APPLICATIONS OF BLACK-HOLE

PERTURBATION TECHNIQUES

Thesis by

William Henry Press

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1973

(Submitted October 20, 1972)



i1

ACKNOWLEDGMENTS

I thank my advisor Kip S. Thorne for his continuing and
helpful interest in all aspects of this work, and for his defini-
tive opinions about scientific prose, the treatment of graduate
students, and other moral issues. Obviously, I am pleased to
acknowledge the help of my collaborators, Jim Bardeen, Richard
Price, and Saul Teukolsky. For useful discussions, or correspon-
dence, or encouragement, at one time or another, I thank the above
people, plus also B. Carter, S. Chandrasekhar, P. Chrzanowski,

R. P. Feymman, J. Hartle, S. Hawking, J. Ipser, S. Kovacs, D. Lee,
A. Lightman, B. Miller, C. W. Misner, T. Morgan, W.-T. Ni,
M. L. Press, L. Smarr, and B. Zimmerman.

I particularly thank the Fannie and John Hertz Foundation
for their financial support during the whole course of this work,
and I acknowledge the assistance of an NSF travel grant. This work
was supported in part by the National Science Foundation [GP-28027,

GP-27304].



APPLICATIONS OF BLACK-HOLE PERTURBATION TECHNIQUES

by William Henry Press
ABSTRACT

Separable, decoupled differential equations which describe gravi-
tational, electromagnetic, and scalar perturbations of nonrotating
(Schwarzschild) and rotating (Kerr) black holes have recently become
available. Fortuitously, maay interesting astrophysical processes
near black holes can accurately be studied with these parturbation equa-
tions. A number of such processes are here investigated (as well as
some matters of principle in pure relativity): "vibrations" of black holes,
and the long wave-tra:ns of gravitational waves whnich such vibrations
may generate; the spectrum and intensity of gravitational radiation from
a particle falling radially into a Schwarzschild hole; the physical sig-
nificance of the Newman-Penrose conserved guantities, the result that
they are never physically measurable and do not always exist; the time
evoluticn of a rotating black hole immersed in a static scalar field, a
quantitative calculation of the hole's "spin-down" and "alignment":
scalar-field caiculations of superradiant wave scattering from a rotating
black hole, and of the possibility of "floating orbits" — these are
both wave processes which extract a hole's rotational energy. Included
is a discussion of how these scalar-field results can be extended io the

electromagnetic and gravitational cases. The most iniportant
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periurbation problem yet to be solved is the question of whether rotating
black holes are stable (against processes which would spontaneously
emit gravitational waves). The astrophysical implications of instabilities
are discussed, and a method for deciding the stability question (on which
work is in progress) is outlined in detail. An appendix includes addi-
tional work on peripherally related matters. Several papers included in
this thesis are extended from their published form by a more detailed

discussion of numerical methods.
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1. INTRODUCTION



In format, this dissertation 18 a collection of papers which
have been published or submitted for publication, together with a small
amount of explanatory material of a related nature. The topics
included are unified to some extent by their subject matter: black
holes. To a greater extent, however, the topics are unified by
methodology: the use of linearized perturbations of scalar, electro-
magnetic, and gravitational field equations to study astrophysical
phenomena near a black hole, and to study matters of principle in pure
relativity.

The usefulness of perturbation techniques rests on two founda-
tions, one physical and the other mathematical.

Physically, one is fortunate in finding a large number of
interesting problems amenable to perturbation solutions: the accre-
tion of small particles into a black hole--with all attendant details
of gravitational radiation; the reaction of black holes to fields in
which they are immersed; the extraction of energy from rotating black
holes; the stability of black holes; etc. (Of course some interesting
phenomena cannot be treated as perturbations, e.g., the formation of
holes by the nonspherical collapse of stars, and collisions of holes
with each other and with neutron stars.)

The mathematical foundation is pragmatic: the perturbation
equations are easy to solve (if numerically). They are linear,
obviously. But there is a further simplification, that the coupled
partial differential equations (gravitational, electromagnetic, or

scalar) can be combined to obtain a decoupled partial differential



equation for a single dependent variable which describes the perturbed
field. And there is the ultimate simplification that the decoupled
equations so obtained are separable into ordinary differential equa-
tions. There is no known reason why these two distinct simplifications
had to occur in the general Kerr background. Even in the Schwarzschild
background, only separation is "guaranteea" by the spherical symmetry,

and this would not be very helpful without the miracle of decoupling.

The relevant decoupled, separated equations have been discovered

piecemeal and largely by exhaustion.

Table 1 1lists the authors who

have been responsible for the various perturbation equations or have

been the first to exploit them in an astrophysical context, for scalar,

electromagnetic and gravitational perturbations of the Schwarzschild

and Kerr geometries.

In the e-m and gravitational case two approaches

are shown, one using vector or tensor harmonics, the other using the

Table 1. Decoupled and separated perturbation equations of

a black-hole background.

in Section 7.

Scalar

Electromagnetic

Vector harmonic

Newman-Penrose

Gravitational

Tensor harmonic

Newman-Penrose

Schwarzschild

(Price 1972a)

Wheeler (1955)
Price (1972b)

Regge-Wheeler (1957)
Zerilli (1970)

Bardeen (see Bardeen
and Press 1972, or
Section 3.3)

Dates indicate references

Kerr

Carter (1968)

none known

Teukolsky (1972a,b)

none known

Teukolsky (1972a,b)



Newman-Penrose formalism.

Section 2 of this dissertation makes use of the Zerilli (even-
parity) and Regge-Wheeler (odd~-parity) gravitational equations to study
two radiation problems near a Schwarzschild, non-rotating, black hole.
The first (Sections 2.1 and 2.2, a numerical Cauchy calculation with
no sources, displays the 'vibrations' or ringing modes which are asso-
clated with the curved black-~hole background. As subsequently pointed
out by Goebel (1972) these vibrations, in the limit of high frequencies,
are associlated with circular null geodesic orbits around the black hole.
We present in Section 2.2 some additional material which shows that the
vibration phenomenon can persist at low frequencies and multipoles
(where Goebel's geometrical-optics arguments are not viable). This
material is closely related to the question of the stability of rotat-
ing black holes (Section 6.2).

Section 2.3 calculates the gravitational radiation emitted by a
small test particle falling radially into a Schwarzschild black hole.
This calculation was the first fully relativistic treatment of a black-
hole radiation process, and subsequently has been extended to more com-
plicated cases by other authors.

Section 3 concerns itself with a problem in pure relativity, that
of the Newman-Penrose conserved quantities. We find that the black-hole
background can be a better '"laboratory" for testing theoretical matters
of principle than is flat spacetime.

Section 4 begins the discussion of rotating (Kerr) black holes
and their perturbations and introduces a number of useful formulae

which are used in later problems. There is some discussion of energy



extraction processes, and of Misner's concept of gravitational synchro-
tron radiation which, although wrong in its initial heuristic
formulations, has stimulated considerable further research. In Section
5, the equation for scalar fields in a Kerr background is used to
exhibit (and give qualitative information on) several interesting pro-
cesges: the time evolution of a rotating black hole perturbed by static
exterior sources, superradiant scattering of waves, and the possibility
of "floating orbits”.

Recent work by Saul Teukolsky (1972a,b) has opened the way to
extending the scalar field results of Section 5 to realistic electromag-
netic and gravitational perturbing fields. Section 6.1 discusses some
agpects of these extensions (on which work 1is not yet complete). The
most interesting application of Teukolsky's equation seems to be to the
question of the stability of Kerr black holes. Section 6.2 discusses
this problem in some detail, and outlines a method of analysis which
should give a definitive answer., Numerical work making use of this
method is now in progress.

An appendix contains some additional work submitted in partial
fulfillment of the degree requirements, although it is essentially
unrelated to the main topic of the dissertation.

In several cases I have extended papers from their published
form by including a more detailed explanation of numerical methods.
Theoretical papers in physics should contain enough detail that their
results are reproducible, and this traditional standard has--I think--
been largely violated in the growth of computer physics over the last

decade. The result is that numerical work has acquired a shoddiness



that, intrinsically at least, is undeserved. Numerical work can aspire
to a standard of elegance rather greater than analytlc work, because it
includes the latter as a subset; but with current conventions for

scientific writing, there 1s no external pressure to measure one's own

work against the ideal.



2. GRAVITATIONAL WAVES NEAR A

SCHWARZSCHILD BLACK HOLE

2.1 Long Wave-Trains of Gravitational Waves from
a Vibrating Black Hole {Paper I; published in

Astrophys. J. (Lett.), 170, L105[1971 1)
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LONG WAVE TRAINS OF GRAVITATIONAL WAVES
FROM A VIBRATING BLACK HOLE

WiLLiaM H, PRESs
California Institute of Technology
Received 1971 October 12

ABSTRACT

The vibrations of a black hole of mass M, perturbed from spherical symmetry, have been studied
numerically. Initial perturbations of high spherical-harmonic index (/ 3> 1) which contain Fourier com-
ponents of long wavelength (2eM > X\ >» 27 /I) produce long-lasting vibrations. The vibrational
energy is radiated away gradually as @ long, nearly sinusoidal wave train of gravitational radiation with
angular frequency w =~ (27)"V2I/M.

A Schwarzschild black hole, perturbed from spherical symmetry, will radiate gravi-
tational waves to restore sphericity. This fact follows from the recent work of Price
(1971), which applied generally to perturbations of any integer-spin, zero-rest-mass
field, including gravity. The exact dynamics of this process, for gravitational perturba-
tions, is governed by equations due to Zerilli (1970a, b) (even-parity case) and to Regge
and Wheeler (1957) (odd-parity).

A priori, one might expect the black hole to divest itself of the unwanted perturba-
tions in a single large belch, a burst of radiation of duration ~M, the hole’s mass or
gravitational radius (units with G = ¢ = 1). This Letter reports numerical computations
which exhibit a totally different behavior: Initial perturbations of multipolarity 2> 1
which contain Fourier components of wavelength 2xM /I << X < 2w M are radiated only
gradually, vielding a long and nearly sinusoidal wave train of gravitational radiation.
The characteristic angular frequency w of the wave train depends on the mass of the
black hole and on the multipolarity of the perturbation, but is otherwise independent of
the form of the initial perturbation: w = (27)7"2 /M. Loosely speaking, the black hole
vibrates around spherical symmetry in a quasi-normal mode, and the mode is slowly
damped by gravitational radiation. '

The Zerilli and Regge-Wheeler equations governing black-hole perturbations have
the form

@ = P + VU et = 0. (1

Here ¢! is a scalar quantity which describes the [-pole components of the gravitational
radiation. (The components of the metric tensor are obtained by applving particular
differential operators to ¢l; see Price 1971 or Thorne 1971} The radial coordinate 7* is
defined in terms of the Schwarzschild coordinate 7 by

r‘=r+2M1n(§—;2-1). 2)

Thus r = 2M corresponds to 7" = —@ andr = 4+ tor' = 4+ o, Vi) = Pir) is
the so-called curvature potential,
((1 B 2_11{) (20%(A + 1) + 6A*M7* + I8AM?r + 18M?)
r r(Ar + 3M)?
Vir) = even-parity (Zerilli)
¢
{(1 — 2_1:{) (é(ljlfl2 - —)M odd-parity (Regge-Wheeler) |

7‘2 r-i

3)
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where A = (I — 1)({ + 2). Asymptotically for large /, the even- and odd-parity poten-
tials become identical.

To study black-hole vibrations, we choose a set of initial conditions at time ¢ = O:
Pt 6= 0) and ¢! (r*, 1 = 0) for —o < r" < 4 o, We then solve equation (1) nu-
merically to determine the subsequent evolution. Solutions have been computed from
a variety of initial conditions, and for various values of /. It is immediately clear that
initial conditions containing predominantly short-wavelength Fourier components (e.g.,
a narrow peak or a high-frequency sine wave) are uninteresting: the potential term in
equation (1) has only a slight dispersive influence, so the perturbation is radiated out-
ward and inward with essentially its original profile (i.e., this case does vield a single
belch). This expected behavior has been verified numerically.

Initial perturbations of greater interest are broad, *“thick” ones which contain long-
wavelength Fourier components; these cannot propagate as free waves in the region of
the potential. Two such initial conditions are shown in Figure 1. The curvature poten-
tial Vi(r") is indicated by the crosshatched curve. In general V/(r*) is peaked at about
r" = 2M and drops off exponentially in the inward direction (" — — ® ), and as **
in the outward direction (#* — ). In these examples, the initial time derivative of the
perturbations is chosen zero.

The subsequent evolution of the perturbations, as computed numerically, can be
described and understood as follows. At any given r*, the perturbation initially oscil-
lates (no propagation leftward or rightward!) with angular frequency approximately
[Vi(r")]2. Since Vi(r") varies with r*, the oscillations soon become out of phase from
point to point, and the initially smooth perturbation builds up components of ever
shortening wavelength. When wavelengths as short as the critical value 2= [Vi(r*)][7}/2
have developed, the perturbations begin to propagate as free waves out of the region of
the potential. For small [ (say 2 or 3 or 4), the potential is low and the free propagation
is almost immediate (single belch); but for large / the shortening process is gradual, and

t l
o Perturbation at 1:0 |
g | ememea |
~ !
I o
3 II.
® .,
E0
-
©
| "Curvature Potential”
f (schematic)
x
Y AR
f AN
8 10 12
1 A P

r*in units of M

F16. 1.—Two interesting perturbations of a Schwarzschild black hole. The initial radial ‘“wave
forms” of the perturbations are shown in I and II. Their initial time derivatives are assumed zero, and
their angular dependence is a spherical harmonic o{ order I. The perturbations are spread out broadly
over the region of strong ‘‘curvature potential”’ I/(r'}, so spacetime curvature prevents them from prop-
agating until they have developed a wave form containing wavelengths shorter than the characteristic
length 2x{V!(r*))71/2 (see text for discussion).
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long wave trains are emitted, of characteristic angular frequency

i

= Ny 4)

t .ﬁ [‘,l(")]lﬂl“xlz

Figure 2 shows the profile of the propagating gravitational wave trains at large ¢ for
the two inital conditions of Figure 1 and the two multipolarities ! = 20 and / = 40, The
estimate of equation (4) is seen to be approximately correct. The length of the wave
train depends somewhat on the precise initial conditions chosen, but seems to be rather
independent of /. These characteristics are typical of our numerical results in general;
but we are able to give no analytic estimate for the train length.

How much of the perturbation radiates down the hole instead of off to infinity? A
simple rule of thumb summarizes all our numerical calculations: The quantity

€ = |pta]? + |em|? + Vi) |o']? ()

is a mathematical energy density which is exactly conserved by the evolution of equation
(1). Measured in terms of &, that long-wavelength energy initially located outside the
potential maximum is typically radiated outward; that energy initially inside the po-
tential maximum goes down the hole. Thus, the offset of initial conditions I and II from
the potential maximum results in most of the energy radiating outward (~80 or 90
percent).

We emphasize that the phenomenon here exhibited, the ““free oscillation of a black

Perturbotion Muitipolarity

I £:20

o £:20

90 9 100 105 1o
I i

" in units of M

F16. 2.—Wave forms ¢!(r", t) of gravitational radiation at large * and fixed ¢, as produced by the
initial perturbations I and I1 of Fig. 1 for/ = 20and/ = 40. The waves are propagating rightward, away
from the region of strong “‘curvature potential,” where they originated. Since “wavelength shortening”
in the region of the potential proceeds gradually, the waves have the form of a long sinusoidal train of
angular frequency w = [Vi(r ) maxl?/2 == (27)"42 1/ M. This frequency can be interpreted as the ‘“vibra-
tion”’ frequency of the black hole (see text).
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hole,” is distinct from the curvature-potential effect studied by Price (1971) and Fack-
erell (1971) in which the potential acts as a high-pass filter of gravitational radiation.

The free oscillations of a bell are initiated by a mechanical blow; the Earth’s free
oscillations are excited by large earthquakes. What processes can induce a black hole
to oscillate, 1.e., can supply the initial perturbation which we have supplied by fiat in
our numerical calculations? Recent calculations by Davis ef al. (1971) show that vibra-
tional modes are excited—though weakly for high [—by a test particle falling radially
into a black hole. (In fact, the entire calculated spectrum can be understood qualitatively
as a superposition of such vibrations.) Whether high-/ vibrations can be excited prefer-
entially by some other pattern of infalling matter is a problem~-presently unsolved—of
considerable astrophysical relevance. In some cases symmetry considerations can at
least inhibit low multipole radiation. For example, the turbulent influx of matter into
a black hole might produce perturbations whose dominant multipolarity is determined
by the size L of the turbulent cell [ ~ 2#M/L > 1.

The essential point of this Letter is that a black hole can be a dynamical entity rather than
merely an arena for dynamics. This new point of view suggests new directions of research:
How does the rotation of a black hole affect its vibrations? Are black-hole vibrations
excited significantly by natural astrophysical processes? Might they play a significant
role as sources of gravitational radiation?

If Weber’s (1969, 1970a, b) observed gravitational radiation is verified and found to
have a highly oscillatory wave form (indicating vibrations of large [ as a possible source),
black-hole vibrations will become a strong candidate for explaining the observations.
Vibration is a mechanism by which “short”-wavelength gravitational radiation can be
emitted by a black hole of large mass, so there is no limit in principle on the mass of a
black hole which radiates at the frequency of Weber’s detection apparatus.

T am pleased to thank Dr. Richard Price and Professor Kip S. Thorne for their invalu-
able assistance and encouragement. Dr. Remo Ruffini provided helpful suggestions. T
thank the Fannie and John Hertz Foundation for their support. This work was supported
in part by the National Science Foundation [GP-27304 and GI-28027].
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2.2 A More Rigorous Formulation of

the Vibration Problem
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In a reply to the preceding Letter, Goebel (1972) has pointed
out the strong connection between black-hole vibrations and circular,
null, geodesic orbits. In the limit of high frequency and multi-
polarity, so that geometrical optics is applicable, a vibration can be
interpréted as an orbiting wave packet which gradually leaks outward to
infinity. Azimuthal periodicity restricts the wave packets to discrete
modes, and Goebels is able to compute not only the frequency of the
vibration (in agreement with the calculation based on the effective

potential), but also a decay time for the outgoing wave train,

M ' 1

which is consistent with my numerical results. The situation is rather
analogous to that for an elastic body: a vibrational mode can be
analyzed as a superposition ofitravelling waves. In the limit of high-
frequency modes, the travelling wave picture is physically more natural,
since the modes are closely spaced and can be superimposed to well-
defined wave packets. In the opposite limit of low modes, however, it
is more natural to view the modes as discrete entities which are
intrinsic to the elastic system.

In the case of black holes, then, it is desirable to find out
if vibrations are solely an effect of geometrical optics, or if the
concept of a discrete vibration is well-posed even for low frequencies
and multipoles, and the discrete vibrational frequencies depend non-

trivially on the full perturbation equations.
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Let

 Lu(t,r,0,9) (2)

be the homogeneous perturbation equation for a decoupled field variable
Y , where 42? is the differential operator appropriate to the Zerilli,
Regge-Wheeler, or other equation. We consider an initial-value problem
where { and w,t are specified on an initial hypersurface t = 0 ,

and where 5?@ = 0 determines the subsequent evolution for t > 0 . By

Fourier analysis we have

+0°+iSo
¥(t,r,6,¢4) = ;%: f ¥, eI gy, t>o0 (3)
Moot
where
0

and where SO is a real number such that exp(Sot) is an upper bound
on the growth of ¢ at large times. Since the Schwarzschild metric is
stable (Vishveshwara 1970; we will give an easy proof of this in
Section 6.2), no solution can grow asymptotically in time at all, and
we can take So = 0 . A reasonable sufficient condition to insure
that waves are purely outgoing at infinity and purely ingoing on the
horizon is that at t=0 Y and w,t be nonzero only in a finite
range of r outside the horizon.

In equation (3) now, we deform the contour of integration into
the lower half plane by letting So become negative. (Strictly speak-
ing, convergence at infinity demands that the contour be left attached

to the real axis at Re w = *® | but it can be deformed to Im w==So< 0
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in any finite range |Re w[ < B> x®,) 1If ww , viewed as a function
of w , contains no poles (branch cuts are almost certainly ruled out
by the form of & ) in the region above the contour, then (3) remains
a valid "reconstruction" of the complete field ¢ . If, however, the
contour deformation crosses a pole, then the pole's residue must be

included, and we obtain,

~H’C’-!-iso
Y(t,r,0,9) = —=— J Uy (58,0678 qwr ] F(r,0,00e 7" (5)
/-2—7; —oo-i-iso J

where the sum is over all poles above the contour, with frequencies

wj and with residues F, .

]
The final point is that the complete solution Fj(r,6,¢)e

-iw, t

associated with a siﬁgle pole must by itself satisfy gi?w = 0 with
boundary conditions "outgoing' at infinity and "ingoing' on the hori-
zon: at late times t > ® and at any fixed r , the contribution of
the contour integral vanishes exponentially compared to the sum over
the poles, while the total summed solution, by construction, satisfies
the boundary condition at all times. Since the poles are a discrete
set, their sum can satisfy the boundary condition only if each does
separately.

In short, each Fi represents a discrete mode of frequency with
the physically correct boundary conditions. At late times, any ini-
tial perturbation is asymptotically a superposition of these discrete
modes; all other perturbations die away (i.e., radiate away to infinity
or the horizon) faster than any exponential. [There is no contradic-
tion with Price's (1972) power-law '"tails'; his system was inhomogeneous

with sources which became static.] The discrete modes are what we
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call the "vibrations" of the black hole. They are seen numerically in
the exponentially decaying, oscillatory tails of the preceding paper
(Section 2.1).

How might one find the discrete vibrational frequencies analyt-
ically? Since the perturbation equations are completely separable we

have

Y(t,r,0,¢) = J dw e‘ﬂ”tgzm Szm(9’¢) %ulm(r) (6)

where ng(6,¢) are appropriate angular eigenfunctions. In terms of
the r coordinate, the solutions for the radial function are asymp-

totically

iﬂ»r*

ngm = constant X e s T, > to (7

For fixed w,%,m there is a unique (up to multiplication by a con-

stant) solution with the "ingoing" boundary condition on the horizonm,
g g y

%ﬂﬁm > . . (8)
T T, N Ueuur*

where T = Tbn«u) and U = UQmQ°) are the connection functions
*
between positive and negative infinite r . A solution has the cor-
*

rect boundary condition at r, = *w iff Tﬁm(w) = 0 . Hence the

vibrational frequencies wj are just the roots of T in the complex

fm

plane.
Unfortunately, solutions to the relevant perturbation equations
have not been obtained by analytic means (the equations have one ir-

regular and two regular singular points) so T must be computed

£m
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numerically. It is easy to compute T for real w . Figure 2.1 shows
some results from such a calculation for the Zerilli equation (and
shows the tranmsition between the high- and low-frequency asymptotic
limits derived by Fackerell (1971)). 1In principle, data on the real-
w line determines T in the entire plane by analytic continuation,
but such continuation is numerically unstable (solution of an elliptic
equation with open boundary). Direct numerical calculation in the

complex plane has proved intractable because of exponential loss of

iwr —iwr,

* compared to the term Ue for

precision in the‘term Te
r, = ® . At present, therefore, one cannot exhibit the discrete vibra-
tions of Schwarzschild black holes explicitly.

As a substitute, it is interesting to iook at the vibrations
associated with an idealized, i.e., simplified, perturbation equation,
which is qualitatively similar to the genuine equations, but which is
analytically soluble in detail. Such an idealized equation has been
given by Price (1972a);

The homogeneous Zerilli and Regge—Wheeler equations are of the

form
9" + [wP- v(r)le = 0, (9)

where prime denotes differentiation with respect to r, - In both

equations, the "effective potential v(r*) is positive definite, with
a single maximum near r = 3M . For r, > -, v(r,) goes to zero

exponentially; for r, - +o , it falls off as £(4+1)/r® . Our

idealized equation is (9) with v(r,) taken as



1/ 1Ty

transmission coefficient

17

4=
("perfect filter")

L

A 2 3

¢J in units of ,K/M

Figure 2.1 Connection functions (barrier transmission
coefficients) for the Zerilli equation, as a function
of frequency on the real axis.
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v(r,) = (10)

2(2+l)/ri » T, 2 M

Price gives analytically the general solution to the idealized equa-

tion:

h(u) + j(v) , T, <M

b = (11)

L
I Al ™ + < eF ™ )1l v, 2w
n=0

Here parenthesized superscripts indicate derivatives, h, j, g, and £

are arbitrary functions, u and v are retarded and advanced times,

u=t-r, , v=t+r, o, (12)
and the coefficients AE are given by
AP = (a4p)! / [2Ppr(e-p)!] . (13)

L

For a vibration, we want

h=£f =0 (boundary conditions)

j(&) = g(E) = constant X exp(st) . (14)

where s = -iw is a complex constant, the vibrational frequency. Not
all values of s are permissible, since we must demand that ¢ be

continuous at r =M, i.e.,
¢ LOL) =9¢ (M) ; (15)

or, since for r <M ¢ 1is a function of v only,
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qb’u(M_}_) =0 . (16)

Using equations (14) and (ll), equation (16) reduces to a polynomial

equation in sM of degree &+1 ,

(SM)£+1 * Ai(SM)Q oot (AE + B%l AE_]')(SM)SL"p+l I

g 8
+-2—A2—0 ’ (17)

or more compactly, using g = —-iw

lFl(—Q—l;—ZQ;—Zin) = 0 (18)

(the confluent hypergeometric function lF1 is a polynomial when its
first argument is a negative integer).

In other words, the idealized potential has precisely 2+1
f—pole vibrations, and they are the roots‘of the polynomial, equation
(18). Figure 2.2 shows the location of these roots (computed numeri-
cally) in the complex %2-plane, for £=0(1l)5. Are there also +1
vibrational £-pole modes (of each parity) for the actual black hole
case; or are there infinitely many? How are the actual modes distrib-

uted 1in the complex plane? These are interesting questions which are

yet to be answered.
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2.3 Gravitational Radiation from a Particle Falling
Radially into a Schwarzschild Black Hole (Paper II;
collaboration with R.H. Price; published in

Phys. Rev, Lett., 27, 1466 [1971])
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Gravitational Radiation from a Particle Falling Radially into a Schwarzschild Black Hole*

Marc Davis and Remo Ruffini
Joseph Henvy Lebovatories, Princeton University, Princeton, New Jersey 08510

and

William H. Presst and Richard H. Pricet
Kellogg Radiation tabovalory, California Institute of Technology, Pasadena, California 91109
(Recelved 24 September 1971)

We have computed the spectrum and energy of gravitational radiation from a “potnt test
particle” of mass m falling radially into a Schwarzschild black hole of mass M »>m, The
total energy radiated {s about 0.0104mc’(m/M), 4 to 6 times larger than previous esti-
mates; the energy is distributed among multipoles according to the empirical law Ea-pole
~ (0.44m%c?/M)e” ™, and the total spectrum peaks at an angular frequency w=0.3203/GM.

In view of the possibility that Weber may have
detected gravitational radiation,! detailed calcula-
tions of the gravitational radiation emitted by
fully relativistic sources are of considerable in-
terest. Three such calculations have been pub-
lished in the past: waves from pulsating neutron
stars, by Thorne®; waves from rotating neutron
stars, by Ipser’; and waves from a physically
unrealistic collapse problem (important for the
points of principle treated), by de la Cruz, Chase,
and Israel.® To these, this paper adds a fourth
calculation: the waves emitted by a body falling
radially into a nonrotating black hole. This cal-
culation is particularly important for two rea-
sons: (i) It is the first accurate calculation of
the spectrum and energy radiated by any realistic
black-hole process {though upper limits on the
energy output have been derived by Hawking®);

(ii) Weber’s events involve such high fluxes that
black holes are more attractive as sources than
are neutron stars.

A first analysis of the radial-fall problem was
done by Ruffini and Wheeler® with a simple ideal-
ization: The particle’s motion is derived from
the Schwarzschild metric, but its radiation is
calculated using the flat~space linearized theory
of gravity. This scheme yielded a total energy
radiated of 0.00246mc?(m/M) and a spectrum

peaked at an angular frequency 0.15¢%/GM. Ze-
rilli,” using the formalism of Regge and Whee-
ler,® gave the mathematical foundations for a ful-
ly relativistic treatment of the problem. Unfortu-
nately, Zerilli’s equations are sufficiently com-
plicated as to make a calculation of the energy
release inaccessible to analytic means.

We have used Zerilli’s equations {corrected
for errors in the published form), and by nu-
merical techniques we have (i) computed the
wave form of gravitational radiation, (ii)eval-
uated the amplitude of this wave asymptotically
at great distances, and (iii) used this amplitude
to compute the outgoing wave intensity in units
of energy per unit frequency per unit of solid
angle.

Zerilli describes the 2'-pole component of
gravitational waves by a radial function &, (»)
which is a combination of the Fourier trans-
form of metric perturbations in the Regge -Wheel-
er formalism. The function R,(r) satisfies the
remarkably simple Zerilli wave equation (G =c¢
=1)

@R, /dr**+{w* -V, ()R, =8, 1)
with
r*=y+2Mln(r/2M - 1). (2)

| v.r)is an “effective potential” defined by

V)= (1= 2M /7 )[ 203 (0 + 1)5 + 6A2Mr? + 18M% + 18.13] /r3(Ar + 3M). (3)

Here, A=4(I~1){I+2) and S,(») is the 2‘-pole component of the source of the wave. We are interested in
the particular case of a particle initially at infinity (f=+=,7 =+») and falling radially into a Schwarz-
schild black hole (t=+e,7=2M). For this simple case the source may be written as

am

2M r \!''? i2)
=M ez _EMAN Y _o_rr o ern
S, (r) FyY (1+%) (1 p” )[(2&1) w(z\r+3MJe , (@)

Here ¢ =T7(r) describes the particle’s radial trajectory giving the time as a function of radius along the
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FIG. 1. Spectrum of gravitational radiation emitted by a test particle of mass m falling radially into a black hole

of mass M (in geometrical units ¢ =G =1).
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The effect of gravitational radiation reaction
on the particle’s motion is therefore ignored.
This is justified by the final result: The total
energy radiated, of order m*c*/M, is negligible
compared to the particle’s final kinetic energy,
of order mc®. Equation (1) is solved with bound-
ary conditions of purely outgoing waves at infin-
ity and purely ingoing waves at the Schwarzschild
radius:

_\A,"“‘(w)exp(iwr') ag r*~+oo,

R, (6)

|A," (@) expl—iwr*) as r* = -,

The energy gpectrum is determined by Zerilli’s
formula,

dE RN .
(di),x.pole =3am g1 @ A @l

Two distinct methods were used to calculate

A, (w): (i) direct integration of Eq. (1) with a
numerical search technique to determine both
the phase and the amplitude of the outgoing wave
at infinity that would give a purely ingoing wave
at the black-hole surface {details of this analysis
done by two of us (M.D. and R.R.) will be pub-
lished elsewhere]; (ii) integration by a Green’s-
function technique (see Zerilll’). Thig method
allows the coefficient 4, to be computed direct-
1y as an integral involving the source term Eq.
(4) and certain homogeneous solutions to Eq. (1).

2m)

r \I/ﬁ i

ey

] } 5)
All these calculations gave results in agree~
ment within a few percent. The results are sum-

marized in Figs. 1-3. The total energy radiated
away in gravitational waves is

E ors1=0.0104mc2(m/M). (8)

f

FIG. 2. Detalils of the spectrum of gravitational ra-
diation integrated over all angles for the lowest five
values of the multipoles.
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This is about 6 times larger than Zerilli’s esti-
mate of the energy and 4 times larger than the
estimate of Ruffini and Wheeler based on a purely
linearized theory. The spectrum of the outgoing
radiation is the superposition of a series of over-
lapping peaks, each peak corresponding to a cer-
tain multipole order /. Roughly 90% of the total
energy is in quadrupole (/=2) radiation and 9%

is in octupole (!=3). The total energy contributed
by each multipole falls off quickly with ! obeying |

(@B /dR)y1  pore = Eghoparel (1 =2)1/(1+2) 120 2Y, (6, @) + 1T+ DY, 6, ).

the empirical relation (Fig. 3)
E,(_m\?=(0.44m'c’/M)e"‘. 9)

The spectrum shown in Fig. 1 is for the energy
integrated over all angles. An observer at a
particular angle 6 from the path of the particle’s
fall will see a slightly different spectrum because
of the different angular dependence of the various
2'-poles. For example, a pure 2'-pole has the
angular dependence

(10)

As shown in Fig. 2, the energy contribution of progressively higher multipoles peaks at progressive-
1y higher angular frequencies, with the approximate relation

W{E i pote, PEAK) = {[V, ()] 10} V2 = 1} (2) 713/ GM for large L.

Each energy peak may be interpreted as due to a
train of gravitational waves produced by 2/-pole
normal-mode vibrations of the black hole which
the in-falling body excites (see Press®). Averag-
ing over angular factors and summing the various
U’s, one finds that the total spectrum is peaked

at w=0.32¢%/GM, and falls off at higher w accord-
ing to the empirical law

AE oy a/dw ~ exp(- 9.9GMw/ %) (12)

Aside from the interesting details of our numer-
ical results, the very fact that they are well be-
baved is important. Extrapolation of the flat-

i
1%

e g e

-
.92 x 1072 (quadrupole)

1 x 1072 (octupole}

14 %1073

20 x10°4

Rodiated Energy in units m2 cZ/m
3 3
& S

Sum of all multipoles 104 x [0°Z m? ¢2/M

! 28 %1070
ool
2 3 E 5 6
Multipole of Radiation

FIG. 3. Total energy radiated by each multipole.
Quadrupole radiation contributes 90% of the total ener-

gy, and higher multipoles contribute progressively
smaller amounts. The solid line is a plot of consta™ %/,

an empirfcal fit to the data.

(11)

space linearized theory indicates that only a
small fraction of a test body’s rest mass [~(m/
M)mc?| should be converted to wave energy dur-
ing “fast” parts of its orbit (parts with durations
~GM/c®). 1t has been an open question whether
this estimate holds in the region of strong fields
very near the black hole. If the estimates were
wrong, our results would have been divergent,
with either increasing { or increasing w. In fact,
our results are strongly convergent.

The other side of the coin is equally important:
Although our computation verifies the linearized
theory’s dimensional estimate, it shows that a
completely relativistic treatment can give quan-
titative amounts of gravitational radiation sub-
stantially larger than the linearized theory would
predict,'®

This research was performed independently
and simultaneously at Caltech and Princeton,
using different integration techniques but arriv-
ing at identical results. We thank Kip S. Thorne
and Jayme Tiomno for helpful suggestions.
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GP-27304, and No. GP-30799X.

tFannie and John Hertz Foundation Fellow.

}Present address: Department of Physics, University
of Utah, Salt Lake City, Utah 84112.

'7. Weber, Phys. Rev. Lett. 22, 1320 (1969), and 24,
276 (1970), and 25, 180 (1970).

K. S. Thorne, Atrophys.J. 158, 1 (1969).

3. R. Ipser, Astrophys. J. 166, 175 (1970).

‘v.de la Cruz, J. E. Chase, and W. Israel, Phys.
Rev. Lett. 24, 423 (1970).

5S. Hawking, to be published.



25

VOLUME 27, NuMBER 21 PHYSICAL REVIEW LETTERS 22 NOVEMBER 1971

SR. Ruffini and J. A. Wheeler, in Proceedings of the
Cortona Symposium on Weak Interactions, edited by
L. Radicati (Accademia Nazionale Def Lincei, Rome,
1971).

'F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).

*T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063

(1957).

*W. H. Press, to be published.

9. pavis, R. Ruffini, and J. Tiomno, to be published,
will give further details on the intensity and pattern of
radiation for this problem and more general particle
orbits.



26

2.4 Numerical Methods
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Equation (1) in the preceding paper (cited as paper II) is of

the form
" 2
R" + (W™= v)R = § (1)

*
where prime denotes differentiation with respect to r . One seeks a

particular solution to (1) with proper boundary conditions (Eq. II-6),

out iwr,
A e ’ r* > o«
R ~» (2)
in -iwr,
A e s r* > —00
I3 3 . * .
A numerical integration begins at large negative r , say, with
—iWry, *
R~ e , and proceeds to large positive r  where, in general,

it will contain both ingoing and outgoing pieces. To satisfy the outer
boundary condition, one must subtract an appropriate multiple of the
homogeneous solution Rin with boundary condition

—1(1)1'*

i
n , T > = (3)

R > e

This suggests the following procedure: integrate both homogeneous
(with boundary condition (3)) and inhomogeneous (with zero solution on
the horizon) equations from near the horizon outward to infinity; near
infinity resolve each solution into ingoing and outgoing pieces; mul-
tiply each solution by the ingoing coefficient of the other; and
subtract to obtain a solution with correct boundary conditions at both
ends.

Actually this is not a very good procedure: First, the resolv-

ing into ingoing and outgoing pieces requires either (i) that
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*
integrations be continued to very large values of r , so that (2)
becomes accurate, or (ii) that an analytic form for the asymptotic
solution be known to greater accuracy than (2). Second, it seems
, , b out ,

wasteful to integrate two equations to get a single number A which
characterizes the radiation to infinity.

A better method is based on Zerilli's (1970) analytic work. We
t

supplement (3) by defining an independent homogeneous solution rR%Y

with the boundary condition

R > e , I¥ > 4 (&)

Then it is easy to write a Green's function representation for the solu-

tion to (1) and (2):

r . oo
1 out in in out
R(ry) = 5357 (R J SR dr, + R J SR™~ dr,} (5)

-0 r

Now letting r, > « , we see explicitly that

40
out _ 1 in
A = 10T J SR (6)
- OQ

The better numerical procedure is now: integrate the homogeneous solu-
tion Rin outward from near the horizon (where its boundary condition
is defined), and simultaneously accumulate the integral (6). The con-
stant T is the same as defined in equation 2.2(8); 2iwT is the

Wronskian of R1n and ROut . To find T we must still resolve R

in
into ingoing and outgoing pieces at large r, , but the resolution is

not critical since an error enters the final result only multiplica-

tively.
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This procedure is particularly recommended by the form of §
(1I-4 and II-5). At negative r*, S vanishes exponentially, so the
lower limit of the integral (6) need not be very large in magnitude.

At positive r*, S Dbecomes oscillatory with increasing wave number, so
the method of stationary phases can be applied at some very reasonable
upper integration limit to obtain an accurate estimate for the integral
out to infinity. (The integral cannot be truncated without correction:
this would correspond to the source particle being instantaneously
"turned off", with a concomitant burst of spurious radiation!)

In implementing this procedure, the homogeneous integration was
done using Milne's (1953) 'Method XII". The method is a simple, closed-
form differencing scheme for equations of the type of Eq. (1). Naive
2-point differencing would give an error of order h2 per step (h 1is
the step size), but in Milne's method it is of order h6 . Contrary to
one's intuition there is no conservation law relating number of points

to order of accuracy.
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3. GENERIC NONEXISTENCE AND NONMEASURABILITY
OF THE NEWMAN-PENROSE CONSERVED QUANTITIES

3.1 Discussion
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Since their discovery in about 1965, the Newman-Penrose
conserved quantities (NPQ's) have been a minor mystery in general
relativity. As such, they have been the subject of a fair amount of
nonsensical speculation, some of which has filtered into the literature.
For example, it has been stated that a mechanical or hydrodynamical
system in general relativity must have fewer degrees of freedom than in
Newtonian mechanics, because its evolution is constrained by the
requirement of NPQ conservation; several investigators (e.g., see
Persides 1971) have embarked on quixotic quests for these mechanical
constraints.

The following two papers, work dome in collaboration with James
M. Bardeen, use the Schwarzschild background as a sort of theoretical
laboratory for studying the NPQ's associated with test perturbations
(one cannot use flat spacetime, since the NPQ's become trivial there).
From the test-field solutions, we are able to make the following
points about the NPQ's:

(1) They do not always exist.

(2) When they do exist, i.e., when they are mathematically

well defined at future null infinity, they are still not
operationally measurable at finite radii; any physical
measuring procedure will give nonconserved quantities.

(3) Their values measure an average multipole moment of a system

of sources over the infinite past; this value is "encoded"

in the backscatter of radiation off of curved spacetime.
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(4) NPQ comservation puts no constraints on the sources or on
their free outgoing radiation, but only reflects a peculiar property
of the equations governing backscatter in an asymptotically flat

spacetime.

It should be noted that the first paper (III; Press and Bardeen)
contains two errors in interpretation which are repaired in the second
paper (IV; Bardeen and Press). First, the '"1/3 speed-of-light cones"
are an artifact of the particular proposed definition for operationally
measurable NPQ's (MNPQ's). Differently defined MNPQ's are also not
conserved, but need not become undefined on these cones. Second, the
static condition in the finite past is sufficient for the NPQ's to
exist, but a necessary condition is slightly weaker, namely that the
multipole field be "averagable' to the past (this is made precise by
the second paper).

