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Abstract

Three-dimensional (3D) photonic crystals offer the opportunity of light manipulation in
all directions in space, but they are very difficult to fabricate. On the other hand, planar
photonic crystals are much simpler to make, but they exhibit only a ”quasi-3D” confinement,
resulting from the combined action of 2D photonic crystal and internal reflection. The
imperfect confinement in the third dimension produces some unwanted out-of-plane loss,
which is usually a limiting factor in performance of these structures. This thesis proposes
how to fully take advantage of the relatively simple fabrication of planar photonic crystals,
by addressing a problem of loss-reduction.

One of the greatest challenges in photonics is a construction of optical microcavities with
small mode volumes and large quality factors, for efficient localization of light. Beside
standard applications of these structures (such as lasers or filters), they can potentially be
used for cavity QED experiments, or as building blocks for quantum networks. This work
also presents the design and fabrication of optical microcavities based on planar photonic
crystals, with mode volumes of the order of one half of cubic wavelength of light (measured
in material) and with Q factors predicted to be even larger than 10*.

In addition to photonic crystals fabricated in semiconductors, we also address interesting
properties of metallic photonic crystals and present our theoretical and experimental work
on using them to improve the output of light emissive devices.

Feature sizes of structures presented here are below those achievable by photolithography.
Therefore, a high resolution lithography is necessary for their fabrication. The presently
used e-beam writing techniques suffer from limitations in speed and wafer throughput, and
they represent a huge obstacle to commercialization of photonic crystals. Our preliminary
work on electron beam projection lithography, the technique that could provide us with the
speed of photolithography and the resolution of e-beam writing, is also discussed in this

thesis.
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Chapter 1 Optical microcavities in planar

photonic crystals

1.1 Introduction

Photonic crystals (PCs) are structures with periodic variation of dielectric constant in one,
two or three dimensions.'™ This periodicity is usually of the order of the wavelength of
light in material that the PC is made of. While the one-dimensional structures operating
at optical wavelengths have been known for more than 20 years,! the extension of photonic
crystals to two and three dimensions was simultaneously proposed by Yablonovitch and
John in 1987.%2:3 Although 3D PCs offer the opportunity of light manipulation in all three
dimensions in space, they are very difficult to fabricate.® For this reason, many research
groups have concentrated their efforts on planar photonic crystals (i.e., 2D photonic crystals
of finite depth) in recent years.””!® By introducing point or line defects into such 2D PC
arrays, a variety of passive and active optical devices can be constructed, and integrated
on a single chip. The fabrication procedures of planar PCs are much simpler than those of
their 3D counterparts, but their light confinement is only " quasi-3D,” and resulting from the
combined action of 2D photonic crystal and internal reflection. The imperfect confinement
in the third dimension produces some unwanted out-of-plane loss (radiation loss), which is
usually a limiting factor in performance of these structures.

One of the most important properties of photonic crystals is their ability to localize light
into small mode volumes. Even the simplest single defect microcavities in planar photonic
crystals with triangular lattice, produced by changing the radius or refractive index of a
single PC hole or rod, can localize light into the volumes as small as one half of cubic
wavelength in material. Unfortunately, these most obvious microcavity designs have max-
imum quality factors of the order of only a few thousand.®?022 However, our group at
Caltech has recently proposed the design and fabrication of optical microcavities based on

free-standing membranes, with @ > 10* and mode volumes still of the order of one half



of cubic wavelength of light in material.®?%2* The topic of this chapter is the design and
fabrication of these novel structures. Beside standard applications (such as optical filters, or
laser resonators), the possibility of using them for achieving spontaneous emission control,

threshold-less lasing, or as building blocks for quantum networks will also be addressed.

1.2 Dispersion diagrams of planar photonic crystals

Two principal directions of planar photonic crystal research are structures based on optically

79,11,20 and structures fabri-

thin semiconductor membranes (free-standing membranes),
cated in slab waveguides consisting of a semiconductor core sandwiched between cladding
layers of lower refractive index.'? Therefore, the difference lies in the design of the waveg-
uide used for the vertical confinement. For the past few years, our group at Caltech has been

79,20 45 shown

studying free-standing membranes patterned with periodic arrays of holes,
in Figure 1.1. Although cladding layers can be useful in reduction of the out-of-plane loss,
we have recently discovered that in their presence, additional lateral-loss mechanisms are
permitted to occur and that lateral PC confinement can be lost.?> This problem will be
discussed in greater detail later in this chapter. Thus, we concentrate on designing struc-

tures based on free-standing membranes.

The first step in the structure design is the choice of PC parameters. There are five pa-

Figure 1.1: Optically thin membrane patterned with a triangular array of air holes.

rameters that we can control, as illustrated in Figure 1.1: the refractive index of material

(n), the type of photonic crystal lattice (triangular, square...), the thickness of the slab



(d), the lattice periodicity (a), and the hole radius (r). The wavelength of light in air is
denoted as A. Since our structures are usually made out of Si or III-V semiconductors, we
do not have much choice over the refractive index, which is in the range between 3.4 and
3.5. Furthermore, we concentrate mostly on triangular lattice crystals, which can provide
us with a better lateral confinement than square lattice crystals.?6 However, properties of
PC are still very sensitive to the remaining three parameters: d, r and a.

Most of the cavities presented in this chapter are based on the following two sets of param-
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Figure 1.2: Band diagrams for TE-like modes of a thin slab surrounded by air on both sides
and patterned with a triangular array of air holes. Parameters of photonic crystal are (a)
n=3.4, d/a=0.75 and r/a=0.275; (b) n=3.4, d/a=0.65 and r/a=0.3.

eters: (1) n=3.4, d/a=0.75 and r/a=0.275; (2) n=3.4, d/a=0.65 and r/a=0.3. The band
diagrams for TE-like modes in the planar PCs with these parameters are shown in Figure
1.2. On the horizontal axis, we plot the values of the wavevector in plane, and on the
vertical axis we plot the normalized frequency of light in units of a/\. All calculations pre-
sented in this chapter are done using the 3D finite-difference time-domain (FDTD) method.
(For the explanation of the method, please refer to the Appendix I of this thesis). TE-like
modes (also referred to as the even modes) have dominant E,, E, and B, components in
the middle of the slab. The solid lines in the plots represent the light line in air. Modes

below this line can be guided in the slab and are called guided modes, whereas modes above



the light line (not plotted in the figures) are not confined in the slab and are called leaky
modes. One can also observe the frequency region where guided modes do not exist, for
any value of the wave-vector. This frequency region is called the bandgap. Guided modes
are organized into modes above the bandgap (air band, conduction band), and modes be-
low the bandgap (dielectric band, valence band). The names ”conduction” and ”valence”
band are borrowed from solid-state physics, while the names ”dielectric” and ”air” band
are based on where the electric field energy of a mode is mostly concentrated. For example,
the dielectric band modes mostly concentrate their electric field energy in the high refrac-
tive index region (semiconductor), thereby reducing their frequencies, while the air band
modes mostly concentrate their electric field energy in air region (holes), thereby increasing
their frequencies.? It is important to note that the structures presented here do not have a
bandgap for TM-like (odd) modes (having the dominant By, By and E, components in the
middle of the slab).
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Figure 1.3: Position and size of the bandgap as a function of d/a and r/a in the triangular
lattice with n=3.5. (Courtesy of Marko Lon¢ar)



As mentioned previously, parameters of the band diagram are highly sensitive to d, r and
a. Figure 1.3 illustrates how the bandgap edges shift in frequency as a function of d/a and
r/a, in the case of the triangular lattice with n = 3.5. Therefore, if d/a increases, but r/a
is kept constant, the band edges shift downwards in frequency and bandgap size remains
approximately constant in the analyzed range. On the other hand, if d/a is kept constant,
but 7/a increases between 0.3 and 0.4, the bandgap edges shift upwards in frequency and

the bandgap size increases. Even though the increase in the hole size leads to the increase
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Figure 1.4: Acceptor defect state (monopole) and donor defect state (dipole) excited by
changing the radius of a single PC hole.

of the bandgap, which is desirable for suppression of lateral loss, it also produces large
out-of-plane losses, as we will see later. For this reason, we limit 7/a of our structures to
rather modest values of around 0.3. The control over a position of a bandgap by tuning
r/a and d/a is a very powerful property of planar PCs, which implies that one can tune
mirrors by lithography and etching, instead of growth. Furthermore, mirrors operating at

many different wavelengths can be constructed on the same chip.
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1.3 Point defects in planar photonic crystals

The simplest way of forming a microcavity starting from the photonic bandgap (PBG)
structure shown in Figure 1.1 is by changing the radius of a single hole, or by changing its
refractive index. The former method is more interesting from the point of fabrication, since
lithographic tuning of parameters of individual holes is a simple process to implement. By
increasing the radius of a single hole, an acceptor defect state is excited, i.e., pulled into
the bandgap from the dielectric band. On the other hand, by decreasing the radius of an
individual hole (or by tuning its refractive index between 1 and the refractive index of the
slab), a donor defect state is excited and pulled into the bandgap from the air band.?”

Acceptors tend to concentrate their electric field energy in regions where the large refrac-
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Figure 1.5: Electric field intensity patterns of the (a) y-dipole and (b) z-dipole mode. The
plotted intensity patterns are for the x-y plane at the middle of the slab.

tive index was located in the unperturbed PC, while the electric field energy of donors is
concentrated in regions where there was air in the unperturbed PC, as shown in Figure 1.4.
The donor defect state shown in Figure 1.4 is called a dipole mode. This mode has a double

degeneracy?® and can be separated into the z and y dipole modes, shown in Figure 1.5.
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(c) (d)

Figure 1.6: Electric field intensity patterns of the dipole mode as a function of time: (a)
t=0; (b) t=T/8; (c) t=T/4; (d) t=3T/8, where T' = 27c/w and w is the radial frequency
of the mode. The initial field is chosen in such a way that both z and y dipole modes are
excited. The resulting field can be expressed as a superposition of the z and y dipole, with
weighting factors depending on the initial field excitation.



The classification of the dipole mode into = and y states arises from the polarization of the
electric field in the center of the defect. The radiation patterns of the z and y dipole modes
resemble those of the z and y oriented electric dipoles, respectively, positioned in the center

of the defect.

PRy VW
v-Z plane

x-z plane

Figure 1.7: Radiation pattern of the z-dipole mode, in the z-y plane, and upper z-z and
y-z half-planes. The separation of the total () factor into | and @) is also illustrated.

If only a single PC hole radius is reduced, the symmetry of the PC lattice is preserved and
both z and y dipole modes can be excited at the same frequency. The resulting field can be
expressed as a superposition of the z and y dipole, with weighting factors depending on the
initial field excitation. If the two dipole components are excited with some phase difference,
a rotation of the field as a function of time is observed, as shown in Figure 1.6. The energy
switches in time between the x and y dipole modes, and the polarization of the field in the
center of the defect rotates.

The total loss that a defect state suffers can be separated into the lateral (in-plane) loss,



and vertical (out-of-plane) loss. Similarly, the total quality factor of a defect mode can be

expressed as a superposition of lateral and vertical quality factors:

1 1 1

é - Q_H + m (1.1)

Q) and @ are inversely proportional to the lateral and vertical losses, respectively, as
illustrated in Figure 1.7. In all of our calculations, the boundary for separation of vertical
from lateral loss (i.e., the vertical quality factor @} from the lateral quality factor QH) is
positioned approximately at A\/2 from the surface of the membrane. For structures operating
at bandgap frequencies, ()| increases as the number of PC layers around the defect increases,
and the total quality factor @ approaches Q.8 The vertical quality factor (Q ) saturates
after around five PC layers surrounding the defect. For our calculations, we also assume
that x = 0, y = 0, z = 0 denotes the center of the cavity and z = 0 is the middle plane of the
slab. For all presented analyses, five layers of PC holes surround the defect and the applied

discretization of a = 20 points per lattice periodicity was used, unless noted otherwise.

1.4 Quality factors of single defect microcavities in planar

photonic crystals

1.4.1 Changing the refractive index of a single hole

Microcavity formation via alteration of the refractive index of a single defect hole in trian-
gular photonic crystal (PC) has been analyzed previously by our group.?® In that analysis,
we predicted that dipole-like donor states with quality factors up to 30000 should exist.
We now believe that the quality factors of such microcavities are limited to several thou-
sand, for reasons discussed below and presented in Reference 8. This discussion reveals
the extreme sensitivity of microcavity quality factors to small distortions to the local PC
geometry, which will later be used as a powerful design tool in cavity optimization.

In our previous work,?® the mirror boundary conditions were applied in z, i and z directions
to achieve an eight-fold reduction in the computational grid size. We have since realized

that the manner in which even (symmetric) mirror boundary conditions are implemented
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in our FDTD code results in numerical output that properly corresponds to an analyzed
structure with slight deformations relative to the intended structure. For example, the
combination of mirror boundary conditions used to select the z-dipole mode in a defect
cavity leads to a deformation of the structure as shown in Figure 1.8. Holes on the z-axis
are elongated in the y direction by 1 point in such a way that the distance between holes
in z and y directions is preserved. Because hole-to-hole distances are preserved under this
deformation, the half-spaces y > 1/2 and y < —1/2 actually maintain the unperturbed
PC geometry when holes in the central row are elongated by 1/2 points both in the +y
directions. The symmetry of the PC surrounding the defect is therefore broken, and this
contributes to artificially high Q factors for z-dipole modes. An even mirror BC was also
applied in the z direction in our previous analysis, causing a slight increase of the thickness
of the slab. The correct d/a ratios of the structures analyzed in Reference 28 would be 0.6,

0.46 and 1, instead the values of 0.53, 0.4 and 0.93, as noted there.

Figure 1.8: Deformation of the analyzed structure introduced by the application of mirror
boundary conditions along the z and y axes and through the center of the defect. The
applied mirror boundary conditions select the z-dipole mode, whose electric field pattern
is shown in Figure 1.5. Holes on the z axis (in the central row, containing the defect) are
elongated by 1 point in the y direction. The refractive index of the defect is nge et = 2.4
Parameters of the structure are r/a = 0.3, d/a = 0.6 and in the used discretization a = 15.
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The structure deformation is not the only problem caused by the application of mirror
boundary conditions along the z and y axis. If we analyze the entire structure (without
application of mirror BC’s), but elongate the holes on the z axis by 1 point, the Q factor of
the z-dipole mode increases to only about 4000. This means that the application of mirror
BC at z = 0 and y = 0 planes causes additional effects that lead to the overestimation of Q
factors. One of the reasons may be that the excited dipole mode does not have a symmetry
described by the applied discretized mirror BC’s. This may be partly due to the structure
imperfection caused by discretization.

In order to avoid problems caused by the application of discretized mirror boundary con-
ditions along the z and gy axes, all analyses presented in this chapter are preformed by
applying even mirror boundary conditions only to the lower boundary in the z direction.
This reduces the computation size by one half and eliminates TM-like modes. Mur’s ab-
sorbing boundary conditions are applied to all boundaries in z and y directions and to the
upper boundary in z direction. To prove that the application of mirror BC at the lower z
boundary does not change @), we also analyzed the entire structures, with absorbing BC’s
applied to all boundaries and obtained the same results as in the analyses of one half of the
structure.

For the exactly same set of parameters for which Q over 30000 was predicted in Reference
28 (r/a=0.3, d/a = 0.6, Ngefect = 2.4, Nsiqp = 3.4, 5 layers of holes around the defect and
a = 15), we now calculate Q) = 2260, @, = 1730 and ¢ = 0.3137 for the z-dipole mode,
and Q) = 1867, @ = 1007 and § = 0.3182 for the y-dipole mode. The selection between
the z and y dipole mode is made by applying the initial field distribution of appropriate
symmetry. The difference in parameters of the two dipole modes comes partly from the
asymmetry of the structure introduced by imperfect discretization. In a 2D PC with infi-
nite slab thickness, these two modes would be degenerate.?® In the thin slab, however, the
y-dipole mode suffers more vertical scattering at the edges of holes and, therefore, has a

lower Q| .
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1.4.2 Changing the radius of a single hole

The lithographic tuning of parameters of individual holes is a much simpler process than the
control over the refractive index of a single hole. As mentioned previously and illustrated
in Figure 1.4, acceptor defect states can be excited by increasing the radius of a single hole,
while donor states can be excited by reducing the radius of a single hole. One can notice in
the same figure that the electric field of the analyzed acceptor mode (monopole) is concen-
trated close to the edges of the large defect hole, which can lead to an increase in surface
recombination losses. For this reason, some donor states may represent a better choice for
the design of active devices, such as lasers or LEDs. Furthermore, for the design of optical
microcavities for cavity QED with neutral atoms, a strong field intensity is required in the
air region, where the atom can be trapped. Again, donor type states represent a better

choice for these applications.
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Figure 1.9: Parameters of donor (dipole) and acceptor (monopole) modes in the single
defect structure (r/a = 0.3, d/a = 0.65) as a function of the defect hole radius rq.;: (a) Q
factors; (b) frequency in units a/A.

Parameters of acceptor (monopole) and donor (dipole) states as a function of the radius of
the defect hole (r4.r) are shown in Figure 1.9. In these plots, the parameters of photonic

crystal are r/a = 0.3, d/a = 0.65 and n = 3.4 (the band diagram for this set of parameters



13

is shown in Figure 1.2). By tuning the radius of the defect hole, we also tune the frequency
of the defect mode throughout the bandgap. In this process, we can optimize the quality
factor of this mode, and maximize it at the value of around 2500.

A small increase in Q factors can be obtained by further reducing the radii of PC holes, as
illustrated in Table 1.1 for dipole modes and a range of microcavity parameters. However,
the reduction in hole size leads to a decrease in the size of the bandgap, a delocalization of
the defect mode and an increase in its mode volume. On the other hand, the increase in
r/a can lead to an increase in the bandgap and a reduction in lateral losses, as presented
in Figure 1.3, but vertical scattering at the edges of holes also increases, and ), drops.
Therefore, it is important to find an optimum r/a which leads to small vertical losses, yet
preserves good lateral confinement.

Even after the reduction in r/a, the maximum Q factors are still of the order of several
thousand, which is not high enough for some of our applications (such as cavity QED).
In later sections, we will present more sophisticated cavity designs that can lead to much

higher Q factors.

Table 1.1: Q factors of dipole modes excited in microcavities formed by decreasing the
radius of a single PC hole.

r/a | Taer/a | dfa | a/X | Q| Q1
0.25 0.15 | 0.75 | 0.277 | 230 | 1840
0.25 0.2 0.75 | 0.284 | 116 | 3190
0.275 | 0.15 | 0.75 | 0.286 | 778 | 920
0.275 0.2 0.75 | 0.297 | 470 | 2078

1.5 Simple multi-defect cavities

Let us analyze simplest multi-defect cavities, produced by omitting multiple holes in a PC
array. Since the main advantage of using photonic crystals over standard optoelectronic
circuits is in the ability to localize light into small mode volumes, we will concentrate on
small size cavities in the shapes of hexagons, rings and triangles, and with a side equal

to 2a. These structures are multi-mode with increased modal volumes, but they may
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have advantages over single defect designs in some situations, such as for the fabrication
of electrically pumped devices. However, we will see that these structures actually have
modest Q factors, limited by mainly vertical losses.

Let us first consider a hexagon with a side equal to 2a, produced by omitting multiple PC
holes. The unperturbed PC has the following set of parameters: r/a = 0.3, d/a = 0.65,
n = 3.4 and a = 20. One of the modes that could be excited in this hexagonal structure
is a monopole shown in Figure 1.10. Its parameters are a/A = 0.2886, Q) = 1547 and
Q. = 713. The mode radiates laterally, in six I'X directions. @, is quite small, and,
therefore, vertical scattering is very critical.

If we keep the central hole of this structure (in the center of a hexagon), thereby producing
a ring with a side equal to 2a, and excite the same mode as the one shown in Figure 1.10, its
parameters are a/A = 0.29436, Q)| = 1581 and @, = 542. Therefore, the mode senses the
central hole only weakly and the overlap with air in it slightly increases the mode frequency.
Q)| remains unchanged, while ) decreases slightly, due to increased vertical scattering at
the edges of this extra hole.

Finally, let us analyze a triangle with a side of 2a, and the mode shown in Figure 1.10.
Parameters of this mode are a/A = 0.3086, Q) = 352 and Q1 = 365. Therefore, this type
of the microcavity suffers from even larger out-of-plane losses.

Certainly, a more thorough analysis of these structures could be done to carefully scan
the range of PC parameters, but our first results seem to indicate that simple multi-defect
cavities of small size, produced by omitting multiple holes within the PC array, are not very

good candidates for the design of high Q cavities.

1.6 Fractional edge dislocations in planar photonic crystals

Let us now study the lattice defect similar to the one produced by the application of even
mirror BC in our original FDTD code. This type of defect has not been discussed previously,
and we will call it fractional edge dislocation, by analogy with the edge dislocations in solid-
state physics. The edge dislocations in solid-state physics are formed by adding extra planes

of atoms to a crystal lattice. In this case, however, we add only a fraction of an extra plane
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Figure 1.10: Electric field intensity patterns of the modes excited in the large (a) hexagonal;
(b) triangular microcavity.

of photonic crystal lattice atoms along the symmetry axis. For example, if the distance
between lattice planes in some direction is [, we can insert a fraction of a lattice plane of
the thickness fl, where f < 1. This is, naturally, impossible in atomic crystal lattices. As we
will see in a moment, a dramatic improvement in Q factors over single defect microcavities
can be obtained by introducing this type of lattice defect. The two previously introduced
sets of PC parameters are again used here: (1) n = 3.4, d/a = 0.75 and r/a = 0.275; (2)
n = 3.4, d/a = 0.65 and r/a = 0.3. They are, respectively, referred to as the 1st and 2nd
set of parameters.

