvation of the ion. The exception

is the case of ¥ = 0, corresponding to nucleation on a neutral particle, for which the profile
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Figure 2.5: Equilibrium density profiles at 7'/T, = 0.65 and S = 3. The profiles with
smaller values of n(r) correspond to the metastable nuclei, while those with larger values
o n(r) represent the critical nuclei. 7o is the radius of the system boundary. Distance is

normalized by d.
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Figure 2.6: Variation of the density profile with the supersaturation S. T'/T, = 0.65.



35

T/T. =045 S =30 X = =5 —

07T Hen=1  a=01 X=5 oo :
n(r) X=0 -

0.5 | -

03 | -

0.1 | .
Fion To

0 2 4 6 8 10 12 14

Figure 2.7: Same as (a), but for T'/7; = 0.45 and S = 30.

T/T.=0.45 x=—5 S =20 ——
07T Tion = 1 a=01 S =25 -oen .
" S
05 F
03 F
01
Tion
0

Figure 2.8: Same as (b), but for T/T, = 0.45.
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Ion-Induced Nucleation _—
\ Homogeneous Nucleation -----

‘\\ Metastable Nucleus

X—>—0\ ™. Critical Nucleus

Rate of Evaporation and Condensation

Figure 2.9: A schematic picture of the rate of evaporation (represented by the curves) and
condensation (represented by the horizontal lines) of molecules per unit area of the nucleus.
The abscissa represents the number of molecules in the nucleus.

shows a decrease in density near the particle. This volume exclusion effect is a result of
the repulsive hard core interaction between the particle of radius r;,, and the molecules.
Although the effect exists for other cases as well, it is often overwhelmed by the attractive
interaction between the monopole and the dipoles. The general feature to be observed is
that at a given supersaturation S, the metastable nucleus with x < 0 is always larger than
that with x > 0, while the opposite is true for the critical nuclei. Also, the metastable
nucleus grows as S increases, while the critical nucleus shrinks. To qualitatively understand
such features, it is helpful to take a molecular point of view. An equilibrium nucleus is
then characterized as the one for which the rate of evaporation of molecules (per unit time
unit area) and that of condensation is balanced. The qualitative behavior of these rates is
shown schematically in Fig. 2.9, where we denote by N the number of molecules within a
nucleus. At a given temperature, the physical state of the nucleus and therefore the rate
of evaporation are independent of the vapor pressure. While N is relatively small, the
intermolecular interaction energy per molecule increases (in its magnitude) as N increases.
Thus the rate is a monotonically decreasing function of N and approaches the bulk liquid
value equal to the condensation rate at saturation (S = 1) as N approaches infinity. The

condensation rate, on the other hand, is independent of N and is proportional to the vapor
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Figure 2.10: The reversible work of nucleation. Three values of Sy, represent the super-
saturation at the stability limit. From the left, they correspond to the value at 7'/T;, = 0.65,
at T/T, = 0.55, and at T/T, = 0.45, respectively.

pressure or S. As shown in Fig. 2.9, those two rates are equal when N = Nj, and Ny
decreases as S increases, approaching order of one at the spinodal (denoted by Spz), where
an infinitesimal fluctuation in density promotes phase transition.

When an ion is introduced in a nucleus, it attracts molecules via the monopole-dipole
interaction, thereby decreasing the evaporation rate. Since the electric field decays as r2,
the decrease should be most significant for small N and becomes negligible as N approaches
infinity. As mentioned in connection with Fig. 4, this attraction is stronger when x < 0
than when x > 0, which yields the curves for x > 0 and x < 0 in Fig. 2.9. When the
attraction between an ion and molecules is sufficiently large, the condensation rate balances
the evaporation rate even when S < 1, which corresponds to vapor solvation of the ion.
From Fig. 2.9, it is clear that at a given supersaturation S, a metastable nucleus is larger
if ¥ < 0, while the opposite is true for a critical nucleus. Figure 2.9 also shows that as S
increases, a metastable nucleus grows while a critical nucleus shrinks, and that two nuclei
coincide, meaning that the system reaches its stability limit, at the supersaturation lower

than Spae. A similar figure is employed by Castleman et al.”? in explaining the existence

of a metastable nucleus and the instability of the system at a supersaturation lower than

Smaz-
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Figure 2.11: The difference in the reversible work reported in Fig. 2.10 between the case of
x > 0 and that with y < 0.

Figure 2.10 shows the reversible work AQ/kpT of nucleation as a function of supersat-
uration. The reversible work relevant here is that is required to form a critical nucleus from
the metastable one. Figure 2.10 shows that the reversible work decreases as S is increased,
and that if x # 0 it approaches zero before Sy,,; is reached, which is consistent with the
qualitative prediction of Fig. 2.9. Figure 2.11 shows the difference between the reversible
work AQ, /kgT of nucleation with x > 0 and that (AQ_/kgT) with x < 0. Figure 2.11
clearly shows the preference for the case of x < 0, influencing the nucleation rate by a factor
of 10 to 102. The observed preference can be understood along the line of discussion given
in connection with the average dipole distribution p(r). Figure 2.11 also shows a monotonic

decrease in AQ — AQ_ with increasing S. To understand its implication, let us rearrange

this quantity as follows:

AQ, — AQ_

(Qﬁritical o Qc_ritical) _ (QTetastable _ QTLLetastable)‘ (256)

For an equilibrium distribution of p(r) and n(r), one may combine Eq. (2.42) with Eq. (2.39)

(
to eliminate the double integral. Expanding the resulting expression for 2., around n =
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Figure 2.12: Effect of the value of x on the reversible work.

(ny +n_)/2 and p = (p4+ — p_)/2, and that for Q_ around 7 and —p, one finds

6 np?
Q+—Q_ ~ ga|p0q)/drr—3

+ [ de na,5) (e =) + 7 ha(p) (b1 +9-)] (2.57)

where h; and hs are certain functions. Noting that p(r) is independent of n(r) and retaining

only the leading term,
6 ﬁZ =critical —metastable
AQL —AQ_ = = a |po ¢ /dr e (7 —n ). (2.58)

It is clear that this quantity decreases monotonically as S is increased.

The dependence of the reversible work on the values of model parameters is shown in
Figs. 2.12-2.14. Figure 2.12 shows that the presence of the electric field always decreases
the reversible work of nucleation of dipolar molecules. Figure 2.13 shows that the increase
in 7, results in the increase of the reversible work as well as in the decrease in sign
dependence. This is expected since the increase in 7;,, causes the increase in the monopole-
dipole separation. However, as seen from Fig. 2.14, it is the asymmetric nature of molecules
that is directly responsible for the sign dependence of the reversible work. Figure 2.14 shows

that the reversible work for the case of x > 0 increases as a is increased, while it decreases
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Figure 2.13: Dependence of the reversible work on the size of an ion. Distance is normalized
by d.
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Figure 2.14: Effect of asymmetry of a molecule upon the sign preference of the reversible
work of ion-induced nucleation. Distance is normalized by d.
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Figure 2.15: Dependence of the sign effect of the reversible work on |x|. The value of the
coefficient c is determined to match the computed value of (AQ. — AQ_)/kgT at |x| = 1.

if ¥ < 0. Such a trend can be readily understood by noting that a larger value of ¢ implies
larger monopole-dipole separation if xy > 0 and smaller separation if x < 0 for a given
ion-molecule separation. Eq. (2.26) shows that, in the weak electric field limit, p ~ pyq.

From Egs. (2.55) and (2.58), one finds
AQL - AQ_ ~alx. (2.59)

Such dependence on |x| and a is clearly seen in Figs. 2.15 and 2.16.

In our calculation, the dipole-dipole interaction has been ignored for computational
convenience. To examine the validity of this approximation, we calculated its contribution
to the grand potential of the system. As a self-consistency check, we use the equilibrium
profile p(r) and n(r) obtained by neglecting the dipole-dipole interaction. In Eq. (2.31),

when the integrations with respect to ry are carried out,
1
w(ry) = ) /drg n(ro)H(ria — d) ¢ (r12) (2.60)
and

wp(rl) = —;‘/er n(rg)H(T’lz —d)
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Figure 2.16: Dependence of the sign effect of the reversible work on a. Distance is normalized
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(2.61)

can be, respectively, regarded as the contributions to the free energy per molecule due to
the intermolecular interactions ¢%*(r12) and ¢?(1,2). Figure 2.17 shows these quantities as
functions of r1. wP can be shown to scale as xpg/gd. When py = 1D, d = 3A, and g = e,
we have py/qd ~ 0.07. In Fig. 2.17, we have chosen pg/qd = 0.1. The contribution due to
#P(1,2) is, in fact, quite small compared to that from ¢**(ry3), justifying our approximations

of ignoring the dipole-dipole interactions.

2.5 Discussion and Conclusion

In this paper, we have shown that the sign preference in ion-induced nucleation can be
explained in terms of the asymmetric nature of the molecular interactions. Consistent
treatment of such molecular characteristics is achieved by means of a statistical mechanical
density functional theory, by which the grand potential is given in terms of two order pa-
rameters, the number density n(r) of molecules and the average dipole moment distribution

p(r). When the intensive state of the supersaturated vapor is specified, the stationarity
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Figure 2.17: The free energy densities resulting from the dipole-dipole interaction (wP) and
that due to ¢! (denoted by w?). rq is the radius of the system boundary. Distance is

normalized by d.

condition of the grand potential uniquely determines a critical nucleus and a metastable
nucleus for given values of model parameters. The calculated reversible work shows a pref-
erence toward the case of ¥ < 0, influencing the nucleation rate by a factor of 10 to 102 for
some realistic values of the model parameters employed in this paper.

In the present work, ions are assumed to be the only source of the electric field within
the system. A uniform electric field is often applied, however, to selectively introduce ions
with a particular sign. Rabeony and Mirabel® were the first to draw attention to the
effect of a uniform electric field on the rate of nucleation. They reported a decrease in
the number of nucleation events as the applied field was increased. A similar decrease
was reported by Katz et al.,”® though they clearly demonstrated that the nucleation rate,
which was identified as the number of nucleation events divided by the time during which
ions stay in the nucleation zone, was independent of the applied field. On the other hand,
an increase in the nucleation events was reported by He and Hopke™ and El-Shall and
Kane.** Although a thermal diffusion cloud chamber was used in all of these experiments,
the disagreement among them seems to arise from the different techniques of introducing
ions into the nucleation zone.

In the experiments reported by Rabeony and Mirabel,%¢ a sign effect is observed only
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in the presence of this uniform field. However, Okuyama et al.5%%2 observed an apparent
sign effect in the absence of the field. Their figure 9 indicates that the sign preference in
the nucleation rate becomes less significant as supersaturation increases, in agreement with
our prediction. (See Fig. 2.11). Such dependence of the sign preference on supersaturation
is also reported by El-Shall and Kane.**

In trying to make quantitative comparisons with experiment, we note the following
points. First, model parameters such as € and d are easily determined from the critical
point data, assuming that the substance is well described by the law of corresponding states
with two parameters. The dipole moment py can be either related to the bulk dielectric
constants or found in a handbook. The value of ¢ that plays such an important role in
producing the sign effect, however, is not available in general.

Secondly, ions present in the experiments are often complex molecules such as H" (HoO),,
rather than ionized atoms. Then, the ion itself must be treated by means of statistical
mechanics. Also, an ion would interact with the condensing molecules via a van der Waals
type interaction as well. The latter can be treated in the current theory by simply replacing
Eq. (2.19) by the appropriate expression.

We have characterized an ion by its charge and radius, and the ion-molecule interaction
is assumed to be purely electrostatic. Such an idealization is acceptable for those ions that
have the same electronic structure as that of noble gases.”®7® On the other hand, one would
not expect the present theory to be applicable to a system where the chemical nature of the
interaction between the ion and molecules plays an important role.”” If, however, the effect
on the grand potential due to such chemical characteristics is insensitive to the size of a
nucleus, it will cancel out on calculating the reversible work of nucleation. In fact, Katz et
al.”® found that, within the accuracy of their experiment, the nucleation rate dependence
on the ion characteristics is insignificant. It is therefore interesting to examine the validity
of the current theory against the experimental data, assuming that values of all the model
parameters are known.

We have avoided the explicit consideration of the fluctuation of an ion within the nucleus
by taking the position of the point charge as the origin. Implicit in our calculation is the
assumption that the system is, on average, spherically symmetric around the ion. More
rigorously, one could treat the system as a binary in which the ion is the second component

with extremely low concentration.
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Our calculations at this stage are largely qualitative both in the model representation
of the system and in the theoretical treatment. Further improvement on both fronts can
be envisaged. For example, the model can incorporate the polarizability of molecules, non-
spherical charge distribution in an ion, etc. Also, a better treatment of the pair distribution
function than that of Eq. (2.15) will undoubtedly give a better description of the structure
of the fluid near the ion or interface. Nevertheless, it is clear that some of the most im-
portant characteristics of ion-induced nucleation have been captured in the present theory,
which forms a basis for explaining this well known phenomenon that has hitherto remained

inexplicable within the classical framework.
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Chapter 3 Ion-Induced Nucleation: II. Polarizable
Multipolar Molecules

Density functional theory is applied to ion-induced nucleation of polarizable multipolar
molecules. The asymmetric nature of the ion-molecule interaction is shown to cause the
sign preference in ion-induced nucleation. When the ion-molecule interaction is weak, the
observed sign preference is consistent with that of the bare ion-molecule interaction poten-
tial and decreases with increasing supersaturation. However, as the ion-molecule interaction
becomes stronger, the sign preference in the reversible work exhibits some non-trivial be-
havior. For molecular parameters applicable for CS, and CHy, the predicted values of the
reversible work of nucleation depend on the sign of the ion charge, yielding a difference in

the nucleation rate by factors of 10 to 102 and 10 to 10°, respectively.

3.1 Introduction

In ion-induced-nucleation ions act as sites for vapor molecule cluster formation, thereby
enhancing the ease with which clusters can form in a supersaturated vapor over that in the
absence of ions.%670%:62.74 Despite the long recognition of the phenomenon of ion-induced
nucleation, a detailed understanding of the physics of the interaction between neutral vapor
molecules and ions that leads to an enhanced rate of nucleation in the presence of ions has
been lacking. A question basic to the process is — whether one can predict on fundamental
grounds how the rate of nucleation will, for a particular vapor molecule, depend on the sign
and properties of the ion. While both positive and negative ions increase the nucleation
rate, most substances exhibit a preference for one ion polarity over the other. For some
substances, however, even a qualitative agreement among experiments on the sign preference
for nucleation is lacking.%® Definite conclusion on the sign preference for some substances
still awaits for further investigations.”™

Physically, the dependence of the ion-induced nucleation rate of a substance on the sign
of the ion charge must arise from some sort of asymmetry in the molecular interactions.

Such asymmetry should, in principle, manifest itself in a sign dependence of the relevant
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thermodynamic quantities such as the surface tension. Several attempts have been made to
incorporate molecular characteristics within the framework of the capillarity theory.>? 6468

These theories were critically reviewed by Rabeony and Mirabel,%? who concluded that
only Rusanov and Kuni’s model® 68 could correctly predict the sign preference for a few
substances, although the predicted sign effect was shown to be extremely sensitive to a
parameter in the theory that cannot be evaluated within the classical framework. It has
also been noted® that, except for its inability to explain the sign effect, the best predic-
tions of the reversible work, when compared with experimental data, come from Thomson’s
original equation.%® Most importantly, these theories all apply for polar materials and are
incapable of predicting a sign preference for non-polar substances. The failure of these ap-
proaches merely points to the need for consistent treatment of the molecular characteristics
in evaluating the free energy by means of statistical mechanics.

In the previous work,*! we applied a statistical mechanical density functional theory
to ion-induced nucleation of dipolar molecules. Asymmetry was introduced into the ion-
molecule interaction by means of a permanent dipole moment placed at a distance a off the
center of a molecule. It was concluded that this asymmetry in the ion-molecule interaction
is directly responsible for the sign preference in ion-induced nucleation.

This paper is intended to propose an alternative mechanism, applicable for both polar
and non-polar substances, through which a sign preference in the rate of nucleation arises. In
particular, we present a density functional theory for ion-induced nucleation of polarizable
multipolar molecules. For a fixed orientation of a molecule, the ion-molecule interaction
through the molecular polarizability is independent of the sign of the ion charge, while
that through the permanent multipole moments is not. As a result of this asymmetry, the
reversible work acquires a dependence on the sign of the ion charge.

The outline of this paper is as follows. In Sec. 3.2, we first introduce our model repre-
sentation of a molecule, and then construct a density functional for the grand potential in
terms of two order parameters, the particle number density and the re-scaled ion charge.
The latter is related in a simple way to a locally defined dielectric constant. Bulk proper-
ties are derived from the density functional. Section 3.3 describes the solution methods for
determining the equilibrium profiles. The reversible work of nucleation is obtained from the

equilibrium profiles and reported in Sec. 3.4. Finally, some concluding remarks are given

with a brief discussion in Sec. 3.5.
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3.2 Density Functional Theory

3.2.1 The model and the intermolecular potential

Let us consider a system of spherical molecules each of which has, at its center, electric
permanent multipole moments, polarizability, and hyperpolarizabilities. We assume that a
molecule is in its ground state under the influence of the external electric field and suppose
that the interaction potential ¢ (1,2) between one molecule at r; with orientation Ry and

the other at ro with orientation Rg can be written as
¢ (1,2) = ¢% (r12) + ™ (r12) + 6™ (1, 2), (3.1)

where ri2 = |rg — r;|. We use the notation j to represent both the translational and
orientational coordinates of molecule j. ¢% (r3) and ¢%* (1) form the isotropic part of the

interaction potential ¢ (1,2). ¢ (r12) is the hard sphere potential given by

400 ifris <d
¢ (r1z) = (3.2)

0 otherwise.

% (r12) is the perturbative attractive potential whose explicit form is chosen to be

G (1) = —eatt (i)G’ (3.3)

T12

where €% is a positive constant.

In this model, the anisotropic part of ¢ (1,2) arises from the orientational dependence
of the interaction potential between multipole moments on the molecule 1 and those on
the molecule 2. Care must be taken, however, to correctly incorporate the effect of the
molecular polarizability. To determine the explicit form of this anisotropic interaction
potential ¢™P (1,2), we first consider the electrostatic energy U(1), in the external electric
field F,(r), of a neutral molecule 1 in a fixed position and orientation. In this external field,
the molecule acquires the induced multipole moments, which along with its permanent

multipole moments constitute the total multipole moments. Thus™® ™

W) = U7 ~ i (0)Fu(r) ~ 5000 () Faper)
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Figure 3.1: Model of a molecule and an ion. The origin of the laboratory coordinate
system O — xizoxg is taken at the center of the ion, where a point charge ¢*" is located.
oW — z(l) x(l) m(l) is the local coordinate system whose origin coincides with the center of

the molecule 1, and :vél)—axis is parallel to z3-axis. (¢1,6,v1) is the Euler angle of the body

fixed coordinate system Q51 — ngl)ngl)mgBl).

T
2508 (Vg (11) — 15=08 (D Fagrs(r) + o, (3.4)

where tensor notation is employed and
1 1
U7(1) = 5 (1) Eale1) B3 1) + 5 Ao,y (1) Eale1) o (1) (35)

is the work required to polarize the molecule. ang and A, .3 are, respectively, polarizability
and hyperpolarizability and are symmetric in « and 3. Also, Ay 4 = 0.7%7 Other terms

in Eq. (3.4) are the electrostatic interaction energy between the resulting total multipole

moments on the molecule 1 and the external electric field. u( ) (1), @( )( 1), Qg;v( ), and
@éﬁ)y 5(1) are, respectively, the total electric dipole, quadrupole, octopole, and hexadecapole

moments, of the molecule 1 expressed in a laboratory coordinate system O — zjz23. (See

Fig. 3.1.) In Egs. (3.4) and (3.5),



o0

OF,
r=r;
R,
Fa/@’Y(rl) - 61"581'7 r=r;
oF,
F, = —— ¢ .
oy (1) 0xg0x~0z;s rer, (3.6)

are the spatial gradients of F,(r) evaluated at the center of the molecule 1. z, is the «
component of r. When the electric field F,,(r) is due only to a point charge, h.o. in Eq. (3.4)
represents the terms O(R~°) or smaller, where R temporarily denotes the distance between
the point charge and a molecule. In Appendix A, the total multipole moments are related
to the polarizabilities and the permanent multipole moments.

In our study of ion-induced nucleation, we may decompose F, into F°" due to an ion

and Féj ) due to total multipole moments on the molecule j. Thus

U(1) = U1+ T"(1) + > U™(L,5), (3.7)
J#1
where
) . 1 )
Ur(1) = —u (WE ) - 505 (OFS ()
1 : 1 .
15 Qaiy (DFIZ (1) = 102 Bl s(DEGs (1) + oo (38)
and
T 1 (T
vrr(1,2) = ~uPOFP ) - 50 FY (r)
1 T 1 T
=15 Yy (VEZ, (1) = 15 Pais(DEsphs(e) +ho. (39)

Then, UP?(1) + U"(1) can be regarded as an external potential of the molecule 1 and
U™P(1,2) can be identified with ¢™P(1,2). The explicit expression for U™P(1,2) is given in
Appendix B with its derivation. In what follows, it is enough to note that U™?(1,2) is a
sum of terms proportional to a product of a total multipole moment of the molecule 1 and
that of the molecule 2 and is symmetric in 1 and 2.

It should be noted here that the separation implied by Eq. (3.7) is only formal at this
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stage. In fact, neither UP% (1) nor U%"(1) is a one body potential since F,,(r1) and the total

multipole moments at the molecule 1 depend on the electric field due to other molecules as

well as on F2°(ry).

3.2.2 Construction of the functional

Consider an open system, for which the grand potential €) is the proper thermodynamic
potential. In density functional theory, 2 of the system is given as a functional of order

parameters such as the position-orientation distribution function p(r, R) defined by

N
v, R) = <Z 5(r — ;) 6(R - Rj)> . (3.10)
j=1

Within the framework of mean field theory and under the local density approximation, 2

is given in terms of p(r, ﬁ’) by3%41

+5 [[did2p)p@H(re - 6™ (r2) + 6™ (1,2)], (31D

where kg is the Boltzmann constant, T’ is temperature, A is de Broglie’s thermal wavelength,
and p is the chemical potential of the system. f¢*¢(n(r)) is the excess Helmholtz free energy
per unit volume, arising from hard sphere exclusion, over the free energy density of an ideal

gas. Employing the Carnahan-Starling equation,® 7!

4-3
fn) = kTn %T)yz)’
y = (x/6)dn. (3.12)

H is the Heaviside step function approximating the hard-core exclusion between a pair of
molecules.

In Eq. (3.11), v(1) is an external field. We take an ion as a point charge ¢*" placed at
the center of a hard sphere of radius 7%, which itself is fixed at the center of a molecular
cluster. Then the ion-molecule interaction can be treated as an external potential v(1),

which is composed of the hard core repulsive potential and UP?(1) + U*"(1). As shown in
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Fig. 3.1, we take the origin of the coordinate system O — z;z9z3 at the center of the ion,

and choose the z3-axis parallel to ry. Then

F(r) = ¢ =5, (3.13)

which is substituted into Eq. (3.8) to obtain

. : 1 1 @ [Ny 1 5@
o) = g { - D)+ ) - ol + L el

qionuT(l). (3.14)

l

We leave the detailed derivation of Eq. (3.14) to Appendix C.

