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Abstract

The primary objective of this graduate research is to study forced generation
of solitary waves in a rotating fluid and their stability properties. For axisymmet-
ric flow of a non-uniformly rotating fluid within a long cylindrical tube, an analysis
is presented to predict the periodic generation of upstream-advancing vortex soli-
tons by axisymmetric disturbance steadily moving with a transcritical velocity as
a forcing agent. The phenomenon is simulated using the forced Korteweg-de Vries
(fKdV) equation to model the amplitude function of the Stokes stream function
for describing this family of rotating flows of an inviscid and incompressible fluid.
The numerical results for the weakly nonlinear and weakly dispersive wave mo-
tion show that a sequence of well-defined axisymmetrical recirculating eddies is
periodically produced and emitted to radiate upstream of the disturbance, soon
becoming permanent in the form as a procession of vortex solitons, which we call
vortons. Two primary flows, the Rankine vortex and the Burgers vortex, are
adopted to exhibit in detail the process of producing the upstream vortons by the
critical motion of a slender body moving along the central axis, with the Burgers
vortex being found the more effective of the two in the generation of vortons.
To investigate the evolution of free or forced waves within a tube of non-uniform
radius, a new forced KdV equation is derived which models the variable geome-
try with variable coefficients. A set of section-mean conservation laws is derived
specially for this class of rotational tube flows of an inviscid and incompressible
fluid, in both differntial and integral forms. A new aspect of stability theory is
analyzed for possible instabilities of the axisymmetric solitary waves subject to
non-arisymmetric disturbances. The present linear analysis based on the model
equation involving the bending mode shows that the axisymmetric solitary wave
is neutrally stable with respect to small bending mode disturbances. To study
nonlinear interactions between the axisymmetric mode and bending mode, a new
model is derived which consists of two coupled equations for disturbances of the
two modes. The numerical results of the coupled equations show that the primary
axisymmetric soliton appears to maintain its own entity, with some oscillations of
its amplitude and an undular tail, inferring an interchange of energy between the
two modes, when subject to small non-axisymmetric perturbations.
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Chapter 1

Introduction

The striking phenomena of weakly nonlinear and weakly dispersive waves gen-
erated by resonant forcing have recently attracted much attention. One of their
remarkable characteristics is that a steadily moving transcritical disturbance can
produce, continuously and periodically, a succesion of solitons advancing upstream
of the moving dlsturbance and this phenomenon is deemed possible to occur in all
sohton-bearmg systems under resonant excitation. In particular, when a pressure
distribution on the free surface or a submerged topography is moving with a tran-
scritical speed in a water layer of constant depth, the upstream solitons have been
identified first numerically (Wu & Wu, 1982) and then validated experimentally
(Lee, 1985; Lee et al., 1989). Some theoretical model equations for simulating this
phenomenon have been proposed and, among these, the forced Korteweg-de Vries
(fKdV) equation has been adopted as an effective and convenient model by Akylas
(1984), Lee (1985), Cole (1985), Wu (1987) and Lee et al. (1989). In connection
with the exploration of the basic mechanism underlying this phenomenon, the
hydrodynamic instability of several forced steady solitons of the fKdV family has

been investigated by Camassa (1990), Camassa & Wu (1991) and Yates & Wu
(1992).
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In this thesis, we consider the analogous phenomenon arising in axisymmet-
ric flow of a non-uniformly rotating fluid confined within a long cylindrical tube
resonantly excited by a body centered at the axis and/or by a constriction of
the tube wall which is moving along the axis of rotation with a critical velocity.
The primary objective is to determine the general criteria in terms of the domain
of pertinent parameters in which the phenomenon of periodic production of up-
stream advancing solitary waves can manifest under external forcing sustained at
resonance. In a more searching quest, we make an attempt to explore the basic
mechanism underlying the phenomenon in question and to examine the effect of
periodic production of vortex solitons on the variation of vorticity distribution
and its transport.

Determination of flow induced by bodies moving steadily and axially in uni-
- formly rotating fluids is one of the classical problems in fluid mechanics and such
flows have ma;l'y interesting features. When the inertial forces are negligible com-
pared with the Coriolis force, the resulting flow is two-dimensional and it is well-
known that an axial column of fluid is pushed ahead of a body moving parallel to
the axis of rotation (Taylor, 1922). However, in the case with a body moving in
a non-uniformly rotating fluid, the problem becomes more complicated. Near the
critical state at which the axial velocity of body is very nearly the speed of the
longest wave, the nonlinear and dispersive effects jointly play an important role.
The interplay of these two important effects with the net linear dynamics can give
rise to the remarkable phenomenon of succesive production of vortex solitons in a
process which would be impossible on linear theory.

It has been known that free solitary waves can occur in non-uniformly rotat-

ing fluids as enunciated by Benjamin (1967) and Leibovich (1970). They showed
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that a stationary circulating eddy permanent in form can appear on the axis of
rotation when the ratio of the axial velocity to the swirl velocity reaches a certain
critical value such that the long wave speed vanishes (reaching the critical condi-
tion) and this was interpreted by them as a mild axisymmetric vortex breakdown.
Experimentally, Pritchard (1970) made an observation of such waves of finite am-
plitude propagating, permanent in form, inside a long cylindrical tube. In his
experiment, the waves of inward displacement in a vortex core was generated by
moving an annular body. He further attempted to generate the waves of outward
displacement by plunging a rigid body into the fluid but was not able to generate
any waves of permanent form.

In chapter 2, we present the basic equations for describing three-dimensional
motions of an incompressible and inviscid fluid within a long tube which may be
gradually divergent or convergent. For this class of flows, a set of the conservation
laws are deriv;:a for sectional mean flow in both differential and integral forms.

From this system of the basic equations, we derive in §3.1 the forced Korteweg-
de Vries (fKdV) equation to simulate weakly nonlinear and weakly dispersive
long waves propagating through a rotating fluid, with possibly the presence of
an axisymmetric slender body and/or an axisymmetrical topographical slender
deformation of an otherwise uniform tube wall which moves with a transcritical
velocity along the axis of rotation as forcing agencies.

Also considered are tubes with non-uniform but stationary wall with the
objective to investigate the deformation of free or forced nonlinear waves within
a gradually divergent or convergent tube. For this case, we derive in §3.1 the

fKdV equation with variable coefficients, which is analogous with the equation

first derived by Kakutani (1971) and Johnson (1972) for free waves in an open



channel of gradually varying depth.

In §3.2, we adopt two primary flows: namely, the Rankine vortex and the
Burgers vortex, to evaluate the rotating flow perturbed by a critically moving
slender body and/or an imposed tube wall deformation. Using the slender body
as a forcing agency, we determined the existence of a parameter domain in which
eddies with closed stream surfaces, which we call the vortez solitons or vortons, are
produced sequentially to move upstream along the axis of rotation, as simulated
by the numerical results of the fKdV equation. Each of these vortons is perma-
nent in form and behaves like a free solitary wave solution of the KdV equation
after having advanced a small distance ahead of the forcing region, thus attaining
their own entity after being produced in turn, and forming a procession of ever-
growing length. Of the two primary flows, the Burgers vortex is found through
our numerical experiments to be the more effective in generating forward moving
vortons. Durir‘lg- the preparation of a paper on the subject in chapter 3, we became
aware of the articles by Grimshaw (1990) and Hanazaki (1991) who had previ-
ously made the observation on the phenomenon in question. The present work
may be regarded as a complementary and further development in the following
new aspects. The Rankine vortex employed as a new primary flow as presented
in §3.3.1 has enabled us to attain considerable amount of analytical results in
closed form that may be of value to provide a standard reference for assessing
results from numerical approaches. The results exhibiting the processes of gener-
ating upstream-advancing vortons illustrated with streamlines are new, giving a
vivid flow visualization of this remarkable phenomenon. In addition, the local and
global conservation laws presented in chapter 2, which are exact for incompressible

and inviscid fluids, should be of value for practical applications of the result and
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for assessing errors of numerical results. The resulting wave resistance that must
be overcome by forcing agency furnishes a very sensitive measure of periodicity
and rate of growth for unstable modes that may be discernible only on very slow
time scales.

In chapter 4, we examine the stability of axisymmetric free solitary wave gov-
erned by the Kortweg-de Vries (KdV) equation and subject to non-axisymmetric
disturbances. Although in real flows, asymmetric disturbances are inevitable, they
have not received as much attention compared with axisymmetric ones. For ax-
isymmetric perturbations only, the stability of the axisymmetric solitary wave has
been well understood from the works of Benjamin (1972) for free waves and from
Camassa and Wu (1991) for the specific forced waves based on the KdV and the
fKdV equations, respectively. However, for non-axisymmetric perturbations, the
stability property of these primary waves has not been examined.

For non-a.‘x"isymmetric perturbations, the difficulty of the stability analysis for
solitary wave lies in that the KdV equation derived on the assumption of axisym-
metric flow is no longer the appropriate governing equation. Moreover, since the
primary flow is a superposition of the basic swirling flow and the axisymmetric
soliton, it belongs to the family of non-parallel flows to which the classical stability
theory cannot be directly applied. Under some assumptions appropriate for the
problem without losing any essential physical elements, we try to get an idea to
better understand the full three-dimensional flow features.

By assuming small perturbations with respect to the axisymmetric solitary
waves, a model equation for non-axisymmetric disturbances is derived in §4.2.
Particular attention has been paid to the disturbances with the non-zero radial

velocity component on the axis, which may cause a considerable change in the



-6 -

flow field. On linear theory, the model equation becomes the Schrodinger equa-
tion with a complex potential and the resulting eigenvalue problem is solved by
applying both a perturbation method and the numerical method described in
§4.3. Also a nonlinear interaction mechanism between the axisymmetric modes
and the bending modes is suggested and the coupled two model equations are

solved numerically to exhibit their interactions between the two modes in §4.4.



Chapter 2

Basic Equations and Conservation
Laws

In this chapter, the basic equations for motions of an inviscid and incompress-
ible fluid will be reviewed and the conservation laws for general three-dimensional

flows are considered in both differential and integral forms.
2.1 Basic equations

For an inviscid and incompressible flow, the velocity vector u and the pressure

p satisfy the Euler equation and the continuity equation

Ou 1
_— . - —= ‘u= 2.1
+u-Vu pr, V-u=0, (2.1)

where p is the fluid density. For the cylindrical coordinate system (z,r,0), (2.1)

can be written as

Ou 19p
—ét—-*-U‘VU— —;a—x, (2.2&)
Ov w? 18p
—_ . S i 2.2b
ot tu- Ve T por’ (2:25)
ow vw 130p
hudnd . —_— = 2.2
ot TVt T T e (2:2¢)
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ou 10(rv) 10w _
5z "7 or Trog " (2.24)

where

0 0 wd

The vorticity €2 defined by

Q=VAu, (2.3)

is governed by the following vorticity equation obtained by taking the curl of (2.1)

%%-i—u VQ=Q-Vu, (2.4)

and has the components in the cylindrical coordinate systems given by

_19(rw) 10v _10u Ow ov  Ou
Qm—; or rd8’ " roe oz’ o = ox  Or’ (2)

For axisymmetric flows (8(-)/86 = 0), the governing equations can be ex-
pressed in terms of two dependent variables: the Stokes stream function ¥(z, r,t)

such that

18y 18y
T ror’ VST e (2.6)

and the circulation about the x-axis, I'(z, r,t), or the angular momentum density
I(z,rt) = rw(z,r,t), (2.7)

where w is the azimuthal velocity. From (2.4) and (2.5), the azimuthal vorticity
Qg is related to i by
o2 9% 190
D2y (2 L 9 1O .
Qe = —D% (3$2+6r2 r@r) b, (2-8)

and satisfies the vorticity equation (2.4) as

8(D%y) 16(¢,D2¢) 2
a  r Oz, Tz

2T or
2 — —
(D «m L (2.90)




where

—————— : (2.9b)

The f-momentum equation (2.2¢c) can be shown to state the conservation of ma-

terial circulation

Dr
- = 2.10
where
D 0 0 0

For axisymmetric flows, (2.9) and (2.10) constitute of the governing equtions for
% and T'. In chapter 3 where we consider axisymmetric flows, (2.9) and (2.10)
will be used, and in chapter 4, where we study some non-axisymmetric flows, the
original set of equations (2.2) will be used.

“

2.2 Conservation laws for sectional mean
flow

We are primarily interested in analyzing rotating flows contained within a
long duct of radius r = ri(z,0,t) past an elongated body whose surface is at
r = ro(z,0,t), the flow being not necessarily axisymmetric. We shall use non-
dimensional coordinates based on a length scale R and time scale R/W,,, where
R and W,, characterize the tube radius and the basic swirl velocity, and so the
velocity scale is W,,, and the pressure scale is pW?2. With the continuity equation
and the Euler equation for the velocity components (u,v,w) and the pressure
p, so non-dimensionalized, we shall first explore some conservation laws for flow

quantities averaged over a cross-section of the duct for this class of rotating flows
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of an inviscd and incompressible fluid. For a flow quantity f(x,r,0,t), we define
< f >, the section-mean value of f, as

2 M (Z,G,t)

<f>= / / rf(z,r,0,t) dr dé. (2.12)

0 fo(“’,e»t)
By using the Leibniz rule for the derivative of a definite integral and invoking the
kinematical boundary conditions at r = ry and r = 71, one can readily show that
the material derivative of f satisfies the equation

df\ 9 o}
<E> =5 <f> +% <uf >, (2.13a)

where

d 0 0 0 wa
4_9_ ,9 .9 wo 2.13b
&=t e et T 00 (2.130)
upon further using the continuity equation. Taking f = 1,u,I' and, the kinetic
energy density, e = %(u2 + v% 4+ w?) in turn, using the continuity equation and

the Euler equation with (2.13) readily yield the following four equations in a non-

dimensionalized form

0 0
— —_ = 1
m(5)+3x<u> 0, (2.14)
5 5 27
—_—<uU>+—< (u2 +p) >= / (7'1"'1xpr1 - "'0"'0::pro)d0a (2.15)
ot Oz
0
9 9 7
5 < r> +5-< ul >= / (r1m16Pr, — ToT06Pr,)dY, (2.16)
0

2w

0 0

5 <>ty <uletp)>= —/ (rir1¢Pr, — ToTotPr, ) 46, (2.17)
0



- 11 -

where S(z,t) = 1 02" (r3(z,8,t) — ré(z,0,t)) db is the cross-sectional area and
pr, and p,, denote the pressure p at r = 79 and at r = 71, respectively. These four
equations represent the section-mean conservation of mass, x-momentum, angular
momentum and kinetic energy, respectively. They are exact for inviscid, incom-
pressible fluids; and their physical significances are as quite evident as expected
on the first principles of mechanics.

