Directed Evolution of Biosynthetic Pathways to Carotenoids with Unnatural Carbon Backbones

Thesis by

Alexander Vincent Tobias

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended August 19, 2005)

© 2006

Alexander Vincent Tobias

All Rights Reserved

ACKNOWLEDGMENTS

The opportunity to attend graduate school at Caltech has been a precious gift that I will treasure for the rest of my life. Working at this world-class institute with such talented, intelligent, motivated, and conscientious colleagues has contributed to my professional and personal development in ways I could never have imagined at the outset.

To my advisor, Frances Arnold, thank you for giving me the guidance and opportunities to develop and mature as a scientist. I have never encountered anyone who can cut directly through to the essence of an idea or concept the way you can, and I hope that some of your keen scientific vision and insight has rubbed off on me. Thank you also for always being truthful. It wasn't easy knowing that something I said, did, or wrote didn't satisfy you or come across the right way, but on the other hand, when you told me that my work was "excellent" or "just right," I knew you meant it and that really made me feel like I had succeeded.

To my other committee members, Anand Asthagiri, Linda Hsieh-Wilson, and Dianne Newman, thank you all for serving on my candidacy and thesis committees and for your insightful questions and comments.

I would like to thank the Natural Sciences and Engineering Research Council of Canada for the two postgraduate scholarships I was awarded, and the United States National Science Foundation for a grant supporting this research. I am appreciative not only of the financial contributions from these organizations, but also for the associated expressions of belief in the value of this research.

I would not have gotten very far in characterizing the carotenoids my cultures have synthesized without the dedicated assistance of Mona Shahgholi and Nathan Dalleska. Thank you both for the hours of time you spent helping me with mass spectrometry, for answering my questions and critiquing my hypotheses, and most of all, for helping me to collect key data for this thesis.

Manish Raizada and Hyman Hartman contributed valuable comments that helped us to make the review paper reproduced in Chapter 1 significantly more focused and lucid. Gerhard Sandmann deserves many thanks for supplying me with valuable experimental guidance and eminently appropriate literature at just the right moments. I am also grateful to George Britton for his expert advice on the extraction and analysis of carotenoids from biological material. Shinichi Takaichi provided helpful assistance with the naming of the new carotenoids reported in Chapter 3.

Most of my fondest memories of Caltech involve the many wonderful students, postdocs, and visitors who have spent time in the Arnold group during my tenure here. I want to thank every one of these group members for contributing to the Arnold lab's wonderful atmosphere of interdisciplinary collaboration, for advice and ideas, and for good times at parties and other social functions.

In particular, I am indebted to Daisuke Umeno, who was my mentor and collaborator on the carotenoids project and who taught me how to clone genes, build plasmids, and "do" directed evolution. Daisuke, I am ever so grateful for your friendship, instruction, camaraderie, supportiveness, and truly unique sense of humor.

I wish to specially acknowledge several other members of the Arnold group: to Adam Hartwick, thank you for your friendship and for your ability to discuss carotenoids and their biosynthesis with me as only someone with your experience could. To Michelle Giron and Brenda Parker, thank you both for your contributions to the carotenoids subgroup and for being such great students to mentor. To Joff Silberg, thank you for your friendship, advice, and the numerous conversations we had about everything from science and politics to family and food. To Michelle Meyer, thank you for being a wonderful officemate, for your friendship, and for all our conversations over the years. To Matt Peters, thank you for being so willing to answer (or attempt to answer) my almost incessant barrage of chemistry-related questions. To Jorge Rodriguez, thank you for your friendship and our many discussions of scientific and personal import. To Allan Drummond, thank you for your contagious passion for science and our fruitful and enlightening discussions. And to Geethani Bandara, thank you for hosting such great parties at your home.

In contrast to my final year, my first four years at Caltech were not spent entirely in the lab. I am grateful to the members of the Caltech Beavers hockey team for their camaraderie and constant supply of memorable moments on and off the ice. In particular, I thank Adam Olsen and David Jenkins for their friendship and hundreds of hours of stimulating banter on the way to and from Sylmar. I would also like to thank my colleagues who served with me on the Caltech Graduate Student Council. My "GSC education" was highly complementary to my research education at Caltech, and I am appreciative of my fellow board members for helping me to improve my "soft" and leadership skills.