3.2.3 Approximate formulae

The equilibrium distribution for p(r, R) is determined by the stationarity condition of the

grand potential ):
0

7 0. (3.15)
Because of the implicit dependence of UP%(1) and U%"(1) on p(r, R), the functional deriva-
tive in Eq. (3.15) cannot be readily performed. To circumvent this difficulty, we shall
introduce further approximations.

In this work, a molecule is represented as a polarizable hard sphere of radius d/2 with
attractive potential and permanent multipole moments grafted on it. Consider the electric
field F,(r) inside the molecule 1, fixed at ry, as a result of the ion and other molecules, which
constitute charge distribution exterior to this hard sphere of radius d/2. Note that F,(r)
depends parametrically on 7 which determines the boundary of the charge distribution.

Because of the axial symmetry of the system around ry, F,(r) is given in terms of some

function fi as

Fo(r;r) = f1(0;m1) i—?j (3.16)

where 6 is the angle between r and r;. In arriving at Eq. (3.16), we made use of the fact

that F,(r) is divergenceless inside the hard sphere. As an approximation, we ignore the 6
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dependence of f; and denote it by ¢%//(r;). Then,

Fa(rir) = ¢ (r) =3, (3.17)
which is the electric field we would have in the absence of any molecule as a result of a point
charge ¢°ff (r1) at the origin. In other words, under the approximation we have introduced,
the effect of the intermolecular interaction represented by ¢™P(1,2) is to simply re-scale
the ion charge ¢ to ¢®//(r1). Equation (3.17) gives the electric field produced by the ion
and other molecules inside the hard sphere representing the molecule 1, in contrast to the
electric displacement given by Eq. (3.13). Their ratio can be interpreted as a locally defined
dielectric constant e(ry): '

ion
g(ry) = e H ) (3.18)

Using the explicit form of F,(r) given by Eq. (3.17), we may rewrite Egs. (3.4) and (3.5) as
U(1) = UP(1) + ¢/ (r)u” (1) (3.19)
and

1 2
Urt(l)y = = ¢ (ry)? (m ass(l) — 5 A, 33(1))

qeff(r1)2up°l(1), (3.20)

IH

N DO =

respectively. It should be noted here that the field gradients in Egs. (3.4) and (3.5) are
evaluated at the center of the molecule 1 for the fixed position of that molecule. Opera-
tionally, we take the spatial derivatives of the field F,(r;r;) with respect to r for fixed r;
and evaluate them at r;. As mentioned in Sec. 3.2.1, the total multipole moments can be
expressed in terms of the permanent multipole moments and the polarizabilities, thus we

may rewrite 1 (1) defined in Eq. (3.14) as

u(1) = —qeff(n)up"‘(l)
1 L -
3 w1 + @(P)( 1)—— Q333(1) T3 ‘I’gas)?,( 1)

—qeff<r1)upol(1) +uf(1). (3.21)
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The detailed derivation of Eqgs. (3.19)-(3.21) is given in Appendix C. We use the super-

script (P) for the tensor components of the permanent multipole moments. Inspection of
Egs. (3.14), (3.20), and (3.21) reveals that UP°(1) and U%"(1) now depend only on r; and
the orientation of the molecule 1. Thus, we have reduced the many body potential UP%(1)
and U%"(1) to the corresponding effective one body potentials.

q*/1(r) introduced above has yet to be determined. It is therefore natural to rewrite the

functional for €2 so that ¢//(r) serves as an order parameter. We first assume that p(r, R)

is separable:
p(r, R) = n(r)m(r, R) (3.22)

where

N
n(r) = <Z 5(r — rj)> (3.23)
j=1

is the particle number density distribution function and m(r, R) is the orientational distri-

bution function at position r. From Egs. (3.10), (3.22), and (3.23), it follows that

n(r) = / dR p(r, B) (3.24)
and

/ dRm(r, B) = 1. (3.25)

When Eq. (3.22) is introduced, Eq. (3.11) becomes

Qn,m] = k'BT/dln(Tl)m(l)logm(l)
+ [ dry o)) = [ dingrom(@)in— o)
+% / / dr1 dra n(r)n(rs)H(ris — d)¢™ (r13)

% / / dld2n(r)n(ro)m(1)ym(2)H(rz — d)¢™(1,2),  (3.26)

where f%(n) is the Helmholtz free energy density per unit volume of the hard sphere fluid,

and is given by
f4n) = ksTn [log(A*n) — 1] + f*(n). (3.27)
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Since U(1) obtained in Eq. (3.19) is now a one body potential, we make an ansatz:

m(l) = ! exp{—w}, (3.28)

which is the orientational distribution, in an external field U(1), of a molecule that is

otherwise isolated. Zg(r1) is a normalization constant required by Eq. (3.25)

Zg(ry) = /df? exp {—%)—} . (3.29)

Equation (3.28) shows that we can introduce U(1) as a new order parameter in place of
m(1). An alternative, yet physically more transparent, choice is q¢f! (r1), which is related
to the local dielectric constant £(r1) through Eq. (3.18). For arbitrary functions G, (1) and

Gp(1,2), we define their angular averages by
5 = /dem(l)G'a(l) (3.30)

and
(Go(L,2) 5, = //df?,l dRy m(1) m(2) Gy(1,2), (3.31)

respectively. Using Egs. (3.14), (3.19), and (3.28), we rewrite Eq. (3.26) as follows:

') /drlf n(r1)) /drln r1) { u+ kT log Zr(r1) ]}
+/dr1n 1) [q“m — qeff(rl)} <uT(1)> R

Ry

/dr1 dryn(ri)n(ry)H(riz — d)d® (r12)

/dr1 dI‘Q n(Tl)n<7’2)H(T’12 - d) <¢mp(1’ 2)>R1R2 . (332)

We have replaced v(1) by UP°(1) 4 U*"(1). The hard core repulsion of the ion imposes the

boundary condition

n(r) =0 (if r<riom 4 %l). (3.33)

As before, the stationarity condition of € determines the equilibrium profile for n(r) and
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g1 (r):

@:0 and o8

Noting that ¢¢7f(r1) dependence of €2 is explicit in the third term of Eq. (3.32) and also
implicit in Zg(r1) and the angular averages indicated by < -+ >p and < -+ >p 5,

Eq. (3.34) becomes

0 = pdn(r))—{u+ksTlog[Zr(r)]}
[ - ] (),
+/dr2 n(re)H(ri2 — d)¢™ (r12)

+ [ dran(ra)Hiria = 4) (6"7(1,2)) g, (3.35)

and

0 = [qeff(rl) _ qion} { ':<UT(1)2>R1 o <UT(1)>;1} 4 kBT <upol(1)>R1 }
~ [drant e - ) { [(5 02T W), L = 670 D) gy, (57D

2

op™P(1,2)
kgT <W>m } , (3.36)

where pué(n) = 8f%/0n. The derivation of Eq. (3.36) is rather lengthy and is given in
Appendix D.

Equations (3.32), (3.35), and (3.36) constitute the central result at this stage. Briefly,
first we solve Egs. (3.35) and (3.36) to obtain the equilibrium profiles of n(r) and ¢*//(r)
inr > rton 4 %. The obtained profiles are substituted into Eq. (3.32) to evaluate the grand
potential of the system. As shown in Appendix E, some of the integrations indicated in
these equations are analytically tractable, reducing the dimensionality of the integrals in

Eq. (3.32) to at most four and those in Egs. (3.35) and (3.36) to at most three.

3.2.4 Bulk properties

In the absence of the external field, the thermodynamic properties of a homogeneous system

can be easily derived from Eq. (3.32). Let ¢*™ = 0, then Eq. (3.36) has a trivial solution of
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q¢tf(r) = 0. In fact, if ¢*//(r) = 0, U(1) given by Eq. (3.19) becomes zero and hence m(1)
is constant. Then the angular averages of the total multipole moments on the molecules 1
and 2 are all zero, for these angular averaged tensors are spherically symmetric as well as
traceless. Since ¢"P(1,2) is a sum of the terms proportional to the total multipole moments
of the molecules 1 and 2, the terms involving ¢™?(1, 2) in Eq. (3.36) are zero and Eq. (3.36)
is identically satisfied. This also means that under the mean field approximation employed
in the present work, bulk properties of the system are, in the absence of the external field,
the same as those of the system of molecules without polarizabilities or permanent multipole

moments.

Setting n(r) to a constant n in Eq. (3.32), we obtain the Helmholtz free energy density:

f(T,TL) = —p+un
1
— —kgTnlog fr+ fin) — 5 o n?, (3.37)
Note that Q = —pV for a homogeneous system. fg is the contribution from the free rotation

of a molecule, the value of which is 872 in general and equals 47 for a linear molecule. o

is defined here by

o™t = -—% // dry drs H('r'12 - d) ¢at‘t(,r,12)

— — [dri Hire = )¢ r12). (3.38)
For the particular choice of ¢®(ry5) given by Eq. (3.3), one has

4
ot = ?W € g3, (3.39)

Equation (3.37) is a fundamental equation of the isotropic system. Note that Eq. (3.37)
is essentially the same as for the isotropic system of molecules without polarizability or
permanent multipole moments. fr merely affects the value of (7', n) at the standard state.

From Eq. (3.37) by well known thermodynamic relations, one obtains
w(T,n) = —kpTlog fr + p’(n) — ™ n; (3.40)

p(T,m) = nul(n) — FXT, n) — % aftt n?. (3.41)
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At a given temperature, the coexisting bulk densities are determined by

u(T,nf?) = po(T,n5?);

pi(T, nleq) = pu(T,n), (3.42)

where the subscripts [ and v refer to liquid and vapor, respectively. The spinodal curve

which divides the metastable and unstable regions in 7" — n phase diagram is obtained by

Op
5, = 0- (3.43)

The critical point is located in the phase diagram by Eq. (3.43) and

52
(_9711_2’ =0, (3.44)

with a numerical solution

i
Ye = gdsnc

0.13044;

1 1
T~ 26503 ( 67) . (3.45)

Q

&

3.3 Solution Methods for the Equilibrium Profiles

Given T'/T, and supersaturation S, defined as the ratio of the metastable vapor pressure
to the equilibrium vapor pressure, we can calculate, via FEgs. (3.40)-(3.42), the chemical
potential u of the system and the densities of the bulk liquid n; and vapor n, at that
chemical potential. For thus obtained p and n,, Egs. (3.35) and (3.36) have to be solved
simultaneously with the boundary conditions given by Eq. (3.33) and

n(r) — ny as r— 00. (3.46)

Let én(r) and 6¢%// (r) be the deviations of n(r) and ¢/ (r), respectively, from the exact
solutions of Eqgs. (3.35) and (3.36). Expanding Q[n, ¢®//] around the approximate profiles
and ignoring the higher order, one finds that the error in 2, which we denote by Af}, due
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to the deviations of n(r) and ¢°//(r) from the exact solutions, satisfies

00
|AQ] < /dr1 —571(7‘1) +/dr1 méqeﬁ(rl)
’LOTl
S —s M | [ ar —5qeff - (3.47)

where N4 = V/2/d? is the density at the closest packing. Note that the re-scaled charge

q¢f7(r1) never exceeds ¢"". We define

o0
A, = nmax/drl 7571(741)
— ZOTL

and demand that both A, and A, be sufficiently small.

Under a condition that nucleation takes place, Egs. (3.35) and (3.36) have two sets of
solutions for n(r) and ¢/ (r). One is for a metastable state exhibiting the vapor solvation
of an ion and the other is for a critical nucleus, which corresponds to a saddle point in the
functional space. The metastable profiles for n(r) and ¢%//(r) are obtained by iteration. In

particular, we start from the initial guess
gl (r) = ¢"" and n(r) = n,. (3.49)

For this n(r), we can solve Eq. (3.36) by iteration until A, becomes sufficiently small. The
resulting ¢®/f(r) is used in Eq. (3.35), which is now iterated just once. Using n(r) and
q®/f(r) thus obtained as the next guess, we repeat the same procedure until both A, and
A, become sufficiently small. To obtain the critical nucleus by iteration, we take

¢t (r) = giom and iy =] M TSR (3.50)

n, otherwise

as the initial guess and proceed in the same manner as for the metastable nucleus. If R
is too small, the nucleus shrinks as the iteration proceeds, while it grows if R is too large.
Starting from several values of R, it is possible to find R* such that the nucleus neither
shrinks nor grows as the iteration is repeated. In the actual computation, R* was identified

with that which yields, after some steps of iteration, n(r) that minimizes A,. Then, this
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n(r) was used with the corresponding ¢%//(r;) as the initial guess in solving Eq. (3.35) more
accurately by the Newton-Raphson method, after which the iterative solution of Eq. (3.36)
follows. Using n(r) and ¢®//(r) thus obtained as the next guess, we repeatedly applied the
process until both A, and A, become sufficiently small. The grand potential €2 of a system
was calculated from Eq. (3.32) for the obtained equilibrium profiles. The reversible work of
nucleation A, not to be confused with that in Eq. (3.47), was calculated as the difference
of © for the critical nucleus and for the metastable nucleus.

Finally, the boundary of the system is taken to be a sphere, the radius ry of which is
sufficiently large so that n(ry) and ¢¢ff(ry) attain their limiting values n,, and ¢%*/e,. Here
€, 18 the dielectric constant of the bulk vapor of density n,. There are two contributions
to the free energy density at r1 < 1y resulting from the interaction across the system
boundary at 7g. One is through ¢%¢(r13) and can be evaluated analytically. The other
is through ¢™P(1,2), which was calculated numerically by noting that the contribution to
the free energy density at r; comes from only those molecules in the spherical shell of
r;, < r < ri+d, where ry, is the larger of rion 4 % and r1 — d. (See Appendix E.) The free
energy density in r; > 7 is determined by T, n,, &,, and |¢*"|, being a constant which is
same for the critical nucleus and for the metastable nucleus. This allows one to calculate
the free energy difference between two systems which have the same T, n,, &,, and |¢*"|

without introducing any truncation error.

3.4 Results and their Implications

In applying the above density functional theory to a particular substance, one needs to know
its critical temperature 7,, the molecular diameter d, the polarizabilities, and the permanent
multipole moments. The value of 7, is generally available®® and d can be estimated from
the molecular geometry. The values of the polarizabilities and the permanent multipole
moments can be obtained from quantum mechanical calculations. The results are available
for some materials, e.g., (CHz)20, CH30H, CHy, CSs, and H20.81"8 Among these, perhaps
the most interesting case would be HyO. However, any sensible treatment of water requires
a proper account of hydrogen bonding and is not attempted in the current work. We have
limited our application to ion-induced nucleation of CS», CH,, and CCly. Except for CCly,

these materials are rarely used in experiments, yet they are highly symmetric, thereby
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Table 3.1: Material constants for CSy and CHy (Refs. 83,86) ag and e are Bohr radius and
the electron charge, respectively. As indicated by the superscript (B), tensor components
are expressed in body fixed coordinate system. Values of the other tensor components are
readily deduced from those given here from the molecular symmetry. The C-Cl bond length
is taken from Ref. 87, while the values of the critical temperature are taken from Ref. 80.
b is defined in Eq. (3.54). The values of the polarizabilities and the permanent multipole
moments for CCly are estimated from the corresponding values for CHy as explained in
Sec. IV-B.

CS; CH, cCl,
T, 552 K 190.5 K 556.6 K
d ~ 5.868 ag ~ 4,104 ap ~ 6.654 ag

(S-S distance) (2x C-H distance) (2x C-Cl distance)

b 97.62 404.4 85.40
" 0 0 0
0 0B = 2.495 |e|ay? 0 0
0 0 O8) = 2.410 |e]ag® QB) = —10.98 e|ag®
) ). = 140.1 |efan* 8. = 7,600 [e]ao” 25, = 58.07|e|ag?
a B = oD aB) = 15.98 a3 ol = 72.80a0®

= 36.58 a03

P = 93.1444°

A 0 AP = 9.46ay* AP, = T1.44 0

reducing the computational work, while still serving to illustrate some of the essential
features of ion-induced nucleation. The values of the molecular parameters used in this
work are given in Table 3.1.

We non-dimensionalized relevant quantities by model parameters: d as the length scale,
kpT. as the energy scale, and |e| for electric charge, where e is the electron charge. Non-

dimensionalized quantities are denoted by ~ (tilde).

3.4.1 CS,

Figure 3.2 shows the density profile n(r) of CSy obtained at T=0.55 and supersaturation
S = 2. As mentioned in Sec. 3.3, a metastable profile shows solvation of the ion. Volume
exclusion due to the ion surface, which is regarded as a hard wall, is apparent outside
the first coordination shell. The general feature of particular interest is that near the ion
surface, the number density n(r) is higher when ¢*® < 0 both for the metastable and for

the critical nucleus than when ¢® > 0. This indicates that the ion-molecule interaction
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Figure 3.2: Equilibrium density profiles of CS; at T=0.55 and S = 2. For each value of gion,
the lower profile corresponds to the metastable nuclei, while the upper profile represents
the critical nuclei.

is stronger if ¢’ < 0, implying some sort of asymmetry in the interaction. To see this
more explicitly, consider the bare ion-molecule interaction energy U b(l), which is obtained

by setting ¢®/f(r1) = ¢" in Eqgs. (3.19)-(3.21):

Ut1) = —%qi"”2u”"l(1) + gmuP (1). (3.51)
Since CSg is a linear centro-symmetric molecule, U%(1) depends only on the jon-molecule
separation 7 and the angle #; between the radial direction r; and C-S bond. We plotted
U®(1) in Fig. 3.3 as a function of | cos 61| at 7; = 1.5d, namely at the minimum ion-molecule
separation when 7" = d. The sign dependence of U’(1) shown in Fig. 3.3 can be readily
understood as follows. Asshown in Fig. 3.4, the first term in Eq. (3.51) is minimum when the
C-S bond lines up with the electric field due to ¢*°", irrespective of its sign, while the second
term yields the minimum value at the angle which changes from |cos ;] = 1 to cos 61 ~ 0.45
as ¢*" changes its sign from negative to positive. Stated differently, when ¢*® < 0, the
polarizabilities and the permanent multipole moments work constructively to orient the
molecule along the direction of the electric field while they work rather destructively if
ge" > 0.

The sign dependence of I/°(1) is present for a molecule even with only a single permanent
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Figure 3.3: The bare ion-molecule interaction potential U b(T) for CSy at 73 = 1.5 and
Iaion’zll

Figure 3.4: Contributions for ﬁb(T) from (i) the polarizabilities (—3 g ypel (1)/kpT,) and
the permanent multipole moments (¢*"uf(1)/kpT.) with (ii) §%" = —1 and (iii) 7% = 1.
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Figure 3.5: Variation of the local dielectric constant (7) corresponding to the density profile
7i(7) given in Fig. 3.2. For each value of §%", the lower profile corresponds to the metastable
nuclei, while the upper profile represents the critical nuclei.

multipole moment, higher than the dipole, without polarizabilities. Thus in the case of a
linear centro-symmetric molecule, the interaction energy between the ion (point charge)
and the quadrupole moment of the molecule depends quadratically on cos 6;, attaining the
minimum value at cosfy = 0 for one sign of the ion charge which is, in general, different
from what is obtained at cos#; = £1 as the minimum for the other sign of the ion charge.
Such possibility of producing the sign effect from a single permanent multipole moment is
not pursued here, for the contribution to U%(1) from each one of the permanent multipole
moments or the polarizabilities is comparable to each other at least for those molecules
close to the ion.

The sign dependence of U®(1) is counteracted to some extent by the dielectric response
of the condensing molecules. Figure 3.5 shows the variation of the local dielectric constant
g(r) corresponding to the density profile n(r) shown in Fig. 3.2. For a given value of 7,
a profile with a smaller value of (r) applies for the metastable nucleus while the larger
corresponds to the critical nucleus. Clearly, the effective electric field around the ion is
weaker when ¢** < 0 compared to the case of ¢g®" > 0. Recall the definition of £(r) given
in Eq. (3.18).

Density profiles of CS, in the case of %" = —1 are shown in Fig. 3.6 at T = 0.55 for
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Figure 3.6: Variation in the density profiles 71(7) of CSy with the Supersaturation S. T=0.55
and §¥" = —1.

several values of the supersaturation. Figure 3.6 shows a similar feature to that observed
in our previous work on ion-induced nucleation of a dipolar fluid.*! Namely, a metastable
nucleus grows as S increases, while the critical nucleus shrinks. These two profiles eventually
coincide at a certain supersaturation S < Sp4:, Wwhere Spq. is the supersaturation at the
spinodal, indicating the onset of instability of the vapor phase in the presence of the ion.
These trends can be explained by a completely parallel argument to that given previously*!
and will not be repeated here.

Figure 3.7 shows the local dielectric constant profile £(r) under the same condition as for
the Fig. 3.6. Comparing Fig. 3.2 with Fig. 3.5 and Fig. 3.6 with Fig. 3.7, one finds that &(r)
at r is roughly proportional to the local density n(r) at that point. A remarkable exception
is the sharp peak in €(r) near the ion surface and the oscillation following the peak; the
latter is particularly clear for a large nucleus. To understand this behavior, we obtained &(r)
at T= 0.55 corresponding to a simpler density profile n(r) = npq,. Figure 3.8 shows that
the sharp peak followed by the oscillation persists even if n(r) is constant throughout. As
shown in Appendix E, only those molecules in the spherical shell r;, < r < r; +d contribute
to the dielectric constant £(r1) at r;. In the present case of uniform density, the number
of molecules N(r1) in this spherical shell is proportional to the volume of the shell and
a monotonically increasing function of ;. On the other hand, as shown in Appendix E,

contributions to the integral in Eq. (3.36) tend to cancel and the average total multipole
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Figure 3.7: Local dielectric constants e(7) corresponding to the density profiles shown in
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Figure 3.8: Local dielectric constants £(7) at T=0.55 corresponding to the density profile

n(r) = Nmaz-
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Figure 3.9: The difference in the reversible work of nucleation of CSy between the cases of
g'" =1and g" = —1. 7" = 1. Three values of Spy represent the supersaturation at the
spinodal. From the left, they correspond to T'= 0.65, T'= 0.55, and T'= 0.45, respectively.

moments on a molecule decrease as r; is increased, both of which reduce the magnitude of
the integral in Eq. (3.36). At the 71 — oo limit, the increase in N.(r1) balances exactly
the decrease in the magnitude of the integral to yield the constant value of £(c0). However,
when r, < %" + %d, the increase in N.(r1) is due partially to the increase in the spherical
shell thickness, which leads to the steep increase in ¢(r1) in this range of r1. Now, the
existence of a peak implies that there must be a competing factor with this steep increase
in £(r1). To see how this happens, first recall that e(r;) is essentially the reciprocal of the
effective electric field due to ¢*® and other molecules in 77, < 79 < 71 + d, the field by the
latter being in the opposite direction to the former. When &(rs) is larger, the electric field
at r1 created by those molecules in this region is smaller, causing the decrease in £(r1).
A peak in e(r) near the ion arises as a result of these two competing factors. The same
mechanism is responsible for the oscillation of e(r) mentioned above.

