A Structured Approach to Parallel Programming

Thesis by

Berna Massingill

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1998
(Submitted September 25, 1997)

ii

© 1998
Berna Massingill

All Rights Reserved

iii

A cknowledgments

What a long, strange trip it’s been.

— JERRY GARCIA

You certainly have met some interesting people out there!

— BILLIE S. MASSINGILL

Many people contributed, in many different ways, to this thesis and to my education at Caltech. I
thank all of them, in particular:

My advisor, Mani Chandy, whose remarkable ability to identify fundamental concepts made my
years at Caltech enlightening, and whose patience and all-around niceness made them enjoyable. It
has been a pleasure and a privilege to work with him.

The other members of my committee — Jim Arvo, Alain Martin, Dan Meiron, and Eric Van de
Velde — who reviewed my thesis and whose questions and comments on both the thesis and the
work were insightful and illuminating.

The members of my candidacy committee — Mani, Alain, Dan, Eric, and Yaser Abu-Mostafa
— who provided critical feedback at that milestone.

My instructors at Caltech, each of whom contributed a fresh and valuable perspective on his or
her field, most memorably Yaser Abu-Mostafa, Alain Martin, Beverly Sanders, Chuck Seitz, Eric
Van de Velde, Rick Wilson, and of course Mani. Eric deserves special thanks for his book Concurrent
Scientific Computing, which was a notable inspiration for this work.

Current and former members of the CS support staff — Dian De Sha, Arlene DesJardins, Cindy
Ferrini, Diane Goodfellow, Yvonne Recendez, Patty Renstrom, Gail Stowers, and Nancy Zachariasen
— who smoothed my path in countless ways, and all of the other members of the Caltech community
— from computer system administrators to the folks in the graduate office — who together created
a supportive and friendly environment.

The members of Mani’s research group — Joe Kiniry, Adam Rifkin, Eve Schooler, Paul Sivilotti,
John Thornley, and Dan Zimmerman — each of whom provided his or her own unique variety of
support, from technical expertise and critical feedback on my work to moral support. Adam and

Paul deserve special thanks for helping me set up my thesis defense from afar.

iv

The many others past and present members of the department who contributed to the whole
experience, among them: Nan Boden, who guided me through the admissions process and in doing
so answered more questions than she probably thought one person could ask; Peter Hofstee and Rajit
Manohar, who were always ready with both intellectual stimulation and moral support; Wen-King
Su, whose technical expertise even my endless questions hasn’t exhausted and whose sympathetic
ear has been equally valuable; Marcel van der Goot, whose TEX expertise I also couldn’t exhaust;
and the late Mike Pertel, whose behavior in tragic circumstances was an inspiration.

The people in my former life who motivated me to attend Caltech and made it possible for me
to do so — Bill Athas, Bob Boyer, and Mike McCants.

The employees of Phillips Laboratory, the Air Force lab where I spent an instructive six weeks one
summer. Leon Chandler, who supervised my visit, and John Beggs, who helped with my research
project, deserve special thanks, as does in a different way the unnamed physicist whose casual remark
about computer scientists — “I can do physics and I can write Fortran; what do I need you guys
for?” — prodded me to consider the question of who benefits from my work.

The people who provided material for or participated in the development of applications discussed
in this thesis, including John Beggs, Tzu-Yi Chen, Donald Dabdub, Greg Davis, Karl Kunz and
Raymond Luebbers, John Langford and Lena Petrovic, Rajit Manohar, Anita Mareno, Dan Meiron,
and Ravi Samtaney. Dan deserves special thanks as the joint leader (with Mani) of the long-
term collaboration on the role of archetypes in scientific computing that produced most of these
applications.

Last but not least, the friends and family without whose support this whole venture would have
been difficult if not impossible. My mother deserves special mention for the many, many hours she
has spent lending a sympathetic ear and generally doing her best to keep me relatively sane. I might

have been able to do it without them, but I'm glad I didn’t have to.

The research described in this thesis was funded in part by a Milton E. Mohr graduate fellowship,
in part by an Air Force Laboratory graduate fellowship, and in part by the AFOSR and the NSF. I
thank them all for their support.

Abstract

Parallel programs are more difficult to develop and reason about than sequential programs. There are
two broad classes of parallel programs: (1) programs whose specifications describe ongoing behavior
and interaction with an environment, and (2) programs whose specifications describe the relation
between initial and final states. This thesis presents a simple, structured approach to developing
parallel programs of the latter class that allows much of the work of development and reasoning to be
done using the same techniques and tools used for sequential programs. In this approach, programs
are initially developed in a primary programming model that combines the standard sequential model
with a restricted form of parallel composition that is semantically equivalent to sequential compo-
sition. Such programs can be reasoned about using sequential techniques and executed sequentially
for testing. They are then transformed for execution on typical parallel architectures via a sequence
of semantics-preserving transformations, making use of two secondary programming models, both
based on parallel composition with barrier synchronization and one incorporating data partitioning.
The transformation process for a particular program is typically guided and assisted by a parallel
programming archetype, an abstraction that captures the commonality of a class of programs with
similar computational features and provides a class-specific strategy for producing eflicient parallel
programs. Transformations may be applied manually or via a parallelizing compiler. Correctness of
transformations within the primary programming model is proved using standard sequential tech-
niques. Correctness of transformations between the programming models and between the models
and practical programming languages is proved using a state-transition-based operational model.
This thesis presents: (1) the primary and secondary programming models, (2) an operational
model that provides a common framework for reasoning about programs in all three models, (3)
a collection of example program transformations with arguments for their correctness, and (4) two
groups of experiments in which our overall approach was used to develop example applications. The
specific contribution of this work is to present a unified theory/practice framework for this approach
to parallel program development, tying together the underlying theory, the program transformations,

and the program-development methodology.

vi

Contents

Acknowledgments iil
Abstract v
1 Introduction 1
1.1 Alittle history o o e 2
1.1.1 Experiments with archetypes (patterns) 2

1.1.2 Experiments with stepwise parallelization 2

1.1.3 Theoretical framework Lo 2

1.2 Related work e 3
1.2.1 Foundations o . i i e e 3

1.2.2 Related and complementary work L. 3

1.3 Qur programming model and methodology 4
1.3.1 The arb model: parallel composition with sequential semantics 4

1.3.2 Transformations from the arb model to practical parallel languages 4

1.3.3 Supporting framework for proving transformations correct 6

1.3.4 Programming archetypes 6

1.4 Chapter-by-chapter outline o 6

2 The arb model 8
2.1 Program semantics and operational model o oo 9
2.1.1 Overview 9

2.1.2 Definitions e 10

2.1.3 Specifications and program refinement 14

2.1.4 Program composition 15

2.2 arb-compatibility and arb composition 0 0oL 18

2.2.1 Definition of arb-compatibility oL Lo 19

vii

2.2.2 Equivalence of sequential and parallel composition for arb-compatible com-
PONENtS e e e e e e e e e e e

2.2.3 Definition of arb compositiono oL
2.2.4 Properties of arb composition o 0oL
2.2.5 A simpler sufficient condition for arb-compatibility

2.3 arb composition and programming notations o000
2.4 arb composition and Dijkstra’s gunarded-command language
2.4.1 Dijkstra’s guarded-command language and our model
2.4.2 Conditions for arb-compatibility o 0 o000
2.4.3 Examples of arb composition o 0oL

2.5 arb composition and Fortran 90 o000
2.5.1 Fortran 90 and ourmodel oo
2.5.2 Conditions for arb-compatibility L.
2.5.3 Notation. e
2.5.4 Examples of arb composition o oo o000

2.6 Execution of arb-model programs oL,
2.6.1 Sequential execution L o
2.6.2 Parallel execution oL Lo e

2.7 Appendix: Program semantics and operational model, details
271 Notation. e e e
2.7.2 Definitions e
2.7.3 Specifications and program refinement
2.7.4 Program composition oo

2.8 arb-compatibility and arb composition, detailso o000
2.8.1 Definition of arb-compatibility oL
2.8.2 Equivalence of sequential and parallel composition for arb-compatible com-
ponents e e e e e

2.8.3 Simpler sufficient conditions for arb-compatibility

2.9 Appendix: Dijkstra’s guarded-command language and our model, details
2.9.1 Simple commandso
2.9.2 Alternative composition (IF)
2.9.3 Repetition (DO)

A collection of useful transformations
3.1 Removal of superfluous synchronization

3.1.1 Motivation e e e e e e

3.2

3.3

34

The
4.1

4.2

4.3

4.4

The
5.1

5.2

viii

3.1.2 Definition and argument for correctness 0oL 68
3.1.3 Example. o e 69
Change of granularity 70
3.2.1 Motivation e 70
3.2.2 Definition and argument for correctness 70
323 Example. 71
Data distribution and duplication o L 71
3.3.1 Motivation L 71
3.3.2 Data distribution: definition and argument for correctness 72
3.3.3 Data distribution: example oo o 72
3.3.4 Data duplication: definition and argument for correctness 73
3.3.5 Data duplication: examples o o 0oL 75
Other transformations 82
3.4.1 Reductions e 82
3.4.2 skip as an identity element Lo 83
par model and shared-memory programs 85
Parallel composition with barrier synchronization 86
4.1.1 Specification of barrier synchronization 86
4.1.2 Definitions e 86
Thepar model 88
4.2.1 Preliminary definitions L o Lo 89
4.2.2 par-compatibility o 89
4.2.3 parcomposition Lo 90
4.2.4 Examples of par composition oL 92
Transforming arb-model programs into par-model programs 93
4.3.1 Theorems« it i e 93
4.3.2 Examples 99
Executing par-model programso 104
4.4.1 Parallel execution using X3H5 Fortran 104
442 Example. e 104
subset par model and distributed-memory programs 106
Parallel composition with message-passing 106
5.1.1 Specification 106
5.1.2 Definitions 107

The subset par model 109

ix
5.2.1 Subset par-compatibility L

5.2.2 Example of subset par composition

5.3 Transforming subset-par-model programs into programs with message-passing

5.3.1 Transformations
53.2 Example.
5.4 Executing subset-par-model programs Lo oL
5.4.1 Transformations to practical languages/libraries
54.2 Example. e
Extended examples
6.1 2-dimensional FFT
6.1.1 Problem description e
6.1.2 Program
6.1.3 Applying our transformationso oL
6.2 1-dimensional heat equation solvero
6.2.1 Problem description
6.2.2 Program
6.2.3 Applying our transformationso
6.3 2-dimensional iterative Poisson solver. L
6.3.1 Problem description L e
6.3.2 Program e
6.4 Quicksort
6.4.1 Problem description e
6.4.2 Recursive Program oo e e e
6.4.3 “One-deep” Program vt v it i e
Archetypes for scientific computing
7.1 Parallel program archetypes L
7.1.1 Archetype-based assistance for application development
7.1.2 An archetype-based program development strategy
7.2 Example archetypes L e
7.2.1 The mesh-spectral archetype
7.2.2 The spectral archetype oL
7.2.3 The mesh archetype
7.3 Applications e
7.3.1 Development examples L L e

7.3.2 Other applications

115
115
115
115
115
118
118
118
118
122
122
122
124
124
124
124

8 Stepwise parallelization methodology
8.1 Themethodology
8.2 Supporting theory L
8.2.1 The parallel program and its simulated-parallel version
822 Thetheorem e
8.2.3 Implications and application of the theorem
8.3 Application experiments Lo
83.1 Theapplication
8.3.2 Parallelization strategyo
8.3.3 Applying our methodology L L
834 Results e

8.4 Appendix: Details of the conversion process
9 Related and complementary work

10 Conclusions and directions for future work
10.1 SUIMIMATY .« ¢« v v o v v e e e e e e e e e e e

10.2 Directions for future worko

Bibliography

145
146
147
147
148
150
151
152
152
153
154
158

160

163
163
164

166

xi

List of Figures

1.1

2.1

3.1
3.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

Overview of programming models and transformation process. 5
Commutativity of actions e and b. L o 19
Partitioning a 16 by 16 array into 8 array sections. 72
Partitioning an array and creating shadow copies. &0
A computation of a subset-par-model program. L 110
Program for 2-dimensional FF'T.0 L. 116
Program for 2-dimensional FFT, shared-memory version. 116
Program for 2-dimensional FFT, distributed-memory version. 117
Program for 1-dimensional heat equation. 119
Program for 1-dimensional heat equation, shared-memory version. 120
Program for 1-dimensional heat equation, distributed-memory version. 121
Program for 2-dimensional iterative Poisson solver. 123
Recursive quicksort program. e 124
One-deep quicksort program. 125
Redistribution: rows to columns. 132
Boundary exchange. 133
Recursive doubling to compute a reduction (sum). 133
Program for 2-dimensional FFT, version 1. 136
Program for 2-dimensional FFT, version 2. 137
Execution times and speedups for parallel 2-dimensional FFT compared to sequential

2-dimensional FFT for 800 by 800 grid, FFT repeated 10 times, using Fortran with

MPIonthe IBM SP. 138
Poisson solver, version 1. 140
Poisson solver, version 2. L. 141

7.9

7.10

7.11

8.1
8.2

8.3

8.4

8.5

8.6

8.7
8.8

xii
Execution times and speedups for parallel Poisson solver compared to sequential Pois-
son solver for 800 by 800 grid, 1000 steps, using Fortran with MPI on the IBM SP. . 142
Execution times and speedups for 2-dimensional CFD code for 150 by 100 grid, 600
steps, using Fortran with NX on the Intel Delta. Data supplied by Rajit Manohar. . 143

Execution times and speedups for spectral code for 1536 by 1024 grid, 20 steps, using
Fortran M on the IBM SP. Data supplied by Greg Davis. 144
Correspondence between parallel and simulated-parallel program versions. 148

Correspondence between parallel and simulated-parallel program versions of archetype-

based program. L e 151
Execution times and speedups for electromagnetics code (version A) for 34 by 34 by

34 grid, 256 steps, using Fortran M on the IBM SP., 156
Execution times and speedups for electromagnetics code (version A) for 66 by 66 by

66 grid, 512 steps, using Fortran Mon the IBMSP. 157
Packaging strategy: overview.o o oo 158
Packaging strategy: sequential code. L Lo Lo 158
Packaging strategy: desired parallelcode. 0oL, 158

Packaging strategy: revised sourcecode. L. 159

xiii

List of Tables

8.1 Execution times and speedups for electromagnetics code (version C), for 33 by 33 by

33 grid, 128 steps, using Fortran M on a network of Suns. 155
8.2 Execution times and speedups for electromagnetics code (version C), for 65 by 65 by

65 grid, 1024 steps, using Fortran M on a network of Suns. 155
8.3 Execution times and speedups for electromagnetics code (version C), for 46 by 36 by

36 grid, 128 steps, using Fortran M on a network of Suns. 155
8.4 FExecution times and speedups for electromagnetics code (version C), for 91 by 71 by

71 grid, 2048 steps, using Fortran M on a network of Suns. 156

Chapter 1

Introduction

It is almost an article of faith in the parallel-programming community that parallel programming
is significantly more difficult than sequential programming, and that anything one can do to reduce
the difficulty of parallel programming is therefore a good thing. There is less agreement about how
this can best be done; approaches range from new programming languages to compilers that au-
tomatically parallelize sequential programs. The difficulties are perhaps most severe for programs
whose specifications are in terms of ongoing behavior and interaction with an environment, since
such programs more obviously require tools and techniques other than or in addition to those used
for sequential programs. But even programs whose specifications are in terms of the relation between
initial and final states — that is, programs that are implemented in parallel primarily for reasons of
performance -— present difficulties in addition to those encountered in developing their sequential
counterparts. This thesis presents a structured approach to the latter class of parallel programs that
allows much of the work of development, reasoning, and testing and debugging to be done using
familiar sequential techniques and tools. This approach takes the form of a simple model of parallel
programming, a methodology for transforming programs in this model into programs for parallel
machines based on the ideas of semantics-preserving transformations and programming archetypes
(patterns), and an underlying operational model providing a unified framework for reasoning about
the requisite transformations. The specific contribution of the thesis is the integration of the op-
erational model, the programming models, and the methodology, all of which build on and exploit
existing work, into a unified theory/practice framework for developing and reasoning about parallel

programs.

1.1 A little history

This work has its origins in two experimental projects, one exploring the use of archetypes or pat-
terns in developing parallel scientific applications, and one exploring the use of semantics-preserving

transformations in parallelizing sequential code.

1.1.1 Experiments with archetypes (patterns)

Our investigation of the use of patterns in developing parallel scientific applications began as a
search for what we called archetypes for parallel scientific computing. By archetype, we mean an
abstraction that captures the common features of a class of problems with common computational
structure. This idea is useful when applied to traditional computer science algorithms (sorting,
searching, graph algorithms, and so forth), so we proposed to experiment with applying it to par-
allel scientific computing. What we found was that the useful commonality tended to focus on
patterns of communication in the parallel versions of applications, so we focused attention on a few
representative classes of problems and developed archetype implementations, each combining tutorial
documentation with a code library encapsulating the communication operations (the “hard parts”
of developing a parallel version of an application). We then used these archetype implementations

in developing example applications and found that they did assist in the development process.

1.1.2 Experiments with stepwise parallelization

Our investigation of the use of semantics-preserving transformations in parallelizing sequential code
consisted of developing a methodology by which a sequential application program could be trans-
formed into an equivalent parallel program via a sequence of small transformations, with all but the
last transformation performed in the sequential domain and the final transformation into the paral-
lel domain justifiable via a formal proof applicable to all programs meeting certain stated criteria.
With this methodology, all but the final transformation could be checked by testing and debugging
in the sequential domain, and since the final transformation had been formally proved to preserve
correctness, there would be no need to debug the parallel program. We applied this methodology to
two application programs and found that indeed debugging was confined to the sequential versions

of the program, with the formally-proved final transformation preserving correctness.

1.1.3 Theoretical framework

We then turned our attention to developing a theoretical framework that would encompass and
support both these investigations. The goal of this theoretical work was something simple and ap-

plicable to widely-used practical languages, and yet mathematically rigorous, that could serve as a

3

theoretical support for the experimental work. Our approach was to develop a model and method-
ology for parallel programming that to a large extent make it possible to develop and reason about
parallel programs using the same methods and tools used to develop and reason about sequential
programs, together with an operational model that allows us to reason formally about aspects that

are not amenable to sequential techniques.

1.2 Related work

1.2.1 Foundations

Sequential programming models and specifications. We define our programming models as
simple extensions to the standard sequential model of Dijkstra [36, 37|, Gries [42], and others. We

base our notions of program correctness on the work of Hoare [44] and others.

Program development via stepwise refinement. Our approach to program development is
based on stepwise refinement and program transformations, as described for sequential programs in
the work of Back [6], Gries, and Hoare [44], and for parallel programs in the work of, for example,

Back [5], Martin [56], and Van de Velde [74].

Operational models. Our operational model is based on defining programs as state-transition
systems, as in the work of Chandy and Misra [24], Lynch and Tuttle [52], Lamport [51], Manna and
Pnueli [54], and Pnueli [61].

1.2.2 Related and complementary work

Parallel programming models. Programming models similar in spirit to ours have been pro-
posed by Valiant [73] and Thornley [71]; our model differs in that we provide a more explicit sup-

porting theoretical framework and in the use we make of archetypes.

Automatic parallelization of sequential programs. Our work is in many respects comple-
mentary to efforts to develop parallelizing compilers, for example Fortran D [28] and HPF [43]. The
focus of such work is on the automatic detection of exploitable parallelism, while our work addresses
how to exploit parallelism once it is known to exist. Our theoretical framework could be used to

prove not only manually-applied transformations but also those applied by parallelizing compilers.

Programming skeletons, design patterns, and distributed objects. Our work is also in

some respects complementary to work exploring the use of programming skeletons and patterns in

4

parallel computing, for example that of Cole [27] and Brinch Hansen [15], and even work explor-
ing distributed objects, pC++ [12] for example. We also make use of abstractions that capture
exploitable commonalities among programs, but we use these abstractions to guide a program de-

velopment methodology based on program transformations.

Communication libraries. Much work has been done in developing program libraries intended to
insulate application developers from the details of the parallel architecture on which their programs
are to execute, for example MPI [58]. Our work is complementary to this work in that our archetype-
based libraries of communication operations can be implemented using subsets of these more general

libraries, and in addition to the libraries we provide strategies for their use.

1.3 Our programming model and methodology

As suggested earlier, the goal of our work is to provide assistance in developing parallel programs
whose specifications are like those usually given for sequential programs, in which the specification
" describes initial states for which the program must terminate and the relation between initial and

final states.

1.3.1 The arb model: parallel composition with sequential semantics

Our primary programming model, which we call the arb model, is simply the standard sequential
model extended to include parallel compositions of groups of program elements whose parallel com-
position is equivalent to their sequential composition. The name (arb) is derived from UC [7] and is
intended to connote that such groups of program elements may be interleaved in any arbitrary fash-
ion without changing the result. We define a property we call arb-compatibility, and we show that
if a group of program elements is arb-compatible, their parallel composition is semantically equiva-
lent to their sequential composition; we call such compositions arb compositions. Since arb-model
programs can be interpreted as sequential programs, the extensive body of tools and techniques

applicable to sequential programs is applicable to them. In particular:
¢ Their correctness can be demonstrated formally by using sequential methods.
e They can be refined by sequential semantics-preserving transformations.

e They can be executed sequentially for testing and debugging.

1.3.2 Transformations from the arb model to practical parallel languages

Because the arb composition of arb-compatible elements can also be interpreted as parallel com-

position, arb-model programs can be executed as parallel programs. Such programs may not make

5

effective use of typical parallel architectures, however, so our methodology includes techniques for im-
proving their efficiency while maintaining correctness. We define two subsidiary programming models
that abstract key features of two classes of parallel architectures: the par model for shared-memory
(single-address-space) architectures, and the subset par model for distributed-memory (multiple-
address-space) architectures. We then develop semantics-preserving transformations to convert arb-
model programs into programs in one of these subsidiary models. Intermediate stages in this process
are usually arb-model programs, so the transformations can make use of sequential refinement tech-
niques, and the programs can be executed sequentially. Finally, we indicate how the par model can
be mapped to practical programming languages for shared-memory architectures and the subset par
model to practical programming languages for distributed-memory—message-passing architectures.
Together, these groups of transformations provide a semantics-preserving path from the original
arb-model program to a program in a practical programming language.

Figure 1.1 illustrates this overall scheme. Solid-bordered boxes indicate programs in the various
models; arrows indicate semantics-preserving transformations. A dashed arrow runs from the box
denoting a sequential program to a box denoting an arb-model programs because it is sometimes
appropriate and feasible to derive an arb-model program from an existing sequential program (by
replacing sequential compositions of arb-compatible elements with arb compositions of the same

elements).

sequential programs J

programs for
shared-memory

architecture

programs for
distributed-memory

architecture

Figure 1.1: Overview of programming models and transformation process.

6

1.3.3 Supporting framework for proving transformations correct

Some of the transformations indicated in Figure 1.1 — those within the arb model — can be
proved correct using the techniques of sequential stepwise refinement. Others — those between our
different programming models, or from one of our models to a practical programming language —
require a different approach. We therefore define an operational model based on viewing programs
as state-transition systems, give definitions of our programming models in terms of this underlying
operational model, and use it to prove the correctness of those transformations for which sequential

techniques are inappropriate.

1.3.4 Programming archetypes

An additional important element of our approach is that we envision the transformation process
just described as being guided by what we call parallel programming archetypes. An archetype is
an abstraction that captures the commonality of a class of programs with common computational
structure (e.g., the familiar divide-and-conquer of sequential programming); a parallel programming
archetype is such an abstraction for a class of programs whose common features have to do with their
parallel structure (e.g., patterns of interprocess communication). We envision application developers
choosing from a range of archetypes, each representing a class of programs with common features
and providing a class-specific parallelization strategy — that is, a pattern for the shared-memory
or distributed-memory program to be ultimately produced — together with a collection of class-
specific transformations and a code library of communication or other operations that encapsulate

the details of the parallel programs.

1.4 Chapter-by-chapter outline

o Chapter 2 presents our operational model of program semantics and our primary programming

model (the arb model).

e Chapter 3 presents a collection of useful transformations for arb programs. The transfor-
mations chosen include most of those required for the example applications in subsequent

chapters.

e Chapter 4 presents our approach to transforming arb programs into programs for shared-
memory architectures: a programming model (the par model) together with transformations
from the arb model to the par model and from the par model to languages for shared-memory

architectures.

7

Chapter 5 presents our approach to transforming arb programs into programs for distributed-
memory architectures: a programming model (the subset par model) together with trans-
formations from the arb model to the subset par model and from the subset par model to

languages for distributed-memory architectures.

Chapter 6 presents extended examples of arb-model programs and how they can be trans-

formed.

Chapter 7 presents experiments focused on the archetypes aspects of our work, in which we

defined example archetypes and used them to develop applications.

Chapter 8 presents experiments focused on the transformation aspects of our work, in which
we parallelized applications using a sequence of program transformations, with the key trans-

formation formally justified.
Chapter 9 surveys related and complementary work.

Chapter 10 presents conclusions and suggests directions for further research.

Chapter 2

The arb model

As discussed previously in Chapter 1, we are interested in developing and refining parallel programs
to meet sequential-style specifications. The heart of our approach is identifying groups of program
elements that have the useful property that their parallel composition is semantically equivalent to
their sequential composition. We call such a group of program elements arb-compatible.! We can

then employ the following approach to program development:

e Write down the program using sequential constructors and parallel composition (||), but en-
suring that all groups of elements composed in parallel are arb-compatible. We call such a
program an arb-model program, and it can be interpreted as either a sequential program or a

parallel program, with identical meaning.

e View the program as a sequential program and operate on it with sequential refinement tech-
niques, which are well-defined and well-understood. In refining a sequential composition whose
elements are arb-compatible, take care to preserve their arb-compatibility. The result is a
program that refines the original program and can also be interpreted as either a sequential or

a parallel program, with identical meaning.

In this chapter, we first present our operational model for parallel programs, the model we will
use for reasoning about programs and program transformations that are not amenable to strictly
sequential reasoning techniques. We then define a notion of arb-compatibility, such that the parallel
composition of a group of arb-compatible program elements is semantically equivalent to its sequen-
tial composition. We then identify restrictions on groups of program elements that are sufficient
to guarantee their arb-compatibility, and we present some properties of parallel compositions of

arb-compatible elements. We give two presentations of this material: one relying mostly on natural

1 As mentioned in Chapter 1, the name (arb) is derived from UC [7] and is intended to connote that such groups
of program elements may be interleaved in any arbitrary fashion without changing the result.

9

language and omitting detailed proofs (Section 2.1 and Section 2.2), and one making more extensive
use of symbolic notation and presenting more detailed proofs (Section 2.7 and Section 2.8).

We then revisit these ideas in the context of two representative programming notations: (1) a
theory-oriented notation, Dijkstra’s guarded-command language [35, 37], where by “theory-oriented”
we mean a notation used primarily as a basis for formal work on program semantics, and (2) a
practical programming notation, Fortran 90 [1, 46], where by a “practical programming notation”
we mean a notation used primarily for the development of applications, particularly large-scale ones.
We present our ideas in the context of a theory-oriented notation to demonstrate that they can be
made rigorous in a notation for which a formal semantics is defined. We present our ideas in the
context of a practical programming notation to show that this rigor carries over into the realm of
large-scale application development, at least insofar as the practical notation matches the simpler
theory-oriented notation. Finally, we show the syntactic transformations necessary to execute arb-

model programs sequentially or in parallel.

2.1 Program semantics and operational model

We define programs in such a way that a program describes a state-transition system, and show
how to define program computations, sequential and parallel composition, and program refinement
in terms of this definition. This section presents the material with a minimum of mathematical
notation and only brief sketches of most proofs; Section 2.7 presents the same material formally and

in more detail, including a description (Section 2.7.1) of notational conventions.

2.1.1 Overview

Treating programs as state-transition systems is not a new approach; it has been used in work such
as Chandy and Misra [24], Lynch and Tuttle [52], Lamport [51], Manna and Pnueli [54], and Pnueli
[61] to reason about both parallel and sequential programs. The basic notions of a state-transition
system — a set of states together with a set of transitions between them, representable as a directed
graph with states for vertices and transitions for edges — are perhaps more helpful in reasoning
about parallel programs, particularly when program specifications describe ongoing behavior (e.g.,
safety and progress properties) rather than relations between initial and final states, but they are
also applicable to sequential programs. Our operational model builds on this basic view of program
execution, presented in a way specifically aimed at facilitating the stating and proving of the main
theorems of this chapter (that for groups of program elements meeting stated criteria, their parallel
and sequential compositions are semantically equivalent) and subsequent chapters.

Thus, we define programs in terms of sets of variables and sets of program actions. A program’s

variables define a set of states, one for each assignment of values to variables; the variables can

10

include not only the “visible” variables of imperative programming languages but also “hidden”
variables such as program counters. A program action is defined as a relation between its input
variables and its output variables; each program action generates a set of state transitions. Program
actions are atomic. The system can be viewed as a graph, with each state a vertex and each state
transition a directed edge. A computation of the program then corresponds to a path in the graph,
starting from one of the program’s initial states and — if the computation terminates — ending in

a state with no outgoing edges.

2.1.2 Definitions

Definition 2.1 (Program).

We define a program P as a 6-tuple (V, L, InitL, A, PV, PA), where

e V is a finite set of typed variables. V' defines a state space in the state-transition system; that
is, a state is given by the values of the variables in V. In our semantics, distinct program

variables denote distinct atomic data objects; aliasing is not allowed.

e L C V represents the local variables of P. These variables are distinguished from the other
variables of P in two ways: (1) The initial states of P are given in terms of their values, and (2)
they are invisible outside P — that is, they may not appear in a specification for P, and they

may not be accessed by other programs composed with P, either in sequence or in parallel.
e InitL is an assignment of values to the variables of L, representing their initial values.

e A is a finite set of program actions. A program action describes a relation between states of its
input variables (those variables in V' that affect its behavior, either in the sense of determining
from which states it can be executed or in the sense of determining the effects of its execution)
and states of its output variables (those variables whose value can be affected by its execution).

Thus, a program action is a triple (I,, 0,4, R,) in which
— I, C V represents the input variables of A.

— O, C V represents the output variables of A.

