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ABSTRACT

The objective of this investigation is to examine the behavior of two-dimensional
gravity currents, especially as applied to the spreading of smoke, generated from a room
fire, along a long corridor. Both experimental and numerical techniques were used to
provide a model that can adequately explain and predict the behavior of a gravity current
under certain boundary conditions.

A series of experiments was carried out to study the effects of Reynolds number
on gravity currents in a horizontal water channel. Measurements of the time varying
front position, velocity profile of the following current, and the depth of a gravity current
were made using either dyed liquids or hydrogen bubble technique. Quantitative results
were shown to agree with previously published results. A model was put forth to bridge
the gap between the existing models for an inertia-buoyancy dominated gravity current
and a viscous-buoyancy dominated one. Comparison between the experimental results
and numerical results obtained from the model proved that the model can adequately
explain the behavior of the phenomenon.

A second series of experiments was conducted to investigate the behavior of
gravity currents in an inclined channel. The quantitative results obtained were less
scattered than those obtained in previous research. The gravity current was found to be
unsteady in a horizontal channel, while a channel with an angle of inclination of one
degree was found to produce a steady flow behind the front of the gravity current. The
change of the gravity currents from an unsteady to a steady nature due to the change in
the inclination of the channel was found to be gradual and much less abrupt than assumed

in previous studies.
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Proportionality constant which is related to the increase in depth with time

in equation (2.4)
Drag coefficient due to stress at the lower boundary
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V; Ratio between kinematic viscosity of the ambient fluid and that
of the working fluid
Vy,  Kinematic viscosity of the current
p Density of the fluid at location (x,y) and time t
Pa Density of ambient fluid
Pr Ratio between the density of the ambient fluid and that of the working fluid

Pw  Density of working fluid

T Characteristic time scale in model, defined by t
To Initial time to start computation of gravity current
Ty Time to start viscous solution in the computation
Superscript

()*  Quantities which are made dimensionless by dividing by the corresponding

scaling parameter.
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Superscript

@F Value of quantity when it first appears

()f  Value of quantity at the front of the gravity current
ig Grid number of the current front

j Number for time step
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CHAPTER 1

INTRODUCTION

1.1  Anintroduction to gravity currents

When a fluid is introduced into an environment of a different density, it will
spread under the influence of its own buoyancy forces due to gravity. When light fluid is
discharged into heavier fluid it rises to the surface and then spreads along the surface,
driven by the horizontal pressure gradient due to the density difference. Similarly, the
discharge of a heavy fluid into a less dense environment results in a current spreading on
the bottom of the light fluid reservoir. This type of fluid motion is known as a gravity
current. The density difference between the fluids may be due to dissolved material,
temperature differences, or suspended particles.

Gravity currents, also known as density currents, are frequently encountered in
both natural and artificial situations. While thunderstorm outflows, growth of lava
domes and avalanches are widely known natural examples of gravity currents, waste
water discharge into rivers, oil spill in the ocean, accidental release of toxic industrial
gases, and the motion of smoke, generated in accidental fires, along the ceiling of a
corridor are just a few of the important and practical examples of man-made gravity

currents.

Gravity currents are characterized by a raised head with abundance of mixing
between the fluids at the front, followed by a shallower flow behind. An example of a
gravity current is shown in Figures 1.1a through Figure 1.1d. These pictures were taken
near the inlet by releasing salt solution into a channel filled with fresh water. Due to the
density difference between the two fluids, the gravity current of salt solution, which is
the dark blue fluid in the figures, spreads along the bottom of the channel. For
presentation purposes, the currents are shown upside-down to illustrate smoke movement
in a corridor. The head of a gravity current is characterized by an overhang of fluid
called the nose at the front. A shifting pattern of lobes and clefts develop at the front of a
current due to the no-slip condition imposed by the rigid surface, while billows
resembling those due to Kelvin-Helmbholtz instability appear in the shear zone at the rear
part of the head. Considerable amount of mixing can also be seen to occur in this area.
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The mixed fluid is left behind the advancing head, and is shown as the light blue-colored
fluid in Figures 1.1a through Figure 1.1d. This mixed fluid is swept along by the current.
This is evident by observing the decrease in depth of the light blue-colored layer from
Figure 1.1b to Figure 1.1c. Thus, the average velocity in a gravity current behind the
head must be greater than the velocity of the advancing front in order to make up for the
loss of fluid at the head. By comparing Figures 1.1b and 1.1c, the current thickness can
be observed to have increased significantly with time even before the arrival of the bore
shown in Figure 1.1c. This bore results from the reflection of the current by the
downstream end wall, and is roughly twice the height of the current just upstream of it.
The reflected bore is also wavy in nature, as shown in Figure 1.1d.

The same current is shown in Figure 1.2a to be approaching the downstream end
wall. Figures 1.2b and 1.2c show how the current hits the end wall, reflects from the
wall and advances upstream in the form of a bore. By comparing Figures 1.2c and 1.2d,
it is observed that the waviness downstream of the bore subsides after some time, but the
thickness of the current downstream of the bore does not change significantly with time.

The objective of the present investigation is to gain a better understanding of
some of the characteristics of gravity currents which may be useful to the development of
models for smoke movement in hallways. Although corridors are in general considered
as horizontal, a 20 cm difference in height at the two ends of a corridor that is 20 m long
yields an angle of 0.5° for the ceiling. It will be shown later that the characteristics of a
gravity current in a horizontal channel differs significantly from those of a gravity
current in a slightly inclined duct. As a result, considerations will be given to both
gravity currents on a horizontal boundary and gravity currents on a slope.

1.2 Previous research

Since gravity currents are related to so many different natural and man-made
phenomena, they have many practical applications. As a result, a large volume of
literature exists on the studies of gravity currents. J. E. Simpson first authored a short
review of the research conducted on gravity currents (Simpson, 1982) and then later
wrote a book with more details of the research performed on gravity currents and internal
bores (Simpson, 1987). The book by Simpson contains one of the best collections of
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photographs and illustrations that qualitatively describes the various details of gravity
currents, especially the billows and the lobes and clefts of the head at the front of the

currents.

1.2.1 A brief review of research conducted on gravity currents with continuous
release in a horizontal channel

By applying Bernoulli's theorem, in its form applicable to steady irrotational

flows, von Karman (1940) obtained the following relationship between the propagating
velocity of the current, Vi, the depth of the current, h, the acceleration due to gravity, g,

the density of the current, p,, and that of the ambient fluid, p,, for a two-dimensional

gravity current:

(1.1)

In this study by Karman, the head height is assumed to be the same as the depth of the
following current, and is also at the same time much smaller than the depth of the

ambient fluid.

The same result was later derived by Benjamin (1968) in his study of the
properties of steady, inviscid gravity currents by imposing an overall balance of
momentum fluxes against buoyancy forces in the flow of an air cavity into a horizontal
channel filled with water. Gravity currents in a channel of limited depth was also
considered. The Froude number of the front decreased from /2 when h/H = 0 to 1A[2
when h/H = 0.5 according to the expression

V¢ /(H—h) (2H-h)
o h =\ B@ED (1.2a)

where g' is the reduced gravity and H is the depth of the channel. The reduced gravity is

defined as

g=20, (1.2b)



where Ap =py, - Pa - (1.2¢)

Note that equation (1.2a) is equivalent to equation (1.1) when the channel height, H, is
much larger than the height of the current, h. Benjamin's theory was found to be in good
agreement with the experiments performed by Zukoski (1966).

For a heavy, two-dimensional gravity current flowing beneath a lighter fluid, the
driving gravity force can only be balanced by the inertial force as long as the shear-layer

thickness and the boundary-layer thickness are small when compared with the current
thickness, h,. Using dimensional analysis, the characteristic length was found to be dpef =

(Q?%/g")1/3, the characteristic time is tf = (Q/g'2)1/3 and the characteristic velocity is Uges
= (g' Q)1/3. where Q is the volumetric influx rate of the current fluid per unit width of the

channel. These characteristic scales were used by Chen (1980), Didden and Maxworthy
(1982), and others. If the head height, h;, is the same as the height of the following

current, h, dimensional analysis will reproduce equation (1.1) except for the
proportionality constant which must be determined empirically.

On the other hand, when the viscous drag becomes the dominant retarding force
balancing the buoyancy force, the length of the current is given by x¢ ~ (g' Q3/v,,)1/5 t4/5
instead (Didden and Maxworthy 1982 and Huppert 1982), which implies that the front
velocity of the current decreases with time. In the expression above, Vy, is the kinematic
viscosity of the current, x¢ is the position of the front, and t is the time from the start of

the influx. By order of magnitude arguments, Didden and Maxworthy showed that the
total viscous drag of a bottom current is determined by the bottom stress only for t >>t..
Moreover, Huppert proposed that viscous effects become important after approximately

0.4 (t,f Re), where Re = Q/Vy, is the influx Reynolds number.

Chen (1980) analytically matched the inertia-buoyancy regime and the viscous-
buoyancy regime to find the position of the transition between the two regimes, xq,

assuming an abrupt change from one regime to the other. It was proposed that x; = 0.133
R; where R; = (des Re), and is supported by the experiments of Chobotov (1987) at Re
= 1000. However, closer examination of the experimental results of Wood (1965) shows

considerable variation at other Reynolds numbers.
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For over a decade, Keulegan performed a series of experimental studies on both
lock exchange flows and flows with continuous discharge to determine the front velocity.
Keulegan (1946) found that the front velocity is constant and proportional to the
characteristic velocity, Ues, when viscous force is small. Keulegan (1958) also found
that the front velocity was not constant when the density ratio of the two fluids is close to
unity or, more precisely, when g' < 20 cm/s2. For 20 cm/s2 < g', Chobotov (1987)
obtained reasonable agreement between gravity current experiments with heat transfer
and a model with the steady-state approximation.

It was noticed that the density within the current is constant and the interface
between the current and the ambient fluid is rather thin, about 10% of the current
thickness, h. As a result, vertical mixing and diffusion of solute is important only in this
relatively narrow interfacial layer. Delichatsios (1990) also pointed out that in smoke
movement along the ceiling, no entrainment was observed to occur in the following flow.
This is because the shear is zero near the top of the layer (Ellison and Turner 1959), and
there is little transfer of fluid across the interface.

It was noticed by Middleton (1966) that the head height of a current remained
constant for a long time, and Wood (1965) found that the ratio of the head height to the
depth of the layer just behind the head was 1.8. However, Keulegan (1958) observed a
value of 2.16. This discrepancy is due to the turbulent nature of the head and the
presence of the mixed layer of fluid on top of the following flow. As a result, large
errors exist for the measurements of both the head height and the depth of the current just
behind the head. In addition, it was noticed that the flow of dense fluid behind the head
is maintained against friction by a small slope in the density surface (Simpson and Britter
1979 and Chobotov 1987). However, no extensive quantitative information is available.

The shape and the motion of the head has been the subject of ongoing research
since it is different from the following flow. The interface between the two fluids at the
head of a gravity current is a typical frontal zone. That means the interface is a region in
which a high density gradient is maintained even though there is intense motion and
mixing (Simpson 1982). Simpson (1969) noted that the flow to the rear of the head is
turbulent but its general shape remains steady. The foremost point of the head was
slightly elevated above the surface since less dense fluid was overrun by the current, and
the height of the nose is roughly 13% of the head height (Simpson and Britter 1979).
There is intense mixing between the two fluids near the leading edge of the gravity
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current, the mixed fluid being left behind the head and on top of the following gravity
current. The mixing results from a shear instability between the two fluids complicated
by the gravitational instability of less dense fluid near the bottom surface overrun by the
head. Studies with dye tracers led to conclusion that the depth of the overrun less dense
fluid is very small, about a tenth of the height of the foremost point of the head, and the
flux of light fluid flowing under the head is estimated to be of the order of 0.01 of the
flux of light fluid involved in mixing at the top of the head. Although the momentum
exchange of this overrun light fluid as it passes through the head is insignificant when
compared to other momentum changes near the head, this fluid is responsible for the lobe
and cleft formation seen in most gravity currents (Simpson 1972). Bulges are swept
away backwards from the front of the head and form billows which roll up. The
disturbances increase in size, eventually breaking down into irregular motion. In growth
they look like Kelvin-Helmholtz billows. In addition, measurements from streak
photographs (Simpson and Britter 1979) gave a ratio of flow speed to front speed of
about 1.3.

When the overrunning of less dense fluid is suppressed, the lobe and cleft
structure disappears and regular billows can be seen forming on the leading edge of the
head which has a slope of about 40°. This was experimentally accomplished by Britter
and Simpson (1978), who brought the head of the gravity current to rest on the fixed part
of the floor of a tank by means of an opposing flow, while the floor of the tank was in
the form of an endless moving belt. The velocity gradients at the floor ahead of the
gravity current were thus reduced, and an inviscid gravity current with mixing was
formed. In such an experiment, the foremost point of the gravity current head was on the
floor, the flow was nearly two-dimensional, and more distinct billows could be seen. It
was also estimated that the Richardson number across the shear layer was less than 0.01,
and thus the density interface was very sharp. The average velocity of the flow behind
the head of the current was about 22% faster than the velocity of the advancing front.

1.2.2 A brief review of research conducted on gravity currents with continuous
release in an inclined channel

At slopes greater than about 0.5°, the combination of the buoyancy force and the
streamwise component of the gravitational force is large enough to overcome frictional
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effects and entrainment drag. Thus, a steady head velocity results. The propagating
velocity of the front of a gravity current on a slope is constant as long as its depth is
small when compared to the channel height. It is proportional to the characteristic
velocity, Uy, at large Reynolds numbers although the proportionality constant still
depends on the angle of inclination, © (Britter and Linden 1980). Middleton (1966)
found that the proportionality constant increases with slope for small slope. This is in
sharp contrast to a horizontal gravity current, in which the balance of forces cannot be
struck, the supply of denser fluid from behind the head diminishes continually owing to
the diminishing fluid pressure-head, and so the front velocity will always slow down.
The transition from the unsteady to the steady currents occurs at an angle which depends
on the coefficient of friction at the bottom wall (Britter and Linden 1980).

The entrainment rate of a current falls off rapidly as the layer Richardson number,
Ri, increases and is negligible when Ri is more than 0.8, regardless of 8 (Ellison and
Turner 1959). Since the Richardson number increases when 8 decreases, the amount of
entrainment decreases dramatically at small slopes. As a result, entrainment is only
negligible at slopes of less than a couple of degrees.

In contrast to the head of a horizontal current, the head of a gravity current in an
inclined channel increases in size as it travels down a slope, due to both direct
entrainment into the head itself and addition of fluid from the following flow. The direct
entrainment increases with increasing slope and accounts for one-tenth of the growth of
the head at 10 degrees and about two-thirds at 90 degrees (Britter and Linden 1980). The
effect of entrainment is seen in the measurements of the growth of the head height with
distance down the slope. On contrary, for a horizontal current there is virtually no
mixing in the flow behind the head and any mixed fluid produced at the head itself is left
behind and above the following current as the current moves forward.

Middleton (1966) also suggested that an increase in slope does not affect the
velocity of the head per se, but it results in a greater velocity in the following current and
therefore in a greater supply of denser fluid into the head. The size of the head therefore
increases, and the velocity also increases until a new equilibrium is set up between the
size and velocity of the head. As a result, at a given discharge, increase in the slope
produces a decrease in the thickness of the following flow and a corresponding increase
in the average velocity in the current. At the same time it produces an increase in the
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thickness of the head and a corresponding but smaller increase in the velocity of the
head.

On the other hand, Wood (1965) and Britter and Linden (1980) observed that as
the slope increases the head tends to have a steeper leading edge and the length of the
head tends to shorten. When the slope tends to zero, Middleton (1966) found that the
head is of a constant size and the layer behind it is of a constant depth.

1.3 Objective of the present study

The objective of the present study is to better understand gravity currents as
applied to motion of smoke, generated in accidental fires, along the ceiling of a long
corridor. This is schematically shown in Figures 1.3a through 1.3g, which is a
reproduction of Figures 1.6a through 1.6g of Chobotov (1987). For an accidental fire in
a room connected to a long corridor as shown in Figure 1.3a, the toxic, heated smoke
generated by the fire will rise to the ceiling. It will entrain air and fill the room from the
ceiling downwards. When the layer of smoke is deep enough, it will spill over the soffit
and into the corridor, as shown in Figure 1.3b. Due to the density difference between the
heated smoke and the cooler ambient air, the smoke layer will spread at a velocity Vg in
the form of a gravity current, as shown in Figure 1.3c. If the flow rate, and thus the
Froude number, of the current is large enough, an internal jump will appear, as shown in
Figure 1.3d. When the front of the current hits the end of the corridor, it will reflect and
advance in the form of a bore at a speed of V,, as shown in Figures 1.3e¢ and 1.3f.
Finally, as shown in Figure 1.3g, the reflected bore will eventually reach the burn room,
the waviness of the bore will subside, and the whole layer will grow deeper with time.

Although it was pointed out that a large body of literature exists for gravity
currents in a horizontal channel, none of them has bridged the gap between the inertia-
buoyancy regime and the viscous-buoyancy regime, nor does any of them give
quantitative information about the depth of the current between the two regimes. It has
been pointed out by Chen (1980) and others that a gravity current has a steady front
velocity and a constant current depth in the inertia-buoyancy regime and a retarding front
velocity and a growing current thickness in the viscous-buoyancy regime. Since smoke
movement in a long corridor, which is the main objective in this research, may
experience both regimes in practice, it is of great interest to find out whether the
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transition from one regime to the other is gradual or abrupt. It is also important to obtain
quantitative information concerning the depth and the velocity of gravity currents so that
a model which is valid for both regimes can be proposed. Since the flow is unsteady in
the viscous-buoyancy regime, the model for a heat-transferring gravity current proposed
by Chobotov (1987) can be improved if the steady-state approximation used by
Chobotov can be waived. As a result, it is advantageous to build a model that is valid for
both regimes by first considering an adiabatic, viscous gravity current in a horizontal
channel. A successful model for adiabatic gravity currents can then serve as the basis for
a model for heat-transferring gravity currents.

As a result of the above reasons, experimental results will be presented in Chapter
2 to supply quantitative information about the time varying front position, the transition
position between the two regimes, the growth in current thickness, and the velocity
profile of a current. It should be pointed out that in the experiments conducted in this
study, the fluid of the current was always introduced normal to the streamwise direction
into the ambient environment. This was done both to ensure that there was no initial
streamwise momentum and that the volume of the fluid in the current was always the
same as the total amount of influx, since there was neither a strong internal jump nor
turbulent mixing near the inlet. This method of introduction of the current fluid is thus
very different from that used by numerous other researchers (Wilkinson 1970 and
Chobotov 1987). In those studies, the fluid of the current was injected in the streamwise
direction through a slot into the ambient environment, usually accompanied by a strong
internal jump and turbulent mixing near the inlet due to the initial streamwise
momentum. As a result, the volume of the fluid in a current in those cases was larger
than the total amount of influx because of entrainment and mixing at the jump. Due to
these differences, the velocity profile in the current, the spreading rate of the front of the
current and the depth of the current may strongly depend on the method of introduction
of the current fluid, and caution must be used when comparing the results from the

various studies.

Equipped with the new quantitative information from Chapter 2, a model for an
adiabatic, viscous gravity current will be developed in Chapter 3 by first considering
inviscid gravity currents and then viscous ones. Experiments concerning gravity currents
in an inclined duct will be briefly discussed in Chapter 4, together with some discussions
on the transition from an unsteady gravity current in a horizontal channel to the steady
case in a sloped channel. Finally, concluding remarks will be given in Chapter 5.
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Figure 1.1 Development of gravity current over time near the inlet.
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Figure 1.2 Formation of the reflected bore at the downstream end wall.
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(a)
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(g)

Figure 1.3 Motion of smoke in a long corridor of a burning building.
[Reproduced from Figure 1.6 of Chobotov (1987)]
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CHAPTER 2

EXPERIMENTAL STUDIES ON GRAVITY CURRENTS IN A
HORIZONTAL CHANNEL

2.1 Introduction

For a dense gravity current spreading over a horizontal bottom boundary in a less
dense environment, the front of the current is much deeper than the following current,
and is commonly known as the head. There is intense motion and mixing at the head,
although a high density gradient is still maintained. The foremost point of the head is
slightly elevated above the surface, and is commonly known as the nose. The mixing
between the two fluids at the head of the current is the result of gravitational instabilities
on the bottom and shear instabilities on the top, and the mixed fluid is left behind the
head and above the following current. However, there is virtually no mixing between the
following current and the ambient fluid nor between the current and the mixed fluid left
behind by the head. Since there is no streamwise gravitational component, the friction
on the current is only counteracted by the buoyancy force. As a result, the depth of the
current must continue to increase in order to supply enough pressure head to overcome
the viscous drag, and thus the velocity of the head decreases with time. Experiments
were performed in the present study to investigate this effect. The experimental set-up
and procedures for the present study on gravity currents in a horizontal channel will be
described in Section 2.2. The results from relevant experiments concerning the front
velocity of gravity currents will be discussed in Section 2.3. Quantitative measurements
of current depth in a horizontal channel will be reported in Section 2.4. Section 2.5 will
be devoted to experiments using hydrogen bubbles as the flow visualization aid. Finally,
some measurements of the density of the current will be discussed in Section 2.6.

2.2 Experimental set-up

A schematic diagram of the experimental set-up is shown in Figure 2.1. Before
each experiment, food-grade salt or sugar was first mixed with water in a big tank to
form salt or sugar solution. The density and kinematic viscosity of this solution, which
will also be referred to as the working fluid, were then measured by a hydrometer with
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resolution of 0.0005 g/cm3 and by a calibrated viscometer, respectively. The specific
gravity of the working fluid varied from 1.02 to 1.15. The solution was then pumped
through a calibrated flow meter which was accurate up to 6 cm3/s. This flow meter
measured the volumetric flow rate of the working fluid and was regulated by a valve.

The working fluid was then introduced into a long rectangular duct filled with
either fresh water, salt solution or sugar solution, commonly known as the ambient fluid.
The ambient fluid had a lower density than the working fluid. The channel was 277 cm
long with a square cross-section of length 15 cm on each side. The length of the channel
could be extended to either 343 cm or 409 cm by attaching one or more ducts of the same
cross-section at the downstream end of the channel. The walls of the channel was built
with half-inch thick plexiglass, and the channel rested on top of a steel brace structure.
This structure could be adjusted so that the angle of inclination of the channel to the
horizontal could be easily changed. Measurement of the angle was performed by using a
gunner's quadrant, which was accurate to within 0.02 degree.

There was a 12.7 cm long opening on the bottom wall at one end of the channel
which served as the inlet for the working fluid to enter the duct. This end is also referred
to as the upstream end. The opposite end of the channel is referred to as the downstream
end. The side wall through which the observations were made is referred to as the front
side wall, while the other side wall is referred to as the rear side wall. Due to the
opening in the bottom wall at the upstream end, the bottom wall was about 264 cm long
even though the channel length was 277 cm. In addition, there were four valves, each
connected to half-inch plastic tubes, installed on the top of the duct at the upstream end.
Four similar valves were also installed at the downstream end. By controlling these
valves, ambient fluid displaced by the working fluid could be removed at either the
upstream end or the downstream end, or both.

The influx rate of working fluid was maintained at a constant level in order to
provide a continuous and steady supply of working fluid. The working fluid entered the
duct first through a two-inch diameter plastic tube and then through a 21 cm long, 15 cm
wide, and 12 cm deep entrance section which was mounted on the floor of the duct and
was filled with a plastic, wool-like material. The working fluid was supplied through the
bottom wall into the channel in a direction normal to the bottom wall of the channel.
The above precautions helped to provide a uniform velocity profile when the working
fluid was introduced through the bottom wall into the channel. This also removed
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streamwise momentum of the working fluid, and ascertained that the volume of the
current is the same as the volume of working fluid introduced. As a result, the forces on
the fluid downstream of the inlet were strictly due to buoyancy and viscous effects. It
should again be pointed out that due to the lack of initial streamwise momentum, there
was no strong internal jump nor turbulent mixing at the inlet. As a result, caution should
be used when comparing results of this study with those of other studies in which the
working fluid was injected through a slot in the streamwise direction into the ambient
fluid. In those cases, a strong internal jump and turbulent mixing were usually observed

due to the initial streamwise momentum of the current.

A splitter plate was placed above the inlet region to prevent any incoming
working fluid from exiting the upstream exit due to the pressure field produced by the
excess ambient fluid leaving the duct. As a precaution to avoid any mixing between the
ambient fluid and the working fluid before an experiment, the working fluid was
introduced into the inlet region at a very low flow rate. Once the working fluid had
reached the floor level, the influx rate was suddenly increased to the desired value of the
experiment and was maintained at a constant value throughout the experiment.

When the heavier working fluid was introduced into the channel filled with a
lighter ambient fluid, it spread along the bottom of the channel due to buoyancy forces.
The layer of working fluid is also known as a gravity current. The edge of the bottom
wall at the upstream inlet is known as the leading edge, and is used as the reference
position to identify the streamwise position of a location along the channel. The leading
edge is also simply referred to as the 'source’ for convenience. Since the salt solution, the
sugar solution, and fresh water are all transparent, dye or hydrogen bubbles had to be
used as the flow visualization technique so that the working fluid could be distinguished

from the ambient fluid and be monitored.

Color video cameras with VHS format were used to record the progress of each
experiment. The front position of the current, which is the farthest point of the layer of
working fluid from the leading edge of the bottom wall of the channel, could then be
determined by analyzing the recorded tapes. In addition, the depth of the current and the
velocity of the fluid inside the current could also be found by the flow visualization
techniques mentioned earlier. The procedures and the results for the measurement of
each of the above parameters will be described in the following sections.
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2.3 Measurements of the front position of the current
2.3.1 Experimental procedures

As mentioned in Section 2.2, salt or sugar solution was mixed with extra
concentrated Kriegrocine blue powder before each experiment for visualization purpose.
One teaspoon of the powder was enough to give one hundred liters of salt or sugar
solution a dark blue color. A tape measure with resolution of 1 mm was secured on the
side of the duct to show the distance of all locations from the leading edge of the bottom
wall.

A video camera was mounted on a wooden block with wheels. This device was
then placed on a track that ran parallel to the side walls of the channel and was placed at
the same height as the bottom of the channel. The camera could then be moved along the
track with minimal effort. At the same time, the camera was focused on the front of the
gravity current through the front side wall of the channel as the current spread along the
channel. This set-up allowed the video camera to record the time varying front position
of the current with minimal interruption.

In addition, the video camera has a timer that is accurate to one-hundredth of a
second. This timer was turned on before each experiment, and the time elapsed during
the experiment was recorded on each video frame for reference. By noting the time
elapsed and the corresponding front position, the time varying front position of the

current could be found.

When the current hit the wall at the downstream end of the channel, it reflected
from the wall and moved in the upstream direction in the form of a bore. However, since
the features of the front of the reflected bore is not as distinctive as the front of the
current, it is hard to record the front position of the bore using the tape measure that was
attached to the side of the duct. Instead, vertical markers were attached to the side of the
channel at regular intervals. As a result, by recording the passage of the reflected bore at
the markers, together with the corresponding elapsed time, the time varying position of
the reflected bore advancing in the upstream direction could be found.
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2.3.2 Experimental results

As described in the last section, the front position of a gravity current was
recorded for various elapsed time from the start of the experiment. Figure 2.2 shows an
example of how the front position of the current, x¢, in Test 604 changes with time, t.

The front speed of the current accelerates through an initial stage at the start of the
experiment. The front then travels at a constant speed, V. This is known as the
principal stage (Chen 1980), and is also known as the inertia-buoyancy dominated
regime. After a sufficiently long time, the flow is dominated by viscous and buoyancy
forces only. This stage of the current is known as the final stage or the viscous-buoyancy
dominated regime, and the front speed undergoes constant deceleration. The presence of
the three stages does not depend on whether the excess fluid is removed through the
valves at the upstream end of the channel, which is simply referred to as the case of a
gravity current in a channel with an upstream exit, or through the valves at the
downstream end of the channel, which is referred to as the case of a gravity current in a

channel with a downstream exit.

