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Abstract

Multidimensional (MD) multirate systems, which find applications in the coding and compres-
sion of image and video data, and in high definition television (HDTV) systems, have recently
attracted much attention. Central to these systems is the idea of sampling lattices. The basic
building blocks in an MD multirate system are the decimation matrix M, the expansion matrix L,
and MD digital filters. When M and L are diagonal, most of the one-dimensional (1D) multirate
results can be extended automatically, using separable approaches (i.e., separate operations in each
dimension). Separable approaches are commonly used in practice due to their low complexity in
implementation. However, nonseparable operations, with respect to nondiagonal decimation and
expansion matrices, often provide more flexibility and better performance. Several applications,
such as the conversion between progressive and interlaced video signals, actually require the use
of nonseparable operations. For the nonseparable case, extensions of 1D results to the MD case
are nontrivial. In this thesis, we will introduce some developments in these extensions. The three
main results are: the design of nonseparable MD filters and filter banks derived from 1D filters,
the commutativity of MD decimators and expanders and its applications to the efficient polyphase
implementation of MD rational decimation systems, and the vector space framework for unifying
MD filter bank and wavelet theory. In particular, properties of integer matrices like matrix fraction
descriptions, coprimeness, the Bezout identity, etc., of which the polynomial versions are known in

system theory, are used for the first time in the area of multirate signal processing.
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1

Introduction

For the one-dimensional (1D) case, multirate techniques allow the sampling rate in a system
to vary from point to point. The basic building blocks are decimators and expanders (also referred
to as downsamplers and upsamplers, respectively) [Crochiere and Rabiner, 1983], [Vetterli, 1987,
[Vaidyanathan, 1990a]. A typical application of 1D multirate systems is the subband coding of
speech [Crochiere et al., 1976],[Jayant and Noll, 1984] and music [Veldhuis et al., 1989]. For a recent

review of 1D multirate signal processing, see [Vaidyanathan, 1990a].

Recently, these multirate ideas have been extended to two and higher dimensional systems by
a number of authors. Multidimensional (MD) multirate systems find applications in the coding
and compression of image and video data [Vetterli, 1984], [Woods and O’Neil, 1986], [Gharavi
and Tabatabai, 1988], [Smith and Eddins, 1990], [Woods, 1991], [Bamberger and Smith, 1992], in
sampling format conversions between various video standards [Mersereau and Speake, 1983], [Dubois,
1985], high-definition television (HDTV) systems [Vetterli, Kovacevié, and Le Gall, 1990], [Rao and
Yip, 1990], [Kunt, 1992], and so on. Central to these systems is the idea of lattices [Cassels, 1959,
[Newman, 1972] which is closely related to the concepts of MD generalized sampling [Petersen and

Middleton, 1962], decimation, and expansion.

An excellent review of MD multirate systems including key notations and concepts is given in
[Viscito and Allebach, 1991]. Chapter 2 of this thesis also provides a summary of these. The key
building blocks in MD multirate systems are the decimation matrix M and the expansion matrix L.
With D denoting the number of dimensions, these are D x D nonsingular integer matrices. When
these matrices are diagonal, most of the 1D results can be extended automatically by performing
operations in each dimension separately. However, for the nondiagonal case, these extensions are

nontrivial and require more complicated notations and matrix operations. Some of these extensions,
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e.g., polyphase decomposition and maximally decimated perfect reconstruction (PR) systems, have
already been successfully made by some authors [Vetterli, 1984], [Ansari and Lau, 1987], [Ansari and
Lee, 1988], [Viscito and Allebach, 1988], [Liu and Vaidyanathan, 1988], [Karlsson and Vetterli, 1990],
[Vaidyanathan, 1990b], [Viscito and Allebach, 1991]. However, there still exist several 1D results
in multirate processing, for which the MD extensions are even more difficult. These nonseparable

extensions are the major results of this thesis.

NONSEPARABLE VERSUS SEPARABLE OPERATIONS

In practice, separable operations are mostly used because of their low implementation complexity.
However, nonseparable operations with respect to nondiagonal decimation/expansion matrices are
also very important from both theoretical and practical points of view. Nonseparable operations,
which include separable operations as a special case, offer more flexibility and better performance,

and are required in some applications.

As an example, consider the subband coding scheme, where we want to separate a signal into a
number of subbands, with each subband corresponding to signal components in a certain frequency
band. These subband signals are then decimated and quantized. Consider the case where we want to
separate a two-dimensional image into two parts, the ‘low’ frequency band and the ‘high’ frequency
band. Suppose only separable operations (separable filtering) are allowed. We can split the signal
into two bands with respect to either the horizontal frequency wy or the vertical frequency ws, as

shown in Fig. 1.1-1(a) and Fig. 1.1-1(b).

However, if nonseparable operations (nonseparable filters) are used, we can split the image as
in Fig. 1.1-1(c), where the center square represents the low frequency band and the rest represents
the high frequency band. We see that the low frequency band in Fig. 1.1-1(c) is more desirable for
this purpose, while those in Fig. 1.1-1(a) and Fig. 1.1-1(b) are elongated either in wy or w;. This
shows the flexibility offered by nonseparable operations. To get more ‘regular’ subband supports
(i-e., supports which are unchanged when wp and w; are interchanged) when only separable filtering

is allowed, we need to use the four-band splitting shown in Fig. 1.1-1(d).

For some applications, e.g., multiresolution signal decomposition [Mallat, 1989], the frequency
splitting is performed repeatedly on the low frequency band, such that at each step the ‘resolution’ of
the resulting low band signal is decreased by some factor. For example, if we start from Fig. 1.1-1(c)
(nonseparable) and repeatedly split the low band signal using the same splitting, we get the frequency

spitting in Fig. 1.1-2(a).



Figure 1.1-1 Various splitting of 2D signals: (a) and (b) are associated with separable operations,

(c) is nonseparable, and (d) is separable four-band splitting.

On the other hand, if we start from Fig. 1.1-1(a) and (b) (separable), we get the frequency
spitting in Fig. 1.1-3(a). Although both nonseparable and separable approaches provide a resolution
reduction factor of one half at each step, we see that Fig. 1.1-3(a) is less desirable because the
| subband supports are not as regular as those in Fig. 1.1-2(a). Of course, we can start from the
separable four-band splitting in Fig. 1.1-1(d) to get more regular subband supports, but in this case

the resolution reduction factor at each step is one quarter, instead of one half.

Nonseparable operations give better performance, too. Consider the application of subband
coding again. With nonseparable operations, we can split an image in the frequency domain into
nine subband signals (Fig. 1.1-2(a)). Since these subband signals are bandlimited, they can be
decimated (see Section 9 for more details) to keep the total number of samples unchanged. We then
quantize these decimated signals according to their energy. (In practice, perceptual properties of the
human visual system are also taken into account.) For example, since the energy of most real-world

images tends to concentrate in the low frequency region, we usually assign a larger number of bits
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(b)

Figure 1.1-2 Nonseparable subband coding of the ‘Lena’ image: (a) frequency splitting, (b) the

reconstructed image at 0.2021 bit/pixel.

to a lower frequency band. By doing these, we reduce the data rate of images. These signals are

then recombined to reconstruct the original image. Fig. 1.1-2(b) shows the reconstructed image of
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(b)

Figure 1.1-3 Separable subband coding of the ‘Lena’ image: (a) frequency splitting, (b) the

reconstructed image at 0.2021 bit/pixel.

‘Lena’ which has been quantized to 0.2021 bit per pixel. On the other hand, by using only separable
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Figure 1.1-4 Sampling lattices in the time-spatial domain for: (a) progressive signals, and (b)

interlaced signals.

filtering, we can obtain the splitting as in Fig. 1.1-3(a). For this case, the reconstructed image of
‘Lena’ (quantized with the same bit rate, 0.2021 bit/pixel) is shown in Fig. 1.1-3(b). We can see the

better performance obtained by using nonseparable operations in this example.

Remark: The purpose of the above example is only to compare the performance of separable op-
erations and nonseparable operations. By using more complicated coding schemes on the subband
signals, e.g., vector quantization, adaptive bit allocation, etc., coded images with higher quality and
lower bit rate can be obtained [Rao and Yip, 1990], [Woods, 1991}, [Malvar, 1992]. However, those

are not the main points of this example.

For some applications, nonseparable operations are required. The conversion between progres-
sive and interlaced video signals is one example [Dubois, 1985], [Vetterli, Kovatevié, and Le Gall,
1990]. Progressive signals are obtained by sampling video signals on a rectangular lattice in the
time-spatial(vertical) domain, as shown in Fig. 1.1-4(a). On the other hand, interlaced signals are
obtained by sampling on a nonseparable lattice shown in Fig. 1.1-4(b), which is also called the
quincunx lattice. The conversion between these two kinds of signals can be achieved by expansion,
filtering, and decimation. All of these require nonseparable operations. Another example is direc-
tional subband coding, where nondiagonal decimators and nonseparable filters are used to extract

image components in different directions [Bamberger, 1990], [Bamberger and Smith, 1992].



Figure 1.2-1 Typical passband of decimation/interpolation filters.

1.2. SCOPE AND OUTLINE

In Chapter 2, we first introduce the notations used in the thesis and some fundamentals of MD
multirate systems. We then present the three main results of the thesis in the following chapters.

These results are summarized below.

MD Filters and Filter Banks Derived From 1D Filters (Chapter 3)

In MD multirate signal processing, filters with parallelepiped-shaped passband supports are
required to avoid aliasing which may be caused by decimation, and to eliminate image components
due to expansion (see Section 2.2). With M denoting the decimation/expansion matrix, these filters

typically have passband in the region
o=7M"Tx xe[-1,1)°. (1.2.1)

In the MD frequency domain, such region forms a parallelepiped. In the 2D case, this region becomes

a parallelogram defined by
—7 < Myowo + Mypwy <7, - < Mywo + Mywy <, (122)

where M;;’s are the elements of the 2 x 2 matrix M (as in [Ansari and Lau, 1987], [Ansari and Lee,

1988], [Bamberger, 1990], [Bamberger and Smith, 1992]). Fig. 1.2-1 shows this region for the case

M = [i _21} . (1.2.3)

Clearly, when M is not diagonal, these filters are not separable.

Both the design and implementation of nonseparable filters are more complex than those of

separable filters [Dudgeon and Mersereau, 1984]. In fact, the complexity grows ezponentially with



Figure 1.2-2 Interchange of a 1D decimator and a 1D expander.

the number of dimensions D. Some authors have proposed efficient techniques for the design of some
2D special filters, e.g., fan filters, diamond-shaped filters, and directional filters, by starting from
1D prototype filters [Ansari and Lau, 1987], [Ansari, 1987], [Ansari and Lee, 1988], [Renfors, 1989],
[Bamberger, 1990], [Bamberger and Smith, 1992]. In Chapter 2, we will describe a general method
which works for an arbitrary number of dimensions and arbitrary M [Chen and Vaidyanathan,
1991], [Chen and Vaidyanathan, 1993d]. With this method, every filter having a parallelepiped-
shaped passband support can be obtained by first designing an appropriate 1D prototype filter and
then performing a simple transformation. Not only filters, MD filter banks can be designed, too.
Hence, with this method, the design as well as implementation complexity only grows linearly with

the number of dimensions.

Integer Matrices and MD Multirate Systems (Chapter 4)

The greatest common divisor (ged), least common multiple (lem), and coprimeness of integers
are well-known and appear in the contexts of 1D multirate systems very often. Here are some

examples:

1. An M-fold decimator and an L-fold expander can be interchanged (i.e., the system in
Fig. 1.2-2(a) is equivalent to the system in Fig. 1.2-2(b)) if and only if M and L are relatively
prime (coprime) [Vaidyanathan, 1990a].

2. Rational decimation systems, as shown in Fig. 1.2-3, play a very important role in audio systems.
This scheme permits us to alter the sampling rate of a sequence by a rational number M/L.
The filter H(2) is used to suppress image components generated by the L-fold expander and
eliminate aliasing due to the M-fold decimator. Note that the implementation in Fig. 1.2-3 has
the disadvantage that the filter H(z) has to operate at a higher rate, i.e., L times the input rate.
It turns out that we can improve the efficiency by using the technique introduced in [Hsiao,
1987]). We shall refer to this technique as the rational polyphase implementation (RPI). The

RPI technique works if and only if M and L are coprime.
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Figure 1.2-3 1D rational decimation system.

x(h IM —1TM o)

Figure 1.2-4 A 1D perfect reconstruction system.
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Figure 1.2-5 1D delay-chain system.

. It is easily verified that the system in Fig. 1.2-4 is a PR system, i.e., Z(n) = z(n). This system
is fundamental to many 1D maximally decimated PR filter banks [Vaidyanathan, 1990a]. We
can generalize this by replacing every z with 2z and obtain the so-called delay-chain system
in Fig. 1.2-5. This system is a PR system if and only if L and M are coprime [Nguyen and
Vaidyanathan, 1988, Lemma A.2]. The case where L # 1 is required in some applications where
pairs of analysis filters are constrained by symmetry conditions [Nguyen and Vaidyanathan,

1988].
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4. When a periodic signal z(n) with period L is decimated by a factor of M to obtain y(n) =
x(Mn), the period of y(n) is L/ ged(M, L) = lem(M,L)/M. Also, when a cyclo-wide-sense-
stationary (CWSS) random sequence z(n) with period L is decimated by M, the resulting
sequence is still CWSS, and has period L/ ged(M, L) = lem(M, L)/M [Sathe and Vaidyanathan,
1993].

In Chapter 4, we shall extend all these ideas to the MD case. To do so, we need the concepts
of ged, lem, and coprimeness for matrices. For polynomial matrices, the greatest common left/right
divisors (gcld/gerd), right/left coprimeness, matrix fraction descriptions, the Smith-form, the Smith-
McMillan form, and so on, are well-known in the system theory area [Gantmacher, 1977, [Kailath,
1980], [Vidyasagar, 1985]. In fact, these properties can be also applied to the integer matrix case. In
Chapter 4, we will introduce the concepts of least common right multiples (lcrm) and least common
left multiples (lclm), and several properties of them. By using all these tools, we can extend the
above-mentioned four issues to the MD case. The following results, which appeared in [Chen and
Vaidyanathan, 1992a], [Chen and Vaidyanathan, 1992b], [Chen and Vaidyanathan, 1993a], can be

obtained:

1. An M-fold decimator and an L-fold expander are interchangeable if and only if M and L
commute (i.e., ML = LM) and are coprime. In general, we have to distinguish right coprimeness
and left coprimeness for the matrix case. However, we will show that when ML = LM, right
coprimeness and left coprimeness are equivalent. This interchangeability problem was first

addressed in [Kovagevié and Vetterli, 1991b] for upper triangular M and L in the 2D case.

2. An MD decimation system with rational decimation ratio (in this case, a matrix) H = L~'M
finds applications in the conversion of images or video data between different sampling stan-
dards. MD rational decimation systems can be implemented efficiently by using the so-called

MD RPI technique whenever M and L are left coprime (Section 4.3).

3. An MD delay-chain system (which is an extension of Fig. 1.2-5, to be defined later) is a PR
system if LM is an lcrm of of M and L. However, the necessary condition for this is still an
open problem. One potential application of MD delay-chain systems is to design MD filter
banks where the analysis and synthesis filters have a certain symmetry. The research on this is

under progress.

4. When an MD periodic signal z(n) with periodicity matrix L is decimated by a factor of M, the
periodicity matrix of the resulting sequence is M~ lerm(M, L), where lerm(M,L) denotes an

lerm of M and L. A similar result holds for the random signal case.
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The Vector Space Framework and Filter Bank Theory (Chapter 5)

A number of results in filter bank theory can be viewed using vector space notations. This sim-
plifies the proofs of many important results. In Chapter 5, we will introduce the framework of vector
space, and then use this framework to derive some known and some new filter bank results as well.
For example, the relation among the Hermitian image property, orthonormality, and the perfect
reconstruction (PR) property is well-known for the case of one-dimensional (1D) analysis/synthesis
filter banks [Vaidyanathan, 1987b]. We can prove the same result in a more general vector space
setting. We will show that even the most general filter banks, namely, multidimensional nonuniform
filter banks with rational decimation matrices, become a special case of this vector space framework.
Therefore, many results in 1D filter bank theory are hence extended to the multidimensional case.
Some examples are: the equivalence of biorthonormality and the PR property, the interchangeability
of analysis and synthesis filters, the connection between analysis/synthesis filter banks and synthe-
sis/analysis transmultiplexers, etc. We can also obtain the subband convolution scheme by starting
from the generalized Parseval’s relation in vector space notations. Furthermore, several theoret-
ical results of wavelet transform can also be derived using this framework, including the wavelet

convolution theorem.
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2

Fundamentals of Multidimensional
Multirate Systems

An excellent review of multidimensional (MD) multirate systems including key notations and
concepts is given in [Viscito and Allebach, 1991]. Some of the notations we use in this thesis
are slightly modified versions of those in [Viscito and Allebach, 1991], and suit our discussions
better. Other basic concepts of MD multirate signal processing can be found in [Dudgeon and
Mersereau, 1984], [Vetterli, 1984], [Dubois, 1985], [Karlsson and Vetterli, 1990], [Vaidyanathan,
1990b], [Vaidyanathan, 1993a, Chapter 12]. In this chapter, we will present some fundamentals of

MD signal processing which are crucial for our discussions in the following chapters.

NOTATIONS

Through out the thesis, we use lowercase boldfaced letters to denote vectors (mostly column vectors,
unless specified otherwise), and capital boldfaced letters to denote matrices. The symbol I, denotes
the k x k identity matrix (with subscript often omitted). The notations AT, A~1, A=T and A*
denote the transpose, the inverse, and the inverse transpose, and the conjugate of the matrix A,
respectively. The row and column indices typically begin from zero. With D denoting the number
of dimensions, n = [ng n; --- np_1]7 is the ‘time’-domain index of MD discrete signals. For
example, z(n) in the two-dimensional (2D) case represents an image. Note that all n;’s are integers.
The symbol N denotes the set of all D x 1 integer vectors. Therefore, we have n € A/. The real
vector o = [wg wi -+ wp-1 ]T is the frequency-domain variable of MD signals. For example,
X r(w) represents the Fourier transform of z(n) and is defined as

Xp(o)= > z(n)e~i0™™ (2.1.1)
neN
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if the summation converges. By definition, the Fourier transform of an MD signal has periodicity

matrix 271 (see Section 2.3). The inverse Fourier transform is given by

1 jO)Tn
z(n) = @nP /me[—w,n)D Xr(o)e do (2.1.2)

where |[a, b)D denotes the set of D x 1 real vectors x with components z; in the range a < z; < b.

We say z(n) and Xr(w) form a Fourier transform pair, and denote this as
z(n)—Xp(w). (2.1.3)

For the one-dimensional (1D) case, i.e., D = 1, Xp(w) is also written as X (e’“) which shows the

periodicity of 27 explicitly.

The complex vectorz =[z9 21 -+ 2zp_1 ]T is the variable of the z-transform of MD signals.

For example, the z-transform of z(n), where it converges, is given by

X(z)= Z z(n)z ™" (2.1.4)

neN

Note that a vector raised to a vector power, as in z™™ above, gives a scalar defined as
2 250271 -+ 202 (2.1.5)
We say z(n) and X (z) form a z-transform pair, which is denoted as
z(n)— X (z). (2.1.6)

Note also the subscript F is used to distinguish the Fourier transform from the z-transform. It is

clear that Xr(®) can be obtained by evaluating X (z) at z; = €/*i for i = 0,..., D — 1, if it exists.

BASIC BUILDING BLOCKS OF MULTIDIMENSIONAL MULTIRATE SYSTEMS

Decimation

The M-fold decimated version of z(n) is defined as y(n) = z(Mn), where M is a nonsingular

integer matrix called the decimation matrix. In the frequency domain, the relation is

1

0= 700

> Xp(M (0 - 27k)) (2.2.1)
keN (MT)

where N (MT) is the set of all integer vectors of the form MTx, x € [0,1)?. Also, J(M) denotes

the absolute determinant of M, i.e., |det M|. This is equal to the number of elements in A’ (M) and
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the number of elements in /' (MT). The z-domain relation of decimation requires more involved
notations [Viscito and Allebach, 1991]. Fortunately, for the theoretic derivations of MD multirate

results, the frequency-domain relation shown above is usually enough.
Expansion

For a nonsingular integer matrix L, the L-fold expanded version of z(n) is defined as

n) = (L~n) € LAT(L)
y() {g (I)ltherwise. (222)

In the above equation, LAT(L) (the lattice generated by L [Cassels, 1959], [Newman, 1972], [Dubois,
1985]) denotes the set of all vectors of the form Lm, m € A. Clearly, the condition n € LAT(L)
above is equivalent to L™'n € /. The matrix L is called the expansion matrix. The corresponding

frequency-domain relation of expansion is
Yr(w) = Xp(LTw). (2.2.3)
In the z domain, the relation becomes
Y(z) = X (z"). (2.2.4)
The notation of a vector raised to a matrix power, as in zI* above, is a D x 1 vector defined as
2 [zPo zP1 ...gPp-1]T (2.2.5)
where p; is the ith column of P.

Decimation Filters and Interpolation Filters

For the 1D case, the input to a decimator is usually pre-filtered by a so-called ‘decimation filter’
to avoid aliasing. On the other hand, the expander is usually followed by an ‘interpolation filter’
to suppress the image components due to the expander. These are shown in Fig. 2.2-1. For M-
fold decimation/expansion, the decimation/interpolation filter typically has passband in the range

w € [-n/M,n /M) [Vaidyanathan, 1990a).

—» H(z) |—» IM - (a)

—»{TL | HGE) > o

Figure 2.2-1 1D (a) decimation system and (b) interpolation system.
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For MD decimation and expansion also, such filters are necessary, as indicated in Fig. 2.2-2.
Given the decimation/expansion matrix M, these filters typically have parallelepiped-shaped pass-

band support in the region
o=1M"Tx427k, xe[-1,1)?, keN. (2.2.6)

Note that some other choices of passband regions are possible [Bamberger, 1990], [Chen and
Vaidyanathan, 1993c]. We see that the region specified in (2.2.6) is symmetric with respect to
the origin. We can use an abbreviated notation to indicate the above region. Let SPD(V) (Sym-
metric ParallelepipeD of V) denote the set of all real vectors of the form Vx, where x € [-1,1)P.
We can rewrite (2.2.6) as

€ SPD(nMT) 427k, ke WN. (2.2.7)

Recall that Fig. 1.2-1 shows the typical passband SPD(7M~T) for the M given in (1.2.3).

— | H(z) | IM = (2)

—»|TL | H@) >

Figure 2.2-2 MD (a) decimation system and (b) interpolation system.

Remark: The term 27k in either (2.2.6) or (2.2.7) shows that SPD(nM™7) is repeated every
27 in each dimension. We often say that the passband support of the filter is given by SPD(7M~T),

and take the periodicity for granted, i.e., do not show the term 27k explicitly.

BASIC CONCEPTS OF MD MULTIRATE SIGNAL PROCESSING

Division Theorem for Integer Vectors

Every integer vector n can be expressed as n = k + Mny, for some k € A (M), and ng € N.
Moreover, k and ng are unique for a given n. We denote this relation as k = nmod M, or k = ((n))M,

and say k is the “remainder” of the division.

Multidimensional Polyphase Decomposition

The polyphase components of z(n) with respect to a given M are defined as

ec(m) =a(Mn+K),  (Type 1)
(2.3.1)
or 7k(n)=z(Mn ~ k), (Type 2)
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R(z) > TL |-

'

—{TL |» R(z") >

{

—{TL || R, (" 0)[> Re (@) F~{TL |-

M| E(z) | »

'

— E(ZM) | LM |

— I Ml>| Er (®) | »

->EF(MT(D) (M >

Figure 2.3-1 Noble identities.

where k € N(M). So k can take on J(M) different values. These are ordered as ko, ki, . . ., kyavy—-1-
Usually, kg is taken to be the zero vector 0. In the frequency domain, the polyphase decomposition

of Xr(w) can be expressed as

Xp(w) = Z e'_ijkEF,k(MTw), (Type 1)

keN (M)
Cor (2.3.2)
or Xp(w)= Z & ¥ Rp (M7 o). (Type 2)
keN (M)
In the z domain, these become
X(@)= Y, z*E(zM), (Typel)
N
keN V) : (2.3.3)
or X(z)= Z 2% Ry (zM). (Type 2)
keN (M)

Note that z¥ (or &7 “)Tk) is an ‘advance’ operator, which advances an MD signal by a vector amount

k. Similarly, z7¥ (or e_j“’Tk) is a ‘delay’ operator which shifts (delays) an MD signal by k.