A microcavity structure consisting of a single defect and a fractional edge dislocation is
shown in Figure 1.11. The structure in this Figure is based on the 1st set of PC parameters,
but we present results of the analyses for both the 1st and 2nd set of PC parameters in
this section. For all analyzed structures, a single defect is formed by reducing the radius of
the central hole to r4.r/a = 0.2, and a fractional edge dislocation is formed by elongating
the holes along the z axis (including the defect hole) by p points in the y direction, in such

a way that the distance between holes is preserved. We define p here as the elongation
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Figure 1.11: Microcavity structure consisting of a single defect (produced by reducing the
radius of the central hole to r4.f/a = 0.2 from r/a = 0.275) and a fractional edge dislocation
of the order p = 4 parallel to the y = 0 plane. a = 20 in the applied discretization.

parameter. If we recall that the lattice periodicity a is equal to 20 computational points
in the FDTD program units, the elongation step Ap = 1 corresponds to 5% of lattice
periodicity. Therefore, the fractional edge dislocation of the order p is formed when the
holes in the central row are elongated by p/2 points both in the +y and —y direction (i.e.,
elongated by p points total), but the half-spaces y > p/2 and y < —p/2 remain identical
to the unperturbed PC. In other words: a total number of p discrete planes are inserted at
y=0.

The symmetry of the PC surrounding the defect is broken by this deformation, which
separates the doubly degenerate x and y dipole modes in frequencies. The presented defect
of the PC lattice spoils the Q factor of the y-dipole mode. On the other hand, for the
z-dipole mode shown in Figure 1.12, this deformation leads to a significant Q improvement.
Parameters of the z-dipole mode, as a function of the elongation parameter p, are shown
in Figures 1.13 and 1.14. Therefore, by tuning p, the quality factor reaches values of over
10000. The mode volume V,,,4. does not change significantly with p and is approximately
equal to 0.5(%)3. For structures operating at telecommunication wavelength A = 1550nm,
the elongation step Ap = 1 corresponds to approximately 23nm. From Figure 1.13, it

follows that even when the elongation is accidentally detuned by 20nm (i.e., p changed from
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Figure 1.12: (a) Electric field intensity and (b) z component of magnetic field of the z-
dipole mode, excited in the structure where the radius of the central PC hole is reduced
and fractional edge dislocation of the order p = 2 is added. Parameters of PC are described
by the 1st set. The plotted intensity patterns are for the z-y plane in the middle of the
slab.

2 to 3), Q still remains in the range of 10000. The insensitivity of Q to small variations
in p is very important, since the small detuning in p during the fabrication process does
not destroy properties of the structure. Thus, such structures are predicted to be relatively
robust and manufacturable.

It is also interesting to note that the frequency of the mode decreases as p increases, even
though the amount of low refractive index material increases. However, the net amount of
low refractive index material does not matter. What matters more is where the low refractive
index is positioned, relative to the unperturbed PC. The explanation of the decrease in
frequency is very simple, if we recall the z-dipole mode pattern shown in Figure 1.12. This
is a donor type defect mode, as previously stated, that concentrates its electric field energy
density in low refractive index regions of the unperturbed PC. As p increases, layers of
PC holes are moved away from the defect in the y direction. For example, the n-th layer
of holes parallel to the z axis will now be positioned at y = +nav/3/2 + p/2, instead of
y = +nav/3/2. Therefore, material with large refractive index (semiconductor) will now

be positioned at places where the mode expects to "see” air, leading to a corresponding
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Figure 1.13: Parameters of the z-dipole mode in a single defect structure as a function of
the elongation parameter p. The PC has the 1st set of parameters and the defect is formed
by reducing the radius of the central hole to rqcr/a = 0.2. (a) Q factors; (b) frequency in
units a/A.

decrease in the mode’s frequency.

Q factor improvements can also be achieved by adding fractional edge dislocations to
the previously described structures where the refractive index of the central hole is tuned.
Recall that the analyzed structure had d/a = 0.6, r/a = 0.3, n = 3.4, ngefeer = 2.4 and
a = 15. The variation of Q factor and a/A of the z-dipole mode in this structure, as
a function of the discrete elongation parameter p, as well as the dependence of Q factor
on the number of PC layers around the defect for p = 3, are shown in Figures 1.15 and
1.16. The analyzed z-dipole mode mostly resonates in the direction of y axis, i.e., in the
I'X direction of photonic crystal. The tuning of the elongation parameter p is, therefore,
analogous to tuning of a spacer in the micropost cavity, which leads to tuning of mode’s
frequency and @ factor. By increasing the number of PC periods around the defect, the
total quality factor @) approaches ), as shown in Figure 1.16. It is important to note
that @ does not increase exponentially with the number of PC layers around the defect,
as noted previously in Reference 28. Instead, it saturates at large number of PC layers.

The reason is in the choice of a boundary for separation of @ from ), positioned at
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Figure 1.14: Parameters of the z-dipole mode in a single defect structure as a function of
the elongation parameter p. The PC has the 2nd set of parameters and the defect is formed
by reducing the radius of the central hole to rq.r/a = 0.2. (a) Q factors; (b) frequency in
units a/A.
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Figure 1.15: (a) Q factors and (b) frequencies of z-dipole modes in a single defect structure,
as a function of the elongation parameter p. Defect is formed by changing the radius of
the central hole to ngefet = 2.4. Parameters of PC are d/a = 0.6, r/a = 0.3, n = 3.4 and
a =15.
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approximately A/2 from the surface of the membrane. From the radiation pattern of the
z-dipole mode shown in Figure 1.7, we can see that some portion of the out-of-plane loss
(mostly in the z direction) still gets collected in Q- This loss cannot be suppressed by
increasing the number of PC layers around the defect, and it determines the value at which
Q) saturates. However, a much larger out-of-plane loss is collected in @ ;, which ultimately
determines the total quality factor Q).

In Figures 1.13, 1.14 and 1.15 one can observe that an increase in the elongation parameter
p can be used to tune the Q| factor of a mode, but it also leads to a decrease in the dipole
mode’s frequency. This implies that by increasing p, the mode is pulled deeper into the
bandgap, away from the air band edge, which leads to its better lateral confinement and an
increase in its Q). Therefore, we can simultaneously achieve a reduction in vertical losses
and an improvement in lateral confinement (i.e., an increase in both @, and Q; and a

reduction in the mode volume).

10
v
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—— 9
e Q
N -~V Q
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number of PC periods around the defect

Figure 1.16: Q factor for p = 3, as a function of the number of PC layers around the defect.
Defect is formed by changing the refractive index of the central hole to ngefect = 2.4
Parameters of PC are d/a = 0.6, r/a = 0.3, n = 3.4 and a = 15.

Since the mode frequency decreases as a function of the elongation parameter p, it is desir-

able to start in the elongation process with a mode whose frequency is close to the upper
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boundary of the bandgap, allowing enough space to achieve an optimum (), within the
bandgap when the structure is tuned. In that case, the lateral confinement is preserved and

Q)| can be improved by increasing the number of PC layers around the defect.
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Figure 1.17: Parameters of the z-dipole mode in the single defect structure (r/a = 0.3,
d/a =0.65, T4gef/a = 0, n = 3.4 and a = 20) as a function of the elongation parameter p:
(a) Q factors; (b) frequency in units a/A.

The opposite example is illustrated in Figure 1.17. We analyze the z-dipole mode in a single
defect structure containing a fractional edge dislocation. The used PC has the 2nd set of
parameters and the single defect is formed by omitting the central hole, i.e., rger/a = 0.
Recall that the bandgap in the planar PC with these parameters extends from approximately
a/X = 0.26 to 0.33, as shown in Figure 1.2. Therefore, for p = 6 the defect mode already
enters the air band. However, a weak localization of the z-dipole mode still exists for
p > 6, because the mode is mostly composed of the wavevectors at the X point, where
the dielectric band boundary is somewhat lower (at about a/A = 0.23). Although X
components are dominant in the z-dipole mode, the localized defect mode consists of many
different wavevector components, as will be obvious from the Fourier transforms of the
mode profiles presented later in this chapter. Therefore, the mode can couple to the air
band mode at the J point after p = 4, it looses the lateral confinement and its (), drops.

Even though @), reaches a value larger than 8000 at p = 10, this happens at the frequency



22

which is already deep in the dielectric band. Therefore, the mode is limited by lateral losses
at this point and an improvement in ()| does not influence the overall (). For that reason,

this particular structure can only be used for small ) improvements in the range of p < 4.

1.7 Fractional edge dislocations and tuning of holes around

the defect
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Figure 1.18: Electric field intensity pattern of the y dipole mode excited in the cavity where
four holes closest to the defect in I'J directions are tuned. Their radii are reduced to
r1/a = 0.225 and they are simultaneously moved away from the defect in I'J direction by
r—r1. The radius of the central hole is rger/a = 0.2 and PC has the first set of parameters.
The fractional edge dislocation (p = 2, parallel to the = 0 plane) is also present.

One can improve the Q factors even further by simultaneously tuning holes next to the
defect and adding fractional edge dislocations.® Let us form the microcavity starting from
the planar PC with either the 1st ot the 2nd set of parameters. The radius of the central
hole is reduced to 74y = 0.2a and the radii of the four closest holes in I'J directions are
reduced to r1 = 0.225a, or r1 = 0.25a, for the 1st or 2nd set of PC parameters, respectively.
These four holes are simultaneously moved away from defect, by » —r; in the I'J directions,

which preserves the distance between them and the next nearest neighbors in the same
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directions. This design improves the @) factor of the y-dipole mode and spoils the @) of
the z-dipole mode. To improve Q factors even further, we elongate holes located on the y
axis by p points in the z direction (i.e., add fractional edge dislocations parallel to z = 0
plane). The electric field intensity distribution of the y-dipole mode for p = 2 and the first
set of PC parameters is shown in Figure 1.18. The dependence of the mode frequency and
Q@ factor on parameter p is shown in Figure 1.19. V.4 does not change significantly with
p and is in the range between 0.44(2)3 and to 0.59(2)3. Therefore, a Q factor over 30000

can be achieved in this structure for the dipole defect mode.

1.8 The effect of fractional edge dislocations

1.8.1 Relation between the Q factor and the Fourier transform of a mode

The 3D FDTD analysis can provide us with the near field distribution of the analyzed
microcavity. The FDTD analysis of the far field would require large amounts of computer
memory, and would be very computationally inefficient. However, we can compute the far
field starting from the known near field distribution. Any wavefront can be considered as
a source of secondary waves that add to produce distant wavefronts, according to Huygens
principle. Let us assume that we know the field distribution across the surface .S, positioned
in the near field and above the free standing membrane, as in Figure 1.20. Our goal is to
estimate the far field at the observation point O. The far fields can be considered as arising
from the equivalent current sheets at the surface S.2° For example, let S be the plane
positioned at z = 0, in parallel to the surface of the membrane, and at a small distance Az
from it. This choice of surface S will allow us to relate the Q factor of a mode to the Fourier
transform of its field pattern. The equivalent sources in the plane S can be represented in

—

terms of the surface electric (J;) and magnetic (M;) currents:

&~

=nx H=—2H, +jH, (1.2)

M, = —nx E =3B, — §E,, (1.3)
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where 7 is a normal to the surface S. In a homogeneous, isotropic medium above S, a
retarded potential A and a second retarded potential F can be estimated from the previously

introduced surface currents:

o J e—zkr
— o [ 5 ds (1.4)
5
. M —ikr
F = ¢ / j;TT ds, (1.5)
5

where k is defined as k = QT’T = ¢ (X is the mode wavelength measured in air) and r is the
distance between the point where the potentials are evaluated and the surface element dS

(i.e., between the points O and P).
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Figure 1.19: Parameters of the y-dipole mode in the structure where four holes in I'J
directions are tuned (as shown in Figure 1.18), as a function of the elongation parameter p:
(a) Q factors; (b) frequency in units a/\. The structure has either the first of second set of
PC parameters, labeled as type 1 and type 2, respectively.

From Figure 1.20 it follows that r & rq — r'cos(1). Let us now introduce radiation vectors

L and N:
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N _ / ';eikr’cos('zp)ds (1 6)
S
i- / N, eitreos) gg (1.7)
S
Then we have
N efikrg N
A=y N (1.8)
477
N efik'ro
F = 1.9
€0 47‘(’7‘0 ( )

r (le’z)

Ny

Figure 1.20: Estimating the radiation field at the observation point O from the known near
field at the surface S.

From Figure 1.20 we also have
!/ k ! !
kr'cos(v) = r—(:v:v +yy'), (1.10)
0

where (z',7',0) are the coordinates of the point P in the plane S and (z,y,z) are the
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coordinates of the observation point O.

From the equations 1.6 and 1.7 it follows that radiation vectors N and L represent the 2D
Fourier transforms of surface currents j; and M s, evaluated at the value of the wave-vector
EII = k(z/ro% + y/ro9) (in rectangular coordinates), i.e., IZH = ksinf(cos ¢z + sin¢y) in

circular polar coordinates:

N = F1y(Jy) (1.11)
ky =k (55 7g)
L=FD0L)| (1.12)
ky=k(570)
FTy(f(z,y)) = // dxdyf(m,y)eiEl\'($7y) _
(1.13)

Components of radiation vectors can, therefore, be expressed in terms of the Fourier trans-

forms of the field components at the surface S:

Ny = —FTy(Hy)|_ (1.14)
Ky,
N, = FTy(H,)| (1.15)
Ky,
Ly = FTy(Ey)| (1.16)
k),
Ly =—FTy(E;)| (1.17)
Ky,
K= k(rﬁ, Yy = ksin6(cos ¢ + sin ¢9) (1.18)
0o To

It is important to note that for any observation point O, the previously introduced wave-
vector Ell lies within the light cone (i.e., |E||| < k, where k = ). Therefore, radiation
vectors are purely determined by Fourier components located within the light cone.

Far fields can be expressed in terms of retarded potentials:
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B=—-iwd-2v(Vv.-4A) - —VxF (1.19)
k2 €0
— —— zw — 1 Aﬂ

Under the assumption that all terms in fields decaying faster than 1/r, can be neglected,

the electric field components at an arbitrary point O are

e—ikro
FEy=nH;, = —i N, L 1.21
9 = nHy 12/\7«0(” 9+ Lg) (1.21)
e—ikro
Ey=—nHy=1 —nN, L 1.22
¢ = —nHg ZzAro(n¢+ 9) (1.22)
n= /22, (1.23)
€o

where (r,, 0, ¢) represent the coordinates of the point O in the spherical polar coordinate

system. The radiation intensity (power per unit solid angle) is then equal to?

2
K(0,4) = (Na+ Lo|* ‘N—%

), (1.24)

and the total averaged radiated power into the half-space z > 0 is given by

//7 dgdysin(0)K (0, ¢) (1.25)
0 0

The radiation vectors in spherical polar coordinates can be expressed from their components

in rectangular coordinates:

Ny = (Nycosp + Nysing)cost (1.26)

Ny = —Ngsing + Nycoso, (1.27)



28

where N, Ny, L, and L, were previously given as the 2D Fourier transforms of the appro-
priate field components tangential to the surface S. Therefore, just by knowing the Fourier
transforms of the tangential field components at the plane S, we can evaluate the total aver-
aged radiated power and the far field distribution. Furthermore, the radiated power depends
only on the wave-vector components located within the light cone. Therefore, the reduction
in radiation loss and improvement in @ factor can be achieved by suppressing the Fourier
components within the light cone, or by redistributing them outside the light cone.

In the case when most of the radiated power is collected at vertical incidence (i.e., at small

), the expression 1.25 can be simplified as follows:

2 2
n - L L,
Py = //dk(N—I——y +‘N——)
2 8/\2k24 T n Y n
|k [<k
n 1 9 ) 9 (1.28)
= —8/\%2*// dk( FT2(Hy) + EFTQ(EJU) + ‘FTQ(H:E) — EFTQ(Ey)‘
|k [<k

The integral of the cross-terms in the equation 1.28 gives approximately the radiated power.
This can be proved easily starting from the expansion of fields in terms of the Fourier
components and the expression for the radiated power as an integral of the z component
of the Poynting vector T over the surface S. This leads to the following expression for the

averaged radiated power:

- 1 1
p=27 ] dk(\FT2<Hz)P FIPT(H) P+ 5 FT (B + n—Q\FTxEy)F) (1.29)
1<k

It is important to note that if some field component u(z,y) is odd with respect to the z
coordinate (i.e., u(z,y) = —u(—z,y)), then its Fourier transform must be equal to zero for
any point in the Fourier space with k; = 0. Similarly, any field component which is odd
with respect to the y coordinate has a Fourier transform which is zero for any point with
ky =0.

Let us introduce the radiation factor RF which is directly proportional to the radiated

power P:
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=123, (1.30)

where W represents the total energy of a mode in the half-space above the middle of the

membrane. The Q factor of a mode can be expressed as

w
= 77 (1.31)

v

1.8.2 The effect of fractional edge dislocations on the Q factor of the

dipole mode in free standing membrane

We consider here the same microcavities presented previously in this chapter. The unper-
turbed photonic crystal parameters are r/a = 0.275, d/a = 0.75 and n = 3.4, where r, a,
d and n represent the hole radius, the periodicity of the triangular lattice, the thickness of
the slab and the refractive index of the semiconductor material, respectively. In the FDTD
method we apply the disretization of 20 pixels per periodicity a. Therefore, a fractional edge
dislocation of order p = 1 corresponds to the insertion of extra material whose thickness
is equal to 1/20a. In the microcavity of our interest the central hole radius is decreased
to r4ef/a = 0.2 and a fractional edge dislocation of order p is applied along the z axis, as
shown in Figure 1.11. Field components of the z-dipole mode in the analyzed structure are
shown in Figure 1.21, as a function of the elongation parameter p. For the z-dipole mode,
E, and B, components are even, while £y and B, components are odd with respect to both
symmetry axes  and y. Therefore, it is expected that E, and B, (i.e., L; and N,) do not
contribute significantly to the radiated power in this case, since their Fourier transforms are
equal to zero along both k; and k, axes. This is also illustrated in Figure 1.22. Therefore,
in the case of the analyzed z-dipole mode, we can approximate the expression 1.29 even

further:

1
Pi=2h [[ s, ([FR)R + IPT(E)P) (132
Ry <k
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Figure 1.21: Field components of the z-dipole mode at the surface S positioned at approx-

imately d/4 from the surface of the membrane. The analyzed structure is shown in Figure
1.11.
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Figure 1.22: 2D Fast Fourier Transforms (f ft3) of the field components of the z-dipole
mode in the structure from Figure 1.11. A fractional edge dislocation is of the order p =0

in this case. The light cone can be respresented as a disk with the radius approximately
equal to 0.015. The horizontal and vertical axes correspond to Ig—fr and %, respectively.

In order to minimize the radiated power, it is necessary to minimize (within the light cone)
the Fourier transforms of the even field components E, and B,. In general case, these
Fourier transforms are non-zero at small values of |l_c'H| (i.e., in the light cone). However,
they can be minimized by balancing the intensities of positive and negative field lobes.
Indeed, we can observe in Figure 1.21 that by varying the elongation parameter p, we
also tune the sizes of the central (negative) lobes in E,; and By, as well as the intensity
distribution between the positive and negative lobes. Therefore, the tuning in p is expected

to lead to tuning in Fourier transforms of the even field components, and subsequently to
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tuning in radiated powers.

The Fourier components of the z-dipole mode in the structure with p = 0 are shown in
Figure 1.22. When the elongation parameter p changes in the analyzed range from 0 to
4, peaks in the Fourier space preserve their position, but their intensities are tuned. This
can be observed in Figure 1.23. Clearly, Fourier components within the light cone are
minimized for p = 2, where @) factor reaches its maximum. Therefore, the optimization of
Q factor of the dipole mode (after the application of fractional edge dislocations) is a result
of suppression of the wave-vector components within the light cone. This suppression is a
product of balancing between the energies of the positive and negative field lobes of the even
field components. The @ factor optimization is achieved in this case without a significant
mode delocalization.

The radiation factors and Q factors are evaluated using the expressions derived previously

2
Ifﬂa(Byl\ W, p=0

Fourier fransforms
of By

light cone
-~

Figure 1.23: 2D Fourier transforms of the even field components of the z-dipole mode in
the structure shown in Figure 1.11, as a function of the elongation parameter p. The light
cone can be respresented as a disk inscribed into each square. Clearly, the intensities of
Fourier transforms within the light cone are minimized for p = 2, where @) factor reaches
its maximum.

and results are shown in Figure 1.24. A good agreement with Q factors calculated in the

FDTD simulations is observed.
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Figure 1.24: Q factors estimated from the FDTD, or from the Fourier transforms of the
tangential field components. The analyzed structure has the following set of parameters:
r/a = 0.275, d/a = 0.75, n = 3.4, a = 20, r4ef/a = 0.2, and fractional edge dislocations
of order p are added along the z axis. The plane S is positioned: (a) directly above the
surface of the membrane, at a distance equal to d/4 from it; (b) at a distance equal to A/2
from the surface of the membrane.

In Figure 1.24(a), @ factors calculated using the FDTD are somewhat larger than Q factors
calculated using the method presented in this article, because @) includes only the radiation
loss above the plane positioned at approximately A/2 from the surface of the membrane. As
we have discussed in our previous publication,® this approach excludes some small portion
of the radiation loss, and the total Q factor achievable by increasing the number of the
PC layers around the defect is somewhat smaller than @), . If we position the plane S at
A/2 from the surface of the membrane and repeat the previous calculations, a much better
agreement with @, is achieved, as shown in Figure 1.24(b). Radiation factors RF,, RF3
and RF, are estimated under the assumption that most of the radiation is collected at
vertical incidence. This is not really true in the case of the z-dipole, for which reason there
is an offset between the Q factors evaluated from RF;, 7 = 2,3,4 and Q estimated from RF},
which does not make any assumptions on the direction of radiation.

Using the method described in this section, we also calculated Q factors of the microcavity
with defect produced by changing the refractive index of a single hole, and with fractional

edge dislocations of order p applied along the z axis, as illustrated in Figure 1.8. The plane
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S was positioned directly above the surface of the membrane in this case, and we estimated
the radiated power from the expression 1.25 only. From Figure 1.16 it follows that the total
Q factor saturates around 17000, when the number of layers around the defect increases in
the structure with p = 3. This is very close to the maximum () value estimated from the

Fourier transforms of the field components, and plotted in Figure 1.25

25 T T T T

—¢&—  Q,(FDTD)
—%— WP

Figure 1.25: Q factor computed using the FDTD method, and from Fourier transforms of
the parallel field components. The analyzed structure is shown in Figure 1.8.