When I think about the path of my professional life, two of my teachers stand out as having profoundly influenced my choice to pursue a career in engineering. Charles Ledger and Fraser Simpson, my junior high school mathematics teachers, were truly in a class of their own. They ignited my passion for math and problem-solving with their contagious enthusiasm and love for the subject as well as their innovative teaching methods (dissatisfied with the textbooks of the day, they designed their own curriculum and somehow convinced the school board to let them teach it). I might have pursued the same career path had I not been taught by Mr. Simpson and Mr. Ledger, but I doubt I would have done so with quite the same vigor.

To J.R., I am much obliged to you for your sage guidance and for improving my self-awareness. Your attentive ear and knowledgeable advice have assisted me through many of life's trials and have helped me to tame my worries. I am no doubt a better person to myself and others because of you.

My parents, Lili and David Tobias, deserve special recognition for their love and guidance and for encouraging me to explore my curiosity about the world in myriad ways. Mom and Dad, the lessons you worked so hard to teach me have served me well: finish your homework before you play, do it right the first time, respect other people and their property, help others in need, and wait for things to go on sale. Thank you for giving me just the right amount of freedom and responsibility when I was growing up so that I could learn to be independent but not get into too much trouble.

To Mikael, thank you for being the best brother anyone could ask for. I think part of our special bond is rooted in our choice of careers, which are quite different but also appealing to both of us. This allows us to live vicariously through each other, so that I get a taste of the life of a musician and you can experience a bit of life as a scientist. Although we haven't lived in the same city for some time now, I can't imagine life without you and I am grateful for our e-mails, telephone calls, and visits. To my dearest Jill, thank you for your boundless love, compassion, understanding, and support. I feel the bond of our marriage grow stronger every day, and to be your husband is the ultimate privilege. Thank you for cheering me up when my experiments weren't working, for bringing me dinner at the lab when I could take only a short break, and for waiting for me all those times when I needed "just another 15 minutes" before I could come home. Thank you also for celebrating my successes and milestones with me, but more importantly, for insisting that these moments be celebrated when I didn't feel up to it at first. For all you have contributed, I feel like we have completed this thesis together. As we embark on the next chapter of our lives, I look forward to all the new experiences, moments, and memories that I will have the honor of sharing with you.

ABSTRACT

Over the course of evolution, nature continually discovers new small molecules through the alteration of biosynthetic enzymes and pathways by mutation and gene transfer. Hundreds of these natural products have proven indispensable to medicine, culture, and technology, greatly contributing to increases in the length and quality of human lives. Chemists have found that the "chemical space" surrounding natural products is especially rich in functional molecules, and synthesis of natural product analogs has uncovered many with new or improved properties.

Inspired by nature's search algorithm, we and others have conducted our own evolution of carotenoid biosynthetic pathways in the laboratory. Chapter 1 comprehensively reviews the motivations, accomplishments, and challenges of this research area as of early 2005, and describes in detail how biosynthetic routes to dozens of new carotenoids have been established.