Noble Identities

These are rules which permit us to move decimators and expanders across transfer functions.
For example, a filter followed by a L-fold expander is equivalent to the expander followed by the
L-fold expanded version of the same filter. Also, a M-fold decimator followed by a filter is equivalent
to the M-fold expanded version of the same filter followed by the decimator. Fig. 2.3-1 shows these

rules.

The Polyphase Identity

We can easily verify the polyphase identity shown in Fig. 2.3-2, where Ep(z) is the Oth polyphase
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—» M HZ) M > = —» FkE) >

Figure 2.3-2 Polyphase Identity.

component of H(z). In other words, Fo(z) is the z-transform of the M-fold decimated version of

h(n).

Periodicity and Cyclo-Wide-Sense-Stationarity

An MD function f(x) is said to be periodic with periodicity matrix P if f(x +Pk) = f(x),
Vk € N. An MD random signal z(n) is said to be cyclo-wide-sense-stationary with periodicity matrix
L (denoted as (CWSS),) if both E[z(n)] (the statistical mean) and Ry;(n, m) £ Elz(n)z*(n — m)]

(the autocorrelation function) are periodic in n with periodicity matrix L.

Zero-Phase Filters

A filter having purely real frequency response is called a zero-phase filter. The time domain
requirement for zero-phase filters is f(n) = f*(—n) [Dudgeon and Mersereau, 1984, Page 113].
Zero-phase filters introduce no phase distortion, and this is important in many image processing

applications.

Nyquist (Mth Band) Property

A Nyquist filter has impulse response f(n) satisfying f(Mn) = 0, for all n # 0, where M is
some integer matrix. Such filters are also called Mth band filters. When used as interpolation filters,
these filters have the advantage that the values of existing samples can be preserved, i.e., there is

no intersample interference.

MULTIDIMENSIONAL FILTER BANKS

An MD analysis/synthesis filter bank with decimation/expansion matrix M is shown in Fig. 2.4-1(a).
When the number of channels is equal to J(M), this is called a maximally decimated filter bank. In
general, this system is a linear time-varying (LTV) system. We want to choose analysis filters H;(z)

and synthesis filters F;(z) properly such that this system satisfies the following properties:

1. Passband supports of analysis filters partition the whole frequency range [—m,m)P and each

analysis filter has good stopband response (large stopband attenuation).
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L N e T e Vi AT =

H((z) ™| IM [ T™M ™ £z

Log

J(

M)—l(z)_> J/M —> TM > FJ(M)_l(Z)___+

K y(n)

bE(ZM)b IMPFPT™M '»R(ZM)-» z

x (n) g N X, (n) oy e (n)
z ¥ b IM L(ll)» P(z) > TM P zX
: C -Rz)E@)| :
©
Lz-kJ(M)—l» IM - (IT) ~ TM _»zk,(M)_ +
JOM)-1

Figure 2.4-1 MD filter bank.

2. There is no alias distortion (ALD). That is, the system is linear time-invariant (LTI), so Y (z) =

T(z)X (z). We call T'(z) the overall transfer function of this system.

3. There is no amplitude distortion (AMD). That is, given the system is indeed LTI, we want the
overall transfer function 7T'(z) to be allpass, i.e., |Tr(w)| = 1 for all @. When this can not be

satisfied, we want at least the system to have small AMD, i.e., |Tr(w)| =~ 1.

4. There is no phase distortion (PHD). That is, given the system is indeed LTI, we want the overall
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transfer function T'(z) to have zero phase.

When a system satisfies Conditions 2,3 and 4, the transfer function T'(z) must be unity so

y(n) = x(n) and we say this system achieves perfect reconstruction (PR).

Using the polyphase decomposition, we can represent each analysis filter and synthesis filter in

the form
Hz)= Y zME (M) 1=0,...,JM)-1 (2.4.1)
k; N (M)
and
Fz)= > ZNRy(EM)  1=0,...,J(M)-1. (2.4.2)
k;eN(M)

Note that the vectors in N (M) are ordered as ko, ki,...,k JM)—1 and kg is usually chosen to be
the zero vector 0. Then, we can redraw this system as in Fig. 2.4-1(b). The J(M) x J(M) matrices
E(z) and R(z) with elements Ey;(z) and R;;(z) are called the polyphase matrices for the analysis

bank and the synthesis bank, respectively.

MD Noble identities allow us to move the decimators and expanders across E(zM) and R(zM),
respectively, and obtain Fig. 2.4-1(c), where P(z) = R(z)E(z). It can be verified that when P(z) =1,
the filter bank achieves PR. When the decimation/expansion matrix M is diagonal, it has been shown
that the filter bank system is alias-free if and only if the corresponding P(z) is multidimensional
pseudocirculant [Liu and Vaidyanathan, 1988]. For the nondiagonal case, conditions for freedom
from aliasing have been given in [Viscito and Allebach, 1988], [Karlsson and Vetterli, 1990], [Viscito
and Allebach, 1991} in terms of eigenvectors and eigenvalues of P(z). The most general necessary
and sufficient conditions on P(z) such that the system is free from aliasing, and such that the system

achieves PR, can be found in [Chen and Vaidyanathan, 1993b].

SUMMARY OF NOTATIONS AND ABBREVIATIONS

All the notations and abbreviations used in this thesis are summarized here for quick reference:

Notations

D: number of dimensions.
N: set of all D x 1 integer vectors.
[a,b)P: set of D x 1 real vectors x with components z; in the range a < z; < b.

n=[ny N -+ Np-1 ]T: ‘time’-domain index of MD discrete signals. Note that n € A.
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o =[wp w - wD_l]T: frequency-domain variable of the Fourier transform of MD discrete

signals.
z(n)«—Xp(w): Fourier transform pair.
z=[20 21 -+ 2Zp-1 ]T: variable of the z-transform of MD signals.
z(n)«+—X(z): z-transform pair.
2P 2 [zPo zPr ...zPP-1]T \here p; is the i-th column of P.
N(M): set of all integer vectors of the form Mx, x € [0,1)7.
J(M): number of elements in A/ (M), which is equal to | det M| (the absolute determinant of M).

LAT(V) (LATtice of V): set of all vectors of the form Vn, for n € N. This set is called the lattice

generated by the matrix V. In general, V is a D x D nonsingular real matrix.

SPD(V) (Symmetric ParallelepipeD generated by V): set of all real vectors of the form Vx, where
x € [-1,1)P. This set forms a parallelepiped-shaped region, which is symmetric with respect

to the origin, in the D-dimensional space.

FPD(V) (Fundamental ParallelepipeD generated by V): set of all real vectors of the form Vx,
x € [0,1)P.

N(M): set of all integer vectors of the form M x, x € [0,1)P. In general, M is a D x D nonsingular

integer matrix.

J(M): absolute determinant of M, i.e., |det M|. This is also equal to the number of elements in
N(M).

M: a matrix defined as J (M) - M~1. Note that M = +[adjugate of M], so M is also an integer

matrix.

Abbreviation

1D: one-dimensional.

2D: two-dimensional.

BIBO stability: bounded-input-bounded-output stability.
(CWSS),,: cyclo-wide-sense-stationary with periodicity matrix L.
DFT: discrete Fourier transform.

LTT: linear time-invariant.

MD: multidimensional.
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MFD: matrix fraction description.
PR: perfect reconstruction.
QMF banks: quadrature mirror filter banks.

RPI: rational polyphase implementation.
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3

Multidimensional Filters and
Filter Banks Derived from
One-Dimensional Filters

INTRODUCTION

In this chapter, we present a method by which every multidimensional (MD) filter with an arbitrary
parallelepiped-shaped passband support can be designed and implemented efficiently. We show
that all such filters can be designed starting from an appropriate one-dimensional prototype filter
and performing a simple transformation. With D denoting the number of dimensions, we hence
reduce the complexity of design as well as implementation of the MD filter from O(NP) to O(N).
Furthermore, by using the polyphase technique, we can obtain an implementation with complexity
of only 2N in the two-dimensional special case. With our method, the Nyquist constraint and zero-
phase requirement can be satisfied easily. In the IIR case, stability of the designed filters is also easily
achieved. Even though the designed filters are in general non-separable, these filters have separable
polyphase components. One special application of this method is in MD multirate signal processing,
where filters with parallelepiped-shaped passbands are used in decimation, interpolation and filter
banks. Some generalizations and other applications of this approach, including MD uniform DFT
quadrature mirror filter banks which achieve perfect reconstruction, are studied. Several design

examples are also given.

In the field of MD multirate signal processing, MD filters with parallelepiped-shaped passbands
are used commonly, especially as decimation filters and interpolation filters (see Section 2.2). For

various reasons [Dudgeon and Mersereau, 1984], both the design and implementation of such filters
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are more complex than in the one-dimensional (1D) case. In the two-dimensional (2D) case, some
authors have proposed efficient techniques to design diamond filters, fan filters, and directional filters,
by starting from a 1D prototype [Lau and Ansari, 1986], [Ansari and Lau, 1987], [Ansari, 1987],
[Ansari and Lee, 1988], [Bamberger, 1990], [Bamberger and Smith, 1992]. While these methods
are very valuable (both for design and implementation) as shown in these references, they do not
place in evidence a technique for generalization to arbitrary dimensions and arbitrary parallelepiped-
shaped passbands. We will present a method which works for arbitrary dimensions and arbitrary
parallelepiped-shaped passbands.

For example, given the decimation/expansion matrix M, we first design a 1D lowpass prototype

filter p(n) with passband cutoff frequency at 7/|det M, i.e., w/J(M). We then define the impulse

response h(n) of the MD filter as follows:
Step 1. First define the MD separable filter h(*)(n) = p(no)p(n1) - - p(np-1)-
Step 2. Then define k(n) = coh(®)(Mn), where M = J(M) - M~ = t[adjugate of M] and cp is
some scale factor.

We will prove in this chapter that the resulting filter h(n), with frequency response Hp(w), is

a lowpass filter having the passband support in
o=oM"Tx,  withxe[-1,1)P (3.1.1)

as is the case in many of the 2D designs of [Lau and Ansari, 1986], [Ansari and Lau, 1987], [Ansari,
1987], [Ansari and Lee, 1988], [Bamberger, 1990], [Bamberger and Smith, 1992]. Even though h(n)
is in general not separable, its polyphase components with respect to M are indeed separable, as

shown later.

Using the notation of SPD(-), (3.1.1) can be written as @ € SPD(nM~T). Note that this
region is not an arbitrary parallelepiped, but governed by the integer matrix M. To represent an
arbitrary parallelepiped, we need to use 7TH~Tx, where x € [-1,1)? and H is a nonsingular matrix
with rational elements. (The irrational case can be approximated by a rational matrix H.) In
Sections 3.2 and 3.3, we will state in details the general procedure for designing filters with such
arbitrary parallelepiped-shaped passband supports.

The above design rule and its proof are the same for any parallelepiped-shaped passbands, and
for any number of dimensions. In this respect our method differs from, and generalizes, earlier ones.
Note that the 1D prototype filter depends only on J(M). As done in [Ansari and Lau, 1987] and

[Bamberger and Smith, 1992], we also provide bounds on the passband and stopband ripples of
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the resulting MD filter in terms of the ripples of the 1D prototype. We will also exploit the above

relation between 1D and MD filters to obtain efficient polyphase implementations (Section 3.4).

With our method, the Nyquist constraint and zero-phase requirement can be satisfied easily.
Also, the designed filters all have separable polyphase components. In the IIR case, the stability of
the resulting filters is also guaranteed. In addition to filters with parallelepiped-shaped passbands,
many other filters can be designed by minor combinations of these filters (Section 3.5). Because our
method results in a close relation between the polyphase components of the 1D prototype and those
of the resulting MD filter, the design and implementation of MD uniform DFT quadrature mirror
filter (QMF) banks can be simplified (Section 3.6). Many useful MD DFT QMF banks, including
those that achieve perfect reconstruction (PR), are presented, together with several design examples.
We will also make some comments about how to deal with the case when the passband support is

very small (Section 3.7).

THE IMPULSE RESPONSE OF AN IDEAL LOWPASS FILTER

In this section we give the key equation which can be considered to be the theoretical foundation for
the rest of the chapter. Let M be a D x D nonsingular integer matrix. To prevent aliasing due to the
M-fold decimation (or eliminate images in the M-fold expansion), a decimation (or interpolation)

filter Hp(w) is necessary. Typically, this filter has a parallelepiped-shaped passband support in

o=mMTx+21k, xe[-1,1)?, keN. (3.2.1)

Let Hp(w) denote the frequency response of an ideal lowpass decimation/interpolation filter

for the M-fold decimator/expander. In other words,

HF(O)) — {1 ifwe SPD(W'M_T) (322)
0 otherwise.

Let h(n) denote the impulse response of Hr(w). We now obtain an expression for h(n). This
expression will reveal a fundamental relation to 1D lowpass filters, and enable us to design Hp ()

starting from a 1D prototype. Using the inverse Fourier transform, we obtain

h / ELEL
() = (27T)D WESPD(nM-T)
1 Tpg—1
= g™ MR gy o =7M"Tx
IO Juer-1,07 ( ) -
) 3.2
L i m gy (m =M~!n)

2PJ(M) Jxep-rnyo

Jrmiz;
2DJ(M)H/Z,_ e dz;
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where m; are the components of the D x 1 vector

o~

~ Mn
- J(M)

m=M"n (3.2.4)

with M 2 J (M)-M™! = L[adjugate of M]. Evidently, M is also an integer matrix. Note, however,

that m is a real (not an integer) vector. From the above we obtain

h(n) = = (M) H sm(”m’) (3.2.5)

i=0

Relationship to 1D Filters

Consider a 1D ideal filter with frequency response Pr(w) as shown in Fig. 3.2-1. Computing

its inverse Fourier transform, we obtain the impulse response

B sin( —JZ'IC’I))

™m

(3.2.6)

F(w)

Figure 3.2-1 Frequency response of an ideal lowpass filter.

Starting from this prototype filter Pr(w), suppose we define the D-dimensional filter
H (@) = Pe(wo)Pr(ws) ... Pr(wp-1). (3:2.7)

This is a separable lowpass filter, with passband support in SPD (zI/J(M)). This implies that its

impulse response is
W) (n) = P(no)P(nl) .p(np-1)

H Lsin( J’Eﬁ) (3.2.8)

Now consider the quantity A(*) (ﬁn), which is the M-fold decimated version of h(*) (n). Since Mn =
J(M)M™1n = J(M)m, we get

B(® (ﬁn) = A (J(M)m) = li:f sin(mm;) 1 li—_f sin(7m;) 3.2.9)
) = Loatm = Ter U —m - @2
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Comparing (3.2.9) with (3.2.5), we obtain the following very simple relation between h(n) and
h(®)(Mn) :
h(n) = coh(® (Mn), (3.2.10)

where ¢ = [J(M)|P-1 = J (ﬁ) In other words, h(n) is obtained simply by M-fold decimation of

the D-dimensional separable sequence h(®) (n), followed by scaling with cg!

Rational case

We will generalize this result to ideal filters with the passband support in SPD(7H~T), where
H is a D x D nonsingular matrix with rational elements. Because any irrational matrix can be

approximated by rational matrices, this covers any parallelepiped-shaped passband support.

Consider an ideal lowpass filter which has the passband region in SPD(7H™T), i.e.,

0 otherwise.

Similarly as in (3.2.3)—(3.2.5), we can obtain the inverse Fourier transform of Gp(w)

o) = LT o) (3:2.12)
JH) 5 7 o
where q = [go --- gp-1]7 = H™'n. Meanwhile, by using the so-called matriz fraction description

(MFD), any nonsingular rational matrix can be expressed in its left MFD as H = LM, where L
and M are some nonsingular integer matrices [Kailath, 1980], [Vidyasagar, 1985]. See also Section 4.2
for more details on the MFD. Let us consider h(Ln), the L-fold decimated version of h(n) in (3.2.5).

We get

D-1 .
1 sin(mg;) -1 -1
h(Ln) = s where q= M~ Ln=H 'n. 3.2.13
Comparing (3.2.12) and (3.2.13), we obtain the following relation between h(n) and g(n):
g(n) = c1h(Ln), (3.2.14)

where ¢; = J(M)/J(H) = J(L). In other words, g(n) is obtained simply by L-fold decimation of

h(n), followed by scaling with c;.
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3.3. DESIGN PROCEDURE

Motivated by the conclusion in Section 3.2, we can design an MD filter with the passband

support SPD(nH™T) as follows:

Step 1. Find a left MFD of H, say H = L~!M.
Step 2. Design a 1D lowpass prototype filter p(n), which can have either finite impulse response
(FIR) or infinite impulse response (IIR), with passband region [—m/J(M), m/J(M)).

Step 3. Construct the separable MD filter h(*)(n) from p(n) as
h{®)(n) = p(ne)p(n1) -+ p(np-1)- (3.3.1)

Step 4. Define h(n) = coh'®) (Mn), where co = J(M).

Step 5. Define g(n) £ ¢i1h(Ln), where ¢; = J(L).

Note that Step 4 and Step 5 can be combined as one step: g(n) = ch(s)(ﬁLn), where ¢ = ¢pgc; =
J (ﬁL) Also, when H is itself an integer matrix (so L can be chosen as an identity matrix), we can

omit Step 5 and simply use the resulting filter Hp(w) of Step 4.

Remarks on the Choice of M and L

1. Since we decimate h(n) by a factor of L to obtain g(n), there is a ‘design overhead factor’ of J(L).
To reduce such overhead, we need to find a left MFD of H where L has the smallest absolute
determinant. For this purpose, it turns out that we should choose the so-called irreducible left
MFD of H, which is a left MFD where M and L are left coprime [Kailath, 1980], [Vidyasagar,
1985).

2. Instead of choosing an irreducible MFD, we can choose an MFD where M is diagonal. This
is always possible because H~! = ML and we can simply let m;; (the diagonal elements of
M) be the least common multiple of denominators in the ith row of H~1. The advantage of
diagonal M is that the design of h(n) becomes trivial since it can be done separately in each
dimension. However, we pay the expense that the overhead factor J(L) may be higher than the
one in an irreducible MFD. Therefore, whether diagonal M or irreducible MFD should be used

depends on the matrix H.
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Analysis of Ripple Sizes

Because Hl(;.s)(m) is not ideal, decimation operations in Step 4 and Step 5 cause some aliasing,
both in the passband and the stopband. We now proceed to analyze these ripple sizes, and obtain
bounds in the same way as done in [Ansari, 1987] and [Bamberger and Smith, 1992]. Suppose the
prototype filter Pr(w) has passband ripple §; and stopband ripple 6;. Then, it is clear that the

frequency response of H 1(;?) (o) will satisfy

(1-6)° < |HI(,-’.’)((.>)] <(146)P  in the passband,
(3.3.2)
0< |H1(;)(‘°)I < (1+6)P1s, in the stopband.

When 61, 63 < 1, we have
(1x6)P ~ 1+ D6y,
(3.3.3)
and (1+ 61)D"162 = 6o.

Therefore, the passband and stopband ripples of H I(,‘g) (@) are approximately Dé&; and &,, respectively.
Since h(n) = J(M) h(")(ﬁn), we obtain

Hp(w)= Y HP M T(o-2nk)). (3.3.4)
keN (MT)
We can see that Hp(w) is the sum of the ‘stretched’ version H() (M~To) and J(M) — 1 ‘shifted’
versions of it. Therefore, the passband ripple of Hr(w) is at most the sum of one passband ripple
and J (ﬁ) — 1 stopband ripples of Hg)(m), and the stopband ripple of Hp(w) is at most the sum of
J (ﬁ) stopband ripples of Hl(f)(w). Hence, the peak passband and stopband ripples of the resulting
filter Hr(w) should be upper bounded by

$p=((M)-1)84+ D6, and &4 =J(M)6. (3.3.5)

Similarly, we can obtain that the resulting passband and stopband ripple sizes of g(n) are upper
bounded by _

61=(J@L)-1)b6n+6n and by = J(L)byp. (3.3.6)
Note that the resulting ripples generally will be less than these upper bounds. To design Gr(w), we
simply choose §; and 62 small enough so that the resulting Gr(w) satisfies the specifications.

Remark: Similar bounds of ripple sizes for the case of 2D diamond filters and directional filters

can be found in [Ansari, 1987] and [Bamberger and Smith, 1992].

Comparison with previous results. The technique of transforming a 2D filter with separable

rectangular passband into some particular shapes by a change of variables has been mentioned in
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[Lau and Ansari, 1986], [Ansari and Lau, 1987], [Ansari, 1987], [Ansari and Lee, 1988|, [Bamberger,
1990], [Bamberger and Smith, 1992]. However, our method presents the required prototype filter
and the required transform (namely, decimation by ﬁL) for any number of dimensions and any

parallelepiped-shaped passband supports.

Design Example 3.1: We choose

H-= [} _21] . (3.3.7)
The desired passband support is same as in Fig. 1.2-1. Because H is itself an integer matrix, Step 5
can be omitted and Hp(w) will be the desired filter. We use linear programming [Rabiner and
Gold, 1975, Section 3.19] to design the prototype filter Pr(w), a zero-phase Nyquist FIR filter with
length N = 59, passband ripple §; = 0.01994, and stopband ripple 62 = 0.00888 (i.e., stopband
attenuation A; = —41.03dB), shown in Fig. 3.3-1(a). Following the steps described previously,
we obtain Hl(;) (0) and Hp(w), as shown in Fig. 3.3-1(b) and Fig. 3.3-1(c). The resulting Hp(w)
has passband ripple 6; = 0.03931 and stopband ripple §, = 0.01778 (—35.00dB), which are indeed

smaller than the estimated values (61,5, = 0.05765, 62,5 = 0.02664).

Design Example 3.2: Suppose we want to design a filter g(n) which has passband in the shaded

region of Fig. 3.3-2(a). This region can be expressed as SPD(nH~T), where

H= [252 —3%5] _ [_12 ﬂ_l@, (3.3.8)
Lt M

(The computation of irreducible MFDs can be found in [Kailath, 1980], [Vidyasagar, 1985], [Chen
and Vaidyanathan, 1993a).) For this case, the matrix M turns out to be diagonal and we can utilize
the filter h(*)(n) in Design Example 3.1. This filter is decimated by L and scaled by J(L) to obtain
g(n). The resulting frequency response Gg(w), which has passband ripple size §] = 0.02719 and
stopband ripple size 65 = 0.03038 (—30.35dB), is shown in Fig. 3.3-2(b).

Separability of the Polyphase Components

When used in multirate applications, e.g., decimation filters, interpolation filters, and filter
banks, filters are usually implemented in polyphase components [Vaidyanathan, 1990b], [Viscito and
Allebach, 1991]. In these applications, the implementation of a filter is efficient (with complexity
O(N)) as long as its polyphase components are separable, even though the filter itself may be
nonseparable. We now show that the proposed design procedure results in filters with separable
polyphase components. This fact also helps us in designing uniform DFT filter banks, which will be

explained later.
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Figure 3.3-1 Frequency response of filters in Design Example 3.1: (a) Pr(w), (b) Hl(uf) (w), (¢)
Hp(w).
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(@

(d)

Figure 3.3-2 The filter Gr(®w) in Design Example 3.2: (a) desired passband, (b) frequency re-

sponse.

Remark: A method of designing 2D diamond-shaped filters having two separable polyphase
components was proposed in [Ansari and Lau, 1987]. From this point of view, our method is indeed

a generalization of the results therein.

Since the polyphase decomposition is defined only with respect to integer matrices, we only
have to discuss the filter A(n) obtained by using Steps 2, 3, and 4 with respect to the integer matrix
M. We now prove that all these polyphase components are separable. In fact, we can show these

polyphase components can be separated into polyphase components of the 1D filter Pp(w). Consider
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ex(n), the kth polyphase component of of h(n). We have

ex(n) = h(Mn + k)

= coh® (MMn + Mk) (3.3.9)
= coh® (J(M)n + Mk).
Letl=[lp & --- Ip_y]¥ =Mk, then
ex(n) = cop(J(M)no + lo)p(J(M)ny + 1) - - p(J(M)np-1 + lp_1). (3.3.10)

Therefore, ex(n)’s are separable. Since k € N (M), it can be verified that 1 € N(J(M)I), so
0 <!l < JM)—-1. We thus conclude that ex(n)’s can be separated into Type 1 polyphase

components of p(n).