The second paper also contains results on Penrose's peeling

theorem which are entirely due to Bardeen.
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3.2 Nonconservation of the Newman-Penrose
Conserved Quantities (Paper 1II; collaboration
with J.M. Bardeen; published in Phys. Rev.

Lett., 27, 1303 [1971])
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Nonconservation of the Newman-Penrose Conserved Quantities*

William H. Presst and James M. Bardeen}
California Institute of Technology, Pasadena, California 91109
(Received 12 July 1971)

We have examined the Newman-Penrose quantities for test fields in a Schwarzschild
background. We find that, unless a static condition has prevailed In the infinite past,
backscattered electromagnetic and gravitational waves make it 1mpossible to define the
quantities as limits at future null infinity. An operational definitfon in terms of observa-
tions at finite radil i{s possible, but yields quantities which are not conserved.

An observer located at some distance from a
bounded source measures its field, If the source
is an electric charge-current distribution, he
measures the electromagnetic field F,,. If it is
an energy-momentum-stress distribution, he
measures the gravitational Riemann tensor R,,p,,“.
Surround the source region by a number of ob-
servers, each carrying a local coordinate frame
whose orientation is known, and combine their
measurements to extract global information about
the field. ¥or example, by performing an angu-
lar integral calculate the monopole strength of
the electromagnetic field (radial electric field in-
tegrated over the sphere). We may imagine the
considerable surprise and interest accompanying
the observational discovery that the number ob-
tained is a constant in time-—even when the fields
measured by each local observer vary in time.

Likewise, there has been considerable interest
in the apparently conserved quantities, discov-
ered by Newman and Penrose, associated with
electromagnetic and gravitational fields in asymp-
totically flat space-times." There are six elec-
tromagnetic Newman-Penrose quantities (NPQ’s)
and ten gravitational NPQ’s. The Maxwell and
Einstein equations appear to guarantee that these
quantities will be constant in time, However,
their physical significance has been obscure, and
no attempt to relate them to conserved properties
of the sources (as a time-invariant electric mono-~
pole measures the electric charge) has succeed-
ed.? It is'difficult to study the properties of the
NPQ’s in detail because they are trivial for elec-
tromagnetic fields in flat space and for gravita~
tional fields linearized about flat space. (They
vanish if radiation is purely outgoing.)

Recent developments® in the theory of perturba-
tions of the Schwarzschild geometry have enabled
us to analyze the NPQ's in this nontrivial case.
We find that, unless the source was static in the
infinite past, backscattered electromagnetic and
gravitational waves make it impossible to define
conserved NPQ's as limits at future null infinity.

An operational definition of NPQ’s is possible in
terms of observations at finite radii. But the re-
sultant NPQ's are not conserved; changes in them
propagate outward with about § the speed of light
from epochs when the source is nonstatic.

In this Letter we use the electromagnetic NPQ's
as an example, Full mathematical details for
both electromagnetic and gravitational perturba-
tions of the Schwarzschild metric will appear
elsewhere.

The six components of the electric and magnet-
ic fields can be combined into three complex sca-
lar quantities by projection of the field tensor on-
to a complex, null tetrad. In the notation of
Price,” these are

¢ 1 =Fplm®, (12)
¢)0:§Fw(l“n"—'m“m"'), (1b)
¢, =F m*n". (ic)

It is ¢ ., that contains the dominant outgoing radi-
ation field. However, each scalar contains com-
plete information about the entire electromagnet-
ic field, since the other two can be computed from
it with the help of the Maxwell equations.

While the NPQ's are usually computed from ¢,,,
they can just as well be computed from ¢, {or
¢.,). The equation governing ¢, is the closest to
a conventional wave equation, and this simplifies
the physical interpretation. To identify the NPQ's
in ¢,, one needs the results of two successive or-
ganizations of measurements by observers sur-
rounding the source. First, for each r,{ select
the dipole part of ¢, by an angular integral over
an /=1 spherical harmonic:

Papotelts7) = [¥1,06, 9)8,(t,7,6,0)
X sinfdbde. 2)

The analogous monopole integral would yield di-
rectly the conserved charge. To obtain the NPQ's
one must analyze the detailed radial dependence
of ¢upeielf,7) along an outgoing radial null line u
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=const. In the Schwarzschild background,
ust=r*zf—y-2MIn(r/2M - 1), 3)

The conventional expansion for outgoing waves
assumes that at sufficiently large r the radial de-
pendence can be analyzed as a power series in

¥,

Yiu,r)= r*¢dlpo,,(t,r)=f°(u) + [ )/ r
+ 200/ 40 (4)

The NPQ is (except for a factor 2) the coefficient
f2m), which is actually three complex quantities
corresponding to the three values for m in Eq.
(2).

The Maxwell equations applied to the form (4)
yield the result that f,(u) is independent of u,
Thus, the NPQ is apparently conserved. Specifi-
cally, ¥ satisfies

Vo= ¥, o0 +(2/7%)(1 - 2M /r)¥ = 0. (5)

This, after a change of variables to « and 7,
yields equations relating the f,’s:

£ =1e (6a)
fy' =0, (6b)
f,,’:—-("z—ﬂl(n—_i)f,..m(n-ﬂan-z. (6¢)

2n

The function f,(«) is arbitrary; it is the relativis-
tic generalization of the flat-space dipole moment
of the sources. It is determined, in principle, by
matching to an interior solution in the source re-
gion. In flat space only f, and f, would be non-
zero. The functions f,(), n= 3, are obtained by
successive iterations of Eq. (6¢) and represent
relativistic corrections to the flat-space propaga-
tion of the fields; i.e., they represent backscat-
ter.* Equations (6¢) also determine the sfatic val-
ues of f, and the f, in terms of f,. In particular,

F2= M (S Dsrse- )

The paradox of the NPQ’s is that, for an initial-
ly static source, the value of f, is determined by
the initial static value of f,, and it cannot change
even after f, and the f, become nonstatic. Howev-
er, it seems physically necessary that a motion
of the sources which lasts for a finite retarded
time should generate a radiation field that he-
comes static, at least asymptotically, in the fu-
ture. A net change in /, due to the motion of the
sources should then produce a new static value of
f2, given by Eq. (7)—which it cannot, because Eq.

(6b} demands that f, be constant.

The resolution of the paradox can be illustrated
by a simple example. Assume that, at retarded
time u =0, f («) changes instantaneously from an
initial static value /) to a new constant value D',
Direct integration of Eq. (6) gives, « >0,

22D =D=M L2
z (2r)"

a-3
M? M
ol 2 6

The terms neglected are small compared to those
kept for all /7, as long as r>» M. Evidently. as
long as the series converges, the NPQ (MD)
“remembers” the old value D and is conserved.
But the series diverges for u >2r—i.e., it di-
verges inside a sphere that moves outward at as-
ymptotically § the speed of light.* When the ser-
ies diverges, the NPQ's become ill defined and
cannot be evaluated uniquely from data in that re-
gion. Only if observers extend all the way to r

= can the conserved NPQ be evaluated for all u:
The quantity measures the old static dipole mo-
ment using increasingly distant data, and is in no
way related to the motion of the sources afler
they become nonstatic.

Does space-time at fixed » become asymptoti-
cally static again? Analytically continue the solu-
tion for ¥ to u > 2r by summing the dominant
terms in (8). The result is

D 3MD 3M@D'~D)u(u+87/3)
L A B e R e
(e + 272

r 2y 2 r?
2
+0<‘%>. ©

D’ AMD
T+

i

V=

As u — = with 7 fixed,

D imD’ M M?
Ve =y B — =L
7 ur’ v

” ‘ (10)

When u > 2r, local measurements will yield an
apparent new value of the NPQ which is related
to the new value of the static dipole moment in
the same way the old value of the NPQ was relat-
ed to the old value of the static dipole moment.
In a strict mathematical sense this value is not
the “correct” NPQ obtainable from data inside
the cone « = 2v. Operationally, with finite mea-
surement errors, there is no way to distinguish
an “apparent” value from a “correct” one; in a
real, physical sense the NPQ has changed its val-
ue.

Thus the paradox is resolved: A mathematical-
ly precise NPQ is conserved if it exists, but it



36

VoLuME 27, NUMBER 19

PHYSICAL REVIEW LETTERS

8 Novemser 1971

only exists outside the 3-speed-of-light cone from
when the source first becomes nonstatic. An op-
erationally measurable NPQ may be defined each
time the source becomes static again for a suffi-
ciently long interval, but it can change in value
between the different static epochs.

The above discussion lacks mathematical rigor.
However, the same conclusions can be derived
rigorously from an expansion of the form

¥=fou)+ L‘éﬂ + %g‘(r,u)

2
+;—_;g2(r,u)+--', (11)
which is valid for all # at all ¥ » M. Summation
of the leading terms in (8) is equivalent to a cal-
culation of g,(r,u), the first-order backscatter.

Why do the NPQ’s fail at « =2r? An analytic
solution to the vacuum -field equations with an out-
going boundary condition must become singular
on some past light cone of Schwarzchild space-
time, This is because the generic outgoing-wave
solution is generated by a source, so if we propa-
gate a solution backward in time refusing to in-
sert a source, we encounter a singularity on the
locus of our “last chance” to put the source in;
this, essentially, is a past light cone. Now re-
call that a power series converges or diverges in
a disk in the complex plane. For » >»M, the dom-
inant contribution to ¥ is essentially a power ser-
ies inu/r [e.g., Eq. (8)]. Hence a physical singu-
larity at u = - 2r leads to a divergence of the ser-
ies at # = +2r. In short, the j-speed-of-light
sphere is a mathematical ghost of the past light
cone, a consequence of the prescription that we
analyze the data in u,7 coordinates to obtain the
NPQ’s. [It will be noted that the past light cone
is actually # = - 2v*, not u = ~2r, This sloppiness
arises from our neglect of terms of order M? in
Eq. (11).]

There are mathematical difficulties with the
NPQ’s even when they are defined at future null
infinity. A net change of the electromagnetic di-
pole moment in a burst of radiation of u ~u, gen-
erates a line u — u, = 2» across which the NPQ’s
cannot be continued as conserved quantities.
These lines, from a series of such changes at
progressively earlier imes, are everywhere
timelike, but they accumulate at future null in-
finity (see Fig. 1). If the amplitude of the chang-
es in the dipole moment does not go to zero (i.e.,
if the dipole moment is not asymptotically static
in the infinite past), the limit defining the NPQ's

1, (future himelike 0}

ER K3
accumulgnon at S, tuture auli ©)

LIEN: )
i/3 speed-of-light
cones

Toispacelke @}

sources

/I,(nasv null @)

I {post timeike @}

FIG. 1. By a conformal transformation, the infinite
ranges of r and { are shown in a Penrose-Carter dia-
gram. The Newman-Penrose quantities in Schwarz-
schild space~time cannot remain conserved across
lines which originate when the field sources are non~
static, and which travel outward at approximately % the
speed of light. If the sources have been nonstatic for
all time, there 18 an accumulation of these lines at
null infinity—even though each line is everywhere time-
like. Shown here are the “}-speed-of~light cones” orig-
inating at times ¢t =0,~1,~2,~4,+++, ~64; the accumu~-
lation is already evident. If follows that the Newman~
Penrose quantities cannot be defined as a limit at null
infinity.

at future null infinity does not exist. This is gen-
erally the case even if the sources have radiated
a finite energy in their infinite past history.

We conclude that the NPQ’s in a Schwarzschild
background represent an information structure in
the curved-space propagation of waves. The
NPQ’s “remember” an initial static value of the
dipole moment (electromagnetism) or the quadru-
pole moment (gravitation), but for an observer at
fixed » they remember it only for a finite time.

If defined at null infinity, the NPQ’s exist only
for a source which was asymptotically static in
the infinite past. If measured at finite 7, they
can be defined (or redefined with a new value)
when the source has been static for a long time,
Au > 7r,

The conclusions outlined here are equally valid
for electromagnetic NPQ’s in any metric theory
of gravity (e.g., Brans-Dicke), for gravitational
NPQ’s in general relativity, and for NPQ’s asso-
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I. INTRODUCTION

Two general relativistic effects make it difficult to study the exact
propagation of radiation fields. First, the curvature of the spacetime
manifold influences the propagation of the radiation. Second, the stress-
energy of the radiation acts to produce curvature in the manifold. Acting
in concert, these effects produce a nonlinear theory, with an extreme
dearth of known, exact radiation solutions available for study.

In studying gravitational waves, it has frequently been useful to use
the "linearized theory", in which the manifold is taken to be flat, and the
waves are sufficiently weak that they do not destroy the flatness, Un-
fortunately, certain interesting phenomena vanish in the linearized case.
For example, in general the propagation of radiation is not entirely along
null characteristics, as Kundt and Newman1 have shown for scalar and
electromagnetic test fields in the Schwarzschild metric, as McLenaghan2
has shown for scalar test fields in any nonflat background satisfying the
vacuum Einstein equations, and as Bonnor and Rotenberg3 have shown for
asymptotically flat gravitational fields. The radiation backscatters off
of nonuniformities in the curvature of the background spacetime. For example,
there is generally backscatter left behind a burst of outgoing radiation.
Although the backscatter dies off in time at fixed radius,
the field at any point in space does not become exactly static in a finite
retarded time. Certain coefficients associated with the asymptotic field

h,S are

near future null infinity, the Newman-Penrose Quantities (NPO's),
related to the backscatter from outgoing waves. In a flat background these
coefficients measure properties of incoming waves and vanish identically

vhen an outgoing-wave boundary condition is imposed. Inm curved space, the
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Einstein-Maxwell equations appear to guarantee that the NPQ's are conserved
for dynamic fields, but investigations of their physical significance have
been hampered by the absence of exact solutions with nontrivial NPQ's.

Backscatter and nontrivial NPQ's do not require the full nonlinear
theory. They require that the background influence the radiation, but not
vice versa. Thus they can be studied in detail for fields which are
linearized about (i.e., weakly sﬁperimposed on) a curved background. The
work of Prices’7 on the behavior of integer-spin test fields in the collapse
of a slightly nonspherical star, has furnished the key to this sort of an
approach.

We have used Price's equations to analyze in detail the propagation of
scalar, electromagnetic, and gravitational test fields in the Schwarzschild
background. The sources of the fields are assumed to remain bounded for
all time inside a radius R > 2M, where M is the gravitational mass (units
with ¢ = G = 1). We exhibit a single partial differential equation which
fully describes the radiative part of the various test fields, and we solve
this master equation for the general retarded solution in the region r > R.
The solution is an expansion in powers of (2M/r) which converges uniformly
in ghis region at all retarded times.

With the general solution, we are able to examine the backscatter in
some detail, and to elucidate the nature and physical significance of the
NPQ's., The solution also sheds considerable light on the "peeling theorems",
which deal with the asymptotic radiation field at null infinity.

Our results for the NPQ's have been reported previoualye; in this
paper they are amplified from a somewhat different viewpoint. We find that

the NPQ's do not always exist (i.e., the limits defining them do not always
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converge). When they do exist, they are a certain average of the value
of the source's lowest radiatable multipole moment over the infinite past.
The presence of this "average value'" in the field is due to the superposi-
tion of backscatter from the outgoing radiation of all previous epochs.
The conservation of the NPQ's has a simple interpretation: the contribu-
tion of the present finite epoch to the average of the infinite past is
vanishingly small.

An important point is that the NPQ's, even when they exist, are not
operationally measurable. An observational measurement of fiﬁite accuracy
and duration, and at finite radius can at best determine a quaﬁtity (we here
call it a measurable NPQ or MNPQ) which is an average over the recent past
(this is made precise in Sec. VI); and there is no observational way to
tell whether this average agrees with the "primordial" NPQ or not.

The peeling theorem of Penrose,9 based on a conformal treatment of
infinity,lo proves certain regularity conditions for gravitational and
(curved-space) electromagnetic fields at null infinity. The results of
this theorem can be compared with the known nature of our solutions in the
Schwarzschild background. At future null infinity, the general retarded
test field solution is consistent with the theorem. Applied to past null
infinity, however, the theorem implies that the electromagnetic dipole
moment must be bounded in the infinite past, while the gravitational quadru-
pole moment must be asymptotically static. This mysterious extra regularity
of the gravitational field seems to violate one's physical intuition. We
examine the assumptions behind the theorem and conclude that the extra
regularity is not, in fact, physically justifiable. Penrose assumes so much
regularity in the conformally transformed spacetime manifold at null in-

finity that the proof of the regularity of the (equivalent) gravitational
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field is circular.

The mathematical foundation of this paper is the Newman-Penrose spin
coefficient formalism, as adapted by Price7 for test fields in the
Schwarzschild metric. This is reviewed briefly in Sec. II, and the equa-
tions for scalar, electromagnetic, and gravitational test fields are given.
Section III solves these equations as special cases of a single '"master"
equation. Section IV deals with the solutions for the lowest radiatable

moment; V, with the peeling theorems; VI, the Newman-Penrose quantities.

I1. FORMAL PRELIMINARIES

The conventional form of the Schwarzschild metric is
ds® = (1-2wr)de? - (1-2m/r) tar® - £2(d6® 4 5in0 do?) (2.1)
Outgoing null geodesics are the surfaces of constant u, 8, g, where u is
the retarded time

Uz t-r-2Min{r/2M-1) = t - r¥, (2.2)

while for ingoing radial null geodesics,
V=t+r+2Min(r/2M-1) g t+ % = constant. (2.3)

The radius r is both the proper circumferential radius governing the area
of two-spheres and an affine parameter along the radial null geodesics.
We will always impose a boundary condition that there be no "free" incoming
waves, so it is convenient to use the retarded time u and the radius r

as coordinates. Then the metric is

ds® = (1-2W/r)du® + 2dudr - r2(de? + sin0 dgf). (2.h)
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The Newman-Penrose spin coefficient formalism11 is a powerful method
for dealing with radiation in asymptotically flat spacetimes. It is based

on a tetrad of complex, null L-vectors M, nu, o, m* satisfying
f+n = -m-m* =1 (2.5)

with all other dot products zero. All tensors can be reduced to (in
general) complex scalars by contraction with members of this null tetrad.
The "spin coefficients'" are scalars constructed from covariant derivatives
of the tetrad vectors. Newman-Penrose scalars have a conformal weight ¢

and a spin weight p if under the transformation

[l Vi
RN (2.6)
= elfgh
the scalar T transforms as
F = 2CelPiq, (2.7)

In the Schwarzschild background a special choice for the null tetrad which
simplifies the spin coefficients is, in u, r, ©, ¢ coordinates,
™ = [0, 1, 0, 0],
o* = [1, -3 (1-2m/x), O, O], (2.8)
o = (1//2) [0, 0, 1/r, i/{r sing)].

Thus, M ois tangent to outgoing radial null geodesics and oM is tangent to

ingoing radial null geodesics.
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The physically measurable tensor associated with the electromagnetic
field is the electromagnetic field tensor FHV; that associated with the

free gravitational field is the Weyl tensor Ca (in vacuum, identical to

B75

the Riemann tensor R . The tetrad (2.8) is contracted with F to
) (2.8) v

obtain the N-P scalars for a test electromagnetic field,

= eV

®1 = Fuvl m

0 =1 E, (Fn - de) (2.9)
- MLV

0_1 = Fuvm* n .

Fortuitously, the subscript denotes both the spin weight and the conformal
weight of the scalar. In terms of the physical electric and magnetic field

components measured by an observer at rest in the Schwarzschild metric

(2.1),

2‘% (1-214/1')-%{E(0) _ B(@) + i(E((‘D) . B(O))}

LS
%, =-% {E(r) + 13(‘)} (2.10)
o = - o2 (1-2M/r)'§' { e®) , 5@ | ygl@ . B(g))} .

The Qp are completely equivalent to Fuv -~ each contains six independent

real functions.
Similarly, there are five N-P scalars containing ten independent real

functions which are equivalent in information content to the Weyl tensor,
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Yo =- Caﬁyﬁ ZO!mBlym6

Y= S %Py 7u®

Yo =- i CaByﬁ (/lanBlyn5 + loﬁﬁm7m*6) (2.11)
Y=+ qaﬁyﬁ lahanym*ﬁ

Y o=- CaByS nah*ﬁnym*a.

Again, the subscript gives the spin weight and the conformal weight. (The
notation here follows Price7 and differs somewhat from most authors.) For
gravitational perturbations there is one additional complication: the null
tetrad to be used in (2.11) is the N-P special null tetrad associated with
the perturbed metric, not the tetrad (2.8). The only Yp which is nonzero
in the unperturbed Schwarzschild background is ¥y = -M/rs. The real parts
of the @p and Yp are associated with even-parity fields and the imaginary
parts are associated with odd-parity fields. The letter p is used to
denote the spin-weight, since we reserve the letter s for the spin of the
field.

It is natural to take advantage of the spherical symmetry of the back-
ground to expand the perturbations in spherical harmonics. However, the
appropriate spherical harmonics for the N-P scalars with nonzero spin
weight are not ordinary scalar spherical harmonics, but rather the spin-
weight-p spherical harmonics.12 These harmonics are denoted by lem(O,@)
and involve-derivatives of the ordinary spherical harmonics, which have
spin weight zero. The spin-weight index p can be increased or decreased by
certain differential operators. The spin-weight-p spherical harmonics with

£ < |p| are undefined.
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The derivation of the equations governing scalar, electromagnetic, and
gravitational test fields in the Schwarzschild background is described by
Price.7 Before he expands in spherical harmonics, Price '"despins' Newman-
Penrose scalars with nonzero spin weight. This differs from conventional
practice.h’13 Therefore, we expand a Newman-Penrose scalar of spin weight

p directly in spin-weight-p spherical harmonics. For example,

1
Rk

118

0,(e,7,0,6) = (u, 1} lem(g"P>' (2.12)

7=

P

To avoid an unnecessarily complicated notation we suppress the 2,m indices
and write p@lm(u,r) as Qp(u,r). Since the equations for the different
multipoles separate, this never causes any confusion.

The differential operators in the spin-coefficient formalism which

contain derivatives with respect to u and r are

D = M 3/x™ = d/ar (2.13a)
and

&= 3/ = 3/du -1 (1-2M/x) 3/dr (2.13b)

in the Schwarzschild background.
Of course, the spin-coefficient formalism is not needed for a scalar
test field y, which satisfies

av = (-g)F 2| (Lg)? g | o (2.1%)

3xH ¢’

After expanding in ordinary scalar spherical harmonics, the equation for

the 2£-pole is
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2 N
d 23y O M\ Jv e+1)
ca e |- S ¢ T v=o (2.15)
The equations governing the 21-pole of an electromagnetic test field
are
()T
2 _jele+1

D[r % _[ 5 ] ro, , (2.16a)

1

2
] % B (2.16b)

i
1
1~

i_(_l_ei_Ll'lz (1-291) oy , (2. 16¢)

ofr

(2.16d)

_ [z§1+1) o

2 -1

These combine to give decoupled second-order differential equations for each

of the op(u,r):

D {(1-2M/t)_lr2A [(1-2}1/1—) rol]: + 5 (2+1) rg; =0 ; (2.17a)
Dak[rz @O} +30(1+1) 05 =0 ; (2.17b)
A [relD(r @_1)] + 2 (a+1) ¢ ©_1 =0 o (2.17¢)

If any onme of Egs. (2.17) is solved, the corresponding solutions for the
other two Op are immediately obtained from Eqs. (2.16) as derivatives of
the first L Price works with (2.17b); in Sec. III we solve Egs. (2.17a)
and (2.17c).

The equations for the gravitational test field are considerably more



complicated, since the perturbations involve the very geometry through which
the waves propagate. The spin coefficients p, A\, u, v, 0, T and the metric
functions U, w appear in the equations for the yp(u,r). In the equations
governing a particular 21-pole these subsidiary quantities, 1like the WP,

are interpreted as the coefficients of the appropriate spin-weight spherical
harmonics. The functions p, u, and U have spin-weight zero; T and w have
spin-weight +1; v, A, and g have spin-weights -1, -2, and +2, respectively.
For those quantities nonzero in the background we distinguish the perturba-
tions by a subscript B.

The gravitational analogues of Eqs. (2.16) are the perturbed Bianchi

identities:
3
D {rh Yl} = [ 1'1)21+2)] > ¥, ;  (2.18a)
1
3 1 2
D x \yoB} = [ﬂ‘—g—l} v - Moy 5 (2.18Db)
3
D (re Y—IJ = {l(lg 1):, £y, - 3MrT© ;  (2.18¢)
: )
- el
Dir ‘1’_2} = [LE—})T(ALQ)-:I ¥ g o+ 3Mr A ;5 (2.18d)

1
(1 -214_/1:)‘24(1 -2M/r)2r\ye:| - - [(1_'_1_22(_1:&} 2‘“ - Ml ; (2.18e)
i
(1-2M/r)—1ali(l—2m/r) r2\y1:I = - [_/Z_ﬁ_l;_ll:ler Yo o+ 3Mr-1(1+r-lw); (2.18£)
B
. .
A(rs YOJ o [Alg_ll]zrz Yo+ M (“B‘r-luB) ;o (2.18g)

(1-2M/r)A[(1-2M/r)_1rh "-1} = - [ 1’12 I+2)]§r3 Y, - SMrv (2.18h)
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The other equations7’11 relating the metric perturbations, the pertur-
bations in the spin coefficients, and the Yp are sufficiently complicated
that it does not seem possible to combine them with Eqs. (2.18) to get a
decoupled second order differential equation for each of the yp' Price
does derive such an equation for Im WOB. However, Price turns to the
Regge-Wheeler formalism,l,4 as further developed by Zerilli,15 to treat the
even-parity gravitational perturbations.

Fortunately, decoupled equations do exist for YE and y_e. The addi-

tional equations required are

(%) = % ¥, (2.19)
(1-2wr) A[(l —or)t R xJ
1
=[l'121+2]2rv-r2‘y_2. (2.20)

Equations (2.18a), (2.18e), and (2.19) combine to give

D {(1 —2M/r)'2 rhA [(1— 2M/r)2r\y2]}

+ [% (£-1)(2+2) + 3M/r] r? ¥y =0, (2.21a)

while Eqs. {2.18d), (2.18h), and (2.20) give

A{(l - 2M/r)'1 th [r ‘y_g}}

N [% (£-1)(2+2) +3m/r](1-zn/r)‘1r5 ¥, -0. (2.21b)
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The outgoing radiation field near future null infinity is contained in Y-2
and the Newman-Penrose quantities are in Yo; 80, for our purposes a complete
solution for all of the spin coefficients and the remaining Yp is not
necessary.

We shall see below that the equations (2.15), (2.17a) and (2.17¢), for
scalar and electromagnetic test fields, are all special cases of a single
"master" equation. It is a rather remarkable fact that Eqs. (2.21a) and
(2.21b), which govern the radiative behavior of gravitational test fields,
are also special cases of the same equation. In this sense the Einstein
field equations, with their particular coupling of the perturbations to the
background geometry, represent the simplest spin-2 field equations in the
curved Schwarzschild background. The solutions to the master equation
governing all the fields depend explicitly on s (the spin of the perturbing

field) only in a very minimal way.

I1I. THE GENERAL RETARDED SOLUTION

We consider the equation

2 2
Ty . 2(s+p+1) oy Oy (2s+2) oy  (L+s+1)(4-s)
2ser t 1? H'ar‘?- r 3r * 2 M
m\(3%  (2s41-p) dv . s(s-p)
+ (T)<'a? + T St + te y] = 0, (3.1)

The parameter s takes on the values O, 1 or 2 corresponding to the spin of
the test field. The parameter p takes on the values ts corresponding
to the two extreme possible spin-weights. [Eq. (3.1) can not be used for

"nonradiative" spin-weight components -s+1 < p < s-1.] Withs=0, p=0,
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¥(u,r) is the coefficient of Ylm(0,¢) in the spherical harmonic expansion
of a scalar test field, and Eq. (3.1) is identical to the field equation
(2.15). With s=1, p=% 1, represents the coefficient of ilYfm in the
spin weight *+1 part of the electromagnetic field tensor; (3.1) then is
identical to (2.17a) and (2.17¢c). With s=2, p=%2,y represents the
coefficient of thlm in the spin-weight %2 part of the Weyl tensor, and
(3.1) becomes identical to (2.21a) and (2.21b). In this section we obtain
a general retarded solution to this master equation.

The solution is in the form of an expansion in powers of the gravita-
tional mass M. We prove that the expansion converges for retarded fields
at all r > R > 2M, where R is a radius bounding both the source of the
background Schwarzschild metric (either a star or a black hole) and the
source of the test field at all times to the past.

The general retarded solution to Eq. (3.1) must be regular at infinity
in the minimal sense that ¥y ~ O as r + @, and must be entirely generated
by sources in the region r « R. It will contain one arbitrary function of
the retarded time u.

First consider static solutions. Since r-1

= 0 1s a regular singular
point of the ordinary differential equation for y(r), the static solution

regular at infinity can be written as the series

k=1

V(r) = a 2(P-8)/2 ~(rse1) [1 . g a (2M/r)k] (3.2)

with

(2+%)! (L+p+k)! (20+1)! ‘ ‘
& = Hk? (;Ep).') (2(lf1+)k),' . (3.3)

The series converges for all r > 2M., The coefficient A is identified as the .

static multipole moment.
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Now consider solutions to Eq. (3.1) which are static for all u < Uy,
but dynamic for u > uo. These solutions are retarded, since no incoming
waves are present near past null infinity. At u = U, ¥ can be expanded in

powers of r-l at fixed u, and this analytic structure will persist for a

finite retarded time after u = uy in the region r > R. Let
Y =% £ (u) 7, (3.2)
n

and substitute into Eq. (3.1). The £ must satisfy the heirarchy of equa-
tions

- - -5~
2(n-p-s-1)fn =(2+8+2-n){n+12-5s 1)fn_1

+(2M)(n+p-sz-.Q)(n-sz-Q)fn (3.5)

-2

It is consistent with Eq. (3.5) that all £ withn < p+s+1 are iden-

tically zero. Furthermore, these fn must be zero, or some fn withn <O

will be nonzero and y(u,r) will not go to zero as r + o at u > uye This
is the peeling property at future null infinity.
Split the sum (3.4) into two parts
2+5+1
vy = z £ (v) T (3.6)
n =p+s+l
and
©
Vg = Z £ (w) r". (3.7)
n={+8+2

We shall see that the fn in \VI are linear combinations of a single function
of retarded time, the retarded multipole moment A(u), and its first (f-p)

derivatives. The fn in cannot be represented in this way consistent

Vi1
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with Eqs. (3.5) and the static {nitial conditionms.

Define the multipole moment A(u) from the part of the field with p = s.

l~s '
o = i [ 400 ] LB AL, )

Let

r+ao

(Superscripts in parentheses denote the number of;derivatives to be taken,)
In the first (f-s) successive integrations of Egs. (3.5), with p = s, absorb
the constants of integration into A(u). Then £,,6,1 = A vhen A(u) is con-
stant, consistent with Eq. (3.2).

The coefficient of r'l, fl(u), in the y(u,r) with p = -s is related
to f28+1(u) in the y{u,r) with p = 8 by the flat-space versions of Egs.
(2.16¢)-{2.16d) coupling the o, (s=1) and Eqs. (2.18e)-(2.18h) coupling
the Y, (s =2). The terms in these equations from the curvature of the back-
ground are of order r_l; at least as long as the infinite sum in WII
converges, one has

v _

St 6(r

V), (3.9)

just as for the flat-space retarded solutions. Therefore, the analogue of

Eq. (3.8) when p = -s is

_ 8 (l-s;! (28)
=2 f+s): f25+1

p=-s

£,(w)

< 2! %’2;5).;'-,1(“5)@). (3.10)

P

Starting with either Eq. (3.8) or Eq. (3.10), successive integrations

of Eqs. (3.5) give the fn(u) in wI(u,r) in the form

(k/2]
fP+s+1+k = :E: ak,m (20)" A(!-p—k+m) . (3.11)
m=0
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The upper limit to the sum, [k/2], is

k2 ik e%en

[k/2] - (3.12)

(k-1)/2 , k odd

All the coefficients Q o can easily be evaluated for any particular
t4
values of s, £, and p [see Eq. (4.19) and following, for an example]; the

coefficients which survive when M=0 are

When the field is static, the omly nonzero fn in WI is

_ (p-8)/2
frioer = 2 A. (3.14)

Because the coefficient of fn 1 in Eq. (3.5) vanishes when n = f+s+2,

u
the constant of integration in f cannot be absorbed in I A(u')du' as,

1+842

for instance, the constant of integration in £,, was absorbed in A(u).

s+1
Instead, it must be kept explicitly:

[(2-p-1)/2]

_ £(2+p) w1l (m)
fresi2 =03 1-p+1 ZE: al-p-l,m (2m) AT (3.15)
m=20

From the static initial condition on f B
L+s+2

c=3% 2(P-8)/2 (2141) (M) Alu

ToprT (3.16)

O)'

The fact that the constant of integration contains A(uo) means that
f£+s+2(u) for u > u, depends on the past history of the time dependence of

A(u), as well as on the instantaneous values of A(u) and its derivatives.
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The backscatter of the outgoing radiation field wI(u,r) is entirely contained
in WII(u,r). It was the failure to allow for the constant of integration
(3.16) that led to the incorrect treatment of the backscatter in preprint
versions of papers by Price7 and Thorne16 on the decay of radiatable multi-
poles during gravitational collapse.

The integration constant in fz+s+2 generates terms in the fn with

n > {+5+2 which grow with time:

k-1 (k-1)! (4-p)! {(2ask)! (p-sY2 k-1
£ et ~ (1) ok TME%)T ST 2 () A(uy) w5 (3.17)

While these terms may be partially canceled by terms coming from successive

integrals of A(u), typically

f u-u
§+S+k+1 - 5 (8] (3-18)

£+s+k

in the limit k >> / when u-uy >> 2M, so the expansion (3.7) of ¥iq in

powers of r'l will diverge once

u-~uy > 2r. (3.19)

Thus, the power series expansion of the form (3.4) is not a satisfactory
solution of Eq. (3.1).3
To obtain a solution which converges uniformly at all future times, we

keep ¥, in the form (3.68), but represent WII(u,r) by

WII(u,r) = r_(£+s+1) 22;1 a, (2M/r)k gk(u,r). (3.20)

This new expansion is an expansion in powers of the gravitational mass M,

instead of powers of r"}. The coefficients & are the coefficients (3.3)
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in the static solution. For the purposes of the new expansion wl(u,r) is
considered zeroth order in M, even though M appears in the fn(;), n < f+s+l,
through Eq. (3.11).

Substitute the expression (3.20) into Eq. (3.1), along with wI(u,r) in
the form (3.6), and require that the coefficient of each explicit power of M
vanish. The result is a heirarchy of partial differential equations for the

gk(u,r): when k > 1

2 2
g, _ 2(k+t-p) Oty ) gy , 2lk+t) Oy o k(ke2er1)

2
r r Su 8r2 r r r2 k
Beg dg
B k(k+22+1) k-1 (2k+244p-1) k-1 . (k+£) (k+ £+p) (3.21)
T 7 (k+ 1) (k+ L4p) a2 r “Or 2 81|’ :
and when k = 1
e 2 1) 98 2% 1) 98 2
2 =L. (2-p+ b e(m1) L (en2) o
r r u 3 2 r r 2 1
r r
£, (u)
_ (2ns2) 22(4+p) “R+s
= B - T T . (3.22)

The right-hand side of Eq. (3.22) comes from using Eqs. (3.5) on the £ in
Vy-

Equations (3.21) are scale invariant under the transformation u - Ku,
r - Kr. Equation (3.22) is not generally scale invariant, but it is if the
multipole moment A(u) is constant, which implies that f is constant and

f+s+1

££+s is zero. In this special case the entire heirarchy of equations for the
&y is invariant under the scale transformation. The scale invariance suggests
that a solution to the heirarchy exists which depends on only one independent

variable, a scale invariant combination of u and r. Since the equations are
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also invariant under a translation in u when A(u) is constant, the most

general form for the similarity variable is
y = (u-ul)/2r. (3.23)

The similarity solutions will be superimposed to give the general retarded
solution.
The ansatz gk(u,r) = gk(y) reduces the partial differential equatiomns

(3.21) and (3.22) to the ordinary differential équations

2

d - dgk
y(1+y) 5 + [k+£~p+1+2(k+l+1)y] Tt k(k+21+1)gk
dy
d2g dg,
_ k(k+21+l) 2 k-1 k-1
= T D (ke 17p) [ dy2 + (2k+2g+p+l)y &t (k+2)(k+£+p)gk_1]. (3.24)

When k = 1 in Eq. (3.2Lk) the g, appearing on the right-hand side is under-
stood to be £ a constant.
2+8+1?
The solution of Eqs. (3.24) can be reduced to quadratures by standard

methods. A particular solution to the heirarchy is the static solution, for

which

g (v) = £ - oles)/2 A,

f+8+1 (3.25)

for all k = 1. Any dynamie solution to the heirarchy is a particular solu-
tion plus a homogeneous solution. To join & dynamic solution to a static

solution at u = Y it is necessary to take Uy = Uy, or
y = (u-uy)/er, (3.26)

since only at y = 0 is y independent of r at fixed u. Therefore, the homo-

geneous solutions suitable for comstructing initially static dymamic
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solutions must be regular at y = O.
4 .
Only one of the two independent homogeneoug solutions to the kth equa-

tion (3.24) is regular at y = 0. Normalized to be one at y = O, it is

L+p
() = (o) (08P 3 Bl Lk (et 2 (s27)
m=0

A homogeneous solution to the heirarchy is composed of inhomogeneous solu-
tions to Eq. (3.24) for all k > n, generated by the homogeneous solution
(3.27) for k = n. Let the functions H k(y) be the gk(y) generated by

b
h (y)

g (y) = B (). (3.28)

For k < n,

L (3.29)

The nonzero Hn k are all normalized to be one at y = 0. Thus
»

Hn,n(y) =h (y) (3.30)

and for k > n

y
Hn’k<y) = hk(y) [1 +J; dyl yl-(k+2-P+1) (14—y1)_(k+£+p+1)

1
: hk(y1>‘2fo dy, v P (14 y) TP b (5,) sk<y2>} (3.31)

The function S, is the right-hand side of the kth equation (3.24), with

-1 = Mo k-1t
Some important properties of the nonzero Hn Kk are
’

k-
B, =1 - e(y<™D

ok (3.32)
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in the limit y << 1, while vhen y >> 1

k! k+24+1)!  (k+2-n)! (k+i+p-n)! (4 2:
Hyk ™ Tkeo)T (x(u&ﬁﬂ)x): ((f;/zt)l.2 (ﬁﬁfp‘)l) Y.
{1- (e ) (2n)! 20+1)! -
T i) (ém).): (él+r+\+)1).' y (3.33)

The nonzero Hn k decrease monotonically from one at y = O to zero in the
limit y » .
The leading term in a homogeneous solution, Hn n(y), can be interpreted
’

as an ingoing wave in flat space. That 1is,

v = hn(y) r-(l+5+1+n) (3.34)

solves Eq. (3.1) with M = O and can be put in the form

2+p
v o= Z 2—(S+P)/2 (_2)q £2é;q%: q}éz:fp’_}; 7 B(q)(v) r'(l+s+1"q). (3.35)
q=0

The advanced multipole moment B(v), as a function of the flat-space advanced
time
v = u+2r, (3.386)

is

B(v) = o(s+p)/2 T%)L' Lﬁfi—l’;—‘%ﬁ " (v- uo)'“. (3.37)

A similarity solution solves the following problem: the field is static for

all u < Uys at u = u the retarded multipole moment changes by a step function

0

to a new constant value for all u > Uy With the help of the above homo-

geneous solutions it is possible to fit the initial conditions on the gk(y)

at u infinitesimally greater than Uy The instantaneous changes in the B
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due to the change in A(u) are found from Eqs. (3.5).

An arbitrary continuous variation of A(u) can be approximated arbi-
trarily closely by a superposition of step-function changes. Since the
test-field equations are linear, the general retarded solution to Eq. (3.1)
can be represented as a continuous superposition of similarity solutions.

The constant u. in the similarity variable y becomes a dummy integration

0
variable. By letting the range of integration extend to u, = - © we
include cases in which the field was never static at any time in the past.

Our general retarded solution for gk(u,r) is

u

af

B L+8+1 2(2+p)

g lwr) = £, o 4w 'f duy duy " Te-p+1) (£4p¥1) freslt) Hl,k(y)
-

£{2+p)

L-p+1){g+p+1 £es(u0) Hz,k(Y) . (3.38)

That this does indeed solve Eqs. {3.21) and (3.22) can easily be checked by
substitution. The integral in Eq. (3.38) is the backscatter; when k = 1
it is a superposition of purely ingoing waves generated by previous changes
in the multipole moment.