Figure 3.9 shows the difference between the reversible work AQ.y /kpT of nucleation of
CS2 on a positive ion and that (AQ_/kpT) on a negative ion. Calculations were performed
close to but below the supersaturation at which the metastable nucleus reaches its stability
limit. For both cases, this happens at S < Spaz, but first for the case of ¢"" < 0 as the

result of the preference to the negative ion shown by U®(1). Strictly speaking, one has to
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Figure 3.10: Same as Fig. 3.9, but for CHy. Sy4, for T= 0.45 is not shown in the figure.

take into account the effect of the dielectric response of the condensing molecules. In all of

our calculations for CSs, however, we found that the quantities defined as

Achitical — chitz'cal o chitical
= + -

AQmetastable = QTetastable_QTetaSmbl@ (352)

were both positive, being consistent with the sign preference of U?(1). Here Q°"itical and
Qmetastable reghectively, denote the grand potential of a system with a critical nucleus and
a metastable nucleus. We see that the observed sign preference of the reversible work is
also consistent with that shown by U®(1). As we shall see below, however, the latter is not
always the case. A similar monotonic decrease in AQ, — AQ_ with increasing S is observed

to that found previously for dipolar molecules.*!

3.4.2 CH4 and CC].4

Figure 3.10 shows the sign preference in the case of CHy. A similar trend is found to the
case of CSy. In Fig. 3.11, we show the sign preference of the reversible work for CH4 and
CCly. In both calculations, T= 0.55 and 7" is set equal to the diameter of a CH4 molecule.

The calculation for CCly is only qualitative. Since not all of the required molecular

parameters are available for this molecule, we estimated them from the corresponding values
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Figure 3.11: The sign preference in the reversible work of nucleation of CHy, and CCly at
T= 0.55. 7" is chosen to be the same as the diameter of a CH; molecule.

for CH4. We simply assumed that the polarizabilities and the permanent multipole moments
scale with proper powers of the molecular size and that the permanent multipole moments
have a sign opposite to those of CHy. The latter assumption follows from the relative
electronegativites:®” Cl > C > H.

Here again, calculations are made close to but below the supersaturation at which
a metastable nucleus becomes unstable. From Fig. 3.11, it is observed that the ion is
more effective for CH, both in reducing the nucleation barrier and in producing the sign

preference. When non-dimensionalized, U b(l) scales with a dimensionless quantity b:

= = U
UQl) = TaT. ~ b, (3.53)
where
= T (3.54)

A larger value of b implies a stronger ion-molecule interaction and hence a larger reduction
in the nucleation barrier. In general, the asymmetry in the ion-molecule interaction is still
buried in the dimensionless U®(1)/b, the magnitude of b dictating the sensitivity of the
system to this asymmetry. In the present case where the polarizabilities and the permanent

multipole moments are estimated as above, Ut (T) for CCly differs from that for CHy only
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Figure 3.12: Effect of |g®"| on the sign preference in the reversible work of nucleation of
CSy at T= 0.55. 7%"=1.

by the value of b. Results shown in Fig. 3.11 are consistent with the values of b given in
Table. 3.1. Also, Fig. 3.11 shows that the reversal of the sign of the permanent multipole
moments results in reversing the sign preference, as one can see from Eq. (3.51). It should
be noted here that the difference in electronegativity between Cl and C (~ 0.5) is larger
than that between C and H ( ~ 0.4).87 Thus, our prediction on the sign preference for CCly

is considered to be a lower bound to a true value.

3.4.3 Effect of r** and ¢*"

In the foregoing, we have shown that the sign preference in the reversible work of nucle-
ation arises from the asymmetric nature in the ion-molecule interaction. One can change
the strength of this interaction by changing either ¢*® or r**". Figure 3.12 shows the effect
of |g*"| on the sign preference in ion-induced nucleation of CSz, while Fig. 3.13 shows the
effect of r®*.  From Figs. 3.12 and 3.13, we see that the metastable nucleus reaches its
stability limit faster as the electric displacement due to the ion becomes stronger. This
follows from the fact that for a given value of the supersaturation S, the metastable nu-
cleus becomes larger with increasing ion-molecular interaction, while the critical nucleus
shrinks. However, Figs. 3.12 and 3.13 show that increasing the ion-molecule interaction

does not necessarily increase the sign preference, for when this interaction is increased, so
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Figure 3.13: Effect of 7" on the sign preference in the reversible work of nucleation of CS;
at T= 0.55. |g%"|=1

is the dielectric response of the condensing fluid. In this strong ion-molecule interaction
regime, however, contributions from hyperpolarizabilities neglected in Eq. (3.4) may become
significant,”® since the interaction energy between the ion and these hyperpolarizabilities
scales with some power of ¢%" higher than unity.”®7® A change in ¢‘" affects the ion-
molecule interaction U®(1) rather uniformly for all the molecules within the whole system,
while changing 7" alters the relative importance of the terms in U/®(1) mainly for those
molecules close to the ion. This explains the qualitative difference between Fig. 3.12 and
Fig. 3.13.

A rather striking feature to be observed in Fig. 3.13 is the reversal in the sign preference
that occurs at lower supersaturation with r*® = 0.5d. To see its implication, first rewrite

the sign preference AQ), — AQ_ as follows:

AQ+ —~AQ_ = (Qf:itical _ Q:r_zetastable) o (Qgitical o QTetastable)

(chitical _ chitical) - (Qmetastable _ Qmetastable)
+ - + -

o Achitical _ AQmetastable. (355)

We show each term in Eq. (3.55) separately in Fig. 3.14, which indicates that both AQecretical

and AQmetastable ip fact preserve the sign preference that is indicated by U?(1). However,
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Figure 3.14: Variations of AQ¢"#al /LT and AQmetestable /LT with supersaturation S for
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7" = 1.0, and 7" = 1.5, respectively. T= 0.55 and |§%"|=1

when the ion-molecule interaction is increased near the ion as a result of decreasing %",
it is counteracted by the dielectric response of the condensing fluid in this region. The
effect is more significant for clusters with higher density, namely for critical nuclei at lower
supersaturation, thereby causing AQC#il {5 hecome smaller than AQmetastable,

In all calculations the sign preference toward a negative ion was recovered as the stability

limit is approached. This is only obvious, for
Ay —AQ. ~AQL >0 (3.56)

in this limit as long as the sign preference in the sense mentioned above Eq. (3.52) is
preserved. One can also alter the sign preference in the reversible work by choosing a
different value of ¢ or r*" for a positive ion from that of a negative ion. In this respect,
it is important to actually identify the ion involved in experiments on ion-induced nucleation.

We note recent progress in this direction reported by Kane et al**
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Figure 3.15: Comparison of the values of dielectric constant of bulk liquid obtained from
the present theory (Eq. (3.60)) and experiments.

3.4.4 The validity of the model representation

To evaluate the validity of the current model representation of a molecule, we calculated
the dielectric constant ; of the bulk liquid phase. The intensive state of the liquid is chosen

to be the one at vapor-liquid coexistence. When the density profile

n(r) — ny as r —> 00 (3.57)
is substituted, Egs. (3.18) and (3.36) yields a solution with a limiting behavior

g(r) — g as r — 00. (3.58)

We can obtain this g; by solving Eq. (3.36) numerically and setting
g; =~ e(rg). (3.59)

Alternatively, we may ignore the higher permanent multipole moments and hyperpolariz-

ability to find that

1677/;&13) ugp)

T 7 (polar-nonpolarizable molecule)

g = 1+
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8
g = 1+ ST%a 7 (nonpolar-polarizable molecule) (3.60)

9

Calculated values of €; are compared in Fig. 3.15 against the experimental values obtained
at 1 atm.®® In the case of CSs, the predicted values of ¢; agree well with the data, though
the disagreement is quite large (~ 130 %) for CH4. In light of the approximations involved
in our model representation, the agreement is noteworthy and the model captures many of

the most important characteristics of intermolecular or ion-molecule interactions.

3.5 Summary and Conclusions

In this paper, we have shown that the sign preference in ion-induced nucleation can be
explained in terms of the asymmetric nature of the ion-molecule interaction. Consistent
treatment of such molecular characteristics is achieved by means of a statistical mechanical
density functional theory. Within the framework of a mean field theory, the grand potential
is obtained in terms of two order parameters, the particle number density n(r) and the
re-scaled ion charge ¢%//(r), the latter taking account of the dielectric response of the
condensing molecules. When the intensive state of the supersaturated vapor is specified,
the stationarity condition of the grand potential uniquely determines a critical nucleus and
a metastable nucleus for given values of model parameters.

All the molecular parameters used in the present work, if not already available, can be
obtained from quantum mechanical calculations. Although the current theory is applicable
for both polar and non-polar materials, we have confined our application of the theory to
ion-induced nucleation of CSs and CHy, for which the required molecular parameters are
readily accessible.®38 When the electric displacement due to an ion is sufficiently weak,
the calculated reversible work shows a preference consistent with that of the bare ion-
molecule interaction potential. In particular, a preference is exhibited toward a negative
ion, influencing the nucleation rate by factors of 10 to 102 for CSy and 10 to 10° for CH4. The
predicted sign preference decreases with increasing supersaturation. Qualitative prediction
of the ion-induced nucleation of CCly reveals that this substance should exhibit a preference
toward positive ions, in agreement with existing data.®® Qualitatively different behavior was
observed for the predicted sign preference when the electric displacement due to an ion is

increased.
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Our theory at this stage is at best semi-quantitative both in the model representation
and in the theoretical treatment. First, we placed polarizabilities and permanent multipole
moments at the center of a spherical molecule. Such representation, however, is valid only
when the ion-molecule or intermolecular separation is large in comparison to the molecular
dimension. To some extent, one could relax this limitation by distributing the polariz-
abilities and the multipole moments among various sites in a molecule.’390 Part of the
molecular symmetry is captured in our model through the tensors representing polarizabil-
ities and permanent multipole moments. However, actual molecular shape is yet another
important factor in determining the packing structure of molecules around the ion. Proper
account of this effect requires an intermolecular potential with an anisotropic repulsive part.

Secondly, we have characterized an ion by its charge and radius, and the ion-molecule
interaction is assumed to be purely electrostatic along with the hard core repulsion at the
ion surface. It was shown by Spears” that as long as chemical bonding is negligible, the ion-
molecule interaction can indeed be quantitatively treated by an electrostatic model, while
the details of the repulsive interaction and the polarizability of the ion were also shown to be
important. On the other hand, one would not expect the present theory to be applicable to
a system where the chemical nature of the interaction between the ion and molecules plays
an important role.”” Further complication arises since ions present in the experiments are
often complex molecules such as H" (HyO),, rather than simply ionized atoms. Then, the
ion itself must be treated by means of statistical mechanics. Also, we avoided the explicit
consideration of the fluctuation of an ion within the nucleus by taking the position of the
point charge as the origin. It is expected that at least part of this contribution to the free
energy cancels out when taking the difference between two states in obtaining the reversible
work. In a more accurate model representation, one would have to treat the system as a
binary in which the ion is the second component at extremely low concentration.

Finally, a better treatment of the pair-correlation function than that in a mean field
theory, along with the above mentioned model representation of a molecule, will undoubt-
edly give a better description of the fluid structure within the cluster. Thus the density
profile near the ion will exhibit oscillations resembling that near a hard wall, which can
either enhance or reduce the oscillatory behavior in the local dielectric constant near the
ion. Spontaneous polarization may be observed at the interface as a result of the inhomo-

geneity in density. Nevertheless, it is clear that some of the most important characteristics
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of ion-induced nucleation have been captured in the present theory, which forms a basis for

explaining this well known phenomenon that has hitherto remained inexplicable within the

classical framework.
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Chapter 4 Direct Evaluation of the Equilibrium
Distribution of Physical Clusters by a Grand Canonical

Monte Carlo Simulation

A new approach to cluster simulation is developed in the context of nucleation theory.
This approach is free of any arbitrariness involved in the definition of a cluster. Instead,
it preferentially and automatically generates the physical clusters, defined as the density
fluctuations that lead to nucleation, and determines their equilibrium distribution in a
single simulation, thereby completely bypassing the computationally expensive free energy
evaluation that is necessary in a conventional approach. The validity of the method is
demonstrated for a single component system using a model potential for water under several

values of supersaturation.

4.1 Introduction

When a vapor is brought to supersaturation, relaxation occurs toward the more stable liquid
phase. The initial stage of this phase transition is the formation of a critical nucleus as a
result of spontaneous density fluctuations in the metastable vapor phase. Since not all of the
density fluctuations lead to nucleation, Reiss et al.*353 posed a question regarding how to
identify a physical cluster, which is defined as a density fluctuation that participates in the
nucleation event. Moreover, if nucleation theory is to be formulated in terms of a cluster,
as in the classical theory,® its precise characterization is the prerequisite of the theory. One
of the quantities of central importance to nucleation theory is the equilibrium cluster size
distribution, the average number of clusters of different sizes per unit volume. Once the
distribution is determined, a rate theory can then describe the event of nucleation,! such as
its transient or steady state behavior. Since the number density of a given cluster is related
to the reversible work to form this cluster in the vapor phase, a cluster simulation in the
context of nucleation usually focuses on evaluating the free energy of the clusters.

A cluster simulation is commonly realized by confining a fixed number of molecules, say i,

in a spherical container of volume v concentric with the center of mass of ¢ molecules. To the
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extent that these i molecules actually form a cluster and that its thermodynamic properties
are nearly independent of v over a wide range of v, Lee et al.%! characterized the cluster by its
size 1 alone. We refer to this cluster as the LBA cluster. In an attempt to identify a physical
cluster, Reiss et al.*®93 characterized the cluster by both i and v. The latter is related to
the distance from the cluster’s center of mass to the nearest ideal gas molecule, which serves
as an index to organize the counting procedure in enumerating the configurational space of
the entire vapor phase that is regarded as an ideal gas mixture of monomers and clusters
of various sizes. As they have pointed out,*®5? however, the identification of a physical
cluster has to reflect the dynamics of the nucleation process. Thus, in their approach, it
is the rate theory®? that determines whether a particular i/v cluster participates in the
nucleation event. Insofar as the cluster size distribution is obtained indirectly from the free
energy, which in turn is evaluated through thermodynamic integration,*” the simulation has
to be carried out at many values of temperature for each cluster size ¢ or each pair of values
of ¢ and v in the case of the i/v cluster. For this reason, the i/v-cluster was also studied by
computationally less demanding density functional theory.?

In this work, we present a new approach to the problem which directly implements the
stochastic evolution of a physical cluster in the form of a grand canonical Monte Carlo
simulation.*” Our approach is conceptually simpler than the /v cluster and offers several
attractive features. The simulation preferentially generates the physical clusters during the
course of the simulation without any prior knowledge regarding the details of their iden-
tity. Their equilibrium distribution is, at least in principle, directly determined from a
single simulation, which permits one to completely bypass the expensive free energy eval-
uation. The grand canonical Monte Carlo simulation presents an additional advantage of
efficiently sampling the various relevant configurations even for a cluster of highly associa-
tive molecules. Finally, the approach maintains its simplicity regardless of the complexity
of the intermolecular interaction arising, for example, from the presence of a molecular
polarizability or three-body potentials.

The remainder of the paper is organized as follows. In Sec. 4.2.1, we review a concep-
tual aspect in formulating nucleation theory, which clarifies the context in which a physical
cluster should be introduced into the theory. Details of the method to identify and charac-
terize the physical cluster are given in Sec. 4.2.2 followed by Sec. 4.2.3 that describes how

to evaluate, from a single simulation, the equilibrium distribution of the physical clusters.
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The method is applied in Sec. 4.3 to water using the SPC/E model® to illustrate its utility.

The paper then concludes in Sec. 4.4 with a brief discussion on the implications of our work.

4.2 Theory

4.2.1 General concept

We first review a conceptual aspect in describing a nucleation process. In principle, a
fundamental microscopic theory can describe the time evolution of the density fluctuations
that occur spontaneously in a metastable state and eventually lead to the formation of
a new phase. In the framework of classical mechanics, for example, one determines the
phase space trajectory that brings the system from the metastable phase to the more stable
phase. When the average is taken over all possible initial microstates consistent with the
metastable phase, one obtains a statistical description of the phase transition. In search
for a macroscopic description of the process, one introduces a coarse graining into the
microscopic theory, namely a number of microstates are grouped together as one entity,
which we temporarily call a macrostate, and the deterministic elements in the fundamental
microscopic theory are replaced by a probabilistic description providing the transition rates
between these macrostates, each of which is now characterized by average properties of the
microstates contributing to it. Reiss et al.*¥52 addressed this aspect as an “inversion of
the order of averaging.” It is by no means a peculiarity in nucleation theory, rather it is a
central theme of statistical physics. The method is valid if, for example, the system can be
divided into many statistically independent small parts and an experiment is not sufficiently
sensitive to probe beyond the average behavior of these small parts.

Needless to say, it is a difficult task to explicitly carry out the approach just mentioned.
However, nucleation theory is concerned with the initial stage of the phase transition, i.e.,
formation of a critical nucleus as a result of the spontaneous density fluctuations occurring
in the parent phase in metastable equilibrium. Thus, equilibrium statistical mechanics
should suffice in identifying the microstates relevant in nucleation. Consequently, one can
introduce the macrostates through the coarse graining of the configurational space of the
system constrained in the metastable state. It remains to specify the statistical ensemble
most suitable in identifying a physical cluster. In the present context, a physical cluster

is defined as a density fluctuation in the metastable phase that leads to nucleation.*®-53 If
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the entire vapor phase is taken as a system, the coarse graining itself does not allow one
to identify the physical cluster, for a macrostate introduced in this procedure represents
a group of points in the configurational space of the entire vapor. Even though it is still
possible to define a cluster, it merely serves as a counting procedure in enumerating the
configurational space. Apparently, the definition is not unique since one can organize the
counting in an arbitrary fashion. Any arbitrariness in defining the cluster must be removed
by the rate theory appropriate for that definition. This implies that neither the cluster
thus defined nor the rate theory is completely free of a non-physical aspect. In developing
a molecular level theory, however, we demand that the cluster introduced into the theory
or the rate theory taken separately be subject to a direct physical interpretation. Thus,
we take a system so that the identification of a physical cluster and its characterization in
terms of a macrostate are accomplished as a result of the coarse graining. In this work,
we restrict ourselves to the case of vapor to liquid homogeneous nucleation in a single
component system. The formalism developed here can be extended to a binary system or

heterogeneous nucleation, for example.

4.2.2 Identification of a physical cluster

Suppose that the entire vapor phase of volume V;,; is divided into small cells of equal volume
V and assume that V satisfies the following two conditions.?® On one hand, V is sufficiently
macroscopic in the sense that these cells can be regarded as statistically independent, which
permits one to describe the nucleation process in the entire vapor by focusing on a single
cell of volume V. In other words, performing an experimental measurement on the whole
vapor phase is equivalent to taking an ensemble average on one of the cells. The appro-
priate statistical ensemble is a grand canonical ensemble.?* On the other hand, V is small
enough that the probability of finding more than one uncorrelated density fluctuation that
participates in the nucleation process at any instant is negligible, which implies that there
is at most one cluster in the cell. Thus, a proper coarse graining of the configurational space
of the grand canonical ensemble should lead to an identification of a physical cluster. The

appropriate partition function for one such cell is

Neut ZN

2(8,V,2) =Y = [ d{N}e BUN 4.1
B2 = 3 5 [y (1)
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where 8 = (kgT)~! with kg and T being the Boltzmann factor and the absolute tempera-
ture, respectively. z is the fugacity of the molecule and N is the total number of molecules
in the system, whose translational and orientation coordinates are collectively denoted by
{N}. The total potential energy of the system is denoted by Uy. The summation with
respect to N is bounded by N.,: to constrain the system to the metastable equilibrium.
Equation (4.1) suggests that one can classify the microstates by N alone or N and Uy.
Complication arises, however, since V' is macroscopic and most of the fluctuations in NV and
Up have very little to do with the nucleation process. Thus, among the various microstates
consistent with a given value of N and a given interval of Uy, only a small fraction of them
actually participate in the nucleation event and hence contain a physical cluster. In the
language of Sec. 4.2.1, this means that a finer coarse graining than achieved by N or N and
Uy is required to identify the microstates containing a physical cluster.

A conventional approach to identify the relevant microstates is to a priori define a
set of clusters from which the physical clusters are isolated. For example, Band!'® !4 and
Stillinger? defined a cluster such that a molecule is considered to be a part of it if the
distance between the molecule and at least one of the molecules of the cluster is less than
a certain cutoff distance. In the LBA cluster,”’ every molecule in the system of volume
v € V is regarded as a part of the cluster. When either the cutoff distance or v is chosen so
that the thermodynamic properties of the cluster are insensitive to it, the resulting cluster
is identified as the physical cluster. In the i/v cluster,*®53 every molecule in the system
of volume v is also regarded as a part of the cluster. The i/v cluster differs from the LBA
cluster in that the physical clusters are isolated from the various 7/v clusters through an
appropriate rate theory.>? The assumption implicit in these approaches is that the arbitrarily
defined clusters form a superset of the physical clusters. It is not even obvious, however,
that all the relevant microstates are distributed primarily among the clusters that are to be
isolated as physical or that all the irrelevant microstates are distributed primarily among
the clusters that are to be discarded as non-physical. For example, consider two microstates:
one with an i /v cluster and the other with an /v’ cluster and suppose that the configurations
of molecules inside v and v’ are identical and that these two clusters differ only by their
values of v, namely by the locations of the nearest ideal gas molecules. If the /v cluster
is a physical one and v <« v/, the i/v" cluster is most likely a non-physical one, for the

assumed configuration in the 7/v" cluster is unfavorable because of the translational entropy
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of the molecules and may not be sampled at all during a simulation of a finite length of
time. Artifacts of this kind would be removed, if possible at all, only by an intractably
complicated rate theory.

One must realize that whether or not a given microstate contains a physical cluster, and
hence is relevant in a nucleation event, is completely determined by the system itself. Thus,
it is most straightforward to directly isolate the physical clusters from the entire microstates
accessible to the system rather than indirectly by means of an arbitrarily defined cluster.
The remaining task is simply to devise an effective simulation method for this purpose in
such a way that no prior knowledge is required as to the detailed identity of the physical

clusters. Let us first define the excess number of molecules /N, and the excess potential

energy U, by

= N-—-n,V

c

U, = Uy—u,V, (4.2)

where n, and u, are the number density of molecules and the average potential energy per
unit volume in the vapor phase, respectively. Note that N, is, in general, not an integer or
necessarily positive. During a simulation, N and Uy, hence N, and U,, fluctuate. For a
macroscopic V, these fluctuations are caused primarily by those due to each of the vapor
molecules. Fluctuations of this kind are undesirable in identifying the physical clusters
since they have very little to do with the nucleation process. In a grand canonical ensemble,
however, their effect on N, or U, can be made negligible by decreasing the volume until it

satisfies

n,V KL 1. (4.3)

In this limit, the system contains, on average, no vapor molecule and thus the simulation
preferentially generates the microstates containing a physical cluster. In fact, the probability
of finding at least one vapor molecule in the system is, assuming the ideal gas behavior of
the vapor phase, given by 1 — e ™" ~ n,V, which is negligible as a result of Eq. (4.3).
To achieve the coarse grained description, one can characterize the physical cluster by the
excess quantities N, and U, since the dominant contribution to them now arises from the

presence of the cluster. A more detailed characterization of the cluster is clearly possible.
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In what follows, however, we focus solely on N, since the inclusion of U, or some other
quantities does not affect the theoretical development given below. We refer to the physical
cluster characterized in this manner as an N.-cluster.