1.9 Photonic crystal microcavities for cavity QED

In this section we consider the design of PC microcavities to achieve strong coupling between
the cavity field and a single ‘gas-phase’ atom (that is, an atom located in free space rather
than contained as an impurity in the dielectric slab). Our long-term goal is to investigate
photonic bandgap structures for single-atom cavity quantum electrodynamics in the strong
coupling regime.3°

Let us consider a system consisting of a single atom positioned at location r4 within a

cavity. The atomic and cavity resonance frequencies are labeled as w4 and w¢, respectively,

but we assume that wqs = we = wp. The Hamiltonian describing the interaction between
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the atom and the field is given by the following expression:3°

Hy =ifi(g(ra)a’é™ — g*(ra)ac™), (1.33)

where @ and a! are the annihilation and creation operators for the single mode and cavity

under consideration, 6+

are the Pauli operators for raising and lowering of the atom, and
g(ra) is the coupling rate between the atom and the cavity. The coupling rate g(r4) can

be described as

e(ra)|E(ra)|
maz(e(r)|E(r)[]’

9(ra) = go (1.34)

where gy denotes the vacuum Rabi frequency

go =714/ V:f:de (1.35)

2
Vo =2 (1.36)

In the previous expression, | represents the atomic dipole decay rate, i.e. the spontaneous
emission rate in free space, A is the mode wavelength and V,,,4e is the mode volume which
is defined as

_ I )| BPav L

Vmo e —
7 mazle(r)|EP]

The cavity field decay rate k is proportional to the ratio of the angular frequency of the

mode (wp) and the mode quality factor (Q):

wo

K= 0 (1.38)

The time decay of electromagnetic field energy stored in the cavity is given by the following

expression:

W(t) =W (0)e” @ = W(0)e ™ (1.39)
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In the weak coupling regime, the atom-field coupling rate g(ra) is much smaller than the
loss rates of the system, such as the atomic dipole decay rate v, and the cavity field decay
rate k. In this case, the atom undergoes the radiative energy decay at an enhanced rate,
and this decay rate enhancement is given by the Purcell factor, which is proportional to
the ratio of the cavity @ factor and the mode volume Vj,04..2' On the other hand, in the
strong coupling regime, the atom-field coupling rate g(r4) is much larger than the loss rates
of the system v, and &, i.e., g(ra) >> k,7,. This implies that the atom-cavity system has
enough time to couple itself coherently, and the emission from the microcavity shows an
oscillation instead of the usual exponential decay. In order to achieve strong coupling, we
need to use an atom with a long lifetime (i.e., a small spontaneous emission rate v, ), such
as Cesium, with v, = 2.6 M Hz. The atom needs to be placed at the point r4 where its
interaction with the cavity field is maximized (i.e., €(r4)|E(r4)| is maximized). The cavity
must have a small mode volume V,,,,4. and a large @ factor, which leads to minimization of
k and maximization of g, and subsequent maximization of g(r4). The maximization of the
microcavity mode quality factor (@) and the minimization of the mode volume (V,,04¢) are
the rules that are also followed when designing PC microcavities for semiconductor lasers.
However, in a cavity for strong coupling, an atom must be trapped at the point where it
interacts most strongly with the cavity field. Therefore, an additional design goal is imposed
in this case: the cavity mode should have the E-field intensity as high as possible in the air
region. When designing a laser cavity, the problem is the opposite: one tends to maximize
the overlap between the gain region and the cavity field and, therefore, wants to have the
strongest E-field in the semiconductor region.

Let us introduce the critical atom (Np) and photon (mg) numbers

N =2 (1.40)

2
mgo = (%) (1.41)

It follows that the strong coupling is possible if both Ny and mg are smaller than 1.
Our goal is to build quantum networks by interconnecting quantum nodes, consisting of
optical microcavities with atoms trapped within them at the points where they can couple

very strongly to the cavity field.>> Quantum nodes would be connected via optical waveg-
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uides (e.g., photonic crystal waveguides), or optical fibers. The information (qubit) would
be stored in the internal state of an atom trapped within a microcavity. In order to transmit
the quantum information from the transmitting node T to the receiving node R, the follow-
ing procedure would be applied: 1. the reading beam is applied to the transmitting node T
and the atomic state (where the quantum information is stored) is mapped to the state of
an optical photon via cavity QED; 2. the photon travels through the optical waveguide or
fiber to the receiving node R; 3. in the receiving node R, the state of this photon is mapped
to the state of an atom trapped in the receiving node, again through the cavity QED. In the
transmitting node, the reading beam transfers the atom from the state |1) into an excited
state |e), from which it subsequently decays into the ground state |0), with a generation of

a single photon. Therefore, we have the following mapping in the node T:

|1>at0m|0>fz'eld — |e>at0m|0>field — |O>atom|1>field (1-42)

In the case of strong coupling, when the loss rates of the system are much smaller than
the coherent coupling rate g(r4), this mapping sequence is the dominant pathway. If, for
example, the cavity ) drops, the probability of this sequence decreases. Therefore, a very
strong coupling is necessary for efficient transfer of information from atomic to photonic
state in quantum nodes.3?

We plan to use photonic crystal microcavities with Cs atoms trapped in them as quantum
nodes, and photonic crystal waveguides for communication between individual quantum
nodes. In order to predict whether strong coupling can occur in the previously introduced
photonic crystal microcavities, we must calculate the upper limits of critical atom and
photon numbers Ny and mg and compare them to 1. In other words, it is acceptable to
overestimate calculated critical numbers. As the number of PC layers around the defect in-
creases, the total quality factor () approaches Q| and V;;,o4. drops due to the better latteral
confinement. Hence, we can calculate Ny and mg by assuming Q = (), and by using Vi,ode
calculated for five PC layers around the defect. This can only cause a slight overestimation
of Ny and my.

The material and PC properties are chosen in such a way that cavities operate at A = 852nm
(the wavelength corresponding to the atomic transition in *3C's). The material system of

our choice is Aly3Gag.7As, which is transparent at this wavelength.
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Figure 1.26: Parameters of the z-dipole mode in the single defect structure (r/a = 0.275,
d/a=0.75, rgef/a = 0.2, n = 3.4 and a = 20) as a function of the elongation parameter p:
(a) mo; (b) No

1.9.1 Single defect with fractional edge dislocation

Let us now study the cavities introduced in the Section 1.6 as candidates for cavity QED. We
concentrate on structures with the 1st set of PC parameters, i.e., /a = 0.275, d/a = 0.75,
a = 20 and the defect hole radius is rg.r/a = 0.2. Q), Q1 and a/X of this structure, as
a function of the elongation parameter p, are shown in Figure 1.13. We now calculate the
critical atom (Np) and photon (mg) numbers as a function of the elongation parameter p
for the same z-dipole mode, and the result is shown in Figure 1.26. From the electric field
intensity pattern of the z-dipole mode shown in Figure 1.12, one can see that the electric
field intensity is very strong within the defect hole. Therefore, an atom should be trapped
there in order to interact most strongly with the cavity field. From the calculated critical
atom and photon numbers, it then should be possible to achieve very strong coupling. At
A = 852nm, the parameters of such a cavity are r = 70nm, d = 190nm, a = 250 and

Tdey = 50nm. Due to extremely small mode volumes in these cavities, strong coupling is
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possible even for moderate values of () factors, as can be seen in Figures 1.13 and 1.26.

Furthermore, mg is much smaller than Ny, which means that we can try to improve @

x 10~

Figure 1.27: Ny of the z-dipole mode in the structure where four holes in I'J direction are
tuned, as a function of the elongation parameter p. The structure has the first set of PC
parameters.

factors further, at the expense of increasing Vy,oqe. Calculated lateral quality factors (Q))
are much smaller than vertical ones (@ ), since the cavities operate very close to the edge
of the air band and only five PC layers surround the defect. However, by increasing the
number of PC layers around the defect, we can increase @) above @, and make the total

Q factor of the cavity determined only by Q.

1.9.2 Tuning holes around the defect

Q factors over 30000 were predicted for structures presented in Section 1.7, where in addition
to single defect and fractional edge dislocation, the sizes and positions of 4 holes in I'J
direction are tuned. The structure and the electric field profile are shown in Figure 1.18,
and the dependence of the y-dipole mode frequency and () on the elongation parameter p
is shown in Figure 1.19. We can now calculate critical atom and photon numbers for an
atom placed in the center of the central hole of the reduced radius, for the structure with

the first set of PC parameters. The calculated my is around 5 - 1078 for all p values, and
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the calculated Ny is presented in Figure 1.27. Again, these calculations predict that very

strong coupling is achievable by this design.

1.9.3 Coupled dipole defect modes

The significance of surface effects that could perturb atomic radiative structure within the
small defect hole is still unknown. For that reason, we will try to investigate ways of
increasing the radius of the hole where the coupling between the atom and the cavity field
should occur. Let us now analyze the cavity designs where a strong E-field intensity can
be achieved in the center of an unperturbed hole. The idea is to use coupling between two

dipole defect states.

Figure 1.28: Electric field intensity patterns of the coupled dipole modes: (a) constructively;
(b) destructively coupled defect states.

Examples of resonant modes of microcavities formed by coupling two single defects are

presented in Figure 1.28. Based on the resultant electric field intensity in the central, un-
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perturbed hole, we call them constructively or destructively coupled defect states. These
modes have different frequencies, as well as Q factors. We will analyze properties of con-
structively coupled states, since the central, unperturbed hole would be a good place for an
atom.

We have analyzed a series of structures with different geometric parameters. The best re-
sults are obtained for two coupled y-dipoles in the structure with r4.r/a = 0.2, d/a = 0.75,
r/a = 0.275, n = 3.4 and a = 20. Holes in the I'X direction, in columns containing defects,
are elongated by two points in the x direction. The mode pattern of the constructively cou-
pled y-dipoles is shown in Figure 1.29(a). Parameters of the shown mode are: a/\ = 0.29,
Q| = 580, Q1 = 6100, Vinoge = 0.93(A/n)3, mo = 1.5-107" and Ny = 0.0135. An atom can
now be trapped in the central hole of unperturbed radius. For A = 852nm, this radius is
r = 68nm, which is a significant improvement over the previous design, for which an atom
must be trapped within a 50nm radius hole. Again, strong coupling is achievable in this

cavity.

I I e

(a) (b)

Figure 1.29: Electric field intensity patterns of the constructively coupled dipole modes in
the structure with the following parameters: r4.r/a = 0.2, d/a = 0.75, r/a = 0.275, n = 3.4
and a = 20; (a) coupled y-dipoles; (b) coupled z-dipoles.
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An alternative way of forming the coupled defects state is coupling two z-dipole modes,
represented in Figure 1.29(b). We use the same PC parameters as previously: rgcf/a =
0.2, d/a = 0.75, r/a = 0.275, n = 3.4 and a = 20, and holes in I'J direction, in rows
containing defects, are elongated by two points in the y direction. The mode pattern of
the constructively coupled z-dipoles is shown in Figure 1.29(b). Parameters of the mode
are: a/A = 0.283, Q) = 740, Q1 = 12120, Viyoge = 0.69(\/n)2, mg = 1.4- 1077 and
Ny = 0.0063. Strong coupling is achievable for an atom trapped in any of the two central
holes of unperturbed radius (positioned between the defects). For A = 852nm, this radius

is again r = 68nm.

1.10 Optimization of Q factors of acceptor modes

Figure 1.30: Fine tuning of six holes around the central defect helps in the optimization
of the Q factors of the acceptor state (monopole), whose electric field intensity is shown
in this figure. For example, by reducing the radii of these six holes to r;/a = 0.25 (from
r/a = 0.3 in the unperturbed photonic crystal) and moving them simultaneously in six I'J
directions to preserve the distance between them and their next nearest neighbors, we can
improve the Q factor of the monopole mode from 170 to almost 1000 for the central hole
radius r4er/a = 0.65, and improve the Q factor of the monopole mode from 2500 to around
10000 when the central hole radius is equal to r4.f/a = 0.5.
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In the subsection 1.4.2, we have shown that the Q factor of the acceptor mode (monopole),
excited in the microcavity formed by increasing the radius of a single PC hole, can reach the
value of 2500 at maximum. However, Q) factors of acceptor states are also very sensitive to
fine tuning of the geometry around a single defect. For example, the tuning of the six nearest
neighbor holes can help in improving the Q factor significantly. In this process, we decrease
the radii of these six holes to 71 (from the original r in the unperturbed PC), and move them
simultaneously across the distance equal to » — 7 in six I'J directions, in order to preserve
the distances between them and their next-nearest neighbors in the same directions. This is
illustrated in Figure 1.30. For example, let us consider microcavities formed in the PC with
the same parameters as in the subsection 1.4.2: r/a = 0.3, d/a = 0.65 and n = 3.4. When
the central hole radius is increased to rq.f/a = 0.65, the monopole mode with @ = 170 can
be excited, as shown in Figure 1.9. However, if in addition to forming this single defect
we reduce the radii of the six nearest neighbor holes to r1/a = 0.25 and reposition them
in the I'J directions, we can improve the quality factor of the same monopole mode to a
value of almost 1000. Similarly, for the central defect with the radius rg.;/a = 0.5, we
were previously able to reach the Q factor of almost 2500 for the analyzed acceptor state.
By tuning six nearest neighbor holes in this structure to 1 /a = 0.25, we can improve this

quality factor to a value of around 10000.

1.11 Influence of the low refractive index cladding on param-

eters of planar PC structures

The principal geometries of planar photonic crystal research can be divided into two cat-
egories: structures based on optically thin semiconductor membranes (free-standing mem-

branes, with air cladding),” 11,20

and structures fabricated in the slab waveguide consisting
of a semiconductor core and cladding layers of lower refractive index.!? The difference lies
in the design of the waveguide used for the vertical confinement. Our group at Caltech
has been studying free-standing membranes for the past few years. In this section, the

influence of symmetric low-refractive index cladding layers on the properties of the dipole

defect modes is tested.
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Figure 1.31: Slab waveguide patterned with a triangular array of air holes.

The analyzed structure is shown in Figure 1.31. The refractive index of the core is 7icore =
3.4, and the refractive index of the cladding can have one of the following values: (1)
Nead = 1, corresponding to air (in the case of the free standing membrane); (2) ngqeq = 1.5,
corresponding to oxide (e.g., AlO, cladding on GaAs core, or Si0Os cladding on Si core;
(3) neiaqg = 2.9, corresponding to Al,Gay1_,As cladding on GaAs core, with x = 20%. The
same two types of previously analyzed PC arrays are again treated in this section, with
addition of claddings: (1) r/a = 0.275, deore/a = 0.75 and dyaq/deore = 2.2; (2) r/a = 0.3,
deore/a = 0.65 and dgjqq/dcore = 2.56. The chosen values of d,4 correspond to a/0.6, which
is approximately A/2, i.e., one half of the dipole mode wavelength, measured in air. Band
diagrams for the TE-like modes in the PC structures with the previously introduced sets
of parameters and claddings are shown in Figures 1.32 and 1.33. Band diagrams of these
structures without claddings are shown in Figure 1.2. Several observations are worth noting
at this point. Bands from the dispersion diagram of the structure without cladding layers
remain present in the dispersion diagrams of structures with cladding layers. However, there
is an offset in their positions, due to the presence of more high-refractive index material.
Moreover, additional modes also occur in the presence of cladding layers. These new modes
are positioned above the light line in the cladding, and below the light line in air, which
implies that they can propagate in the cladding, without leaking into air. These additional
modes exist at frequencies within the original bandgap and can represent a new lateral loss
mechanism. We will show the result of such losses on the electric field intensity patterns of

cavity modes later in this section.
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Band diagrams were calculated using the 3D FDTD method. The full line is the light line

Figure 1.33: Band diagrams for TE-like modes in the structure with ncere
in air, and the dashed line is the light line in the appropriate cladding.

0.65, r/a = 0.3: (a) deigq = 2.56dcore and neeq
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An alternative way of viewing this problem is that the band diagram of the entire structure
is obtained by combining the dispersion diagrams of the core and the cladding. Certainly,
the overall dispersion diagram is not a simple superposition of the two, but can be viewed
that way in the first approximation. In order to achieve a bandgap in the resulting structure,
we would have to design the two components in such a way that their bandgaps overlap.
Parameters of the z-dipole mode, excited in the structure where the radius of a single PC
hole is reduced, are shown in Figure 1.34. Frequency and Q factor of the mode are plotted as
a function of the radius of the defect hole (r4.r) and the type of the supporting waveguide.
The boundary for separation of @), from @) is positioned approximately at 0.7 from the

center of the slab, implying that losses in the cladding layers are included in Q).
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Figure 1.34: Parameters of the donor mode (z-dipole) in the single defect structure (r/a =
0.3, d/a = 0.65) as a function of the defect hole radius 74 s, and the type of the supporting
waveguide.

The first observation is that the presence of cladding layers reduces vertical losses and
increases lateral losses. The larger the refractive index of a cladding, the larger is the drop
in @) and increase in (). However, before jumping to any conclusions, it is important
to thoroughly understand what limits the total ) factor in each case. Starting from the
discussion of band diagrams presented earlier, the drop in @) in the presence of cladding

layers comes from the fact that the number of additional modes guided in these layers
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increases when 7,4 increases. These additional modes represent a new mechanism of
lateral loss, and a serious problem arises when the DBR confinement of the defect mode is
lost, which happens for both n..q = 2.9 and ng.q = 1.5 in our calculation. At that point,
there is nothing we can do to improve Q)| and the total @ factor is limited by (). Therefore,
we cannot take the advantage of the improved @, since much smaller Q| limits Q. It is
also important to note that the frequency of the defect mode drops when 7,4 increases.
This is expected, since the mode overlaps with more dielectric material of refractive index

larger than 1.

Table 1.2: @ factors of the z-dipole mode excited in microcavities formed by omitting a
single PC hole, in the presence of symmetric cladding.

Nead | No of PC layers | a/A Q| Q1 Q
1 5 0.2877 | 1112 334 | 257
1 7 0.288 | 1507 | 336 274
1.5 5 0.2856 | 307 371 168
1.5 7 0.2855 | 251 485 165
2.9 5 0.2654 | 134 | 8254 | 132
2.9 7 0.2667 | 130 | 10130 | 128

To prove that the loss of lateral confinement really happens in this case, we analyze how
Q) and @ of the z-dipole defect mode change as a function of the number of PC layers.
We perform this analysis of loss for cavities in photonic crystal made in waveguide material
where the refractive index of the cladding was set to 1, 1.5 and 2.9. Results are shown in
Table 1.2. The analyzed mode is excited in the cavity formed by omitting a single hole
(i.e., 7gey = 0). The increase in the number of PC layers around the defect results in an
increase in @ only for the structure with air cladding (i-e., negg = 1). Therefore, this
is the only structure having a complete lateral confinement. On the other hand, @, @1
and the total @) factor for waveguide structures with low refractive index cladding remain
approximately constant when the number of PC layers increases. The electric field intensity
patterns of the z-dipole mode, on the vertical slice through the center of the defect (z-z
plane) are shown in Figure 1.35. It can be seen in these plots that the defect mode couples

to modes guided within the cladding layers, thereby resulting in a large lateral loss. The
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lateral PC confinement is lost in this case, although from the radiation patterns one can
also see that the vertical loss is much smaller in the presence of n..q = 2.9 cladding, as has
been predicted in the past.

We also analyze the influence of waveguide cladding layers on properties of the y-dipole
defect mode excited in the structure presented in Section 1.7. The result is shown in Figure
1.36. There is again a dramatic drop in @ in the presence of claddings, but the increase

in ), is not significant in this case.
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Figure 1.35: The electric field intensity patterns of the donor mode (z-dipole) in a single
defect structure (r/a = 0.3, d/a = 0.65, r4o = 0), as a function of the type of the supporting
waveguide: (a) no cladding (n¢eq = 1); (b) neeqd = 1.5; (€) ngaq = 2.9. The field intensity
is shown in the z — z plane (vertical plane) through the center of the defect, and for z > 0.
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Therefore, although the low refractive index claddings can help in reduction of vertical
loss, this improvement is not very significant for the most sophisticated cavity designs.
Unfortunately, additional lateral losses are predicted in the presence of cladding layers, due
to modes guided within these cladding regions. In order to preserve the lateral confinement
in the presence of claddings, and to gain the advantage from the reduction in vertical loss,
cavities have to be designed in such a way that defect modes have symmetry different from
modes guided in the claddings, which would prevent them from coupling to each other.
Certainly, the parameter space of the clad waveguide and photonic crystal will have to
be explored more thoroughly in order to minimize the number of these additional modes
guided in cladding layers, and therefore minimize the additional lateral loss resulting from
these modes. Since both the number of the additional modes guided in the cladding layers
and the reduction in vertical loss are directly proportional to 744, the complexity of the
problem of preserving the lateral confinement is directly proportional to the improvement in
Q factor. Considering that the improvement in ) factor from reduction of vertical scattering
in clad waveguide geometries is not very significant for our most sophisticated designs, we

will continue to pursue our work on free standing membranes.
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Figure 1.36: Parameters of the donor mode (y-dipole) in the defect structure, where four
holes are tuned in the I'J directions (r/a = 0.275, d/a = 0.75, r1/a = 0.225, r4er/a = 0.2),
as a function of the elongation parameter p, and the type of the supporting waveguide.
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1.12 Spontaneous emission control in optical microcavities

based on planar photonic crystals

In 1946 Purcell predicted that the radiation rate of an atom could be modified by placing
it in a wavelength-sized cavity.?®> The spontaneous emission rate was often considered an
inherent property of atom, but Purcell described that it could actually be changed by mod-
ifying the atom’s environment. However, it took almost 50 years after this groundbreaking
discovery to be able to build cavities whose size is of the order of optical wavelength, and
use Purcell’s effect to modify light emission within a semiconductor.3*37

Two important parameters are used to describe the spontaneous emission properties of a
system: Purcell factor and 3 factor. Purcell factor is defined as the ratio of the spontaneous
emission lifetimes without and with the cavity. Since the topic of our interest is the spon-
taneous emission within a semiconductor, we define the Purcell factor as the ratio of the
spontaneous emission lifetimes of an emitter in the bulk semiconductor, and in the semicon-
ductor microcavity. Therefore, this factor is proportional to the spontaneous emission rate
enhancement in the presence of a microcavity. On the other hand, the spontaneous emission
coupling factor (3 factor) of a given mode is defined as the ratio of the spontaneous emission
rate into that mode and the spontaneous emission rate into all modes.?® The importance
of this parameter lies in the fact that the laser threshold reduces as 8 approaches 1.3839
If we can simultaneously enhance the spontaneous emission within the semiconductor and
achieve 3 close to 1, we can build a light source with high quantum efficiency and broad

modulation width, based on the single-mode spontaneous emission.3”

The great experimental work on this topic has been done by employing post mirocavities,?
or microdisks.3*36 Over the past few years much scientific attention has been focused on
the use of photonic crystals for spontaneous emission control.2 However, due to the complex
geometry of the proposed microcavities, it was not possible to perform the detailed anal-
ysis of their Purcell and (8 factor. There are many analyses (both classical and quantum
mechanical) of these parameters in the literature, but they consider only simple geome-
tries and often use many approximations. These include the spontaneous emission factor of

the injection laser,*0 the VCSEL of square cross-section,*":4? the microdisk*® and the ring

laser.** In 1999, in collaboration with Prof. Yariv’s group at Caltech, we proposed methods
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for the calculation of these important parameters, which are flexible enough to incorporate
highly complex geometries, including those of photonic crystals.*>#” Methods are based on
the classical model for atomic transitions and employ the FDTD method. We have theo-
retically identified that optical microcavities based on planar PCs can be used to achieve
spontaneous emission control and our results are presented in this section. Unfortunately,

these properties of planar PC structures have not been demonstrated yet experimentally.

