
Reliable Integration of Terascale
Systems with Nanoscale Devices

Thesis by

Helia Naeimi

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Submitted January 24, 2008)

c© 2008

Helia Naeimi

All Rights Reserved

ii

Acknowledgements

I would like to thank my adviser, Professor André DeHon. He is a great person; one

of those rare idealistic people that always believe in perfection. Learning more in the

field of computer science was my first goal from coming to Caltech and working with

a great scientist like André, and I have indeed learned many things from him and

my other friends in IC group. However, I have learned many things from my adviser

besides the technical matters. Specially during the unexpected challenge that our

group experienced in the recent years.

I would like to thank my parents Bagher Naeimi and Azam Saatchi for helping me

grow up free and boundless. They constantly encourage me to learn and grow. They

thought me how to make my very first step and since then, they have supported me

to make the steps, one little step at a time, in every aspects of my life specially my

education. It was my mother who first thought me how to be a researcher, how to

think freely , and her amazing power of thinking creatively has always been a great

inspiration for me. I am truly indebt to them for having a vision to observe the nature

and a mind to learn from her and respect her. My parents have a true passion for

the nature. They always learn something new from the nature and respect her. They

grow with any single bud and bloom in every single spring.

I would like to thank Amir Dana, my husband and my friend. who gives my life

meaning and challenge. He has been a great support for me during my study at

Caltech. From listening to many rounds of practice talks to bringing survival kits

during long nights of deadlines to discussing a new idea or carrying heavy books, he

was always there.

iii

Abstract

Nanotechnology design has attracted considerable attention in recent years and seems

to be the technology for the future generation of the electronic devices, either as scaled

and more restricted conventional lithographic technology [1], or as emerging sublitho-

graphic technologies, such as nanowires, carbon nanotubes, NDR (Negative Differen-

tial Resistance) devices, or other nanotechnology devices. Each of these technologies

provides one or more design benefits including feature-size scaling, high on–off ra-

tios, and faster devices. However, all of these techniques share their most challenging

design issue: reliability. Providing reliability is becoming constantly more challeng-

ing due to increases in both the device failure rate and system complexity. This

work develops techniques that make achieving reliability in such systems feasible with

practical area overhead and considerable improvement in area overhead and system

reliability compared to related techniques.

Conventional reliability techniques focus on low defect and fault rates, i.e., single

event upset (SEU). These techniques cannot simply be scaled to larger systems with

more unreliable devices. If these techniques are directly applied to the high defect

and fault rate of the nanotechnology regime, they suffer impractically high overhead,

or they may not achieve the desired reliability. Our approach in this thesis exploits

the following design patterns to achieve a considerable area reduction compared to

related works and achieve high reliability:

(1) Fine-grained reliability: In this technique, the system is partitioned into fine–

grained blocks, and the reliability is provided for each block. This technique is used

to contain the area overhead and bound the impact on the throughput.

(2) Using alternative resources: This technique improves the design quality by

iv

sparing other resources when system is tight on one resource. In our work we replace

some of the spacial redundancies with temporal redundancy to limit the area over-

head. We further improve the system throughput to limit the throughput cost as

well.

(3) Defect pattern matching: With this techniques, the defective resources are

located and the design is reconfigured considering the defect pattern of the chip.

Then the design configuration is mapped to the chip. This technique isolates the

defective resources and make use of most of defect free resources.

(4) Global reliability: This technique is used to unify the reliability techniques

used in different parts of the system. When using one unified technique to protect

the system, the area overhead provided to protect one resource can be reused to

protect other resources as well.