Preservation of the Zero-Phase Property

Our filter design method preserves the zero-phase property, i.e., if the 1D filter has zero phase,
the resulting MD filter Gr(w) also has zero phase. To show this, suppose the 1D prototype p(n)
has zero phase, ie., p(n) = p*(—n). From (3.3.1), we know h(®)(n) = A(9*(—n). Then, g(n) =
ch®) (ﬁLn) = ch(s)*(-—ﬁLn) = ¢g*(—n), so that g(n) also has zero phase.

Preservation of the Stability

If we begin with a stable IIR prototype filter p(n), the resulting g(n) is also guaranteed to
be stable. This is justified as follows. By the definition of bounded-input-bounded-output (BIBO)

stability, p(n) is stable if and only if 3 _ |p(n)| is finite. Since

3 lgm)] = ¢ 3| (MLn)| < ¢ 37| ()|
=c(Xem)”,

Y nlg(n)] is also finite. Therefore, g(n) is also stable.

Preservation of the Nyquist (Mth Band) Property

With our method, the Nyquist property is also preserved. More precisely, let p(n) be Nyquist,
ie., p(J(M)n) =0, for n # 0. From (3.3.1), we therefore have h(*)(J(M)n) = 0, for n # 0. Then,
h(Mn) = coh(s)(ﬁMn) = ¢oh{®)(J(M)n) = 0, for n # 0, so k(n) is also Nyquist (Mth band).

Furthermore, if we generalize the Nyquist property for the rational case to be: f (Hn) = 0 whenever
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Hn is a nonzero integer vector (Hth band property), it can be verified that the resulting g(n) has

Nyquist property as well.

Causality of Designed Filters

Suppose we start from a 1D causal filter p(n). The separable MD filter h(*)(n) obtained in
(3.3.1) is obviously causal (i.e., A{*)(n) is nonzero only when all n;’s are nonnegative). When () (n)
is decimated by ﬁL, the resulting g(n) may or may not be causal, depending on ML. It can be
shown that g(n) is still causal if and only if all the elements in (/1\/\IL)‘1 are nonnegative, which is

equivalent to the condition that all the elements in H be nonnegative.

Even though g(n) may not remain causal for some choices of H, this is not a significant problem
because we do not implement g(n) directly. As shown later in the following section, h(®)(n), which

is causal and stable as long as p(n) is causal stable, is the filter to be implemented.

EFFICIENT IMPLEMENTATION

Because of the separability of HI(,f)(o)), the proposed method is efficient not only in the design, but
also in the implementation. We shall present a polyphase implementation in which the complexity
(number of arithmetic operations per filter output sample) grows linearly with the filter length N,
i.e., O(N), instead of O(ND).

We shall take the 2D case for our example. Suppose p(n) in Step 2 has N coefficients. Therefore,
h(*)(n) has N? coefficients and g(n) has approximately N2/J(ML) coefficients. Hence, to implement
g(n) directly requires approximately N2/J (ﬁL) “arithmetic operations per computed output pixel”
(OPP’s). Instead of direct implementation, we shall derive an efficient implementation as follows:

Using the polyphase identity in Fig. 2.3-2, we can schematically represent Gr(w) in terms of
H 1(:) (w) asin Fig. 3.4-1(a), since g(n) is the MTL-fold decimated version of ch(®) (n). Because Hg) ()
is separable, i.e.,

H® (0) = Pp(wo) - Pr(wy), (3.4.1)
—— ——
Gro(®) Gra(0)
we obtain the implementation in Fig. 3.4-1(b). We see this implementation requires only J (ﬁL) -2N
OPP’s, where the factor J (ﬁL) is due to the ML-fold expander. Hence we have reduced the
complexity from O(N?) to O(N). Note that this holds for the FIR case as well as the ITR case.

Due to the ML-fold expander, the input to Gro(w) has several zero-valued samples. Due to

the ML-fold decimator, a large portion of the output of Gp1(w) is dropped. For the FIR case, we
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Figure 3.4-1 Efficient implementation of an MD filter.

can avoid this inefficiency by using polyphase decompositions. We decompose Gro(w) and G Fi(w)
into polyphase components with respect to ﬁL, S0
LT, ——
Gro(w)= > & ®Rpoy, (ML) o), (Type 2)
k;eN (ﬁL)

and Gri(w)= Y. e MER . (ML)T0).  (Typel)
ijN(lQ[L)

(3.4.2)

Then, we can use Noble identities (Fig. 2.3-1) to move the decimators and expanders, and obtain
the more efficient implementation in Fig. 3.4-1(c), where s = J (ﬁL) Now, consider the transfer
function, D j(), from the output of Rf g x, () to the input of Er1x; (@), where k;, k; € N(ﬁL)

Using the polyphase identity again, we know
Dr;j(w) = ML-fold decimated version of e/®” (ki—k), (3.4.3)

Then, it can be easily shown that

1, k=k;

‘DFriyj(O)) = {0, otherwise. (344)
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Therefore, Fig. 3.4-1(c) is equivalent to Fig. 3.4-1(d), where the number of required OPP’s is reduced
to only 2N.

Remarks:

1. These discussions hold for FIR as well as IIR cases. For the IIR case, although polyphase
technique still works, the implementation we obtain in Fig. 3.4-1(d) may require more OPP’s
than Fig. 3.4-1(b).

2. Recall that in Design Example 3.1, the number of OPP’s required for the efficient implementa-
tion of Fig. 3.4-1(d) is only 2N = 118, while direct implementation would require approximately
N2/J(M) = 59/3 ~ 1160 OPP’s.

3. It is easy to extend the above discussion to the case of more than two dimensions. For the
D-dimensional case, direct implementation of Gp(w) requires N2 /J (ﬁL) OPP’s. Instead, we
can implement it as in Fig. 3.4-1(a). Now, H)(0) = [[25! Gri(w), where Gpi(w) = Pp(w;).
We can apply polyphase technique on Gro(w) and Gr,p—1(®), which then requires only 2N
OPP’s. Since implementing all the other Gr1(w), ..., Gr,p-2(®) still requires (D—2)J (ﬁL) N
OPP’s, the total number of OPP’s required is 2N + (D — 2)J (ﬁL) N. The complexity is still
in O(N).

3.5. APPLICATIONS

Given the integer matrix M, we have shown how to design the decimation filter and interpolation
filter with respect to M. On the other hand, in practical filter design (other than decimation filters
and interpolation filters), we are sometimes given the specifications of the passband (the shape of
the parallelepiped) instead of M. Therefore, we need a systematic way to find the corresponding H,
so that we can design the filter. To do this, we notice that every parallelepiped-shaped passband

can be expressed as

SPD(P) + 27m, meN (3.5.1)

where the columns of P can be called the generating vectors. Fig. 3.5-1 shows the generating vectors,

Po and py, for a 2D parallelepiped. Comparing (3.5.1) with SPD(7H~T), we know that if we let
H=7P T (3.5.2)

and follow the design procedure in Section 3.3, the resulting filter will have the desired passband as

in (3.5.1).
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Figure 3.5-1 The generating vectors of a 2D parallelepiped.

Once we design a filter with some parallelepiped-shaped passband, many other filters can be
designed in a straightforward way. Fig. 3.5-2 shows some 2D examples of these filters. First, if we
choose p(n) in Step 2 to be a bandpass filter, we can get Hr(w) as in Fig. 3.5-2(a). Second, we
know that the modulation in the time domain leads to a shift in the frequency domain, as in the

following relation:

h(n)e® ™ «——  Hp(w-b). (3.5.3)

Therefore, every filter with a parallelepiped-shaped passband which is not centered at the origin can
be obtained simply by modulating a filter with the passband centered at the origin. For example,
filters in Fig. 3.5-2(b), including the fan filter, can be designed using the proposed approach followed
by a proper modulation. Finally, since the sum (or difference) of zero-phase filters is still a zero-
phase filter with the passband being the sum (or difference) of the passbands of these filters, all the

filters in Fig. 3.5-2(c), including hexagonal filters, can be obtained easily.

MULTIDIMENSIONAL UNIFORM DFT QMF BANKS

The proposed design procedure also applies to the design of MD uniform DFT QMF banks. We shall
show that all the properties which can be achieved in 1D uniform DFT QMF banks [Swaminathan

and Vaidyanathan, 1986}, [Vaidyanathan, 1987c], can be extended into MD using this approach.

Let J denote J(M) for simplicity. A J-channel maximally-decimated QMF bank is shown in
Fig. 3.6-1‘(a). In general, this system is a linear time-varying (LTV) system. We want to choose
analysis filters Hp,m,(w)’s and synthesis filters Fr m,(w)’s properly such that this system has the
properties mentioned in Section 2.4. A special QMF bank is the so-called uniform DFT QMF bank,
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n
(b)
©
Figure 3.5-2 Filters which can be obtained by using the proposed method.
where the analysis filters and the synthesis filters are related as
Hp m, (0) = Hpmg (0 — 27M~Tm;),
(3.6.1)

Frm (©) = Fpm, (0 — 27M™Tm,),

with m; € N(MT). Because filters in all other channels are completely determined by the filters in
the Oth channel, Hp m,(®) and Frm,(w) are called the prototype analysis filter and synthesis filter,
respectively. If we let Hp m,(w) have passband support in SPD(mM~7T), then it can be shown that
the passband supports of analysis filters cover the whole frequency range [—7,7)P. It can be verified
that this system can be redrawn as Fig. 3.6-1(b), where the Epx,(w)’s are the Type 1 polyphase

components of the prototype analysis filter Hpm,(w) with respect to M, and the Rr,(w)’s are the
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Figure 3.6-1 MD uniform DFT QMF bank.

Type 2 polyphase components of the prototype synthesis filter Frm,(®). Also, the J x J matrix,
W) is called the generalized DFT matrix [Dudgeon and Mersereau, 1984], [Vaidyanathan, 1990b],

with its (%, 7)th element defined as
(W), ; = e=92mmiM ™k oy e Ar(MT), k; € N(M). (3.6.2)
Using Noble identities to move the decimators and expanders, we get the equivalent system in

Fig. 3.6-1(c). It can be shown that W) is unitary, with [W®]T[W©)]* = JI Therefore,
Fig. 3.6-1(c) can be redrawn as Fig. 3.6-1(d) (with the scale J omitted).
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There are many ways of choosing Ery;(w)’s and Rrx;(®)’s, depending on properties we want

the system to have. For example,

1. We can choose Er;(w)’s and Rrx;(w)’s such that
Rp,kj (O))Ep,kj (0)) = RF,ko (‘-I))EF‘,ko (0)) for ] = 0, ey J 1. (363)

In other words, Rrx,(w)EFx,;(w) is independent with j. Then, we get a system that is free

from aliasing. For this case, the overall transfer function is
Tr(®) = Rri,(MT0)Erx, (MTw). (3.6.4)

This can be seen by using Noble identities to move all Ep,(®)’s and Rrx,(®)’s to the right
across M-fold expanders and realizing that the rest part is an identity system. In fact, (3.6.3)
is necessary and sufficient for the system to be alias-free (see [Chen and Vaidyanathan, 1993b]

for details).

2. If we choose Rpy,;(w) = 1/Epx, (@), we get a PR system. However, this choice may result in

unstable synthesis filters, just as in the 1D case [Vaidyanathan, 1987c].

3. If we choose

Rrig(@)= ] Erx(), (3.6.5)
k; ei/;/}M)

we obtain a system which is free from aliasing and has overall transfer function

Tr(w)= [] Erx,M o). (3.6.6)
k;eN (M)

3a. If analysis filters are all FIR, then synthesis filters will also be FIR, hence there is no
stability problem. However, for the FIR case, if we want a PR system where Tr(w) equals
unity, then all Epy; (®)’s must be pure delays and hence each analysis filter has only J
nonzero coefficients. For nontrivial filters with more then J nonzero coefficients, we can
only make Tr(w) zero-phase (no PHD) and optimize coefficients of Ep,(w)’s (coefficients
of Hp m,(w)) such that |[Tp(w)| =~ 1 (small AMD). The counterpart of this in the 1D case
was presented in [Swaminathan and Vaidyanathan, 1986).

3b. We can choose Ery;(w)’s to be stable IIR allpass functions (|Epy,(w)| = 1 for all w).
Then, all the analysis filters and synthesis filters as well are stable. From (3.6.6), we know
|Tr(w)] = 1 hence AMD is completely eliminated. In this case, Tr(w) is a stable IIR

transfer function so PHD can not be avoided. In applications where phase information is
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important (e.g., in 2D image processing), an allpass filter can be cascaded with this system
to equalize its phase response. The 1D counterpart of this can be found in [Vaidyanathan,

1987c], [Vaidyanathan, 1987a).

4. We can choose EF;(w)’s to be stable IIR allpass functions (same as in Case 3b above) and let
RF,kj ((1)) = E;‘,kj (0)) (367)

Now, in each channel of Fig. 3.6-1(d), we have Rr,(®)Erx;(0) = Efy (0)Epk;(0) =

|EFx,(®)|> = 1. So, Tr(w) = 1 and we get a PR system. Note that (3.6.7) implies

T, (n) = ek, (—n) so 7, (n) is also stable. However, if ex,(n) are chosen to be causal, i;(n)

becomes anticausal. This problem of anticausal synthesis filters can be solved by running the

filters backwards [Ansari and Lau, 1987], [Ramstad, 1988], [Mitra et al., 1992], [Chen and

Vaidyanathan, 1992d].

Although the above theoretical derivation may seem to be easy, direct optimization of filter
coefficients is often unreasonably difficult due to the large number of parameters to be optimized,
especially when D is large. Furthermore, the large number of OPP’s required in direct implementa-
tion is also a problem. Our approach overcomes these two difficulties. We now show that starting
from an appropriate 1D uniform DFT QMF bank, we can derive an MD uniform DFT QMF bank
with Hp m, () baving support SPD(xM™T).

Design Procedure
Step 1. Design the prototype analysis/synthesis filters, Pro(w) and Qro(w), of a 1D J-channel
uniform DFT QMF bank. Let Ppo(w) have passband support in [~#/J,7/J).

Step 2. Construct the separable MD filters Hl(;;g(o (w) and F},fl)(o (w) as
H}%“:Lo(w) = Pro(wo)Pro(w1) - Pro(wp-1),

(3.6.8)
Fé’,’io(w) = Qro(wo)Qro(w1) - QFo(wp-1)-

Step 3. Define hpm,(n) = hl(:)) (Mn) and fum,(n) = fl(cz) (Mn). That is, decimate hl(:) ) (n)
and fl(;) (n) by M. As explained previously, the resulting Hp m,(®) has support in
SPD(xM-T).

After Hpm,(0) and Fpm,(®) are obtained, we may implement the MD QMF bank as in
Fig. 3.6-1(c). It has been shown in Section 3.3 that all the EFx,(®)’s and Rrx;(w)’s are separable,
even though Hp m,(®) and Frm,(®) are not separable. Therefore, this indeed gives a very efficient

implementation.
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Since filters in an MD DFT filter bank are all determined by one prototype filter, it is not
counter-intuitive that we can apply our method in Section 3.3 to the prototype filter of a 1D DFT

filter bank and obtain the MD prototype filter. However, the following claim is non-trivial:

Claim: The Hpm,(®) and Fgm,(®) obtained are the desired prototype filters for a J-channel MD
uniform DFT QMF bank. This filter bank will have all the properties that the original 1D J-channel
uniform DFT QMF bank has. For example, if the 1D DFT filter bank system is PR, the resulting
MD DFT filter bank system is also PR. Similarly, the design method preserves other properties like:
no ALD, no or small AMD, and no PHD.

Justification

Consider the J-channel 1D uniform DFT QMF bank which we start from. Let Bpx{w)’s denote
Type 1 polyphase components of the prototype analysis filter Pro(w), and Srx(w)’s denote Type 2
polyphase components of the prototype synthesis filter QFo(w). Suppose this is a system without
aliasing, i.e.,

Sp,k(w)Bp,k(w) = SF,o(w)BF,o(w) fork=0,...,J -1 (3.6.9)

It has been proved in Section 3.3 that polyphase components of the resulting MD filters are related

with those of 1D filters as:

EF,kj ("‘)) = BF,lo (wO) ct BFJD—1 (wD—l)’ (3'6'10)
and
Rpx; (0) = Spi,(wo) -+ SFip_, (wp-1), (3.6.11)
where [l 4 -+ Ilp-1 ]T =1= ﬁkj. Considering Rrx,(w)EFx;(w), we obtain
D-1 D-1
Ry, (0)Er, (©) = [] Sru(@i)Bruy (i) = [ Sko(w:)Bro(wi). (3.6.12)
i=0 i=0

Since Rpk, (w)EFx, (@) is independent with 7, the resulting MD QMF bank is also free from aliasing

with overall transfer function
Tr(0) = R, (MT0)Epyx, (M7 o). (3.6.13)

Given that both the 1D and MD DFT QMF banks are alias-free, let us take a closer look at
these transfer functions. Define e; to be a D x 1 vector with zero elements except that the ith

element is unity. Then, (3.6.12) can be written as

D-1

Rp;(0)Ery; (0) = [] Sro(e] ©)Bro(el o), (3.6.14)
i=0
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and (3.6.13) becomes
D-1

Tr(w) = [] Sro(efMTw)Bro(ef MT w). (3.6.15)
i=0

Let Vp(w) denote the overall transfer function of the 1D QMF bank. Under the alias-free condition,
we know Vp(w) = Bp,o(Jw)SFp(Jw). Define Tlgf)(o)) as

D-1
T (0) £ [T Velws)- (3.6.16)

=0

Since Jw; = JeT& = eTMTM7w, (3.6.16) can be written as

D-1 D-1
T8 () = [] Sro(Jw)Bro(Jw:) = [] Sro(efMTMT0) Bro(eTMTMT w). (3.6.17)
i=0 =0

Comparing (3.6.15) and (3.6.17), we see that
(s) — AT
T’ (0) = Tpr(M" w), (3.6.18)
ie., TI(;S) () is exactly the M-fold expanded version of T (@). Note that (3.6.18) can be written as
— 1) 7 A-T
Trp(w)=Tp' M o). (3.6.19)

Also note that Tr(w) is the M-fold decimated version of TISf) (®) so that the transfer function of
the designed MD QMF bank can be obtained by M-fold decimating the product of the 1D overall

transfer function Vp(w) in each dimension.
Now, it is easy to show that other properties about AMD, PHD, PR are preserved.
1. Given there is no ALD, we need to discuss properties about AMD.

la. For the FIR case, we can optimize filter coefficients in the 1D filter bank such that |Vg(w)| =~
1 Vw. From (3.6.16) and (3.6.19), we see that |Tr(w)| & 1 Vo, too. That is, AMD remains
small. More specifically, if Vr(w) has ripple size 8, the resulting ripple sizes of both T},f) (w)
and Tr(w) are at most D§.

1b. For the IIR cése, we can start from 1D prototype filters with allpass polyphase components
and make Vp(w) to be allpass (no AMD). From (3.6.16) and (3.6.19), we can see that Tr ()

is still an allpass function. Therefore, there is no AMD in the resulting MD filter bank.

2. Given there is no ALD, suppose the 1D overall transfer function Vr(w) has zero phase, i.e.,
VF(w) is real for all w. From (3.6.16) and (3.6.19), we can conclude that Tr () is real for all &

(zero phase) so there is no PHD.
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3. Finally, suppose the original system satisfies PR so that Vz(w) = 1. From (3.6.16) and (3.6.19),

we can easily conclude that Tr(w) = 1 so PR is preserved.

There are many useful 1D DFT filter banks in literature [Swaminathan and Vaidyanathan,
1986], [Vaidyanathan, 1987c], [Vaidyanathan, 1987a], [Ramstad, 1988]. We can apply our method to

each of these and derive many useful MD filter banks. In the following, we present several examples.

MD Filter Bank Derived from Johnston’s Filters (Two-Channel Case)

Design Ezample 3.3: The most commonly used 1D DFT QMF bank is the two-channel FIR case.
Johnston designed such filter banks for various specifications and the optimized filter coefficients were
tabulated [Johnston, 1980], [Crochiere and Rabiner, 1983]. These systems have no ALD, no PHD,
and small AMD. Fig. 3.6-2(a) shows the frequency response of the prototype analysis filter Pro(w)
(which is named 32D in Johnston’s table). We can apply our method to derive a two-channel MD

DFT QMF bank for any decimation matrix M with J(M) = 2. As an example, we choose

M = [_11 }] (3.6.20)

which defines the so-called quincunx lattice. Applying the design procedure, we obtain the 2D
prototype analysis filter Hp m,(®), as shown in Fig. 3.6-2(b). According to relations in (3.6.1), the
other analysis filter Hp,m, (w) is obtained by shifting Hg m,(®), i.6., Hpm, (wo,w1) = Hpm,(wo —
m,wy — 7). The overall transfer function Tr(w), which is zero-phase and has magnitude close to
unity, is shown in Fig. 3.6-2(c).

Remark: The idea of using Johnston’s results to derive 2D quincunx QMF bank has been proposed
in [Vaidyanathan, 1993a]. Our method generalizes this result and is able to derive any two-channel

DFT QMF bank for arbitrary M (with J(M) = 2) and any number of dimensions.

MD FIR Filter Bank (with More than Two Channels)

Design Example 3.4: This is also an FIR example. Let M be same as in Design Example 3.1,
so there are three channels and the passband supports of these three analysis filters can be chosen
as in Fig. 3.6-3. We use the coefficients obtained in Example 2 of [Swaminathan and Vaidyanathan,
1986] to form Prg(w), the optimal zero-phase prototype analysis filter of a 3-channel 1D uniform
DFT QMF bank. It has length N = 49, passband ripple §; = 0.001406, and stopband ripple
62 = 0.003245 (—49.78dB), as shown in Fig. 3.6-4(a). For this 1D filter bank, the overall transfer
function is close to unity with the ripple size § = 0.004226. Following the steps described earlier,

we obtain Hpm,(w), which is shown in Fig. 3.6-4(b), with passband ripple §; = 0.003398, and
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Figure 3.6-2 Frequency response of filters in Design Example 3.3: (a) Pr,o(w), (b) Hpm, (), ()
Tr(w).
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stopband ripple §; = 0.00570 (—44.88dB). The resulting overall transfer function Tr(w) is also
shown in Fig. 3.6-4(c), which has ripple size §' = 0.00847.

ﬂ' /

o0

Figure 3.6-3 Passband supports of analysis filters in Design Example 3.4.

MD IIR. Allpass-Based Filter Bank

Design Example 3.5: We now present an example with IIR filters. We start from a 1D DFT
QMF bank in which the prototype analysis filter Ppo(w) has allpass polyphase components. For
the 1D two channel case, it has been described how the design of common digital IIR filters can be
modified to design IIR filters with two allpass polyphase components and how this can be used in
two-channel QMF banks [Vaidyanathan, 1987a]. Such a system gives very efficient implementation
of alias-free filter banks with no AMD. For example, by using only one multiplication per input
sample in the analysis filter bank, we can obtained analysis filters with more than 37dB stopband
attenuation, as illustrated later. For the case of more channels, the design of 1D IIR filters with
allpass polyphase components has also been addressed in [Renfors and Saraméki, 1987]. Our method
can be applied to derive MD DFT QMF banks from results in both [Vaidyanathan, 1987a] and
[Renfors and Saramaki, 1987]. Again, let us consider the quincunx case for simplicity. We start from
a 1D fifth order prototype filter Py(2) with two allpass polyphase components. More specifically, let
Py(2) = Ep(2?) + 271 E1(22) where

(s %1 + 271
14+ o127t

g+ 271

m‘:‘f and El (Z) = 0.5

Eo(2) = 0.5 (3.6.21)

If we choose the synthesis filters as in Fig. 3.6-5, the overall transfer function of this 1D QMF bank
is 2E¢(22)E1(2?%). Using the method described in [Vaidyanathan, 1987a], we obtain o = 0.226634
and a; = 0.703653. The frequency response of Pro(w) is shown in Fig. 3.6-8(a). Applying our
method, we can obtain the MD prototype analysis filter Hy,, with allpass and separable polyphase

components (as proved in Section 3.3)

EF,ko (&)) = Ep,o(wo)EF’()(wl) and I!jp’k1 ((D) == EF,l((L)Q)EF’l(LU1). (3622)
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Figure 3.6-4 Frequency response of filters in Design Example 3.4: (a) Pro(w), (b) Hrm,(®), (c)

Tr(w).
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The frequency response of Hr,m,(w) is shown in Fig. 3.6-8(b). Then, we can choose the polyphase
component of synthesis filters as in (3.6.5) and obtain the system in Fig. 3.6-6 which is free from ALD
and AMD. This system has the overall transfer function Tr(w) = 2Epx,(MT0)Ep, (MTw) which
is indeed allpass. The phase response of Tr(w) is shown in Fig. 3.6-8(c), which is not zero-phase and
hence PHD exists. When PHD is not desired, we can cascade the system with an allpass function

to equalize the phase response. The overall group delays 7o(w) and 71 (), which are defined as
a 0 A 8
T0(w) = —=—|phase of Tr(w)] and  71(w) = ———|[phase of Tr(w)), (3.6.23)
3(4)0 8w1

are shown in Fig. 3.6-9(a) and Fig. 3.6-9(b). Note that all 2D filters in this case are separable and
only four multipliers are required in analysis filters. Furthermore, since these multipliers operate at
half of the input rate, we need only two multiplications per input pixel to obtain analysis filters with

more than 35dB stopband attenuation.
'2>E0(a)) , -,pl (CO).>.42T
JO [y vz }>E1 (w) M»Eo () -»4 2 '>ejw
Figure 3.6-5 1D IIR QMF bank with no AMD.