While Eq. (3.38) is best for the physical interpretation of gk(u,r), a
different form of the solution is best for proving convergence of the inte-
grals and of the series (3.20). Integrate by parts in Eq. (3.38) and

define

u
22+
Fl+s(u)‘_=- £2-p+1) (2+p+1 [ fl«»s(uo)duo

[(2-p-1)/2]
2-p-£11+1;+p+1 Z %-p-1,m (20" Al (u). (3.39)
m=0
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When r is finite, so that uy > - implies y >~ oo, the result is

gk(u,r) = Fl+s(u) 6kl

u
- Ef dug [f/z+s+1(“o> - Fz+s(“o)] Hy' ()
: -

+ Fl+s(u0) Hg,k'(Y) . (3.40)

The primes denote derivatives with respect to y, and & 1 is the Kronecker

k
delta.

In going from Eq. (3.38) to Eq. (3.40) we have implicitly assumed that

(u) are bounded in the limit u + -m. We now impose the

L+s+1

f (u) énd L

slightly stronger condition that f uo) and F be bounded for all

2+s+1(
Uy < u, if the field is being evaluated at the retarded time u. Both

l+s(uo)

fl+s+1(u0) and F£+5(uo) contain at most (f-p) derivatives of A(uo), so the
condition follows if wl(uo,r) was bounded at all times to the past.
Since the Hn K decrease monotonically from one at y = O to zero at
i
y =, the H_ k'(y) in Eq. (3.40) are negative or zero over the whole
b

range of integration. If f 1(uo) and Fl+s(u0) satisfy

£+8+
|fl+s+1(u0)| < K1 ’ (3.41)
|F£+S(uo)| < K, (3.42)

for all - <« u, € U, then

u K u
K og-2 ] au f (u) By 'y) s - m= | du EH, L '(y) =K, (3.43)
1 2r 0 “peseltto’ M1,k or o M1,k VYT R o
-

-0
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u

1 )
Ky s Ef dug Fy o) Bk (y) < Ky, (3.4%)

-0
so

lg, (u,m) ] < &y + 2K, . (3.45)

Both K, and K, are the same order as the bound on |A(uy)|, since the time
scale over which A{u) changes is typically greater than or equal to (2M).

The integrals in Eq. (3.38) will not necessarily converge to any definite
value at r = o, where y = 0 for all Uy Since r = o is not in the physical
spacetime, there is no physical requirement that the gk(u,us) have well-
defined values.

Derivatives of the 8y with respect to u and r do not affect the con-
vergence of the integrals, since
& 0) =y ) ~ 2y D) (3.16)

and
d y . .1 -n
Sc Hn,k(Y) = - ?'Hn,k (y) ~ Y (3.47)
y » 1. Equation (3.9) is valid for the general solution, not only initially
static solutions.
From Eq. {3.45), the absolute values of the gk(u,r) are bounded uniformly

in k. We conclude that the infinite sum in Eq. (3.20) for wII(u,r) is

absolutely convergent at all r > R, for any R > 2M, and that

Yypur) = o(x™(#+5+2)) (5.48)

The only restrictions on the time dependence of the retarded multipole moment
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A(u) are boundedness conditions on A(u) and its first [(2-p)/2] derivatives.
These are physically necessary conditioﬁs if the field is to have finite
energy density at all times to the past. Our general retarded solution
constructed from Eqs. (3.6) and (3.20), with the fn(u) given by Eq. (3.11)
and the gk(u,r) given by Eq. (3.38) or (3.40), almost certainly contains all
physically nonsingular retarded solutions to Eq. {3.1).

Some results of this section are not new. The solutions of Couch

17,18

et al. for the backscatter of electromagnetic and gravitational radia-

tion first order in M are essentially the same as Eq. (3.40), with k = 1.
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IV. THE LOWEST RADIATABLE MULTIPOLES

The physically most important multipoles are the electromagnetic dipole
and the gravitational quadrupole. These typically dominate in electro-
magnetic and gravitational radiation processes, respectively. They are
the lowest multipoles which can radiate, i.e., contribute r_l terms in the
respective field tensors at future null infinity. Furthermore, these
multipoles contain the apparently conserved Newman-Penrose quantities. 1In
this section we write out explicitly the general retarded solutions for
9,1 (electromagnetic) and Y5 (gravitational) through order (2M/r) in all

cagses and through order (2M/r)2 for ¥ .. Higher order terms do not con-

2
tribute to the NPQ's.
A. The Electromagnetic Dipole Field
In view of Eq. (3.8) the retarded electromagnetic dipole moment, E(u),
is defined by

E(u) = lim [£° 6, (u,1)] (k1)

oo

in the dipole part of the field. We have shown in Sec. III that this limit
always exists for retarded fields.

In the spin-weight-one part of the dipole field the function hl(Y) is

1 2
1 +y+ z Y
hy(y) = ———Z (1.2)
{1 +7y)

S0
1 +y+ ly2
: u dE 3
g (ur) = E(u) - [ duy 3=

s T (h-32)

with y = (u - uo)/2r, or
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w 2+zV —31- ¥
g,(u,r) = [ dy By )“—‘—“_IT“‘ s (4.3b)
0 (1 +y)
with
uy = u - 2ry . (L.4)
The result for cl(u,r) is
b vy +Ly?
@l(u,r) = r—3 E(u) + % (ZM)r_h I dy E(u ) —-—§———~—E~——
0 (1+7y)
o[ (M/x)?] . (4.5)

Alternatively, we could have begun with the spin-weight-minus-one

part of the dipole field. Here Eq. (3.10) gives

g0 - @) . (4.6)
Applying Eq. (3.5) twice,
£,(0) = e (0) | (4. 7)
and
£(w) = £, (w) = FEQ@) . (v.8)
The function hl(y) is simply
-1
hy(y) = (1 + y) , (b.9)
SO
gy (u,r) = S E(w) - [ duy 3 d_‘{% o . (4.10)

- ?12. _[‘: dy B(uy) (1 + 972 . (%.11)
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In Eq. (4.11), as in Eq. (4.3b), uy 1s given by Eq. (4.4)., Putting every-

thing together, we obtain

®1(u,r) — E(g)(u) + r-2 E(l)(u) + % £ E(u)
+&<m>f“ﬁ3ym%>U+yr2

+ ol (2M/0)%) . (4.12)

For a given time dependence of the dipole moment E(u) the solution
(4.12) for ¢_, must be consistent with the solution (4.5) for 0;- This

is easily checked by applying Eqs. (2.16a) and (2.16b) to the solution
(4.12). First,

®O :'5; [ro 1]
2 EWyy - 3 g
) e )Lz
- (oM dy E(
: 0 ¥ =% (1 + y)3
- ol (am/r)?) . (4.13)
Then
o= 2 (P o) (4. 1)

gives Eq. (%.5).
B.“The Gravitational Quadrupole Field

The gravitational quadrupole moment, G(u), is also very simply defined

by Eq. (3.8);

6(u) = lim [0 vy(u,r)] . (4.15)
X >0

The 1limit is again guaranteed to exist for retarded fields.
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The analogues of Eqs. (4.2), (4.3a,b), and (4.5) for the spin-

weight-two part of the gravitational quadrupole field are:

1+"&‘y+2y2+y:5+%yh
h (y) = : ; (4.16)
(1 +y)
2 3 1 L
0 @ 1t +yY +5y
g, (u,r) = G(u) - _r du, - (4.17a)
1t oo o dug 1+
o 2">+)\Ly+3>y2+gy3Jréy]‘L
= ‘r dy G(uo) & 5 (4.17b)
0 (1 +y)
¥,(u,r) = £ 6(u)
5 ig a® 3+’+y+:’>y2+gy3-fr-é-yl‘L
+35 (M) r f dy G(uo) =
o (1 +y)
+ 6[ (ﬂ’l/r)z] . (4.18)

The spin-weight-minus-two part of the gravitational quadrupole field
shows how the effects of the background curvature can enter \uI(u,r). (see

discussion following Eq. 3.10.) Start with
£ = 2eMw . (4.19)

The successive integratioms of Eq. (3.5) give

f2(u) = -é G<3)(u) ; (4.20)
£.(0) = 2 6@ (w) R NCONICU (h.21)
£, = M) 4 L@y Py (v.22)

£5(w) = £,,0,,(u) = £ 6(u) - & (207 @y . (b.23)
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Similar curvature terms appear in ¥, when { = 4 and in oy when £ = 3. Note

2
that the fn(u), n < 5, cannot be expressed as a finite sum over derivatives
of fs(u). For this reason, the quadrupole moment should not be defined as
the coefficient of r > in W_a(u,r); rather, Eq. (4.15) -~ which leads to
Eq. (4.19) -- is the better definition.

Invy

r) for ¥_, the function h1<Y) is again simple,

(e 2

h(y) = (1+y) . (b.24)

This makes it feasible to go on and solve for Hl 2(y), which appears in
)

the solution for g, (u,r). The result of applying Eq. (3.31) is
2 s

-2 7 11
HI,Q(Y) =(1+y) |1 + Ely +n(1 +y) + Ea
1 -1 2 4 -3 -4 -5
~5Y +t{Y¥Y -zmY¥ t+t3¥ +5Y
- (5 + 6y) y-6 (1 + y)]l . (k.25)

We finally have for W_E

Y_Q(u,r) -1t G(h) +-% e G(S) + r-S{G(E)_+ % (2M) 6(34

[e3]
rof =

+

RGO aslotey) - 2 (@ @l

+

1 (aw/r)® j‘: dy[c(uo) - 4 (am)? 0(2)(u0)1[- H o' (9)]

+8l(a/c)°] . (4.26)
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The coefficient of £,,¢ vanishes in Egs. (3.38), (3.39), and (3.140)
when £ = - p = s, which means that the Newman-Penrose constants appear in

a simple way in ¢ , and ¥_, (see Sec. VI).

V. PEELING PROPERTIES

There are three distinct types of infinities in an asymptotically flat
space-time, corresponding to three possible choices of time coordinate.
1f r -+ « with the static time coordinate t in the Schwarzschild metric
held constant, the limit is called space-like infinity. The limit r » =
at constant retarded time u is future null infinity, while the limit r >
at constant retarded time v (see Eq. 2.3) is past null infinity. Penrose” 10
has pioneered the study of the conformal structure of infinity. He trans-
forms coordinates to bring r = « in an asymptotically flat space-time to
finite coordinate values and then removes the induced singularity im the
metric by a conformal transformation. The original open, noncompact manifold
M is converted to a manifold M which contains future and past null infinity
ag regular null hypersurfaces (3+ and 47, respectively). Space-like infinity

is represented by a point I, which 1s generally a singular point of M.

o
A spin-s zero-rest-mass field in the physical open, noncompact manifold M
can be described by a totally symmetric spinor ¢A oo K with 2s indices.

The corresponding conformally transformed spinor

_ -8+ 1)
By .. =9 Bpio x (5.1)
satisfies the spin-s zero-rest-mass field equation in M. If ¢A cee K is

continuous at 3~ and J+, the field is called asymptotically regular. Penrose9

shows that an asymptotically regular field has the following peeling hebavior:
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(571 v,) (5.2)

has a limit at future null infinity, and

(%P v,) (5.3)

has a limit of past null infinity, where wp is the spin-weight-p part of
the field tensor. For an electromagnetic field WP = ®p and for a gravi-
tational field Wp = Yp.

Penrose then claims to prove that physically nonsingular gravitational
fields in an asymptotically flat space-time which obey the vacuum Einstein
equations near infinity are asymptotically regular. When an electromagnetic
field is present, the gravitational field is still asymptotically regular,
but the electromagnetic field obeys the weaker peeling condition that expres-
sions (5.2) -and (5.3) need only be bounded at future and past null infinity,
respectively.

Our solutions for the Schwarzschild background, since they derive
directly from the field equations without additional assumptions, furnish
an opportunity to 'check'" the peeling theorems, i.e., to see whether they
contain mathematical assumptions which do not follow from physically
necessary regularity conditions.

At future null infinity the peeling behavior exhibited by our general
retarded solution for scalar, electromagnetic, and gravitational test fields
in the Schwarzschild background is consistent with the strong form of the
Penrose peeling condition. For a given multipole the coefficients of
r~(s+p+1) are related to each other and (by definition) to the retarded

multipole moment A(u) in the same way as in flat space:



72

lim 5Py (u, )
T+ P

(2 +p)! (2 -8 /2 S0+ 8)r  (2-p)
= VPP :r] €2} R ORI R

In the limit r + « the general relativistic terms in Eqs. (2.16¢,d) and
(2.18e-h) are negligible, as are the terms coming from the r-derivative
in A. The last point follows from Eq. (3.9), as established by Eqs. (3.U46)
and (3.47) for the general retarded solution with bounded A(u).

To find the peeling behavior of our general retarded test-field

solution at past null infinity, let
u=v - 2r (5.5)

and take the limit r > « with v constant,  While v is not the exact advanced
time in the Schwarzschild background, it is the advanced time in the limit

r » . The backscatter part of the field, WII(u,r), is of order (2M/r)
compared with WI(u,r) and does not contribute to the limit. From Egs. (3.6)
and (3.11) the coefficient of the (2-p-k)th derivative of the retarded

multipole moment, A(l-p-k)(u), is

%0 o~ (prs+lek) _ 2-(p+s)/2 oLk (2 JEEIIJ)? k)¢ k:(T(-lp_-p)k:)T r'(p+s+1+k) (5.6)

in the limit r >> 2M, Without assuming anything about the relative magni-

tudes of the derivatives, at past null infinity, one obtains

L £-p - ] v _
LPte+l " (p+s)/2 lim ¢ o~k (2 +22 + k)! - g({ - X k A(Z-p~k)(v - o).
P e o0 1 3 P !

(5.7)
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The content of Eq. (5.7) is that the general retarded solution in the
Schwarzschild background approaches a retarded flat-space solution at past
null infinity as well as at future null infinity.

According to Eq. (5.7), the peeling behavior of the test field at
past null infinity depends on the asymptotic behavior of the first few
derivatives of the multipole moment in the limit v - 2r = u » - e« For
instance, a quadrupole gravitational test field [{ = s = 2, with A{u) = G(u)]

satisfies the Penrose peeling condition if and only if

lim o G(k)(u) , O0=k=hL | (5.8)
U -0

all exist, Only if all the conditions (5.8) are satisfied does

1im 5 P*1

™00

Yp'v = constant

exist for p= - s = - 2,

None of the conditionms (5.8) are satisfied by the general physically
nonsingular retarded test field solution. A condition that A(u) and its
first (£ + s) derivatives are bounded to the past follows from our basic
assumption that the sources were always contained in a bounded region r < R,
plus the physically necessary condition that Wp(u,r) be bounded. Since the
gravitational mass is a monotonically decreasing non-negative function of
retarded time at future null infinity in the nonlinear theory,19 an addi-
tional constraint on the time dependence of the multipole moment is that

the total energy radiated in the past from a particular Ql-pole be finite:

2 u
M(u = - w) 2—21? [2’ (—’re'—ns—,l—] I |A(“1)(uo)|2 du, (5.9)

We claim that there are no other constraints on A{u) which can be
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justified physically. The general retarded solution then does satisfy

s-p+l

lim r (5.10)

oo

¥

p‘v = constant =0

for O < P = 8, However, ts-p+1

Wp need not even be bounded at past null
infinity for - 8 < p < 0. While a particular solution of the test field
equations may happen to satisfy the generalization of conditions (5.8),

that

lim u* A(k)(u) (5.11)
> =0

exist for 0 = k = £ + 8, such solutions are a set of measure zero among all
solutions satisfying the energy condition (5.9).
A simple example of a physically acceptable solution to the test field

equations which violates the condition (5.11) is
A{u) = sin{b !n(u/ul)] (5.12)

in the limit u << uy < 0. This solution does satisfy the weak peeling
condition Penrose claims to derive for the electromagnetic field, in that
rs-p+1 Wp is bounded at past null infinity. However, even the weak peeling

condition need not be obeyed; for instance,
A(u) ~ sin[b(u/ul)l/s] (5.13)

gives a finite energy radiated for all [ = s = O, but

L2841 . p2/3(es-0) |

v

-8

at past null infinity for 0 < 8 = I < &s.
The trouble with the Penrose peeling theorem is an assumption about

the regularity of the conformally transformed space-time manifold M at null
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infinity. Penrose assumes that the metric on M and the conformal factor
@ are 03 eVerywhere, including null infinity. The asymptotic regularity
of the gravitational field is a direct consequence. What we have seen
with our test-field solutions (and what could have been seen from solu-
tions of the Einstein equations linearized about flat space) is that there
is no physical basis for the original assumption, when applied at past
null infinity to retarded fields. If free incoming waves are allowed,
then the peeling property need not hold at future infinity, either.

Let an "event" be a change in the gravitational quadrupole moment by
an amount greater than some arbitrarily small finite ¢. The Penrose assump-
tion of asymptotic regularity of the gravitational field implies that only
a finite number of events can have taken place in the entire infinite past,
and therefore that there was some definite first event. Physically, since
the space-time is in fact unbounded toward past null infinity, the generic
solution should contain an infinite number of events. The temptation to
treat the space-time as physically compact in the conformal mathematical
representation of infinity must be avoided.

In fact, it is completely inappropriate to apply special peeling con-
ditions at past null infinity when dealing with retarded fields. This
point has been emphasized previously by Sachs.20 One is not justified
in assuming any type of "analyticity" in the time dependence of the multi-
pole moments. Minimal peeling behavior necessary for asymptotic flatness
is discussed by Couch and Torrence.21

The peelihg property at future null infinity for linearized gravita-
tional fields and for electromagnetic fields in flat space has been established

by Sachseo and Goldberg and Kerr,22 respectively, on the basis of direct
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arguments from the general retarded solutions of the field equations.

VI. THE NEWMAN-PENROSE QUANTITIES

The standard prescription for calculating the NPQ's associated with

a spin-s fieldh’s’23

is as follows. Consider the Newman-Penrose field
scalar with spin weight p = 8. Extract the lowest radiatable multipole,
! = 8, by performing an angular integration. Denote the resulting function

of u and r by ws(u,r). For example, in the gravitational case
2
Y (u,r) = 2n [ sin 0 do do ¥o(u,1,0,9) Y7 (0,9) . (6.1)

The ws(u,r) are really 28 + 1 complex functions, corresponding to the

2s + 1 possible values of the axial eigenvalue m. Now let

28+1

P(u,r) = r ws(u,r) (6.2)
and
2s+1
Q(u,r) = —rf%;y (=%t ws(u,r)] . (6.3)
The lowest radiatable multipole moment is
As(u) = 1lim P(u,r) , (B.4)
>0
and the NPQ is
NPQ = lim Q(u,r) . (6.5)
T+

Both limits are at future null infi{nity. There are 2(2s + 1) NPQ's associ-
ated with the spin~s field, corresponding to the real and imaginary parts
of the (28 + 1) functioms Vg . .

4,5

agsume that

Newman and Penrose
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AS(U) NPQ . G(r—(28+3>) s (6.8)

Ws(u,r) Tyt 28 + 2
r r

so that both limits (6.}) and (6.5) exist, and then show that the gravita-
tional NPQ's are conserved {independent of u) if the field satisfies the
vacuum Einstein equations near null infinity. Exton, Newman, and Penrose23
prove that the electromagnetic and gravitational NPQ's are conserved by

the vacuum Einstein-Maxwell equations in asymptotically flat spacetimes.

Subsequent paperseu have examined various mathematical properties of
the NPQ's, but have not shed much light on their physical meaning. We try
to fill this gap by asking the following questions in the context of test
fields in the Schwarzschild background: (i) Are the NPQ's measurable in
any physically meaningful sense? (it) Under what conditions does the limit
(6.5), and therefore the NPQ, exist as a formal mathematical property of
the test field? (iii) If the limit does exist, what is the physical inter-
pretation of the value of the NPQ?

The answers, iun brief, are: (1) The NPQ'e are not measurable, and
therefore have no direct physical significance. (ii) The NPQ's do not
exist for all physically nonsingular retarded solutions to the field
equations. (iii) When the NPQ does exist, its value is proportional to a
certain average of the lowest radiatable multipole moment in the infinite
past.

We begin with the general retarded solution for Ws(u,r) as obtained

in Sec. III,

{2s+1) . r-(29+1)

¥ (u,r) = A_(u) © ” a u,r) (M r)k . (68.7)
(5,0 = A () 3 oy s lu) @y

Since the gk(u,r) are uniformly bounded if As(u) is uniformly bounded to
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the past,
P(u,xr) = As(u) + o(am/xr) . (6.8)

If a network of observers measures P(u,r) at values of r >> 2M, they will
find that P(u,r) 1s approximately independent of r and will be able to
identify it with the multipole moment. They can be confident that measure-
ments at finite r >> 2M do extrapolate to the limit r » «. The multipole
moment As(u) is thus measurable.

Like P{u,r), Q(u,r) is directly measurable by a network of observers
surrounding the source region. To see what their measurements might reveal
about the value of the NPQ, substitute the general retarded solution (6.7)

into Eq. (6.3). Find

o
Q(u,r) = (2s + 1)M (gl -r 7;} + 6(2M/r) (6.9)

As long as the measurements are made at r >> 2M, we can drop the contribu-
tion of the gk(u,r), k > 1, Explicit forms for gl(u,r) are given in Egs.
(4.3a,b) and (4.17a,b) for electromagnetic and gravitational test fields,

respectively. For general s,

u dAs
g (ur) = A (w) - [ aug @ M0 (6.10)
with
1 1
2O = 1Ty (12250 (6.11)
and
y=(u-uy)fer . (6.12)

Note that f£+s(u0)’ which appears in the general expression for gl(u,r)

(Eq. 3.38), vanishes identically when { = p = s as 4 consequence of the
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peeling conditions at future null infinity imposed by asymptotic flatness.

Our final expression for Q(u,r) at r > 2M is

u dAs 1
Qlu,r) = (28 + 1)M A (u) - ) duy =2 e ,
-0 o (1 +y)

(6.13a)

or integrating by parts and changing the integration variable from uy to
¥

Q(u,r) = (28 + 1) (28 + 2)M J‘udy As(uo =u - 2ry) (1 + y)—(28+3) .

(6.13b)

The integrals in Egs. (8.10) and (6.13) come from a superposition of incoming

waves (the backscatter) generated by previous changes in the multipole

moment.

To see if the limit (6.5) is measurable, consider as an example As(u) = A

for all u < u, and As(u) = A_ for all u > u,. Equation (6.13) gives

1 2 1

(28 + 1)M A, u< Uy

' G- -(2s+2)
(28 + l)M[A2 - (A2 - Al) (1 + ——27—1—) , u>uy .

The NPQ at all u is the initial static value of Q given by Eq. (6.1ka).

Q(u’r) =

However, at any fixed, finite value of r, Q goes smoothly toward a new
asymptotically static value appropriate to the new value of the multipole

moment in the limit u - uy >> 2r.

Measurements of finite accuracy will not detect any deviation from
the new static value of Q if the change in the multipole moment occured

at a time u, sufficiently far in the past, such that uy << u=-2r, It is

1

not physically reasonable to require that measurements be made infinitely

(6.14a)

(6.14b)
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far in the past (u~> - «), or at infinitely large radii (r » = at finite u),
or that they be infinitely accurate. If such over-idealized measurements
are excluded, there is no assurance that an apparently constant Q measured
by a network of observers will be constant all the way out to future null
infinity., Therefore, the value of Q at future null infinity, the NPQ, is
not measurable.

As Eq. (8.13b) makes explicit, the value of Q at given u,r is propor-
tional to a weighted time average of the multipole moment over the entire

y)-(25+5)

past history. The weighting fumctiom, (2s + 2) (1 + , cuts

off at y ~ 1 or u, ~ u - 2r, so the average is effectively over a time

0
Au = u - Uy ~ 2r previous to the retarded time at which Q is being evaluated.
In the limit r » o the intérval Au expands to cover the entire past history
uniforﬁly. The NPQ is a uniform average of As(uo) over the entire past,

if the average exists. We shall see below that such an average may not
exist. Since any finite range of uy makes a negligible contribution to

the average over the entire past, the value of the NPQ, if it exists, can~
not be extracted from measurements of the field at finite u and r, which

are only sensitive to As(uo) over a finite time to the past. In physical
terms, the presence of an '"average value'" in the field is due to the local
superposition of backscatter from the outgoing radiation of all previous
retarded times.

We define a measurable Newman-Penrose quantity (MNPQ) to be the value
of Q in a region of spacetime where Q, to the finite accuracy of the mea-
surements, is a constant independent of u and r. For an MNPQ to exist,
the average value of As(uo) must have been constant over times Au >> 2r

to the ﬁast. Either As(uo) itself was constant or substantial net deviations
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of As(uO) from the average value only lasted for a time su << 2r.

The above definition of an MNPQ differs from our previous8 identifica-

tion of the MNPQ as the coefficient of t-<25+2)

1

in an asymptotic expansion

of the field in powers of r The old MNPQ was not defined very precisely

mathematically, since an asymptotic expansion of the field in powers of

1--1 is not always possible. Once established, the old MNPQ does persist

until a time u - uy = 2r after the fileld becomes dynamic at u = uy- The

old MNPQ fails at the 1/3-speed-of-light cone u - u, = 2r because on this

1
cone the maximum value of y which appears in the integral (6.13a), with

)-(2s+2)

As(uo) static for u, < uy, is y= 1. Aty =1 an expansion of (1 + ¥y

0
in powers of . diverges.

The 1/3-speed-of-light cone has no special meaning for the new MNPQ's.,
These are associated with the quantity Q(u,r), which is always well-defined
and varies continuously when the multipole moment changes. For a éiven
measurement accuracy ¢ the new MNPQ persists until (u - ul)/Et = gle)
after the multipole moment changes (see Eq. 6.1hb, for example).

Goldberg25 has still another definition of MNPQ's which relates them
to an artificially comstructed "conserved flux'. Goldberg's MNPQ's also
change continuously when the multipole moment changes. Their values at
finite u and r are no more closely related to the values of the NPQ's, if
they exist, than our MNPQ's.

There 1s a limit on how rapidly Q(u,r) can vary. Note that since

As(u) is bounded

da
%Ql;: (28 + 1) (28 + 2)M \(‘: dy d—uﬁ (uy=u-2ry) (14 4~ (28+3)

(6.15)

1

= 6(r"" Q) .
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We now consider some examples of when the limit (6.5) defining the
NPQ at future null infinity does and does not exist. First, a sufficient
condition for the NPQ to exist is that the limit
As(- w) = lim As(u) (6.16)
wr=c0
exist. Then the average value of As(u) in the limit r > « in Eq. (6.13b)

is just As(- «), and
NPQ = (25 + 1)M AS(— Y (6.17)

A multipole moment which has the limit (6.16) is, by definition, asympto-
tically static in the infinite past.

A retarded solution to the test field equations which satisfies the
strong Penrose peeling condition at past null infinity is asymptotically
static in the infinite past and therefore possesses NPQ's. However, we
have seen in Sec. V that there are no physical restrictions which require
the field to satisfy the Penrose peeling condition at past null infinity
or to be asymptotically static in the infinite past.

As an example of a solution which is not asymptotically static in

the infinite past, but still possesses NPQ's, consider
As(u) = sin bu (6.18)

for a scalar field (s = 0). The integrals in Eqs. (6.13a) or (6.13b) for

Q(u,r) involve sine and cosine integrals. Let

S1(x) = 35 - £(x) cos(x) - g(x) sin(x) (6.19)
and

Ci(x) = ¥ + n(x) + £(x) sin(x) - g(x) cos(x) . (6.20)
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The functions f(x) and g(x) have asymptotic expansions

and

when x >> 1. The result for Q is

Q{u,r) = (1 - (2rb)2 g(2rb)) sin{u)

- (2rb)(1 - (2rb) f(2rb)) cos{u) .

In the limit r > «

Q(u,r) = - 595—9‘1+ @(~—1-—) 0

(br)?

(6.21)

(8.22)

(6.23)

(6.24)

so the NPQ exists and equals zero. 1In other words, the average of the

multipole moment can approach a limit as Uy > - o, even though the multi-

pole moment itself does not.

1f the multipole moment varies on time scales which are the order of

u - u. in the limit u, > - oo, the NPQ does not exist.

(o}

As(u) = sin(e sinh™ ! bu)

and ¢ << 1, As(uo) is approximately constant over most of the range

u > v, 2 4 - 2r when 2rb > 1. Thus

Q(u,r) = (2s + 1)M

sin[c sinh_l(— 2rb)l + 6(c)

and oscillates indefinitely in the limit 2rb - .o,

For instance,

if

(6.25)

(6.26)
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We conclude that the NPQ exists if and only if the average As(uo),

over a time Au = u - u,, approaches a limit as u

+ - o, Either A_is
(0] s

0
asymptotically static in the infinite past, or the time variation of AS
is entirely on time scales infinitesimally short compared with u - Uy in

the limit Uy o= Both of these conditions are rather special, and the
NPQ's will not exist for the generic retarded test field solution.

The conservation of the NPQ's, when they exist, has no predictive powers;
it is a reflection of the fact that an average of As(uo) over an infinite
time is not affected by time variations over any finite time span. There-
fore, the existence of the NPQ at any finite retarded time automatically
implies the existence of the NPQ with the same value at any other finite
retarded time. The value of the field at finite u and r depends, to any
finite accuracy, only on the multipole moment over a finite range of retarded
time to the past and is thus in principle completely independent of the
value of the NPQ.

We are left with NPQ's which, when they exist, have only a formal
mathematical significance. For a spin-s zero-rest-mass test field in any
static,‘spherically symmetric, asymptotically flat background (in any
metric theory of gravity), this mathematical significance has a simple
origin. As long as the metric coefficients for the static background are
analytic in (1/r) in some neighborhood of (1/r) = 0, it is possible to
expand the general retarded solution for the spin-weight p = s, £ = s part

of the field as

o~ (2841) | -(es41) 2 ak(gM/r)k g (u,r) . (6.33)

by = 4 (u) z

Here M is just a parameter indicating the scale of radius on which the



85

deviations from flat space become large; it need not have an interpretation
as a gravitational mass. The a, are coefficients chosen so that the static

solution for Ws has g = AS = constant., The relativistic equations may

couple gk(u,r) o g , etc. as well as the g . However, gl(u,r)

-3

can only couple to f25+1(u), as before, since the fn(u) withn < 2s + 1

are identically zero. The function H1 1(y) in this context, also, is the
b

homogeneous similarity solution to the flat-space spin-s fleld equations.

In general, then,

Q(u,r) = 2(2s + 2)M aanj dy As(uo =u - 2ry) (1 + y)-(25+3) + O(EM/r)] . (6.34)

The existence and value of the NPQ is related to an average over the lowest
radiatable multipole moment in the infinite past in essentially the same
way as before. The only possible difference is the value of the coefficient
a1 in the relativistic static solution. Thus the conservation of the NPQ's
(when they exist) depends only on asymptotic flatness; it is independent
of any special properties of the curvature corrections to the field equa-
tions.

An apparent special property of the Einstein-Maxwell equations for
test fields in the Schwarzschild background is the appearance of the NPQ's
in the spin weight p = - s part of the lowest radiatable multipole. In

Eq. (3.38), for example, f is not identically zero when £ = s = - p,

L+s
but it has a vanishing coefficient and does not contribute to gg(u,r).
However, even this is a result only of asymptotic flatness, plus consistency
of the equations for the different spin-weight parts of the field, The

leading backscatter at future null infinity can always be interpreted as

an incoming wave in flat space, so the coefficients of the incoming wave
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in the different spin-weight parts of the field must be related by the flat-
space equations. If the backscatter compensates for the change in multi-
pole moment in gl(u,r) of the spin weight p = s part of the field, as it
does when ¢ = s, it must do so in gl(u,r) of the other spin-weight parts

of the field, as well.

The generalization of our results to asymptotically flat solutions of
the full nonlinear Einstein and Einstein-Maxwell field equations is not
quite as straightforward. For instance, the NPQ's of the gravitationalv
field have a different form when a dynamic electromagnetic field is present.23
It does seem safe to conclude that if the lowest radiatable multipole moments
of the electromagnetic and gravitational fields do not have the asymptotic
behavior in the infinite past necessary for the existence of the test field
NPQ's, the NPQ's of the respective fields will not exist in the full non-
linear theory either. The conservation of the NPQ's, when they exist, is
probably as trivial a consequence of asymptotic flatnmess as it is for test
fields.

It may be possible to obtain general retarded solutions to the exact
field equations at large r similar to our test-field equations and check
the validity of these conjectures directly. Care must be taken not to
assume more regularity at future or past null infinity than is physically
justified.

Our approach to the physical intepretation of the NPQ's has concen-
trated on their existence and measurability. Glass and GoldbergZh have
interpreted'the conservation of the NPQ's in terms of invariant transforma-
tions and an artificially constructed differential conservation law. They

assume that the NPQ's exist and then show that their conservation is related
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to a superposition principle for ingoing and outgoing waves valid asympto-
tically in the lowest radiatable multipole in asymptotically flat space
times. We have not found any physical content to the "conserved flux"

they define.

VII. SUMMARY AND CONCLUSION

Using the general retarded solution of our master equation for the
radiative parts of test fields in the Schwarzschild background, we have
examined the nature of the fields' Newman-Penrose quantities and peeling
properties.

The explicit retarded test-field solution shows that the NPQ's are
a certain average of the lowest radiatable multipole moment over the infinite
past and do not exist unless the average exists. Even when they do exist
the NPQ's are not measurable, and therefore have no direct physical signi-
ficance.

The Penrose peeling theorem, if taken seriously at past null infinity,
would guarantee the existence of the NPQ's; but the theorem is defective
in assuming a greater degree of regularity of the field than can be justi-
fied on physical grounds.

The general retarded solution can also be used to study the detailed
development and décay of the backscatter and wave tails for all radiatable
multipoles. The wave tail isboutgoing radiation at future null infinity
at retarded times after the source has become static. This material,
however, will be presented in a subsequent paper.

We thank Kip Thorne and Richard Price for introducing us to this

problem and for many helpful discussions.
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This work was begun while one of us (J.M.B.) was visiting Caltech

as a Senior Research Associate in the spring of 1971L.
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4. ROTATING BLACK HOLES:
SOME GENERAL PROPERTIES

4.1 Discussion
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The perturbation theory of non-rotating, Schwarzschild, black
holes is well developed, but the generalization to rotating, Kerr black
holes is not at all simple. 1In féct, one must Qtart essentially from
scratch. Apart from the téchnical details of decoupling and separabil-
ity (which are crucial in their own right), a rotating black hole has
physical properties which are essentially different from a non-
rotating one, and these must show up in the perturbation treatment.
The most important new property is that a rotating black hole has
rotational energy which can be released (Penrose 1969). In the study
of particle trajectories, this energy release leads to the Penrose-
Christodoulou (Christodoulou 1970) process, an idealized way of
extracting some or all the available energy, leaving an "irreducible"
Schwarzschild hole. In the perturbation wave equations, by contrast,
the energy release appears as a non-conservation of the energy of the
perturbation field. A perturbation may gain energy at the expense of
the geometrical background, which is kept mathematically fixed. In
actuality, total energy is conserved (as it must be according to
general relativistic theorems); the black hole loses mass slowly and
quasi-statically to compensate for the energy fed into the perturba-
tion field. However, since the perturbation is infinitesimal, the
mass loss is very slow; thus one can hold the hole's geometry fixed
when solving the perturbation equations (at least one can do so if
rotating black holes are stable; see Section 6.2).

In the last twelve months, there have been rapid advances in

the perturbation theory of rotating black holes. Many of these
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advances were sparked by Misner's concept of gravitational synchrotron
radiation (GSR), which was first publicized in preprint form in
November, 1971 (see Misner 1972). 1In its original form, GSR was pro-
posed as a possible explanation of Weber's reported observations of
gravitational waves. On the basis of heuristic and semiquantitative
arguments, Misner suggested that a particle in orbit around a nearly
extreme~Kerr (rapidly rotating) black hole would emit gravitational
radiation and spiral into an extremely relativistic orbit near the
horizon. In this orbit the radiation was supposed to be intensely
bgamed into the orbital plane (synchrotron effect). Since the orbit
around a large rotating hole in the galactic center might be supposed
to be preferentially in the galactic plane, and since the sun lies very
precisely in the plane, a large factor of gain, lO2 to lO4 , was sup-
posed to result. It was also suggested that a synchrotron orbit might
extract the hole's rotational energy, a larger source of energy than
the mass of infalling particles.

Beginning in November, 1971, extensive calculations were carried
out in Maryland, Princeton, Seattle, and Pasadena to test whether
Misner's ideas would actually work. It turned out that the GSR model
fails in many particulars: bound particle orbits are not relativistic
enough for intense beaming; the only synchrotron radiating orbits are
unbound, unstable, relativistic even at infinity, and they deposit
energy into the hole, not extract it. On these and several other
grounds, GSR is not an astrophysically viable concept. But it has been
a productive one: the techniques developed in proving it non-viable

have proved immediately applicable to other problems.
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The following paper considers in some detail the properties of
a rotating black hole which are important for energy extraction and/or
synchrotron radiation; more importantly, it is also (particularly
parts II, IV, and Appendix B) a foundation for further applications of

perturbation techniques given in Sections 5 and 6.
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4,2 Rotating Black Holes: Locally Nonrotating
Frames, Energy Extraction, and Sca'ar Syn-
chrotron Radiation (Paper V; collaboration
with J.M. Bardeen and S.A. Teukolsky; to

be published in Astrophys. J., December 1972)
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ROTATING BLACK HOLES: LOCALLY NONROTATING FRAMES,
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ENERGY EXTRACTION, AND SCALAR SYNCHROTRON RADIATION
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and
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ABSTRACT

This paper outlines and applies a technique for analyzing physical pro-
cesses around rotating black holes. The technique is based on the ortho-
normal frames of '"locally non-rotating observers.”" As ome application of
the technique, it is shown that the extraction of the rotational energy of
a black hole, although possible in principle (e.g. the "Penrose-Christodoulou"
process), is unlikely in any astrophysically plausible context. As another
application, it is shown that, in order to emit '"scalar synchrotron radia-
tion," a particle must be highly relativistic as seen in the locally non-
rotating frame — and can therefore not move along an astrophysically rea-
sonable orbit. The paper includes a number of useful formulae for particle

orbits in the Kerr metric, many of which have not been published previously.
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I. INTRODUCTION

Although there is as yet no certain observational identification of a
black hole, the study of the properties of black holes and their interac-
tions with surrounding matter is astrophysically important. Black-hole
agtrophysics 1s important because: (i) At least some stars of mass 2 2 %3
probably fail to shed sufficient matter, when they die, to become white
dwarfs or neutron stars, and instead collapse to form black holes. (ii)

At least one irregularly pulsating X-ray source, Cygnus-X1, has been iden-
tified with a binary system which has a massive, invisible component; this
might well be a black hole emitting X-rays as it accretes matter from its
companion (for observations, see e.g. Schreier et al. 1971 and Wade and
Hjellming 1972). (iii) A black hole of 1oh to 1o8 M@ might lie at the
center of our galaxy and be responsible for radio and infrared phenomena
observed there (Lynden-Bell and Rees 1971); and (iv) Gravitational waves

seem to have been detected coming from the direction of the galactic center
with such intensity (Weber 1971 and references cited therein) that black-
hole processes are the least unreasonable source. We are faced with a double
mystery: first, puzzling observations; second, a poor theoretical understand-
ing of what processes might occur near a black hole. Both sides of the
mystery call for further theoretical work.

Most interactions of a black hole with its surroundings can be treated
accurately by perturbation techniques, where the dynamics of matter, elec-
tromagnetic and gravitational waves takes place in the fixed background geo-
metry generated by the hole. (Notable exceptions are the interactions of
two or more black holes, or of black holes with neutron stars of comparable

mass, and the highly nonspherical collapse of a star to form a black hole;
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currently there are no adequate techniques for treating such processes. )
. Most previous perturbation analyses have dealt with non-rotating (Schwarzschild)
black holes. The static nature of the Schwarzschild metric and its spherical
symmetry vastly simplify most problems. The orbits of particles can be
described easily, and the theory of electromagnetic {Price 1972a) and gravi-
tational (Zerill{ 1971; Price 1972b) perturbations is well developed. A
number of interesting model applications have begun to appear in the litera-
ture (Davis et al. 1971, 1972; Press 1971; Mismer 1972a; Misner et al. 1972).

However, black holes in nature are likely to be highly rotating (Bardeen
1970a), and must therefore be described by the Kerr (1963) metric, rather
than the Schwarzschild metric. Phenomena in the viciﬂity of a rotating
black hole are considerably more complicated than in the non-rotating case.
The metric is only stationary, not static, and only axisymmetric, mot spher-
ically symmetric. A complete description of particle orbits is rather com-
plex (e.g. de Felice 1968; Carter 1968a). The equations governing electro-
magnetic (Fackerell and Ipser 1972) and gravitational (Teukolsky 1972)
perturbations are intractable in that they have not been completely separated
into ordinary differential equations. The scalar wave equation is separable,
and is therefore heavily relied on for qualitative perturbation results,
even though there are no known classical scalar fields in nature.