— R, is a relation between I,-tuples and O,-tuples.

e PV CV are protocol variables that can be modified only by protocol actions (elements of PA).
(That is, if v is a protocol variable, and a = (I,,O,, R,) is an action such that v € O,, a must
be a protocol action.) Such variables and actions are not needed in this chapter but are useful

in defining the synchronization mechanisms of Chapter 4 and Chapter 5; the requirement that

11

protocol variables be modified only by protocol actions simplifies the task of defining such

mechanisms. Observe that variables in PV can include both local and non-local variables.

e PA C A are protocol actions. Only protocol actions may modify protocol variables. (Protocol

actions may, however, modify non-protocol variables.)

Remarks about Definition 2.1.

o Program action a = (I, 0,, R,) defines a set of state transitions, each of which we write in
the form s = ', as follows: s = s’ if the pair (i,0), where i is a tuple representing the values
of the variables in I, in state s and o is a tuple representing the values of the variables in O,

in state s, is an element of relation R,.

e We can also define a program action based on its set of state transitions, by inferring the

required I,, O,, and R,. Details are given in the remarks following Definition 2.1’ in Sec-

tion 2.7.2.

Examples of Definition 2.1.

e As an example, consider the definition of program skip (Definition 2.29) in Section 2.9: The
program has a single variable, Eng;py, with an initial value of true, and a single action that
maps the state s in which Engyp is true to the state s’ in which Engyy is false. All of the
commands and constructs we define have an analogous “enabling” variable, which is true

exactly when the command or construct is enabled — that is, allowed to begin execution.

o Other simple examples include the remaining commands of Section 2.9.1. Observe that abort is

unusual in that it never sets its enabling flag to false and hence (as intended) never terminates.

Definition 2.2 (Initial states).

For program P, s is an initial state of P if, in s, the values of the local variables of P have the values

given in InitL.

O

12
Definition 2.3 (Enabled).

For action a and state s of program P, we say that a is enabled in s exactly when there exists

program state s’ such that s 5 s'.

O

Remarks about Definition 2.3.

e If we view the program’s state-transition system as a graph, a program action is enabled in
state s if there is an outgoing edge corresponding to the action from the vertex corresponding

to s.

Definition 2.4 (Computation).

If P= (V,L,InitL, A, PV, PA), a computation of P is a pair
C = (s0,(j : 1 <5< N:(aj,85))

in which
e 3o is an initial state of P.

e (j:1<j < N:/(aj,s;)) is asequence of pairs in which each a; is a program action of P, and
for all 7, s;j—1 Y s;. We call these pairs the state transitions of C, and the sequence of actions

a; the actions of C.

N can be a non-negative integer or oco. In the former case, we say that C is a finite or
terminating computation with length NV 4+ 1 and final state sy. In the latter case, we say that

C is an infinite or nonterminating computation.

e If C is infinite, the sequence (j : 1 < j : (aj, s;)) satisfies the following fairness requirement:

If, for some state s; and program action a, a is enabled in s;, then eventually either a occurs

in C or a ceases to be enabled.

13

Remarks about Definition 2.4.

¢ As noted earlier, if we view the program’s state-transition system as a graph, a computation
corresponds to a path through the graph, following directed edges (actions) between vertices

(states).

Definition 2.5 (Terminal state).

We say that state s of program P is a terminal state of P exactly when there are no actions of P

enabled in s.

a

Remarks about Definition 2.5.

e If we view the program’s state-transition system as a graph, a terminal state is one with no

outgoing edges.

Definition 2.6 (Maximal computation).

We say that a computation of C of P is a mazimal computation exactly when either (1) C is infinite

or (2) C is finite and ends in a terminal state.

O

Definition 2.7 (Affects).

For predicate q and variable v € V', we say that v affects ¢ exactly when there exist states s and ¢/,

identical except for the value of v, such that ¢.s # ¢.s'.

For expression E and variable v € V, we say that v affects E exactly when there exists value % for

E such that v affects the predicate (E = k).

O

14

2.1.3 Specifications and program refinement

The usual meaning of “program P is refined by program P'” is that program P' meets any specifi-
cation met by P. We will confine ourselves to specifications that describe a program’s behavior in
terms of initial and final states, giving (1) the set of initial states s such that the program is guaran-
teed to terminate if started in s, and (2) the relation, for terminating computations, between initial
and final states. An example of such a specification is a Hoare total-correctness triple. In terms of
our model, initial and final states correspond to assignments of values to the program’s variables;
we make the additional restriction that specifications do not mention a program’s local variables L.
We make this restriction because otherwise program equivalence can depend on internal behavior
(as reflected in the values of local variables), which is not the intended meaning of equivalence.? We
write P C P' to denote that P is refined by P'; if P C P’ and P’ C P, we say that P and P’ are

equivalent, and write P ~ P'.

Definition 2.8 (Equivalence of computations).

For programs P; and P, and a set of typed variables V' such that V' C V; and V C V; and for every
v in V, v has the same type in all three sets (V, V1, and V), we say that computations Cy of P,

and Cy of P, are equivalent with respect to V exactly when:

e For every v in V, the value of v in the initial state of C; is the same as its value in the initial

state of Cs.

¢ Either (1) both Cy and C, are infinite, or (2) both are finite, and for every v in V, the value

of v in the final state of C; is the same as its value in the final state of Cs.

We can now give a sufficient condition for showing that P, C P, in our semantics.

Theorem 2.9 (Refinement in terms of equivalent computations).

For P; and P, with (V1 \ L1) C (V2 \ L2) (where \ denotes set difference), P, C P, when for every
maximal computation Cy of P, there is a maximal computation Cy of P; such that C; is equivalent

to Cy with respect to (V1 \ L1).

O

2For example, if specifications were allowed to mention local variables, sequential and parallel composition would
not be associative, since different ways of parenthesizing the composition lead to different sets of local variables.

15
Proof of Theorem 2.9.

This follows immediately from Definition 2.8, the usual definition of refinement, and our restriction

that program specifications not mention local variables.

O

2.1.4 Program composition

We now present definitions of sequential and parallel composition in terms of our model. First we
need some restrictions to ensure that the programs to be composed are compatible — that is, that
it makes sense to compose them:

Definition 2.10 (Composability of programs).

We say that a set of programs P, ..., Py can be composed exactly when

e any variable that appears in more than one program has the same type in all the programs in
which it appears (and if it is a protocol variable in one program, it is a protocol variable in all

programs in which it appears),

e any action that appears in more than one program is defined in the same way in all the

programs in which it appears, and

¢ different programs do not have local variables in common.

Remarks about Definition 2.10.

e If it should be the case that for some j # k, the local variables of P; and P overlap, observe
that we can rename (in P; or F}) any variable v in both sets of local variables without changing

the meaning of the modified program.

16

2.1.4.1 Sequential composition

The usual meaning of sequential composition is this: A maximal computation of P;; P, is a maximal
computation C of P; followed (if Cy is finite) by a maximal computation Cy of P», with the obvious
generalization to more than two programs. We can give a definition with this meaning in terms of
our model by introducing additional local variables Eny, ..., Eny that ensure that things happen in
the proper sequence, as follows: Actions from program P; can execute only when En; is true. En,
is set to true at the start of the computation, and then as each P; terminates it sets En; to false

and En;y; to true, thus ensuring the desired behavior.

Definition 2.11 (Sequential composition).

If programs Py, ..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), can be composed (Definition 2.10),
we define their sequential composition (Pi;...; Py) = (V, L, InitL, A, PA, PV) thus:

e V=VU...UVNUL.

e L=LU...ULyU{Enp,Eny,...,Enyn}, where Enp, En,,..., Eny are distinct Boolean

variables not otherwise occurring in V:
Enp is true in the initial state of the sequential composition and false thereafter.

For all j, En;j is true during (and only during) the part of the computation corresponding to

execution of P;.

e InitL is defined thus: The initial value of Enp is true. For all j, the initial value of En; is

false, and the initial values of variables in L; are those given by InitL;.
e A consists of the following types of actions:

— Actions corresponding to actions in A;, for some j: For a € A;, we define a' identical to
a except that a' is enabled only when En; = true.

— Actions that accomplish the transitions between components of the composition:
Initial action a7, takes any initial state s, with Enp = true, to a state s’ identical except
that Enp = false and En; = true. s' is thus an initial state of P.
For j with 1 < j < N, action a7, takes any terminal state s of P;, with En; = true, to a
state s’ identical except that En; = false and Enjiq = true. s’ is thus an initial state of
Pj1.
Final action ar, takes any terminal state s of Py, with Eny = true, to a state s’ identical

except that Eny = false. s' is thus a terminal state of the sequential composition.

e PV=PVU...UPVny.

17

e PA contains exactly those actions a’ derived (as described above) from the actions a of

PA{U...UPApN.

Remarks about Definition 2.11.

e Sequential composition as just defined is associative, since our definition of program equivalence

(two-sided refinement) excludes local variables.

2.1.4.2 Parallel composition

The usual meaning of parallel composition is this: A computation of P;||P; defines two threads of
control, one each for P; and P,. Initiating the composition corresponds to starting both threads;
execution of the composition corresponds to an interleaving of actions from both components; and
the composition is understood to terminate when both components have terminated. We can give
a definition with this meaning in terms of our model by introducing additional local variables that
ensure that the composition terminates when all of its components terminate, as follows: As for
sequential composition, we introduce additional local variables Eny, ..., Eny such that actions from
program P; can execute only when En; is true. For parallel composition, however, all of the Enj’s
are set to true at the start of the computation, so computation is an interleaving of actions from
the P;’s. As each P; terminates, it sets the corresponding En; to false; when all are false, the
composition has terminated. Observe that the definitions of parallel and sequential composition are

almost identical; this greatly facilitates the proofs of Lemma 2.17 and Lemma 2.18.

Definition 2.12 (Parallel composition).
If programs Py, ..., Py, with P; = (V}, Ly, InitL;, A;, PV ;, PA;), can be composed (Definition 2.10),

we define their parallel composition (P1||...||Py) = (V, L, InitL, A, PV, PA) thus:

e V=VU...UVNUL.

e L=LU...ULyU{Enp,Eny,...,Eny}, where Enp,En,,..., Eny are distinct Boolean
variables not otherwise occurring in V.
Enp is true in the initial state of the parallel composition and false thereafter.

For all j, En; is true until the part of the composition corresponding to P; has terminated.

18

e InitL is defined thus: The initial value of Enp is true. For all j, the initial value of Enj is

false, and the initial values of variables in L; are those given by InitL;.
e A consists of the following types of actions:

— Actions corresponding to actions in A;, for some j: For a € A;, we define o’ identical to
a except that @' is enabled only when En; is true.

- Actions that correspond to the initiation and termination of the components of the com-
position:
Initial action a7, takes any initial state s, with Enp = true, to a state s’ identical except
that Enj; = true for all j. s’ is thus an initial state of P, for all j.
For j with 1 < j < N, action ag; takes any terminal state s of P;, with En; = true, to a
state s’ identical except that En; = false. A terminating computation of P contains one
execution of each ar;; after execution of ar; for all j, the resulting state s’ is a terminal

state of the parallel composition.

e PV =PV U...UPVpN.

e PA contains exactly those actions o' derived (as described above) from the actions a of

PAjU...UPAN.

Remarks about Definition 2.12.

o Parallel composition as just defined is associative and commutative, since our definition of

program equivalence (two-sided refinement) excludes local variables.

2.2 arb-compatibility and arb composition

We now turn our attention to defining sufficient conditions for a group of programs Py,..., Py to

have the property we want, namely:
(P1”||PN) ~ (Pl;...;PN) .

This section presents the material with a minimum of mathematical notation and only brief sketches
of most proofs; Section 2.8 presents the same material in more detail, with more complete proofs

and with more use of mathematical notation.

19

2.2.1 Definition of arb-compatibility

We first define a key property of pairs of program actions.

Definition 2.13 (Commutativity of actions).

Actions a and b of program P are said to commute exactly when the following two conditions hold:

e Execution of b does not affect (in the sense of Definition 2.7) whether a is enabled, and vice

versa.

o It is possible to reach s9 from s; by first executing o and then executing b exactly when it is
also possible to reach ss from s; by first executing b and then executing a, as illustrated in
Figure 2.1. In the figure, a and b are both nondeterministic, but observe that the graph has
the property that if we can reach a state (sy or s,) by executing first a and then b, then we

can reach the same state by first executing b and then a, and vice versa.

Figure 2.1: Commutativity of actions a and b.

Remarks about Definition 2.13.

¢ a and b commute exactly when a and b have the diamond property [25, 53].

‘We now define the desired condition.

20

Definition 2.14 (arb-compatible).

Programs Py, ..., Py are arb-compatible exactly when they can be composed (Definition 2.10) and

any action in one program commutes (Definition 2.13) with any action in another program.

O

2.2.2 Equivalence of sequential and parallel composition for arb-compatible

components

We now show that arb-compatibility guarantees the property of interest, namely the equivalence
of parallel and sequential composition. We sketch the proof here; a detailed proof is given in
Section 2.8.2.

Theorem 2.15 (Parallel ~ sequential for arb-compatible programs).

If P,,..., Py are arb-compatible, then

(Pl ||1PN) ~ (Prs.. s Pn)

Proof of Theorem 2.15.

We write Pp = (P1]|...||Pn) and Ps = (Py;...; Pn). From Definition 2.11 and Definition 2.12,
(Vp = Vs)A(Lp = Ls) A (In’itLp = InitLs) AN(PVp = PVS) A (PAP = PAs) ,,
so we write Pp = (V, L, InitL, Ap, PV, PA) and Ps = (V, L, InitL, Ag, PV, PA). We proceed as

follows:

e We first show (Lemma 2.17) that for every maximal computation Cs of Pg there is a maximal
computation Cp of Pp with Cg equivalent to Cp with respect to V \ L. From Theorem 2.9,
this establishes that Pp C Ps.

e We then show (Lemma 2.18) the converse: that for every maximal computation Cp of Pp
there is a maximal computation Cg of Ps with Cp equivalent to Cg with respect to V' \ L.

From Theorem 2.9, this establishes that Ps C Pp.

e We then conclude that Pp ~ Pg, as desired.

21

We begin by proving the following useful lemma:

Lemma 2.16 (Reordering of computations).

Suppose that Py, ..., Py are arb-compatible and Cp is a finite (not necessarily maximal) compu-
tation of Pp = (P1]|...||Pn) containing a successive pair of transitions ((a, s»), (b, sp+1)) such that
a and b commufe. Then we can construct a computation C'p of Pp with the same initial and final
states as Cp, and the same sequence of transitions, except that the pair ({a, s,), (b, Sn+1)) has been

replaced by the pair ((b,s}), (a,Sn+1))-

]

Proof of Lemma 2.16.

This is an obvious consequence of the commutativity (Definition 2.13) of @ and b: If 5,1 = s,, and
b . b
Spn — Sn4+1, then there exists a state s/, such that s,_; — s, and st 5 Sn+1, SO we can construct a

computation as described.

O

Lemma 2.17 (Sequential refines parallel).

For Pp and Pg defined as in Theorem 2.15, if Cs is a maximal computation of Pg, there is a maximal

computation Cp of Pp with Cs equivalent to Cp with respect to V'\ L.

=]

Proof of Lemma 2.17.

The proof of this lemma is straightforward for finite computations: We have defined parallel and se-
quential composition in such a way that any maximal finite computation of the parallel computation
maps to an equivalent maximal computation of the parallel composition.

For nonterminating computations, we can similarly map a computation of the sequential compo-
sition to an infinite sequence of transitions of the parallel composition. However, the result may not
be a computation of the parallel composition because it may violate the fairness requirement: If P;
fails to terminate, no action of Pj4; can occur, even though in the parallel composition there may
be actions of Pj;q that are enabled. If this is the case, however, we can use the principle behind

Lemma 2.16 to transform the unfair sequence of transitions into a fair one.

22

Details are given in the proof of Lemma 2.17' in Section 2.8.2.

Lemma 2.18 (Parallel refines sequential).

For Pp and Ps defined as in Theorem 2.15, if C'p is a maximal computation of Pp, there is a maximal

computation Cs of Ps such that Cg is equivalent to Cp with respect to V'\ L.

O

Proof of Lemma 2.18.

For terminating computations, the proof is straightforward: Given a maximal computation of the

parallel composition, we first apply Lemma 2.16 repeatedly to construct an equivalent (also maximal)

computation of the parallel composition in which, for j < &, all transitions corresponding to actions

of P; occur before transitions corresponding to actions of P;. As in the proof of Lemma 2.17, this

computation then maps to an equivalent maximal computation of the sequential composition.

For nonterminating computations, we can once again use the principle behind Lemma 2.16 to

construct a sequence of transitions (of the parallel composition) in which, for j < k, all transitions

corresponding to actions of P; occur before transitions corresponding to actions of P,. We then map

this sequence of transitions to a computation of the sequential composition.

Details are given in the proof of Lemma 2.18' in Section 2.8.2.

2.2.3 Definition of arb composition

For arb-compatible programs Py, ..., Py, then, we know that

(Pl IPn) ~ (Pr;...; Pn)

To denote this parallel /sequential composition of arb-compatible elements, we write arb(Py, ...

where

arb(Py,...,Px) ~ (P1]|...]|Px)

or equivalently

arb(Pl,...,PN) N(Pl;...;PN) .

)PN)7

We refer to this notation as “arb composition”, although it is not a true composition operator since

it is properly applied only to groups of elements that are arb-compatible. We regard it as a useful

23

form of syntactic sugar that denotes not only the parallel/sequential composition of P, ..., Py but

also the fact that Py,..., Py are arb-compatible.

We also define an additional bit of syntactic sugar, seq(P, ..., Py), such that
Seq(Pla"'a-PN) ~ (P157PN) .

We will sometimes use this notation to improve the readability of nestings of sequential and arb

composition.

2.2.4 Properties of arb composition

arb composition has the following properties.

Theorem 2.19 (Associativity of arb composition).
arb composition is associative.

O

Proof of Theorem 2.19.

We must show that if Py, P>, P3 are arb-compatible, then
al‘b(Pl,aI'b(Pg,Pg)) ~ arb(arb(Pl,Pg),Pg) .

This theorem is an obvious consequence of the definition of arb composition (Definition 2.14) and
the associativity of parallel composition, except that it is not immediately obvious that the two
sides of the claimed equivalence make sense. Recalling that we only write arb(P;,..., Py) when

Py, ..., Py are arb-compatible, the equivalence makes sense only if:
e P and P, are arb-compatible, as are P, and P;.
e P and arb(P,, P3) are arb-compatible, as are P; and arb(Py, Ps).

The former is an obvious corollary of the definition of arb-compatibility (Definition 2.14): If
Py, ...,Py are arb-compatible, then clearly the elements of any subset of Pp,..., Py are arb-
compatible as well. The latter follows from the definitions of arb-compatibility and parallel com-
position (Definition 2.12): arb(FPz, P5) ~ (P,||FP3), and then from the definitions it is clear that
(P,||P3) and P; are arb-compatible. The case of arb(P;, P») and P; is exactly analogous. So now

we can proceed®:

3For an explanation of this calculational proof style, refer to Section 2.7.1

24

arb(P;,arb(P, P3))

~ { definitions }
(P1|[(P2]|Ps))

~ { associativity of parallel composition }
((PL]|P2)]1Ps)

~ { definitions }

arb(arb(P;, P,), Ps)

Theorem 2.20 (Commutativity of arb composition).
arb composition is commutative.

O

Proof of Theorem 2.20.

This follows directly from the equivalence of arb and parallel composition and the commutativity

of parallel composition.

O

Theorem 2.21 (Refinement by parts of arb composition).

We can refine any component of an arb composition to obtain a refinement of the whole composition.
That is, if Pi,..., Py are arb-compatible, and, for each j, P; C P}, and Pj,...,Py are arb-

compatible, then

arb(Pi,..., Pyn)

M

arb(P/,..., Py)

25

Proof of Theorem 2.21.

arb(P;,..., Py)

~ { Theorem 2.15 }
(Py;...; Pn)

C { refinement by parts for sequential programs }
(Pf;...; Py)

~ { Theorem 2.15 and hypothesis }

arb(P],..., Py)

Remarks about Theorem 2.21.

e This theorem, as mentioned earlier, is the justification for our program-development strategy,

in which we apply the techniques of sequential stepwise refinement to arb-model programs.

2.2.5 A simpler sufficient condition for arb-compatibility

The definition of arb-compatibility given in Definition 2.14 is the most general one that seems to
give the desired properties (equivalence of parallel and sequential composition, and associativity and
commutativity), but it may be difficult to apply in practice. We therefore give a more-easily-checked

sufficient condition for programs Py,..., Py to be arb-compatible.

First, we give some preliminary definitions:

Definition 2.22 (Variables read by P).

For program P, we say that a variable v is read by P if it is an input variable for some action a of

P; we write VR to denote the set of all such variables.

O

Definition 2.23 (Variables written by P).

For program P, we say that a variable v is written by P if it is an output variable for some action a

of P; we write VW to denote the set of all such variables.

26

We can now give the sufficient condition, preceded by a preliminary definition.

Definition 2.24 (Programs that share only read-only variables).

If programs Py, ..., Py can be composed (Definition 2.10), and for j # k, no variable written by P;

is read or written by Py, then we say that Py, ..., Py share only read-only variables.

O

Theorem 2.25 (arb-compatibility and shared variables).

If programs Pi,..., Py share only read-only variables (Definition 2.24), then P,..., Py are arb-

compatible.

O

Proof of Theorem 2.25.

Given programs Pi, ..., Py that satisfy the condition, it suffices to show that any two actions from
distinct components P; and P, commute. The proof is straightforward; a detailed version appears

as the proof of Theorem 2.25’ in Section 2.8.

O

2.3 arb composition and programming notations

A key difficulty in applying our methodology for program development is in identifying groups
of program elements that are known to be arb-compatible. The difficulty is exacerbated by the
fact that many programming notations have a notion of program variable that is more difficult to
work with than the notion we employ for our formal semantics. In our semantics, variables with
distinct names address distinct data objects. In many programming notations, this need not be
the case, and the difficulty of detecting situations in which variables with distinct names overlap
(aliasing) complicates automatic program optimization and parallelization just as it complicates the
application of our methodology. Syntactic restrictions sufficient to guarantee arb-compatibility do
not seem in general feasible, but we believe that the semantic restrictions described in this section
are a step in the right direction, by helping programmers to make conservative estimates of which

variables are being accessed, that is, to identify a superset of the variables being accessed.

27

Our approach is to define, for every program P, sets of variables ref.P and mod.P, such that
ref.P O VRp and mod.P O VW p. That is, mod.P contains all atomic data objects* whose value
is changed in some computation of P, and ref.P contains all atomic data objects referenced in P,
that is, all data objects whose value is “read” during some computation of P. We also define, for
every expression E, an analogous ref.E such that ref.E contains all atomic data objects whose
value affects E. Note that it may be the case that ref.P D VRp and mod.P O VW p — that is,
ref.P and mod.P may be defined more broadly than necessary. Note also that it is not necessarily
the case that mod.P C ref.P.

We can then state restrictions in terms of ref and mod sufficient to guarantee arb-compatibility:

Theorem 2.26 (arb-compatibility in terms of ref and mod).

Program blocks Pi,..., Py are arb-compatible when, for all § # &, mod.P; does not intersect

ref.P, Umod.P;.

O

Proof of Theorem 2.26.
This follows immediately from Theorem 2.25.

O

Remarks about Theorem 2.26.

e It is important to note again that ref and mod refer to data objects — i.e., memory locations
— rather than variable names. In determining which variables to include, users must consider
not only questions of aliasing but also the presence of “hidden” variables, examples of which
range from the COMMON-block variables of Fortran to the hidden variables often involved in
file access. (For example, if program P accesses a file sequentially, mod.P should include a
variable representing the file, since concurrent attempts by two programs to read the same file

result in program actions that do not meet the commutativity test for arb-compatibility.)

4 An atomic data object is as defined in our semantics or, equivalently, in HPF [43]: one that contains no subobjects
— e.g., a scalar data object or a scalar element of an array.

28
2.4 arb composition and Dijkstra’s guarded-command lan-

guage

2.4.1 Dijkstra’s guarded-command language and our model

It is straightforward to define the commands and constructors of Dijkstra’s guarded-command lan-

guage [35, 37] in terms of our model. We sketch such definitions in Section 2.9.

2.4.2 Conditions for arb-compatibility

Giving syntactic restrictions that we know guarantee arb-compatibility seems less problematical
in Dijkstra’s guarded-command language than in a large practical programming language, simply
because Dijkstra’s guarded-command language is a small and well-understood language. Neverthe-
less, there is no guarantee that variables with distinct names in fact address distinct data objects,
so problems with aliasing are possible. We nonetheless give some examples of defining mod.P
and ref.P for some of the constructs of Dijkstra’s guarded-command language, noting that these

examples work only if distinct variable names in fact address distinct data objects.

mod.skip = {}

mod.abort = {}

mod.(z := E) = {z}

(P=s1;...;8N) =
(mod.P = (mod.s; U...Umod.sy))

(P=ifby = s1[] ... [[bw — sn i) =
(mod.P = (mod.s; U...Umod.sy)))

(P=dob; = s51[] ... [Jb~N — syod) =
(mod.P = (mod.s; U...Umod.sy))

ref.F = {v :: vis named in E}
ref.skip = {}
ref.abort = {}
ref.(z:= E) =ref.E
(P =s1;...;8N) =
(ref.P = (ref.s; U...Uref.sy))
P=ifby - s1[]...[Jb~n = sy f)=>
(ref.P = (ref.by U...Uref.by) U (ref.s; U...Uref.sy))
(P=dob; = s1[]...[[bv = syod)=
(ref.P = (ref.by U...Uref.by) U (ref.s; U...Uref.sy))

29

2.4.3 Examples of arb composition
Composition of assignments

This example composes two simple assignment commands.

arb(a :=1,b:= 2)

Composition of sequential blocks

This example composes two sequences, the first assigning to a and b and the second assigning to ¢

and d.

arb(seq(a := 1,b := a),seq(c = 2,d :=¢))

Invalid composition

The following example is not a valid arb composition; the two assignments are not arb-compatible.

arb(a:=1,b:=aq)

2.5 arb composition and Fortran 90

2.5.1 Fortran 90 and our model

Giving a formal definition of the semantics of a large practical programming language such as
Fortran 90 [1, 46] is far from trivial. We observe, however, that the well-understood constructs of
Dijkstra’s guarded-command language have, when deterministic, analogous constructs in Fortran
90 (as in many other practical languages), and that formally-justified results derived in Dijkstra’s
guarded-command language apply to Fortran 90 programs insofar as the Fortran 90 programs limit
themselves to these analogous constructs. Difficulties in applying our work to Fortran 90 fall into

two categories:

Irregular control structures. Giving a formal definition of the semantics of less-than-disciplined
control structures such as GOTO is troublesome but possible. However, our definitions of sequential
and parallel composition make sense only for self-contained program blocks, where a self-contained
block is one that contains neither a GOTO whose target lies outside the block nor a label that is
the target of a GOTO outside the block. We observe that our results on arb composition apply to
compositions of self-contained blocks; we do not attempt to give a meaning for composition of blocks

that are not self-contained.

30

Aliased and hidden variables. Fortran, particularly FORTRAN 77, is notorious for making it
difficult to determine from the program text which variables are accessed or modified: Variables with
different names may reference the same location (aliasing, as a result of EQUIVALENCE statements or
of the use of different array indices with the same value), and references to COMMON-block and other
“hidden” variables may be difficult to determine without interprocedural analysis. Our results on
arb composition apply provided it is known to the programmer exactly which variables are being
addressed in a particular program. Inferring such information (which variables are being addressed)
by means of syntactic analysis is not trivial — if it were, parallelizing compilers would be easier to
produce — but we believe that it is feasible for programmers to make such determinations manually

for programs written in a disciplined style or thoroughly documented.

2.5.2 Conditions for arb-compatibility

As noted in the preceding section, the general problem of determining which variables a program
element references and modifies does not seem to be readily amenable to syntactic analysis. We give

here some examples of defining mod.P and ref.P for some example programs.

Simple example

Given the following program block p:
integer x, y, 2z
X =y +z

we have

mod.p = {x}
refp = (7,2}

Example with COMMON block

Given the following program block g:
integer u, v

call gsub(u, v)

and the following subprogram qsub:

31

subroutine gqsub(x, y)
integer x, y

common /qcom/ ¢

integer c
X = 2xy
c = ct+l

end subroutine

we have:
mod.q = {u, ¢}
ref.q = {v,c}

This is an example of a program in which there is no obvious way to determine by syntactic analysis
(without interprocedural analysis, which may not be feasible) that a call to a subprogram (qsub,

called from q) modifies a “hidden” variable (COMMON-block variable c).

2.5.3 Notation

For Fortran 90, we provide a different notation for arb composition and explicit sequential com-
position, one that is analogous to the other constructs of Fortran 90. This notation allows us to
write programs in the arb model that can be easily, even mechanically, transformed into programs

in languages based on Fortran 90, as described in Section 2.6.

2.5.3.1 arb composition

For arb-compatible programs P, ..., Py, we write their arb composition thus:
arb

P_1

P_2

P_N

end arb

2.5.3.2 seq composition

For any programs Pi,..., Py, we write their sequential composition thus:

32

seq

P_N

end seq

Observe that sequential composition is the default; that is, statements are composed sequentially
unless they are explicitly composed using parallel composition or one of its restricted forms, arb

and par. (par composition is defined in Chapter 4.)

2.5.3.3 arball

To allow us to express the arb composition of, for example, the iterations of a loop, we define an
indexed form of arb composition, with syntax modeled after that of the FORALL construct of High
Performance Fortran [43], as follows. This notation is syntactic sugar only, and all theorems that

apply to arb composition apply to arball as well.

Definition 2.27 (arball).

If we have N index variables iy, ... ,%y, with corresponding index ranges i;_start < i; <ij_end, and

program block P such that P does not modify the value of any of the index variables — that is,

mod.PN {i1,...,in} = {} — then we can define an arball composition as follows:
For each tuple (z1,...,zx) in the cross product of the index ranges, we define a correspond-
ing program block P(z1,...,zy) by replacing index variables i1, ...,y with corresponding values

z1,...,ZN. lf the resulting program blocks are arb-compatible, then we write their arb composition

as follows:
arball (i_1 = i_i_start : i_1_end , ..., i_N = i_N_start : i_N_end)
P(x_1, ..., x_N)
end arball
(]

Remarks about Definition 2.27.

e Observe that the body of the arball composition can be a sequential composition. We do not

require that the sequential composition be explicit, as illustrated in the next-to-last example.