Y M= E (o) KZ: E (@) = | M\—j>
Fo |y M- E, (@) E, (@)} M}, /0

-1 -1

e

Figure 3.6-6 Polyphase implementation of an MD IIR QMF bank.

Remark: Although we use the 2D quincunx case as the example, the proposed method applies to

arbitrary M and arbitrary number of dimensions.

MD IIR Perfect Reconstruction Filter Bank

Design Ezample 3.6: We can choose analysis filters same as in Design Example 3.5, but we
choose synthesis filters according to (3.6.7) instead. Hence, we obtain the system in Fig. 3.6-7 which
achieves PR. For the quincunx case, this idea has been presented in [Ansari and Lau, 1987]. Our
method generalizes this to arbitrary M and arbitrary number of dimensions. Note that synthesis
filters in this case are stable but anticausal. This can be solved by running the filters backwards

[Ramstad, 1988] with properly chosen initial conditions [Mitra et al., 1992, [Chen and Vaidyanathan,
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1992d]. In summary, since our method results in MD filters with separable polyphase components,
all the results in [Ramstad, 1988], [Mitra et al., 1992], and [Chen and Vaidyanathan, 1992d] can be

extended to the MD case automatically.

[P i
o] M|~ E (@) E (©) | A M|, /%0

€ -1 -1

Figure 3.6-7 MD IIR QMF bank with PR property (Design Example 3.6).

3.7. MODIFICATION OF THE DESIGN PROCEDURE

The value of J(M) may be very large in some applications, so the passband of the 1D prototype
Pr(w) becomes very narrow. In this case, the required filter order is very large. To deal with this
problem, one can use interpolated FIR (IFIR) approach [Neuvo, Dong, and Mitra, 1984] to design

Pp(w). The other way is to exploit the common factors (if not unity) in each row of M, as follows:

Step 1. Decompose M into M = MA, where A is a diagonal matrix with diagonal elements

Ai > 0, and \; is the greatest common divisor of the elements in the ith column of M.

Step 2. Design the 1D lowpass filters po(n),...,pp—1(n). Each filter p;(n) should have the

passband region [— J(M’;) v J(M:) 5;)- It is easy to see that all these filters have passband

wider than [—J—(”m, 7{—1'\—,[—)), thus requiring less filter order than in procedures Section 3.3.
Step 3. Construct A(*)(n) as
() (n) = po(no)p1(n1) - - -pp-1(np-1) (3.7.1)

s0,

HI(:) ((n)) = PF’Q(wQ)PF’l(wl) v Pp,p_l(wp..l). (3.7.2)
Step 4. Define h(n) = coh(s)(M n), where M, = J(Mp) M =1 and ¢y = J(Mp)

We have to show that Hr(w) has the desired passband. From (3.7.2), H,(—f)(m) has passband

A lx+ 27K,  xe[-1,1)P, K eN. 3.7.3
T -1,1) (379
Therefore, using (2.2.1) with M replaced by ﬁp, we know that Hr(w) has passband
T -1 D T
M (J(M )A x + 27k’) + 27k x€[-1,1)", K eN, ke N(M])
——MZ A~ x  2aMIK + 27k
T (Mp) (3.7.4)

= 7M;TA ™ x + 20 (MZK + k)

=7MTx + 27m x€[-1,)?, meWN.
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Figure 3.6-9 Group delays of Design Example 3.5: (a) 7o(w), (b) 71 ().

Now, we will show that Nyquist and zero-phase properties are still preserved by the modified
method.

Proof: Suppose that all p;(n)’s are Nyquist, i.e., p;(J(Mp)A\in) = 0 for n # 0. From
(3.7.1), we therefore have h(*)(J(Mp)An) = 0, for n # 0. So, h(Mn) = mh(s)(ﬁpMn) =
coh(’)(J(Mp)M;,‘an) = coh®(J(Mp)An) = 0, for n # 0. Therefore, Hp(w) is also Nyquist
(ML1 th band). Next, suppose that all p;(n)’s have zero phase, ie., p;(n) = pf(~n), Vi. From
(3.7.1), we know h(*)(n) = A(®)*(—n). Then, h(n) = coh(®) (M n) = coh()*(—M, n) = h*(~n), so
that Hp(w) also has zero-phase. AAA
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Moreover, for the IIR case, if all the p;(n)’s are stable, it can be easily shown that the resulting
h(n) is also stable.

Here, we have to point out that this modified method doesn’t apply to every M with large
J(M). For example, the matrix

(3.7.5)

M=[5 )

-1 10
with J(M) = 99, does not have nonunit common factors among each column. Whenever this

happens, we can use IFIR technique instead.

CONCLUSIONS

In MD multirate signal processing, filters with parallelepiped-shaped passbands governed by the
decimation/expansion matrix (an integer matrix) play an important role. In this chapter, we have
presented a method of designing such filters by starting with a proper 1D prototype filter and then
using a simple transformation. These filters, although nonseparable, have separable polyphase com-
ponents. Efficient polyphase implementations of these MD filters with complexity only proportional
to a 1D filter are also presented. Important properties such as the Nyquist constraint, zero-phase
constraint and BIBO stability can be easily achieved by using this method. We have shown several
applications of the presented method, including many useful MD uniform DFT QMF banks and cor-
responding design examples. We have also generalized our method so that filters with an arbitrary

parallelepiped-shaped passband (not necessary governed by an integer matrix) can be designed.
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4

The Role of Integer Matrices in
Multidimensional Multirate Systems

INTRODUCTION

The basic building blocks in a multidimensional (MD) multirate system are the decimation matrix
M and the expansion matrix L. For the D-dimensional case these are D x D nonsingular integer
matrices. When these matrices are diagonal, most of the one-dimensional (1D) results can be
extended automatically (by performing operations in each dimension separately). However, for the
non-diagonal case, these extensions are non-trivial and require more complicated notations and
matrix operations. An example is the development of polyphase representation for rational (rather
than integer) sampling rate alterations. In the 1D case, this development relies on the commutativity
of decimators and expanders, which is possible whenever M and L are relatively prime (coprime).
The conditions for commutativity in the two-dimensional (2D) case have recently been developed
successfully in [Kovagevié and Vetterli, 1991b]. In the MD case, the results are more involved. In
this chapter, we shall address some problems of this nature, including: (i) the commutativity of MD
decimators and expanders, and the development of polyphase representation for rational sampling
rate alterations, (ii) the perfect-reconstruction properties of MD delay-chain systems, and (iii) the
periodicity properties of decimated periodic signals. Some preliminary results have been reported by
the authors in [Chen and Vaidyanathan, 1992a], [Chen and Vaidyanathan, 1992b]. Our discussions
are based on several key properties of integer matrices, including greatest common divisors and least
common multiples, which we first review. These properties are analogous to those of polynomial
matrices, some of which have been used in system theoretic work (e.g., matrix fraction descriptions,

coprime matrices, Smith-form and so on).
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Chapter Outline

Before formulating and solving these problems, in Section 4.2, we introduce some properties of
integer matrices.T These are crucial to our discussions because of the role played by the decimation
and expansion matrices. Some of these properties are analogous to those of polynomial matrices,
which have been well-developed by researchers in system theory, e.g., matrix fraction descriptions,
greatest common right/left divisors (gerd/geld), coprime matrices, Smith-form and so on [Kailath,
1980], [Vidyasagar, 1985]. We also review the concepts of the least common right multiple (Icrm)
and least common left multiple (lclm) of integer matrices [MacDuffee, 1946, p. 35] and develop
further properties of these. We shall also present an approach of finding an lerm/lclm of two integer

matrices, which is very useful in practical applications.

All of these will be applied in deriving many of the new multirate results which are summarized

next.

Polyphase Structures for Rational Sampling Rate Alterations (Section 4.3)

In 1D, multirate techniques permit us to alter the sampling rate of a sequence by a rational
fraction, e.g., to reduce the sampling rate by M/L. Fig. 4.1-1 shows a scheme to achieve this. Note
that the filter H(2) is used to suppress image components generated by the L-fold expander and to
eliminate aliasing owing to the M-fold decimator as well. In MD, also it is often necessary to interface
images (or video data) between systems which use different sampling methods (different sampling
lattices) [Mersereau and Speake, 1983], [Dubois, 1985]. The conversion between the European and
North American television systems, and the conversion between high definition television (HDTV)

signals and conventional television signals [Vetterli, Kovagevié, and Le Gall, 1990] are two examples.

For the 1D case, using the polyphase approach, we can implement Fig. 4.1-1 more efficiently
as in either Fig. 4.1-2(a) or Fig. 4.1-2(b) (for the case M = 3 and L = 2). Then, it seems that
we cannot improve the efficiency anymore because we cannot use Noble identities [Vaidyanathan,
1990a], [Crochiere and Rabiner, 1983] to move the expanders further to the right (or the decimators
further to the left). However, it turns out that we can still do so by using the technique introduced
in [Hsiao, 1987]. We shall refer to this technique as the rational polyphase implementation (RPI).

Fig. 4.1-3 shows the development of the RPI technique by successively redrawing the rational dec-

1 In fact, these properties can be applied to matrices with elements from a so-called “principle ideal
domain” (pid) [MacDuffee, 1946], [Forney, 1970], [Newman, 1972], [Vidyasagar, 1985]. The set of integers

and the set of polynomials with coefficients belonging to a field are two examples of pid’s.



54

—» TL > H(z) = M }|—

Figure 4.1-1 1D rational decimation system.
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Figure 4.1-2 Two types of polyphase implementations of a 1D rational decimation system.

6, so we get

imation circuit. Starting from Fig. 4.1-2(a), we replace 27! by 22273 and 272 by 2%z~
Fig. 4.1-3(a). Note that when M and L are relatively prime (coprime), we are able to express every
integer k as Lk; + Mk, for some integers k; and ko (Euclid’s theorem). With the help of Noble
identities, Fig. 4.1-3(a) can be redrawn as Fig. 4.1-3(b). Next, we can interchange the expanders and
decimators when M and L are coprime [Vaidyanathan, 1990a}, and obtain Fig. 4.1-3(c). Finally we
can perform Type 2 polyphase decomposition on E;(z)’s with respect to L, and get Fig. 4.1-3(d). In

summary, Fig. 4.1-3(d) is equivalent to Fig. 4.1-2(a) but now each arithmetic operation is performed

at its lowest rate. Note that the RPI technique works if and only if M and L are coprime.

New results of Section 4.3. In Section 4.3, we will extend this polyphase technique for MD
systems and show that the necessary and sufficient conditions for its feasibility are: (1) ML = LM
(i.e., M and L commute) and (2) M and L are coprime. The coprimeness of matrices will be
defined later in Section 4.2. Note that, in general, we have to distinguish left coprimeness and right
coprimeness for the matrix case. However, we will show that if ML = LM, left coprimeness and

right coprimeness are equivalent.

We should point out that the conditions for commutativity of an M-fold decimator and an
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Figure 4.1-3 Successive redrawing of polyphase implementations of a 1D rational decimation

system.

L-fold expander has been generalized to the 2D case in [Kovagevié and Vetterli, 1991b], where the
conditions are given for upper triangular M and L. In Section 4.3, we will present conditions which

hold for any number of dimensions without any assumption on M and L.
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Figure 4.1-4 1D delay-chain system.

Generalized Delay-chain Systems (Section 4.4)

A 1D delay-chain system is shown in Fig. 4.1-4. It has been shown that this is a perfect-
reconstruction (PR) system (i.e., Z(n) = z(n)) if and only if L and M are coprime [Nguyen and
Vaidyanathan, 1988, Lemma A.2]. This system is fundamental to many 1D maximally decimated
PR filter banks [Vaidyanathan, 1990a]. The case where L = 1 in Fig. 4.1-4 is most common. The
case where L # 1 is also required in some applications where pairs of analysis filters are constrained
by symmetry conditions [Nguyen and Vaidyanathan, 1988]. In Section 4.4, we will consider the MD

extension of Fig. 4.1-4 and then discuss the conditions for PR.

Periodicity Matrices of Decimated Signals (Section 4.5)

In the 1D case, if a periodic signal z(n) with period L is decimated by a factor of M to obtain
y(n) = z(Mn), then the period of y(n) is easily verified to be L/ged(M, L) = lem(M,L)/M. (If
further information about z(n) is available, then smaller periods can be found.) We shall extend
this result to the MD case, where an MD signal z(n) with periodicity matrix L is decimated by the
matrix M. We will show that the periodicity matrix of y(n) = z(Mn) is M~ lerm(M, L), where
lerm(M,L) denotes an lerm of M and L. We will also extend these results for stochastic signals.
More specifically, assuming that z(n) is cyclo-wide-sense-stationary (CWSS) with periodicity matrix

L, we will derive the periodicity matrix of cyclo-stationarity of z(Mn).

Emerging Results from Other Authors (Section 4.6)

After we submitted [Chen and Vaidyanathan, 1993a], we came to realize via private commu-

nication with a number of authors that several other groups were simultaneously coming up with
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similar and related results, particularly about the commutativity of decimators and expanders. In

Section 4.6, we provide mathematical details on these other contributions.

GCRD, GCLD, LCRM, AND LCLM

In this section, we introduce some properties about integer matrices. As mentioned before, the
counterpart of these properties in polynomial matrix case is well-known and well-developed [Gant-
macher, 1977)], [Kailath, 1980], [Vidyasagar, 1985]. In the appendix of [Vidyasagar, 1985], many of
these properties are also given for matrices with elements in a principle ideal domain (pid), which
is an even more general case. We omit proofs which can be found in these references. We will
review the concepts of the lerm and lelm for the matrix case [MacDuffee, 1946] and derive several
properties, including their relations with gerd/geld. We shall also present a method of finding an
lerm/lclm of two integer matrices. All of these will be applied in deriving many of the new multirate

results in the following sections.

Preliminaries

An integer matrix U is called unimodular if [det U] = *1, i.e., J(U) = 1. Clearly, for unimod-
ular U, U™! = [adjugate of U]/[det U] is also an integer matrix, and is unimodular. If there exists
a unimodular integer matrix V such that A = BV, we say A is a right associate of B, and denote
this as A £ B [MacDuffee, 1946}, [Vidyasagar, 1985]. Clearly, A £ B if and only if B = A. It
can be shown that LAT(A) = LAT(B) if and only if A Eil:} Similarly, A is a left associate of B

(denoted as A L B) if A = UB for some unimodular integer matrix U.

Gcerd and Geld [MacDuffee, 1946], [Kailath, 1980], [Vidyasagar, 1985]

Definitions:
1. The integer matrix R is a right divisor (rd) of M if M = PR for some integer matrix P.

2. The integer matrix R is a common right divisor of M and L (denoted by crd(M,L)) ifM=PR

and L = QR for some integer matrices P and Q.
3. The integer matrix Ry is a greatest common right divisor of M and L (denoted by gerd(M,L))
if
i} Ry is a crd(M,L).
ii) If R is another crd(M,L), Ry = SR for some integer matrix S.

4. Two matrices M and L are right coprime if all their crd’s are unimodular.
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Properties:

1. The gerd is not unique. In fact, all gerd’s of two given integer matrices are left associate of
one another. Hence, we should write “Ro & gerd(M,L)” (instead of “Ro = gerd(M, L)”) to

express “Ry is a gerd of M and L.

2. Given M = PR and L = QR. Then, R is a gerd(M,L) if and only if P and Q are right

coprime.

3. Let Ry be a gerd(M,L). There exist integer matrices A and B such that AM +BL == Ry. This

is the extension of the Euclid’s theorem.

4. Suppose M and L are right coprime. There exist integer matrices A and B such that AM +

BL =1I. This is called the generalized Bezout theorem.
Remarks:

1. The left divisor (Id), common left divisor (cld), greatest common left divisor (gcld) and left

coprimeness are defined similarly.

2. The proof of the existence of gerd/geld and methods for finding gerd/geld can be found in
[MacDuffee, 1946], [Kailath, 1980], [Vidyasagar, 1985].

Smith-form and Smith-McMillan Form [Gantmacher, 1977, [Kailath, 1980}, [Vidyasagar, 1985]

Smith-form: Any nonsingular integer matrix M can always be decomposed as M = UAV
where U and V are unimodular integer matrices and A is a diagonal matrix with nonzero integer

elements on the diagonal.

Remarks: The Smith-form has been used outside the control-theory literature more than once.
For example, the Smith-form for polynomial matrices with coefficients in a finite field has been
mentioned and applied in convolutional coding theory in [Forney, 1970]. A special Smith-form was
used to design MD filter banks in [Viscito and Allebach, 1988]. The Smith-form for integer matrices
has been used in [Dudgeon and Mersereau, 1984, Problem 2.20] and [Guessoum and Mersereau,
1986] for computing the MD discrete Fourier transform, and was used in the MD multirate systems

to exploit the decimation/expansion matrices in [Vaidyanathan, 1991a], [Vaidyanathan, 1991b].

Smith-McMillan form: Any nonsingular matrix H with rational elements can always be
decomposed as H = UAV where U and V are unimodular integer matrices and A is a diagonal

matrix with nonzero rational elements on the diagonal.
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Right/Left Matrix Fraction Description (MFD)

Any nonsingular matrix H with rational elements can be expressed as H = P1Q;?! (right
MFD), or as H = Q3 lp, (left MFD), where P;’s and Q;’s are nonsingular integer matrices. A right
MFD is said to be irreducible if P; and Q; are right coprime. Similarly, a left MFD is said to be
irreducible if Py and Qg are left coprime [Kailath, 1980], [Vidyasagar, 1985).

It can be shown that if P;Q7* and P', Q' 1_1 are both irreducible right MFD’s of H, then there
exist unimodular V such that P} = P,V and Q] = Q1V, i.e., P} and Q] are right associates of Py
and Q; with the same V. Therefore, all the denominator matrices (the Q’s) of the irreducible right
MFD’s have the same absolute determinant d;. Similarly, we can show that all the denominator
matrices of the irreducible left MFD’s have the same absolute determinant dp. These, in turn, are
equal, i.e., d1 = dy, as explained later.

Computation of irreducible MFD’s using the Smith-McMillan form [Vidyasagar,
1985]: For a given rational matrix H, first decompose it into Smith-McMillan form, H=UAV,
where A = diag[Ag, ..., Ap_1]. Then, represent all the rational A; = «;/; in their irreducible forms
(i and §; are coprime integers for all §). Let A, = diag[ao,...,ap-1] and Ag = diag[Bo,..., Bp_1]
so that

_ ~1xr _ -1
H=UA,A;'V =UA; (4.2.1)

AV,
—— ——

Pl P2

Qi—l Q2—1
It can be shown that P; and Q; are right coprime and P; and Q; are left coprime, so P:Q;! and

Q5 'P; are irreducible MFD’s.

Note that (4.2.1) tells us that there exist one irreducible right MFD and one irreducible left MFD
of which the denominator matrices have the same absolute determinant, since J(Q;) = J(Ag) =

J(Qz). Summarizing, we have proved the following:

Fact 1. For all irreducible right and left MFD’s of a nonsingular rational matrix, the denominator

maftrices have the same absolute determinant.

Lerm and Lelm

Definitions:
1. R is a right multiple (rm) of M if R = MP for some integer matrix P, i.e., if M is a left divisor
of R.

2. R is a common right multiple of M and L (denoted as crm(M,L)) if R = MP = LQ for some

integer matrices P and Q.
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3. Ry is a least common right multiple of M and L (denoted as lerm(M,L)) if
i) Ry is a nonsingular crm(M,L).
ii) If R is another nonsingular crm(M,L), then R = RS for some integer matrix S.

Remark on singularity: Singular crm is of less importance because given any nonsingular
crm(MLL), we can always postmultiply it by a singular matrix to get a singular crm(M,L). Also, if
either M or L is singular, all crm(M,L)’s are singular and it is meaningless to discuss the lerm(M,L).
For these various reasons, by definition we restrict the lerm to be nonsingular and to be defined only
for nonsingular M and L. This is slightly different from the definition in [MacDuffee, 1946], but
more proper for our discussions. This is also consistent with the convention for the 1D case, where

we exclude zero as a least common multiple although it is a multiple of any integer.

Note that crm(M,L) and lerm(M,L) are not unique. According to the above definitions, we

can prove the following:

Lemma 4.1.

(a) If A and B are both lerm(M,L), then A B [MacDuffee, 1946].

(b) Let B be an lerm(M,L). Then, A is also an lerm(M,L) if and only if A £ B.
Proofs:

(a) According to the definition of lerm, we have A = BS and B = AT. Then, A = BS = ATS, so
TS = I. This implies both S and T are unimodular, ie., A Eg

(b) The ‘only if” part follows directly from (a). We proceed to prove the “if’ part. Suppose A = BU,
where U is unimodular. Clearly, A is a crm of M and L. Since B is an lerm of M and L, any

crm of M and L, say R, can be written as R = BS. So, we have

_ -1
R=BUU'S (4.2.2)
A s
where S’ is also an integer matrix. This proves that A is an lerm. JAVAVAN

Remarks:

1. It can be easily verified that there exists at least one crm(M,L), which is
R = M(+[adjugate of ML) = L(J(M)I). (4.2.3)

On the other hand, the existence of a nonsingular lerm of any two nonsingular matrices is

guaranteed by a constructive method which will be described later.
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From the above properties, it also can be easily verified that an lerm is a nonsingular crm with
the smallest absolute determinant. And, all the lerm(M,L)’s have the same absolute determi-
nant. In particular, Lemma 4.1 says that the lerm(M,L) is unique up to postmultiplication by a
unimodular matrix. Therefore, for consistency in notation, we should write “Ry £ lerm(M, L)”

(instead of “Rg = lerm(M, L)”) to express “Ry is an lcrm of M and L.

Next, we can relate lerm together with gerd and right coprimeness by the following theorem:

Theorem 4.1. Let R be a nonsingular crm(M,L), i.e., R = MP = LQ. Then, R is an lerm(M,L)

if and only if P and Q are right coprime.

Proof:

1)

2)

If P and Q are not right coprime, then there exists an X which is not unimodular such that

P = P’'X and Q = Q’X. Therefore, we have

R=MP' X =LQ X. (4.2.4)
R
’ R,

Clearly, R = R'X, and R’ is a crm of M and L. Suppose R is an lerm of M and L, then
R’ = RS according to the definition of lerm. Then, R = R’X = RSX, which implies both X
and S must be unimodular and leads to contradiction. Hence we conclude that if P and Q are
not right coprime, R is not an lerm of M and L.

Next, suppose P and Q are right coprime, we have to prove that R is an lerm of M and L.
Let R’ be any other nonsingular crm of M and L, i.e., R" = MP’ = LQ'. Clearly, P’ is
nonsingular. Because P and Q are right coprime, there exist integer matrices A and B such
that AP +BQ = I (generalized Bezout theorem). Replacing Q with Q'P'~'P, we can rewrite

this as

APP'P+BQP P =1L (4.2.5)

Postmultiplying both sides by P~1P’, we get
AP +BQ =P7'P. (4.2.6)
S

So, P/ = PS and hence R’ = RS. From the definition of lerm, R is indeed an lerm(M,L).
JAVAVAN

Remark: The left multiple (Im), common left multiple (clm), and least common left multiple

(lclm) can be defined similarly. All the properties above can also be derived similarly.
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Computation of Lerm/Lelm Using MFD’s

A method of computing an lerm/Iclm of two nonsingular matrices can be found in [MacDuffee,
1946, p. 36]. However, the above-mentioned irreducible MFD’s give us an alternative. This also gives

a constructive way of proving the existence of a nonsingular lcrm/Iclm of two nonsingular matrices.