It should be noted that in the case of a channel with an upstream exit, the ambient
fluid is at rest in the section not yet reached by the moving front (Keulegan, 1958). The
ambient fluid above the current is moving in the upstream direction at the same
volumetric flow rate as the influx because the two fluids are incompressible, and any
excess fluid must be displaced from the channel. On the other hand, in the case of a
channel with a downstream exit the ambient fluid downstream of the front is moving
downstream at the same rate as the influx. However, the ambient fluid above the gravity
current in this case hardly moves, since entrainment from the ambient fluid into the

current is negligible.

Figure 2.3 reveals that the deceleration process found in the final stage of a
current agrees with the proposed behavior of x¢* ~ t¥4/5 (Chen, 1980), where the length

scale, de, and time scale, t.f, used to obtain these non-dimensional quantities are the
same as those introduced in Section 1.2. The non-dimensional transition position at

which the gravity current started to change from an inertia-buoyancy dominated regime
to a viscous-buoyancy dominated regime, x;*, was indicated in Figure 2.3. This

transition position was recorded for each experiment.
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The non-dimensional constant front speed, V¢*, in the present study is shown as a
function of Reynolds number, Re, in Figure 2.4. The reference velocity scale, Uy, used
to normalize V¢ was introduced earlier in Section 1.2. Keulegan (1958) observed that the
decrease in the salinity of the front with travel is small when the source salinity is large.
This is because some of the mixed fluid left behind by the head is entrained into the
current just behind the head and causes gradual dilution of the fluid in the head. For
reduced gravity, g', less than 20 cm/s2, the front velocity fluctuates as well as decreases
very quickly with distance from the source. The same phenomenon was also observed in

the present study. As a result, the data presented in this investigation will be limited to
20 cm/s2 < g'. It was found that V¢* increases with Re when Re < 1000 in a channel with

an upstream exit. The variation of V¢* was also found to be large within this range of
Reynolds number. This variation in V¢* can be attributed to the changes in the non-
dimensional channel height, H*, and the non-dimensional inlet length, wo*.  The
combined effects of H* and wy* on V¢* will be discussed in detail in Chapter 3.

On the other hand, this variation decreased dramatically with increasing Re. The
average value of V¢* for 1000 < Re was found to be 0.89 £ 0.02 in this case. It is

interesting to note that although the average value of V¢* found in the present study is

larger than the average value of 0.70 found by Keulegan (1946) and smaller than the
value of 1.06 found by Wood (1965), it is approximately the average of the two.

It should be noted that the working fluid used by Wood (1965) was injected in the
streamwise direction into the ambient fluid through a slot. Thus, there was initial
streamwise momentum, and the flow was not subjected only to buoyancy force when it
first started. As a result, the quantitative results obtained by Wood are expected to be
different from those in the present investigation. On the other hand, the specific
dimensions of the apparatus used by Keulegan (1946) were not disclosed. Thus, no
arguments can be put forth to explain the discrepancy between the experimental results
obtained by Keulegan and the present study, although it is suspected that the geometry of
the channel, especially the length of the inlet, is the primary reason behind this
discrepancy. Details on how the geometry of the channel affects the front speed will be
discussed in Chapter 3.

Using the value of the non-dimensional head height, h*, found in the present
study, hy* = 1.59 £ 0.19, shown later in Section 2.4.2, the average Froude number of the
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\%
head, Fr = \/——'-—fh— was found to be 0.706 in this study. Keeping in mind the uncertainty
g m

in the measurement of hy*, this result is in good agreement with the experimental results

obtained by Keulegan (1958), who found that for 840 < Re, Fr = 0.705, and Middleton
(1966), who found that Fr = 0.66 at Re = 2500.

It should be noted that the variation in V¢* for Re < 1000 is due to changes in the
non-dimensional channel height, H*, and the non-dimensional inlet length, wo*. Since
the geometry of the channel, H and wy, in particular, are fixed in the experiments, the
ratio H¥/wg* is a constant. It was found that at a fixed Re, V¢* decreases with increasing
H*. It will be shown in Chapter 3 that this result agrees with the model to be presented
in that chapter. According to that model, V¢* increases with H* but decreases with wgp*.
It will be shown in Chapter 3 that wy* has a larger impact on V¢* than H*. As a result,
for a fixed ratio of H*/wg*, wg* increases when H* increases, and thus V¢* decreases

with increasing H*.

The non-dimensional constant front speed for gravity currents in a horizontal
channel with a downstream exit is also shown in Figure 2.4. As in the case of an
upstream exit, the value of V¢* does not appear to depend strongly on Re for 1000 < Re.
The average value of Vg* in this case is 0.90 £ 0.04, which is within one standard
deviation of the value for the case of an upstream exit. As a result, it is concluded that
within the range of the parameters used in the present experimental study, the value of
V¢* does not depend significantly on the exit condition. This observation also agrees
with that of Keulegan (1946), who found that when the opposing ambient velocity is less
than 30% of the current velocity, the current velocity in such a case is larger than 99% of
the current velocity in a stationary ambient environment.

Figure 2.5 shows the position of the reflected bore, x,, in Test 237 as a function

of time from start, t. As indicated in the last section, the number of data points which
could be taken for the position x, was restricted by the number of markers placed along

the channel as well as the ability to record the passage of the reflected bore at the specific
markers. As a result, the number of data points that were taken in each experiment for x,

was much less than that for the front position of the current, x;. However, it can be

observed in Figure 2.5 that the velocity of the reflected bore was fairly constant for most
of the time as the bore advanced in the upstream direction. Figure 2.6 shows the non-
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dimensional speed of the reflected bore, V *, as a function of Reynolds number. From
the figure, the non-dimensional speed of the reflected bore does not vary significantly
with Reynolds number. For 1000 < Re in a channel with an upstream exit, V* = 0.74
0.04. For the lone experiment in a channel with a downstream exit, it was found that V*
= 0.76, which agrees with the result found for gravity currents in a channel with an
upstream exit. Note that the speed of the reflected bore is 83% of the speed of the
constant front speed of the gravity current, which is in good agreement with the result
obtained by Heskestad and Hill (1987) for smoke movement in a long corridor.

As mentioned earlier, the transition position at which the gravity current changed
from an inertia-buoyancy dominated regime to a viscous-buoyancy dominated regime, x;,

was recorded for each experiment. The value x/R;, where Ry = Q¥/[(g' Q)!3v,], is
shown in Figure 2.7 as a function of Reynolds number. Chen (1980) proposed that the
ratio x/R; has a constant value of 0.133 regardless of the Reynolds number for a plane
gravity current with continuous release. However, it can be seen in Figure 2.7 that x/R

is instead a decreasing function of Re. This discrepancy is due to the assumption by
Chen (1980) that a current changes abruptly from an inertia-buoyancy regime to a
viscous-buoyancy regime, while in the present experiments, the transition from one
regime to another is more gradual as observed in Figure 2.2. For 1000 < Re, the data
points from the experiments was found to congregate along a line with a slope of -1 in
the logarithmic-logarithmic plot. This suggests that if the value of (x//Rj)Re is plotted
against Re instead, it would be constant for 1000 < Re. Since by definition Re = Q/v,
the parameter (x/Rj)Re = x(/d..f = xi*. As a result, the corresponding plot of x;* as a
function of Re is shown in Figure 2.8. The variation of the value of x;* at a fixed value
of Re is significant for small Reynolds number, and x.* increases with increasing H*.
The reasons used earlier to explain the variation in V¢* may also be valid in this case.
The effects of the three-dimensional front and of the side walls may also have significant
impact on the variation of the value of x;* when Re < 1000. For 1000 < Re, however,

the variation of x.* is less significant, and it was found that x;* =88 £ 11.
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2.3.3 Experimental errors

Since the tape measure used to identify positions along the channel has a
resolution of 1 mm, the experimental error due to this measurement is less than about
0.1% in general and is negligible compared to the distance travelled by the current front.

On the other hand, although the hydrometers used to measure fluid densities are
accurate up to 0.0005 g/cm3, any error in the density measurements is magnified because
it is not the fluid densities but the difference in the densities that is important, since it is
this difference in densities that provides the driving buoyancy forces. As a result, the
errors in density measurements may contribute to relatively large errors. For example, at
a reduced gravity of g' = 20 cm/s2, the error due to density measurements can be up to
5%. Therefore, all experiments were carried out at 20 cm/s2 < g'.

Another major source of error is the flow rate regulated by the flow meter. As
was mentioned in Section 2.2, the flow meter can be accurate up to 6 cm3/s. As a result,
the percentage error increases with decreasing flow rate. For example, at Re = 1000, Q =
10 cm?2/s. Since the channel width is 15 cm, the percentage error due to the error in
measurement is up to 4%. Thus, for experiments with small values of Q, a smaller flow

meter which has a higher resolution of 1.5 cm3/s was used.

Fortunately, owing to the cube root in the expression for the velocity scale, U,

the actual contributions by the errors in the measurements of g' and Q to the experimental
errors in front position measurements are reduced. For example, a 3% error in g' will
only lead to roughly a 1% error in the front velocity.

However, the error introduced in the starting process is intangible. It was
described in Section 2.2 that the working fluid was initially introduced at a very slow rate
to prevent premature mixing. The supply was then increased suddenly to the desired
value when the working fluid had reached the floor level. Since the valve to the flow
meter was manually controlled, repeatability of the process was less than desirable.

It should also be pointed out that the influence of this error in the determination
of the constant front speed is minimal. This is because initial effects are not important
during the principal stage which is dominated by inertia and buoyancy forces.
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2.4 Measurements of the depth of the current
2.4.1 Experimental procedures

As mentioned in Section 2.3.1, the salt or sugar solution which served as the
working fluid was mixed with extra concentrated Kriegrocine blue powder before each
experiment for visualization purpose. Although one teaspoon of the powder was enough
for one hundred liters of the solution for the purpose of identifying the front of the
current, the mixed layer between the working and the ambient fluid was not well
illustrated. An additional teaspoon of the Kriegrocine powder solved this problem. The
mixed layer could then be seen in a faint blue color, while the current was represented by
a dark blue color. Moreover, fluorescent lights were lit behind the rear side wall of the
channel to enhance the contrast of the color of the fluids inside the duct. The interface
between the current and the mixed layer was then well illustrated. However, by changing
the amount of dye used per liter of solution, the darkness of the color of the mixed layer
could be changed. As a result, the darkness of the color of the mixed layer would not
provide accurate quantitative information of the concentration of solute in the layer.
Samples drawn from the mixed layer, using the technique which will be described in
Section 2.6.1, revealed that the density difference between the mixed layer and the
ambient fluid was less than 20% of the density difference between the working fluid and
the ambient fluid.

Video cameras were again used to record each experiment. However, instead of
being deployed on movable tracts and allowed to follow the front of the current, each
camera was left stationary and allowed to focus on a fixed position of the channel
throughout an experiment. As a result, the depth of the current at various locations along
the channel could be recorded simultaneously. Transparent rulers with resolution of 1
mm were secured vertically on the channel at the locations of interest to provide
reference length scales on the recorded video frames. By noting the changes in the depth
of the current at a fixed position along the channel with time elapsed, as discussed in
Section 2.3.1, the time history of the depth of the current at a specific distance from the
source could be found. In the present study, experiments were only carried out in a

channel with an upstream exit.
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2.4.2 Experimental results

As described in the last section, the current thicknesses at various locations were
recorded when an experiment was carried out. Figure 2.9 shows an example, Test 604,
of the changes in the non-dimensional depth of the current, h*, at x* = 37 as non-
dimensional time, t*, progressed. The first spike of the curve represents the raised head
of the gravity current when the front arrived. The depth of the following flow was
shallower than the maximum head height. The depth of the following current then
increased with time, first very rapidly but then at a diminishing pace. At t* = 700, the
depth of the current suddenly increased at a rapid rate. This second rapid increase in h*
represents the arrival of the reflected bore. The subsequent fluctuations of the depth of
the current signify the wavy nature of the reflected bore.

After the front had just passed a specific location, the depth of a gravity current
increased rapidly. This rate of growth in thickness decreased considerably thereafter
until the arrival of the reflected bore. If this increase in depth is due to the increase in the
displacement thickness of the boundary layer that results strictly from the advancing
front of the current, the solution for the Blasius problem can be used. The displacement
thickness, 9', at a distance x' from the leading edge of a flat plate in Blasius problem, was
given in White (1986) to be

1.72
Rey

2.1

>.|o2

<l

where Re, is the Reynolds number based on x', a uniform free-stream velocity, Uy,, and
the kinematic viscosity of the current, V,. If a transformed coordinate which travels

with the front of the current is used, it is obvious that the displacement thickness at the
front of the current behaves like that at the leading edge of a flat plate. Using the
assumption that the velocity in the fluid is fairly constant and not significantly different
from that of the front velocity, it can be deduced from equation (2.1) that

&'=1.721 /Vw (t-tp) 2.2)

where t() is the time when the front of the current arrived at the location of interest. If the

increase in depth of the current at a specific location over time was strictly due to the
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increase in boundary layer thickness due to the advancing front, equation (2.2) can be

rewritten as

h* =hy* + 1.72 -\/t* - to* (2.3)

where hg* is the initial current depth just after the head had passed that location.
Equation (2.3) represents the model first proposed by Chobotov (1987) to explain the
growth in current thickness. However, it will be shown in Chapter 3 that an alternative

model better explains the phenomenon.

Figure 2.10 shows the experimental data from Test 329. The non-dimensional
depth of the gravity current at x* = 26 in that experiment was plotted against the non-
dimensional time from start, t*. A curve was fitted to the data points after the head had
passed but before the arrival of the reflected bore. The following equation was used for

the curve fit:

h* = ho* + ¢ ft - to* . (2.4)

The deviation of the data points from the fitted curve is less than the experimental
error due to the measuring techniques. If the argument above is valid, the value of ¢,

should be 1.72. Note also that in addition to the non-dimensional initial current depth,
hy*, other symbols were also defined in Figure 2.10. The non-dimensional head height is

denoted by h*, while hy* represents the non-dimensional maximum height of the first

wave of the reflected bore. The non-dimensional depth of the current just before the
arrival of the reflected bore is denoted by hg*. Since the amplitude of the wave of the

reflected bore was large in some experiments, hy*, which is defined as the non-
dimensional mean height of the first wave, may be more meaningful in comparing results

of different experiments.

The non-dimensional initial current depth, hy*, obtained by equation (2.4) from

various experiments was found not to depend significantly on the Reynolds number. It is

shown in Figure 2.11 as a function of the non-dimensional distance from the leading
edge, x*. Despite the scattering of the data points as a result of the curve fit, hy* clearly

decreases with increasing value of x* according to the expression hp* = -1.4x10-3 x* +

0.85. Due to the vast number of data points being used in obtaining the least square
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curve, shown as the dashed line in the figure, the position of the line does not change
significantly even if the few data points which deviate greatly from the least square fit
were excluded.

In contrast to the behavior of hy*, the constant for the curve fit in equation (2.4),
C1, does not depend on x*. Figure 2.12 shows the value of ¢ as a function of Reynolds
number. The value of c; is governed by the expression ¢; = 5.9x104 Re + 0.91. Since it
was determined that ¢; = 1.72 if the increase in depth of the current is strictly due to the

increase in boundary layer thickness resulting from the advancement of the front of the
current, it is concluded that other factors must also play major roles in the spatial and
temporal changes in h*. These factors will be studied in Chapter 3, and it will be shown
that the most prominent factor is the growth in boundary layer thickness from the leading
edge of the bottom wall.

When the depth of a gravity current at various locations were recorded as time
progressed, the current thickness at a specific time at the various locations could be
obtained. Figure 2.13 shows an example of the variation of the depth of a gravity current
with the distance from the leading edge at non-dimensional time t* = 200. The depth of
the current dropped rapidly between the upstream end wall and the leading edge of the
bottom wall of the duct. The current developed a weak internal jump just downstream of
the leading edge of the bottom wall, and then the depth of the current continued to
decrease. This decrease in h* with respect to x* was due to the continual increase in the
boundary layer thickness in the current, together with the decrease in the fluid velocity at
any spatial location with time. This will be further discussed in Chapter 3.

Although the head height, hy, is not well defined due to the turbulent mixing of

ambient and working fluids in the head as shown in Figure 1.1a, an attempt was made to
investigate the dependency of h; on x* or Re. Figure 2.14 shows the non-dimensional
head height, h{*, as a function of x*. It can be observed that h{* depends on x* only
weakly, if at all, for 15 < x* < 150. The average value of h;* found in the present study
is 1.59 £0.19. No dependency of h;* on Re was observed. It can also be shown that h*
has at most a very weak dependency on the channel height, H*, for 5 < H* < 12, or
alternatively, for 0.11 < h;*/H* < 0.36. The ratio between the head height and the depth
of the following current, h;*/hy*, can be deduced from the results presented above. The
average value of hy*/hy* increases from 1.93 at x* = 20 to 2.48 at x* = 150. This is in
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good agreement with the average value of 2.16 found by Keulegan (1958) and not far
from the value of 1.8 given by Wood (1965). This is also in good agreement with the

experimental results obtained by Simpson and Britter (1979), although they plotted the
results as a function of hy*/H* instead of x*, which is a more fundamental parameter.

On the other hand, the non-dimensional mean height of the first wave of the
reflected bore, hy*, displays a decreasing trend with respect to increasing non-

dimensional distance from the source, x*, in Figure 2.15. The value of hy* can be given
by the expression hy* = -3.4x10-3 x* + 2.43, which is represented by the dashed line in
the figure. It can also be shown that hy* is at most a very weak function of H* within the
range 5 <H* < 15. Alternatively, the non-dimensional maximum height of the first wave
of the reflected bore, h3*, can also be used as the means to characterize the reflected
bore. As shown in Figure 2.16, h3* is also a decreasing function of x*, and is given by
the expression h3* = -4.0x10-3 x* + 2.66, which is represented by the dashed line in
Figure 2.16. No significant dependence of either h,* or h3* on Re can be observed.

The variations of hy* and h3* are direct consequences of the decreasing depth of

the current, h*, as a function of the distance downstream of the leading edge, x*. When
the reflected bore advanced upstream, it acted as if it was moving up a slope. As a result,

the total height of the reflected bore increased when it moved toward the upstream end of
the duct. However, by observing the mean amplitude of the reflected bore, hy* - hy*, at

various locations, x¥, it was noticed that hy* - hy* is at most a very weak function of x*.
Its dependency on x* can be described by the expression hy* - hy* = -3.0x10-4 x* + 0.77
and is only one-tenth of the dependency of hy* on x*. On the other hand, as shown in
Figure 2.17, hy* - hy* = 1.1x10-4 Re + 0.53, which is represented by the dashed line in
the figure. Although the coefficients in the two expressions for hy* - hy* in terms of x*

and in terms of Re are similar, the range of Re is roughly two orders of magnitude as that
of x*. As a result, the value of hy* - h4* depends strongly on Re but at most weakly on

x*,

A similar observation was made on the amplitude of the reflected bore, hg* - hy*.

Its value shows a similarly very weak dependency on x*, and can be described by the
expression hs* - hy* = -3.0x104 x* + 1.01. On the other hand, it can be related to the

Reynolds number by the expression h3* - hy* = 2.0x104 Re + 0.51, which is shown as

the dashed line in Figure 2.18.
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2.4.3 Effects of the interfacial shear on a gravity current

Figure 2.19 shows the time varying non-dimensional depth of two gravity
currents at x* = 27 with Re = 1250, d;of = 1.87 cm, and t¢ = 0.173 s. The only
difference in the two experiments is between the kinematic viscosities of the ambient
fluids used in the experiments. Although the kinematic viscosity of the ambient fluid in
one of the two experiments is more than double that in the other experiment, the depths
of the two currents were found to be within experimental error of each other. As a result,
it is concluded that the interfacial shear does not contribute strongly to the continual
increase in the thickness of a gravity current, and thus can be ignored in the modelling
effort to be presented in Chapter 3.

However, the spreading rates of the same two currents were found to be different.
The gravity current in the less viscous ambient environment was found to have a constant
front speed, Vg*, that is 6% larger than that in the experiment with a more viscous
ambient fluid, as shown in Figure 2.20. It is thus concluded that shear between the head
and the ambient fluid slightly affects the propagation speed of the front. However, since
it was shown in Figure 2.19 that the depth of the current at any specific position was not
affected, it can be concluded that the contribution of the moving front to the boundary
layer thickness is at most important only to the region of the current close to the front. It
will be shown in the model to be presented in Chapter 3 that the continuous increase in
the thickness of a gravity current is due to the need of a growing pressure head that is
needed to overcome the ever increasing drag on the bottom wall and is not due to a
boundary layer growing from the front of the current. The conclusion above is thus in
good agreement with the results obtained from the model.

2.4.4 Experimental errors

Experimental errors involved in current depth measurements are larger than those
in front velocity measurements primarily because the distance travelled by a current is
two orders of magnitude larger than the current depth. As a result, an error of 1 mm in
depth measurement will typically represent an error of 5%.
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In addition, the effects of the random errors in the front position measurements
are reduced because a linear least square fit was used over a large number of points to
obtain the constant front speed. On the other hand, there is no such advantage in dealing
with the random errors in the current depth measurements.

Finally, the effects of an error in Q are doubled in the depth measurements when
compared to the front position measurements because the length scale, d.r, depends on

Q273 while the velocity scale, Up.g, only depends on Q1/3,

2.5 Measurements using hydrogen bubble technique

2.5.1 Experimental procedures

In some experiments, the working fluid was not mixed with a dye before it was
used. Instead, hydrogen bubbles were generated during those experiments for flow
visualization purposes. To generate the hydrogen bubbles, a tungsten wire with a
diameter of one-thousandth of an inch was placed normal to the flow direction in the
channel at a fixed position from the leading edge of the bottom wall and midway
between the front and rear side walls to minimize any effects due to the side walls. One
end of the wire was connected to an electronic circuitry which supplied square electrical
pulses of 2.5V * 2.5V across the electrodes. This circuitry was identical to the one
developed by Miller (1987), who gave a comprehensive description of the circuitry. The
tungsten wire served as the cathode of the circuit. A conducting rod was placed far
downstream of the tungsten wire in the channel. It was connected to the other end of the
circuit and served as the anode. The working fluid then closed the circuit. A more
general description on the utilization of hydrogen bubbles as a flow visualization aid can
be found in Schraub et al. (1965).

During half of the cycle of a square electrical pulse, the voltage between the
electrodes was non-zero. Electrolysis thus occurred around the tungsten wire, and
hydrogen bubbles were formed. These bubbles were then swept away from the wire by
the moving fluid in the gravity current. Since the size of a bubble is of the same order as
the diameter of the wire, and the vertical velocity of a bubble induced by buoyancy
forces increases with increasing bubble diameter, the diameter of the tungsten wire must
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be small in order to obtain good quantitative results. When the vertical velocity of a
bubble is small when compared to the horizontal velocity of the current fluid around the
bubble, the bubble will be moving practically at the same speed as the surrounding fluid
and can thus serve as a marker of the motion of the fluid. As a result, a thin tungsten
wire of one-thousandth of an inch diameter was used to generate small bubbles, so that
the bubbles could serve as accurate markers of the motion of the current, and in turn
good quantitative data about the velocity profile of the gravity current could be obtained.

During the second half of the cycle of the square electrical pulse, the voltage
across the electrodes dropped to zero, no bubbles were generated during this period of
time. By supplying continuous square electrical voltage pulses, sheets of bubbles were
formed intermittently. As a result, the time varying velocity profile of a gravity current
at a specific location could be found by first measuring the distance between the
positions of the leading edges of two bubble sheets at each of several vertical distances
from the bottom wall and then multiplying this distance by the frequency of the electrical
pulses. This was achieved by digitizing a single video frame and then recording the light
intensity of the pixels in an array. Since hydrogen bubbles reflect more light than the
working fluid, the leading edge of a bubble sheet at any particular distance from the
bottom wall could be found automatically by locating the position of the large gradient of
light intensity in the array.

As in previous experiments, the experiments involving the hydrogen bubble
technique were recorded by video cameras, and experiments were carried out only in a
channel with an upstream exit. The reference lengths on the video frame in the normal
and streamwise directions were predetermined by placing an object of known dimensions
inside the channel filled with the ambient fluid before an experiment. A sheet of light
originating from a point source was shone in a plane parallel to the streamwise direction,
through the bottom wall of the channel, onto the bubbles in order to provide the contrast
necessary for good video records of the bubbles. It was observed that when salt solution
was used as the working fluid, most of the bubbles were generated inside the current
because salt solution is much more conductive than fresh water, the fluid most often used
as the ambient fluid. This is illustrated in Figure 2.21a.

Due to the difference in refractive index between the working fluid and the
ambient fluid, most of the light was reflected or refracted from the interface. Only a
small amount of the light could penetrate the interface undisturbed and illuminate the
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bubbles in the layer of ambient fluid. As a result, good quantitative measurements on the
velocity profile of the layer of ambient fluid could not be obtained simultaneously with
measurements on the velocity profile of a gravity current.

It was described earlier that mixed fluid was left behind the head and on top of
the current. Inside the mixed layer, the speed of the fluid in the streamwise direction
decreased from that of the current fluid to zero with increasing distance from the bottom
wall. The speed of the fluid then increased with distance away from the bottom wall
until it matched the speed of the layer of ambient fluid and moved in the opposite
direction to that of the current. As a result, the speed of the fluid inside the mixed layer
was smaller than that in the current and might not be large when compared to the vertical
velocity of the bubbles due to buoyancy. As a result, the vertical velocity of the bubbles
might not be negligible. The bubbles could not serve as accurate markers of the fluid,
and thus quantitative data could not be obtained. However, valuable qualitative
information could still be obtained from the motion of the bubbles in this layer, as well
as in the layer of ambient fluid. For example, it was observed that none of the bubbles
penetrated from the ambient layer through the interface into the current. It is thus
concluded that no fluid is entrained from the ambient layer into the current, which is in
good agreement with Ellison and Turner (1959).

There are times, after the head had passed but before the arrival of the bore, when
the boundary layer was lifted from the bottom wall. An example of this phenomenon is
shown in Figure 2.21b. However, the boundary layer reattaches very quickly, usually
within 0.1 s. A rough estimate of the Reynolds number, Reg, based on the displacement
thickness, &', for the particular example shown in Figure 2.21b was found to be about
300. This value is much lower than the critical Reynolds number at which transition
occurs (Schlichting 1968). As a result, it is concluded that this lifting of the boundary
layer is not due to turbulence. Instead, it may be due to unstable disturbances, which was

discussed by Schlichting.

On the other hand, the boundary layer is shown in Figure 2.21c to separate at the
arrival of the reflected bore. In this figure, reversal of flow direction can be seen near the
bottom wall. This presents a problem to the model to be shown in Chapter 3, which uses
an integral method. Nevertheless, except for some secondary flows, the fluid
downstream of the reflected bore can be assumed to have stopped moving in the

horizontal direction.
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An unexpected benefit that accompanied the problem regarding the change in
refractive index across the interface was the availability of quantitative information about
the position of the interface. As mentioned earlier, a significant amount of the light was
refracted from the interface. Due to the three dimensionality and waviness of the
interface, some of the light refracted from the interface was focused and thus bright spots
were formed. As a result, the interface was recorded on each video frame as a bright but
yet thin stripe. By noting the distance of this stripe from the bottom wall, the time
varying depth of the current at a fixed position could be accurately determined.

2.5.2 Experimental results

In the experiments in a channel with an upstream exit, it was noticed that the
ambient fluid was quiescent before the arrival of the front of the gravity current. This is
in good agreement with the observations of Keulegan (1958). Both the ambient fluid and
the working fluid were found to be near quiescent downstream of the reflected bore. It
was also found that the zero velocity point, the point at which the flow was neither
moving upstream nor downstream, lay above the current. The portion of the flow in the
shear layer at which the largest velocity gradient occurred was observed to be above the
gravity current. This is supported by Figure 2.22, which shows the velocity profile at x*
=52 and t* = 126 for Test 395 with Re = 2105. A boundary layer was observed to exist
at the bottom wall, and the estimated thickness of the boundary layer is denoted by d.
The interface between the current and the ambient fluid was at y* = 1.03, where y* is the
non-dimensional distance above the bottom wall. By definition, the interface height is
identical to the depth of the current, h*. The flow is uniform between the interface and
the boundary layer. The uniform velocity in this portion of the flow is denoted as the
current velocity, Uy*. Since the velocity gradient at the interface is small when
compared to that at the bottom wall, the viscous drag due to the interfacial shear is not
significant when compared to the viscous drag due to the boundary layer at the bottom
wall. This observation supports the conclusion drawn in Section 2.4.3, which stated that
interfacial shear contributed little to the growth in current thickness.