In view of Eq. (4.3), we may redefine N, by
N.=N, (4.4)

so that N, is a non-negative integer. In short, our approach is to perform a grand canonical
Monte Carlo simulation®” on the system of microscopic volume V satisfying Eq. (4.3) allow-
ing the number of molecules N, to fluctuate from 0 to Nyy;. All of the molecules found inside
the system at a given instant are regarded as forming a physical cluster. To constrain the
system to the metastable equilibrium, while still sampling a critical nucleus, Ne,: introduced
in Eq. (4.1) must be chosen to slightly exceed the size of the critical nucleus. Among the
microstates contributing to the N.-cluster, there are undoubtedly configurations in which
some of the molecules are more properly regarded as a part of the vapor. The extent to
which such configurations contribute to thermodynamic properties of the N -cluster, and
hence the transition rates between the various N.-clusters, clearly depends on V. This V
dependence is neither an artifact nor an arbitrariness of the theory, rather the magnitude of
the vapor contributions reflects the focus of our coarse grained description of the nucleation
phenomenon. Because of Eq. (4.3), however, the vapor contribution is on average negligible.
Consequently, the volume dependence is expected to be negligible as well and we shall not
dwell upon this issue any further.

Some words on V are in order. Clearly, V has to be larger than the spatial extent of a
physical cluster in it. That the system is microscopic does not affect the applicability of the
statistical mechanical description. It is sufficient to assume a weak coupling between the
system and its surroundings.? Both conditions are trivially satisfied in the case of vapor to
liquid nucleation, in which the molar volume in the vapor phase is considerably larger than
the physical dimension of the cluster and the interaction between the vapor molecules and
a cluster can be ignored. If, on the other hand, V cannot be chosen to satisfy Eq. (4.3),
the very concept of cluster is no longer relevant in describing nucleation, for the correlation
between the system inside V' and the surrounding is appreciable in this case. In other words,

our method is applicable whenever the concept of cluster is relevant in nucleation and vice
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versa, implying that clusters identified in our method are in fact physical clusters.

4.2.3 The equilibrium cluster size distribution

Besides providing a natural way to identify and characterize the physical clusters, the grand
canonical ensemble allows one to obtain the equilibrium cluster size distribution directly
from a single simulation without an expensive free energy evaluation. Since the distribution
is of central importance in nucleation theory, we examine this possibility in detail.

To derive the expression for the equilibrium cluster size distribution ¢(N,), suppose that
the whole vapor phase of volume Vi, is divided into cells of equal volume V', where V
satisfies Eq. (4.3). Because of Eq. (4.3), most of the cells contain no molecules at all and
those containing an N.-cluster, including N, = 1, are on average spatially distant. Thus, as
we discussed at the end of Sec. 4.2.2, each cell is only weakly coupled with its surrounding
cells and one can assume that the cells are all statistically independent. Consequently, the

average number of the N.-cluster inside the entire vapor of volume V4 is given by

Vtot Ec(ﬂ: ‘/: 2 NC)

4.5
VEGB,V.2) (45)
where Z. is the term for which N = N, in the grand canonical partition function =:
ZNe
2B, Vo Ne) = S / d{N, eV, (4.6)

Equation (4.5) can be rationalized as follows: V;o;/V is the total number of the cells, while

Ee(B,V, z; Ne)

=03V, 2) (4.7

p(Ne) =

is the normalized probability of finding an N -cluster in a given cell. Dividing the expression

Eq. (4.5) by Viet, we obtain the desired number density:
p(Ne)- (4.8)
Since the cluster can be formed anywhere in the volume V', we have

p(Ne) ~V, (4.9)
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provided that care is taken to avoid the surface effect. As we shall see shortly, the imple-
mentation of this condition in a simulation is trivial. Thus, ¢(N.) given by Eq. (4.8) is
independent of V' as it should be.

In principle, one can determine the normalized probability p(N,) from a single simulation
simply by counting the number of events in which N, molecules are found in the system.
Because of the condition Eq. (4.3), however, the system contains no molecules at all for
most of the time and the states with N, > 1 will be hardly sampled. To avoid this, we
perform a simulation by fixing one molecule at the center. Provided that the boundary
of the system is far from the molecules forming a cluster, the problem associated with the
surface effect mentioned above is also resolved. Namely, the volume dependency Eq. (4.9)
is rigorously obtained if integration with respect to the coordinates of the molecule thus
fixed is performed analytically by ignoring the surface effect.

Since the precise size of the critical nucleus is not known prior to a simulation, the
appropriate value of N, is also unknown. It is then convenient to perform a simulation
by allowing N, to fluctuate from unity to Ny, chosen to be sufficiently large compared to
the expected value of N.;. Clearly, the normalized probability ps(IV.) obtained from the
simulation differs from p(N.), since the former is normalized in the interval [1, Npqz], while
the latter must be normalized in [0, Ngy]. To express p(N;) in terms of pg(N.), we first

note that the ratio ps(N,.)/p(N,) is a common constant for N, = 1, -, Ngyz. In fact,

/

{1]

e(Ne)
e(Ne)

[1]

Ds (Nc) _
p(Ne)

(4.10)

)

[1]
(11

where Z’ is a grand canonical partition function of the system when N, is constrained to
N, =1, -, Npqaz- Next, note that the ratio p(0)/p(1) can be obtained analytically if the

interaction between the system and the surroundings is ignored:

pO) L (4.11)
where () arises from the integration with respect to the orientational coordinates. Equa-
tions (4.10) and (4.11) can be used with the normalization requirement of p(N,) to obtain

_ ps(l)
p(0) = ps(1) + 20V
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2QVps(Ne)

_ No=1,, New), ,
p( C) p5(1)+ZQVU ( [ 17 ) Ut) (4 12)
where we define
Ncut
o= Y ps(Ne). (4.13)
Ne=1

The equilibrium distribution ¢(N.) immediately follows from Eq. (4.8). The second of
Eq. (4.12) satisfies Eq. (4.9). To see this, note that ps(N.) is independent of V since both
=. and E’ are proportional to V. Upon ignoring the terms of the second order in zQV or
higher, Eq. (4.12) yields Eq. (4.9).

The simulation becomes impractical as the free energy barrier of nucleation exceeds
several kpT since clusters around the critical size are hardly reached. To overcome this
difficulty, one can simply perform a series of simulations allowing N, to fluctuate in the
intervals [1, N1}, [N1, Nal, -+, [Nn, Npmaz]- The probability ps(N.) readily follows by de-
manding its continuity. This is an example of the umbrella sampling.®® The validity of this
approach depends on the assumption that N; molecules form a cluster in the simulation
constrained in [NV;, Nj11], which is reasonable since the system, when viewed as a closed one
with NN; molecules inside, is at least N;-fold more supersaturated than the vapor phase as

is seen from Eq. (4.3):
N
7’ > Nyn,. (4.14)

The fact that N, is constrained in the interval [N;, N;11] does not imply that the same
set of N; molecules remains in the system as if they were forming a core on which other
molecules condense. Instead, any molecule in the system are subject to a trial annihilation
in the grand canonical Monte Carlo simulation as far as N, exceeds N;. This is especially
important to sample efficiently all the relevant configurations of clusters of highly associative
molecules.

The time scale for a cluster to reach the internal mechanical equilibrium is many orders
of magnitude shorter than that for the cluster to exchange a molecule with the vapor
phase. Therefore, it is a common practice to assume that the configurational integral of
an N.-cluster is independent of the fugacity. Under this assumption, the results obtained

at fugacity 2z’ can be used to estimate c¢(N,) at a different fugacity 2”. To see this, it is
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sufficient to note that

o Ne
ps(2",Ne) = = (—) ps(2, Ne), (4.15)

substitution of which in Eq. (4.12) with z replaced by 2” in the latter reveals that the
unknown constant ='(z")/Z'(2") cancels out. It should be noted here that the assumption
leading to Eq. (4.15) is not valid if the N -cluster has more than one conformational isomer
that cannot establish a chemical equilibrium among themselves within the time period
required for the cluster to change its size. In fact, a change in the fugacity affects the
condensation rate of a vapor molecule, while having a minimal effect, if at all, on the
evaporation rate, which differs from one isomer to another. Consequently, the probability
distribution of isomers accounted for under the N-cluster, and hence the thermodynamic
properties of the N_.-cluster, depends on the fugacity. In this case, one has to perform a
separate simulation for each value of the fugacity.

Finally, we address a consistency issue. For simplicity, we assume that the vapor phase
can be regarded as an ideal gas, for which 2} = n,. Strictly speaking, the 1-cluster cannot
be identified with a vapor monomer, since the former excludes other molecules from V
because of the approximate definition Eq. (4.4) of N,, while the latter does not under the
ideal gas approximation. In fact, one can easily show that ¢(1) # n,: Z. in Eq. (4.6) can
be evaluated to be n,V for the 1-cluster, while for an ideal gas

=ewV (4.16)

H

(11

yielding
c(1) = nye™™V, (4.17)

The factor of e™™" is a work term arising from the volume exclusion just mentioned.
However, this distinction is completely insignificant since e~™V a2 1. Alternatively, one can

consistently recover the monomer concentration by setting V = 0 in Eq. (4.17).

4.2.4 Alternative interpretation

We have assumed in Sec. 4.2.2 that the physical clusters, namely the density fluctuations

that participate in the nucleation event, can be identified with the density fluctuations



88

other than those due to each of the vapor molecules. The validity of this assumption can
be addressed only through an explicit formulation of the approach discussed in Sec. 4.2.1.
Given the intractability of the formulation, however, it is of interest to present a heuristic
argument to motivate our grand canonical Monte Carlo simulation from an alternative point
of view.

Let us focus on an arbitrarily chosen monomer in the vapor phase and define an open
system of volume V centered at the monomer. The volume V is taken to be sufficiently

small compared to the molar volume of the vapor molecules:

1
V< —, (4.18)

Ny

which is nothing more than Eq.(4.3). If the stochastic evolution of the system is followed
throughout the entire nucleation process, one would find, for most of the cases, that the
system contains the same monomer alone even after nucleation took place. However, if the
monomer we chose was a successful one, we find that it acquires other vapor molecules,
which then form a cluster. If nucleation process is a formation of a cluster of this kind as is
pictured in the classical nucleation theory, but with a sufficient number of molecules to reach
a critical size, the physical clusters are identified simply by following the stochastic evolution
of a system that contains a successful monomer. Provided that this stochastic evolution
can be described as a Markov process, a monomer can be made to be a successful one by
employing a sufficiently high frequency of the trial creation and annihilation of molecules
in the system. This is legitimate since a fundamental property of the Markov process
guarantees that the limiting distribution of the Markov process, such as the statistical
weight of each microstates and ps(N.), is independent of the frequency, as long as the
microscopic reversibility is satisfied by the transition rates between microstates.4” Our grand
canonical Monte Carlo simulation can be viewed as a straightforward implementation of this
idea. Conceptually, however, the point of view taken in Sec. 4.2.2 was preferred since it
highlights the subtle difference between our method of identifying the physical clusters and
the conventional ones that require an a priori definition of clusters and the necessity of the
term N, = 0 in normalizing p(/NV,) is readily understandable.

Finally, we note that the physical clusters generated in the simulation are consistent

with an intuitive definition of clusters. To see this, note that, in our simulation, N, is
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always larger than n,V < 1, the average number of molecules in V' when filled with the
uniform vapor. Thus, on average, any attempted Monte Carlo move to create a molecule in
the system will be accepted with higher probability if the newly created molecule interacts
more favorably with the rest of the molecules, while as soon as a molecule evaporates from

the cluster, it is more likely to be removed from the system upon its trial annihilation.

4.3 Application to SPC/E Water

As an illustration, we applied the present method to water using the SPC/E model,* which
is a three interaction sites model without any polarizability known to reproduce some of the
bulk liquid properties of water. It should be noted that the interaction potential in a small
object such as a cluster and that in the bulk phase can be quite different.®” Thus, the model
may not be accurate for simulating the properties of clusters. We shall not pursue the issue
here. Instead, we stress that more realistic model potentials can be employed without any
modification to the theory.

We carried out the simulation at 7" = 298.15K for several values of the fugacity. The
system is taken as a spherical container of radius 15 A. Other details of the simulation
conditions are summarized in Table 4.1. We sampled the value of N, once every 10?> Monte
Carlo steps and performed each simulation until each N_.-cluster was sampled about 10*
times. This translates to about 106 Monte Carlo steps for each N,-cluster. During one
Monte Carlo step, translation and rotation is made on average once on every molecule in
the system, except for that at the center which undergoes rotation only. Care must be taken
to ensure the microscopic reversibility upon a trial creation or annihilation of a molecule.
Thus, during each Monte Carlo step, either trial creation or annihilation of a molecule is
performed with equal probability. When NV, is at its lower bound, the trial annihilation is
rejected with certainty. Likewise for a trial creation when N, is at the upper bound.

Figures 4.1-4.5 show snapshots®® taken rather arbitrarily from the simulation. The
compact configuration shown in each of the figures clearly qualifies as a cluster. Extensive
hydrogen bond network is also observed. Comparison of Figs. 4.1-4.3 reveals that very
different configurations are sampled even in this highly associative substance, showing a
clear advantage of the grand canonical simulation.

The equilibrium cluster size distribution is shown in Fig. 4.6. For simplicity, we have set
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Table 4.1: Conditions of the simulation.

No. 20 [A-3] n,V 2 N; P

S1 0.23x107° 0.325x1071 1,16

S2 0.16x107° 0.226x107! 1, 4, 8, 20, 26

S3 0.12x107° 0.170x 1071 1, 3, 7, 11, 16, 22, 30, 38

S4 0.1x107% 0.141x1071 1, 3, 6, 10, 16, 24, 32, 40, 44

S5 0.8x107 0.113%x1071 1, 3, 6,9, 12, 16, 20, 28, 36, 44, 50, 55

aUnder the ideal gas approximation, n, = 2£.
PEnd values of N, in the umbrella sampling.

Figure 4.1: A snapshot of a 6-cluster forming a cyclic hexamer. At T' = 298.15 K and
20 =0.1 x 107> A=3. N, is confined in the interval [6, 10].
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Figure 4.2: A snapshot of a 6-cluster. At T' = 298.15 K and 20 = 0.1 x 107° A3 N, is
confined in the interval [6, 10].

Figure 4.3: A snapshot of a 6-cluster as a cyclic pentamer with an additional molecule. At
T =298.15 K and 202 = 0.1 x 10~ A3, N, is confined in the interval [6, 10].
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Figure 4.4: A snapshot of an 8-cluster. At T'= 298.15 K and 2Q = 0.1 x 10=° A=3 N, is
confined in the interval [6, 10].

Figure 4.5: A snapshot of a 25-cluster. At T = 298.15 K and 20 = 0.1 x 107° A3 N, is
confined in the interval [24, 32].
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Figure 4.6: Cluster size distribution at T = 298.15K. ¢(V,) is in A—3. The conditions of
simulation for S1, ..., S5 are given in Table 4.1.

Newt = Nppaz in Eq. (4.13). Since we are to describe the event of nucleation as a stochastic
evolution of an N,-cluster, the relevant reversible work W7¢V(N,) to form this N.-cluster is
related to its probability p(IV;) or the concentration ¢(N.). In this work, we have taken a
point of view that a cluster is the density fluctuation in the vapor confined in the metastable

state. The reversible work W"¥(N,) appropriate for this fluctuation picture is
BWTE(N,) = — log p(N¢). (4.19)
In classical theory, the N_-cluster is regarded as a product of the reaction
Ne X = Xn,, (4.20)
where X denotes a monomer. In this reaction picture, W™¢(NN,) is more properly defined

by

v

BWT(N,) = —log (4.21)

The appearance of n, is reasonable since the formation of the N.-cluster starts from a
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Figure 4.7: The reversible work of cluster formation at 7' = 298.15K. The conditions of
simulation for S1, ..., S5 are given in Table 4.1.

monomer. In the case of vapor to liquid nucleation, both the fluctuation picture and the
reaction picture appear quite reasonable. Hence, we expect that the rate theory appropriate
for the fluctuation picture and that for the reaction picture will yield a consistent description
of the nucleation phenomenon. In fact, ¢(V,) is independent of which picture is employed.
In the following, we focus on SW"(N,) defined by Eq. (4.21), which is shown in Fig. 4.7.
For high enough values of the fugacity, W7 (3) is found to be a local maximum, which
presumably is due to the inability to form a stable hydrogen bond network in the 3-cluster
caused by the lack of the polarizability in the model potential. Though this result is most
likely an artifact of the model potential, we note that such a nontrivial detail is easily
captured in the present approach.

To assess the validity of the assumption implicit in Eq. (4.15), we compare SW""(z, N,)
at 2Q = 0.1 x 107°A~3 that is obtained directly from simulation at this value of the fu-
gacity with W7 (z, N.) obtained through Eq. (4.15) using ps(2/, N) for other values of
the fugacity 2/, where in Eq. (4.15) we set 2" = z. The result is shown in Fig. 4.8 and
indicates that the configurational integral, and hence the Helmholtz free energy, of an N,-

cluster is nearly independent of the value of the fugacity. The result has several important
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Figure 4.8: Comparison of the reversible work of cluster formation at T' = 298.15K and
200 = 0.1 x 1075 A3 obtained directly at this value of 202 (S4) with the same quantity
obtained through Eq. (4.15) by using other values of 20 (S1, S2, 83, S5). The conditions
of simulation for S1, ..., S5 are given in Table 4.1.

implications. First of all, this is the first example in which the fugacity independence of the
thermodynamic properties of a cluster is actually demonstrated rather than simply assumed.
Secondly, if one assumes this fugacity independence from the outset, then the agreement
among various simulations provides an independent check that the configurational integral
is properly evaluated in each simulation. This is rather remarkable since 10% Monte Carlo
steps are hardly enough to achieve this kind of convergence for water if a canonical ensemble
is employed. Next, one can significantly reduce the computational effort. Namely, when a
simulation is performed at a certain value of the fugacity, the result can be used to calculate
the reversible work at any value of the fugacity, provided that Np,,; used in the simulation
is larger than N, appropriate for the fugacity of interest. Finally, SW"’(z, N.) evaluated
using ps(2’, N.) should increase with 2/, reflecting a contribution from the configurations
accounted for under the N, -cluster with some of the molecules being more properly regarded
as a part of vapor, since such configurations are energetically unfavorable and tend to in-
crease the free energy of the N,-cluster. The fact that W7 (z, N;) depends only negligibly

on 7 implies that the V' dependence of the thermodynamic properties of the N.-cluster is
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also negligible as we claimed near the end of Sec. 4.2.2.

4.4 Concluding Remarks

We have presented a new approach in identifying a physical cluster. Our approach differs
from the conventional one in that no intermediate cluster such as the LBA cluster or the
i/v cluster is introduced, from which the physical clusters have to be isolated either by
adjusting the parameter v or by resorting to a rate theory. Thus, the assumption implicit
in the conventional approach that the physical clusters form a subset of these intermediate
clusters is avoided. Our basic idea is to follow the stochastic evolution of a system while
suppressing the fluctuations irrelevant to the nucleation event. In doing so, we demonstrate
the utility of a grand canonical Monte Carlo simulation. Thus, the simulation preferentially
samples the physical clusters without any prior knowledge regarding their detailed identity,
and then directly determines their equilibrium distribution. The latter feature permits
one to completely bypass the expensive free energy calculation; this in turn opens up a
possibility of employing more realistic intermolecular potentials that have been hitherto
computationally prohibitively expensive. With an efficient method in both identifying the
physical clusters and determining their equilibrium distribution, one is now in a position to

initiate a rate theory to capture the full molecular level details of the nucleation process.
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Chapter 5 Binary Nucleation of Sulfuric Acid-Water:

Monte Carlo Simulation

We have developed a classical mechanical model for the HySO4/H20 binary system. Monte
Carlo simulation was performed in a mixed ensemble, in which the number of sulfuric acid
molecules is fixed while that of water molecules is allowed to fluctuate. Simulation in this
ensemble is computationally efficient compared to conventional canonical simulation, both
in sampling very different configurations of clusters relevant in nucleation and in evaluating
the free energy of cluster formation. The simulation yields molecular level information, such
as the shape of the clusters and the dissociation behavior of the acid molecule in the cluster.
Our results indicate that the clusters are highly nonspherical as a result of the anisotropic
intermolecular interactions and that a cluster with a given number of acid molecules has
several very different conformations, which are close in free energy and hence equally relevant
in nucleation. The dissociation behavior of HySO, in a cluster differs markedly from that
in bulk solution and depends sensitively on the assumed value of the free energy frp of the
dissociation reaction HySO4+Hs0 — HSO;-HsO™". In a small cluster, no dissociation is
observed. As the cluster size becomes larger, the probability of having an HSO, -HsO™ ion
pair increases. However, in clusters relevant in nucleation, the resulting ion pairs remain in
contact; about 240 water molecules are required to observe behavior that resembles that in
bulk solution. If a larger value of fz; is assumed to reflect its uncertainty, the probability of
dissociation becomes negligible. A reversible work surface obtained for a condition typical
of vapor to liquid nucleation suggests that the rate-limiting step of new particle formation
is a binary collision of two hydrated sulfuric acid molecules. The ion pairs formed by
dissociation play a key role in stabilizing the resulting cluster. The reversible work surface
is sensitive to the assumed value of fp;, thus pointing to the need of an accurate estimate

of the quantity either by ab initio calculations or experiments.
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5.1 Introduction

The theory of binary nucleation dates back to a paper by Reiss.* Despite successive modifi-
cation accounting for transient behaviors and paths in the vicinity of the saddle point,109-105
the theory is an extension of classical nucleation theory for single component systems. While
the classical theory!™ is presently the only practical approach for predicting nucleation
rates, limitations of the theory, arising from its macroscopic nature, are well known. Thus,
there has been a great interest in establishing molecular level approaches to nucleation.

One of the most important binary nucleating systems is HoSO4/H»0O, to which numerous
papers are devoted on both theoretical!l%12! and experimental'?27127 fronts. Comparisons
of classical predictions with experimental data for HoSO4/H30O nucleation, while not exten-
sive, yield conflicting results as to the validity of the classical theory.!14123,124,126,127 Thyg,
it is of great interest on both fundamental and practical grounds, to seek a molecular level
description of binary HoSO4/H20 nucleation.

There are two major trends in developing a molecular level theory of nucleation. One
is a molecular level simulation,* 2391128 which can be applied regardless of the complex-
ity of the intermolecular interaction. However, the free energy of a cluster, the quantity
of central importance in nucleation theory, is usually evaluated by integrating its internal
energy obtained at different temperatures from separate simulations. This aspect renders
the approach computationally demanding and, as a result, virtually all of the simulations
are limited to a single component system. The alternative approach is to use statistical
mechanical density functional theory,3? first applied to homogeneous nucleation by Oxtoby
and Evans.?® In this approach, the grand potential of the system is written as a functional
of order parameters. Then, the stationarity condition of the grand potential determines the
order parameters for the critical nucleus and the corresponding grand potential follows from
the functional. When a cluster possesses a high degree of symmetry and the intermolecular
potential is relatively simple, this approach is computationally far less demanding, allowing
one to investigate a much wider range of the parameter space. Thus, one usually employs
model potentials that capture the essential features of the molecules under consideration.
When the results are compared against predictions from classical theory, which uses bulk
thermodynamic quantities obtained from the same theoretical framework, one can isolate

the deviations from the classical predictions arising from the molecular level details. Al-
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though the approach is more approximate compared to molecular simulation, the theory
is extremely powerful in addressing the deviations in a semi-quantitative manner and has
been employed to investigate several interesting systems34*2? for which no simulation has
been performed. The theory was recently applied to a ternary system.*3

In the present case of HoSO4/H2O binary system, however, the density functional the-
ory does not offer any advantage over simulation, for the intermolecular potentials that can
faithfully represent the system is very complicated and as a result of the strongly anisotropic
intermolecular interactions, a small cluster is expected to be highly non-spherical. Conse-
quently, we resort to a method of computer simulation, in particular Monte Carlo simula-
tion, since we are primarily concerned with equilibrium properties of the clusters. To our
knowledge, the present work is the first example in which an extensive evaluation is made
of the free energy of cluster formation in a binary system. The lack of a simulation work
in a binary system is a result of the extensive computation involved in the free energy cal-
culation. Thus, one of our goals in the present work is to establish a simulation technique
that considerably reduces the computational effort.