To compute an lcrm of nonsingular M and L, we let H = ML (which is also nonsingular)
and compute one irreducible right MFD of H as in (4.2.1), so we have M~'L = P;Q;* where P;
and Q, are right coprime. Therefore, MP; = LQ;. Denote this as R. Using Theorem 4.1, we can
conclude that R is an lcrm(M,L). Similarly, if we let H = LM~! and compute one irreducible left
MFD of it using (4.2.1), then R’ = PoM = QL is an lclm(M,L).

POLYPHASE IMPLEMENTATION OF RATIONAL SAMPLING RATE ALTER-
ATION

A 1D sampling rate alteration system with decimation ratio M/L can be implemented efficiently by
using the rational polyphase implementation (RPI) as in Fig. 4.1-3(d). For this technique to work,
M and L should be coprime. In this section, we shall extend this technique to the MD case, which
finds applications in conversions of images or video data between different sampling standards. An
MD decimation system with rational decimation ratio (in this case, a matrix) H = L~'M is shown
in Fig. 4.3-1. As an example, if we choose

2 0 11
L_[O 1] and M_[l _1],

we can convert rectangularly sampled images to hexagonally sampled ones, as shown in [Mersereau
and Speake, 1983, Fig. 6]. As in 1D case, the MD filter H(z) in Fig. 4.3-1 is used to suppress image

components generated by the L-fold expander and eliminate aliasing owing to the M-fold decimator.

x(n) y(n)

TL H(z) | IM

Figure 4.3-1 MD rational decimation system.

We can use the MD polyphase decomposition to implement this system more efficiently as in
either Fig. 4.3-2(a) or Fig. 4.3-2(b). The numbers of branches in Fig. 4.3-2(a) and Fig. 4.3-2(b)

are J(M) and J(L), respectively. For simplicity, figures only show the case where J(M) = 3 and
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TL | z %o IM Eko (z)

2% [ IM[E,® ®

z Xl M P> Ekz(z)

Rjo(z) - T ] o T IMF—
. (b)
le (z) TLHF> Zi

jeN@L)

'

Figure 4.3-2 Two types of polyphase implementations of an MD rational decimation system.

J(L) = 2. We can use the RPI technique to improve the efficiency even further. Fig. 4.3-3 shows
this by successively redrawing the circuit of Fig. 4.3-2(a).

Starting from Fig. 4.3-2(a), suppose it is possible to replace every k; in N'(M) with Mk;; +
Lk, where k;; and k;z are some integer vectors. Hence we get Fig. 4.3-3(a). With the help of
Noble identities, Fig. 4.3-3(a) can be redrawn as Fig. 4.3-3(b). Next, suppose we can interchange
the expanders and decimators to obtain Fig. 4.3-3(c). We can then perform Type 2 polyphase
decomposition on FEy,(z)’s with respect to L, and get Fig. 4.3-3(d). In summary, Fig. 4.3-3(d) is
equivalent to Fig. 4.3-2(a) but each arithmetic operation is now performed at its lowest rate. Note
that the filters Fy;(z) in Fig. 4.3-3(d) are the ML-fold polyphase components (up to a certain delay)
of H(z).

To summarize, we can see that the following two issues should be considered for the above

technique to work:

(1) Every k; in N (M) should be expressible in the form of k; = Mk;; + Lk;,, where k;; and k;2
are some integer vectors.

(2) The decimators and the expanders should be interchangeable.

‘We shall devote the rest of this section to the proof of the following amazingly simple and clear

statement:

Theorem 4.2. The above two issues are satisfied if and only if
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Figure 4.3-3 Successive redrawing of polyphase implementations of an MD rational decimation

system.

1. ML =LM, i.e., M and L commute.

2. M and L are coprime. (As we will show, left coprimeness is equivalent to right coprimeness

when ML = LM.)

We first deal with the interchangeability of decimators and expanders and prove the following
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theorem:
Theorem 4.3. The L-fold expander and the M-fold decimator can be interchanged if and only if
1. ML =LM.
2. ML is an lerm(M,L), i.e., ML £ lerm(M, L). (Given ML = LM, this condition can be shown
to be equivalent to the coprimeness of M and L. See Theorem 4.4.)
Comments:

1. These two conditions can be easily tested. While the test for ‘ML = LM’ is straightforward,
the test for coprimeness (i.e., the computation of a gcrd/geld) is also easy and can be found in

[MacDuffee, 1946], [Kailath, 1980], [Vidyasagar, 1985].
2. In the 1D case, Condition 1 is automatic, and Condition 2 is equivalent to coprimeness.

Proof: Consider y; (n) and y,(n) in Fig. 4.3-4. From the definitions of M-fold decimation and L-fold

expansion, we have

_ fz(ML"'n) ne LAT(L)
vi(n) = { otherwise, (43.1)
and
ya(n) = {w(L !Mn) Mn € LAT(L) (4.3.2)
otherwise.

For y;(n) to be identical to y2(n), we should in particular have z(ML~!n) = z(L~'Mn) for n €

LAT(L). Because z(n) is arbitrary, we should have
ML 'n=L"!Mn Vne LAT(L). (4.3.3)

Since L is not singular, LAT(L) contains D linearly independent vectors. So, the above implies

ML-! =L"M, or, LM = ML.

x(10) —=l | MF——{ TL}> y,(n)

x(m) {1 L= [IM]> , ()

Figure 4.3-4 Interchange of an MD decimator and an MD expander.

In order for y1(n) = y2(n), we also need

n € LAT(L) if and only if Mn € LAT(L). (4.3.4)
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Since Mn is also in LAT(M), we know Mn &€ LAT(L) if and only if Mn € LAT(L) N LAT(M). It
is shown in the Appendix that LAT(L)NLAT (M) = LAT (lerm(M, L)). Let MP be an lerm(M, L).
Then, the right-hand side of (4.3.4) is equivalent to Mn € LAT(MP), which is true if and only if
n € LAT(P). Comparing this with the left-hand side of (4.3.4), we know that for (4.3.4) to be true,
L and P should generate the same lattice, i.e., L Ep Then, ML £ mp and hence ML should be
an lerm(M, L). JAVAVAY

Remark: The interchangeability problem was also addressed in [Kovatevié and Vetterli, 1991b]
for the 2D case for upper triangular M and L. However, the conditions we proved above work for
any M, L and any number of dimensions. In fact, the result in [Kovagevié and Vetterli, 1991b] is a
special case of the results presented here.

It turns out that when ML = LM, the lerm/lclm and gerd/geld (or right/left coprimeness)

have very strong relations, as stated in the following theorem:
Theorem 4.4. When ML = LM, the following four statements are equivalent:
1. ML is an lerm(M, L).
2. M and L are right coprime.
3. M and L are left coprime.
4. ML is an lclm(M, L).
For the 1D case, this theorem simply says “lem(M,L) = ML if and only if M and L are
coprime,” a well-known fact!
Proof: Let R = ML = LM. Using Theorem 4.1, we know that R is an lerm(M, L) if and only if

L and M are right coprime. That is, Statement 1 and Statement 2 imply each other. Similarly, we
can show that Statement 3 and Statement 4 imply each other.

Next, consider Statement 2 and Statement 3. Let H = ML~} = L=!M. If M and L are right
coprime, ML~? is an irreducible right MFD of H. Suppose M and L are not left coprime. Let X
(nonunimodular) be a geld of M and L, i.e., M = XM’, L = XL’ where M’ and L/ are left coprime.
Then, H = L'"'M’ is a irreducible left MFD. We then have J (L) < J(L), which violates Fact 1
(Section 4.2). Hence, we conclude that Statement 2 implies Statement 3. Similarly, we can prove

that Statement 3 implies Statement 2 and this completes the proof. JAVAVAN

Next, we shall consider the feasibility of expressing every k; in A (M) in the form of k; =
Mk;: + Lk;a.

Lemma 4.2. If M and L are left coprime, then any integer vector k can be expressed as k =
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Mk; + Lk, for some k; and ko € N.

Proof: If M and L are left coprime, there exist P and Q such that MP + LQ =1 (generalized

Bezout theorem). Then, for any k € N,

M Pk +L Qk = k. (4.3.5)
kl k2
AAN

Combining Theorems 4.3, 4.4, and Lemma 4.2, we thus complete the proof of Theorem 4.2. We

conclude this section with the following result, which is intuitively appealing:

Lemma 4.3. Suppose ML = LM. Then, any lerm(M, L) and any gerd(M, L) can be related as
lerm(M, L) - U - gerd(M, L) = ML for some unimodular U.

Remark: For the 1D case, this nicely reduces to lem(M, L) ged(M, L) = M L. This lemma also
holds for the lelm and geld case, i.e., gcld(M, L) - U - lelm(M, L) = ML for some unimodular U.

Proof: Let Y = MP = LQ be an lerm(M, L), so P and Q are right coprime (Theorem 4.1). Since
ML = LM is a crm(M,L), by the definition of lerm, ML = LM = MPX = LQX for some
integer matrix X. We then have L = PX and M = QX. Because P and Q are right coprime,
X is a gerd(M,L). Clearly, YX = ML. We know any lerm(M, L) is a right associate of Y and
any gerd(M, L) is a left associate of X. So, we have lerm(M, L) - U - gerd(M, L) = ML for some
unimodular U. AAAN

4.4. MULTIDIMENSIONAL DELAY-CHAIN SYSTEMS

A 1D delay-chain system as shown in Fig. 4.1-4 is a perfect reconstruction (PR) system, i.e., T(n) =
z(n), if and only if M and L are coprime. This is shown in [Nguyen and Vaidyanathan, 1988], and
applications of this PR system in the design of filter bank systems can also be found therein. We
shall now extend this concept to the MD case. One potential application of MD delay-chain systems
is to design MD filter banks where the analysis and synthesis filters have a certain symmetry. The

research about such symmetry is still in progress.

A MD delay-chain system is shown in Fig. 4.4-1. (The case of L = I is most commonly used and
is a trivial PR filter bank.) We can see that this is a very special case of MD maximally decimated
filter bank [Vaidyanathan, 1990b], [Viscito and Allebach, 1991] with J(M) channels, where the

analysis and synthesis filters are only shift-operators (sometimes called ‘delays’) defined as:

Hy(z) =2z"Y and Fi(z)=2"% for ke N(M). (4.4.1)
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As before, we assume M and L are nonsingular to avoid degeneracy. Clearly, Fig. 4.4-1 is an

extension of the 1D delay-chain system.

x(n
x(m) g I s ooy IR Vi, @) (m)
z ™ P IM TV ] 2 s, ()
L» 7 TKon-1| M T™ z K- )
V) n
k, e N(M) k-1

Figure 4.4-1 MD delay-chain system.

Using the definitions of decimation and expansion, we can write the signal vy (n) in Fig. 4.4-1

for every k € N (M) as follows:

z(n) n+ Lk e LAT(M), (4.4.2)

vie(n) = 0 otherwise.

Define £y 2 {n|n + Lk € LAT(M)}. Clearly, Ly is obtained by shifting LAT (M) by —Lk. We can
then redraw Fig. 4.4-1 as in Fig. 4.4-2. From Fig. 4.4-2, we can see that Z(n) = z(n) Vn if and only
if

U Ly=N, and ﬂ Ly = empty set. (4.4.3)
keN (M) keN (M)

It can be verified that the above condition is true if and only if
A
S = {(Lk)m |k e N(M)} = N(M). (4.4.4)

From the definition of the modulo notation for integer vectors, all the elements in S are also in
N(M). Therefore, (4.4.4) is true if and only if all (Lk))m’s (for k € N (M)) are distinct. We now

present the following sufficient condition for PR:
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x(n) AME L, x(n)
v

7;n € Ly

7§v ne EkJ(M)—l 4

Figure 4.4-2 MD delay-chain system redrawn.

Theorem 4.5. If LM £ lerm(L, M), the MD delay-chain is PR.

Proof: Suppose LM i lerm(L, M), but the MD delay-chain is not PR, i.e., there exist two different
ki, ka € N(M) such that (Lki))m = (Lk2)m- So, L(k; — ky) = Mn for some n € N. Let
k = k; — ko. Since LAT(LM) = LAT(lerm(L,M)) = LAT(L) N LAT(M) (from the Appendix),
the above implies Lk = Mn = LMn’ for some n’ € . So, k = Mn'. Because k;,k2 € N (M),
we can let k; = My;, 2 = 1,2, where y; € [0,1)?. So, k = My, wherey = y; —y»2 € (-1,1)P.
Together with k = Mn', we thus conclude that y = n’ = k = 0 (0 stands for the zero vector), so

k; = kg, which leads to contradiction. AAAN

However, LM & lerm(L, M) is not a necessary condition. An example is:

M=E ‘21} and L=[(1) g] (4.4.5)

It is easily checked that the above choice satisfies { (Lk))m |k € N (M)} = N(M) (so the system is
PR), but

LM = [; “41} (4.4.6)

is not even a rm of M, since M~'LM is not an integer matrix. Furthermore, we can get PR even

with some singular L’s. For example, when

M::[l _21] and L=[O 0], (4.4.7)

o= {2 (1) -om

However, if we assume ML = LM, we can show the following:

we still have

Theorem 4.6. If ML = LM, then the condition LM £ lerm(L, M) becomes necessary and

sufficient for Fig. 4.4-1 to be a PR system.
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Proof: Clearly, the sufficiency follows from Theorem 4.5. If LM is not an lerm(L, M) (hence L
and M are not right coprime by Theorem 4.4), we will show that the delay-chain system is not PR.
Suppose MP = LQ is a lerm(L,M). Using Lemma 4.3, we know there exists a nonunimodular
gerd(L, M), say X, such that MPX = LQX = ML = LM. Since X is not unimodular, there exist
a nonzero k € N(X). Let k' = Qk, which is also nonzero. Clearly, k' € M(QX) = N(M). Now,
we have a nonzero k' € N (M) such that (Lk')m = (LQk)m = (MPk))p = 0. We conclude that
the elements in S are not distinct because ((L0))ng is also zero. Hence, the delay-chain is not a PR

system. AAA

The condition ML = LM is obviously not a necessary assumption in applications. The problem
of finding the necessary and sufficient conditions for PR delay-chain systems without assuming

ML = LM is still open.

PERIODICITY MATRICES OF DECIMATED SIGNALS

It is well-known that in 1D, a signal with period P is also periodic with period PS where S is any
nonzero integer. In MD, a similar fact is true: Let z(n) have periodicity matrix P. If Q = PS, i.e.,
Q is arm of P, Q is also a periodicity matrix of z(n) [Dudgeon and Mersereau, 1984, p. 12]. This
is easily verified using the definition of periodicity matrices. Since the periodicity matrix of an MD
signal is not unique, we are usually interested in those with the smallest absolute determinant. (We
exclude the case of singular periodicity matrices.)

We shall consider the following question: when an MD signal z(n) with periodicity matrix L
is decimated by M, is the output y(n) = z(Mn) periodic? If yes, what is the periodicity matrix?
In other words, given z(n +Lk) = z(n), Vk € N, we want to find P such that y(n + Pk) = y(n),
Vk € N. Since y(n + Pk) = z(Mn + MPk), we can see that y(n + Pk) = y(n) if MPk = Lq for

some q € N. Therefore, P is a periodicity matrix of y(n) if

Vk € N, 3q € N, such that MPk = Lq. (4.5.1)

Let k = ey, ...,ep_; successively, where e;’s are columns of the identity matrix I, and collect

all the corresponding qq, ...,qp-1 to form the matrix Q. We see that (4.5.1) is equivalent to
MP =LQ for some integer matrix Q. (4.5.2)

This equation clearly says that MP = LQ is a crm(M,L). Thus, P is a periodicity matrix of y(n)

if P = M~lcrm(M,L). Clearly, P is not unique. Moreover, using the notation of lerm, we can
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conclude that the nonsingular P which satisfies (4.5.2) with the smallest absolute determinant is
P = M™llerm(M, L). Note that (4.5.2) is a sufficient condition for P to be a periodicity matrix of
y(n). If further knowledge about z(n) is available, a periodicity matrix with even smaller absolute

determinant can be found.

Case of Wide-Sense-Stationary Input

The result for the statistical case is similar. We shall first define wide-sense-stationary (WSS)

and cyclo-wide-sense-stationary (CWSS) for the MD statistical process (random signal) as follows:

Definition: Let Ryz(n,m) = E[z(n)z*(n — m)] denote the autocorrelation function of an MD pro-

cess. The process is said to be WSS if
1. E[z(n)] is a constant.
2. Ryz(n,m) is only a function of m.

Definition: The process z(n) is said to be CWSS with periodicity matrix L (denoted as (CWSS);,)
if
1. E[z(n)] = E[z(n + Lk)], Vk € N, i.e., E[z(n)] is periodic with periodicity matrix L.

2. Rzz(n,m) = R;;(n+ Lk, m), Vk,m € N, ie., R;;(n,m) is periodic with respect to n with

periodicity matrix L.

It is clear from above definitions that if 2(n) is (CWSS);, with unimodular L, z(n) is in fact
wide-sense-stationary (WSS). Now, given that z(n) is (CWSS),, let y(n) = z(Mn). What can
we say about the cyclo-stationarity of y(n)? We know E[y(n)] = E[z(Mn)] and Ry,(n,m) =
Ely(n)y*(n — m)] = E[z(Mn)z*(Mn ~ Mm)] = R,,(Mn,Mm). That is, E[y(n)] can be obtained
by M-fold decimating E[x(n)], and Ry, (n,m) can be obtained by M-fold decimating R,,(n, m)
with respect to both n and m. Using the result we obtained for the deterministic case, we can
conclude that Efy(n)] has periodicity matrix P = M~!lerm(M, L), and R, (n, m) also has the same
periodicity matrix with respect to n. (Note that the decimation with respect to the second argument
m is not significant here.) Therefore, by the definition of CWSS, we know y(n) is (CWSS)p, with
P = M~lerm(M, L).

The above results are summarized in Fig. 4.5-1. Note that in 1D, these simply reduce to

P =lecm(M,L)/M = L/ ged(M, L) [Sathe and Vaidyanathan, 1993].
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x(mn): periodic with L UM} y(n): periodic with P = M lcrm(M, L)

x(m): (CWSS);, —={lM}> y(m): (CWSS)p, P=M"lcrm(M,L)

Figure 4.5-1 Decimation of MD signals.

Comments on Fundamental Periodicity Matrices

As mentioned earlier, the periodicity matrix of an MD signal is not unique and we usually
are interested in those with the smallest absolute determinant. For this reason, one defines the

fundamental periodicity matrix as follows:
Definition: Py is a fundamental periodicity matrix of z(n) if
i) Py is a periodicity matrix of z(n).
ii) Any other periodicity matrix of z(n), say P, can be written as P = PS for some integer matrix
S. That is, P is a left divisor of all the periodicity matrices of z(n).

It is clear from the above definition that a fundamental periodicity matrix of an MD signal
is a periodicity matrix with the smallest absolute determinant (with singular periodicity matrices
excluded), and is unique up to postmultiplication by a unimodular matrix. The existence of a

fundamental periodicity matrix is assured by the following lemma.:
Lemma 4.4. If P and P’ are both periodicity matrices of z(n), then gcld(P, P’) is also a periodicity
matrix.

Proof: Let R denote a gcld(P,P’). There exist integer matrices A and B such that PA+P'B =R

(extension of the Euclid’s theorem). We then have

— ! —
z(n+Rk)=z(n+P Ak +P' Bk)=z(n) VkeWN. (4.5.3)
kl kl/
So, R is also a periodicity matrix of z(n). JAVAVAY

From the above Lemma, we can conclude that, for a given MD signal, a gcld of all the peri-
odicity matrices is indeed a fundamental periodicity matrix. Since a gcld exists, the existence of a

fundamental periodicity matrix is also guaranteed.
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4.6. EMERGING RESULTS FROM OTHER AUTHORS

After we had submitted [Chen and Vaidyanathan, 1993a] for review in August 1991, we came to
realize that the commutativity of MD decimators and expanders was also being considered by several
other research groups. This commutativity problem has simultaneously been solved by different
groups to different degree.

Evans, McClellan, and Bamberger found the necessary and sufficient conditions of the commu-
tativity to be: (i) ML = LM and (ii) lermML = MLV where V is a unimodular matrix [Evans,
McClellan, and Bamberger, 1992]. Also, through electronic mail correspondences, we realized that
Jon A. Sjogren (AFOSR) has also found similar conditions: (i) ML = LM and (ii) the absolute de-
terminant of the generating matrix of the intersection lattice LAT(M)N LAT (L) equals J(M)J(L).

— TL—{M|> @

_>¢M/_> TL' L= (b)

Figure 4.6-1 Relaxed commutativity.

A similar, but more relaxed, commutativity has also been considered. This is shown in Fig. 4.6-1.
Gopinath and Burrus found that when M and L are left coprime, there exist M’ and L', which are
right coprime, such that the system in Fig. 4.6-1(a) is equivalent to the one in Fig. 4.6-1(b) [Gopinath
and Burrus, 1992). Also, Kalker found that if M and L are such that the absolute determinant of
the generating matrix of the intersection lattice LAT(M) N LAT(L) equals J(M)J(L), then there
exist M’ and L/ such that Fig. 4.6-1(a) and Fig. 4.6-1(b) are equivalent [Kalker, 1992]. Inspired by

this relaxed commutativity, we came up with the following lemma related to MFD’s:

Lemma 4.5. Given matrices M and L, we can always find M’ and L’ such that Fig. 4.6-1(a) and
Fig. 4.6-1(b) are equivalent by computing an irreducible right MFD of L='M, i.e., LM = M'L’-!
and M’ and L’ are right coprime. Conversely, given matrices M’ and L’ which are right coprime,
we can always find M and L such that Fig. 4.6-1(a) and Fig. 4.6-1(b) are equivalent by computing
a left MFD of M'L/~1, ie., M'L'~! = L-1M.

Proof: By modifying the proof of Theorem 4.3, we can obtain the conditions for Fig. 4.6-1(a) and
Fig. 4.6-1(b) to be equivalent: (i) ML’ = LM’ and (ii) ML/ (or LM’) is an lerm(M,L). Combined
with Theorem 4.1, these conditions are equivalent to: (i) ML’ = LM’ and (ii) M’ and L’ are right

coprime. Then, the above lemma follows. JAVAVAN
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Remark: It turns out that we can use this relaxed commutativity in the RPI technique. Then,

whenever M and L are left coprime, the RPI technique works.
It can be verified that all the above mentioned results are consistent with our results. Compar-

ison of all these results leads to the conclusion that our conditions for commutativity (ML = LM

and M and L are coprime) are very explicit and easy to test.

CONCLUDING REMARKS

In this chapter, we have formulated and solved various theoretical issues in multidimensional (MD)
multirate signal processing, including: the MD polyphase implementation technique for rational
sampling rate alterations, the perfect reconstruction properties for the MD delay-chain systems,
and the periodicity matrices of decimated MD signals (both deterministic and statistical). We have
shown that all these can be solved with the help of the concepts of gerd, geld, lerm and lclm and
other related properties for integer matrices. Although we are only interested in integer matrices, all
the properties used here also apply to a more general kind of matrices, viz., matrices with elements

in a principle ideal domain.

APPENDIX

In this appendix, we will prove that LAT(L) N LAT(M) = LAT (lerm(M, L)). A similar statement
can be found in [MacDuffee, 1946, p. 38, Theorem 24.2] (although the lcm was mistaken to be ged,
which might be due to a typographical error in [MacDuffee, 1946]). Since the proof of this statement
was omitted in [MacDuffee, 1946], we will now provide a formal proof.

The fact that the intersection of two lattices is also a lattice (which was called the greatest
common submodul in [MacDuffee, 1946] and the least common sublattice in [Dubois, 1985)) is itself
a non-trivial issue. To show this, we need the following theorem [Cassels, 1959], [Newman, 1972]:
Theorem 4.A1. A set V of vectors in the D-dimensional space is a lattice if and only if it satisfies

all the following three conditions:
l. facVandbeV,thenatbe V.
2. V contains D linearly independent vectors.

3. There exists a positive number 7 such that the zero vector is the only vector in V with norm

less than 7.

We use this theorem to show that ¥V = LAT(L) N LAT(M) is indeed a lattice. Clearly, V

satisfies Condition 1. To show that it satisfies Condition 2, we consider any nonsingular crm of M
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and L (for example, J(M)L), say K. It is easily verified that all the column vectors in K are in V
and independent. It is also clear that V satisfies Condition 3 for any 0 < < 1, since all vectors in
V have integer elements.