From these differential expressions for local conservation laws, a set of integral
conservation laws can be derived under the assumptions that all physical variables
except those for the primary flow vanish fast enough as |z| — oo (for the following

longitudinal integrals to exist) and by using the following Reynolds transport

theorem
d oo 27 1y oo 27 ™ df
7 /dm //rf drdf =/d1: //ra drdf
—/00 0 ro —00 0 7o

=/dx(%<f>+—a%<uf>).(2.18)

—00

By integrating both sides of the differential form of conservation equations (2.14)-
(2.17) with respect to = and using (2.18), we can derive the conservation laws in
an integral form. However, in the following, only the integal conservation laws
for axisymmetric flows will be examined. Then (2.14) implies the conservation of

mass and we have, from (2.15), the conservation of z-momentum M

o0 T o0
dM d
— =7 / dz / rudr| = / (r1T1oPr, — ToT0sPr, ) 2. (2.19)
— Q0 ) —00

From (2.16), the conservation of angular momentum J can be obtained as

T1

i dl| T
— =% / dx /rI‘ dr = 0. (2.20)

— 00 T0
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And from (2.17), the energy conservation is given by the relation

o0 ™ o

dE d

—oo 0 —o0
Here, clearly, (2.19) asserts that the total longitudinal momentum M is increased
at a rate equal to the longitudinal integral of the z-component of pressure force
acting on the flow boundary. By (2.20), the total angular momentum of axisym-
metric rotating flow is conserved. Equation (2.21) shows that dE/dt is equal to
the rate of working by the surface pressure.

When an axisymetrical body is moving through a tube, it experiences a re-

sistance due to the generation and radiation of waves. The wave resistance D,,

non-dimensionalized by mpW2 R? is given by

o0
D, =— /(rlrlzp,.1 — T'oT0zPr, ) AT (2.22)

-—00

Up to this point, all the above expressions in this chapter are exact. In the
following chapters, some approriate approximations will be introduced to facilitate

analysis of various physical problems of interest.
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Chapter 3

Forced Generation of
Vortex Solitons

In this chapter, we derive the governing equations for weakly nonlinear and
weakly dispersive waves in a rotating fluid propagating along a long cylindrical
tube under resonant forcing. The family of the forced KdV equation is derived for
different cases of basic flows and tube boundaries. Two primary flows, the Rankine

vortex and the Burgers vortex, are specifically considered for the applications.

3.1 A model for weakly nonlinear long
waves in a rotating fluid

By introducing the variable y = 72 for convenience, the axial and radial

velocity components (u, v) are given by

u = 21y, Y = =Yg, (3.1)

and the circulation about the x-axis, I'(z, y,t), or the angular momentum density,

is

I(z,y,t) = rw(z,y,1), (3-2)
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where w is the azimuthal velocity. With the fluid assumed inviscid, the stream

function v and the circulation I' satisfy equations (2.9) and (2.10), or

D2 + 20, 0%, — e (2 + B g, (33)
T; — 24,1y + 29, =0, (3.4)

where
D? = 55’55 + 4y:—;, (3.5)

subject to the kinematic boundary conditions at the axis and at the wall as will
be specified.
For the primary flow field, we assume that the axial and azimuthal velocity

components may both be arbitrarily sheared in the radial direction

U(y) = (UO(y)a 0, WO (y))’ (36)

where Up(y) and Wy(y) are arbitrary functions of y which represent a primary
cylindrical flow of the inviscid fluid undisturbed by waves, assumed to be suf-
ficiently smooth and stable to axisymmetric disturbances, i.e., they satisfy the
linear stablity criterion of Howard & Gupta (1962), I'T'y > y21/)!2m in the present
notation. In this connection, we note that the occurrence of the remarkable phe-
nomenon of resonantly forced rotating flows actually requires Wy to be sheared
because the nonlinear effects disappear, so does the resonant forcing, when W is
constant.

Concerning the boundary conditions, we have three cases of interest. The first
is when the medium is uniform, i.e., when the tube radius is constant throughout

and the fluid is free of any other boundaries, in which case we speak of all the
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wave motions being free. The second is the case of forced motion produced by a
slender body, or a tube wall constriction as a local departure from the constant
tube radius, or an annular body or a combination of them moving along the tube
axis as forcing agencies, especially when they move with a transcritical speed. The
third is when the free or forced waves are propagating through a tube of stationary
non-uniform wall (see figure 3.1).

Before we proceed with consideration of forced wave motions, we first. reca-
pitulate the derivation of a long-wave model, of the KdV family for nonlinear and

dispersive waves in rotating fluids.

- 3.1.1 Free solitary waves

Weakly” n9{1hnear long waves have been extensively studied and the procedure
to obtain appropriate evolution equations is well known (e.g., Whitham, 1974;
Dodd et al.,, 1982). If we follow the procedure adopted by Leibovich (1970) for
the present problem, we may use the tube radius R to scale radial distances,
some typical wave length ) for axial distances, the maximum swirl speed W, for

velocities and A/W,, for time. The long waves will then be characterized by two

important parameters:

€= R2/)\%, a=a/R, (3.7)

where a is a typical wave amplitude and ¢ is by definition small for long waves.
We are interested in weakly nonlinear and weakly dispersive motions, in particular

the Boussinesq family with a = O(e).

It is however somewhat simpler to adopt R for scaling all distances and in-
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troduce the following dimensionless variables (with primes)

=Rz, y=R%, t= —W};—t’,, Y =W,,R*Y/, T'=W,RI', (3.8)

m

so that, after dropping the primes, (3.3) and (3.4) remain unaltered in form.
To describe evolution of unidirectional (left-going) long waves of the Boussinesq
family, we adopt the following stretched coordinates in the wave frame moving

with velocity cg in the negative x-direction (after Gardner & Morikawa, 1969)
&= e%(:c + cot), T = €?t, (3.9)

where the phase velocity ¢y of infinitesimal long waves depends on the primary
flow velocity field and will have to be determined. Here, the factor €2 signifies
the smallness of the ratio R/A and the factor €% arises in accordance with the
condition of’a = O(e).

We further assume for the stream function % and the circulation I' the ex-

pansion:
P& 73y) = Yo(y) + e1(é,759) + E€a(€,759) + O(), (3.10)
T(¢,7;9) = To(y) + €T1(€,739) + €T2(6, 759) + O(%), (3.11)
where ’
1
=5 [Uwds,  To=rWo(). (3.12)
0
Substituting (3.9)-(3.11) into (3.3) and (3.4) yields the first-order equations in the
form
Y1, m5y) = 1(y) A€ 7), Ti=m(y)Au§ ), (3.13a)
g 2Ly ¢1, (3.13b)

" To + <o
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L¢y =0, (3.13¢)
where
t= % iw), aly) = — Loly”_ _ (3.13d, e)
= dy2 a\y), q\y) = (U0+C()) (U0+C0)y2 0 | . ’

and the prime means differentiation with respect to y. The boundary conditions,
based on the assumed regularity condition for ¢ and I at infinity, can be prescribed
as Y(&,7;0) =0 and (£, ;1) = ¥o(1), whence, accordingly,

$1(0) =0,  ¢:1(1) =0, (3.14)

the corresponding kinematic conditions being v(£,7;0) = 0 and v({,7;1) = 0.
The system of homogeneous equations (3.13) and (3.14) constitute an eigenvalue
problem whose solution determines the eigenvalue c¢y. As (3.13) invovles a variable
coefficient g(y), we might encounter singular q(y) with U + cp = 0 in the interval
(0,1). Howeve?, Chandrasekhar (1961, §78b) has shown that there exist at least

two eigenvalues, say cp,, and cop, such that

—com < min Up(y), —copm > max Uy(y), 3.15
om < _min, o(v) oM > max o(y) (3.15)

provided the flow is stable. Thus the eigenvalue problem is a regular one (in
the Sturm-Liouville sense) for which some practical procedures of solution can be
found in Leibovich (1970) and Chandrasekhar (1961).

The second-order terms in (3.3) and (3.4) yield the equation for 2

Lipoe = fi1(y)$r141r + fZ(y)d’%AlAlf + f3(y)d1Areee, (3.16a)

where

Aly) = _1 (2q+ Yo ) (3.16D)
Up + o Up+cy)’
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f2(y) =~ 2 q+ s 4 1o ( To )! (3.16¢)
Up + co (Uo + co)’y2  #2(Uo+co) Uo+eo’ |’
1
= ——. 3.16d
f3(y) r” ( )

The solvability condition for (3.16) for %2 can be obtained by taking the inner
product of (3.16a) with ¢, the solution of (3.13c), where the inner product of any

two functions f(y) and g(y), both being real on y for 0 < y < 1, is defined as

1
(1,9 = [ 1@)a)dy. (3.17)
0
This operation readily gives for the wave amplitude function A; (¢, 7) the equation

A+ 61A1A1§ + c2Aigee =0, (3.180.)

o = (f2,$1°) e = (f3,41%)
(f1,1%)’ (f1,61%)’

since the inner product between ¢; and the left-hand side of (3.16a) gives the

(3.18b)

result
‘ 1
(f1, Lpoe) = / $1(83 + Q)2edy = (Pragy — D1yae) o, T (L1 2e) =0 (3.19)
0

on the account of (3.13c), the operator L being self-adjoint, and both ¢; and
1o satisfying (3.14). Thus we have the KdV equation which was first derived by
Leibovich (1970) for long waves in rotating fluids.

Finally, absorbing the order factor by setting A = €A; + O(€?) and restoring

the original coordinates (z,t) used for the specific primary flow, the KdV equation

has for the left-going waves the form

Ay —cgAzr +c1AAL + cpAzzr = 0. (3.20)
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This equation has the classical solitary wave solution

A(z,t) = a - sech? 2\/;71 (co — ﬂ)t) (3.21)
which is a one-parameter family in a as a constant wave amplitude, and also
the cnoidal wave solution as waves of permanent form. These solutions were
found by Benjamin (1967) and Leibovich (1970). In particular, when a wave
amplitude reaches the critical value at which the stagnation point appears at

the axis of rotation, the streamsurfaces of the free solitary wave solution have

the recirculating pattern of axisymmetrical vortex eddies enclosed by a stream

surface.
3.1.2 Forced nonlinear waves in rotating fluids

Here we introduce a slender body aligned at the tube axis, or a localized small
perturbation of the tube wall radius, or a thin annular body or a combination
of them as weak forcing disturbances, moving parallel to the tube axis. The
governing equations, (3.3) and (3.4), remain unchanged. The only difference from
the free wave case is in the kinematic boundary conditions at these new surfaces.
Disregarding any annular body for the moment, the boundary conditions at the

tube axis and tube wall due to the imposed forcing disturbances are

(U +2¢y)boz + 29, =0  at y =12 =by(z + Ut), (3.22a)

—(U + 24Py )b1z + 240, =0 at y—1=12—1=—by(x+Ut). (3.22b)

Further we assume that the left-going disturbances y = rZ = bo(z + Ut) and

y—1=r—1=—bi(z + Ut) are of O(¢?) and the transcritical velocity U of the
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forcing disturbances can be detuned from the criticality by a margin of O(e),
bo(z + Ut) = €2by(z + Ut),  bi(z + Ut) = é2by(z + Ut), (3.23)
U = co(1 + €6 + O(€?)), (3.24)
where ¢ is O(1). The scale of weak forcing is dictated by the solvability of the
amplitude function as first found (Wu, 1987) for the channel flow problem and the
same as will be seen below to hold for the present case. The range permitted for
the detuning will also become clear later. For simplicity of analysis, we shall adopt
the stretched coordinates (3.9) and the asymptotic expansion (3.10) and (3.11).
Substituting (3.10), (3.23) and (3.24) in (3.22a,b) and expanding the functions
involved into their Taylor series about y = 0 and y = 1 respectively, we find that
the boundary conditions are unaltered in the first order and in the second order
yield
(6,750 = —3(Uo(0) + co)lu(6,7)  ab y=0,  (3:250)
Va6 = 5O0) +elha(6r)  at y=1,  (3:260)
where (§,7) are defined by (3.9), and by and b; are taken positive (or negative)
when they reduce (or enlarge) the cross-sectional area of the tube. We note that
the forcing bodies have radial dispacement at the tube axis ry = bo% = O(e) and
at the tube wall 71y — 1 = O(b;1) = O(€?), both being of the assigned orders so as
to induce boundary perturbations in the second-order term 1. This implies that
the blockage ratio defined as the ratio of the cross-sectional area of disturbance
to that of tube are of the same order for both forcing bodies.

The first-order problem for v; therefore remains intact while the second-order

expansion again yields equation (3.16),

Lpae = fr(y)h1A1r + fz(y)fﬁ%AlAlg + f3(y)P1A1cce, (3.16a)
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where f1,f2 and f3 are given in (3.16b,c,d). To satisfy the solvability condition for
12, we take inner product between the above equation and ¢; in which operation

the left-hand side of (3.16a) under conditions (3.14) and (3.25) gives

1
1
(b1, 1020) = [ 61(0% + aedy = (Brbaey — brythas)| + (L1, v26) = ~uyiacl
0

= —%(UO(O) + c0)b14(0)boe — %(Uo(l) + co) 1y (1)bag

= (fl) ¢¥)FE? say, (326)

so that, when combined with the contribution from the right-hand side of (3.16a),

we obtain the forced KdV equation as
A + c1A1Aqe + c2A1gee = Fg (3.27)

where c; ané ¢y are given by (3.18b) and F' by (3.26). After recovering the orginal
physical variables = and ¢, we have for the amplitude function A = €A; + O(€?)

and the forcing function F = e2F' the equation
At — oAz + 1 AA; + oAz = Fr(x + Ut). (3.28)

Finally, we may express the equation with respect to the body frame defined by
X =z +Ut, T =t in which the steadily moving disturbance appears stationary,

and we have

AT+(U—Co)Ax+ClAAx+CzAxxx=Fx(X), (3.29)

where

F(X) = Cgbo(X) + C4b1(X), (3300.)
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L(Us(0) + ¢)#}(0) . _ _3(0Q1) + o)y (1)
wed (foed)

From this expression it is readily seen that | U — ¢ |= O(€) is required to conform

C3 = —

(3.30b)

with the order estimate of the other terms of (3.29).