The intermolecular interaction potential is the fundamental information prerequisite in
applying a molecular theory. To reproduce this potential in a simple way, one usually
represents a molecule as a set of interaction sites rigidly held together in its representative
geometry. The interaction parameters are then optimized to reproduce ab initio results for
geometries and energies of small clusters or certain bulk thermodynamic properties. The
main concern in this approach is the quality of the potential thus obtained. For example, the
necessity of incorporating molecular polarizabilities or three-body potentials in accurately
reproducing the energy and the geometry of a cluster is often stressed.””!?® In the case of
a cluster of highly associative molecules, however, simulation must be performed for a very
long period of time to sample faithfully the relevant parts of the phase space. For a water
cluster, for example, this is necessary because the strong intermolecular interaction arising
from an extensive hydrogen bond network hinders the evolution of the cluster from one
structure to another, even though very different structures have to be taken into account
in evaluating the thermodynamic properties of the cluster. In the present case of the
H2S504/H50 system, even stronger hydrogen bonds are expected to be involved,?0 as is

suggested by the relatively high boiling point of the pure acid (330°C). Thus, in order to

perform a feasible calculation to obtain the free energy of the clusters, we must be content
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with simple model potentials.

Nonetheless, simulation provides significant molecular level insight that is otherwise
unattainable. Since the size of a typical cluster, containing a few acid molecules and sev-
eral tens of water molecules, is smaller than the Bjerrum length, the distance at which
the Coulombic interaction of a pair of ions becomes comparable with the thermal energy,
the dissociation behavior of a sulfuric acid molecule in the cluster can be quite different
from that in bulk solution. In classical nucleation theory, however, the reversible work of
cluster formation is expressed in terms of bulk thermodynamic quantities. It follows that
the reversible work estimated by classical theory may not reflect the true dissociation be-
havior in the cluster, whose effect can be addressed only by a molecular approach. Another
conceptually, if not quantitatively, important problem relates to the very foundation of the
thermodynamics of interfaces. Unless a cluster is spherical on average, the formalism loses
its validity as the thickness of the interfacial region becomes non-negligible compared to the
size of the cluster itself.® As mentioned above, however, a small cluster is expected to be
highly non-spherical even after a thermal average is taken.

Given the limitations on the quality of the intermolecular potentials, a sensible way to
address the effect of the molecular level details is to compare the results from simulation with
the classical predictions obtained by using bulk thermodynamic properties for the system
with the same model potentials used in simulation. Computation involved in determining
these properties from simulation with the required accuracy is demanding and beyond the
scope of this work. Instead, we shall directly compare the reversible work surface from
simulation with the classical predictions for a real HoSO4/H2O system.

This paper is organized as follows. The model potential is developed in Sec. 5.2. In
Sec. 5.3, we derive the expression for the reversible work of cluster formation. In this
section we employ a mixed ensemble, in which the number of water molecules is allowed to
fluctuate while that of acid molecules is fixed. As a result, a cluster is characterized solely
by the number of acid molecules inside it. In Sec. 5.4, we characterize a cluster by the
numbers of molecules of both water and acid and derive the expressions for the reversible
work and the equilibrium distribution for this cluster. The resulting expressions can be
readily evaluated from the results of the mixed ensemble simulation. Section 5.5 describes
certain details of the simulation. Results of simulation are presented in Sec. 5.6, where a

comparison is made between the reversible work from molecular simulation and that from
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classical theory. The paper concludes in Sec. 5.7 with a brief discussion on the implications

of our work.

5.2 Model

Given the possibility of dissociation and protonation of the molecules involved, conceptu-
ally the simplest approach is to represent the HySO4/H2O system as a mixture of reactive
species of water, sulfate ion, and proton. In the initial stage of this work, we investigated
this possibility’®! and encountered serious difficulties. Briefly, to take advantage of the
existing models for water?® and sulfate ion,'3? a proton was described as a unit charge |e|,
where e is the charge of an electron, with Lennard-Jones parameters that reproduce O-H
bond energies of hydronium ion and sulfuric acid. Since both bond energies are of the order
of 10? kcal/mol, however, protons rarely change their positions during a simulation. Con-
sequently, the system becomes locked into a local minimum dictated mainly by the initial
configuration of protons. This behavior is in serious contradiction with the experimental
value of the activation energy for proton transfer in water, which is estimated to be about
a few kcal/mol.13% 134

An alternative model was proposed by Hale and Kathmann,'3% in which a partial charge
less than |e] is assigned to a proton. Although the model cannot describe either dissociation
of acid or protonation of water, and hence is inapplicable for the present purpose of address-
ing the dissociation behavior in a cluster, it can explicitly incorporate internal rotations and
vibrations of O-H bonds in a sulfuric acid molecule. Such internal degrees of freedom can
be important. In a HySO4-HoO dimer in vacuum, for example, the potential energy barrier
for internal rotation of the O-H bonds of the acid molecule is estimated to be 5.2 kcal/mol
by ab initio calculation at the MP2/3-21g** level of theory,'®® suggesting a possibility of
more than one conformation of the dimer. Some of these conformations become unavailable
to the dimer as it is transferred from the vapor phase to the bulk liquid solution simply
because of the dissociation of the acid molecule. This indicates that the contribution to
the dimer free energy from certain conformations is not included in the classical description
which relies on bulk thermodynamic properties. Thus, the loss of an available conformation
can contribute to an error in the classical free energy prediction.

Attempts to develop a dissociative model pose serious problems. Note that a proton in
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a dissociative model must carry a unit charge of |e|. In reality, however, its effective charge
certainly is less than |e|, since a proton exists by forming a chemical bond to an oxygen
from water or sulfate ion. Moreover, when one of the O-H bonds is broken and another is
formed, the entire electronic structure of the molecules involved changes. This is inherently
a quantum mechanical effect, which, when reproduced in the realm of classical mechanics,

requires fairly detailed interaction potentials including explicit polarizabilities and three-

137,138 Ty develop

body potentials, as illustrated by a dissociative model for pure water.
a dissociative model for the present system, substantial amount of data on energies and
structures of sulfuric acid-water complexes are required. In this context, we note that the
three-body potential can be quite sensitive to the exact environment. Thus, the dissociative
model for pure water'3"138 ig unlikely to remain valid in the present system. However,
available literature dealing with such complexes is very limited. Apparently, only one such
paper exists,!3® which provides interaction energies with partially optimized geometries of
the neutral complex HySO4-Ho0 and the ionic complex HSO; -H3O™". The lack of necessary
information precludes an effort to develop a detailed interaction potential.

An ab initio molecular dynamics'?3 approach, in which atomic nuclei are treated clas-
sical mechanically while the electronic degrees of freedom are treated explicitly by quantum
mechanical density functional theory,'** appears to be an interesting alternative. In this
approach, no model potential needs to be specified, rather it is calculated on-the-fly during
the course of simulation. However, its application is currently limited to investigating dy-
namics that occur on the time scale of the order of picosecond and is not yet practical in
evaluating free energy.

The approach adopted here is to treat the dissociated and undissociated states as dis-
tinct. Since a proton exists primarily as a part of either sulfuric acid or hydronium ion
rather than as a free ion, and the second dissociation of sulfuric acid is negligible compared
to the first, one can introduce water, hydronium ion, sulfuric acid, and bisulfate ion as the
constituent molecules. A molecule is modeled as a set of interaction sites rigidly held to-
gether at a representative geometry. It is well known that nonadditive interactions, arising
from molecular polarizabilities and three-body interactions, play an important role in both
the energetics and the structures of clusters.?” 122 Nonetheless, the enormous computational
effort involved in free energy calculation and the lack of either experimental or quantum

mechanical data indicate one should adopt the simplest possible potential, namely a pair-



103

Table 5.1: Interaction parameters for water and hydronium ion.

water hydronium ion
A2 [keal A/mol| 0.62935 x10° 0.38931 x10°
C? [keal AS/mol] 0.62545 x103 0.65328 x103
20 —0.8476 |e| —0.2480 |e|
ZH 0.4238 |e| 0.4160 |e]
r(O-H) [A] 1.000 0.973
/ H-O-H 109.47° 111.6°

Table 5.2: Lennard-Jones parameters of sulfuric acid molecule and bisulfate ion.

sulfur site oxygen sites
A? Tkcal A% /mol] 0.40063x 107 0.76351x 10°
C? [keal A®/mol] 0.20016 x 10* 0.78154x10°

wise additive potential. Even then, in this four component system, there are as many as ten
distinet interaction pairs, while the available data cover only four of them. For example, in
addition to the data on the two complexes mentioned above, various water-water interaction
potentials are available. Protonated water clusters have been a focus of extensive studies
on both experimental'#-148 and theoreticall*®1%3 fronts. To estimate the remainder of the
interactions, however, one needs to invoke some kind of mixing rule, which in turn requires
that all of the pair interactions be described by the same type of function. In this work, the
interaction potential u,p between molecules o and 3 is assumed to be the sum of Coulombic

and Lennard-Jones interactions,

e T (EesE)
ion ajonj B (4] tj

where r;; is the distance between sites i and j and the summation is taken over all inter-

molecular interaction sites.

The model parameters are given in Tables 5.1-—5.3.  The notations for the interaction
sites for sulfuric acid and bisulfate ion are defined in Fig. 5.1. The geometries for these
species are given in Table 5.4

and discussed below. Parameters for water correspond to the SPC/E potential,? which

is known to reproduce certain bulk properties of pure water including the coexistence den-
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Table 5.3: Partial charges on HySO4 and HSOj .

interaction site HyS04 HSO

S 2.8528 |e] 2.8272 |e]
Oy —1.0325 |e —1.2942 |e|
Oy/ —1.0325 |e —1.1482 |e
Oz —0.9582 |e] —0.9615 |e]
Og/ —0.9582 |e] —0.9615 |e]
H; 0.5643 |e] —
Hy/ 0.5643 |e] 0.5382 |e]

C; axis
A

Figure 5.1: Model of a sulfuric acid molecule showing notations and Cs axis.

Table 5.4: Sulfuric acid molecule geometry adopted in this work.

r(04-H;) 097 A
r(S-01) 1.574 A
r(S=03) 1.422 A
/(H;-01-S) 108.5°
(01 S- 01/) 101.3°
(02 S= 02/) 123.3°
T(HlolsOZ) 20.8°
7(P1Py) P 88.4°

3 Looking down the O;-S bond. The H;O; projection must be rotated clockwise by 20.8°

to be cis to the O3-S bond.
b Angle between 01801/ and 09SO/ planes. The small deviation from exactly perpendic-

ular planes brings Oz and Og/ closer to O1/ and Oq, respectively.
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Table 5.5: Enthalpy of hydration from simulation and experimental values.

n—1n —AUp_1n [kcal/mol]a’b ~AH,, 1 p [keal/mol]?€
0.1 25.35 31.6
1,2 23.74 19.5
2,3 21.98 17.9
3,4 11.42 12.7
45 10.92 11.6
5,6 10.43 10.7

AAUp—1,n = Up — Up—y, likewise for AHp, 1 5.
bThis work. Simulation performed at 298.15 K.
CExperimental data of Lau et al.'4®

sities!® and the surface tension.!®% 16 Parameters for the other molecules require explana-
tion.

As mentioned above, protonated water clusters have been studied extensively and var-
ious interaction potentials have been proposed.'37"16% However, none assumes a form as
simple as Eq. (5.1). Thus, it is necessary to develop a potential as follows. First, the geom-
etry of the hydronium ion is taken from the accurate theoretical determination by Rodwell
and Radom.'®! Each atomic site bares a partial charge while the Lennard-Jones parame-
ters are assigned only for the oxygen sites. Then, these parameters are tuned to reproduce
the experimentally determined enthalpy of hydration of the ion hydrated up to six water
molecules.!4? The difference between enthalpy and internal energy is ignored for simplicity.
In parameterizing the partial charge on oxygen, either negative or positive charge can be
assigned, yielding a similar overall agreement to the experimental enthalpy of hydration.
However, the assignment of a negative charge resulted in interaction parameters that are
closer to the values for SPC/E water and is preferred on the basis that the protonation of
a molecule should not significantly change its interaction parameters. The resulting hydra-
tion energies are compared with experimental values in Table. 5.5. Except for the first few

hydrates, the agreement is fair.

d139 as shown in

The experimentally determined geometry is adopted for sulfuric aci
Fig. 5.1 and Table 5.4. A partially optimized geometry for bisulfate ion was obtained by
Kurdi and Kochanski!3® using ab initio calculation. In their calculation, / S-Oy/-Hy/ = 114°

was obtained. However, the value is probably an overestimate insofar as the corresponding
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Table 5.6: Energy and geometry of HoSO4 - HyO neutral complex. Comparison between
simulation and “exact” values.

This work?® Experimentb Kurdi® Morokumad Lay®

energy [kcal/mol] ~15.76 — —15.769 ~ —10.00 —25.37
0-0, distance [A]f  2.662 — 2.656 ~ 2.696 9.553
dipole moment of 2.718 2.72515 — — 2.2989

H5S04 [Debye]

a8imulation was carried out at 0.1 K.

bKuczkowski et al.l*

€ Ab initio SCF-MO-LCGO calculation by Kurdi and Kochanski.!3?

d Ap initio calculation by Morokuma and Muguruma'®? at the fourth-order MP4SDQ level
with zero-point correction. The values cited here are estimated from their figures.

€ Ab initio calculation by Lay'®® at the MP2/3-21g** level.

0 is on water while O, is on sulfuric acid.

value for sulfuric acid was overestimated by 11.5°. In the present work, we simply use the
same value as for sulfuric acid. We also ignore the slight (= 0.5°) deviation between the C3
axes of the angle O1-S-01/ and O2=8=03/. In other words, bisulfate ion was obtained from
sulfuric acid by removing the proton H; and shortening the bond length r(S-O1) to 1.48A.In

139 on the potential

determining interaction parameters for these molecules, ab initio results
energies and geometries of HySO4-H20 and HSO; -H30™" were used. The experimentally
obtained dipole moment of sulfuric acid!3® provided additional information. The informa-
tion, however, is simply not sufficiently extensive to determine all of the parameters. To
further facilitate the parameterization, the Lennard-Jones parameters for these molecules
were assumed to be the same as those of sulfate ion'®? and only the partial charges were
adjusted. In addition, partial charges on O and Og/ sites of bisulfate ion are assumed to
be equal, though these two sites are not equivalent. The resulting interaction energies and
geometries are compared with the ab initio results in Table 5.6 and 5.7 for sulfuric acid
and

bisulfate, respectively. In Table 5.6, other sets of ab initio results are shown. Judged

162 are perhaps the

from the level of the theory, the results by Morokuma and Muguruma
most accurate. Nonetheless, we employ the results by Kurdi and Kochanski'®® since the cor-
responding data for HSO; -H3O™ are available only in their paper. Because of some model
parameters left unadjusted, the model is expected to be sufficiently flexible to incorporate

additional data as they become available.
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Table 5.7: Energy and geometry of HSO; - H3O™ ionic complex. Comparison between
simulation and ab initio results.

This work? “Exact” value?
energy [kcal/mol] —136.39 —136.39
0-0; distance [A]° 2.380 2.326
/ 01-H;-0° 174.6° 180°
/ 0;-H-0O° 168.9° 180°

aGimulation was carried out at 0.1 K.

b 4p initio SCF-MO-LCGO calculation by Kurdi and Kochanski.!39

CH and O are the atomic sites on hydronium ion, O; is on sulfuric acid, and H;j refers to
the position of the proton if the S-O; bond is shortened to 1.48 A without removing H;

from HyS50,.

An iterative method similar to that suggested by Halley et al.!3® is used to find the
optimum sets of parameters. First, simulation was carried out with some reasonable values
of the parameters, for which the difference between the calculated and “exact” energies
and structures of the complexes were evaluated. New sets of parameters were obtained by
randomly perturbing the old parameters, which in turn were used to generate the next trial
parameters only if they resulted in a decrease of the deviation. The process was repeated

until no further decrease of the deviation is achieved.

5.3 Reversible Work of Cluster Formation

In this section, we derive a statistical mechanical expression for the reversible work of cluster
formation from a HoSO4/H50 binary vapor. Since the vapor phase serves as a reference state
in calculating the reversible work, its precise nature has to be specified first. Most of the acid
molecules in the vapor exist as hydrates so that the number of the sulfuric acid monomers
is significantly smaller than the total number of acid molecules.109 110,113,114, 117, 118,163 Ty,
deriving the statistical mechanical expression for the reversible work of cluster formation,
it is most convenient to take a reference state in which molecules exist as monomers form-
ing an ideal gas mixture. Once the reversible work is obtained as a function of monomer
concentration of acid molecules, it is an easy task, if so desired, to re-express it as a func-

tion of the number density of all sulfuric acid molecules calculated regardless of hydration

state.109:113,117 The same applies to the total number of water molecules if hydrate forma-
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tion leads to a serious depletion of water.!5 117

Inside the vapor phase, we take a system of volume V' which satisfies the following two
conditions.2® On one hand, V is sufficiently macroscopic in the sense that its coupling with
the surrounding vapor is sufficiently weak. Then the statistical properties of the system are
determined by the grand canonical ensemble.’* On the other hand, V' is small enough that
the probability of finding more than one uncorrelated density fluctuation that participates
in the nucleation process at any instant is negligible, which implies that there is at most
one cluster in the system. Then, the reversible work W7 to form a cluster inside V' from
the reference state is given by

=C

BWT = —log — (5.2)

=r?
=

where 8 = (kgT)~! with kg and T being the Boltzmann constant and the absolute tem-
perature, respectively. =" is the partition function of the system constrained to be in the
reference state, while Z¢ is evaluated under the constraint that the system contains a cluster.

Assuming the ideal gas behavior in the reference state,

© %0 q q B Ny 1 qseﬁys Ne
V) = 33 o (v ve
N0 Nao Ny! A3 N,! A3
= elmutnaV (5.3)

where the subscripts w and s refer to water and sulfuric acid, respectively. The molecular
partition functions of the a-molecule are given by g, and A3, the former arising from
the internal degrees of freedom of the molecule and the latter from the kinetic energy of
translation and rotation. f, is the chemical potential of the a-component in the reference
state and ) arises from the integration over the orientational coordinates of a molecule.
Here, the symmetry number of a molecule is absorbed in gq. Finally, n, is the number
density of the a-component in the reference state, where we have made use of the fact that

__Ga ePra()

In a single component system, a cluster simulation is commonly realized by confining a
fixed number of molecules, say 4, in a spherical container of volume v concentric with the

center of mass of ¢ molecules. To the extent that these molecules actually form a cluster and
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the thermodynamic properties of the cluster are nearly independent of v over a wide range
of v, Lee et al.%! characterized the cluster by its size ¢ alone. The exclusive use of a canonical
ensemble in cluster simulation stems from the fact that clusters are unstable with respect
to change in their size. In the HoSO4/H2O binary system, there are as many as 300 clusters
assuming that the maximum numbers of H2SO4 and HaO molecules in a cluster are 3 and
100, respectively. If a canomnical ensemble is employed, expensive thermodynamic integration
has to be carried out to evaluate the free energy of each cluster. One can significantly reduce
the computational effort by devising simulation that preferentially samples clusters relevant
in nucleation, i.e., those found along the valley passing through the saddle point of the
reversible work surface. Under conditions typical of sulfuric acid-water binary nucleation,
ng < Ny. Moreover, when the relative humidity is less than 100%, the sulfuric acid hydrate
cannot grow indefinitely without acquiring more acid molecules. Thus, during the time
period required for a cluster to either acquire or lose an acid molecule, the cluster reaches
stable partial equilibrium with respect to its internal degrees of freedom and the exchange
of water molecules.197:109110 Thege clusters in stable partial equilibrium are, in fact, those
found along the valley of the free energy surface. Thus if we employ the mixed ensemble
in which the number of water molecules is allowed to fluctuate while that of sulfuric acid
molecules is fixed, simulation will preferentially generate the clusters relevant in nucleation.
In this approach, a cluster is characterized only by the number N¢ of sulfuric acid molecules
in it. For brevity, we refer to this cluster as the N¢-cluster. Our goal here is to express
=€ in terms of the partition function of the Ng-cluster in the mixed ensemble. As we shall
discuss in Sec. 5.4, the free energy of the cluster characterized by both N and N, the
latter being the number of water molecules in it, can be easily obtained from simulation on
the N¢-cluster.

Recently, we developed a new approach to cluster simulation in a single component
system using a grand canonical ensemble.?® The method is free of any arbitrariness involved
in the definition of a cluster. Instead, it preferentially generates the physical clusters, defined
as the density fluctuations that participate in nucleation,*¥53 and directly determines their
equilibrium distribution without the computationally demanding free energy evaluation. In
the present case of HoSO4/H20O binary system, however, Monte Carlo moves to create or
annihilate an acid molecule will rarely be accepted since a hydrogen bond network will be

seriously disturbed in the process. The present approach of using the mixed ensemble can
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be regarded as an application of the grand canonical ensemble approach to heterogeneous
nucleation, in which a fixed number of acid molecules in the cluster, as a whole, are regarded
as a heterogeneous nucleation site.