33

2.5.4 Examples of arb composition
Composition of assignments

This example composes two simple assignment commands.

arb

o
]
N

end arb

Composition of sequential blocks

This example composes two sequences, the first assigning to a and b and the second assigning to ¢

and d.
arb
seq
a=1
b=a
end seq
seq
c=2
d=c
end seq
end arb

Invalid composition

The following example is not a valid arb composition; the two assignments are not arb-compatible.
arb
a=1
b=a

end arb

34

Invalid composition because of aliasing

The following example is not a valid arb composition; because of the EQUIVALENCE statement the

two assignments are not arb-compatible.

equivalence (a, b)

arb
a=1
b =2
end arb

Composition of assignments (arball)

The following example composes twenty assignments, one for each pair of values for i and j:
arball (i = 1:4, j = 1:5)
a(i,j) = i+j

end arball

That is, it is equivalent to the following:

arb
a(1,1) = 141
a(2,1) = 2+1
a(4,1) = 4+1
a(1,2) = 142
a(4,5) = 4+5
end arb

Composition of sequential blocks (arball)

The following example composes ten sequences, each assigning to one element of a and one element

of b.

35

arball (i = 1:10)

seq
a(i) = i
b(i) = a(i)
end seq
end arball

As noted in the remarks following Definition 2.27, if the body of the arball composition is a sequential
composition, we do not require that the sequential composition be explicit; that is, this example
could also be written:

arball (i = 1:10)

a(i) = 1
b(i) = a(i)
end arball

without changing its meaning.

Invalid composition (arball)

The following example is not a valid arball; the ten assignment statements it defines are not arb-
compatible.
arball (i = 1:10)
a(i+1) = a(i)

end arball

2.6 Execution of arb-model programs

Since for arb-compatible program elements, their arb composition is semantically equivalent to their
parallel composition and also to their sequential composition, programs written using sequential
commands and constructors plus (valid) arb composition can, as noted earlier, be executed either
as sequential or as parallel programs with identical results.® In this section we discuss how to do

this in the context of practical programming languages.

5Programs that use arb to compose elements that are not arb-compatible cannot, of course, be guaranteed to
have this property. As discussed in Section 2.2.3, we assume that the arb composition notation is applied only to
groups of program elements that are arb-compatible; it is the responsibility of the programmer to ensure that this is
the case.

36

2.6.1 Sequential execution

A program in the arb model can be executed sequentially; such a program can be transformed
into an equivalent program in the underlying sequential notation by replacing arb composition with
sequential composition. For Fortran 90, this is done by removing arb and end arb and transforming

arball into nested DO loops, as illustrated by the following examples.

Combination of arb and arball

The following program block
arb
arball (i = 2:N-1)
a(i) =0
end arball
a(l)
a(N)

1
1

end arb

is equivalent to the sequential block
doi=2, N-1
a(i) =0
end do
a()
a(lN)

[} [}
[=N

Observe that the loop could equally well be executed in reverse order (do i = N-1, 2, -1).

arball with multiple indices

The following program block
arball (i = 1:N, j = 1:M)
call p(i, j)

end arball

is equivalent to the sequential block

37

doi=1, N
do j =1, M
call p(i, j)
end do
end do

2.6.2 Parallel execution

A program in the arb model can be executed on a shared-memory-model parallel architecture given
a language construct that implements general parallel composition as defined in Definition 2.12. In
general parallel composition, each element of the composition corresponds to a thread; initiating
the composition corresponds to creating a thread for each element and allowing them to execute
concurrently, with the composition terminating when all of its component threads have terminated.
Language constructs consistent with this form of composition include the par and parfor constructs
of CC++ [21, 19], the INDEPENDENT directive of HPF [43], and the PARALLEL DO and PARALLEL
SECTIONS constructs of the Fortran X3H5 proposal [3].

2.6.2.1 Parallel execution using HPF

An arb-model program in which all arb compositions are of the arball form can be transformed
into an equivalent program in HPF by replacing arball with forall and preceding each such block

with an INDEPENDENT directive, as illustrated in the following examples.

Composition of assignments

The following program block
arball (i = 1:N, j = 1:M)
a(i,j) = i+j
end arball
is equivalent to the following HPF program segment

'HPF$ INDEPENDENT
forall (i = 1:N, j = 1:M) a(i,j) = i+j

Composition of sequential blocks

The following program block

38

arball (i = 1:N, j = 1:M)

a(i,j) = i+j
b(i,3) = a(i,j)
end arball

is equivalent to the following HPF program segment

'HPF$ INDEPENDENT
forall (i = 1:N, j = 1:M)

a(i,j) = i+j
b(i,j) = a(i,])
end forall

Here the presence of the INDEPENDENT directive means that it is not necessary (as it otherwise would

be) to synchronize threads between the statements of the FORALL construct.

2.6.2.2 Parallel execution using X3H5 Fortran

An arb-model program can be transformed into an equivalent program in the X3H5 notation by

replacing arb and end arb with PARALLEL SECTIONS, SECTION, and END PARALLEL SECTIONS and

replacing arball and end arball with PARALLEL DO and END PARALLEL DO (nested if necessary),

as illustrated in the following examples.

Data-parallel composition of sequential blocks

The following program block

arball (i = 1:N)
a(i) i

b(i) = a(i)

end arball

is equivalent to the following program segment using the X3H5 extensions to Fortran

PARALLEL DO i = 1, N
a(i) = 1
b(i) = a(i)

END PARALLEL DO

Task-parallel composition of sequential blocks

The following program block

39

arb
seq
call p1(); call p2()
end seq
seq
call p3(); call p4()
end seq
end arb

is equivalent to the following program segment using the X3H5 extensions to Fortran
PARALLEL SECTIONS
SECTION
call p1(0)
call p2Q)
SECTION
call p3(Q)
call p4Q)
END PARALLEL SECTIONS

2.7 Appendix: Program semantics and operational model,

details

This section contains a more detailed treatment of the definitions and theorems of Section 2.1.

2.7.1 Notation

We use the following notation:

s One component of our definition of a program is a set of typed variables V. Such a set
of variables defines a state space S, in which each state s represents a V-tuple, that is, an

assignment of values to variables. For {v1,...,un} CV and s € S, we write
slvi/z1,...,un/zN]

to denote the state formed from s by replacing the value of v; with ;, for i such that 1 < i < N.

40

e For W C V and s € S, we write s | W to denote the W-tuple formed by projecting s onto W.
For W C V, we write V \ W to denote the set difference of V and W.

o We use periods to indicate function application, e.g., f.z denotes f applied to z.

e We express quantification as follows:

“For all” and “there exists”:

Vil,.. . ,iN :p.(il,... ,iN) : q.(il,. e ,iN)

Fir, .oy in pin, - in) 1 ¢-(i1, -y iN)
denote the intersection and union, respectively, of predicates ¢.(i1,...,ix), where indices
i1,...,in range over all values such that p.(i1,...,in).

Sets and sequences:

{il,...,iN Sp.(il,...,iN) H f.(il,...,iN)}

denotes the set of all f.(i1,...,in), where indices iy,...,iny range over all values such that
p-(i1,...,in). A similar notation is used for sequences, but using angle brackets (()) rather

than curly braces.

e We employ the following conventions: s (or s, or s') denotes a program state. P (or P, or
P') denotes a program. C (or C, or C') denotes a computation of a program. v (or v, or
v') denotes a program variable, with a correspondingly subscripted or primed z denoting its

value. ¢ (or ¢, or ¢') denotes a predicate on states.

We sometimes use the proof format of Dijkstra and Scholten [37], which is perhaps most concisely
described via an example: Suppose we want to show that a formula A is equal to another formula
C by showing that A = B and B = C for some intermediate formula B. We would write this as

follows:

A

{ hint why A =B }
B

{ hint why B=C }
c

41

2.7.2 Definitions

Definition 2.1’ (Program, revisited).
We define a program P as a 6-tuple (V, L, InitL, A, PV, PA) as in Definition 2.1.

]

Remarks about Definition 2.1'.

e Program action a = (I,, 04, R,) defines a set of state transitions s - s’ as follows:

(s =) =((s 4 1), (s' Oa)) € Ra
A((s" L (VA Oa)) = (s 4 (V\ Oa)))

e If P is a deterministic program, then for every action a in A, R, is a partial function from I,
into O,. The converse is true only if for every state reachable from an initial state (Definition

2.2) at most one action is enabled (Definition 2.3).

e For program action a, I, includes all program variables that can affect the outcome of a, and
O, includes all program variables whose values can be changed as a result of a. We do not
require that I, and O, be of minimal size, so it is possible to define two actions corresponding

to the same set of state transitions.

e We can also define a program action based on its set of state transitions. Given a set
X C (S x S) of state transitions, we can define a program action a such that s % s exactly

when (s,s") € X, as follows:

I, = {v:veVA(3s,z 1 :tostates.(s[v/z]) # to_states.(s[v/z'])) : v}
Ouw = {v:veVA@3ss:(s,8)eX:(s){v})#(| {v})):v}
R, = {i,0:(iisan I, —tuple) A (ois an O, — tuple) A

(Vs,s' € S: (sl L, =0)A(s 1 Oa=0):(s,5) € X)
: (i,0)}

where

to_states.(s) = {s':(s,s') € X :5'}

With this approach, I, and O, are minimal.

42

Definition 2.2’ (Initial states, revisited).

For program P, we can define the set SI of its initial states thus:

SI ={s:s| L=InitL: s}

Definition 2.3’ (Enabled, revisited).
We write enabled.(a, s) to denote that a is enabled in s, as defined in Definition 2.3.

O

Definition 2.4’ (Computation, revisited).

If P=(V,L,InitL, A, PV, PA), a computation of P is a pair
C= (50a<j 1<j<N: (aj78j)>)

in which
o 5o € SI. We call s the initial state of C and write init.C = so.
e (j:1<j<N:(ay,s;)) is a sequence of pairs such that

Vi:jeJ:a; €A

A Vj:jeJ:Sj_lg-Sj
We call these pairs the state transitions of C, and the sequence of actions a; the actions of C.

N can be a non-negative integer or co. In the former case, we say that C is a finite or
terminating computations with length N + 1 and final state sy. In the latter case, we say that

C is an infinite or nonterminating computation.

We write finite.C to indicate that C is finite, and for finite C', we write final.C to indicate its

final state.

43

e If C is infinite, the sequence (j : 1 < j : (ay, s;)) satisfies the following fairness requirement:

If, for some j > 1 and a € A, enabled.(a, s;), then for some j' > j either (a, s;) is in the above

sequence, or —enabled.(a, s;).

Definition 2.5’ (Terminal state, revisited).
We write terminal.(s, P) to denote that s is a terminal state of P, as defined in Definition 2.5.

O

Definition 2.6’ (Maximal computation, revisited).
(Same as Definition 2.6.)

a

Definition 2.7' (Affects, revisited).

We write affects.(v, g) to denote that v affects ¢, and say that affects.(v,q) exactly when there exist

state s and values z and z’ of v such that

q-(s[v/z]) # q.(s[v/="]) -

We write affects.(v, E) to denote that v affects E, as defined in Definition 2.7.

]

2.7.3 Specifications and program refinement

Definition 2.8’ (Equivalence of computations, revisited).

For Py, P,, and V as described in Definition 2.8, we write C; ~ C» to denote that computations Cy

of P; and C5 of P, are equivalent with respect to V:

((init.01 J, V= init.Cg J, V) A (—xﬁm'te.C'l A ﬁﬁnite.Cg))
\

((init.C1 L V = init.Cy L V) A (finite.Cy A finite.C2) A (final.Cy LV = final.Cy [V))

44

Remarks about Definition 2.8'.

e Equivalence with respect to a set of variables V is transitive.

Theorem 2.9 (Refinement in terms of equivalent computations, revisited).

If (Vi \ L1) C (Va\ Lz2), P, C P, when for every maximal computation Cy of P, there is a maximal

computation Cy of P, such that C; '~ Cs.

O

Proof of Theorem 2.9'.
(See Theorem 2.9.)

O

2.7.4 Program composition

Definition 2.10' (Composability of programs, revisited).

We say that programs Pi,...,Pn, where P; = (V}, L;, InitL;, Aj, PV ;, PA;), can be composed
exactly when for every j # k,

v € (V; N Vi) = v has the same type in V; and Vj
AN ve(V;NVy) = (wePVy=vePVy)
A LjﬁLk:{}

A a€ (A;jNA,) = ais defined in the same way in A; and Ay

45

Remarks about Definition 2.10'.

e If it should be the case that for some j # k, L; N Ly # {}, we can rename {in P; or Fy) any

variables v € L; N Ly without changing the meaning of the modified program.

2.7.4.1 Sequential composition

Definition 2.11' (Sequential composition, revisited).

If programs P4, ..., Py, with P; = (V}, L;, InitL;, Aj, PV j, PA;), can be composed (Definition 2.10’),
we define their sequential composition {P;;...; Py) = (V, L, InitL, A, PV, PA) thus:

e V=Vu...UVNUL.

e L=LiU...ULyU{Enp,Eny,...,Enn}, where Enp, Eny,...,Eny are distinct Boolean

variables not otherwise occurring in V.

e InitL is defined by:

(Vj:1<j <N :((InitL | Lj = InitL;) A (InitL | {En;} = (false))))
A(InitL | {Enp} = (true))

e A=AlU...UANU{ar,...,ary}, where

— A ={a:a€ Aj:a'}, where for a € 4;, a' = (I, O, Ror), with

I, = I,U {Enj}
Oy = O
Ry = {i,0:((i)1s,0) € Ry) A (i L {En;} = (true)) : (i,0)}

— ATy = (IaTO 3 OaTO) RaTO), with

IaTO = {E’np}
Our, = {Enp,Eni}
Rory, = {i,0: (il {Enp} = (true))

Aol {Enp} = (false)) A (0| {En1} = (true))
: (i,0)}

46
— We define az; in terms of a set of state transitions, as discussed in the remarks following

Definition 2.1

For ar, with 1 < j < N — 1, the required set of state transitions is:

{s: (s { {En;} = (true)) A terminal.((s | V;), P;})

1 s = s[Enj/false, Enjqq [true]}

For ar, , the required set of state transitions is:

{s: (s 4 {Enn} = (true)) A terminal.((s | Vn), PNn)
: s = s[Eny/false]}

e PV=PViU...UPVyN.

e PA={a:(3j::a€ PAj):ad'}, where o is as defined above.

2.7.4.2 Parallel composition

Definition 2.12' (Parallel composition, revisited).

If programs Py, ..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), can be composed (Definition 2.10'),
we define their parallel composition (Pi||...||Pw) = (V, L, InitL, A, PV, PA) thus:

e V=ViU...UVN§UL.

e L=L1U...ULyU{Enp,Eny,...,Enn}, where Enp, Eny,..., Eny are distinct Boolean

variables not otherwise occurring in V.

e InitL is defined by:

(Vj:1<j<N:((Unitl | L; = InitL;) A (InitL | {En;} = (false))))
A(InitL | {Enp} = (true))

e A=AlU...UA\ U{an,...,ary}, where

47

- A= {a:a € Aj:d}, where for a € Aj, o' = (1o, Oq, Rar), with

I, = I,U{En;}
Oy = 0O,
Ry = {i,0:((414,0) € Ry) A (i) {En;} = (true)) : (i,0)}

— ary = (Iagy, Oazy » Rax,), with

L, = {Enp}
Our, = {Enp,Eni,...,Eny}
Razy = {i,0: (i {Bnp} = (true)) A (o} {Enp} = (false))
AVj:1<j<N:(ol{En;} = (true)))
: (¢,0)}

— We define ar; in terms of a set of state transitions, as discussed in the remarks following

Definition 2.1'. For ar;, the required set of state transitions is:

{s: (sl {En;} = (true)) A terminal.((s | V}), P;)

: s — s[En;/false]}

e PV=PV;U...UPVy.

e PA={a:(3f ::a € PAj):a'}, where o' is as defined above.

2.8 arb-compatibility and arb composition, details

This section contains a more detailed treatment of the definitions and theorems of Section 2.2.
2.8.1 Definition of arb-compatibility

Definition 2.13’ (Commutativity of actions, revisited).

Actions a and b of program P are said to commute exactly when:

Vs1,89 1 81 LA s : (enabled.(a, s1) = enabled.(a, s2))

48
A Vs1,83 181 — 55 (enabled.(b,s1) = enabled.(b, s2))
A Vs1 : enabled.(a, 1) A enabled.(b, s1) :
((Vs2,83 (513 52 Asy 5 53) : (Bsh 12 (51 sh A sh 2 53))

A (Vs2,83: (81 Loy Asy S 53) : (3sh (51 > sh A sl LN 53))))

Definition 2.14' (arb-compatible, revisited).

Programs Pi,..., Py, where P; = (V}, L;, InitL;, A;, PV ;, PA;), are arb-compatible exactly when
they can be composed (Definition 2.10') and, for any two actions a; € A; and ay € Ay with j # &,

a; and a; commute.

|

2.8.2 Equivalence of sequential and parallel composition for arb-compatible

components

For the sake of completeness, some material from Section 2.2.2 is repeated here.

Theorem 2.15' (Parallel ~ sequential for arb-compatible programs, revisited).

If P,,..., Py are arb-compatible, where P; = (V;, Ly, InitL;, A;, PV ;, PA;), then

(Bull - |1PN) ~ (Pr;-- 5 Pr)

Proof of Theorem 2.15'.

We write Pp = (P1]|]...||Pn) and Ps = (Pi;...; Py). From Definition 2.11" and Definition 2.12,
(Ve =Vs)A (Lp = Lg) A (InitLp = InitLg) A (PVp=PVs)AN(PAp = PAg) ,

so we write Pp = (V, L, InitL, Ap, PV, PA) and Ps = (V, L, InitL, Ag, PV, PA). We proceed as

follows:

49

e We first show (Lemma 2.17') that for every maximal computation Cg of Pg there is a maximal

computation Cp of Pp with Cg A Cp. From Theorem 2.9', this establishes that Pp C Ps.

e We then show (Lemma 2.17') the converse: that for every maximal computation Cg of Ps there
is a maximal computation Cg of Ps with Cg v Cs. From Theorem 2.9', this establishes

that Ps C Pg.

o We then conclude that Pp ~ Ps, as desired.

We begin by proving two additional lemmas:

Lemma 2.16’ (Reordering of computations, revisited).
(Same as Lemma 2.16.)

O

Lemma 2.28.

For Pp defined as in Theorem 2.15', if a; € (A} U {A1;}) and ax € (4} U {Ar}), with j # k, a;

and a; commute.

]

Proof of Lemma 2.28.

We define a set of variables V! =V \ {Enp, Fni,..., Eny}, and we consider the various cases:

¢ a; € A; and aj € Ay. Then there are corresponding a; € A; and a; € Ay, and:

First we show that if s; i s9, enabled.(ay, s1) = enabled.(a}, s2). From the definition of a,,
enabled.(ay,, s1) = (enabled.(ax,s1 4 V') A (s1 4 {Eni} = (true)) .
Since ay and a; commute,
enabled.(ay, s1 | V') = enabled.(ag,s5 L V') .
So since a; does not change the value of Eng,

enabled.(a},, s1) = enabled.(a}, s2) .

50
Now we show that

7
a’s

enabled.(a}, 51) A enabled(ay, s1) A (s1 3 53) A (59 Y 53)

= @b (1 B sh) A (s 3 s5))

Clearly

enabled.(a;,s1 L V') A enabled(ag,s1 L V')
Al(s1 L V") i (s2 LV A ((s2 L V') BB (53 L V"))

Also, (s1 | {Enj, En}) = (true, true), and neither a} nor aj, changes the value of any En,, or

E’np.

Since a; and ay commute, there is a state s such that
(1L V) LV A LV) S (s34 V)
If we define s} such that
(23 V) = (L VN A (s L (VAV)) = (s L (VAV)))
then s} is the required intermediate stage.

By symmetry, the “vice versa” part of the definition is true: a; does not enable or disable a;,

and so forth.

aj; € A} and a} = ar,. Then there is corresponding a; € A;, and:
It is clear from the definitions that if s; g 82, enabled.(ag, s1) = enabled.(a;-, 832)-
If 51 a—lﬁ s9, from the definition of af, (s1 { V') % (s5 L V'). From the definition of ar,,
enabled.(ar, ,s1) = ((s1 4 {Eng}) A terminal.((s1 | Vi), Pr) -
a; does not alter the value of Eny, and since a; commutes with all a;, € Ay,
terminal.((s1 4 V), Pr) = terminal.((s2 | Vi), Pr) .

So

enabled.(ar, ,51) = enabled.(at,,s2) .

51
Now we show that

'
a aT,

enabled.(a}, s1) A enabled(ar, s1) A (s1 = 59) A (52 §3)

= (3sh 5 (51 = s4) A (sh =3 53)) .

sh = s1[Fny [false] is the desired intermediate stage.

Finally we show that

) A (s2 2 s3))

enabled.(a}, s1) A enabled(ar,,s1) A (51

= (3sh = (51 3 L) A (s s3))

sh = s3[Eng/true] is the desired intermediate stage.
. a;- =ar; and a} = a7,

Clearly these two actions commute.

Lemma 2.17' (Sequential refines parallel, revisited).

For Pp and Ps defined as in Theorem 2.15, if Cg is a maximal computation of Ps, there is a

maximal computation Cp of Pp with Cg 3 Op.

O

Proof of Lemma 2.17'.

Let Cs be a maximal computation of Pg. We want to produce a computation Cp of Pp such that

Cp A Cs. We first observe that the actions of Ps and the actions of Pp have identical names and

are in fact identical, with the exception of the actions {ar,,...,ary }. We distinguish these actions

as, for example, a(g, py and a(g,,s)- We construct Cp as follows:
e init.Cp = init.Cg. Since InitLp = InitLg, init.Cp € SIp.

o The first transition in Cs is (a(r,,s),51). We define an analogous transition in Cp:

(a¢n,,p), s51[EBna/true, ..., Eny[true])

52

o The rest of C's is a concatenation of sequences of the following form:
(n:m; <n < Mj:(an,sn))

If Cs is finite, there is one such sequence for each j such that 1 < j < N, and every M; is
finite. If Cg is infinite, there is one such sequence for each j such that 1 < j < N', with
N’ < N, and M; is finite for j < N’ and infinite for j = N'.

Observe that:

(s(mj)—l { V] S SIj)
(Vn:m; <n < M; —1:((sp{ Enj) = (true)))
(Vn:mj <n< M;—1:a, € A))

(M; < o0) = (am; = al(Tj)S)))

> > > >

(M < 00) = terminal .((s(ar;)-1 4 Vj), By))

(If M; = oo, we interpret M; — 1 as oo as well.)

We can map this sequence to a sequence
(n:mj; <n < Mj:(a,,sy,))
of transitions of Pp as follows:

(Vn:mj <n < Mj: (s, = sp[Enjr1/true,... Eny/true])
(Vn:m; <n<M;—1:(a,=ay,)

A
A ((Mj < 00) = (ay, = ay,p)))
We observe that:

(8{m;)—1 L Vi € SI;)
A ((Mj < o0) = terminal.((s(ar;y—1 + Vi) P5))

Observe also that if M; < co and j < N,

SM; = Smyny—1

33

so by construction
1 1
SM; = Smpn-1

If Cs is finite, concatenating these sequences (n : m; < n < M; : (al,s})) gives us a finite

computation Cp of Pp with init.Cp = init.C's. Further,

final.Cs = spry
I
A SMN :SMN

A terminal.(syy,, , P)

So Cp is maximal, and final.Cp = final.Cg, the desired result.

If Cs is infinite, concatenating the sequences (n : m; < n < M; : (a,, s},)) almost gives us an
infinite computation of Pp, except that this sequence of transitions may violate the fairness
requirement that is part of our definition of computation: Since My = oo, for j > N', no
action from A; can ever execute, even if one is enabled. We can, however, produce from our

concatenation of sequences a (fair) computation of Pp: We observe that each sequence
(n:m; <n < M:(a,,sy))

corresponds to a computation of P; with initial state init.Cs | V;. For each j > N', define a
similar sequence corresponding to some (arbitrarily-chosen) maximal computation of P; with
initial state init.Cs | Vj, followed (if finite) by a transition corresponding to Ar;. Each

sequence

(n:m; <n<Mj:(a,,s,))

corresponds to a sequence of actions in (A} U {Ar;}). We now have, for each j, a sequence of
actions

A1), 8(,2)r -+

where each a(;) is in (A;U{Ar; }). Consider the sequence a of actions produced by alternating

elements from these sequences:
O = G(1,1) B(2,1)5 - - - s AN, 1) @(1,2)5 B(2,2)5 - - - s B(N,2)5 - - -

(Observe that if n > M;, there is no a(;); in this case, we simply continue with the next
element in the above sequence.) We observe that, from Lemma 2.28, actions in (A} U {Ar, })
commute with actions in (4) U {Ar,}), for j # k. In particular, actions in (A} U {AT;})

neither enable nor disable actions in (A} U {Ar, }). Thus, we can generate from o a sequence

54
of transitions of Pp from initial state init.Cg:
— Let sq = init.C's, and

— for n > 1, choose some s,, such that s,.; L2 Sn, Where b; is the ¢-th action in .

Since this sequence of transitions clearly satisfies the fairness requirement, it together with its
initial state forms an infinite computation Cp of Pp with the same initial state as C, the
desired result.

So we have produced a maximal computation Cp of Pp such that Cp "~" Cs.

O

Lemma 2.18' (Parallel refines sequential, revisited).

For Ps and Pp defined as in Theorem 2.15', if Cp is a maximal computation of Pp, there is a

maximal computation Cs of Ps with Cp VAL) Cs.

]

Proof of Lemma 2.18'.

We first construct from Cp an equivalent sequence of transitions of Pp with the property that for
any pair of transitions

((aja snj)v (ak7snk))

(not necessarily consecutive) of Cp, where
(aj € (A5 U {A7;) A (ar € (4, U{An})

we have

(ny <mp)=(j<Fk) .

We will refer to such a pair of transitions as being in order. We will then map this sequence of

transitions to a computation of Cg.

Constructing the sequence of transitions. We construct the sequence of transitions in a
manner analogous to a well-known nondeterministic sorting algorithm (as discussed in, e.g., [22])
in which an array is sorted by repeatedly choosing one out-of-sequence pair and exchanging its

elements.

55
We first consider finite computations. Suppose Cp is a finite computation of P. Let M.(Cp) be

the number of pairs of state transitions of Cp that are not in order. For m such that 1 < m < M.(Cp),

define Cl(gm) thus:

e CV = Cp.

e For m such that 1 < m < M.(Cp), if M.(C'}(;m_l)) = (), define C’I(,m) = C](Dm_l).

ItM .(C’l(pm_l)) > 0, there is at least one pair of consecutive state transitions

((aj7 Sn)a (a‘ka Sn-l-l))
in C’I(gm_l) such that

(a; € (A5 U{A7,}) A (ax € (AL U{AR DA G > F) .

From Lemma 2.28, a; and a; commute, and from Lemma 2.16', we can construct Cl(gm) with
the same initial state as C’l(,m_l) and the same sequence of state transitions, except that we
replace the pair

((aj’ Sn), (ak7 Sn+1))

with the pair

((ak,57), (@5, 8n41)) -
We observe that for m such that 1 <m < M.(Cp),

C})m) (VAL) C}(;m_l)

since the two computations have the same final state, and from the transitivity of this equivalence

relation,
C}()m) (Vr\\.‘L) CP .

Further, either M.(Cﬁ,m)) =0, or M.(C}m)) < M.(CI(Jm_l)) -1, so M.(CI(JM)) = 0. We have thus
produced a computation C’},M) of Pp such that C;,M) A Cp and every pair of transitions in CI(DM)
is in order. Observe also that since Cp is maximal, so is C’I(DM).

Now consider the case of infinite C'p. Because of fairness considerations, we may not be able to
produce from Cp an infinite computation Cp of Pp with the property that every pair of transitions
in C% is in order. However, we can produce a sequence of transitions of Pp from the initial state of
Cp with this property, which is all we need. We proceed as follows: Since Cp is infinite, there is at

least one m such that 1 < m < N and Cp contains infinitely many actions from A!,. Choose the

56

smallest such m. For j such that 1 < j <m — 1, Cp contains a finite sequence

A(4,1), A(5,2)r -+ > OG,ny)

of actions from Aj}. Cp also contains an infinite sequence

A(m,1)) A(m,2)5 - -+

of actions from A],. We can concatenate these sequences into a single infinite sequence

A =0a(1,1) -5 01,n1):3(2,1) - A2,n2)5 -+ - F(m—1,1)5 - - - y Am—1,nm—1)s A(m,1)s B(m,2)5 - - +

Because a; and a; commute whenever a; € (A} U {ar;}) and ax € (4} U {ax,}) and j # k, (and
thus actions from (A} U{az;}) do not change the enabled status of actions from (4} U{ar,}) where

j # k), we can define a sequence 7 of transitions of Pp thus:
o Let so = init.Cp, and
e for n > 1, choose some s, such that s,_; Y Sn, where b; is the i-th action in «.

This gives us an infinite sequence 7 of transitions of Pp with the desired property.

Observe that for j such that 1 < j < m — 1, the sequence a;1),a(;z2),- - - G(jn;) corresponds
to a maximal terminating computation of P;: Given that (a(j,nj),s) appears in Cp, we must have
terminal.((s 1 Vj), P;), since if any action from A; is enabled in s | V;, the corresponding action
of A;- is enabled in s, and by the fairness requirement and the arb-compatibility restrictions must
eventually appear in Cp, contrary to hypothesis. Further, we observe that for the corresponding
transition (a(j n,),s') in 7, we must have terminal.((s" | V;), P;), again from the arb-compatibility
restriction that actions from one component do not enable or disable actions from another compo-

nent.

Mapping the sequence to a computation of Ps. Having constructed a sequence 7 of transi-
tions of Pp starting from init.C'p with the property that every pair of transitions in the sequence is
in order, we can now construct a computation Cg of Pg, with Cg AR Cp, as follows. (The proof
of this claim is very similar to the proof of Lemma 2.17".)