As mentioned in the last paragraph, the non-dimensional depth of the current, h*,
is by definition identical to the interface height. The value of h* at x* = 52 in Test 395,
using hydrogen bubbles as the flow visualization aid, was determined for various time.
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This time varying non-dimensional depth of the current was then compared in Figure
2.23 to that obtained in Test 329, which was conducted under very similar conditions but
in which Kriegrocine blue dye was used as the flow visualization aid. The values of h*
in the two tests are observed to be within experimental errors. As a result, it is concluded
that both hydrogen bubbles and blue dye can serve as flow visualization aids and can
provide good quantitative information for the determination of h*.

Figure 2.24 shows both the time varying non-dimensional depth of the current in
Test 395 as well as the corresponding non-dimensional boundary layer thickness, &%*.
The boundary layer thickness was observed to fluctuate during the experiment. This
fluctuation might have been caused by neutral disturbances (Schlichting 1968). It might
also have been caused by the presence of longitudinal convection cells similar to those
observed by Chobotov (1987) in the thermal boundary layer of a gravity current with
heat transfer to the boundary. In addition, each value of 8* was obtained by observation
from a velocity profile plot similar to Figure 2.22. As a result, the error introduced in the
estimation of the boundary layer thickness is not negligible. Nevertheless, the figure
shows that the value of &* at x* = 52 fluctuated around 0.25 long after the head had
passed. If the boundary layer is developed strictly from the moving front according to
equation (2.4), the boundary layer thickness should have kept rising with time. As a
result, the development of the boundary layer had to be due to the leading edge of the
bottom wall of the channel. However, in a steady, uniform flow as in the Blasius
problem, the value of 8* would be 0.75, which is much larger than the measured value in
the experiment. It will be shown in Chapter 3 that the effects of the increasing current
depth, h*, and the correspondingly decreasing current velocity, Uy, *, combined to keep
the boundary layer thickness at the lower measured value. Since the boundary layer
thickness is not an ever increasing function of time, the continuous increase in h* at a
location x* must be a combination of the increase in &* at the particular location and the
ever increasing pressure head needed to overcome the increasing drag on the bottom wall

downstream of x*.

The corresponding non-dimensional uniform velocity of the current, Uy*, found

in Test 395 is shown in Figure 2.25 as a function of non-dimensional time, t*. The

current velocity decreased continuously with time following the expression
U, * =-1.3x10-3 t* + 1.13. Since the front of the current was found in Section 2.3.2 to

spread at a non-dimensional speed of 0.89, the fluid near the front of the current was
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overtaking the front of the current and mixed with the ambient fluid. The mixed fluid
was then left behind the head and on top of the following current. According to the
above expression, the velocity of the fluid just behind the head was 18% faster than the
front speed in this particular experiment, and is in good agreement with the results of
Britter and Simpson (1978).

2.5.3 Experimental errors

In the experiments using hydrogen bubbles as the flow visualization aid, each
video frame was digitized and the light intensity recorded. Each pixel represents roughly
0.018 cm in the horizontal dimension and 0.014 cm in the vertical dimension. As a
result, the location of a position can be measured accurately. This is illustrated by the
excellent agreement between the current depth measured using this technique and that

using the blue dye as the flow visualization aid.

On the other hand, since the fluid in the boundary layer moves at a very low
speed, the bubbles may not represent accurate markers of the flow field, as discussed in
Section 2.5.1. As a result, caution must be used in interpreting results related to the

boundary layers.

In addition, the results concerning the boundary layer thickness as shown in
Figure 2.24 was manually determined by observing velocity profiles similar to that in
Figure 2.22. As a result, the random error in the determination of the boundary layer
thickness will be significant. The periodical lifting of the boundary layer may also
contribute to the fluctuation of the experimental data deduced using this measuring

technique.

It was also mentioned in Section 2.5.1 that velocity profiles were obtained by
observing the distance between the leading edges of two consecutive bubble sheets. Due
to an uneven light source and the scatter of light by the bubbles, the light intensity at the
edge of a bubble sheet has a lower gradient with respect to streamwise distance than
desirable. In addition, the leading edge was determined automatically by software using
a pre-determined threshold of light intensity. As a result, the velocity profiles deduced
are not as smooth as the raw data shown in Figure 2.21a.
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2.6 Measurements of fluid densities

2.6.1 Experimental procedures

In two experiments, the supply of working fluid into the channel was stopped as
soon as the front of the current hit the wall at the downstream end of the channel. After
the resulting wavy motion of the interface had subsided, the thicknesses of the layer of
ambient fluid, the mixed layer, and the layer of working fluid were measured and the
volume of each layer was deduced. Samples of fluids were taken from the three layers.
The density of each sample was then measured by a calibrated hydrometer. These data
provided valuable information about the amount of mixing during the experiment.

2.6.2 Experimental results

It was found that in each of the two experiments, the density of the fluid sample
taken from the layer of ambient fluid was, within the accuracy of the hydrometer, the
same as the original density of the ambient fluid. Similarly, the density of the sample
taken from the layer of working fluid was the same as the density of the working fluid
introduced into the channel. However, density measurement on the sample taken from
the mixed layer revealed that its density was between those of the ambient fluid and the
working fluid. In the two different experiments, the density differences between the
mixed fluid and the ambient fluid were 8% and 18%, respectively, of the corresponding
density differences between the ambient fluid and the working fluid. Since the density of
the fluid inside the current was the same as the density of the working fluid introduced,
most, if not all, of the salt in the mixed layer was due to mixing at the front of the current
and was not due to interfacial mixing or diffusion. As a result, by assuming a value of
roughly 0.7 for the non-dimensional initial current depth, hg*, throughout the
experiments, it was deduced that the fluid velocities just behind the front of the currents
were 16% and 17% faster than the respective velocities of the front of the currents. This
result is in good agreement with the result obtained in the hydrogen bubble experiments
described in Section 2.5.2.
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Figure 2.21a Hydrogen bubbles as the flow visualization aid.

Figuare 2.21b Lifting of boundary layer.
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Figure 2.21c Separation of boundary layer at the arrival of the reflected bore.
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CHAPTER 3

MODELING OF ADIABATIC GRAVITY CURRENTS IN A
HORIZONTAL CHANNEL

3.1 Introduction

When a fluid is introduced into an ambient fluid of lower density, it will flow
underneath the ambient fluid due to gravity. This flow of one fluid into another fluid of
different density is known as a gravity current. Gravity currents are so frequently
encountered that one may overlook their presence. They occur both naturally and
artificially. Examples of gravity currents include sea-breeze fronts, avalanches, oil spill
in the ocean, waste water discharge in a river, and smoke movement in a corridor.

In this investigation, a model is presented for gravity currents in a horizontal
channel in order to better understand smoke movement in a corridor. To avoid various
complicated problems arising from a heat-transferring gravity current, an adiabatic model
is developed in which the effects of heat transfer are neglected. By first understanding
the role of each parameter with the absence of heat transfer, this model can then form the
basis for a more comprehensive model for a heat-transferring gravity current.

3.2 Description of the model

In this adiabatic model for gravity currents, an enclosed horizontal channel is
filled with an ambient fluid of density p,. A heavier fluid of density p,, is introduced
vertically upward against gravity at a volumetric influx rate per unit width Q. It passes
through a rectangular opening, referred to as the inlet, of length wy in the floor of the
channel. The channel has a total length of L+w with a squared cross-sectional height H.
The heavier fluid, which is also known as the working fluid, will spread away from the
inlet along the bottom wall of the channel due to the density difference between the two

fluids. This layer of working fluid, referred to as the gravity current, will attain a depth
h, a free-stream velocity or uniform velocity Uy, and a boundary layer thickness 9, due
to the drag on the bottom wall. The farthest downstream location of the current, X¢, also
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known as the front of the current, advances downstream at a velocity Xy, which is also

known as the front velocity or front speed. Moreover, the flow in this model is assumed
to be incompressible. As a result, ambient fluid must be displaced from the channel at
the same volumetric flow rate as the influx of the working fluid. This excess fluid is
removed through a rectangular opening known as the outlet, of length wy, on the top wall
of the channel at the same end from which the working fluid is introduced. This end of
the channel will be referred to as the upstream end, while the opposite end of the channel
is known as the downstream end. The ambient fluid is assumed to be quiescent far away
from the approaching gravity current (Keulegan, 1958), but it is assumed to be moving
with a uniform velocity U,, called the ambient velocity, at streamwise locations where
the front of the current has already passed. A schematic diagram of the channel is shown
in Figure 3.1. Note that all the depths and velocities associated with the fluids are
functions of both time and spatial positions.

Since the width of the channel is constant and the influx and outflow conditions
can be assumed to be uniform across the width of the channel, the flow can be assumed
to be two-dimensional when the effects on the flow due to the side walls of the channel
are small. As shown in Figure 1.1a and Figure 1.2a, the billows and the lobes and clefts
observed by Simpson (1969) are very complicated. To simplify the modelling effort,
they are left out of the model. However, it will be shown that their absence does not alter
the essence of the flow. As a result, the partition between the front of the current and the
ambient fluid is sharp and vertical. A rectangular coordinate system (x,y) is then
sufficient to identify spatial positions in the channel. The x-coordinate is measured in the
streamwise direction from the leading edge of the bottom wall of the channel, while the
y-coordinate is measured vertically upward from the bottom wall. This coordinate
system is illustrated in Figure 3.1. The working fluid is being introduced into the
channel at a volumetric flow rate per unit width Q. The density of the working fluid and

that of the ambient fluid are p,, and p,, respectively, with p, < py,. The corresponding
kinematic viscosities are V,, and V,, respectively. The acceleration due to gravity is

denoted by g.

Entrainment is assumed to be negligible in this model because of the stably
stratified configuration. This assumption is made plausible by a number of experiments
such as those of Ellison and Turner (1959). Diffusion across the interface is also

assumed to be negligible. Although these assumptions are valid when both the working
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and the ambient fluids are liquids, they might have to be modified when the fluids are
gases because the Schmidt numbers for liquids are about three orders of magnitude larger
than those for gases. The Schmidt number is defined as the kinematic viscosity of a fluid
divided by the diffusion coefficient of the same fluid. Since the kinematic viscosities of
gases are roughly ten times larger than those of liquids while the diffusion coefficients of
gases are roughly ten thousand times larger than those of liquids, the Schmidt numbers
for liquids are about three orders of magnitude larger than those for gases.

These points are made clear by considering the following example. For a 100 kW
fire in a room connected to a 2 m wide corridor, the volumetric flow rate of smoke per
unit width of the corridor, Q, was found to be roughly 104 cm?/s (Chobotov 1987).
Assuming a bulk overheat of 50 K for the heated smoke, the reduced gravity, g', is 165

cmy/s2 and the kinematic viscosity of the smoke, V,,, is about 0.2 cm2/s. As a result, the

input Reynolds number of the current, Re = Q/V,,, is roughly 5x104. In addition, the
length scale, d g, the time scale, tr, and the velocity scale, Uyey, for the gravity current

as defined in Section 1.2 are 85 cm, 0.72 s, and 118 cm/s, respectively. As a result, if the
length of the corridor, L, is 40 m, the non-dimensional corridor length, L*, is about 47,
and the current is either inertia-buoyancy dominated or at most in the beginning of the
transition to the viscous-buoyancy regime. The total non-dimensional time for the front
of the gravity current to reach the downstream end wall of the corridor and for the
reflected bore to reach the fire room is therefore less than 100.

To look at the diffusive flux across the interface in the example mentioned above,
the effects of the horizontal motion of the fluids are neglected to simplify the analysis.
The Schmidt number of the heated smoke is assumed to be about 0.7. As a result, the
concentration of the smoke gases at a non-dimensional depth of 0.07 below the interface
is found to be 10% of that in the current, while the mass fraction of the smoke that has
crossed the interface is only 0.7% of the total mass in the current.

This result is not very different from that of a case with the same non-
dimensional input parameters but with both fluids being liquids. The Schmidt number in
that case is about 1000, and the non-dimensional depth above the interface at which the
concentration of the current fluid is at least 10% of that in the current is only 1.8x103,
while the mass fraction of the current fluid crossing the interface is only 0.02%.
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On the other hand, the length scale, d,., involved with the fire example is large.

If the corridor has a total height of 3 m, the height at which the concentration of the
smoke gases is at least 10% of that in the current is roughly 2 m above the ground, and
may thus affect the ability of people to escape from the burning building. As a result, the
availability of a model that can adequately model both the spreading rate of the smoke
and the depth of the smoke layer is crucial for fire safety purposes.

It is further assumed in this model that the depth of the ambient layer is much
larger than that of the current. Thus, the velocity of the ambient fluid is much smaller
than that of the current. As a result, the viscous drag on the top wall can be ignored.

Finally, the shear stress at the interface is assumed to be small when compared to
the drag due to the bottom boundary layer. This assumption is supported by the
experimental results presented in Section 2.4.3 and 2.5.2 for the case with both fluids
being liquids. Moreover, by comparing results obtained by Lock (1951) for a laminar
shear layer and the Blasius solution for a boundary layer on a semi-infinite flat plate, the
shear stress at the interface of a laminar shear layer can be shown to be about 23% of the
laminar frictional stress on the bottom wall, regardless of the working fluid. Therefore, it
is assumed that viscous effects are only important in the lower boundary layer in this

model.

From the above descriptions, the input parameters of interest to the model are Q,
g, Pa» Pw»> and V.. From these parameters, the reference length scale, dy.y, time scale,
trer» and velocity scale, Upeg, of the flow can be shown by dimensional analysis (Chen

1980 and Didden and Maxworthy 1982) to be

2
dref = (%) 13 (3.1a)
tref = %)1/3 (3.1b)

dref__ n1/3 .
and  Ups= ot =(Qg)'/°; (3.1¢)

where, g', the reduced gravity, is defined as
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g= (Ap_) g (3.1d)
Pw
where Ap =Py -Pa- (3.1e)

The reduced gravity is a measure of the effective gravitational or buoyancy force
in the flow. Although different ways of defining the reduced gravity have been used
(Britter and Linden 1980; Alavian 1986; and Oh 1983), the reduced gravity is not
sensitive to the definition when Ap << p,, in which case the Boussinesq approximation
can be used. Although there are four physical lengths wg, wy, L, and H, present in this
model, none of them is the appropriate reference length scale. This is because buoyancy

forces, which are the driving forces in this phenomenon, are not represented in any one
of the four lengths. As a result, the length scale dgef, which takes into account of the

buoyancy effect, is used. However, it will also be shown that these physical lengths do
affect the solutions as expected.

The non-dimensional groups formed by the input parameters are the Reynolds

number, Re, the density ratio of the fluids, p,, and the ratio of the kinematic viscosities,

V,, where
Re = Q/V,, (3.1f)
Pr = Pa/Pw (3.1g)
and V=V V. (3.1h)

Since only viscous effects on the bottom wall are considered important to the
current depth and the kinematic viscosity of the ambient fluid has at best a very weak
effect on the front velocity, as was shown in Section 2.4.3, the ratio of kinematic
viscosities can be assumed to play no role in this model. This assumption is supported by
the experimental result shown in Figure 2.19 and Figure 2.20. The effects of the density
ratio between the two fluids are retained in this model. However, it does not play a
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significant role when it is close to unity and when Boussinesq approximation can be
used.

Although the model appears upside-down when compared to a schematic diagram
of smoke movement in a corridor, the result is directly applicable to that phenomenon
when the scaled values of the parameters are comparable and when the assumptions
described are valid.

In order to better understand the role of each of the above named parameters, the
solution of the simplest model is first sought. Additional parameters are then introduced
so that their significance can be revealed. The order in which the various models are to
be presented is:

Section 3.3.  Inviscid gravity currents in a channel of infinite depth;
Section 3.4.  Inviscid gravity currents in a channel of finite depth;

Section 3.5.  Viscous gravity currents in a channel of infinite depth;

Section 3.6.  Viscous gravity currents in a channel of finite depth.

3.3 Inviscid gravity currents in a channel of infinite depth
3.3.1 General description of the model

In this model, a gravity current is assumed to be inviscid. All length scales are
assumed to be small when compared to the channel height. The derivation of the

governing equations, boundary conditions and initial conditions is detailed in Appendix
A. For convenience, the following co-ordinate transformation is used:

For -wp* <x*<0, 7T*=t* (3.2a)

and ¥ =—. (3.2b)
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For 0 < x* < x¢*, T* =t* (3.2¢)
£
and *=e (3.2d)
Xf (t*)

in which the ( )* quantities are normalized by the appropriate combinations of the length
scale, the time scale, and the velocity scale.

The governing partial differential equations, the boundary conditions, and the
initial conditions derived in Appendix A are shown below.

vernin ations:
*
For -1 < z* <0, gn;* o %(U *1%) = v+ (3.3)
U *
and ar‘: +W2 = *[ (U #)2 4 h¥] = (3.3b)

oh* Z*X¢*gh* 1
ot X oz Xf a %

For0<z*<1, (Uy*h*) = vp* (3.3¢)

oUy* Z*;(f* aU* 1 15 .1
2
and 3¢ X o9z* | Xf* oz 7 [3 (Uy*)~+h¥*] = (3.3d)

The influx velocity, vp*, that appears in equations (3.3a) and (3.3c) is shown in

Appendix A to be a function of the co-ordinate z*, and is given by

11
Vo¥gr = ———% for-1<z+<-k  (3.42)
@ (1-%1() wo*
£33
Vo 1y = —— =g ) for-k<z*<0  (3.4b)

1 * Lk
(150 0
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L*

and V¥ =0 for 0 <z* SW (3.4¢)
where 0 <k < 1,and k=0.
Boun nditions:
%
At x* = -wo*, 2% = -1, gl;; =0 (3.52)
and U,*=0. (3.5b)
Atx*=0,z* =0, h*(z*=0-) = h*(z*=0+) (3.5¢)
1 oh* 1 dh*
W 3 =) 7 3r " 20
UW*(Z*=O') = UW*(Z*=0+) (356)
1 oUy* 1 dUy*
and W_()* 3 =0) =% p (z*=0%") . (3.51)
At x* =x¢*,z* =1, x¢* = (1 - a)Uy* (3.5g)
and (3.5h)
f[*
Also, xp* = [ ket do* (3.50)
0
T*'+1 - T*' )
and h*iK,j+1 = h*iK,j + ) (Zh*iK-l,j - h*iK-Z,j-l - h*iK,j) (35_])
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in which the present time step is represented by the subscript j in equation (3.5j), and the
spatial node at z* = 1, or equivalently x* = x¢*, is denoted by the subscript igx. In

equation (3.5h), o is a constant and is derived from (oUy,*h*),_, ¢ the rate of volumetric

loss of working fluid per unit width at the front of the current. This is achieved by
putting a sink of strength aU,,*h* at the front of the current. Note also that equation

(3.5h) is identical to the result obtained by Benjamin (1968) if a = 0.

After the current is allowed to spread for a prolonged period, the front of
the current will eventually hit the end wall. A reflected bore will advance in the
upstream direction, as schematically shown in Figure 3.2. Since a distinct front no
longer exists, equations (3.5g) through (3.5j) are no longer valid. As shown in Appendix
A, they must be replaced by the following boundary conditions:

oh*
Atz* =1, —=0 3.5k
z 3 (3.5k)
Uy,*=0 (3.5
xf* =0 (3.5m)
and x¢* =L*. (3.5n)

Initial conditions:

At time T* = Tp* > 0 where Tp* = 0, it is shown in Appendix A that:
0 0 pp

For -1 <z* <0, h* = VO*(Z*) 'Co* (3.6a)
and Uy,*=0. (3.6b)
For0sz* <1, h* = VO*(Z* =-k) To*/K (36C)

and (3.6d)
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where K is an arbitrarily large number and Tp* = 0. For large T* compared to Ty*, the
solution was found to be independent of K and Ty*, as shown later in Section 3.3.7.
Using equations (3.5g) and (3.5i), the velocity and position of the front at T* = Tp* can

then be found and be used as initial conditions.

Numerical method is needed to help in solving the system of equations described
above. After many methods were tried, the Lax method (Press et al. 1986) was adopted
because it provides stable solutions in spite of the fact that it is numerically dissipative.
In addition, the errors introduced by numerical dissipation can be minimized by carefully
selecting the time step and spatial resolution used in the computation. If i denotes the
local spatial node, and j denotes the present time, the Lax method discretizes the spatial
and temporal gradients of an arbitrary variable R* as follows

oR* R¥i1-R¥%ip

FORR—y
oJz* 27541 - 2751

(3.7a)

1
or* R¥jjr1-3R¥pp5-R¥q5)

(3.7b)

oT* ’C*j+1 - T*j

A computer program was written in Fortran to solve the above system of
equations. The program was executed by a DEC Vaxstation 3600 with VMS Version
5.5. Twenty-one sets of parameters were chosen to test the present model. They are
listed in Table 3.1.



Case
number

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9
1.10

1.11
1.12
1.13
1.14
1.15

1.16
1.17
1.18

1.19
1.20
1.21

Table 3.1

wp* o
3 0.0
0.0
12 0.0
18 0.0
24 0.0
6 0.05
6 0.10
6 0.15
6 0.20
6 0.225
6 0.25
6 0.30
6 0.35
6 0.40
6 0.45
6 0.0
6 0.0
6 0.0
24 0.10
24 0.20
24 0.25

Cases investigated for inviscid gravity currents
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L*

450
450
1500
1500
1500

450
450
450
450
450

450
450
450
450
450

150
150
150

1500
1500
1500

in a channel of infinite depth.

10-3
10-3

103
10-3
10-3

103
103
103
103
103

103
103
102

103
103
103
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The output from each computation includes:

1. The time varying volume of working fluid in the gravity current and the
corresponding time varying volume of working fluid lost through the sink at the
front of the current.

2. Time varying front position and time varying front velocity of the working fluid.

3. Depth and velocity of the layer of working fluid at given times as functions of
distance from the leading edge of the bottom wall of the channel.

4. Time varying depth and time varying velocity of the layer of working fluid at
given distances from the leading edge of the bottom wall of the channel.

From Table 3.1, it is evident that the different numerical test cases were chosen to

show the respective effects of wg*, a, L*, Tp* and K. Cases 1.1 to 1.5 were chosen to
show the effects of wp*. Cases 1.6 to 1.15, and also Cases 1.19 to 1.21 were chosen to

reveal the effects of a. Finally, Cases 1.16 to 1.18 were chosen to show the effects of

L*, Tp*, and K, respectively.

3.3.2 Estimation of errors in the computation

The computed volume of the layer of working fluid is a measure of the error in
the computation. Since there is no mixing in the model, the volume of working fluid in
the layer computed plus the amount of working fluid lost through the sink at the front of
the current must be the same as the volume of working fluid introduced into the channel
if no numerical error was introduced. However, due to numerical dissipation, numerical
errors are unavoidable. The computed volume per unit width of the layer of working
fluid in the current for Case 1.7 is shown in Figure 3.3 as an example. In the figure, the
combined non-dimensional volume per unit width of the working fluid in the layer plus
the amount of fluid lost through the sink is represented by the dotted line against time,
while the total non-dimensional volume of working fluid introduced through the inlet per
unit width is represented by the solid line. By comparing the two lines, it is evident that
although there is error in the computed volume, this error is less than half a percent. In
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each of the cases considered, the time step and spatial resolution were carefully selected
so that the error in the combined volume of working fluid does not exceed 1%.

3.3.3 General description of the solutions

In addition to the combined volume of the current as mentioned in Section 3.3.2,
other variables were also recorded at various times to help understand the evolution of
the solutions. Two of these variables are the depth of the current, h*, and the velocity of
the fluid, U, *, as functions of distance from the leading edge of the bottom wall at a

given time. Case 1.2 is used as an example in Figures 3.4a and 3.4b to reveal the
changes of h* and U,* as functions of distance from the leading edge at non-
dimensional times t* = 25, 225, 425, and 625. In each of the two figures, the curve is
bounded by a vertical solid line on the left side. This line represents the location of the
upstream end wall of the channel, while the downstream end wall of the channel
coincides with the vertical axis on the right hand side of the graph.

From Figure 3.4a, it is obvious that a significant amount of fluid is accumulated
above the inlet to build up the pressure head needed to drive the current in the
downstream direction. As a result, the depth of the current drops rapidly in the
streamwise direction near the inlet. However, away from the inlet, the current depth is
not a strong function of the streamwise position until the arrival of the bore that results
from the reflection of the front at the downstream end wall, as evident by comparing the
two curves representing t* = 225 and 425. As a result, the front speed remains constant
for this part of the flow phenomenon. It is also obvious that the depth increases with
time at a fixed streamwise position, for example, by comparing the curves for various

times at x* = 50.

Moreover, it can be seen from Figure 3.4a that as the depth of the layer decreases
with distance away from the inlet, it reaches a minimum and then increases slightly
before attaining a constant value. This minimum depth represents an internal jump. This
internal jump travels in the downstream direction at a constant speed V:*, which is
different from the front velocity after a starting regime. It should also be noted that due
to the dissipative nature of the numerical scheme being used, the jump is smeared, and it

looks more like a "hump" then an abrupt jump.
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Figure 3.4a also shows that the depth, h*, is roughly tripled after the front of the
current has hit the end wall at the downstream end and moves in the upstream direction
in the form of a bore. It is apparent that the depth of this bore is not a strong function of
its position. By recording the position of the bore at various times, the instantaneous
speed of the reflected bore can be deduced. It was found that this speed is constant when
the bore is travelling within the section of the channel where the depth of the current is
constant. It was also found that this speed increases when the bore reaches the section
near the inlet where the depth of the current is decreasing rapidly in the streamwise
direction. However, in spite of the rapid changes in speed in this section of the channel,
it was found that h* attains a similar value at all positions that the bore has passed, even
though the change in h* with streamwise position in this section is large before the
arrival of the bore. Hereafter, unless it is stated otherwise, when the constant speed of
the reflected bore, V;*, is mentioned, it refers to the speed of the bore in the section of

the flow in which it propagates with a constant speed.

The corresponding velocity of the fluid in the current, Uy*, at various times
increases with distance near the inlet, as shown in Figure 3.4b, but remains constant far
away from the inlet. This result, together with the dependence of the depth on the
streamwise position, satisfies the equation of mass conservation as required. After the
front hits the end wall, the velocity of the fluid downstream of the reflected bore
vanishes, while the velocity at a position upstream of the bore is unaffected. The
velocity of the working fluid at a fixed location decreases with time before the bore
arrives. This supports the observation earlier in this section that the corresponding depth

increases with time.

Two other variables of interest are the front position, x¢*, and the front velocity,
x¢*, of the current. Case 1.2 is again used as an example to show the changes in x¢* and

X¢* as functions of time in Figures 3.5a and 3.5b, respectively. In these figures, it can be

seen that the front velocity increases slowly with time when the current first started to
spread downstream. This stage of the phenomenon is called the initial stage (Chen
1980). After achieving a speed of roughly 1.2, the acceleration stops, and the front then
moves at a constant speed until it hits the wall at the downstream end of the channel.
This stage of the flow is called the principal stage. The constant speed in this stage is
denoted as V¢*. After the current hits the end wall, it reflects from the wall as a bore

which moves in the upstream direction.



=75 -

As was discussed earlier in this section, the internal jump advances downstream at
a speed that is different from the front velocity. The position of this jump, x;*, in Case
1.2 is plotted against time in Figure 3.6a. It can be seen from the figure that the rate of
advance of this position decreases with time in the beginning before achieving a constant
speed, Vj*. After a long time, the rate of advance again starts to decrease until the arrival
of the reflected bore, at which time the internal jump vanishes. Moreover, direct
comparison of Figure 3.5a and Figure 3.6a shows that V¢* is roughly three times as large
as Vj*.