A further difficulty is the complexity of coordinate systems for describ-
-1ng processes near a Kerr hole. Boyer-Lindquist (1967) coordinates are the
natural generalization of Schwarzschild curvature coordinates and are the
best for many purposes, but sufficiently close to the hole — in the "ergosphere"
— they are somewhat unphysical. Example: Physical observers cannot remain

"at rest" (r, 9, ¢ = constant).
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In this paper we outline a method for treating physical processes in
the Kerr geometry which has proved extremely fruitful in our research.

The method, previously used by one of us for a different application
(Bardeen 1970b), replaces coordinate frames by orthonormal tetrads (i.e.
non-holonomic frames) which are carried by 'locally non-rotating observers."
In essence, the non-rotating observers are chosen to cancel out, as much

as possible, the "frame-dragging" effects of the hole's rotation. They
"rotate with the black hole" in such a way that physical processes as
analyzed in their frame are far more transparent than in any coordinate
frame. The method of locally non-rotating frames (LNRF), and the nature

of the Kerr geometry as seen from the LNRF, are described in §III.

In 811, as a foundation for the LNRF description, we review properties
of the Kerr metric and formulae for its particle orbits. While many of
these results are known to those working in the field, many have not appeared
in the literature; also we have used computer-assisted algebraic techniques,
and other methods, to find equivalent formulas much simpler than many in
the literature. These should prove useful to other investigators.

In 85IV we apply the formalism of locally non-rotating frames to the
question of synchrotron radiation (in nature, gravitational synchrotron radia-
tion; here, scalar synchrotron radiation) from particles in orbits near a
black hole. This type of mechanism has been proposed by Misner (1972a) as
a possibie explanation for the intensity of Weber's observed radiation: a
narrow synchrotron cone beamed in the galactic plane. We find that sub-
stantial beaming is possible only for particles in unstable, highly energetic
orbits — orbits much more energetic than mere infall from infinity can pro-

duce. It is theoretically possible to extract energy from the rotating
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black hole itself (Penrose 1969; Christodoulou 1970). The LNRF methods
give a clear picture of this energy extraction process, and make the pro-
cess seem astrophysically implausible. In particular, it seems unlikely
that such extraction could realistically accelerate matter into a synchrotron-
radiating orbit. These results make us pessimistic about the applicability
of Misner's interesting synchrotron concept to any realistic astrophysical
model.

In future papers, we will make use of methods described here to analyze

more detailed and realistic processes near a rotating black hole.

II. BASIC PROPERTIES OF THE KERR METRIC AND ITS ORBITS

We choose units with G = ¢ = 1. In Boyer-Lindquist coordinates the

metric is
2 2 2
ds® = - (1 - 2Mr/n) dt - (4Mar sin“0/r) dt deo
+ (z/8) ar? 4 T ac® + (r2 PN Ma“r sineg/z) s1n°0 dcp2 , (2.1)

or, in contravariant form (matrix inverse),

G- &G @R 26
2 2 2

+l(i)2+A-a mo(_g)
Z\® ZAsin20 B:p

(2.2)

.

Here M is the mass of the black hole, a is its angular momentum per unit

mass (O = a =< M), and the functions A, 5, A are defined by

A= r2-2Mr+52 (2.3)
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= r2 + 32 coszc

o
1]

V(rz +82)2- 52A sin29 . (2.3 con't.)

For a = O equations (2.1) and (2.2) reduce to the Schwarzschild solution
in curvature coordinates. '

It will be useful to express the metric (2.1) in the standard form
valid for any stationary, axially symmetric, asymptotically flat spacetime —

vacuum Or nonvacuum -

M Ay

2 + ee‘y(dcp - w d':)2 + e dr” + e ae® . (2.14)

as® = - &%V at®

This standard metric becomes Kerr if

e2V - ZA/A

eQW = sinEO Al
2p
e '=z/a
2u
e 2 =5
w = 2Mar/A . (2.5)

The event horizon ('one-way membrane") is located at the outer root

of the equation A = O,

r=r+-=-M+(M2-321/2 (2.8)

for all 6, . Over the range O = a =M, r, varies from 2M to M. The
static limit (outer boundary of the ergosphere) is at the outer root of
(s ~ 2Mr) = 0O,

r =

rg =M+ (M2 - a° coseg)l/2 . (2.7)
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A physical observer — i.e. one who follows a timelike world line — must be
dragged in the positive ¢ direction if he is inside the static limit.
Observers inside the static limit, i.e. in the ergosphere, have access to
the '"'negative energy trajectories" which extract energy from the black hole
(see §III).

The general orbits of particles (or photons) in the Kerr geometry are
described by three constants of motion (Carter 1968). In terms of the
covariant Boyer-Lindquist components of the particle's L-momentum at some

instant these conserved quantities are,

E = - P, = total energy
L= pqJ = component of angular momentum parallel to symmetry axis
2 2., 2,2 2 2 2
Q= py~ + cos6[a (n° - P, ) o+ Py /sin“Q] . (z.8)

Here p is the rest mass of the particle (p = O for photons), which is a

trivial fourth constant of the motion. Note that Q = O is a necessary

and sufficient condition for motion initially in the equatorial plane to

remain in the equatorial plane for all time. Any orbit which crosses the

equatorial plane has Q > 0. When a =0, Q + p¢? is the square of the total
Hy

angular momentum. By solving equation (2.8) for the pu's and thence the p"'s,

one obtains equations governing the orbital trajectory,

1/2
b} %;— =+ (v,) / (2.9a)
z %2—: + (vg)l/2 (2.9b)
b %}\‘L - (aE - L/sineO) + aT/a (2.9¢)

b %{»= - a(aE sin20 - L)+ (r2 + a2) /A . (2.9d)
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Here )\ is related to the particle's proper time by A = 1/p, and {s an affine

parameter in the case p +» O, and

T = E(r2 + a2) -La |,
V.= L e A L Y
Vg=Q- coseo[az(ue - E2) + Le/sinQO] . (2.10)

Without loss of generality one is free to take p = 1 for particles and p = 0O
for photons, in equations (2.8), (2.9), (2.10). (For particles this merely
renormalizes E, L, and Q to a "per unit rest mass" basis.) Vr and VQ are
"effective potentials' governing particle motions in r and 6. Notice that

Vr is a function of r only, V_ is a function of & only, and consequently

&)
equations (2.9a) and (2.9b) form a decoupled pair. Also, it is not diffi-
cult to show (Wilkins 1972) that if E/u < 1 the orbit is bound (does not
reach r = «), while all orbits with E/u > 1 are unbound except for a
"measure-zero" set of unstable orbits.

The single most important class of orbits are the circular orbits in
the equatorial plane. For a circular orbit at some radius r, dr/d\ must

vanish both instantaneously and at all subsequent times (orbit at a per-

petual turning point). Equation (2.9a) then gives the conditions

[0
(o]

v (r)

|
o

Vr'(r) = (2.11)

These equations can be solved simultaneously for E and L to give

rs/2 - ngl/Q 1/2
VLT VN :ZMI/Q)l/E (2.12)

H+

Efn =
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£ u/2(:2 3 2ant/? 12, G2

Lk = B2 02 4 ol /212 (2.13)

In these and all subsequenﬁ formulas, the upper sign refers to direct orbits
(i.e. co-rotating with L > 0), while the lower sign refers to retrograde
orbits (counter-rotating with L < 0). For an extreme-rotating black hole,

a = M, equations (2.12) and (2.13) simplify somewhat,

r t M1/2 rl/2 - M

B/ = LRV Ex v fora-n (2.14)
£ u(e/2 + y1/2 1/2 : w3/2
Ly = ( rS/h(rl/z tr2;1?£)1/2 , fora=M . (2.15)

The coordinate angular velocity of a éircular orbit is
Q= dgfde = ¢t r41/2/(:.-3/2 £ aMl/Q) . (2.18)

Circular orbits do not exist for all values of r. The denominator of

equations (2.12) and (2.13) is real only if

T VP V. (2.17)

The limiting case of equality gives an orbit with infinite energy per unit
rest mass, i.e. a photon orbit. This photon orbit is the innermost boundary

of the circular orbits for particles; it occurs at the root of (2.17),

. (2.18)

= 2 osY: 2
r= rph = 2Ml1 + cos[5 cos <; M)]

For a = 0, r_, = 3M, while for a = M, oh = M (direct) or 4M (retrograde).

ph

For r > rph not all circular orbits are bound. An unbound circular

orbit is onme with E/u > 1. Given an infinitesimal outward perburbation, a
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particle in such an orbit will escape to infinity on an asymptotically
hyperbolic trajectory. The unbound circular orbits are eircular in geo-
metry but hyperbolic in enétgetics, and they are all unstable. Bound

circular orbits exist for r > L where r . is the radius of the marginally

mb
bound ("parabolic") circular orbit with E/u = 1,

te T MFa+ 2M1/2(M F a)l/2 . (2.19)

Note also that r , 1is the minimum perihelion of all parabolic (E/u: = 1)
orbits. In astrophysical problems, particle infall from infinity is very
nearly parabolic, since the velocities of matter at infinity satisfy v << c.
Any parabolic trajectory which penetrates to r < r

mb

into the black hole. For a = O, r, = UM; fora =M, r
wb mb

must plunge directly
= M (direct) or
5.83M (retrograée).

Even the bound circular orbits are not all stable. Stability requires

that Vr"(r) = 0, which yields the three equivalent conditions

1. (52 >0y

1/2 r1/2 _zalzo0 ,

r2 - 6Mr t+ 8aM
or

rzr (2.20)

where L is the radius of the marginally stable orbit,

re = M3+ 2, F [(3 - zl)(s + 2+ 2z2)]1/2
Z, =1+ (1 - ae/M2)1/3 [+ a/M)l/5 + {1 - a/M)l/s]
Z, = (382/M2 + 212)1/2 . (2.21)
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For a =0, r

ms - M fora=M, r =M (direct) or 9M (retrograde). Figure

1 shows the radii r , ro(O = n/2), o Tmb’ and r  as functions of a
for direct and retrograde orbits.

For a = M, r, = rph = Tp = Tng = M, and it appears ;hat the photon,
marginally bound, and marginally stable orbits are coincident with the
horizon. Appearances are deceptive! The horizon is a null hypersurface,
and no timelike curves can lie in it. The confusion is due to the subtle
nature of the Boyer-Linquist coordinates at r = M for a = M. In fact the
orbits at r ., r ., and r_ _ are all outside the horizon and all distinct.

ph’ “mb ms
Figure 2 illustrates the nature of the problem; it shows schematically the
equatorial plane embedded in a Euclidean 3-space, for a/M = .9, .99, .999, and 1.
In the limit a > M the orbits at rph, L and L remain separated in pro-
per radial distance, but the entire section of the manifold r =< Tos becomes
singularly projected into the Boyer-Lindquist coordinate location r = M.

In the limit a » M, the proper radial distance between s and r ., goes to

mb

infinity, as does that between Tos and Ty The proper distance between r

and rph remains finite and nonzero, as does that between r

mb
ph and . (The

infinities are not physically important; an infalling particle follows a
timelike curve, while the infinite distances are in a spacelike direction.)
For astrophysical applications with a very close to M (see Bardeen

1970a), one often needs to know explicitly the limiting behavior of T,

r Tob? and LA Let a = M(1 - 5); then

ph’

r+ =~ M1 + (25)1/2]

- 2 92)

v ~ul1 4 2/
mb

r

r =M1 (ha)1/3] . (2.22)



Using these formulae, one finds that the proper radial distance between r,

and Toh becomes M/2 fn 3, that between Toh and r . becomes M In !(1 + 21/2)/31/2],
and that between T and rﬁs becomes M 2n[27/6(21/2 - 1) 5'1/8] in the limit

8+ O.

The orbits at r = M are distinct energetically as well as geometrically.

By taking appropriate limits of equations (2.12) and (2.13), one obtains

1/2 1/2

Efp > 37 , Lip > 2M/3 atr=r asa->M

Eu>1 , Lu>2M atr=r

as a - m
mb

Efu~ow , Liu+2ME/L atr-= Top 288 M. _ (2.23)

A clearer picture of the relations among these various orbits, and
among general orbits in the equatorial plane, will emerge in our comsidera-

tion of locally non-rotating frames.

III. LOCALLY NON-ROTATING FRAMES

For any stationary, axisymmetric, asymptotically flat spacetime [ for
which the metric can always be written in the standard form of equation
(2.4)], it 1s useful to introduce a set of local observers who, in some
sense, "rotate with the geometry" (Bardeenm 1970b). Each observer carries
an orthonormal tetrad of l.vectors, his locally Minkowskian coordinate
basis vectors. Rather than describe physical quantities (vectors, tensors,
etc.) by their coordinate components at each point, one describes them by
their projections on the orthonormal tetrad, i.e. their physically measured
components in the local observer's frame. The desideratum governing the
choice of observers is that physical processes described in their frames

appear 'simple'. Physics is not simple in the Boyer-Lindquist coordinate



108

frames because (1) the dragging of inertial frames becomes so severe that

the t coordinate basis vector (3/dt) goes spacelike at the static limit

Ty

indices typically introduces algebraic complexity.

and (1i) the metric is nondiagonal, so raising and lowering tensor

For metrics in the standard form (2.4), there is a uniquely sensible

choice of observers and tetrads: the locally non-rotating frames {LNRF) for

which the observers' world lines are r = constant, © = constant,

P = wt +

constant, Here w = - gt\m:/gq:“p i8 the function appearing in equation (2.5).

The orthonormal tetrad carried by such an observer (the set of LNRF basis

vectors) at the point t, r, O, ¢ is given by

o o) - @ 2 2

() T e "a% - (%)

) 1
to)T TWTLE ™

- s
o) ™% 9 ’(A

(3.1)

Here the first expression for each basic vector is valid for any spacetime

with the standard metric (2.1); the second expression specializes to the

Kerr metric. The corresponding basis of one-forms (or covariant basis

vectors) is

e(t) = e dt = (EA/A)I/2 dt

. Mg o ()2 e

n
E(9) -e2d0- g1/2 do
\'s v 2Mar sin © 1/2
dt + e’ dyp = 75 dt + (_)
(z4)

sin © deo .

(3.2)
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From (3.1) and (3.2) one reads off directly rhe Doyer-Linuquist components

e“(i) and eu(i) of the LNRF basis vectors, since
m J
€ =e u
(1) (1) 3
and
E(i) = e (i) gxll . (3_3)

As matrices l!eu(i)|| and '[eu(i)!], these componerts transform one back
and forth between the LNRF frame and the Boyer-Lindquist ccordinate frame.
For example, the standard transformation law for components ef a tensor

reads

v
) b) = % (a) © (b) v

_(a) _ (b)
% TS ey (3.4

The rotation one-forms, which allow one to read off the vonnection coef-

(1)
ficients F(a)(b)(i) by @(a)(b) = F(a)(b)(i) e , are given by

Qie)(r) = 7 Y, e oxp(= ) ). : o, exp(V - v - p) o(@
2e)(e) = 7 V0 (- 1) el L Lo emlt v -y @
oo 7T 2 w g explV - v - ) e - 3 w g exalt = v - ) o(®)
¥(r)(6) = *1,0 (- #2) e - Ho p exp(= 1) o)

sy = Ve el ) € do et oy o) oY)

90) () = = ¥,0 Pl 1) ¥ +3 wg exp(V = v - ) e

©
—
w
.
o
~—

Here a comma denotes partial differentiation. (Note that Y(a)(b) = " “(b\(a)')
I ~ /
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One indication of the simplicity of the LNRF is the simplicity of the
Kerr geometry's Riemann tensor when expressed in LNRF components. Define

the four quantities

Q = Mr(r2 - 3a2 cosEO)/Zs
Q, = Ma cos 0(3r2 - 32 c:ose‘O)/Z::‘S
S = 3a sin © A1/2(1:2 + 32)/A

A a° sin20/(r2 + a2)2 . (3.6)

N
L}

[ The quantities A, £, A are defined by equation (2.3).] Then one obtains,

Rie) (o) (0)(e) = = R(r)(e)(x)(6) = U

Rie) (o) ()(0) =~ %

Ry (e} (o) (r) = " Mo @)@ (e) =~ Q T~

w
L
N

Rey(e)(e)(e) = M) (x)(e)(0) =

Riey(e) () () = = Ble)e)(g)(e) = 5 %

2+ 2z

Rey(e) o)) " " T2

1 2z
Rie)(0)(£)(0) = = (o) (x)(e)(x) = U Tz

' 1 +2
Reye) (o) (r) = - R 1+. : . (3.7)

The other nonzero components follow directly from the symmetries of the
Riemann tensor. Notice that Q2 vanjishes in the equatorial plane; also,

that the dependence on z is always quite weak since
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0=z = 0.043

for all r, ©, a of interest'(r+ Src<w 0=0=17 O0=<as=xM).
At any instant in time, the local frame of any physical observer dif-
fers from the LNRF at the observer's location by a Lorentz transformation.
One need only know the velocity of an observer relative to the LNRF, and
the transformation formulas of special relativity, to obtain the Riemann
tensor (or, similarly, any other physical quantity) in an arbitrary frame.
To use the LNRF in the analysis of processes in Kerr orbits, we must inves-
tigate the nature of the Kerr orbits as seen from the LNRF, i.e, their dis-
tribution in velocity space. In general, the L-velocity u has the LNRF

components

(a) = oM (a) (3.8)

where the u' come from equation (2.9), and the eu(a) from equation (3.2).

The 3~velocity relative to the LNRF has components

o Mo (@)
7/'j =;V_;H"(?)- J=1r, 06, ¢ . (3.9)
v
In particular, note that
olo) _ eW-V(Q W {3.10)

where Q = uw/ut as before. 1In the special case of circular, equatorial

orbits, 7(¢) is the only non-vanishing velocity component, and is given by

(o) _ 3 Ml/e(r2 ¥ 2aM1/2 r1/2 + 32)

v A2 . 77 :

(3.11a)

In the case a = M, (3.11a) further reduces to
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s w2032 4 2 o /2 1 0P2) (3.11b)
(/2 £ W73 (272 £ /%) ' .

2)-1/2

Corresponding to 7(¢), the quantity y = (l - W(qo is given by

L. A}/e(rs/z . aMl/e)
rl/h(rs/2 ERYEN 25M1/2)1/2 (> rafry 2M32)1/2

(3.12a)

or for a = M

) (rs/e . Ms/g)(rl/e + M1/22447
7= r1/h(r1/2 PRVEN VET NI ac)1/2

(3.12b)

For all a, v(w) increases (but not monotonically!) from zero at r = w to 1

(the speed of light) at the circular photon orbit r = r Another inter-

ph’
esting point is that V(“o(r = rms), the velocity of the most tightly bound
circular orbit, goes to 1/2 (not 1!) in the limit a -~ M. The point once
again is that for a = M, the marginally stable orbit and the photon orbit
are distinct. The marginally bound orbit, also distinct, has
7(¢)(r = rmb) > 2-1/2 for a - M. 1In fact, all stable, bound orbits around
a rotating black hole — except "plunge" orbits irrevocably approaching the
horizon — have || substantially bounded away from 1. Consequently, a
Lorentz transformation from an LNRF to a stable, bound orbital frame never
brings in factors greater than order unity.

We now consider non-circular orbits in the equatorial plame (Q = 0;
E, L arbitrary). For each possible orbit, and at every radius r, we ask
an LNRF observer to measure the velocity of the orbit at the instant that

(r)’ N

it passes him. The velocity is represented by a point in the ¥
: 2 2
plane, somewhere inside the speed-of-light circle ?jr) + W(w) = 1. Thus,



certain regions of the two-dimensional velocity space at radius r corres-
pond to bound, stable orbits; other regions to hyperbolic orbits which
escape to infinity; other regions to "plunge" orbits which go down the hole.
Figure 3 shows a typical sequence of velocity-space diagrams corresponding
to a = .95M (a = M would be similar, but would collapse several different
interesting radii to r = M). The following types of orbits are delineated

in Figure 3: bound stable orbits which exist for r > r_, ~ 1.94M (direct)

mb
or 8.86 (retrograde), denoted (B); plunge orbits originating at infinity,
i.e. with E/u = 1, denoted (P); escape orbits which are the time reverse
of (P) orbits, denoted (E) [since nothing can come out of the hole, some
physical process near the hole is necessary to inject a particle into an
(E) trajectory); hyperbolic orbits which originate at infinity, and are

scattered back to infinity by the hole (H); captured plunge orbits, i.e.
plunge orbits with E/u < 1, denoted (C). Points on thebborder between

regions (H) and (P) of velocity space correspond to unstable orbits, and

(r)

the intersection of such a border with the line ¥ = O marks an unstable,
unbound circular orbit.
Figure 3 also indicates the region of "negative energy states" first

exploited by Penrose (1969). In the LNRF, a particle's 4-momentum has

the flat-space form

-1/2

p=ulr, ) ,r=Q0Q-1"7 (3.13)

and its conserved total energy (dot product of L-momentum with the time-

coordinate Killing vector) is

=
il

(a)
-1~>-(B/Eat)=-pt=-pa e (a)

= uy(ev + we¥ 'V(CP)) (3.14)
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so that in the equatorial plane,

E= p,yA-l/z(rAl/2 + 2Ma 7;(")) . {(3.15)
E is negative for
2 2,1/2
() r{r" - Mr + a
v < - e (3.186)

that is, below a horizontal line in the velocity plane. Outside the ergo-
sphere this line fails to intersect the velocity-space circle, and there
are no negative energy states. At the event horizon the line is %(¢) = 0.
Negative energy trajectories are always captured plunges (c).

In the Penrose energy-extraction process, a body breaks up into two
or more fragments; if any fragments are injected into negative energy
orbits, the sum of the total energy of the remaining fragments is greater
than the total energy of the original body, since E i{s an additive con-
served quantity. The extra energy comes from the rotational energy of the
black hole (see Christodoulou 1970). Wheeler (1970) and others (see e.g.
Mashoon 1972) have speculated on the possibility that some natural astro-
physical process, for example the breakup of a star by the tidal gravita-
tional forces of the black hole, could result in the extraction of energy
from the hole via the Penrose process. In the LNRF picture (Fig. 3), the
negative energy states and the (B) orbits are always separated by a sub-
stantial velocity, even for a ~ M and r = M. Thus, if a star is taken
initially on a bound, stable.orbit in the equatorial plane, there can be
no energy extraction from its breakup unless hydrodynamical boosts of ~ 1/2
the speed of light occur. Similar results hold if the initial orbit is

taken to be a plunge orbit of any reasonable sort, i.e. one no more bound



than the most bound (B) orbit.

Appendix A proves the general theorem which the LNRF picture makes
plausible: If two trajectories differ in emergy-per-unit-rest-mass by an
amount of order unity, then their locally measured relative velocities
differ by a substantial fraction of the speed of light. This result holds
everywhere outside the event horizon (and even inside it, for that matter).
The most bound plunge orbit that is astrophysically plausible has E/u = 3-1/2
(minimum energy of a plunge orbit which results from the decay of a bound,
stable orbit around any rotating black hole). Such an orbit is bounded
away from the negative energy states by ‘Z| = 0.5¢c. Thus, energy extraction
cannot be achieved unless hydrodynamical forces or superstrong radiation
reactions can accelerate fragments to more than this speed during the infall.
On dimensional grounds, such boosts seem to be excluded: Suppose a self-
gravitating object of mass m and radius r falls into a black hole of mass

M. The criterion for Roche breakup at radius R is dimensionally
M/R3 ~ m/r3 . (3.17)

After breakup, the object experiences tidal accelerations of magnitude
~ r(M/RS) ~ r(m/rz) for a period of time ~ (RB/M)I/Q ~ (rs/m)l/z, so the

characteristic velocity of breakup is dimensionally
1/2
v~ () (3.18)

which is << 1 for any infalling object except highly bound neutron stars.

Since equation (3.17) can be rewritten as

R/M = (r/m)(m/m)>/3

<11if m«<< M and r < 10m, (3.19)
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for a neutron star falling into a substantially more massive black hole, the
Roche limit is inside the event horizon. There will be no observable break-
up at all.

As for the superstrong radiation reactions, we can only note that all
calculations to date (e.g. Davis et al. 1971, 1972) show that energies

radiated from plunge trajectories are typically

Ea” m(m/M) << m (3.20)

go that reaction boosts are of the order of
¥~ w2 1 . (3.21)

In the next section we consider the scalar wave equation in the Kerr
background and find no evidence of any breakdown in the estimate (3.20)

for astrophysically plausible processes.

IV. THE SCALAR WAVE EQUATION AND SCALAR SYNCHROTRON RADIATION
The equation governing a scalar test field ¢ in the Kerr background is

-g) 2| gl/2 ¢y - Lt (h.1)

Oo¢ =
® shl, v

where T is the density of scalar charge per proper volume as measured in
the rest frame of the charge and g = det(guv). Comma denotes partial (not
covariant) differentiation. In Boyer-Lindquist coordinates (- g)1/2 =5 sin O,
and the metric g’ is given by equation (2.2); equation (4.1) becomes
2 2
é% A-g% + ;1%75 g% sin © g% +»<:Ii§; - %§>-§i?
bMar  3° [(r2 + a2)? 2 2 ] 7
- > - o

2
"TA dp ot 362

l(p = LisT . (4.2)
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Carter (1968) first demonstrated the separability of equation (4.1), and
- the explicit separation of (4.2) has been given by Brill et al. (1972).

The solutions have the form
0 = ;; I dw[Rzmw(') Smt(- 52w2, cos 0) &' e'iwt] . (%.3)

Here Sml(— ang, cos @) is the standard oblate spheroidal harmonic satis-

fying

2
1 d d 22 2 m m
(%zg—a- 36 8in 6 g5 + xml + a“w” cos“B - singo) §5,=0, (4. %)

2

where %ml is the eigenvalue of S" We write sml(o) for sz(— a w2, cos ©)

2

and take the normalization

+1 2n 2
[ alcos 0) [ agfs®,(0) &™) =1 . (4.5)
-1 0

Substituting (4.3)-(L4.5) into (4.2) one finds that the radial function

R satisfiles

{mw
4,4, a°m° - hMar mw + (ra + 82)2 o -n - 222 R (r)
dr = dr A ml @ Imw
+90 1 2n m
dw iwt -imep
= J‘E ‘r d(cos @) J‘ dcp[e e S I(O) (hyr):T)] . (L.8)
oo -1 [¢]

Although T is a scalar charge density, not a tensor gravitational source,
one often seeks insight into gravitational-wave processes by taking T to
be the trace of the stress-energy tensor, i.e. one sets the fictitious scalar
charge of a point particle equal in magnitude to its mass p. If the particle

follows a world line z*(7), onme has

1= /g0t - 2Me)) fori-r, 0 0 (5.7)
u



118

where ut = dt/dt. For a particle in an equatorial, circular orbit of radius
rp, with angular velocity dqa/dt = Q, this becomes
BT = z (hma/u®) 8(r - r,) s%,(0) s%,(0) o lmat lme (4.8)
m

Thus, the fourier-transformed source {right-hand side of eq. (4.6))
has non-vanishing w-components only for w=m), m= 0, 1, £+ 2 ... ., Further,
if by convention we take the real part of ¢ to be the physical field, then
we can restrict attention to w = O without loss of generality, so that only
positive m's contribute if Q > 0, and negative if Q < 0. With this conven-
tion, the sum in (4.8) ranges fromm = 0 to m = sgn(R) =, and a factor 2
must be {nserted on the right-hand side of (4.8) for m # O.

Equation (4.8) can be simplified to an effective-potential equation

by the introduction of a new coordinate r* such that

dr*/dr = r2/A . (4.9)
Explicitly,
2 2 r-r
G N | +)
r¥ = r + MInA + fa (4.10a)
RNV RN

or for a = M,
r* = r + Mn(r - M) - Me/(t - M) . (4.10b)
(Recall that r,=Mt (M2 - 52)1/2.) If we put
V=r Ry (4.11a)

equations (4.6) and (4.8) become

2
LY s ux) v = B §P (0) g(rx - x %) (4.11b)
dr¥* r u P

P
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where sz(o) = Smt(- agmgne,o) and W(r) is the effective potential

2 2 2 2
W(r) = [Lr——t—ié'M] - ﬁAﬁ—[}\ml - 2&Qm2 + aEszz + ﬂi—-e——a—)— . (b12)
r r r
Our boundary conditions for equation (4.11) agree with those of Misner
(1972b), and we will not discuss them here, except for a brief summary in
Appendix B. Misner and others use a slightly different r* coordinate, r*n

defined by

dt*n/dr = (r2 + 82)/A

instead of equation (4.9). This r* has the conceptual advantage that
t r*n are null coordinates, but the practical disadvantage that it makes
equation (4.12) and subsequent equations somewhat more complicated.

Locally non-rotating frames give insight into the physical content
of the separated wave equation (4.1l). We eliminate @ in favor of %, the
LNRF linear velocity of the orbiting particle as measured in a LNRF {in
previous sections 7 was denoted 77("0)]. It is useful to define a function
2(r), the linear velocity of the frame rigidly rotating with angular velocity

Q
’ "r(r) = —}75 (2 + &% ¢+ M%) 0 - oMa| . (4.13)

A

I

Thus, the particle's velocity is 7 ﬂr(rp)- Then (4.12) takes the simple

form
2 2
We) =, - o?f1 - Lo XES ) 20 o) |
r 1_,_1_ 2Ma r
v 3t 3
r T

It 1is shown in Appendix C that 7\‘” = m2 for all physical cases. Since

')r(rp) < 1 and Mr > a® outside the horizon, W(rp) = @(m2) < 0. Thus, in
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the WKB limit of large barrier (large m), the field dies out exponentially
as one moves radially away from the particle. Since 7(r) ~ ) > » for large

r, W(r) becomes positive at some point r, > L and travelling waves pro-

1 i

pagate from there to infinity. Similarly, W(rs becomes positive at some

point Ty T, < r, < rp, 80 travelling waves exist for r < Ty
We are now in a position to discuss the interesting question of '"beamed

radiation" which was first raised by Misner (1972a). Two prerequisites for

beamed radiation (i.e. radiation emitted 1hto a solid angle much smaller

than 4x) are (1) that the source itself contain high multipoles (£,m >>1)

and (11) that the field coupled to these multipoles radiate to infinity in

a relatively unimpeded manner. For a point source (i) is satisfied, so

(11) becomes the essential condition to check. The WKB barrier factor which

separates the source from its wave zone is
r

1
expl- I [~ W(r)]1/2 dr*} = exp(- B) . (4.15)

o

The question is: with £ >> 1, can B be made small? We will see below that
- the most favorable case (the case of smallest B) 18 m = f. Appendix C

derives the result

2
] 57\”51(1 +1) (%.18)

so the effective potential (L.14) for m = f is, with fractional errors of

8(1/1),

2 2
Wir) = - £§-A ——1—552152——5 for t=m>>1 . (4.17)
¥ 1+ 55 + 2Mg

r r

The corresponding barrier-penetration factor for m = { is
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r
L 2)1/2
By [ 5 (12-1%:') ) / dr . (4.18)
r0(1+§2-+2:?> (r2-2Mr+82)1/2

This barrier factor can be cast in a simple form by noticing that in the

Kerr geometry, the proper circumferential radius Rc and proper radial dis-

tance Rp are given by

R, = eV - (r2 + a2 2M32/r)1/2
LW (22 . (h.19)
So
r=r1
I S Y (R v(r)e)l/e L (k.20)
l‘=l’o

Large values of ! will contribute to the radiation field only if the integral

in (4.20) 18 << 1. This requires two conditions: first,
2
1- V(rp) << 1 (k.21)

i,e. the particle orbit must be highly relativistic as seen in the LNRF;

second, |¥(r)| must increase monotonically as r increases from r_ to r.
(If it decreases initially, them B cannot be made arbitrarily small even

as v(rp) > 1.) The fact that in the Kerr geometry, by contrast to flat
space, the function |%(r)! can decrease with increasing r is closely related
to the existence of circular photon orbits. At radius r the direction

cosine relative to the ¢-direction in the LNRF for a photon trajectory

with energy E and exial angular momentum L is
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%%)zm 1 . . ' (k. 22)
p' Y (/L - we'Y r(x)

The quantity %(r) here is identical with that of equation (4.13) if Q = E/L.
Since |¥(r)| increases outward at r = r,, with |W(r1)| = 1, the photon
trajectory that is tangential there is at an inner turning point. Conversely,
gince (W(r)| decreases outward at r = r2, the tangential photon trajectory
is at an outer turning point. The photon orbit is circular at r = Ty = Ty
if |7(r)| is independent of r to first order near r = r;. Thus if T, is
inside the circular photon orbit, high multipoles will not radiate to infinity
even for |7| -+ 1. (In physical terms this is because, inside rph, the radia-
tion is beamed "down the hole'.)

There are no non-plunge geodesic orbits inside rph in any case; but
our results are equally valid for accelerated circular trajectories inside
rph’ and for radiation emitted at pericenter by non-circular orbits and by
accelerated trajectories in gemeral. We can prove that no bound orbit

satisfies |¥| > 1 outside of Ton 28 follows:
RS ol®) = (12 AR (¥ 4 we¥ o9 (k. 23)

Since the last term in parentheses has no root outside rph, % is bounded
away from 1. Our conclusion is that high multipole radiation is suppressed
exponentially with increasing { for all astrophysically relevant equatorial
orbits. There is no reason to believe that non-equatorial or nom-circular
orbits would be any more favorable than our arbitrarily accelerated circular
trajectories.

Of course, there can be some finite beaming in the radiation by multi-

poles below the exponential cut-off. The characteristic f of the cutoff
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is that £ for which B ~ 1. The most interesting cases are rp =T and

rp =Ty

can be evaluated in terms of elementary functions with the results,

in the limit a > M, £ = m > 1. In these cases equation (4.20)

Bes0.1202 , r~t
ms

or Loypogs - O and (.24)

Bx0.078 ¢ ,r>r,

or £ .o¢s = 120 In other cases, (4.20) [or (4.14) if m < £] can be inte-
grated numerically. Figure 4 shows representative results with a = M for
various ratios m/f, for various geodesic circular orbits and circular
accelerated trajectories chosen to be tangent to marginally bound ("parabolic')
orbits at pericenter. One sees that { = m is the case most favorable to
propagation, and that the analytic results (4.2L) correspond to the most
favorable orbits. We have obtained similar results for various values of
a, 0 <a=<M; the case a = M 1s the most favorable to high multipoles.
Momentarily setting aside the question of astrophysical plausibility,

it is interesting to see just how ! as ¥ > 1. Choose the origin

cutoff = ©

for proper radial distance to be Rp =0 at r = L and expand ¥(r) in a

Taylor series

R R \2 R \3
”(x) = 7/[1 sagRsd B(EP‘) + @(iﬂ) ] . (k.25)
[ o] [+3 [+]
Thus
: R R 2 1/2
(- 2022 - A2 <1 SR os %) (4.26)
[ R

-1/2
when ¥ = (1 - Wg) / >>1. The first order term in equation (4.26) is

1/2

sufficient to represent (1 - ?2) accurately over the whole range of
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integration of equation (4.20) if o >> 1. For most accelerated (non-

geodesic) trajectories (& is non-zero in the limit y + « and one obtains

1
R Ry e G T (v.27)
3 3
2y 0 3ay
or lcutoff = 3075. For geodesic orbits with 7 >> 1 (orbits just outside

the circular photon orbit) 0y << 1 and the second order term is large
relative to the first order term over almost all of the range of integra-

tion. Therefore, in the latter case,

B = —t [‘1 (1 - B2 4x = £ 7t (4.28)
T 172 2. . a - 1/2 2 :
B Y 0 8 Y
and £ = E—Bl/g 72 In other words, there is a qualitative difference
cutoff x : ! q

between geodesic orbits and accelerated trajectories with the same LNRF
velocity; the accelerated trajectories are more efficient sources of high-
multipole radiation. In theé Schwarzschild metric B = 1 at the circular
photon orbit, while in the extreme (a = M) Kerr metric B = 12 at the direct
circular photon orbit (rp x Ton M1+ 2(2/3 5)1/2]) and B = 75/64 at the
retrograde circular photon orbit (rp z Ton LM),

The locally non-rotating frame can also be used to interpret the

radiation in the wave zZone, r > r As measured by an observer at rest in

1
the LNRF at radius r the scalar field oscillates with a proper frequency

G=1(a-uwe’ . (4.29)

A photon with energy E and axial angular momentum L has a locally measured

energy (frequency) in the LNRF
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p(o) = e V(E - wL) . (k.30)

In particular, the frequency of a photon emitted tangent to the
velocity-of-1light circle at r = ry for which E/L = Q, changes in the same

way with radius as the frequency 6f the scalar synchrotron radiation.

V. CONCLUSION

Physical processes near a rotating black hole often reveal their
underlying nature most ¢learly when they are examined in the locally non-
rotating frames. In the case of rotational energy extraction, the LNRF
picture points out the severe hydrodynamical constraints: energy extraction
requires boosts of ~ .5c¢ in "short" hydrodynamical times. In the case of
synchrotron radiation, the LNRF picture indicates that such beamed radia-
tion is possible only from astrophysically implausible (unbound, unstable)
orbits. The simplicity of the Riemann tensor in the LNRF picture points
toward a number of future hydrodymamical applications. The physics of
rotating black holes is sufficiently rich and varied as to require a
variety of techniques, among which the LNRF ﬁicture is, we think, an impor-

tant one.
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APPENDIX A

BOUNDS ON ENERGIES AND RELATIVE VELOCITIES OF PARTICLE ORBITS

Consider a particle of rest mass p and conserved energy E = - P Ep
where p is the h-momentum and £y is the time Killing vector. Not all
values of E/u are possible for trajectories through a given point in
spacetime. For example, particles at radial infinity must have E/u =1,
We first ask, what is the bound on E/u for a general point?

Pick an orthonormal frame at the point. The L-velocity of a particle

has components u = (7, yv) with v a 3-vector and 7 = (1 - 32)-1/2; the time
Killing vector has components Et = (go,g), with £ a 3-vector. The parti-
cle’'s ratio of energy to rest mass is given by

E=-u-t =y -v- 8 , (a1)

where the dot denotes the scalar product in the local Euclidean 3-space.
Evidently, a necessary {but not a sufficient) condition for an extremum
(hence a bound) on E/u is

vet=tve (a2)

where v = |y|, &€ = |¢]. Now we distinguish two cases: If £, 1is spacelike
(e.g. in the ergosphere of the Kerr geometry), then we have go < §&; and

inspection of equation (Al) shows that all values of E/u are possible,
-w<EMlM<+w for £, spacelike . (A3)

The infinite limits correspond to v + 1 with the two signs of equation (A2).
If, instead, gt is timelike (e.g. at radial infinity), so that §o > ¢, then
the right-hand side of equation (Al) is always positive, and there is a non-

trivial lower bound on E/u. Rewriting equation (Al) and using equation (A2)
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with the upper sign, we obtain
2 2,2y . 2 2 2,2
(67 + E%/T) vo - 28 g v + (6,5 - ESWT) =0 . (A4)

The extremum in E/u is obtained by setting the discriminant of this equation,

a quadratic in v, equal to zero; this gives

0= (B2 (EA)Z - €& 4 g P . (a5)

The root E/p = O is spurious, and the lower bound on E/u is
2 2 2
(B/uW)" =" - &" =~ ¢ & . (a8)

We see that the allowed range of E/u at a point depends only on the norm

of the time Killing vector at that point,
1/2 .
(- &, - gt) < E/p <+ o for &, spacelike. (a7)
Finally note that the two cases (A3) and (A7) imply as a general condition,

(B/wP + g, - £, >0 . (48)

Now turn to a different problem: If two orbits through a point have
different ratios of energy to rest mass, El/ul, and E2/p2, they have dif-
ferent 4-velocities and therefore a nonzero relative 3-velocity, |w]
(velocity of one particle seen by an observer comoving with the other
particle). What is a bound on |w|?