From the earlier momentum consideration (see (2.19), (2.22)), we have seen
that, when a body moves in a rotating fluid, it experiences a resistance due to the
generation and radiation of waves, which can be determined as follows. First, we

assume for the pressure p the same asymptotic expansion as (3.10) and (3.11),
p(IL', Y, t) = PO(y) + €p1 (SB, Y, t) + 62])2(11, Y, t) + 0(63)' (331)

With (3.10), (3.11), (3.31) and 8(-)/8z = O(e?), we have from the Euler equation

the expressions for P; and p; in terms of their derivatives as

FZ
Poy =35 (3.32)
Pl = — 2(¢1yt + U0'¢1y:r: - U(’)d}lz), (333)
Tl
P1y = ;2 L (3.34)

The first-order pressure p; can be easily integrated, by use of (3.13), to give
p1 = 2{Up1 — (Uo + o)1} A(z, 1). (3.35)

On account of by = O(€?) and by = O(€?), the wave resistance D,, from (2.22) can

be written as

/ {b12(P)y=1 + boz(P)y=0} dz + O(e*) (3.36a)

- / {b1 (pz)y=l + bo(pz)y=0} dz + 0(64)' (3.36b)

-—00
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Using (3.14), (3.30) and (3.35), the wave resistance D,, is given, to leading order,
by

oo

Do =4(f1,#) [ Fule+ UA(s)do = 4(£1,6D) [ Fx(0AX,1ax. (337

-0

As the previous numerical solutions of the fKdV equation obtained for the
open channel flows have shown the process of periodic generation of upstream-
advancing solitons has been determined under the general premise of resonant
forcing and found to be in broad agreement with the experimental observations
by Lee (1985) and Lee et al (1989). Since the fKdV equation here seems to be
generic, we should expect, in principle, that an analogous process of periodic
generation of forward-moving eddies would have to arise, permanent in form, in

rotating fluids under resonant forcing.
3.1.3 Non-uniform tube wall

In this section, we shall consider the more general case of free or forced non-
linear waves propagating within a long variable cylindrical tube, with stationary,
gradually divergent or convergent sections. The forcing agents at the tube axis
and the uniform tube wall considered in the preceeding section are stationary in
the frame moving with the linear long wave speed. But the non-uniform tube wall
now under consideration is no longer stationary in the wave frame. The bound-
ary condition at the central axis due to the steadily moving disturbance is still
given by (3.22a) as before and the boundary condition at the stationary tube wall

becomes

—Pybiz +Y: =0 at y—1=r2—1=—b(z). (3.38)
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In this section, we use the frame in which the non-unifrom tube boundary is
stationary. Further we assume the wall boundary variation to have an amplitude
of O(€), which is lower in order than the amplitude of steadily moving disturbances

at the wall, O(€?), as considered in the previous section, and can be written as
bi(z) = eb1(n), n=¢€' . (3.39)

The disturbance at the tube axis is assumed to be moving with the critical speed
and to have the same form (see 3.23) as before. Then we can seperate the stream

functions for disturbances into steady and unsteady ones, in place of (3.10), as

¥ =o(y) + ¥ (&, 139) + % (m; ), (3.40a)
WU (& m5y) = e (€, 59) + Y (€, 739) + O(E), (3.400)
%o (n;9) = evf (n;y) + €45 (n; y) + O(e%), (3.40¢)

where the unsteady disturbances, denoted by ¥V (¢, 7;y), moves with the speed of
the linear long wave and the similar expressions for 'V (¢, 7;y) and I'S(n;y) are
assumed. The steady solutions ¥ (n;y) are necessary in this analysis since the
primary axial velocity (3.6) is now not quite (to order €) an exact solution to the
Euler equation for non-uniform wall boundary.

Substituting (3.40) into (3.22a) and (3.38) yields the boundary conditions in

the first and second order
U . _ Sl _ —_
1 (5)7-1 0) - Oa 1 (7” 0) =0 at Y= 0, (3.410.)

¥1 (§,751) =0, Y (1) = %Uo(l)f)l,, at y=1, (3.41d)

W (6,70) = —5(0o(0) + albo(6,r)  at y=0,  (3420)
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(€, m51) = Pl (6,7 )by + 98 (¢, 7 )by, at y=1. (3.42b)

Substituting (3.40) into (3.3)-(3.4) gives the same equation for ¥ as (3.13) and

the following equation for 47 in the leading order

Y (my) = oa(y)bi(n),  Lowr =0, (3.43a)
1
A =0, @)= 1), (3.430)
where
d? 1 [Toly’ "
L —_ [ pe— —U . .43 d
o=l wl)= | T~ (3.43¢,4)

Here we remark that ¢; in (3.43) is different from the ¢; in (3.13). Since (3.43)
reduces to (3.13) for ¥¥ (£, 7;y) when ¢y = 0 and the boundary conditions (3.43b)
are non-homogeneous, we assume that ¢y = 0 is not an eigenvalue of (3.13) for
solutions to (343) to exist. When ¢y = 0 is an eigenvalue, which means that waves
are stationary in the presence of the non-zero axial velocity, the fKdV equation
derived in the preceeding section could be the more appropriate mathematical
model in this situation. Since our interest is here primarily in unsteady wave
generation due to steady disturbances moving with the critical speed rather than in
stationary waves which have been studied in connection with the vortex breakdown
phenomenon, non-zero ¢ is assumed hereafter. To study the effects of non-uniform
tube wall on the evolution of A;(£,7), we will seek the higher order equations for
unsteady disturbances ¥¥ (¢, 7;y). For the steady part of solutions which are
the leading order corrections to the primary flow due to the non-uniformity of
stationary tube wall, the higher order terms 3 (1;y) (n > 1) can be obtained by

further expansions but it will not be pursued here. The second-order terms of
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(3.3) and (3.4) yield the following equation for ¥ (¢,7;y)

Lipoe = fi(¥)dr141r + f2(y)$3 A1 Are + fa(v)d1Areee + fa(y)br1de + f5(y)bigAa

(3.44)
where f1,f2 and f3 are given in (3.16b,c,d) and
2 , 12 To (rg))’
= - — + —_
f4(y) U() + co I:Q(] + yzUO(UO + Co) yz(UO + CO) U() (p1¢1
2 col'oT'g ] /
- - 3.45
o[-+ i e, (3.450)

2 [, 0’ Lo o\
=— + +
f5(y) Uotco |? y2Us(Up + co)  y2(Up + co) (Uo + 60) e

_ 2 [( _ )_ COPOF6
Upt+oo |10 y2Uo(Up + co)?

] P11 (3.45b)

By using the same solvability condition as (3.26), we readily obtain the evolution

equation for waves due to steadily moving disturbances along the central axis of

the non-uniform tube as

Aty + c1A1Asg + ca Argee + cabi () Are + cabiy(n)A = F, (3.46)

where c¢; and c; are given by (3.18b), F by (3.26) and the coefficients of two new

terms are given by

2 2
o= |+ (#0) /D, ea= [Uns+ (610)7] 6D
(3.47)
Upon recovering the original physical variables (z,t) for the amplitude function

A = €A1 + O(€?) and the forcing function F = €2F, the equation becomes

At - (Co - C3b1)Az + ClAAz + czAzzz + c4ble = F,,(:B + Ut). (3.48)



By introducing the local wave velocity c(z) = cp — c3bi(x), (3.48) becomes
Ay —c(z)Ag + c1AAg + coAzzr — Cac(z)(log c(z)) A = Fo(z 4+ Ut), (3.49)

where &4 = c4/c3. This is analogous to the various forms of equations derived by
Kakutani (1971), Johnson (1972), Shuto (1974) and others to study solitary waves
in an open channel of gradually varying depth. According to this model, the waves
governed by (3.49) are one-directional and the reflected waves are neglected. How-
ever, it has been argued that the waves reflected by a gradually varying channel
would be much weaker than the incident wave and hence the energy must be adi-
abatically invariant (see, e.g. Miles 1979). To determine the reflected waves and
their effects on energy conservation, the Boussinesq equation model often used in
study of an open channel flow is desirable in this case.
It is also of interest to consider the special case of basic flow with Uy =
0, then (4.43;,)’ has the ¢; = 0 under the homogeneous boundary conditions
(3.43b). Therefore, the effects of non-uniform wall disappear in equation (3.49)
since f4 = 0 in (3.44) and some new equations will be required. By assuming
bw(z) = 1 =by(z) = O(1) and by, = O(e3/2), which are the original assumption
of Kakutani (1971) and others for variable open channel flows, the effects of non-
uniform wall can be taken into consideration. Without showing the details of
derivations, the resulting evolution equation for A, in case of Uy = 0, can be
shown to have the same form of (3.49) but non-constant coefficients as
As—o(@) A +c1(z) Adg +3(2) Agee —o(x) (108 9(z)) s A = %Ft(x+Ut), (3.50)

where g(z) is given by

1 by () Tl .,
r) = —— dy, 3.51
o@) = [ gty (3.51)
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and c;(z) and cp(z) are functions of z which can be determined from (3.16) and
(3.18) with Uy = 0 by replacing cq by the local long wave speed c(z). The long
wave speed c(z) can be found by solving the eigenvalue problem (3.13) with ¢(x)

in place of ¢y with the boundary conditions

$1(0) =0, ¢1(bw(z)) =0, (3.52)

where z can be regarded as a parameter in solving the eigenvalue problem for
gradually varying tube radius.

For free waves (F = 0), by solving an equation similar to (3.49) and (3.50),
Johnson (1972) studied the fisson of solitary wave climbing up a shelf, first dis-
covered by Mei and Madsen (1968), in an open channel flow. In the following
sections, we will concentrate on the phenomenon of forced generation of vortex

solitons rather than the deformation of free waves in non-homogeneous media.
3.2 Applications to two primary flows

Two basic flows are chosen as examples to illustrate the phenomenon of gen-
eration of upstream-advancing vortex solitons. One is the Rankine vortex which
is the simplest model flow in which the swirl velocity is non-uniform in the radial
direction. The Rankine vortex is a rather idealized mathematical model but some-
times it is a good approximation to the more realistic vortex flow. The other basic
flow is the Burgers vortex whose velocity profile has been observed in experiments
of swirling flow (Harvey, 1962; Sarpkaya, 1971) as being nearly realistic. Although
the Rankine vortex model cannot be directly applied to the previous analysis due

to a discontinuity of vorticity inside the tube, we choose the Rankine vortex as
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the first example since we can determine the coefficients of the fKdV equation

explicitly and to compare these results with the numerical results for the Burgers

vortex.

3.2.1 The Rankine vortex

This primary flow has a vortex core of solid-body rotation with constant
angular velocity 2 and an irrotaional potential vortex motion outside the vortex
core and within the tube wall at r = R. Accordingly we assume that (in this

section, the original coordinate r instead of y will be used for convenience)

Uo(r) = 0, (3.53a)

r for0<r<1
Wo(r) = (3.53d)
for1<r<R

31~

where we use the vortex core radius r. to scale all distances and the maximum
swirl velocity r. as the velocity scale.

Since this flow has an additional free boundary which is the vortex surface
originally at » = 1, the analysis is more complicated than before. Inside the
vortex core (the inner region, 0 < r < 1 + { where ( is the displacement of the
vortex boundary interface), the stream function 1 and the circulation I' still satisfy
equations (3.3) and (3.4) with r as an independent variable. In the irrotational

flow region (the outer region, 1 4+ ¢ < r < R), the stream function ¥ satisfies the

vorticity-free equation:
¥ o'W 18¥

oz Y orr Tror (3:54)
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and the circulation 7Wj is constant (equal to 1) in the outer region.
The boundary conditions at the interface (r = 1 + ¢) require the continuity

of axial, radial and swirl velocities which can be written as
v =7, V=V, r=1 at r=1+((z,t). (3.55a, b, c)

These three kinematic boundary conditions (3.55) will ensure that the surface
of discontinuity in vorticity is a material surface and the pressure is continuous
across this interface. For the external forcing excitation, we consider a slender
body centered at the tube axis and a topographic disturbance at the wall, both
moving to the left in this primary flow. Then the boundary conditions at the body

surface (r = ro(z + Ut)) and the disturbance at the tube wall (r = ry(z + Ut))

are

AUro + U)o + 9o =0  at 7 =ro(z+ Ut), (3.56a)

Uri+ 9 )r1. +¥, =0 at r=r(z+ Ut). (3.56b)

Adopting the stretched coordinate system (3.9), we asssume the same expan-

sions for ¥ and ¢ as ¢ in (3.10)
U =ely(§,7;7) + €T(€,757) + O(e%), (3.57)

¢ =€C(é,7) + €4a(€,7) + O() (3.58)

and 79 and |R — )| are assumed to be O(e) and O(e?), respectively, for the
consistency of analysis, as previously shown. Substituting (3.57) into (3.54) and

using (3.13), we have for 91, ¥; and T'; the first-order equations in the form

Iy =m(r)Au(é, 1), Y1 = ¢1(r)Ai(€,7), ¥ = ®(r)A1(&,7), (3.59)
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2
m= ad’la Li¢1 =0, L%, =0, (359b)
# 18 4 # 10
= — - - 4 == - —-—. 3.59
In a2 ror T co?’ L or:  ror (3:59)

Substituting (3.10-3.11) and (3.57-3.58) into (3.55-3.56) yields the boundary con-

ditions in the first-order
$1(0) =0,  @1(R) =0, (3.60a)

s1(1)—®1(1) =0, (1) —&}(1) =0, (3.600)

and, from (3.55¢), the displacement of interface (; is given by

G = —5m(DALE 7). (3.600)

From (3.59),with boundary conditions (3.60a,c), we have the first-order solutions

P =rJ1(Br) A&, 7), (3.61a)
I = ém(ﬂrml(z,f), (3.618)
¥, =o(r? — R?)A;(&,7), (3.61c)
G = -;1;.11 (B)As(€,7), (3.61d)

where J,, denotes the n-th order Bessel function and 8 = |2/cy|. Two unknowns,

o and B (or ¢g), can be determined by making use of (3.60b), giving

AB) 1. o
S = 51— B (3.62a)

= %,BJo(ﬂ). (3.62b)
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An infinite number of roots for § can be found for a given tube radius R by solving
equation (3.62) and each S lies between jj ,, and j; .n, the n-th zeros of Jy and Jy,
respectively. By choosing the first root 3 for which the eigenfunction has no zero

in0<r <R,

Jo,1(= 2.4048) < B < j1,1(= 3.8317), (3.63a)

the phase velocity of the long wave, ¢y non-dimensionalized by r, lies in

ji(= 0.5220) < |co| < ji(= 0.8317). (3.63b)
0,1

L]

To determine the amplitude function A;(¢,7), the second-order problems
must be considered. The stream function ¥, for the inner region has to satisfy

equation (3.16a) in terms of r (instead of y)
8
Lytpge = Z%141r — drhigge, (3.64a)
0
while ¥, for the outer region, from (3.54), satisfies the following equation
Lz‘I’zg = —(I>1A1££€. (3.64b)

The second-order expansions of (3.55) and (3.56) yield the relations

e = —%qu — P1rTo at r=0, (3.65a)

VYoe + C1b1er = Yoe + Wi, at r=1, (3.650)
Yor + G¥rrr = Yor + (¥ at r=1, (3.65¢)
Uy = R(Fy) at r=R, (3.65d)

where 79 = €7y and R — r; = €27,, have been used. Substituting the first-order
solutions (3.61) into (3.65), we have the boundary conditions of the second order

Ya= -3 at =0, (3.664)
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Yo — P =0 at r=1, (366b)
4

Yor — U, = —ng (B)A2  at  r=1, (3.66¢)
0

Uy = co Ry at r = R. (3.66d)

Define the following inner products

(f,9)'= /1
0

To satisfy the solvability condition for 1 and ¥,, we take the inner products

e

R
fO)gr)dr, (59 = [ Liewdr (3670,
1

between (3.64a) and ¢; for 0 < r < 1 and between (3.64b) and ®; for 1 <r < R,
1 o 8 [ € o
(61, L1hag)" + (P21, L2 Wge)° = 6—3(1,05%) Arr = {(1,61)" + (1, 81)°} Argee. (3.68)
0

The factor 1/7 in the definition of the inner products is to make the operators L,
and Ly formally self-adjoint. The left-hand side of (3.68) with use of (3.59) and
(3.60) gives the result

(1, Latpog)* + (P1, LaWa¢)®

1 1 1 (1 1 R .
= <;¢1¢2£r - ;¢1r1/)2§) Io + (L1¢1,92¢)* + (;@1\1125, — ;‘I)lr\llzg) |1 + (L ®y, Uae)

=~ e = coB To(B) g — IO i (3.69)
Combining the contributions from both sides of (3.68), we have the forced KdV
equation (3.27)

A1r + c1A1 Arg + 2 Argee = F, (3.27)
of which the coefficients can be evaluated by substituting (3.61) into (3.68) and
(3.69), with the results as

a=0 a— o)+ 20 - Lnene), G
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3 [202(R*InR+ R? — 3R* — 1
cd [20%(R*In Y 7)
— +1 3.70b
8 : b] ( )

Cy = —

N N . 5 N 21 2 J
F = C3b0 + C4b1 = C3'I'g + C4(2R’rw), C3 = —5—5, Cq4 = _ﬁ Oéﬂ) (3706)

Upon recovering the original physical variables and using the body frame (X, T)
defined by X =z + Ut and T =t as before, we finally obtain (3.29)

AT+ (U — c)Ax + c1AAx + c2Axxx = Fx(X), (3.29)

where cy,c2, and F are given by (3.70a-c).