We will also need the following lemma (a similar statement can be found in [MacDuffee, 1946,

p- 38, Theorem 24.1}):

Lemma 4.A1. LAT(X) C LAT(Y), i.e., LAT(X) is a sublattice of LAT(Y) if and only if X = YP
for some integer matrix P, i.e., X isarm of Y.

Proof:

(1) If LAT(X) ¢ LAT(Y), we have
Vk e N, 3p € N, such that Xk = Yp. (4.8.1)

Let k = ep,...,ep_1 (e;’s same as in Section 4.5) and collect all the corresponding po, .. ., pp—-1

to form the matrix P, we get X = YP.

(2) Suppose X = YP. Then, x € LAT(X) = x = Xn for some integer n = x = YPn. Since Pn

is also an integer vector, x € LAT(Y). Hence, we proved LAT(X) C LAT(Y). JAVAVA

We proceed to prove that LAT(L) N LAT(M) = LAT (lerm(M, L)). Let LAT(L) N LAT(M) =
LAT(X). Because LAT(X) ¢ LAT(M), X = MP for some integer matrix P. Similarly, X = LQ
for some integer matrix Q. So, X is a crm(M,L) and hence a rm of lerm(M, L). Using Lemma 4.A1,
we can conclude that LAT(X) € LAT(lerm(M,L)). On the other hand, let MP = LQ be an
crm(M,L). Using Lemma 4.A1, we know LAT(MP) C LAT(M) and LAT(LQ) C LAT(L). So, we
have LAT (crm(M, L)) ¢ LAT(M)NLAT(L). Hence, in particular, LAT (lerm(M, L)) ¢ LAT(M)N
LAT(L) = LAT(X). Therefore, LAT(lorm(M, L)) = LAT(X) = LAT(L) N LAT(M).
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5

Vector Space Framework for
Unification of One-Dimensional and
Multidimensional Filter Bank Theory

INTRODUCTION

Recently, maximally decimated analysis/synthesis filter banks have attracted much attention in the
area of signal processing. Analysis/synthesis filter banks find applications in subband coding, data
compression, transmultiplexing, data encryption, etc. A number of results in filter bank theory can
be viewed using vector space notations. This simplifies the proofs of many important results. In
this chapter, we will first introduce the framework of vector space, and then use this framework to
derive some known and some new filter bank results as well. For example, the relation among the
Hermitian image property, orthonormality, and the perfect reconstruction (PR) property is well-
known for the case of one-dimensional (1D) analysis/synthesis filter banks [Vaidyanathan, 1987b].
We can prove the same result in a more general vector space setting. We will show that even the
most general filter banks, namely, multidimensional nonuniform filter banks with rational decimation
matrices, become a special case of this vector space framework. Therefore, many results in 1D filter
bank theory are hence extended to the multidimensional case, with some algebraic manipulations of
integer matrices. Some examples are: the equivalence of biorthonormality and the PR property, the
interchangeability of analysis and synthesis filters, the connection between analysis/synthesis filter
banks and synthesis/analysis transmultiplexers, etc. We also obtain the subband convolution scheme
by starting from the generalized Parseval’s relation in vector space notations. Furthermore, several

theoretical results of wavelet transform can also be derived using this framework. In particular, we
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will derive the so-called wavelet convolution theorem.

For example, Fig. 5.1-1 shows the simplest maximally decimated filter bank, a one-dimensional
(1D) uniformly decimated filter bank. The input signal z(n) is split into M subbands by analysis
filters Hy(z) and then decimated by M (so that the total number of samples is unchanged) to
produce the subband signals zx(n). These subband signals are then processed, e.g., quantized,
coded, etc., depending on applications. At the synthesis end, these signals are interpolated by M-
fold expanders and synthesis filters Fj(2) and then summed up to give the reconstructed signal
Z(n). A common requirement in most applications is that, Z(n) should be as ‘close’ to z(n) as
possible. More specifically, without the intermediate processing on subband signals z(n), we want
Z(n) = z(n). If this is true, we say that this filter bank achieves the perfect reconstruction (PR)
property.

A

X(n)

x(n) xo(n)

Hy(z) P M ——— TM P Fy(2)

Hyz) P M |40 s T Fy(2)

L4 ® L 4

I-->HM—1(Z)—> M EIRICN T™ FM—1(Z)J

Figure 5.1-1 1D uniformly decimated filter bank.

The theory and design of 1D M-channel uniform filter banks have been successfully addressed
in [Vetterli, 1986a], [Smith and Barnwell, 1987], and [Vaidyanathan, 1987b]. The extension to
nonuniformly decimated filter banks, in which the decimation ratios in each channel are different,
has been addressed in [Hoang and Vaidyanathan, 1989], [Nayebi, Barnwell, and Smith, 1991], and
[Kovagevi¢ and Vetterli, 1991a]. The extension to the multidimensional (MD) nonuniform case was
discussed in [Gopinath and Burrus, 1992]. Fig. 5.1-2 shows the most general analysis/synthesis
filter bank, namely, an MD nonuniform filter bank with rational decimation ratios (in this case,
decimation matrices). While P and Qy are all nonsingular matrices with integer elements, the
equivalent decimation ratio for the kth subband signal is P;le, which is a matrix with rational
elements. Therefore, this filter bank is said to be an MD nonuniform rational filter bank. We will
assume that Py and Qi are left coprime [MacDuffee, 1946], [Kailath, 1980], [Vidyasagar, 1985]
for all k. This is not a significant constraint, because any common left factor of Py and Qj can
be canceled without affecting the decimation ratio in that channel. This filter bank is said to

be maximally decimated if >, |detPx|/|det Qx| = 1. In this case, the sum of sampling rates of
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subband signals zx(n) is equal to the rate of the input signal z({n).

W T e e | %0 o "0, - R | 12, #(n)

TRy | By L0 |0, I, > R [ e

L-» TPM_1|> HM—I( Z)|>~LQM _IMTQM_lk FM—I (Z)I> Jr]:’]u_.l‘_A

Figure 5.1-2 MD nonuniform rational filter bank.

A number of results in filter bank theory can be viewed using vector space notations. In this
chapter, we will introduce a vector space framework which incorporates all kinds of filter banks as
special cases. Such a framework simplifies the proofs of many important results. The usefulness of
the vector space framework is not surprising in view of the fact that similar interpretations of filter
banks have been made by a number of authors. Among others, these include the matrix (possibly
infinite-dimensional) formulation in [Vetterli and Le Gall, 1989, the time domain analysis in [Nayebi,

Barnwell, and Smith, 1991], and the linear transform formulation in [Nuri and Bamberger, 1992].

Chapter Outline

In Section 5.2, we will provide the vector space framework and derive several theorems in this
setting. In the following sections, we will apply this framework, with some manipulations of integer
matrices, to derive several theoretical results for MD nonuniform rational filter banks which represent

the most general case of filter banks. Some of these results are summarized as follows:

1. Consider the following three properties in a maximally decimated filter bank: (a) the Hermitian
image property between analysis filters and synthesis filters, i.e., hx(n) = ff(—n), (b) the
orthonormality of the synthesis filters, and (c) the perfect reconstruction (PR) property. For
the simplest case of 1D uniform filter banks, it h;\s been shown that if a filter bank possesses
any two of these properties, then-it also satisfies the other one [Vaidyanathan, 1987b]. It turns
out that the same result can be verified in the vector space framework, which covers even the

most general MD nonuniform rational filter banks. (Section 5.3)

2. The analysis filters and synthesis filters are biorthonormal [Riesz and Sz.-Nagy, 1955], [Chui,
1992], [Vetterli and Herley, 1992], if and only if the filter bank achieves PR. This result has been
informally known but never explicitly shown for the general case of MD nonuniform rational

filter banks. In this chapter, we will prove it using vector space notations. (Section 5.3)
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3. The analysis filters and the synthesis filters of a filter bank can be interchanged without changing

its PR property. (Section 5.3)

4. A synthesis/analysis transmultiplexer [IEEE, 1982], [Vetterli, 1986b], [Koilpillai, Nguyen, and
Vaidyanathan, 1991] that achieves PR can be obtained by interchanging the analysis part and
the synthesis part of a PR maximally decimated analysis/synthesis filter bank. This has been a
known result for the 1D uniform case [Koilpillai, Nguyen, and Vaidyanathan, 1991]. Using the

vector space framework, we can extend it to the general case. (Section 5.4)

5. MD subband convolution theorem: We shall use the generalized Parseval’s relation of vec-
tor space to derive the MD subband convolution scheme, for both the orthonormal case
(Eqgn. (5.6.11)) and the biorthonormal case (Eqn. (5.6.12)). This turns out to be the gen-
eralization of the results in [Vaidyanathan, 1993b]. We will also derive the coding gain formula

which shows the main advantage of subband convolution. (Section 5.6)

6. Wavelet transform and wavelet com)olutz"on theorem: To show further the usefulness of the
proposed vector space framework, we will apply it to the discrete wavelet transform [Daubechies,
1992], [Akansu and Haddad, 1992], [Chui, 1992], [Vaidyanathan, 1993a, Chapter 11] to obtain
a number of important results. For example, we will show the relation among Hermitian image
property, orthonormality, and the PR property, the well-known equivalence of biorthonormality
and the PR property, and a new result called the wavelet convolution theorem (Egn. (5.7.9)).
(Section 5.7)

In Section 5.5, we will justify the linear independence of synthesis filters and their shifts in
any PR maximally decimated filter bank, which is required to complete the proofs of results in this
chapter. We will present a technique of converting an MD nonuniform rational filter bank into a
uniform filter bank with larger number of channels, which will simplify the justification of such linear

independence.

ANALYSIS/SYNTHESIS SCHEME IN THE VECTOR SPACE FRAMEWORK

Instead of dealing with the filter banks directly, we will consider a more general setting, viz., vector
space (or, inner product space). Consider a vector space V defined over a field F. For any two
vectors x and y in V, we can define the inner product, denoted as (x,y), which gives a scalar in F.
Note that the inner product is defined properly so that it satisfies several properties [Luenberger,

1969]: for all x, y, and z in V and all ¢ in F

a) (x+z,Yy)=(xy)+(zY),
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b) (ex,y) =c(x,y),
¢) (x,¥) = (y,x)*, where the asterisk denotes complex conjugation,
d) (x,x) > 0, and the equality holds if and only if x = 0.

Consider the following analysis/synthesis scheme in a vector space. Given any vector x in V, we
want to analyze it by computing its inner product with a set of (possibly infinitely many) analysis
vectors ¢, (i is an integer index)

z; = (x,9;,) Vi (5.2.1)

Then, we want to synthesize the vector x by using z; to form a linear combination of synthesis

vectors W,

R=>_ zm;. (5.2.2)

Note that in general X and x are not identical. Combining the above two equations, we have
R= (X,9)m; (5.2.3)

Usually, we want to choose ¢, and %, such that the analysis/synthesis scheme satisfies the perfect
reconstruction (PR) condition, i.e., X = x for all x in V.

Assumptions on v,;: For PR to be possible, the span of the set {n,} should cover the whole
space V, i.e., {n,} should be complete. Furthermore, we shall assume that ), are linearly independent.

Therefore, any vector x in V can be expressed as

x = Z am; (5.2.4)

for a unique set of a; in F. These assumptions about completeness and linearly independence will

be justified in Section 5.5 for the case of filter banks.

In the rest of this section, we shall propose a number of theorems in this vector space framework.
These theorems, being easy to prove in vector space notations, will be used to derive many filter
bank results in the following sections. The generality of this vector space framework will enable us
to derive these results for the 1D case as well as the MD case, for uniform filter banks as well as

nonuniform ones, for the case of rational decimation as well as integer decimation.

Theorem 5.1. In the above-mentioned analysis/synthesis scheme, any two of the following three

conditions imply the other:

a) @, =, for all 4.
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b) (m;,m;) = 6(i — j) for all 4 and j, where 6(-) is the Kronecker delta, i.e., 6(k) equals unity for
k = 0 and equals zero otherwise. This is called the orthonormality of the synthesis vectors and
the set {n,} is said to be an orthonormal set.
¢) X =x for all x € V (perfect reconstruction). &
Proofs:

1) We first prove that (a) and (b) imply (c). Because we assume that {,} spans V, any x in V

can be expressed as x = 3, a;n;. From (5.2.3), we get

ﬁ = Z(xa (Pi)ni

= Z(x, n)n; (due to (a))
= Z(}; ammm = Z; a;(n;,m,)m; (5.2.5)

i

= Z Z a;6(j —im;  (due to (b))
=3 ajm; =x

Note that because of the continuity of inner product [Luenberger, 1969], the infinite summation

and the inner product can be interchanged as above.

2) Next, suppose (a) and (c) are true. Equation (5.2.3) becomes
x=3Y (xmn)n, Vxe. (5.2.6)

We want to show that (b) is true, namely, {n;} is orthonormal. Letting x = %, in (5.2.6), we

get
n; =Y (nj,m)m;- (5.2.7)

On the other hand, it is clear that ; = 3_, §(j—1)»;. Since we have assumed that the expression

of a vector as a linear combination of n,’s are unique, we conclude that (n;,n,) = 6(j — ).

3) Finally, suppose (b) and (c) are true. We need to prove that ¢, and v, are identical for all 4.
When (c) is true, from (5.2.3),

x = Z(x, @M, (5.2.8)

Consider the inner product of x and ¥,

(X,ﬂj) = (Z(x, <P¢)"J,~,"Ij) = Z(x’ (pi)(nianj)

= Z(x, ®,)6(i—7)  (due to (b)) (5.2.9)

= (x, (Pj)a
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so that (x,m; — ¢;) = 0. Letting x = 0; — ¢@;, the above implies that

(n; — @;m; — ;) =0. (5.2.10)

From the fundamental properties of inner product, we know n; —¢; = 0, or n; = ¢;, and hence

complete the proof. Note that {¢,} is also orthonormal in this case. AAN

Remark: If we do not make the assumption that the set {n,} spans V and 7, are linearly

independent, this theorem should be restated in three parts as:
1. If {n,} spans V, (a) and (b) imply (c).
2. If n, are linearly independent, (a) and (c) imply (b).
3. (b) and (c) imply (a).

For the same vector space setting, we can relax the orthonormality condition and obtain the

following theorem which deals with biorthonormality:

Theorem 5.2. The analysis/synthesis scheme achieves perfect reconstruction (PR) if and only if

¢, and v, satisfy the biorthonormality condition

(9;m;) =6(i—3) Vi,j. (5.2.11)

Proof:

1) If PR is satisfied, we have

x=Y (x,9;)n; (5.2.12)

7

Letting x =7 ; in the above equation, we get
n; = Z(nj, @;)n;- (5.2.13)
i

On the other hand, we know %; = > ;6(j — i)n,;. Because v, are assumed to be linearly

independent, the expression of any vector in terms of ¥, is unique. We conclude that (n;, ¢;) =
6(5 — ).

2) Conversely, suppose (5.2.11) is true. According to the assumption that all x in V can be
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expressed as X = ) _.a,7., we have
3 3G

X = Z(X, Q)m;

= E(Z ain;, @IM; = Z Z a;(m;, @),
i ;) j

i

(5.2.14)
= Z Z a;6(j — i)n; (due to biorthonormality)
i
= o, =x
J
Therefore, the PR condition is satisfied. FAVAVAN

Remark: This theorem should be restated in two parts as follows, if we do not make the

assumptions of completeness and linearly independence:
1. If n, are linearly independent, then PR implies biorthonormality.
2. If {n,} spans V, then the biorthonormality implies PR.
Using Theorem 5.2, we can verify the following corollary easily:

Corollary 5.2.1. The vectors ¢, and n; can be interchanged without affecting the PR property of
the analysis/synthesis scheme. O

In some applications, e.g., transmultiplexers, the role of the analysis part and the synthesis part
is reversed. More specifically, given a set of scalars x; in F, we first synthesize a vector x using

synthesis vectors 7,
X = mei. (5.2.15)
i

Then, we want to recover z; by analyzing x using analysis vectors ¢,,
Z; = (x,9;) Vi. (5.2.16)

Combining the above two equations, we obtain the following expression for such a synthesis/analysis

transmultiplexer scheme

2= _=zm;e) Vi (5.2.17)
i

If Z; = z; for all ¢ and all z; € F, we say this synthesis/analysis scheme achieves PR. This synthe-
sis/analysis scheme is closely related with the previously mentioned analysis/synthesis scheme, as

in the following theorem:

Theorem 5.3. The analysis/synthesis scheme achieves PR if and only if the corresponding synthe-

sis/analysis scheme achieves PR. &

Proof:
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1) Suppose the analysis/synthesis scheme achieves PR, i.e. x = ),(x, @;)n; Vx € V. Replacing x
with 3=, zim;, we get 3, zim; = 3,(3_, zm;, @;)n;- Because y, are linearly independent, we
conclude that z; = (3; z;n;, ¢;) and therefore the corresponding synthesis/analysis scheme is

PR.

2) Conversely, suppose the synthesis/analysis scheme achieves PR, i.e. z; = (3 5 TiM;» ;) Vo; € F.
Consider the corresponding analysis/synthesis scheme where X = »_.(x,@,)n,. Because {n,}
spans V, we can let x = Y . zm;. So, X = 3 ,(3°; zn;, @)m; = >_;zim; = X. That is, the

corresponding analysis/synthesis scheme also achieves PR. AAN

Remark: Without the linear independence and completeness assumptions on the synthesis

vectors, this theorem must be restated as follows:

1. If the synthesis vectors », are linearly independent, then a PR analysis/synthesis scheme implies

that the corresponding synthesis/analysis scheme achieves PR.

2. If {n,} spans V, then a PR synthesis/analysis scheme implies that the corresponding analy-

sis/synthesis scheme is also PR.
The following theorem deals with the inner product in the vector space framework:

Theorem 5.4. Generalized Parseval’s relation (biorthonormal case): Suppose ¢, and 7,
satisfy the biorthonormality condition in (5.2.11). For any x = ), z;n, and any y = ), y:¢;, the

inner product of x and y can be obtained as follows:

(x,y) = > =i (5.2.18)

Proof: Because (v;, ;) = 6(i — j), we can obtain

(x,y)= (Z TiN;» Z yj‘Pj)
i J
= Z Z_W; (n:,9;) (5.2.19)
= Z Z'iy;-*.

AAA

The following corollary, which applies to the orthonormal case, turns out to be a special case

of Theorem 5.4:

Corollary 5.4.1. Parseval’s relation (orthonormal case): Suppose the set {%;} is orthonormal.
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For any x = ), z;m; and any g = ), g0, the inner product of x and g can be obtained as follows:

(x,8) = D _ @i} (5.2.20)

¢

If we let g = x in Corollary 5.4.1, (5.2.20) reduces to the energy conservation equation

(x,x) = Z |z:|2. (5.2.21)

Furthermore, we can show the following corollary which relates the energy conservation and the
orthonormality:

Corollary 5.4.2. For all x which can be expressed as x = ), xyn;, the energy is preserved by 7,,

ie.,

(x,%) = Z |/, (5.2.22)

if and only if the set {n,} is orthonormal. &

Proof: Because the ‘if’ part is a special case of Corollary 5.4.1, we only have to prove the ‘only if’
part. Suppose (5.2.22) holds for all x = 3, x;m,. Letting x = n,, we get (v,;,m;) = 1. If we let

X = a;n; + a;n;, where ¢ # j, we obtain

|a:|? (::m;) +|a]~|2 (ﬂja")j) +2Re[aia;(7li"’)j)] =la:)® + |aj|2’ (5.2.23)
1
= =1

where Re["] denotes the real part of the argument. So, Re[a;a}(n;,7 ;)] = 0, for any choice of a; and
a;. This implies (n;,7;) = 0. Summarizing, we have shown (n,,n;) = 6(i — 5), so the set {n,} is
orthonormal. AAN

APPLICATIONS TO FILTER BANKS

In this section, we will apply the vector space framework to the problem of filter banks. We will first
consider the simple case of 1D uniform filter banks (Fig. 5.1-1). We then extend our discussion to
the most general analysis/synthesis filter banks, namely, MD nonuniform filter banks with rational

decimation matrices (Fig. 5.1-2).

1D Uniform Filter Banks (the simplest case)

Let us start with the 1D uniform filter bank shown in Fig. 5.1-1. Note that the decimation ratio

M is equal to the number of channels, so that the sum of sampling rates of subband signals z(n) is
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equal to the rate of the input signal z(n). We say that such a filter bank is maximally decimated.
We can express the subband signals as follows

zr(m) = i z(n)hi(Mm — n), k=0,...,.M—-1. (5.3.1)

n=—oo
Note that we have changed the time domain index of the subband signals from n to m for convenience

in later discussion. Defining ¢k, m (n) = h;(Mm — n), we can rewrite (5.3.1) as

o0

zp(m) = Z z(n)dk m (1), k=0,...,M—1. (5.3.2)

n=—oo

Similarly, we can express the reconstructed signal Z(n) as

M-1 o
Z(n) = Z Z zp(m) fe(n — Mm). (5.3.3)

k=0 m=-o0

Define g, m (n) 2 fe(n — Mm). The above equation can be rewritten as

M-1
Z(n) = Z Z Tk (M) Ne,m(n). (5.3.4)
k=0 m=—o00

We say this system achieves perfect reconstruction (PR) if Z(n) = z(n) for all z(n).

Such an analysis/synthesis filter bank is essentially a special case of the vector space analy-
sis/synthesis framework mentioned in Section 2. To see this, consider the vector space V which is
the set of all sequences with finite energy, i.e., all z(n) such that 3 oo ___ |z(n)|? is finite (i.e., the {2
space [Luenberger, 1969]). With F being the field of complex numbers, we define the inner product

of two signals in ¢; as
oo

(@n),y(m) = Y a(n)y*(n). (5.3.5)

n=-oo

It can be verified that this definition satisfies all the fundamental properties of inner product. Note
that we use the £ space here so that the inner product defined above always exists. Consider the
following correspondences between sequences and vectors in the vector space framework
z(n) «— x
Pr,m(n) —— @; (5.3.6)
zg(m) — z;.
Note that the time index n has been absorbed in the vector notations, and the indices & and m are

combined and rearranged to become the single index i. That is, for any pair of k£ and m, there exists

a unique 7. Using (5.3.5) and (5.3.6), we can rewrite (5.3.2) in vector space notations and obtain
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z; = (x,¢;) which is exactly (5.2.1), the analysis part in the vector space framework. Similarly,
using
Me,m (1) < ;
(6.3.7)
Z(n) — X,
we can rewrite (5.3.4) as X = >, z;m,; which is exactly (5.2.2), the synthesis part in the vector space
framework. Therefore, we have shown that the 1D uniform filter bank is indeed a special case of the

vector space framework mentioned in Section 5.2.

MD Nonuniform Rational Filter Banks (the most general case)

We now proceed to Fig. 5.1-2 which shows the most general analysis/synthesis filter bank,
namely, an MD nonuniform filter bank with rational decimation matrices. As we will show, this is also
covered as a special case by the proposed framework. Note that M denotes the number of channels.
In the kth channel, the equivalent decimation ratio (in this case, a matrix) is P;le. The matrices
P and Qi are assumed to be left coprime [MacDuffee, 1946], [Kailath, 1980], [Vidyasagar, 1985] for
all k, because any common left factor can be canceled in P;'Qy. Also note that 3>, J(Px)/J(Qx) =
1, so that the sum of sampling rates of subband signals zx(n) is equal to the rate of the input signal

z(n). Such a filter bank is said to be a maximally decimated filter bank.

Using the definitions of decimation and expansion, we can express the subband signal zx(n) as
follows

zk(m) = Z z(n)}hg(Qrm — Pyn), k=0,...,.M~1. (5.3.8)
neN

Again, we have changed the space domain index n of the subband signals to m. Defining ¢xm(n) =
hi(Qxm — Pin), we rewrite the above as
zp(m) = Y z(n)in(n), k=0,...,M—1 (5.3.9)
neN

Similarly, we express the reconstructed signal Z(n) as

M-1
Zn)= Y > zk(m)fi(Pin— Qpm). (5.3.10)
k=0 meN
Define njim(n) 2 fx(Pxn — Qrm). The above equation is then rewritten as
M-1
Z(n) = Z Z Zk (M) m (). (5.3.11)
k=0 meN

If Z(n) = x(n) for all z(n), we say this system achieves PR. With ideal filters, PR is always

possible. However, PR is not always possible for practical filters, i.e., filters having rational transfer
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functions. Even for the 1D case where P, = 1 (nonuniform filter bank with integer decimation
ratios), it has been shown that some choices of Qi will make PR impossible for practical ﬁlters
[Hoang and Vaidyanathan, 1989)]. Interested readers can read [Hoang and Vaidyanathan, 1989] for
the idea of compatible sets of Q. Even for the 1D case, finding a set of necessary and sufficient
conditions on Qy such that PR is possible still remains an open problem. In this chapter, we will
assume that for our discussion, all Qj are chosen properly such that PR is indeed possible.