We first obtain the partition function ®¢ for the mixed ensemble under the constraint
that the system contains an NS-cluster. Once ®€ is obtained, =€ follows immediately. Since
ns is many orders of magnitude smaller than the corresponding value in the cluster, we can
divide the acid molecules in the system to NS belonging to the cluster and N! regarded
as part of the vapor. Although no dissociation is allowed in the vapor in accord with the
choice of the reference state, possible dissociation in the cluster is an essential feature of
the system. We denote the number of resulting bisulfate ions and hydronium ions by V.
In our model representation of HySO4/H50 binary system using the four distinct molecular
species, we then have

OBV e NO NG = L [(BVNT i 1 g\ VN 1 g\ A
(ﬂa y Hw aala) - Ng' Ag N-Z—O (Ng——NZ)' 7(3- —Nﬁ —A_g’ Nz'

8

[e e} ZNw 3
XNZONLW! / d{N}e N, (5.5)

where the subscripts b and h refer to bisulfate ion and hydronium ion, respectively. We

have defined the fugacities z, of water and z; of hydronium ion by

. qheﬂﬂw

B
qu€

= and zZy = T
Ah

Zw =
w

(5.6)

respectively, and assumed that the N? sulfuric acid vapor molecules can be treated as an
ideal gas to integrate out their contribution in the configurational integral. As a result,
N stands for N¢ 4+ N; + N, whose translational and orientational degrees freedom are
collectively denoted by {N} in the configurational integral. Note that in the definition of
zn, Eq. (5.6), the chemical potential of water is used since hydronium ions are formed from
water, to which the system is open. To clarify this point, Eq. (5.5) is derived in Appendix F
starting from a dissociative model. Note that the configurational integral is taken over all
configurations consistent with the Nf-cluster. This constraint is well-defined and presents
no difficulty in evaluating the integral. In fact, as we will see below, the partition function

to be evaluated by simulation involves only NS acid molecules. Moreover, the boiling point
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of pure sulfuric acid is much higher (330°C) than the temperature of interest, where acid
molecules are hound together regardless of the value of V. This means that no explicit
consideration is necessary to impose the constraint that the NS acid molecules form a

cluster. Finally, multiplying ®¢ by ef#s(Na+Ne) and summing over NP, we can convert ®¢

to =¢;
N v (]
BBV, b, s NE) = > P WNat NPV, gy, N2, NE)
NZ=0
NS¢ Ne . .
_ v (957 R A
A3 o2 (Ng = NN N
o0 ZN“’
x Y / d{N}e PV, (5.7)
Np=0"""

where y is defined by
 qegn ASAY

= . 5.8
X7 geaw NAY 58

Clearly, —kpT log x is the free energy of the reaction
H2S04 + HoO — HSO; + H30™, (5.9)

where each molecule is considered to be isolated in vacuum.

If the summation with respect to N; in Eq. (5.7) is to be evaluated directly in a single
simulation, it must be possible to replace a sulfuric acid-water neutral pair with a bisulfate-
hydronium ion pair via a trial move in Monte Carlo simulation. This trial move, however,
will almost certainly be rejected since it will seriously disturb the hydrogen bond network in
the cluster, costing a very high energy. Instead, each term in the summation over N; must

be calculated separately. In particular, the simulation focuses on evaluating the expression
S\ 5
= ) — fwo —BU,
S0 Vo NN = 3 26 [ dtvyeiow (5.10)

for each value of NV;, the number of the ion pairs in the system. Except for the analytically
tractable factors, Z¢ is the partition function in the mixed ensemble of an N-cluster whose
dissociation state is specified by N;. Eq. (5.10) cannot be evaluated in a single simulation.

Instead, it must be evaluated by means of a thermodynamic integration.*” An expression for



112
Zg,(8,V, w, Ng, Ni) convenient for this purpose is derived in Appendix G. Using Eq. (G48)
in Eq. (5.7), we obtain

:C(ﬁ,Vuw,us;Nc)

—  plnstny)V Ng —Bunb(1)
= e\ (nsV) Z N'(NC [ /dl Upp }

B
X exp {—/ [<UN >nyo —Ni < upp >]dp
0

log Ny,
+ [< Ny >3 —nyV]dlogny ¢, (5.11)

log nwo

which, when substituted into Eq. (5.2) along with Eq. (5.3), yields

G_IBWTEU(IBaVan,#ﬁN:) = (ns"/)]\[éf Zﬂ e_ﬁqﬁ(ﬁ’V’pw’Ng’Ni): (512)
N;=0

where we define

BP(B,V, s, Ny, Ni)
N;

= —Jog— w .
g log ny
[ < Uy >nuy —Ni < upp > df — / [< Ny >5 —nwV] dlog i, (5.13)
Bo log nawo

where 3y is chosen to be sufficiently small that the system can be regarded as an ideal gas
composed of water, sulfuric acid, and bisulfate-hydronium ion pairs. n4q is the smallest
of the number density of water molecules in vapor that we are interested in and wup, is
the intermolecular potential between HSO; and H3O%. The thermal average < --- >, is
evaluated at a fixed value of z, which remains constant along the integration path. The
thermal average < up, > is calculated in the canonical ensemble of a single HSO; -H30™
ion pair. frp(8) is the free energy required to make the ion pair in the system from sulfuric
acid and water forming an ideal gas confined in the unit volume at 3 and is defined through

the relation
e~ B (8) = /dl ~Bunp(1) (5.14)

When n,, is expressed in A—3, the distance in the integral of Eq. (5.14) has to be measured

in A so that Eq. (5.13) is dimensionally consistent.
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5.4 Reversible Work Surface and the Cluster Size Distribution

In the previous section, a cluster is characterized by N¢ alone. In classical nucleation
theory, however, it is customary to characterize a cluster by both N7 and Nj. To obtain
the expression for the reversible work to form this (N¢, N )-cluster, we must first specify
how to define N¢ for a particular configuration of molecules in the system. Let us consider

an excess quantity defined by

N& = N, —n,V, (5.15)

which is zero for a uniform vapor. However, during a simulation in the mixed ensemble,
N, and hence N¢%, fluctuates. For a macroscopic V, this fluctuation arises primarily from
that due to the vapor molecules. Fluctuations of this kind have very little to do with the
nucleation process and should not be counted as part of a cluster. In the mixed ensemble,

however, their effect on N can be made negligible by decreasing the volume until it satisfies
nyV < 1. (5.16)

In this limit, the system contains, on average, no vapor molecule. In fact, the probability
of finding at least one vapor molecule of water in the system is, assuming the ideal gas
behavior of the vapor phase, given by 1 — e~V ~ n,,V, which is negligible as a result of
Eq. (5.16). Thus, one can attribute the non-zero value of NZ* to the presence of a cluster,
which suggests that one may define

N¢ = N5z+Ni

w

= Ny +N; —nyV, (5.17)

where we include hydronium ions in the definition since the ions are formed from water. In

view of Eq. (5.16), we may redefine N, by
NE = Ny + N;, (5.18)

namely, all the water molecules, whether or not protonated, in the system can be regarded

as a part of the cluster. The (NS, NE )-cluster thus defined is a physical cluster in the sense

that it represents density fluctuations relevant in nucleation.%
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We note that the clusters generated in simulation are consistent with an intuitive def-
inition of clusters. To see this, note that, except when N} = 0, N} is always larger than
Ny V (€ 1), the average number of water molecules in V' when filled with the uniform vapor.
Thus, on average, any attempted Monte Carlo move to create a molecule in the system will
be accepted with higher probability if the newly created molecule interacts more favorably
with the rest of the molecules, while as soon as a molecule evaporates from the cluster, it
is more likely to be removed from the system upon its trial annihilation.

Some words on V are in order. Clearly, V has to be larger than the spatial extent
of a cluster in it. That the system is microscopic does not affect the applicability of the
statistical mechanical description. It is sufficient to assume a weak coupling between the
system and its surroundings.®* Both conditions are trivially satisfied in the present case of
vapor to liquid nucleation, where the molar volume in the vapor phase is considerably larger
than a physical dimension of the cluster and the interaction between the vapor molecules
and a cluster can be ignored.

The expression for the reversible work to form an (N, Nf)-cluster can be easily ob-
tained. In fact, the grand canonical partition function Z¢ of the (NS, N£)-cluster is obtained

from Eq. (5.7) by keeping only the term N, = N, — NV; in the sum over NV,,. Thus,

E(B, V., phw, 153 N Niy)
Biis Ng Ng N;
= enV (q_s___e > 3 X / d{N}e PO~

AZ &=, (Ve - N)'N'N'N'
Ng N¢ ; .
_ ensV (qseﬁllls) Z XNz 2,’111\)[1
3
A &= (Ne= N)ING N
x:fu(ﬁa‘/a,uwaN;aNi) (ﬂa%ﬂw:NgaNian '—Ni), (519)

where p is defined by

_w& [d{N}ePUy

zNw_o ZN’“;” Jd{N}e=BUn’ (5.20)

p(ﬁa‘/a//‘waN;,Ni,Nw) =

which is the normalized probability of finding N,, water molecules in the system containing
NE acid molecules, N; of which are ions, and is directly obtained from a single simulation.

Since Eq. (5.19) differs from Eq. (5.7) only by a factor of p, one can obtain the desired
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expression from Eq.(5.12):

e—,@W’rev(,@,V,l—ngus;Nac.vNﬁ/)

Ne
= (n,V)Na Z e BV NaND (8 Y, NE, Ny, NE — N;). (5.21)
N;=0

The equilibrium cluster size distribution ¢(8, pw, ps, NS, NE,) can be obtained as follows.
Suppose that the entire vapor phase of volume Vj,; is divided into small cells of volume V.
Because of Eq. (5.16) and ns < ny,, most of the cells contain no molecules at all and those
containing a cluster or a monomer are on average spatially distant. Thus, one can assume
that all of the cells are statistically independent. Then, the average total number of the

(N¢, NS )-clusters in Vi is given by

‘/tot Ec(ﬂa ‘/al/'wa Hs; N;7N5))
VE(ﬁv‘/:,Uf’uHHS) ’

(5.22)

where Z is the grand canonical partition function of the system of volume V' taken in the
vapor. In calculating =, all the possible microstates consistent with the metastable state
have to be accounted for. However, since the system contains no molecules at all for most

of the time, it can be approximated as ideal gas:

E(B, V; bws ps) = BT (B, V, s, phs)- (5.23)

When divided by Vi, the expression Eq. (5.22) becomes

o e e~ BW(B,V w5 NG NG)
c(ﬂ?ﬂW?l‘LS)NLL?Nw): V 3 (5.24)

where we used Eq. (5.2). As Eq. (5.2) indicates, e #W"™ is the probability of finding
the (NS, N¢)-cluster in the system relative to the reference state. Since the cluster can
be found anywhere in the system and the event of finding it at one place or another is
mutually exclusive, e %" is proportional to V, indicating that ¢ is independent of volume
as required.

Finally, we address a consistency issue. Strictly speaking, neither (0,1)-cluster nor (1,0)-
cluster is a vapor monomer of water or acid molecule, respectively, since these clusters

exclude water vapor from the system of volume V because of the definition Eq. (5.18),
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while the monomers do not. In fact, one can readily show that

¢(1,0) = ne”™V, (5.25)
where the term for N; = 1 is ignored in Eq. (5.19), and that

¢(0,1) = nye ™V, (5.26)

However, this distinction is completely insignificant since e ™V ~ 1. Alternatively, one

can consistently recover the monomer densities by setting V' = 0 in Egs. (5.25) and (5.26).

5.5 Details of the Simulation

First, we briefly describe some of the details of the simulation. The system is defined as
a spherical cavity of radius 50 A. We studied the clusters of N = 1,2,3. As pointed out
in Sec. 5.3, for a given value of N¢, there are NS + 1 clusters to be simulated separately
corresponding to the different dissociation states defined by NV;. Thus, there are nine clusters
in total. For each of the clusters, the initial configuration of the molecules is created as
follows. The sulfur site of a sulfuric acid molecule or a bisulfate ion is placed at the center
of the cavity and the rest of the molecules, including a certain number of water molecules,
are placed randomly inside the system. After sufficient equilibration at 7' = 303.15 K and
ny = 0.1048 x 1076A 3, corresponding to a relative humidity of about 10% if the actual
vapor pressure of water is used,'® the configuration is used as the initial configuration for
the simulations at the nearby values of 7' and n,,. The process is repeated to obtain the
initial configuration of the whole range of 7' and n,, studied. After equilibration, which
typically takes 10° — 106 Monte Carlo steps, N,, and Uy are sampled for about 107 — 10°
Monte Carlo steps. Sampling is made every 10° steps for short runs and every 10* steps
for long runs. Here, one Monte Carlo move consists of (i) trial random translation and
rotation of molecules in the system and (i) one trial grand canonical move, namely a trial
creation or annihilation of a water molecule. Molecules to be moved are chosen randomly
so that each molecule is picked up once per Monte Carlo step on average. The maximum
displacement for a trial translation and the maximum angle for a trial rotation are tuned

during the simulation so that the acceptance ratio, defined as the ratio between the number
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Table 5.8: Conditions of the simulation. 7=298.15 K

No. Ny [A77] NV Relative humidity [%]2
S1 0.1048x10°° 0.5487% 10! 13.65
S2 0.2x1076 0.1047 26.06
S3 0.3x1076 0.1571 39.08
S4 0.3839x 106 0.2010 50.01
S5 0.5%x1076 0.2618 65.13
S6 0.6x107 0.3142 78.17

aGaturation pressure of water is assumed to be 23.71 mmHg.164

of accepted trial moves and the total number of the trial moves, stays around 50%. As
discussed in Appendix H, a molecule at the center of the system undergoes rotation only.

To evaluate the temperature integration in Eq. (5.13), simulation is performed at 298.15
K and higher temperatures, the highest of which is chosen so that the integrand [< Un >n,,
—N; < upp, >| is negligible at this temperature and depends on the values of both N7 and
N;. For example, it is 500 K for (N¢, N;) = (1,0), while 2400 K for (N§, N;) = (3,3). Also,
ngo = 0.1048 x 1076A~3. In evaluating the second integral of Eq. (5.13), simulation is
carried out at n,, = 0.1048 x 1075, 0.2 x 107%, 0.3 x 1075, 0.3839 x 107%, 0.5 x 107, and
0.6 x 1078 A3 as summarized in Table 5.8.

Further technical details of the simulation is discussed in Appendices G—I. In Ap-
pendix G, a criterion is discussed on the adequacy of the number of intermediate points
used to evaluate the thermodynamic integrations. In Appendix H, a criterion in choosing
the system volume V is discussed from a point of view somewhat different from that of
Lee et al.®' Finally, under a reasonable approximation, one can dispense with the integra-
tion with respect to n, indicated in Eq. (5.13), which results in the improvement of the

computational efficiency by a factor of several. The method is discussed in Appendix I.

5.6 Results and Discussion

5.6.1 Shape of the clusters

Snapshots® of the clusters are shown in Figs. 5.2—5.7, where sulfur sites, oxygen sites, and
hydrogen sites are colored red, dark blue, and white, respectively. Fig. 5.2 shows a hydrate

of a sulfuric acid molecule, in which a loop of hydrogen bonds is formed from the H; site to
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Figure 5.2: A cluster with NS =1, N; = 0 at T —= 298.15 K and n,, = 0.6 x 1076 A=3,

the Oq site of the acid with two water molecules, similarly for Hi/ to Os/. In hydrates with
fewer water molecules, the hydrogen bonds are formed preferentially from the H; and Hy/
protons to oxygens of water molecules. One end of the hydrogen from a water attached to
the Hj site, for example, forms a distant hydrogen bond to the O, site.

Figures 5.3, 5.4, and 5.5 show clusters with two sulfuric acid molecules. Note that
the acid molecules directly form two hydrogen bonds in Fig. 5.3, while one of them is
mediated by a water molecule in Fig. 5.4. Around room temperature and at all values of
Ny investigated in this work, these two configurations are representative of the connectivity
of the acid molecules. Since interconversion of these two conformations requires one or two
hydrogen bonds to be broken first, the Monte Carlo lifetimes of the conformations are fairly
long, being of the order of 107 steps. As the value of n,, is increased, configurations similar to
Fig. 5.4 become more probable than those similar to Fig. 5.3. The configuration in Fig. 5.5
can be regarded as an intermediate between those two. Note that N =5 in both Figs. 5.3
and 5.4. However, it is unlikely that interconversion between these two conformations occurs
in a canonical simulation since it would involve diffusion of a water molecule over several
Angstroms on the cluster surface where no favorable interaction site exists. This shows a

clear advantage of the mixed ensemble simulation over a conventional one in a canonical
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Figure 5.3: A cluster with NS =2, N; = 0 at T = 298.15 K and n,, = 0.5 x 1078 A—3,

Figure 5.4: A cluster with NS =2, N; =0 at T = 298.15 K and n,, = 0.6 x 1076 A3,
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Figure 5.5: A cluster with N¢ = 2, N; = 0 at T = 298.15 K and ny, = 0.6 x 10~ A3,

ensemble. This effectiveness in sampling very different relevant configurations has been
stressed in a simulation work that determines the solvation shell structure of protein and
nucleic acid,!%® for example.

Similar connectivity is observed in Fig. 5.6 for clusters with three sulfuric acid molecules.
An additional complication arises in this case, however, since the acid molecules can now
form a ring (Fig. 5.7). As is seen from Figs. 5.6 and 5.7, acid molecules in the ring
conformation tend to form hydrogen bonds preferentially with water molecules than among
themselves in comparison to those in the linear conformation, leading to larger clusters.
Since both conformations are observed in the simulation, the corresponding free energies
are expected to be close, the difference being the order of kgT. To understand its implica-
tion, we monitored the quantity

(o V)N

T (5.27)

BW = pUN — log

which plays the same role as SUp in a canonical ensemble in that the statistical weight of
a given microstate is proportional to ¢ ®W. The data from simulation of 7 x 108 Monte

Carlo steps were divided into small blocks, each of which corresponding to 107 Monte Carlo
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Figure 5.6: A cluster with N¢ = 3,N; = 0 at T = 298.15 K and n, — 0.6 x 107% A3
showing a linear conformation.

Figure 5.7: A cluster with NS = 3/ N; = 0 at T = 298.15 K and n, = 0.6 x 1076 A—3
showing a ring conformation.
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Figure 5.8: The change in the block average of SW. The size of each block is 107 MC steps.
The conditions of simulation for S1, S4, and S6 are given in Table 5.8.

steps, and the average of BW was calculated for each block. Fig. 5.8 shows the variation
of this block average of SW for three values of n,,. Larger, i.e., less negative, values of SW
correspond to the linear conformation while the smaller values of SW correspond to the
ring conformation. Despite the large difference in W, both linear and ring conformations
are observed. This means that the ring conformation is entropically unfavorable since it
attracts more water molecules, confining them to a far smaller volume than V. As these
water molecules evaporate, the cluster returns to the linear conformation. From Fig. 5.8, it is
clear that additional Monte Carlo steps are required to achieve good statistics. Nonetheless,
qualitative trends are already present. For example, the ring conformation appears more
frequently as n,, is increased.

None of the clusters shown here possesses a spherical or an axial symmetry. Given the
fairly long lifetime of each conformation of the clusters, the same is expected to be true even
after the thermal average is taken. Thus, the thermodynamic description of the clusters
is no longer amenable to Gibbs’ prescription.® In particular, the thermodynamic quantities
cannot be classified into extensive and intensive ones, which is a prerequisite in deriving
the familiar Gibbs-Duhem relation, for example. It seems hardly profitable to try to extend
Gibbs’ interfacial thermodynamics to include such cases, since the quantities introduced
into such a theory are unlikely to be subject to experimental measurement. This in turn

highlights the importance of the molecular level approach.
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Table 5.9: Heat of formation.

molecule AHy [kcal/mol]
H,0O 2 — 57.80
H,SO, P ~175.67 4 1.912
H,0+ P 142 + 1
Hso; b —9227.77 + 4.063
aPrigogine and Defay!66
bLias et al.167

5.6.2 Estimate of the value of fy;,

To evaluate the reversible work to form an N¢-cluster or an (N¢, N )-cluster, from Egs. (5.12)
or (5.21), the value of fy;, defined by Eq. (5.14) is required. Using the heat of formation of

the molecules given in Table 5.9 and ignoring the entropic effect, we obtain
—kpT log x ~ 147.70 + 6.98 kcal /mol. (5.28)

To evaluate the remaining factor in Eq. (5.14), we introduce the approximation

= [ repusth o UL s, (5.29)

where vy and wy respectively denote the volume and the solid angle over which H;0™" can
fluctuate with respect to HSO; . We approximate their values as the cubic of the maximum

displacement and angle used for the trial Monte Carlo move. Then

vy ~ 0.25%4°

wy = 0.3° (5.30)

From simulation, < up, >= 135.04 +0.01 kcal/mol at 7" = 298.15 K. Since A3 in vy cancels

out A=3 of n,, in Eq. (5.13), we can omit the unit of volume here to obtain

—kpT log é / dle Pum) x —127.85+0.01  kecal/mol. (5.31)
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Figure 5.9: A cluster with N¢ =2 N; =1 at 7' = 298.15 K and n,, = 0.6 x 1076 A3,

Combining Egs. (5.28) and (5.31), we obtain
fnop =~ 19.85 £ 6.99 kcal /mol. (5.32)

In what follows, we adopt 20 kcal/mol as the value of fp. At T = 298.15 K, the indicated

uncertainty in this quantity is as large as 12kgT. Effects of this uncertainty will be addressed

subsequently.

5.6.3 Dissociation of H,SO, in a cluster

Snapshots of clusters containing a HSO,; -H3O™" ion pair are shown in Figs. 5.9 and 5.10, in
which atomic sites are colored as before with the exceptions for the Oy site of bisulfate ion
and the oxygen site of hydronium ion, which are, respectively, colored green and light blue.
In Fig. 5.9, a hydrogen from H3O" forms a hydrogen bond directly to the Oy site of HSOy,
while in Fig. 5.10, H3O™" forms hydrogen bonds to oxygen sites of H,O and HoSOy4. In both
clusters, however, there is no intervening molecule between the ion pair. The same holds
true for ion pairs buried in 97 water molecules as shown in Fig. 5.11. The water molecules

start to intervene in the ion pairs as the number of water molecules exceeds about 240 as
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Figure 5.10: A cluster with N¢ =3, N; = 1 at T = 298.15 K and n,, = 0.3839 x 105 A-3.

Figure 5.11: Ion pairs forming a core inside the cluster with N¢ = 97. N¢ =3, N; = 3 at
T = 298.15 K and ny, = 0.6 x 107 A=3. Water molecules are not shown.
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Figure 5.12: Ion pairs forming a core inside the cluster with NS = 243. N¢ =3, N; = 3 at
T =298.15 K and ny, = 0.6 x 1075 A=3. Water molecules are not shown.

shown in Fig. 5.12. Thus our simulation suggests that, as far as the dissociation behavior
of Ha80; is concerned, at least about 240 water molecules are required to attain a behavior
that resembles the bulk solution.

The fact that there is no separation of ion pairs in a small cluster does not imply that
dissociation is not important in the cluster. As an HySO4-H»O neutral dimer dissociates to
an HSO, -H3O0™ ion pair, its net dipole moment increases to attract more water molecules.
(If these dimers are placed in vacuum, the dipole moment changes from 3.28 Debye to 12.0
Debye at 298.15 K upon dissociation.) Consequently, the potential energy of the cluster
decreases. Whether or not dissociation occurs in a given N¢-cluster is determined by the
free energy ¢(Ng, N;), defined by Eq. (5.13), of the cluster as a function of N;. The quantity
is shown in Fig. 5.13 for the case of N = 3 at T' = 298.15 K for three values of n,,. Clearly,
dissociation occurs for all cases. The increase in ¢ is observed as N; changes from 0 to 1
when n,, = 0.1048 x 107% A3, reflecting the fact that the ion pair cannot attract sufficient
water molecules when placed in vapor with such a low water concentration. If 27 kcal/mol
is assumed for the value of fy;, however, we find that dissociation no longer occurs for this

Ng-cluster (Fig. 5.14). This change at the qualitative level points to the necessity of a more
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Figure 5.13: Free energy of the N¢-cluster as a function of the dissociation state defined by
N;. N¢=3and T = 298.15 K. fn=20 kcal/mol. The conditions of simulation for S1, S3,
and S5 are given in Table 5.8.
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Figure 5.14: Free energy of the N¢-cluster as a function of the dissociation state defined by
N;. N¢ =3 and T = 298.15 K. fy=27 kcal/mol. The conditions of simulation for S1, S3,
and S5 are given in Table 5.8.
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accurate estimate of the value fyp.