Since the signs of ¢; and c3 in (3.70) are independent of the sign of ¢, (the
direction of propagation), —A(—X,T) is a solution for the negative U and cg
if A(X,T) is a solution of the fKdV equation (3.29) for the positive U and c.
Therefore we need only consider the positive U and ¢, (the left-going waves) in
this section.

As an example, we choose a tube radius R = 2,3 and 4 (normalized by
the vortex core radius) and obtain 8 from (3.62a) by applying Newton-Rapson’s
method. Subsequently, we can determine o from (3.62b) and all coefficients in

fKdV equation from (3.62b) and (3.70). The results are shown in table 3.1.

R Jé] o Co ca c2 c3 C4

2 2.6411 -.1531 7573 .7318 -.0816 -.4104 .0476
3 2.5025 -.0621 7992 9111 -.1315 -.4751 .0236
4 2.4584 -.0338 .8135 .9686 -.1694 -.4999 .0137

Table 3.1 The coefficients of the fKdV equation (3.29) for tube radius R=2, 3 and 4.
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In the following numerical calculations, R = 2 is chosen as a representative
case. The r-dependence of the first-order stream function and axial velocity are
shown in figure 3.2. Without any forcing disturbance (F = 0 and U = ¢p), we
have the classical free solitary wave solution (3.21). For the streamlines to form a
recirculating eddy at the axis of rotation, we first find the minimum amplitude of

solitary wave a by requiring that the axial velocity at the axis vanish, which gives

Co
la| > lﬂ Y (= 0.3159). (3.71)
The streamlines of a free solitary wave corresponding to the amplitude a = —0.4 in

a moving frame in which the eddy appears stationary are shown in figure 3.3 and
this eddy was interpreted as a mild axisymmetric vortex breakdown by Benjamin
(1967).

For the case of forced waves, we consider a cosine-shaped body moving along

the tube axis, with the body radius

ro(z,t) = rp cos? [%(:1: +U)|  for  —S<(@+UN< (3.72)

L L
2 2’
and ro(z,t) = 0 elsewhere. We could choose a typical blunt body (like a sphere) as
a forcing agent which might be more effective in generating upstream-progressing
solitons, but the additional jump discontinuities in body slope at the leading and
trailing edges would require special consideration as such singularities of body ge-
ometry are not consistent with our original assumptions. For the class of smooth
body geometry as given by (3.72), with say 7o, /r¢ = O(e?) uniformly bounded,
we choose a typical maximum radius of body 7, = 0.35 (the ratio of body radius

to tube radius=0.175) and a body length L = 2. To solve the fKdV equation



- 36 -

(3.29) numerically, we shall adopt the scheme of Zabusky and Kruskal (1965), i.e.,
the leap-frog method in time and the central difference in space. As can be seen
in figure 3.4a, the time sequence of evolution of —A(X,T) from the rest, for the
detuning parameter § = 0, show the solution with salient features known to be
characteristic of the numerical solutions of the fKdV equation. After the distur-
bance has moved with the critical speed for a certain time, a solitary wave emerges
in front of the disturbance, breaks away to run ahead of the disturbance as a free
wave and is later followed by another new solitary wave similarly produced and
radiated. This whole process of generation of upstream solitons seems to continue
periodically and indefinitely while a uniform depression just behind the distur-
bance is being prolonged and is followed by a train of cnoidal-like trailing waves.
The corresponding streamlines in a moving coordinate (X, T') at several time in-
stants are shown in figure 3.4b. More numerical results of the fKdV equation will
be disscussed ‘o!ver a range of pertinent parameters in the next section. So far
we have obtained only the solution to the first-order problem (modelled by the

nonlinear evolution equation (3.29) for A) of this specific phenomenon.

3.2.2 The Burgers vortex

The Burgers vortex is a frequently observed velocity profile that seems to
occur in non-uniformly rotating fluids in a long cylindrical tube in studies for
simulating various vortex generation mechanisms (see Leibovich, 1984). Here we
consider the following primary flow which is non-uniform in the radial direction

and linearly stable with respect to axisymmetrical perturbation by the criteria of
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Howard & Gupta (1962)

Uo(y) = Ume™¥, (3.73a)

To(y) = Tm(l — e~42Y), (3.73b)

where all variables are non-dimensionalized by the maximum azimuthal velocity
at y = 1.2565/pg (or 7 = 1.1209/,/11z) and the tube radius. Thus this flow has
three free parameters (U, i1, #42) noting that, for a given u; which measures
the concentration of the axial vorticity, I',, is scaled out. Also, U,, is the ratio
of the maximum axial velocity to the maximum azimuthal velocity. Substituting
(3.73) into (3.13) and solving the resulting eigenvalue problem numerically, we can
determine the first eigenvalue ¢y and the corresponding eigenfunction ¢; (which
can be normalized). Since this eigenvalue problem has a regular singular point at
y = 0, we may obtain a series solution about y = 0 with a suitable normalization
and find the values of ¢1 and ¢] at y = yo << 1. Taking these as initial values, we
find the solution using the 4-th order Runge-Kutta method and the corresponding
eigenvalue using the secant method. Subsequently, all the coefficients in the fKdV
equation can be determined by using (3.18) and (3.30).

For numerical computations, we choose y; = 5, uz = 12 and U,, = 0.6, with
the corresponding velocity profiles of the primary flow shown in figure 3.5. Due
to the non-uniformity of the basic axial velocity, the right-going (RG) wave is not
symmetric with the left-going (LG) wave. The absolute values of ¢; and c3 are
found to depend on the choice of normalization constant for the eigenfunction but
the final values of the stream function are invariant. Here, the value of ¢ = 1
at y = 0 is used and the corresponding eigenfunctions of the stream function and

axial velocity are shown in figure 3.6. The coefficients of the fKdV equations are
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shown in table 3.2.

p1o pe Un o< c1 c2 c3 Cq

LG 5. 12. 0.6 4557 7316  -.0137  -11.5056  .1530
RG 5. 12. 0.6 -1.4906  .7790  .0195 -15.4165  1.0225

Table 3.2 The coefficients of the fKdV equation (3.29) associated with the Burgers

vortex

The numerical solutions of the fKdV equation are obtained for the same axisym-
metric forcing as (3.72), now with r, = 0.1 and L = 2. The perspective view of
A(X,T) and the drag D,, given by (3.37) are calculated for the detuning parame-
ter § = 0; the results are shown in figure 3.7a,b with the corresponding streamlines
shown in figure 3.8a,b. The distance traversed by the body, denoted by &, with
respect to the tube radius is &, = cot. At t = 12 (£ = 5.35 for LG waves ac-
companying the left-going body and &, = 17.89 for RG waves with the right-going
body), the first forward-progressing eddy is completely seperated from the body
forcing effect and, by t = 30 (£, = 13.37 for LG waves and &, = 44.72 for RG
waves), the first three identical forward-progrssing vortons have been generated
and the periodicity, as evidenced in the wave resistance data, is remarkable. As
can be seen, the LG vortons, whose direction of propagation is opposite to the

basic axial velocity, Up, are generated in much shorter travelling distance of the
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body as compared with the case of RG ones. More details of numerical solu-
tions for a broad numerical range of the parameters in the fKdV equation can be
found in Lee et al. (1989) for the analogous shallow water problem. Generally, as
the speed of the disturbance increases, the amplitude and the generation period
of upstream-advancing solitons will increase. Compared with the results for the
Rankine vortex, the Burgers vortex with U,, = 0 is found to be more effective in
generating the forward moving vortons due to a concentration of axial vorticity
near the axis of rotation since the absolute value of c3 increases with increasing
t2 which measures the concentration of axial vorticity. Also, as can be seen in
table 3.2, a body situated at the tube axis as compared with a tube wall constric-
tion with the same magnitude is the more effective of the two forcing agencies
in generating vortons in the highly concentrated vortical flow since the absolute
value of c3 is much greater than that of c4. In other words, whilst the upstream
solitary waves ;aure generated, the wave amplitude may be too small to form the
recirculating eddies which we call vortons.

For these axisymmetric vortons to be physically significant, their stability
characteristics must be investigated. The hydrodynamic stability analysis of sev-
eral forced steady solitons of the fKdV equation developed by Camassa (1990)
can be directly applicable to our problem. For convenience, we transform the

fKdV equation (3.29) into one for the open channel flow using the following new

variables
t= 17T, T ="7X, n =74, (3740')

1 ¢ 2¢c
"1 = CoY2, 7% = —'Ea, V3= —gj, (3.74b)

where cq/c; is always negative as shown in Table 3.1 or Table 3.2. Then the fKdV
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equation can be written as (after dropping the hat)

3 1
Mt + (F - 1)771' - 577773 - gnzxz = Pa;, (3.750)
where
U 2 C1
= — P=--—=B. 3.75b
F Co, 3 c(z, ( )

The stationary solutions of (3.75) that vanish at infinity satisfy the following

equation

3 1
(F =10 = 37 = 2ea = P(2), (3.76)

which is obtained from (3.75) by dropping the time derivative and integrating it
once in x. One possible solution of (3.76) whose instability was investigated in

details by Camassa & Wu (1991) is

ns(z) = %k2sech2(k:c), P(z) = %kz(F -1- -;kz)sechz(k:c), (3.77)
where the Froude number F can be regarded as a free parameter in addition to the
parameter k for the length of disturbance and k is O(e!/2). By considering small
perturbations to this particular steady solution, Camassa & Wu (1991) showed
how instability near critical speed leads to the periodic generation of upstream-
advancing solitons when the eigenvalues are complex with a positive real part .
Another question of whether or not the free solitary wave subject to, at least,
axisymmetric perturbations is stable in addition to the stability of forced steady
solitary waves should be addressed since each upstream-advancing solitary wave
behaves as a free soliton after having gained a small distance ahead of the forcing
region. But the stability of the free solitary wave solution of the KdV equa-

tion has been confirmed by Jefferey and Kakutani (1971) and Benjamin (1972).
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Therefore we readily draw a conclusion that this vortex soliton is stable under
the axisymmetric perturbations although the stability characteristic under non-

axisymmetrical perturbations is still an open question and will be examined in

chapter 4.



Figure 3.1 Schematic view of the problem.
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Figure 3.2 The eigenfunctions of stream function () and axial velocity () for
the Rankine vortex with the core radius r. = 1 and tube radius R = 2.
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Figure 3.3 The streamlines of a free solitary vortex wave solution of amplitude

—0.4 in the Rankine vortex with the core radius r, = 1 and tube radius
R=2.
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Figure 3.4a The numerical solution of the fKdV equation for the amplitude
function A(X,T) due to the body rq in (3.72) at the central axis with rs = 0.35
and L = 2 moving at the critical speed (§ = 0). The primary flow is the Rankine
vortex with the core radius r, = 1 and tube radius R = 2.



- 45 -

M
2l : (©\ , { N , , — |
-2.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 1S.0 2.8
x
T- 150.0
=
b %
o T me——— —— B ——
. ey I ———
- M\_ N
34 , - ©\ : )
D8 -15.8 -10.0 -5.0 0.0 5.0 10.0 1.0 o8
=
T- lm.ﬂ
9
~
2 = —————— — |
. N
- — L~ —
s : [
-8 -15.8 -10.0 -8 ' 5.8 10.8 17 ns
”n
T 9%0.0
o
~
(-] e e
: —
] &\
-0 -1 -10.8 <9 0.8 .8 0.8 188 03
=
T- 60.0
o
”
°’ .
- ————
- A’v'
b v A v 3 . g T
-D.0 -18.8 -10.8 -3.0 0.0 S8 10.8 15.0 ns
»
T= 30.0

Figure 3.4b The streamlines corresponding to the solution in (a) at several time
instants as specified.
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Figure 3.5 The velocity profiles of Uo(r) and Wy(r) of the Burgers vortex,
(3.73a,b), with p; = 5, uy = 12 and U,,=0.6.
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Figure 3.6 The eigenfunctions of the stream function (1) and axial velocity (u)

for the Burgers vortex with y; = 5, ya = 12 and U,,=0.6, pertaining to (a) the
left-going waves, (b) the right-going waves.
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Figure 3.7a The numerical solution of the fKdV equation for the amplitude
function A(X,T) and the wave resistance D,, induced by the body rg in (3.72)
moving along the central axis, with r, = 0.1, L = 2 and with the critical speed

(6 = 0). The primary flow is the Burgers vortex with p1 = 5, p2 = 12 and
Um = 0.6. (a) the left-going waves.
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Figure 3.7b The numerical solution of the fKdV equation for the amplitude
function A(X,T) and the wave resistance D,, induced by the body ro in (3.72)
moving along the central axis, with r, = 0.1, L = 2 and with the critical speed
(6 = 0). The primary flow is the Burgers vortex with g; = 5, g3 = 12 and
Um = 0.6. (b) the right-going waves.
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Figure 3.8a The streamlines corresponding to the solution shown in Figure 3.7,
for (a) the left-going waves.
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Chapter 4

Linear Stability of Free Soliton

In the preceeding chapter, we found the free axisymmetric solitary wave in
a rotating fluid confined in a long cylindrical tube. When an axisymmetric flow,
a superposition of the cylindrical basic flow and the axisymmetric solitary wave,
is slightly perturbed by non-axisymmetric disturbances, the stability character-
istics are examined by using the model equation to investigate the role of non-

axisymmetric flow features to axisymmetric flows.
4.1 Mathematical formulation

For the primary flow field, we consider a cylindrical flow inside a tube of

radius R, with the velocity distribution
UO (T’) = (UO, 0’ WO (7')) (41)

where Uy is the axial velocity component, here taken to be uniform, and Wy(r) is
the azimuthal velocity component, with a shear in 7, as in the preceeding chapters.
When this axisymmetric basic flow is subject to arbitrary small three-dimensional

perturbations, the total velocity field can be written as

U(z,r,0,t) = Up(r) + u(z,r,6,t), (4.2)
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where u = (u,v,w) is the perturbation velocity and a similar expression for the
pressure p is assumed. For an inviscid and incompressible fluid, u and p satisfy

the Euler equation and the continuity equation (2.2):

Lu+ 2p: = =Q, (4.30)
Lv— %w + lp, = —R, (4.3b)
T p .
Lw + (D Wy)v + pl—rpe = -5, (4.3¢)
1 1
Ug + =(rv), + —we = 0, (4.3d)
T T
where
3} 0 Wy 0
_0 . 59 Wo 4.
L=tV T (4.40)
3} 1
_9 =21 4.4b
b or’ b ar T 7 (4.45)

All the terms on‘the left-hand sides of equations (4.3a-d), linear in (u, v, w, p), rep-
resent the leading order of the perturbation equations of motion and the nonlinear

terms @, R and S on the right-hand sides, given by

Q = uug + vu, + %}uo’ (4.5a)
2

R = uv; + v, + %’Ug - wT, (4.5b)

S = uwg + vw, + %wg + v—:i, (4.5¢)

represent the nonlinear effects, or alternatively regarded as the corresponding
source terms. In this chapter, we shall focus our study on the stabilities (or
instabilities) of free solitary waves being perturbed by small perturbations which

may not be axisymmetric; no forcing is applied to the flow field and all the wave

motions are free.
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We follow the approach that the perturbation velocity u can be expanded in

the following Fourier series in 0,

u=up(z,7,t) + Y _(un(z,r,t)e™ + C.C), (4.6)

n=1
where C.C. denotes the complex conjugate. In (4.6), the axisymmetric component
up is real but the non-axisymmetric component u,, is generally complex. Also,
the same expression for the pressure p is assumed.
With the dimensionless variables scaled by the tube radius R and the max-
imum swirl speed W, as before, substituting (4.6) into (4.3) yields an infinite

number of coupled nonlinear equations for 4y, vn, w, and p, (n =0,1,2,---,00) as

Lptn + Prz = —Qn, (4.7a)
L,v, — %Vﬂwn + Pnr = —Ry, (4.70)
Low, + (DWo)v, + iTnpn = =8, (4.7¢)
Unz + %(rvn)r + ian,. =0, (4.74)
where
m=%+%%+mﬁ, (4.8)

and Qn, R, and S, on the right-hand sides of (4.7) are the terms proportional to
e of Q, R and S resulting form the nonlinear interaction of different modes.