To expand the number of carotenoid backbones beyond the C_{30} and C_{40} carbon scaffolds that give rise to the ~700 known natural carotenoids, we subjected a carotenoid synthase, the enzyme responsible for carotenoid backbone synthesis, to directed evolution. Chapter 2 describes the evolution of the C_{30} carotenoid synthase CrtM from *Staphylococcus aureus* for the ability to synthesize C_{40} carotenoids. This work also resulted in novel carotenoids with C_{35} backbones. We later found that some of the CrtM mutants generated in this laboratory evolution experiment, as well as several secondgeneration variants, are also capable of synthesizing unnatural C_{45} and C_{50} carotenoid backbones when supplied with appropriate prenyl diphosphate precursors. Chapter 3 describes the creation of full-fledged pathways to carotenoid pigments based on the C_{45} and C_{50} scaffolds. Coexpression of the carotenoid desaturase CrtI from *Erwinia uredovora* resulted in the biosynthesis of at least 10 new C_{45} and C_{50} carotenoids with different systems of conjugated double bonds. We also present evidence of an unnatural asymmetric C_{40} carotenoid pathway beginning with the condensation of farnesyl diphosphate (FPP, $C_{15}PP$) and farnesylgeranyl diphosphate (FGPP, $C_{25}PP$). In addition to clarifying how CrtM and CrtI achieve their product specificities, this work also sheds light on the molecular mechanisms used by evolution to access new chemical diversity and the selective pressures that have shaped natural product biosynthesis.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	iii
ABSTRACT	viii
TABLE OF CONTENTS	X
LIST OF TABLES AND FIGURES	xiii
CHAPTER 1—Diversifying Carotenoid Biosynthetic Pathways in the Labo	ratory
Summary	2
Introduction	3
Overview of carotenoid biosynthetic pathways	5
Carotenoids as a model system for laboratory pathway evolution	8
Evolvable pathways and enzymes	11
Approaches to engineering novel biosynthetic pathways	14
Engineering pathways by gene assembly	14
Engineering pathways by directed enzyme evolution	17
Probing the evolvability of carotenoid biosynthetic enzymes and pathways.	19
Directed evolution of key carotenoid biosynthetic enzymes	19
Creation of pathways to carotenoids with new carbon scaffolds	37
Discussion and future directions	43
Revised view of carotenoid biosynthetic pathways	43
Future challenge: specific pathways	44
Prospects and challenges for diversifying other pathways by laboratory	
evolution	47
Conclusions	53
References	75

CHAPTER 2—Evolution of the C_{30} Carotenoid Synthase CrtM for Function in a $$C_{40}$$ Pathway

Summary	92
Introduction	93
Results and Discussion	95
Constructing pathways for C_{30} and C_{40} carotenoids	95
Functional analysis of CrtM and CrtB swapped into their respective foreign	
pathways	97
Screening for synthase function in a foreign pathway	99
Evolution of 4,4'-diapophytoene synthase (CrtM) for function in a C_{40}	
pathway	100
Carotenoid production of evolved CrtM variants	101
Direct product distribution of CrtM variants in the presence of GGPP	
(C ₂₀ PP)	102
Comparison of the C_{40} and C_{30} performance of CrtM variants	103
Analysis of mutations	104
Structural considerations: mapping mutations onto human squalene	
synthase	104
Evolution of phytoene synthase (CrtB) in a C ₃₀ pathway	106
Conclusions	108
Materials and Methods	109
Materials	109
Plasmid construction	110
Error-prone PCR mutagenesis and screening	110
Pigment analysis	112
References	127

CHAPTER 3—Taking Natural Products to New Lengths: Biosynthesis of Novel Carotenoid Families Based on Unnatural Carbon Scaffolds CrtI desaturates unnatural C₄₅, C₅₀, and asymmetric C₄₀ carotenoid backbones, resulting in the biosynthesis of numerous novel carotenoids136 E. coli expressing only BstFPS_{Y81A} and a variant of CrtM accumulate hydroxylated carotenoid backbones......140 In vitro desaturation experiments with CrtI......142 Carotenoid biosynthesis in cultures expressing the $C_{25}PP$ synthase from Aeropyrum pernix146 The distribution of carotenoids synthesized by cells expressing BstFPS_{Y81A} is strongly influenced by Idi overexpression and physiological state148 Attempted creation of a C₆₀ carotenoid biosynthetic pathway149 Discussion......151 Determination of desaturation step number by *Erwinia* CrtI151 Evidence of an asymmetric C₄₀ carotenoid biosynthetic pathway154 Potential utility of novel desaturated C₄₅ and C₅₀ carotenoids156 Origins of *in vivo*-hydroxylated carotenoids158 Properties of nascent biosynthetic pathways-lessons for biology and metabolic pathway engineering161 Challenges for achieving new pathway specificity......166 Materials and Methods......173 Separation and analysis of carotenoids......177 Acetylation of hydroxylated carotenoid backbones......178 Iodine-catalyzed photoisomerization......180

Thin-layer chromatography and autoradiography analysis of isoprenyl	
diphosphate synthase reactions	180
References	205

APPENDIX A—Plasmid Sequences and Maps	10
---------------------------------------	----