5.6.4 Effect of hydration

In Egs. (5.12) and (5.21), n, represents the number density of unhydrated sulfuric acid
molecules in accordance with the choice of our reference state in calculating the reversible

work. In reality, however, most acid molecules exist as hydrates and one can specify only

t

the total number density n°. Thus, we must express n; in terms of n’. The derivation

given here is analogous to the corresponding one in classical theory.10% 113,117

Since a given acid molecule is either hydrated or unhydrated regardless of its dissociation

state, we have

nl% = 3 ST NEe(NE, NG). (5.33)

NE=1 N,

From Egs. (5.21) and (5.24), we obtain

ntot = Z N¢ (ngV Z e PO (5.34)
V N N;=0

where we have made use of the normalization condition

> p(B,V, pw, N§, Niy Nyy) = 1. (5.35)
Ny=0

Assuming that the hydrates are dominated by those containing only one acid molecule

(N¢ = 1), we find that

Tis
bo =
’I’Lg‘)t

-1
[ 21: e_ﬂqb(l’Ni)} : (5.36)

Q

N;=0

In the following, we assume that n'® = 0.1 x 1073A~3 which is typical of experiment in

H3S04/H,0 binary nucleation.'?
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5.6.5 Reversible work of cluster formation and comparison with classical

predictions

Recall that the cluster size distribution is given in the classical nucleation theory by
c(NE, NE) = ny, exp|—gWelassical (e Ne)|, (5.37)

where Welassical jg the reversible work of cluster formation evaluated by the classical theory.

Thus, rewriting Eq. (5.24) as
c(Ng, N;,) = ny exp[— W (NS, NS — log(n, V)], (5.38)

we find that a sensible comparison is made between our molecular theory and the classical

by comparing the quantity defined by
BwREVINGNG) = gWTrev(NE NS + log(ny, V) (5.39)

against Welassical(N¢ N¢). Similar quantities can be defined for an N¢-cluster by summa-

tion with respect to N of Egs. (5.37) and (5.38). Thus, we compare Weassical( N¢) defined

by
o0
eXp[—ﬁWdaSSical(Ng)] = Z eXp[—ﬂWCZGSSical(Ng, Nﬁ,)] (5'40)
NE=0
with wiEV (N¢) defined by
o)
exp[—BuwFV (NG = ) exp[-BuwFV (Ng, Ng)). (5.41)
Ng=0

The upper limit (co) of the summation is only formal since the summand decays quickly as
N¢ is increased when the relative humidity is less than 100%.

Figure 5.15 compares the reversible work BwfEV of the NC-cluster formation obtained
by assuming the value of 20 kcal/mol for fy, with gW<classical ghtained by the classical
theory.*6® While classical theory predicts that a 3-cluster is still subcritical, our simulation
predicts that a 2-cluster is the critical nucleus for conditions S1 to S4 and that BwfEV

decreases monotonically with Nf for conditions S5 and S6. (See Table 5.8.) This means

that the rate-limiting step of new particle formation is the binary collision of sulfuric acid
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Figure 5.15: Reversible work of N¢-cluster formation at T = 298.15 K. Calculated with
fnp = 20 kcal/mol. The conditions of simulation for S1, S3, and S5 are given in Table 5.8.
C1 shows the classical prediction under the condition S1. Similarly for C3 and C5.

molecules. Note that classical theory predicts that gWelessical increases as n,, is increased.
This trend reflects the fact that a higher value of n,, results in more significant depletion of
the acid molecules and reverses as NS becomes large enough so that the cluster is a critical
nucleus. When 27 kcal/mol is employed for the value of fyp, the results of our simulation
become more or less comparable with the classical prediction as shown in Fig. 5.16. This
indicates that the large discrepancy between the molecular theory and the classical as
observed in Fig. 5.15 arises from the difference in the behavior of a cluster involving the
HSO; -H3O™" ion pairs.

To obtain more detailed information regarding the clusters with ion pairs, we calculated
BwREY of the (N¢, NS)-cluster formation for the condition S3. The results are shown
in Figs. 5.17 and 5.18 for the case of fy; = 20 kcal/mol and 27 kcal/mol, respectively.
Figures 5.17 and 5.18 also compare the simulation against the classical prediction. For small
values of N, the agreement is surprisingly good. Figure 5.17 shows a double minimum in the
reversible work. The minimum for the larger values of N¢, corresponds to the clusters with
ion pairs, while the contribution to the minimum for the smaller values of NS arises from
the undissociated states, since the HSO; -H3zO™ ion pair has a larger dipole moment than
the HoSO4-HoO neutral dimer and hence can attract more water molecules (as discussed in
Sec. 5.6.3). From Fig. 5.17, the dominant cluster for the case of N¢ = 1 is the (1,4)-cluster.

If two (1,4)-cluster collide without losing a water molecule, the resulting (2,8)-cluster is
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Figure 5.16: Reversible work of N{-cluster formation at T° = 298.15 K. Calculated with
frp = 27 kecal/mol. The conditions of simulation for S1, S3, and S5 are given in Table 5.8.
C1 shows the classical prediction under the condition S1. Similarly for C3 and C5.
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Figure 5.17: Reversible work of (N¢, N§)-cluster formation at T = 298.15 K and n,, =
0.3 x 1076 A=3. Calculated with fn, = 20 kcal/mol. CT and MC denote the classical

prediction and the results of simulation, respectively.
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Figure 5.18: Reversible work of (N, Nf)-cluster formation at 7" = 298.15 K and n,, =
0.8 x 1076 A—3. Calculated with fz, = 27 kcal/mol. CT and MC denote the classical

prediction and the results of simulation, respectively.

already in the state with one or two dissociated acid molecules, and hence can attract more
water molecule to form a stable cluster. Figure 5.17 further indicates that, upon acquiring
one more sulfuric acid molecule, even more stable cluster results. We note that the most
probable number of water molecule in 3-cluster is comparable with that in 2-cluster. This
means that some of the water molecules have to evaporate after 2-cluster captures an acid
hydrate. When f3 is increased from 20 kcal/mol to 27 kcal/mol to reflect its uncertainty,
the resulting reversible work surface changes markedly and our simulation becomes more
or less comparable with the classical prediction. This sensitivity to fp, again stresses the
importance of the accurate estimation of this quantity.

Next, we draw attention to the distribution of acid hydrates, for which N$ = 1. Both
Figs. 5.17 and 5.18 show that the dominant hydrates contain four water molecules, which
is larger than the classical prediction of two hydrating water molecules at relative humidity
less than 100%.109: 113,114 Ty identify the origin of this discrepancy, we calculated the average
interaction energy of the HySO,4-H20 dimer at 7' = 298.15 K and obtained —13.7 kcal/mol,
which is 0.9 kcal/mol lower than the classical prediction of the first hydration enthalpy
(—12.8 kcal/mol) estimated by Mirabel and Ponche.!%® This difference of 0.9 kcal/mol is
far from insignificant. For example, Fig. 5.19 compares the result of the simulation and the
classical predication on the fraction of unhydrated acid molecules py given by Eq. (5.36).

Clearly, our simulation predicts far more significant depletion of the unhydrated acid concen-
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Figure 5.19: Comparison of the probability that a sulfuric acid molecule is unhydrated. At
T = 298.15 K. Calculated with frp = 20 kcal/mol.

tration as a result of hydration. Thus, the agreement between simulation and the classical
prediction at small values of N is most likely a result of the cancellation of errors. Such
sensitivity of the hydrates distribution points to the critical importance of an accurate ab
initio calculation to enable the accurate determination of the model potentials. We note
that pg is quite insensitive to the value of frp, which indicates that no appreciable dissocia-
tion occurs in hydrates with one acid molecule as seen also from Figs. 5.17 and 5.18. This
in turn indicates that the important interaction potential that determines the behavior of
po is the HoSO4—H,O interaction. In the present work, we adopted the ab initio results of
Kurdi and Kochanski.!3 To see the sensitivity of the hydration state of the acid molecule
to the molecular parameters, we tested a model of sulfuric acid molecule parameterized
using the results by Morokuma and Muguruma'®? given in Table 5.6. The resulting acid
molecule shows no significant hydration. This is a rather unrealistic result and implies that
the HoSO4—H2O0 interaction is stronger than the prediction of Morokuma and Muguruma,

adding credibility to our original parameterization.

5.7 Summary and Implications for Classical Binary Nucleation Theory

We have developed a classical mechanical model representation of the HoSO4/H320 binary
system. The model has been used in Monte Carlo simulation to obtain a significant section

of the free energy surface of binary cluster formation. To our knowledge, this is the first
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time that such an extensive free energy calculation has been performed for clusters in a
binary system. The mixed ensemble simulation is effective both in sampling very different
configurations of clusters relevant in homogeneous nucleation and in evaluating the cluster
free energy. When the method is used under the approximation discussed in Appendix I,
the required computational effort is further reduced, perhaps even to the point less than
that required in a canonical ensemble simulation on a single component system involving
clusters of comparable size.

Our simulation yields considerable molecular level insight. Clusters observed are highly
nonspherical. At conditions typical of HoSO4/H2O binary nucleation, a cluster with a given
number of acid molecules has several very different conformations, which are close in free
energy and hence equally relevant in nucleation. Each conformation has fairly long Monte
Carlo lifetime. Dissociation behavior of HoSO4 in a cluster differs markedly from that in
bulk solution and depends sensitively on the assumed value of the free energy fis of the
dissociation reaction HySO4+H30 — HSO; -H30". In a small cluster, no dissociation is
observed. As the cluster size becomes larger, the probability of having an HSO; -H;O%
ion pair increases. However, in the clusters relevant in nucleation, the resulting ion pairs
remain in contact and about 240 water molecules are required to observe the behavior which
resembles that in bulk solution. When the assumed value of fy; is increased to reflect its
uncertainty, the probability of having the ion pair becomes negligible.

The reversible work obtained from simulation shows quantitative agreement with classi-
cal theory for small clusters, in which dissociation of the acid molecules is unlikely. This is
rather surprising since classical theory assumes the same dissociation behavior in a cluster
as in bulk liquid solution. Difference in dissociation behavior, in part, will be corrected by
the surface term in classical theory, since dissociation behavior near the bulk vapor-liquid
interface also differs from that in bulk solution. Therefore, this agreement just mentioned
is attributed, to large extent, to a cancellation of errors, as discussed in Sec. 5.6.5. For
larger clusters, for which dissociation occurs, the status is different. When the HySO4-HoO
neutral pair dissociates to form the HSO; -H3OV ion pair, its dipole moment becomes nearly
4 times larger, thereby stabilizing clusters of large N{, which in turn results in a reversible
work surface quite different from the classical prediction, indicating that the rate-limiting
step in stable particle formation is the binary collision of two acid molecules, both of which

are likely hydrated. This result, however, changes qualitatively as the assumed value of fp;
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is increased, indicating a need for an accurate estimate of this free energy.
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Chapter 6 Summary

Given the limitation of classical nucleation theory, arising from its macroscopic nature,
we have attempted to establish the foundation of molecular level theory of vapor phase
nucleation. In doing so, we have focused on evaluating the reversible work of cluster forma-
tion and followed two major trends in this direction, namely, statistical mechanical density
functional theory and molecular level simulation.

At first sight, density functional theory appears quite approximate in its nature. For
example, to reduce the computational effort, one must be content with an oversimplified
model representation of molecules and the functional form of the pair distribution must
be assumed as an input to the theory, net effect of which on the predicted reversible work
cannot be assessed. However, the very fact that the theory requires only a minor com-
putational effort allows one to derive classical predictions using the bulk thermodynamic
quantities obtained from the same theoretical framework. When a comparison is made of
the results of density functional theory with those of classical theory, the difference can
be attributed mainly to the effect of the molecular level details that are captured by the
model representations. Thus, the theory has been successful in addressing semi-quantitative
behavior of various interesting systems.

Molecular simulation offers an alternative approach to molecular theory. In this method,
one encounters two major drawbacks. First, from a fundamental point of view, the precise
definition of a cluster has been a long-standing issue in nucleation theory. Secondly, the
large scale computation involved in simulation has hitherto hindered a wide acceptance of
this approach beyond a rather uninteresting case of Lennard-Jonesian clusters. Thus, we
have challenged the problem of the precise definition of a cluster. The method is quite
distinct in its simplicity and computational efficiency and simultaneously overcomes these
difficulties.

The molecular level approaches require the intermolecular potentials as the fundamental
information. The requirement is quite often too strong for a system of practical interest
and predictions of the molecular theory must be regarded as at most semi-quantitative at

the present. However, considerable molecular level insight can be obtained that is otherwise
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unattainable, which adds to our understanding of the phenomenon of nucleation.

In this work, we have focused on evaluating the reversible work W of cluster forma-
tion. As Eq. (1.1) suggests, however, any theory of nucleation would be incomplete without
the accompanying rate theory. At least from a fundamental point of view, it appears quite
unsatisfactory to simply borrow the expression from classical theory. Thus, development of
the appropriate rate theory should be a next step in establishing the fully molecular level

theory of nucleation.
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Appendix A: Definitions of Multipole Moments

We start from the expression for the electrostatic energy U(1) in the external electric field

F,(r) of a neutral molecule 1 in a fixed position and orientation:”®7®

1
V) = —p”(D)Fulr) - 305 () Fas(ry)
1 _(p 1 P
~ 15 U (W Fapy (r1) = 15800 5(1) Fars ()
1 1
_§aaﬂ(1)Fa(rl)Fﬁ(r1) - gAa,ﬁv(l)Fa (r1)Fy(r1) + h.o. (A1)
where (1), @ff;) (1), Q&;{Y(l), and (I)r(x];)vé(l) are defined as follows:!™0
W) = [drdV @),
1
@((f;)(l) = 3 /dr oMV (r) (32425 — 72603]
1
ngzr(l) T 9 /dr oM (r) (5202 g2y — 12(2adsy + Ta0y0 + 24045) ]
1
Bs(1) = 3 /dr oW (r) (35247525

~57”2(£Ea$5575 + TaTy085 + TaZs0ay
+Z3%+00s5 + T3T500y + T4T5003)

+7* (80585 + Bary0ps + Sasdpy) ] (A2)

and respectively, the permanent electric dipole, quadrupole, octopole, and hexadecapole
moments, of the molecule 1 expressed in a laboratory coordinate system O — z1z223. (See
Fig. 3.1.) Clearly, these quantities are all invariant with respect to any permutation of the
indices and become zero when the sum is taken with respect to any two indices. g(l)(r) is
the charge density distribution in the molecule 1 in the absence of any external field. We

introduce the total multipole moments by”® 7

(1) _ _8U
e (1) - (‘)Fa
1
= 1" (1) + aop(DF(r1) + 5 Aa, 5y (1) Fy (1) + heo.
(T) _ oU
V) = 355

= 0)(1) + Ay o (1)F, (r1) + heo.
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o)) = —1582537
= F (1) + ho.
o)1) = —1058F8a[;6
= ) 5(1) + heo. (A3)

Since A, o5 is symmetric with respect to o and 8 and Ay o0 = 0,"7 it is clear that the
total multipole moments possess the same properties as those of the permanent multipole
moments mentioned above. In fact, we can define the total multipole moments through
similar relations to those given in Eq. (A2) with the superscript (P) replaced by (T).
Finally, we can rewrite Eq. (A1) to obtain Eq. (3.4) by means of Eq. (A3).
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Appendix B: U™ (1,2)

We start from Eq. (3.9). (2 )(rl) is given in terms of the electrostatic potential ¥(%)(r)

created by the total multipole moments on the molecule 2

oT ) (r)

FP(r)) = - 5

(B4)

r=r;

Denoting by 0(®(r) the charge density distribution in the molecule 2 in the presence of the

ion and the other molecules,

111(2) /d ' @ |r — r/I (B5)

We expand the denominator around r’ = ry and use Eq. (A2) with the superscript (P)
replaced by (T"). Taking the spatial derivatives of the resulting expression with respect to

r and setting r = ry, as indicated by Eq. (3.6), we obtain for a neutral molecule

FP(ry) = Taﬁ p(2) + 5 Ta 5y 05 (2)
T 1 T _
+E Taﬂ’yls Qfan,zs(Q) + '1—0—5 Taﬂ'yée (I)§37256(2) + O(r12 7)
1 T 1
F(i,28)(r1) = “Hdapy H"(YT)(2) 3 cx,3’75 @( )( ) 15 afBvée 756(2) +O(7"12 )

FR(r) = Tapyang”(2)+ 3Ta,amse® )(2) + O(r12™")

FQ5(r) = —Tapyse 1M (2) + O(riz ™), (B6)
where
82,’,.-—1
T ﬂ = _—
“ 0,023 reri
837.—1
Tapy = 77—
d 0r,0z30T rery,
847'_1
T, 5 =
by 02402302015 rery
657,~1
o 0140230102502, _— (B7)
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Using Eq. (B6) in Eq. (3.9), we obtain

U™(1,2) = —Tapus (1)us(2)

s Togy {0 () 65 (2) - (1) D (2)}

1
s {15 P - 505 mel @
iz B 0w ’<z>}

1 T T T

e ﬂéﬂ%(l)@&() 1(1)5<1>$)75(1)M‘T)(2)}- (B8)

When r; and ry are exchanged, Tpgy and T,g,s. change their signs while T3 and Togys
remain unaffected, since rio = —ry;. Thus, U™P(1,2) is symmetric in 1 and 2, a property

used in arriving at Egs. (3.35) and (3.36) from Eq. (3.32).
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Appendix C: The Ion-Molecule Interaction Energy

We choose the coordinate system in which the position vector r; of the molecule 1 is parallel

to the z3-axis. (See Fig. 3.1.) The only non-zero components of the electric field and its

spatial gradients at ry, resulting from a point charge ¢q at the origin are

By o= fi
Fiu = Fp= %g
F3s = —fl—%
Friz = Foz= —3—3
F333 = ST(‘JL
Fun = Faxn= —9—%
Fiizp = —%%
Fiizs = Fazz = 1;2;5(-1-
F3333 = _%q_ (C9)

and those obtained by any permutation of their indices. Using the symmetry and traceless

properties discussed in Appendix I of the multipole moments and the polarizabilities, we

therefore obtain

pa(1)Fy(r1)
Oup(1)Fap(r1)
Qapy(1)Fopy (r1)
Dagys(1) Fapys(r1)
0a8(1) Fo(r1)Fp(ry)

Aq, py(1) Fo(r1) Fy (r1)

The first four equations are valid for both total

(C10)

and permanent multipole moments. Using
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Eq. (C10) and setting ¢ = ¢*, we rewrite Eq. (3.8) to obtain Eq. (3.14). Similar procedures
are followed with ¢ = ¢//(r1) to obtain Eq. (3.19) from Eq. (3.4) and Eq. (3.20) from
Eq. (3.5).
Finally, using Eq. (C9) in Eq. (A3) with ¢ = ¢°//(r1), we obtain

1 1
uD) = @mm+fﬁﬁﬁ&?aMD—E?%%ﬂ0+ha

ef 1 (r
o) = e§§>(1)+qT(21)A3,33(1)+h.o

T p
Qés%(l) = Qg3§(1)+h.o.

T P
o{.1) = (1) +ho. (C11)

which is substituted into Eq. (3.14) to obtain Eq. (3.21).
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Appendix D: Derivation of Eq. (3.36)

We start from Eq. (3.32), which is rewritten here as

eff /dr1f n(ry)) /dr1n r1){u+kpTlog[ Zr(r1)]}
—l—/dln Tl)m(l)[ ion _ eff(rl)} ( )
+% // drydron(ri)n(re)H(rig — d)¢att(T12)

+% / d1d2 n(r)n(r)m(D)m(2)H (rz — d)¢™(1,2).  (D12)

Consider an infinitesimal change in ¢®/f(r;) while n(r;) is fixed. Noting that ¢"™P(1,2) is
symmetric in 1 and 2,

1 3ZR('I‘1)
Zgr(r1) 0g°f7 (r1)
- /dl n(ry)m(Du’ (1) 8¢¢77 (ry)
+/d1 n{ry) [qion - qeff(rl)} uT(1) 6m(1)

i0n € (9UT(1) €
© fatnamen o ] D s

+ / / d1 d2n(ry)n(ra)m(2)H (ris — d)¢™ (1, 2) 6m(1)

+ / / d1 d2n(ry)n(re)m(L)m(2)H (r1z — d)2 ff((l 2)) 5/ (ry).  (D13)

5qeff (7"1)

00 = —kBT/drln(rl)

From Egs. (3.19)-(3.21), (3.28), and (3.29)

ouT (1)

oty —
1 8Z}3f(7'1) _ —L<UT1>
ZR(Tl) 8qe (7’1) kBT Rl
sm(1) = kBLTma)[<uT(1)>Rl—uT(1)}5qeff(r1). (D14)

Thus Eq. (D12) finally yields

5§2f _ Z(TT) “ 1 )_qu{[<UT(1)2>E1_<UT(1)>;]+kBT<upoz(1)>Rl}

—/drg n(re)H (rio — d)
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: { [<¢mp<1’2)“T(1)>le — 0L 2D, <“T(1)>31J
8¢ (1,2)
kT <W>m H . (D15)

Assuming that n(r;) is non-zero everywhere in the system, we finally arrive at Eq. (3.36).
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Appendix E: Analytical Integrations of Eqgs. (3.32), (3.35), and (3.36)

When Eq. (3.28) is employed, it becomes convenient to introduce the local coordinate system

ou) — :v(] ) x(J ) :1:(J ) at the center of the molecule 4, in which the :z:gj )_axis is parallel to r;.

The orientation of the molecule j is determined by specifying the Euler angle (¢;,6;, ;) of
the body fixed coordinate system O(B7) — :U%Bj )a:gBj )xéBj ) on the molecule J with respect to
the local coordinate system. We have chosen O — z1z223 so that the z3-axis is parallel to
the :cél)—axis. (See Fig. 3.1.)

Since any tensor in the form of Gsss...3(1) is invariant under a rotation around the mél)-

axis specified by ¢y, it is readily seen from Egs. (3.19)-(3.21) that U(1), uP°(1), and uT(1)

are all independent of ¢;. For clarity, we introduce new notations:

Uo(&) = UQ)
up(&) = uP(1)

ug (€)= u'(1). (E16)

We use the notation £; to denote the position r; and the orientation (8;,;) of the molecule
J- The orientation alone is denoted by w;, which reduces to 8; in the case of a linear molecule.