To see that this filter bank is indeed a special case of the vector space analysis/synthesis scheme,
consider the £» space which is the set of all MD signals with finite energy, i.e., all z(n) such that

Y nen lz(n)|? is finite. Similar to the 1D case, we define the inner product of two MD signals as
(2(n), y(@)) £ 3 a(n)y" (). (5.3.12)
neN
Rearranging the indices £k = 0,...,M — 1 and m € N as a single index ¢ in the vector space
framework, we obtain the following correspondences between MD signals and vectors
z(n) «— x
$km(n) — ¢,
zi(m) «— z; (5.3.13)
Mem(D) < 0,
Z(n) «— X.
From (5.3.12) and (5.3.13), we see that (5.3.9) is essentially z; = (x, ¢,;) and (5.3.11) isX = ), zim;.
Hence we conclude that an MD nonuniform rational filter bank is indeed a special case of the
proposed vector space framework.

Assumptions: The only detail missing here is the assumptions that ngm(n) (i.e., fu(Pxn —
Qrm), the Py-fold decimated versions of synthesis filters and their Qg-shifts) are linearly inde-
pendent and the set {nrm(n)} spans the £2 space. The following theorems hold only under these
assumptions, which will be justified in Section 5.5. The readers may notice that the condition of
maximal decimation (3, J(Px)/J(Qx) = 1) has not been explicitly used so far. It turns out (Sec-
tion 5.5) that maximal decimation is indeed what makes 7gm (n) linearly independent, as one would
expect.

Now, we can prove the following theorem:

Theorem 5.5. For an MD nonuniform maximally decimated filter bank as shown in Fig. 5.1-2, any

two of the following conditions imply the other:
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a) The Hermitian image property
hx(n) = fi(-n) fork=0,...,M —1. (5.3.14)

b) The orthonormality of the synthesis filters

E Je(Pxn — Qem) £ (Ppn — Qk:m'z = §(k — k' )6(m — m’) (5.3.15)
Nkm (1) Mot oo (M)

for all k,k' = 0,...,M — 1, and for all m,m’ € /. Here the Kronecker delta function §(k) is

extended to have a vector argument, and equals unity for k = 0 and equals zero otherwise.

¢) The perfect reconstruction (PR) property
Z(n) = z(n), for all z(n) with finite energy. (5.3.16)

¢

Proof: It turns out that these three conditions all correspond nicely to the three conditions in
Theorem 5.1. For (b) and (c) this fact can be easily seen, because (5.3.15) can be written as
(n;;my) = 6(i —i’) and (5.3.16) as X = x in vector space notations. Also, the equivalence of
Condition (a) in Theorem 5.1 to Condition (a) in Theorem 5.5 can be proved as follows
=" Vi
<= drm(n) = Nkm(n) k=0,...,M—1, meN
(6.3.17)

< hi(Qem ~Pn) = ff(Pxn—Qm) k=0,...,.M~1, meN

<> hi(n) = fi(—n) k=0,...,M~-1.
The last equivalence is due to the fact that P and Qy are left coprime (see Appendix A for details).

Hence Theorem 5.5 is indeed a special case of Theorem 5.1, and the same relation holds. AANA

We also have the following theorem for the biorthonormal case, which is a direct result of

Theorem 5.2:

Theorem 5.6. The MD nonuniform maximally decimated filter bank in Fig. 5.1-2 satisfies the PR

condition if and only if the filters satisfy the biorthonormal property

Z hk (ka - Pkn)fk/ (Pk,n - leml) = (5(’6 - k')&(m - m'), (5318)
neN
forall k,k' =0,...,M — 1, and for all m,m’ € V. &

In (5.3.18), we can replace n with —n, m with —m, and m’ with —m/’, to obtain

> fw(Qum’ — Ppn)hy(Pen — Qem) = 6(k — k')6(m — m’). (5.3.19)
neN
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This gives us the following corollary (which is also a direct result of Corollary 5.2.1):

Corollary 5.6.1. We can interchange the analysis filters and synthesis filters in any PR maximally

decimated filter bank to obtain another PR maximally decimated filter bank. &

FILTER BANKS AND TRANSMULTIPLEXERS

A system which is closely related to filter banks is the so-called transmultiplexer [IEEE, 1982],
[Vetterli, 1986b], [Koilpillai, Nguyen, and Vaidyanathan, 1991]. A transmultiplexer, as shown
in Fig. 5.4-1, is obtained by interchanging the analysis part and the synthesis part of an analy-
sis/synthesis filter bank. In this system, input signals z(n) are interpolated by Qg-fold expanders,
filters Fy(z), and Pg-fold decimators, and then summed up to form the signal z(n). Effectively, the
information in each zx(n) is now carried in a certain frequency band of z(n). Therefore, this is also
called the frequency division multiplexing (FDM) technique. Note that z(n) has a higher sampling
rate than any of the input signals zx(n). Usually, we choose >~ J(Px)/J(Qx) = 1 such that the
sampling rate of z(n) is equal to the sum of the sample rates of zx(n). At the other end, z(n) is
separated into M output signals Zjx(n) by P,'c’le—fold decimation with filters Hi(z). A common
requirement for this synthesis/analysis transmultiplexing scheme is that Zx(n) = zx(n) for all k.

When this is true, we say this transmultiplexer satisfies the perfect reconstruction (PR) condition.
xp(n x(m) Xo(m)
_—L TQO | FO(Z) - ¢p0 -y TPO |N Hy(z) ]> l«QO N

LU TQ1 ™| F@ ™ Ip J L TP }’ H/(z) |> 1Q L

qu_—l(n)»TQM_]-> FM_I (Z Lo ~LP1M_]J I’» TPM_1|> HM—I(Z)PiQM_lw)

Figure 5.4-1 MD transmultiplexer.

Starting from Theorem 5.3 derived in the vector space framework, we can obtain the following

theorem which states the close relation between analysis/synthesis filter banks and transmultiplexers:

Theorem 5.7. The MD nonuniform maximally decimated filter bank satisfies the PR condition if

and only if the corresponding MD nonuniform transmultiplexer is PR. &

This theorem is very useful because it unifies the theory and design of PR maximally decimated
filter banks and those of PR transmultiplexers. A similar result for the case of 1D uniform filter
banks has been presented in [Koilpillai, Nguyen, and Vaidyanathan, 1991]. Here, we have generalized

the result therein to the most general case, i.e., the case of MD nonuniform rational filter banks.
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5.5. LINEAR INDEPENDENCE OF SYNTHESIS VECTORS

When we apply results in the vector space framework to derive Theorems 5.5, 5.6, and 5.7 for the
case of filter banks, we assume that 7gm(n), or fi(Pxn — Qzm) (the P-fold decimated versions of
synthesis filters and their Q-shifts), are linearly independent and {7xm(n)} spans the whole space

£ (completeness). We will now justify these assumptions.

The second assumption about completeness is necessary. If it is not true, there exists an MD
signal in £> which cannot be represented using 7xm(n), hence cannot be perfectly reconstructed. In
this case, PR is out of question, and none of the above theorems is meaningful. It only remains
to show that nym(n) are linear independent whenever PR is possible for all z(n). In other words,
whenever there exist analysis filters and synthesis filters to achieve PR, the corresponding 7gm(n)
should be linearly independent. The rest of this section is devoted to show this. The maximal
decimation condition, which has not been explicitly used so far, is indeed what makes 7 (n) linearly
independent. We will prove this in two steps. First, we will show that nm(n) are linear independent
for any maximally decimated uniform filter bank that has the PR property. We will then show that
any MD maximally decimated nonuniform rational filter bank can be converted into a uniform one
having the same set {7km(n)}. Therefore, the corresponding 7xm(n) of the nonuniform system are

also linear independent.

Linear Independence of 7, (n) for the Uniform Case

Consider an MD maximally decimated uniform filter bank as shown in Fig. 5.5-1(a). We need
to show that for this maximally decimated system to achieve PR, the corresponding Mem (D) =
fr(n — Lm) are linearly independent. That is, the synthesis filters and their L-shifts are linearly

independent.

Using the polyphase decomposition (Section 2.3), we can represent the analysis filters and

synthesis filters in the form

J(L)—1
Hie) = Y. z%E,EY)  j=o0,...,J@L)-1 (5.5.1)
k=0
and
J(L)—-1
Fie) = Y &R ;") j=0,...,JL)~1L (5.5.2)
k=0

Note that the vectors in /(L) are ordered as £, £1,...,£ 7(L)—1 and £ is usually chosen to be the
zero vector 0. Then, we can redraw this system as in Fig. 5.5-1(b). The J(L) x J(L) matrices E(z)

and R(z) which have elements Ej; x(z) and Ry ;(z) are called the polyphase matrices of the analysis
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Figure 5.5-1 MD uniform maximally decimated filter bank.

bank and the synthesis bank, respectively. MD Noble identities allow us to move the decimators
and expanders across E(z") and R(z"), respectively, and obtain Fig. 5.5-1(c). For this system to
achieve PR, we must have R(z)E(z) = I. This implies that R(z) is invertible. For the case where
all transfer functions are rational function in z with finite degree, R(z) being invertible implies that

det R(z) is not identically zero (but can be zero only for some finite number of z;).

Now, suppose that fi(n — Lm) are not linearly independent. That is, there exist ax(m) which

are not all zero such that
J(L)-1

> > ak(m)fr(n—Lm) =0. (5.5.3)

k=0 méeN

Let ax(m) be the inputs to the synthesis filter bank as shown in Fig. 5.5-2(a). Equation (5.5.3)
implies that the output is identically zero. With Fig. 5.5-2(a) redrawn as in Fig. 5.5-2(b), it can

be verified that the outputs of R(z) are also zero. Letting Ax(z) denote the z-transform of ax(m)
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Figure 5.5-2 MD uniform synthesis filter bank.
and a(z) = [4o(z) -+ Asw)-1(2) 17, we have R(z)a(z) = 0. Because det R(z) is not identically

zero, a(z) is zero almost everywhere except for some finite number of z;. For these z;, a(z;) can be
nonzero but finite. This implies ax(m) are all zero. We hence conclude that fx(n— Lm) are linearly

independent.

Conversion to Uniform Filter Banks

Next, we will show how to convert an MD nonuniform rational filter bank into a uniform filter
bank with a larger number of channels while preserving the same set of ngm (n). For the 1D case, the
problem of transf;)rming a non-uniform filter bank into a uniform one has been addressed in [Hoang
and Vaidyanathan, 1989] and [Kovagevi¢ and Vetterli, 1991a]. This idea has been extended to the
MD case and a graphical derivation has been given in [Gopinath and Burrus, 1992]. The approach
we present here will give the resulting uniform filter bank and the corresponding subband signals
as well. Furthermore, we will show that the sets {7xm(n)} and {¢rm(n)} of the converted uniform

system are the same as those of the original nonuniform system.

Let us consider the set of functions Ngm(n) = fi(Prn — Qim) of the MD nonuniform rational

filter bank in Fig. 5.1-2. The division theorem [Dudgeon and Mersereau, 1984, Sec. 2.4.2] says that,
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with respect to a nonsingular integer matrix M, every integer vector n can be uniquely expressed

as n = Mnyg + k, for some k € N (M), and ng € N. Therefore, Q;m can be written as
Qym =Pyr+p, forreN and p e N(Py), (5.5.4)

where r and p are unique for a given m. Let fi ,(n) denote the Py-fold Type 2 polyphase components
of fr(n), i.e.,
A
frp@m) = fx(Pkn—p),  peEN(Py). (5.5.5)

We then have
fe(Pxn — Qrm) = fi(Prn — Pyr — p)
(5.5.6)

= frp(m—r).

In other words, fx(Prn — Qrm) is the pth polyphase component of fi(n), delayed by r.

Because Py and Qi are left coprime, there exist integer matrices Ax and By which are right
coprime such that PrAg + QxBy = I (generalized Bezout theorem [MacDuffee, 1946], [Kailath,
1980], [Vidyasagar, 1985]). Furthermore, there exist right coprime matrices S; and Ry such that
PSSk = QxRy and J(Sk) = J(Qk) [Chen and Vaidyanathan, 1993a). For these Ay and Sg, it is

shown in Appendix B that any pair of r and p obtained in (5.5.4) satisfies
r=2S;j— Axp for somejeN. (5.5.7)
Now, (5.5.6) can be written as
fx(Prn — Qem) = fi ,(n+ Arp — Sij). (5.5.8)

Let L be a common right multiple (crm) [MacDuffee, 1946] of Sg, S1, ... Sypr—1, and denote it
as crm(Sy,...,Sp—1). That is, L = S;'T} for all k, where T are integer matrices. In particular,
we can choose a least common right multiple (lcrm) [MacDuffee, 1946]. Next, we use the division

theorem again to write j as
j=Tii+t forie N andt e N(Tk). (5.5.9)

Note that i and t are unique for a given j. Then, (5.5.8) can be written as
Je(Pkn — Qgm) = fi p(n + Agp — Sit — Sy Tyi)
= fip(n+ Agp — Skt — Li) (5.5.10)
= fllcpt(n — Li),

where f{,(n) is defined as f} .(n) 2 fi,(n + Axp — Sit).
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Combining (5.5.4), (5.5.7) and (5.5.9), we can get the following expression for m
m=R,;Tri+ Rit + Bip. (5.5.11)

It is shown in Appendix C that (5.5.4), (5.5.7) and (5.5.9) altogether define a one-to-one and onto
mapping from a single index m € N to a triple index (p,t,i) where p € N(Py), t € N(Ty) and
i € M. Using the same mapping to map subband signals zx(m) to zxpt(i), we can rewrite (5.3.10)
as

M-1

Fn)= Y Y ax(m)fr(Prn— Qym)

k=0 meN

M-1
=3 3 Y wkpel) fipe(n — Li).

k=0 peN(Py) teN (Ty)IEN

(5.5.12)

Note that the summation over m is replaced by a triple summation over p, t, and i.
We can preform similar operations on the analysis filter bank also. We use h p(n) to denote
the Py-fold Type 1 polyphase components of hx(n), i.e., hgp(n) 2 hi(Prn + p), and rewrite

hk (ka -— Pkn) as
hk(ka — Pkn) e hk(Pkr +p-— Pkn)

= hg,p(r —n)
= hgp(Skj — Axp — n) (5.5.13)
= hgp(Li+ Sgt — Ayp —n)
= By (Li — n),
where hj}¢(n) is defined as A, (n) = hi,p(n — Agp + Sit). So, (5.3.8) becomes

Trpe(1) = Y @(m)hjp(Li—n),  k=0,...,M -1, peN(Py), t € N(Ty). (5.5.14)
neN

Looking at (5.5.12) and (5.5.14), we realize that the original nonuniformly decimated analy-
sis/synthesis filter bank has been converted into a uniformly decimated filter bank with decimation
ratio L. The channels are now labeled by three indices k, p and t. One channel (the ‘(kpt)th’
channel) of this uniform filter bank is shown in Fig. 5.5-3. The new subband signals are zype(i),
where i is the space domain index. Because zkpt(i) = zx(m) where m is obtainable as in (5.5.11),
each zxp¢ (i) is a Ry Tx-fold polyphase component (with proper shifts) of the original subband signal
zr(m). Similarly, the new analysis filters Hy ,(z) and the synthesis filters Fy,,(z) are the P-fold
polyphase components (with proper shifts) of Hy(z) and Fj(z), respectively. The corresponding new
Prpti(n) and 7}, (n) are by, (Li — n) and fi . (n — Li), respectively. From (5.5.10) and (5.5.13),

we see that these are indeed the @rm(n) and 9gm(n) of the original rational filter bank. In other



5.6.

96

words, {$km(n)} = {$rpu(n)} and {Nkm(n)} = {n}p;i(n)}. Counting the number of channels in

this extended uniform filter bank, we get

J(I,)
E J Pyr)J(Ty) = E J P E J(P = J(L), 5.5.15

so the resulting uniform filter bank is also maximally decimated. It is also clear that the resulting

uniform system achieves PR if and only if the original nonuniform system achieves PR.

» xp1g (1) -
—— Hjyg(2) JL ——»1 TL P Fg(z) —»

Figure 5.5-3 Omne branch of an MD uniformly decimated filter bank converted from a nonuniform

filter bank.

Remark: This approach of converting nonuniform filter banks places in evidence the result-
ing uniform filter bank, the corresponding new ¢ ;(n) and 7 ;(n), and the expressions for the

corresponding subband signals as well.

For the uniform case, we have already shown that 7;(n) are linearly independent if PR is
possible. Because {num(n)} and {n;,,;(n)} are identical sets, fxm(n) of the nonuniform rational

filter bank are also linearly independent.

MULTIDIMENSIONAL SUBBAND CONVOLUTION THEOREM

For the 1D case, it has been shown that, under some conditions, the convolution of two signals
can be obtained by convolving corresponding subband signals and adding these up [Vaidyanathan,
1993b]. This result, which is called the subband convolution theorem, holds for both orthonormal
filter banks and biorthonormal filter banks. When signals are to be quantized, subband convolution
provides better performance (less quantization error) than direct convolution. We will show that
the same result can be obtained by starting from the generalized Parseval’s relation in vector space
notations. We can therefore extend the subband convolution theorem to the most general filter

banks, namely, MD nonuniform filter banks with rational decimation matrices.
Suppose we want to compute the convolution of two MD signals z(n) and g*(—n),

w(k) = 2(k) + g*(-k) £ Y z(n)g*(n - k). (5.6.1)

neN
This is also called the deterministic cross correlation between z(n) and g(n). Instead of directly

computing the convolution, we shall feed z(n) and g(n) into a PR filter bank where the synthesis
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x(m)

TPy | Hy@) ™ Qo | 200, 7 I R (] i o
TP ™ Hy2) Pl Rl TQi }> Fy(z) }> P

TPy {»-{H M—l(z)'>‘l’QM—]xM—_1(mLTQM—l|> FM—1(Z)*> *LPM—I_I @

Pt

N e e = e e B e e
TP I~ Hz) ™{1Q EILN TQ; ]> Fy(z) l» IP

. : (m) ° :
I» TPM_1->HM_1(Z} lQM— gM 1 TQM—]}’ FM..I(Z)I» J/PM_I—-J (b)

Figure 5.6-1 MD PR rational filter bank, (a) with input z(n), and (b) with input g(n).

filters are orthonormal, i.e., (5.3.15) is satisfied. This is shown in Fig. 5.6-1(a) and Fig. 5.6-1(b),
where z(m) and gi (1) denote the corresponding subband signals. Using the same correspondence

between vector space and filter banks as mentioned in Section 5.3, we can apply Corollary 5.4.1 to

obtain
M-1
w(0) = }: z(n)g*(n) = Z Z zr (m) gy (m). (5.6.2)
neN k=0 meN

In other words, the inner product of z(n) and g(n) can be obtained by computing the inner product

of each pair of z;(m) and g(m), and adding the results.

Energy conservation and orthonormality: If we let g(n) = z(n) in (5.6.2), we get the

energy conservation equation

M-1
Do lz)F =37 > |me(m)®. (5.6.3)

neN k=0 meN

Furthermore, using Corollary 5.4.2, we can show that a PR filter bank is indeed an orthonormal

filter bank if and only if the energy of any input signal is preserved in the subband signals.

We proceed to relate the inner product in (5.6.2) to convolution. Equation (5.6.2) gives only
one sample of the convolution, i.e., w(0). We can obtain w(k) for another value of k by shifting
the input in Fig. 5.6-1(b) by k. Let us consider the case of uniform filter banks first. For this case,
all Py are identity matrices and all Qy, are equal to L, as shown in Fig. 5.6-2(a) and Fig. 5.6-2(b).

Due to maximal decimation, the decimation ratio J(L) is equal to the number of channels. Let us
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x{n xo(m x(n)
= Hy(z) P~ lL . TL I’ Fy(z)
1@ L {7 5@
I»HJ(L)_I(z)> L M L I’E(L)—l(z)_l (a)
n m g n)
g() HO(Z) . »LL __‘?.(_)L» TL |> FO(Z)
2@ L ——[TL ] A&
: : (m) .
I'»HJ(L)—I(Z)'» L | a1 TL l’l*}(L)_l(z)—' (b)

Figure 5.6-2 MD PR uniform filter bank, (a) with input z(n), and (b) with input g(n).

conceptually shift g(n) in Fig. 5.6-2(b) by Lk. That is, we let ¢'(n) = g(n — Lk) and let g;(m)
denote the corresponding subband signals. It can be verified that g, (m) = gr(m — k). So,

w(Lk) = Y z(n)g*(n - Lk)

neN

= 3" a(n)g"(m)

neN
J(L)-1 (5.6.4)

= > > zx(m)gi*(m)

k=0 meN
J(Ly—1

= 3 3 ai(m)gi(m - k).

k=0 meN

This can be written as
J(L)-1

[z() * g* (-K)liL = D, [zx(k) * g7 (—k)] (5.6.5)
'_V"—w(k) k=0

where [-];1, denotes the result of L-fold decimation. In other words, the L-fold decimated version of
w(k) is obtainable by adding up the convolution of corresponding subband signals. This is the MD

subband convolution theorem for the case of uniform filter banks.

Note that (5.6.5) only gives the L-fold decimated version of w(k), i.e., the Oth polyphase
components of w(k). To obtain other polyphase components of w(k), we can shift the input in
Fig. 5.6-2(b) by j, where j € N(L), and repeat the computation in (5.6.5) again. More specifically,

letting g% (n) = g(n — j) and g,(cj)(m) denote the corresponding subband signals, we can obtain the |
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jth polyphase components of w(k) by

w(Lk +j) = z z(n)g*(n — Lk — j)

neN
= z(n)[gW (n — *
‘gv (0)[g® (n — Lk)] (5.6:6
J(L)-1
= 3 Y ai(m)g®(m - k),
k=0 meN
or
. M-1 .
w(Lk +j) = [2(k) * g (-K) i = 3 (k) * [97 (~K)]*. (5.6.7)
k=0

Therefore, the complete convolution w(k) is obtainable by recombining these w(Lk + j), where
JeN(L).

We can now extend the MD subband convolution theorem to the nonuniform case. Reconsider
the MD nonuniform filter bank in Fig. 5.6-1. It has been shown in Section 5.5 that this nonuniform
filter bank can be converted to an equivalent uniform filter bank. Using the notations in Section 5.5,

we modify (5.6.4) to get the following equation for resulting uniform filter bank:

M-1
FOED DD D DD DL (ER ) (56.8)

k=0 peN(Pi) teN(Ty)iEN

Rewriting the triple summation over p, t, and i into one single summation over m using (5.5.11),

we get
M-1
w(Lk) = Y > @x(m)gi(m — ReTik), (5.6.9)
k=0 meN
which is the same as
M-1
o)+ g* (Il = Y e (k) * g5 (~K)] R (5.6.10)
k=0

Again, to obtain the complete w(k), we can shift g(n) by j, where j € M(L), to compute the jth

polyphase component and then recombine these results.
Summarizing, we have derived the following theorem using vector space notations:

Theorem 5.8. Subband convolution theorem (orthonormal case): Suppose we have an
MD nonuniform rational filter bank which achieves PR and the synthesis filters are orthonormal.
The L-fold decimated version of the convolution of (k) and g*(—k) can be obtained by convolving
corresponding subband signals, decimating each convolution by R;Tk, and adding up the results.

In other words,
M—1

[2(k) * g* (k)i = D [zx(k) * g (— k)R, - (5.6.11)
k=0
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Generalization to the Biorthonormal Case

The MD subband convolution theorem can also be extended to the case of biorthonormal filter
banks. Starting from Theorem 5.4, the generalized Parseval’s relation for the biorthonormal case,

we can derive the following:

Theorem 5.9. Subband convolution theorem (biorthonormal case): Suppose we have an
MD nonuniform rational filter bank which achieves PR. In other words, the analysis and synthesis
filters are biorthonormal. We feed z(n) into to this filter bank and let zx(m) denote the resulting
subband signals. Interchanging the analysis and the synthesis filters, we get another PR filter bank
(Corollary 5.6.1). We feed y(n) into to this new filter bank and let y;(m) denote the resulting
subband signals, as shown in Fig. 5.6-3. Let w(k) denote the convolution of z(k) and y(k). The
L-fold decimated version of w(k) can be obtained by convolving corresponding subband signals,

decimating each convolution by R;T}y, and adding up the results. In other words,

M-1

(k) *y()liL = D [wx(K) * ye ()] iR, - (5.6.12)
_w"_(k) k=0
¢
70 TP, I> Fy(2) I> 1Qp _.2’.9.(.21.2» TQo P Hy(z) P P, <

™ I’ Fy(2) l’ YQi P TQ1 ™ Hy2) ™ Py

|'> TPM—]I" FM-l (Z)l»‘LQM_]MTQM_]’HM_I(Z)» JrPM_l—_l

Figure 5.6-3 MD PR rational filter bank, with interchanged analysis and synthesis filters, and

with input y(n).