We first observe that the actions of Pp and the actions of Ps have identical names and are in
fact identical, with the exception of the actions {ar,,...,ar, }. We distinguish these actions as, for

example, a(r, p) and a(r,,s)-

e init.Cs = init.Cp. Since InitLs = InitLp, init.Cs € Slg.

87

o The first transition in 7 is (a(r,,p), s1). We define an analogous transition in Cg:
(a(ry,s), 511Bn2/false, . .., Eny/false])

e The rest of T is a concatenation of sequences of the following form:
(n:m; <n < Mj:(an,sn))

If Cp is finite, there is one such sequence for each j such that 1 < j < NN, and every M; is
finite. If Cp is infinite, there is one such sequence for each j such that 1 < j < N', with

N' < N, and M; is finite for j < N’ and infinite for j = N'.

Observe that:

(8(ms)-1 4 Vs € STy)
(Vn:m; <n<M;—1:(Vk:j<k<N:(syl Eng) = (true)))
(Vn:mj <n < M;—1:a, € A))

(M; < o0) = (am; = (l(ijp)))

> > > >

(M; < 00) = terminal.((s(ar;)-1 4 V3), Pj))

(If M; = oo, we interpret M; — 1 as oc as well.)

The truth of the last conjunct (terminal.((s(ar;)—1 4 Vj),P;)) is less obvious than is the
case for the analogous conjunct in the proof of Lemma 2.17', but we reason as follows: If
~terminal.((s(ar;)—1 4 V;), P;), then in state s(pr)_1 there is an enabled action from Aj. If
T is finite, 7 corresponds to a maximal computation of Pp (by construction above), and so
this action from A} must occur later in 7, since no action by another Aj, can disable it (by
arb-compatibility). This is impossible, since all pairs of transitions of 7 are in order. If 7 is
infinite but M; < oo, by construction of 7 we have the desired result, since j must be such
that Cp contains only finitely many actions from Aj, the last of which produces a terminal

state of P;, as discussed earlier.

Continuing, we can map this sequence to a sequence

(n:m; <n < M;:(a,,s,))

n» n

58

of transitions of Ps as follows:

(Vn:my <n < Mj: (s, =sy[Enjyi/false,... Enn/false))
A (Yn:mj<n<M;—1:(a, =an))
A (M) < o0) = (anm; = a(1y,5)))

We observe that:

(S{mys)—1 + Vi € 51)

A (M5 < 00) = terminal (s V), Fy)
Observe also that if M; < oo and j < N,
SM; = Sm(ipn -1

so by construction
! !
SM; = Sman-1

So concatenating these sequences (n : mj; < n < M, : (a;,,s;,)) gives us a sequence of transi-

tions of Pg with init.Cs = init.Cp.

If Cp is finite, so is this sequence of transitions, so it forms a finite computation Cp, and:

final.Cp = sy
o
A SMy = SMN

A terminal.(sYy,, , Ps)

So Cs is maximal, and final.Cs = final.Clp.

If Cp is infinite, so is this sequence of transitions, and it (unlike 7) meets the fairness require-
ment, since in Pg actions from P; become enabled only after P;_; terminates. So this sequence
of transitions forms an infinite computation of Ps.

So we have produced a computation Cg of Pg such that Cg A Chp.

]

99

2.8.3 Simpler sufficient conditions for arb-compatibility

Definition 2.22’ (Variables read by P, revisited).

For program P = (V, L, InitL, A, PV, PA), we define the set of variables read by P thus:

VR = Ugeal,

Definition 2.23' (Variables written by P, revisited).

For program P = (V, L, InitL, A, PV, PA), we define the set of variables written by P thus:

VW = UaEAOa

Definition 2.24' (Programs that share only read-only variables, revisited).
If programs Pi,..., Py, where P; = (V}, L, InitL;, A;, PV ;, PA;), can be composed (Definition
2.10"), and we have that

Visk:j#k: (VW;in(VRyU VWy) = {}),

then we say that Py, ..., Py share only read-only variables.

a

Theorem 2.25' (arb-compatibility and shared variables, revisited).

If programs Pi,..., Py share only read-only variables (Definition 2.24"), then Py,..., Py are arb-

compatible.

O

60

Proof of Theorem 2.25'.

Given programs Py, ..., Py that satisfy the condition, we want to show that for any a; € A; and

ay € Ay with j # k, a; and a; commute.

First we consider whether a; can affect the enabled status of ag. If s; M 89, from the restrictions

on shared variables,

(52 \LIak) = (31 ‘l’Iﬂk) .

Since

affects.(v, enabled .(ag, s)) = (v € I,,)

clearly

enabled.(ay, s1) = enabled.(ag, s2) .

By symmetry, a; cannot affect the enabled status of a;.

Now consider the situation in which we have
enabled.(a;, s1) A enabled.(ax, s1) A (51 S s2) A (89 % 33) .

We want state sj such that

(81 -a—}; 8’2) A (SIQ 3 83) .

Define s§ thus:

Yo:v € O : (sh) {v}) = (s3] {v})
A Yuiv €O, (s34 {v}) = (s1 1 {v})

51 5 sh exactly when

(((31 J, Iﬂk)? (SI2 J/ Oak)) € Rak) (2'1)
A (s34 (V\Og,)) = (514 (V\ Oay))) (22)

(2.2) holds by construction of s5. (2.1) holds because:

((s1 4 Jay) = (524 Iar))
A (554 Oay) = (s34 Ouar))
A (((82 *Ir Iak)a (53 *L Oa,k)) € Rak)

61

sh 23 g5 exactly when
2

(((SI2 Jr Iﬁj)? (53 *L Oaj)) € R“J’)
A (s34 (V\Oy))) = (s34 (V\ Og))))

(2.3) holds because:

((s5 4 Io;) = (s1 4 1))
A ((53 1 Oaj) = (82 4 Oaj))
A (((s1 4 La;)s (52 4 Oq;)) € Ra)))

(2.4) holds by construction of s5, and because

Vv (v € O0a) A EOa;): (53 {v}) = (514 {v}))

By symmetry, a similar construction applies to computations in which a;, is performed first.

|

2.9 Appendix: Dijkstra’s guarded-command language and

our model, details

In this section we sketch definitions in our model for some of the commands and constructors of

Dijkstra’s guarded-command language [35, 37].

2.9.1 Simple commands

Definition 2.29 (Skip).

We define program skip = (V, L, InitL, A, PV, PA) as follows:
o V=1L
o L = {Engip}, where Eng,, is a Boolean variable.
e Initl = (true).

o A= {a}, where

62
Oa - {Enskip }
R, {({true), (false))}

It

o PV =1{).

o PA={}.

Definition 2.30 (Assignment).

We define program P = (V, L, InitL, A, PV, PA) for (y := E) as follows:
e V="{uv,...,on}U{y} UL, where {vq,...,on} = {v: affects.(v, E) : v}.
e L = {Enp}, where Enp is a Boolean variable not otherwise occurring in V.
o IngtLl = (true).

o A= {a}, where

Ia = {EnP}U{’U].:"'?’UN}
Oa = {EnP7y}
R, = {z1,...,zn = ((true,z1,...,zN), (folse, E(z1,...,zN))}
and z1,...,2ZN is an assignment of values to the variables in vy,...,vn.
e PV ={}.
e PA={}.

Definition 2.31 (Abort).

We define program abort = (V, L, InitL, A, PV, PA) as follows:
® V frd L
e L = {Engport}, where Engport is a Boolean variable.

o InitL = (true).

63

e A= {a}, where

Ia = {Enabort}
Oq {}
R, {(true), ()}

e PV ={}.

o PA={}.

2.9.2 Alternative composition (/F)

First we need an additional preliminary definition:

Definition 2.32 (Composability of guards with programs).

We say that guards b1, ..., by, where b; is a Boolean expression with variables W;, can be composed
with programs Py,..., Py, where P; = (V}, L;, InitL;, A;, PV j, PAj), exactly when Py, ..., Py can
be composed (Definition 2.10') and for all j:

v € W; = (3k :: v € Vi A v has the same type in W and V}) .

Definition 2.33 (Alternative composition).

Our definition of alternative composition is analogous to the definition of sequential composition in
Definition 2.11'. Given programs P, ..., Py, with P; = (V}, L;, InitL;, A;, PV ;, PA;), and Boolean
expressions by, ...,by such that Pi,..., Py can be composed (Definition 2.10') and by, ...,b5 can

be composed with P, ..., Py (Definition 2.32), we define program P = (V, L, InitL, A, PV, PA) for
iffl; b = P fi

as follows:

e V=ViU...UVNUL.

64

o L =LU...ULNyU{Enp, Engport, En1,...,Eny}, where Enp, Engpors, Enq,...,Eny are

distinct Boolean variables not otherwise occurring in V.
e InitL is defined by:

(Vj:1<j < N:((InitL | Lj = InitL;) A (InitL | {En;} = (false))))
A (InitL | {Enp, Engport} = (true, false))

o A consists of the following actions:
— An action agpers for the case in which initially none of the guards is true. s “%™* s’ exactly

when

((s L {Enp} = (true)) A (Vj :: =b;.s) A (s' = s[Enp/false, Enaport [truel))
\

((s § {Engport} = (true)) A (s = s))

— For each j such that 1 < j < N, an action a4, for the case in which guard b; is initially

Qstart ;

true. s ' s' exactly when
(s { {Enp} = (true)) Abj.s A (s L V; € SI;) A (s' = s[Enp/false, En;/true))

— For each j such that 1 < j < N, an action aenqg; that terminates the IF' composition after

the selected P; (started by an asrt; action) completes. s a—L;J s' exactly when
(s L {En;} = (true)) A terminal.((s | V;), Pj) A (s' = s[En;/false])

— For each action a; in A;, a corresponding action aj}, defined as for sequential composition:

s 3 s exactly when

(s 4 {En;} = (true))
M LV) 3 (s LV A L (VATV))) = (s L (VA V)

o PV =PV, U...UPVx.

e PA contains exactly those actions @’ derived (as described above) from the actions a of

PALU...UPAN.

65
2.9.3 Repetition (DO)

Definition 2.34 (Repetition).

Qur definition of repetition is analogous to the definition of sequential composition in Definition
2.11" and the definition of alternative composition in Definition 2.33. Given program Ppogy =
(Vbody > Lbody, INitLyody, Asody) and Boolean expression b such that b can be composed with Ppy,qy

(Definition 2.32), we define program P = (V, L, InitL, A, PV, PA) for
dob - Pod

as follows:

o V=V UL.

o L = Lyogy U{Enp,Engogy}, where Enp, Eng.qy are distinct Boolean variables not otherwise

occurring in V.

o InitL is defined by:

(InitL | Lyoay = InitLyoay) A (InitL L {Enp, Enpeay} = (true, false))

A consists of the following actions:

— An action a.g; to exit the loop. s Cegit o exactly when

(s} {Enp} = (true)) A -b.s A (s' = s[Enp/false])

styrt

— An action age,¢ to start a loop iteration. s Gatgrt of exactly when

(s 4 {Enp} = (true)) ANb.s A (s’ = s[Enp/false, Enyoqy [true])

— An action acyere to return to the beginning of the loop and test the guard again. s ot ot

exactly when

(s 4 {Enpody} = (true)) A terminal .((S | Vieody), Prody)

A(s" = s[Enpoqy/false, Enp/true, Lyoay/InitLyoqy))

(In the equality for s', “Lpeqy/InitLp.a,” indicates that the values of all variables in Lpody

are to be replaced by their values in InitLyoay.)

66
— For each action apedy in Apedy, a corresponding action a’body, defined as for sequential

.
o oy
composition: s — s’ exactly when

(s 4 {Enpoay} = (true))
A (8 4 Viody) o (8" 4 Viody)) AN (8" L (V\ Viboay)) = (s L (V \ Vibody)))

o PV =PV yoay.

o PA contains exactly those actions a’ derived (as described above) from the actions a of PApoqy-

67

Chapter 3

A collection of useful

transformations

In the preceding chapter we described the first step of our programming methodology: expressing the
desired computation in what we call the arb model (sequential constructs plus arb composition).
Because arb composition can be implemented as either sequential or parallel composition (with
equivalent results), programs in the arb model can be executed as parallel programs. However, they
may not make effective use of typical parallel architectures, so our methodology also addresses the
question of how to transform them into programs that make better use of parallel architectures.
Chapter 4 and Chapter 5 describe the eventual goal of such transformations — programs suitable
for execution on a shared-memory-model architecture with barrier synchronization (the par model
of Chapter 4) or a distributed-memory-model architecture with message-passing (the subset par
model of Chapter 5). This chapter presents a collection of transformations useful in the step-by-
step conversion of an initial arb-model program into a program in one of these models. These

transformations have the following useful characteristics:

e They can be viewed as semantics-preserving transformations for sequential programs, so ar-
guments for their correctness can be given based on the techniques of sequential stepwise

refinement.

e They produce programs that can be executed sequentially, so their results can be verified and

debugged using sequential tools and techniques.
For each transformation or class of transformations presented in this chapter, we present:
e The transformation.

e A discussion of its utility.

68

e An argument for its correctness (i.e., an argument that it produces a program that refines the

original program).
e An example or examples of its use.

We also sketch without proof some additional transformations. This collection is not intended as an
exhaustive list of all possible useful transformations, but rather as a representative collection that
is also sufficient to address a range of typical application programs.

It is important also to note the role of archetypes in the transformation process: An archetype
can provide, for the class of programs whose common features it abstracts, not only a pattern for
the arb-model program that is the first step in our program-development methodology, but also
a strategy for selecting and applying appropriate transformations and a pattern for the eventual
shared-memory or distributed-memory program. The archetype can then guide the transformation
process toward a result that is known to be efficient, with the process (applying a sequence of

semantics-preserving transformations) guaranteeing the correctness of the result.

3.1 Removal of superfluous synchronization

3.1.1 Motivation

If there is significant cost associated with executing a parallel composition (because of thread cre-
ation), then program efficiency can clearly be improved by combining a sequence of arb compositions
of N elements into a single arb composition of N elements, as shown in the following theorem, when

it is possible to do so without changing the meaning of the program.

3.1.2 Definition and argument for correctness

Theorem 3.1 (Removal of superfluous synchronization).

If P,,..., Py are arb-compatible, and ¢)1,...,@n are arb-compatible, and the sequential compo-

sitions seq(Pi,Q@1), - .., seq(Pn,Qn) are arb-compatible, then

seq(arb(P,..., Py),arb(Qy,...,Qn))

arb(seq(P;,Q1),...,seq(Pn,QnN))

69

Proof of Theorem 3.1.

First we observe that for j # k, seq(P;, Q;) and seq(Py, Q) are arb-compatible (from the hypothe-
sis and the definition of arb-compatibility, Definition 2.14), and hence P; and @, are arb-compatible
(from the definitions of sequential composition and arb-compatibility, Definition 2.11 and Defini-
tion 2.14). From the definition and commutativity of arb composition (Theorem 2.15 and Theorem

2.20), then, (Pj; Q) ~ (Qk; P;). We can then calculate thus:

seq(arb(Py,..., Py),arb(@1,...,QN))

~ { Theorem 2.15 and associativity of sequential composition }
P PN Q.. QN
~ { as noted above }
Pi;...iPn-1;Q1; Pn; Q2; .. s QN
~ { repeating the above step repeatedly }
Pr;Qu;...s Pn; QN
~ { associativity of sequential composition, Theorem 2.15, and hypothesis }

arb(seq(Py, @1),seq(Py,Qn))

3.1.3 Example

Let program P be the following program:

integer a(N), b(N), c(N)
arball (i =1 : N)
b(i) = a(i)
end arball
arball (i =1 : N)
c(i) = b(i)
end arball

Then P is equivalent to the following program P':

integer a(N), b(N), c(N)
arball (i =1 : N)

b(i) = a(i)

c(i) = b(d)
end arball

70
3.2 Change of granularity

3.2.1 Motivation

If (1) the number of elements in an arb composition is large compared to the number of processors
available for execution, and (2) the cost of creating a separate thread for each element of the
composition is relatively high, then we can improve the efficiency of the program by reducing the

number of threads required, that is, by changing the granularity of the program.

3.2.2 Definition and argument for correctness

We can change the granularity of an arb-model program by transforming an arb composition of
N elements into a combination of arb composition (of fewer than N elements) and sequential

composition, as described in the following theorem.

Theorem 3.2 (Change of granularity).
If P,..., Py are arb-compatible, and we have integers ji1, 2, ..., jan such that (1 < j1) A (j1 < j2)

A...A(ju < N), then

arb(P,..., PxN)

arb(
seq(Py,...,P;,),
seq(Pj1+17 e "sz)v

Seq(PjM-f-l:"'aPN)

Proof of Theorem 3.2.

This follows immediately from the associativity of arb composition (Theorem 2.19) and the equiv-

alence of sequential and arb composition (Theorem 2.15).

]

71
3.2.3 Example

Continuing the example of Section 3.1, let program P be the following program:

integer a(W), b(W), c(N)
arball (i =1 : N)

b(i) = a(i)
c(i) = b(i)
end arball

Then P is equivalent to the following program P’:

integer a(N), b(N), c(N)

arb
doi=1, N/2
b(i) = a(i)
c(i) = b(i)
end do
doi=N/2+1, N
b(i) = a(i)
c(i) = b(1)
end do
end arb

If only two processors are available, program P’ is likely to be more efficient than P, since P implies

the creation of N threads, while P’ implies the creation of only 2 threads.

3.3 Data distribution and duplication

3.3.1 Motivation

In order to transform a program in the arb model into a program suitable for execution on a
distributed-memory architecture, we must partition its variables into distinct groups, each corre-
sponding to an address space (and hence to a process). Such partitioning is essential to producing
a program suitable for execution on a distributed-memory architecture, but it may also improve
efficiency on some shared-memory architectures, for example those in which each processor has a
separate cache, since programs with a high degree of data locality may make more effective use of
such caches. Chapter 5 describes the characteristics such a partitioning should have in order to per-

mit execution on a distributed-memory architecture; in this chapter we discuss only the mechanics

72

of the partitioning, that is, transformations that effect partitioning while preserving program cor-
rectness. These transformations fall into two categories: data distribution, in which variables of the
original program are mapped one-to-one onto variables of the transformed program; and data du-
plication, in which the map is one-to-many, that is, in which some variables of the original program

are duplicated in the transformed program.

3.3.2 Data distribution: definition and argument for correctness

The transformations required to effect data distribution are in essence renamings of program vari-
ables, in which variables of the original program are mapped one-to-one to variables of the trans-
formed program. The most typical use of data distribution is in partitioning non-atomic data objects
such as arrays: Each array is divided into local sections, one for each process, and a one-to-one map
is defined between the elements of the original array and the elements of the (disjoint) union of the
local sections. Figure 3.1 shows an example of such partitioning. The shaded element illustrates the
one-to-one map between the original array and its partitioning: It is mapped from position (3,6)
of the original array to position (1,2) in array section (2,2). That such a renaming operation does
not change the meaning of the program is clear, although if elements of the array are referenced via
index variables, some care must be taken to ensure that they (the index variables) are transformed

in a way consistent with the renaming/mapping.

HH HH
partiion HHH FHMH
HH B
HH HH

LI

]

Figure 3.1: Partitioning a 16 by 16 array into 8 array sections.

3.3.3 Data distribution: example

Continuing the example of Section 3.1 and Section 3.2, let program P be the following program:

integer a(lN), b(N), c(W)
arb
doi=1, N/2
b(i) = a(i)
c(i) = b(i)
end do

73

do i =N/2+ 1, N

b(i) = a(i)
c(i) = b(d)
end do
end arb

We can effectively partition arrays a, b, and ¢ into two distinct groups of data elements by mapping
each 1-dimensional array of size N onto a 2-dimensional array of size N/2 by 2, where each column
of the 2-dimensional array represents a local section of the partitioned array. Applying this map to

program P produces the following equivalent program P':

integer a(N/2, 2), b(N/2, 2), c(N/2, 2)

arb
do i =1, N/2
b(i, 1) = a(i, 1)
c(i, 1) =b(i, 1
end do
do i =1, N/2
b(i, 2) = a(i, 2)
c(i, 2) = b(i, 2)
end do
end arb

3.3.4 Data duplication: definition and argument for correctness

The transformations involved in data duplication are less obviously semantics-preserving than those
involved in data distribution. The goal of such a transformation is to replace a single variable
with multiple copies, such that “copy consistency is maintained when it matters.” We use the term
(re-)establishing copy consistency to refer to (re-)establishing the property that all of the copies have
the same value (and that their value is the same as that of the original variable at an analogous
point in the computation). In the transformed program, all copies have the same initial value as the
initial value of the original variable (thereby establishing copy consistency), and any reference to a
copy that changes its value is followed by program actions to assign the new value to the other copies
as well (thereby re-establishing copy consistency when it is violated). Whenever copy consistency
holds, a read reference to the original variable can be transformed into a read reference to any one

of the copies without changing the meaning of the program.

74

3.3.4.1 Phase 1: duplicating the variable

We can accomplish such a transformation using the techniques of data refinement, as described in
[59]. We begin with the following data-refinement transformation: Given program P with local

variables L, duplicating variable w in L means producing a program P’ with variables
L'=L\{w}u {wW,.. o™}

(where N is the number of copies desired and w), ..., w™N) are the copies of w), such that P C P'.
It is simplest to think in terms of renaming w to w(!) and then introducing variables w® ... w(®;
it is then clear what it means for P’ (with variable w(!)) to meet the same specification as P (with
variable w).

Using the techniques of data refinement, we can produce such a program P’ by defining the

abstraction invariant

‘v’j:2§j§N:w(j):w(1)

and transforming P as follows:

e Assign the same initial value to each copy w" in Initl' that was assigned to w in InitL, and

replace any assignment w := F in P with the multiple assignment

w ,w®™ = gM ..,E(N)

where E®) = E[w/w)] (j is arbitrary and can be different for different values of k). Observe
that multiple assignment can be implemented as a sequence of assignments, possibly using

temporary variables if w affects FE.
e Replace any other reference to w in P with a reference to w(?), where j is arbitrary.

The first replacement rule ensures that the abstraction invariant holds after each command; the
second rule makes use of the invariant. In our informal terminology, the abstraction invariant states
that copy consistency holds, and the two replacement rules respectively (re-)establish and exploit
copy consistency.

Let P’ be the result of applying these refinement rules to P. Then P C P'. We do not give a
detailed proof, but such a proof could be produced using the rules of data refinement (as given in

[59]) and structural induction on P.

3.3.4.2 Phase 2: further refinements

For our purposes, however, P’ as just defined may not be quite what we want, since in some situations

it would be advantageous to postpone re-establishing copy consistency (e.g., it might make it possible

75

to apply Theorem 3.1, or if there are several duplicated variables, it might be advantageous to defer
re-establishing copy consistency until all have been assigned new values), if we can do so without

losing the property that P C P'. We observe, then, that

(w®, .., w™ = EV EMYy. Q
C

w® = E®) Qs (w1l (V) = (B ()

as long as for all j # k, w() is not among the variables read or written by Q. The argument for the

correctness of this claim is similar to that used to prove Theorem 2.25 in Section 2.2.5.

3.3.4.3 Application to arb-model programs

We can thus give the following replacement rules for duplicating variable w in an arb-model program:

e Replace w := E with

arb(w® = Ew/w], ..., w™ := Elw/w™]) .

e If w is not written by any of Py,..., Py, replace arb(Py, ..., Py) with

arb(P,[w/w], ..., Py[w/w™M]) .

o If w is written by P but neither read nor written by any other Py, replace arb(Py,..., Py)
with

arb(P, ..., Pfw/w®],... Pxn);

arb(w(l) = w® D = (B (D) = gy (B () = w(k)) .

3.3.5 Data duplication: examples
3.3.5.1 Duplicating constants

This example illustrates duplicating a variable whose intended use is as a constant — that is, its
value is to be computed once at the beginning of the program and used but not changed thereafter.
Duplicating such a variable is appropriate in transforming a program for eventual execution on a

distributed-memory architecture. Let program P be the following program:

real PI

real bl, b2, f, arccos

76

PI = arccos(-1.0)

arb
bl = £(PI, 1)
b2 = £(PI, 2)
end ardb

Then P is refined by the following program P’

real PI1, PI2

real bl, b2, f, arccos

arb
PI1 = arccos(-1.0)
PI2 = arccos(-1.0)
end arb
arb
bl = £(PI1, 1)
b2 = £(PI2, 2)
end arb

We can then apply Theorem 3.1 to produce the following program P”, which refines P’ and thus P:

real PI1, PI2

real bl, b2, f, arccos

arb
seq
PI1 = arccos(-1.0) ; bl = £(PI1, 1)
end seq
seq
PI2 = arccos(-1.0) ; b2 = £(PI2, 2)
end seq
end arb

3.3.5.2 Duplicating loop counters

This example illustrates duplicating a loop counter; again, such a duplication is appropriate in
transforming a program for eventual execution on a distributed-memory architecture. Let program

P be the following program to compute the sum and product of the integers from 1 to N:

integer N, j, sum, prod

77

arb
sum = 0
prod = 1
end arb
do j=1, N
arb
sum = sum + j
prod = prod * j
end arb

end do
We first rewrite P to make the operations on the loop counter explicit:

integer N, j, sum, prod
arb
sum = 0
prod =1
end arb
j=1
do while (j <= N)

arb
sum = sum + j
prod = prod * j
end arb
j=3+1
end do

We can now apply data duplication to produce the following program P’, which refines P:

integer N, j1, j2, sum, prod

arb
sum = 0
prod = 1
end arb
arb
jl1 =1
j2 =1

end arb

78

do while (j1 <= N)
arb
sum = sum + ji

prod = prod * j2

end arb
arb
jit=3j1+1
j2=32+1
end arb
end do

We can apply Theorem 3.1 to produce a further refinement:

integer N, j1, j2, sum, prod

arb
seq
sum = 0 ; j1 =1
end seq
seq
prod =1 ; j2 =1
end seq
end arb

do while (j1 <= N)

arb
seq
sum = sum + jl ; jl = j1 + 1
end seq
seq
prod = prod * j2 ; j2 = j2 + 1
end seq
end arb
end do

We observe that j1 = j2 is an invariant of the loop, and that it is reasonable to suppose that the

above program could be further refined to produce the following:

integer N, jl1, j2, sum, prod

arb

79

seq
sum = 0 ; j1 =1
do while (j1 <= N)
sum = sum + jl ; j1 = j1 + 1
end do
end seq
seq
prod =1 ; j2=1
do while (j2 <= N)
prod = prod * j2 ; j2 = j2 + 1
end do
end seq

end arb

Such a transformation is a special case of the general transformation for parallel composition and
repetition discussed in Section 4.3.1, so we do not give a proof here, but simply observe that the cor-
rectness of the above transformation could be proved by the technique of examining and rearranging

possible computations used to prove Theorem 2.15 in Section 2.2.2.

3.3.5.3 Creating shadow copies of variables

Ideally, the partitioning of data in a data-distribution scheme allows computation to also be parti-
tioned such that each element of the computational partition addresses only data from the corre-
sponding element of the data partition. This is not always possible, however, so what is typically
done is to partition the computation based on the data partition and an owner-computes rule (in
which process ¢ performs any computation needed to assign new values to variables in the i-th ele-
ment of the data partition). In this situation, an element of the computational partition may require
read access to variables outside its element of the data partition. A technique frequently employed
in programs for distributed-memory architectures is to create shadow copies of such variables. If
the variables involved are boundary values for local sections of an array that has been partitioned
and distributed, it is common to dimension the array’s local section to include a ghost boundary to
be used to hold the shadow copies. Program correctness is maintained by updating the value of the
shadow copies whenever the value of the main copy changes. As noted previously (Section 3.3.4),
however, the timing of the update is somewhat flexible, provided the copies are updated before being
used.

This example illustrates such a situation. The computation is a timestep loop in which each step
involves the computation of values for elements of array new based on values of elements of array

old, followed by the copying of values from new to old. Let program P be the following program:

80

integer N, NSTEPS
real 01d(0:N+1), new(1:N)
integer k
! initialize 01d(0), o0ld(N+1) to 1.0, other o0ld(i) to 0.0
call initialize(old)
do k = 1, NSTEPS
arball (i =1 : N)
new(i) = 0.5 * (0ld(i-1) + o01d(i+1))
end arball
arball (i =1 : N)
0ld(i) = new(i)
end arball

end do

We can transform P for eventual execution on a distributed-memory architecture by partitioning
arrays old and new as follows. (For simplicity, we show a transformation for 2 processes; the more
general transformation for P processes is similar.) new is partitioned into two local sections of equal
size N/2; elements of new are mapped one-to-one to elements of the local sections. old is partitioned
into two local sections of equal size (N/2)+ 2, with each local section extended on one side by a ghost
boundary of width 1. The situation for array old is illustrated by Figure 3.2: Elements other than
0ld(N/2) and 01d((N/2)+1) are mapped one-to-one to elements of the local sections; elements
01d(N/2) and 01d((N/2)+1) are duplicated, with one copy (the one shaded in Figure 3.2) the
shadow copy. As discussed previously, program correctness is maintained as long as copy consistency
(between the shadow copies and the elements of which they are duplicates) is (re-)established before

being exploited. The following program P’ is the result of applying to P this transformation (data

(TI1T] [II11]

Figure 3.2: Partitioning an array and creating shadow copies.

distribution/duplication), together with a change-of-granularity transformation based on Theorem

3.2:

integer N, NSTEPS
real 01d(0:(N/2)+1, 2), new(1:(N/2), 2)

integer k, i1, i2

81

! initialize 01d(0, 1), 01d((N/2)+1, 2) to 1.0, other old(i, j) to 0.0
call initialize(old)
do k = 1, NSTEPS
! re-establish copy consistency
arb
old((N/2)+1, 1) = old(1l, 2)
01d(0, 2) = old(N/2, 1)
end arb
arb

do il = 1, N/2

new(il, 1) 0.5 * (0ld(i1-1, 1) + old(it+1, 1))
end do

do i2 = 1, N/2

new(i2, 2) 0.5 * (old(i2-1, 2) + old(i2+1, 2))
end do

end arb

arb

do il = 1, N/2

old(il, 1) = new(il, 1)
end do
do i2 =1, N/2
0ld(i2, 2) = new(i2, 2)
end do
end arb
end do

3.3.5.4 Redistributing a variable

In some computations, calculations best performed with one data-distribution scheme are sequen-
tially composed with calculations best performed with a different data-distribution scheme. Exam-
ples include the spectral-methods computations described in Section 7.2.2, which are characterized
by row operations (performing a calculation on each row of a 2-dimensional array — best performed
with data distributed by rows) alternating with column operations (performing a calculation on
each column — best performed with data distributed by columns). For such computations, what
is typically done is to employ more than one data-distribution scheme and redistribute the data as
needed. This strategy can be regarded as an extreme form of data duplication, in which all elements

of the array are duplicated, and re-establishing copy consistency involves copying (redistributing) the

82

entire array. Section 6.1 presents an example of such a computation and how it can be transformed.