At the point of interest, choose the orthonormal frame which gives the
orbits equal and opposite 3-velocities v, so that the tangent L-velocities

have components

Y = (7, - w) o, 4, = (7, + 73) . (a9)
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The magnitude v of v is related to the relative velocity |w| by the velo-

city addition formula,
lw] = 2v/(1 + v°) . (a10)
By analogy with equation (Al) we have
E /iy =7 &g+ 7.3 o
Efu, =78 -7V E . (A11)

Defining an angle q‘by * & = vt cos n, and solving equations (All) for §02

td

and 52, we obtain

i

b = (By/uy + Ex/u)?/(0P) (a12a)

2 2
6% = (B /uy - B/n)2 (0P P cosPn) . (a12b)
| U - )
Subtraction of (Al2b) from (Al2a) yields
2 2 2., . 2 2
(By/ug - Bofup)™ = [(B)/uy + Bp/uy)” + 107 £ - £ ] v cos™y

< [(El/ul + Eg/ug)g + h72 PO I (a13)

This inequality can be solved for v; the result is

Ey /by - Exfuy

L (ak)
(B m% + g 8O (8 /n," + 8, - 8

2
v 2

By equation (A8), the quantities appearing inside the square roots are
guaranteed to be positive.
To apply equation (Al4) to the question of energy extraction in the

Kerr geometry, we note that for all 6, ¢, and r > L §t . gt < 1l. If we
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take El/p1 = 3_1/2 (the minimum energy of a plunge orbit which can result
from the decay of a bound, stable orbit around any rotating black hole),

and E2 = 0 (the boundary of the negative energy region), we obtain

1/2

v22-3 (Al5a)

or by (Al0),

lwl = 1/2 . (A15b)

Hence, this class of all physically plausible plunge orbits is always separated
from the negative energy region by at least half the speed of light. To
achieve energy extraction, hydrodynamical forces or super-strong radiation
reactions would have to accelerate particle fragments to more than half

the speed of light in the "short" characteristic time of the plunge (see

eq. (3.17) and the discussion following it).

APPENDIX B

BOUNDARY CONDITIONS FOR EQUATION (L4.11)

At r* > 4+ oo the asymptotic solutions are
ik r*
y = e ut gHimp Sml(O) e ° (B1)
1/2

vwhere k= (W(r* = + )] = w (positive square root). By convention we
may take w as positive [see discussion following equation (4.8)], so the
correct solution, corresponding to outgoing waves, is the upper sign.

On the horizon, r¥ + - o, the discussion 18 not quite so simple. The

agymptotic solutions are

o tik_r
v = -iwt +imp § l(Q) e (B2)
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with k_ = [W(r* = = uﬁ]l/g (positive square root). Again by convention
w > 0. The correct boundary condition is not that the wave appear ingoing
in the coordinate frame (i.e. not necessarily the lower sign in [B2]).  Rather,
the wave must be physically ingoing in the frame of a physical observer.
Since all physical observers are related by Lorentz transformations, they
will all agree on the boundary condition, and we can calculate with any con-
venient observer. Take an observer at constant r just outside the horizon,
Since he is within the ergosphere, he is dragged in the positive ¢ direction
with some angular velocity dgp/dt = Q4 > 0. This observer sees the local t,r
dependence of §y (eq. [B2]) as
-i(w-md)t ik o

Yy~ e e . (83)
Hence, for physically ingoing waves one must choose the sign (X 1k ) opposite to
the sign of (w - mod). On the horizon 0grw = a/( 2Mr+) for all observers.

Hence the correct sign in (B2) is

ifm< O, lower sign (-~)
ifm>0,
lower sign (-) 1f w> m

upper sign (+) if 0 < w < .

In the last case the waves are apparently outgoing in the coordinate picture,
and in fact they extract rotational energy from the rotating black hole, even
though they are physically ingoing in the local frame of any physical observer.
This kind of wave is generated by a particle in any direct, stable circular
orbit for a = M, and also holds for small a {f the particle orbit is suffi-

ciently far out.
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However, even for a = M the highly relativistic orbits at r ~ rph cannot
extract energy from the black hole. When 5 = (1 -~ a/M) << 1 and

r =M1+ 2(2/38)2], then

q -0, ~ai(l- /20y (25)/2 50 (Bk)

so the particle loses energy to the black hole.
For an alternative and more rigorous discussion, the reader is referred

to Misner (1972b).

APPENDIX C

BOUNDS ON EIGENVALUES OF SPHEROIDAL HARMONICS

Define the following differential operator L on the closed interval
r-1,1%
d 2, d
L=-3 (1-x%) 3o+ g(x) (c1)
where

2
lcel(l - x2) + B >0 . : (c2)

g(x)

i}

Then the oblate spheroidal harmonics Sml(cg,x), where c2 < O, are eigenfunc-

tions of L which are regular at x = % 1:

m m ’
LS,=a,5, . (c3)

Here m is fixed and £ =m, m +1, ... . 1In the text, we use X = cos 6,

2 2 2

¢ = ~a  and xml = OEI - ‘c ‘. We - use a in this Appendix to make L

Vi

a positive operator so that varfous theorems are directly applicable. In

this Appendix, all functions u on which L acts will be normalized as follows:

1
j‘qux=1. (i)

-1
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(This differs from the normalization of s in the rest of the paper by a

2
factor of 2n, and from the normalization used by Flammer (1957):

m -1/2
s, (here) = N

Sun (Flammer). Flammer (1957) tabulates the conventions
used by various authors.)

Let u be a trial function for equation (C3). As Friedman (1956) shows,

an upper bound p for the lowest eigenvalue, Cim? is given by
1
=J’ uLudx (cs)
-1
while a lower bound is
1 1/2
o-[J‘ (Lu)edx—ﬂz] . (cs)
-1
Taking as a trial function the associated Legendre function u = Pmt and
using the identity
x P (x) = o mrlgm oy, im0 (c7)
! 20 + 1 241 2 + 17 21
to perform the integrals, we find
o2+ 1) ol? 1 2’*1\1/2 x 0+ 1) leJ2 (c8)
T2r+3 |t e\er+ s, Shpp ® NI

The right-hand side of this inequality gives the upper bound quoted in §IV,

Ny, < 2(8 4+ 1) . ' (c9)

(43

Since |c|2 - a® m2 02, and 72 < 1 implies a2 02 < 1/4, the left-hand side of

inequality (C8) gives

A, 2w . (c10)
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The eigenvalues of the Sturm-Liouville operator (Cl) increase monotonically

with L, hence inequality (Cl0O) gives
2
Apg 2 ® . (c11)

Inequalities (C10) and (Cll) are the lower bounds used in $IV.

The upper bound (C9) holds for f £ m as well, since from the theory of
Sturm-Liouville equations (e.g. Courant and Hilbert 1953), if we increase
g(x) to a new function 8'(x), then the new eigenvalues ary =A'pp + Ile are

all greater than the old ones. Choose

2 m2
g'(x) = ||+ 2 . (c12)
1 -x
Then
xml < A'ml = 2(f + 1) . (c13)

An alternative lower bound can be derived by choosing

2
g'(x) = -2 5 s 8(x) . (c1k)
1 -x

Then

. 2 2
xmtzxml—z(z+1)-|c| 2402+ 1) - /40" . (c15)

This inequality is stronger than the bound (Cll) when n < /5 2(2 +1).
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Fig. 1. Radii of circular, equatorial orbits around a rotating black hole
of mass M, as functions of the hole's specific angular momentum a.
Dashed and dotted curves (for direct and retrograde orbits) plot
the Boyer-Lindquist coordinate radius of the innermost stable (ms),
innermost bound (mb), and photon (ph) orbits. Solid curves indicate
the event horizon (r+) and the equatorial boundary of the ergosphere

(ro).
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2.

Embedding diagrams of the "plane" © = /2, t = constant, for rotat-
ing black holes with near-maximum angular momentum. Here a denotes
the hole's angular momentum in units of M, The Boyer-Lindquist
radial coordinate r determines only the circumference of the "tube".
When a > M, the orbits at The’ Tmb and rph all have the same cir-
cumference and coordinate radius, although -- as the embedding dia-

gram shows clearly ~-- they are in fact distinct.
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circular photon orbit

M (>rps ®1.94 M) r=rph (retrograde) ® 3.96M  r=9.M>rps (retrograde)

Distribution in velocity space of equatorial orbits passing through
various radii r, around a rotating black hole with a = 0.95M. Each
circle is the "space' of equatorial, ordinary velocities {d(proper
distance)/d(proper time)] as measured in the proper reference frame
of a locally nonrotating observer. The velocity circles are labeled
by the radius r of the observer. The center of each circle is zero
velocity; the edge is the speed of light; the W(r)direction corres-
ponds to radial velocities, the 7(¢) direction to tangential velo-
cities. A particle which passes the observer with its velocity in
an E-region will escape to infinity. Similarly, P denotes plunge
trajectories from infinity into the hole; C denotes ''captured"
plunges which could not h;;é come from infinity; H denotes '"hyper-
bolic" orbits from infinity and to infinity; B denotes bound, stable
orbits which neither plunge nor escape. The shaded regions are the
"negative energy" orbits (see text for details). Diagrams for other
values of g_(the hole's specific angular momentum) are qualitatively

gimilar.
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Bound Circular Orbits
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"Porobolié" Orbits at Pericenter
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The "barrier factor" B for (scalar) synchrotron-typ;\?aaihtion from
stable orbits around an extreme-rotating black hole. In the WKB
approximation (valid for high multipoles, £ >> 1), the power radiated
in a given /,m multipole is proportional to the exponential cutoff
exp(- 2B). Since B/f is seen to be bounded away from zero, modes of
high { are always suppressed. The upper graph applies to stable,
circular, geodesic orbits. The lower graph is computed for accel-
eréted circular trajectories which are tangent to (and have the
velocity of) marginally bound "parabolic" orbits at pericenter. We
exclude extreme unbound orbits on the grounds of astrophysical

implausibility (see text for details).
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Efficient perturbation calculations require decoupled, separated
equations. In the case of scalar-field perturbations of a Kerr black
hole, decoupling is immediate (the field has only one component) and
separability to ordinary differential equations has been known since
1968 (Carter 1968). (In fact, one of the simplest derivations of the
Kerr metric starts with the ansatz that an axisymmetric, stationary
solution allow the scalar wave equation to separate (Carter 1968, 1973)).
Until Teukolsky's (June, 1972) discovery of decoupled, separable equa-
tions for gravitational and electromagnetic equations, the scalar
equation was the only tractable equation for rotating black holes. The
following two papers and additional discussion treat several different
phenomena--all on the basis of scalar field calculations which, pre-
sumably, give qualitative information on the analogous electromagnetic

and gravitational phenomena.
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5.1 Time Evolution of a Rotating Black Hole Immersed
in a Static Scalar Field (Paper VI; published in

Astrophys. J., 175, 243 [19721)
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TIME EVOLUTION OF A ROTATING BLACK HOLE
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WiLriam H. PrEsst
California Institute of Technology, Pasadena, California
Received 1971 November 5; revised 1972 January 21

ABSTRACT

We compute the time evolution of a Kerr (rotating) black hole which is immersed in a perturbing
scalar field, uniform at large distances from the hole. The perturbing field produces a torque on the hole
which (i) is perpendicular to the field lines; (ii) causes the perpendicular component J, of the hole’s
angular momentum to decrease exponentially with time Ji = (J1)iiiia1 €xp (—1/7), 7 = (3¢8/87G) X
(mass of hole)™* X (energy density of field)™!, bringing the hole’s total angular momentum J into even-
tual alignment with the field; and (iii) accomplishes this alignment by converting rotational energy of
the black hole into irreducible mass. We conjecture extensions of these results to black holes perturbed by
external electromagnetic or gravitational fields. According to these conjectures “spin-orbit coupling” in
a binary star system should not remove a significant fraction of a black hole’s intrinsic angular momentum
during the system’s lifetime against gravitational-radiation damping.

I. INTRODUCTION

Hawking (1972) has recently proved by global methods an important theorem whose
physical content can be stated very concisely: ““A stationary black hole must be either
static or axisymmetric.” In particular, a rotating, Kerr black hole immersed in a non-
axisymmetric perturbing field must become nonstationary; it must evolve in time, until
either (i) it has lost its angular momentum and become a static (Schwarzschild) hole or
(ii) it has achieved an axisymmetric orientation with respect to the perturbing field, if
one exists. The perturbing field can be of any sort: gravitational, electromagnetic,
scalar, or whatever.

A number of interesting questions come to mind: How does the black hole choose be-
tween options (1) and (ii) above? Or does it choose a combination, both losing angular
momentum and changing its orientation? What is the timescale of Hawking’s process?
(Will an astrophysical black hole align itself with the galactic magnetic field in 1 msec?
or not even in 10'° years?) These are questions which cannot be answered by using
Hawking’s global methods of investigation.

Luckily, Ipser (1971) has recently described a process for Kerr black holes which is
precisely the “microscopic” physical description of Hawking’s global prediction. Imagine
a Kerr geometry perturbed nonaxisymmetrically by a static field (for example, the field
generated by distant static sources). Inside the ergosphere there are no static, timelike
world lines. Hence any observer will see the perturbing field as dynamic in this region
(cf. Bardeen 1970). In fact, Ipser points out, local observers will see a flux of energy
through the event horizon (“down the hole”). This energy cannot have come from
infinity where things are static; rather, it must come from the rotational energy of the
black hole. The hole is evolving to a new configuration with a different “irreducible”
mass (cf. Christodoulou 1970), and this evolution must continue until the conditions of
Hawking’s theorem are satisfied. In changing its angular momentum, the hole exerts a
torque back on the perturbing field and (in principle) on the sources of that field.

In this paper we examine the quantitative details of Ipser’s mechanism for the case
of a perturbing scalar field. We calculate the time evolution of a Kerr black hole im-

* Supported in part by the National Science Foundation [GP-27304 and GP-28027].
t Fannie and John Hertz Foundation Fellow.
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mersed in a scalar field. For convenience we take the field to be uniform and constant at
great distances from the black hole, although this restriction could be relaxed easily.
The results of our calculation justify in detail the qualitative description presented
above. Moreover, we find that the intrinsic angular momentum J of the hole evolves
with time according to a very simple law:

Ji = constant , Ji = Ju{t = 0) exp (—¢/7) . (1)

Here || and 1 denote components of angular momentum respectively parallel and
perpendicular to the direction of the gradient of the scalar field (direction of the field
lines), and 7 is the characteristic time

T = (3/87)(c%/G)(mass of hole)~!(energy density of field)~? . (2)

In particular, this evolution means that only an initial orientation precisely perpen-
dicular to the field will cause a Kerr hole to evolve into a Schwarzschild hole; other initial
orientations will give a partial loss of angular momentum and a reorientation along the
field lines.

Why do we limit ourselves to a scalar field (which is unknown in nature) rather than
studying a vector (electromagnetic) or tensor (gravitational) field? Only for practical
reasons: the vacuum field equation (wave equation) for a perturbing scalar field is sepa-
rable and can be solved analytically in the stationary case; by contrast, the vacuum
Maxwell equations in a Kerr geometry are probably inseparable (Fackerell and Ipser
1972} and have not (to date) been solved, while the equations governing gravitational
perturbations of the Kerr metric have not fully been written down in manageable from,
and will almost certainly be inseparable when they are finally derived (cf. Teukolsky
1972). Also, since Ipser’s description of the inflow of rotational energy through the hori-
zon does not depend on the details of the field, we should expect that the main results of
the scalar case are extendable (at least qualitatively) to the case of other fields. Below
we conjecture the extension to electromagnetic and gravitational perturbations, and we
discuss implications for a black hole in a binary system. (In what follows we take units
withe =G = 1))

II. STATIONARY SCALAR FIELDS IN A KERR METRIC

We begin with the unperturbed Kerr metric for a rotating black hole in the form
(Boyer and Lindquist 1967)

ds? = (r* + a? cos® 0){dr*/(r* — 2Mr + a?) + d6] + (2 + a?) sin? Bdy?
— det + [2Mr/(r* + a? cos? §)](a sin? 8dp — dt)?, (3)

where M is the hole’s mass and ¢M is its angular momentum (0 < a < M), oriented
in the direction § = 0. The event horizon is at r = M + (M? — a?)V/2 and the outer
boundary of the ergosphere is at r = M + (M? — a2 cos? §)!/2,

The perturbing scalar field § and its source (a scalar charge density p) satisfy

. Q2 = 4mp , 4)

where [ ] denotes the covariant d’Alembertian in the Kerr geometry. (Note the assump-
tion that the field is a weak perturbation: we ignore the second-order effect of the field’s
stress energy in distorting the geometry of the Kerr solution.) If the charged sources are
static in the background geometry, the force of the field acting back on its sources is

dF, = Q pd(proper volume) . (5)

(See Chase 1970 for details and references about the theory of scalar fields in curved
spacetime.)
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The wave equation (4) is known to be separable in the vacuum Kerr geometry (Carter
1968; Brill et al. 1972). In the case of stationary fields, the separation is particularly

simple:
Q = Rin(r) Vin(0, ¢) , )

where ¥1,.(8, ¢) is a spherical harmonic and R;.(r) satisfies, in source-free regions,
4T n < ___ma -
dr [(r 2Mr + @) drRl"‘] + [ﬂ — 2Mr + a? W+ 1)]R"" =0. (@
One fundamental solution of equation (7) is
Rim = (r — 7 )= (r — r)tmelfyFi{l + 1, — ;1 + 2ima/8; (r — 7.)/8], (8)

where § = 2(M? — a®)V% ry, = M + (M? — @)V, The other fundamental solution is
obtained by complex conjugation. »Fy is a hypergeometric function, actually a poly-
nomial in r of degree [ since ! is an integer. Appropriate linear combinations of these
solutions (the details need not concern us here) yield two “physical” solutions, con-
veniently normalized and satisfying appropriate boundary conditions at the event
horizon r = r, and at r = = respectively:

const, (r — r,)timait asr—r 9a
+ +>
R+lm -
rl + const. ri=t 4 . .| asr — ® |
R%, — 1t asr — o . (9b)

The boundary condition on Rt;, corresponds to a requirement that all timelike ob-
servers see inward-going waves, and an inward energy flux, at the event horizon; details
are given in an appendix. The condition on R®;,, merely requires a well-behaved solution
at infinity.
Even without exhibiting the construction of solutions (9a) and (9b) explicitly (which
is straightforward, but laborious), we can prove their existence and derive some im-
portant properties. In the asymptotic region » — ® equation (7) has solutions whose
leading terms are 7' and -1 R”,, is the unique analytic continuation of the latter;
since the differential equation is real, all coefficients in the asymptotic series solution
are real, and analytic continuation gives the result Im(R®;,) = 0 everywhere. The
existence of R*y, is immediate: it is just Ry, (eq. [8]) normalized to unity in its leading
asymptotic term (that term must be 7! since we have just shown that expression [9b]
is real everywhere—while eq. [8] is evidently complex). Again because the differential
equation (7) is real, the coefficients in the asymptotic expansion of R*,, are real, at least
up to the term in r~'~'—the point at which the other asymptotic solution may enter
(and must enter to satisfy the complex boundary condition at the horizon). Hence we
have '
Im(R*im) = Cim(a)r—* 4+ O(r+~2)  for large r , (10)

where Cim(a) is a function which is obtained by (tediously!) expanding equation (8)
in powers of r and picking out the first nonvanishing imaginary coefficient.

The general inhomogeneous solution to (4) can now be constructed. Because the field
is linear in its sources, it suffices to give the solution for a shell of scalar charge at r = &
with surface density (charge per proper area)

o= aoVinl8, 0)/(gm)V. (11)
Here g, is a component of the metric tensor (3). Straightforward calculation gives the

result
R+1m(f)lem(b) y r _<_ b
Q = [47/ 2 + D]oeVin(8, ¢) (b — 2Mb + 02){ (12)
Rwlm(r)R+lm(b) ’ r Z b.
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Appropriate sums over / and m, and an integral over shells of various radii 4, allow one
to construct an explicit solution for a general static charge distribution p(r, 8, ¢). The
construction is identical to that for flat space, and we omit it.

1I1. THE TORQUE ON A KERR BLACK HOLE

On first glance it would seem that in taking the Kerr metric as a fixed geometrical
background we have lost the possibility of following its evolution in time. This is not the
case. Our perturbation calculation will give the small rate of change of the black hole’s
total angular momentum J. It is the nature of the perturbation approach that we cannot
integrate this small rate directly over very long times—the total angular-momentum
change would become large and no longer a perturbation, while the background geometry
would remain “unlawfully’’ fixed. Given the rate of change, then, how do we follow the
evolution over long times? As the field deposits (or extracts) a finite amount of angular
momentum, the Kerr solution must evolve into sometking, but what? The answer is given
by Carter’s theorem (1971) and its extensions (Ipser 1971; Wald 1971; Hawking 1972):
the class of Kerr metrics is “analytically complete,” is completely specified by M and J,
and (see Chase 1970) admits no stationary scalar field except one generated by external
sources; in short, we can be confident that a Kerr metric will evolve into another Kerr
{or Schwarzschild) metric. Thus, once we know the rate of change of J—i.e., the torque
on the hole—from a perturbation calculation, we can apply this rate to the family of
Kerr solutions and obtain the hole’s complete time evolution.

In principle, one might obtain the torque N = dJ/dt by examining the flow of angular
momentum in the perturbing field very near the event horizon. In practice, there is an
easier way: We suppose that the scalar field is generated by a shell of scalar charge
located at some large radius 4. This field, influenced by the Kerr black hole, acts back
on the shell to produce a net torque. By the global conservation of angular momentum
(which holds in asymptotically flat spacetime [see, e.g., Misner, Thorne, and Wheeler
1972]) this torque must be exactly the negative of the rate of change of the hole’s
angular momentum. Finally, we take the limit of this torque as the sources are made
infinitely distant, 6 — o,

Let the shell of scalar charge at r = b have the surface charge density

g = [E/(gn)m]{(%ﬂ')m Cos 7y .Yw(ﬂ, 9’«‘) - (%7,)1/2 sin v [ Yu(6, ¢) — Y1~1(0, sD)]} . (13)

For b > r>> M this source distribution generates a field with uniform gradient in the
(x, z)-plane, at angle v to the z-axis. The magnitude of the gradient is | wQ2| = E.
We define gradients in the direction of z, x, and y rotations by

L, =(8/d¢), L.= —|sinp(d/36) + cot 8§ cos ¢(d/dp)],

(14)
L, = [cos ¢(3/36) — cot 8 sin ¢(d/d¢)] .

il

Since the background metric has symmetry around the z-axis, L, is uniquely defined.
L, and L, are unique only up to an additional term of order (M /b)% However as we take
limits as & — o, this lack of uniqueness gives vanishing contribution to our result.

The calculation is detailed in an appendix and proceeds as follows: (i) Use equations
(11), (12), and (13) to obtain Q; (iij with definition (14), calculate ¢LQ, the torque per
unit proper area of the shell; (iii) integrate over proper area dZ using the axisymmetry
of the metric to eliminate terms with orthogonal -dependence, and using the relation
Rt = Rt;,," (" denotes complex conjugation). The result (the net torque on the
charge distribution) is equal and opposite to the torque N on the black hole:

—N, = foLQUE = S ECu(a) sin? v| Vi |2Z/b?

+ fractional corrections of O(M/b) , (15a)



147

No. 1, 1972 _ ROTATING BLACK HOLE
—N.= JoLQdZ = — [ E!Cy(a) sin v cos v | Vio|2dZ/b?
+ fractional corrections of O(M/b) , (15b)
=N, = S oLQdZ = Sf[E* cos v sin v/(gm)"2}(0? — 2Mb + a?)
X [Rmu Re (R+11)' Y[()P - chm Re (R+1o)' Y11|2]d2 . (150)

We now take the limit 4 — «, using Ciy(a) = $aM? which is obtainable by comparing
equation (10) with the asymptotic expansion of equation (8). The resulting limit is

N,— —1E%aM?sin® v (16a)
N.— 3E%aM? sin v cos v . (16b)

The third component of the torque, N,, would give a precession of the hole’s J around
the scalar field lines. Its limit is harder to compute than N, and NV, since it depends on a
delicate balance of coordinate-orthogonal spherical harmonics integrated over proper
area. However, one can prove easily that N, must vanish exactly: (i) By equation (15¢)
N, is unchanged when the direction of the field is reversed (E — —E). (ii) If we imagine
reversing the black hole’s spin (¢ — —a), then boundary condition (9a) is affected, but
the differential equation (7) and boundary condition (9b) are left unchanged; conse-
quently R*, goes to its complex conjugate; but Re(R*y,) and R®y,, are unaffected. This
means that the reversal of spin direction leaves all terms in the integrand (15c) for N,
unchanged. Since ¥, (and the precession it produces) is invariant under inversions of
both field direction and the direction of black-hole spin, it must vanish exactly, since (in
fig. 1) the directions out of or into the paper are symmetrical. We conclude

N,=0. (16¢)

IV. TIME EVOLUTION OF THE BLACK HOLE

Describe the black hole’s angular momentum vector J by its magnitude J, and by the
angle y between its direction and the (rigidly fixed) direction of the scalar field lines at
infinity (direction of ¥Q). The torque (16) on the hole produces changes in J and v

dJ/dt = —(1/7)J sin®y , Jdvy/dt = —(1/7)J sin v cos v , a7
where
r=3/EM . (18)
The solution of equations (17) is

Ji=J cosy = constant , J, = J siny = const. X exp (—¢/7) . (19)

This is the result quoted in equation (1), since the energy density of the scalar field at
infinity is equal to E*/8r.

V. CONCLUSIONS, DISCUSSION, AND CONJECTURES

A Kerr black hole, then, immersed in a uniform scalar field, responds to Hawking’s
theorem in a very simple manner: exponentially in time, it loses the component of its
angular momentum perpendicular to the field.

What about a nonuniform scalar field? If the scalar field itself is not axisymmetric
far from the hole, then there is zo possible final axisymmetric configuration, so by
Hawking’s theorem the hole must eventually lose all of its angular momentum. Is this

* consistent with our conclusions about the uniform case? Yes. Let &% be a characteristic
distance over which the field’s gradient changes magnitude or direction, i.e. ) ~
| vQ|/| w(vR)|. Assume that the sources are astronomically distant from the black hole,
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1 314

shell of scalar charge

Fi1G. 1.—~The rotating black hole is immersed in a scalar field which becomes uniform far from the
hole. For convenience we take the field to be generated by a shell of scalar charge at radius b, and con-
sider the limit as § — . The a-, y-, and z-components of torque on the charged shell correspond respec-
tively to alignment, precession, and loss of angular momentum of the black hole. J is the initial angular
momentum, which evolves asymptotically to Junal (see text for details).

so that M /R < 1. A generalization of § III above to include multipoles I > 1 yields the
order-of-magnitude results

dlfdt ~ —(J/0)1 +0M/R)), dJi/dt~ —~1/7)O(M/R) . (20)

In other words, nonuniformity of the field gives rise to a higher-order effect which saps
parallel angular momentum as well as perpendicular, but acts only ~M /R ~ (kilo-
meters)/{parsecs) times as fast.

In a more speculative vein, we consider the generalization of these scalar-field results
to the physically interesting cases of electromagnetic and gravitational perturbations—
which are far more difficult to analyze quantitatively.

For stationary, uniform electric or magnetic fields, it is obviously reasonable that
equations (1) and (2) should continue to hold, at least in terms of qualitative behavior,
with the simple replacement (energy density of scalar field) — (energy density of
electromagnetic field). If we imagine a Kerr black hole immersed in an interstellar mag-
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netic field, this yields a time constant for its angular momentum loss of
T ~ 1037 years (M,/M)(B/1075 gauss)~2 ! (21)

For electromagnetic fields the effect of Hawking’s theorem would seem to be quite neg-
ligible.

For gravitational perturbations, we might suppose that the qualitative behavior of
equation (1) (gradual loss of J.) still holds. In equation (2), however, there is no unique
analog of scalar-field energy density. The Einstein field equations dimensionally equate
an energy density to a spacetime curvature, so we might be tempted to try the sub-
stitution

(scalar energy density) — (Riemann curvature) ~ m/r® , (22)

where 7 is a perturbing mass at distance . However, for this conjecture the torque on a
small perturbing mass affects its orbit even in the limit » — 0—an inadmissible viola-
tion of geodesic motion for test particles.

As the next alternative, we might try the substitution

(scalar energy density) ~ q2/r*— m?/r* ; (23)

L.e., we replace a perturbing scalar charge ¢ by a perturbing mass m, even though the
resulting quantity (23) can no longer be interpreted as an energy density. However,
preliminary results from work by Hartle and Hawking (1972) indicate that this substi-
tution neglects an important effect: since the black hole cannot avoid “falling freely”
in the external field, it cannot experience a dipole gravitational perturbation. Thus the
gravitational perturbation which acts on it must be at least quadrupole; the spin-down
time will be increased from the dipole estimate by af least one power of (distance to
perturbing mass)/(size of hole) ~ r/M. Thus we are led to a spin-down time (egs. [2]

and [23] with extra /M)
SO e o

This information is sufficient to derive an important limit on the astrophysical im-
portance of the effect. Consider a black hole in a binary star system; let the mass m of
the ‘“‘perturbing” companion be equal to the mass M of the hole. The system has a
Keplerian period (disregarding constant factors)

TKepler ™ r('/M)”z . (25)

There is also a second timescale Tiaqiation for the decay of its orbit by gravitational

radiation damping,
Tradiation ™ ,(,/M)s . (26)

Equation (24) gives a third timescale, that for the loss of the Kerr hole’s angular

momentum:
Tang mom loss ™ r(r/M)3+n 5 n 2 1. (27)

Thus, for astrophysical black holes, it appears that there will never be sufficient time
for the spin-down effect to operate significantly. Hawking’s theorem places no restric-
tions on the possibility of finding rotating black holes in nature.

I thank James Ipser for making unpublished work available to me and for helpful
discussion; and I thank S. Teukolsky, K. S. Thorne, J. B. Hartle, and R. P. Feynman for
their helpful suggestions. Partial stimulus for this work came from a private letter to
Thorne from B. Carter which described discussions with S. W. Hawking and Hartle.
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APPENDIX A
DERIVATION OF BOUNDARY CONDITION (9a)

Consider an observer at some radius 7 very near the event horizon, so that the relation
r? 4+ a2 = 2Mr(1 4+ € (A1)

defines a small positive parameter e The requirement that the observer follow a time-
like world line, and the form of the metric (3) yield a restriction on the observer’s
angular velocity

de(?)

a a
m(l—'d)<a——-<m(1+d), (A2)

where

72 4+ a® cos* @

d= 2Mr

(&) + 0(9, (A3)

is also small. Choose a particular space-filling congruence of observers near the horizon
with the world lines

_ Mr, ) R _ N a
r(t)—r++ i M e+ 0O, 6() =8, <p(t)-—<po+2M't. (A4)
(To order ¢ these are Bardeen’s “locally nonrotating observers.”) Any timelike observer
momentarily differs from one member of this congruence by at most a Lorentz trans-
formation.

The stress-energy tensor for the scalar field is given by

1
T = 7= (@40, — $gu20) , (AS5)
so that
Ty = — @, (A6)

4

is the radial energy flux seen by an observer in the congruence. Here @ = Q[t, 7(¢), 6(?),
()] is the field seen by the observer and “hats” denote his orthonormal frame.
The metric (3) and world line (A4) combine to give

d 2M 1/2
B—; = (r2 + a? <:os;2 0) @1 + 0(e)] (872)
dt 2Mr 172 4
5= Grrareg) @71+ 06, (ATb)
while for the solution (9a) (with the angular dependence of eq. [6]),
imasl
@, = 5221+ 0()] (A82)
2, = "1 (A8b)
Combining (A7) and (A8), one obtains
maf
Q= Q= e 711+ 0], (A9

[(2M7r)(r2 +. a? cos? B)¢]
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which shows that the wave is a function of # 4 f only, i.e., inward propagating. The
radial energy flux (A6), with the real part of equation (A9) taken as the physical field, is

— m2a292
T 8xMr(r* + a? cos? O)e

which is negative, i.e., an inward energy flux. The other independent solution, the com-
plex conjugate to boundary condition (9a), would give the opposite sign in equation
(A8a) and an outward flux. It is therefore unacceptable. Any linear combination of
expression (9a) and its complex conjugate has a “‘standing-wave’’ component and is like-
wise not acceptable. Since the sign of equation (A8) is preserved under all Lorentz
transformations, all timelike observers agree on the correct boundary condition (9a). In
fact, it is not difficult to show that a radial Lorentz transformation to the frame of an
inward-falling observer removes the (1/¢) singularity in equation (A10), while for an
outward-falling observer, the singularity is increased to (1/€?). This shows that the cor-
rect solution (9a) is regular on the future (ingoing) event horizon, and singular on the
past (outgoing) horizon. For an astrophysical black hole, of course, there is no past
horizon, there are no outgoing observers, and the past singularity is fictitious.

—~Ty (1 4+ O(e)] (A10)

APPENDIX B
DERIVATION OF EQUATIONS (15)

Equation (11) is used to write the charge distribution (13) as a sum of three terms

(&) = 00!V + 0 Vio + 06! Vioy (B1)
where o = E(3/47)12 cos v , (B2a)
o) = —og ! = —E(3/8r)?sin vy . (B2b)

Equation (12) then gives
Q= (4r/3)(8* — 2Mb + az)':zll 00" RY 1m(r<)R® 1m(r>) Vim (B3)
with 7<, 7> denoting the lesser or greater of r and b, respectively. It is convenient to
define () = (47/3)(8* — 2Mb + a®)R*1n(r<)R%1m(r>) , (B4)
%o that @ = 0o Vo + oo( iV — fi' ¥ao) (BS)

where we have used the fact f; = f,*. Using definitions (14) and elementary properties
of the spherical harmonics ¥y, one obtains

LY = ido( i¥u + fi"Viy), (B6a)
22LQ = dg’fo( Y + Yiop) + o' ( iV — fi' Vo), (B6b)
22L.Q = o®%6(Ynn — Vi) — oo ( 1V + fi' Vi) - (Béc)

Now multiply by ¢ to get ¢ LR, evaluated on the shell r = 5. Note that one is entitled to
suppress terms with products of g-orthogonal spherical harmonics, since everything is
p-symmetric, even near the black hole:

(gm0 L2 = i(6) (Y1 V11 1i* — YuVi1fi) + (p-orthogonal term)
= —2Im fi{e¢")?| ¥11|? + (p-orthogonal terms) . (B7a)



152

WILLIAM H. PRESS

Likewise,
(grr) 20 L2 = —2M20la®| ¥o|? Im fi + (p-orthogonal terms) , (B7b)
(gr) oLt = 4205008 fol Y11|? — Re fil Y1o!?) + (¢-orthogonal terms) . (B7c)
Deﬁnitions (9), (10), and (B4) then give
Im fi(b) — (47/3)Cule)/b* [1 + O(m/b)] for large b . (B8)

Substitution of expressions (B8) and (B2) into equations (B7a) and (B7b) yields equa-
tions (15a) and (15b). Equation (15c¢) is just equation (B7c) with the fact that fy is real
emphasized. In equations (15) the formal integration over proper area d2 entitles one to
omit the g-orthogonal terms.
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5.2 Floating Orbits, Superradiant Scattering and
the Black-Hole Bomb (Paper VII; collaboration
with S.A. Teukolsky; published in Nature 238,

211 [1972])
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Floating Orbits, Superradiant
Scattering and the Black-hole Bomb

Penrose! and Christodoulou? have shown how, in prindiple,
rotational energy can be extracted from a black hole by orbit-
ing and fissioning particles.  Recently, Misner® has pointed
out that waves can also extract rotational eneryy (Usuperrad-
iant scattering™ 10 which an impinging wave is amplified as it
scatters off a rotating hole).  As one apphcation ot super-
radiant scattering, Misner has suggeesicd the possible existence
of “floating orbits™, that is, orbits in which a particle radia-
tively extracts energy from the hoie at the same rale as it
radiates encrgy to infinity; thereby it expericnces zero net
radiation rcaction.

Here we point out a second application of superradiant
scattering which we call the “black-hole bomb™.  We also
present the chief results of quantitative analyses of super-
radiant scattering, floating orbits, and the black-hole bomb,
for the case of scalar waves. Quantitative calculations are
restricted to the scalar case because the scalar wave equation
is separablc* in the Kerr gravitational ficld of a black hole,
whereas the gravitational wave equation appears not to be,
We expect the gravitational case to resemble the scalar case
qualitatively if not quantitatively.

The scalar wave equation

(e =4rT ()

(T a scalar charge density) separates in Boyer-Lindquist
coordinates (S. A. T., unpublished) by writing

D=¢ " e!™ S™ (0) wir)/r (2)

with S™, an oblate spheroidal harmonic (D. R. Brill and
colleagues, unpublished). We define a new radial coordinate
r* by dr*/dr=r2/(r?—2Mr+a?), so that the cquanon for the
radial function takes the form

d’ y/dr*2— W(r*)y=(source term) 3)

The mass of the black hole is M and its angular momentum is
aM. The cffective potential B/ (r*) is negative at infinity and
near the event horizon r- r,, so travelling waves exist in those
regions.  In between, I¥(r*) is positive, that is, it becomes a
potential  barrier (). M. Bardeen, W, H. P. and S, AL T,
unpublished).

Atinfinity the asymptotic solutions for y arc exp[- iw(r + r*)]
corresponding to ingoing (**+ ") and outgoing (*--"") waves.
By convention we sct G=c=1; also we take the real part of
@ as the physical ticld, which permits the convention w=0
without loss of generality.  On the horizon the asymptotic
solutions are exp[-—i(wt+kr*)] where k=[~ W(r*- -~ ).
The correct boundary condition on the horizon is not that the
waves appear ingoing in the coordinate frame, but rather that
the wave be physically ingoing in the frames of all physical
observers, who are dragged around the hole by its rotation. If
m>0 and 0< 0 <MWporrzan, WHEIE Wyop150n =(angular velocity
of “dragging™ at thc horizon) = (a/2Mr,0x). this physically
ingoing condition corresponds to a *‘coordinate outgoing”
wave, exp[--i(w?t — kr")] (C. M. Misner, unpublished),
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We now consider a wave which is incident on the black
hote Normally, a part o1 the wave's energy refllects off the
potential barrier B ) ahile the rest feaks throurh and is lost
down the hole, so thai the outgoing wave is weaker than the
ingoing wave.  If, however, m and o are in the anomalous
range 02 0 <My, i, 00. the wave on the inside of the barrier is
coordinate outgoing, it reinforces the reflected wave on the
outside of the barricr, and there is thus more outgoing wave
encrgy than ingoing. Tne extra energy comes from the rota-
tional encrgy of the bluck hole.  The amount of amplification
is never very large. because there is always a potential barrier
separating the travelling-wave regions.

Fig. | shows the results of our numerical integrations of
cquation (3) for the most favourable case, a maximally rotating
bluck hole with =M. The maximal amplification is a few
tenths of a per cent in energy and occurs for low modes
[/ =~ m~ s(1)}and for wave frequencies m~ (0.8 to 1.0) M®norizon.
For a maximally rotating hole of mass M,

Dnaron ™ 10° Tad s (M /M) (4)

By itself, a few tenths of a per cent is unimpressive; but any
amplification  mechanism admits improvement by positive
feedback. To illustrate, in a rather speculative vein, we pro-
pose the *black-hole bomb™ (closely related to a recent sugges-
tion of Zel'dovich®): locate a rotating black hole and construct
a spherical mirror around it. The mirror must reflect low-
frequency radio waves (eguation (4); and we now make the
transition from scalar to electromagnetic fields) with reflectivity
>99.8%,, so that in one reflexion and subsequent superradiant
scattering there is a net amplification. The system is then

0.1

0.01

0.01

Energy amplification (%)

l ,.j__ m-lv -

000001 g 0% 08 )

w i units of ey
horzon

Fig. I Superradiant scattering of scalar radiation by maximally-

rotating black hole. Radiation modes with axial cigenvalue

m >0 and angular frequency ® < @y ns0e are amplificd by the

hole, not absorbed by it.  The fractional wave encrgy added by

the hole 1s here shown as a function of wave frequency for the
most favourable modes,
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unstable against a number of exponentially growing clectro-
magnetic modes which will be initiated by random “seed fields™
(thermal noise).  Because a typical amplilication in one reflex-
ion is ~ 10 3, the e-folding time is roughly T~ 10 L/ where L
is the radius of the mirror.  For ease of construction, the
mirror should not be too close to the hole; for a hole of A,
an appropriate choice might be L~ 10* km, so that T~3 s.
As the mode grows, clectromagnetic pressare on the mirror
increases until- the mirror cxplodes, releasing the trapped
clectromagnetic.energy in a time ~ Lfc.  This is the black-hole
bomb. Alternatively a port hole in the mirror can be periodi-
cally opened, and the resultant radio flux rectitied and used
as a source of clectric power.

Others may care to speculate on the possibility that nature
provides her own mirror.  The ampliticd wave frequencies are
far below the plasma frequency of the interstellar medium, so
that waves would reflect off the boundary of an evacuated
cavity surrounding the hole; we are tempted to invoke radia-
tion pressure to maintain the evacuation.