Remarks:

1. The other polyphase components of w(k) can be obtained by advancing y(n) by j, say ¥ (n) =
y(n + j), and repeating (5.6.12) for the corresponding subband signals y,?)(m).
2. Note that the convolution, rather than the deterministic cross correlation, of z(n) and y(n) is

obtained in this theorem.

3. For the case that the synthesis filters are indeed orthonormal, we know fx(n) = hj(—n)

(Theorem 5.5). Therefore, according to the above theorem, y(n) should be analyzed using
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hi(—m). Letting g(n) = y*(—n), we see this is same as analyzing g(n) using hx(n). Now,
z(k) * g*(—k) = x(k) * y(k), and Theorem 5.8 is hence obtained as a special case of Theo-

rem 35.9.

The proof of Theorem 5.9 is similar to the orthonormal case, so it is omitted here. Instead,
we will give a graphical proof as follows. This will also give an implementation of the subband
convolution. First, let us treat y(n) as an MD filter. As shown in Fig. 5.6-4(a), the convolution of
z(n) and y(n) can be obtained by passing z(n) through a PR filter bank and an MD filter Y (z),
where Y'(z) is the z-transform of y(n). For simplicity, only one channel in each filter bank is shown
in this and the following figures. Using Noble identity, we can move Y (z) to the left of Py-fold
decimators to obtain Fig. 5.6-4(b). With y(n) treated as an MD signal again, Fig. 5.6-4(b) can be

redrawn as Fig. 5.6-4(c), which gives an implementation of MD subband convolution.

@) x(n) x(n)* y(m)
TP P Hi(@ ™[} Qk [TQ¢ ™| F (2) =] LP; Y(z)
sum '
overk @

x(n)* y(n)

TP, - Hy(z) PV Qi F{TQ; ’Y(sz)’ Fy(z) |'> 1P

x(n)* y(n)

) TP, I> H, z) PN Qx T Qs |> convolver [ | p,

overk

©

(n)
g T8, | F,(@)

Figure 5.6-4 MD subband convolution of z(n) and y(n).

To prove the subband convolution theorem, we cascade the system in Fig. 5.6-4 by an L-fold dec-
imator to obtain [z(n) * y(n)];1. Inserting a so-called delay-chain system [Chen and Vaidyanathan,
1993a] after each filter Fy(z), we obtain Fig. 5.6-5(a), where the notation ) stands for a convolver.
The delay-chain system has J(Qy) branches and q; are the elements in N (Qy). It can be verified
that a delay-chain system is a perfect reconstruction system so that Fig. 5.6-5(a) is indeed equiva-
lent to Fig. 5.6-4(c) followed by an L-fold decimator. Moving convolvers to the left, we can redraw

Fig. 5.6-5(a) to get Fig. 5.6-5(b). Moving the L-fold decimator to the left and combining it with the
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Py-fold decimator, we obtain Fig. 5.6-5(c), because PxL = P;S; T = QxR Tx. It can be shown
that a filter h(n) preceded by a Qg-fold expander and followed by a Qg-fold decimator is equivalent
to a filter with impulse response h(Qgn). Therefore, each z% preceded by a Qy-fold expander and
followed by a Qg-fold decimator has transfer function zero unless q; = 0. Hence, we can remove
J(Qx) — 1 branches in each channel and obtain Fig. 5.6-5(d). This indeed gives the result stated in
Theorem 5.9.

Coding Gain of Subband Convolution (Biorthonormal Case)

The main advantage of subband convolution is that we can quantize the subband signals accord-
ing to the signal variance in each subband and other perceptual considerations, as in the traditional
subband coding [Jayant and Noll, 1984]. For a fixed bit rate, the result of subband convolution
is more accurate than that of direct convolution, and we hence obtain a coding gain over direct
convolution. To analyze the coding gain for MD subband convolution, we shall make the following

assumptions:

1. We assume #(n) is an MD zero-mean wide-sense-stationary (WSS) random process and y(n) is

an MD deterministic signal.

2. Given that z(n) is WSS, zx(m) is in general not WSS, but cyclo-wide-sense-stationary with
period Q,:llcrm(P k> Qi) [Chen and Vaidyanathan, 1993a]. However, we shall assume that
zr(m) are all zero-mean WSS with variance aﬁk. It can be shown that this assumption is true
if Py, are unimodular (i.e., with determinant 1) or all the analysis filters Hy(z) are ideal filters.
"The reason is similar to that of the 1D case [Sathe and Vaidyanathan, 1993]. For the case that

filters are not ideal but having large stopband attenuation, z1(m) are approzimately WSS.

3. Let gx(m) denote the quantization error for zx(m). That is, zx(m) is quantized to z(m) +
gx(m). Assume gx(m) are zero-mean WSS with variance ol . Assume that all g;(m) are white
and uncorrelated, and that all gx(m) are uncorrelated to zx(m). With by denoting the number

of bits assigned to the quantizer for z;(m), o2, is related to o2, as

02 =col 272 (5.6.13)

for some constant ¢ [Jayant and Noll, 1984], [Vaidyanathan, 1993a, Appendix C].
Under these assumptions, we can compute the error in w(Lk) due to quantization

M—

g(k) = > [ar (k) * g (X)) R, T (5.6.14)
k=0

fay
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‘o [x(m)*y(n)]y,
% TP, o H 2y Y Qi —{TQx 1P WL —>
sum
overk
e TP, Fo(@) iz 9V Qx HTQx
. . (@)
LZ_Qz—sLQk "TQk
x% TP, > H,(z) ; _T.> lp; >—> L
. sum
i overk
y (m) TPk | £ (2)
(b)
"% TP | a1 (2 ] 29 Q¢ i(Rka)%;
. o overk
79 H J«Qk
k Fi(z)
< i ©
L

[x(m)*y(m)];
JC(Il) TPk Hk(Z) wLQk K J«( Rka %T‘
overk
% TP, 1 Fp(z) PV Qi (d)

Figure 5.6-5 Obtaining the L-fold decimated version of z(n) * y(n).

We obtain that the variance of gx(k) * yx (k) is 02, 3 lyx(i)|? and the variance of g(k) is

M-1 M-1
Taay = D 02 D@D =¢ > 2702 3 [y (i) (5.6.15)
k=0 ieN k=0 ieN

Note that the Ry Ty-fold decimation does not change the variance. To compute the whole w(k), we
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need to advance y(n) by j and repeat (5.6.12) for J(L) times. So, we need to average (5.6.15) over

all j € (L) to obtain the variance of overall quantization error

M-1
% = J(CL) do2™al, >0 S WP (5.6.16)
k=

JEN(L)IEN

Define

l|[>

Z SR, (5.6.17)

JEN(L) ieEN

which can be shown to be proportional to the energy of yx(m). We can rewrite (5.6.16) as

%=1 Z 27%ro2 of (5.6.18)
Let b denote the overall bit rate, so
J(P k)
5.6.19
Z @0 (56.19)

Under the constraint of fixed b, it can be shown that aq is minimized when

(Q) > M-1]og, (%%%Uﬁia?)

T(Py) Tox Ok =053, J(Q:)/J(Ps)

i=0

(5.6.20)

be = b+ 0.5log, (

The proof of this uses the Lagrange multiplier method and is similar to that in [Vaidyanathan,
1993b]. Substituting (5.6.20) into (5.6.13), we can see that o is minimized when o2, is proportional

to J(Px)/a2J(Qk). The minimized error variance under the above optimal bit allocation is

0,2 - 02—2b M-1 J(Qk) 0_2 a2 ER)/7(Qu) (5 6 21)
q,0pt M P J(Pk) Yk . .b.
Comparing this with direct convolution, where the error variance is
ag,direct = 62_2b02 Z Iy(i)l2) (5622)
ieN
we see that the coding gain of subband convolution over direct convolution is
a2 . 25, $)]2
Gopt - q,zdlrect - Tz ZIEN ’y(l)lJ(P VATV (5623)
04,0pt 1 ( (Qk) .2 az) k k
M k 0 T(Pr) Y2 %k

Remarks:

1. For the orthonormal case, it can be shown that the coding obtained above is always greater or

equal to unity. It is unity if and only if 02, and o2J(Qy)/J(P%) are both independent of k.

k
2. For the orthonormal case, if we let y(n) = §(n), the above analysis can be used to get the

optimal coding gain for MD subband coding, i.e., the coding gain of quantizing subband signals
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zx(m) over directly quantizing z(n) [Soman and Vaidyanathan, 1993]. When y(n) = §(n), it
can be shown that o} = MJ(P)/J(Qx). Therefore, the optimal bit allocation is given by

M-1

) log, o2,
b =b+0.5log, (62,) — 0.5 § : N (5.6.24)
i=0

Q:)/J(Ps)

Substituting (5.6.24) into (5.6.13), we see that all o2, are equal. For the case of fixed-point
quantization, this implies that the right most bit (least significant bit) of all channels should be
aligned [Vaidyanathan, 1993a, Appendix C], [Soman and Vaidyanathan, 1993]. The minimized

error variance is

M~-1
Ug,opt =c27% H (ng)J(Pk)/J(Qk) . (5.6.25)
k=0

The coding gain over direct quantization is

2
Ua:

M=1( 5 \J(Px)/J(Qx)’ (5.6.26)
k=0 axk)

Gopt =
It can be shown that Gopy > 1 and the equality holds if and only if crﬁk is independent of k.

Computation Complexity

Assume for simplicity that both z(n) and y(n) have finite impulse response (FIR) and have N
samples each. Direct convolution of z(n) and y(n) requires N? multiplications. Assume that N is
much larger than the number of multipliers required to implement the filter bank, so that the compu-
tation complexity of analysis filter banks in Fig. 5.6-1 and Fig. 5.6-3 can be neglected. Since each sub-
band signal z4(m) (or yx(m)) has approximately NJ(Py)/J(Qr) samples, each subband convolution
seems to require nearly [NJ(Py)/J(Qy)]? multiplications. However, note that only the R;T-fold
decimated version of each subband convolution is computed, so only [NJ(Py)/J(Qk))?/J (R Tk)
multiplications are required. This is repeated for J(L) times to obtain the whole convolution.

Therefore, the total number of required multiplications is

M=1 M-1
[NJ(Pr)/T(Qe)]> _ JPR?IEL) o
J(L) k§ Oj J(I];{ s N k§ 0: 7 Qk);“ TRy = (5.6.27)

since I = STy and PrS; = QrRyk. In summary, when the computation in analysis bank imple-

mentation is negligible, the subband convolution has the same complexity as direct convolution.
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5.7. THE WAVELET TRANSFORM

The vector space framework is so general that it also covers the so-called discrete wavelet transform
[Daubechies, 1992], [Akansu and Haddad, 1992], [Chui, 1992], [Vaidyanathan, 1993a, Chapter 11]. In
this section, we will illustrate this only for the 1D case, since the MD case can be obtained similarly.

For a continuous-time signal z(t), its discrete wavelet transform (DWT) is defined as

zpwr(k,n) = /oo z(t) g‘k/zh(nT - a"ktZdt. (5.7.1)
- #in(0)
In the above expression, k and n are integer indices, and a and T are some real constant. The case
a = 2 is often used. The DWT is therefore a mapping of a continuous-time signal z(t) into a two-
dimensional sequence zpwr(k,n). The quantities zpwr(k,n) are also called the wavelet coefficients.
Also note that ¢5 () are all dilated and shifted versions of A*(—t).
Suppose we want to reconstruct the signal z(¢) from its wavelet coefficients. We can use the
following expression
2(t) = > aowr(kn)a 2 f(aFt - nT). (5.7.2)
n

= ~
Mk, (t)

If Z(t) = z(t) for all z(t), we get perfect reconstruction (PR) and the above expression is called the

inverse discrete wavelet transform (IDWT). Note that 7 ,(t) are all dilated and shifted versions of
F(t) = mo,0(t), which is called the wavelet function, or mother wavelet.

Define the inner product of two continuous-time signals as
o0
@©.ve) 2 [ aly @ (573)
We shall consider only signals with finite energy, i.e., signals in the L? space [Luenberger, 1969], so
that the above inner product always exists. By using (5.7.3), Equation (5.7.1) can be written in
vector space notations as (5.2.1) and Equation (5.7.2) can be written as (5.2.2). In other words,
the above DWT analysis/synthesis scheme is in fact a special case of the vector space framework.

Assuming that the set {7y ,(¢)} spans the L? space and that 7 ,(t) are linearly independent, the

following results can be obtained directly from the discussion of Section 5.2:
1. Any two of the following properties imply the other:
a) the Hermitian image property h*(—t) = f(t) (so that ¢y n(t) = Nk .(¢) for all k and n),

b) the orthonormality of 9y ,(¢)

| O et = 805 ~ K6 ), (5.7.4)
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c) the PR property Z(t) = z(t).

2. The PR property is satisfied if and only if
o0
/ Gk (BN o (B)dt = 6(k — k')6(n — n'), (5.7.5)
-0

which is the biorthonormality property.

3. Suppose there exists a pair of DWT and IDWT, i.e., the PR condition is satisfied. We can
interchange h(t) and f(¢) in (5.7.1) and (5.7.2) without affecting the PR property.

4. Suppose there exists a pair of DWT and IDWT so that the PR condition is satisfied. We can
switch the roles of (5.7.1) and (5.7.2) and obtain a synthesis/analysis transmultiplexing systems.
More specifically, given a set of wavelet coeflicients zpwr(k, n), we can synthesize a signal z(t)
using (5.7.2). If we analyze such z(t) using (5.7.1), we can recover the original coefficients
zpwr(k,n).

5. When the functions 7k, () satisfy the orthonormality in (5.7.4), we can compute the inner
product of two signals by their wavelet coefficients, i.e.,

[ atig s = 3 3 avwr(k, mgbwr(im), (57.6)
bt k n

which is exactly the Parseval Identity in [Chui, 1992]. The biorthonormal case can be obtained
similarly.
6. Letting z(¢) = g(¢) in (5.7.6), we get the energy conservation equation. Furthermore, the energy

is preserved for all z(¢) if and only if the orthonormality condition is satisfied.

Wavelet Convolution Theorem

We can also derive the ‘wavelet convolution theorem’ for the biorthonormal case (with the
orthonormal case covered as a special case). Unlike the filter bank case, it is not easy to derive this
starting from the Parseval’s relation, because we would need to shift g(¢) in (5.7.6) continuously to
obtain the whole convolution. Instead, we will use the graphical derivation as we did in Fig. 5.6-4.

First, we let hy(t) £ 4~*/2h(a*¢t) and §10) £ 4=*/2f(a=*t). We can then rewrite (5.7.1) as

zpwr(k, n) = /°° m(t)hk(nakT —t)dt, (5.7.7)
and (5.7.2) as
z(t) =Y Y zpwr(k,n)fi(t — na*T), (5.7.8)
k n
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, sampler | *DWT (1L,n) ]
Hy (j€2) att= naT ™ FI(JQ)
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Hz (j) oy | F2(/2)

Figure 5.7-1 Filter bank implementation of a DWT/IDWT system with input z(¢). The signal

zpwr(k,n) in this figure indicates a continuous-time impulse train.

since Z(t) = x(t) for the biorthonormal case. These two equations give the filter bank implementation
of a DWT/IDWT system shown in Fig. 5.7-1. In this figure, Hy(j2) and Fy(j2) denote the Fourier
transform of hy(t) and fi(t), respectively. The sampler in the kth channel samples the input signal
at t = na*T and produces an impulse train at the output. It can be verified that the output is
>, towr(k, n)6(t — na*T), where 6(t) denotes the continuous-time impulse function.

If we want to compute the convolution of two continuous-time signals z(t) and y(t), we can
use the system in Fig. 5.7-2(a), where Y (5Q) is the Fourier transform of y(t). Note that only one
channel in the filter bank of Fig. 5.7-1 is shown. With Y (j2) moved to the left, Fig. 5.7-2(a) can be
redrawn as Fig. 5.7-2(b). It can be verified that Fig. 5.7-2(b) is equivalent to Fig. 5.7-2(c), which

gives the following theorem:

Theorem 5.10. Wavelet convolution theorem (biorthonormal case): Suppose there exists
a pair of DWT and IDWT so that the PR condition (biorthonormality) is satisfied. The convolution

of two signals z(t) and y(t) can be computed as

2@+ v 2 [ aoy(e - r)dr = X sown(k,mustt ~na*T),

—00 %

(5.7.9)

where zpwr(k,n) are the wavelet coefficients of z(t), and yx(t) is the output of the filter fi(t) for

the input y(¢). &

REMARKS AND CONCLUS/IONS

Here, we add a remark on the orthonormality defined in (5.3.15) and the biorthonormality in (5.3.18).

For the 1D case with all P, =1, (5.3.15) becomes

Z fr(n = Qrm) fir(n — Qum') = 6(k — k')6(m —m') (5.8.1)

[ de o]
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Figure 5.7-2 DWT subband convolution of z(¢) and y(t).

for allk,k' =0,...,M —1 and all m and m’. In [Soman and Vaidyanathan, 1992}, it has been shown
that this condition can be simplified to

ST fum)f (n— ged(Qk, Qi )i) = 6(k — K')6(3) (5.8.2)

n=-00
for all k,k' = 0,...,M — 1 and all 4, where gcd(Qx, Qx’) denotes the greatest common divisor of
Qr and Qp . Similarly, here it can be shown that for the MD case, the orthonormality condition in
(5.3.15) can be rewritten in terms of fi p(n), the Pi-fold polyphase components of fx(n), as follows
Y frp(+ Axp)fir o (n+ App’ — geld(Se, Sw)i) = 8(k — k')8(p — p")5(3) (5.8.3)
neN
for all k,k' =0,...,M -1, p € N(Pi), p' € N(Px), and all i € N, where gcld(Qx, Q) denotes
the greatest common left divisor [MacDuffee, 1946} of Qi and Q. For the case where all Py =1,
this can be simplified further as

> fe(n)fh (0 — geld(Qk, Qu)i) = 8(k — K)8(3).- (5.8.4)
neN

Similarly, the biorthonormality in (5.3.18) can also be simplified. Note that although the above
simplifies the expression of orthonormality, it does not necessarily simplify derivations of results in

this chapter.
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In this chapter, we proposed the vector space notations which provide a framework for deriv-
ing a number of theoretical results in maximally decimated filter banks. Because of the generality
of vector space, these theoretical results can be applied to the most general filter banks, namely,
MD nonuniform rational filter banks. Among these results, we have shown the relation among the
Hermitian image property, orthonormality, and the perfect reconstruction property in a maximally
decimated filter bank. With vector space notations, it can also been shown that perfect reconstruc-
tion is achieved if and only if the biorthonormality condition is satisfied. We proved that we can
obtain a PR synthesis/analysis transmultiplexer from a PR maximally decimated analysis/synthesis
filter bank, and vice versa. We also derived the MD subband convolution scheme starting from the
generalized Parseval’s relation in vector space. Put in vector space notations, many of these results
become very explicit and easy to prove. Therefore, the vector space interpretation provides a very
powerful tool in deriving these filter bank results. To illustrate the generality of this framework,
we have also applied it to another analysis/synthesis scheme, namely, the wavelet transform, and
obtained a number of useful results. In particular, we have derived the so-called wavelet convolution

theorem.

APPENDICES

Appendix A
We need to prove
h;(Qrm — Pin) = fi(Pxn — Qpm) for m e N < hi(n) = fr(—n), (5.4.1)

where n € N is the space domain index. It is clear the second half implies the first half of this
statement. Conversely, suppose h}(Qrm — Pin) = fi(Pin — Qzm), we want to show hj(n) =
fr(—n) for all n. Because Py and Qy are left coprime, there exist integer matrices A and B such
that QB + Py A = I (generalized Bezout theorem [MacDuffee, 1946], [Kailath, 1980], [Vidyasagar,

1985]). So, any p € N can be expressed as

p= Qi Ap +P; Bp . (5.A.2)
S~ ~—~
m —n

Therefore, h}(p) = hi(Qrm — Pin) = fi(Prn — Qem) = fi(—p) for all p e V.

Appendix B

Any nonsingular rational matrix H can be written as H = Q~!P, where P and Q are left

coprime integer matrices. This is called an irreducible left ‘matrix fraction description’ (MFD) of
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H [Kailath, 1980], [Vidyasagar, 1985]. Similarly, H can be written as H = RS~! with R and S
being right coprime integer matrices. This is called an irreducible right MFD of H. We then have
PS = QR. It has been shown that the denominator matrices of all irreducible right or left MFD’s
have the same absolute determinant, i.e., J(Q) = J(S) [Chen and Vaidyanathan, 1993a]. With

these properties, we can prove the following lemma:

Lemma 5.1. Given P and Q (both nonsingular), we first find R and S which are right coprime
such that PS = QR. In other words, we find RS~! which is a irreducible right MFD of Q~'P.

Then,

r = Sj € LAT(S), and

m = Rj € LAT(R). (5.B.1)

Pr=Qm if and only if {

¢

Proof: Suppose k = Pr = Qm, so k € LAT(P) N LAT(Q). It can be proved that the intersection
of two lattices is a lattice generated by the lcrm of the two generating matrices [MacDuffee, 1946],
[Chen and Vaidyanathan, 1993a], i.e., LAT(P) N LAT(Q) = LAT(lerm(P,Q)). Hence we have
k € LAT(P) N LAT(Q) = LAT(lerm(P,Q)), so k = lerm(P,Q)j. It has been shown that if
R and S are right coprime, then PS = QR is indeed an lerm(P, Q) [Chen and Vaidyanathan,
1993a]. Therefore, k = PSj = QRj and hence r = Sj and m = Rj. The proof of the converse is
straightforward. DANA

We can generalize Lemma 5.1 to the following lemma:

Lemma 5.2. Given nonsingular left coprime matrices P and Q, we first find the corresponding R
and S as in Lemma 5.1. Furthermore, since P and Q are left coprime, we can find A and B such

that PA + QB =1. Then,
Pr+p=Qm if and only if r+ Ap = 8Sj, ie., r+ Ap € LAT(S). (5.B.2)

¢

Proof: Suppose Pr+p = Qm. Using PA + QB = I, we have PAp+ QBp = p so that Pr+PAp+
QBp = Qm. Rearrange terms to get P(r + Ap) = Q(m — Bp). Using Lemma 5.1, we conclude

r+ Ap = Sj € LAT(S). Conversely, suppose r+ Ap = Sj, or r = Sj— Ap. Compute Pr as follows:

Pr=PSj—PAp=PSj—p+QBp=Q(Rj+Bp)—p. So, Pr+p=Qm. AAN
e e’
m
Appendix C

Equations (5.5.4), (5.5.7) and (5.5.9) define a mapping from one index m € N to a triple index



112

(p, t,i) where p € N(Py), t € N(Tk) and i € N. These are restated here for convenience:

Qrm =Pyr+p, forr €N and p € N(Py), (5.C.1)
r=Sij— Arp, forjewnN, (5.C.2)
j=Tri+t, forieN andte N(Tk). (5.C.3)

We need to show that this mapping is one-to-one and onto.

We first show that such mapping is one-to-one. In other words, starting from different m and
m’ and using this mapping to obtain (p,t,i) and (p’,t',1’), respectively, we should get (p,t,i) #
(p,t, i) (p#p ort #t ori#7). According to (5.C.1), if m # m’ thenr # r’ or p # p’. If
p # p’, the proof is completed. If p = p’, we know r # r’. From (5.C.2), we know j # j’. Then,

using (5.C.3), we can conclude that t # t’ or i #i'.

Secondly, we show that this mapping is onto. That is, for any (p,t,1) such that p € N(Py),
t € N(Tx) and i € N, there exist a vector m € N from which (p,t,i) will be obtained by using
this mapping. Recall that (5.C.1), (5.C.2) and (5.C.3) can be combined to get 13), which is restated
here

m=R;Tri+ Rit + Bip. (5.0.4)

Given any (p, t,1), we can use (5.C.4) to compute the vector m. It can be verified that this m will

generate the given (p, t,1) as required. Hence, we proved that this mapping is indeed onto.
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