The position of the reflected bore as a function of time for Case 1.2 is shown in
Figure 3.6b. It can be seen that the bore advances upstream at a constant speed, V. *,
right after the front of the current hits the downstream end wall, as described earlier. The
speed then increases when the bore is near the inlet, at which the depth of the current is

decreasing rapidly away from the inlet.

Figure 3.7a shows the Froude number of the current, Uw/\/g' h, or equivalently,
U, *A/n* in the current at t* = 25, 225, 425, and 625. It can be seen that the Froude

number at a particular time increases from zero at the upstream end wall to a maximum
of roughly 1.5, before it dips slightly and maintains a constant value at roughly 1.4. This
is again in good agreement with Benjamin (1968), who suggested that the Froude number
for an inviscid gravity current in a channel of infinite depth with no mixing is \/5

However, in Figure 3.7b, the Froude number relative to the speed of the internal
jump is shown as a function of distance from the inlet at t* = 225. It can be seen that this
relative Froude number increases with downstream position until it is larger than unity,
and then it drops to slightly below unity before achieving a constant value, signifying the
presence of a weak internal jump. In both Figures 3.7a and 3.7b, the vertical line on the
left-hand side represents the upstream end wall of the channel, while the downstream end
wall is represented by the vertical axis on the right-hand side of the graph, as explained

earlier in this section.

Finally, Figure 3.8a illustrates the increase in depths as functions of time for the
locations x* = -6 and 50, again using Case 1.2 as an example. It can be seen that at each
of the two locations, the depth, h*, increases rapidly with time soon after the front has
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passed, but the rate of increase drops quickly, and the depth of the current remains

roughly constant thereafter. The accompanying Figure 3.8b shows the corresponding
velocity of the layer of working fluid, Uy*. It can be seen that when the head first

passed the location x* = 50, Uy, * jumps to about 1.2. It then decreases slowly with time.
It should be noted that x* = -6 in this particular case corresponds to the location of the
upstream wall, and U * at this location is always zero, as evident in Figure 3.8b in which
the dashed line representing this velocity coincides with the line representing Uy, * = 0 at
all time. This is in agreement with equation (3.5b), which stated that the velocity at the
upstream end wall must be zero at all times.

3.3.4 Effects of the length of the inlet, wy*, on the solutions

Figure 3.9a shows the non-dimensional front positions, x¢*, versus the non-
dimensional time from start, t*, for Cases 1.1, 1.3, and 1.5, while Figure 3.9b shows the

corresponding non-dimensional front velocity x¢* versus time for each of the same three
cases. The curves for Cases 1.3 and 1.5 were drawn only up to x¢* = 450 in the two
figures for illustrative purposes, even though they extend well beyond the stated
positions. Although the three cases have different L* in addition to different wg*, it will
be shown in a later section that L* does not affect the values of x¢* because the front of

the current in each case had not reached the downstream end wall within the time period
shown in the figure. As a result, the difference in the three curves can only be attributed
to their difference in wp*. From the figures, it can be seen that the front velocity in each
case accelerates during the initial stage from zero to a steady velocity of about 1.2. This

velocity then remains constant throughout the principal stage. In addition, one of the
effects of wp* on the solution in each case is the total time taken by this acceleration

process. It is obvious from the figures that a channel with a longer wy* requires a longer

time and distance to complete the initial stage.

Results from cases 1.1 through 1.5 reflect the effects of the inlet length when

there is no loss of working fluid through the sink at the front of the current. In Figure
3.10a, the non-dimensional constant front speed, V¢*, and the non-dimensional constant

speed of the reflected bore, V,*, are shown as functions of the non-dimensional inlet
length, wp*. It is obvious that neither V¢* nor V * depends on wg*. In addition, V¢* has
a value of about 1.2 while the value of V* is roughly half as large. It can be shown by
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using conservation equations of mass and momentum that this is in agreement with the
observation in Section 3.3.3 that the value of h* at a position at which the reflected bore
has passed is three times as large as its value before the arrival of the reflected bore.

Furthermore, it was shown in Figures 3.9a and 3.9b that although all the cases
eventually reach the same non-dimensional constant front speed, the amount of time
taken to complete the initial stage are different for cases with different wy*. As a result,

the front position of the current when the constant front speed is reached is different for
each case. To compare the different cases, a new length parameter Pggq, is defined as the

front position of the current at which the non-dimensional front velocity, x¢*, first attains
99% of the value of the non-dimensional constant front speed, V¢*. Figure 3.10b shows
that the ratio Pggq,*/wq* is independent of the non-dimensional inlet length, wg*.

Another parameter of interest is the non-dimensional position of the internal
jump, x;*. Although the ratio Xj*/x¢* in a specific case changes with time, Figure 3.11a
reveals that the ratio between the non-dimensional position at which the internal jump

first appears and the corresponding non-dimensional front position of the current,
(x*/x¢*);, does not depend on the non-dimensional inlet length, wg*. In addition, the

non-dimensional constant speed of the internal jump, Vj*, is also independent of the inlet

length, as evident from Figure 3.11b.

Some other effect of wy* on the solutions are shown in Figures 3.12a and 3.12b.

Figure 3.12a shows the current depth as a function of distance from the leading edge of
the bottom wall at t* = 275 for Cases 1.1, 1.3, and 1.5. This figure reveals that the fluid
spreads farther in a given time for a channel with a shorter wy*. This is because in non-
dimensional terms, more fluid is required to fill the layer of working fluid above the inlet
when the inlet is longer, and thus less fluid was made available to spread the current
when it started. As a result, the front of this current lags behind that in a channel with a
shorter inlet, even though the front in each case will eventually achieve a similar speed
after the section above the inlet reaches equilibrium, as was the case in Figure 3.12a.
This also explains the longer time required for the initial stage of a longer inlet, as
mentioned earlier in this section. The depth of the current far away from the inlet is also
very similar for each of the three cases. This is in agreement with the present model,
because equations (3.5g) and (3.5h) suggest that when the front speeds are similar, the
current depths at the front should also follow suit.



-78 -

Finally, it should also be noted that wy* does not have a lasting effect on h* at a

given non-dimensional location, x*. This is illustrated in Figure 3.12b. In this figure,
the current depth is shown as a function of time at x* = 50 for Cases 1.1, 1.3, and 1.5. It
is obvious from the figure that the front of the current in Case 1.1, which has the shortest
wo*, arrives earlier than that in Case 1.5, which has the longest wg*. This is in
agreement with the conclusion drawn earlier in this section. However, after t* = 300, it
is observed that there is no apparent difference in the current depth for the three cases.

3.3.5 Effects of the rate of loss of working fluid at the front of the current, o, on
the solutions

The rate of volumetric loss of working fluid per unit width at the front of the
current, Uy, *h*, has a profound effect on the solution. According to equation (3.5h), an

increase in o will give rise to a lower value of non-dimensional constant front speed,
V¢*, when o is small. This is illustrated in Figures 3.13a and 3.13b. Figure 3.13a shows
the non-dimensional front position, x¢*, as a function of the non-dimensional time after

start, t*, for Cases 1.2, 1.7, and 1.9, which correspond to values of o at 0, 0.1, and 0.2
respectively. Figure 3.13b reveals the corresponding non-dimensional time varying front
velocities. Shortly after the flow has started, the fluid velocity at the front is small. The
effect of the loss of fluid at the front is thus minimal. However, as the front velocity
increases, the rate of volumetric loss of working fluid at the front also increases.
Moreover, the rate of loss of fluid also increases with the value of a for the same fluid
velocity at the front of the current. Hence, the constant front speed decreases for

increasing value of a for small values of a.

However, it can also be seen from Equations 3.5g and 3.5h that the front speed

will instead begin to increase as o approaches 0.5. The constant front speed is shown in
Figure 3.14a as a function of a. It can be seen that V¢* decreases with increasing & up to

a value of a of roughly 0.3. When the value of o is further increased, the value of V¢*
also increases instead. In addition, the constant speed of the reflected bore, V *, also
decreases with increasing o for o smaller than 0.3. For o larger than 0.3, V * does not

achieve a constant value for a sufficiently long enough time, and thus is not shown in the
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figure. It is also observed that the values of V¢* and V * are independent of wy* for a

given value of o.

Figure 3.14b shows the effects of o on the front position at which the front
velocity first attains 99% of the constant front speed, Pggg,*. In this figure the ratio

Pggq,*/wo* is shown as a function of o. It can be seen from the figure that the value of
Pgog,*/wo* decreases with increasing value of o until the value of o is about 0.4. Then,
the value of Pggq */wg* increases with increasing value of o. It is also observed from the

figure that the value of Pggq */wq* is independent of the value of wy* for a given value

of a.

The value of o also has a significant effect on the current depth at the front, (h*);.
Figure 3.15a shows the value of (h*)¢ as a function of wy* for o = 0, while Figure 3.15b
shows the value of (h*)¢ as a function of a.. Although the value of (h*); is independent
of wy* for a given «, as shown in Figure 3.15a, Figure 3.15b shows that it decreases with
increasing o. This can be explained simply by noting that when more fluid is lost
through the front of the current, the amount of fluid left in the layer of working fluid near
the front of the current is reduced. As a result, the depth at the front of the current

decreases with increasing rate of loss of fluid.

Finally, the constant speed of propagation of the internal jump, V;*, is shown as a

function of the rate of loss of working fluid at the front, a, in Figure 3.16a. From the
figure, V;* increases with increasing o. It should be noted that two methods were used
to determine the location of the internal jump. The first method is to use the point of
minimum depth of the current. This method works well up to a value of o at about 0.2.
For a value of o above 0.2, the jump is so weak that a large error will be present when
the location of the jump is determined by this method. The second method is to use the
local maximum of the second derivative. This method does not only compare favorably
with the first method for small @, it also provides reasonable values for the location of
the internal jump for a of up to 0.35, beyond which a internal jump could not be
identified. Furthermore, Figure 3.16b also illustrates the same trend for the ratio of the
constant speed of propagation of the internal jump and the constant front speed as a

function of o.
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3.3.6 Effects of the length of the channel, L*+wg*, on the solutions

The non-dimensional length of the channel, L*+wg*, has no effects on the

solution before the front of the current hits the end wall. This is demonstrated in Figure

3.17a, in which the current depth as a function of x* at t* = 125 is shown for Cases 1.2
and 1.16. The two cases have identical input parameters, including wg*, except L* and

thus L*+wg*. It is obvious that the two solutions are identical at t* = 125. However,
due to the difference in L* in the two cases, the front of the current in Case 1.16 hits the
end wall before t* = 175, while that in Case 1.2 hits the end wall after t* = 175. As a
result, when the current depths of the two cases at t* = 175 are shown in Figure 3.17b, it
can be seen that the front in Case 1.2 is still spreading in the downstream direction, while
that in Case 1.16 has already hit the downstream end wall, tripled its depth, and its
reflected bore is moving in the upstream direction. In the two figures, the short vertical
line on the left-hand side of each curve again represents the upstream end wall of the
channel, while the line on the right hand side of the curve at t* = 175 for Case 1.16

represents its downstream end wall.

3.3.7 Effects of the parameters Ty* and K on the solutions

The effects of the parameters Tp* and K are illustrated in Figures 3.18a and
3.18b. Figure 3.18a shows the current depth as a function of distance from the leading
edge at t* = 125 for Cases 1.16 and 1.17. The parameters used in these two cases are

identical except for the value of Ty*, which is 10-3 in Case 1.16 and 10-2 in Cases 1.17.
It can be observed from the figure that the value of Tp* does not have a significant effect
on the solutions when t* >> Tg*. Finally, Figure 3.18b illustrates the current depth as a

function of distance from the leading edge at t* = 125 for Cases 1.16 and 1.18. Again,
the parameters used in these two cases are identical except that in Case 1.16 the value of
K is 103, while in Case 1.18 the value of K is 102. From the figure, it can be observed
that when the value of K is large, it does not play a prominent role in the solutions.
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3.4 Inviscid gravity currents in a channel of finite depth
3.4.1 General description of the model

In addition to the parameters discussed in the last section, there are other
variables which affect the solution significantly when the channel depth is finite. In this
section, the effects of these variables are going to be investigated.

The motion of the layer of ambient fluid is no longer negligible, as assumed in
the previous model presented in Section 3.3. Since the channel depth is limited at H, the
depth of the layer of ambient fluid is only the difference between the channel depth, H,

and the depth of the gravity current, h. It can be obtained readily by inspection once h is
found. On the other hand, the velocity of the fluid in this layer, U,, cannot be found by

inspection. Furthermore, when U, is not identically zero, the pressure gradient on the top

wall, dpy/ox does not vanish. As a result, the conservation equations for mass and

momentum for the layer of ambient fluid must also be used. Due to the presence of the
term py in the conservation equations, a reference pressure is required. This reference

pressure, Pp.¢, can be defined as

Preg = anret2 . (3.8)
Note that the definition of the reference pressure will not affect the solutions.
Using the same transformation of the independent variables as described by

equations (3.2a) through (3.2d), the governing equations, the boundary conditions and
the initial conditions for an inviscid gravity current in a channel of limited depth are

shown in Appendix B to be:
vernin ations:
oh* 1

For -1 <z* <0, (U, *h*) = vo* (3.9a)

+
ot*  Wo* gz*

1
—V_V—o—;i: [Uy *h*+U,*(H*-h*)] = vo* - vy* (3.9b)
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and 5%* (U, *-pU,*)

+ wt < L3 (Uy*2 - 3peU,H2 + h¥] = (3.9c)

% Z*Xe* gp*
dh f" oh +-L ) (U, *h*) = vg* (3.94)

For0<z*<1, -
at*  Xf* 9z*  Xf* gz*

52, [Uy b+ Uy - 1] = vg* - vig* (3.9¢)
and LUy ) - i - (Uy* - pU%)
—1—*5@— L, »2- 2pr(U %)2 + %] = (3.96)

The outflow velocity, vyg™*, that appears in equations (3.9b) and (3.9¢) is shown in

Appendix B to be a function of the co-ordinate z*. It can be expressed as

1 Wl*
VH*(z*) = WF for-1<z*<-(1- -‘;0—*) (3.10a)
* wi* << L*
and VH %= 0 for (1 - "0_) z* W_()* . (3.10b)
Boun nditions:
oh*
Atz¥ =-1, 3.11a
z Fyr ( )
Uy* =0 (3.11b)
and U,*=0. (3.11¢)

At Z* - O, h*(Z*=O-) = h*(Z*=O+) (3.11d)
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1 oh* 1 oh*

WoF 5 =0 = 55 =0 (3.11e)

Uw*(z+=0") = Uw™(z#=0") (3.11f)

1 an* 1 aU * .
—_— *=07) =—% *
wo* 9z* w=0) Xe¥ 9z* (z*=07) (3.11g)
d ...l__i sh% k(L% _ h¥ * *

an Xf* dz* [Uw h* + Ua (H -h )](Z*:O) =V (z%=0) - VH (z*=0) - (311h)
Atz* =1, x¢* = (1-0) Uy * (3.111)

h* _

Uw* = -1- L 1 -1_ h* 2 (31 1])

G- +prgp g (1-0) +5 pr (o)
h*
and Uy*=- 0 -0 Uy *. (3.11k)
T*
Also xp* = [ &g* do* 3.111)
0
T*'+1 - T*'
and h¥+1 = D + - L@h¥ g -0 050 - %)) (3.11m)
iT vt

Note that equation (3.11j) is slightly different from the result of Benjamin

(1968), since Benjamin was studying the motion of an air cavity in a liquid, and there is
no spatial gradient for Py in the current in that case. However, for the extreme cases

when h = 0 and when h = H, the results for the two cases are identical.

As described in Section 3.3.1, after the front of the current has hit the
downstream end wall, equations (3.11i) through (3.11m) are replaced by the following

equations:
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Atz* =1, g—tzlz=0 (3.11n)

Ug*=0 (3.110)
and Uy*=0. (3.11p)
Also x¢* =0 (3.11q)
and xg¥ =L*. (3.11r)

Initial conditions:

At time T* = To* > 0 where To* = 0, it is shown in Appendix B that:

For -1 <z* <0, h* = vo* ) To* (3.12a)
Ug*=0 (3.12b)
and Uy*=0. (3.12c)
ForQ<z*< 1, h* = VO*(Z* - -k) To*/K (3 12d)
h*
Uy* = - (3.12¢)
5- 0O
h*
and Ua* =7 U™ - (3.12f)

The velocity and the position of the front at T* = Ty* can then be deduced from equations

(3.11i) and (3.111), respectively.

The Lax method was again used to obtain solution for this model. In addition,

the spatial gradient in equation (3.9b) can be evaluated by
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oS*  8%ij-S%i 1

ozF  Z%- 7% G132
and the spatial gradient in equation (3.9¢) can be evaluated by

 Sowsy
where S* = Uy *h* + Uy*(H* - h*) . (3.13¢c)

Thirteen sets of parameters were selected to test the present model. They are
listed in Table 3.2.

nfx?lfer o o o i o P,
2.1 6 0.0 7.5 0.48 450 0.925
2.2 12 0.0 7.5 0.48 1500 0.925
2.3 24 0.0 1.5 0.48 1500 0.925
2.4 6 0.0 15 0.48 450 0.925
2.5 6 0.0 30 0.48 450 0.925
2.6 6 0.0 7.5 0.12 450 0.925
2.7 6 0.0 7.5 1.92 450 0.925
2.8 6 0.0 7.5 0.48 450 1.000
2.9 6 0.0 75 0.48 450 0.850
2.10 6 0.10 7.5 0.48 450 0.925
2.11 6 0.20 7.5 0.48 450 0.925
2.12 24 0.10 7.5 0.48 1500 0.925
2.13 24 0.20 15 0.48 1500 0.925

Table 3.2  Cases investigated for inviscid gravity currents
in a channel of finite depth.
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From Table 3.2, it is evident that Cases 2.1 through 2.3 were selected to show the
importance of wp* to an inviscid gravity current in a horizontal channel of finite depth.

In addition, Cases 2.4 and 2.5 were chosen to illustrate the effects of H*, while Cases 2.6
and 2.7 were chosen to reveal the effects of the outlet length, w*. Moreover, Case 2.8

and 2.9 were selected to examine the influence of the ratio between the density of the
ambient fluid and that of the working fluid, p;. Note that p; does not affect the solutions
in a channel of infinite depth. Furthermore, Cases 2.10 through 2.13 were chosen to
study the effects of 0. Finally, the effects of L*, Tp* and K were found to be the same as

those in the previous model, and will not be further discussed in this section.

3.4.2 Estimation of errors in the computation

As in the cases for inviscid gravity currents in a channel of infinite depth, the
time step and spatial resolution for the present model were carefully selected so that the
error in the accumulated volume of working fluid in each case is less than 1%.

3.4.3 General description of the results and solutions

The front position and the front velocity of the current in this model are found to
be similar to those found in the previous model. Their differences due to different input
and geometrical parameters will be discussed in later sections. The depth and the
velocity of the layer of working fluid for this model are also very similar to those
presented for the previous model. The differences due to a finite channel height will be

discussed in a later section.

On the other hand, the velocity of the layer of ambient fluid does not vanish in
this model. In Figure 3.19a the velocities of the two fluid layers for Case 2.1 are shown
as functions of distance from the leading edge at various times. By comparing Figure
3.19a with Figure 3.4b, it is obvious that the velocity of the layer of working fluid
calculated in the present model is similar to that in the previous model at a given time. It
should also be noted that the scale on the y-axis in the two figures are different, and
caution must be used when comparing the two figures. In the present model, the non-
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dimensional velocity of the ambient fluid, U,*, above the current does not vanish at any

time. Instead, it takes on a negative value at all time. Physically, it means that while the
layer of working fluid is spreading downstream, the ambient fluid above the current is
moving in the upstream direction, and is being displaced through the outlet at the
upstream end. This is in agreement with the continuity equations in Section 3.4.1,
equations (3.9b) and (3.9¢). In this specific example, the magnitude of the velocity of
the ambient fluid is only about 10% of that of the working fluid. This magnitude is a
function of the channel height, H*. It will be shown in Section 3.4.6 that the magnitude
of the velocity of the ambient fluid decreases with increasing channel height, and it tends
to be zero when the channel height is much larger than the other length scales. In that
case it is equivalent to the result of an inviscid gravity current in a channel of infinite
depth.

The pressure on the top wall of the channel, py, is also non-zero in the present
model. Using equation (B.6c) in Appendix B, py* can be found once the velocity of the

ambient fluid is known. This pressure for Case 2.1 is shown in Figure 3.19b as a
function of distance from the leading edge at various times. This figure shows that when
the front is advancing in the downstream direction, py* decreases very quickly with
increasing distance from the upstream end wall. It then retains a nearly constant value at

the streamwise locations that the front of the current has already passed. For positions
downstream of the front, py* is constant but with a much larger value, as is evident by

the rapid increase in the value of py* at the position of the front of the current at the
various times. However, after the front hits the downstream end wall, the situation
changes. Since the return bore moves in the upstream direction and the velocities of both
the ambient and the working fluids downstream of the bore vanish, the pressure on the
top wall downstream of the bore is constant but at a value lower than that upstream of the
bore. This is illustrated in Figure 3.19b at t* = 425 and t* = 625. The vertical line
bounding each curve on the left-hand side in Figures 3.19a and 3.19b again represents the
location of the upstream end wall of the channel, while the downstream end wall in each
figure coincides with the vertical axis on the right-hand side of the graph.

3.4.4 Effects of the length of the inlet, wy*, on the solutions

The conclusion drawn for the previous model that the fluid spreads farther in a
given time for a channel with a smaller inlet is also valid for this model. This is revealed
in Figures 3.20a and 3.20b. Figure 3.20a shows the non-dimensional current depth as a
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function of the distance from the leading edge at t* = 275 for Cases 2.1 through 2.3. It
can be deduced from the figure that the fluid in a channel with a smaller wy* spreads

farther than that in a channel with a larger wp*. In addition, the current depths far
downstream from the leading edge are the same for the three cases. The vertical line on
the left hand side of each curve in Figure 3.20a represents the location of the upstream
end wall of the respective channel.

On the other hand, as in the case of inviscid gravity currents in a channel of
infinite depth, the length of the inlet does not have a lasting effect on h* at a given non-
dimensional location, x*. This is illustrated in Figure 3.20b. In this figure, the current

depth as a function of time at x* = 50 for the same three cases mentioned in the last
paragraph are shown. The front of the current in Case 2.1, which has the shortest wy*,

can be observed to arrive earlier at x* = 50 than that in Case 2.3, which has the largest
wp*. This supports the conclusion drawn in the last paragraph that the front of a current

in a channel with a shorter wy* spreads farther at a given time. However, after t* = 350,

there is no apparent difference in the current depths for the three cases. As a result, it is
concluded that the effects of wy* on h* in the model for inviscid gravity currents in a

channel of finite depth are at best only temporary.

3.4.5 Effects of the rate of loss of working fluid at the front of the current, O, on
the solutions

As described in Section 3.3.5, the rate of volumetric loss of working fluid per unit

width at the front of the current, OWU,,*h*, has a profound impact on the solution. Figure

3.21a shows the effects of O on the non-dimensional constant front speed, V¢*, and the
non-dimensional constant speed of the reflected bore, V/*. Both speeds decrease with

increasing value of Q., but they are independent of the non-dimensional inlet length, wg*.

Figure 3.15b illustrates a similar effect of O on (h*).

3.4.6 Effects of the channel height, H*, on the solutions

Similar to the other length parameters, the non-dimensional height of the channel,
H#*, also affects the spreading of the layer of working fluid. If the channel height is large
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when compared to the other length scales, the relative motion of the ambient fluid is
minimal. As a result, the effort required to displace this fluid is also negligible. On the
other hand, when the channel height becomes smaller, the excess ambient fluid that is
being displaced through the outlet is required to move faster in the upstream direction to
maintain the same volumetric flow rate as the influx. A larger pressure head is thus
required to accelerate this ambient fluid. As a result, the front velocity of the layer of
working fluid decreases with decreasing channel height. This is illustrated in Figure
3.22a, which shows the non-dimensional current depth as a function of the non-
dimensional distance from the leading edge at t* = 275 for Cases 2.1, 2.4, and 2.5. It can
be deduced from this figure that the working fluid spreads farther at a given time in a
deeper channel. In addition, there is no difference in the current depths near the inlet in
the three cases. However, while the front speed decreases with increasing channel height
away from the inlet, the corresponding current depth increases to satisfy continuity.
Moreover, the differences between the currents with H* = 7.5 and H* = 15 are much
larger than those between H* = 15 and H* = 30.

Similarly, Figure 3.22b compares the non-dimensional current depth in Case 1.1,
which has an equivalent of an infinite channel height, and Case 2.5, which has a channel
height of H* = 30. By comparing Figure 3.22a and Figure 3.22b, it is observed that the
differences between the currents in Figure 3.22a with H* = 15 and H* = 30 are similar to
those between H* = 30 and an infinite H*. As a result, it can be concluded that the effect
of H* is less prominent when it is large when compared to the other length scales, and it
was found that the effects of H* are insignificant when H* > 60.

The channel height also has a large effect on the non-dimensional velocity of the
layer of ambient fluid, U,*. This is illustrated in Figure 3.23a, which shows the non-
dimensional velocity of the ambient fluid as a function of the non-dimensional distance
from the leading edge at t* = 275 for Cases 2.1, 2.4, and 2.5. The magnitude of the
velocity of ambient fluid is shown to decrease with the channel height. When H* = 30,
as in Cases 2.5, U,* is less than 0.04, which is much smaller than the magnitude of the
non-dimensional velocity of the working fluid, which typically has an order of magnitude
of unity. This figure thus supports the argument that the effects of H* are not significant
when H* > 60.

The non-dimensional current depth at x* = 50 for each of the above three cases is
shown as a function of time in Figure 3.23b. Although the current depths of the three
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cases are different just after the head has passed the location x* = 50, there is no apparent
difference in the depths after t* = 200.

Finally, Figure 3.24a shows the non-dimensional constant front speed and the
non-dimensional constant speed of the reflected bore as functions of the inverse of the
non-dimensional channel height, 1/H*. A value of 1/H* = 0 represents an infinitely deep
channel. While the value of V¢* decreases with increasing 1/H*, the corresponding V *
increases with increasing 1/H*. The changes in both speeds are less than 7% for the

range of 1/H* shown. However, according to Figure 3.24b, there is no clear indication
that the ratio Pggq,*/wq* is a function of 1/H*.

3.4.7 Effects of the length of the outlet, w;*, on the solutions

The effects of the non-dimensional length of the outlet, w;*, are revealed in
Figures 3.25a and 3.25b. In Figure 3.25a, the non-dimensional depth of the current is

shown as a function of the non-dimensional distance from the leading edge at t* = 275

for Cases 2.6 and 2.7. The input parameters for the two cases are identical except that
the non-dimensional length of the outlet, w*, in Case 2.7 is sixteen times as long as that

in Case 2.6. There is no apparent difference in the current depths of the two cases. As a
result, it can be concluded that the outlet length does not have a major impact on the
solution.

Moreover, the effects of w;* on the non-dimensional constant front speed, V¢*,
and the non-dimensional constant speed of the reflected bore, V *, are not significant.
This is revealed in Figure 3.25b, which shows V¢* and V * as functions of w*. It is
observed that neither of the two speeds depends on wi* for the range of wi* being

considered.

3.4.8 Effects of the density ratio between the ambient fluid and the working fluid,

Pr, on the solutions

Figure 3.26a shows that there is no apparent difference between the depth of a
gravity current at t* = 275 with a density ratio between the ambient fluid and the working

fluid, p,, of 0.850 and one with p, = 1.000. Figure 3.26b further reveals that the density
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ratio does not have a large influence on the non-dimensional constant front speed, Vi*,
and the non-dimensional constant speed of the reflected bore, V. *. It is thus concluded

that the density ratio between the two fluids does not have a significant impact on the
solution for the range of P, being considered. This range of density ratio is the same as

that found in the experiments carried out in this study and shown earlier in Chapter 2.