We turn now to “floating orbits™. 1f a particle is in a stable
circular orbit around the hole, it generates radiation both
outward to infinity as a source term in equation (3), and also
(physically) inward into the hole. It the particle is in a direct
orbit, co-rotating with the hole, it generates anly modes with
m>0. For holes with «>0.359 M. radiation from all direct,
stable, circular orbits satisfied the anomalous boundary con-
ditions 0< @ <MOpacisan fOr all £, m.  The radiation energy
balance of a particle in such an orbit has two parts: the power
radiated to infinity, and the power extracted from (not deposi-
ted into) the rotating hole.  The question of floating depends
on the detailed numerical balance of these contributions. If
at some radius more encrgy is extracted than is radiated, the
particle will gradually spiral outward until the energy credits
and debits are in balance. At this “floating” radius, the
particle gradually radiates away the black hole's rotational
energy; as a decreasces, the radius of the lowest stable orhit
moves outward with respect to the floating radius. When the two
are equal, floating ceases, and the particle plunges into the hole.

The results of our calculations for scalar radiation are as
follows: a system whose dominant radiation is in m= 1 modes
can float around any black hole with ¢=0.985 M; for an
a=m hole, the floating radius is at r~1.4 M. A system whose
dominant modes are m=2 can float for a>0.9995; for a=M
the floating radius is r~1.16 M. Systems radiating substan-
tially in m=> 3 modes cannot float at any radius for any a< M.
In the particular case of a point particle in a circular equatorial
orbit, it is not difficult to calcutate the relative coupling of the
source to various modes, and exhibit the energy “balance
sheet”™. Table 1 shows this for the most favourable of all
scalar-wave cases: an a= M hole, with the particle very near
the lowest stable orbit, v=r— M- M. Although the first two
modes give a net credit, the particle couples too strongly to
non-floating modes and there is no net floating.  If the par-
ticle were smeared out in azimuthal angle o, these higher modes
would be suppressed and floating would occur.
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Table 1 Energy Balance for Scalar Radiation from a Particle in Close

Circular Orbit

Power tfrom Power lost to . Net cnergy
Mode (I, m) hole * (credity infinity * (debit) loss (or gain)

1,1 (0.074) ~0 (0.074)
2,2 (0.081) 0.032 (0.049)
3,3 (0.062) 0.070 0.008
4,4 (0.042) 0.089 0.047
5.5 (0.027) 0.091 0.064
6, 6 (0.0106) 0.087 0.071
7,7 (0.010) 0.081 0.071
8,8 (0.000) 0.073 0.067
All modeswithI>m a0 =0 =0
Total for modes <8 (0.318) 0.523 0.205

* I anits of (¢*/G) (U/M) x where x=(c2r/GAM —~1)-1 and p is

the particle’s scalar charge. It is an artefact of the scalar case that
power 0 as x-»>0.

For the physical case of gravitational (not scalar) radiation,
there is no /=m=1 radiation, and the numerical details for
higher modes will be diffcrent.  'We do not know if there will
be floating for the [= m=2 mode (or higher modes for that
matter); our scalar results suggest only that gravitational
floating is not implausible, and might conceivably enter into
the dynamics of material pracesses near rotating black holes.
(Some recent unpublished work by D. M. Chitre and R. H.
Price, and by M. Davis and colleagues, suggests that source
coupling to high, presumably non-floating, modes is weaker for
gravitational than for scalar fields.)

Finally, we mention a curious aspect of our numerical
results: in Fig. 1, the amplification factor with /=m> 1 does
not go to zero as W—>MWnorizen- Because the amplification
factor is negative for > m®yenz0n it must be a discontinuous
function of frequency at myor,0n. This discontinuity is. an
artefact of taking a= M. For a slightly lower value, we expect

the discontinuity to disappear, with the curves of Fig. 1 showing
a sharp turnover very near o/mmy orizon = 1.
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5.3 Further Details and Numerical Methods
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The floating orbit and superradiance calculations (paper VII,
Section 5.2 above) uncovered an interesting numerical problem which
deserves mention. The equation which is integrated is once again in

the form of an effective potential,

" + W(rg,w,a)p =0 . (1)

For moderate a , not too near the extreme Kerr limit a =M , W has
the form of a well-behaved 'bump', not too different qualitatively
from the effective potentials of the Schwarzschild perturbation equa-
tions. Even for extreme-Kerr a = M, the effective potential is
wéll—behaved if the wave frequency ww 1is not too close to the equiv-
alent rotational frequency of the rotating hole mi = ma/(2Mr+).
Unfortunately, the interesting case for both superradiance and float-
ing orbits is a * M and w = m ; this corresponds to a wave gen-
erated by a particle in close orbit around an astrophysical (and
therefore, probably, nearly extreme) Kerr black hole. For definite-
ness we take a =M , and we parameterize w by xp = (rp— M) > 0
where rp is the radius of the particle orbit which would generate
waves at frequency w . Thus, xp + 0 corresponds to w > ml . For
x << M, the potential W(r,) becomes very "wide" and "flat'; the
distance between its two zeros varies as xp—l , and max(W) " xp2 .
How does one integrate equation (1) numerically? Any method

with fixed step size invites disaster: the step size must be small to

give accurate results away from the wide, flat barrier; but a huge
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number of unnecessary small steps will be required to get across the
barrier (where the solution is nearly linear in any case). A variable
step-size method, and an algorithm for choosing the step size, is re-
quired. We sketch one here:
. i ] _ ZW
Let J = h 5 o 83 ~-h“W , (h 1is a step-size) so that (1)
% :

becomes

3%

go (2)

Then in Heaviside notation,

eld (x) (3)

d(x + h)

Given ¢ and its derivative J¢ , a numerical step comstructs an
estimate for eJ¢ and JeJ¢ » so that the process can be continued.

Lt is straightforward to expand (3), using (2) repeatedly to get

3
J 4 |+ (1) & +7gg"+4(g l gIIII
R R R R e -ty
2 + +4g"!
+ {1+ %T'+ %c + g,5'3g + 6885v4g +.--1J¢ (4a)
3

J 4 '+ " +7 "+4 + mie

Je'o = [g + E_. 3373_. _sﬁT_z_ + & 1/es 5'(g ) 16

+ + ne
+[1+& + & 43g + 528 5,45 + o170 . (4b)

Here g' = h 8g/or, , g" = hzazg/ari » etc., are known analytically
and computed once per step. The method of equation (4) works quite
successfully with a very simple algorithm for choosing a step size h

at every step,

= e//ﬁir (5)



161

where € 1is less than or of order unity (.l works well). The idea
behind (5) is as follows: h is chosen to make the "WKB area" hVTﬁT
equal to € . If the WKB approximation to equation (1) is valid, (4)
approximates the WKB exponential to 6 terms, i.e., to one part in
7!/87; the WKB approximation fails, the true solution is always more
"rigid" than the WKB prediction--i.e., higher terms in the power serieé
matter less--so the step should be even more accurate. This argument
assumes implicitly that W 1is "sufficiently" smooth; if it were not,
one could elaborate (5) with derivatives of W . This was not neces-
sary in our calculations.

The degenerate nature of the potential barrier for xp -0
gives rise to another interesting effect, which is hinted at in the
footnote to Table 1 of paper VII. The source term for a particle of
charge u in the scalar wave equation (see equation V.4.8) is of mag-
nitude u/ut where ut = dt/dt 1is (in a sense) the Lorentz contrac-
tion factor. For circular Kerr orbits 1/ut v xp , so one would expect

radiated power to vary as

power v (u/ut)? 12 xf) (6a)

Nevertheless the result in paper VII, that

2
power vy X, R (6b)

is correct. It is not difficult to see why in an order of magnitude
estimate (we take M "N 1 to make everything dimensionless). On the
horizon the solution for ¢ goes as G exp(—i@ﬁ(xp)r*); in the flat
barrier the solution is very nearly linear, a + br,

, with a transition
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at large r, to exp(iwr,). Let the linear solution to the left of

+ bzr* . The

the particle orbit be ¢ = al+ blr* ;3 to the right a,

barrier extends a distance é?(l/xp) on both sides of the particle,

so matching to the left hand exponential gives

G Qﬁ(bl/xp) . (7)
The energy flux to the left is then (modulo a constant)

power = ¢,t¢,r* = wxp(bl/xp)2 . (8)

Since the barrier has a "WKB"area'" of order unity (przlxp) we expect
in order of magnitude equal energy flux to the right, so (computing

flux near the source particle)

byv@O(-b) . (9

Now we relate the discontinuity in the derivative of ¢ at the source

to the source strength
- Hy =
by~ b, v ﬁ(ut) ﬁ(uxp) (10)
SO
by ’\'ﬁ(uxp)
and by (8)

power v wuz xp s

which agrees with (6b) rather than the naive guess of (6a).
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6. REMARKS ON ELECTROMAGNETIC AND GRAVITATIONAL

PERTURBATIONS OF KERR BLACK HOLES

6.1 Teukolsky's Equations and their Applications



164

Teukolsky (1972a,b) has recently derived a decoupled, separable
equation governing electromagnetic and gravitational perturbations of
the Kerr geometry. In Boyer-Lindquist coordinates, and in terms of a
m#ster parameter s which takes on the values 0 (scalar), *1 (elec-

tromagnetic), or 2 (gravitational), the equation is

2 2,2 . 2 2 : 2
[ - dtoant S e g o0 L]0
ot sin"0 } 3¢

-s oYr,stl oYy 1 3 a(r-M) i cosfb}0d
- 07 5205 5D - g ee (sine gy - [ At 2 ]%
sin™ @ (1)

2 2
- 2s [ng—i~§—2-— r - ia cos 6] %%-+ (szcotze -8)Y = 4T T

where A = rz— 2Mr + a2 and T 1s a source term which is given in
Table 2 (taken from Teukolsky 1972b). Here we will not be concerned
with details of how the equation is derived, nor with precisely how
information on the perturbing fields is encoded in { . Suffice it to
say that only one of the two equations +*s need be solved to give a
complete picture of the dynamical (i.e., radiative) field at infinity
or on the horizon. In the electromagnetic case, the entire field
(except for a Coulomb part which appears as a constant of integration)
can be reconstructed from wl (or w_l) and its derivatives, at any
radius. In the gravitational case an analogous statement is probably
true, but has not yet been proved rigorously.

Equation (1) separates by writing
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R A TOR ) (2)

and one obtains the angular equation

2
.i 8 gé[sinfaggj~+(a%uzcos 5 - z - 2awps cos § - 2ms cos §
s sin™ @ sin 9§
2 2 -
- s“cot’g + s + A) s =90 , 3

and the radial equation

~-s d s+1 dR 2 2,2 2 . 2 2 .
A E;(A E;J + {[(r + a“)“w” - 4aMrpm + a'm” + 2ia(r - M)ms

- 2iM(r2- az)ws]/A+21rws -A —azwz} R=0 . (4

The regular angular functions sml(e) which satisfy (3) for eigen-

"spin-weighted spheroidal harmonics', since

values Amg are called
they reduce to standard spheroidal harmonics for s=0 , and to stan-
dard spin-weighted spherical harmonics for aw = 0 . They can be
computed numerically without difficulty by Runge-Kutta integration of
the first—order perturbation equations to an arbitrary value of aw ,
starting with the spin-weighted spherical harmonics (aw = 0) which are
known (including eigenvalues) analytically.

The asymptotic solutions of the radial equation on the horizon

are

* - -ikr,
R~ e or A e (5)

where dr*/dr = (r2+ azf/A and k=w-ma/2Mr, . At infinity the

asymptotic solutions are
iw
Rnoe

"l(x.\l'*

r
*/r(25+1) or /r (6)
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Teukolsky and I have not yet extended the results of the scalar-
field calculations described in Section 5 to the gravitational and
electromagnetic cases, but there is no reason in principle why such

extension should be difficult:

(i) Time evolution of a hole in static fields. As in the scalar
case, Eq. (4) for the static case w = 0 1is analytically soluble in
terms of hypergeometric functions. The change in the magnitude of the
hole's angular momentum can be found either by the torque method of
the scalar case, or by the more elegant method of Hawking and Hartle
(1972), by examining the change in the area of the hole's horizon. The
orientation of the hole can be computed best at present by the torque
method of paper VL. On the basis of the scalar result, and of the
gravitational result for infinitesimally rotating holes (using
Schwarzschild perturbation theory) of Hartle and Hawking (1972), there
is a matural conjecture for the final result: when a hole of mass m
is perturbed by a body of mass M at radius r >> m and at an angle
8 from the hole's axis, the hole's angular momentum probably evolves

as follows:

J|| = J cos 6 = constant
(7
Jl. = J sin 6 = constant X exp(-t/T)
where
5,1 r4 r,2
T =50 (‘M‘i) ) : (8)

(compare to paper VI eq. (24)). Hawking (1973) has suggested that the
spindown rate might become large for a hole with a=s m . His work

suggests an alternative conjecture where (8) is replaced by
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dJ J 4
1l L 5 1.,r ,,r2 2.-1
=, T ='§§;)ﬁ;§)q;) (1 - J/M%) (9

The definitive answer will probably be known shortly.

(ii) Superradiant scattering. 1In Appendix B of paper VI, as
discussed in paper VII, we derived the condition for a scalar wave to

be superradiantly scattered,

0<wc< ma/(2Mr+) (10)

where w and m are the wave's frequency and axial eigenvalue. The
derivation made implicit use of the fact that the scalar wave equation
is real, and is thus not valid for the general Teukolsky equation.

The general condition for superradiant scattering is most
easily derived from Hawking's fundamental theorem (1972) that the area
of a black hole is nondecreasing. (This derivation follows closely
unpublished work by J. Beckenstein.) The area @ and "reduced area"

A of a Kerr black hole are

A = sna = sn(M® + o - 3%/ 2 (11)
or equivalently,
At - + 5% =0 (12)
Taking the first variation, we have
(A-M%)6A = 24M 6M - J §J (13)

The left hand side is non-negative by Hawking's theorem. All scalar,

electromagnetic and gravitational waves satisfy



oM =2 §J (14)
m
S0,

(2AM - J %)GM >0 (15)

For superradiance we want 6M < 0 , so the first term in (15) must be

negative. This is easily rewritten as

2Mr+

a

m
-o<0 (16)

Equation (16) is the required condition. It reduces to equation (10)
when w > 0 . However, in equations (3) and (4) the values of w and
m may each be positive or negative. Since both real and imaginary
parts of R are physical, a convention w > 0 is not allowed a priori
for s # 0 . Thus condition (16) is more general than condition (10).
The value of sgn(mw) determines whether a wave is 'co-rotating"
or "counter-rotating" with respect to the hole. The two possibilities
for sgn(w) correspond to two circular polarization states, right- and
left-handed. In general, the two polarization states scatter differently
from the black hole: Consider a pure mode with w =Q , m =M, & (the
index of eigenvalues of equation (3)) = L . We reverse its polarization
state by taking w = -0 ; but we must also take m = -M to maintain the
sense of its spatial rotation. The key point now is that the angular
eigenfunction is symmetrical only under w > -w, m > -m , and
0 > 1-0, so in changing the sign of w and m we also flip the 6-
dependence upside down. To recover the original angular dependence
(i.e., a wave reversed only in polarization) we must analyze this flipped
wave into eigenfunctions with (in general) more than one value of 2 .

Thus the polarization reversed wave is not a pure mode, and in general
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scatters differently from its reverse-polarized twin. Naively, one

might expect that compared to the scalar case--where there is no polariz-
ation coupling--one polarization scatters more strongly than the scalar
wave, the other scatters less strongly. (The superradiance calculation
will be an easy by-product of the stability calculation described in

section 6.2).

(iii) Floating orbits. At first glance, it looks as though
Teukolsky's equation does not allow one to do this calculation: how
does one compute the energy balance of the particle when the perturba-
tion equations themselves do not conserve energy? ‘S. Hawking has
pointed out a reasonably clever way of circumventing this difficulty:
At infinity, examination of the perturbation solution gives the energy
and (z-)angular momentum radiated outward. To find the particle's
energy and angular momentum balance, one needs 2 relations which deter-
mine the energy and angular momentum crossing the horizon. The
perturbation solution on the horizon enables one to determine the
change in area of the hole (a particular combination of the unknowns).
The final relation is

SE = Q&8J

which relates the particle's energy (S8E) and angular momentum (8J)

change, where (I 1is the orbital angular frequency.
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6.2 Are Kerr Black Holes Stable?
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At time t = 0 , we perturb a Kerr black hole with a small per-
turbation which is accurately treated by linearized perturbation
equations. If the perturbation radiates away down the hole and to
infinity, remaining small and well-behaved all the while, and finally
goes to zero, then the linearized equations=will have described the
whole process accurately, and we can conclude that the black hole is
stable against small perturbations.

On the other hand, the linearized equations might predict that
the perturbation grows in time without bound, and that the black hole
never returns to its quiescent state. In this case, the black hole is
unstable. The linearized equations fail when the»perturbations become
large, so we cannot determine what the hole is evolving to, but we can
be certain that it does not return to its original configuration: the
linearized equations are valid in a neighborhood of that configuration.

What are the possible final states of an unstable Kerr black hole
(if any are unstable)? First, it is known that Schwarzschild black
holes are stable, and it is not difficult to show (see below) that all
Kerr holes in some neighborhood of Schwarzschild are also stable. Thus,
an unstable Kerr hole might radiate away mass and angular momentum
until it settles down to become a Kerr hole somewhere in the stable
region. We call this a ''recoverable instability'.

Second, the hole might become highly dynamical for a finite
period of time, and finally settle down to a new non-Kerr stationary,
axisymmetric configuration with a horizon and with no naked singulari-

ties (new type of hole). Carter (1971) has proved that such
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configurations must occur in two-parameter families (like the Kerr
family), and that they must be disjoint from the Kerr family. No such
disjoint families are presently known; and it is suspected that none
exist.

A third possibility is that there is a sequence of non-axisym-
metric holes which bifurcate from the Kerr sequence at some finite
a=a < M and that some or all Kerr holes with a > a  are unstable
against migrating dynamically to the new sequence. This picture would
be the analog of the situation in the classical fluid ellipsoids (see
Chandrasekhar 1969) where--when there is any dissipation—--stability
passes from the axisymmetric Maclaurin to the non-axisymmetric Jacobi
sequence at their point of bifurcation (for further discussion of
Similarities between fluid ellipsoids and black holes, see Smarr 1972).
By a theorem of Hawking (1972) any non-axisymmetric sequence must be
dynamical in its own right, but this does not mean that it cannot be
stable: a hole on the new sequence will have a definite trajectory of
time evolution, and this time evolution can be stable against small
perturbations.

There are two interesting sub-possibilities associated with the
bifurcating dynamical sequence: a) the dynamical evolution might
return to a stable region of the Kerr family (again, a "recoverable
instability"); or ©b) the hole might evolve dynamically without limit,
becoming more and more "distant' from the Kerr sequence. An analog of
this in the classical fluid ellipsoids has been found by B. Miller
(1972): Under the influence of gravitational radiation reaction in

2-1/2 post-Newtonian order, some Riemann S-type ellipsoids evolve
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without bound to greater and greater eccentficities (rotating cigars).
At late times the rate of evolution becomes arbitrarily small, but not
small enough to bound the final state. 1In black holes, we might call
this unpleasant possibility the '"black rotor'".

A fourth possibility is even less pleasant. The hypothesized
unstable black hole may evolve to a naked singularity, visible or
asymptotically visible from asymptotically flat infinity. One hopes
that this possibility will at some future time be ruled out (Penrose's
"cosmic censorship hypothesis') but at present it cannot be.

The question of stability has strong astrophysical implications,
particularly as regards possible sources of gravitational waves. Per-
turbation calculations (e.g., paper II) show that the rate of conversion

of infalling mass to gravitational waves is never greater than

B &2 1

where m 1is the mass of the infalling body and M 1is the mass of the
hole. Thus, in the hole's characteristic time M the efficiency of
mass conversion to a burst of waves is of order m/M << 1 .

Bardeen (1970) has pointed out that in realistic astrophysical
situations, the accretion of matter onto a black hole will tend to
increase its angular momentum. If there is an instability at some value
of a , there will be a last particle of mass m whose capture pushes
the hole into the unstable region. There are now two possibilities: if
the instability is recoverable to a nearby configuration, the hole emits
a burst of energy ~vm and returns to the stable region. Thus the

particle~—-and all subsequent matter that accretes--is converted to
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bursts of gravitational waves with efficiency ~1 . On the other hand,
if the instability is not recoverable to a nearby configuration, then
the hole radiates away some fraction of its total mass M >> m . Both
cases overcome the m/M perturbation limit.

Enough speculation! How much of this nonlinear behavior can we
hope to see in the linearized perturbation equations? Quite a lot:

As remarked above, stability or instability makes its appearance in
linearized order, and any unstable regions of the Kerr family-—except
for their boundary points--can in principle be identified. If there is
a bifurcating, non-axisymmetric sequence, the point of bifurcation must
appear in the linearized treatment (Carter [private communication] has
stressed this point); unfortunately the converse is not true. 1In a
neighborhood of the linearized point of bifurcation, we can examine the
new sequence and determine the initial direction of its evolution. 1If
it evolves recoverably within the linearized neighborhood, we can iden-
tify its final states as well.

The formalism for treating the stability problem is very similar
to that used in our discussion of vibrations, Section 2.1.2. There we
were studying solutions which decayed in time, i.e., which were in the
lower half of the complex plane; now we are interested in finding--or
ruling out--time-growing solutions in the upper half plane.

As before, we let y(t,r,0,0) be a solution to the perturbation

equation (now the Teukolsky equation) with 1 and ¢ at t= 0
b

bounded, and nonzero only in a finite range of r . Then
+oo+18
1 ° -iwt
w(tsrses(b) = J ww e dw , t>0 (2)
/2n

-°°+iSo
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[20]
v, = lbw(r,e,d)) - L J Ve dt (3)
Y2
0
The real number So > 0 1s now chosen to make e © a bound on the
growth of Y , i.e., faster than the fastest instability. We will see

below that such a bound exists. Deforming the contour down to the

real line So = 0 , we may uncover a countable number of poles, so
+<

1 ~iwt —lw,
wuﬁﬁm)=-—fw§ dw+ ] F (r,6,0) e (4)
/2T j
-0
where Im wj >0 . (The form of Teukolsky's equation probably excludes

cuts, although this has not been proved rigorously.) Since the equa-
tion is separable, and its angular eigenfunctions are complete, we can

write

méz @) (5)

m
Fi(r,6,0) = ] S,(8) e R,
£,m

’

where Smg satisfies equation 6.1(3) and Rw satisfies 6.1(4).

2m

In the vibration case, we used behavior at fixed r* and large

t to determine the boundary conditions on R Here it is

wlm(r)

appropriate to use fixed t and large |r,| : at time t =0 , the

x|
solution is regular in r* and is zero at infinity and on the horizon.

Thus it must have the asymbtotic behavior (see equations 6.1(5),(6))

_ —ikr*
A e r, > -

R (6)
eiwr*/r(28+l)

where k = w - ma/(2Mr+) as before.
Equations 6.1(3), 6.1(4), and (6) determine a ''generalized"

eigenvalue problem for w in the complex plane. (We say ''generalized"
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because w 1is tied rather intimately into the equation as a parameter,
and the equation cannot be put in the form of a true eigenvalue problem
§Zk = f(wW)R where 52? is independent of w .) If there are no solu-
tions wj in the upper half plane, then the Fourier reconstruction (2)
is valid with So = 0 and there are no solutions which become unbounded
in time; the hole is stable. If there are solutions wj s each cor-
responds to a perturbation which is well-behaved for all r* at time
t=0 , but which grows exponentially in time; these are instabilities.

How can we determine whether there are unstable solutions? The
most direct way, in principle, is to examine the entire upper half com-
plex plane as follows: Define a homogeneous solution by analogy with

equation 2.1.2(8)

in
wim
—iwr*

iwr
T e /Tt + ue */r(28+1)

, *—>+oo

Then the solutions we seek are zeros of T , viewed as a function of
w 1in the complex plane. Since all equations and boundary conditions
are analytic, it is almost certainly true that T 1is an analytic func-
tion (as yet no rigorous proof). This analyticity allows us to find
roots without investigating the entire half-plane, by looking at the
behavior of T(w) for w real. Analyticity here--by contrast with
analyticity in elementary particle theory--is something which is mathe-
matically verifiable; it is not a new physical assumption.)

It is easy to verify that T has only one pole of known order;

and that this pole is located at w = 0 (see Fackerell 1971 for the
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method by which the pole w = 0 can be treated). We will prove below
that T(w) * 1 for w > o 1in the upper half plane. The number N

of zeros of T 1in the upper half plane is given by
3( d n T(w) = 2mi N (8)

where the contour is an infinite semicircle with a small loop avoiding
the origin. The circle at infinity gives no contribution, and the
small loop gives a known contribution, so the total change in the
phase of T as w varies along the real line -» < @ < +o 1is a
direct indicator of the number of unstable modes of the Kerr black
hole.

To prove that T(w) + 1 for |w|, Im(w) » © we first note that

the change of variable

X" = dle2D(ro R 9)

where D and p are defined in Table 2, allows the s=-2 Teukolsky

equation to be cast in the form

X'+ - Vx =0 (10)

where V = V(w,r,) has the property that V/w2 +0 as w >~ , and
where a prime denotes 09/3r, . This change of variable is not com-
putationally useful, because V 1is extremely complicated, but it has
the conceptual advantage that it regularizes the asymptotic forms of

the equations, so that the analog of 6.1(5),(6) is now

tikryg
e

X v 11
tiwry (b
e r, + 40
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Define two new variables A and B by

= iwr -iwr
XZAe *+Be *
(12)
lwr -iwr
X =1i(Ae * _Be *)
Then (10) is replaced by the set of first-order equations
-2iwr
(13)
. _ -BV AV 2iwr,
B =71y " 21w ©

We wish to prove that a solution of the form { B = 1 + (asymptotic
-2iwr, x|
corrections), A << B e } is possible for all r if |w| ,
Im w » © ; this is equivalent to proving T > 1 , since B 1is the
coefficient of the wave with boundary condition (7). The proof is
immediate, since it is easy to guess an asymptotic solution to (13)
which can be verified by substitution:
v .
- f..._._ dr
*
B=e 2 Ta+@Vwh) = 1
' (14)
v -fm dr* -Ziwr*
-—e e
4w
The physical significance of this '"T -+ 1" theorem is that high fre-
quencies in the upper half-plane don't '"see'" the potential barrier V
at all; they propagate through with unit transmission coefficient. This
theorem also justifies the assumption (following equation (3)) that
there was an upper bound to all instabilities: unit transmission coef-

ficient for high frequencies implies that any solution which grows too

rapidly in time must be irregular on either r, > +* or r, > -—x .



180

To sum up, the phase-shift method, applied to the linearized
perturbation equation, should be able to answer definitively the ques-
tion of Kerr stability. With Teukolsky, I am currently undertaking a
numerical computation of the phase shifts; so--with some luck—--the
problem will be settled before too loﬁg.

With all this formalism, incidentaily, it is trivial to prove
that Schwarzschild is stable (Vishveshwara 1970): An instability would
be a zero of T(w) in the upper half plane, where ' T 1s defined
(using the Zerilli or Regge-Wheeler equation) by equation 2.1.2(8).

In the Schwarzschild case there exists a true, self-adjoint eigenvalue
problem for wz « By self-adjointness w2 must be real, so any
instability must lie on the positive imaginary axis, w = io say.

For this frequency the Zerilli or Regge-Wheeler equation takes the

form

P o= (V + gz)w = (positive function)y (15)

which manifestly has no solution that is regular at r, = i , q.e.d.
This simple argument can be extended to a class of equations which are
not sélf—adjoint but which contain imaginary pieces all of one sign,
by using the differential equation for the Wronskian of a solution and
its complex-conjugate. Unfortunately, the Kerr case does not lie in
this class. One can prove stability of Kerr black holes in a
neighborhood of Schwarzschild; since Schwarzschild is stable (as
proved from the Zerilli-Regge-Wheeler equations) the net phase shifts

in the Teukolsky equation with a =0 must vanish. The equation has

coefficients which are analytic in a so the dependence of the phase
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shifts on a 1is at least continuous; in some neighborhood of a=0 ,
then, the phase shift also returns to zero (not 2wi) . Some Kerr

black holes, at least are stable!
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'GRAVITATIONAL-WAVE ASTRONOMY'*

WiLriam H. Press® ano Kip S. THorNE
California Institute of Technology, Pasadena, California

1. INTRODUCTION

The “windows™ of observational astronomy have become broader. They now
include, along with photons from many decades of the electromagnetic spectrum,
extraterrestrial “‘artifacts” of other sorts: cosmic rays, meteorites, particles from
the solar wind, samples of the lunar surface, and neutrinos. With gravitational-
wave astronomy, we are on the threshold—or just beyond the threshold—of
adding another window; it is a particularly important window because it will
allow us to observe phenomena that cannot be studied adequately by other
means: gravitational collapse, the interiors of supernovae, black holes, short-
period binarics, and perhaps new details of pulsar structure. There is the further
possibility that gravitational-wave astronomy will reveal entirely new phe-
nomena—or familiar phenomena in unfamiliar guise—in trying to explain the
observations of Joseph Weber.

The future of gravitational-wave astronomy looks bright whether or not
Weber (1969; 1970a, b, c; 1971a, b) is actually detecting gravitational radiation.
If Weber’s events are indeed produced by gravitational waves, then activity in
the coming decade will focus on measurements of the polarization, and spectrum,
and the waveform of those waves, and on theoretical attempts to explain their
source. If Weber’s events are not gravitational waves, their explanation may be
astronomically interesting in any case, and they at least will have helped generate
enough gravitational-wave technology to bring waves from well-understood
sources within experimental reach by 1980.

We (the authors) find Weber's experimental evidence for gravitational waves
fairly convincing. But we also recognize that there are as yet no plausible theoret-
ical explanations of the waves’ source and observed strength. Thus, we feel we
must protect this review against being made irrelevant by a possible “disproof™
of Weber's results. We have done this by relegating to the end of the article
(Section 6) all ideas, issues, and discussions that hinge upon Weber’s observa-
tions.

! The survey of literature for this review was concluded in December 1971,

? Supported in part by the National Science Foundation (GP-28027, GP-27304) and
the National Aeronautics and Space Administration Caltech/JPL contract NAS 7-
100 (188-41-54-02-01), and grant NGR 05-002-256,

! Fannie and John Hertz Foundation Fellow.
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2. PROPERTIES OF GRAVITATIONAL WAVES

Physical reality of waves.—Einstein’s thcory of gravity (“general relativity™)
predicts, unequivocally, that gravitational waves must exist; that they must be
generated by any nonspherical, dynamically changing system; that they must
produce radiation-reaction forces in their source; that those radiation-reaction
forces must always extract energy from the source; that the waves must carry off
energy at the same rate as they extract it; and that the cnergy in the waves can be
redeposited in matter (e.g., in gravitational-wave antennas). (For detailed
mathematical derivations of these predictions see, e.g., Misner, Thorne & Wheeler
1972, hereafter denoted “MTW.”)

Regrettably, there was an era (1925-1955) when many relativity theorists
doubted whether general relativity actually made these predictions. But those
doubts, one now realizes, had no foundation. They were generated by defective
viewpoints and analyses. Not only does Einstein's theory of gravity predict the
existence of gravitational waves; so does the theory of Brans & Dicke (1961)
and its generalizations (cf Morganstern 1967, Morganstern & Chiu 1967,
O'Connell & Salmona 1967, and Wagoner 1970), and every other theory of
gravity that today is experimentally viable. (For discussions of cutrently viable
theories see Thorne, Will & Ni 1971, Ni 1972a, and Nordtvedt & Will 1972.)
Moreover, it appears likely—though it is unproved as yet—that the power and
spectrum of the gravitational waves emitted by any nonspherical source are
theory-independent, in order of magnitude. (See, e.g., Trautman 1965.) The
strength of the waves is probably fixed by the local validity of special relativity,
by the nature of gravity in the Newtonian limit, and by theory-independent
principles of physics (conservation of total energy, etc). For perfectly spherical
sources, some theories-——those with a scalar gravitational field—allow monopole
radiation, which is forbidden in (purely tensor!) general relativity. However, the
strength of the monopole waves is comparable to the strength of the quadrupole
waves that the same source would emit in general relativity—if it were made
somewhat nonspherical (Ni 1972b, Morganstern & Chiu 1967).

The detailed formulas and numbers given in this article will be based on the
predictions of general relativity.

What is a gravitational wave >——The answer can be given clearly and quantita-
tively without any appeal to the formalism of general relativity.

In Newtonian theory, the gravitational field is fully described by the gravita-
tional potential ®. In the neighborhood of some fiducial point (e.g., the center of
mass of a gravitational-wave receiving antenna), the potential can be expanded in
a power series, -

B(x) = B — 2 gax;+ 2 tRimeTme + - - - L
J ik

Here x; are the components of the vector x from the fiducial point to the measur-
ing point; the numbers g; are the components of the *“local acceleration of grav-
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ity,” and the numbers R;oo measure the inhomogeneity in the gravitational field
at the fiducial point. In the language of Einstcin, Rjoo are components of the
“Ricmann curvature tensor.” (Actually there are additional components, cor-
responding to indices other than zero in the second and fourth positions of
Rjoro; but they will be ignored in this review article.) In the language of Newton,
Rjoxo are second derivatives of the potential &,

R,’oho == az‘b/a.’t,’axk 2.

The gravitational force that acts on a mass m at location x is given by F = —v®
and has the components

Fj = ——mafb/ax, =mg; — Z ijokoxk 3.
k

Notice that the force — 3" mR;noxe depends lincarly on the mass position x.
Itis a “relative force” (sometimes also called a *“tidal force” or “stress’) between
the position x and the fiducial point. This relative force is responsible for the
ocean tides (relative to their pull on the Earth, the Moon and Sun pull harder on
near oceans, weaker on far occans, making two tidal bulges); it is also responsible
for the general precession of the equinoxes (the Moon and Sun pull harder on
that part of the Earth’s equatorial bulge nearest them than on that part farthest
away; this causes a torque which precesses the Earth’s rotation axis).

‘Gravitational waves can be thought of as a *“field of (relative) gravitational
Jorces that propagate with the speed of light.” They are a contribution to Rje of
which Newton was unaware, and which can be added straightforwardly to the
Newtonian contribution (at least in nearly Newtonian regions of spacetime such
as the solar system):

(6wW)

R,’oko = 6%/61:,0@ + Rj()ko ‘ 4.
Einstein’s theory dictates the form of Rjgry. For example, a (locally) plane
gravitational wave propagating in the z direction has

GwW) aw)

Ruoeo” = —Rywo = —3hi(t — 2/c)
Rioo = Roon = —3 hu(t — 2/c) 5.

all other components vanish

Here hy and fx are arbitrary dimensionless functions, which represent the
momentary amplitude* of the wave in the two orthogonal polarizations *“+
and “X”'; dots denote derivatives with respect to 7; and c is the speed of light.
Notice that the relative forces Fy=— 3 mR;uox: are entirely perpendicular to

¢ In general relativity A, and Ay are the magnitude of the perturbations in the metric
tensor g, =diag (—1, 1, 1, 1)4-A,,. (See, e.g., MTW where A, and hy are denoted 4,
and Ay.) This fact motivates the notation but need not concern us here. -
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Fioure 1, Lines-of-force diagram for the relative forces produced by a gravitational
wave (Press 1970). The fiducial point, relative to which one measures the forces, is at the
origin of coordinates. The direction of the relative force at any point is the direction of
the arrow there; the magnitude of the force is proportional to the density of force lines.
The force lines are hyperbolae, and their density is proportional to distance from the
fiducial point (cf equations 3 and 5). The diagram for polarization *+” corresponds to
equation 5 with kx=0, k,>0; that for polarization X" corresponds to 4, =0, kx>0,
When the wave changes phase by 180°, the directions of all arrows reverse.

the propagation (z) direction. In this sense, gravitational waves, like electro-
magnetic waves, are transverse. Figure 1 represents the relative forces of a
gravitational wave by a line-of-force diagram. An object placed in this force
field will experience time-varying stresses due to the wave’s relative gravitational
forces, and those stresses will produce mechanical strains. This is the essence of
the interaction of the wave with matter. We shall see below that the magnitude

of the strain produced is typically of the order of the dimensionless wave ampli-
tude 4.

Energy carried by waves—Like electromagnetic waves, gravitational waves
carry energy with the speed of light [(energy flux)=(energy density)X(speed of
light)]. For a gravitational wave the energy flux is well defined when one averages
over several wavelengths, but one cannot say unambiguously whether the energy
is located in the “trough™ of the wave or in its *““crest” (Isaacson 1968). The en-
ergy flux, expressed in terms of the amplitude and an average *“( )" over several
wavelengths is (Isaacson 1968, MTW)

- 1<:;G (it + b = 11;; ( h+)2+(%h")1> ©

where G is Newton’s gravitation constant and L, is a natural unit for power in
gravitation theory:

Lo = ¢/G = 3.63 X 10 erg/sec = 2.03 X 105 M oc?/sec 7.

This energy flux has all the properties one would expect from experience with
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electromagnetic theory: it is conserved (amplitude dies as 1/r, flux as 1/r* when
one recedes from source); it can be deposited in detectors; and it acts as a source
for gravitation (e.g., it helps produce the cosmological curvature of the universe).
For further details see Isaacson or MTW.

Propagation of waves-—Once emitted, a gravitational wave propagates,
virtually unimpeded, forever. It is harder to stop than a neutrino! The only
significant modifications in the wave as it propagates are redshifts (Doppler,
gravitational, and cosmological—identical to those for an electromagnetic
wave) and decrease in amplitude due to “inverse-square-law” spreading of wave-
fronts (also identical to the electromagnetic case). Other modifications (disper-
sion, backscatter, tails, etc) occur in principle but are negligible except near
highly relativistic sources.

3. GENERATION OF GRAVITATIONAL WAVES

Fundamental regimes.—In analyzing a source of gravitational waves, we find
two important issues: (i) Is the source slowly changing or rapidly changing?
“Slow change” (or “slow motion”) means that the reduced wavelength x=\/2x
of typical waves produced by the source is much larger than the size of the source,
x>L—that is, that the source lies deep inside the near (induction) zone of its
own fields. This is typically (but not always) true if the characteristic internal
velocities of the source (relative to its center of mass) are much less than the speed
of light, #<«c. *Fast motion” or “rapid change” means that the source lies
partly in its own wavezone % < L; this is necessarily true if 5~c. (i) Are the gravi-
tational fields inside the source weak or strong? “Weak” means size of source
large compared to Schwarzschild radius L3»>2GM/c?~3 km (M/Mo); *strong”
means L~2GM/c.

Slowly changing sources.—If AL, a set of simple formulas describes the
emission process. These formulas apply to strong-field sources as well as to weak-
field sources (cf Section 104 of Landau & Lifshitz 1962, or Sections 36.9 and
36.10 of MTW). The simplicity of the radiation theory for x>>L arises from the
fact that, like electromagnetic radiation, gravitational radiation admits the poor-
antenna or lowest-multipole approximation. (In electromagnetism this is also
called the dipole approximation.) A source much smaller than a wavelength is a
very inefficient radiator, and (aside from fractional corrections of order [L/x}?)
emits radiation in only the lowest allowed multipole. For gravitational radiation
this is quadrupole radiation, and the radiation from slowly changing sources is
completely determined by the time evolution of its *“reduced quadrupole-
moment tensor™ 9. For sources with weak fields (e.g., the solar system but not
pulsars), 9, has the familiar form

4 ( trace-free part ) f & 1 5 f g 8
ik = = x;exd?e — —6; r2d%z .
* of moment of inertia Pt 3 i

For sources with strong fields, 9,: cannot be calculated this way except in rough
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order of magnitude. Instead, it is operationally defined by an examination of the
Newtonian potential ¢ outside the source (at r>L and r>»GM/c?), but in the
rear zone (r<3). An accurate calculation requires general relativity (see, e.g,,
Ipser 1970, who treats the case of a rotating, deformed neutron star—i.e., a
pulsar),

In terms of 95, however calculated, the total power radiated in quadrupole
waves by a slowly changing source is

G1
Law = = = 35460 ~ L(2GM /L)1)

~ -L()(zGMeM/Cz-L)2(5/0)s ~ (Linwrnal) * (Linwrnal/LO) 9

Here M, is the “effective mass™ in the changing quadrupole moment, defined by
(amplitude of changes in I;x)=Mul?; 5=cL/% is the characteristic internal
velocity; and Linternat is the “internal power flow” associated with the quadrupole
motions

Linternal = (% Me"bz) (l.)/L) 10

The power is radiated in a typical quadrupole pattern (amplitude a quadratic
function of angle; roughly isotropic). More particularly, the flux emitted in a
given direction (unit vector n;) is

g2 L s (g, 1.

ct 8nr? ik

where ret means evaluated at retarded time (r—r), and 9,77 is the transverse
traceless part of 9,:

gjkTT = E (5,-1 - n,'n;)sg,,.(s,,.;‘ —_ n,,.n,,) 12.
Im

The field of relative forces R;uo produced by the waves is

G 1[dg,T7
Rjono = —~c—" ; ., 13.

corresponding to a dimensionless amplitude with order of magnitude

h+ orx ™ (%’/—cz-) (_’?)z ~ 10-——13 ( Me") (f)z ( 1 kpc)
T c Mo [ r

Rapidly changing, weak-field sources—When L2 %, quadrupole radiation
does not generally dominate over radiation of octupole and higher order, so the
above formulas cannot be used. Instead, one must use the full formalism of gen-
eral relativity, or else the “linearized theory” (linear approximation to general
relativity).
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Only a few rapidly changing, weak-field sources have so far been analyzed
in the literature. One is the small-angle “‘Coulomb scattering” of a rapidly mov-
ing, light star by a heavy star (Peters 1970). During the encounter and slight
deflection, the light star emits “gravitational bremsstrahlung” radiation. For
stellar velocities near the speed of light, the radiation is strongly peaked in the
direction of the star’s motion [(half-angle)~(1—v?)!?]. A second example
(Peters 1972) treats masses in close orbits, but the attractive force between them
must be nongravitational. (If it were gravitational it would be *“‘strong™ and the
weak-field limit would not apply.) Here there is also a forward beaming of the
radiation.