1.12.1 Description of the proposed method for calculation of the 3 factor

Our starting point is the classical model for the 3 factor calculation.**#2 Atomic transi-
tions are modelled as classical oscillating electric dipoles with resonant frequencies equal to
the atomic transition frequency w,. Different dephasing mechanisms are taken into account
through the dipole lifetime 74, which corresponds to the homogeneous broadening of the

spontaneous emission spectrum.*8

No dipole sources

Consider first the electromagnetic field of the system when dipoles are not present. We
solve the problem in a large box, which we call the computational domain and denote as
Vep. Appropriate boundary conditions, which depend on the physical situation of interest,
have to be applied to the surface enclosing Vizp. We neglect the absorption losses (i.e., we
assume that the conductivity of a medium is equal to zero). At any point inside the box,

the set of Maxwell’s curl equations has to be satisfied:

¥ x i = e(f')%—f (1.43)
. o0H

= —Uug— 1.44
VX E=—u 5 (1.44)

Let {E,,(7)} be the complete set of transverse orthonormal modes of the lossless cavity.19 5!

The orthonormality condition (with a position dependent dielectric constant (7)) is defined
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as follows:%Y

J[[ Bt B = 51 (1.45)

Vep

where d,,,, is the Kronecker’s delta. The transversality condition is given by the following:>
V- (a(f‘)ﬁm(m> =0 (1.46)

Each of these modes satisfies the following wave equation:
V x [V x Ep(7)] = poe(F)w2, B (7), (1.47)

where w,, is the frequency of a mode. In the mode expansion method we express the total

electric field of the cavity using the modes from the set {E, (7)}:49:%
E(’f", t) = Zﬁm(mfm(t) = Zﬁm(ﬁ t) (1.48)
m m

Each term 1, (7, t) in the previous expansion satisfies the following wave equation:

5 @ o7 0%
V XV X 1 = =26 pro€(7 i _ uoé(F)#,

5 (1.49)

where K, is the field decay rate for the m-th mode, which accounts for the radiation outside
the box. For some optical mode described by frequency w,, and the quality factor’? Q,,,

the field decay rate is given by

Wm

i = 0 (1.50)

From the equations (1.45),(1.47) and (1.49), it follows that

fm(t) + 2"’7'771f:rrz(t) + wranm(t) =0 (1.51)
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with the solution:

wmt

fn(t) = Fre™mte”20m (1.52)

where w!, = wp,(1 — ﬁg)% For the cavity modes of interest (), is large enough so that

we can assume wh, & wy,.

We can discretize space and time in equations (1.43) and (1.44) and use the FDTD method
to calculate the electromagnetic field of the system. We apply Mur’s absorbing boundary
condition®® (ABC) to the boundaries of the computational domain which allows the radia-
tion to escape outside, without reflecting back into Vop.

The first step in our calculation involves isolating (filtering) the mode of interest in the

optical cavity. The filtered mode is then normalized in the following way:

[[[ «anEa@par =1 (1.53)

Vep

Once we have solved for the field pattern of the mode of interest, we then proceed to

calculate the electric and magnetic fields of the system excited by oscillating dipoles.

Dipole sources

Let us assume we have N dipoles, all at the same time in the microcavity, that are randomly
positioned and randomly polarized in the active region (féi) and Péi) are the position and the
polarization of the i-th dipole, respectively). We first consider dipoles which have a single
oscillation frequency w, and lifetime 74, but random phases which are uniformly distributed
in the range [0,27) (¢; is the initial phase of the i-th dipole).

The Maxwell curl equations now have the following form:

- OE 0P
- oOH
V X E = —HOW (1.55)
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where 13(17, t) is given by the following expression:

N
Bty = 3 POt 7 (7 — {1 (1.56)
=1

We discretize the equations (1.54)-(1.56) with the initial conditions E(7,t = 0~) = 0 and

—

H(7,t=07)=0. Mur’s ABC is again applied to the boundaries of the computational do-
main Vop. The electric field in the cavity can be separated into transverse and longitudinal

parts:50
E(7,t) = Ep(7,t) + EL(7, 1), (1.57)
where
V. (e(F)ET(F, t)) =0 (1.58)
Using FDTD method we evolve real parts of the fields:
ERF 1) =R [E(F, t)] (1.59)
HY7t) =R [H(F, t)] (1.60)

Let us choose a volume V' (with outer surface S) to be a subset of Vop containing all the
dipoles and enclosing the microcavity. At time ¢, we calculate the energy radiated into all

modes, Wx-(t), as

t

We(t) = Wi ®) + Wiy () + [ Praa(r)ir (161)
0
€(T) | 2R /= 12 3=

Wy (t) = )\ BR (7 1) 2437 (1.62)

Uik
Wiy (t) = / / / %ﬁ%(m)ﬁd«*f (1.63)
1%

Proa(r) = / / (BP(7,7) x AR(,7))dS (1.64)
S
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P,,4(7) represents the power radiated out of the cavity, and E—’jﬂ?(ﬁ t) is defined as
EX7t) =R [E”T(F, t)] (1.65)
The total energy radiated into all modes is
Wy oo = lim Wx~(t) (1.66)

If we evolve the fields for a long enough time ¢’ (¢ > 74), such that the energy of the
electromagnetic field which remains within V at ¢ = ¢’ is negligible, we can approximate

Ws oo as

W oo = Wis(t) / Proa(r)dr (1.67)

The transverse electric field (which is the radiation field**°?) can be expressed as the super-
position of the complete set of orthonormal modes of the closed cavity Em(ﬂ, introduced

previously:
ET(Fa t) = Z E_"n(F)gn(t) (1.68)
n

Er(7,t) satisfies the following wave equation:

V x [V x Er] = =2u06(®) Y fim B (7) g ()
| . (1.69)

?Er 82 Pr

_MOG(F’) 6t2 — Mo 8t2 )

where Pr denotes the tranverse component of P. From the equations (1.45), (1.47), (1.68)

and (1.69) we obtain the differential equation for g,,(t), corresponding to a localized mode
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labeled by index m:

im(t) + “’—ngm + w2 gm(t) =

([ e PR .

Vep

- [ff#rsn- 250

Vep

The transformation of the integral in the previous equation was proven previously in refer-

ence 50. The right hand-side in the equation (1.70) can be written in the following way:

82P(7‘ t)
3 =% -»
// P7E, e

Vep (1.71)

. _t
— G(m)e]wpte Td s

where
1 2w (i)
m 2 . E : H(2 E"* i i i
G( ) [_wp + T_g - jT—Clp:| =1 PO ) ,‘n(’f_‘;))e‘](b (1'72)

Under the condition that the transverse electric field is zero at ¢ = 0 (g,,,(0) = 0 for all m),
we solve the equation (1.70) for g, (t):

. _ mt
gm(t) = B, (ej“”’te T — glwmte” 2Qm) (1.73)
G(m)
By = _ (1.74)
A )

Let us label the fundamental mode by index 0. Then the energy radiated into the funda-

mental mode at time ¢t — oo can be calculated as follows:*!

Wooo = %/2nodt/// (M) Bo(7, 1) - By (7, 0)d*F, (1.75)

Veo
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where

Eo(7,t) = Eo(7)go(t) (1.76)
It follows that
2( L 4 wo
Td QO (Td 2QO)
Wawe = ol ol? | % + 22 (1.77)
= 2w (wp—wo)+ (5 + zas)?

It should be noted that the choice of g (0) doesn’t influence the value of Wy,. An alternative

approach (which leads to the same result) is to calculate Wyeo in the following way:

Woos = / dtin / / Bty . 220 o (1.78)
2 ot
0 Vep

The ( factor of the fundamental mode is equal to the ratio of the total energy radiated into
that mode and the total energy radiated into all modes.4042
We include the inhomogenous broadening by using an approximate transition spectrum

which has a Lorentzian shape, with the central frequency ws and FWHM equal to Aws:

Aws
F(wp) = - ws)227r+ (%)2 (1.79)
+o0
/ Flw,) duwy = 1 (1.80)

F(wp) represents the density of dipoles (electronic states) at the frequency w,. We average

the result over different dipole resonant frequencies:

g: F(wp)Wooo(wp)

(1.81)

The value of the 8 factor when only homogeneous broadening is taken into account and

dipoles have the frequency wj, is denoted by Bg and given by

/BH _ WOOO((‘L)P)

= Wy oo (@) , (1.82)
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1.12.2 Calculation of the spontaneous emission rate

For the detailed analysis of the method, the reader is referred to the Reference 47. The
method is based on the fact that the spontaneous emission rate is proportional to the

classical dipole radiation power:

Tbulk: cavity

spont __  classical
cavity ~ pbulk ’ (183)
spont classical

where Tgpons is the spontaneous emission lifetime. Therefore, the Purcell factor can be
calculated as the ratio of the powers radiated by the classical dipole placed in the cavity,
and in the bulk material. The FDTD method allows us to calculate these powers for any

type of cavity geometry.
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Figure 1.37: (a) Schematic of a 2D slice through the middle of the patterned high index
slab. A defect in the hexagonal lattice of air holes is formed by omitting the central hole
of the array; (b) Top view of a microfabricated 2D hexagonal array of holes with a single
central hole missing. The inter-hole spacing is a=500nm, and the radius of the holes is
approximately 150nm.
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1.12.3 J factor of the microcavity based on 2D PBG in an optically thin

dielectric slab

0.26 0.29 0.32 0.35 0.38

Figure 1.38: 8y dependence on the wavelength of the dipole excitation A, for the microcavity
based on 2D PBG. g is the wavelength of the dipole mode. 74 = 0.1ps.

The microcavity that we analyze is an optically thin dielectric slab patterned with a 2D
array of holes, as shown in Figure 1.37. A defect is made by omitting a central hole of
r d

the array. The parameters of the analyzed structure are 7 = 0.3, ¢ = 0.4, ngq = 3.4

and 3 periods of PC holes around the defect. In Figure 1.37 we show the top view of a

54 We consider

microfabricated defect cavity in InGaAsP, designed for 1.55um emission.
the z-dipole mode to be the fundamental mode. Its normalized frequency is 3= = 0.32 and
quality factor is Qo = 129. If we assume that in reality Ao = 1.55um, this corresponds to
d = 198nm, a = 495nm, r = 165nm. The bandgap of the infinite 2D photonic crystal of
this thickness extends from § = 0.2983 to $ = 0.3884.2% The active layer (QW) is again
centered in the middle of the dielectric membrane. We assume that the QW couples most
strongly to TE modes, so we only analyze dipoles with the polarization in the plane of the
QW. Dipoles appear uniformly throughout the area of the defect (i.e., the omitted central
hole). The lifetime of dipoles is assumed to be 74 = 0.1ps.

The results of 8y for different dipole wavelengths A, are shown in Figure 1.38. In order
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to account for the inhomogeneous broadening, we approximate the emission spectrum from
the QW by a Lorentzian, centered at A; and with FWHM denoted by AX;. Using the
averaging technique described in Section 1.12.1, we calculate the value of the 3 factor for
different values of the inhomogeneous broadening and the central frequency of the spectrum

matched to the frequency of the fundamental mode. The results are given in Figure 1.39.
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Figure 1.39: g factor calculation for the dipole mode of the microcavity based on 2D PBG
in an optically thin dielectric slab; parameters of the cavity are described in text. On z axis
we plot the FWHM of the emission spectrum. It is assumed that the emission is centered
around Ag = 1.55um.

In order to separate the contribution of guided modes and radiation modes to the 3 factor

one can use the following approximate expression:

1

ﬁ:_Ng—f—pAAs’

(1.84)

where A); is the width of the spontaneous emission spectrum, N, is the number of guided
modes within the spontaneous emission spectrum and p is an effective density of radiation
modes at Ag. In (1.84) it is assumed that the same amount of spontaneous emission goes into
all guided modes within the emission spectrum and that the density of radiation modes is
constant within AX;. N, can be counted from the spectrum determined using the FDTD.

For A)Xs = 25nm, N, = 2 (doubly degenerate fundamental mode) and Sy = 46.42%,
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we calculate the effective density of radiation modes to be p = 0.00617nm ™! which is
around ten times smaller than in the microdisk which has a peak value of 8 = 30.56% and
p = 0.05nm ™!, as we predicted in Reference 45. We attribute such a small p to the suppres-
sion of radiation modes by the 2D photonic crystal over a finite in-plane angular range, and
to enhancement of spontaneous emission into the defect mode. This spontaneous emission

enhancement is analyzed later in this chapter.

a/)\p
0.27 O.?9 0.3 0.?2 0.34 0.;%5 0.37 038 04

0.1+ y : 1
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Figure 1.40: Total energy (in arbitrary units) radiated by a single electric dipole oriented
in the z or y direction and positioned in the center of the defect. The microcavity is based
on a 2D PBG in an optically thin dielectric slab. On the bottom z axis we show the ratio
of the wavelength of the fundamental x-dipole mode A\g and the dipole’s wavelength A,. On
the top z axis we represent the ratio of the interhole spacing a and the dipole’s wavelength
Ap-

We have also calculated the total energy radiated by a single electric dipole positioned in the
center of the defect and oriented in the z or y direction for a range of dipole wavelengths
Ap- The dipole lifetime is assumed to be 0.1ps. The result is shown in Figure 1.40. It
can be observed that the total energies radiated by x and y oriented electric dipoles are

approximately the same. This is explained by the fact that the fundamental mode is a set
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of doubly degenerate dipole modes and the x oriented electric dipole strongly couples to
z-dipole mode, while the y oriented electric dipole strongly couples to y-dipole mode. A
small offset in positions of peaks is caused by a small difference in frequencies of z and y
dipole modes, discussed in Section 1.4.1. As expected, the total radiated energies reach
their maximum when dipole’s wavelength coincides with the wavelength of the fundamental
mode. When dipole’s wavelength is offset from the wavelength of the fundamental mode in
either direction, the total radiated energy drops, because we move within the bandgap and
there is no other mode that the electric dipole can transfer its energy to. The drop in the
total energy is gradual, due to the fact that the dipole emission spectrum is 25nm wide and
at small distances from )\ tails of the emission spectrum still couple to the fundamental
mode. Within the bandgap and off Ay we would have the inhibited spontaneous emission. A
very interesting observation is that the total energy radiated by a dipole starts to increase
slowly for a/\, > 0.35. This is due to coupling of dipole emission to conduction band
modes (bottom of the conduction band is at a/A, = 0.38). One would expect the similar
increase in the total radiated energy at lower frequencies, due to the coupling of dipoles to
the valence band modes (valence band top is positioned at a/A, = 0.29). However, such

increase is not observed in our calculations.

Figure 1.41: Cavity geometry for splitting of the dipole mode degeneracy and 2D slice
through the middle of the slab showing the z-dipole mode electric field amplitude.
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This is explained by the fact that valence (dielectric) band modes have their electric field
energy concentrated in the high dielectric constant regions in the unperturbed photonic
crystal. On the other hand, we position the electric dipole in the center of the defect, which
corresponds to the air (hole) region in the unperturbed photonic crystal. This means that
the electric field intensity of the valence band modes is small at electric dipole position and
their coupling is weak. Therefore, there is no increase in the energy radiated by an electric
dipole positioned in the center of a defect, due to the coupling to valence band modes. This
also explains the high § values achievable for large FWHM of the emission spectrum, as
shown in Figure 1.39, when the pumping area is small and limited to the defect. Therefore,
in order to obtain a large (8 value in this type of the microcavity for large FWHM of the
emission spectrum, it is desirable to have a defect mode frequency closer to the valence band
top than to the conduction band bottom and to pump only the defect area. The latter can

be achieved in practice by use of single quantum dot emitters.

14

Figure 1.42: (8 factor dependence on the wavelength of the dipole excitation A, for the
microcavity designed for degeneracy spliting of the dipole mode. Only the homogeneous
broadening is taken into account.

The B factor can be almost doubled using the degeneracy splitting of the dipole modes.
Degeneracy splitting can be accomplished by lowering the defect symmetry relative to that

of the hexagonal lattice (as an example, by increasing the radius of the two nearest neighbor
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holes along the z axis).?® In the previously analyzed PBG membrane we increase the radii
of the two nearest neighbor holes to 0.5a¢ and move them 0.2a simultaneously toward the
center defect in order to maintain the rib size in the z direction. We analyze the § factor
of the z-dipole mode (shown in Figure 1.41), whose parameters are Q = 224 and % = 0.34.
The applied discretization was 15 units per interhole spacing a. In this microcavity, the

y-dipole mode is pushed completely outside the bandgap.

P
014 0.?7 0.§1 0.34 0.?7 O.fll 0.‘44 0.48

x-dipole
i y—digole

14

Figure 1.43: Total energy (in arbitrary units) radiated by a single electric dipole oriented
in the z or y direction and positioned in the center of the defect. The microcavity geometry
is designed for degeneracy splitting of the dipole mode and parameters are given in text.
On the bottom z axis we show the ratio of the fundamental mode wavelength Ag and the
dipole wavelength ),. On the top z axis we represent the ratio of the interhole spacing a
and the dipole’s wavelength A,,.

Using the method described in previous sections, we calculate the 3 factor for this microcav-
ity when only homogeneous broadening is taken into account. The homogeneous broadening
is 25nm, corresponding to dipole’s lifetime of 0.1ps at A\g = 1.55um. The emitting region is
again assumed to be a single TE QW, positioned in the middle of the membrane. In order
to decrease the amount of computation, we average 3 only over a single x and y oriented
dipole positioned in the center of the defect. This approximation is good enough if the
pumping area is small and limited to the defect. We test a range of dipole wavelengths \,,.

The result is shown in Figure 1.42. When dipole wavelength matches the wavelength of the
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fundamental mode and the FWHM of the emission spectrum is equal to 25nm, (8 factor as
high as 85% can be achieved.

Once again, we calculate the total energy radiated by a single electric dipole positioned in
the center of the defect and oriented in the x or y direction for a range of dipole wavelengths
Ap- The dipole lifetime was assumed to be 0.1ps. The result is shown in Figure 1.43. The
total energy radiated by the y oriented electric dipole is negligible within the bandgap.
This can be explained by the fact that the y oriented electric dipole couples strongly to
the y-dipole mode, which is pushed out of the bandgap with this cavity geometry. On the
other hand, the total energy radiated by the x oriented electric dipole is still very strong
within the bandgap, since it couples to the x-dipole mode which is located in the bandgap.
A rise in the total radiated energy for both dipole orientations is again observed at high
frequencies and the previous explanation (for the structure without degeneracy splitting)
still holds.

In all previous calculations, it was assumed that the active region is a single quantum well
positioned in the center of the membrane. Finally, we test the influence of the QW offset
from the middle of the membrane to the 3 factor. We analyze 8 of the same structure at
Ap = Ao, but for the QW positioned Az above the middle of the membrane. Even when
the QW is offset 70nm from the middle of the mebrane, 8 remains around 80%. The small
drop in 8 due to the QW offset comes from the fact that the electric field intensity of the

z-dipole mode doesn’t change very strongly along the z direction within a membrane.?

1.13 Spontaneous emission rate modification in optical mi-

crocavities based on planar PC

Using the method described in the Section 1.12.2, we calculate the Purcell factors for the
optical microcavity based on the planar PC. The analyzed structure is a single defect mi-
crocavity with the following parameters: r/a = 0.3, d/a = 0.65, rgef = 0, a = 20 and
five layers of holes around the defect. We analyze the structure without (p = 0) and with
(p = 4) fractional edge dislocation. Q factors and frequencies of the z-dipole mode for this
set of parameters are shown in Figure 1.17. The classical dipole emitter, oscillating at the

frequency of the defect mode, is placed in the center of the defect and oriented in the direc-
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tion of the z axis. The calculated Purcell factors (spontaneous emission rate enhancements
relative to the bulk semiconductor) are 29 and 58, for p = 0 and p = 4, respectively. The
two-fold increase in the Purcell factor for p = 4 comes from the twofold increase in Q fac-
tor. Therefore, even for the modest values of the @ factor (several hundred), large Purcell
factors are achievable in optical microcavities based on planar PC. This also implies large
values of the § factor, as discussed in the previous sections. It is important to note that
the calculated spontaneous emission rate enhancements represent theoretical limits. They
are estimated for a zero linewidth source whose frequency is matched to the frequency of
the defect mode, and which is positioned at the point of the maximum field intensity. In
reality, the finite linewidth of the source and the spatial distribution of emitters introduce
the reduction in Purcell factor: the averaged value will be much below the one estimated in
this section. In order to reach the theoretical limit of the Purcell factor, it is important to
have a narrow linewidth source positioned in the center of the defect and perfectly matched
to the frequency of the cavity mode. Quantum dot emitters will be experimentally explored

for this matter.