3.5 Viscous gravity currents in a channel of infinite depth

3.5.1 General description of the model

A model for inviscid gravity currents in an infinitely deep horizontal channel was
presented in Section 3.3 and a model for inviscid gravity currents in a horizontal channel
with limited depth was discussed in Section 3.4. These models are valid when the effects
on a gravity current due to the viscous drag exerted by the bottom wall are small when
compared to the buoyancy forces. As a result, the models are not valid when the
viscosity is very large, or when the channel is very long. In the second case, although the
flow can be treated as inviscid in the beginning, viscous drag due to the bottom wall
increases with time. Thus, the viscous drag cannot be neglected after a sufficiently long

time.

In this section, a model will be presented to describe the behavior of a viscous
gravity current in a channel of infinite depth. The behavior of a viscous gravity current
in a channel of finite depth will be treated in Section 3.6. The other assumptions stated
in Appendix A are still assumed to be valid in this section. For example, the effects due
to interfacial shear are assumed to be small when compared to those due to the viscous

drag on the bottom wall.

Since the velocity profile of the current, u = u(t,x,y), is not known in this model,
there are more unknowns to be solved than equations available. As a result, von
Karman's momentum-integral theory is used to obtain an approximate solution.
Although the result is only an approximation, White (1986) described the method as
"startlingly accurate."
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The velocity profile inside the current can be assumed to have a cubic shape. The
resulting velocity profile which satisfies the boundary conditions can be written as

Y\3
(8) . (3.149)

B =

3y
Uy, 28

As a result, the displacement thickness, &', and the momentum thickness, ', which are

defined as
. u
3 =f3(1 -G dy (3.15a)
0 w
d e'=j5l1-ld 3.15b
an oUw( o, (3.15b)

can then be evaluated using equation (3.14). They are related to the boundary layer
thickness, 9, by the following equations

5=35 (3.162)
39
and © =m5. (3.16b)

The velocity gradient that is needed to evaluate the stress on the bottom wall can also be

written in terms of &:

3 Uy
—| =5-—. 3.17
dylo 2 3 17

Thus, using the reference length, time, and velocity scales as defined in Section 3.2,
together with the transformation of the independent variables as described by equations
(3.2a) through (3.2d), the governing partial differential equations, the boundary
conditions and the initial conditions are shown in Appendix C to be:
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Governing equations:

For -1 <z* <0 ah*+ 1 Uy* (h* -2 8%)] = 3.18
or-1sz*<0, == *a*[ (h* -2 06%)] = vp* (3.18a)
dU *
— 1*5‘3’;[ (U, )2 + h¥] = (3.18b)
and §*=0. (3.18¢)

oh* Z*X¢* gh* |
* - 1 d J2 )
For0<z#<l, S0 =S+ oL (U, 8*)] = vo*; (3.18d)

QU * 2*ke* O, *

when 8% <h¥,  ——-- xf,f — —'lgai [5 (Uy*)2 +h*] = (3.18¢)
.__..3 2 TR 3 w' 9

and L1692 -~ 3 [+ P37 o 3 (692

52 (5*)2 U, * 1 (%)20h* 8 .
"I w5 2R Uyt a5 RS 6.180

oUy* z¥%¢* dUy* 1301 1

. % — hk -
while for 0* = h*, - Xe* oz +2800x a *

== [(Uy*)?]

8 213 (Uy*? | oh* 12 1 (Uy®?

*I5+1900 WF IxFa+ 5 Re hF (3.18g)

and O* = h* . (3.18h)
The Reynolds number, Re, was defined earlier in equation (3.1f) of this chapter.
Boun nditions:

*
Atz* =-1, gle-;—o (3.19a)
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U,*=0 (3.19b)
and 0*=0. (3.19¢)
Atz* =0, h*(z*=()') = h*(z*=0+) (3.19d)

1 oh* 1 oh*
Wo¥ 50 TR 50 G1%)
UW*(Z*=O') = UW*(Z*=0+) (3 19f)
1 JUy* 1 9U*

WG a0 TR e ) 3199
and 0*=0. (3.19h)
Atz* =1, 0* =0 (3.19i)

f* = (1 - 0) Uy * (3.19)

h*
and Up = [T—- (3.19K)
7" o
T*
Also xpt = [ kg* dT* (3.190)
0
and h ig.j+1 =h ix.j + S 1 (2h ig-1,j - h ig-2,j-1 - h iK’j) . (319]’11)
it

After the front of the current hits the downstream end wall, it was shown in
Appendix C that equations (3.19i) through (3.19m) must be replaced by the following
boundary conditions:
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oh*

Atz¥ =1, 5;;=0 (3.19n)
Uy,*=0 (3.19%0)
00*

d —=0. .

an - (3.19p)

Also xF =0 (3.199)

and xfk=L*. (3.19r)

Initial conditions:

At time T* = Tp* > 0 where Tp* =0, it is shown in Appendix C that:

For -1 £z* <0, h* = VO*(Z*) To* (3.20a)
U,*=0 (3.200)
and 0*=0. (3.20c)
For0<z*<1, B = vo* (g = 1 To*/K (3.20d)
h*
Uy * = 1 (3.20e)
5- 0O
and 0*=0. (3.20f)

The velocity and the position of the front at T* = Ty* can then be deduced from equations
(3.19j) and (3.191), respectively. In addition, it was found that equation (3.18f) will give

rise to numerical instability when T* is not large when compared to Tp*. On the other

hand, if equation (3.20f) was used in place of equation (3.18f) until T* = T;*, where T*
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>> Tp*, then the solution was found to be stable. For large T* compared to T;*, the

solution will be shown to be independent of T;*.

The Lax method was again used to obtain solution for this model. Nineteen sets
of parameters were selected to test the present model. They are listed in Table 3.3.

Case wo* o Re L* ¢ T K
number
3.1 6 0.0 200 450 10-3 10 103
32 6 0.0 500 450 10-3 10 103
33 6 0.0 1000 450 10-3 10 103
34 6 0.0 2000 450 10-3 10 103
3.5 6 0.0 5000 450 10-3 10 103
3.6 12 0.0 200 1500 10-3 10 103
3.7 12 0.0 1000 1500 10-3 10 103
3.8 12 0.0 5000 1500 10-3 10 103
3.9 24 0.0 200 1500 10-3 20 103
3.10 24 0.0 1000 1500 10-3 20 103
3.11 24 0.0 5000 1500 10-3 20 103
3.12 6 0.1 200 450 10-3 10 103
3.13 6 0.2 200 450 10-3 10 103
3.14 6 0.1 1000 450 10-3 10 103
3.15 6 0.2 1000 450 10-3 10 103
3.16 6 0.1 5000 450 10-3 10 103
3.17 6 0.2 5000 450 10-3 10 103
3.18 . 6 0.0 1000 300 10-3 10 103
3.19 6 0.0 1000 450 10-3 20 103

Table 3.3  Cases investigated for viscous gravity currents
in a channel of infinite depth.
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From Table 3.3, it is obvious that Cases 3.1 through 3.5 were selected to study the
effects of the Reynolds numbers. Cases 3.6 through 3.11 were chosen to study the
effects of the inlet length, wqy*, while Cases 3.12 through 3.17 were selected to show the
influence of a.. Finally, Case 3.18 and Case 3.19 would reveal the effects of L* and T¢*,

respectively.

3.5.2 Estimation of errors in the computation

The computed volume of the layer of working fluid in each case again provides a
measure of the error due to numerical dissipation. In most of the present cases, the time
step and spatial resolution were carefully selected so that the error in the accumulated
volume of working fluid of each case is less than 3%. However, Case 3.9 is an
exception. The error in the volume of working fluid in that case reaches 8%, due to both
the low Reynolds number, Re and the large inlet length, wg*. As a result, an
improvement in the numerical scheme is necessary to study very low Reynolds number

flows in a channel with a large inlet length.

3.5.3 General description of the results and solutions

The non-dimensional current depth and the non-dimensional velocity of the layer
of working fluid as functions of the non-dimensional distance from the leading edge of
the bottom wall at times t* = 25, 225, 425, and 625 for Case 3.4 with Re = 2000 are
shown in Figures 3.27a and 3.27b to illustrate the differences between an inviscid gravity
current and a viscous one. In Figure 3.27a, it can be seen that the depth of a viscous
gravity current decreases continuously with distance from the leading edge at a particular
time, and the depth of the current at a fixed position increases with time due to viscous
effects. This is in contrast with Figure 3.4a, which shows that the depth of an inviscid
current far away from the leading edge is constant for a given time, and this depth is also
constant for various times at a fixed position until the arrival of either the internal jump
or the reflected bore, whichever comes first. According to the present model, the depth
of a viscous gravity current at a fixed position which is downstream of the reflected bore
increases with time, while that obtained from the inviscid model remains constant with

time, as shown in Figures 3.4a.
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A related difference between the solutions obtained from the two models can also
be observed in the velocity of the layer of working fluid. In Figure 3.27b, it can be seen
that the velocity of the layer of working fluid with viscous effects increases with distance
from the leading edge at any given time until the location is near the front of the current
or near the reflected bore. On the other hand, the velocity of this layer at a fixed position
decreases with increasing time. This is in sharp contrast to that of an inviscid gravity
current. The velocity of the layer of working fluid in an inviscid current far away from
the leading edge was shown in Figure 3.4b to be constant with both time and position
until the arrival of the reflected bore.

It can also be deduced from these two figures that the front of an inviscid gravity
current spreads downstream faster than that in a viscous one. However, the reflected
bore in an inviscid gravity current can be observed to travel upstream slower than that in
a viscous one. Finally, the velocity in the layer of working fluid in a viscous gravity
current at a fixed position drops sharply after the reflected bore passed that position.
Although this velocity decreases continually with distance at a given time, it nevertheless
has a magnitude of up to 10% of that upstream of the bore. This contributes to the
increase in the depth of the layer downstream of the bore with time, as discussed in the
previous paragraph. On the other hand, it can be seen in Figures 3.4 that the velocity
downstream of the bore in an inviscid gravity current is negligible, and thus the
corresponding current depth remains constant with time. The vertical line bounding each
curve on the left-hand side in Figures 3.27a and 3.27b again represents the upstream end
wall of the channel, while the downstream end wall coincides with the vertical axis on

the right-hand side in each figure.

Figure 3.28a reveals the changes in the boundary layer thickness in the layer of
working fluid as a function of distance from the leading edge at times t* = 25, 225, 425,
and 625, again using Case 3.4 as an example. The boundary layer due to the leading
edge can be regarded as a steady boundary layer. Its changes with time are due to the
changes in the velocity in the layer of working fluid. On the other hand, the boundary
layer caused by the advancing front of the current grows quickly with distance away
from the front at a given time, and it moves downstream along with the front. As a
result, the portion of the current with the boundary layer caused by the leading edge of
the bottom wall increases continuously with time, as can be deduced by comparing the
curves representing the boundary layer thickness at the various times. However, after the
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front of the current has hit the wall at the downstream end of the channel, the picture
becomes very different. As was discussed in Figure 3.27b, the velocity suffers a large
drop downstream of the bore, and the boundary layer should separate in practice, as
shown in Figure 2.21c. Since the present model uses an integral approach, the separation
of the boundary layer could not be attained. Instead, the model provides an approximate
solution that satisfies the conservation equations of mass and momentum. As a result,
the boundary layer thickness downstream of the bore can be seen to increase sharply.

Figure 3.28b further illustrates the effects described in the last paragraph. The
solid curves in the figure represent the depth of the current at times t* = 225 and 425,
while the dashed lines represent the corresponding boundary layer thickness. Before the
front of the current hits the downstream end wall, it can be observed from the figure that
the boundary layer thickness increases with distance downstream from the inlet until it
occupies the whole depth of the current. In addition, the boundary layer thickness
increases sharply downstream of the reflected bore, as described in the last paragraph,
and occupies the thickness of the whole layer in that portion of the current. As
mentioned in the last paragraph, this is due to the inability of the present model to handle
the boundary layer in this particular case. The vertical line bounding each curve on the
left-hand side again represents the position of the upstream end wall of the channel.

An important feature of the present model is shown in Figure 3.29a. This figure
shows the non-dimensional depth of the current and the non-dimensional boundary layer
thickness at x* = -6 and x* = 50 as a function of the non-dimensional time for Case 3.4.
By comparing this figure with Figure 3.8a, it can be seen that at x* = -6, which is the
position of the upstream end wall, the depth of an inviscid gravity current does not
increase with time, while that in a viscous current increases continuously with time even
though the bottom wall does not exist in this portion of the channel. The dashed line,
which represents the corresponding boundary layer thickness at x* = -6, coincides with
the x-axis. As a result, the boundary layer thickness in this portion of the channel is zero.
It can thus be concluded that the increase in current depth is strictly due to the increase in
boundary layer thickness downstream of x* = -6. At x* = 50, the viscous effects are
even more profound. It is observed that the depth of a viscous gravity current increases
at a much larger rate with time than that obtained from the inviscid model. This can be
attributed to the increase in boundary layer thickness with distance from the leading edge
in the viscous model. The current with an increasing boundary layer thickness is
analogous to having an inviscid flow, but with a bottom wall of the shape of the
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displacement thickness. The flow has to overcome this sloping bottom wall that
increases with time and distance, and an ever increasing pressure head is needed to drive
the flow at a given position. In addition, the boundary layer at a fixed position was
found in Figure 3.29a to remain roughly constant with increasing time after an initial
period during which it increases rapidly with time. As a result, it can be deduced that the
increase in the depth of the current at a fixed position is not only due to the increase in
the boundary layer thickness at the location of interest, but also due to the increase in the

boundary layer thickness downstream of that position.

The boundary layer in a viscous current is thus similar to the boundary layer
thickness obtained in the Blasius problem with the leading edge of the bottom wall being
analogous to the leading edge of a flat plate in the Blasius problem, except for the
decrease in velocity in the layer of working fluid with time. However, the boundary
layer thickness in the Blasius problem with similar conditions can be deduced to attain a
value of 0.8, while the boundary layer thickness in the present model attains only about
half that value. This discrepancy can be attributed to both the decreasing fluid velocity
and increasing current depth at that location.

The accompanying Figure 3.29b shows the corresponding non-dimensional
velocity of the layer of working fluid in Case 3.4 at x* = 50 as a function of the non-
dimensional time from start. Since the velocity at the upstream end wall is always zero,
it is represented by the dashed line that coincides with zero velocity at all time. The non-
dimensional velocity of the fluid at x* = 50 is about 1.5 just after the front of the current
has passed. It then decreases continuously thereafter. When the reflected bore arrives at
t* = 970, the velocity suffers a sharp drop. According to Figure 3.27b, this velocity will
attain a value of about 10% of that before the arrival of the bore.

Furthermore, the front position and the front velocity of a viscous gravity current
are found to be different from those in an inviscid one. The front position of Case 3.3 is
illustrated in Figure 3.30a. while the corresponding front velocity is shown in Figure
3.30b. The front position of the current in Figure 3.30a can be seen to go through the
same accelerating initial stage and the stage of constant spreading rate, referred to as the
principal stage in Section 3.3.3, as in the case of an inviscid current. After t* = 130,
however, the spreading rate of the front decreases with time. This decrease in front
speed is due to the viscous drag exerted by the bottom wall on the current, as is evident
from the continuous increase in the boundary layer thickness with time in Figure 3.28a.
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Chen (1980) referred to this stage of decreasing front speed as the final stage. The
position of the front at which the front velocity starts to decrease is denoted by x;, and it
was experimentally shown to exist earlier in Section 2.3.2. It will also be referred to as
the transition position, since the front velocity changes from a constant speed to an ever
decreasing one while the current changes from an inertia-buoyancy regime to a viscous-
buoyancy regime. The above observation can also be seen in Figure 3.30b. It should be
noted that the kinks observed in Case 3.3 are due to changes in the grid size used during
computation t0 minimize the computational time and resources needed, and not due to
physical reasons. These kinks will become smaller with increasing resolution. However,
it was found that the increase in accuracy does not justify the extra computational time
needed for an increase in resolution. As a result, the resolution was not increased to

minimize the kinks.

Figure 3.31 shows an interesting effect of the Reynolds number. It was
established by Benjamin (1968) that the front of an inviscid current spreads at a constant
rate, while Huppert (1982) and Didden and Maxworthy (1982) established that the front
of a current spreads at a rate such that x; o t4/5 in the viscous-buoyancy regime. In
Figure 3.31, the non-dimensional front position of the current in Case 3.1 is shown as a
function of the non-dimensional time in logarithmic scales. It can be seen from the
figure that when t* is small, the flow behaves as if it is inviscid, and the front advances at
a constant rate as predicted by Benjamin. However, at t* = 100 in this particular case,
the spreading rate becomes proportional to t45 as predicted for a gravity current
dominated by viscous and buoyancy forces. This is in good agreement with the
experimental results presented earlier in Section 2.3.2. As a result, it is concluded that
although numerous assumptions and approximations are used in this viscous model, it

nevertheless captures the essence of the phenomenon.

Furthermore, it was shown in Section 3.3.3 that the speed of a reflected bore is
constant until the bore is near the inlet. In Figure 3.32, it is shown that the viscous model
provides a different result. Since the depth of a viscous current is an ever decreasing
function with respect to x*, the speed of the reflected bore is an increasing function when
it advances upstream. As a result, the magnitude of the slope of the plot in Figure 3.32,
which shows the non-dimensional position of the reflected bore, x,*, as a function of t*
for Case 3.1 increases continuously with time. This is not in good agreement with the
experimental results shown earlier in Section 2.3.2. The discrepancy can be attributed to
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the inability of this model to handle the separating boundary layer of the bore, as well as
other factors present in the experiments. As a result, quantitative information about the
speed of the reflected bore will not be pursued any further in this model.

3.5.4 Effects of the Reynolds number, Re, on the solutions

The Reynolds number, Re, has a profound impact on the solutions. This is
illustrated by comparing the non-dimensional time varying front position of Cases 3.3
and 3.5 as a function of the non-dimensional time in Figure 3.33a. In Figure 3.33a, it can
be seen that the spreading rate increases with increasing Reynolds number. In addition,
Figure 3.33b, which compares the front velocity of the same two cases, reveals that the
transition position, x;, also increases with increasing Reynolds number. In Case 3.3,
when Re = 1000, it was observed that x;* = 130 and V¢* = 1.14. On the other hand,
when Re = 5000 it was observed that x* = 242 and V¢* = 1.19 in Case 3.5. Note that it

was shown in Section 3.3.4 that an inviscid gravity current with similar conditions yields
V¢* = 1.23. Thus, it can be concluded that the flow at a higher Reynolds number

behaves more like an inviscid flow, as expected.

Figure 3.34a further illustrates this change in the non-dimensional transition
position, x¢*. It is observed from the figure that the non-dimensional transition position
increases with increasing Reynolds number. Thus, its occurrence is due to viscous
effects. However, it was also shown in Section 2.3.2 that in the experiments conducted,
x¢* decreases with Reynolds number when Re < 1000, and x;* is roughly constant for
1000 < Re. This discrepancy is due to the three-dimensional effects at the front of the
current owing to the overrun of ambient fluid. Since it was shown in Section 3.4.3 that

the current depth results from the boundary layer thickness developed from the leading
edge, this discrepancy in x;* will not prevent the model from capturing the essence of the

phenomenon. As a result, quantitative evaluation of x;* will not be pursued hereafter.

Similarly, Figure 3.34b shows the corresponding changes in Pggq, */wg*. It can
be seen that Pggq*/wp* is also influenced by viscous effects, and it increases with
increasing Reynolds number. The rate of increase of Pggq*/wp* slows down
considerably with increasing Reynolds number. Thus, it will not increase indefinitely
with increasing Reynolds number. This agrees with the result shown in Figure 3.10b,
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which shows that the ratio Pggg,*/wg* will attain a value of about 9 for an inviscid

gravity current. However, since this ratio does not appear to have a large effect on the
solution, it will not be pursued any further.

As mentioned earlier in this section, the non-dimensional constant front speed,
V¢*, increases with increasing Reynolds number. This is illustrated in Figure 3.35a. For

Re < 1000, the rate of increase in V¢* with Reynolds number is large. However, when

the Reynolds number is sufficiently large, the rate of increase is reduced, and the value of
V¢* tends to that of an inviscid gravity current, which is shown as the dashed line in the

figure.

The depth of current at the front, (h*)s, in the principal stage also exhibits a
similar behavior as V¢*. In Figure 3.35b, it can be seen that (h*) increases rapidly with
Reynolds number for small Reynolds numbers, but the rate of increase slows down
considerably when the Reynolds number is sufficiently large. The value of (h*); for a
large Reynolds number is also close to that of an inviscid gravity current, which is shown
in the figure as a dashed line. Hence, it supports the conclusion that at higher Reynolds

numbers, the flow behaves like an inviscid gravity current.

Figures 3.36a and 3.36b further illustrate this fact. Figure 3.36a shows both the
non-dimensional current depth and the non-dimensional boundary layer thickness at t* =
225 for Case 3.3 with Re = 1000, and compares them with the depth of a corresponding
inviscid current. Similarly, Figure 3.36b shows the non-dimensional current depth and
the non-dimensional boundary layer thickness at t* = 225 for Case 3.5, which has a
Reynolds number of 5000 and again compares them to the corresponding depth of an
inviscid gravity current. Note that for an inviscid current, the boundary layer thickness is
always zero. From the figures, it can be seen that a current with a lower Reynolds
number develops a much thicker boundary layer, and the corresponding current depth at
a fixed position at a given time must then be deeper to overcome the thicker boundary
layer downstream of that particular location. It can also be observed from the figures
that, as a result from the argument above, a current with a higher Reynolds number will
resemble an inviscid gravity current more than that with a lower Reynolds number.
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3.5.5 Effects of the length of the inlet, wy*, on the solutions

As in previous models, the fluid in the present viscous model spreads farther in a
given amount of time for a channel with a shorter inlet, wy*. This is shown in Figures
3.37a and 3.37b. In Figure 3.37a, the non-dimensional front position as a function of the
non-dimensional time for Cases 3.3, 3.7, and 3.10 are shown. It is observed that the
initial acceleration stage is longer for the current with a longer inlet. Figure 3.37b is
even more illustrative. The non-dimensional front velocity of each of the same three
cases is shown as a function of the non-dimensional time. It can be seen that the front
velocity of each case has a similar initial stage during which the front velocity accelerates
quickly. The principal stage that follows has a constant front velocity, which is followed
by the stage with decelerating front velocity. It is obvious that a longer inlet requires a
longer initial stage, but the decelerating stage does not strongly depend on wy*, as is
evident by the overlapping of the three curves that represent the three different cases at
200 < t*. Due to this longer initial stage, by the time the current in a channel with a
longer inlet starts to approach the value of the constant front speed the boundary layer is
already well developed, and the fluid that is available at the front of the current is less
than that of a current with a shorter inlet. As a result, the constant front speed that can be
attained by a longer inlet is less than that achievable by a shorter inlet before the start of
the decelerating stage.

The argument put forth earlier in this section that a larger constant front speed

can be achieved by a shorter inlet is further supported by Figure 3.38, which shows the
non-dimensional constant front speed, V¢*, as a function of Reynolds number, Re, for

cases with wp* = 6, 12, and 24. From the figure, it is evident that at low Reynolds

numbers, the decelerating stage starts early, and thus the constant front speed that can be
achieved by a long inlet is much smaller than that which can be achieved by a short inlet.
On the other hand, when the Reynolds number is large, the deceleration stage starts later,
and the constant front speed that can be achieved is less sensitive to the inlet length. In
addition, the constant front speed at very large Reynolds number approaches that of an

inviscid gravity current, which is shown as the dashed line in the figure. The value of
V¢* for an inviscid gravity current was shown in Section 3.3.4 to be independent of wy*.

Finally, the non-dimensional current depth and the non-dimensional boundary

layer thickness as a function of the non-dimensional distance from the leading edge at t*
= 275 and Re = 1000 for wy* = 6 and wy* = 24 are compared in Figure 3.39a. From the
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figure, it can be seen that the differences in h* and in 8* at the same t* are small when x*
is small, but the differences increase with increasing x*. On the other hand, Figure 3.39b
shows that the differences in h* and in &* at a fixed x* decrease with increasing t* for
the same two cases. For sufficiently large t*, there is no significant difference in h* and
in 6* at x* = 50 and Re = 1000 between the two cases.

3.5.6 Effects of the rate of loss of working fluid at the front of the current, o, on
the solutions

Figure 3.40 shows the non-dimensional time varying front position for Cases 3.3,
3.14, and 3.15. These three cases have identical conditions except for the rate of loss of
working fluid at the front of the current, . It is observed that the initial acceleration
stage does not strongly depend on .. However, the spreading rate of the front decreases
with increasing o in both the principal stage and the decelerating stage. This is better
illustrated in Figure 3.40b, which shows the non-dimensional time varying front velocity
of the same three cases. It can be seen that the front velocity in each case has a similar
initial stage during which the front velocity accelerates quickly. The principal stage that
follows has a constant front velocity, which is then followed by the final stage. It is
obvious that the initial stage is independent of @, as is evident by the overlapping of the
three curves when t* is small. However, it can also be seen that the non-dimensional
constant front speed that can be achieved by a large o is smaller than that by a smaller a.
This is because the fluid that is available at the current front is less in a current with a
larger a. Finally, it can be seen that contrary to the effects of wg*, the curves do not
coincide in the final stage for the three cases. Instead, they are roughly parallel to each

other.

The non-dimensional current depth and the non-dimensional boundary layer
thickness as functions of the non-dimensional distance from the leading edge at t* = 275
and Re = 1000 for o = 0.0 and 0.2 are compared in Figure 3.41a. The differences in h*
and in 8* are negligible when x* is small, but they increase with increasing x*.
Furthermore, Figure 3.41b shows that the differences in h* and in &* at x* = 50
decreases with increasing t* for the same two cases. At t* = 300, there is no apparent
difference in h* nor in 8* between the two cases.
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Finally, Figure 3.42 shows the non-dimensional constant front speed, V¢*, as a
function of Reynolds number, Re, for cases with a = 0.0, 0.1, and 0.2. From the figure,
it is apparent that the constant front speed that can be achieved by a larger o is smaller
than that which can be achieved by a smaller o.. Regardless of the Reynolds number, the

variation in the constant front speed due to o does not appear to be very sensitive to Re.
In this aspect, the effect of o on the solution is different from that of wy*.

3.5.7 Effects of the channel length, L*+wg*, on the solutions

The non-dimensional length of the channel, L*+wg*, again shows no effects on
the solution before the front of the current hits the end wall. This is demonstrated in
Figure 3.43a, which shows the non-dimensional current depth, h*, as a function of the
non-dimensional distance from the leading edge, x*, at t* = 225 for Cases 3.3 and 3.18.
These two cases have identical input parameters except for L*, and thus L*+wg*. The

solutions at t* = 225 are identical for the two cases.

However, due to the difference in L*, the front of the current in Case 3.18 hits the
end wall before t* = 375, and that in Case 3.3 hits the end wall after t* = 375. As a
result, when the non-dimensional current depths at t* = 375 for the two cases are shown
in Figure 3.43b, it can be seen that the front in Case 3.3 is still spreading in the
downstream direction, while that in Case 3.18 has already hit the end wall, and the
reflected bore is moving in the upstream direction. In Figures 3.43a and 3.43b, the short
vertical lines at the both sides of each curve again represent the upstream and the

downstream end walls of the channel.

3.5.8 Effects of T;* on the solutions

As described in Section 3.5.1, the flow in each of the cases tested with this model
was assumed to be inviscid until t* = T;*, so that a stable solution could be obtained.
The effects of T;* on the solution are revealed in Figures 3.44a and 3.44b. Figure 3.44a

shows the non-dimensional current depth and the non-dimensional boundary layer
thickness at t* = 375 as functions of the non-dimensional distance from the leading edge
of the bottom wall for Cases 3.3 and 3.19. It should be noted that the parameters in the
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two cases are identical except that T;* = 10.0 in Case 3.3 and T;* = 20.0 in Case 3.19. It

is observed from Figure 3.44a that the difference in T{* does not have a profound effect
on h* nor on &* at t* = 375, In addition, Figure 3.44b shows the non-dimensional
current depth and the non-dimensional boundary layer thickness at x* = 50 as functions
of time from start for the same two cases. The differences between the two cases are
minimal at best, as is evident from the coincidence of the two solutions shown in the

figure. As a result, it is concluded that the effects of T* are insignificant when t* >>

T *.