Rapidly changing, strong-field sources—(Examples: the fall of matter down
a black hole; neutron stars in close orbits at relativistic velocities.) For these
cases there is no standard technique of analysis. The slow~motion formalism is
invalid—though one hopes that, with an ad hoc “cutoff” of radiation at the
Schwarzschild radius, it will give a rough indication of the energy, spectrum, and
duration of the waves (sce e.g., Ruffini & Wheeler 1971). Linearized theory is
also invalid but is also often used, with cutoff, to get rough estimates. The only
fully reliable calculations yet performed for rapidly changing, strong-field sources
are calculations of small perturbations about stationary equilibrium configura-
tions: small-amplitude pulsations of fully relativistic neutron stars (Thorne 1969);
the gravitational collapse of an object, with small nonspherical perturbations, to
form a black hole (de Ia Cruz, Chase & Israel 1970, Price 1972a, b); the fall of a
small object down a much larger black hole (Zerilli 1970, Davis et al 1971);
small objects in unbound, hyperbolic orbits near a black hole (Misner 1972).
Such calculations are often simplified for order-of-magnitude estimates by
replacing the gravitational-wave equations by a much simpler scalar-wave equa-
tion (Christodoulou 1971, Price 1972a).

Equation 9 indicates that a rapidly changing, strong-field source will emit a
far greater power in gravitational radiation than will a slowly changing or weak-
field source of the same mass. The power, in order of magnitude, may be as large
as the “natural” power L, (equation 7) but it probably cannot become much
greater. New techniques for analyzing rapidly changing, strong-field sources are
greatly needed.

4. ASTROPHYSICAL SOURCES OF GRAVITATIONAL WAVES

This section describes our theoretical estimate of the characteristics of the
gravitational-wave flux at the earth. Qur estimate (guess is probably a better word)
is based on a survey of the literature on theoretical analyses of astrophysical
sources of gravitational waves. We advance our estimate with the full expectation
of its being wrong in many, if not most, respects. (We are by now accustomed to
surprises in observational astronomy—some more fantastic even than the wilder
dreams of theorists!) However, we feel that an estimate is needed to act as a
foil against which to plan, design, and analyze experiments,

In our discussion of the expected radiation (this section) and of methods of
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TABLE 1. Gravitational-wave frequency bands

Length of
Frequency Wave- . acoustically
Designation (period)  length Typical sources resonant Useful antennas
antcnna o
Extremcly low (107 sec) =.1pc Cosmological ?
frequency to to Explosions in quasars
(ELF) (108 sec) =20 AU, and galactic nuclei
Binaries
Very low (104 sec) w20 AU, Short-period binaries ~25000 km  Planetary resonances
frequency to to Huge black holes to Free masses in deep
(VLF) (10 sec) 3 X106 km (~108 to 108 Me) ~25 km space
Low frequency 1/10 Hz 3 X108 km ~25 km Lumped resonant an-
P to to Pulsars to tennas
100 Hz 3000 km ~25m Heterodyne antennas
Free masses in near
space
Medium frequency 100 Hz 3000km  Black holes (1-10¢ Mz) ~25m Resonant antennas
(MF) to to Collapse of stars to (Weber)
100kHz 3 km Weber bursts ~2.5cm Laboratory almost-free
Supernovae masses
High frequency 100 kHz 3 km Laboratory almost-free
(HF) tp to Man made? masses
100MHz 3m
Very high 100MHz 3 cm Black-body Gravitoelectric detectors
frequency to to Cosmologicat ?
(VHF) 100GHz 3 mm

detection (Sections 5 and 6), we shall divide the gravitational-wave spectrum into
bands, ranging from the extra-low frequency (ELF) band of 10~"-10—* Hz up to
the very-high frequency (VHF) band of 103-10" Hz, Table 1 lists the bands and
their characteristics, while Table 2 summarizes the expected and hoped-for
radiation in each band. The ideas and calculations underlying Table 2 are de-
scribed in the text below, beginning with sources that certainly exist and working
down to sources that could exist but seem unlikely.

A. Sources Known To Exist

Nuclear bomb explosions and other terrestrial sources.—With the possible
exception of highly sophisticated nuclear explosions at very close range (Wood
et al 1971), and the barely conceivable exception of certain laser-like devices
(Nagibarov & Kopvillem 1967a, b, 1969, Braginskii & Rudenko 1970), all
terrestrial sources of gravitational waves are far too weak for any detector that
has yet been invented. (See Weber 1961, Ruffini & Wheeler 1971, MTW.)

Binary star systems.—All known binary star systems have periods longer than
one hour, corresponding to 3/L~(c:L/GM) 2, 10%. Thus, they change so slowly
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and have such weak internal fields that one can analyze them to high accuracy
using equations 8-14. Such an analysis (Peters & Mathews 1963) predicts a
power output of

32 /G® uiM?
-5 (G )t

~(ox o ) Go) 2) (=) e

Here M and g are the total and reduced masses of the system
M =my + m,, p=mms/M 16.

ab

a is the orbit’s semimajox" axis, P is the period, and f(e) is the following function
of orbital eccentricity:

fle) = (1 + Ec’ + §zc‘>/ (1 — e 17.
24 96 :

The radiation is emitted at a “fundamental” frequency equal to twice the orbital
frequency, and at harmonics of the fundamental up to order ~3 for e=0.5 and
~10 for e=0.7. The radiation is strongest at periastron, and thus radiation reac~
tion tends to circularize the orbit. If gravitational radiation is the dominant
force changing the orbital period, and if the orbit is nearly circular, then the
orbital period will decrease at the rate

1 dP 96 G* uM?

P dt b ¢& at

i) ) G )

However, the problem for short-period binaries is more complex: As the orbit
shrinks by radiation reaction, one star may encroach on the other’s Roche
surface, leading to a mass transfer from one star to the other, which can markedly
effect the evolution of the system (Faulkner 1971, Vila 1971). There may also be
mass loss to infinity.

As received on Earth, the energy flux and dimensionless amplitude of the
waves from a binary system are .

- 2D G )
A\ cem?sec/ \Mo Mo 1hr

. ( 10(; pe )_’f(e)

19.
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h = [(htmax)? + (hxcmax)?]!/?

(5 Gw) (i) o) 0 ™

Braginskii (1965) and Ruffini & Wheeler (1971, p. 128) have compiled small, in-
complete lists of spectroscopic binaries that emit strongly; but no one has at-
tempted a thorough compilation. The most powerful emitters in the lists have
orbital periods P~8 hr and produce fluxes at Earth of § ~10~ to 10-1° erg/cm?
sec, corresponding to amplitudes / of 1072 to 102, Mironovskii (1966) has calcu-
lated the total flux bathing Earth from all binary stars with P21 hr. Assuming
that the Galaxy contains ~2X107 W UMa-type binaries, he finds Frotai~10~7
ergs/cm? sec, with a spectrum peaked at a wave period of about 4 hr. Binary
stars with periods shorter than 1 hr will be destroyed so quickly by fusion and/or
radiation damping that (i) the failure of astronomers to find any such systems is
not surprising, and (ii) one cannot with any confidence expect even a single
binary star with P<1 hr close enough to produce F>10-1 erg/cm? sec.

I

Pulsars.—To a high degree of precision, one expects the neutron stars in
pulsars to be symmetric about their rotation axes. This is unfortunate, because
only deformations from axial symmetry can produce a time-changing quadrupole
moment and thereby radiate gravitational waves. Ipser (1970) presents a detailed
mathematical treatment of the radiation produced by a given deformation;
but for our purposes order-of-magnitude estimates will suffice. (These estimates
are due to Melosh 1969, Ostriker & Gunn 1969, Ferrari & Ruffini 1969, and
Shklovskii 1969.) If one idealizes the neutron star as a slightly deformed, homo-
geneous sphere with moment of inertia I, rotation period P, and ellipticity

e?  (difference in two equatorial radii)

€= 2 (mean equatorial radius)

one obtains for the power radiated

L= 3’3 _GL Ie? (3’:).
5 ¢ P

erg I 2 P “8/ € \?
~ (10 20)( ) Gorw) (o)
sec/ \4 X 10% g cm? 0.033 sec 103

By far the most promising pulsar is NP0532 (the pulsar in the Crab nebula);
it has the shortest period (0.033 sec) and is the most likely to be deformed. The
crucial issue is the magnitude of the nonaxial deformation e. An upper limit of
€¢<107? comes from the demand that gravitational radiation reaction brake the
star’s rotation no more strongly than the observed braking. A lower limit of
€210~ comes from the deformation due to poloidal magnetic pressure (Melosh
1969; note that Chau 1970 has pointed out an error in equation 4 of Melosh and
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hence in his numerical results). Theoretical analyses of the strength of a neutron-
star crust and the theoretical interpretation of jitter and glitches in the period
of NP0532 as due to starquakes suggest an ellipticity in the equatorial plane of
e~107%-10~" (cf Ruderman 1969, Baym & Pines 1971, Pines & Shaham 1972).
The corresponding values of flux and amplitude at Earth are

er
F<IXI0T — 2, h$0.7X10-2 (slowdown ratc)
cm?sec
erg crystal strength
F~3 X107 to 3X101® —3 h~10"%t0 1028 22,
cm?sec and starquakes
erg .
F23X10-8 y h2,0.7X10~% (magnetic pressure)
cm?sec

Because the luminosity varies as P®, the gravitational waves from other known
pulsars should be at least ~400 times weaker (in flux F) than those from the
Crab. Correspondingly, a *““newborn” neutron star will emit much more strongly:
At a time ¢ after its birth, its gravitational-wave luminosity is roughly estimated
by

4 X 104 g cm®\ /2 / 103 10%sec \?/?
L ~ (10* erg/sec) ( ( > ( ) 23.
I € t 4+ 10*sec

(cf Ostriker & Gunn 1969). This estimate begins to fail for ¢ 210 yr as electro-
magnetic braking processes become important. Note that L 2, 10% erg/sec holds
for days after formation. For pulsars in our Galaxy (distance~few kpc) this
corresponds to F~1 erg/cm? sec, h~1022, In the Virgo cluster neutron stars
should be born about once each month, giving F~10~ erg/cm? sec, h~10-%,

Supernovae and the birth of neutron stars—Some, if not all, supernovae
produce rotating neutron stars (pulsars). The gravitational binding energies of
rapidly rotating neutron stars are typically in the range 0.01 to 0.3 Mec? (Hartle
& Thorne 1968, Baym, Pethick & Sutherland 1971). A sizable fraction of this
binding energy is probably emitted as gravitational waves during and shortly
after the collapse that triggers the supernova. Ruffini & Wheeler (1971, pp. 127-40)
list a variety of processes that might contribute to the radiation: (i) initial
implosion of the stellar core if asymmetric; (ii) possible fragmentation of the
core into several large *“‘chunks,” due to its rapid rotation and high degree of
flattening; (iii) the orbital chase of chunk around chunk; (iv) the collision and
coalescence of chunks as the angular momentum of the system is carried away
by gravitational waves; (v) the birth of neutron stars out of core or chunks.
In its first seconds a neutron star could be in a nonaxisymmetrical Jacobi-
ellipsoid-type configuration with e~1/2, period P~1 msec, and gravitational
Jluminosity ~10 erg/sec (Ruffini & Wheeler 1971, p. 146; for detailed treatment
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of radiation from Jacobi ellipsoids, see Chandrasekhar 1970a, b, c). Its pulsations
might also generate significant radiation (Chau 1967, Thorne 1969). Whatever
the processes that actually occur, the waves will probably come off in several
broad-band bursts with frequency »~10* Hz to 104 Hz, with duration for each
burst ~10~2 sec to 1 sec, and with total duration for the entire process’of a few
seconds. (The reason for the short duration is the high effectiveness of radiation-
reaction forces for a system so near its Schwarzschild radius.) If the end product
of the stellar collapse is a black hole rather than a neutron star, the radiation
emitted will be similar. Note that for a burst of frequency ~10° Hz, which carries
off Mc? of energy in a time interval Ar, the flux and amplitude at Earth will be

¢ (05 % '108 ergs )( M )(0.1 sec) (104 pc)z
. ’ cm?sec/ \0.03 Mo At r

M 172 0.1 see\ V2 /10 pc
o ) (2 (%)
) ( ) 0.03 Mo At r

Once a neutron star has been formed, its rotation can produce gravitational
waves of gradually increasing period and decreasing amplitude (see previous
section).

Explosions in quasars and nuclei of galaxies.—For a (nonspherical!) explosion
of energy E and characteristic duration =, equation 9 predicts the gravitational-
wave luminosity

L ~ (1/Lo)(E*/7%) 25.

(As before Ly=c%/G=3.63X10% erg/sec.) Ozernoi (1965)—using a more elab-
orate model than our rough order-of-magnitude formula—conceives of quasar
explosions with E~10% ergs, r~10® sec, and a resulting gravitational-wave
luminosity L~10*% ergs/sec. For explosions in the nucleii of galaxies (e.g. M82)
he takes E=10% ergs, v =10® sec and obtains L~10% ergs/sec. Given that our
present theoretical understanding of quasars and galactic nuclei is essentially nil,
we must consider these estimates as only suggestive. On the other hand, the ob-
servational evidence for “explosions™ on galactic scales seems incontestable.

Atomic and molecular processes—The interactions of particles, atoms, and
molecules generate gravitons by processes qualitatively the same as those that
generate photons. Unfortunately, photon processes typically dominate by a
ratio ~Gm?/e*~10%; thus 10* photons are produced for each graviton. (Of
course, this is not true for the *“classical” gravitons generated by the bulk motion
of electrically neutral matter.) If they are of no practical interest, microscopic
gravitational interactions are nonetheless fascinating in principle: For analyses
of thermal bremsstrahlung from a hot gas see Halpern & Laurent (1964), Wein-
berg (1965), Mironovskii (1965), Carmelli (1967), Barker, Gupta & Kashkas
(1969); for gravitational waves from lattice vibrations in solids see Halpern
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(1969); for gravitational waves from particle-antiparticle annihilation see
Ivanenko & Sokolov (1947, 1952), and Ivanenko & Brodski (1953); for gravita-
tional synchrotron radiation from charged particles spiraling in magnetic fields
see Pustovoit & Gertsenshtein (1962). It is possible that microscopic interactions
might someday be useful in detecting supra-VHF (e.g. optical-frequency) gravi-
tons, if any could be generated. A transition stimulated by a graviton (in rota-
tional levels of a molecule, say) might be followed by an electromagnetic transi-
tion and by detection of the resultant photon. (See Nagibarov & Kopvillem
1967a, b, 1969; Braginskii & Rudenko 1970.)

B. SoURCES THAT ProBABLY EXIST

Stellar collapse with little optical display.—When one tries to build computer
models of supernovae triggered by stellar collapse, one often achieves collapse
without producing a superncva-type optical “display” (see, e.g., Arnett 1969,
Wilson 1969). It is quite possible that stellar collapse without brilliant optical
display is more common than supernova explosions. Assuming that the distribu-
tion of stellar masses is the same throughout the Universe as in the solar neighbor-
hood, and ignoring the effects of mass ejection in late stages of stellar evolution,
one obtains (Zel'dovich & Novikov 1971, Section 13.13) an upper limit of seven
stellar collapses per galaxy per year. In the nuclei of galaxics, where conditions
are quite different, the frequency of collapse might be higher than this. Each
stellar collapse will produce bursts of gravitational waves similar to those from
supernovae—though in the case of a massive star (M 2,20 Mo) the energy output
might be several solar rest masses rather than several tenths. Once a black hole
has formed, it can swallow surrounding matter, emitting a chirp of gravitation-
al radiation each time it does so (Zel’dovich & Novikov 1964; Davis et al
1971). But black holes produced by normal stars (mass <100 Mp) are so small
(<300 km) that, before they can swallow an object, they must break it up into
bite-sized pieces. As a result, the radiation from each swallow should be far less
than from the original collapse.

Condensation of galaxies—Ruffini & Wheeler (1971, p. 141) have made a
rough estimate of the gravitational waves generated when galaxies condensed
out of the expanding primordial gas:

X~ 10% ¢m, § < 10~%erg/cm? sec, h<1X1077 26.

The flux and amplitude might be considerably less than these limits. Note that
over a human lifetime these gravitational “waves” will be essentially static, a
constant gravitational stress-field.

Primordial gravitational radiation—In the earliest stages of the universe,
gravitational radiation may have been in thermal equilibrium with other forms
of matter and energy. Thus one might expect a cosmological black-body spec-
trum of gravitons like the 3°K photon background. Unfortunately, as Matzner
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(1968) has pointed out, the current temperature of the graviton background
should be much less than that of the photon background:

Tzrnv ~ Tphoton(z/N)”a 5,, 1.6°K 27.

Here N is the number of modes (including, e.g., particle-antiparticle pairs) that
were in equipartition at the time the gravitons decoupled, but that decayed to
photons in the subsequent expansion. If all known particles were in equilibrium,
then N is 2 102 to 10¢; Matzner’s lower limit is N 2 16, derived from the number
of quark states. A thermal graviton background of this type is certainly unde-
tectable with current or forcseeable technology.

It is conccivable, however, that the Universe began so chaotically that there
were large-amplitude modes of gravitational waves that never became thermal-
ized. (Cf Misner 1969, Zel’dovich & Novikov 1972, Rees 1971.) Any such waves
probably will have suffered by now such great redshifts that they would be unde-
tectable and play no signficant role in the Universe (cf Ruffini & Wheeler 1972,
p- 143). But we are so ignorant of conditions in the initial big bang that it is
dangerous to claim any firm conclusions.

C. Sources THAT Micat Exist

Huge black holes in nuclei of galaxies.—Lynden-Bell (1969) has suggested
that violent activity in the nucleii of galaxies may produce (or may be produced
by) huge black holes, which subsequently accrete matter from their surroundings.
In particular (Lynden-Bell 1969, Lynden-Bell & Rees 1971), our own Galaxy
might contain a black-hole nucleus of ~10% to 103M,. As any obiject falls into
such a black hole, it will emit a burst of gravitational radiation. For simple
radial infall into a nonrotating black hole, the total energy radiated is

E% = 0.01 (m/M) mc* = (10* ergs)(m/Mo)*(M/103Mo)~! 28.

where m is the mass of the infalling object and M is the mass of the hole (Davis
et al 1971, Zerilli 1970). If the fall is nonradial or the hole is rotating (Bardeen
1970), the numerical constant is probably somewhat larger than 0.01, but the
dependence on m and M is probably the same. The duration of the burst emitted
during infall is Ar~10 GM/c*=10* sec (M/10°Mo); its frequency is probably
not much higher than 1/A¢; and its bandwidth is ~1/Af (Misner & Chrzanowski
1972, Bardeen et al 1972, Davis et al 1972).

These results make such a source seem fairly mundane. However, Misner
(1972) points out that the radiation will be quite different if somehow one can
inject an object into a highly energetic trajectory (much more energetic than sim-
ple fall from infinity can provide). Then the object can emit strong, beamed
gravitational synchrotron radiation with frequency much higher than ¢*/GM.
(Cf Press 1971.) Misner would like to explain Weber’s observations by means of
such radiation, but the model faces very serious difficulties: How can one
achieve the large initial injection energy ? How can one avoid difficulties with the
Roche limit ?
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Black holes in globular clusters.—Wyller (1970), Cameron & Truran (1972),
and Peebles (1972) have discussed the possibility that large black holes might be
formed in globular clusters and might congregate in the centers of the clusters.
Gravitational waves would result from the infall of other objects into the holes
(see above), or from collisions or near encounters between the holes and between
holes and stars.

Superdense clusters.—More extreme models (motivated by Weber’s observa-
tions) have been constructed by Kafka (1970) and by Bertotti & Cavalieri (1971).
They imagine a very dense cluster of black holes and/or compact stars, in which
near encounters occur frequently (several times per day), producing strong bursts
of gravitational radiation. Of course, the model clusters are so designed that their
output resembles what Weber sees. The difficulty with these models (Greenstein
1969) is that a cluster dense enough for frequent collisions must evolve so rapidly
that its active lifetime would be far shorter than 10° yr. Conversely, collisions
between black holes in a normal, nonrelativistic cluster would be extremely rare.

When two black holes do collide—whether in a superdense cluster or else-
where—they probably release a substantial fraction of their rest mass in a gravita-
tional-wave burst of duration ~GM/c* and of frequency~bandwidth~(dura-
tion)™?, where M is the total mass of the holes. Hawking (1971) has derived an
upper limit on the energy radiated: for two nonrotating black holes of equal
mass M, Epa <(2—+/2) mc2.

Coherent conversion of electromagnetic waves into gravitational waves.—
Gertsenshtein (1962) and Vladimirov (1964) have pointed out that when an
electromagnetic wave propagates through a region with a static electric or mag-
netic field, the electromagpetic wave gets coherently (but slowly) converted into a
gravitational wave. Unfortunately the effect is so weak that it is probably of no
practical interest. However, if strongly charged black holes (e~M in the nota-
tion of Christodoulou & Ruffini 1971) can exist, despite their intense electro-
static pull on surrounding plasma, then as an electromagnetic wave propagates
outward from near the surface of the hole toward “infinity” its conversion into a
gravitational wave will be nearly 1009, effective.

5. GRAVITATIONAL-WAVE RECEIVERS

We turn now from the speculative to the practical: How can gravitational
waves be detected ? Weber (1960, 1961) is responsible for the pioneering detection
schemes, which involve vibrations of the Earth and vibrations of cylinders. More
recently, since 1969, Weber’s apparent success has generated vigorous activity
by perhaps 15 other research groups to design new detection schemes and im-
prove on Weber’s old ones. In this section we shall review the various schemes
that have been proposed, describe their relationships to each other and the current
state-of-the-art in each, and speculate about the future prospects of each. As
background for the discussion we shall have to review a number of basic ideas,
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well known to the experts in the field, which do not seem to have appeared ex-
plicitly in the literature before.

A gravitational wave is in essence a propagating field of stresses. When this
field acts on a physical system (“antenna”) it produces displacements and mo-
tion; the stresses produce strains. Any device that monitors these strains we
shall call a displacement sensor. The sensor and the antenna together make up a
gravitational-wave receiver.

Free-mass antennas.—The simplest antenna for gravitational waves consists
of two free masses separated by a distance /,. Although such an antenna is not
terribly practical, we shall discuss it in detail because it points the way toward
more sophisticated and more practical antennas.

Locate the masses in a plane perpendicular to the direction of wave propaga-
tion; if the wave is that of equation 5, for example, the masses could be at
x=*1/2, y=z=0. Then the stresses of the wave will produce a relative motion
of the masses; their separation will vary as

l=1l+ 3 ()b 29.

(equations 5 and 3, plus Newton’s law F=ma). Thus, the dimensionless wave
amplitude A, (f) determines the system’s strain directly:

If the masses were oriented differently, the antenna would respond to a linear
combination of the two polarizations 4, and hy instead of purely to b (see
Figure 1). If the separation were not normal to the propagation direction,
the displacement Al would be reduced by a factor sin? 8. (See below; also Ruffini
& Wheeler 1971, p. 113.) It is quite general that the dimensionless field strength
h=[(R Y+ (]2 sets the scale of the dimensionless strain Al/l, which one
must measure. In the special case of monochromatic gravitational waves (e.g.
from binary stars or pulsars), one can use resonance effects and sophisticated
antennas to make Al// somewhat larger than h. However, for signals of wide
bandwidth (e.g. for waves from any collision, collapse or explosion, for Weber
bursts, for waves of cosmological origin), Al/!is not much larger than A, no matter
how sophisticated the antenna. We will discuss this point in detail below.

How far apart should one locate the free masses? The answer depends on
how one proposes to measure their displacements; but it is generally optimal to
space the masses as distant as the displacement sensor will allow, but no more
than half a wavelength of the gravitational wave. Consider, for example, two
masses separated by astronomical distances (the Earth and Moon, or the Earth
and a spacecraft), with displacement monitored by radar or laser techniques.
If the wavelength of the gravitational wave is much larger than the separation,
the analysis of equation 29 completely describes the system, and the motions of
the masses generate Doppler shifts that are measurable in the ordinary way.
As the size of the system approaches half a wavelength, the analysis becomes
more complicated, because the gravitational wave changes appreciably during
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the time that photons are in transit between the masses, and cancels all except
“half a wavelength’s worth,” or less, of their Doppler shift. Thus, the magnitude
of the observed displacement is typically maximal for half a wavelength separa-
tion and varies sinusoidally for larger distances. (See, e.g. Kaufmann 1970).

For laboratory or earthbound experiments, the condition (apparatus size)
«(wavelength) is essentially automatic, since all important astrophysical sources
lie in the MF band and below (wavelengths> 3 km). Henceforth we will assume
tacitly that (apparatus size) <(wavelength), unless stated otherwise.

Nonmechanical displacement sensors—How can one measure the separation
of free masses ? Over Earth-size distances and larger, the only useful techniques
would appear to be radar ranging, laser ranging, and laser interferometry.

Spacecrafts are routinely tracked by radar with precision in velocity (Doppler)
of several mm/sec and precision in distance (range) of ~10 m. Either method of
tracking, range or Doppler, permits the detection of strains #2101 in the VLF
region and below (vgw < 102 Hz). However, such radiation can be ruled out on
energetic grounds with fair confidence. For example, the tracking residuals re-
ported by Anderson (1971)—if due to gravitational waves as he suggests and we
strongly doubt—would correspond to an integrated energy flux of 2 6Xx10w
ergs/cm? per event (Gibbons 1971). If they were to originate in the galactic center,
such waves would carry 3X10°Moc? per event, many orders greater than even
Weber’s events. (The waves could not be cosmological: their energy density
would be inconsistent by many orders of magnitude with the observational
limits on the Hubble constant, age, and deceleration parameter of the Universe.)
Radar technology, therefore, is not a very good detection scheme—not even
with the most optimistic estimates of improvements during the coming decade,

Laser ranging via lunar reflector is now performed routinely with precision of
~30 cm. Such ranging can give information on waves with periods of a few sec-
onds and A21X10-%; but again the existence of such waves can be ruled out on
energetic and cosmological grounds.

Laser interferometry is considerably more promising for experiments in
near space (Earth orbit) or for ground-based measurements (Moss, Miller &
Forward 1971). It is straightforward to measure displacements of one interference
fringe, i.e. approximately one wavelength of laser light, over moderately large
distances. However, this sensitivity compares poorly with other displacement
sensors: for example Weber detects strains of ~1071¢ piezoelectrically, while
10'¢ laser wavelengths is 6 X10® km! To be useful in gravitational-wave detection,
laser interferometers must measure very small fractions of an interference fringe.
The theoretical limit on interferometers of this sort is determined by photon
fluctuation noise

s (02 )
VN Hz'/2/ \6000 A

(Ia,ser power
1 mW

—1/2
) (bandwidth)1/2
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where ) is the wavelength and N is the number of photons in a measurement.
This precision improves with an increase in the laser power, or with an increase
in the averaging time (i.e. narrower bandwidth). The precision is also bettered by
a factor b if the light makes b passes down each interferometer arm. The band-
width factor suggests that laser techniques may find application to pulsar (highly
monochromatic) waves in the LF band, or to VLF signals in general.

As of 1971, the limiting scnsitivity (cquation 31a) has been achicved experi-
mentally in order of magnitude with laboratory-sized apparatus, fractional milli-
watt lasers, and bandwidths of a few Hz (Moss, Miller & Forward 1971 and
references cited therein; see also Moss 1971). This corresponds to measured
distances of ~1073 cm or 5X 1078 fringe; in more recent measurements with a
30-mW laser, Moss et al (unpublished) have bettered these figures by another
order of magnitude. Such a sensitivity, if it could be achieved in earth orbit over
a baseline of 10® km, could detect the radiation from known short-period binaries
(e.g., i Boo with A~6X10~%). Weiss (1972) discusses a system using multiple
passes down cach interferometer arm and using a half-watt laser, which could
achieve sensitivities of 10—18cm/Hz!2,

Almost-free antennas.—We begin the transition to more complicated antennas
with a question: How “free” must the masses be in a free-mass antenna ?

Only for experiments in space can one imagine anything like ideal free masses.
Otherwise, the masses must be held in place by a suspension that allows them
to move in response to the wave (Figure 2b). There may also be a mechanical
connection between the masses, part of the suspension proper or part of the dis-
placement-measuring device. For example, one might place a piezoelectric rod
between the masses and measure their displacement by monitoring the strain in
the rod. One can analyze how the suspension and mechnical coupling affect the
antenna by studying the system’s normal modes of oscillation. Some normal
modes have no influence on the wave-induced displacements, so one can ignore
them. (Example: the modes associated with vibrations in the x-z plane for the
detector of Figure 2b.) Compare the frequencies », of the remaining modes with
the characteristic frequency of vgw of the gravitational waves. If v, «vgw for all
va, then the system will respond to the waves as if the masses were free. If some
v» have v, >vgw, their modes can be treated as rigid, but the masses will be *“free”
in the remaining modes (v, <vgw). In practical work it is often sufficient to satisfy
the inequalities by factors of 3 or 5. If there are modes for which neither inequality
holds, v, ~vew, then the system is no longer “almost-free.”” Rather, one says that
it is resonant. We shall treat resonant systems below.

A promising example of an almost-free antenna is a dumbbell-shaped bar
(Rasband et al 1972) or hollow square (Douglass 1971) monitored in the fre-
quency band between its fundamental v, and its first harmonic v;. (Note: for such
antennas yo/v1<1.)

Mechanical dissipation in the suspension and coupling of an almost-free
antenna produces thermal noise fluctuations in the distance between the masses. If
the conditions for an almost-free detector are met, so that the wave frequency
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{0) FREE-MASS S 1.
ANTENNA O 1 _displacement sensor ¥

(b) ALMOST-
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ANTENNA

(c) RESONANT
ANTENNA

FIGURE 2. Three types of gravitational-wave detectors illustrated by idealized exam-
ples: (a) Free-mass detector (e.g. two masses in “free-fall”” orbit above the Earth). The
displacement sensor (e.g. laser interferometer) must leave the masses free. (b) Almost-
free detector. The masses are coupled to their surroundings, and perhaps also to each
other, by (i) a suspension system and/or (ii) the displacement sensor. However, the mo-
tions excited by the gravitational waves (here displacements of suspended masses in y
direction) are essentially free. (Free motion here requires that the wave frequency rew be
far larger than the “pendulum™ frequency », in the y direction, »ew>>»0; and also large
compared to characteristic frequencies varps of the coupled mass-displacement-sensor
system, vgw >vaps.) (¢) Resonant detector. The masses are strongly coupled and vibrate
in a resonant mode at the frequency »gw of the gravitational wave.

vew is not near any of the detector frequencies va, then this noise fluctuation at
temperature T is given roughly by

AL @ X 1010 )(10* Hz)’( T )”’(IOsec)”’
ermal ™ cm
hormal vew / \300°K ™

103kg\V2/ BW \!?
( M ) (10a Hz)
Here 7, is a typical dissipation time for those normal modes with frequencies

«vgw (but driven at vgw), M is the mass of the detector, and BW is the band-
width monitored.

31b.

Mechanical displacment sensors.—Free-mass antennas require nonmechanical
displacment sensors (e.g., lasers); but almost-free and resonant antennas permit a
mechanical link between the test masses. This opens the way for other types of
displacement sensors. Braginskii (1968, 1970) divides displacement sensors into
two classes: transducers, which convert the mechanical energy of the detector’s
motion to some other form of energy; and modulators, which make use of the
detector’s mechanical motion to control an external source of energy. (In the
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terminology of electronics, modulators are parametric amplifiers.) The output of a
modulator is not limited to the energy extracted from the gravitational wave,
Examples: a piezoelectric crystal, and a bar magnet and moving coil are trans-
ducers; a laser interferometer and a resonant circuit with mechanically varied ca-
pacitance are modulators. The signal energy from a modulator can exceed the
energy extracted from the gravitational wave by the ratio of the frequency of the
electromagnetic signal to the frequency of the gravitational wave. Although
Weber’s experiment uses piezoelectric transducers, many experiments designed
subsequently make use of modulators (Braginskii 1971 ; Hamilton 1970a, b).

The most useful measure of a displacement sensor’s performance is the func-
tion Alyin(r), the minimum detectable displacement in an averaging time 7 (with
signal/noise = 1). In many cascs the sensor noise will be “white™ and the function
of averaging time will be the typical square-root random walk

. Al‘“"\(‘rl)/Almh\(Tz) = (Tg/‘r‘)”z 32.
In these cases the useful figure of merit is the constant
S = Almln(‘l’)‘l‘”2 33.

with units cm/(Hz)'/2, which we call the displacement sensitivity. (Notice that the
inverse time resolution 7! is the bandwidth Aw of the displacement sensor, not the
frequency at which it operates, which is usually much higher. For example,
Weber’s piezoelectric transducers measure displacements of 10~5 cm at a fre-
quency of 1660 Hz, with a bandwidth Aw=7"1 of a few Hz.)

Gibbons & Hawking (1971) have considered in some detail the theoretical
limits on piezoelectric sensors, and similar considerations limit other transducer
sensors. The key idea is that the electrical output of a transducer is subject to
thermal (“Johnson™; *“Nyquist™) noise, which increases with decreasing aver-
aging time (i.e. with increasing bandwidth). This noise power per unit bandwidth
is a constant (~kT), while the signal power is proportional to the volume of
piezoelectric crystal. As the crystal volume is increased, it comes to store more
and more of the antenna’s mechanical energy. A limit is reached when the crystal
stores all the mechanical energy, and this translates into a rigorous limiting sensi-
tivity for piczociectric sensors:

Smln ~ dpluo(kTB tan 6/1‘{(.03)”2

(15x10~u cm )( dpiero )( T )”’
' Hz'*/ \10-8 cm/statv/ \300°K

tan § \!® B 12 £ 108 kg \1/2 24,
'<5 X 10—-) (10"dyne/cm’) ( M

104 rad/sec\¥?
(=29

Here dj1es (the piezoelectric strain constant), B (the elastic modulus), and tan §
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(the dissipation factor) are properties of the material, and  is the frequency of
the wave. The experimenter is able to adjust only T (the temperature) and M
(roughly, the total mass of the gravitational-wave antenna).

Modulator-type displacement sensors are also limited in principle in their
sensitivities (Braginskii 1968, 1970). However, the limits of principle are many
orders of magnitude below current technological limits, so we will not consider
them here.

One cannot understand the technological limits on modulator-type sensors
without first exploring their possible configurations. Modulator-type sensors
require three elements: an oscillator, which supplies a highly monochromatic,
oscillating electromagnetic signal; a resonator, which is coupled to the gravita-
tional-wave antenna, and which modulates the oscillator output, and an electro-
magneltic detector, a nonlinear component that detects the modulated signal. The
electromagnetic signal may be at any frequency—optical, microwave, radio. In
the optical regime the oscillator is a laser, and the resonator is an interferometer
cavity with the separation between its mirrors modulated by the gravitational
wave (Moss et al 1971, see above). In the microwave regime one might use as the
resonator a microwave cavity, perhaps superconducting. Flexing of the cavity
(produced by antenna displacements) will change its resonant frequency and
modulate its output. (Dick & Press 1970 have designed displacement sensors
based on this principle.) For electromagnetic signals of radio frequency one can
use an L-C circuit as the resonator. Antenna displacements produced by gravita-
tional waves can be used either to vary the distance between the capacitor plates
(Braginskii’s 1971 sensor works this way), or to vary the inductor, say by
moving it with respect to a ground plane (a sensor designed by Fairbank and
Hamilton works this way—see, e.g. Hamilton 1970a, b). In either case the output
is a modulated electromagnetic signal. It is worth noting the essential unity of
the above three resonators, and the possibility of constructing intermediate de-
vices: as the wavelength A\ of the resonator’s oscillating (standing) electromag-
netic wave increases relative to the size L of the resonator, one slides contin-
uously from laser interferometer (A&L) to microwave cavity (\~L) to L-C
circuit (\>>L).

A number of displacement-sensing configurations can be built with oscillators,
resonators, and detectors—some with AM modulation, others with FM modula-
tion, and others with more complicated schemes. The displacement sensitivity is
limited by two factors: the oscillator noise at frequencies close to the oscillator
frequency where the modulated sidebands will appear, and the noise in the
demodulating detector. Thermal electromagnetic noise (1/2 £T) in the resonator
is almost always much smaller, so 1971 sensors are only state-of-the-art limited.
It appears that 1971 technology in the radio and microwave (superconducting
cavity) region can achieve a factor of ~10 better displacement sensitivity than
piezoelectric technology; and one expects that this number will increase with
time as the materials limit on piezoelectric transducers is reached, and as oscilla-
tors and electromagnetic detectors with lower noise are developed.

Table 3 gives typical parameters for three displacement sensors that have
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actually been built. For modulator-type sensors we can expect large improve-
ments over the currently mcasurable strains (~1071%) during the coming decade.

Acoustical systems: the uses and abuses of resonance.—Thus far we havce esti-
mated the strength A of incident gravitational waves from various astrophysical
sources; we have seen that when a wave of strength & acts on a free-mass or
almost-free gravitational-wave antenna of size /, a displacement Al= Al is pro-
duced; and we have surveyed displacement sensors and have found that given a
resolution time 7, one can measure a displacement as small as Alpin~ ST1/2,
where S is the displacement sensitivity. How should one choose 7, the resolution
time?

Ideally one would like to take r as small as possible so as to examine the actual
waveform of the gravitational wave as it passes. [A wide-band (small 7) gravita-
tional-wave receiver extracts more information from the wave than does a
narrow-band (large 7) teceiver.] But 7 is limited by the condition of detectability
(ADduo to wave™> Almin. Thus, to detect a wave of amplitude & one must measure for
a time r larger than

S\? S * /1 m\? /10-2\?
= () = oo (S VY s
hl 10~ cm/Hz/? l h

For “burst™ gravitational radiation (from collapse, explosion, collision, etc),
Tmin May be longer than the duration of the burst, so that not enough averaging
time is available to see the burst at all. Even for highly monochromatic waves
(e.g. pulsars), Tmin may be unfeasibly long, say years. Can anything be done in
these cases?

Yes: one can use a resonant mechanical system as the antenna. For burst
radiation, a rcsonant system “remembers’ that it has been hit by a burst (the
way a bell “remembers” that it has been struck by a hammer) and allows aver-
aging times 7 much longer than the duration of the burst. For monochromeztic
waves, the resonance “remembers” the last Q. cycles of the wave (Qre is the
antenna’s resonance quality factor), and superimposes them so that the displace-
ment is increased by a factor Qres and 7y is decreased by a factor Qpe,*:

S 2
Tmia = (hl Q...)

S 2 /1m\?/ 10%\2 /10-26\?2
= (10tsec){ ————— ) | — ] | — } { —
1078 cm Hz!/2 l Cres k
] Notice (and we shall prove below) that these two effects are disjoint. For burst
radiation, resonance does not increase the detector response Al; it only allows
longer resolution times and hence less sensor noise.
The benefits of resonance are obtained at a tremendous cost—the loss of all

information about the wave except one single number, its Fourier component
(i.e. spectral energy density) at one single frequency, the frequency of mechanical
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resonance. Only wide-band detectors can give dctailed information on the wave-
form or spectrum of a burst, or precise time-of-arrival information that can de-
termine the source direction. If resolution time 7 is increased to take advantage
of the resonant antenna, one decreases the bandwidth Aw=7"1 accordingly.
Resonance is a technique of the last resort, to be used to detect gravitational
signals that could otherwise not have been detected at all.