1.14 Fabrication

Our group at Caltech has developed fabrication procedures for making optical mirocavities
based on planar PC, using a variety of semiconductor materials (Si, or III-V materials).
In this section, only the fabrication procedure for cavities based on Al,Ga,_,As is pre-
sented. The material and PC properties are chosen in such a way that cavities operate at
A = 852nm (the wavelength corresponding to the atomic transition in 133C's).

The fabrication procedure is outlined in Figure 1.44. The fabrication process starts by
spinning of 100nm thick high molecular weight PMMA (polymethylmethacrylate) on top
of the wafer. The PMMA layer is subsequently baked on a hot plate at 150°C for 20
minutes. A desired 2D PC pattern is beamwritten on the PMMA by electron beam lithog-
raphy in a Hitachi S-4500 electron microscope. The exposed PMMA is developed in a 3:7
solution of 2-ethoxyethanol:methanol for 30 seconds. The pattern is then transferred into
the Al,Gai_,As layer using the Cly assisted ion beam etching. After that, the sacrificial
AlAs layer can either be (a) oxidized (step 6) or (b) dissolved in hydrofluoric acid (HF)
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Figure 1.44: Fabrication procedure for optical microcavities based on Al,Gaj_,As.

diluted in water (step 7). The oxidized AlO can also be dissolved in KOH. HF attacks

AlAs very selectively over Al,Gai_,As for z < 0.4.5°

Therefore, the percentage of Al in
our Al;Gai_,As layer is around 30%. Finally, the remaining PMMA may be dissolved in
acetone.

The SEM pictures showing the top views of the fabricated microcavities are shown in Figure

1.45.

1.15 Conclusion

Optical microcavities based on planar photonic crystals have been designed with ) factors
over 10000 and mode volumes of the order of 0.5 %) . Large spontaneous emission rate
enhancements (60) and (3 factors (85%) can be achieved in these structures, which makes
them excellent candidates for light sources based on the single mode spontaneous emission,
with high quantum efficiency and broad modulation width. We have also demonstrated

theoretically that PC cavities can be designed for strong interaction with atoms trapped
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in one of the PC holes, which opens the possibility for using them in cavity QED exper-
iments, or as building blocks of quantum networks. Structures have been fabricated and
are presently being characterized for this purpose. Critical issues for further investigation
include efficient coupling of light in and out of the PC microcavities, as well as the sig-
nificance of surface effects that could perturb atomic radiative structure within the small
defect hole. The extremely small mode volume in these structures also poses an interesting
theoretical question of how standard cavity QED models must be modified when the single-
photon Rabi frequency greatly exceeds the atomic hyperfine spacing. Using InAs quantum
dots as internal photoluminescence sources, we have recently probed spectra of our pho-
tonic crystal microcavities, and experimentally demonstrated Q factors as high as 3000 for
the x-dipole mode in the structures with fractional edge dislocations.’® An extremely good
match between theory and experiment was observed, since the theoretically predicted Q
value for this structure was around 4000. We have also experimentally observed the tuning

of Q values and frequencies of modes as a function of the elongation parameter p.
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Chapter 2 Metallic photonic crystals

2.1 Introduction

For years, a significant amount of scientific work has been focused on improving the extrac-
tion efficiency of light emitting diodes. Many interesting approaches have been proposed to
accomplish this, such as the use of thin light emitting layers with surface texturing,%” reso-
nant cavities®® or photon recycling.’® External quantum efficiencies of 31% were achieved
by employing reflection from a bottom metal mirror together with a textured top semicon-
ductor surface.0 More than 10 years ago, scientists at the Walter Schottky Institute in
Germany%! were able to improve the extraction efficiency of a flat AlGaAs/GaAs double
heterostructure light-emitting diode, by adding a 1D periodic metallic structure on top of
it. After etching a 1D grating on the semiconductor surface and coating it with a thin metal
layer, the extraction efficiency increased from 1% to 1.5%. Even though the measured ef-
ficiencies were quite modest, these results were very important, since they broke a taboo
that adding metal to a light emitting device can only ruin its efficiency.

Apart from efforts to improve light extraction from a semiconductor device, it is also pos-
sible to enhance the light emission rate within a semiconductor. This approach is based on
Purcell’s prediction in 1946 that the radiation rate of an atom placed within a wavelength-
sized cavity can be changed.?® A 12-fold enhancement of spontaneous emission was recently
measured in a semiconductor optical microcavity at low temperatures.3® Metallic structures
were identified as candidates for very large decay rate enhancement - much larger than the
one achievable by semiconductor photonic crystals. Yablonovitch and coworkers®? were able
to measure a 55 times reduction in lifetime, when an InGaN/GaN quantum well (QW) was
positioned close (12nm) to a thin silver layer. Unfortunately, they were not able to extract
any light outside the structure.

In order to build an ideal, highly efficient light-emitting diode (LED), it is desirable to im-

prove the extraction efficiency and simultaneously enhance the spontaneous emission rate.
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A 15-fold emission intensity enhancement, with Purcell factor F, = 2, was observed in
2D periodic photonic crystals, made out of semiconductors.®® Metallic photonic crystals
have also attracted significant scientific attention in recent years. In 1996, scientists from
the thin film photonics group at the University of Exeter in United Kingdom observed a
photonic bandgap for surface modes on a silver surface textured with a hexagonal array of
dots.%* Two years later, researchers at NEC and their collaborators®® observed sharp peaks
in the transmission of light through a metallic layer patterned with a hexagonal array of
subwavelength holes. Both experimental results were attributed to the peculiar properties
of surface plasmons polaritons - modes that exist at the interface of two media with opposite
signs of the real part of dielectric constant.

At the beginning of 1999, we started our work on using metallic photonic crystals to build
highly efficient LEDs. Our attempt was inspired by the potential that metals have with re-
gards to the spontaneous emission rate enhancement,%? and the possibility of efficient light

63 We envisioned metallic photonic

extraction with properly designed periodic structures.
bandgap structures (PBGs) as periodic metallic structures (similar to printed circuits) on
the surface of a semiconductor wafer. This approach brings with it a key advantage over
semiconductor PBGs: there is no need to etch through the semiconductor, which simplifies
the fabrication procedure, and also avoids nonradiative losses due to surface recombination.
However, there were many problems encountered along the way of making an efficient light
emitting device. The biggest were inherent absorption losses in metals at optical frequen-

66,67

cies. Nevertheless, we were able to achieve large efficiencies, as will be described in this

chapter.

2.2 Optical properties of bulk metals

At optical wavelengths, metals are characterized by a large, negative real part of dielec-
tric constant. Both real and imaginary parts of their dielectric constant exhibit a strong
frequency dependence. Some types of metals (such as alkali, or noble metals) can be success-
fully modeled as free electron gases in this frequency range. As an example, the dielectric
constant of silver is dominated by free electron behavior below 4eV .58 Optical properties of

free electron metals can be described using a simple Drude-Lorentz model.®®6° This model
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assumes that the response of the metal to an external field can be obtained by multiplying
the response of a single free electron by a number of electrons (i.e., all free electrons respond
in phase to the external field excitation). The motion of an electron in the applied electric
field is described by the dynamic equation:

o0v

ma = —I'm¥ — eE"tot, (2.1)

where m, e and ¥ are mass, charge and velocity of electron, respectively, ' is the damping
rate and Etot is the total electric field acting on the electron. The damping rate I' can be
expressed as ' = 27w, where v is the collision frequency (the frequency of scattering events).
In the Drude-Lorentz model, an electron reaches thermal equilibrium with a system through
a series of scattering events with ion cores. Without scattering, electron oscillations excited
by the external AC electric field would not be damped. The difference between Drude and
Lorentz models lies in the definition of Etot. In the Drude model, the influence of the electric
field of other electrons is neglected, i.e., Etot = E, where E is the externally applied electric

Py,
€0X0

field. However, in the Lorentz model Etot —E— , where 13fe is the polarization of the
free electron gas and x is the DC response of this polarization to the electric field. Since all
free electrons respond identically to the external field, the total current of the free electron

gas can be expressed as
J = —nev, (2.2)

where n is the concentration of free electrons. Current can also be expressed as

dPs,
ot

J= (2.3)

After plugging equations 2.2 and 2.3 into the dynamic equation 2.1, we arrive at the differ-

ential equation describing ﬁfe in the Lorentz-Drude model:

82 P, N Paﬁfe

— 25
3t2 ot = eowatot, (2.4)
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where w) is the plasma frequency of a metal, defined as

5  me?

= — 2.
w com (2.5)

The behavior of metals is described by equation 2.4 and Maxwell curl equations:

. OE 0P,
V X H = GOOGOE at (26)
L. OH

E=—pg— 2.

where €5, is the relative dielectric constant describing the behavior of a metal at large
frequencies and includes all other conduction mechanisms beside free electrons.

Let us assume that the AC electric field with frequency w is applied to metal:
E = Eyet (2.8)
The total dielectric constant of a metal at frequency w can be expressed as
€(w) = exc€p — i0(w)/w, (2.9)
where o(w) is the conductivity of the metal due to free electrons. The relation between
o(w) and J is

. 9Py, .
- —Jc _ E 2.1
J 5 o(w) (2.10)

From equations 2.4, 2.8, 2.9 and 2.10 we can easily derive €(w) in the Lorentz model:

2
Gowp

2.11
wIQ,/Xo—w2—|—iwI" (2.11)

6(“‘)) = €x0€0 t+

or in the Drude model:

[N

oW

— 2.12
—w? + iwl ( )

e(w) = €xo€p +



74

Starting from the Drude model, for lossless medium (I’ = 0) and for €5 = 1, we obtain a

famous relationship for the dielectric constant of metals at optical frequencies:

2

e(w) = € (1 — %) (2.13)

Therefore, at frequencies smaller than the plasma frequency, metals have a negative real

part of dielectric constant.

2.3 Nonradiative surface plasmons on smooth surfaces

Surface plasma oscillations are coherent oscillations of free electrons on a metallic surface.
These charge oscillations are followed by an electromagnetic wave called the surface plasmon
(SP). Surface plasmons (also called surface plasmons polaritons) are electromagnetic surface
waves that propagate along metallic surfaces, have their intensity maximum at the surface
and exponentially decaying fields perpendicular to it. The conditions for occurrence of such

localized waves at the boundary between two media are as follows™ :

1. Two regions on different sides of the boundary must have opposite signs of the real
part of the dielectric constant (otherwise, a strong field localization at the surface
cannot be obtained). Following our discussion in the previous section, this is possible

at the interface between a metal operating at frequencies below w, and any dielectric.

2. Polarization of the SP wave has to be TM (p). This means that the wave has a B field
parallel to the surface of the metal and E field components in the plane perpendicular

—

to B.

The simplest case to analyze is the SP wave occurring on a smooth, infinite surface sepa-
rating half-spaces filled with metal and dielectric, respectively. Let the relative dielectric

i

constants of metal and dielectric be €1 = €] — 761”7 and €y, respectively. At frequency w,
such that €] and e; have opposite signs, a TM wave can be excited at this interface, propa-
gating along the surface with wavevector k£ and exponentially decaying in the perpendicular

direction with decay constant «; (where ¢ = 1,2 corresponds to two different regions). The
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dispersion relation for this wave is:"

b=k +ik =2, [ L2 (2.14)
c\ €+e

where c is the speed of light in vacuum. Therefore, the SP wave propagates with wavevector

k" along the interface, and exponentially decays in the direction of propagation with decay

!
K=, A2 (2.15)
c\ € t+e

P U (2.16)
c\€ te 2(€})? )

constant k”:

The exponential decay in the direction of propagation occurs due to losses in metal, i.e.,
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Figure 2.1: Dispersion diagrams for SP waves at the smooth interface between halfspaces
filled with silver and air. Parameters of Drude and Lorentz model are: ex, = 1, wp = 2me/Ap,
where A\, = 140nm, I' = 0 and xo = 10.

for 1”7 # 0.
Beside the exponential decay in the direction of propagation, the wave exponentially also

decays in the perpendicular direction, into the two regions on the opposite sides of the
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boundary. The decay constants «; (i = 1,2) can be found easily from the following relation:

w
E*— ol = ei(E)Q (2.17)

€} and €;” can be expressed from the Drude or Lorentz model introduced previously. For

€] > €17 (which holds for metals at optical wavelengths), «; are real and equal to

— ()2
=2 |2 (2.18)
c\ € +e
—(e5)2
=2 ,(62) (2.19)
c\ € +e
The penetration depths of the SP wave into the two media are then
A ¢ + €9
dpr = 1/ay = — |2 2.20
n =t =ony Zip (2:20)
A 6’ + €9
dpr =1 — /2 2.21
P2 [z 21 \| —(e2)2 (2.21)

Throughout this chapter we will use the following parameters of Drude and Lorentz model

for silver:70>71

€0 = 1, wp = 2mc/Ap, where A\, = 140nm (i.e., the energy of bulk plasmons
is hiwp, = 8.8eV), I' = 0 and xo = 10. Furthermore, coordinate axes are always chosen in
such a way that the wave propagates in the z direction, and that the p-polarized (TM)
light has x and y components of electric field and z component of magnetic field, while
the s-polarized (TE) light has z and y components of magnetic field and z component of
electric field. Dispersion relations of the SP wave excited at the interface between silver and
air (eo = 1) are shown in Figure 2.1. Dispersion diagrams obtained by the finite-difference
time-domain (FDTD) simulation are shown in the same plot. A very good match between
theory and the FDTD simulation can be observed. (For the details of the FDTD code,
please refer to the Appendix I of this thesis). A denotes the wavelength of the SP mode
measured in air, and k; is the wavevector in the direction of propagation. In the same plot,
Ap _ Apcka

we also show the light line in air (52 = “%—*). Therefore, SP waves occurring on a smooth

surface are nonradiative. Their dispersion diagram lies below the light line in air, and they

are completely confined to the surface of the metal (i.e., guided on it). In the general case
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silver

air

Figure 2.2: Field profile of the SP wave at the smooth interface between halfspaces filled
with silver and air. In the FDTD analysis, Drude model was used, with parameters given in
Figure 2.1. For the shown mode, k; = 0.0419nm ™! and \,/X = 0.6. Horizontal dimensions
of figures correspond to 300nm.

of the SP wave excited at the interface between metal and dielectric with dielectric constant
€2, the dispersion diagram would lie completely below the light line in that dielectric. The
field patterns of the SP wave with k; = 0.0419nm~" and \,/\ = 0.6, obtained using the
FDTD method, are shown in Figure 2.2. Due to the opposite sign of dielectric constants
of the two media, the perpendicular component of the electric field (E,) also changes sign
across the interface. A strong confinement to the interface and exponential decay in the
perpendicular direction (y) can also be observed.

Another interesting observation is that the dispersion diagram flattens at large values of the

wavevector. The flattening happens as €] approaches €2 and the frequency of the SP wave

Wp

T (according to Drude model). This implies that at those k,

saturates at wpyqr =
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values, a very large density of surface plasmon states can be obtained (density of states p(w)
is proportional to ddT“;). On the other hand, from Fermi’s golden rule, the recombination rate
is directly proportional to p(w). Therefore, at large values of the wavevector, a large increase
in the recombination rate and a large lifetime reduction can be obtained. Yablonovitch and
coworkers®? observed this effect in 1999: the lifetime of an electron-hole pair in InGaN/GaN
quantum well (positioned 12nm from silver mirror) was reduced 55 times. Even though
the emitters in the quantum well were radiating 55 times faster in the presence of silver
mirror, all of that radiation was coupled to surface plasmon waves confined to the interface
between metal and semiconductor. Therefore, no radiation could be observed outside of the
structure. The authors indicated at the very end of the paper a necessity for designing ”an

efficient antenna nanostructure” that could scatter light outside.

) y
air

z X

40nm I silver

semiconductor core 90nm

silver 200nm

air

Figure 2.3: Semiconductor slab waveguide with metallic claddings, analyzed using the
FDTD method. The structure is infinite in the z direction. Mur’s absorbing boundary
conditions are applied to boundaries in the ¢ direction and Bloch boundary conditions are
applied to boundaries in the z direction.

2.4 Coupled surface plasmons

At the beginning of 1999, we started our work on metallic photonic crystals at Caltech. The

goal was to design structures that can efficiently extract radiation coupled to SP waves, and
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therefore be used in light emitting devices. Instead of trying to reach the ultra-high density
of states at large k,, we decided to design structures that operate at frequencies lower than
Wmaz- Even though lifetime modifications cannot be as large as at the frequency wiey (due
to the smaller density of states), there are advantages of operating in this frequency region.
One of them is that there is more freedom in choosing a material system, since there is no
need to match the emission from a quantum well (QW) to wy,qz- This frequency matching
is a difficult and expensive process. For example, we recall that silver has A, = 140nm and
€00 = 1. Therefore, Apin = 2m¢/wmqq for silver layer on a typical III-V semiconductor (with
refractive index of 3.5) is 510nm, which is outside the emission range of standard ITI-V
materials. For this reason, the UCLA researchers had to use GaN substrates with InGaN

QWs, which are presently still expensive and difficult to grow.

05} Light line (air) A
0.4¢ 'TE]_ 1
TEO
™
0.3t 1 1
<
:Q_ TM0
0.2} 1
TM_1
0.1 1
- p(T™M)
= s(TE)
OC/ i
0 0.02 _10.04 0.06
k [nm 7]

Figure 2.4: Band diagram of the structure shown in Figure 2.3. Absorption losses in silver
were not included.

In order to couple the emission to SP waves at wpmqz, Yablonovitch and coworkers? also
had to position the QW very close (12nm) to the metal surface and within the fringing field

depth of the SP. However, the nonradiative transfer between a QW and metal increases as
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their distance decreases.” The question is then how much of the observed large reduction in
lifetime at small distances is due to the coupling to SP waves, and what portion of it comes
from other nonradiative processes. The only part that can be possibly extracted outside of
the structure by properly designing an ”antenna” (i.e., by structuring the surface of metal)
is the portion coupled to SP waves. To reduce the non-radiative transfer, we decided to
position the QW further from the metal surface (at distances of 40 to 50nm). However, the
intensity of SP waves decreases exponentially as a function of distance from the metallic
surface. Now the advantage of operation below wy,q,; comes into play, since the penetra-
tion depth increases with A, according to equation 2.21. Therefore, at larger wavelengths,
SP waves extend more into the semiconductor and can interact with emitters in the QW
positioned further from the metallic surface. In order to increase the field intensity at the
position of the QW even more, we started exploring the coupled surface plasmon modes of
two closely spaced metallic interfaces.” Again, the coupling between two metallic surfaces
increases as a function of wavelength, since the penetration depths of the SP waves into the
semiconductor increase.

Let us analyze (using the FDTD method) the band diagram of a semiconductor slab wave-
guide with metal cladding, shown in Figure 2.3 (also referred to as the metal clad micro-
cavity’!). The semiconductor membrane is 90nm thick, with refractive index of n = 3.5.
The top semitransparent silver layer is 40nm thick, and the bottom non-transparent silver
layer is 200nm thick. The band diagram would not change if the non-transparent silver
layer was thicker than 200nm. The advantage of setting this layer as thin as possible dur-
ing the FDTD analysis is the reduction in computational memory and time needed for the
simulation. The analyzed structure is surrounded by air on top and bottom and the slab
is infinite in the horizontal plane, and the Drude model is used in the calculation for which
the result is shown in Figure 2.4.

The coupling between SP waves of the top and bottom metal-semiconductor interface pro-
duces two additional electromagnetic waves:"! the asymmetric coupled SP mode (ASP,
corresponding to the branch TM_;), and the symmetric coupled SP mode (SSP, corre-
sponding to the branch T'Mj). At large frequencies (approaching wy,,z), the penetration
depth of the SP wave into the semiconductor (dp2) approaches zero (as can be seen in Figure

2.5), and the coupling between the SP modes of the two metallic surfaces diminishes. The
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ASP and SSP branches then become degenerate and both turn into the dispersion relation
of the SP wave excited on a single smooth surface between metal and semiconductor. From
Figure 2.5, it follows that d,p is approximately 80nm at a wavelength of 1um. Therefore,
at a distance of 45nm (corresponding to the middle of the semiconductor slab), the SP
field magnitude drops to 57% of its maximum value at the metal surface. However, if two
metallic surfaces are positioned 90nm from each other, the field magnitude in the middle of
the semiconductor core would be two times larger (in the case of constructive interference),
because of contributions from the two interfaces. Therefore, we can achieve very strong
fields at the position of our QW, without having to put the QW very close to the metal

surface (as UCLA researchers did), and without fear of large non-radiative transfer.
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Figure 2.5: Penetration depth of the SP wave into metal or dielectric, as a function of
its wavelength. The SP wave is excited at the interface between silver and semiconductor
(refractive index n = 3.5). The penetration depth drops to 0 at the wavelength A\, =
21/ wmazr = 510nm.

The field distributions of the ASP and SSP modes with k; = 0.026nm ™" and wavelengths
Ap/0.132 and A,/0.1952, respectively, are shown in Figures 2.6 and 2.7. The ASP mode has

a maximum of the E; field component in the middle of the membrane, while the SSP has a
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minimum of the E; field there. The names ASP and SSP come from the charge distribution
on the metal plates, which is accompanied by the SP mode. In the case of the ASP, for
example, the charge distribution on the plates must be asymmetric with respect to the
middle of the slab. Let us analyze electromagnetic fields in the middle of the membrane,
where the QW will be located in real structures. Perpendicular dipoles positioned in the
QW will couple strongly to the ASP mode, while parallel dipoles can couple to the SSP

mode. In addition, parallel dipoles can couple strongly to T'E modes.
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Figure 2.6: Electric and magnetic field components for the ASP (T'M_;) mode, with )‘T” =
0.132 and k; = 0.026nm~!. The analyzed structure has the same parameters as the one
whose band diagram is shown in Figure 2.4. Horizontal dimension corresponds to 600nm.