3.6  Viscous gravity currents in a channel of finite depth
3.6.1 General description of the model

In this section, a model will be presented to describe the behavior of a viscous
gravity current in a channel of finite depth. Unlike the model for inviscid gravity
currents in a channel of finite depth as presented in Sections 3.4 nor that for viscous
gravity currents in a channel of infinite depth in Section 3.5, this model is merely a
collection of the features already presented in the earlier models and does not contain any
additional features. Other assumptions made in the earlier models are still assumed to be
valid in the present model. The interfacial shear and the viscous force being exerted on
the ambient fluid by the top wall of the channel are assumed to be small when compared
to the viscous force being exerted on the current by the bottom wall.

Using the transformed z*-T* co-ordinates, the governing equations, the boundary
conditions, and the initial conditions are shown in Appendix D to be:

Governing equations:

8h*+ 1 9
%
ot* Wo' oz*

For-1<z* <0, (Uy* h*) = vo* (3.21a)

1
w_(f“izl* [Uy,* b + U, (H* - h9)] = vo* - vig* (3.21b)



and

For0<z* <1,

when &* < h¥*,

and

and for &* = h*

k]
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1

1
¥ WL 5Q— [3 (Uy*)2 - 3pUg#)2 + h¥] = 0

0*=0

D A
ot*  Xf* 9zF  Xf* 8 *

— [Uy™* (h* - —5*)] = vp*

_.l.;éi [UW* (h* - % 8*) + Ua*(H* - h*)] = VO* - VH*

z*xf

+%ai[ (U2 - pr(Ua*)2+h*] =0

Xf

*)'( K
ol (G0 RS %22 (e

35x*a*

= [(3*)2] +3%

(5*)2 OUy*  (§%)2 z¥ke* JUy*
U o T Up* xpf og

122 (3%)29Uy* 8

oh* Z*Xg* gh*
otk Xf* Jz*

+ L*aj.. [UW* (h* - % 8*)] = VO*

;1_ 5i [UW* (h* - % 6*) + Ua* (H* - h*)] _ VO* - VH*

(3.21¢)

(3.21d)

(3.21e)

(3.219)

3.21g)

(3.21h)

(3.213)

(3.21))
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% [Uy* (h* - % &%) - P U, *h*]

Z¥x ¥
- 52 [Uy* (0% - 589 - U]
Li 2 16 pl‘ a
+3 F gk [(Uy*)= (h* - 5*)] az*
PlUa* 5 3 h* gh* 3 1 Uy*
ST 5w [Uw* (07 -5 8%)] *XF 9 ~2Re g (3.21k)
and &% = h* . (3.211)
Boundary conditions:
oh*
Atz¥=-1, 52—* =0 (3.22a)
Uy*=0 (3.22b)
U,*=0 (3.22¢)
and o*=0. (3.22d)
At z¥ =0, h*(z*=0’) = h*(z*=0+) (3.22e)
1 ah* 1 9h*
W_O* a?(z =07) = e az*(z*_0+) (3.22f)
Uy *@*=0") = U™ (z*=0%) (3.22g)
1 dUy* 1 dUy*
Wor ozt (z*=0") = ;‘; . (z*=0") (3.22h)
1 3
o % [Uy* (% -3 %) + Up* (H* - h1¥)] 0m0)
= VO*(Z*=O) - VH*(Z*=O) (3.22i)
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and 6¥=0. (3.22i)
Atz*¥ =1, 8*=0 (3.22k)
xg* = (1 - a)Uy* (3.22)
h*
U, * = - . - = (3.22m)
G- +Prrge (1 - 0 +5 Pr ()2
h*
and Uy*=- 0 - h* Uy*. (3.22n)
‘[*
Also xg = [ kg dT¥ (3.220)
0
T*'+1 - 'C*'
and h*iK,j+1 = h*ix,j + —;—1’5* - (Zh*iK-l,j - h*iK-z,j- - h*iK,j) ) (3.22p)
T

As in the previous models, after the front of the current has hit the downstream
end wall, equations (3.221) through (3.22p) must be replaced by the following equations

an

Atz* =1, = 3.22
z dz* ( Q
Uy*=0 (3.22r)
Uy*=0 (3.225)
o8*
—=0. 3.22¢
and - ( )
Also x* =0 (3.22u)

and xg* = L* . (3.22v)
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Initial conditions:

At time T* = Tp* > 0 where Tp* = 0, it is shown in Appendix D that:

For-1<z* <0, h* = VO*(Z*) To* (3.23a)
Uy* =0 (3.23b)
U,* =0 (3.23c)
and & =0. (3.23d)
For0<z* <1, b = vo* % = 1 To*/K (3.23¢)
h*
Uy* = I b 1 o, (3230
G-+ Pripp (1-0) +5Pr )
h*
Uy*=- T Uy* (3.23g)
and & =0; (3.23h)

where K is an arbitrarily large number as discussed in previous models. The velocity and
position of the front at T* = Tp* can then be found using equations (3.221) and (3.220).
In addition, it was found that equation (3.21h) will give rise to numerical instability when
T* is not large when compared to Tp*. If equation (3.23h) was used in place of equation
(3.21h) until T* = Ty*, where T;* >> Ty*, then the solution was found to be stable. For

large T* compared to Tp* and T;*, the solution was found to be independent of K, Ty*

and TI*.

The Lax method was again used to obtain solutions for this model due to the
reasons previously stated. Forty-nine sets of parameters were chosen to test the present
model. These sets of parameters are listed in Table 3.4.



Case
number

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13
4.14
4.15

4.16
4.17
4.18
4.19
4.20

4.21
4.22
4.23
4.24
4.25

Wo*

W W W W W

(=)W= W) S N

12
12
12
12

24
24
24
24

A NN DN

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
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Re

200
500
1000
2000
5000

200

500

1000
2000
5000

200
500
1000
2000
5000

200
500
1000
2000
5000

200
500
1000
2000
5000

H*

7.5
7.5
7.5
7.5
7.5

7.5
7.5
7.5
1.5
7.5

7.5
7.5
7.5
7.5
7.5

1.5
7.5
7.5
7.5
7.5

15
15
15
15
15

0.24
0.24
0.24
0.24
0.24

0.24
0.24
0.24
0.24
0.24

0.24
0.24
0.24
0.24
0.24

0.24
0.24
0.24
0.24
0.24

0.24
0.24
0.24
0.24
0.24

150
150
150
150
150

150
150
150
150
150

150
150
300
300
600

150
150
300
300
600

150
150
150
300
300

Pr

0.925
0.925
0.925
0.925
0.925

0.925
0.925
0.925
0.925
0.925

0.925
0.925
0.925
0.925
0.925

0.925
0.925
0.925
0.925
0.925

0.925
0.925
0.925
0.925
0.925



Case
number

4.26
4.27
4.28
4.29
4.30

4.31
4.32
4.33
4.34
4.35
4.36

4.37
4.38
4.39
4.40
4.41
4.42

4.43
4.44
4.45
4.46
4.47
4.48

4.49

Table 3.4
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0.0
0.0
0.0
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0.1
0.2
0.1
0.2
0.1
0.2

N NN DN

0.0
0.0
0.0
0.0
0.0
0.0

AN NN N DN

0.0
0.0
0.0
0.0
0.0
0.0

AN NN OV NN

Cases investigated for viscous gravity currents
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Re

200

500

1000
2000
5000

200
200
1000
1000
5000
5000

200
200
1000
1000
5000
5000

200
200
1000
1000
5000
5000

1000

in a channel of finite depth.

H*

30
30
30
30
30

1.5
1.5
7.5
7.5
7.5
7.5

1.5
7.5
1.5
1.5
7.5
7.5

7.5
1.5
7.5
7.5
1.5
7.5

7.5

0.24
0.24
0.24
0.24
0.24

0.24
0.24
0.24
0.24
0.24
0.24

0.48
1.20
0.48
1.20
0.48
1.20

0.24
0.24
0.24
0.24
0.24
0.24

0.24

L*

150
150
150
300
300

150
150
150
150
300
300

150
150
150
150
300
300

150
150
150
150
300
300

300

Pr

0.925
0.925
0.925
0.925
0.925

0.925
0.925
0.925
0.925
0.925
0.925

0.925
0.925
0.925
0.925
0.925
0.925

0.80
1.00
0.80
1.00
0.80
1.00

0.925
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Case 4.1 through Case 4.20 were selected to show the effects of the non-
dimensional inlet length, wy*, at various Reynolds numbers, Re. Case 4.21 through Case
4.30 were chosen to reveal the influence of the non-dimensional channel height, H* on
the solutions at various Reynolds numbers. Similarly, Case 4.31 through Case 4.36 were
selected to show the significance of the rate of loss of working fluid at the front of the
current, O, at various Reynolds numbers. Case 4.37 through 4.42 were selected to study
the effects of the non-dimensional outlet length, w{*, at various Reynolds numbers.
Case 4.43 through Case 4.48 were chosen to show the influence of the density ratio
between the ambient fluid and the working fluid, p,, at various Reynolds numbers.

Finally, Case 4.49 was selected to reveal the effects of the non-dimensional length of the
channel, L* + wy*, on the solutions.

3.6.2 Estimation of errors in the computation

The accumulated volume per unit width of working fluid computed in the current
again provides a measure of the error introduced by numerical dissipation. In each of the
present cases, the time step and spatial resolution were carefully selected such that the
error in the accumulated volume of working fluid is less than 1.5%.

3.6.3 General description of the results

The general features of the solutions for this model of viscous gravity currents in
a channel of finite depth are very similar to those discussed in Section 3.5.3 for the
model of viscous current in a channel of infinite depth. The bottom boundary layer of a
gravity current in this model will increase with time and distance from the leading edge
of the bottom wall, and the velocity of the front of the current will decelerate in the final
stage. The inclusion of additional parameters in this model due to the finite channel
height, such as the non-dimensional outlet length, w;*, the non-dimensional channel
height, H*, and the density ratio between the ambient fluid and the working fluid, p,,

will not change the general features that were associated with the model of viscous
current in a channel of infinite depth. However, these factors do change the details of the
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solutions. For example, the constant front speed, V¢*, that can be achieved by a current

is affected by these additional parameters.

3.6.4 Effects of the length of the inlet, wy*, on the solutions

The length of the inlet has a profound influence on the solutions. This is
illustrated in Figure 3.45, which shows the non-dimensional constant front speed, V¢*, as

a function of Reynolds number, Re, for various non-dimensional inlet length, wo*. The
constant front speed at a fixed Reynolds number can be seen to increase with wq*, and it
is also observed to increase with Re for a fixed wy*. The difference between the constant
front speeds at Re = 200 is about 20% for the range of wp* studied. This difference
diminishes with increasing Reynolds number. The constant front speed for each wy* at

Re = 5000 approaches that of an inviscid gravity current with the same channel height,
which was shown in Section 3.4.5 to be independent of wy*.

3.6.5 Effects of the channel height, H*, on the solutions

Similar to the other length scales, the channel height also affects the constant
front speed of a viscous gravity current. The non-dimensional constant front speed, V¢*,
as a function of Reynolds number, Re, is shown in Figure 3.46 for various channel
heights. It can be seen from the figure that the limited channel height has a minimal
effect on the constant front speed at low Reynolds number. However, it can also be
observed that at high Reynolds number, the constant front speed increases with
increasing channel height, and the effect of the channel height diminishes when 30 < H*.
This is because when H* increases, the velocity of the excess ambient fluid being
displaced from the channel decreases.

Since the experimental channel has a fixed geometry, H*/wy* remains constant.
As a result, a change in H* is always matched by the same percentage in wp*. By
comparing Figure 3.45 and 3.46, it can be noticed that although V¢* increases with H*,
the reduction in V¢* due to a change in wy* is larger than the increase in V¢* due to the
same percentage change in H* when H*/wg* is fixed. Thus, it can be concluded that V¢*
decreases with increasing H*. This conclusion supports the experimental results shown

in Figure 2.4.
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3.6.6 Effects of the rate of loss of working fluid at the front of the current, ¢, on
the solutions

In Figure 3.47, the non-dimensional constant front speed, V¢*, as a function of
Reynolds number is shown for various rates of loss of working fluid at the current front,
.. By comparing the constant front speed at a fixed Reynolds number for different O, it

can be concluded that O does not have a large impact on V¢*.

3.6.7 Effects of the length of the outlet, w;*, on the solutions

The effect of the outlet length, w{*, on the solution is again found to be minimal.

This is illustrated in Figure 3.48, which shows the non-dimensional constant front speed,
V¢*, as a function of Reynolds number, Re, for various non-dimensional outlet lengths,

w*. For the range of Reynolds numbers and outlet lengths studied, the outlet length has

no apparent effect on the constant front speed.

3.6.8 Effects of the density ratio between the ambient fluid and the working fluid,

Prs on the solutions

Similar to the outlet length, the density ratio between the ambient fluid and the

working fluid does not seem to have a major influence on the solution. Figure 3.49
shows the non-dimensional constant front speed, V¢*, as a function of Reynolds number,

Re, for various density ratios between the two fluids, p,. For the range of Reynolds
numbers and density ratios studied, which covers the range of parameters used in the

experiments discussed in Chapter 2, there is no apparent influence of p; on Vg*.

3.7 Comparison of the model with experimental results

3.7.1 Comparison of individual features

Results obtained from the model of viscous gravity currents in a channel of finite
depth are compared with experimental results to check the validity of the model. Using
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that model, the time varying front position of gravity currents under various conditions
were obtained. The results were compared with those obtained in the experiments as
described in Chapter 2. An example is shown in Figure 3.50. The time varying front
position of a gravity current at Re = 1486, d.¢ = 1.68 cm, and t¢ = 0.177 s obtained
from the model is compared with the experimental data in the figure. The front of the
current in the model was found to spread at a faster rate than that observed in the

experiment.

The non-dimensional constant front speed, V¢*, was obtained from plots similar

to Figure 3.50 and the results are shown in Figure 3.51, together with the corresponding
experimental data. It can be seen that the constant front speed measured in an
experiment is roughly 15% lower than the corresponding value as determined by the
model. It should be noted that the large variation of V¢* at low Reynolds number that
was observed in the experiments is also observed in the results obtained from the model.
As aresult, it can be concluded that V¢*strongly depends on the inlet length, wp*, at low
Reynolds numbers. On the other hand, the value of V¢* is at best a very weak function
of wg* at high Reynolds number, since Figure 3.51 shows that there is very little
variation of V¢* for 1000 < Re for the results obtained both from the model and from the

experiments.

The non-dimensional depth of the current, h*, as well as the non-dimensional
boundary layer thickness, *, at the same non-dimensional distance, x*, and the same
Reynolds number, Re, as the experiment shown in Figure 2.24 were obtained. The
results are compared in Figure 3.52, which shows h* and 8* as a function of t* at x* = 52
and Re = 2105. It can be observed from the figure that the current depth obtained from
the model is lower than that from the experiment, while the boundary layer thickness is
slightly higher than that found in the experiments. However, the rates of increase of both
the current depth and the boundary layer thickness obtained from the model compare

favorably with those measured in the experiment.

Figure 3.53 shows the corresponding non-dimensional time varying current
velocity, Uy *, at x* = 52 and Re = 2105. The velocity obtained from the model is
observed to be larger than that measured in the experiment. This observation is
consistent with the observation noted above for Figures 3.50 and 3.52. On the other
hand, the decreasing trend of the velocity is again captured by the model, and the
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percentage difference between the result obtained from the experiments and that from the
model remains roughly constant with time.

3.7.2 Discussions of possible sources for the discrepancies

The discrepancy between the results obtained from the model and those found in
the experiments can be partially explained by Figure 3.54. Figure 3.54 shows the same
plot as in Figure 2.13 and compares it with the corresponding result obtained from the
model. It can be observed from the figure that the non-dimensional current depth, h¥*,
decreased with distance near the source in both cases. However, an internal jump was
observed in the experiment, while no internal jump was observed in the result obtained
from the model. This discrepancy arises because there is no provision in the model that
enforces the creation of an internal jump. Owing to the lack of the internal jump, the
current depth downstream of the jump as obtained from the model is lower than that
measured in the experiment, and the corresponding velocity is higher than that in the
experiment. As a result, the boundary layer thickness obtained from the model is also
larger than that measured in the experiment. From time varying front position
measurements, the non-dimensional front position, x¢*, for the experiment at t* = 200 is
at x* = 160. On the other hand, it can be observed from the figure that due to the faster
front speed of the gravity current calculated in the model, the front has already hit the

downstream end wall, the reflected bore is moving upstream, and the position of the
reflected bore, x.*, is already at x* = 160.

It should be noted that other shortcomings in the model might also have
contributed to the discrepancy between the experimental results and the model. The most
prominent effect is the three-dimensionality of the head at the current front caused by
both the shear on top and the overrun ambient fluid underneath. Moreover, since the
length of the channel used in the experiment is much larger than the width of the channel,
viscous effects of the side walls might also be important. However, their effects on the
solution should pale in comparison to the influence exerted by the internal jump.
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Figure 3.3 Volume of the layer of working fluid per_unit
width as a function of time for Case 1.7.
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Figure 3.4a0 Depth of current as a function of distance from
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Figure 3.4b Uniform velocity of the working fluid as a
function of distance from the leading edge
at various times for Case 1.2.



Non-dimensional front position, x,

Non-dimensional front velocity, X

-123 -

500 I SN NN S NN WU SN NN WU VSRR SHN NN (N SN SN SR SO S
Inviscid current in a channel of infinite depth

{wo'=6, a=0, L'=450, 75=0.001, K=1000

LINLINL IR N I I O 0

| | |
0 100 200 300 400
Non—dimensional time after start, t°

Figure 3.5a Front position as a function of time for Case 1.2.
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Figure 3.5b Front velocity as a function of time for Case 1.2.
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Figure 3.6b Position of the reflected bore as
a function of time for Case 1.2.
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CHAPTER 4

EXPERIMENTAL STUDIES ON GRAVITY CURRENTS IN AN
INCLINED CHANNEL

4.1 Introduction

In Chapter 2, experiments conducted to study two-dimensional gravity currents
with continuous discharge into a horizontal duct were discussed. In this chapter,
experimental studies on two-dimensional gravity currents with continuous discharge into
an inclined duct will be described.

The motion of a gravity current in an inclined duct is very different from that in a
horizontal channel. It was pointed out in Chapter 2 that the current behind the nose of a
gravity current in a horizontal channel remains laminar with a sharp interface and there is
no mixing with the ambient fluid. The depth of the following current increases
continually as the front spreads downstream.

On the other hand, the head becomes very turbulent at slopes of larger than a few
degrees, and its size continues to increase as the front spreads. The whole following
current becomes turbulent, and the turbulent region grows in thickness with distance
downstream as the ambient fluid becomes entrained into it. Moreover, the velocity of the
following current is larger than that of the front, and the difference in the two velocities
increases with the angle of inclination. For a sufficiently large Reynolds number, Re, the
normalized rate of entrainment, E, was found to decrease with increasing Richardson

gh
U,2’
angle of inclination. Ellison and Turner (1959) found that when Ri is larger than 0.8,
entrainment is negligible regardless of the angle of inclination of the duct. In addition,
when the angle of inclination increases, the head tends to have a steeper leading edge and

the length of the head tends to shorten (Wood 1965). As a result, the aspect ratio of the
head was found to increase with slope from 0.25 at 6 = 5° to about 0.5 at = 90° (Britter
and Linden 1980).

number, Ri = while the Richardson number was found to increase with decreasing
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In the case of smoke movement in a long corridor, if the length of the corridor is
20 m, a 0.3 m difference in height at the two ends of the corridor would constitute an

angle of inclination of 1° on the ceiling. It is thus beneficial to obtain experimental
results in nearly horizontal channel and to lay the ground work for future modeling
efforts. As a result, Section 4.2 will be devoted to the discussion of experiments on
gravity currents conducted in an inclined channel with an angle of inclination, 6, of 1°.
In Section 4.3, experimental results for gravity currents conducted in a channel inclined
at either 9° or 22° will be described to reveal the difference between gravity currents in
nearly horizontal channels and those in channels inclined at more than a few degrees.
Finally, experiments on gravity currents with similar discharge rate and reduced gravity
but slowly increasing inclination angle of the duct to the horizontal plane will be
discussed in Section 4.4, so that a better picture can be obtained for flows in nearly
horizontal channels.

4.2 Gravity currents in a duct inclined at 1 degree
4.2.1 Front measurements

Experiments were conducted to determine the time varying front position of
gravity currents in a duct inclined at an angle of 1°. The experimental procedures were
the same as those used to determine the time varying front position of gravity currents in
a horizontal duct, as discussed in Section 2.3.1. Figure 4.1 shows the non-dimensional
time varying front position of a gravity current with Re = 2080 in an inclined duct with 6
=1°. The non-dimensional time varying front position of a gravity current with the same
input conditions in a horizontal duct is also shown in the figure for comparison.
Although both gravity currents experienced a similar initial acceleration stage, it took
longer for the gravity current in the inclined duct to enter the principal stage, during
which the front speed became constant. Moreover, while the front speed of the gravity
current in a horizontal duct continually decreased after it entered the final stage, the front
speed of the gravity current in the inclined duct remained constant throughout the time
span observed as it spread downstream. None of the experiments carried out during this
investigation showed a decline in the front speed for a gravity current in a duct inclined
at 1°. Middleton (1966) suggested that in an inclined channel, an equilibrium was set up
among the rate of supply of working fluid, the rate of loss of current fluid from the head,
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and the rate of dilution due to mixing. As a result, the Froude number of the head
remained nearly constant, and the thickness of the following current was less than that in
a horizontal channel but the average velocity in the current was larger than that in a
horizontal channel. Furthermore, Britter and Linden (1980) indicated that the steady
front velocity was produced by a balance between the gravitational force down the slope
and the frictional and entrainment drag. It was also found that considerably more mixed
fluid was left behind the head as the current advanced downstream in an inclined duct
than in a horizontal duct, as more current fluid was supplied and mixed into the head and
the mixed fluid was then left behind the head. After the front of the current had hit the
downstream end wall, the reflected bore advanced upstream, similar to the case of a
gravity current in a horizontal duct. However, the constant speed of the reflected bore
decreased continually because it was running up a slope. As a result, a constant return
speed could not be determined for the reflected bore.

The non-dimensional constant front speed, Vg*, of gravity currents in a duct

inclined at 1° was determined for 200 < Re < 4200. The value of V¢* as a function of Re
is shown in Figure 4.2. For Re < 600, V¢* appeared to be significantly lower than that
for 600 < Re. The average value of V¢* for the experiments conducted in an inclined

channel with an upstream exit was 1.07 £ 0.05 for 600 < Re. This average value is
shown as the dashed line in the figure, and is 20% higher than the corresponding value
for gravity currents in a horizontal channel. For the experiments conducted in a channel
with a downstream exit, the value of V¢* was almost constant at 1.11 % 0.01 for 600 <
Re. Although this value is slightly larger than the corresponding value for the
experiments conducted in a channel with the same angle of inclination and with an

upstream exit, it is within one standard deviation of that value and the two values can be
considered as similar. Using the average value of V¢* together with the average value of

the non-dimensional head height, h;*, to be shown in Section 4.2.2, the average Froude

Vi
number, Fr = —=
ey

is in excellent agreement with that found by Middleton (1966), which has a value of 0.76
+ 0.05.

, obtained in a 1° duct in the present study has a value of 0.76, which
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4.2.2 Measurements of the depth of the gravity current

A gravity current in an inclined duct, similar to a gravity current in a horizontal
duct, also has a raised head with a shallower following current. However, contrary to the
case of a horizontal duct, the depth of the following current, h,, at a particular location in
an inclined duct does not increase continuously with time. Instead, it reached a constant
value quickly and maintained that value until the arrival of the reflected bore. This is
revealed in Figure 4.3, which shows the depth of the gravity current in Test 335, with Re
= 2255, at x* = 22 and x* = 72. It was found that the non-dimensional head height, h;*,
increased slightly with the distance from the leading edge of the bottom wall, x*. On the
other hand, there is no evidence that the non-dimensional depth of the following current
in an inclined duct, h.*, changed with x*. The amplitude and the wavelength of the
reflected bore were not found to be constant, as in the case of a gravity current in a
horizontal duct. It was also observed during the experiment that the mixed layer of fluid
left behind by the head in an inclined duct was deeper than that in a horizontal duct. The
interface between the current and the mixed layer in an inclined duct did not appear as
sharp and distinctive as in the case of a gravity current in a horizontal duct. As a result,
the uncertainty in the measurement of the current depth in an inclined duct was larger
than that in a horizontal duct. It also appeared that some fluid in the mixed layer was
entrained across the interface and into the layer of ambient fluid. However, the amount
of this entrainment is small, since the rate of entrainment, E, found by Ellison and Turner
(1959), can be given by E = 1.75x10-3 .

Figure 4.4 shows the non-dimensional head height, hy*, as a function of the
distance from the leading edge of the bottom wall, x*. Experiments were only carried

out in a duct with an upstream exit and an angle of inclination of 1°. For 600 < Re, the
value of hy* increased from 1.64 at x* = 20 to 2.27 at x* = 110, with a weak dependence

on Re. Thus, the rate of change of h; with respect to x, dh/dx, is 7x10-3. This increase
in head height with respect to downstream distance is due to the continuous supply of
working fluid from the following current into the head. Bitter and Linden (1980) also
conducted experimental measurements of dhy/dx, but only for 5° < 6. According to
extrapolation of the data presented in Figure 8 of that paper, the value of dh;/dx would

be 4x10-3, which is in good agreement with the present data since, due to the small value
of dhy/dx, a small error in measurement could lead to a large difference in dh;/dx.
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On the other hand, Figure 4.5 shows the corresponding non-dimensional depth of
current, h ¥, as a function of distance from the source, x*. It can be seen that the value

of h.* was independent of Re, and it can be shown to have at most a very weak
dependence on x*. For practical purposes, h:* is assumed to be independent of x*. For
600 < Re, the value of h.* was found to be 0.81 £ 0.05 for 20 < x* < 110. Although it
was found that in an inclined duct dh/dx > 0 (Ellison and Turner, 1959) due to increased

entrainment of the ambient fluid into the following current, the rate of entrainment at 1°
was found to be negligibly small.

4.3 Gravity currents in a duct inclined at a higher angle of inclination
4.3.1 Front measurements

Britter and Linden (1980) suggested that at large Reynolds numbers, the constant
front speed, V¢*, is only a function of the slope angle. Experimental results of the time
varying front position were also obtained for a duct inclined at 10° and at 22°. It was
noticed that the shape of the front differs slightly from those seen in a horizontal duct.
The nose was less pointed and the ratio of the head height to the head length was larger
than those found in a horizontal duct. The following current was visibly more turbulent,
and the interface between the current and the ambient fluid was no longer clearly
defined. The amount of entrainment from the ambient fluid into the current increased
with the angle of inclination, as judged by the color of the current. As the head of the
current advanced downstream, the size of the head as well as those of the vortices shed
behind the head continued to increase until they nearly filled the height of the whole

channel.

Figure 4.6 shows the non-dimensional time varying front position of Test 469,
with Re = 1613 and 6 = 10°. It can be seen that after an initial acceleration period, the
front then propagated at a non-dimensional constant speed, V¢*. However, at x* = 120,

the front slowed down and from then on it propagated at a slower but still constant speed.
This position of transition from one constant speed to another is denoted by x;*, and is
shown as a function of the channel height, H*, in Figure 4.7. It is obvious from the

figure that this transition position increases monotonically with respect to H* and is not a
function of Re. The value of x{* increased from 73 when H* = 7 to 169 when H* = 14.
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No dependence of xi* on the exit condition was detected. For a gravity current in a

channel which is much deeper than the current and the head, Britter and Linden (1980)
found that the front speed would remain constant regardless of the front position.
Therefore, it is concluded that the front slowed down when the head height increased to a
point that it was no longer small when compared to the total channel height. The
buoyancy force and the gravitational component could no longer compensate the
increased retarding forces due to the increased blockage ratio. As a result, the front

speed slowed down, and a new steady state was reached in which the head height
remained constant. Thus, the cause of this transition position, x¢*, is different from the

cause of the transition position in a horizontal channel, x¢*, which is due to viscous

effects on the bottom wall. Due to the large fluctuation of the shape of the head, no
precise measurement of the blockage ratio was taken at the time of the transition, x;*.