For an example, @, for n =0 and 1 can be written as
Qo = Qoo + Qo1 +-- -, (4.9a)

Q1=Qu+Quz2+--, (4.9b)
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where Qo is the term from the cross product of u,, and it’s C.C,u}; Qim is the
term from the cross product of u}, and u,,41; etc. And R,, and S, are assumed
to have the similar expressions. For future references, some of Q,.;n, Rnm and Snm

are given in the followings

Qoo = UoUoz + VoUor, (4.10a)
w}
Ryo = uovoz + vovor — — (4.100)
vow
So0 = upwWoz + vowpr + OT 0, (4.10¢)
')
Qo1 = uruy, + viuj, — ;wlu’{ +C.C, (4.11a)
) 1
Ry = uyvy, + vyvi, — %wlvi‘ - ;wlwf + C.C, (4.11d)
1
So1 = wwi, + niwi, + ;vlw;‘ + C.C, (4.11¢)
i
Q10 = UoU1z + UgzUs + VoUsr + Uprvy + —wouy, (4.12a)
1 2
R0 = ugv1z + vosu1 + voU1r + vorv1 + S Wov1 — ~wowy, (4.12b)

) 1
S10 = UoW1z + Wogls + VoW1, + Worv1 + ~wowy + ;('Uo'wl + wov1).(4.12¢)

The boundary conditions on the solutions to (4.7) at the tube axis (r = 0)

and at the tube wall (r = 1) are given by (Leibovich et al., 1986)
un(z,0,t) =0  (n #0), (4.13q)

Dun(z,0,) =0  (n=0), (4.13b)
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Un(z,0,t) = wa(z,0,t) =0 (|n| # 1), (4.13¢)
Dvp(z,0,t) = Dw,(z,0,t) =0 (In| = 1), (4.134)
vn(z,1,t) =0 (for all n), (4.13¢)

un(z,1,t) and wp(z,1,t) are finite (for all n). (4.13f)

Although our formulation up to this point is exact, the governing equations
(4.7) is very difficult to solve since an infinite number of modes are coupled in
a very complicated way. To carry out the analysis further theoretically, we will
introduce some assumptions appropriate for our current interests. First of all, the
most important assumption is that the major perturbations are axisymmetric,
i.e., the axisymmeric mode dominates any non-axisymmetric mode. Therefore, to
the leading order approximation, we assume (%n,Vpn,Wn,pn) = 0 for all non-zero
integers. Also, assuming all the physical variables to be slowly-varying so that the
long wave apl;rbximations are applicable, we can obtain the axisymmetric soliton
solution in the leading order approximation which has been already found in §3.1.1.
After axisymmetric solitary wave is generated, the secondary perturbations, which

are non-axisymmetric, will be studied in the next section.

4.2 Model equations

In this section, the model equation for studying the linear stability of axisym-
metric solitary waves subject to non-axisymmetric perturbations will be derived.
In this regard, the primary flow will consist of the cylindrical flow (4.1) and an ax-
isymmetric solitary wave. We choose a reference frame in which the solitary wave

is stationary, in other words, the uniform stream of velocity Uy is introduced just
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to cancel the propagation speed of the solitary wave relative to the fluid. Since
the primary velocity vector depends on (z,7) in the presence of the solitary wave,
it is no longer the classical hydrodynamic stability problem of parallel flows. To
deal with this typical example of non-parallel flows and the nonlinear interactions
of various modes, the model equations will be first derived in this section.

In place of (4.1), the primary velocity vector in this section is assumed to be
U(z,r) = Uy(r) + Uy(z, ), (4.14)

where Ug(r) is given in (4.1) and Uy = (u,,vs,w,) represents the velocity com-
ponents correponding to steady axisymmetric solitary wave characterized by one
parameter, €, = R/)\ where A is the characteristic wave length of axisymmetric
wave, which is assumed to be small but finite. Note that the smallness parameter
€ defined in (3.7) is equal to €2 in this chapter.

To inC(;rporate asymmetric disturbances with the first-order solitary wave
solution found in §3.1.1 using the stream function ¢ and the circulation T, let
us briefly review the procedure of finding the solution with (u,p) so as to be
consistent with the current formulation. The steady axisymmetric solitary wave

solutions (us,vs,ws) and p, can be expanded in terms of €, as

f.s = ('U'a, ws,ps), (4.150,)
fs(ryf) = €§[f81 (7‘, E) + egfaZ(Ta &) + 0(6:)]’ (415b)
v(r,€) = v (1, £) + Ev4a (1, €) + O(e4)], (4.15¢)

and the uniform axial velocity U can be expanded as follows, for solitary wave to

be stationary in this frame,

Uo = fo + €281 + O(ey), (4.15d)
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where £ = €,z. The details of the procedure to find the leading order solution can
be found in Appendix A by neglecting all the terms associated with the effects
of the bending waves (the terms propotional to |B|?). In (4.15d), B is the phase

velocity of axisymmetric linear long wave and, from (A.13b), 5 is given by
B = —4c, (4.16)

where c;, a coefficient of the KdV equation, is given by (A.12). From (A.4) and

(A.13a), the leading order terms in (4.15) are found to be
(uslawsl,psl) = (ﬁs('l‘),12)3(7"),]33(7'))4431(5), Us1 = 'i}s("')Ale(E)’ (4.170.)

A () =12 (z—j) - sech?(€), (4.17b)

where c¢;, c; are given in (A.12) and A,;, the amplitude function of the radial
velocity vs1,is equal to —A;, the amplitude function of the stream function defined
in (3.13). It wﬂl be noted that we need not continue to search for the higher order
solutions, say fs, for m > 2, since the first-order solution obtained in chapter
3 or Appendix A turns out to be sufficient for the present ané.lysis. In fact, the
exact numerical solution to the Euler equation for axisymmetric solitary wave by
Leibovich and Kribus (1990) shows that the flow field of the first-order solution
(4.17) gives a good qualitative agreement with the exact numerical solution and
the differences are less than 10 percent even for large €,. Therefore, (4.17) can be
used for reasonable approximations for small to finite values of €.

In the following analysis for the secondary perturbations, the |n| = 1 (bend-
ing) modes will be selected for a focused study for the following two reasons.
First, for the bending modes, the explicit solutions have been found at each order

and the analysis is much simpler than any other modes. For the other reason,
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which is more important, the bending modes are the only modes that have a
non-zero radial velocity component on the axis of tube that gives the spiral type
of streaklines, originally released at the axis, commonly observed in real experi-
ments. Therefore, we assume that the first two modes (n = 0 and |n| = 1) can
be the minimal representation of all salient features of real flows. The analysis
for other modes is parallel to that for |n| = 1 but the non-homogeneous ordinary
differential equations arising in the analysis will have to be solved numerically.
Assuming small perturbations to the axisymmetric solitary wave, we can

linearize the Euler equation (4.7) with respect to perturbation velocity as

Loty + Pz = —Qns, (4.18q)
L,v, — g—rW—Q-wn + Ppnr = — Ry, (4.18d)
Lown + (D Wo)v, + -i?-pn = —Sns, (4.18¢)
Ung + ;—(rvn)r + i:zwn =0, (4.184)
where
Lp= % + an% + i”:"", (4.19)

and Qns, Rns and Sy, represent the effects of the solitary wave field U,(z, ),

n
Qns =Usglng + UsgUn + VgUny + UsrUp + Twsun, (4200.)

] 2
Rps =UgUng + Vsglin + VsUny + UsrUpn + E?w,vn — S Wsln, (4.200)

(4.20¢)

where (u,, vy, w,) are the velocity components for the solitary wave given by (4.15).

When we consider the secondary perturbations for n = 0, we are expected to en-
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counter the linearized KdV equation with respect to the steady solitary wave so-
lution (4.17b) for which only a neutral mode exists (Jefferey and Kakutani, 1970).
For the non-axisymmetric disturbances (n # 0), we also assume that the charac-
teristic wave length is greater than the tube radius R. So, for non-axisymmetric
long waves, two dimensional motions in (r,0)-plane are dominant in the leading
order approximation. But this is impossible for axisymmetric perturbations since
any expansion or contraction of stream tube must be accompanied by an axial
flow.

For linear waves of small wave number k (as k — 0) for the n-th mode, we

have the following dispersion relation for the wave frequencies & (see appendix B)
@ = wn + Y0k + 11k% + O(k*), (4.21)

where the first term w,, which arising from the tube boundary effects gives the
frequency of two-dimensional perturbations and +y; are constants to be determined.

By making the following substitutions (Whitham, 1974) of a correspondence rule,

0 0
D — wy) = —f— — 4.22
(@ —wp) = —t k— 1 52 (4.22)
an evolution equation for the amplitude function A, (z,t)exp(—iw,t) of the n-th

mode can be expected to assume the form
Ant + 70Anz + T:'Yl-Ana:m + f(.An, A,) = 0, (423)

where F(A,,A,) is a certain functional representing the effect of the primary
solitary wave which is to be determined. Although the wave number k need not

be of the same order in magnitude as €5, k = O(€,) is assumed for definiteness in

the following analysis.
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Since the axial velocity can be assumed to be small such that the dominant
perturbation is two-dimensional, the perturbation velocity components for non-

axisymmetric disturbances can be expanded as

fn = (Vn,Wn, pn), (4.24a)

fr(r,t,6,Tm) = an [fa1 + €5 fn2 + € fnz + € fna + O(e})] (4.24b)
Un (T8, &, Tm) = Qné, [Un1 + €5Una + eﬁung + egun4 + O(e':)] , (4.24¢)
Tm = €5t (4.24d)

where o, is the amplitude of the n-th mode disturbance assumed to be a,, < O(€?)
is assumed. In (4.24b,c) the first subscript of all variables indicates the different
mode and the second gives the order of magnitude. By substituting (4.24) into

(4.20), the coupled terms, (Qns, Rns, Sns), in the right-hand sides of (4.18) can be
also expanded as

(Qﬂs’ Rns’ Sn,) = an[eg(erxs’ R-}w’ S':ll.s) + eg(Qis’ R121.9’ S'rzu) + O(Gﬁ)], (425)

where
Qns =Uas1rUn1, (4.26a)
3 2
R}w =%wslvnl - ;'wslwnl, (426b)
1
S'r];a =(w817' + ;’wsl)vnl + %wslwnl, (4.260)
and
in
Qis =[—T'wslun1] + [uslrvn2], (4270,)
R2 =[u in 2
ns —(Us1Unlx + Vs1VUnir + vslrvnl] + [T'wsl'an - ;walwn2] (427b)

Sn.s =[uslwnlx + Us1Wn1r + ;’U.slwnl] + [wslr'vn2 + T'wsl'wrﬂ + ;wslvn2]-

(4.27¢)
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By writing
fnj = fnj(Ta €’Tm)e—inw"ta fnj = (uﬂj’vnj’w"j’p"j)’ (428)

to eliminate the fast time proportional scaled by 1/wy, in (4.21) and substituting

(4.24) into (4.18), we have the first-order equations at O(as,,) (after dropping the
bar)

—in(wp — Q)un1 + Pn1e = 0, (4.29a)

—in(wn — Qv — %wnl + Pn1r =0, (4.29b)
—in(wn — Q)wny + (D.Wo)vn + Tpnl =0, (4.29¢)
D,vn1 + 3.7-.77—'10,,1 =0, (4.29d)

where Q(r) = Wy(r)/r. Taking the first-order solutions as
(¥n1, W1, Pn1) = (Gn1(r), (in)Dni(r), (in)Pn1(r)) An(€, Tm), (4.30a)
Unl = Un1 (1) Ane(&, Tm), (4.30b)
and substituting (4.30) into (4.29b-d), we have for 0,1(7) = ¢n1(r) the equation
Ladn1 =0, (4.31a)

where

o2d d _ rD(D.Wp)

d_2 + 3r— — (n - 1) + Qn('r) q"(r) - wn — N

(4.31d)
From (4.13), the boundary conditions on the solution to (4.31) can be written as

n1(0)=0,  ¢n(1)=0 for n=1, (4.32a)
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$n1(0) =0, $n1(l)=0 for n#1l (4.32b)
By solving the eigenvalue problem (4.31) with the boundary conditions (4.32), we

can determine the frequency w,, of the two dimensional disturbances. For |n| =1,

the explicit solution to (4.31) can be found as
11 =Qr) —w1, w1 =9Q1). (4.33)

For simplicity of further analysis, we impose (1) = 0 to the primary flow and,
then, w; = 0.

After having solved the eigenvalue problem (4.31) with the homogeneous
boundary conditions (4.32), we can find from (4.29) the first-order solutions in
(4.30) as

(D:Wo) Wo)
(wn — Q)

By (r) = 2(D,.qs,.l), Bt (1) = 5 [r(wn =) (Datns)+(D.Wo)dns). (4.346,0)

vnl (T) d)nl, 'anl (7') = % [ ( *¢nl) + ¢'n1 (4-340" b)

The evolution equation for A,(¢,7m) can be obtained successively in the higher
order equations by imposing the solvability conditions as will be shown below. All
of the higher order equations obtained by substituting (4.24) into (4.18) have the

following forms

Enz(unmapnm) = _":n(wn - Q)unm +pnm€ - F::;, (4350')
; 2W, m
Lnr('vnm, Wnm, pnm) = _"'n(wn - Q)vnm - Twﬂm + Dnmr = —Fn,., (435b)
‘Cnﬂ(vnm, wnm,an) = _in(wn - Q)'wnm + (D*WO)vnm + E'?'pnm = - 11:(‘),
(4.35¢)

Lyc(Vnm, Wnm) = Dyvam + %wnm =—F. (4.354)
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Then, by eliminating unm, Wnm,Pnm from (4.35b-d), we have the equations for

Unm a8

Lotnm = [mF;p — D(rFT) + 2rQF™ — D(r2(wn — Q)F,;';)] = F™,

1
(wn — )
(4.36)

where £, is defined in (4.31). Since the linear operator £, of the left-hand side
of (4.36) is the same as that of the homogeneous equation (4.31), for particular
solutions of (4.36) to exist, the right-hand side of (4.36) must be othogonal to the

homogeneous solution of (4.36). This orthogonality gives the solvability condition

for the non-homogenous equation (4.36) as

1
/ r¢n1F,Tdr =0. (4.37)
0

Since the higher order expansions to obtain the model equation is lengthy, the
details of the procedure are presented in Appendix C.