Three important properties of the previously presented band diagram are worth noting

at this point. First, bands are lossy in reality, due to absorption both in the metal, and
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Figure 2.7: Electric and magnetic field components for the SSP (T'Mj) mode, with )‘T” =
0.1942 and k, = 0.026nm~'. The analyzed structure has the same parameters as the one
whose band diagram is shown in Figure 2.4. Horizontal dimension corresponds to 600nm.

the semiconductor. This implies that each band is spread over some frequency range,
determined by its @ factor. Therefore, the band cutoff (for example for TEy and T M,
at frequency 0.16w,) is not abrupt, but gradual instead. Using the 1D finite difference
method, we evaluated the cutoff frequency of the T'Ey mode when absorption losses in both
metal and semiconductor were included and concluded that it was positioned at % =0.15
instead of 0.16, as in the lossless band diagram shown in Figure 2.4. Secondly, the position
of the TM_; band is not very strongly dependent on the semiconductor core thickness. At
large k; values, this mode always coincides with the dispersion diagram of the SP mode
on the semiconductor-metal interface. The final property of the band diagram is related to
the modes of the top thin metallic film. The SP modes can occur on both surfaces of this

metal layer (i.e., on air, or semiconductor side). For a very thin metal film (of the order



84

of a penetration depth of the SP wave into metal), these two SP modes are coupled.”® As
the thickness of this layer increases, the two states become decoupled and their dispersion
relations converge to the dispersion relations of the SP modes at the interface between metal
and air, or metal and semiconductor. Keeping in mind that the penetration depth of the
SP wave into silver is on the order of 20nm or less (see Figure 2.5), we conclude that for a
metal film thickness of 40nm, these two states will be very weakly coupled. Moreover, the
mode of the interface between air and metal will be very strongly damped in the metal and
will have insignificant intensity within the semiconductor. Therefore, emitters in the QW
cannot couple to this mode. Since it does not affect device properties, this mode is omitted
from the dispersion diagrams for clarity. The other SP mode (of the interface between metal
and semiconductor) is coupled with the appropriate SP mode of the bottom metal surface,

producing the ASP and SSP states, shown in the band diagram.

2.5 Decay rate enhancement and external efficiency of semi-

conductor slabs with metal claddings

Let us denote by % the rate at which photons are radiated outside the structure and by
% the decay rate corresponding to all other mechanisms (such as absorption losses or the
excitation of modes that remain trapped within the structure). The total decay rate is

defined as

% _ Tl % (2.22)
The external efficiency (nez¢) can be expressed as follows:5
1 1
Next = ﬁ = T; (2.23)

The Purcell factor (F,) is defined as the spontaneous emission rate enhancement in a mi-
crocavity relative to a bulk semiconductor. On the other hand, we define the decay rate

enhancement (F,;) as a ratio of the total decay rate in a microcavity and the spontaneous
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emission rate in a bulk semiconductor:

Fy= (2.24)

5‘|>—A|\]|>—A

The speed at which an LED can be modulated is proportional to F;. When analyzing a
light emitting device, we also care about the overall efficiency, defined as a product of Fy
and the external efficiency 7egy:

Fy - Negt = (2.25)

5‘||—l|§‘|>—\

The efficiency is a measure of how much faster the rate of light emission from the cavity

4.5
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Figure 2.8: The calculated decay rate enhancement for the 90nm thick semiconductor core
with metal claddings. The emitter is a parallel or a perpendicular dipole positioned in the
middle of the membrane. The bottom metal layer is infinitely thick, while the top metal
layer thickness changes. The dipole is oscillating at the wavelength of 986nm or 930nm.

to the outside world is, than the spontaneous emission rate in a bulk semiconductor.
We evaluated Fj analytically for a metal clad semiconductor waveguide using the method

described in Reference 73. The result is shown in Figure 2.8. Subscripts || and L denote
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parallel and perpendicular dipoles, respectively. The reason for choosing wavelengths of
986nm and 930nm and the appropriate dipole orientations results from the emission prop-
erties of InGaAs QW used in the experiment that will be described later in this chapter.
The main emission peak from the InGaAs/GaAs QW is centered at 986nm, which corre-
sponds to conduction to heavy hole band transitions (C-HH). There is also a peak at 930nm,
corresponding to conduction to light hole band transitions (C-LH), which becomes more
prominent at higher pumping levels. C-HH transitions couple to electric fields polarized in
the QW plane (z — z plane). On the other hand, C-LH transitions couple twice as strongly
to electric fields with polarization perpendicular to the QW plane (y direction) than to
those polarized in the QW plane.” In the classical spontaneous emission model, C-HH
transitions are represented with parallel dipoles, while C-LH transitions are represented
with both parallel and perpendicular dipoles, weighted by factors 1/3 and 2/3, respectively.

Therefore, in our metal clad semiconductor waveguide, we can achieve lifetime reductions
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Figure 2.9: The calculated external efficiency for the semiconductor slab with metal cladding
(metal clad microcavity), as a function of the top, semitransparent silver layer thickness.
We calculated 7, into the 30° or 90° collection angle. The emitter is a parallel dipole
positioned in the middle of the 90nm thick semiconductor membrane, oscillating at the
wavelength of 986nm or 930nm.
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of up to 4.3 times. The question is now how much of this radiation can be extracted out.
The external efficiency for planar structures without metal patterning can be evaluated
using the method described in References 73 and 75. We calculated the external efficiency
of the same semiconductor waveguide with metal cladding, as a function of the top, semi-
transparent silver layer thickness, and for the collection angles of 30° or 90° with respect
to the normal to the surface. The assumed refractive index of silver was n = 0.14 + 6.944,
and the emitter was a parallel or a perpendicular dipole positioned in the middle of the
membrane and oscillating at the wavelength of 986nm or 930nm. The calculated external
efficiencies corresponding to perpendicular dipoles are negligible, while the external effi-
ciencies of parallel dipoles are shown in Figure 2.9. As a reference, for the unprocessed
semiconductor wafer and dipoles positioned 45nm from the semiconductor/air interface, we
calculate that 7., is 2% into the 90° collection angle, or 0.5% into the 30° collection angle,
both at wavelength of 986nm and 930nm. 7ey: for perpendicular dipoles is negligible.

Let us compare these results with the band diagram discussion in the previous section. In
normalized units, 986nm corresponds to )‘Tp = 0.14 and 930nm corresponds to ’\TP = 0.15.
From the band diagram shown in Figure 2.4 it follows that dipoles oscillating at these wave-
lengths can couple to TEy and T My modes in the gradual cutoff, or to the TM_; mode.
From the field profiles of these modes, we know that parallel dipoles couple mostly to T'E
or T'My, while perpendicular dipoles couple to the T"M_; mode. This T'M_; mode is com-
pletely below the light line in air. Therefore, all the radiation coupled to it remains trapped
within the structure. For that reason, the calculated external efficiency of perpendicular
dipoles is negligible. On the other hand, the cutoff of TEy and T'M;; modes lies above the
light line in air. Therefore, TEy and T'M modes can be extracted outside the structure,
in a range of k, vectors for which these bands lie within the light cone. However, the fact
that a mode is above the light line does not automatically mean that it leaks into air very
strongly. The field intensity of T Ey and T'My modes is strongly damped in their passage
through the metal layer on top. For that reason, the achievable extraction efficiencies can-
not exceed 13% into the 90° collection angle, when the silver layer is 40nm thick (as shown
in Figure 2.9).

Another interesting question arising from Figure 2.9 is why the decay rate enhancement

and external efficiency peak at some metal thickness, for parallel dipoles. This can be also
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explained with the help of the band diagram shown in Figure 2.4. Parallel dipoles couple
mostly to TEy or T My modes. Fj is maximum when the electric field at the position of the
dipole is maximized, which happens around cutoff. As the thickness of the top silver layer
increases, the penetration tails of the T'Ey or T'My wave into that layer decrease, meaning
that their cutoff frequency increases. Therefore, we can expect that more silver on top
should be added in order to achieve a cutoff at 930nm, instead of 986nm. For that reason,
the Fy peak shifts to larger silver thickness when dipole oscillates at 930nm (instead of
986nm), as shown in Figure 2.8. If we let the parallel dipole oscillate at 986nm and the
top silver layer thickness is kept at 12nm, and we keep adding more silver on top of the
structure, the T'Ey mode cutoff shifts towards higher frequencies, the coupling of dipole
to it starts to drop and Fy decreases as well. On the other hand, if we reduce the silver
layer thickness to below 12nm, the dipole will still couple to T'Ey and T'My modes, but
above their cutoff, where the electric field intensity is not maximized in the middle of the
slab. Therefore, F; drops again. What about the perpendicular dipole? The decay rate
enhancement reaches the value of 3 when the silver layer is 10nm thick and saturates there.
This is due to the fact that the T"M_; mode does not have a cutoff and the field intensity
of the ASP mode does not vary significantly throughout the membrane. There is a drop in
Fy for a silver layer thinner than 10nm. As we remove silver from top, we cannot excite
the coupled SP state (ASP) anymore. Instead, we can excite only the SP mode of the
bottom metal-semiconductor interface. The field intensity achievable in the middle of the
slab will be approximately 2 times weaker than for the coupled state, and Fy will be two
times smaller than its maximum value for the ASP state.

Two questions have to be answered in order to estimate 7ez in this structure: is the band
that a dipole couples to above the light line, and what is the transmission of light through
the semitransparent silver layer on top. From the band diagram shown in Figure 2.4, it
follows that if a parallel dipole operates below or much above the cutoff for TEy and T'M,
modes, its radiation cannot be coupled to the outside world. Also, if the top silver layer is
too thick, the radiation will be strongly damped by absorption in it. Therefore, 1, has to

decrease on both sides of the peak, as shown in Figure 2.9.
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2.6 Periodic metallic structures

The external efficiencies calculated in the previous section are quite modest. Furthermore,
the emission from the analyzed structures is not directional, as can be seen from Figure 2.9:
less than 50% of the total emission outside the structure is within the 30° collection angle.
In order to improve both the extraction efficiency and the directionality of emission, we
will now explore metallic photonic crystals. By periodically modulating a semitransparent
silver layer, we will be able to modify the band diagram shown in Figure 2.4 and bring
previously nonradiative bands above the light line. The band diagram will be folded back
into its first Brillouin zone at the edges of which the bandgap for surface plasmon waves
will appear.”! This means that bands previously located below the light line can now be
brought above it. However, a reduction in the amount of metal on top will influence a
decrease in Fy. For complicated geometries obtained after the top metal layer patterning,
it is possible to use the FDTD-based 3D analysis of the Purcell factor proposed in Refer-
ence 47. Unfortunately, this requires large amounts of computer memory. Instead, it can
be roughly estimated that the decay rate enhancements and Purcell factors of patterned
structures have values between those of the structures with and without metal on top (i.e.,
they can be approximated by spatial averaging of F,; for structures with and without metal
on top). Therefore, we will trade off some of the decay rate enhancement for being able to

extract light outside the structure with top mirror patterning.

2.6.1 Analyzing metallic photonic crystals in the old fashioned way

The old-fashioned way of explaining the effect of a grating (i.e., a 1D photonic crystal) is
shown in Figure 2.10. Both momentum and energy conservation have to be satisfied on a
grating. Energy conservation is converted to frequency conservation, i.e., the frequency of
the emitted photon has to be equal to the frequency of the surface plasmon. On the other

hand, momentum conservation requires that the parallel components of wavevectors of the
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outcoupled photon and the surface plasmon differ by a reciprocal lattice vector:

ksp + Ak = koyrsin(0) (2.26)
Ak = n2—7r,n =0,+1,£2,... (2.27)
a

where k), is the x component of the SP wavevector, ko, is the wavevector of the outcoupled
photon (in the z-y plane), 6 is the angle of photon emission (measured with respect to the
y axis) and a is the grating period. It is assumed that the SP has no wavevector component
in the z direction and, therefore (according to the momentum conservation), the outcoupled
photon cannot have a wavevector component in the z direction.

The wavevectors of the SP (excited at the metal-semiconductor interface) and the outcou-

pled photon can be expressed as

2w €1€2
ko = — 2.28
P A €1 + €9 ( )
2
kout - 7, (229)

where A is the wavelength measured in air and €¢; and es are the dielectric constants of
the semiconductor and metal, respectively. The absorption in metal is neglected, i.e., €2 is
assumed to be real. €5 can be expressed from the Drude or Lorentz model (equations 2.11
and 2.12). Therefore, at some wavelength A we can choose a grating periodicity a in such
a way that the photon is coupled outside the structure, i.e., (w, k) is selected to be at a
point of the dispersion diagram above the light line in air (as shown in Figure 2.10). It has
to be emphasized that this approach is approximate. It assumes that bands folded back
with the help of a grating preserve their original shape. In reality, this is not true and, for
that reason, the exact analysis presented in the next subsection is necessary. However, the
approximate grating analysis gives us a good starting point in designing a metallic photonic
crystal. Furthermore, the approach is easily extendable to structures periodic in 2D.

However, the periodicity of a grating is not the only issue that matters. The extraction
efficiency is also determined by the n-th order Fourier coeflicient of the grating, where
Ak = 27” (i.e., the coupling happens through the reciprocal lattice vector of the n-th

order and the dispersion diagram is folded n times). This can be explained in terms of the
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standard diffraction grating analysis.”® In the far field (the region of Fraunhofer diffraction),
the field magnitude is proportional to the Fourier transform of the aperture (the grating in
this case). Since the grating of our interest is periodic, it can be expressed in terms of the

Fourier series:
n=-+o0o

t(zr) = Z Cnél e, (2.30)

n=—oo

where t(x) refers to the amplitude transmittance as a function of position. The Fourier

o =ck,
A
(6))
o =<k, /n,
2 1
kI
Ak = n 2" n=04142,..
a a
o =ck,
kg, +Ak =k, sin(0) N o
4 w O =c x/nl

v

T/a

Figure 2.10: Outcoupling of the SP mode through the grating.

transform of this grating is

n=-+oo
2mn

T(k)= Y end(k——) (2.31)

n=-—oo
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The magnitude of the far field is proportional to T'(k). Since the field intensity is propor-
tional to square of the field magnitude, it follows that the intensity of the n-th diffracted
component is proportional to |c,|?. Let us now find |c,|? for our grating shown in Fig-
ure 2.10. By modulating the metallic surface periodically, we also modulate the amplitude
transmittance as a function of position z. Let s denote the gap between two metallic stripes
(the width of the region where the thickness of the metal film is decreased), and let ¢; and
to denote transmission through the metal film of the decreased thickness (region of width
s), and the metal film of the original thickness (region of width a — s), respectively. Then

we have

1 [@ iom

Cp = —/ t(z)e o "dx (2.32)
aJo
1 ‘x

= —(t) —ty)e tens sin<—7ms),n £0 (2.33)

™ a
1 [ —

co = —/ t(z)dr = St+ 2 3t2 (2.34)
a Jo a

The diffraction efficiency of the n-th order is defined as 7, = |c,|2. Therefore, we have:

2
s a—s

o = Etl + to (2.35)

ty —tof2] . (7ns\|?
n — W sin T , ;é 0 (236)

Since the factor Hl—;?—'z appears for all n # 0, we can normalize 7, with it:
1 s |2
i == sin<—) ,n#0 (2.37)
a

We should keep in mind that the bigger the contrast in ¢; and ¢, (i.e., the bigger [t; — t2|?),
the higher the diffraction efficiencies. For that reason, we will completely remove metal
from the region of width s in our gratings.

Let us now try to design gratings that can couple out the radiation from our metal clad
semiconductor waveguides, presented in the previous section. The emission from the QW is
centered around 986nm or 930nm (for C-HH and C-LH emission peaks). In this wavelength
region, the dielectric constant of silver (e3) is between —43 and —48.6. For ¢; = 12.25, we

have that k,, = QT“, where f = 4.047 at 986nm, and f = 4.139 at 930nm. To achieve the
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emission within the 30° cone (# < 30°), we have to satisfy the following relation:

27 2r 27
where 0 < sin(6) < 1/2. Therefore:
A1
< <z 2.
0< f+ no<5 (2.39)

Let us choose a few gratings that satisfy the previous condition. Their parameters are

shown in Table 2.1.

a [nm] | n | @ (at 986nm) | O (at 930nm) | s [nm] 777(,1)
250 -1 6° 25° 160 0.82
480 —2 3.5° 15.3° 160 0.19
650 -3 30° 9° 160 | 0.06
650 -3 30° 9° 100 | 0.11

Table 2.1: Parameters of gratings used for extracting the emission from the metal clad
microcavity. a is the grating periodicity, s is the gap between silver stripes, 6 is the angle
of the outcoupled photon with respect to normal and m(Ll) is the normalized diffraction
efficiency into the n-th order of a grating. The outcoupling happens through the n-th order
of a grating.

From Table 2.1, we conclude that the grating with periodicity of 250nm will have the best
performance, since it has the largest diffraction efficiency. The grating with periodicity of
650nm and a gap between stripes of s = 160nm will have the worst performance, which

can be somewhat improved by reducing the gap to 100nm.

2.6.2 Modern approach to the analysis of metallic photonic crystals

Structures with parameters given in Table 2.1, previously treated using the old fashioned
Fourier analysis of a grating and momentum conservation, will now be analyzed using 2D
FDTD. The flexibility of the FDTD method allows us to take into account the finite semi-
conductor core thickness and the modification of the dispersion diagram due to coupling

between the SP states of the top and bottom metallic surfaces. The schematic diagram of
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Figure 2.11: The structure with a grating defined in the top semitransparent layer analyzed
using the FDTD method in order to study the effect of metal patterning. Mur’s absorbing
boundary conditions are applied to boundaries in the y direction and Bloch boundary
conditions are applied to boundaries in the z direction. a denotes the grating periodicity.

the analyzed structures is shown in Figure 2.11 and the calculated band diagrams for TE
and TM polarizations are shown in Figures 2.12, 2.13 and 2.14.

An indicator of how strongly the grating changes the band diagram of an unpatterned struc-
ture, and how efficiently this grating can extract the radiation, is the size of the bandgap
that opens at the edge of the Brillouin zone. This can be correlated to our explanation
of the grating efficiency 7, introduced in the previous subsection. 7, is proportional to
the amplitude of the n-th order Fourier coefficient. On the other hand, from the 1st order
perturbation analysis of the dispersion diagram, it follows that the n-th order bandgap is
also proportional to the amplitude of the appropriate Fourier coefficient. Therefore, the size
of the bandgap is directly proportional to the diffraction efficiency of a grating. Let us first
consider band diagrams for the T'M polarization. Clearly, in the frequency range of interest
(’\—)\p ~ (0.14), and with the frequency resolution of 2.3 - 10_3’\—;’ used in our FDTD calcula-
tions, we were able to detect only a bandgap in the dispersion digram of the structure with
a periodicity of 250nm. This means that this structure will have much better performance
than the other two analyzed structures in extracting TM polarized light. This result is not

surprising and agrees with the grating efficiencies presented in Table 2.1.
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Figure 2.12: Band diagrams of the patterned structure with a periodicity of a = 250nm:
(a) TM-polarization; (b) TE-polarization. The dashed line corresponds to the light line in
air.
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Figure 2.13: Band diagrams of the patterned structure with a periodicity of a = 480nm:
(a) TM-polarization; (b) TE-polarization. The dashed line corresponds to the light line in
air.
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Let us consider the T'E polarization next. A band with a cutoff frequency of around 0.14
appears in TE band diagrams for all structures. As we will see from the electric field
distribution, this branch corresponds to the combination of the T'Ey mode and the mode
that resonates in the gap between silver stripes. For a smaller grating periodicity, gaps
between silver stripes are closer to each other and behave as coupled cavities. Therefore,
this mode can propagate in the z direction. On the other hand, for the larger grating
periodicities (such as 480nm), cavities are decoupled, this mode cannot propagate and the
corresponding T'E band is flat. For the upper TE bands, the bandgap does not appear at
the edges of the Brillouin zone, meaning that grating has basically no effect there and the
corresponding mode is simply the TE mode of the unpatterned structure.

First we filtered the 7'M polarized fields with k, = 0 and )‘T” = 0.14 for the structure with

0.18

0.16¢

0.14¢

0.12¢

0.1
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~0.08}
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0.04r

0.021

0 0.2 0.4 0.6 0.8 1
akX/T[

Figure 2.14: Band diagram of the structure with a grating periodicity of 650nm (TM-
polarization only). The dashed line corresponds to the light line in air.

a periodicity of 250nm, in order to confirm that this metal layer patterning produces the
out-coupling of radiation. From the band diagram shown in Figure 2.12 we see that there
are two modes in the filtered frequency range. The x and y components of electric field are
shown in Figure 2.15. By comparison with the fields from Figure 2.6, we see that radiation

now escapes from the microcavity, even though the gap between silver stripes is smaller
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than a wavelength. Moreover, the x component of the electric field is not negligible in the
middle of the membrane. This means that parallel dipoles positioned there and oriented in
the z direction can also couple to this mode. On the other hand, the E, field is still strong
within the membrane, which means that perpendicular dipoles still strongly couple to this
mode.

Then we filtered the T'M polarized fields with £, = 0 and '\T” = 0.15, for the structure

Ex Ey

Figure 2.15: Electric field components for the structure with a periodicity of 250nm. The
filtered frequency range was centered at ’\7” =0.14 and k; = 0.

with a periodicity of 650nm. The electric field components are shown in Figure 2.16. They
look exactly like the TM_; mode with k; = 67/a of the unpatterned structure, except
underneath the gaps between silver stripes. The electromagnetic field intensity outside the
microcavity is small. This was expected from the band diagram for the T'M polarization
for this structure, shown in Figure 2.14, since we could not detect the opening of a bandgap
in the filtered frequency range. This is also expected from the diffraction efficency of this
grating, which is very small, as shown in Table 2.1.