However, it was noticed that the head height was always larger than half the channel
height when transition occurred.

The non-dimensional constant front speed, V¥, in a channel inclined at 10° was
shown as a function of Reynolds number, Re, in Figure 4.8, while Figure 4.9 showed the
corresponding plot for a channel inclined at 22°. When 600 < Re, V¢* was found to be
constant at both © = 10° and 22°. The average value of V* for 600 < Re < 2100 at 6 =
10° was 1.34 + 0.05, while the average value of Vg* for 600 < Re < 1800 at 6 = 22° was
found to be 1.32 + 0.09. By comparing Figures 4.2, 4.8 and 4.9, it is obvious that the
average value of V¢* increased with the angle of inclination when 6 increased from 1° to
10°, but the value of V¢* did not change significantly between © =10° and 6 = 22°.

Moreover, the amount of scattering of the data increased significantly with the increase
in 9, though no dependence on the exit condition or Reynolds number was apparent.

For large Reynolds numbers, Britter and Linden (1980) obtained an expression
that describes the non-dimensional constant front speed, V¢*, as a function of a shape

factor, S,, the angle of inclination, O, the rate of entrainment, E, the drag coefficient due
to stress at the lower boundary, Cp, and 7, the ratio of the velocity of the fluid on the

streamline that stagnates at the front of the current to the mean velocity of the following
flow. This expression is given as Equation (4.4) in Britter and Linden, and is reproduced

below:
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Q.13 cos®  Ysin6 sin@ |\ 4
Vi =8 = +3Ercy) Er oy

It was proposed that E = 1.75x10-5 @, Y= 1.2, Cp = 3x10-3, and S, = 0.75. Using these
values in the expression, the calculated value of V¢* would be 1.43 for 6 = 10° and 1.46
for 6 = 22°. Although the values of V¢* found in the present investigation are up to 10%

lower than those found in Britter and Linden, they are well within one standard deviation
of the data as reported by Britter and Linden, which was 20.2.

Similarly, Wood (1965) obtained average experimental values of V¢* = 1.24 &
0.08 at © = 6° and Vi =151%0.17 at 0 = 28°. If it is assumed that the change in Vg*
with respect to 0 is monotonic in Wood's experiments within this range of 6, then the

experimental results obtained in the present study for 6 = 10° and 8 = 22° are within one
standard deviation of the results obtained by Wood.

4.3.2 Measurements on the depth of the current

Experimental results of the non-dimensional time varying head height of gravity
currents, h;*, in a 10° duct is shown as a function of the non-dimensional distance from

the leading edge of the bottom plate, x* in Figure 4.10. Experiments were only
conducted in a channel with an upstream exit. It is obvious from Figure 4.10 that the
head height increased with downstream distance. This agrees with the observation of
Britter and Linden (1980), who reported that the nose became very turbulent and built up
continually to many times the thickness of the following layer. The velocity of the front
was smaller than that of the following layer. Moreover, none of the fluid in the

following layer escaped, and transfer was always into the current. As a result, the value
of hy* increased from 2.74 at x* = 30 to 3.23 at x* = 100. It is concluded that the rate of

change of h; with respect to x, dhj/dx, is equal to 7x10-3, which is the slope of the

dashed line. This is much smaller than that found by Britter and Linden, who obtained a
value of roughly 0.04. There are two explanations for this discrepancy. First of all, all
the experiments reported here were conducted with g' > 20 cm/s2, since Middleton
(1966) reported the tendency of the head being diluted by the mixing in of water at the
back of the head at low values of g'. While Britter and Linden did not report explicitly
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the values of g' used in their experiments, it was deduced from their reported values of (g’
Q) that, in order to obtain a reasonably large value of Reynolds number, g' < 20 cm/s2 in
most of their experiments. The second explanation is that the head height as reported in
the present study was taken as the maximum depth of the current before the visible
breaking of the first vortex, while Britter and Linden used the maximum depth of the
head structure, possibly including the shed vortices. The difference between the values
of the two depths is not trivial, and might have contributed to the discrepancy.

Due to the turbulent nature of the following current, the interface between the
following current and the ambient fluid was fluctuating as well as ill-defined. As a
result, any measurement of the depth of the following current, h.*, was subject to large
error. Experimental data obtained on the depth of the following current in a 10° duct is
shown as a function of distance from the leading edge in Figure 4.11. According to
Britter and Linden, the measured value of dh */dx* in a 10° duct by Ellison and Turner
(1959) was between 5x10-3 and 1.1x102, with the average value at roughly 8x10-3.
Since Ellison and Turner reported a non-dimensional mean velocity of 1.49 in a 10° duct,
the non-dimensional depth of the current at x* = 0 is h.* = 0.67. This result is shown as
the dashed line in Figure 4.11, and it falls well between the experimental data in the
present investigation. Since the measurement error as described above is apparently
large, no definitive and quantitative conclusion about dh */dx* can be drawn from this

figure.

4.4 Effects of a small angle of inclination on gravity currents

Experiments were conducted to investigate the effects of a small angle of
inclination of the duct on gravity currents with a continuous discharge. The main goal of
this series of experiments was to determine whether the transition from an unsteady
current in a horizontal channel to a steady one in an inclined duct is a gradual transition
or an abrupt one. Table 4.1 provides the conditions used in the series of experiments.
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n:;i)ter Qem?s)  g(cmis?) @ (deg.) Ve* Vit
482 23.6 93.3 -0.2 0.87 0.84
483 23.5 100.7 0.0 0.89 0.76
484 235 99.2 0.3 0.94 0.72
485 23.5 99.2 0.6 0.94 0.65
486 23.6 95.3 0.8 0.99 0.58

Table 4.1 Experiments conducted to investigate the effects
of a small angle of inclination on gravity currents.

It can be seen that the volumetric disChargc rate per unit width, Q, and the reduced
gravity, g', were similar for each experiment. On the other hand, the angle of inclination,
0, increased from -0.2° in Test 482 to 0.8° in Test 486. In Test 482 through Test 484,
the transition from an inertia-buoyancy regime to a viscous-buoyancy regime was clearly
observed with x;* < 90. However, the speed of the front of the gravity current in Tests
485 and 486 did not change within the non-dimensional length of the duct, L* = 148.
Figure 4.12 shows graphically both the non-dimensional constant front speed, V¢*, and
the non-dimensional constant speed of the reflected bore, V¥, as functions of the angle
of inclination, 6. Experimental data by Middleton (1966) is also shown in the figure

assuming a value of non-dimensional head height hy* =1.7 at 6 = 0.3° and hi*=18at®

=0.6°. The non-dimensional constant front speed gradually increased from 0.87 to 0.99
when © was increased from -0.2° to 0.8°, while the non-dimensional constant speed of

the reflected bore decreased from 0.84 to 0.58 within the same range of 6. The dashed
lines are linear least square fits to the two sets of data, and they are represented by V¢* =

0.11 6 + 0.89 and V* = -0.24 6 + 0.78, respectively. These expressions yield V¢* = 0.89
and V* = 0.78 at © = 0, which agree excellently with the average experimental values

obtained in Chapter 2.

More illustrative observations can be made when the depths of the gravity
currents are compared for the above tests at the same distance downstream from the
leading edge of the bottom wall. Figure 4.13 shows the non-dimensional depth of the
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current, h*, at a non-dimensional distance x* = 29 from the source for each of the five
tests listed in Table 4.1. In the figure, it is clear that since x* is not large, the front of
each gravity current arrived at roughly the same non-dimensional time with a similar
head height and a similar initial depth of the current. However, each gravity current
displayed a different rate of increase for its depth with time. The rate of increase in the
depth of a gravity current decreased when the angle of inclination increased.

When the angle of inclination was equal to or larger than 0.6°, as in Test 485 and
Test 486, the depth of a gravity current experienced a short period of growth
immediately after the passage of the front of the current, but it remained constant
thereafter until the arrival of the reflected bore. Moreover, it was observed in each of
these two tests that there was entrainment of ambient fluid into the gravity current. Asa
result, it is concluded that in the present investigation the transition from an unsteady,
non-entraining current to a steady, entraining current is gradual. Although the critical
angle, 6., which separates the two phenomena was not specifically identified, it was
found to lie between 0.3° and 0.6°. These observations are in agreement with Britter and
Linden (1980), who suggested that a gravity current is steady and the current depth of a
gravity current at a specific location will remain constant when the angle of inclination is
larger than the critical angle, 6, because the frictional forces are balanced by both the
buoyancy force and the component of the gravitational force in the streamwise direction.
Assuming a constant coefficient of friction, Cp, the critical angle was found to be
roughly 6, = 2 Cp. Britter and Linden obtained a value of Cp = 3x10-3 for their channel

and thus a value of 6, = 0.34°, which is in good agreement with the present results. Note
that in the case of a gravity current in a horizontal duct, the gravitational force is normal
to the direction of flow, and thus the frictional forces cannot be partially balanced by a
component of the gravitational force and must be completely balanced by the buoyancy
force. As a result, the depth of a gravity current in a horizontal duct had to increase with
time to provide the pressure head needed to overcome the frictional forces and so that the
current can propagate downstream. However, since there is no such need for a gravity
current in an inclined duct, as the frictional forces are partially balanced by a component
of the gravitational force, the depth of the gravity current in such a channel at a particular

location remains constant.

To summarize, Figure 4.14a shows the depth of a gravity current in Test 539 at
x* = 26 in a horizontal duct, while Figure 4.14b shows the depth of a gravity current in
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Test 340 with similar conditions and at the same x*, but the experiment was conducted in
a duct inclined at 1°. It can be seen in Figure 4.14a that for a current in a horizontal duct,
the depth of the current at a particular position continually increased with time after the
passage of the head until the arrival of the reflected bore. No visible entrainment of
ambient fluid into the gravity current was observed. On the other hand, it is clear in
Figure 4.14b that the depth of the current in an inclined duct had a small increase
immediately after the head had passed. However, the depth of the current reached a
steady state very quickly and would not increase until the arrival of the reflected bore. It
was visibly observed that some ambient fluid was entrained into the gravity current in
this case.
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CHAPTER §

CONCLUSIONS

An experimental study on two-dimensional adiabatic gravity currents has been
performed. The characteristics of gravity currents, notably the velocity of the advancing
front and the depth of the following current, in a horizontal channel and also those in an
inclined duct were examined. While video photography was used as the primary
technique in data gathering, both Kriegrocine blue dye and hydrogen bubbles were used
as flow visualization aids. A series of models was developed to examine both inviscid
and viscous adiabatic gravity currents. Numerical technique was used to obtain
quantitative information from the models, and the results were compared with the
experimental results. The major qualitative characteristics of the gravity currents were

also reviewed.

5.1 Adiabatic gravity currents in a horizontal channel

Two-dimensional gravity currents spreading in a horizontal channel comprise of a
raised head followed by a shallower current. The current front was found to undergo a
short accelerating stage during experiments in the present study. When there is a balance
between inertia and buoyancy forces during the principal stage of a gravity current, the
current advances with a constant front velocity, Vy, until viscous drag on the bottom wall
is no longer negligible. The non-dimensional constant front speed in this stage was
observed to be an increasing function of Reynolds number at low Reynolds numbers. It
was also found that V¢* = 0.89 + 0.02 for 1000 < Re. The current then enters the final

stage during which the front velocity continues to decrease. When the viscous forces
become much larger than the inertia forces, the front position will advance at a rate of x¢

~ t4/5. The transition position between the inertia-buoyancy regime and the viscous-
buoyancy regime, x;, was found to decrease with Reynolds number at low Reynolds

numbers. On the other hand, when Reynolds number is sufficiently large, it was noticed
that x* = 88 £ 11 for 1000 <Re.
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The head height, hy, of a gravity current does not change significantly during an
experiment. The non-dimensional head height was found to be hy* = 1.59 £ 0.19. On
the other hand, the non-dimensional depth of the following current just behind the head
was observed to decrease with distance travelled according to the expression hp* =

-1.4x10-3 x* + 0.85. This is due to the increase in boundary layer thickness which causes
the supply of fluid to the front to decrease with time.

The current depth, h, of a gravity current at a fixed position was found to increase
with time. It can be described by a curve fit of the form

h* = h0*+01m

in which ¢; was found to increase with Reynolds number at a rate ¢; = 5.9x104 Re +

0.91. Initially, this can be attributed to the increase in the boundary layer thickness at the
location of interest. However, it was deduced from velocity profile measurements that
the boundary layer thickness at a fixed position attains a constant value rather rapidly.
As a result, it is concluded that the continuous increase in current depth arises from the
need of an increasing pressure head to overcome the growing boundary layer
downstream of the location of interest.

By measuring the current depth at various positions, it was determined that the
current depth decreases rapidly with distance near the inlet. It then undergoes a weak
internal jump. The current depth again decreases downstream of the jump.

Owing to this continuous increase in current depth, the velocity in the following

current at a fixed position must decrease with time to satisfy the mass conservation. It
was found in an experiment that Uy, * = -1.3x103 t* + 1.13 at x* = 52. It can be deduced

that the current velocity just behind the head is roughly 20% large than the front velocity.

Moreover, no significant entrainment through the interface was observed in the
experiments using hydrogen bubbles as the flow visualization aid.

After the current front reaches the downstream end wall, it will be reflected in the
form of a bore. The reflected bore was observed to advance upstream at a relatively
constant speed which can be expressed as V* = 0.74 £ 0.04.
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The non-dimensional mean height of the reflected bore displayed a decreasing
trend with respect to distance from the source. This can be expressed as hy* = -3.4x10-3

x* +2.43,

The model developed for a viscous adiabatic gravity current in a channel of finite
depth was found to be able to capture the essence of the phenomenon. Solutions
obtained from the model show the same three stages of advancement at the front as in the
experiments. The continuous increase in current depth and the corresponding decrease in
current velocity were also observed in the solution obtained from the model. Except for
the region close to the advancing front, the boundary layer thickness was found to be due
to the leading edge of the bottom wall. It was also observed to increase very rapidly at a
fixed position just after the head had passed, but then remained relatively constant. This
is in good agreement with the experimental results.

However, the model is unable to handle the three-dimensional and complicated
features of the head of a gravity current. It did not take into account the effects of the
side walls. Finally, its inability to predict the internal jump causes it to predict higher
current velocities and lower current depths than observed in the experiments.

5.2 Adiabatic gravity currents in an inclined channel

When a gravity current spreads in a channel inclined at an angle of 0.6°<0, it
exhibits different characteristics from those observed in a horizontal channel. The front
of a gravity current in a two-dimensional inclined duct advances at a constant speed as
long as the head height is small when compared to the channel height. This is because
viscous and entrainment drag is partially balanced by the streamwise component of
gravity. Both the head height and the current depth continue to increase with distance
travelled, even though the depth of the following current at a fixed position does not

increase with time.

The head height of a gravity current in an inclined duct was observed to increase
with increasing slope, while the head height to head length ratio was observed to increase
with increasing slope. The rate of entrainment was also observed to increase with the
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slope. The front velocity was found to increase from a value of V¢* =1.11£0.01 at 6 =

1° to V* = 1.34 £0.05 at 6 = 10°.
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APPENDIX A
DERIVATION OF THE EQUATIONS FOR AN ADIABATIC,
INVISCID GRAVITY CURRENT IN A CHANNEL OF INFINITE
DEPTH
A.1 General description of the model
With the assumptions put forth in Section 3.2, the continuity, x-momentum and

y-momentum equations in differential form for fluid motion, with boundary layer

approximation, are given respectively by

—_—t—=1) ' (A.la)

L SNSRI K. SRVl (A.1b)

and =-——+g (A.1c)

where u = u x vy and v = v( x ) are the velocities of the fluid in the x-direction and y-
direction at any time t and co-ordinate (x,y), respectively, while p = pxyy and p =

P(t,x,y) Tepresent the corresponding pressure and density, respectively.
Integrating equation (A.1c) with respect to y, from y = 0 to any arbitrary y yields

P =Po- PwdY for0<y<h (A.22)

and P=Po- prh - pag(y - h) forh<y<H (A.2b)

where h = h( 5y and py = pyx) are the depth of the working fluid at any time t and

position x and the corresponding pressure of the fluid on the bottom wall of the channel,
respectively. Since mixing is assumed to be negligible, h x) also represents the position
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of the interface between the two fluids. When the pressure on the top wall is evaluated,
equation (A.2b), with y = H, yields

Po =PH + Pwgh + Pag(H - h) (A.3)

where py = pyy x) is the pressure of the fluid on the top wall of the channel at any time t
and position x. Replacing pg in favour of py in equations (A.2a) and (A.2b) using
equation (A.3) gives

P=PH +PagH - h) + pygh-y) for0<y<h (A.4a)

and p=py+pPeH-y) forh<y<H. (A.4b)

Therefore, the partial derivative of p with respect to x can be written as

op OIPH oh
o9 _ZrH ) a <vy<
% x| Pw-Pa) g o for0<y<h (A.52)
0
ana 22 _2PH fooh<y<H.  (A.5b)
Jx dx

Equation (A.5a) is significant since the pressure gradient, which partially arises from the
density difference between the two fluids, is the primary driving force of the flow.

Since the flow spreads horizontally, the changes in the y-direction are not of
primary interest. As a result, an integral approach can be used to obtain a set of unsteady
quasi-one-dimensional equations. Integrating equation (A.la) from y = 0 to y = h yields

oh
vh=v0+uh£-5ixf;udy (A6)

where vy, = vy x) and vg = Vg xy are the vertical velocity components of the fluid at y =
h x) and y = 0, respectively, and uy, = up x) is the horizontal velocity component of the
fluid at y = h ). In addition, the partition between the ambient fluid and the working

fluid at the front of the current is assumed to be sharp and vertical, as indicated in Figure
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3.1. The position of that partition is denoted by xg;), also known as the front position of
the current. The velocity of this partition moving in the downstream direction is known
as the front velocity, and is denoted by X). Furthermore, the ambient fluid downstream

of the front of the current is assumed to be quiescent.

Since the total influx of working fluid is steady, vy is also steady, and thus VO(t,x)
=Vo(x)- Inaddition, there is a solid boundary at y = 0 for x> 0. As aresult, v > gy = 0.
Finally, integrating v with respect to x from x = -w to x = 0 must equal to the influx of

working fluid Q in order to satisfy the conservation equation of mass. Assuming a
constant value of v for all x in this region will give rise to difficulties in an effort to

obtain a solution for this model with the help of computational methods. These

difficulties are beyond the scope of this investigation. As a result, for computational
purposes, the profile of vy is assumed to be of the form

1

Vo) =7 o for -wp = x <-kwgy (A.7a)
® (1 W0
Vo) = L Q. x for-kwy<x<0  (A.7b)

—(
(1_%1() WO -kWO
and Vox) = 0 for0<x <L (A.7¢)

where 0 <k < 1, and k = 0. It was found that the solution does not depend on k for a

small k.

Since y = h(; 4 is a streamline, in addition to equation (A.6), vy, and uy, are also

related by

oh dh (A.8)

=—+u,—.
YT T ok
Combining equations (A.6) and (A.8) to eliminate vy, yields

oh 9
— =vq. A9
3 Tax o Y=V (A9
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Equations (A.1) through (A.9) do not depend on the flow being inviscid or the channel
being infinitely deep, except that the interface is sharp so that the top of the layer of
working fluid coincides with the interface. Therefore, these equations can, and also will,
be used in all four cases.

A.2 Governing equations for the model

For an inviscid gravity current, there is no boundary or shear layer. As a result,
the integral on the left-hand side of equation (A.9) can be written as

f' udy = Uyh (A.10)
0

where Uy, = Uy, x) represents the free-stream velocity in the layer of working fluid. As

a result, equation (A.9) can then be written as
ch
=4 9 (Uyh) = vg . (A.11a)
X

Since there is no variation of Uy, in the y-direction, equation (A.1b) can also be written
as
oU,, Uy, 10p

Pw .y Cw_ , A.11b
ot * U ox pwax ( )

In addition, for an infinitely deep channel, the pressure distribution on the top wall is
constant, that is, dpy/dx = 0. As a result, using equation (A.5a), equation (A.11b) can be

written as
au,, oUy, 1 oh
—v - = A1l
T U o pw(pwpa)gax (A.110)
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By using the length scale, d.y, the time scale, t..f, and the velocity scale, U, shown in
Section 1.2, equations (A.11a) and (A.llc) can be rewritten in the following non-

dimensional forms

oh*
Fo 5%: (Uy*h¥) = vo* (A.122)
peab 'ﬁ_ax* [5(Uy*)?+h*]=0 (A.12b)

where ( )* quantities are the non-dimensional quantities normalized by the appropriate
combinations of length, time, and velocity scales. Equations (A.12a) and (A.12b) are the
governing partial differential equations for -wp* < x* < L*. These two equations

constitute a system of unsteady quasi-one-dimensional equations which was applied by
Grundy and Rottman (1985, 1986) to both constant-volume gravity currents and gravity
currents with a steady and continuous discharge.

A.3 Boundary conditions for the model

To solve the above differential equations, boundary conditions are needed. The
boundary conditions in this model are:

oh*

At x* = -wgp*, a—x; =0 (A.13a)
and U,*=0. (A.13b)
Atx* =0, h*(x*=0-) = h*(x*=0+) (A.13¢)
oh*  on*
S0 = S =0 (A.13d)

UW*(X*=0-) = UW*(X*=O+) (A13C)
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U, * U, *
and ———(x*=0") = ———(x*=0") . (A.13f)
ox* ox*
At x* = x¢¥, (A.13g)
and (A.13h)

where o is a constant, and aUy*h* is the rate of volumetric loss of working fluid per

unit width at the front of the current. This is achieved by putting a sink of strength
aUy,*h* at the front of the current.

Note that equations (A.13a) and (A.13b) are deduced from physical
considerations at the upstream end wall. Equations (A.13c) to (A.13f) state that both the
values and the gradients of h and U,, are continuous. Equations (A.13g) and (A.13h)
were obtained by integrating equations (A.12a) and (A.12b) across the front of the
current, keeping in mind that no working fluid moves farther downstream than the front
and that working fluid is lost at a rate of alUy,*h* at the front of the current. They are the
same as the conditions cited by Grundy and Rottman (1986), with B2 in equation (2.5) of
that paper equals to the inverse of (1/2 - o) in equation (A.13h). As a result, when there
is no loss of fluid mass or momentum at the front, B2 =2 in Grundy and Rottman as well
as in Benjamin (1968), while o, = 0 in this model. On the other hand, B2 <2 and o > 0
represents a case when there is loss of fluid at the front of the current. In addition, the
position of the front can be found simply by integrating the velocity of the front over

time

*
X = f kp* de* . (A.130)
0

A.4 Transformation of the independent variables

In this model, the distance between x* = -wp* and x* = 0 is constant, but the
distance between x* = 0 and x* = x¢* is increasing with time. As a result, new variables
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T and z are introduced to replace the variables t and x in order to minimize the
computational efforts. This new set of variables is defined as follows

For -wp* <x* <0, 7T*=t* (A.14a)
x*
and z* = V_V-(-); . (A.14b)
For 0 < x* < x¢*, T* =1t* (A.14¢c)
x*
and ¥ = (A.14d)
Xf (t*)

Thus, the partial differential equations (A.12a) and (A.12b) can be rewritten as

For -1 <z* <0 oh* L 0 () =yt (A.152)
==Y ot*  worggr w0 ‘

dUy* 1 1
and S o L7 Uy + 4 =0, (A.15b)

oh* Z*k¢*oh* 1
For0<z*<1, o g o (Uwh) = vo* (A.15¢)

an* Z*;(f* aUW* . _l_i.

1 2 _
ot*  Xf*  9z%  XfF 9z* [ 2 (Uy*)*+h*¥]=0. (A.15d)

and

Equations (A.15a) through (A.15d) are the governing partial differential
equations for -1 < z* < 1, or equivalently, -wp* < x* < x¢*. The influx velocity vp* can

be defined as a function of the co-ordinate z*, and is given by

1 1

m;&; for-1<z*<-k (A.16a)
2

Vo*(@z*) =



11
Vo* 2+ =

and VO*(Z*) =0

e
(150 ™0
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z*

)

L
for0<z*<—5
wo

for-k<z* <0

(A.16b)

(A.16¢0)

where 0 <k < 1, and k = 0. In addition, the boundary conditions (A.13a) through (A.131)

become

At x* = -wp*, z* = -1,

and

Atx*=0,z*¥=0,

and

Atx* =xg*, z¥ =1,

and

Also,

oh* _
dz*

U,*=0.
h*(Z*=0-) = h*(z*=0+)

*

(z*=0") = "'1',; (z*=0%)

Xf" gz*

1
wo* 9z*

Uy*@z*=0") = Uw*@z*=0%)

T*
Xf* = fo }.(f* drt* .

(A.17a)

(A.17b)

(A.17¢)

(A.17d)

(A.17¢)

(A.171)

(A.17g)

(A.17h)

(A.171)

Finally, an additional boundary condition is required at the front of the current. Since
this condition involves the specifics of the numerical scheme being used, its introduction
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and discussion will be postponed until the computational scheme is introduced in Section
AT.

A.5 Boundary conditions at the end wall of the channel

When the layer of working fluid is allowed to spread for a long time, the front
will hit the end wall of the channel. When this occurs, the layer of working fluid reflects
from the wall, and the reflected bore moves in the upstream direction. This is
schematically shown in Figure 3.2. Since a distinct front no longer exists, a different set
of boundary conditions are needed at the downstream end wall of the channel to replace
those conditions represented by equations (A.17g), (A.17h), (A.17i) and the additional
boundary condition mentioned in the last section. The new boundary conditions are

Atz*=1, glg— ~0 (A17))
Uy*=0. (A.17K)

Also, if* =0 (A.17D)

and x¢*¥ =L*. (A.17m)

A.6 Initial conditions for the model

Finally, initial conditions are needed to start the computation. Assuming the flow

started at T* = 0, at time T* = Tp* > 0, where Tp* = 0, it can be deduced from equations

(A.15a) and (A.15b), as a first approximation, that:
For-1<z*<0, h* = vo* %) Tp* (A.18a)

and Uy*=0. (A.18b)
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In addition, a small amount of working fluid has already spread in the streamwise
direction. Therefore, the front of the layer of working fluid is at z* = 1. However, it is
difficult to determine the precise depth and velocity distribution of the layer. As a result,
the following assumptions are used:

For)<z* <1, h* = VO*(Z* =-k) To*/K (A.18¢)

and (A.18d)

where K is an arbitrarily large number. For large T* compared to Ty*, the solution was
found to be independent of K and Ty*. Using equations (A.17g) and (A.17i), the velocity

and position of the front at T* = Ty* can then be found.