3.4 Other transformations

3.4.1 Reductions

If op is an associative binary operator over domain D with identity element ident, we can define the

reduction r of a finite of set of elements {d;,...,dn} of elements of D with op thus:
r=dy op ... op dn

We can compute 7 sequentially with the following program P:

r = <ident>
doi=1, N
r = r <op> d(i)

end do

Such a program cannot be trivially transformed into a program making use of arb composition, but

we observe that since op is associative, it can be refined by the following program P’:

arb
seq
rl = <ident>
do i1 = 1, N/2
rl = rl <op> d(il)
end do
end seq
seq
r2 = <ident>
do i2 = N/2 + 1, N
r2 = r2 <op> d(i2)
end do
end seq
end arb

r = rl <op> r2

P’ is likely to be more efficient than P’ when executed on a parallel architecture, assuming that the
benefit resulting from dividing the computation between two threads is not overwhelmed by the cost

of thread creation.

83

Examples of operators to which this technique can be applied are integer addition and multi-
plication (assuming no overflow), and finding the minimum or maximum. Floating-point addition
and multiplication are not in general associative and so cannot be treated in this manner unless it
is acceptable to ignore discrepancies arising from their lack of associativity; whether this acceptable

may depend on both the application and the data being summed or multiplied.

3.4.2 skip as an identity element

Given that skip is an identity element for sequential composition, it is also an identity element for

arb composition.

Theorem 3.3.

P

arb(skip, P)

Proof of Theorem 3.3.
Trivial.
0

This theorem can be useful in padding an arb composition to take advantage of Theorem 3.1, as in

the following example. Let program P be the following:

arb
al =1
a2 = 2
end arb
b =10
arb
cl =al
c2 = a2

end arb

84

We can apply Theorem 3.3 and Theorem 3.1 to get the following refinement of P:

arb

seq

end seq
seq

a2 =2 ; c2 = a2
end seq

end arb

85

Chapter 4

The par model and shared-memory

programs

As discussed in Chapter 1, once we have developed a program in our arb model, we can transform
the program into one suitable for execution on a shared-memory architecture via what we call the
par model, which is based on a structured form of parallel composition with barrier synchronization
that we call par composition. In our methodology, we initially write down programs using arb
composition and sequential constructs; after applying transformations such as those presented in
Chapter 3, we transform the results in par-model programs, which are then readily converted into
programs for shared-memory architectures (by replacing par composition with parallel composition
and our barrier synchronization construct with that provided by a selected parallel language or
library). As noted in Chapter 2, arb-model programs can be executed directly on shared-memory
architectures, but they may not be very efficient, particularly if the cost of thread creation is high.
par-model programs are more likely to be efficient for such architectures, and in addition serve
as an intermediate stage in the process of transforming arb-model programs into programs for

distributed-memory architectures. In this chapter we address the following topics:

¢ Extending our model of parallel composition to include barrier synchronization.

e Transforming arb-model programs into programs using parallel composition with barrier syn-

chronization.

¢ Executing such programs on shared-memory architectures.

86

4.1 Parallel composition with barrier synchronization

We first expand the definition of parallel composition given in Chapter 2 (Definition 2.12) to include
barrier synchronization. Behind any synchronization mechanism is the notion of “suspending” a
component of a parallel composition until some condition is met — that is, temporarily interrupting
the normal flow of control in the component, and then resuming it when the condition is met. We
model suspension as busy waiting, since this approach simplifies our definitions and proofs by making
it unnecessary to distinguish between computations that terminate normally and computations that
terminate in a deadlock situation — if suspension is modeled as a busy wait, deadlocked computations

are infinite.

4.1.1 Specification of barrier synchronization

We first give a specification for barrier synchronization; that is, we define the expected behavior of a
barrier command in the context of the parallel composition of programs Py, ..., Py. If ¢B; denotes
the number of times P; has initiated the barrier command, and cB; denotes the number of times P;

has completed the barrier command, then we require the following:

e For all j, iB; = ¢Bj or iB; = ¢B; + 1. If iB; = c¢B; + 1, we say that P; is suspended at the

barrier. If iB; = cBj, we say that P; is not suspended at the barrier.

e If P; and P, are both suspended at the barrier, or neither P; nor Py is suspended at the

barrier, then iB; = iDy.

o If P; is suspended at the barrier and P is not suspended at the barrier, iB; = iBy + 1.

¢ For any n, if every F; initiates the barrier command n times, then eventually every P; completes
the barrier command n times:

(Vj:: (iBj =eBj + 1) A(iBj =n)) ~ (Vj : (¢Bj =n)) .

We observe that this specification simply captures formally the usual meaning of barrier synchro-
nization and is consistent with other formalizations, for example those of [2] and [70]. Most details of
the specification were obtained from [72]; the overall method (in which initiations and completions

of a command are considered separately) owes much to [55].

4.1.2 Definitions

We define barrier synchronization by extending the definition of parallel composition given in Defi-

nition 2.12 and defining a new command, barrier. This combined definition implements a common

87

approach to barrier synchronization based on keeping a count of processes waiting at the barrier,
as in [2] and [70]. In the context of our model, we implement this approach using two protocol
variables local to the parallel composition, a count of suspended components and a flag Arriving
that indicates whether components are arriving at the barrier or leaving. As components arrive at
the barrier, we suspend them and increment (). When) equals the number of components, we
set Arriving to false and allow components to leave the barrier. Components leave the barrier by
unsuspending and decrementing (). When @ equals 0, we reset Arriving to true, ready for the next

use of the barrier.

Definition 4.1 (barrier).

We define program barrier = (V, L, InitL, A, PV, PA) as follows:
e V=LU{Q, Arriving}.
o L = {En,Susp}, where En, Susp are Boolean variables.
o InitL = (true, false).
o A= {aurrive; Grelease; Qleave, Areset; Quwait }, WheTe

— Qgrrive COTTESponds to a process’s initiating the barrier command when fewer than N —1
other processes are suspended. The process should then suspend, so the action is defined
by the set of state transitions s — s’ such that:

*x In s, En is true, Arriving is true, and Q < (N - 1).
x s’ is s with En set to false, Susp set to true, and ¢ incremented by 1.

— Qrelease COrresponds to a process’s initiating the barrier command when N — 1 other
processes are suspended. The process should then complete the command and enable the
other processes to complete their barrier commands as well. The action is thus defined
by the set of state transitions s — s’ such that:

* In s, En is true, Arriving is true, and @ = (N — 1).
x s’ is s with En set to false and Arriving set to false. Susp, which was initially false,
is unchanged.

— Qeave COrresponds to a process’s completing the barrier command when at least one other
process has not completed its barrier command. The action is defined by the set of state
transitions s — s’ such that:

x In s, Susp is true, Arriving is false, and @ > 1.

x s is 5 with Susp set to false and @ decremented by 1.

88

— Qreser COTTESPONAS t0 & process’s completing the barrier command when all other processes
have already done so. The action is defined by the set of state transitions s — s’ such

that:
* In s, Susp is true, Arriving is false, and Q) = 1.
* §' is s with Susp set to false, Arriving set to true, and @ set to 0.

— Qyaiz cOrresponds to a process’s busy-waiting at the barrier. The action is defined by the

set of state transitions s — s’ such that:
x In s, Susp is true.

* § = 8.

e PV ={Q, Arriving}.

e PA = A.

Definition 4.2 (Parallel composition with barrier synchronization).

We define parallel composition as in Chapter 2 (Definition 2.12), except that we add local pro-
tocol variables Arriving (of type Boolean) and Q (of type integer) with initial values true and 0

respectively.

a

Remarks about Definition 4.2.

e This definition meets the specification given in Section 4.1.1; a proof can be constructed by
formalizing the introductory discussion of Section 4.1.2. Observe that the last point of the
specification — the required progress property — is in part a consequence of our fairness

requirement for computations.

4.2 The par model

We now define a structured form of parallel composition with barrier synchronization. Previously we

defined a notion of arb-compatibility and then defined arb composition as the parallel composition

89

of arb-compatible components. Analogously, in this chapter we define a notion of par-compatibility
and then define par composition as the parallel composition of par-compatible components. The
idea behind par-compatibility is that the components match up with regard to their use of the
barrier command — that is, they all execute the barrier command the same number of times and

hence do not deadlock.

4.2.1 Preliminary definitions

Definition 4.3 (Free barrier).

Program P is said to contain a free barrier exactly when it contains an instance of barrier not

enclosed in a parallel composition.

a

Examples of Definition 4.3.
Q); barrier; R contains a free barrier. (Q1; barrier; R;)||(Q1; barrier; B;) does not.

O

Definition 4.4 (arb-compatible, revisited).

Programs P, ..., Py are arb-compatible exactly when (1) they meet the conditions for

arb-compatibility given earlier (Definition 2.14), and (2) for each j, P; contains no free barriers.

a

4.2.2 par-compatibility

We can now define par-compatibility. Observe that this definition is given in terms of restricted
forms of the alternative (IF) and repetition (DO) constructs of Dijkstra’s guarded-command lan-

guage [35, 37], but it applies to any programming notation with equivalent constructs.

Definition 4.5 (par-compatible).

We say programs P, ..., Py are par-compatible exactly when one of the following is true:

e P ,..., Py are arb-compatible.

90

e For each 7,

P; = ()j; barrier; R;
where @1,...,@nN are arb-compatible and R;,..., Ry are par-compatible.

e For each j,
Pj:ifbj — Qj [] ‘ij — skip i

where @1, ..., QN are par-compatible, and for k # j no variable that affects b; is written by
Qk-
e For each j,

Pj =if b]' — (Q]-;barrier;Rj) [] —lbj - Sk‘ip fi

where @,...,QnN are arb-compatible, R,,..., Ry are par-compatible, and for £ # j no

variable that affects b; is written by (.

e For each j,
P; =dob; — (Qj;barrier; R;; barrier) od

where Q1,...,QN are arb-compatible, R;,..., Ry are par-compatible, and for £ # j no

variable that affects b; is written by Q.

4.2.3 par composition

As with arb, we write par(P,..., Py) to denote the parallel composition (with barrier synchro-

nization) of par-compatible elements P, ..., Px.

4.2.3.1 Fortran 90 notation

Again as for arb, we define a slightly different notation for use with Fortran 90. As for arb,
this notation allows us to develop programs using the arb and par models that can be easily
transformed into programs in practical languages based on Fortran 90, as described in Section 4.4.

For par-compatible programs Py, ..., Py, we write their par composition thus:

91

par
P_1

P_2

P_N

end par

4.2.3.2 parall

We also define a syntax parall analogous to arball.

Definition 4.6 (parall).

If we have N index variables 41, ...,iy, with corresponding index ranges i;_start < 4; < i;_end, and

program block P such that P does not modify the value of any of the index variables — that is,

mod.P N {iy,...,ix} = {} — then we can define an parall composition as follows:

For each tuple (z1,...,zxN) in the cross product of the index ranges, we define a correspond-
ing program block P(x1,...,zy) by replacing index variables iy,...,ix with corresponding values
Z1,...,rN. If the resulting program blocks are par-compatible, then we write their par composition
as follows:

parall (i_1 = i_1_start : i_1_end , ..., i_N = i_N_start : i_N_end)

P(x_1, ..., x_N)

end parall

Remarks about Definition 4.6.

e As for arball (Definition 2.27), the body of the parall composition can be a sequential com-
position. We do not require that the sequential composition be explicit, as illustrated in the

next-to-last example.

92
4.2.4 Examples of par composition

Composition of sequential blocks

The following example composes two sequences, the first assigning to a and b and the second

assigning to ¢ and d. (Here, the barrier is not needed, and is included purely as an illustration of a

syntactically valid use.)

par
seq
a=1; barrier ; b = a
end seq
seq
c =2 ; barrier ; d = ¢
end seq
end par

Composition of sequential blocks (parall)

The following example composes ten sequences, each assigning to one element of a and one element

of b. Here, the barrier is needed, since otherwise the sequences being composed would not be
par-compatible.

parall (i = 1:10)

seq
a(i) =1
barrier
b(i) = a(11-1i)
end seq
end parall

As noted in the remarks following Definition 4.6, if the body of the parall composition is a sequential
composition, we do not require that the sequential composition be explicit; that is, this example
could also be written:
parall (i = 1:10)
a(i) = i
barrier
b(i) = a(11-1)
end parall

93

without changing its meaning.

Invalid composition
The following example is not a valid par composition; the two sequences are not par-compatible.
par
seq
a=1; barrier ; b = a
end seq
seq
c=2
end seq

end par

4.3 Transforming arb-model programs into par-model pro-
grams

We now give theorems allowing us to transform programs in the arb model into programs in the

par model.

4.3.1 Theorems

Theorem 4.7 (Replacement of arb with par).

If P,..., Py are arb-compatible,

arb(P,..., Py)

in

par(Py,...,Pn)

Proof of Theorem 4.7.
Trivial.

O

94

Theorem 4.8 (Interchange of par and sequential composition).

If Q1,...,QnN are arb-compatible and Ry, ..., Ry are par-compatible, then

arb(Q1,...,@Qn);par(Ry,...,RN)

M

par(
(@Q1; barrier; Ry),

ey

(Qn; barrier; Ry)

Proof of Theorem 4.8.

First observe that both sides of the refinement have the same set of non-local variables V,,;. We
need to show that given any maximal computation C of the right-hand side of the refinement we
can produce a maximal computation C’ of the left-hand side such that C' is equivalent to C' with
respect to V,;. This is straightforward: In any maximal computation of the right-hand side, from the
definitions of sequential composition and barrier we know that we can partition the computation
into (1) a segment consisting of maximal computations of the Q;’s and initiations of the barrier
command, one for each j, and (2) a segment consisting of completions of the barrier command,
one for each j, and maximal computations of the R;’s. Segment (1) can readily be mapped to
an equivalent maximal computation of arb(Q1,...,Qy) by removing the barrier-initiation actions.
Segment (2) can readily be mapped to an equivalent maximal computation of par(Ry,..., Rx) by
removing the first barrier-completion action for each j. We observe that this approach works even
for nonterminating computations: If the right-hand side does not terminate, then either at least one
Q; does not terminate, or par(R;,...,Ry) does not terminate, and in either case the analogous
computation of the left-hand side also does not terminate. The right-hand side cannot fail to
terminate because of deadlock at the first barrier because if all the @;’s terminate, the immediately-

following executions of barrier terminate as well (from the specification of barrier synchronization).

95

Theorem 4.9 (Interchange of par and IF, part 1).

If Q1,...,Qn are par-compatible, and for all j no variable that affects b is written Q;, then

ifb - par(Q1,...,Qn) [b — skipfi

I

par(
ifb —» Qi[]~b — skipfi,

ey

ifo = Qn[l-b — skipfi

Proof of Theorem 4.9.

Again observe that both sides of the refinement have the same set of non-local variables V;,;. As
before, a proof can be constructed by considering all maximal computations of the right-hand side
and showing that for each such computation C' we can produce a maximal computation C’ of the
left-hand side such that C' is equivalent to C with respect to Vy;. Here, such a proof uses the
fact that the value of b is not changed by @; for any j. Since no barriers are introduced in this

transformation, we do not introduce additional possibilities for deadlock.

O

96

Lemma 4.10 (Interchange of par and IF, part 1, with duplicated variables).

If Qi,...,Qn and b are as for Theorem 4.9, and b;,...,bn are Boolean expressions such that for
j # k no variable that affects b; is written by Qg, then the following holds whenever both sides are

started in a state in which b; = b for all j:

if b — par(Qq,...,Qn)[] b — skip fi

irn

par
if by — Q1 [] by — Skip ﬁ,

-y

ibe — QN [] by — Skipﬁ

Proof of Lemma 4.10.

This lemma follows from Theorem 4.9 and exploitation of copy consistency as discussed in Sec-

tion 3.3.4.

|

Theorem 4.11 (Interchange of par and IF, part 2).

If @1,...,QnN are arb-compatible, Ry,..., Ry are par-compatible, and for all § no variable that

affects b is written by Q;, then

if b = (arb(Q1,...,Qn);par(Ry,...,RN)) [b — skip i

in

par(
if b — (Qq;barrier;Ry)[] -b — skip fi,

-y

if b - (Qn;barrier; Ry) [b — skip fi

97

Proof of Theorem 4.11.

Again observe that both sides of the refinement have the same set of non-local variables V. As
before, a proof can be constructed by considering all maximal computations of the right-hand side
and showing that for each such computation C' we can produce a maximal computation C’ of the

left-hand side such that C’ is equivalent to C' with respect to V,;. The barrier introduced in the

transformation cannot deadlock for reasons similar to those for the transformation of Theorem 4.8.

0

Lemma 4.12 (Interchange of par and IF, part 2, with duplicated variables).

If Qq,...,QnN, Ri1,...,Ry, and b are as for Theorem 4.11, and by, ...,by are Boolean expressions
such that for j # k no variable that affects b; is written by @, then the following holds whenever

both sides are started in a state in which b; = b for all j:

if b — (arb(Q1,...,Qn);par(R1,...,Ry)) [] °b — skip fi

I

par
if by — (Qi;barrier; Ry) [| ~bv — skip fi,

. ey

if by — (Qu;barrier; Ry) [] by — skip fi

Proof of Lemma 4.12.
Analogous to Lemma 4.10.

O

Theorem 4.13 (Interchange of par and DO).

If Q1,...,Qn are arb-compatible, R;,..., Ry are par-compatible, and for all j no variable that

affects b is written by @, then

98

dob — (arb(Qi,...,Qn);par(Ri,...,Rn)) od

1M

par(
do b — (Qs;barrier; R;;barrier) od,

‘e

do b — (Qu;barrier; Ry;barrier) od

Proof of Theorem 4.13.

First observe that both sides of the refinement have the same set of non-local variables V,;. As
before, a proof can be constructed by considering all maximal computations of the right-hand side
and showing that for each such computation C' we can produce a maximal computation C' of the
left-hand side such that C' is equivalent to C with respect to V,,;. The proof makes use of the
restrictions on when variables that affect b can be written. For terminating computations, the
proof can be constructed using the standard unrolling of the repetition command (as in [42] or [37])
together with Theorem 4.8 and Theorem 4.11. For nonterminating computations, the proof must
consider two classes of computations: those that fail to terminate because an iteration of one of the
loops fails to terminate, and those that fail to terminate because one of the loops iterates forever. In
both cases, however, the computation can be mapped onto an infinite (and therefore, in our model,

equivalent) computation of the left-hand side.

0

Lemma 4.14 (Interchange of par and DO, with duplicated variables).

If Q,...,Qn are arb-compatible, R;,..., Ry are par-compatible, and for all k¥ # j no variable

that affects b; is written by Qg, and (Vj :: (b; = b)) is an invariant of the loop

dob — (arb(Q,,...,Qn);par(Ry,...,Ry)) od

then the following holds whenever both sides are started in a state in which b; = b for all j:

99

dob — (arb(Qq,...,Qn);par(R:,...,Rn)) od

i

par(
do b, — (Q1;barrier; R;, barrier) od,

.y

do by — (Qn;barrier; Ry, barrier) od

Proof of Lemma 4.14.
Analogous to Lemma 4.10.

O

4.3.2 Examples
Replacing arb with par (Theorem 4.7)

Let P be the following program:

arball (i =1 : 10)
a(i) = 1

end arball
Then P is refined by the following;:

parall (i = 1 : 10)
a(i) = 1
end parall

Interchanging par and sequential composition (Theorem 4.8)

Let P be the following program:

arb

new(1)

01d(1) + 0.5%01d(2)

new(2) 01ld(2) + 0.5*%01d(1)

100

end arb
arb
0ld(1) = new(l)
0ld(2) = new(2)
end arb

Then P is refined by the following:

par
seq
new(1) = old(1) + 0.5%01d(2)
barrier
0ld(1) = new(1)
end seq
seq
new(2) = 01d(2) + 0.5%01d(1)
barrier
0ld(2) = new(2)
end seq
end par

Interchanging par and IF' (Theorem 4.9)

Let P be the following program:

if (x > 0) then

par
a=1
b=2
end par
end if

Then P is refined by the following:

par
if (x > 0) then
a=1
end if

if (x > 0) then

101
b=2
end if

end par

Interchanging par and /F (Theorem 4.11)

Let P be the following program:

if (x > 0) then

arb

e
]
N

end ard

par

end par

end if

Then P is refined by the following:

par
if (x > 0) then
a=1; barrier ; x =x + 1
end if
if (x > 0) then
b = 2 ; barrier ; skip
end if
end par

Interchanging par and DO (Theorem 4.13)

Let P be the following program:

do while (x < 100)

arb
a=a=x*?2
b=b+1
end arb

par

102
x = max(a, b)
skip
end par

end do

Then P is refined by the following:

par
do while (x < 100)
a =a * 2 ; barrier ; x = max(a, b) ; barrier
end do
do while (x < 100)
b=b + 1 ; barrier ; skip ; barrier
end do
end par

Interchanging par and DO (Theorem 4.14)

Let P be the following program:

x = max(a, b)

do while (x < 100)

arb
a=ax*2
b=b+ 1
end arb
par

x = max(a, b)
skip
end par

end do

Then P is refined (using the data-duplication techniques of Section 3.3) by the following:

arb
x1 = max(a, b)
x2 = max(a, b)
end arb

do while (x1 < 100)

103

arb
a=a*?2
b=b +1

end arb

par
x1 = max(a, b)
x2 = max(a, b)

end par

end do

which in turn is refined (using Theorem 4.14) by the following:

arb
x1 = max(a, b)
x2 = max(a, b)
end arb
par
do while (x1 < 100)
a=a * 2 ; barrier ; x1 = max(a, b) ; barrier
end do
do while (x2 < 100)
b=b+ 1 ; barrier ; x2 = max(a, b) ; barrier
end do
end par

which again in turn is refined by the following:

par

seq
x1 = max(a, b)
barrier
do while (x1 < 100)

a =a * 2 ; barrier ; x1 = max(a, b) ; barrier

end do

end seq

seq

x2 = max(a, b)

barrier

104

do while (x2 < 100)
b=>b+ 1 ; barrier ; x2 = max(a, b) ; barrier
end do
end seq

end par

4.4 Executing par-model programs

It is clear that par composition as described in this chapter is implemented by general parallel
composition (as described in Section 2.6.2) plus a barrier synchronization that meets the specification
of Section 4.1.1. Thus, we can transform a program in the par model into an equivalent program in
any language that implements parallel composition and barrier synchronization in a way consistent
with our definitions (which in turn are consistent with the usual meaning of parallel composition

with barrier synchronization).

4.4.1 Parallel execution using X3H5 Fortran

For example, a par-model program can be transformed into an equivalent program in the nota-
tion of the Fortran X3H5 proposal [3] by replacing par and end par with PARALLEL SECTIONS,
SECTION, and END PARALLEL SECTIONS, replacing parall and end parall with PARALLEL DO and
END PARALLEL DO (nested if necessary), and replacing barrier with BARRIER.

4.4.2 Example

For example, the last example of Section 4.3.2 is equivalent to the following program segment using

the X3H5 extensions to Fortran:

PARALLEL SECTIONS
SECTION
x1 = max(a, b)
BARRIER
do while (x1 < 100)
a=a*?2
BARRIER
x1 = max(a, b)
BARRIER
end do
SECTION

105

x2 = max(a, b)
BARRIER
do while (x2 < 100)

b=b+ 1

BARRIER

x2 = max(a, b)

BARRIER
end do

END PARALLEL SECTIONS

106

Chapter 5

The subset par model and

distributed-memory programs

As discussed in Chapter 1, once we have developed a program in our arb model, we can transform
the program into one suitable for execution on a distributed-memory-message-passing architecture
via what we call the subset par model, which is a restricted form of the par model discussed in
Chapter 4. In our methodology, we apply a succession of transformations to an arb;model program
to produce a program in the subset par model and then transform the result into a program for a

distributed-memory-message-passing architecture. In this chapter we address the following topics:

e Extending our model of parallel composition to include message-passing operations.
¢ Restricting the par model to correspond more directly to distributed-memory architectures.

¢ Transforming programs in the resulting subset par model into programs using parallel com-

position with message-passing.

Executing such programs on distributed-memory-message-passing architectures.

5.1 Parallel composition with message-passing

We first expand the definition of parallel composition given in Chapter 2 to include message-passing.

5.1.1 Specification

We define message-passing for P, ..., Py composed in parallel in a way compatible with single-
sender-single-receiver channels with infinite slack (i.e., infinite capacity). Every message operation

(send or receive) specifies a sender and a receiver, and while a receive operation suspends if there is

107

no message to receive, a send operation never suspends. Messages are received in the order in which
they are sent and are not received before they are sent. That is, if we let n.S; ; denote the number of
send operations from P; to P performed, iR;) denote the number of receive operations from P; to
Py, initiated, and cR; denote the number of such receive operations completed, then we can write

the desired specification as follows:
. ’L'Rj,k = CRj,k or iRj,k =cR;r+1 for all 7, k.
e Messages are not received before they are sent: n.S;; > cR; i for all j, k.

o Messages are received in the order in which they are sent: The n-th message received by P;

from P is identical with the n-th message sent from Py to P;.

o If n messages are sent from Py to P;, and P; initiates n receive operations for messages from

Py, then all will complete:

(nSjk 2 n) A(iRjr =n)) ~ (cR;r =n) .

We observe that this specification, like the one for barrier synchronization in Chapter 4, simply
captures formally the usual meaning of this type of message passing, and is consistent with other
formalizations, for example those of [2] and [69]. The terminology (“slack”) and overall method (in

which initiations and completions of a command are considered separately) are based on [55].

5.1.2 Definitions

Like many other implementations of message-passing, for example those of {2] and [69], our definition
represents channels as queues:

We define for each ordered pair (P;, Py) a queue C; ; whose elements represent messages in transit
from P; to Py. Message sends are then represented as enqueue operations and message receives as
(possibly suspending) dequeue operations. Elements of C;; take the form of pairs (Type, Value).

Just as we did in Chapter 4, we model suspension as busy waiting.

Definition 5.1 (send).

We define program send = (V, L, InitL, A, PV, PA) as follows:

e V = LU{OutP;,..., OutPy, Rcvr, Type, Value}, where each OutP; (“outport j”) is a variable
of type queue, Rcur is an integer variable, Type is a type, and Value is a variable of type
Type. Variables OutP1, ..., OutPy are to be shared with the enclosing parallel composition, as

described later, while variables Rcvr, Type, Value are to be shared with the enclosing sequential

108

composition. (Le., it is assumed that send is composed in sequence with assignment statements

that assign appropriate values to Rcvr, Type, and Value.)
e L = {En}, where En is a Boolean variable.
o InitL = (true).
e A ={asq}, where

— asnq corresponds to a process’s sending a message (Type, Value) to process Preyr. The

action is defined by the set of state transitions s — s’ such that:

x In s, En is true.

* s' is s with En set to false and (Type, Value) enqueued (appended) to OutP peyy-

e PV = {OutP1,...,OutPn}.

o PA=A.

Definition 5.2 (recv).
We define program recv = (V, L, InitL, A, PV, PA) as follows:
e V = LU{InPy,...,InPy,Sndr, Type, Value}, where each InP; (“inport j”) is a variable
of type queue, Sndr is an integer variable, Type is a type, and Value is a variable of type
Type. Variables InP;,...,InPy are to be shared with the enclosing parallel composition, as

described later, while variables Sndr, Type, Value are to be shared with the enclosing sequential

composition, similarly to the analogous variables of send.
e L = {En}, where En is a Boolean variable.
o InitL = (true).
e A= {arcy, @uait}, where

— @y corresponds to a process’s receiving a message (Type, Value) from process Pspdr.
The action is defined by the set of state transitions s — s’ such that:
x In s, Fn is true and InP 5,4, is not empty.

* s' is s with En set to false and (Type, Value) and InP g,q4, set to the values resulting

from dequeueing an element from InP g4y

109

— Qyai corresponds to a process’s waiting for a message from process Pgs,g4-. The action is
defined by the set of state transitions s — s’ such that:
x In s, Fn is true and InP g,4, is empty.

¥ § = 8.
s PV = {InPl,...,InPN}.

e PA=A.

Definition 5.3 (Parallel composition with message-passing).

We define parallel composition as in Chapter 2 (Definition 2.12), except that we add local protocol
variables C; ; (of type queue), one for each ordered pair (P;, Pr,), with initial values of “empty”, and

we perform the following additional modifications on the component programs P;:

e We replace variables OutP1,..., OutPy in V; with Cj.1,...,Cj n, and we make the same

replacement in actions a derived from agnq.

e We replace variables InPy,...,InPy in V; with Cy ;,...,Cn,;, and we make the same replace-

ment in actions a derived from a,., and Gyq;:.

Remarks about Definition 5.3.

e This definition clearly meets the specification given in Section 5.1.1.

5.2 The subset par model

We define the subset par model such that a computation of a program in this model may be
thought of as consisting of an alternating sequence of (1) blocks of computation in which each
component operates independently on its local data, and (2) blocks of computation in which values
are copied between components, separated by barrier synchronization, as illustrated by Figure 5.1.
Shaded vertical bars represent computations of processes, arrows represent copying of data between
processes, and dashed horizontal lines represent barrier synchronization. We refer to a block of the
first variety as a local-computation section and to a block of the second variety (together with the

preceding and succeeding barrier synchronizations) as a data-exchange operation.

—_

10

!

!

data-exchange
operations

local-computation
sections

T

!

i

!

Vil

Figure 5.1: A computation of a subset-par-model program.

5.2.1 Subset par-compatibility

A program in the subset par model is a composition par(Py,. .., Py), where Py, ..., Py are subset-
par-compatible as defined by the following:

Definition 5.4 (Subset par-compatibility).