The force field of the gravitational wave acts independently on each normal
mode of a general resonant antenna. Describe the nth normal mode by its angular
frequency wa, its damping time 7., and its eigenfunction u.(x). Thus, vibrating
freely in this mode, the antenna exhibits the displacements

AX = u.(x) 8in (wal) exp (—t/7s) ‘ 37a.

To make the eigenfunctions u, dimensionless with magnitude of order unity,
impose the normalization

f plua|tdic=M 37b.

where p is the density and M is the mass of the antenna. If B,(r) is the amplitude
of the nth mode, defined by

AX = u,(X)Ba(t) 38a.

then the action of the wave on the mode is described by the equation for a
forced damped harmonic oscillator (Figure 2c; see MTW, exercise 37.11):

B, 4 Ba/ta + wa?Bs = Ra(t) 38b.
The forcing term is related to the components of the gravitational wave by

oW

Ra.(t) = — _ZkR,'oko(t) f (o/ M)u,izdz 39.

Note that for an antenna of fixed mass M and fixed characteristic size /, one
can maximize the displacement Al= B,u, to be measured by making the measure-
ment at a point where the eigenfunction u, is large. In principle one can obtain an
arbitrary amount of amplification by designing the antenna so that u, is huge
somewhere (but nor where much mass is; cf equation 37b); for an example see
Lavrent’ev (1969a, b). Mechanical amplification is optimal when it is used to
match the (“stiff””) mechanical impedence of the antenna mass to the (usually
“soft””) mechanical impedence of the sensor, so that there is good coupling of
energy from antenna to sensor; unfortunately, one is typically limited by prac-
tical difficulties—it is easy to draw a long, massless lever (the perfect displace-
ment amplifier), but not so easy to construct one. Note that unless the normal
mode-displacements u, “look something like” the force diagram of Figure 1,
various parts of the integral will largely cancel, and the driving force R,(¢) will
be very small; in other words, the gravitational wave will couple only poorly
to that mode. For example, the coupling to the longitudinal modes of a vibrating
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FiGURE 3. Graphical evaluation of the effect of a burst-type wave on a resonant an-

tenna (see text for details). R. is the wave’s driving force, G is the Green’'s function of the
antenna

(1/wn) sin (waf) exp (—$/ra) £ >0
0 <0
and the response of the antenna to the wave is Ba(r) =/ 3 R.(1)G(t)dt. The three plots

correspond to times ¢ that are (a) before the burst reaches the antenna, (b) while the
burst is exciting the antenna, and (c) after the burst has passed.

6 = {

cylinder decreases as the inverse square of the mode number n, for odd n; for
even n the coupling is zero, since these modes are precisely orthogonal to the
force of the gravitational wave (Ruffini & Wheeler 1971, Section 7.3). A similar
power law holds for high modes of general mechanical systems; for example, it is
unlikely that gravitational waves could excite high-mode free oscillations of the
Earth without exciting the lower modes preferentially (this point is sometimes
overlooked ; of Tuman 1971),

Figure 3 shows the familiar Green's function solution to cquation 38b. One
imagines the wave's driving force R.(r) propagating rightward and the (damped
sine-wave) Green’s function held fixed. The momentary displacement B,(f) is the
integrated product of R, and G. In Figure 3a the wave has not yet reached the
antenna, and there is no antenna response. Skip now to Figure 3c; this is after
the wave has gone by. The waveform lies completely within the nearly sinusoidal
part of the Green’s function: the amplitude of the detector’s ringing measures the
product of wave and sine-wave, i.e. it measures one Fourier component of the
wave. Its magnitude, the quantity the displacement sensor must measure, is
Al= Bu(t)~hl exp (—t/r,). (To obtain this, integrate Figure 3¢ twice by parts,
thereby turning components of R, into A.) As the wave marches on through the
Green’s function, the ringing dies away with time constant r,—this is the time
during which one must ferret the signal from the noise in order to detect the
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wave at all. Go back to Figure 3b. This is during the time that the gravitational
wave is driving the apparatus. The response depends in a complicated way on
the incident waveform: if one could measure the response with good time
resolution during this period, one could in principle reconstruct the entire incident
wave (more exactly, the wave high-pass filtered at w;, since the antenna is essen-
tially rigid to frequencies much below w,). Here again one faces the issue of
wide- vs narrow-band antennas. If the resolving time determined by system
noise and sensor noise is shorter than the duration of the wave, then onc can
resolve the wave’s structure ; if it is longer than the duration of the wave, but less
than r,,, one can sce only a single Fourier component of the wave; if it is longer
than 7., one cannot detect the wave at all. The free-mass and almost-free an-
tennas are special cases of this discussion with w,—0. Their conceptual advantages
are their simple relation between detector response and incident waveform
(Al/l measures h directly and instantaneously) and the absence of the “high-pass
filter™ effect. Their disadvantage is that they cannot “remember” the wave for
a long time r,, as a resonance can.

Figure 3 is drawn for burst radiation. For a long monochromatic train,
one would have a picture with two intersecting sine trains, and the response
would be of order

Al = Bﬂ ~ thmin 40'

where Onis is the “number of peaks™ in the product, therefore the minimum of
wave Q and detector Q.

In analyses of resonant antennas the concept of cross section, ¢ =(energy
absorbed by detector)/(energy flux in wave), has sometimes been introduced.
However, the cross section is irrelevant and useless (i) when one deals with free-
mass and almost-free antennas, and (ii) when one uses or designs even a resonant
antenna to measure more than the single Fourier component of the wave at the
resonant frequency. Thus, a designer of gravitational-wave antennas should focus
his attention on cross sections no more than does a designer of radio-wave an-
tennas. Cross section is far too narrow a concept to be central in antenna design.

For detailed discussions of cross sections see, e.g. MTW or Ruffini & Wheeler
(1971).

Thermal noise in resonant antennas—We mentioned above the effects of
thermal noise on an almost-free antenna. In a resonant antenna the thermal
noise fluctuations are of crucial importance. To analyze the effect of thermal
noise, one need notice only that the antenna’s oscillating displacement B,(f) is
linear in the driving force (equation 38b or 40); and that therefore the displace-
ment B,he™2l(f) produced by Brownian (thermal) forces adds linearly to the
displacement B,°%(¢f) produced by the gravitational wave. The thermal-noise
displacement oscillates sinusoidally,

B»therm.sl (t) —_ &nthoml (t) g bont
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with a slowly fluctuating, complex amplitude @, *™!(r) that has typical magni-
tude corresponding to 4T energy in the mode:

kT \V?
(B"thurmsll == (M 2)
Wn

T \Y2/10*kg\'/2 / 10* rad/sec
= (2X 107" cm) ) ) ( ) 41
300°K M Wn

®uthrmeal moves about in the complex plane (varying magnitude and phase) on
a characteristic time scale 7,,, which is the same as the damping time for free
oscillations far above thermal noise. In shorter times At the fluctuations obey a
stochastic square-root law

| A(Bnthermnl‘ ~ (At/r,.)”’l (B, thormal | 42,

(Sce Braginskii 1970 for more details.) Now an important point: if over a time
At one tries to measure a signal B.9V(r), one necd not have B, 2, |®,thormal| ;
rather one necd only have B,% 2, | A®,tm™1|  In other words, the thermal noise
level is not the 34T thermal-oscillation displacement; it is the fluctuation in
thermal oscillation over the time of the measurement. This explains why high Q,
(large 7a) resonances are favorable for burst radiation: not that the high Q,
increases the size of the signal Al~ B,%% (it does so for monochromatic waves,
but not for bursts); nor that it decreases the amplitude of thermal 34T oscilla-
tions (it never does so!); rather the high Q, lengthens the time scale over which
the thermal oscillations change amplitude, so that a smaller burst B,°%(f) can
be picked out against the smooth thermal oscillations. This thermal noise ad-
vantage is in addition to the advantage of resonance previously mentioned, the
permitted lengthening of the signal-resolution time.

The fact that fluctuations, not absolute magnitudes, determine the noise level
also explains why feedback schemes to “cool one mode of a detector instead of
the whole detector” will not work. A feedback loop with a characteristic time-
scale (2 resolution time of displacement sensor) will reduce the magnitude of
the thermal oscillations by a factor (rp/7,)'/% But it will leave completely un-
affected the magnitude ‘A(B,.‘"em‘“ll of fluctuations on timescales Ar<7p and
will therefore not improve the noise problems for gravitational-wave bursts
shorter than 5. For bursts longer than 75 the feedback will destroy the signals
along with the noise—essentially by increasing the antenna’s effective inertial
mass, while leaving unchanged the passive gravitational mass which feels the
wave. On the other hand, feedback can be used in just this fashion to modify
the antenna’s response to suit the needs of a particular situation (e.g., to suppress
resonant responses in a wide-band experiment). But feedback cannot directly
change the ratio of signal to thermal noise (see Kittel 1958).

What is the optimal sensor resolution time r to barely detect the smallest
possible burst with a resonant detector ? The battle against thermal flucutations
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makes a short r desirable; but sensor noise Alpnin~Sr~/2 favors large 7. The opti-
mal point is in between:
Srall?

| &”themal l

S n \"?(2 X 10~ cm
=~ (0.15 sec)( )( > (, )
1015 em/Hz'/2/ \10 sec | @athermai |

(Gibbons & Hawking 1971). For wideband experiments one seeks smaller resolu-
tion times 7 <7optimai (hence needs stronger waves), so sensor noise increases
while thermal mechanical noise becomes less troublesome. The interesting point
is that in narrow-band experiments, one need not take r any greater than

Toptimal-

Toptimal ™

Classes of resonant antennas.—Here is a brief catalog of configurations that
have been suggested for resonant antennas.

(a) Distributed resonant antennas. The restoring forces and inertial forces
are distributed more or less uniformly throughout the antenna mass. The
resonant period is determined (approximately) by the sound travel time across
the mass. Examples: Weber’s cylinders, rods, discs, the Earth (Douglass 1971,
Douglass & Tyson 1971 call these ““Class I”” antennas).

(b) Lumped resonant antennas. The main restoring force and main inertial
force are contributed by different parts of the system. The resonant period of the
fundamental mode can be made much longer than the typical sound travel time,
but the periods of higher modes are usually of the order of that time. Examples:
hcllow squares, rings, tuning forks (Douglass 1971, Douglass & Tyson 1971 call
these “Class II"”); also dumbbells (Rasband et al 1972); also two pendula, well
separated but suspended from a common support (Braginskii & Rudenko 1970;
this antenna looks promising for detecting waves from pulsars; it has the ad-
vantage of a very large Q~10°). A lumped, resonant antenna, monitored between
its low fundamental frequency and its much higher *“‘harmonic” frequencies,
would function as a wideband almost-free antenna.

(c) Acoustical transmission lines. Here a smoothly distributed mass is used
not as the primary antenna, but rather to carry a displacment to a convenient
place for sensing. Examples: Braginskii’s (1971) cylinder has “horns” which
carry the full displacement of the cylinder ends to a capacitive sensor in the cen- .
ter. Vali & Filler (1972) have proposed using a long resonant rail to transmit
rigidly a (gravitational-wave-induced) displacement over a distance of several
kilometers. (The key idea is that a resonant rail acts as if it were “infinitely
rigid” between nodes of its resonant frequencies.) This technique may find ap-
plication in detecting monochromatic pulsar waves in the LF band.

(d) Rotational resonances—heterodyne antennas. These have been devised
by Braginskii (see Braginskii et al 1969, Braginskii & Nazarenko 1971). For a
circularly polarized gravitational wave, the force diagram of Figure 1 rotates
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with time. If a dumbbell rotates at half the frequency of the gravitational wavein a
plane perpendicular to the wave, it will always stay fixed with respect to the
lines of force and be continuously accelerated. Two independent dumbbells,
rotating in the same direction but 90° out of phase, will experience opposite
accelerations. The experimenter can search for the constant relative angular
acceleration of the two rods (constant so long as the angle between them does
not depart significantly from 90°). Better yet, the experimenter can adjust the
rods’ rotation rate so that it does not quite match the waves’ frequency (all too
easy to do!); the resulting frequency beating will give oscillations in the relative
orientation of the rods. One need not worry about the other circular polarization
marring the experiment. Since the other polarization does not rotate with the
rods, its angular accelerations average out over one cycle; hence such a detector
also works for linearly polarized or unpolarized waves. Heterodyne antennas,
particularly in Earth orbit, may be the most practical means of detecting waves
from pulsars. They may also have application in threshold detection of bursts,
with a very long resolution time available to detect the relative rotation after
the burst has gone by (Braginskii & Nazarenko 1971).

A similar antenna has been proposed by Sakharov (1969). A nonrotating
dumbbell is driven in its vibrational mode in resonance with a gravitational
wave. When maximally distended it experiences a torque in one direction, and a
torque in the opposite direction acts when it is minimally contracted. Hence it
experiences a net angular acceleration relative to local incrtial frames (gyroscopes).

(e) Surface interactions with matter. A gravitational wave interacts with the
free surface of an elastic body, producing elastic waves (Dyson 1969, Esposito
1971a, b). In principle, the surface could be the surface of the Earth or Moon, and
the waves could be detected seismically. In practice this method is not sensitive
enough to be useful for astronomical sources. However there are possibilities for
improvements, e.g. using resonances (elastic waves reflected between two surfaces)
in the antarctic sheet ice or in lunar mascons (de Sabbata 1970). These techniques
might have application for monchromatic LF waves.

Other gravitational-wave antennas—Fluid-in-pipe antennas, where the force
field of the gravitational wave causes a fluid to flow around the inside of a closed
pipe of appropriate configuration (e.g. figure-eight shaped), have been considered
by Press (1970). These antennas are related to free-mass antennas in a way that is
similar to the relation between magnetic-loop and electric-dipole antennas in
electromagnetism. In the gravitational case, however, the size of the loop is
limited by the speed of sound in the fluid, and fluid-in-pipe detectors are typically
only (paouna/c) as efficient as other mechanical detectors. (See MTW for further
details.)

This disadvantage may not be debilitating if the “pipe” is a superconducting
wire and the “fluid” consists of conducting electrons. The wave would induce a
weak alternating current with the same frequency as the wave. Papini (1970),
DeWitt (1966), and others have considered the action of a gravitational wave on
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superconducting and normal metals, from somewhat different points of view.
Papini’s detector is primarily for HF and VHF waves.

Braginskii & Menskii (1971) have devised a gravitoelectric detector consisting
of a toroidal waveguide with a monochromatic electromagnetic wavetrain
propagating around it. Gravitational waves, passing through the plane of the
wavcguide, act on its EM wavetrain (much as they do on the rods in the mechan-
ical heterodyne detector; see above), producing frequency and phase shifts be-
tween different parts of the train. (Sce Box 37.6 of MTW.) This dctector might be
uscful with highly monochromatic waves in the VHF band; unfortunately there
are no known astrophysical sources of this character.

Other gravitoelectric antennas have been described by Lupanov (1967),
Vodyanitskii & Dimanshtcin (1968), and Boccaletti and colleagues (1970, 1971);
these also seem ill-suited to predicted waves of astronomical origin.

Table 4 summarizes the various proposed types of gravitational-wave an-
tennas.

Directionality of antennas; arrays—All gravitational-wave antennas have
quadrupole patterns of directionality: the amplitude of the response to a given
wave is a quadratic function of the antenna’s orientation (Exercise 37.13 and
Box 37.4 of MTW; p. 115 of Ruffini & Wheeler 1971 ; Weber 1970b, 1971a). The
particular form of the quadrupole pattern (coefficients in quadratic expression)
depends on the shape of the antenna and the polarization of the waves. For
example, the patterns of a disc (Weber 1971a) and a sphere (Forward 1971) are
somewhat less directional than those of a cylinder.

The step from “antennas” to “telescopes” requires either antennas as big as
a fraction of a wavelength (impractical), or arrays of individual antennas spaced
over such a distance. Much detail can, in principle, be derived from such an
array. Since the frequencies are low (compared with radio astronomy), it is not
impractical to apply sophisticated numerical techniques on-line to the output of
an array. For example, the directionality of an array will not be *diffraction
limited”’; rather it will only be *“noise limited.”

Natural antennas —Nature provides one with a number of “natural” antennas
for detecting gravitational waves. One (Earth-Moon separation) was discussed in
some detail above. Others (the Earth’s vibrations and seismic activity ; anomalies
in the Earth’s rotation ; fluctuations in the relative velocities of stars) are discussed
in Braginskii’s (1965) review and in references cited therein. None of these
natural antennas look promising. None give limits on gravitational-wave flux
that are markedly tighter than one gets from cosmological considerations (ob-
served expansion rate, deceleration, and age of Universe demand mass density
p <1028 g/cm®, corresponding to flux of waves & <10 erg/cm? sec).

Winterberg (1968) and Bergmann (1971) have argued that one might search
for gravitational waves of LF, VLF, ELF, and even lower frequency by their
action in interstellar space to produce fluctuations in the intensity of starlight.
Unfortunately, the predicted fluctuations are far smaller than estimated by
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TABLE 4. Possible types of gravitational-waves antennas
(See text for details and references)

Potentially as- Frequoncy band; Feasible
General type Description trophysically burst (B) of within a
useful?  monochromatic (M)?  decade?
Freo masses Masscs in earth orbit yes VLF or ELF (M) (B) ?
Spacecraft tracking or lunar
ranging no
Almost-free masses Dumbbelis yes LF or MF (B) yes
Other resonant sysiems far above
resonance yes
Resonant systems  Distributed resonators yes MF (B) (M) yes
Cylinders
Discs -
Sphere (plancts) (VLF) (yes)
Lumped resonators yes LF or MF (B) (M) yes
Dumbbells
Hollow squares, etc
Planetary surface interactions no(? LF(M) no
Acoustical transmission lines yes LE (M) yes
(resonant raifs)
Heterodyne detectors yes LF or MF (B) (M) yes
(rotational resonances)
Gravitoelectric Toroidal waveguide no VHF (M) no
Direct action on superconducters no ? no
Scintillation of startight no {cffect too small) no
Gravitoquantum Stimulated emission of gravitons no VHEF and above ?

Winterberg and Bergmann. For the errors in Winterberg’s analysis see Zipoy &
Bertotti (1968). Bergmann erred in assuming that the waves produced fluctua-
tions directly [so (amplitude of fluctuations)= (amplitude of waves)]. Rather, it
is only the energy carried by the waves that can affect the starlight intensity;®
and Bergmann’s equation 3 should be corrected to read (cf Penrose 1966)

(a?)'/? = (amplitude of starlight intensity fluctuations)
energy per unit area distance number of coherence | /2
~— in one coherence X to X {lengths between

4.
length of waves star Earth and star

B\ 2 L\1/2 A\ 2 L \2/1\2
~Exex(7) =0 =1E) @)
(x) 1 T N\Le/ \L
Here L is distance to star, / is coherence length of gravitational waves, A is
wavelength of gravitational waves, and (¢*/G)#/\)? is energy density in waves.

! The oscillating Riemann tensor produces a shear of the light rays; the square of the
shear then focuses the rays. The net focusing is proportional to the energy density of the
gravitational waves and is the same as if the waves had been electromagnetic or neutrino;
see Penrose (1966),
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The last formula introduces the Hubble radius Ly. Cosmological observations
demand (h/A\PL2 S 1 (that is, 2510728 g/cm?). Thus, the last formula shows ex-
plicitly that the amplitude of the fluctuations can never exceed ~1 and urder all
reasonable circumstances will be «1. The effect is not at all promising, (See
Zipoy 1966 for a more complete treatment, which is basically correct but overly
difficult.)

6. THE WEBER EXPERIMENT

Since 1969, Joseph Weber (1969, 1970a, b, ¢, 1971a,b) has observed sudden,
coincident excitations of two resonant gravitational-wave antennas spaced 1000
km apart, onc in Maryland, the other near Chicago. If these excitations are caused
by gravitational radiation, then the characteristics of each burst are about what
one expects from a “strong” supernova or stellar collapse somewhere in our
Galaxy; but the number of bursts observed is at least 1000 times greater than
current astrophysical ideas predict! Weber’s observations lead one to consider
the possibility that gravitational-wave astronomy will yield not just new data on
known astrophysical phenomena (binary stars, pulsars, supernovae) but also
entirely new phenomena (colliding black holes, cosmological gravitational waves,
727). In fact, one is offered the tantalizing possibility that these new phenomena
might dominate all other forms of energy generation and might force a major
restructuring of our understanding of galactic and cosmological evolution,

The possible resolutions of the present theoretical and experimental crisis
fall into five inclusive categories: (i) Weber’s events are not caused by gravita-
tional waves. (ii) The events are caused by gravitational waves, but the flux is
somehow much less than it appears. (jii) The deduced flux is correct, but the de-
duced total luminosity is wrong (i.e., the source is either nearer to us than we
believe, or the radiation is “beamed” or focused in our direction). (iv) The de-
duced luminosity is correct, so in the present epoch (at least) our Galaxy ( ?) emits
orders-of-magnitude more gravitational radiation than electromagnetic. (v)
The waves are of cosmological origin. Here we briefly summarize the observa-
tions as reported in the literature and elaborate on the possibilities.

Weber’s detectors and the events—The detectors are aluminum cylinders,
typical size 66-cm diameter by 153-cm length. The end-to-end strain is monitored
by piezoelectric crystals bonded around the girth of the cylinder (Table 3). In our
terminology (see above), the cylinders are distributed resonant antennas with
wo/2x=1661 Hz, 74~25 sec. The antenna output is monitored with a resolution
time 72,0.1 sec and strains of ~10~7 are detected, so the implied sensitivity S is
~5X1071¢ cm/Hz"/, The thermal noise displacement is |®er=sl| ~10~ cm,
so the resolution times chosen are about optimal for this device (equation 42).

The observed events occur ~3 times per day. The coincidences disappear
when one introduces a time delay of 2 sec into the output of one detector.
Since no structure within the time resolution r has been reported, an experi-
mental limit on Qwave (the wave's ratio of frequency to bandwidth) is Quave < 200.
Recently, Weber (1971b) has observed coincident excitations on another antenna
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at 1580 Hz. This would indicate Quwave, S20. It is not unlikely that, in fact,
anvv"’l- .

The coincident events exhibit typical displacements of Al= B, ~5X 106
cm. Coincidences occur most frequently when the axes of the cylinders are per-
pendicular to the direction of the galactic center. The observations are consistent
with the hypothesis of a single point source of randomly polarized waves in that
direction (or in the opposite dircction—waves propagate through the earth un-
impeded). A source < 10° from these directions cannot (in late 1971) be excluded;
but sources farther away can unless they are consistently polarized (Tyson &
Douglass 1972).

The case for gravitational waves—Weber has tested for the possibilities of
scismic excitation of his detectors, and excitation by cosmic rays and by radio
waves, all with negative results. Nevertheless, in excluding nongravitational
sources there is always the possibility that something has been overlooked. There-
fore it is important to find direct evidence that the excitation is gravitational.

One such bit of cvidence is offered by Weber's scalar-wave experiment (1971a).
There a disc antenna (not a cylinder) was used to search for scalar gravitational
radiation (excluded in Einstein’s theory, but predicted by, e.g., the theory of
Brans & Dicke 1961). However, a disc is not a “perfect” scalar antenna; it also
responds to ordinary tensor gravitational waves, but with a somewhat different
directionality than a cylinder. Weber’s experiment found no evidence for scalar
radiation; perhaps more interesting, the response of the disc was consistent with
a point source of tensor gravitational waves in the center of the Galaxy. Since
it would not be easy for a nongravitational mechanism to “mimic” the different
directionalities of disc and cylinder, this is direct—if weak—evidence that the
excitation mechanism is a tensor gravitational wave,

The deduced wave strength.—If the excitation is caused by gravitational waves,
equation 40 must hold in order of magnitude, so

h ~ 3 x 10"7/Qw.n 45.

As remarked above, the 1971 experimental limit is Qwave < 20. However, Qwave is
probably not even this large—if it were so large, then one would conclude that
either Weber was fortunate enough to guess the “‘universal” waveband (1580-
1661 Hz), or else he misses many bursts at other frequencies. 1t is of crucial im-
portance that good experimental limits be obtained for Quave; the waves must be
examined with wideband antennas, or with narrowband antennas at various
frequencies.

The luminosity of the source—Using equations 45 and. 6 we can calculate the
mass M associated with the total energy Me? of each Weber burst:

M 05M( d )2( ! )(An) 46
) @ IOkpc Q'.'g 41’ )
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where r is the distance to the source and AQ/4x is the solid-angle beaming factor,
about unity for a typical quadrupole source of waves. If we take Qware~10 and
suppose the source is at the center of the Galaxy, and that Weber obsetves 109,
of all events, then the rate of mass loss to gravitational waves is ~500 Mo/yr.
(For Quave~1 it is ~5000 Mo/yr; with different assumptions about Weber’s
data analysis, Kafka (1972) has cstimated a mass loss as large as ~10°Mg/yr;
for contrast, the total luminosity of the Galaxy in electromagnetic radiation is
~10"*Mo/yr.) To reduce this value we can either bring the source much closer to
us, or suppose that Al/4x is small so that the radiation is “*beamed” in our di-
rection or into a narrow range of galactic latitude (Misner 1972). Another idea is
to look for a ““focusing” mechanism that would decrease the effective distance to
the source (Lawrence 1971, 1972). No theoretical model has yet been devised
that exploits any of these possibilities in a plausible way.

A different line of reasoning tries to find limits on the mass loss that are con-
sistent with other observations. The best limit is that of Field, Rees & Sciama
(1969), Sciama (1969), and Sciama et al (1969), who find that 70 Mo/yr is the
maximum admissible loss for periods of ~10° yr. A greater loss would produce
runaway stars in our galactic neighborhood, which are not observed.

The puzzle remains.—Our assessment, in terms of the original five possibilities,
is that the ultimate answer will probably lie in (i) events not gravitational waves,
(iii) beaming or focusing of waves, or (iv) sources overly active today. Possibility
(iii) is attractive, but will require theoretical models that do not exist today ; possi-
bility (iv) will require this and more—either we live in an exceptionally active
epoch, or our present cosmological understanding is wildly defective. (Note that
the epoch must be peculiarly active in gravitational waves alone: there is no evi-
dence for coincident radio bursts (Partridge 1971, Charman et al 1970) or neu-
trino bursts (Bahcall & Davis 1971).

It is characteristic of important scientific puzzles that before the solution is
known all possibilities look equally implausible. Certainly the puzzle of Weber’s
observations passes this test.

7. CONCLUSIONS

What progress can one expect in the course of the next 10 or 15 years? With
1971 technology (strains ~10~%" measurable on MF resonant antennas) one could
observe gravitational waves from a supernova at a distance of a few kiloparsecs—
hardly an event to count on. To evaluate the possibilities for other known sources
of waves one must project technological progress: perhaps an improvement of 10
or 100 in the sensitivity of displacement sensors with the routine use of cryogenic
temperatures ? Perhaps another factor of 10 or 100 with improved basic tech-
nology ? These estimates could expand one’s range from kiloparsecs to tens of
megaparsecs, where one may hope to detect “monthly” events (individual super-
novae or stellar collapscs among thousands of galaxics).

For known monochromatic sources (pulsars, binaries) one must project the
technological prospects for high-Q antennas (cf equation 36). Here one foresees
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that space experiments may become particularly important: only rotational
resonances are not limited by materials properties (e.g., the dissipation in a vibrat-
ing aluminum cylinder); and a weightless vacuum environment is the only
“perfect” answer to suspension and isolation problems. Space experiments may
also allow the long baselines necessary to detect VLF or ELF waves with free-
mass detectors and laser interferometry. With conceivable improvements in
technology, one has hope in the next 10 or 15 years of detecting waves from
short-period binaries as well as from the Crab pulsar.

If Weber’s events are gravitational waves, one projects a more rapid develop-
ment of gravitational-wave astronomy: the events can be detected with current
methods; and further technological improvements, particularly with wideband
devices, will yield immediate returns in greater observational detail. The impetus
of the experimental results on further theoretical developments will also be con-
siderable. '

As a tonic to optimism (or perhaps only as wishful thinking) one recalls
Jansky’s (1933) paper:

Electromagnetic waves of unknown origin were detected during a series of experiments
at high frequencies. Directional records have been taken of these waves for a period of
over a ycar. . . . The time at which these waves are at a maximum . . . changes grad-
ually throughout the year in a manner that is accounted for by the rotation of the earth
around the sun. . . . [This fact] leads to the conclusion that the direction of arrival of

the waves is fixed in space, i.e., that the waves come from some source outside the
solar system.

Jansky correctly guessed that the source might be in the direction of the galactic
center.

Radio astronomy was the first of the “unconventional” additions to twentieth-
century observational astronomy and took more than 15 years to reach fruition.
By now the precedents have been set and the time scale for advance has been
shortened. One hopes—and expects—that the development of gravitational-wave
astronomy will be rapid.
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ABSTRACT

Previous investigations, which are superficially contra-
dictory, are here reconciled. With new numerical results, a
consistent picture emerges: A secularly unstable, viscous
Maclaurin spheroid slowly and monotonically deforms itself
into a stable, Jacobi ellipsoid. The intermediate config-
urations are Riemann S-Type ellipsoids. A misnomer from
previous methods terms this monotonic evolution "anti-damped
oscillation”; .in actuality no physical fluid oscillation is
involved. The evolutionary path is almost certainly indepen-

dent of the details of the viscous force.
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I. DISCUSSION OF PREVIOUS INVESTIGATIONS

A mass M of viscous, incompressible (density p), self-gravitating fluid
whose angular momentum L exceeds the value 2.60L0 Gl/2 03/2 admits two sta-
tionary equilibrium configurations, the Maclaurin spheroid and the Jacobi
ellipsoid [ see Chandrasekhar (1969), hereafter cited as EFE, and references
therein]. 1If L does not exceed 3.3395 G1/2 05/2, both configurations are
dynamically stable (i.e. absolutely stable against small perturbations in
the limit of vanishing viscosity). Since, however, the Jacobi configura-
tion has a lower total energy, it has long been presumed that any sort of
dissipative viscosity will render the Maclaurin spheroid "secularly" unstable:
given an initial perturbation it should evolve gradually to the Jacobi
ellipsoid of equal angular momentum.

Roberts and Stewartson (1963) first elucidated the details of this
process by considering the effect of a uniform viscosity on the hydrodyna-
mical equations linearized about a Maclaurin configuration. In this limit
of small perturbations, they found one "anti-damped" oscillatory mode, and
interpreted the growth of this mode as the initial motion away from the
Maclaurin, and ("presumably") toward the Jacobi, solution. 1In this formu-
lation, viscous stresses appear entirely in a boundary layer at the surface
of the fluid mass, since the anti-damped mode has fluid velocities which
are linear functions of coordinates — hence a viscous-stress tensor which
vanishes at internal points.

Rosenkilde (1967) avoided boundary layer considerations by the use of
the tensor virial theorem (see EFE §11 and §37), and obtatned identical
results for the anti-damped oscillatory mode. Rosenkilde does not mention

why the results of the two, very different, treatments must be identical.

We do so here: The replacement of the exact hydrodynamical Navier-Stokes
equations by equations of motion derived from the tensor virial theorem
corresponds precisely to the imposition of fixed holonomic constraints on
the mechanical system. These constraints require the system to be ellip-
sodial, with fluid velocities linear functions of coordinates ("Dirichlet",
see EFE p. 6&), and reduce the system's degrees of freedom from an infinite
number to (essentially) nine: three principal axes, three components each

of total angular momentum and circulation.
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In the case of zero viscosity, the constraints — though present — are
"unused", i.e. the forces of constraint on any field element vanish identi-
cally. This is the reason that the Riemann-Lebovitz dynamical equations
(EFE p. 71) are indifferent to derivation by virial-theorem or Euler equa-
tion methods. When the viscosity is non-zero, however, the shear forces
generated will not in general allow an ellipsoid with fluid velocities initially
linear functions of coordinates to remain in such a state., The use of the
tensor virial theorem in the viscous case instead of the Navier-Stokes
equations corresponds to projecting the viscous forces into the allowed
degrees of freedom, and utilizing constraint forces to counteract whatever
piece is left over.

Why, now, do the results of Roberts and Stewartson — which use the
full hydrodynamical equations — agree exactly with the results of the tensor
virial approach? Because, in the former investigation, the mode of pertur-
bation which is found to be anti-damped {n = m = 2) happens to lie precisely
within the subspace of Dirichlet degrees of freedom, Thus, although a
boundary-layer stress is carried into the hydrodynamical equations, the

anti-damped term which appears in the equation of motion of the unstable

mode is the same mode-projected term which is allowed in through the tensor-
virial approach.

In physical terms, the 2nd-order tensor virial approach is justified
when the projection of viscous forces into any non-Dirichlet degree of
freedom is small compared to the "restoring force' of that degree of free-
dom. Thus, for small viscosity, the approach is justified as long as one
is not too near a configuration with a neutral (or unstable) non-Dirichlet
mode (in the terminology of EFE, mode of greater than second harmonic).

The works of Roberts and Stewartson, and of Rosenkilde, discuss only
small perturbations of the Maclaurin spheroids, which are adequately treated
by linearized hydrodynamical equations. Rossner (1967) treated a case of
finite amplitude oscillations of the Maclaurin spheroids, but only in the
case of zero viscosity, so evolution to a Jacobi ellipsoid could not be
observed. More recently Fujimoto (1971) has integrated numerically the
non-linear equations for finite amplitude motions with a viscosity. Fujimoto's
viscosity is different from all previous investigations. It is not a uni-

form bulk viscosity; rather it varies spatially throughout the ellipsoid in
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a very special way, which is postulated from the start [his equations (k)
and (5)]. This particular ad hoc choice of viscosity allows an ellipsoid
with linear fluid velocities to remain as such, without the necessity of
constraint forces. TIn other words, the tensor virial equations are exactly
equivalent to the Navier-Stokes equations for this choice of viscosity.
Fujimoto's numerical calculations (which are supported by our indepen-
dent calculations; see below) show two effects present in the behavior of a
perturbed, viscous Maclaurin spheroid. First, there is a smooth, secular

monotonic change in the shape of the rotating configuration as it relaxes

from spheroid to Jacobi ellipsoid; second, in the initial stages of the
relaxation there is superimposed a damped oscillatory motion [ see Fujimoto
(1971), Fig. 2; or Fig. 1 below]. While his results are correct, Fujimoto
erroneously states that they show behavior not predicted by the linearized
treatment — even in the initial stage of relatively small oscillation.

In fact, however, there is full agreement between the numerical and
linearized investigations. The point of confusion is that the anti-damped
oscillations of the linearized treatments refer to Lagrangian displacements
of fluid from a "fictional” unperturbed configuration; they are not over-
damped oscillations in the physical shape of the ellipsoid. It is an
artifact of the linearized mathematical formalism that a smooth relaxation
in shape is represented as an anti-damped mode: 1If ¢ is the Lagrangian

~1Re(w)t

displacement at position x, with time dependence e removed, then

the anti-damped mode is a toroidalmode (EFE p. 88) with
£ = A(x1 + ix2) y b= iA(x1 + 1x2) » Eg=0 . (1)

Here the spheroid is assumed to rotate about the positive Xz axis, and A

eIm(w)t' It

is the instantaneous amplitude of the excitation A = A(t) =
is straightforward to verify that for small ¢, (i) this displacement makes
the configuration ellipsoidal , and ({i) the principal axes of the ellipsoid
are al(t) = a + A(t), ag(t) = a - A(t), where a denotes the unperturbed
(equal) axes. Thus, for an anti-damped mode Im{w) > O, the axes diverge

-iRe(w)t represent only the rota-

monotonically. The rapid oscillations e
tion of the ellipsoid and its constant internal motions, not any change in
its shape or '"actual" fluid oscillations. In Fujimoto's numerical solu-

tions, the additional damped oscillations at early times occur because his
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initial perturbation is not a pure mode; it is a mixture of the two toroi-
dal modes in the linearized theory; one of these damps out in time leaving
only the growing, "relaxation" mode. For a different initial perturbation,
Fujimoto would have found only the monotonic secular piece.

In brief, the linearized small-perturbation analyses of Roberts and
Stewartson and of Rosenkilde, and the non-linear finite amplitude analysis
of Fujimoto are all in agreement. A perturbed, secularly unstable, Maclaurin
spheroid evolves, by monotonic relaxation in shape, into a Jacobi ellipsoid.
A misnomer from the Lagrangian-displacement formalism terms this evolution

"anti-damped oscillations'.

II. NEW RESULTS

Our starting point is the Riemann-Lebovitz equation including viscous
stresses (see EFE §37). This equation is derived by Rosenkilde (1967),

but written explicitly only in its linearized form. In exact form it is

W @ NI
dt2+d*t(éé-~~)+d—té-fla+éé + QA - 20AA
2p dA
e a1 _ L2 -2 ,-1\s
+ 2nGpUA - —S A _-(edté + AMA -é~)VIvdV . (2)

Here A, Q, A, U are 3 X 3 matrices representing the shape, angular velocity,
internal motions, and gravitational potential of the ellipsoid (see EFE
Ch. 4 for details)., V is the ellipsoid's volume. Because the fluid is

incompressible, the central pressure P is given by the algebraic relation

2p [ da\2
c _ 2 2 -1 1 7=
0 - Tr({.\ + 9, oplertele * <é dt)
da
+— a3 10 vdV) + hnGp]/Tr(A_e) ; (3)
e~ VI A

For nonzero coefficient of viscosity v = v(x,t), the right-hand side of
equation (2) gives explicitly the projection of the viscous shear tensor
into the allowed Dirichlet modes. Note that only the bulk average of v
over the volume of the ellipsoid enters. Thus all models for viscosity

are equivalent, in this formulation, to a uniform bulk viscosity Vess which



is at most a function of time. If vis uniformly distributed, Vegg = V and
the right-hand side in equation (2) is just
da
~ ,=2 -2 -1
RHS = - (QEE?-‘ +AM™T - A A)Sveff (%)

which corresponds to the viscosity of Rosenkilde. Fujimoto's viscosity

x2 x2 x2
V=, f(t)[l - <L2+—2—2+—3—2>] (s)

8 8 &

v(f,t) is

which gives an equivalent uniform viscosity

v

ol

off = £(t) Vo - (s)

The important point is that i{f an ellipsoidal configuration evolves quasi-
statically — as is the case in slow relaxation from Maclaurin to Jacobi
(see below), — then v.ff(t) also changes quasistatically, and the evolu-
tionary track from Maclaurin to Jacobi is independent of the precise model

of wviscosity taken.

What, then, is this evolutionary track? To answer this, we have
numerically integrated the nine equations (2) with the RHS of equation (i),
starting from various Maclaurin ellipsoids and with various initial per-
turbations. A typical time evolution is shown in Figures 1 and 2. Figure
1 shows, on a highly expanded scale, how all modes of the ("*randow") per-
turbation damp out in time, except for the mode of quasistatic, secular
deformation. Figure 2 shows the complete evolution from Maclaurin to Jacobi
shape.

We find that the intermediate configurations, in the limit of small
viscosity, are just the Riemann S-Type ellipsoids described by Chandrasekhar
(EFE §48). We have verified this in two ways: (i) direct comparison of
the shape, circulation (C), and angular momentum (L) to the known Riemann-

S values, and (ii) numerical verification that the intermediate states are
themselves equilibrium configurations with L and C parallel, i.e. that there
is no further evolution when the viscosity is suddenly "switched off".
{Riemann-S ellipsoids are the unique equilibrium configurations for parallel

L and C; see EFE p. 133.) Departures from the small viscosity limit are
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also seen numerically: when a larger viscosity is switched off, the resul-
tant configuration is a Riemann-S ellipsoid plus a small, stable oscilla-
tion. Evidently the oscillation occurs because the faster viscous evolutions
are not quite quasistatic.

Concluding, we find that a secularly unstable, viscous Maclaurin sphe-
roid evolves slowly, smoothly, and monotonically along a line of constant
angular momentum through the Riemann-S plane, to its destination on the
Jacobi sequence. If all configurations along this evolutionary path are

stable with respect to small, non-Dirichlet perturbations (‘'third harmonics"

and above) then one canbe confident that this evolutionary path 1s indepen-

dent of the details of the (small) viscosity.
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Fig. 1: Principal axes of an initially perturbed, seéularly unstable
Maclaurin spheroid as a function of time. All modes of the per-
turbation except one are seen to damp out in time; the one growing
mode corresponds to a monotonic, secular relaxation to a triaxial
Jacobi ellipsoid. (The behavior of the third principal axis, with

initial value .488, 1is qualitatively similar.) See Figure 2.
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Fig. 2: Subsequent behavior of the perturbed Maclaurin spheroid of Figure 1.
Once the damped perturbations have died away, the system follows
a unique evolutionary track through Riemann S-Type configurations
to the Jacobi sequence. Its rate of progress along the track
depends only on the volume average of fluid viscosity, not on

details of how the viscosity is distributed (see text for details).
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