We also filtered the T'E polarized fields with k£, = 0 and ’\—)f’ = (.14 for the structures with
periodicities of 250nm and 480nm. The corresponding FE, field distributions are shown
in Figure 2.17. The mode looks like a T'Ey mode that also resonates in the gap between

silver stripes, and is radiated out of the cavity through the spacing between stripes. Since
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the density of these spacings is larger for the structure with a periodicity of 250nm, this
mode will extract emission out of the cavity more efficiently. An example of the upper TE
band is shown in Figure 2.18. We plot the F, field component of a mode with k, = 0 and
w = 0.23w, for the structure with a = 480nm. The weak leakage into air for this mode
is expected from the band diagram shown in Figure 2.13, since no bandgap appeared at

this (w, k;) point. This mode looks almost exactly like a TEy mode of the unpatterned

i

waveguide, with k; = =

As we mentioned previously, the properties of a grating are also strongly dependent on

Figure 2.16: Electric field components for the structure with a periodicity of 650nm. The
filtered frequency range was centered at )‘T” =0.15 and k, = 0.

the spacer s between stripes. From the simple Fourier analysis, we predicted that the
performance of a grating with a = 650nm would be improved if the gap between stripes
was reduced to 100nm. To prove that this is true, we filtered the same TM mode as the
one shown in Figure 2.16, but for a structure where a = 650nm and s = 100nm. The result

of this calculation is shown in Figure 2.19. Obviously, more light is extracted from this
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structure than the one shown in Figure 2.16.

Therefore, patterning of the top metal layer has a strong effect on properties of both TE
and TM band diagrams. By choosing a grating appropriately, such as in the case of the
analyzed structure with a periodicity of 250nm, both the emission of perpendicular and

parallel dipoles can be extracted out of the microcavity.

- s s

(a) (b)

Figure 2.17: E, of the TE mode with k; = 0 for structures with periodicities of: (a) 250nm
and (b) 480nm. )‘—)f’ is equal to 0.13 and 0.137, respectively.

2.6.3 Extraction efficiencies of periodically modulated structures

For structures with a patterned top metal layer, the external efficiencies can be calculated
using a 3D FDTD model, with oscillating dipole sources approximating atomic transitions.
However, this computation requires large amounts of memory, as we noted previously. In-
stead, we can easily estimate, from our 2D FDTD simulations, the efficiency of light extrac-
tion by coupling to any given mode. The extraction efficiency 7, is the probability that a
photon radiated into that mode escapes the cavity. The rate at which the electromagnetic

field energy is lost from the cavity is then described by the radiation quality factor Q,:

woW

Qr = P (2.40)
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where W represents the electromagnetic field energy stored within the cavity, wg is the radial
frequency of a mode and P, is the power radiated outside the cavity. On the other hand,
the non-radiative quality factor @, describes the rate at which the stored electromagnetic
energy decreases due to loss mechanisms other than the radiation outside the cavity:

. u)()W
Qnr - Pnr 3

(2.41)

where P, represents the power lost through these mechanisms. The total quality factor

)

Figure 2.18: E, of the TE mode with k; = 0 for the structure with periodicity of 480nm.
)‘Tp is equal to 0.23.

Q is defined as

1 1 1
— = —+ 2.42
"o tao. (242)

and the radiative and non-radiative photon lifetimes are defined as
Qr
== 2.43
Tpr wo ( )
Q

Tpnr = —wf)r (2.44)

(2.45)
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Nz can be expressed as

Tor Q
e = T2 = ~ (2.46)

Tpr Tpnr

Clearly, n, does not take into account the dependence on the position and orientation of
dipole transitions.

To calculate 7., we again use the 2D FDTD method. The only non-radiative loss mech-
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Figure 2.19: The effect of reducing a gap between stripes (to 100nm) on performance of
a grating with @ = 650nm. For the shown TM mode, k; = 0 and A\,/A = 0.15. From
comparison with the result shown in Figure 2.16, it is clear that the extraction is improved,
as predicted from the Fourier analysis. For the structure shown in this Figure, thickness of
a semiconductor core is 150nm. However, the position of the TM_; (ASP) band (which is
folded here) is not strongly dependent on the core thickness, as mentioned previously.

anism is assumed to be the absorption in the metal and the damping constant is set to
Al = 0.05eV. It is important to note that the calculated @) factors are approximate, since
the combination of absorption losses with Bloch boundary conditions introduces calculation
errors, as noted in Appendix I. For the folded T'M_1 mode in the structure with periodicity
of 250nm, whose field distribution is shown in Figure 2.15, we estimate values for @), be-
tween 30 and 50, @ = 6 and 7, between 12% and 20%. For the TE mode shown in Figure
2.17, we calculate Q, = 15, @ = 5 and 7, = 33%. From the band diagram shown in Figure
2.12(a), we can see that the emission in the frequency range from 0.14 to 0.15 (in units
of ’\Tp) emits into a 30° escape cone, if coupled to TM modes. However, coupling to TE
modes does not improve the directionality and the emission goes into the 90° cone. For the
structure with periodicity of 480nm and the folded TM_; mode at k; = 0 and w/w, = 0.14,
we estimate that Q = 8 and n; = 2%. For the first TE band (whose field distribution is
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shown in Figure 2.17(b)), we estimate 7, = 20%. However, only dipoles located directly
underneath the gap between silver stripes can couple to this mode, which implies that the
external efficiency is at least three times smaller than the calculated 7, i.e., around 7%.
For the folded TM_; mode in the structure with a = 650nm, we estimate that ¢ = 11 and
Ne & 0. 7, corresponding to the first TE branch is predicted to be around 5% (when in-
cluding the spatial averaging, i.e., coupling of only dipoles underneath the spacing between
stripes to this mode).

The extraction efficiencies corresponding to TM modes, estimated from their @} factors,
follow the trend in the calculated diffraction efficiencies presented in Table 2.1. From the
calculated extraction efficiencies corresponding to TE modes in the structures with period-
icities of 480 nm and 650nm, we conclude that they will not perform any better than the
unpatterned structures, with regards to the extraction of radiation from parallel dipoles
(see Figure 2.9). For the extraction of radiation from perpendicular dipoles, the structure
with periodicity of 650nm will perform almost the same as the unpatterned structure. On
the other hand, the structure with periodicity of 480nm will show some improvement over
the unpatterned structure, but will still perform much worse than the best design with
a = 250nm.

We conclude that by adding a grating with periodicity of 250nm to the metal clad mi-
crocavity, an extraction efficiency over 30% can be achieved. The filtered modes have low
quality factors and overlap with both C-HH and C-LH emission peaks. From the field pat-
terns for the TM mode shown in Figure 2.15, we see that this mode can extract emission
from both perpendicular dipoles and parallel dipoles oriented in the x direction. On the
other hand, the filtered T'E mode extracts the emission of parallel dipoles oriented in the z
direction. Since the dipoles located in the middle of the membrane couple to these modes
very efficiently, we expect that this structure will have a better external efficiency than the
unpatterned structure. One should also note the low values of @ resulting from the signif-
icant metal absorption loss. A reduction in the absorption and a further increase in the
extraction can be achieved by designing a device that operates at even longer wavelengths.
As we will see later, the calculated @) values are in the same range as our experimental

results, and limited by absorption loss.
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Figure 2.20: TE mode of the half-processed wafer, with k; = 0.0628 and w = 0.435w,. The
semiconductor thickness is 90nm and the widths of figures correspond to 300nm.

2.7 Thin semiconductor film on top of a metal layer

What would happen if, instead of a semiconductor slab between two coupled metallic sur-
faces, we had only a thin semiconductor membrane sitting on top of a thick metallic surface?
From our earlier discussions, it is clear that in this structure we can expect lower values
of the decay rate enhancement F,; (compared to the structure with two metallic cladding
layers), that the radiation of perpendicular dipoles will strongly couple to the SP mode of
the single metal surface and remain trapped there, and that the only mechanism of light
extraction will be coupling to leaky waveguide modes. The band structure will be similar
to that of a slab waveguide, with the addition of a SP mode of the metal-semiconductor
interface. When describing our experimental results, we will refer to this structure as the

half-processed wafer. Some of its modes are shown in Figures 2.20 and 2.21.
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We have calculated the efficiency (Fyneyt) of light emission from this structure, using again
the method from References 73 and 75. Fyney: (both into the 30° or 90° collection angles)
as a function of the semiconductor slab thickness, and for parallel dipoles positioned in the
middle of the slab, is shown in Figure 2.22. The efficiency corresponding to perpendicular

dipoles is negligible.
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Figure 2.21: TM mode of the half-processed wafer, with k, = 0.0628 and w = 0.3418wy,.
The semiconductor thickness is 90nm and the widths of figures correspond to 300nm.

Therefore, for a core thickness of 90nm, we can expect an efficiency of 6% into the 90°
collection angle, or 1.3% into the 30° collection angle. By tuning the core thickness, one

can improve the efficiency of this structure, but not its directionality.
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Figure 2.22: The efficiency of the half-processed structure, as a function of the semiconduc-
tor core thickness.

2.8 Fabrication

The design of the grown wafer is shown in Table 2.2. This wafer was designed for fabrication
of electrically pumped devices and p and n doped layers were already included. Layers 2 to 8
form a membrane that will be lifted off and sandwiched between two metal layers. The total
membrane thickness is 88nm. The main emission peak from the InGaAs/GaAs QW is at
986nm, corresponding to C-HH transitions. There is also a peak at 930nm, corresponding
to C-LH transitions.

The fabrication procedure is described in Figure 2.23. First we deposit a thick silver
mirror (d > 1.5um) on top of the grown wafer (step (a)). This metal layer is also used as
a mechanical support during the membrane liftoff. Then we remove the membrane from
its substrate by dissolving the sacrificial AlAs layer in 8.2% hydrofluoric acid (HF) diluted
in water (step (b)). HF attacks AlAs very selectively over Al,Ga;_,As for z < 0.4.5°
The lifted-off membrane (layers 2-8) with a thick silver layer on top is then Van der Waals

bonded®® onto a silver coated silicon wafer and the silver on the lift-off film bonds to
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Figure 2.23: Fabrication procedure: a) thick silver layer deposition; b) epitaxial liftoff; c¢)
Van der Waals bonding onto silver coated silicon substrate; d) thin silver layer deposition;
e) PMMA deposition and patterning using e-beam lithography; f) pattern transfer to thin
silver layer using Ar* ion milling; g) PMMA removal.
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Table 2.2: Layers of the grown wafer.

layer thickness [nm]

8 p-GaAs cap 10
7 p-Al,Ga1_,As, x < 0.3 20
6 undoped GaAs 10
5 undoped IngoGaggAs QW 8

4 undoped GaAs 10
3 n-Al,Ga1_pAs, x < 0.3 20
2 n-GaAs cap 10
1 | undoped AlAs (sacrificial layer) 100
0 undoped GaAs substrate -

the silver coated on the silicon support wafer (step (c)). Another 20nm to 40nm thick
silver layer is then deposited on top of the n-GaAs cap (step (d)). 100nm thick PMMA
(polymethylmethacrylate), with molecular weight of 950K, is then spun on top of the thin
metal layer and subsequently baked on a hot plate at 150°C for 20 minutes. A desired
pattern is beamwritten on the PMMA by electron beam lithography in a Hitachi S-4500
electron microscope (step (e)). The resulting patterns are approximately 50um x 50um in
size, and the exposed PMMA is developed in a 3:7 solution of 2-ethoxyethanol:methanol for
30 seconds. Then, the pattern is transferred into the top semitransparent metal layer by
using Ar* ion milling at a beam voltage of 1500V (step (f)). Finally, the remaining PMMA
may be dissolved in acetone (step (g)). Corresponding SEM pictures showing the top views
of fully processed wafers are given in Figure 2.24, where lighter areas correspond to regions
where silver was removed.

The structure shown in Figure 2.23.1 is the unprocessed wafer and the one in Figure 2.23.4
is referred to as the half-processed wafer. Figure 2.23.5 represents the unpatterned metal
clad microcavity and, finally, the structure shown in Figure 2.23.8 is the fully processed

one.



108

E qk|i &I f

(e) 0

Figure 2.24: Fabricated patterns in the top silver layer. Light areas correspond to regions
where silver was removed during the Ar™ ion milling process. Fabricated structures have
various periodicities: (a) 250nm; (b) 480nm; (c) 650nm; (d) 650nm (zoom in); (e) 650nm
(zoom in); (f) whole array. For all structures, the gap between silver stripes is around
160nm.
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2.9 Experimental results

2.9.1 Measurement setup

The experimental setup used for the photoluminescence (PL) measurements is shown in
Figure 2.25. Samples are mounted on an X-Y-Z stage and optically pumped at a 90°
incident angle. The pump source is a semiconductor laser diode emitting at 830nm, pulsed
with a period of 3us and a pulse width of 2.5us. A non-polarizing cube beamsplitter is used
to bring 50% of the pump beam to the detector and to measure the external pump power.
The other 50% of the beam is focused to a spot on the sample by using a 100X objective
lens (labeled as Lensl). The same objective lens is also used to collect the emitted light.
The collection angle is 30° with respect to normal. The collected emission is then focused

in Lens2 and detected using a fiber coupled spectrum analyzer.

Table 2.3: The photoluminescence measured from the fabricated structures. a is the
1D grating periodicity, and s denotes the gap between silver stripes. E,;,(986nm) and
E}p(986nm) denote photoluminescence (PL) enhancements at 986nm of the fully pro-
cessed wafer with respect to the unprocessed and to the half-processed wafer, respectively.
E}p(930nm) is the PL enhancement at 930nm, with respect to the half-processed wafer. The
last row corresponds to the structure with unpatterned top metal layer. The half-processed

structure has E,;,(986nm) = 21.

a [nm] | s [nm] | E,,(986nm) | Epp(986nm) | Epp(930nm)
250 160 46 2.24 5.5
480 160 5.6 0.27 1.8
650 160 6.4 0.3 1.2
0 0 5.5 0.26 1.5

2.9.2 Results of PL measurements

We measured the output from the unprocessed as-grown wafer, from the half-processed
wafer, and from the fully processed structures, with patterned or unpatterned thin metal
layers on top. Previously theoretically analyzed gratings were fabricated in the top metal

layer, which was 25nm thick (within a £10% range). A small reduction in the thickness of
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top silver layer helps to improve the pump beam transmission, but does not influence the

performance of the patterned structures significantly.

optical spectrum
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Figure 2.25: The experimental setup used for photoluminescence measurements.

Each grating is characterized with a periodicity (a) and a gap (s) between silver stripes.
Between stripes, silver was completely removed by Ar™ ion milling. During the thin silver
layer deposition, part of the sample surface was masked, in order to produce half-processed
regions. The measurement results are summarized in Table 2.3, where the peak external
pump power was 2.2mW . For all fully processed wafers, including the unpatterned metal
clad microcavity, a FWHM is in the range of 60nm to 110nm. Therefore, their quality
factors are between 10 and 15. For the half-processed wafer, a FWHM is 32nm. Because
of a bulk emission tail at lower wavelengths, a luminescence peak at 930nm for unpro-

cessed wafers cannot be clearly resolved. The spectra of unprocessed, half-processed and
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fully processed wafers are shown in Figure 2.26. The PL peak of the unprocessed wafer at
986nm was normalized to 1. A GaAs filter was applied in front of the detector to cut off
wavelengths below 890nm.

As expected from our theoretical discussions in the previous sections, structures with pe-
riodicities of 650nm and 480nm have emission properties very similar to those of the un-
patterned structure. The structure with periodicity of 480nm shows some improvement at
930nm, due to the better extraction of energy of perpendicular dipoles. On the other hand,

the structure with periodicity of 250nm has the best performance, as predicted.

50
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Figure 2.26: The measured photoluminescence spectra: (a) unprocessed wafer; (b) half-
processed wafer; (c) pattern with ¢ = 480nm and s = 160nm (the unpatterned structure
and the pattern with ¢ = 650nm and s = 160nm give very similar signals); (d) pattern
with a = 250nm and s = 160nm.

2.9.3 Theory vs. experiment

In order to explain measurement results and confirm that they match our theoretical pre-
dictions, we have to take into account several effects: (A) the increase in the pumping
intensity resulting from the trapping of pump photons within a microcavity; (B) the decay

rate enhancement and (C) the change in the external efficiency. The spontaneous emission
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reabsorption is not very efficient because of the small optical confinement factor in the QW,
and the photon recycling effect can be neglected.?®
If P;, denotes the external pump power and P,,; denotes the power emitted from the device,

then (in the linear region of the LL curve)

Pout
r 2.47
P =7 (2.47)
where 7y is defined as
v =B (f)| FaNeat,| + [LFd,1Newt, 1) (2.48)

For patterned structures, the first term should be separated into contributions of parallel
dipoles in the z direction and in the z direction, since they have different 7eg¢. f) and f1
are fractions of dipole transitions that are in the QW plane or perpendicular to it. Their
values at the main peak of 986nm are f| = 1 and f; = 0 and at 930nm are f| = 1/3 and
f1 =2/3. Furthermore, 1/2 of parallel dipoles are oriented in the z direction and the other

half in the z direction. (3 is the equivalent pumping intensity that can be expressed as
B=1T,-N, (2.49)

where T}, is the pump power transmission through the top surface, and N is the factor that
measures the increase in pumping intensity resulting from the trapping of pump photons
within a structure.

Let us label the half-processed wafer by a subscript hp, the unprocessed wafer using a
subscript up and denote the photoluminescence (PL) enhancement by E. If the input

pump powers are the same (i.e., P;, equal), PL enhancements can be expressed as

Bpy = = (2.50)
Yhp
jo (2.51)
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Pump power transmission through the top surface

In our experiments, structures are optically pumped from top using a semiconductor laser
diode emitting at 830nm. Therefore, it is important to determine what percentage of the
vertically incident pump beam is transmitted into the structure. Let us denote by T}, the
pump power transmission through the top surface. T, can be evaluated from Fresnel equa-
tions for an unpatterned top layer. The calculated T, as a function of the silver layer
thickness, is shown in Figure 2.27. The transmission through the air/semiconductor inter-
face is equal to 70%.

Moreover, for both patterned and unpatterned structures, 7T, can be determined from

Transmitted power [%]

101
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0 5 10 15 20 25 30 35 40

top silver layer thickness [nm]

Figure 2.27: The percentage of the vertically incident pump beam intensity transmitted
through the top, unpatterned silver layer, as function of its thickness.

diffraction efficiencies presented in Subsection 2.6.1. Let t(x) denotes the amplitude trans-
mittance of a structure as a function of position, and T'(k) the Fourier transform of #(z).
The magnitude of the transmitted beam will be proportional |T'(k)|, and the power will be
proportional to n1|T(k)|?, where n; represents the refractive index of semiconductor (equal
to 3.5). Therefore, T, will be proportional to diffraction efficiency 5, multiplied by n;.
Diffraction efficiencies are given by equation 2.36. Let ¢; and ¢y represent the amplitude

transmittances (into the semiconductor) of the wave incoming from the air region, and
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passing through the Onm thick or 25nm thick metal layer, respectively. The calculated
amplitude transmittance for the vertically incident beam, as a function of the metal layer
thickness, is shown in Figure 2.28. It is easy to check that even when the angle of incidence
varies between 0° and 30°, and the polarization switches between s and p in this range, the
amplitude transmittance remains approximately the same. Therefore, we can approximate
t; and to with their values for the vertically incident beam, and Onm or 25nm thick silver
on top respectively, i.e., t; = 0.4444 and t; = 0.0911 — 0.10374.

For unpatterned structures, the amplitude transmittance as a function of position is given

0.5

O -
-0.1F e 1
-0.2 ””’T***"'/ I I I L L

0 10 15 20 25 30 35 40

top silver layer thickness [nm]

Figure 2.28: Amplitude transmittance of the vertically incident pump beam, as a function
of the top metal layer thickness.

by t(z) = t9, or for half-processed and unprocessed structures by t(z) = ¢;. Therefore,
the Fourier transform of the amplitude transmittance is T'(k) = t;6(k), for i« = 1,2. The
magnitude of the transmitted wave is proportional to |T'(k)| (i.e., |t;]), and T}, is equal to
n1|ti|?, where n; = 3.5. In order to calculate the power transmission 7}, for patterned struc-
tures, we have to find the diffraction order n at the pump frequency (\,/A = 0.17). From
band diagrams of these structures, it is clear that TM polarized light can possibly couple
only to higher order TM bands. Since the diffraction efficiency is inversely proportional to

diffraction order (n), and since the pump beam is predominantly s polarized and verticaly

incident, it follows that we can neglect the coupling of the pump beam to TM modes. On
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the other hand, from the band diagram shown in Figure 2.4, it is clear that the pump beam
can couple to TE modes of structures, through the diffraction order n = 0. Calculated
pump beam power transmissions 7}, for all structures are shown in Table 2.4.

In order to prove that previously calculated 7T}, are correct, we have also analyzed the power
transmission using the FDTD method. One unit cell of the structure was analyzed, Mur’s
ABC were applied to boundaries in the y direction and periodic BC (i.e., Bloch BC with
k; = 0) to boundaries in the z direction. A parallel dipole (oriented in the z or z direc-
tion) was located 400nm above the metal surface, in the air and above the middle of the
gap between stripes. The frequency of dipole oscillations matched the pump frequency.
We calculated the power of the dipole source, as well as the power transmitted into the
semiconductor, by integrating the Poynting’s vector along a chosen surface. Without metal
on top, the calculated transmission was T}, = 0.7 for both z-oriented or z oriented dipole,
as expected from Fresnel equations. However, in the presence of the metallic grating with
periodicity of 250nm, we calculated T,, = 0.5 for an z-oriented dipole and T}, = 0.24 for a
z-oriented dipole. This means that the average transmission in the presence of a grating is

T, = 0.375, which is very close to the value T}, = 0.357 from Table 2.4.

Table 2.4: Theoretically estimated pump power transmissions (7,) to analyzed structures.

‘ structure type ‘ T, ‘
unprocessed 0.7
half-processed 0.7
unpatterned 0.067

a = 250nm, s = 160nm | 0.357
a = 480nm, s = 160nm | 0.17
a = 650nm, s = 160nm | 0.13

Trapping of pump photons within a structure

The trapping of pump photons within a structure effectively increases the pumping intensity,
since the probability that a photon excites an electron transition is proportional to the
number of times that it crosses the QW. We can define N as a factor that measures the

increase in the pumping intensity resulting from this effect. The unprocessed wafer has
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N =1, since there is no mode within the structure that pump photons can couple to and
photons not absorbed in the QW are lost when they reach the GaAs substrate. However, in
the case of half-processed or fully processed wafers, the pump power transmitted through
the top surface can couple to an s-polarized guided mode of the structure, as we discussed
in the previous subsection. For fully processed wafers, this can be easily seen from the
previously calculated TE band diagrams. For the half-processed wafer, we performed the
1D finite-difference analysis and showed that an s-polarized guided mode existed at the
wavelength of 830nm.