A.7 Description of the computational method

Numerical method is needed to help solve the system of equations described
above. After many methods were tried, the Lax method (Press et al. 1986) was chosen
because it provides stable solutions in spite of the fact that it is numerically dissipative.
In addition, the errors introduced by the numerical dissipation can be minimized by
carefully selecting the time step and the spatial resolution used throughout the
computation. The Lax method can be described in the following way. If i denotes the
local spatial node, and j denotes the present time, the Lax method discretizes the spatial
and temporal gradients of an arbitrary variable R* as follows

OR* R¥jypj-R¥.pj (A.192)
az¥ a1 2y '

1
oR* R¥ijs1 - 3(R¥ie1j- Ry

(A.19b)

ot* T*j+1 - T*j

Finally, as mentioned in Section A.5, an additional boundary condition is needed
at the front of the current before it reaches the downstream end wall. For the present
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model for inviscid flow in a channel of infinite depth, this condition can be readily found
by utilizing the method of characteristics. However, if that method is employed for the
case of viscous flow in a channel of finite depth, it was found that difficulties which are
beyond the scope of the present investigation will arise. As a result, an approximation
was instead introduced as the additional boundary condition in the estimation of h* at the

front. If the present time is again denoted by j, and the spatial node at z* = 1 is denoted
by ik, this approximation is given by

T - T
h¥j et = 0¥ 5 + — 2h¥*; 1 - D¥ie2-1 - D¥ig ) - (A.20)

Equation (A.20) represents a linear extrapolation scheme. It was found that the solution
thus obtained for inviscid flow in a channel of infinite depth does not deviate from that
found by the method of characteristics. The same extrapolation scheme will be used in
all the models presented in this study.
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APPENDIX B

DERIVATION OF THE EQUATIONS FOR AN INVISCID GRAVITY
CURRENT IN A CHANNEL OF FINITE DEPTH

B.1 General description of the model

As mentioned in Section A.1, equations (A.1) through (A.9) are valid for both the
last and the present models. In addition, equations (A.10) and (A.11a) are also
applicable for this model because the conditions required for their validity are satisfied.
However, the motion of the layer of ambient fluid is not negligible any more. Since the
channel depth is fixed at H, the depth of the layer of ambient fluid is only the difference
between the channel depth, H, and the depth of the gravity current, h. It can be thus

obtained by inspection once h is found. On the other hand, the velocity of the fluid in
this layer, Uy, cannot be found by inspection. Furthermore, when U, is not identically

zero, the pressure gradient on the top wall, dpy/dx does not vanish. As a result, the

conservation equations for mass and momentum for the layer of ambient fluid must also
be used.

B.2 Governing equations for the model

To obtain the governing equations of motion, the same approach in Appendix A
is used. Integrating equation (A.1a) from y =0 to y = H yields

9 udy =vg- vy (B.1)
E)x 0

where vy = vy x) and vg = Vg x) are the vertical velocity components of the fluid at y =
H and y = 0, respectively, as shown in Figure 3.1. The influx velocity, v(, was defined
in equations (A.7a) through (A.7c) in Appendix A. Using similar arguments for v, the
outflow velocity, vy, can be defined as

Vi) = -v% for -wg<x S-(wg-wp)  (B.2a)
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and VH(X) =0 for -(Wo-Wl) <x<L. (B2b)
Similar to equation (A.11a), equation (B.1) can be rewritten as

a% [Ugh + Uy(H - )] = vg - vy - (B.3)

For the inviscid part of the flow, keeping in mind that the pressure gradient on the
top wall does not vanish, equation (A.1b) can be written for the layers of ambient and
working fluids, respectively, as

aUa aUa 1 apH

ERACTa™ (B4

oU,, Uy, 1 9pPH oh

W -—w_ e . i 4
ot T Yw ox w [ ox * (PwPa) gax] (B.4b)

The reference length, time, and velocity scales shown in Section 1.2 can be used

to rewrite equations (A.11a), and (B.3) through (B.4b) in non-dimensional forms. Due to
the presence of the term py in equations (B.4a) and (B.4b), a reference pressure is

required. This reference pressure can be defined as
Pref= anref2 . (B.5)

Note that the definition of the reference pressure will not affect the solutions. As a
result, the equations (A.11a), and (B.3) through (B.4b) can be rewritten as

b
B L U = vt @60
(U, *h* + U*(H* - h%)] = vo* - vig* (B.6b)

ox*
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U,
= —i — [ (U;*)2 + p*] = 0 (B.6c)
U, *
and  — j— — [ 5 (Uy*)2 + pypy* +h¥] =0 (B.6d)

where ()* quantities are the non-dimensional quantities normalized by the appropriate
combinations of length, time, velocity and pressure scales. Equations (B.6a) through
(B.6d) are the governing partial differential equations for inviscid gravity currents in a
channel of finite depth in the region -wp* < x* < L*. It should be noted that there is no
time rate of change of pressure on the top wall in the equations (B.6a) through (B.6d).
As a result, this pressure can be found only relative to a reference pressure. The pressure
on the top wall at the upstream end wall is picked as this reference pressure. Equations
(B.6¢) and (B.6d) can then be combined to eliminate the pressure gradient on the top
wall. The resulting equation is

%(U *_pU, *)+—3— 3 (U2 - 3p(Ug2 + h¥] = 0 (B.6¢)

Equations (B.6a), (B.6b) and (B.6e) now form the set of partial differential equations that
governs the behavior of the gravity currents in this model.

If the transformation of the independent variables as described by equations
(A.14a) through (A.14d) is employed, the system of equations becomes

*
For -1 < z* <0, %}tl; + ;,13; 5‘}; (Ug*h*) = vg* (B.72)
sz o [Uy A+ Ug*(H* - 1)) = vg* - vig* (B.7b)
and ﬁ_* (Uw* - PyUs™)

+ o 2 [ (U2 - 30U + 1] = 0. B.70)
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oh* Z*X¢*on* |

For0<z*<1, 9T* | Xf* g9z + Xe* 9z* (U, *h*) = vp* (B.7d)
-1; 5Q— [Uy*h* + Ug*(H* - h%)] = vg* - vig* (B.7¢)

and Uy P - S 2 (U - U
#1050 5 (U2 - 3p(U, 2 + ¥ = (B.79)

Equations (B.7a) through (B.7f) are the governing partial differential equations for the
region -1 < z* < 1. The influx velocity, vy*, was defined in equations (A.16a) through
(A.16¢) in Section A.4. The outflow velocity, v*, defined in equations (B.2) can now

be written in terms of the new independent variables as

1 Wl*
V¥4 = W_l* for-1<z*¥*<-(1- ;V—O,,';) (B.8a)
Wl* L*
and VH*(Z*) =0 for (1 - "—") <z* <—"a" (B Sb)

B.3 Boundary Conditions for the model

Similar to the model for inviscid gravity currents in a channel of infinite depth,
the boundary conditions for the present model can be expressed as

oh*
ArzF=-1, =0 (B.9a)
Uy*=0 (B.9b)
and U,*=0. (B.9¢)

Atz* =0, h*(z*=0') = h*(z*=0+) (Bgd)
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1 oh* 1 oh*
W_o* 3 = (2*=0") =;f-,,: ™ *(z*=0+) (B.%¢)
Uw*(z¢=0") = Uy *@*=0%) (B.9f)
1 dUy* 1 JUR¥
Wor 92+ @*=0") = Fyn (z*=0%) (B.9g)
1
and xf a % [U *h* + U *(H* h*)](z*._o) VO (z*=0) ~ VH (z*=0) * (th)
Atz =1,  x¢*=(1-0) Uy* (B.9i)
h* .
Uy* = 1 e T - (B.9j)
G- 0) +Prir = (1 - 0) +35 Pr (o)
h*
and Uy* =- 0 - Ug* . (B.9k)

As in the case of equations (A.17), equations (B.9a) through (B.9¢c) were deduced

from physical considerations at the upstream end wall. Equations (B.9d) through (B.9g)
reflect the fact that both the values and the gradients of h* and Ugy* are continuous.

Equation (B.9h) was derived from the continuity equation at z*=0. Equations (B.9i) and
(B.9j) were obtained by integrating equations (B.7a) and (B.7b) across the front, together
with equations (A.16c) and (B.8b). Equation (B.9k) was then derived from the equation

of mass conservation at z¥=1.

In addition, the position of the front can be found, as in equation (A.17i), by
integrating the velocity of the front over time as follows:

T*
xp* = [ ) x¢* dT* | (B.91)
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Moreover, equation (A.20) from Section A.7 is employed to supply the last boundary
condition which is needed to find h* at z* = 1, and it is repeated below:

+1- T
p ™ Rl CL PSR LNESEEL L ORI R

As described in Section A.5, after the front of the current has hit the downstream
end wall, equations (B.9i) through (B.9m) must be replaced by the following equations

oh*

Atz* =1, pan 0 (B.9n)
Uy* =0 (B.90)
U,*=0 (B.9p)
Also, x* =0 (B.9q)
and xg* =L*. (B.9r)

Note that equations (B.9n) through (B.9r), with the exception of equation (B.9p), are
identical to equations (A.17j) through (A.17m) because they are deduced from the same
physical considerations at the downstream end wall of the channel. These physical
conditions are not affected by changes in the models.

B.4 Initial conditions and the computational method for the model

Finally, initial conditions are needed to start the computation. As described in
Section A.6, it is assumed that the flow started at T* = 0. At time T* = Ty* > 0, where

To* =0, it can be deduced from equations (B.7a) through (B.7c) that:

For -1 <z* <), h* = vo*, % Tn* (B.10a)
0@z
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Uy*=0 (B.10b)
and U,*=0. (B.10c)

With reasons similar to those stated in Section A.6, the following assumptions are

employed:
For0<z* <1, h* = Vo*z* = K T*/K (B.10d)
h*
Uy* = 1 (B.10e)
3" o
h*
and Uy*=- 0 Uy* (B.10f)

where K is an arbitrarily large number, as mentioned before. The velocity and position

of the front at T* = Tp* can then be found using equations (B.9i) and (B.91), respectively.

For large T* compared to Ty*, the solution was again found to be independent of K.

The Lax method used to discretize the partial differential equations in Section A.7
was again used to obtain solution for this model due to the reasons stated in that section.
In addition, the spatial gradient in equation (B.7b) is evaluated by

aS*  8%j- 5%

P A (B.11a)
and that in equation (B.7¢) is evaluated by
x  S* .. .-S*. .
aS _ D il ij (B.11b)

Yy
dz* Z%41 - 27
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APPENDIX C

DERIVATION OF THE EQUATIONS FOR A VISCOUS GRAVITY
CURRENT IN A CHANNEL OF INFINITE DEPTH

C.1 General description and the governing equations for the model

In the models presented in Appendices A and B, the gravity current is assumed to
be inviscid. It is certainly not the case in the experiments shown in Chapter 2. As a
result, although the same approach used in Appendix A to derive governing equations
and boundary conditions is also used in this appendix, the inviscid assumption is replaced
by the assumption that viscous effects only take place at the bottom wall.

As mentioned in Section A.1, equations (A.la) through (A.9) are also valid for
this model. Equation (A.9) again represents the continuity equation. In the section of the
channel where working fluid is introduced, the integral on the left-hand side of equation

(A.9) is still given by equation (A.10). However, that integral is no longer given by
equation (A.10) in the section between x = 0 and x = x¢ due to the presence of the viscous

drag on the bottom wall. Using & = 8(t,x) to denote the boundary layer thickness due to
friction on the bottom wall, and &' = &'(t,x) to represent the corresponding displacement
thickness, the integral on the left-hand side of equation (A.9) can be evaluated as

jhudy=Uw (h-9) (C.1)
0
in which the displacement thickness, &', is defined as
u
&= ﬁ a- U_) dy . (C.2)
0 w

Moreover, the motion of the layer of ambient fluid in this case is negligible, as discussed
in Section A.3, and thus the pressure gradient on the top wall, dpy/dx, vanishes. As a
result, the momentum equation in the free-stream is given by equation (A.11c) when the
boundary layer thickness, 8, is smaller than the depth of the current, h. However, when &
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= h, another equation is needed in place of equation (A.11c). This will be discussed later
in Section C.2.

Since the bottom wall is not present in the inlet section of the channel, there is no
boundary layer in the current in that section. On the other hand, the bottom wall exerts a
viscous drag on the current in the section of the channel between x = 0 and x = xy, and
thus the boundary layer thickness in that section is not zero. The equation that govemns
the behavior of the boundary layer thickness due to viscous effects on the bottom wall
can be derived by first integrating the continuity equation (A.la) and the momentum
equation (A.1b) from y = 0 to y = 9§, and then combining the resulting equations. A
similar method was used by Murdock (1971) to obtain the boundary layer which grows
downstream of the leading edge of a semi-infinite flat plate with a shock wave

propagating over it. This equation can be written as

2, 8) + 2 [(U,)20] + Uy 5 ¥y 2 C3

o Uwd) 5 (0O + UL =7 =Vy 511 ()
where 0' = 0'(t,x) is the momentum thickness, and it is defined as

9'=f—l-l—1-ld. C4

()Uw( Uw) Yy (C4)

The term on the right-hand side of equation (C.3) represents the viscous drag exerted by
the bottom wall on the current. As a result, the equations (A.9), (A.11c) and (C.3)
represent the governing equations for a viscous gravity current in a channel of infinite
depth.

Since the velocity profile in the current, u = u(t,x,y), is not known, there are more
unknowns to be solved than equations available. As a result, von Karman's momentum-
integral theory is used to obtain an approximate solution. Although the result is only an
approximation, White (1986) described the method as "startlingly accurate.”

For the present model, the velocity profile inside the current can be assumed to
have a cubic shape. The resulting velocity profile which satisfies the boundary

conditions can be written as



-222 -

LI I3

U, " (8) . (C.5)
The displacement thickness and the momentumn thickness defined in equations (C.2) and
(C.4) can then be evaluated using equation (C.5). They are related to the boundary layer

thickness by the following equations

5 = % 5 (C.6a)
.39
0'= 380 5. (C.6b)

The gradient on the right-hand side of equation (C.3) can also be evaluated and was

found to be
Ju 3 Uy
—| =5—. C.6
aylo 275 (C60)

Thus, using the reference length, time, and velocity scales as shown in Section 1.2,
together with equations (C.6a) through (C.6¢), the governing equations (A.9), (A.11c),
and (C.3) can be rewritten as

oh 3
S+ 3% [Uy* (0% - 3 899] = vg* (C.7a)
U, *
and  —+ =00 (5 (U + 0] = 0 (C7b)
for -wg* <x* <0, & =0; (C70)

13
for 0 < x* < L*, -g—t (Uy*8%) + 3% i; [(Uy*)2 8]

dUy* 4 Uy*

ax* Re g

+ Uy *8* (C.7d)
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where Re is the Reynolds number as defined in equation (3.1f), and ( )* quantities are the
non-dimensional quantities, normalized by the appropriate combinations of length, time,
and velocity scales. Equations (C.7a) through (C.7d) are the governing partial
differential equations for viscous gravity currents in a channel of infinite depth in the
region -wg* < x* < L* when &* < h*.

On the right-hand side of equation (C.7d), the term has a factor 8* in the
denominator. As a result, if 8* is close to zero, the term will approach infinity, and the
numerical error due to this term will be large. Therefore, equation (C.7d) is multiplied
throughout by (Uy*6*), and the temporal derivative of Uy* is eliminated by using

equation (C.7b). The resulting equation that replaces equation (C.7d) is:

For 0 < x* < L*, i [(8*)2] + == U x 9 [(6%)2]

w a *
2 dUy* (6*)20h* 8
= 2 _ - —
+33 (0%) I+ 2 Us¥ 5x% Re" (C.7¢)

Thus, equations (C.7a) through (C.7¢) and equation (C.7¢) together form the set of
governing equations for viscous gravity currents in a channel of infinite depth.

If the transformation of the independent variables as described by equations
(A.14a) through (A.14d) is employed, the system of equations becomes:

For -1 <z* <0, g " WO 53; [Uy* (h* -3 5*)] = vp* (C.8a)
AU, *

= +WO %[ (U, )2 +h*] = (C.8b)

and 6*=0. (C.8¢c)

oh*  Z*X¢* oh*
ot*  X¢* Jz*

For0<z*<1, + —1—* ai Uy (h* - 2 8%)] = vo* (C.8d)



-224.-

Uy* z¥ke* UL

ST X o +;f-—-a—*[ > (Uy*)2 +h¥] =0 (C.8¢)
j_
and (G R ai’;[(a*ﬂ]
L5289 aU *_ 1 (6%)20h* 8

X 9z 2%F Uy* 3¢ Re (C.30)

Equations (C.8a) through (C.8f) are the governing partial differential equations for the
region -1 < z* < 1 when 6* < h*. The influx velocity vp* was defined in equations

(A.16a) through (A.16¢) in Section A.4.

C.2 Equations for a fully developed boundary layer

As mentioned in the last section, the set of equations (C.8a) through (C.8f) does
not apply to the locations in the gravity current at which the boundary layer fills the
depth of the current, that is, when 6* = h*. Although equations (C.8a) through (C.8d)
are still valid, there is no portion in the velocity profile that maintains a uniform velocity,
and thus equation (C.8¢) should be replaced by an equation that will reflect the status of
the boundary layer. In addition, the boundary layer thickness is no longer governed by
equation (C.8f) because the thickness is the same as, and cannot exceed, the depth of the
current. Therefore, equations (C.8¢) and (C.8f) must be replaced.

dUy*  z¥ke* oUy* , 1301 1

— - 2
For &* = h, ot* Xf* 9z 2800 Xf X¢* oz* [(Uw*)]
213 Uy®2 1 ah* 12 1 (Uy*)? o3
[5 1400 h* IxF g+~ 5 Re b (C3g)
and d* =h* . (C.8h)

Equation (C.8g) is derived by integrating the momentum equation (A.1b) fromy =0toy
= h, keeping in mind that 8* = h*, and then eliminating the temporal derivative of h* by
using equation (C.8d). Equation (C.8h) merely states the fact that 8* = h*. Thus,
equations (C.8d), (C.8g) and (C.8h) form the set of partial differential equations that
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governs the behavior of a viscous gravity current in a channel of infinite depth at the
locations where 8* = h*,
C.3 Boundary conditions for the model

Similar to the model for inviscid gravity currents in a channel of infinite depth,
the boundary conditions for the present model can be expressed as:

oh*

Atzr=-l S2-0 (C.9)
Uy* =0 (C.9b)
and 5 =0. (C.9)
AtzF=0,  h*gueqry = h¥gegh (C.9d)
-;t; g 20 = 1% g::(z*=0+) (C.9%)
Up*zee0r) = Uy* ecgrt (C.96)
WLO* a;;z ‘f’k*<z*=0') = ;1-,; a:z Z*<z*=o+) (C.9g)
and 5 =0. (C.9h)
AtzF=1, 8 =0 (C.9)
kg = (1 - 0) Uy * (C.9))
and U= [ (C9K)
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As in the case of equations (A.17), equations (C.9a) through (C.9¢c) were deduced
from physical considerations at the upstream end wall. Equations (C.9d) through (C.9g)
reflect the fact that both the values and the gradients of h* and U,* are continuous.
Equation (C.%h) states that the boundary layer starts at z*=0. Equation (C.9i) was
obtained by observing the flow phenomenon with a co-ordinate fixed at the front of the
current. Equations (C.9j) and (C.9k) were obtained by integrating equations (C.8d) and
(C.8¢) across the front, together with equations (A.16¢c) and (C.9i). In addition, the
position of the front can be found, as in equation (A.17i), by integrating the velocity of
the front over time as follows

‘t*
xp* = [ et e (C.9D)

Finally, equation (A.20) from Appendix A is employed to supply the last
boundary condition which is needed to find h* at z*=1, and is repeated below:

Wi = Wi + 0= G- Wi jor - W) - (COm)
im T

As described in Appendix A, after the front of the current hits the downstream
end wall, equations (C.9i) through (C.9m) must be replaced by the following equations:

oh*

Atz¥ =1, a_z; =0 (C.9n)
Ug*=0 (C.90)
d90*

—=0. C9
. (C.9p)
Also, x* =0 (C.99)

and xg¥=L*. (C.9r)
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Note that the boundary conditions stated in equations (C.9n) through (C.9r) do not
depend on whether the boundary layer is fully developed or not at various locations in
the gravity current.

C.4 Initial conditions and the computational method for the model

Initial conditions are needed to start the computation. As described in Appendix
A, it is assumed here that the flow started at T* = 0. At time T* = Tp* > 0, where Tp* =
0, it can be deduced from equations (C.8a) through (C.8¢) that:

For -1 £z* <0, h* = VO*(Z*) To* (ClOa)
U,*=0 (C.10b)
and 0*=0. (C.10¢)

With reasons similar to those stated in Appendix A, the following assumptions are

employed:
For0<z*<1, h* = vp* i =y Tp*/K (C.104)
h*
U,* = ] (C.10e)
5" o
and 0*=0 (C.101)

where K is an arbitrarily large number, as mentioned before. The velocity and position

of the front at T* = Tp* can then be found using equations (C.9j) and (C.91). In addition,

it was found that equation (C.8f) will give rise to numerical instability when T* is not

large when compared to Ty*. However, if equation (C.10f) was used in place of equation

(C.8f) until T* = T;*, where T;* > Ty*, then the solution was found to be stable. For
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large T* compared to Tp* and T{*, the solution was found to be independent of K, Ty*

and Tl*.

The Lax method used to discretize the partial differential equations in Appendix
A was again used to obtain solution for this model due to the reasons stated in that
section. The spatial and temporal gradients of an arbitrary variable R* are given by
Equations (A.19a) and (A.19b), respectively.
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APPENDIX D

DERIVATION OF THE EQUATIONS FOR A VISCOUS GRAVITY
CURRENT IN A CHANNEL OF FINITE DEPTH

D.1 General description of the model

In this appendix, the derivation of the equations of a model that describes the
behavior of a viscous gravity current in a channel of finite depth will be shown. Unlike
the models presented in Appendices B and C, in which new features were added to the
model presented in Appendix A, the model to be presented in this appendix is merely a
collection of the features already presented in the previous models.

D.2 Governing equations for the model

Equations (A.1a) through (A.9) are again valid for this model. As discussed in
Appendix C, the integral on the left-hand side of the continuity equation for the layer of
working fluid, equation (A.9), can be evaluated as shown in equation (C.1).
Furthermore, the continuity equation for the layer of ambient fluid is given by equation
(B.3).

In addition, as described in Appendices B and C, the momentum equations for the
layer of working fluid are represented by equations (B.4b) and (C.3) when 8 < h, while
the corresponding momentum equation for the layer of ambient fluid is identical to that
given by equation (B.4a). However, when 8 = h, the boundary layer is fully developed.
Although equation (B.4a) can still be used as the momentum equation for the layer of
ambient fluid, the momentum equations for the layer of working fluid can no longer be
represented by equations (B.4b) and (C.3). Instead, in non-dimensional form, the correct
momentum equations for the layer of working fluid will resemble equations (C.8g) and
(C.8h). Since the development of the governing partial differential equations was
described in detail in Appendix A through Appendix C, the governing continuity and
momentum equations to be used in this model for a viscous gravity current in a
horizontal channel of finite depth are simply stated below in non-dimensional form and

in the transformed z*-T* co-ordinates:



For -1 £z*¥ <0,

and

For0<z* <1,

when 8* < h*,

and

when &* = h*,
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ah*
ot WO oz*

= VO*

o —ai’; [Uy* h* + Up*(H* - h¥)] = vg* - vyr*

i(U % p,U,%)

+ ok 5L [ (U - 394U, + h¥1 =0

O* =0

oh*  Z*X¢* gh
o X o o Uw (589 = vg*

3
;%,;5;3: [Uy* (0% - 5 8%) + UgH(H* - h¥)] = vg* - vig*

o —a%[ (U2 - —pr(Ua*)2+h*]=0

oy 13 U *
A lCu IR ()

Xf*  9z* Xg* 9z*

0 2
e (G5

(5*)2 dUy*  (8%)2 z*%¢* U, *
Up* atx  “ Up* xf* gz

122 (5*)2 U, * _8_

+

- _v*
9t Xf* 9z* | X 9z 0

(D.1a)

(D.1b)

(D.1¢)

(D.1d)

(D.1e)

(D.1f)

(D.1g)

(D.1h)

(D.11)
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—1; 5i Uy (0% - 3 %) + Up* (H* - h)] = vg* - vyg*

A T

- x f a [U * (h* _—8*) prU *h*]
p,U,*h* 9U,*

x—l;ﬁ—[(u P2 (% - 35 89 -~ =

j_ 3 h_ﬁ_é_l_gﬁ
Xf Uy (0% 3891 4555 =3 R 5

&% = h* |

(D.1j)

(D.1k)

(D.1D

Equations (D.1a) through (D.11) are the governing partial differential equations

for the region -1 < z* < 1.

The influx velocity vp* was defined in equations (A.16a)

through (A.16¢) in Appendix A, and the outflow velocity v,* was defined in equations
(B.8a) and (B.8b) in Appendix B.

D.3 Boundary conditions for the model

Similar to the previous models, the boundary conditions for the present model are

given by:
oh*
Atz¥=-1, —=0
‘ oz*
U,*=0
U,*=0

and 0*=0.

(D.2a)

(D.2b)

(D.2¢)

(D.2d)



At z* =0,
and
Atz¥ =1,
and
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h*(z*=0') = h*(z*=0+)

A ohx o 1oh
wo* az*(z == xg* az*(z =

Uw*(z*=0') = Uw*(z*=0+)

1 9Uy* 1 Uy *
w (2%=07) = — W
XfT gz*

—_— 72*=(F
wo* oz* ( )

1 3 3
2 3o U™ (0% -5 8%) + Ug* (H*-h4)] 1)

= V0*(z*=0) - VH"(z*=0)
5% =0.
0*=0

k= (1 - U, *

Uy* = h
v 1 N D ALY
(Z-a)+er*-h* (1'a)+2pr(H*_h*)

h*

Ua™ =-hr

Uy *.

(D.2e)

(D.2f)

(D.2g)

(D.2h)

(D.21)

(D.2))

(D.2k)

(D.2)

(D.2m)

(D.2n)

Similar to the previous models, equations (D.2a) through (D.2d) were deduced

from physical considerations at the upstream end wall. Equations (D.2¢) through (D.2h)
reflect the fact that both the values and the gradients of h* and U,* are continuous.

Equation (D.2i) was derived from the continuity equation at z* = 0, while equation (D.2j)
states that the boundary layer starts at z* = 0. Equation (D.2k) was obtained by
observing the flow phenomenon with a co-ordinate fixed at the front of the current.
Equations (D.21) and (D.2m) were obtained by evaluating the governing partial
differential equations across the front of the current. Equation (D.2n) was derived from
mass conservation at z* = 1. In addition, equation (A.20) from Appendix A is employed
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to supply the last boundary condition which is needed to find h* at z* = 1, and is

repeated below:

LT R
=M%+ o G- i B ). (D20)

Finally, the position of the front can be found by integrating the velocity of the front over
time as follows:

T*
xg* = [ et e (D.2p)

As in all three previous models, after the front of the current hits the downstream
end wall, equations (D.2k) through (D.2p) must be replaced by the following equations:

Atz¥ =1, -g:—: = (D.2q)
Uy*=0 (D.2r)
U*=0 (D.2s)
g-i; =0. (D.2t)
Also, ke* =0 (D.2u)
and xg* = L* . (D.2v)

These boundary conditions are a combination of those used in the previous models.
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D.4 Initial conditions and the computational method for the model

As in the previous models, it is assumed here that the flow started at T = 0. At

time T* = Tp* > 0, where Tp* = 0, it can be deduced from equations (D.la) through
(D.14d) that:

For -1 <z* <0, h* = vo* %) To* (D.3a)
Uy*=0 (D.3b)
Uy*=0 (D.3c)
and d*=0. (D.3d)

In addition, the following assumptions are employed:

For0<z*<1, h* = vg* g = g To*/K (D.3e)
h*
Us* =4 [7 i 7 w, (@30
G-+ Prg_pr (- @) +3 Pr GEpw)
h*
Uy*=- 0 n* Uy* (D.3g)
and 5 =0 (D.3h)

where K is an arbitrarily large number as discussed in the previous models. The velocity
and position of the front at T* = Ty* can then be found using equations (D.2]) and (D.2p).
In addition, it was found that equation (D.1h) will give rise to numerical instability when
T* is not large when compared to Tp*. However, if equation (D.3h) was used in place of
equation (D.1h) until T* = T;*, where T;* > Ty*, then the solution was found to be
stable. This was discussed earlier in Appendix C for the model of viscous gravity

currents in a channel of infinite depth. For large T* compared to Tp* and T;*, the

solution was found to be independent of K, Tp* and T;*.
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The Lax method used to discretize the partial differential equations in the
previous models was again used to obtain solutions for this model due to the reasons
previously stated in Appendix A. The spatial and temporal gradients of an arbitrary
variable R* are given by Equations (A.19a) and (A.19b), respectively.
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