Py,...,Py are subset-par-compatible exactly when (1) Py,..., Py are par-compatible, (2) the
variables V' of the composition (excluding the protocol variables representing message channels) are

partitioned into disjoint subsets W1, ..., Wi, and (3) exactly one of the following holds:

e Pi,..., Py are arb-compatible and each P; reads and writes only variables in Wi.

e For each j,

Pj = Q;; barrier; Q}; barrier; R;
where
— Q1,...,QnN are arb-compatible.

— Each @) reads and writes only variables in W;.

— Each Q} is an arb-compatible set of assignment statements xj := x; such that z; is an

element of W; and zj is an element of W, for some k (possibly k = j).

111

— Ry,..., Ry are subset-par-compatible.

e For each j, b; € W; and
P;=ifb; - Q;[] b — skip fi

where ()1, ..., N are subset-par-compatible.

¢ For each j, b; € W; and
szdobj - Qde

where @1, ..., QN are subset-par-compatible.

5.2.2 Example of subset par composition
Recursive doubling
The following example computes the sum of four elements using recursive doubling:

integer a(4), part(2), part_copy(2), m(2)

arb
part(1l) = max(a(1), a(2))
part(2) = max(a(3), a(4))
end arb
arb
part_copy(1) = part(2)
part_copy(2) = part(1)
end arb
arb
m(1) = max(part(l), part_copy(1))
m(2) = max(part_copy(2), part(2))
end arb

5.3 Transforming subset-par-model programs into programs
with message-passing

5.3.1 Transformations

We can transform a program in the subset par model into a program for a distributed-memory—

message-passing architecture by mapping each component P; onto a process j and making the

112

following additional changes:
e Map each element W; of the partition of V to the address space for process j.

e Convert each data-exchange operation (consisting of a set of (barrier; Q’; barrier) sequences,
one for each component P;) into a collection of message-passing operations, in which each as-
signment z; := x;, is transformed into a pair of message-passing commands: a send command

in k specifying Rcvr = j, and a recv command in j specifying Sndr = k.

e Optionally, for any pair (P}, ;) of processes, concatenate all the messages sent from P; to Py
as part of a data-exchange operation into a single message, replacing the collection of (send,

receive) pairs from P; to Py with a single (send, receive) pair.

Such a program refines the original program: Each send-receive pair of operations produces the same
result as the assignment statement from which it was derived (as discussed in [45] and [56]), and the
arb-compatibility of the assignments ensures that these pairs can be executed in any order without
changing the result. Replacing barrier synchronization with the weaker pairwise synchronization
implied by these pairs of message-passing operations also preserves program correctness; we can
construct a proof of this claim by using the techniques of Chapter 2 and our definitions of barrier
synchronization and message-passing, essentially revising the proof of Theorem 8.1 in Chapter 8
(which predates the development of our operational model) to take advantage of the framework

provided by our model for relating the operation of different synchronization mechanisms.

5.3.2 Example

If P is the recursive-doubling example program of Section 5.2.2, P is refined by the following subset-

par-model program P’ with variables partitioned into
e Wy = {a(1:2),part(1),part_copy(1),m(1)} and
o Wy = {a(3:4),part(2),part._copy(2),m(2)} :

arb

seq
part(1) = max(a(1), a(2))
barrier ; part_copy(l) = part(2) ; barrier
m(1) = max(part(1l), part_copy(1))

end seq

seq
part(2) = max(a(3), a(4))

barrier ; part_copy(2) = part(l) ; barrier

113

m(2) = max(part_copy(2), part(2))
end seq

end arb

which is in turn refined by the following message-passing program P":

arb
seq
part(1) = max(a(1), a(2))
send ("integer", part(1)) to (P2)
recv (type, part_copy(1l)) from (P2)
m(1) = max(part(1), part_copy(1))
end seq
seq
part(2) = max(a(3), a(4))
send ("integer", part(2)) to (P1)
recv (type, part_copy(2)) from (P1)
m(2) = max(part(2), part_copy(2))
end seq
end arb

5.4 Executing subset-par-model programs

5.4.1 Transformations to practical languages/libraries

We can use the transformation of the preceding section to transform programs in the subset par
model into programs in any language that supports (1) multiple-address-space parallel composition
with (2) single-sender—single-receiver message-passing. Examples include Fortran M [40] (which
supports multiple-address-space parallel composition via process blocks and single-sender—single-
receiver message-passing via channels) and MPI [58] (which assumes execution in an environment
of multiple-address-space parallel composition and supports single-sender—single-receiver message-

passing via tagged point-to-point sends and receives).
5.4.2 Example
Program P" from Section 5.3.2 can be implemented by the following Fortran M program:

program main

integer a(4)

114

inport (integer) inp(2)

outport (integer) outp(2)

channel (outp(1l), inp(2))

channel (outp(2), inp(1))

processes
process call P(a(1:2), inp(1), outp(l))
process call P(a(3:4), inp(2), outp(2))

end processes

end

process P(a, inp, outp)
integer a(2)
inport (integer) inp
outport (integer) outp
integer part, part_copy, m
part = max(a(l), a(2))
send (outp) part
receive (inp) part_copy
m = max(part, part_copy)

end process

115

Chapter 6

Extended examples

This chapter presents several examples of programs using arb composition and shows how to trans-
form some of them into programs suitable for shared-memory and distributed-memory architectures
using the transformations presented in Chapter 3. Observe that in these examples, for simplicity,
we emphasize program readability over efficiency; the programs we derive for shared-memory and
distributed-memory architectures are more efficient than the arb-model programs from which they

are produced, but additional transformations could be applied to further improve efficiency.

6.1 2-dimensional FFT

6.1.1 Problem description

This program performs a 2-dimensional FFT in place, as described in [62]. Performing the 2-
dimensional FFT on an N by M array is accomplished by performing a 1-dimensional FFT on
each row of a 2-dimensional array and then performing a 1-dimensional FFT on each column of the

resulting 2-dimensional array.

6.1.2 Program

Clearly the 1-dimensional FFTs on the rows of the array are independent, as are the 1-dimensional

FFTs on the columns of the array. We can thus express the desired computation as in Figure 6.1.

6.1.3 Applying our transformations

Program for shared memory. We can apply Theorem 3.2 to produce the program shown in
Figure 6.2, which is readily transformed into a program in the par model using the transformations

of Chapter 4.

116

integer :: N, M
complex :: a(N, M)

l---do row FFTs
arball (i = 1:N)
call rowfft(a(i, :))
end arball
'--—do column FFTs
arball (j = 1:M)
call colfft(a(:, j))
end arball

Figure 6.1: Program for 2-dimensional FFT.

integer :: N, M, P
complex :: a(N, M)
integer :: i(P), j(P)

l---do row FFTs
arball (ip = 1:P)
do i(ip) = (ip-1)*(N/P) + 1, ip*(N/P)
call rowfft(a(i(ip), :))
end do
end arball
t---do column FFTs
arball (ip = 1:P)
do j(ip) = (ip-1)*(M/P) + 1, ip*(M/P)
call colfft(a(:, j(ip)))
end do
end arball

Figure 6.2: Program for 2-dimensional FFT, shared-memory version.

Program for distributed memory. To produce a program suitable for distributed memory, we
create two copies of array a: a_row corresponding to a row distribution (convenient for the row
FFTs) and a_col corresponding to a column distribution (convenient for the column FFTs), as
described in Section 3.3.5.4. We map original variable a one-to-one onto a_row and one-to-one onto
a_col. If we assume for simplicity that P is 2, the resulting arb-model program, which is readily
transformed into a program in the subset par model using the transformations of Chapter 4, is
shown in Figure 6.3. For compactness, the two redistribution operations, in which data is copied
between a_row and a_col, are written as Fortran 90 array operations, but observe that each array

operation could be expressed as an arb composition.

Optimizations. We could reduce the storage requirement of the distributed-memory program by
performing the redistribution operation in place (i.e., by aliasing a_row and a_col and performing the
redistribution operations as synchronized multiple assignments rather than as arb compositions).

Such optimizations are beyond the scope of this thesis, though not, we believe, beyond the scope of

117

integer :: N, M

complex :: a_row(N/2, M, 2)
complex :: a_col(N, M/2, 2)
integer :: 1i(2), j(2)

!-——do row FFTs
arball (ip = 1:2)
do i(ip) = 1, N/2
call rowfft(a_row(i(ip), :, ip))
end do
end arball
!---redistribute (row to column)
arb
a_col(1:(N/2), :, 1) = a_row(:, 1:(M/2), 1)
a_col(((N/2)+1):N, :, 1) = a_row(:, 1:(M/2), 2)
a_col(1:(N/2), :, 2) = a_row(:, ((M/2)+1):M, 1)
a_col(((N/2)+1):N, :, 2) = a_row(:, ((M/2)+1):M, 2)
end arb
!---do column FFTs
arball (ip = 1:2)
do j(ip) = 1, M/2
call colfft(a_col(:, j(ip), ip))
end do
end arball
|——-redistribute (column to row)
arb
a_row(:, 1:(M/2), 1) = a_col(1:(N/2), :, 1)
a_row(:, 1:(M/2), 2) = a_col(((N/2)+1):N, :, 1)
a_row(:, ((M/2)+1):M, 1) a_col(1:(N/2), :, 2)
a_row(:, ((M/2)+1):M, 2) a_col (((N/2)+1):N, :, 2)
end arb

i

Figure 6.3: Program for 2-dimensional FFT, distributed-memory version.

our models and methodology.

118

6.2 1-dimensional heat equation solver

6.2.1 Problem description

In this example, the goal is to solve the 1-dimensional heat diffusion equation:

ou _ o
ot~ Ox2
with boundary condition:

U(z,t) =1 for boundary z .

Following the method described in [47], we discretize the problem domain (representing the z di-

mension as an array of N points) and use the following approximation:

Ui, terr) = Ui, tr) U@t te) = 2U (24, t0) + U(zi—1, tr)

At Az?

We assume an initial value of 0 for all non-boundary points. The program is to print out values for

each point and each timestep.

6.2.2 Program

We are computing a sequence of values for each point in the 1-dimensional array. However, since
we can print each out as it is computed, we need only retain two values for each point. Thus, we
represent U by two arrays, one for the current time step (uk) and one for the next time step (ukp1).
Clearly the computation of a new value for each element of ukp1 is independent of the computation
of new values for the other elements, and the same is true for the copying of values from ukp1 to uk.
Initialization of elements of ukp1 is also independent. We can thus express the desired computation

as in Figure 6.4.

6.2.3 Applying our transformations

Program for shared memory. We first apply Theorem 3.2 to produce the program shown in
Figure 6.5, which is readily transformed into a program in the par model using the transformations

of Chapter 4.

Program for distributed memory. To produce a program suitable for distributed memory, we
proceed as in the examples of Section 3.3.5, duplicating constants dt and dx, and partitioning uk
and ukp1 into local sections, with each local section of uk surrounded by a ghost boundary of width
1. The resulting arb-model program, which is readily transformed into a program in the subset par

model using the transformations of Chapter 4, is shown in Figure 6.6.

119

integer :: NX, NSTEPS
real :: uk(NX), ukpl(NX), dx, dt

dx = 1.0/NX ; dt = 0.5*%dx*dx
t---initialize grid

arb
arball (i = 2:NX-1)
uk(i) = 0.0
end arball
uk(1) = 1.0
uk(NX) = 1.0
end arb

t---time step loop
do k = 1, NSTEPS
t-—-compute values for next time step
arball (i = 2:NX-1)
ukpl(i) = uk(i) + (dt/(dx*dx)) * (uk(i-1) - 2+%uk(i) + uk(i+1))
end arball
!---save just-computed values for next time step and print
arball (i = 2:NX-1)
uk(i) = ukpi(i)

end arball
call print_heat(k, uk)
end do

Figure 6.4: Program for 1-dimensional heat equation.

Optimizations. We could eliminate the copying of ukpl to uk by alternately regarding uk and
ukpl as the “current” values and alternately computing ukpl based on the values of uk and uk
based on the values of ukpl. Such an optimization could be performed on the original arb-model
program (as a sequential transformation) and then carried through the transformations for shared

and distributed memory.

120

integer :: NX, NSTEPS, P
real :: uk(NX), ukpl(NX), dx, dt
integer :: i(P), ifirst(P), ilast(P)

dx = 1.0/NX ; dt = 0.5%dx*dx
!---determine first and last interior points for each process
arball (ip = 1:P)
ifirst(ip) = max(2, (ip-1)*(NX/P)+1)
ilast(ip) = min(NX-1, (ip)*(NX/P))
end arball
!-—-initialize
arb
uk(1) = 1.0
uk(NX) = 1.0
arball (ip = 1:P)
uk(ifirst(ip):ilast{(ip)) = 0.0
end arball
end arb
!---time step loop
do k = 1, NSTEPS
!---compute values for next time step
arball (ip = 1:P)
do i(ip) = ifirst(ip), ilast(ip)
ukp1(i(ip)) = uk(i(ip)) + (dt/(dx*dx)) &
* (uk(i(ip)-1) - 2*uk(i(ip)) + uk(i(ip)+1))
end do
end arball
!---save just-computed values for next time step and print
arball (ip = 1:P)
uk(ifirst(ip) :ilast(ip)) = ukpl(ifirst(ip):ilast(ip))

end arball
call print_heat(k, uk)
end do

Figure 6.5: Program for 1-dimensional heat equation, shared-memory version.

121

integer :: NX, NSTEPS, P
real :: uk(0:(NX/P)+1, P), ukpl(NX/P, P), dx(P), dt(P)
integer :: i(P), ifirst(P), ilast(P)

arball (ip = 1:P)

dx(ip) = 1.0/NX ; dt{ip) = 0.5*dx(ip)#*dx(ip)
end arball
!---determine first and last interior points for each process
arb
ifirst(1) = 2
arball (ip = 2:P)
ifirst(ip) = 1
end arball
end arb
arb
arball (ip = 1:(P-1))
ilast(ip) = NX/P
end arball
ilast(P) = (NX/P)-1
end arball
!-—-initialize grid
arb
uk(1, 1) = 1.0
uk(NX/P, P) = 1.0
arball (ip = 1:P)
uk(ifirst(ip) :ilast(ip), ip) = 0.0
end arball
end arb

!~--time step loop
do k = 1, NSTEPS
!-—-re-establish copy consistency (boundary exchange)
arball (ip = 2:P)
uk(0, ip) = uk(NX/P, ip-1)
end arball
arball (ip = 1:(P-1))
uk ((NX/P)+1, ip) = uk(l, ip+1)
end arball
!~--compute values for next time step
arball (ip = 1:P)
do i(ip) = ifirst(ip), ilast(ip)
ukpl(i(ip), ip) = uk(i(ip), ip) + (dt(ip)/(dx(ip)*dx(ip)})) &
* (uk(i(ip)-1, ip) - 2*xuk(i(ip), ip) + uk(i(ip)+1, ip))
end do
end arball
!---save just-computed values for next time step and print
arball (ip = 1:P)
uk(ifirst(ip) :ilast(ip), ip) = ukpi(ifirst(ip):ilast(ip), ip)
end arball
call print_heat(k, uk)
end do

Figure 6.6: Program for 1-dimensional heat equation, distributed-memory version.

122

6.3 2-dimensional iterative Poisson solver

This problem is similar in many respects to the heat-equation problem; it is included to show how

iteration until convergence differs from fixed iteration.

6.3.1 Problem description

This example is largely based on the discussion of the Poisson problem in [74].! The program finds
a numerical solution to the Poisson problem:
o’U o*U
T2 5;/‘2- = f(z,y)
with Dirichlet boundary condition

u(z,y) = g(z,y)
where f and g are given. The method is to discretize the problem domain, representing U as a
2-dimensional grid of points with spacing h, and use Jacobi iteration, that is, apply the following
operation to all interior points until convergence is reached:

(k+1) _ 2, (k) (k) (k) (k)
dugi gy = W fig H Gy gy T Ui g Gy T Y6

The program is to print out only the final (converged) values. For simplicity, we assume that the

computation will converge.

6.3.2 Program

We are computing a sequence of values for each point in the 2-dimensional array. However, we need
only retain two values for each point, so we represent U by two arrays, one for the current iteration

2 As in the previous problem, the computation of a

(uk) and one for the next iteration (ukpl).
new value for each element of ukp1 is independent of the computation of new values for the other
elements, and the same is true for the copying of values from ukp1 to uk. Initialization of elements
of ukp1 is also independent. We can thus express the desired computation as in Figure 6.7. Note

the nesting of arb and arball in the initialization.

'We derive a slightly different program because of our focus on readability over efficiency. Note however that
nothing in our methodology precludes developing the same program presented in [74].

2 Actually, we can reduce the storage requirements of the program by reducing the number of points for which we
maintain both “current” and “next” values, as in [74]. As noted, however, in these examples we stress readability
over efficiency and defer such optimizations.

123

integer :: NX, NY

real :: H, TOLERANCE

external F, G

real :: uk(NX, NY), ukpi(NX, NY), fvals(NX, NY), diffmax

!---initialize
arb
arball (i = 2:NX-1, j = 2:NY-1)
uk(i,j) = F(@,j,H)
end arball
arball (j = 1:NY)
uk(1,j) = G(1,3,H)
end arball
arball (j = 1:NY)
uk(NX,j) = G(NX, j,H)
end arball
arball (i = 2:NX-1)
uk(i,1) = G(i,1,H)
end arball
arball (i = 2:NX-1)
uk (i,NY) = G(i,NY,H)
end arball
end arb
arball (i = 1:NX, j = 1:NY)
fvals(i,j) = F(i,j,H)
end arball
!---compute until convergence
diffmax = TOLERANCE + 1.0
do while (diffmax > TOLERANCE)
!---compute new values
arball (i = 2:NX-1, j = 2:NY-1)
ukpl(i,j) = 0.25%(H¥H*fvals(i,j) &
+ uk(i,j-1) + uk(i,j+1) &
+ uk(i-1,3) + uk(i+1,j))
end arball
!---check for convergence:
! compute max(abs(ukpl(i,j) - uk(i,j)))
diffmax = 0.0
do i = 2, NX-1
do j = 2, NY-1
diffmax = max(diffmax, abs(ukpl(i,j) - uk(i,j)))
end do
end do
!~-~copy new values to old values
arball (i = 2:NX-1, j = 2:NY-1)
uk(i,j) = ukpl(i,j)
end arball
end do ! while

Figure 6.7: Program for 2-dimensional iterative Poisson solver.

124
6.4 Quicksort

6.4.1 Problem description

The problem is to sort an array of integers. Two variants of the quicksort algorithm are presented: a
standaxd recursive version, and a “one-deep” nonrecursive version more suitable for scalable parallel

implementations [26, 68].

6.4.2 Recursive program

This program sorts the array of integers in place. Once the array has been split into two parts, they

can be sorted independently, so we can thus express the desired computation as in Figure 6.8.

integer :: N
integer :: a(N)

call quicksort_r(a)
!-—-recursive program definition

recursive subroutine quicksort_r(a)
integer, dimension(:), intent(inout) :: a
integer :: splitpoint

!-—-if not base case
if (size(a) > 1) then
!---partition
call split(a, splitpoint)
!-——recursively quicksort partitions
arb
call quicksort_r(a(l:splitpoint-1))
call quicksort_r(a(splitpoint+l:size(a)))
end arb
end if

end subroutine quicksort_r

Figure 6.8: Recursive quicksort program.

6.4.3 “One-deep” program

This program sorts the input array to produce the output array. In this variant, the array is split
into k parts, which can then be sorted independently using an in-place sequential sort program

gsort. We can thus express the desired computaﬁion as in Figure 6.9.

125

integer :: N, K
integer :: a_in(N), a_out(W)
integer :: splitpoints(K+1)

!~~-partition
call split(a_in, a_out, splitpoints)
!---sort partitions
arball (i = 1:K)
call gsort(a_out(splitpoints(i):splitpoints(i+1)-1))
end arball

Figure 6.9: One-deep quicksort program.

126

Chapter 7

Archetypes for scientific computing

The preceding chapters describe a programming model and methodology that is general and formal.
This chapter presents experimental work in support of the archetypes/patterns aspects of the model
and methodology; it also presents a more application-oriented view of the methodology, combining

the ideas from the preceding chapters with the idea of design patterns.

Hypothesis: An archetypes-related approach to developing parallel applications, as described in
Section 7.1, facilitates the writing of correct and efficient application programs by reducing ap-
plication development to a process of “filling in the blanks” of the archetype-defined framework
with essentially sequential code in which interprocess interaction is limited to encapsulated

archetype-defined data-exchange operations.

Experiment: We identify example archetypes (Section 7.2), develop for each archetype an “imple-
mentation” (code framework/library and documentation), and use these implementations to
develop applications (Section 7.3), some based on existing sequential applications. We consider
whether the resulting applications do indeed have the form we describe — essentially sequen-
tial code, with interprocess interaction achieved via encapsulated data-exchange operations -—
and whether they are correct and efficient. Objective evaluation of claims about ease of use is
difficult, but we consider whether there is reason to believe that it is easier to write a program

using an archetype than to write the same program without an archetype.

Conclusions: The applications we developed have the desired form (as shown by the examples in
Section 7.3.1) and are correct. In general they are acceptably efficient (as shown in Section 7.3),
with the exceptions limited by a poor computation-to-communication ratio and possibly by un-
tuned archetype implementations (and tuning the archetype implementations — i.e., libraries
— should improve performance for all applications). These results support our claim that the

archetypes approach is a good one.

127

7.1 Parallel program archetypes

A great deal of work has been done on methods of exploiting design patterns in program development.
The work described in this chapter restricts attention to one kind of pattern that is relevant in parallel
programming: the pattern of the parallel computation and communication structure.

Methods of exploiting design patterns in program development begin by identifying classes of
problems with similar computational structures and creating abstractions that capture the common-
ality. Combining a problem class’s computational structure with a parallelization strategy gives rise
to a dataflow pattern and hence a communication structure. It is this combination of computational
structure, parallelization strategy, and the implied pattern of dataflow and communication that we
capture as a parallel program archetype, or just an archetype.

In terms of the programming model presented in previous chapters, the commonality captured
by the archetype abstraction makes it possible to develop semantics-preserving transformations
applicable to programs that fit the archetype. In particular, the common dataflow pattern makes it
possible to encapsulate those parts of the computation that involve interprocess communication and
transform them only once, with the results of the transformation made available as a communication

operation usable in any program that fits the archetype.

7.1.1 Archetype-based assistance for application development

Although the dataflow pattern is the most significant aspect of an archetype in terms of its usefulness
in easing the task of developing parallel programs, including computational structure as part of the
archetype abstraction helps in identifying the dataflow pattern and also provides some of the other

benefits associated with patterns. Such archetypes are useful in many ways:

Program skeletons and code libraries. A program skeleton and code library can be created
for each archetype, where the skeleton deals with process creation and interaction between
processes, and the code library encapsulates details of the interprocess interaction. If a se-
quential program fits an archetype, then a parallel program can be developed by fleshing out
the skeleton, making use of the code library. The fleshing-out steps deal with defining the
sequential structure of the processes. Thus, programmers can focus their attention primarily

on sequential programming issues.

Amortization of performance optimization costs. One way to achieve portability and per-
formance is to implement common patterns of parallel structures — those for a particular
archetype or archetypes — on different target architectures (e.g., multicomputers, symmetric
multiprocessors, and non-uniform-memory-access multiprocessors), tuning the implementation

to obtain good performance. The cost of this performance optimization effort is amortized over

128

all programs that fit the pattern.

Assistance with parallelization. Programmers often develop parallel applications by transform-
ing sequential programs. The process of transformation can be laborious and error-prone. How-
ever, this transformation process can be systematized for sequential programs that fit specific
computational patterns; then, if a sequential program fits one of these patterns (archetypes),

the transformation steps appropriate to that pattern can be used.

In some cases, parallelizing compilers can generate programs that execute more efficiently on
parallel machines if programmers provide information about their programs in addition to
the program text itself. Although the focus of this part of our work is on active stepwise
refinement by programmers and not on compilation tools, we postulate that the dataflow

pattern is information that can be exploited by a compiler.

Framework for program design, development, and reasoning. Just as the identification of
computational patterns in object-oriented design is useful in teaching systematic sequential
program design, identification of computational and dataflow patterns (archetypes) is helpful
in teaching parallel programming. Similarly, just as the use of computational patterns can make
reasoning about sequential programs easier by providing a framework for proofs of algorithmic
correctness, archetypes can provide a framework for reasoning about the correctness of parallel

programs. Archetypes can also provide frameworks for testing and documentation.

Performance models. Archetypes may also be helpful in developing performance models for

classes of programs with common structure, as discussed in [64].

Program composition. Archetypes can be useful in structuring programs that combine task and

data parallelism, as described in [23].

7.1.2 An archetype-based program development strategy

Our general strategy for writing programs using archetypes is as follows:

Start with a sequential algorithm or problem description.
Identify an appropriate archetype.

Develop an initial archetype-based version of the algorithm. This initial version is struc-
tured according to the archetype’s pattern and gives an indication of the concurrency to be
exploited by the archetype. (In terms of our programming model, this initial version is a pro-
gram in the arb model.) Essentially, this step consists of structuring the original algorithm to

fit the archetype pattern and “filling in the blanks” of the archetype with application-specific

129

details. Transforming the original algorithm into this archetype-based equivalent can be done
in one stage or via a sequence of smaller transformations; in either case, it is guided by the

archetype pattern.

An important feature of this initial archetype-based version of the algorithm is that it can be
executed sequentially (by converting arb composition or its equivalent into sequential compo-
sition, as described in the examples). For deterministic programs, this sequential execution
gives the same results as parallel execution; this allows debugging in the sequential domain

using familiar tools and techniques.

Transform the initial archetype-based version of the algorithm into an equivalent algorithm
suitable for efficient execution on the target architecture. (In terms of our programming model,
the objective in this step is to produce a program in the par or the subset par model, de-
pending on the target architecture.) The archetype assists in this transformation, either via
guidelines to be applied manually or via automated tools. Again, the transformation can
optionally be broken down into a sequence of smaller stages, and in some cases intermedi-
ate stages can be executed (and debugged) sequentially. A key aspect of this transformation
process is that the transformations defined by the archetype preserve semantics and hence
correctness. During this transformation process, portions of the program that correspond to
archetype-defined communication operations can be replaced with calls to archetype-defined

library routines.

Implement the efficient archetype-based version of the algorithm using a language or li-
brary suitable for the target architecture. Here again the archetype assists in this process, not
only by providing suitable transformations (either manual or automatic), but also by providing
program skeletons and/or libraries that encapsulate some of the details of the parallel code

(process creation, message-passing, and so forth).

A significant aspect of this step is that it is only here that the application developer must choose
a particular language or library; the algorithm versions produced in the preceding steps can

be expressed in any convenient notation, since the ideas are essentially language-independent.

This chapter presents example archetypes and shows how they and this strategy can be used to
develop applications. Our work to date has concentrated on target architectures with distributed
memory and message-passing, and the discussion reflects this focus, but we believe that the work has
applicability for shared-memory architectures as well, particularly those with local caches and/or

explicit cache control.

130
7.2 Example archetypes

As discussed earlier, in order to test our hypothesis about the value of an archetypes-based approach
to developing parallel applications, we identified some example archetypes, developed archetype
implementations consisting of code libraries and documentation, and used these implementations to
develop application programs. This section presents some example archetypes developed as the first

phase of this experimental work.

7.2.1 The mesh-spectral archetype
7.2.1.1 Computational pattern

A number of scientific computations can be expressed in terms of operations on N-dimensional grids.
While it is possible to abstract from such computations patterns resembling higher-order functions
(like that of traditional divide and conquer, for example), our experience with complex applications
suggests that such patterns tend to be too restrictive to address complex problems. Instead, the
pattern captured by the mesh-spectral archetype! is one in which the overall computation is based
on N-dimensional grids (where N is usually 1, 2, or 3) and structured as a sequence of the following

operations on those grids:

Grid operations, which apply the same operation to each point in the grid, using data for that
point and possibly neighboring points. If the operation uses data from neighboring points,
the set of variables modified in the operation must be disjoint from the set of variables used
as input. Input variables may also include “global” variables (variables common to all points
in the grid, e.g., constants). In terms of our model, a grid operation can be expressed as an

arball over all or most points in the grid.

Row (column) operations, which apply the same operation to each row (column) in the grid.
Analogous operations can be defined on subsets of grids with more than 2 dimensions. The
operation must be such that all rows (columns) are operated on independently — that is, the
calculation for row 7 cannot depend on the results of the calculation for row j, where ¢ # j.
In terms of our model, a row (column) operation can be expressed as an arball over all rows

(columns) in the grid.

Reduction operations, which combine all values in a grid into a single value (e.g., finding the
maximum element). In terms of our model, reduction operations can be transformed into
computations with exploitable concurrency (arb or arball composition) by using the trans-

formations described in Section 3.4.1.

1We call this archetype “mesh-spectral” because it combines and generalizes two other archetypes, a mesh archetype
focusing on grid operations, described in Section 7.2.3, and a spectral-methods archetype focusing on row and column
operations, described in Section 7.2.2.

131

File input/output operations, which read or write values for a grid. In terms of our model, file
input/output operations can be transformed into computations with exploitable concurrency
(arb or arball composition) if it is possible to replace the underlying sequential file operations

with file operations that allow for concurrency.

Data may also include global variables common to all points in the grid (constants, for example,
or the results of reduction operations), and the computation may include simple control structures
based on these global variables (for example, looping based on a variable whose value is the result

of a reduction).

7.2.1.2 Parallelization strategy and dataflow

In terms of our model, “parallelizing” a program means developing an equivalent program in the
par model or the subset par model — usually the latter, since it corresponds to the architectures
in which we are most interested, those in which memory is distributed. Devising a parallelization
strategy for a particular archetype begins by considering how its dataflow pattern can be used to
determine how to distribute data among processes in such a way that communication requirements
are minimized.

For the mesh-spectral archetype, the dataflow patterns of the archetype’s characteristic opera-
tions lend themselves to a data distribution scheme based on partitioning the data grid into regular
contiguous subgrids (local sections) and distributing them among processes. As described in this

section, some operations impose requirements on how the data is distributed, while others do not.

Grid operations. Provided that the restriction in Section 7.2.1.1 is met, points can be operated
on in any order or simultaneously. Thus, each process can compute (sequentially) values
for the points in its local section of the grid, and all processes can operate concurrently. Grid
operations impose no restrictions on data distribution, although the choice of data distribution

may affect the resulting program’s efficiency.?