In what ﬂfollows, only disturbances for the bending mode which has non-zero
radial velocity will be considered for the reasons mentioned earlier. From (C.19),
we find the evolution equation for the amplitude function of bending waves A; = B
as

B‘r + 70B£ + i€s7lBEE + 6372 (Asl(f)B)e = Oa (438)

where 79 = U, = f + €20, is the propagation speed of axisymmetric solitary
wave and v, 72 are given in (C.9), (C.17), respectively. In (4.38), the B¢e-term
represents the dispersive effects (see the dispersion relation (4.21)) and the last
term of the left-hand side gives the effect of interaction with the primary solitary

wave. Also B*(§,7), the complex conjugate of B(,7), satisfies the conjugate

equation of (4.38) as

B 4+ 10B§ — ien1 Bie + €372 (Aa1(£)B*), = 0. (4.39)
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When the original variables (z,t) is recovered, (4.38) can be written as
B + ¢(z) By + 71 Bzz + Y2 AL (z)B =0, (4.40)

where c(z) given by

c(z) =70 + 12As(), (4.41)

is the local wave velocity in the presence of the solitary wave and the last term of
the left-hand side in (4.40) represent the effect of interaction with the axisymmetric

solitary wave which is given by
Au(@) = Eda(a) = 128 (2] - secti (0, (4.42)
1

(see (4.17b)). To study (4.40), the boundary conditions at both infinities are re-
quired. Assuming that there are no disturbances at far upstream and downstream

sides, we invoke that B — 0 and B, — 0 as £ — F00.

4.3 Linear Stability Analysis

In this section, the evolution equation (4.40) derived in the preceeding sec-
tion for the amplitude function B of the bending modes will be considered for
analyzing the stability of the primary flow. When the axisymmetric solitary wave
is slightly perturbed by bending waves, the primary flow (4.14), a superposition of
the basic swirl velocity and the axisymmetric solitary wave, is said to be unstable
if the amplitude of the bending waves increases in time. Otherwise, the flow is

regarded as linearly stable except when the result indicates a neutral stability on
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linear analysis, in which case no conclusion can be made on linear theory. The
instability, if exists, is rendered possibly by the presence of the primary axisym-
metric solitary wave since the cylindrical flow itself is stable with respect to the
long wave perturbations in (4.28).

By use of the transformation

. . 9
B(IB,t) = G(QI,t)H((L‘,t), G(:B,t) = €Xp [5’%’: /(70 + 72As)dz - %t] ’

(4.43)
equation (4.40) can be further simplified as
Hy + iy Hye + iV (z)H = 0, (4.44)
where V' (z) is given by
Vig)= 22 4, iR g, + 12 42 (4.45)

and A, is given by (4.42). Mutiplying equation (4.44) and its conjugate equation
by H* and H, respectively, and integrating the sum of the resulting two equations,

we have the conservation law
a [ o] o0
rm / |H?dz = — / Asz|H|? dz, (4.46)
Ot J-oo —o0
where the following boundary conditions are used at both infinities
H, H,—0 as |z]— o (4.47)

Hereafter we will consider the transformed equation (4.44) for the stability anal-
ysis. Note that equation (4.44) becomes the Schrodinger equation when the po-

tential V(x) is purely real and no unstable solution exists. In the present case,
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however, the potential V(z) in (4.44) is a complex function and it is of interest
to ascertain the criteria for instability of B. For a complex function V(z), equa-

tion (4.44) becomes the fourth-order differential equation in space with all real

variables.

With H(z,t) = a(z,t) exp(iS(z,t)), seperating the real and imaginary parts
of (4.44) gives

at — Y1Sz20 — 271 Sza; — (SV)a =0, (4.48a)
Sy — S+ ‘% +(RV) =0. (4.48b)
Multiplying (4.48a) by 2a, we have for the amplitude a the equation

da® 0 N 9
s 32 [ = 2715:0%] = 2(3V)a?. (4.49)

For the regular Schrodinger equation, the amplitude does not grow in time but
here the amplitude of function H(z,t) in (4.44) might grow in time, since V(z) in
(4.44) has an imaginary component, as can be seen from (4.46) or (4.49).

By using the slow variables to deal with the slowly-varying potential (4.45)

€ = ez, T= eifnt, (4.50)

(4.44) becomes

Hr + iHge +iV(€)H =0, (4.51)

where, upon noting A,(¢) = €2.A,;, the potential can be written as

_ =~ = = ~2
vE) =104, - ie,BAng +eXz g2 (4.52a)
2 2 4
s Y
Y= 1=02 (4.52b)
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A1 (€) =12 (-2—2-) . sech2(§). (4.52¢)
1
To solve the evolution equation (4.51), we assume a separable solution as

H(,,T) = e"Tx(8), (4.53)

where o is a complex number whose real part provides the growth rate of H and

x(€) is also complex. Then, from (4.51), we have for x(¢) the equation
ox +ix" +iV(¢&)x =0, (4.54)

where V is given by (4.52). By (4.47) and (4.53), x(€) satisfies the boundary

conditions:

X, Xxe—0 as |[¢] = oo. (4.55)

From (4.46), we have the expression for the growth rate, o,, as

Y2 ffooo A;1|X|2d€

Opr = —€s—/ )
2 oo Ixl?d¢

(4.56)

From (4.56), it is obvious that the eigenfunction x must have both even and odd
components for a non-zero real part of o to exist since A}; is purely odd in £.
From (4.54), it follows that, if x(¢) is an eigenfunction and o is the corresponding
eigenvalue, then x*(—¢) and —o* are also an eigenfunction and its eigenvalue of
(4.54) since R(V) is purely even and (V) is purely odd (see (4.52)). Therefore,

as soon as the eigenvalue o has a non-vanishing real part, it implies instability.

Perturbation solutions of (4.54) for small e,.
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Let us first examine the solution behaviour for small €,. For this case, we may
solve the eigenvalue problem (4.54) by the perturbation method. By expanding

the eigenvalue o and the eigenfunction x in terms of €, as

0 = 0g + €501 + €203 + O(€3), (4.57a)
X = Xo + €ax1 + €2x2 + O(€d), (4.57)
V=V + eV +eVa + O(ed), (4.57¢)

we obatin, at the first order, the equation for xg as

d?xo
dg?

+ [Ao + Vo(&)lxo =0, (4.58)

where, by (4.52) and (4.54), the eigenvalue )\ and the potential V,(¢) are given
by

Ao = —iogy,r  Vo(€) = Vomsech®(¢), Vo =12 (9‘12'_1%) (Z—j) . (4.59)
Then, (4.58) is the regular Schrodinger equation in quantum mechanics. It is
well-known that og in (4.58) is purely imaginary ()¢ purely real) subject to the
given boundary conditions at both ends. The real eigenvalue Ao has a discrete
spectrum for —Vpar < Ag < 0, and a continuous spectrum for A\ > 0, and the
solution becomes unbounded for Ay < —Vpys. Since the first-order potential V()
is an even function, the eigenfunction must be purely even or purely odd. Only
the eigenfunctions corresponding to discrete eigenvalues are of interest since the
specified boundary conditions can be satisfied only for that case. The number of
eigenvalues depends on Vs, the maginute of ;. The first few eigenfunctions are

given by .

X5 = sech™(€), (4.60a)
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x§" = tanh(£)sech? (¢), (4.60b)
AP = —p?, (4.60¢)
where
1 —
pj=s—j, s=§(—1+\/1+4VoM), (4.61a)

j = 0> 1’ sey ] <s. (461b)

At the second order, we have, for i, the equation:

X1 + [Do +Vo(8)] xa = —Aixo — Vi(€)xo, (4.62)
where
. c %" - - _ c
M =—ioy, Vi(§) = -—% s1¢ = iVipstanh(€)sech?(¢), Vim = 12% (é) .
(4.63)

Invoking the solvability condition for (4.62), we can show that A; = 0 and the

particular solutions corresponding to x((,o) and x((,l) are

) _ AZYY,

X = 5 ey tanb(€)sech™ (©), (4.640)
% 1 1
M = —z%Msech”‘ (&) [ et + tanh?(¢))]| . (4.64b)

When the higher order problems are considered, it will be found that o,, is pure
imaginary for m even and zero for m odd. Therefore, for small amplitude ¢;, only
imaginary eigenvalues exist which means that the flow is neutrally stable on linear
theory for small disturbances.

From (4.54) and (4.56), we are left with the question if non-zero o, may exist

in some domain of pertinent parameters of our problem, namely the amplitude of
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the primary axisymmetric solitary wave and the basic swirl velocity profile. Since,
as mentioned in §4.2, the first-order soliton solution can be a good approximation
of the exact solution to the Euler equation for a good range of €5, the magnitude
of €, can be chosen to have a modest finite value. For such small but finite ¢,, the

eigenvalue problem can be solved by numerical methods.
Numerical Solutions of (4.54) for finite ¢,

The equation to be solved, by (4.54), is

X'+ [A + V(g)] x =0, (4.650)

with the boundary conditions

x(£0) =0, X' (£o0) =0, (4.65b)
where A = —io. Using (4.52) and the transformation
n = tanh(¢), (4.66)
(4.54) becomes
21 fot (fr+ fom)(1 = n°) + fa(1 — ,72)2]
Xom — + =0, (4.67a
mm (1 _ nz)X") (1 _ ,’72)2 X ( )

where
].__ — . - 1 2_2 - - C2
fo=A fi= 3 70%s, fo=1€7%s, f3= 167 T =M 1221- . (4.67b)

For simplicity of analysis, we write (4.67) as

P(n) Qm)  _
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The solutions near the regular singular points at 7 = 1 can be determined in

indicial form by expanding x, P and @ about n = —1 as

X = (1+n)°[ho + k(1 +7) + ha(1 +n)* +--], (4.69a)
P=Py+P(l+n)+P(l+n)?+---, (4.69b)
Q=Qo+Q1(1+n) +Q(1+n)>+---. (4.69¢)

The equation for the index s is found as
24+ (Py/2—1)s+Qo/4=0. (4.70)

In our problem, Py = 2 and Q9 = A. To satisfy the boundary conditions at
n = —1, the solution with a positive real part, say s;, is taken. Also, near n = 1,
the same indicial equation holds. To remove the derivative singularity of x at

[n| = 1, we adopt the following transformation for x

x=(1-n%)"0, (4.71)

where s; is the root of (4.70) having a positive real part. Substituting (4.71) into

(4.68) gives for ¢ the equation

where
p(n) = P(n) — 431, (4.72b)
a(n) = Q(n) — 2s17P(n) + 4s1(s1 — 1)n® — 251 (1 — n?). (4.72¢)

Therefore, the solutions at n = —1 is given by

¢ = ho(ko + k1(1 + 1) + k2 (1 + 1) +--+), (4.73a)
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and, at n =1,

¢ = Ho(Ko + K1(1+1n) + K2(1 + 1) +--), (4.73b)

where kg = 141, Ky = 141 as selected and k;, K; for 7 > 1 are complex constants
to be determined. After first finding a few terms in (4.73) by substituting (4.73)
into (4.72a) and taking them as initial conditions, equation (4.72a) is numerically
integrated from both ends toward the center by applying the fourth-order Runge-
Kutta method and, then, match two solutions at the center by use of the matching

condition as follows,

YL=9YrR, P1=¢R at n=0 (4.74)

where ¢, and @pg are the solutions to (4.72) originated from the left end and the
right end, respectively. These two matching conditions will ensure the continuity of
the higher order ’derivatives as is implied by equation (4.65). Further, we note that
the continuity of ¢ and its derivatives implies, by (4.71), that the same must hold
for our solution x(£). After setting hg = 1 without loss of generality, Hy can be
determined by one of the two conditions in (4.75). In numerical computations, the
matching conditions are fulfilled by iterations using the Newton-Rapson method.

To understand the behaviour of solutions to the Schrodinger equation with a
complex potential, we consider an example similar to equation (4.54) in Appendix
D, in which we find that the imaginary component in the potential must be large
enough to yield a non-zero growth rate. This can be understood from the fact
that the potential must have, in leading order, a non-vanishing odd component

for the eigenfunction to have both even and odd components, as we can see from

(4.54) and (4.56).
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In this chapter, the basic swirl velocity in (4.1) is chosen as

_ o

r

Wo(r) (1—e ") +Tr™, (4.75)

where the first term on the right-hand side is the Burgers vortex and the second
one, with the term ™, is introduced to satisfy the conditions Wy(1) = 0 and
(W0)maz = 1. The first condition is used for simplicity of the analysis in §4.2,
which gives

'y =-TY (1 - e_") , (4.76)

and the second one for making the normalization which gives
Lo =1/[(1 =e™8)/ro - (1 - e™)r’], (477)

where r = 7y is the position of the maximum swirl velocity. For given a (or r¢)
and m, all other parameters in the primary swirl velocity in (4.75) are determined
by use of (476) and (4.77).

The basic swirl velocity profiles of (4.75) for m = 1 and m = 11 are compared
with the experimental data by Faler and Leibovich (1977) as shown in figure 4.1.
For m = 1, the basic swirl velocity (4.75) becomes the superposition of the Burgers
vortex and a rigid body rotation which has been the velocity profile observed inside
a tube by Escudier et al. (1982); and for m = 11, the velocity profile fits well
with the observed profiles of Faler and Leibovich. In the following, most of the
results are attained for m = 1 or m = 11. The coefficients of equations, c; for A,
and b; for B, for varying a are shown in figure 4.2 and figure 4.3. For a specific

model, o = 15 is taken for highly concentrated vortical flows. The coefficients of

the governing equations, (A.11) and (4.40), are given in table 4.1.
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m Co c1 c2 B1 M Y2 s
1 .9599 -.7826 -.0128 .0513 1397 .0459 187
11 .9706 - T717 -.0151 .0602 .0395 .0586 1.6263

Table 4.1 The coeflicients of equations for A, and B given by (A.11) and (4.40)
(a0 = 15)

i) m=1

The eigenfunctions of velocity components given by (A.6) and (4.30) are
shown in figure 4.4 for the axisymmetric modes and in figure 4.5 for the bending
modes. First, to compare the numerical solutions with the solutions evaluated by
the perturbation method, €, = 0.1 is taken. With s = .187 (see (4.61)), only one

mode is known to exist, whose eigenvalue, from (4.60c), is given by
A = Ao + O(€2) = —.03498 (perturbation solution), (4.78a)

A = —.03501 (numerical solution). (4.78b)

Two eigenvalues and eigenfunctions given in figure 4.6 show good agreement be-
tween two different methods. With this eigenvalue as a starting point, we continue
to calculate the eigenvalues as €, increases. The only real A ( imaginary o ) that
can be found up to €, = 2 are shown in figure 4.7. The real and imaginary parts
of potential V'(£) for €, = 1,2 are shown in figure 4.8.
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i) m=11
The eigenfunctions of velocity components are shown in figure 4.9 for the

axisymmetric modes and in figure 4.10 for the bending modes. With s = 1.6263,

two modes exist. The eigenvalue for the symmetric modes is given by
A = )\(()0) + O(€?) = —2.6449 (perturbation solution), (4.79a)

A0 = _26473 (numerical solution). (4.79b)

and, for the anti-symmetric modes,
AL = )\(()1) + O(€?) = —.3923 (perturbation solution), (4.80a)

A = _3932  (numerical solution), (4.80b)

where €, = 0.1 is taken. The eigenfunctions in figure 4.11 exhibit good agreement
between two &i%ferent methods as before. As for m = 1, the only real ) is found
as €, increases up to €, = 2 as shown in figure 4.12.