Let us denote by « (in units [1/cm]) the loss coefficient for the guided mode that pump

" AX

Figure 2.29: Pump power coupled to the mode of the structure.

photons couple to. The angle with respect to the y axis of this mode’s total internal

reflection (see Figure 2.29) is defined as

0 = arcsin (%) , (2.52)

where k; is the wavevector component in the direction of propagation (z) and k is the
amplitude of the wavevector. The intensity of the wave varies in the direction of propagation
(z) as e 22%, The distance between two consecutive reflections (denoted as Az) is equal to
dtan(#), where d is a membrane thickness. Along the distance Az, the trapped beam crosses
the QW once and a portion of it gets absorbed by the QW. Larger portion of the beam is
lost due to nonradiative absorption losses both in a semiconductor and metal. Therefore,
the trapped pump beam crosses the QW multiple times, but its intensity decreases in each

pass. The total increase in the pumping intensity, with respect to the unprocessed wafer,
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is proportional to the factor N defined as

N=1 _I_e—ZaAa: + e—4an + e—GaAm 4o (253)

1

e (2.54)

Terms in the previous series correspond to intensities of the pump beam in the 1st, 2nd...
pass across the QW. We analyzed the half-processed wafer and the unpatterned metal clad
microcavity using the 1D finite difference method (absorption losses in both metal and
semiconductor were included, former being dominant). From the obtained values of o and
ks for the guided TE mode at 830nm, we estimate N. For both the half-processed structure
and the unpatterned metal clad structure, we calculate N = 7 (even when the top silver
layer thickness varies between 20nm and 40nm in the unpatterned structure). Therefore,
both the half-processed structure and the unpatterned metal clad microcavity have equal
increases in the pumping intensity resulting from the pump beam trapping. We can also
assume that patterned structures have their N factors between those of half-processed and
unpatterned structures, i.e., N = 7. When the semiconductor core thickness in the half-
processed structure increases to 150nm (due to the increase in thickness of GaAs layers),
N decreases 3 times.

Based on the previous results, we can theoretically estimate the effective pumping intensities

[ for all analyzed structures. Results are shown in Table 2.5.

Table 2.5: Theoretically estimated effective pumping intensities (3 = T,N), and pumping
intensities normalized with respect to the unprocessed wafer (i)

ﬂunp
‘ structure type ‘ I} ‘ B/ Bunp ‘
unprocessed 0.7 1
half-processed 4.9 7
unpatterned 0.47 | 0.67

a = 250nm, s = 160nm | 2.5 3.57
a =480nm, s = 160nm | 1.2 1.7
a = 650nm, s = 160nm | 0.9 1.29
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Explanation of measurement results

Starting from the equation 2.48 and our theoretical estimates of 3, 7ez (into the 30° collec-
tion angle) and F,;, we calculated PL enhancements, both at 986nm and 930nm. The theo-
retical results for the unprocessed, half-processed and unpatterned structures are collected
in Table 2.6. We can conclude that there is a very good agreement between experiment and
theory, i.e., Tables 2.3 and 2.6. Therefore, the half-processed structure has a 21-fold PL
intensity enhancement at 986nm relative to the unprocessed wafer, as a result of seven times
larger pumping intensity and a threefold increase in efficiency. The unpatterned metal clad
microcavity has a 5.5-fold PL intensity increase at 986nm with respect to the unprocessed
wafer, as a result of the eightfold improvement in efficiency and somewhat lower pumping
intensity. At 930nm, this structure has the output 1.5 times larger than the half-processed
wafer, even though it is pumped weaker. This was also predicted theoretically in Table 2.6
and comes from the increase in the efficiency with respect to the half-processed wafer at
930nm. The prominent peak at 930nm in this structure is partly due to almost threefold

decay rate enhancement.

Table 2.6: Theoretically estimated PL enhancements of structures made from the 1st wafer.
The unpatterned structure is a metal clad semiconductor slab (90nm thick), with 25nm
thick silver on top.

E.p(986nm) | Epp(986nm) | Epp(930nm)
unprocessed 1 - -
half-processed 19 1 1
unpatterned 6 0.3

Structures with periodicities of 480nm or 650nm have performances similar to the unpat-
terned structure, as we theoretically predicted. The structure with periodicity of 480nm
has somewhat larger peak at 930nm, due to the better extraction of radiation from perpen-
dicular dipoles.

The structure with a periodicity of 250nm has a 46-fold photoluminescence intensity en-
hancement at 986nm relative to the unprocessed wafer. After taking into account the dif-

ference in pumping intensity, this PL enhancement is converted into the 13-fold efficiency
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enhancement into the detection angle of 30°, compared to the unprocessed wafer at 986nm
(or 4.4-fold enhancement relative to the half-processed structure). This mostly comes from
the large extraction efficiency of the folded TM and TE modes in this structure, as dis-
cussed previously. At 930nm, this structure has a 5.5-fold PL enhancement with respect
to the half-processed wafer. After taking into account the difference in pumping levels,
this is converted into the 11-fold efficiency enhancement with respect to the half-processed
wafer (or almost 30-fold efficiency enhancement relative to the unprocessed wafer). This is
a result of much larger extraction efficiencies for parallel, and especially for perpendicular

dipoles that dominate at 930nm.
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Figure 2.30: Measured LL curves corresponding to the unprocessed structure or the half-
processed structures with 88nm or 150nm thick core.

Thin semiconductor films on top of a metal layer - experimental results

We have also measured the LL curves corresponding to the unprocessed wafer and the
half-processed structures with a semiconductor core which is either 88nm or 150nm thick.

The half-processed structure with a 150nm core was made from another wafer, in which
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the thickness of GaAs layers was increased. The pump power was controlled using neutral
density filters, as shown in Figure 2.25. The result is shown in Figure 2.30, where the
vertical axis corresponds to the PL peak at 986nm. These results also agree very well with
our theoretical predictions. In the linear region, the slope of the LL curve of the structure
with 88nm thick core is 20 times larger than that of the unprocessed wafer. The increase in
the core thickness of the half-processed structure to 150nm results in the 2.5-fold decrease
in the LL slope. From Figure 2.22, we do not expect that the efficiency of the structure
would change significantly with this change in the core thickness. The difference in the LL
slope comes from the difference in the pumping intensities of the two structures (i.e., the
difference in N). As we discussed previously, N decreases around three times with this

increase in the core thickness.

2.10 Conclusion

We have theoretically analyzed, fabricated and measured the metal clad microcavity with
a sub-A/2 semiconductor membrane and a patterned top metal layer. The emitting region
is a single QW positioned in the middle of the membrane. At the same external pump
power, we measured photoluminescence enhancements of up to 46 times with respect to
the unprocessed wafer, and estimated that this enhancement was due to at least a 13-
fold increase in the efficiency (relative to an unprocessed wafer and into the 30° detection
angle), and an increase in the effective pumping intensity resulting from the pump photons
trapping within the microcavity. Up to 30-fold increase in the efficiency into the 30° cone
and relative to the unprocessed wafer was estimated at 930nm. Interesting modifications
in the photoluminescence spectra were also experimentally observed, resulting from the
simultaneous change in the spontaneous emission rate and extraction efficiency.

Therefore, we have showed that periodic metallic structures (metallic photonic crystals)
can be used to improve the light extraction and enhance the spontaneous emission rate in
light emitting devices. The advantages of this design are a small surface recombination
rate, and metallic layers that can be used both as contacts and for efficiency improvement.
Certainly, in order to make good contacts, more attention has to be paid to the proper

choice of metal. Devices presently operate in the 980nm wavelength range, where metal
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absorption losses are significant. This reduces quality factors of fully processed structures
to values between 10 and 15 and broadens their emission. This problem can be overcome by
designing devices that operate at longer wavelengths. For example, a surface plasmon laser
operating at 17um has been demonstrated recently by researchers in Bell Labs.”” We have
tested only 1D metallic photonic crystals, because they were simple to analyze theoretically
and explain obtained experimental results. However, even larger efficiency enhancements
will be possible by employing metallic structures periodic in 2D, since they can extract light
in broader range of wavevectors.

We conclude that structures based on metallic photonic crystals printed on a semiconductor
wafer can be used as building blocks for highly efficient light emitting diodes. However, in
order to make a practical device, more research and work has to be done, particularly
in designing their electrical properties, reducing absorption losses and employing metallic

structures periodic in 2D.
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Chapter 3 Alternative fabrication methods

Feature sizes of structures presented in this thesis are below those achievable by photolithog-
raphy. Therefore, high-resolution lithography is necessary for their fabrication. The e-beam
writing techniques that we presently use suffer from limitations in speed and wafer through-
put. For this reason, they also represent a huge obstacle to commercialization of photonic
crystals. An alternative to serial e-beam writing that could provide us with the speed of
photolithography and the resolution of e-beam writing is electron beam projection lithog-

raphy. This lithographic method has been investigated for over 30 years,”® 8 but the old
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Figure 3.1: Electron beam projection lithography system.

prototypes suffered from a number of problems, such as sample heating, mask contami-

nation, surface charging, magnetic field distortions and electron proximity effects. Several
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years ago, we constructed a 1:1 electron beam projection system at Caltech, addressed some
of the previously mentioned problems and demonstrated lithography with the feature sizes
of 150nm. The cross section of our system is shown in Figure 3.1. The operation principle
is very simple and is outlined in Figure 3.2. A shaped beam of electrons is photoemitted
from a mask and projected onto an e-beam resist coated sample. The shape of the beam is
determined by the pattern on the mask. The motion of electrons between the mask and the
sample is controlled by static electric and magnetic fields, whose orientation is perpendicu-
lar to the mask and sample surfaces. The electric field is controlled by the voltage applied
between the mask and the sample. Both mask and sample are placed into a bore of a su-
perconducting magnet, which allows the tuning of magnetic field amplitude and uniformity.
In the 1:1 projection system, electrons undergo an integer number of cyclotron orbits on
their path from the mask to the sample. The sample surface is coated with e-beam resist

and the shape of the beam is projected to an image on the sample surface.
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Figure 3.2: Operation principle of a 1:1 electron beam projection lithography system.

The mask making procedure is very simple. In the first step, a quartz plate is coated
with Cr/Au layers nontransparent for the UV radiation. Au layer alone can block the UV

radiation, but it has a very poor adhesion to quartz. For that reason, it is necessary to
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deposit a thin Cr layer in between the quartz plate and the Au layer. The masks used
in our experiments have Cr and Au layers that are approximately 20nm and 80nm thick,
respectively. Conventional e-beam writing is used to define the desired pattern on the mask,
which is subsequently transferred through Cr/Au using Ar™ ion milling. Finally, mask is
coated with a thin (30nm to 50nm) Au or AuPd layer which is used as a source of electrons.
Electrons can be emitted only from areas where the Cr/Au was removed during the ion
milling process. The mask is re-usable for projections. If the energy of a UV photon is
matched exactly to the work function of Au (5eV), the photoemitted electrons have initial
energies equal to zero and their motion is completely controllable by the applied electric

and magnetic fields. This is, however, possible only if the used UV source has a very narrow
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Figure 3.3: Results of projection without magnetic field. The pattern defined on the mask
is a 2D array of squares.

linewidth (such as in the case of using a laser). However, when a UV lamp is used, the
photoemitted electrons have a range of initial energies (denoted as Wy) and can be emitted
with a variety of initial angles with respect to the mask surface (denoted as «). The spread
in Wy and « is what makes the focusing difficult. Perfect focusing is achieved if all electrons
emitted from a spot on the mask are projected into the same size spot on the sample. This
is possible if all electrons make an integer number of cyclotron orbits on their route between
the mask and the sample. Let us denote the distance between the mask and sample surfaces

by d, the applied voltage and magnetic field by V and B, and the charge and mass of an



125

electron by e and m. In our system at Caltech, d = 1.57mm. For a particular electron, the

focusing condition can be expressed as

2tm 2m Wy
N oB =d W(l—COSOé' W)’ (31)

where N is the integer number of cyclotron orbits that the electron makes on its journey

from the mask to the sample. Knowing Wy and «, we can choose V and B in order to

obtain an integer N.

(a) (b)

Figure 3.4: Projection results with B = 1.857', V' = 3kV: (a) mask; (b) sample.

However, we cannot choose unique V and B to achieve focusing for many electrons with
different Wy and «. For a particular choice of electric and magnetic field, some electrons
cannot accomplish an integer number of cyclotron orbits, which means that a point on the
magk is projected onto a disk on the sample. The goal of the focusing is to choose V' and
B in such a way to minimize the diameter of that projected disk (denoted as D). When
calculating the focusing condition, we assume that the initial energies of electrons in our
system (Wj) vary between 0 and 0.4eV, and that the initial angles of electron emission
(a) are in the range between 0° and 90°. In reality, the projected disk will have a smaller
diameter than the one we calculate, since not all initial energies and angles of electrons are
equally likely.

If magnetic field is not used in the projection, the resulting image on the sample is blurred,
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as shown in Figure 3.3, since electric field alone is not enough to achieve focusing. By tuning
B and V, we can also tune the quality of focusing. For example, the projection results at
B = 1.85T, V = 3kV are shown in Figure 3.4. Electrons make N = 5 cyclotron orbits in
this case and the diameter of the projected disk on the sample is D = 413nm. Focusing
can be somewhat improved for B = 2.4T and V = 3.56kV. For this set of parameters, we
calculate N = 6 and D = 348nm, and the projection result is shown in Figure 3.5(a). The
best projection results are obtained for B = 3.327" and V = 3kV and are shown in Figures
3.5(b) and 3.6. Photoemitted electrons make N = 9 cyclotron orbits in this case, and the

5.8 kv
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Figure 3.5: Projected patterns: (a) B = 24T and V = 3.56kV (sample after ion milling);
(b) B =3.32T and V = 3kV (before ion milling).

diameter of the projected disk is D = 250nm. Samples used in all presented projections are
Si wafers coated with 30nm of Au and 60nm of PMMA (molecular weight 950K) on top.
Samples are coated with Au on both sides, in order to connect the top sample surface to the
ground potential. The projected area is a circle with the diameter of 2.5cm. The projection
time is calculated according to the formula ¢t = %, where A is the projected area, I is the
photoemission current and @ is the optimum exposure dose for the corresponding PMMA
thickness and the beam energy.®! Our projections lasted between 10 and 20 minutes, due

to the poor electron emission efficiency (i.e., small I). After the projection, the sample

is taken outside the e-beam projection system and PMMA is developed first in TPA, and
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then in a 3:7 solution of 2-ethoxyethanol:methanol. The developed PMMA can be used as
a mask for the Ar™ ion milling and the transfer of the projected pattern through the Au
layer.

In our electron beam projection system at Caltech, we have managed to address some of the
problems of the previous prototypes. The difference of our approach with respect to the old
ones lies in the use of high magnetic fields and low voltages, as well as in the mask and sample
preparation. High magnetic fields reduce the radius of the cyclotron orbit and, subsequently,
reduce the projected spot diameter D. The use of a superconductive magnet helps to
achieve the uniformity of magnetic field, and the low acceleration voltage helps in reduction
of proximity effects. Moreover, our masks did not show significant signs of contaminations,
even after several tens of exposures. Our biggest problems were, however, poor electron
emission efficiency, and the use of a broad linewidth source for electron excitation (UV
lamp), which resulted in a resolution limited to about 200nm. During the long projection
times, it becomes very difficult to control all the parameters of the system (such as the
photoemission current, mechanical vibrations affecting the B field uniformity, etc.), and the
reproducibility of results becomes a problem. Therefore, the first two steps in the future
work are the exploration of other photoemissive materials, possibly with higher efficiency,

and the use of narrow linewidth sources for electron excitation.

(a) (b)

Figure 3.6: Projected patterns with B = 3.327 and V = 3kV: (a) Before ion milling; (b)
After ion milling.
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Appendix A Analysis of photonic crystal
structures using the FDTD method

The finite-difference time-domain (FDTD) method will not be described in great detail
here, since there are many excellent references that do that, such as the book by Taflove.®2
Briefly, the FDTD method is a very powerful technique of computational electromagnetics,
based on the discretization of Maxwell’s equations in space and time. It was proposed by
Yee and 1966,%3 and it has been very popular ever since. Its advantage lies in the simplicity
and the possibility of analyzing any desired geometry, and the disadvantage is in the large
amounts of memory and long computation times required for the analysis. This appendix
gives only a brief description of the methods used in this thesis and points out to references

of interest.

A.1 FDTD calculation of band diagrams

We use 3D FDTD to calculate band diagrams of planar PC structures, and 2D FDTD for
band diagrams of metal clad waveguides with 1D grating on top. The use of FDTD in
dispersion diagram calculation of 3D photonic crystals was proposed in Reference 84. In
References 85 and 28, the 3D FDTD was used for calculation of dispersion diagrams of
planar PC structures. To the best of our knowledge, we presented the first analysis of band
diagrams of the metallic photonic crystals at optical frequencies, based on the FDTD.5”

Here we describe briefly the procedure used in the calculation of TE-like band diagrams of
planar PC structures, such as the one shown in Figure 1.1. (The similar procedure is applied
to all other types of PC structures.) The appropriate Bloch boundary conditions are applied
to the boundaries of the unit PC cell in = and y directions. The structure is not periodic in
the z direction and the full description of the slab and surrounding air has to be made. To

select TE-like modes, even mirror BC are applied to the lower boundary in the z direction,
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which coincides with the middle of the slab. Mur’s absorbing boundary conditions (ABC)%3
are applied to the upper boundary in the z direction, which is positioned at least A from the
surface of the membrane. The initial field containing appropriate field components (e.g., B,
for TE-like modes) is applied, and subsequently evolved over a long interval of time (of the
order of 300 periods corresponding to the mid-gap frequency). During the time evolution,
we store the field at several points of low symmetry in the microcavity. After applying a
Fast Fourier Transform (FFT) to the resulting time series, we observe the resonant peaks
in the spectrum corresponding to the modes of the structure, at the in-plane wavevector
determined by Bloch boundary conditions. This procedure is repeated for many different
wavevector values at the boundary of the 1st Brillouin zone, and the resulting band diagram

looks like those shown in Figure 1.2.

A.2 FDTD filtering of the mode of interest

Starting with an initial field distribution E(7,¢ = 0) and H(7,t = 0), we use the FDTD
analysis to time evolve the electric and magnetic field in the computational domain. Dur-
ing the time evolution, we store the field at a point of low symmetry in the microcavity.
After applying a Fast Fourier Transform (FFT) to the resulting time series, we observe the
resonant peaks in the spectrum corresponding to the modes of the structure. Then we filter
the electromagnetic field for the mode of interest. The filtering is done by convolving the
electromagnetic field in time with a bandpass filter centered at the resonant frequency of

the fundamental mode and with an appropriate bandwidth.86

A.3 FDTD analysis of metallic photonic crystals

The FDTD (finite-difference time-domain) method is used to theoretically analyze electro-
magnetic fields within metal clad microcavities. In order to accurately model metals at
optical frequencies, it is necessary to make some changes®”:88 to the standard Yee’s FDTD

scheme.®3 Electromagnetic fields in metals are described by adding a current term (f ) to
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Maxwell curl equations (e.g., in the Drude model):

. - OE -
H=¢j— Al
V X €05, +J (A.1)
- o OH
E=—pg— A2
V x 1o o (A.2)
6j = 2 -
5 +I'J = e, E, (A.3)

where w), is the plasma frequency of a metal and I' is the corresponding damping rate.
In part of our FDTD calculations, we neglect metal absorption losses by applying I' = 0.

Non-metallic regions are described with standard Maxwell curl equations:

L. OF
.- OH

The FDTD method consists, basically, of discretization of previous equations in space and

time.52

Depending on the problem, different boundary conditions (BC) are applied to
boundaries of the computational domain, such as the Mur’s absorbing boundary condi-
tions® or Bloch BC. The spatial discretization step is critical in this case, keeping in mind
that the penetration depth of electromagnetic field into metals can be of the order of only
tens of nanometers. This implies that large amounts of memory are required for compu-
tation unless variable cell sizes are used. All calculations of metallic photonic crystals in
this thesis are obtained using either Drude or Lorentz model of silver with the following
parameters: €, = 1, A, = 140nm (i.e., hiw, = 8.8¢V), Al' = 0.05eV (or I' = 0 for the
lossless metal) and xo = 10 for the Lorentz model. The discretization step used in FDTD
analysis of metals was between 1nm and 3nm. The increase in the discretization step (to
3nm) causes a small shift in positions of some bands.

For the analysis of dispersion diagrams, we assume that structures are infinite in the third
dimension (i.e., z direction), and periodic in the z direction (which is also the direction of
wave propagation), with periodicity equal to a. Unpatterned (smooth) structures are peri-
odic in the z direction with arbitrary periodicity a. Therefore, we can choose a and analyze
only one unit cell, as in the case or truly periodic structures. Mur’s ABC are applied to

boundaries of the unit cell in the y direction, while Bloch BC are applied to boundaries in
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the x direction. Bloch boundary conditions in the x direction can be expressed as
u(z + a) = u(z)e*=?, (A.6)

where a represents the corresponding periodicity and u(z) represents some field component
at position z. However, in the presence of absorption losses, fields decay in the direction of
propagation (i.e., k; has both real and imaginary parts) and the correct way of expressing

boundary conditions would be
w(z + a) = u(z)ekae k") (A7)

where k,” represents the damping in the z direction. Even when significant losses are
present (i.e., k;” is not negligible), for small periodicities a, the equation (A.6) still holds.
On the other hand, for large a, the amplitude of the wave decays significantly between the
unit cell boundaries in the z direction, and the wave does not satisfy the originally Bloch
boundary conditions anymore. Fortunately, in the wavelength range of our interest (1um),
the imaginary part of silver dielectric constant is still much smaller than its real part, and
positions of bands can be determined approximately by neglecting absorption in metal, i.e.,
assuming that I' = 0 and k;” = 0. The additional problem that occurs after the inclusion
of absorption losses is that () factors of bands are small, and it is difficult to recover them

from spectra obtained in FDTD analyses.
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