Row (column) operations. Provided that the restriction in Section 7.2.1.1 is met, rows can be
operated on simultaneously or in any order. These operations impose restrictions on data
distribution: Row operations require that data be distributed by rows, while column operations

require that data be distributed by columns.

Reduction operations. Provided that the operation used to perform the reduction is associative
(e.g., maximum) or can be so treated (e.g., floating-point addition, if some degree of nonde-

terminism is acceptable), reductions can be computed concurrently by allowing each process

2This chapter addresses only the question of which data distributions are compatible with the problem’s com-
putational structure. Within these constraints, programmers may choose any data distribution; choosing the data
distribution that gives the best performance is important but orthogonal to the concerns of this chapter. However,
an archetype-based performance model, such as that described in [64], may help with this choice.

132

to compute a local reduction result and then combining them, for example via recursive dou-
bling. Reduction operations, like grid operations, may be performed on data distributed in
any convenient fashion. After completion of a reduction operation, all processes have access

to its result.

File input/output operations. Exploitable concurrency and appropriate data distribution de-
pend on considerations of file structure and (perhaps) system-dependent I/O considerations.
One possibility is to operate on all data sequentially in a single process, which implies a data
“distribution” in which all data is collected in a single process. Another possibility is to per-
form I/O “concurrently” in all processes (actual concurrency may be limited by system or file

constraints), using any convenient data distribution.

Patterns of communication (in distributed-memory versions of mesh-spectral applications) arise
as a consequence of how these operations are composed to form an individual algorithm; if two
operations requiring different data distributions are composed in sequence, they must be separated
by data redistribution. Distributed memory introduces the additional requirement that each process
have a duplicate copy of any global variables, with their values kept synchronized — that is, any
change to such a variable must be duplicated in each process before the value of the variable is
used again. A key element of this archetype is support for ensuring that these requirements are
met. This support can take the form of guidelines for manually transforming programs, as in our
archetype-implementation user guides [34, 57, 33], or it could be expressed in terms of more formal

transformations with arguments for their correctness, as in the transformations of Chapter 3.

7.2.1.3 Communication patterns

This data-distribution scheme thus gives rise to the need (in distributed memory) for a small set of

communication operations:

Grid redistribution. If different parts of the computation require different distributions — for
example, if a row operation is followed by a column operation — data must be redistributed

among processes, as in Figure 7.1.

data distributed
by rows

<--- redistribution

data distributed
by columns

Figure 7.1: Redistribution: rows to columns.

133

Exchange of boundary values. If a grid operation uses value from neighboring points, points on
the boundary of each local section requires data from neighboring processes’ local sections.
This dataflow requirement can be met by surrounding each local section with a ghost boundary
containing shadow copies of boundary values from neighboring processes and using a boundary-
exchange operation (in which neighboring processes exchange boundary values) to refresh these

shadow copies, as shown in Figure 7.2.

boundary exchange

- - -

ghost boundaries

Figure 7.2: Boundary exchange.

Broadcast of global data. When global data is computed (or changed) in one process only (for
example, if it is read from a file), a broadcast operation is required to re-establish copy con-

sistency.

Support for reduction operations. Reduction operations can be supported by several commu-
nication patterns depending on their implementation — for example, all-to-one/one-to-all or
recursive doubling. Figure 7.3 shows recursive doubling used to compute the sum of the ele-

ments of an array.

o [)][@]

Lsum(a(1:2)), (sum(aa:z»J sum(a(3:4)) | | sum(a(3:4))

[sum(a(1:4ﬂ [sum(a(1:4))J 1 sum(a(l:m ‘ﬂm(a(l%)) [

Figure 7.3: Recursive doubling to compute a reduction (sum).

134

Support for file input/output operations. File input/output operations can be supported by

several communication patterns, e.g., data redistribution (one-to-all or all-to-one).

All of the required operations can be supported by a communication library containing a boundary-
exchange operation, a general data-redistribution operation, and a general reduction operation. Each
operation corresponds to a data-exchange operation, as described in Chapter 5, and hence implies a
synchronization across the components of the parallel composition before and after the exchanging
of data. It is straightforward to write down specifications of these operations in terms of pre- and
postconditions (which is helpful in determining where they should be used); these specifications can

then be implemented in any desired language or library as part of an archetype implementation.

7.2.1.4 Implementation

We have developed for the mesh-spectral archetype an implementation consisting of a code skeleton
and an archetype-specific library of communication routines for the operations described in Sec-
tion 7.2.1.3, with versions based on Fortran M [40] and Fortran with MPI [58]. The implementation
is described in detail in [34]. The Fortran M version has been used to run applications on the IBM
SP and on networks of Sun workstations; the MPI version has been used to run applications on the

IBM SP and on networks of Sun and Pentium-based workstations.

7.2.2 The spectral archetype

The spectral archetype is a strict subset of the mesh-spectral archetype (Section 7.2.1), in which the
allowed computational operations consist of row and column operations, reduction operations, and
file input/output operations. Parallelization strategy, dataflow patterns, and required communica-
tion operations are thus a subset of the corresponding entities for the mesh-spectral archetype. The
communication operations consist of a restricted form of redistribution — row to column and vice
versa — and support for reduction operations and file input/output.

We have developed for this archetype an implementation (based on Fortran M [40]) consisting of
a code skeleton and an archetype-specific library of communication routines. The implementation is
described in detail in [33]; it has been used to run an application on the IBM SP and on a network

of Sun workstations.

7.2.3 The mesh archetype

The mesh archetype is a strict subset of the mesh-spectral archetype (Section 7.2.1), with one minor
change. The allowed computational operations consist of grid operations, reduction operations, and
file input/output operations. The parallelization strategy, however, is based on a maximum of two

data distributions: one in which data is partitioned and distributed among grid processes (in the

135

same manner described for the mesh-spectral archetype) and one in which all data resides in a
host process. Grid computations and reduction operations may be performed on data distributed
in either manner, although obviously they will not be very efficient when performed on data in a
host-only distribution. File input/output operations may also be performed on data distributed
in either manner, although depending on the details of the target architecture they may be much
simpler when performed on data in a host-only distribution. (This is the justification for including a
host process in the archetype.) Dataflow patterns are the subset of mesh-spectral dataflow patterns
implied by the just-described computational patterns and parallelization strategy. The required
communication operations consist of boundary exchange, a restricted form of data redistribution
(host to grid and vice versa), and support for reduction operations and file input/output.

We have developed for this archetype an implementation consisting of a code skeleton and an
archetype-specific library of communication routines,® with versions based on Fortran M [40], Fortran
with p4 [17], and Fortran with NX [60]. The implementation is described in detail in [57]; it has
been used to run applications on the IBM SP, the Intel Delta, the Intel Paragon, and a network of

Sun workstations.

7.3 Applications

This section discusses the second phase of the archetypes-related experimental work, in which we
used the example archetypes presented in Section 7.2 to develop applications. The examples in
Section 7.3.1 illustrate how the mesh-spectral archetype can be used to develop algorithms and
transform them into versions suitable for execution on a distributed-memory-message-passing ar-
chitecture. In addition, Section 7.3.2 briefly describes more complex applications based on this

archetype.

7.3.1 Development examples

This section presents two examples of program development using the mesh-spectral archetype of
Section 7.2.1. These examples illustrate that the key benefits of developing an algorithm using
the mesh-spectral archetype are (1) the guidelines or transformations for converting the algorithm
to a form suitable for the target architecture, and (2) the encapsulated and reusable library of
communication operations. The performance of the resulting programs is to a large extent dependent
on the performance of this communication library, but our experiences as sketched in this section and
the following section suggest that even fairly naive implementations of the communication library

can give acceptable performance. Performance can then be improved by tuning the library routines,

3As an interesting aside, these communication routines were explicitly developed using the method described in
Chapter 5, in which a set of assignment statements is transformed into a set of message-passing commands.

136

with potential benefit for other archetype-based applications.

7.3.1.1 2-dimensional FFT

We first present a simple example making use of row and column operations and data redistribution.
This example illustrates how the archetype guides the process of transforming a sequential algorithm

into a program for a distributed-memory-message-passing architecture.

Problem description. The problem is that described in Section 6.1.

Archetype-based algorithm, version 1. It is clear that the sequential algorithm described fits
the pattern of the mesh-spectral archetype: The data (the 2-dimensional array) is a grid, and the
computation consists of a row operation followed by a column operation. Thus, it is easy to write
down an archetype-based version of the algorithm. Figure 7.4 shows HPF[43]-like pseudocode for
this version. Observe that since the iterations of each FORALL are independent, this algorithm can
be executed (and debugged, if necessary) sequentially by replacing each FORALL with a DO loop.
Observe also that this algorithm could be executed without change and with the same results on
an architecture that supports the FORALL construct. This equivalence of results for parallel and

sequential execution is a consequence of the definitions and theorems of Chapter 2.

integer N, M
complex :: a(N, M)

t---do row FFTs
'HPF$ INDEPENDENT
forall (i = 1:N)
call rowfft(a(i,:))
end forall
t---do column FFTs
'HPF$ INDEPENDENT
forall (j = 1:M)
call colfft(a(:,j))
end forall

Figure 7.4: Program for 2-dimensional FF'T, version 1.

Archetype-based algorithm, version 2. We next consider how to transform the initial version
of the algorithm into a version suitable for execution on a distributed-memory-message-passing ar-
chitecture. For such an architecture, the archetype can be expressed as an SPMD computation with
P processes, with the archetype supplying any code skeleton needed to create and connect the P
processes. Guided by the archetype (i.e., by the discussion of dataflow and communication patterns

in Section 7.2.1), we can transform the algorithm of Figure 7.4 into an SPMD computation in which

137

each process executes the pseudocode shown in Figure 7.5: Since the precondition of the row opera-
tion is that the data be distributed by rows, and the precondition of the column operation is that the
data be distributed by columns, we must insert between these two operations a data redistribution.
For the sake of tidiness, we add an additional data redistribution after the column operation to
restore the initial data distribution. Observe that most of the details of interprocess communication
are encapsulated in the redistribution operation, which can be provided by an archetype-specific
library of communication routines, freeing the application developer to focus on application-specific

aspects of the program.

integer :: N, M, P
complex :: a_rows(N/P, M)
complex :: a_cols(N, M/P)

t---do row FFTs
do i = 1, N/P
call rowfft(a_rows(i,:))
end do
{---redistribute
call redistribute(a_rows, a_cols)
{=--do column FFTs
do j =1, M/P
call colfft(a_cols(:,j))
end do
|--~redistribute to restore original distribution
call redistribute(a_cols, a_rows)

Figure 7.5: Program for 2-dimensional FFT, version 2.

Implementation. Transformation of the algorithm shown in Figure 7.5 into code in a sequen-
tial language plus message-passing is straightforward, with most of the details encapsulated in the
redistribution routine. This algorithm has been implemented using the mesh-spectral archetype
implementation described in Section 7.2.1. Figure 7.6 shows execution times and speedups for the
MPI version of the parallel code, executing on an IBM SP. Speedups are relative to the equivalent
sequential code (produced by executing version 1 of the algorithm sequentially) executed on one
processor. Disappointing performance is a result of too small a ratio of computation to communica-
tion. This parallelization of a 2-dimensional FFT might nevertheless be sensible as part of a larger

computation or for problems exceeding the memory requirements of a single processor.

138

__ 1000 : 35 —_—
3 sequential —— 30 | actual —= |
5 actual -~ perfect -~

o ideal L 1
& 100 P a %

g '] § 20
=) 2 15 |

2 10 ¢ 10 |

3

1 ' ol
10 100 5 10 15 20 25 30 35
Processors Processors

Figure 7.6: Execution times and speedups for parallel 2-dimensional FFT compared to sequential
2-dimensional FFT for 800 by 800 grid, FFT repeated 10 times, using Fortran with MPI on the IBM

SP.

139

7.3.1.2 Poisson solver

We next present a less simple example making use of grid operations, a reduction operation, and the
use of a global variable for control flow. This example again illustrates how the archetype guides the
process of transforming a sequential algorithm into a program for a distributed-memory-message-

passing architecture.

Problem description. The problem is that described in Section 6.3. Details of the initialization

phase of the computation have been omitted in the interests of brevity.

Archetype-based algorithm, version 1. The sequential algorithm described fits the pattern
of the mesh-spectral archetype: The data consists of several grids (uk, ukpl, and fvals) and a
global variable diffmax that is computed as the result of a reduction operation and used in the
program’s control flow. Thus, it is straightforward to write down an archetype-based version of the
algorithm. Figure 7.7 shows HPF-like pseudocode for this version, using a grid with dimensions
NX by NY. Observe that since the iterations of each FORALL are independent, this algorithm can
be executed (and debugged, if necessary) sequentially by replacing each FORALL with nested DO
loops. Observe also that this algorithm could be executed without change and with the same
results on an architecture that supports the FORALL construct, since the iterations of the FORALL are
independent and the reduction operation (a global maximum) is based on an associative operation.
This equivalence of results for parallel and sequential execution is a consequence of the definitions

and theorems of Chapter 2.

Archetype-based algorithm, version 2. We next consider how to transform the initial version
of the algorithm into a version suitable for execution on a distributed-memory-message-passing
architecture. As with the 2-dimensional FFT program, the overall computation is to be expressed
as an SPMD computation, with the archetype supplying any code skeleton needed to create and
connect the processes. Since the operations that make up the computation have no data-distribution
requirements, it is sensible to write the program using a generic block distribution (distributing
data in contiguous blocks among NPX*NPY processes conceptually arranged as an NPX by NPY grid);
we can later adjust the dimensions of this process grid to optimize performance. Guided by the
archetype (i.e., by the discussion of dataflow and communication patterns in Section 7.2.1), we can
transform the algorithm of Figure 7.7 into an SPMD computation in which each process executes the
pseudocode shown in Figure 7.8: The program’s grids are distributed among processes, with each
local section surrounded by a ghost boundary to contain the data required by the grid operation
that computes ukpl. The global variable diffmax is duplicated in each process; copy consistency is

maintained because each copy’s value is changed only by operations that establish the same value

140

integer :: NX, NY

real :: H, TOLERANCE

real :: uk(NX, NY), ukpi(NX, NY), fvals(NY, NY)
real :: diffmax

l---initialize
initialize_poisson(uk, fvals)
!-—-compute until convergence
diffmax = TOLERANCE + 1.0
do while (diffmax > TOLERANCE)
!~~-compute new values
'HPF$ INDEPENDENT
forall (i = 2:NX-1, j = 2:NY-1)
ukpl(i,j) = 0.25*(H*H+fvals(i,j) &
+ uk(i,j-1) + uk(i,j+1) + uk(i-1,j) + uk(i+1,3))
end forall
t-—-check for convergence:
! compute max(abs(ukpl(i,j) - uk(i,jd))
diffmax = 0.0
do i = 2, NX-1
do j = 2, NY-1
diffmax = max(diffmax, abs(ukpl(i,j) - uk(i,j)))
end do
end do
!---copy new values to old values
'HPF$ INDEPENDENT
forall (i = 2:NX-1, j = 2:NY-1)
uk(i,j) = ukpl(d,j)
end forall
end do ! while

Figure 7.7: Poisson solver, version 1.

in all processes (initialization and reduction). Each grid operation is distributed among processes,
with each process computing new values for the points in its local section. (Observe that new values
are computed only for points in the intersection of the local section and the whole grid’s interior.)
To satisfy the precondition of a grid operation using data from neighboring points, the computation
of ukp1 is preceded by a boundary exchange operation. The reduction operation is also transformed
in the manner described previously; since a postcondition of this operation is that all processes
have access to the result of the reduction, copy consistency is re-established for loop-control variable
diffmax before it is used. As with the previous example, all of these transformations can be assisted
by the archetype, via any combination of guidelines, formally-verified transformations, or automated
tools that archetype developers choose to create. Also as with the previous example, observe that
most of the details of interprocess communication are encapsulated in the boundary-exchange and
reduction operations, which can be provided by an archetype-specific library of communication

routines, freeing the application developer to focus on application-specific aspects of the program.

141

integer :: NX, NY

real :: H, TOLERANCE

integer :: NPX, NPY

real :: uk(0:(NX/NPX)+1, O:(NY/NPY)+1)
real :: ukpl(0:(NX/NPX)+1, O:(NY/NPY)+1)
real :: fvals(0:(NX/NPX)+1, O:(NY/NPY)+1)
real :: diffmax, local_diffmax

integer :: ilo, ihi, jlo, jhi

!-—-initialize
call initialize_poisson_section(uk, fvals)
!---compute intersection of "interior" with local section
call xintersect(2,NX-1,ilo,ihi)
call yintersect(2,NY-1,jlo, jhi)
!---compute until convergence
diffmax = TOLERANCE + 1.0
do while (diffmax > TOLERANCE)
!-—-compute new values
call boundary_exchange (uk)
do j = jlo, jhi
do i = ilo, ihi
ukp1(i,j) = 0.25x(H*xH*£f (i, j) &
+ uk(i,j-1) + uk(i,j+1) + uk(i-1,j) + uk(i+1,j))
end do
end do
!---check for convergence:
! compute max(abs(ukp1(i,j) - uk(i,j)))
local_diffmax = 0.0
do j = jlo, jhi
do i = ilo, ihi
diffmax = max(diffmax, abs(ukp1(i,j) - uk(i,j)))
end do
end do
diffmax = reduce_max(local_diffmax)
!-—-copy new values to old values
uk(ilo:ihi,jlo:jhi) = ukpl(ilo:ihi, jlo:jhi)
end do ! while

Figure 7.8: Poisson solver, version 2.

Implementation. As in the previous example, transformation of the algorithm shown in Fig-
ure 7.8 into code in a sequential language plus message-passing is straightforward, with most of the
details encapsulated in the boundary-exchange and reduction routines. This algorithm has been im-
plemented using the mesh-spectral archetype implementation described in Section 7.2.1. Figure 7.9
shows execution times and speedups for the MPI version of the parallel code, executing on the IBM

SP. Speedups are relative to the equivalent sequential code executed on one processor.

142

_. 1000 : 40 —————
3 sequential 35 | actual —— |
5 < actual — perfect <~
? ™ ideal - 30 r 1
@ . S 25 |
£ 100} 3 20
s c% 15+
5 10
O
10 : ol
1 10 100 0 5 10 15 20 25 30 35 40
Processors Processors

Figure 7.9: Execution times and speedups for parallel Poisson solver compared to sequential Poisson
solver for 800 by 800 grid, 1000 steps, using Fortran with MPI on the IBM SP.

143

7.3.2 Other applications

This section describes additional applications we have developed based on the mesh-spectral archetype

and its subsets (the mesh and spectral archetypes).

7.3.2.1 Compressible flow

Two similar computational fluid dynamics codes have been developed using archetypes. These
two codes simulate high Mach number compressible flow using a conservative and monotonicity-
preserving finite difference scheme [63]. Both are based on the 2-dimensional mesh archetype and
have been implemented in Fortran with NX for the Intel Delta and the Intel Paragon. Figure 7.10
shows execution times and speedups for the first code, executing on the Intel Delta. Speedups
are relative to single-processor execution of the parallel code. The second version of the code [65]
is notable for the fact that it was developed by an “end user” (applied mathematician) using the

mesh archetype implementation and documentation, with minimal assistance from the archetype

developers.

__ 100000 - 100

2 90

5 80 |

3 70 |

3 10000 } o

~— p 60 3

(b} o

E @ 50

= Q 40 ¢

c n

__g 1000 30

§ 20 t

X5 ‘ 10 ¢+

100 - 0 R
1 10 100 0 102030405060 708090100
Processors Processors

Figure 7.10: Execution times and speedups for 2-dimensional CFD code for 150 by 100 grid, 600
steps, using Fortran with NX on the Intel Delta. Data supplied by Rajit Manohar.

7.3.2.2 Electromagnetic scattering

This code performs numerical simulation of electromagnetic scattering, radiation, and coupling prob-

lems using a finite difference time domain technique. It is described further in Chapter 8.

7.3.2.3 Incompressible flow

This spectral code provides a numerical solution of the 3-dimensional Euler equations for incom-
pressible flow with axisymmetry. Periodicity is assumed in the axial direction; the numerical scheme

[18] uses a Fourier spectral method in the periodic direction and a fourth-order finite difference

144

method in the radial direction. It is based on the 2-dimensional spectral archetype and has been
implemented in Fortran M for networks of Sun workstations and the IBM SP. Figure 7.11 shows
executions and speedups for the parallel code, executing on the IBM SP. Because single-processor
execution was not feasible due to memory requirements, a minimum of 5 processors was used, and so
speedups are calculated relative to a base of execution on 5 processors. Inefficiencies in executing the
code on the base number of processors (e.g., paging) probably explain the better-than-ideal speedup

for small numbers of processors.

. 100 8 ,
3 " actyal~==<
5 perfect ~——
b 6
[0} g
Py 5
© 5 57
£ 10 @
= 2 4y
S |
3
1 1 £ — . - : . :
1 10 1 2 3 4 5 6 7 8
Processors/5 Processors/5

Figure 7.11: Execution times and speedups for spectral code for 1536 by 1024 grid, 20 steps, using
Fortran M on the IBM SP. Data supplied by Greg Davis.

7.3.2.4 Airshed model

This code, known as the CIT airshed model [29, 30, 31] models smog in the Los Angeles basin. It
is conceptually based on the mesh-spectral archetype, although it does not use the mesh-spectral
implementation, and has been implemented on a number of platforms, including the Intel Delta, the

Intel Paragon, the Cray T3D, and the IBM SP2, as described in [29].

145

Chapter 8

Stepwise parallelization

methodology

This chapter presents experimental work in support of the transformational aspects of our model

and methodology.

Hypothesis: A stepwise archetypes-based approach to parallelizing sequential code, as described in
Section 8.1, facilitates the process of parallelizing sequential code by (1) providing a framework
for transforming the program, essentially reducing the process to filling in the blanks of a
general pattern, as described in Section 7.1, and (2) allowing any needed debugging to be
performed in the sequential domain. Ideally the transformations required to produce the
simulated-parallel version would also be proved correct, as in Chapter 3, making debugging
unnecessary, but in this experiment we provide such proof only for the final transformation
from simulated-parallel to parallel, in the belief that it is this transformation the results of
which are most difficult to validate by testing and debugging and thus it is this transformation

for which a proof is most important.

Experiment: Using one of the archetypes from the preceding experiment (discussed in Chapter 7},
we apply the described parallelization methodology to two versions of a sequential application
program. We consider whether the resulting application programs have the form we describe
above and whether they are correct and efficient. With regard to correctness, we particularly
observe whether the final transformation — from “sequential simulated-parallel” to parallel
— does in practice as well as in theory preserve semantics, thereby justifying our claim that
any needed debugging can be done in the sequential domain, with correctness of the parallel
program guaranteed. Objective evaluation of claims about ease of use is difficult, but we

consider whether there is reason to believe that it is easier to parallelize a program with our

146

methodology than without it.

Conclusions: The applications programs we developed have the desired form, insofar as they fit
the archetype. The process of parallelization was somewhat cumbersome, but many steps have
potential for being automated. As claimed, the final transformation from simulated-parallel
to real parallel preserved semantics, with the two programs producing identical results — and
in both cases this happened on the first execution of the real parallel program. The resulting
parallel programs were reasonably efficient as well. These results support our belief both in
the merits of an archetypes-based approach to parallelization (because the parallelism-specific
parts of the parallel programs were encapsulated in the archetype-supplied routines) and in
the merits of provably semantics-preserving transformations (because the transformation for

which a proof was developed did in fact produce correct results with no need for debugging).

8.1 The methodology

In the experiments described in this chapter, we make use of an earlier version of our basic method-
ology as described in Section 7.1. The overall approach — begin with a sequential program that fits
an archetype and apply a sequence of semantics-preserving transformations to produce an equivalent
parallel program — is the same, but in this version, the key intermediate stage in the transforma-
tion process is what we call the sequential simulated-parallel version of the program. This version
essentially simulates the operation of a program consisting of IV processes executing on a distributed-
memory—message-passing architecture and is conceptually very similar to the arb-model program

behind a subset-par-model program. It has the following characteristics:

o The atomic data objects! of the program are partitioned into N groups, one for each simulated
process; the i-th group simulates the local data for the i-th process. These data objects may

include duplicated variables, as discussed in Section 3.3.

e The computation, like the computation of the subset-par-model programs of Chapter 5, con-

sists of an alternating sequence of local-computation blocks and data-exchange operations.

e Each local-computation block is a composition of N arb-compatible elements, in which the
i-th element accesses only local data for the i-th simulated process. Such blocks correspond
to sections of the parallel program in which processes execute independently and without

interaction.

e Bach data-exchange operation consists of an arb-compatible set of assignment statements,

with the following restrictions:

! An atomic data object is as defined in HPF [43]: one that contains no subobjects — e.g., a scalar data object or
a scalar element of an array.

147
— No left-hand or right-hand side may reference atomic data objects belonging to more than

one of the N simulated-local-data partitions. The left-hand and right-hand sides of an

assignment may, however, reference data from different partitions.

— For each simulated process ¢, at least one assignment statement must assign a value to a

variable in 7’s local data.

Such blocks correspond to sections of the parallel program in which processes exchange mes-
sages: Fach assignment statement can be implemented as a single point-to-point message-
passing operation, and a group of message-passing operations with a common sender and a

common receiver can be combined for efficiency.

Since such a program is a program in our arb model, it can be executed sequentially without changing
its semantics. Further, it can be transformed in a straightforward and semantics-preserving way into
a program in the subset par model, or directly into a program in a message-passing notation. We
present a semantics-preserving method for the latter transformation in Section 8.2 in this chapter,

with a proof of its correctness.

8.2 Supporting theory

In this section we present a general theorem allowing us to transform sequential simulated-parallel
programs into equivalent parallel programs. The underlying concepts are similar to those behind

the transformations of Chapter 5.

8.2.1 The parallel program and its simulated-parallel version

The target parallel program. The goal of the transformation process is a parallel program with

the following characteristics:
e The program is a collection of N sequential, deterministic processes.
e Processes do not share variables; each has a distinct address space.

e Processes interact only through sends and blocking receives on single-reader—single-writer chan-

nels with infinite slack (i.e., infinite capacity).
e An execution is a fair interleaving of actions from processes.

Observe that such a program is consistent with the model of parallel composition with message-

passing presented in Chapter 5.

148

The simulated-parallel version. We can simulate execution of such a parallel program as fol-

lows:
¢ Simulate concurrent execution by interleaving actions from (simulated) processes.
o Simulate separate address spaces by defining a set of distinct address-space data structures.

e Simulate communication over channels by representing channels as queues, taking care that

no attempt is made to read from a channel unless it is known not to be empty.

Figure 8.1 illustrates the relationship between the simulated-parallel and parallel versions of a pro-

gram.
PO compute
P1 compute
compute compute
: PO send
send > send Pl send
receive receive PO receive
: P receive
compute compute
PO compute
PO Pl
P1 compute
real parallel
simulated parallel

Figure 8.1: Correspondence between parallel and simulated-parallel program versions.

8.2.2 The theorem

Theorem 8.1.

Given deterministic processes F, ..., Py_; with no shared variables except single-reader—single-
writer channels with infinite slack, if I and I’ are two maximal interleavings of the actions of the

P;’s that begin in the same initial state, I and I' terminate in the same final state.

O

149

Proof of Theorem 8.1.

Given interleavings I and I' beginning in the same state, we show that I' can be permuted to match

I without changing its final state. The proof is by induction on the length of I.

Notation: We write b; to denote the i-th action of interleaving I and a; x to denote the k-th action

taken by process P;.
Base case: The length of I is 1. Trivial.

Inductive step: Suppose we can permute I’ such that the first n steps of the permuted I' match
the first n steps of I. Then we must show that we can further permute I' so that the first n + 1

steps match I. That is, suppose we have the following situation:

I: bo,bl,...,bn_l, Ajky---

per‘muted I/ . bO)bly'--,bn—ly Qi k' - -

Then we want to show that we can further permute I’ so that its n 4 1-th action is also a; .

Observe first that the first action taken in P; after b,_; in the permuted I’ must be a;;: All
processes are deterministic, the state after n actions is the same in I and the permuted I’, and
channels are single-reader—single-writer. Observe analogously that aj p is the first action taken in
Pj after b,y in 1.

Thus, if 7 = j', ajr = aj &7, and we are done. So suppose j # j'.

Lemma: Observe that for any two consecutive actions am n and apy », if m # m' and it is not
the case that am n, and a, v are both actions on some channel ¢, then because the system contains
no shared variables except the channels, these actions can be performed in either order with the

same results.

We now demonstrate via a case-by-case analysis that we can permute I’ by repeatedly exchanging

a; , with its immediate predecessor until it follows b,,; (as it does in I).

o If a;; is the m-th receive on some channel ¢ and a;/ 3+ also affects ¢, then:

aj i is the m’-th send on ¢, with m’ > m. (The action is a send because channels are single-
reader, and m' > m since a;; precedes aj 3 in I.) Further, no action between aj i and a;
can affect ¢ (since channels are single-reader—single-writer). Thus, using the lemma, we can
repeatedly exchange a; with its predecessors in permuted I', up to and including aj z/, as

desired.

150
e If a; is the m-th send on some channel c and a;: 3 also affects c, then:

aj k is the m/-th receive on ¢, with m' < m. (The action is a receive because channels
are single-writer, and m' < m since aj y precedes a;j in permuted I'.) Further, no action
between aj x» and a; can affect ¢ (since channels are single-reader—single-writer). Thus, we
can repeatedly exchange a; ; with its predecessors in permuted I’, up to and including aj/ 4,

as desired.

e If a; is the m-th receive on some channel ¢ and a;: x» does not affect ¢, then:

If no action between aj j and ajj in permuted I' affects ¢, then we can perform repeated
exchanges as before. If some action b; does affect ¢, then it must be the m/’-th send, with
m' > m. (The action is a send because channels are single-reader, and m' > m because the
placement of a;j in I guarantees that actions by, ...,b,—1 contain at least m sends on c.) We

can thus exchange b; with a; 1, giving the desired result.

e If a; j is the m-th send on some channel ¢ and a;/ ;» does not affect ¢, then:

If no action between a; x and a;) in permuted I' affects ¢, then we can perform repeated
exchanges as before. If some action b; does affect ¢, then it must be a receive (since channels

are single-writer), so it also can be exchanged with a;, giving the desired result.

e If a; is not an action on a channel, then from the lemma we can exchange it with its prede-

cessors as desired.