Although no unstable bending modes have been found for our primary flow,
(4.75), unstable modes may still exist for some special primary flows since the
existence of unstable modes is possible for equation (4.65a) as can be seen in
appendix D. In our calculations, no unstable mode is found since the numerical
values of ; are found to be so small that the real even component of V is much
greater than the imaginary odd component. However, as the primary flow (4.75)
adopted here appear to be quite realistic compared with what have been commonly
observed in experiment, we will stop searching for any unstable modes that may
arise with some other velocity profiles. But it should be noted that, whenever

the non-axisymmetric flow features are present, the solitary wave will not be
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steady or in equilibrium due to the nonlinear interactions between various modes
even though the basic flow is neutrally stable on linear theory. Therefore, we will

consider the nonlinear interaction mechanism which affects the basic axisymmetric

flows (4.14).

4.4 Discussion

The result of the foregoing linear stability analysis shows that the axisym-
metric solitary wave generated in the highly sheared primary flow of (4.75) is
neutrally stable with respect to small perturbations in the sense that no bending
waves will grow (or decay) in time. Hence, once the soliton is generated, its own
entity seems to be never lost provided that non-axisymmetric disturbances can be
controlled to be sufficiently small.

However, it may be argued that the result of the linear analysis concerning
small perturbations of the primary axisymmetric solitary wave cannot give a defi-
nite conclusion for the stability question without considering the nonlinear effects
if all eigenvalues are purely imaginary. For the class of non-axisymmetric distur-
bances of finite amplitude which is comparable with the primary axisymmetirc
soliton, the question concerning the stability characteristics or the mode selection
mechanism between differnt modes of finite amplitude is very important for the
future study. However, this problem is beyond the scope of the present project to
pursue in full context. Nevetheless, we will try to better understand the role of
non-axisymmetric flow features embedded in an axisymmetric flow by discussing

some of the nonlinear interaction mechanism, without further performing detailed
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analysis but with some simple argument and reasoning, and further verified with
numerical simulations.

Suppose that only one mode (e.g., |n| = 1) of disturbances is initially as-
signed, then, all the other modes will be excited in their due times, because of the
nonlinear effects of the system. As pointed out in the preceeding section, when
the nonlinear interactions are taken into consideration, the axisymmetric solitary
wave may suffer some deformations and its further development is now of interest
in this section. Although this result cannot be used to infer the long-time asymp-
totic behaviour of the flow, we at least may gain some qualitative picture about
the flow developments in the early stage.

First, the existence of the solitary wave without any non-axisymmetric effects
is assumed as before. Then, the disturbances of the |n| = 1 mode are superimposed
on the flow field and other modes for |n| # 1 are initially so small that they can
be ignored for'a.. finite time. With this assumption, the main nonlinear interaction
can be expected to occur between two modes, n = 0 and |n| = 1, for a finite
time. The leading order effects of the bending waves on the axisymmetric waves
are considered in Appendix A where we derive a form of the fKdV equation with

the squre of the amplitude of bending waves as a forcing term which reads

Ast + IBIAs:z + clAs-Asz + C2Aazzz =Cs ('Blz) (4'81)

where (1 and c; are given by (A.12). When |B| = 0, we have a stationary solitary
wave given by (A.13). In this derivation, |B| = O(A,) is assumed but it may still
be applied to the case of | B| = o(A,) since the right-hand side of (4.81) is the first

term appearing in the interaction process and the contributions from terms of the

higher nonlinearity than 4,A,; in the axisymmetric motion can be assumed to
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be small if A;; is a good approximation to the exact solitary wave solution of the
Euler equation shown by Leibovich and Kribus (1990).

For the bending waves, it can be shown that equation (4.40) for B with a
steady soliton A,(z) can be also generalized for the unsteady form of A,. Since
the disturbances correponding to the bending mode are assumed to be secondary,
we shall take B = o(A,), hereafter. When we assume B = O(A,), a nonlinear
term in the equation for B is expected to arise, probably cubic, and some other
modes like |n| = 2 should be included in the analysis. With B = o(A,), the

equation governing B becomes (4.40) with A,(z,t) instead of A,(z), namely,
B¢ + c(z,t)Bg + 71 Bgz + Y2 Ase(z,t)B = 0, (4.82)

where

c(z,t) = v + 12As(z, t). (4.83)

With the solitary wave solution (A.13) ascribed as initial data for .4, and with the
eigenfunction (4.60a or b) for | B|, we have solved the coupled equations (4.81) and
(4.82) numerically by use of the finite differencing scheme developed in chapter 3.
During the calculations, we also monitored the rates of energy transfer defined by

éo = % /_ ~ (Ai/g)dx = ¢ / A (IBlz)zdm, (4.84)

[e o] -0

. a o o] oo
b= / |B[2dz = / 4,(18P)_da. (4.85)

—00 —00
Although ey and e, are not exactly the kinetic energy but the signs of é; and é;
indicate the directions of the energy transfer.
For numerical computations, we choose a@ = 15 and m = 11 for the basic swirl

velocity (4.75). First, to examine the effects of the right-hand side terms in (4.81),
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we solved equation (4.81) (not coupled equations) with (4.60a) for |B|. Under the
assumption of B = o(.A,), initial amplitudes of A, and B are chosen as A,, = 0.4
and B,, = 0.06. As simulated in figure 4.13a, the axisymmetric waves A, shows
the periodic oscillations in amplitude without noticeble change in the location.
The amplitude increases and decreases, repeatedly, in time and the process seems
to continue with radiation of small trailing waves. The periodicity of this process
can be seen in figure 4.13b for éy. But this solution has been obtained by neglecting
a process of feedback to the bending waves from the deformed axisymmetric waves.
To consider the deformations of both waves, we now solve the coupled equations
(4.81) and (4.82) in which both waves are found to interact continuously. With the
same initial conditions ascribed above, the axisymmetric solitons suffer the same
periodic oscillations in amplitude but with larger trailing waves as shown in figure
4.14a. On the other hand, the bending wave B is washed away from its initial
position, leavin‘gta. set of periodically decaying disturbances at the original location
as shown in figure 4.14b. The rates of energy transfer, éy and é;, between the two
modes decrease continuously with increasing time as shown in figure 4.14c. From
the numerical solutions of the coupled equations (4.81) and (4.82), the effects of
bending waves on the axisymmetric solitary wave can be summarized to assert
that (i) the unsteady responses of the solitary wave proceed with some periodicity
and (ii) a set of large trailing axisymmetric waves produced as the bending wave
moves downstream. Although the primary solitary wave seems to be able to
maintain its inital shape and location with small unsteadiness, the flow field on
the downstream side is considerably distorted by interaction with the bending

waves. Similar conclusions for larger A,, and B,, can be drawn as shown in figure

4.15a,b,c.
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Since the analysis is based on the assumption that the primary disturbances
are axisymmetirc and the secondary disturbances are smaller than the primary
ones, the results of the present analysis cannot be applied to the case when both

axisymmetric waves and non-axisymmetric waves are initially comparable in am-

plitude.
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Figure 4.1 The velocity profile of Wy(r) in (4.75) with the position of the maxi-
mum swirl velocity ro obtained by experiment data by Faler and Leibovich (1977)

: —,m=1;-.--,m=11; - - - -, the Burgers vortex; o, +, A, experiment by
Faler and Leibovich.
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Figure 4.2a The coefficients of the KdV equation for .A, with varying o and
m = 1 for the basic swirl velocity (4.75) .
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Figure 4.2b The coefficients of equation (4.40) for B with varying o and m =1
for the basic swirl velocity (4.75) .
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Figure 4.3a The coeflicients of the KdV equation (A.10) for A, with varying
and m = 11 for the basic swirl velocity (4.75).
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Figure 4.3b The coefficients of equation (4.40) for B with varying a with m = 11
for the basic swirl velocity (4.75).
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Figure 4.4 The eigenfunctions of the velocity components (us,v,,w,) for the
axisymmetric modes with a = 15 and m = 1 for the basic swirl velocity.
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-1.0

Figure 4.5 The eigenfunctions of the velocity components (u;,v1,w;) for the
bending modes with a = 15 and m = 1 for the basic swirl velocity.
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Figure 4.6 The solution of the eigenvalue problem (4.72), |¢|, for ¢, = 0.1 and
the basic swirl velocity (4.75) with @ = 15, m = 1 : ——, the numerical solution
; - -+, the pertusbation solution given by (4.60).
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0 0.5 T, 1.5 2
Figure 4.7 The imaginary part of the eigenvalue, o;(= ),) for varying e,, and
the basic velocity (4.75) with @ =15 and m = 1.
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Figure 4.8 Real and imaginary components in the potential V' (¢) given by (4.52a)
for €, = 1,2 and the primary swirl velocity (4.75) with a = 15 and m = 1.



-91-

Figure 4.9 The eigenfunctions of velocity components (us,vs, w,) for axisymmet-
ric modes with a = 15 and m = 11.
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Figure 4.10 The eigenfunctions of velocity components (u;,v;,w;) for bending
modes with a = 15 and m = 11.
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(a) symmetric mode

(b) antisymmetric mode
Figure 4.11 The solutions of the eigenvalue problem (4.54), x, for ¢, = 0.1 and

the basic swirl velocity (4.75) witha = 15, m = 11:
---, the perturbation solution given by (4.60).

, the numerical solution;




- 94 -

-2.66F

-2.68F

-2.72}F
-2.74_'
-2.76 F

-2.78

0 0.5 1 ¢ 1.5

3

(a) symmetric mode

=T

T

-0.41
Oi

-0.42

-0.43¢

-0.44

0 0.5 1 ¢ 1.5

s

(b) antisymmetric mode

Figure 4.12 The imaginary part of the eigenvalue, o;(= Ar) for varying €, and

the basic velocity (4.75) with a = 15 and m = 1.
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Figure 4.14a The numerical solution of the coupled equations for A, with A4, =
Amsech? (€) and |B| = Bmx((,o)(f) as initial conditions where A,, = 0.4 and B,, =
0.06. The parameters in the primary flow (4.75) are a = 15 and m = 11.
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Figure 4.14b The numerical solution for B corresponding to the solution (a).
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Figure 4.14c ¢; and ¢é; defined by (4.84) and (4.85) corresponding to the solutions
in (a) and (b).
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=15and m =11.

Bm x((,o) (&) as initial conditions where A,, = 0.8 and By,

Figure 4.15a The numerical solution of the coupled equations for A, with A,

0.1. The parameters in the primary flow (4.75) are a

Amsech?(¢) and | B}
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Figure 4.15c &y and é; defined by (4.84) and (4.85) corresponding to the solutions
in (a) and (b).
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Chapter 5

Conclusions

We consider axisymmetric flows of a non-uniformly rotating fluid in a long
cylindrical tube. For an inviscid and incompressible fluid, we derive the forced
Korteweg-de Vries equation for weakly nonlinear and weakly dispersive waves
when a slender body at the central axis or an axisymmetrical topographical slen-
der deformation of tube wall is moving with a transcritical speed close to the
phase velocit); :)f linear long waves. We also derive the fKdV equation with vari-
able coefficients for a tube with non-uniform but stationary wall to investigate
the deformation of free or forced nonlinear waves within a gradually convergent
or divergent tube. Using two primary flows, the Rankine vortex and the Burg-
ers vortex, we demonstrate the remarkable phenomenon of periodic production
of upstream-advancing solitary waves under resonant forcing. The solitary waves
in a form of the well defined axisymmetrical recirculating eddies are periodically
produced and emitted to keep moving upstream of the disturbance, soon becom-
ing permanent in form. The Burgers vortex is found to be more effective in
generations of upstream propagating vortex soliton due to the concentration of
axial vorticity in the basic swirl velocity. The section-mean conservation laws for

three-dimensional flows in inviscid and incompressible fluids are also derived.
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Next, we consider the stability of the axisymmetric flow which is a superpo-
sition of a basic swirl velocity (the Buregers vortex with a polynomial function of
the radial coordinate) and the free vortex solitary wave. By assuming small per-
turbations of the bending mode with respect to the axisymmetric solitary waves,
we derive the model equation, which has the terms representing the dispersive ef-
fect and the effect of interaction between the axisymmetric mode and the bending
mode.

On linear theory, the model equation becomes the Schrodinger equation with
a complex potential. By assuming a separable solution to the model equation,
the resulting eigenvalue problem is solved with the zero boundary conditions at
both infinities. After having found the solution behavior, by use of a perturbation
method, for small €, which is the wave number of the solitary wave, we solve the
eigenvalue problem by using the series solutions near both infinities and integrating
the complex éécond-order differential equation numerically toward the center to
match two solutions originated from both ends. The result of linear theory shows
that the axisymmetric vortex soliton in a rotating fluid is neutrally stable with
respect to small disturbances of the bending mode since no unstable (or stable)
solutions are found in the parameter domain which consists of €, and the basic
swirl velocity profile.

To examine the further development of waves of the two differnt modes, we
consider the nonlinear interaction between the axisymmetric mode and the bend-
ing mode. The coupled equations for the amplitude functions of the two modes
are derived by assuming that the amplitude of the bending mode is smaller than
the axisymmetric solitary wave. The equation for the axisymmetric waves has

a form of the fKdV equation with the square of the amplitude of the bending
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waves as a forcing term. The equation for the bending waves is the same as that
considered in linear stability analysis but with the unsteady complex potential
which represents the nonlinear interaction with the axisymmetric soliton. The
numerical solutions of the coupled equations show that the axisymmetric solitary
wave seems to maintain its own entity except small unsteadiness like oscillations
in amplitude and position. But the flow fields in the downstream side are dis-
torted by the trailing waves in the process of interaction. The full descriptions on
the three-dimensional flow fields in a rotating fluid are beyond the scope of our

analysis but our observations are still applicable to the axisymmetric flow with

small non-axisymetric flow features.
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Appendix A

Axisymmetric Solitons
Coupled with Bending Waves

For axisymmetric flows, it is more convenient to deal with the stream func-
tion and the circulation as in chapter 3 but we rederive the evolution equation
for axisymmetric nonlinear waves using the velocity vector and the pressure for
comparison with the formulations in chapter 4. Furthermore, we consider the
nonlinear interaction, as described in §4.1, between the axisymmetric waves and
the bending waves. By introducing the small parameter €,(= €!/2 in chapter 3)
signifying the smallness of the ratio of R/A where R is the tube radius and ) is
a charactristic wave length, the axisymmetric flow quantities (u,,vs,ws,ps) for

weakly nonlinear and weakly dispersive waves can be expanded as

fs = (us,ws,ps), (A.la)

fo(r&7) = Elfar(r,&,7) + € faa(r €,7) + O(eD)], (A-18)
vs(r,6,7) = Efvg1 (r,€,7) + vga(r, £,7) + O(€D)], (A-lc)
Uo = fo + €361 + O(€y), (A.1d)

where Uj is the basic uniform velocity which is assumed to be the same as the

propagation speed of the free solitary wave such that the primary flow of an
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axisymmetric solitary wave is stationary in the absence of bending waves and

(¢,7) are defined by
£ =€z, T = €3t. (A.2a,b)

In (A.1d), Bo, the linear long wave speed, and (2, the nonlinear correction to
the propagation speed of solitary wave, are to be determined. With (A.2a), the
same length scale for both axisymmetric and bending waves are assumed and the
amplitude of bending waves is assumed to be O(€?), the same order of amplitude as
that of the axisymmetric wave, so that the unsteady behaviors of the axisymmetric
waves due to the nonlinear interaction with bending waves appear in the second
order. This scale for time ¢ will be clear later .