LIST OF TABLES AND FIGURES

Figure 1.1. Natural carotenoid biosynthetic pathways can be organized	
in a tree-like hierarchy	55
Figure 1.2. Selected examples of gene assembly leading to novel carotenoids	
in E. coli	57
Figure 1.3. "Matrix" pathway resulting from the coexpression of carotenoid	
biosynthetic enzymes with broad specificity	59
Figure 1.4. Chain elongation reactions catalyzed by natural all- <i>E</i> IDSs	60
Figure 1.5. Product length determination by CrtM and mutants thereof	62
Figure 1.6. Extension of laboratory-evolved pathways to 3,4,3',4'-	
tetradehydrolycopene and torulene by coexpression of downstream	
carotenoid modifying enzymes	64
Figure 1.7. The step number of the C_{30} desaturase CrtN is readily modified by	
mutation	66
Figure 1.8. Cyclization of carotenoids	68
Figure 1.9. Alteration of product specificity of the β , β -carotene hydroxylase	
from Arabidopsis thaliana	70
Figure 1.10. Several carotenoid cleavage enzymes display	
localized specificity	71
Figure 1.11. Generation of a C_{35} carotenoid pathway by gene assembly	
and directed enzyme evolution	73
Figure 1.12. Biosynthesis of C ₄₅ and C ₅₀ carotenoid backbones	74

Table 2.1. Mutations found in sequenced CrtM variants	115
Figure 2.1. Natural carotenoid biosynthetic pathways	116
Figure 2.2. C_{30} and C_{40} production systems used in this work	118
Figure 2.3. Typical plate with E. coli XL1-Blue colonies expressing a	
mutagenic library of CrtM together with CrtI and CrtE	120
Figure 2.4. HPLC-photodiode array analysis of carotenoid extracts of E. coli	
transformants carrying plasmids pUC-crtE-crtB-crtI,	
pUC-crtE-crtM-crtI, and pUC-crtE-M ₈₋₁₀ -crtI	122
Figure 2.5. Direct product distribution of CrtM and its mutants in the	
presence of CrtE (GGPP supply)	124
Figure 2.6. Pigmentation produced by CrtM variants in C_{40} and C_{30} pathways	125
Figure 2.7. Reaction schemes for SqS and CrtM	126
Table 3.1. Properties of novel desaturated carotenoids synthesized by	
XL1-Blue(pUCmodII- $crtM_{F26A,W38A}$ - $crtI$ - $bstFPS_{Y8IA}$)	183
Table 3.2. Names of numbered carotenoid structures depicted	
in Figures 3.2-3.4	184
Table 3.3. Results of <i>in vitro</i> desaturation experiments with	
XL1-Blue(pUCmodII-crtI) lysate on various carotenoid backbones	185
Figure 3.1. Six carotenoid biosynthetic pathways from three prenyl	
diphosphate precursors	186
Figure 3.2. Desaturation in the C ₄₅ pathway	187
Figure 3.3. Desaturation in the C ₅₀ pathway	188
Figure 3.4. An asymmetric C ₄₀ pathway	190
Figure 3.5. Hydroxylation and subsequent in vitro desaturation of carotenoid	
backbones	192
Figure 3.6. UV-visible absorption spectra of novel carotenoids	
biosynthesized by recombinant E. coli	194
Figure 3.7. HPLC trace of carotenoid backbones extracted from a culture of	
XL1-Blue(pUCmodII- $crtM_{F26L}$ - $bstFPS_{Y81A}$)	196

Figure 3.8. Relative molar quantities of the carotenoid backbones produced	
by recombinant XL1-Blue cultures expressing $BstFPS_{Y81A}$ and	
a CrtM variant	197
Figure 3.9. APCI mass spectra of unmodified, hydroxylated, and acetylated	
carotenoid backbones	198
Figure 3.10. Relative molar quantities of the carotenoid backbones produced	
by recombinant XL1-Blue cultures expressing ApFGS and	
$CrtM_{F26A,W38A}$	200
Figure 3.11. Idi overexpression and physiological state strongly influence	
the distribution of carotenoid backbones in recombinant	
XL1-Blue cells expressing $BstFPS_{Y81A}$ and $CrtM_{F26A,W38A}$	201
Figure 3.12. Product specificity of <i>M. luteus</i> hexaprenyl diphosphate	
synthase (HexPS)	203