8.2.3 Implications and application of the theorem

Theorem 8.1 implies that if we can produce a sequential simulated-parallel program that meets
that same specification as a sequential program, then we can mechanically convert it into a parallel
program that meets the same specification, by transforming the simulated processes into real pro-
cesses, the simulated multiple address spaces into real multiple address spaces, and the simulated
communication actions into real communication actions®. In general, producing such a simulated-
parallel program could be tedious, time-consuming, and error-prone. However, if we start with a
program that fits an archetype, as discussed in Section 7.1, and produce a sequential simulated-
parallel version of the form described in Section 8.1, where the data-exchange operations correspond
to the communication operations of the archetype, then the task becomes manageable. Figure 8.2

illustrates the relationship between the simulated-parallel and parallel versions of such a program.

20bserve that a sequence of messages over a single-reader—single-writer channel from process P; to process P; can
be implemented as a sequence of point-to-point messages from F; to P; by giving each message a tag indicating its
originating process and receiving selectively based on these tags.

151

PO compute
PI compute
compute compute
Rl R - PO send
: send] send P1 send
; receive receive i | POreceive
B R R B Pl receive
compute compute e |
PO compute
PO Pl
P1 compute
real parallel o
from archetype library .
simulated parallel

Figure 8.2: Correspondence between parallel and simulated-parallel program versions of archetype-
based program.

Each data-exchange operation can be replaced, as described earlier, with a collection of sends
and receives: Because of the arb-compatibility restrictions, the set of assignments making up a
data-exchange operation can be implemented as a set of send-receive pairs over single-reader—single-
writer channels, where each assignment generates one send-receive pair, or for efficiency all assign-
ment statements with left-hand-side variables in process P;’s local data and right-hand-side variables
in process P;’s local data are combined into one send-receive pair from process P; to process F;.
Further, it is straightforward to choose an ordering for the simulated-parallel version that does
not violate the restriction that we may not read from an empty channel: First perform all sends;
then perform all receives. Finally, if the data-exchange operation corresponds to an archetype com-
munication routine, it can be encapsulated and implemented as part of the archetype library of
routines, which can be made available in both parallel and simulated-parallel versions. The applica-
tion developer thus need not write out and transform the parts of the application that correspond

to data-exchange operations.

8.3 Application experiments

As noted earlier, our experiment with this methodology consisted of applying it independently to two

sequential implementations of an electromagnetics application. This section describes the application

152

and the experiment.

8.3.1 The application

The application parallelized in this experiment is an electromagnetics code that uses the finite-
difference time-domain (FDTD) technique to model transient electromagnetic scattering and in-
teractions with objects of arbitrary shape and composition. With this technique, the object and
surrounding space are represented by a 3-dimensional grid of computational cells. An initial exci-
tation is specified, after which electric and magnetic fields are alternately updated throughout the
grid. By applying a near-field to far-field transformation, these fields can also be used to derive
far fields, e.g., for radar cross section computations. Thus, the application performs two kinds of

calculations:

e Near-field calculations. This part of the computation consists of a time-stepped simulation
of the electric and magnetic fields over the 3-dimensional grid. At each time step, we first cal-
culate the electric field at each point based on the magnetic fields at the point and neighboring

points, and then we similarly calculate the magnetic fields based on the electric fields.

e Far-field calculations. This part of the computation uses the above-calculated electric and
magnetic fields to compute radiation vector potentials at each time step by integrating over a
closed surface near the boundary of the 3-dimensional grid. The electric and magnetic fields at
a particular point on the integration surface at a particular time step affect the radiation vector
potential at some future time step (depending on the point’s position); thus, each calculated
vector potential (one per time step) is a double sum, over time steps and over points on the

integration surface.

Two versions of this code were available: a public-domain version (“version A”, described in [49]) that
performs only the near-field calculations, and an export-controlled version (“version C”, described
in [11]) that performs both near-field and far-field calculations. The two versions were sufficiently

different that we parallelized them separately, producing two parallelization experiments.

8.3.2 Parallelization strategy

In most respects, this application fits the pattern of the mesh archetype of Section 7.2.3. Clearly, the
near-field calculations are a perfect example of this archetype and thus can be readily parallelized
— all that is required is to partition the data and insert calls to nearest-neighbor communication
routines.

The far-field calculations fit the archetype less well and are thus more difficult to parallelize.

The simplest approach to parallelization involves reordering the sums being computed: Each process

153

computes local double sums (over all time steps and over points in its subgrid); at the end of the
computation, these local sums are combined. The effect is to re-order, but not otherwise change, the
summation. This method has the advantages of being simple and readily implemented using the mesh
archetype (since it consists mostly of local computation, with one final global-reduction operation).
It has the disadvantage of being nondeterministic — that is, not guaranteed to give the same
results when executed with different numbers of processes — since floating-point arithmetic is not

associative. Nonetheless, because of its simplicity, we chose this method for an initial parallelization.

8.3.3 Applying our methodology

Determining how to apply the strategy. First, we determined how to apply the parallelization
strategy, guided by documentation [57] for the mesh archetype, as follows:

¢ Identify which variables should be distributed (among grid processes) and which duplicated
(across all processes). For those variables that are to be distributed, determine which ones
should be surrounded by a ghost boundary. Conceptually partition the data to be distributed

into “local sections”, one for each grid process.

e Identify which parts of the computation should be performed in the host process and which in
the grid processes, and also which parts of the grid-process computation should be distributed
and which duplicated. Also identify any parts of the computation that should be performed
differently in the individual grid processes (e.g., calculations performed on the boundaries of

the grid).

Generating the simulated sequential-parallel version. We then applied the following trans-
formations to the original sequential code to obtain a simulated sequential-parallel version, operating

separately on the two versions of the application described in Section 8.3.1.

1. In effect partition the data into distinct address spaces by adding an index to each variable.
The value of this index constitutes a simulated process ID. At this point all data (even variables

that are eventually to be distributed) is duplicated across all processes.

2. Adjust the program to fit the archetype pattern of blocks of local computation alternating

with data-exchange operations.

3. Separate each local-computation block into a simulated-host-process block and a simulated-

grid-process block.

4. Separate each simulated-grid-process block into the desired N simulated-grid-process blocks.

This implies the following changes:

154

e Modify loop bounds so that each simulated grid process modifies only data corresponding
to its local section. This step was complicated by the fact that loop counters in the
original code were used both as indices into arrays that were to be distributed and to
indicate a grid point’s global position, and although the former usage must be changed

in this step, the latter must not.

e If there are calculations that must be done differently in different grid processes (e.g.,

boundary calculations), ensure that each process performs the appropriate calculations.

o Insert data-exchange operations (calls to appropriate archetype library routines).

The result of these transformations was a sequential simulated-parallel version of the original pro-

gram.

Generating the parallel program. Finally, we transformed this sequential simulated-parallel

version into a program for message-passing architectures, as described in Section 8.2.3.

8.3.4 Results

Correctness. For those parts of the computation that fit the mesh archetype — the “near-field”
calculations — the sequential simulated-parallel version produced results identical to those of the
original sequential code. For those parts of the computation that did not fit well — the “far-field”
calculations — the sequential simulated-parallel version produced results markedly different from
those of the original sequential code. Our original assumption — that we could regard floating-point
addition as associative and thus reorder the required summations without markedly changing their
results — proved to be incorrect®. Correct parallelization of these calculations would thus require
a more sophisticated strategy than that suggested by the mesh archetype, which we did not pursue
due to time constraints. While disappointing, this result does not invalidate our hypothesis, since
the hypothesis says nothing about using an archetype to parallelize an application that does not fit
the archetype pattern well.

For all parts of the computation, however, the message-passing programs produced results iden-

tical to those of the corresponding sequential simulated-parallel versions, on their first execution.

Performance. Both versions of the application were parallelized using our Fortran M implemen-
tation of the mesh archetype. Because of export-control constraints, we were able to obtain perfor-
mance data for Version C only on a network of workstations. Table 8.1, Table 8.2, Table 8.3, and
Table 8.4 show execution times and speedups for Version C, executing on a network of Sun work-

stations. Speedup is defined as execution time for the original sequential code divided by execution

3 Analysis of the values involved showed that they ranged over many orders of magnitude, so it is not surprising
that the result of the summation was markedly affected by the order of summation.

155

time for the parallel code. Figure 8.3 and Figure 8.4 show execution times and speedups for Version
A, executing on an IBM SP. The fall-off of performance for more than 4 processors in Figure 8.3 is
probably due to the ratio of computation to communication falling below that required to give good
performance. Unsurprisingly, performance for the larger problem size (Figure 8.4) scales acceptably
for a larger number of processors than performance for the smaller problem size (Figure 8.3), but
also falls off when the ratio of computation to communication decreases below that required to give

good performance.

Execution time | Speedup

(seconds)
Sequential 78.6 1.00
Parallel, P=1 189.0 0.41
Parallel, P=2 514 1.52
Parallel, P=4 25.3 3.10

Table 8.1: Execution times and speedups for electromagnetics code (version C), for 33 by 33 by 33
grid, 128 steps, using Fortran M on a network of Suns.

Execution time | Speedup

(seconds)
Sequential 4309.5 1.00
Parallel, P=4 1189.8 3.62

Table 8.2: Execution times and speedups for electromagnetics code (version C), for 65 by 65 by 65
grid, 1024 steps, using Fortran M on a network of Suns.

Execution time | Speedup

(seconds)
Sequential 123.1 1.00
Parallel, P=1 258.5 0.47
Parallel, P=2 65.4 1.88
Parallel, P=4 32.5 3.78

Table 8.3: Execution times and speedups for electromagnetics code (version C), for 46 by 36 by 36
grid, 128 steps, using Fortran M on a network of Suns.

Ease of use. It is difficult to define objective measures of ease of use, but our experiences in the
experiments described in this chapter suggest that the parallelization methodology described herein
is not unreasonably difficult to use:

Starting in both cases with unfamiliar code (about 2400 lines for Version C and 1400 lines for Ver-

sion A, including comments and whitespace), we were able to perform the transformations described

156

Execution time | Speedup

(seconds)
Sequential 16019.4 1.00
Parallel, P=4 3558.5 4.5

Table 8.4: Execution times and speedups for electromagnetics code (version C), for 91 by 71 by 71
grid, 2048 steps, using Fortran M on a network of Suns.

_. 1000 8 s
B sequential — 71 actual — |
S perfect-=—
0 6t ;
8 s 5l "
o 2
£ 100} 2 4l
= & 3t
2
5 2
i "1
10 o
1 10 1 2 3 4 5 6 7 8
Processors Processors

Figure 8.3: Execution times and speedups for electromagnetics code (version A) for 34 by 34 by 34
grid, 256 steps, using Fortran M on the IBM SP.

in Section 8.3.3 relatively quickly: For version C of the code, one person spent 2 days determining
how to apply the mesh-archetype parallelization strategy, 8 days converting the sequential code into
the sequential simulated-parallel version, and less than a day converting the sequential simulated-
parallel version into a message-passing version. For version A of the code, one person spent less
than a day determining how to apply the parallelization strategy, 5 days converting the sequential
code into the sequential simulated-parallel version, and less than a day converting the sequential

simulated-parallel version into a message-passing version.

157

10000 ; 18 ————————
B sequential — 16 | actual —- |
s aCtUaI """"" | perfect o
S ideal 14
2 o 12 +
S . 5
) o 10 +
_g 1000 ¢ 2 8|
5 &3
Kl 6t
3 4!
& | 2 |
100 — 0 e
1 10 100 0 2 4 6 8101214 16 18
Processors Processors

Figure 8.4: Execution times and speedups for electromagnetics code (version A) for 66 by 66 by 66
grid, 512 steps, using Fortran M on the IBM SP.

158

8.4 Appendix: Details of the conversion process

Figure 8.5 illustrates the overall strategy used to package the conversion from sequential to parallel:

Use preprocessor directives to allow generating process code (for both simulated and real parallel

versions)

and driver code (for the simulated parallel version) from the same source. Figure 8.6,

Figure 8.7, and Figure 8.8 show an example.

simulation

driver
preprocess

simulated

original | revise | modified process

source source

revise

real

process

Figure 8.5: Packaging strategy: overview.

call
call

local_compute_1(4,B)
local_compute_2(B,A)

Figure 8.6: Packaging strategy: sequential code.

call
call
call
call

local_compute_1(4,B)
boundary_exchange (B)
local_compute_2(B,A)
boundary_exchange (4)

Figure 8.7: Packaging strategy: desired parallel code.

159

#ifdef PROC
goto (10000, 20000), proc_step
#endif PROC
#ifdef DRIVER
proc_step = 1
include ’mesh_doall.h’
#tendif DRIVER
#ifdef PROC
10000 continue
call local_compute_1(4,B)
return
#endif PROC
#ifdef DRIVER
call boundary_exchange (B)
#tendif DRIVER
#ifdef DRIVER
proc_step = 2
include ’mesh_doall.h’
#endif DRIVER
#ifdef PROC
20000 continue
call local_compute_2(B,4)
return
#endif PROC
#ifdef DRIVER
call boundary_exchange(A)
#endif DRIVER

Figure 8.8: Packaging strategy: revised source code.

160

Chapter 9

Related and complementary work

Program specifications and refinement. We take our notion of program specifications from
some of the standard ways of giving program specifications for sequential program, for example those
of Hoare [44] and Dijkstra [36]. We differ from much work on reasoning about parallel programs, for
example Chandy and Misra [24] and Lamport [50] in emphasizing sequential-style specifications over
specifications describing ongoing behavior (e.g., safety and progress properties). Our emphasis on
program development by stepwise refinement builds on the work of Back [6], Gries [42], and Hoare

[44] for sequential programs, and Back [5], Martin [56], and Van de Velde [74] for parallel programs.

Sequential programming models. We base our programming model on the standard sequential

model as defined for example by Gries [42].

Parallel programming models. Since we are more interested in sequential-style specifications
than in those involving ongoing behavior, our work differs considerably from much other work on
parallel programming, for example that of Chandy and Misra (UNITY) [24] and Hoare (CSP) [45].
Other work on parallel programs with sequential equivalents includes that of Valiant (BSP) [73] and
Thornley [71]; the former, however, emphasizes performance analysis over analysis of correctness,

while the latter focuses mostly on programs for a shared-memory model.

Operational models of program semantics. Our operational model adapts the ideas of state-
transitions systems, as described in Chandy and Misra [24], Lynch and Tuttle [52], Lamport [51],
Manna and Pnueli [54], and Pnueli [61]; we give a formulation of these ideas that is aimed at

facilitating our proofs.

Automatic parallelizing compilers. Much effort has gone into development of compilers that

automatically recognize potential concurrency and emit parallel code, for example Fortran D [28] and

161

HPF [43]. The focus of such work is on the automatic detection of exploitable parallelism, while our
work addresses how to exploit parallelism once it is known to exist. Our theoretical framework could
be used to prove not only manually-applied transformations but also those applied by parallelizing

compilers.

Design patterns. Many researchers have investigated the use of patterns in developing algorithms
and applications. Our previous work [20, 23] explores a more general notion of archetypes and their
role in developing both sequential and parallel programs. Gamma et al. [41] address primarily the
issue of patterns of computation, in the context of object-oriented design. Our notion of a parallel
program archetype, in contrast, includes patterns of dataflow and communication. Schmidt [66]
focuses more on parallel structure, but in a different context from our work and with less emphasis
on code reuse. Shaw [67] examines higher-level patterns in the context of software architectures.
Brinch Hansen’s work on parallel structures [15] is similar in motivation to our work, but his model
programs are typically more narrowly defined than our archetypes. Other work addresses lower-level

patterns, as for example the use of templates to develop algorithms for linear algebra in [10].

Program skeletons. Much work has also been done on structuring programs by means of program
skeletons, including that of Cole [27], Botorog and Kuchen [13, 14], and Darlington et al. [32].
This work is more oriented toward functional programming than ours, although [27] mentions the
possibility of expressing the idea of program skeletons in imperative languages, and [14] combines
functional skeletons with sequential imperative code.

This work, like that of Brinch Hansen, describes a program development strategy that consists
of filling in the “blanks” of a parallel structure with sequential code. Our approach is similar, but
we allow the sequential code to reference the containing parallel structure, as in the mesh-spectral

archetype examples.

Program development strategies. Fang [39] describes a programming strategy similar to ours,
but with less focus on the identification and exploitation of patterns. The Basel approach [16] is
more concerned with developing and exploiting a general approach for classifying and dealing with
parallel programs. Ballance et al. [9] are more explicitly concerned with the development of tools
for application support; while our work can be exploited to create such tools, it is not our primary
focus. Kumaran and Quinn [48] focus more on automated conversion of template-based applications

into efficient programs for different architectures.

Dataflow patterns. Other work, e.g., Dinucci and Babb [38], has addressed the question of
structuring parallel programs in terms of dataflow; our work differs in that it addresses patterns of

both dataflow and computation.

162

Distributed objects. The mesh-spectral archetype is based to some extent on the idea of dis-
tributed objects, as discussed for example in work on pC++ [12] and POOMA [4]. Our work on
archetypes differs from this work in that we focus more on the pattern of computation and on

identifying and exploiting patterns of computation and communication.

Communication libraries. Many researchers have investigated and developed reusable general
libraries of communication routines; MPI [58] is a notable example. Others have developed more
specialized libraries, for example MPI-RGL [8] for regular grids. We differ from this work, again, in

that our focus is on identifying and exploiting patterns.

163

Chapter 10

Conclusions and directions for

future work

10.1 Summary

The specific contribution of the work presented in this thesis is to present a unified theory/practice
framework for our approach to parallel program development, tying together the underlying theory,
the program transformations, and the program-development methodology. The work described in

this thesis falls into two categories, one oriented toward theory and one oriented toward practice.

Theory-oriented work. The theory-oriented work presented in this thesis includes:

e An operational model of programs as state-transition systems that we believe forms a suit-
able framework for reasoning about program correctness and transformations, particularly
transformations between different programming models, as for example between the standard
sequential model and the sequential model extended with the unsynchronized parallel compo-
sition of Chapter 2. The proofs of Section 2.7 demonstrate that our model can be used as the
basis for rigorous and detailed proofs, and while it is beyond the scope of this thesis to include
similarly detailed proofs in Chapter 4 and Chapter 5, we believe that the model as presented

would be a good framework for such proofs.

e A programming model based on identifying groups of program elements whose sequential
composition and parallel composition are semantically equivalent, and a collection of transfor-
mations for converting programs in this model to programs for typical parallel architectures.
This work provides a framework for program development that permits much of the work to

be done with well-understood and familiar sequential tools and techniques.

164

Practice-oriented work. The practical work presented in this thesis includes:

e Experiments in combining the theory part of the thesis with the notions of archetypes and
encapsulation to provide practical assistance to application developers by emphasizing patterns
and reuse over full generality. These experiments produced a small number of prototype
archetype implementations that proved to be useful in application development. It remains to
be seen how broad a range of applications can ultimately be addressed by defining additional

archetypes, but these early results are promising.

e Experiments in applying the stepwise-refinement parts of the thesis to practical problems. In
the experiments, all transformations were performed manually, which is probably too cumber-
some to be an attractive method of parallelizing large programs, but many transformations
appear to offer significant potential for automation, and a partially-automated transformation
process could be of interest to application developers. It is particularly encouraging that the
key transformation from a sequential simulated-parallel program to a real parallel program

worked as advertised and appears to be a good candidate for automation.

10.2 Directions for future work
Many promising directions for further work suggest themselves, among them:

e Giving rigorous and detailed proofs of the theorems and transformations of Chapter 4 and
Chapter 5. Implicit in the working out of these proofs would be an evaluation of the merits of

our overall operational model.

e Applying and extending the model to explicitly address questions of compositionality and
modularity. Both are important considerations in practical programming, so again such an

investigation would provide feedback on the strengths and limitations of our model.

¢ Investigating automated support for the transformations presented in this thesis, perhaps by

way of a cooperative effort with researchers working on parallelizing compilers.

¢ Applying the ideas behind the transformations of Chapter 5 — in which barrier synchronization
is replaced with the seemingly weaker and yet in this context equally effective pairwise syn-
chronization provided by message-passing — to develop similar transformations from barrier

synchronization to weaker synchronization primitives for shared memory (e.g., locks).

e Exploring the range of archetype-guided programming by developing additional archetypes

and archetype-based applications.

165

e Stating and proving additional program transformations, particularly for typical optimizations

such as the reuse of storage for different data distributions.

166

Bibliography

[1]

[7]

8]

[9]

J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener. Fortran 90 Hand-
book: Complete ANSI/ISO Reference. Intertext Publications : McGraw-Hill Book Company,
1992.

G. R. Andrews. Concurrent Programming: Principles and Practice. The Benjamin/Cummings

Publishing Company, Inc., 1991.

ANSI Technical Committee X3H5. X3H5 parallel extensions for Fortran, document number
X3H5/93-SD1-Revision M. (http://www.kai.com/hints/ftnm.ps.Z.uu), April 1994. Ac-
cessed July 1996.

S. Atlas, S. Banerjee, J. C. Cummings, P. J. Hinker, M. Srikant, J. V. W. Reynders, and
M. Tholburn. POOMA: A high performance distributed simulation environment for scien-
tific applications. (http://www.acl.lanl.gov/PoomaFramework/papers/SCPaper-95.html),
1995.

R. J. R. Back. Refinement calculus, part II: Parallel and reactive programs. In Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness, volume 430 of Lecture

Notes in Computer Science, pages 67-93. Springer-Verlag, 1990.

R. J. R. Back and J. von Wright. Refinement calculus, part I: Sequential nondeterministic
programs. In Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness,

volume 430 of Lecture Notes in Computer Science, pages 42-66. Springer-Verlag, 1990.

R. Bagrodia, K. M. Chandy, and M. Dhagat. UC — a set-based language for data-parallel
programming. Journal of Parallel and Distributed Computing, 28(2):186-201, 1995.

C. F. Baillie, O. Broker, O. A. McBryan, and J. P. Wilson. MPI-RGL: a regular grid library
for MPL. (http://www.cs.colorado.edu/~ broker/mpirgl/mpirgl.ps), 1995.

R. A. Ballance, A. J. Giancola, G. F. Luger, and T. J. Ross. A framework-based environment

for object-oriented scientific codes. Scientific Programming, 2(4):111-121, 1993.

167
[10] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, 1993.

[11] J. H. Beggs, R. J. Luebbers, D. Steich, H. S. Langdon, and K. S. Kunz. User’s manual for
three-dimensional FDTD version C code for scattering from frequency-independent dielectric

and magnetic materials. Technical report, The Pennsylvania State University, July 1992.

[12] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. X. Yang. Distributed pC++: Basic
ideas for an object parallel language. Scientific Programming, 2(3):7-22, 1993.

[13] G. H. Botorog and H. Kuchen. Efficient parallel programming with algorithmic skeletons. In
L. Bouge, editor, Proceedings of EuroPar ’96, volume 1123-1124 of Lecture Notes in Computer
Science. Springer-Verlag, 1996.

[14] G. H. Botorog and H. Kuchen. Skil: An imperative language with algorithmic skeletons for
efficient distributed programming. In Proceedings of the Fifth IEEE International Symposium
on High Performance Distributed Computing, 1996.

[15] P. Brinch Hansen. Model programs for computational science: A programming methodology

for multicomputers. Concurrency: Practice and Experience, 5(5):407-423, 1993.

[16] H. Burkhart, R. Frank, and G. Héchler. Structured parallel programming: How informatics

can help overcome the software dilemma. Scientific Programming, 5(1):33-45, 1996.

[17] R. M. Butler and E. L. Lusk. Monitors, messages, and clusters — the p4 parallel programming
system. Parallel Computing, 20(4):547-564, 1994.

[18] C. Canuto. Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics.
Springer-Verlag, 1988.

[19] P. Carlin, K. M. Chandy, and C. Kesselman. The Compositional C++ language definition.
Technical Report CS-TR-92-02, California Institute of Technology, 1992.

[20] K. M. Chandy. Concurrent program archetypes. In Proceedings of the Scalable Parallel Library
Conference, 1994.

[21] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object oriented program-
ming language. Technical Report CS-TR-92-01, California Institute of Technology, 1992.

[22] K. M. Chandy and L. Lamport. Distributed snapshots — determining global states of dis-
tributed systems. ACM Transactions on Computer Systems, 3:63-75, 1985.

168

[23] K. M. Chandy, R. Manohar, B. L. Massingill, and D. I. Meiron. Integrating task and data
parallelism with the group communication archetype. In Proceedings of the 9th International

Parallel Processing Symposium, 1995.
[24] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1989.

[25] A. Church and J. B. Rosser. Some properties of conversion. Transactions of the American

Mathematical Society, 39:472-482, 1936.

[26] M. J. Clement and M. J. Quinn. Overlapping computations, communications and I/O in parallel

sorting. Journal of Parallel and Distributed Computing, 28(2):162-172, August 1995.

[27] M. L. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press, 1989.

[28] K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-Crummey,
L. Torczon, and S. K. Warren. The Parascope parallel programming environment. Proceedings

of the IEEE, 82(2):244-263, 1993.

[29] D. Dabdub and R. Manohar. Performance and portability of an air quality model. Parallel

Computing, 1997. To appear in special issue on regional weather models.

[30] D. Dabdub and J. H. Seinfeld. Air quality modeling on massively parallel computers. Atmo-
spheric Environment, 28(9):1679-1687, 1994.

[31] D. Dabdub and J. H. Seinfeld. Parallel computation in atmospheric chemical modeling. Parallel
Computing, 22:111-130, 1996.

[32] J. Darlington, A. J. Field, P. O. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu, and R. L.
White. Parallel programming using skeleton functions. In A. Bode, editor, Proceedings of

PARLE 1993, volume 694 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[33] G. Davis. Spectral methods for scientific computing. (http://www.etext.caltech.edu/

Implementations/Spectral/spectral.html), 1994.

[34] G. Davis and B. Massingill. The mesh-spectral archetype. Technical Report CS-TR-96-26,
California Institute of Technology, 1997. Also available via { http://www.etext.caltech.edu/

Implementations/).

[35] E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivations of programs.

Communications of the ACM, 18(8):453-457, 1975.

[36] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., 1976.

169

37] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag,
1990.

[38] D. C. Dinucci and R. G. Babb II. Development of portable parallel programs with Large-Grain
Data Flow 2. In G. Goos and J. Hartmanis, editors, CONPAR 90 — VAPP IV, volume 457 of
Lecture Notes in Computer Science, pages 253-264. Springer-Verlag, 1990.

[39] N. Fang. Engineering parallel algorithms. In Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Computing, 1996.

[40] I. T. Foster and K. M. Chandy. FORTRAN M: A language for modular parallel programming.
Journal of Parallel and Distributed Computing, 26(1):24-35, 1995.

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[42] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[43] High Performance Fortran Forum. High Performance Fortran language specification, version

1.0. Scientific Programming, 2(1-2):1-170, 1993.

[44] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,

12(10):576-583, 1969.
[45] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[46] International Standards Organization. ISO/IEC 1539:1991 (E), Fortran 90, 1991.
[47] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. John Wiley & Sons, Inc., 1966.

[48] S. Kumaran and M. J. Quinn. An architecture-adaptable problem solving environment for

scientific computing, 1996. Submitted to Journal of Parallel and Distributed Computing.

[49] K. S. Kunz and R. J. Luebbers. The Finite Difference Time Domain Method for Electromag-
netics. CRC Press, 1993.

[50] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software

Engineering, 2:125-143, 1977.

[51] L. Lamport. A temporal logic of actions. ACM Transactions on Programming Languages and

Systems, 16(3):872-923, 1994.

[62] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, 1987.

170

[63] B. J. MacLennan. Functional Programming: Practice and Theory. Addison-Wesley, 1990.

[64] Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer Science,
83(1):97-130, 1991.

[55] A.J. Martin. An axiomatic definition of synchronization primitives. Acta Informatica, 16:219-

235, 1981.

[56] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI circuits. Dis-

tributed Computing, 1(4):226-234, 1986.

[57] B. Massingill. The mesh archetype. Technical Report CS-TR-96-25, California Institute of

Technology, 1997. Also available via (http://wuw.etext.caltech.edu/Implementations/).

[58] Message Passing Interface Forum. MPI: A message-passing interface standard. International

Journal of Supercomputer Applications and High Performance Computing, 8(3—4), 1994.

[59] J. M. Morris. Piecewise data refinement. In E. W. Dijkstra, editor, Formal Development of
Programs and Proofs. Addison-Wesley Publishing Company, Inc., 1990.

[60] P. Pierce. The NX message-passing interface. Parallel Computing, 20(4):463-480, 1994.

[61] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,

13:45-60, 1981.

[62] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, 1988.

[63] D. I. Pullin. Direct simulation methods for compressible ideal gas flow. Journal of Computa-

tional Physics, 34:231, 1980.

[64] A. Rifkin and B. L. Massingill. Performance analysis for mesh and mesh-spectral archetype
applications. Technical Report CS-TR-96-27, California Institute of Technology, 1997.

[65] R.Samtaney and D. I. Meiron. Hypervelocity Richtmyer-Meshkov instability. Physics of Fluids,
9(6):1783-1803, 1997.

[66] D. C. Schmidt. Using design patterns to develop reusable object-oriented communication soft-

ware. Communications of the ACM, 38(10):65-74, 1995.

[67] M. Shaw. Patterns for software architectures. In J. O. Coplien and D. C. Schmidt, editors,
Pattern Languages of Program Design, pages 453-462. Addison-Wesley, 1995.

[68] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel and Distributed
Computing, 14(4):361-372, April 1992.

171

[69] P. A. G. Sivilotti. A verified integration of imperative parallel programming paradigms in an
object-oriented language. Technical Report CS-TR-93-21, California Institute of Technology,
1993.

[70] P. A. G. Sivilotti. Reliable synchronization primitives for Java threads. Technical Report
CS-TR-96-11, California Institute of Technology, 1996.

[71] J. Thornley. A parallel programming model with sequential semantics. Technical Report CS-
TR-96-12, California Institute of Technology, 1996.

[72] J. Thornley and K. M. Chandy. Barriers: Specification. Unpublished document.

[73] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103-111, 1990.

[74] E. F. Van de Velde. Concurrent Scientific Computing. Springer-Verlag, 1994.