Therefore, when we ignore the effects of bending waves, the time dependence
disappears in the expansion (A.1) as a result of choosing the axial uniform velocity
as the propagation speed of the solitary wave.

Substituting (A.1) into (4.7) yields the following first-order equations

Bousig + psic =0, (A.3a)
—?—I;Yﬂwd + ps1r =0, (A.3b)
Bowsig + (DWp)vs1 = 0, (A.3¢c)
Us1¢ + Dyvgy = 0. (A.34)

By taking the first-order solutions in the form of

(usl, wsl,psl) = (ﬁs (7’), ws(r)aﬁs(r))Asl(f, 7'), Vs1 = 'Bs(r)AaIE(fa T)) (A4)

and eliminating (%1, ws1,ps1) from (A.3), we have for 9, = ¢, the equation

_ 2Wy(D.Wy)

£s¢3 = (DD* + QO("'))¢3 = 07 qO(T) = rﬁg y (A5a)
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and, by (4.13), the boundary conditions are given by

$s(0) =0,  ¢5(1)=0. (A.5b)

Note that the amplitude function for the radial velocity, Ay, is equal to the ampli-
tude function for the stream function, —A; defined in chapter 3. This eigenvalue
problem (A.5) determines the linear long wave speed 3y, with which we obtain,

from (A.3), the solution for (@,,w,,ps) as

'i)s("') = ¢s(7')a~ ﬁs("') = _(D*¢a)’ (AGa)
wy(r) = -2 ;3‘:"’)¢s, Bo(r) = Bo(Dabs). (A.6b)

For the second order, we find from (A.1) and (4.7) the equations, in which the

leading-order effects of bending waves first appear, as

Botszg + Paze = —Usir — PBrtsre — Qpo — Qo1 (A.7a)
_@w‘ﬂ + Ps2r = —Covs1¢ — Rgy — Rgy, (A.7b)
Bowsze + (DaWo)vsz = —ws1r — Brwsie — Sgo — So1 (A.7¢c)
Usze + Daveg = 0, (A.7d)

where, by substituting (A.1) into (4.10), Q3,, R, and S}, the leading order terms
of Qoo, Roo and Spyg, are obtained as

Q(l)o = Ug1Us1¢ + Vs1Usir, (A8a)
w2
Rl = Y21, (A.8b)

1 __ Vs1Wsi1
SOO = Us1Wsig + V51 We1r + r ’ (ASC)
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and, with (4.11), the leading order terms of Qo1, Ro1 and Sp; are found as

. Loy UV S
Q(1)1 i e L +C.C = (vw'l + ;w1u1) (|B|2)€, (A.8d)
i « 1 . i, 0P
R(l)l = ’U]_’U;r — ;wlvl — ;wlwf +CC= ’Ul'l);_ + r - —%) |B|2,
(A.8e)
St = o((1B)e)- (4.8)

Here, (u1,v1,w;) are the first-order velocity components of the bending mode,

given by (4.30). By eliminating (us2,Vs2,ws2) from (A.7), we have the equation

for vyy as

Lsva = f1(T)ds(Asir + Prhsie) + fo(r) 2 As1 Asie — bsAsigee + ’Bio(Qtlnr - Rém) )
(A.9)

where f1(r) and f2(r) are defined by

| AW, (D.W,
falr) = ————"‘Tﬂg o), (4.10a)
_ 1 ’ 2qp 2(D*Wo)2 2WOD(D*Wo)

fa(r) = Bo [(% - —) + = 7 + e : (A.10b)

The evolution equation governing A, (£, 7) can be determined by invoking the
solvability condition for the differential equation (A.9) which requires the orthog-
onality between the homogeneous solution of (A.9) and the right-hand side of

(A.9). This orthogonality condition gives the evolution equation for A,; as

Asir + BrAsie + c1As1 Asig + caAsigee = ¢5 (IBIZ)S’ (A.11)
where

- (’I'fg, ¢§) . (ﬂd’f) — (rf5a ¢3)

T 1o\ 2

4T LRy ST O T rrne?) (A.12a,b,c)
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Bo
When |B| = 0, we have the classical KdV equation which has the stationary

folr) = — [rqo <r¢1¢'1 +g2- D }IWO)ﬁ) —or (¢’1)2] | (A.12d)

solitary wave solution, in the original variables (z,t), as

As(z) = A sech?(e,z), (A.13a)

where

Am =12 <z—2> 6§, U() = ﬂo + Giﬁl, ﬂl = —462. (A13b)
1

When |B| # 0, the axisymmetric solitary wave (A.13a) will generally experience
variations from (A.13a) according to (A.11) which involves the effects of bending
waves. Since equation (A.11) has exactly the same form as the fKdV equation
(3.29), the numerical code developed in chapter 3 can be used to study the non-

linear interactions between the two wave modes specified in §4.4.
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Appendix B

Dispersion Relation for
Linear Long Waves

In this appendix, the dispersion relations for linear long waves propagat-
ing freely in a long cylindrical tube for both axisymmetric (n = 0) and non-
axisymmetric (|| # 0) modes will be determined. For this linear problem, the

wave solutions of equation (4.7) with Q, = R, = S, = 0 assumes the form
fal(zy 7, 0,8) = fo(r)e'katnd=—ot) . (B.1)

where f, = (4n,Un, Wn,pr). By eliminating i, Wm, P, We obtain a single equation

for 9, as (after dropping the hat)
D [ﬂ(D*’Un)] - [1 + Ty— + —2] Un = 0, (B.Z)

where D and D, are defined by (4.4b) and

r2 : ' Wo

’r’= m’ ’y:w——ka—n—r—, (.B.BG,b)
_ TL(D,.,W()) 22W0(D.Wo)
ay = —rD [m] N Qg = -~k '_r——'f] (B3C, d)

By (4.13), the boundary conditions for the solution to (B.2) are given by

vn(0)=0  (In|#1), Duw(0)=0 (|n|]=1), (B.4a)
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vn(1) =0. (B.4b).
This is the equation of Howard & Gupta (1962), by which the linear stability of

a cylindrical flow (4.1) can be studied. For axisymmetric linear long waves (n=0,

kE — 0), we can expand vy and @ as
’1)0(7‘) = 1)01(7') + k2’1)02(7°) +---, (B5a)

@ =kcy—Kk3cg+---. (B.5b)

Here, (B.5b) is the dispersion relation for axisymmetric long waves, where cq is
the linear long wave speed and c; also appears as the coefficient of term with Agg,
in the KdV equation (A.11), representing the dispersive effects.

For non-axisymmetric long waves, i.e., with n # 0, we have to include a term
which is independent of k in the expansion of @ due to the tube wall. According

to (B.2), the correct expansions for v, and @ are found to be
V(1) = Un1(7) + kvna () + K2vn3(r) + -+, (B.6a)

O=wn+ kv +E2y 4. (B.6b)

Substituting (B.6) into (B.2) gives the coefficients of linear terms in the evolution

equation for non-axisymmetric waves as can be seen in appendix C.
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Appendix C

Higher Order Expansions for
Non-axisymmetric Waves

In this appendix, the details of the procedure to obtain the model equation for
non-axisymmetric waves will be shown. After having solved the first-order equa-
tion (4.31), we can proceed to find the higher order solutions. All the notations
used in this appendix are the same as the ones used in §4.2

At O(an€s), we have the second-order equations

Loz (Un2, Pr2) = —[tnir, + Botinic] — Qrs» (C.1a)
Lor(Vn2, W2, Pn2) = —[Vnir, + Bovnie], (C.1b)
Ln6(Un2, Wn2, Pn2) = —[Wa1r, + BoWnigl, (C.le)

Lac(vnz, Wn2) =0, (C.1d)

where, by substituting the first-order solution (4.34) into (4.26), Q1, is found to
be |

1113 = - [D(D*¢3)¢n1] A Ap = [QO(T)¢a¢n1]-AsAna (02)

where go(r) is given in (A.5a). By substituting the first-order solution (4.34) into

(C.1) and using (4.36), we have for v,2 the equation

Envn2 = _;L(wnz__m[rzﬁbﬁl + 37‘4’):;1 - (TL2 - 1)¢n1](-’4n'rl + /@O-Anf)’ (0'3)
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and, invoking the solvability condition (4.37), we can obtain the equation for A,

as
Anr, + BoAne = 0. (C.4)

Since we have only homogeneous solutions in this order which can be absorbed

into the first-order solution, we therfore have the second-order solution as

iQO (T)({b, ¢n1

Un2 = Wn2 = Pn2 =0, Upg = — Y A1 Ap. (C.5)

At O(an€?), we have the third-order equations
Lnz(Un3; Pr3) = ~Unir, = [Un2r, + Botnz¢] — Q2 (C.6a)
Lrr(Un3, Wn3; Pr3) = —Vnir, — Ry, (C.6b)
L16(Vn3; Wn3, Pn3) = ~Walr, — Sns, (C.6¢)
Lnc(Vn3, Wn3) = —Un1g, (C.6d)

where, from (4.26) and (4.27), Q2,,RL,, S}, are given by

?z.s = %ws'&nIAslAnE, (C7a)
1 no -
Rns = T’ws('v‘nl - 2wn1)AslAn, (C7b)
~ 2
S'r];.s = I:('IIJ; + %) Ii)nl - nT'lDawnl] AslAn. (C.7C)

By using the same method as before, we can find the solvability condition at this

order as
Anr, + 1901 Anee =0, (C.8)
where
(Tg2’ ¢n1) Qn(r)
nl = ——, r nl, C.Qa
™= g ge) O T )P (C.8a)
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r2

Q
g2(r) = —— | (wn — Q)(2r¢n; + (n® + 2)én1) + 2(D.Wy) (1 - m) ¢n1] :
(C.9b)
With A, so determined, v,3 and w,3, which are needed for the next order expan-

sion, can be obtained from (C.6) as

ir
Un3 = ¢n3 (T)AslAn + Xn3(r)An££> Wn3 = ;(D*vn3)’ (Cloaab)

where ¢,3(r) satisfies the following equation

¢n1 N " R R
T r(wn — Q) (r2®5 + rdy — D + ga(r)ds) (C.11)

£n¢n3 =

and X3 satisfies a similar equation but is not needed for the following analysis.
In particular, for n = 1, ¢;3 satisfying the boundary conditions (4.32a) becomes,

by making use of (4.33),

~

w.’
13 = —

(C.12)

The term coupled with A;; in the evolution equation for A, appears in the fourth

order equations which are

['nr(vn47 wn4,pn4) = "‘['Un3-rl + BO'UnSE] — Unlrg — ﬁl'vnlf — ng, (013(1,)

ﬁno(vm, wn4’pn4) = '—[wnS'rl + ﬁOwnSE] = Wnlrg — ,Bl'wnlg' - Syz;.ga (Cl3b)

Enc(vn4>wn4) = —Un2¢, (0136)
where

R?LS = (ﬁsﬁnl)AslAnf + ('ﬁsﬁnl),A,sl{An, (Cl4a)

Syzw =1n [(ﬂswnl)AslAnf + 'i}s (12!:11 + w—:];) AslgAn] . (Cl4b)
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Next, the bending mode (n = 1) will be considered. By substituting (4.30) and
(C.10) into (C.13) with (C.4), we obtain, after some lengthy manipulation (with

w1 = 0 by (4.33)), for v14 the equation

Lpvig = — ésbu (P24 + 3rd), + q1(r)8s)As1Are — (q1(r)@) — (T%q0(r)ds) ) As1e Al ]

~ Stua ()i + i) (€15)
By either using (4.37) or noting that
v1a(r) = —i [, (r) As1 Arg — 95(r) AsteAr + (Arr, + BrArg)], (C.16)
we have, from (3.6),
Airy + B1A1e + 12(AstAr)e =0, 72 = —¢(1). (C.17)

It is to be noted that, for the next order expansion, we need to find the next
higher order steady solitary wave, say fq2 in (4.15). But the first-order solution
for the steady solitary wave, namely f1, is sufficient for performing linear stability

analysis up to O(a,€3). By adding (C.4), (C.8) and (C.17) and using

3} 3} 3} 9 0
— = .18
or 37'1 +€86T2 +E"8’T3’ (C )
we finally have for A;(¢,7) = B(£,7) the evolution equation
B, + 70 B¢ + i€,71 Beg + €72 (A1 () B), = 0, (C.19)
where
Yo = Bo + €201, (C.20)

and v; and 7y, are given in (C.9) and (C.17), respectively.
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Appendix D

The Scrodinger Equation
with a Complex Potential

In this appendix, we will consider the numerical solutions to the Scrodinger
equation with a complex potential. The equation to be studied has the same form

as (4.65a) and can be written
X'+ [)\ + V(z)] x =0, (D.1)
where the complex potential V' (z) assumes the following form
V(z) = V, sech?(x) + iV; sech®(z) tanh(z) (D.2)

and the zero boundary conditions are imposed on x at both infinities. We will
examine the solution behavior for fixed V, as V; increases from zero. We use

the computer code described in §4.3 for numerical calculations of the eigenvalue

problem (D.1).
Two numerical values of V,. are chosen, namely V, = 2,6. First, for V,. = 6,

we have two solutions for V; = 0, as shown in (4.60), which are
x© = sech?(x), (D.3a)

xV) = tanh(z)sech(z), (D.3b)
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A9 =_—(2-4)?2  j=0,1. (D.3c)

As V; increases, the two modes in (D.3) approach each other and become identical
after the the imaginary component of A becomes non-zero as shown in figure D.1.
We recall that, as pointed out in §4.3, A\*, the complex conjugate of ), is also an
eigenvalue, with the corresponding eigenfunction x*(—z), since ®(V) is even and
(V) is odd.

For V,. = 2, there exists only one solution with V; = 0, which is given by
X = sech(z), A=-1 (D.4)

As the imaginary component V; passes a certain critical value, the eigenvalue A

becomes complex as shown in figure D.2.
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Figure D.1 The real and imaginary parts of eigenvalue X of equation (D.1) for
varying V; with V., =6.
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Figure D.2 The real and imaginary parts of eigenvalue A of equation (D.1) for
varying V; with V,. = 2.
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