Performing the integration with respect to ¢; in Zgr(r1), we define mg(&;) through

. 1 0(&1)
m(l) - 27TZO(T‘1) exp{ kazl1 }
_ %mo(&), (E17)

where

foo 45
_ % Za(r). (E18)

Using Eqs. (E16)-(E18) in Egs. (3.32), (3.35), and (3.36), we obtain

€ff /dr1 fd /drln r1){u+ kgTlog|2m Zy(r1)] }

+/dr1n r1) [q“m - qeff(Tl)} <Uo (51)>w1
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+% // dr1 dI‘2 n(Tl)n(Tg)H(rlz _ d)qsatt(rm)
+% /drl dryn(ri)n(ra)H(riz — d) (dg" (61,€2)) w10s (E19)

0 = pn(r)) — {u+ksTlog[2nZs(r1)]}
+ [qi‘m - qeff(rl)} <U0T(§1)>w1
+/dr2 n(re)H(r12 — d)¢™ (r12)

+ [ dran(ra) Hiris = &) (6771, €2y (E20)
and

0 = [0 -a™ ] { [ (@), - (). | +raT (dhe), |
- [drantratri - { [(657€ 08 ), ~ 57(E @)unss (F(0),, |

Opg* (€1,

_kBT<W> } , (E21)
respectively. For arbitrary functions G,(£1) and Gp(£1,&2), we have defined their angular
average by

(Gal€), = [ drmi&r) Ga(&) (E22)
and
(G610 upun = [ [ i dwa i€y m(6a) ol ), (E23)

respectively. ¢y (£1,€2) is defined by

Gy o o [ denemr )
= ~Top (€1 1 (&)
= Togy {0 (€60 (62) - 04 (€0) w7 (62))}

—TW{—M&”(&) 0l (&) - 5080 (&)

0D @)D (6)

b0 (&1, &2)

Tt { 155 18060 8 (60) — 3 05 () (&)
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1
4z 9D €0 6D (6) ~ 5z 2 s(e0 V@) . (B2

where the second equality follows from Eq. (B8) and the definitions

W) = 5 [ aon0)
oR&) = 5 | 8,080
oD@ = 5 [ s o) ()
¥0s6) = 5 [ 620,00 (B25)

We next rewrite ud (£1) and ¢y (£1,&2) in terms of the tensor components in the local

coordinate system. When referred to the local coordinate system o) — azgj )mgj ):cgj ), these

tensors defined by Eq. (E25) are axially symmetric around the xgj )_axis. Hence the only

non-zero comp onents are79

s (&)

ofig) = o) = —; 65

o) = AR = —1ﬂ§§§’<sj>

a{1(E) = %’;%(@) > )

o) = SaE)

2{e) = §€§3<@> 5 24 (E) (B26)

and those obtained by any permutation of the indices. We add the superscript j for the
tensor components expressed in the local coordinate system OU) — :vgj )xgj ) xgj ). For the
particular choice of the coordinate system shown in Fig. 3.1, O — z1z2x3 is related to

oW — azgl)xgl) (1 by a linear translation. Thus, the tensor components expressed in the

former are the same as those expressed in the latter. In particular,

Diey = ™)
o) = % )
olDE) = 255
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o (¢) = @) (E27)

Other components are readily obtained from Eq. (E26). From Egs. (3.14), (E16), (E25),
and (E27)

WL (E) = —— T () + @m%> ol (e) + lﬁ%@) (E28)
1 r

For the molecule 2,

uSD(&) = agany (&)

0R () = 10050057 (€2)

Qr%)v(fz) = a‘;aaE/BG’#’YQ(Sau (&2)

OGs(6) = acatugarans®i(6), (E29)

where a,g is the orthogonal transformation matrix from O — 129223 tO 0@ — a:gz)xg) x:(f) .

Due to the axial symmetry of the system around the z3-axis, we may set

cosf 0 ~—sinf
0 1 0 ) (E30)

sinf 0 cos@

e
Il

where 6 is the angle between the z3-axis and the :c( ) _axis. Using Eqgs. (E26), (E27), (E29),
and (E30), we may integrate Eq. (E24) with respect to cos# to obtain

67(Ene) = - w @M @y

( 59) A, (r1,72,c080)

8

——e“%gmg%&>®%@

—guf”@> o (E)

Ag_p(r1,r2,c080)

Ag_p(r2,71,c086)

( )

a(cos 6)
o5 (61)@(”)(52) ( 0 55 Ag_e(ry,r2,c080)

Qg; (51)H3 (&) Aq_,(r1,72,cos6)

3

+% Tl)(&) Q333 (52) ( 50) Aq_(re, 1, cos6)
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(I)g?}%(fl) (r2) (52) Ag_p(r1,72,c086)

0
9(cos §)

L)AQ_@(Tl, T9,c080)

e HIGYCYAIES Sleosd

5 (T1 T2 9
- 9 )(51)Q§33)(§2)———8(Cos ) Aq_e(rg,r1,c080)
g T2 0
tgH e :(J,33?),(§2)5(TSQ)A<I>~#(T277“1,COS 0), (E31)
where
1 2
Ay u(ry,ro,co80) = 3 (cos“ 0 —1)
12
1
Ao—p(r1,m2,c080) = —— (r2c080 — r1)(cos? § — 1)
r12
1 5
Aq_ = | = - — )2 25
a—ulri,ra, cosf) [7‘125 — (rocosf —ry) } (cos®8—1)
Ag_py(r1,m2,c080) = {i,{, - -—Z—g— (rocosf — rl)QJ (rocosf — rl)(cos2 6—1)
712 712
4
Ao—_o(ry,re,cos6) = {;—5 cosf + i,,rlrz(cos 6 — 1)} (cos® 6 — 1)
12 T12
1
Aq—e(r1,re,cos6) = -~ (re —rycosé) + i7 (rgcosf — r1)cost
12 r12
_7‘_75 (rocos @ —r1)2(ry — 71 cos 6)} (cos?8 — 1). (E32)
12

Recall that Eq. (C11) is obtained for the coordinate system in which the zs-axis is

parallel to r;. Since the mgj )_axis in the local coordinate system of the molecule j is parallel

to r;, we have similar relations:

w &) = S+ ) (;a&?(g) — é{'%,g(sj))mo.
q¢ff
(TJ)(é-j) _ PJ)(&]) TJ( )A§J%3(§J)+h0

3%)(53) = Qz(slsgg)(ﬁj) + h.o.

where the superscript j has the same significance as before. The functional form of each
tensor given by Eq. (E33) is identical for every molecule, as a result of the spherical sym-
metry of the system. Note that the tensor components on the R.H.S. of Eq. (E33) are

expressed in the local coordinate system OU) — mgj )a:gj ) :c:(),j ) and can be expressed in terms
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of those in the body fixed coordinate system 0B — QJgBj ) a:gBj ) a::(,,Bj ) and the Euler angle
(¢; = 0,0;,1;) of the latter with respect to the former. Although a molecule is supposed
to be a sphere in our model representation, part of the molecular symmetry is captured in
the model through the symmetry of these tensors.

For arbitrary function G.(r1, 72, cos ), we have

/dr2 H(T12 — d) Gc(’f’l, 72, COS 9)

oo e(r1,r2)
= 27r/4 . ro2dry / d(cos 0) G¢(r1,72,c086) (E34)
Tzon+§ _1

and

/ dry dre H(ria — d) Ge(ry, 2, c080)

) oo e(r1,r2)

= 87r2/ r2dry / ro’dry / d(cos 0) G.(r1,r2,cos6),  (E35)
Tion+% Tion+§ -1

where 7 is the radius of the system boundary. c(r1,72) is unity except when the molecule

2 stays inside the spherical shell r;, < r < 71 + d, where 7, is the larger of rion % and

r1 — d. In this case,
7'12 + 7"22 —d?

E
27‘1’/’2 ( 36)

elri,re) =

which is the cosine of the angle between r; and ry when the molecule 2 is in contact with the
molecule 1. This is the consequence of the hard sphere exclusion represented by H(r2 —d).
When Eq. (E36) is used along with Eq. (E31) and the relation

bl eatt d 6

- E37
cosf) | 4rire (12 + 192 — 2rirecosf)? |’ (E37)

¢att (7’12) = 8(

which follows from Eq. (3.3), integrals with respect to cos in Egs. (E19)-(E21) become
analytically tractable, reducing the dimensionality of the integrals in Eq. (E19) to at most
four: two over wj in calculating the angular average of the total multipole moments on the
molecule 1, and the other two over r; and ro. It is not necessary to calculate the angular
average of the total multipole moments on the molecule 2, for they are identical as functions
of the ion-molecule distance to those for the molecule 1. Similarly, integrations in Egs. (E20)

and (E21) are at most three dimensional.
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Finally, the quantities defined in Eq. (E32) become zero at cosf = =£1. Thus, the
integration of ¢y7* (£1,&2) with respect to cos@ vanishes unless 7 is in the spherical shell
described above. Hence the contribution to the free energy density or the local dielectric
constant at 1 through ¢™?(1,2) comes from only those molecules within this spherical shell.
Also, ¢(r1,79) approaches unity as r; — 0o, hence this contribution tends to cancel at this
limit, the fact used in the discussion of Fig. 3.8 in Sec. 3.4.1. These are the results of our

mean field approximation.
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Appendix F: Derivation of Eq. (5.5)

Let N, denote the total number of sulfuric acid molecules in the system of volume V. Al-
though no dissociation is allowed in the vapor in accordance with the choice of the reference
state, we take account of the possible dissociation in the cluster. Thus, it is most convenient
to start from a classical mechanical partition function of a dissociative model. In view of the
fact that the second dissociation of sulfuric acid is negligible compared to the first, we can
introduce a model composed of water molecules, bisulfate ions, and protons. The partition

function for the system is

1 [\ 1 [\
b
a: a’

14
e 1 qwe/BNw NL) e
X Z N1 ( A3 /d{N’}e P, (F38)
Nj=0 *'w w

where the total number of bisulfate ions and that of the protons are both denoted by N,
in accordance with the charge neutrality condition, N’ = 2N, + N}, is the total number of
molecules, and U, is the interaction potential in this dissociative model description, whose
explicit form is irrelevant here. The subscripts b and p stand for bisulfate ion and proton,
respectively. The translational and orientational degrees of freedom of all molecules are
collectively denoted by {N’} in the configurational integral. As discussed in Sec. 5.2, an
accurate representation of Uy is difficult to achieve. Instead, we rewrite Eq. (F38) to reflect
the fact that the main contribution to ®¢ comes from the configurations in which protons
are chemically bonded to either bisulfate ion or water. Let N; be the number of protons
bonding to water molecules to form hydronium ions. The remaining N, — IN; protons bond
to bisulfate ions to form sulfuric acid molecules. We assume that N, acid molecules can
be divided into N vapor molecules, for which no dissociation is allowed in accord with the
definition of the reference state, and NS molecules belonging to the cluster. The assumption
is reasonable since n, is many orders of magnitude smaller than the corresponding value in

the cluster. Then Eq. (F38) can be approximated by

(I)C(Ba ‘/a )u”llh Na;N(f)

~ % i L\ 1 (@™ 1 (quet\™
- N \AZ ) N A\AZ ) NI A

N;=0 N/,=N;
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N, N¢ N,

a

NY Nf— N; N;

[ / dlePum 1>J e { / 1B 1>] / d{N}e PN, (F39)

X N, !

where N = N, + N; + N, with N, denoting the number of water molecules excluding
the protonated ones, and Uy is the total intermolecular interaction potential excluding the
intramolecular interaction denoted by up, and uy,. The upper limit of the first summation
arises from the fact that dissociation of the sulfuric acid molecules is allowed only for
those molecules inside the cluster and hence the number N; of hydronium ions formed by
the accompanying protonation of water cannot exceed NS. The lower limit of the second
summation reflects the fact that the hydronium ions thus formed have to remain in the
system as a result of the charge neutrality condition. The factor
N, N¢ N/

N,! ¢ s (F40)
NY N¢ — N; N;

is introduced here since the molecules must be regarded as distinguishable in the configura-

. Ny Ng Ny, .
tional integral. In Eq. (F40), the factors ) , and respectively
N? N¢— N; N;

denote the number of ways of choosing N? bisulfate ions out of N, to be protonated and
placed in the vapor phase, NS — N; bisulfate ions to be protonated in the cluster, and N;
water molecules to be protonated in the system. Then, N,! takes care of all possible permu-

tations of protons among all protonated species. Defining the molecular partition functions

by
L fgi’; / dlePum(l (F41)

and
Qh = Xg’f{g / dlePupl (F42)

we obtain Eq. (5.5).
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Appendix G: Evaluation of =¢ by a Thermodynamic Integration

A common procedure®’ to evaluate Eq. (5.10) relies on the identity

g
E’fu(/gal/)/l'w’Nga N’L) = Ew(ﬂ())Vva/‘Lw?Nngi)eXp I:—/ < UN > 2w d/B:I 3 (G43)

0

where 3y is chosen to be sufficiently small that the system can be regarded as an ideal gas
composed of water, sulfuric acid, and bisulfate-hydronium ion pairs. The subscript z for
< -+ >, reminds us that the quantity x is held constant in evaluating the integration.
The procedure implied in Eq. (G43) is not particularly attractive since, if we are to obtain
the free energy of a cluster under various values of relative humidity, the integration has
to be performed at each value of z,. Each integration involves quite a few number of
simulations at high temperatures, where the properties of clusters are not of direct interest.
The disadvantage is prominent when N; = N¢, where the bisulfate-hydronium ion pairs form
a cluster even above 2000 K. These unphysical states, nonetheless, have to be simulated if

one uses Eq. (G43). It is more convenient to take an alternative integration path:

chu(ﬁa V,NmNg?Ni)
= Ew(ﬁo, VvaﬂmegaNi)

8
X exp [—/ < Un >z, 40+
Bo

log zyw
< Ny >gdlog zw} ) (G44)

log zwo

where, for an appropriate choice of Gy in accordance with the ideal gas state just mentioned,

Ew(B0, V, two, NE, N;) is given by
c N;
Ew(Bo, V; o, NE, Ni) = Nl (V) NegmwoV® [ / dle_ﬂouhb(l)] , (G45)

where N;! accounts for the possible number of ways of forming the ion pairs from the ions
which are regarded as distinguishable in =, (89, V, 2yo, NS, N;). In applying Eq. (G44), the
temperature integration involving unphysical high temperature states has to be performed
only once at fugacity z,0. Unlike Eq. (G43), all the intermediate states between 2,0 and 2z,
as implied in the second integration in Eq. (G44), are of direct interest to us. In Appendix I,
we introduce an approximation that further reduces the computational effort.

It is convenient to rewrite Eq. (G44) in terms of excess quantities. For this purpose, we
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rewrite the factors involving z,0 and Gy in Eq. (G45) by means of the following identities:

ezonV enon
log ny
= exp [nyV — 1y Vdlog nw} (G46)
log nwo
and
8
/dle‘ﬁ“hb(l) = exp {—/ < Upp > dﬁ} /dle_ﬁouhb(l), (G47)
Bo

where the thermal average is taken in the canonical ensemble of a single bisulfate-hydronium
ion pair. Using Egs. (G46) and (G47) in Eq. (G45) and substituting the resulting expression
in Eq. (G44), we obtain

Eﬁ)(ﬂy V:#UMN;aNi)
N;
= NN(VQ)NeegnV [ / dle“ﬂ“hb(l)]

B
X €Xp {—/ [<UN >ny o —Ni < upp >]dg
0

lognw
+ [< Ny > —nyV]dlogng ¢ . (G48)

log nayo

At 0y, non-negligible interaction energies arises only from the ionic interaction in each of
the ion pairs. Thus, the first integral in the exponential is independent of 3y as long as it
is chosen sufficiently small. The integrand in the second integral is the excess number of
water molecules over the ideal gas value. Hence the integral is independent of V', provided
that the system boundary is far from the molecules in the cluster. The volume dependence
of the first integral is addressed in Appendix H.

For an accurate estimate of the free energy, each thermal average in Eq. (G48) has to
be evaluated at a sufficient number of points along the integration path. One way to verify

if this condition is met is through the identity:

B B8
/ﬁ [<Un >n, —Ni <upp >|d8 = /ﬁ [<UNn >nyo —Ni < upp >]df
0 (4]

log ny
—/ [< Ny > —ny,V]dlogn,, (G49)
1

08 M0

which follows from Eqgs. (G43), (G44), and (G45). The identity Eq. (G49) is checked for a
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Table 6.1: Consistency check by means of Eq. (G49).

N¢ N; LS. of Eq. (G49)2 R.H.S. of Eq. (G49)2D
1 0 —15.96 + 0.47 ~15.58 + 053
0 1 —61.21 + 1.01 —60.42 + 1.24
2 0 —39.91 £ 0.74 —39.79 + 0.88

ARvaluated at T = 298.15 K and n,, = 0.6 x 107 A=3. In kT unit.
D0 = 0.1048 x 106 A=3,

few cases and the results are shown in Table 6.1. Within the range of the error bars, the
agreement is excellent, indicating that the numbers of the intermediate temperatures, n.,

and the Monte Carlo steps in each simulation are sufficient.
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Appendix H: Choice of V

Eq. (5.2) shows that e PW™ i5 the probability of finding a cluster in the system of volume
V relative to the probability of finding no cluster. Since the cluster can be found anywhere
in the system and the event of finding it at one place or another is mutually exclusive by

our choice of V' as discussed in Sec. 5.3, we have

e PV LY, (H50)

provided that care is taken to avoid the surface effect of the system boundary. One way
to achieve this is to fix one of the acid molecules at the center of the system and take the
system boundary far from the molecules forming the cluster, which imposes a lower limit on
V. Analytically integrating over the coordinates of the acid molecule thus fixed by ignoring
the surface effect, we obtain Eq. (H50).

The upper limit on V arises from the condition Eq. (5.16) and the requirement that
Z¢ be evaluated accurately by simulation of a finite length of time. Combining Eqs. (5.2),

(5.3), (5.7), (5.10), and (H50), we obtain

ES ~ VemV, (H51)
Using Eq. (H51) in Eq. (G48), we find that

8
—/ [< UN >nyo —Ni < upp >]dp = (1 — N;)log V + const. (H52)
Bo

When the L.H.S. of Eq. (H52) is evaluated from a simulation, one can address its accuracy
by examining if Eq. (H52) is satisfied. Note that, at 3, the probability for N{ acid molecules
to form a single cluster with water molecules must be dominant, namely, the cluster is stable
with respect to evaporation of acid molecules. On the other hand, at 5y, the probability that
they form an ideal gas is dominant. Around the temperature range where the acid molecules
start to evaporate, both ideal gas vapor and the cluster have comparable probabilities.
Thus, for the thermal averages to be estimated correctly in this temperature range, the
probability for molecules to collide has to be non-negligible even after an evaporation event.

Since simulation can be performed only for a finite period of time, V must be chosen to be
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Table 6.2: Proportionality constant of log V' in Eq. (H52)

N¢ N; simulation Eq. (H52)
2 1 —1.04 £ 0.14 -1
2 0 -0.93 £ 0.03 -1
3 0 —1.94 £+ 0.07 —2

sufficiently small, which imposes an upper limit on V. In particular, we choose V' so that
Eq. (H52) holds for a certain range of V including the one employed in simulation.

Note that the last integrand in Eq. (G48) is the excess number of water molecules over
the ideal gas value resulting from the presence of the cluster and is independent of V' if
it is larger than its lower limit mentioned above. Thus, its integral is absorbed in the
constant term. The particular form of V dependence shown in Eq. (H52) is not surprising
since the integral in the equation is the reversible work required to form a cluster from the
ideal gas state by gradually turning on the interaction among water and acid molecules and
hence reflects the change in the entropic contributions of the acid molecules. Such terms as
< N, > logV do not arise in Eq. (H52), since the system is open to water molecules.

To verify that our choice of V satisfies Eq. (H52), we calculated the L.H.S. of the
equation for four different values of V' corresponding to the container radius of 25, 37.5,
50, and 64 A. Since Eq. (H52) is concerned with the change in entropic contributions of
acid molecules, simulation was performed in the canonical ensemble in the absence of water
molecules for 3 x 108 MC steps. The temperature corresponding to the upper limit of
the integral in Eq. (H52) is 400 K since, as the acid molecules form a cluster below this
temperature, the integrand in Eq. (H52) becomes independent of V, thereby contributing
to the constant term in Eq. (H52). Also, in the temperature range involved, < Ny >
is negligible, again verifying the use of the canonical ensemble. The resulting values of
the L.H.S of Eq. (H52) were least-squares fitted to a linear equation. The value of the
proportionality constant of log V' is compared with the theoretical one, 1— N/, in Table 6.2,
revealing nearly exact agreement. Thus, our choice of V, corresponding to the container
radius of 50A, are appropriate in view of the number of MC steps involved in simulation.

In cluster simulation in a canonical ensemble, a system is commonly taken as a spherical
container concentric with the center of mass of molecules forming a cluster. Then, one

chooses V so that thermodynamic properties of a cluster is insensitive to the exact choice
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of V. Since the center of mass of the cluster is fixed in this case, thermodynamic properties
of the cluster evaluated from simulation reflects only the internal degrees of freedom of
the cluster. It follows that if such choice of V is in fact possible, the cluster possesses
a well-defined translational degrees of freedom as a whole when it is placed in the vapor
phase, and vice versa. This, in turn, is necessary for nucleation theory to be formulated
in terms of the concept of cluster as in classical theory. Under an idealized circumstance
where simulation can be performed indefinite period of time, Eq. (H52) can be interpreted
as a necessary and sufficient condition for a cluster to possess a well-defined translational
degrees of freedom as a whole. This indicates that Eq. (H52), when applied to canonical

ensemble cluster simulation, is an explicit implementation of the criterion by Lee et al.! in

choosing V.
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Appendix I: The Fugacity Dependence of W7

In this work, independent simulations were performed at several values of the fugacity z,, of
water. Under a certain reasonable approximation, however, the results obtained at fugacity
2, can be used to estimate W at different fugacity z/,. Since this offers an improvement
of the computational efficiency by a factor of several, we shall briefly describe the method
here.

The time scale for a cluster to reach the internal mechanical equilibrium is many orders
of magnitude shorter than that for the cluster to exchange a molecule with the vapor
phase. Therefore, it is a common practice to assume that the configurational integral of an
(N¢, NS )-cluster is independent of the fugacity. Under this assumption, the first equality
of Eq. (5.19) yields

Bus\ Vo Na Ni 2 Vi
EC 7 .NC NC — nsV g:‘,-f—__ X w
(ﬂ;V,MunMs, a’ UJ) € ( Af; M=o (Ng"Nz)'Nz' Nz'
Zl Nw ﬁU
« / d{N}e 00N
A {N}
Ne Ne . NG N
()T
Ag N0 (Ng — Nl)'NZ' Zuw Nz'
ZNw
x 2 / d{N}eBUn (153)

Since Eq. (I53) differs from Eq. (5.19) only by the factor of (!, /2,)™%, the desired expression
for the reversible work follows from Eq. (5.21):

e_BWTev(/@a‘/vuiu’us;Ng7N'g))

N 1\ N§
NS (F) e NN 5, V., NG N NG — N (154)
Ny=0 MW

The reversible work of the Nf-cluster is obtained by taking a summation of Eq. (I54) with
respect to N§. For a direct application of Eq. (I54) to yield the reversible work of cluster
formation at 2], of interest, it is necessary that the range over which p(u.,, N,) is non-
negligible and that for p(u.,, N,,) overlap in a wide range of N,,. One can easily circumvent
this condition by means of the umbrella sampling, which was employed in the free energy

evaluation for a homogeneous nucleation in a single component system.?®
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Figure 6.1: Comparison of the reversible work of cluster formation for Ny = 1 at T' =

298.15K and n, = 0.1 x 1076 A~3 obtained through Eq. (I54) by using other values of n,.
The conditions of simulation for S1, ..., S6 are given in Table 4.1. fp, = 20 kcal/mol.

To demonstrate the utility of Eq. (I54), we calculated W7 at nj, = 0.1 x 1076 A,
using the result of the simulations performed at the other values of n,, as summarized in
Table 4.1. The result is shown in Fig. 6.1, which indicates a remarkable agreement of the
calculated values of W7, The slight discrepancy arises because of the vapor contribution®?

to N¢ and the change in the dominant part of p as n,, changes.
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