In the present work, we report considerable improvement in the area overhead

using the above techniques. We show that using Fine-Grained Reliability, Alter-

native Resources, and Defect Pattern Matching, high permanent defect rates (e.g.,

10%) which is the result of imperfect manufacturing can be tolerated with moderate

area overhead (about 30% on average for typical designs). Again Using Alternative

Resources and Fine-Grained Reliability improve the area overhead of the transient

fault-tolerant designs by close to an order of magnitude compared to recent reliable

works. Finally we report a fully reliable memory system that employs a Global Relia-

bility scheme to tolerate permanent defects and transient faults, both in the memory

and in the supporting logic and still achieves 100 Gbit/cm2 density for fault rate of

10−18 errors per bit per cycle and 10% junction defect rate.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Defect-Tolerant Approaches . 4

1.2 Fault-Tolerant Approaches . 5

2 Background 9

2.1 Reliability in Nanoscale Designs . 9

2.1.1 Permanent Defects . 10

2.1.2 Transient Faults . 11

2.1.2.1 High-Energy Particles 12

2.1.2.2 Shot Noise . 13

2.1.3 Related Reliable Designs . 15

2.1.3.1 Defect-Tolerant Works 15

2.1.3.2 Fault-Tolerant Works 18

2.1.3.3 Majority Multiplexing for Nanotechnology Designs . 19

2.2 Substrates . 23

2.2.1 Wires . 23

2.2.1.1 Nanowires . 23

2.2.1.2 Nanotubes . 24

2.2.2 Field-Effect Controllable Cross-Point 25

2.2.3 Programmable Cross-Point . 25

vi

2.3 NanoPLA . 26

2.3.1 Programmable Crossbar Array 26

2.3.2 Restoration and Inversion Array 27

2.3.3 Lithographic to Sublithographic Decoder 29

2.3.3.1 Nanowire Codes . 31

2.3.4 Architecture . 32

2.4 Nanomemory Architectures . 34

2.5 More Nanotechnology-Based Architecture 37

3 Cost of Ignorance and Cost of Knowledge 39

3.1 Cost of Ignorance in Interconnect . 41

3.1.1 Ignorant-Based Interconnect Defect-Tolerant Scheme 42

3.1.2 Knowledge-Based Interconnect Defect-Tolerant Scheme 46

3.2 Cost of Ignorance in Logic . 47

3.3 Cost of Knowledge . 49

3.3.1 NanoPLA Test and Defect Localization 50

3.4 Summary . 52

4 Permanent Defect-Tolerant Design Using Reconfiguration 54

4.1 Tolerating Defective Wires . 56

4.2 Tolerating Defective Cross-Points . 58

4.2.1 Algorithms . 60

4.2.2 Fanin Bounding . 61

4.2.3 Guaranteeing Sparseness during Mapping 62

4.2.4 Interconnect Nanowire Integration with Logic Resources . . . 63

4.3 Experimental Results . 64

4.4 NanoPLA Block Sparing . 66

4.5 Summary . 67

5 Transient Fault-Tolerant Design with Rollback Technique 68

5.1 Design Structure . 68

vii

5.1.1 Detection Block . 70

5.1.2 Rollback Block . 72

5.1.3 Streaming Buffer . 74

5.1.3.1 Reliable Buffered Interconnect 75

5.1.4 Block Size . 77

5.2 NanoPLA Implementation . 79

5.2.1 Detection and Rollback Block 80

5.2.2 Buffer Connection . 82

5.3 Reliability and Area Analysis . 82

5.3.1 Error Probability of a Detection Block 84

5.3.2 Undetected Error Probability of an RB Block 86

5.3.3 Buffered Connection Reliability 86

5.3.4 Undetected Error Probability of the Complete System 87

5.3.5 Redundancy Analysis . 88

5.4 Simulation and Comparison . 90

5.4.1 Area and Throughput Simulation Results 94

5.5 Summary . 98

6 Defect and Fault-Tolerant Nanomemory Design 100

6.1 Introduction and Motivation . 100

6.2 Related Works . 102

6.3 System Overview . 103

6.4 ECCs with Fault Secure Detector . 107

6.4.1 Error-Correcting Code Reviews 107

6.4.2 FSD-ECC Definition . 109

6.5 FSD-ECC Example: Euclidean Geometry and Projective Geometry

Codes . 110

6.5.1 Euclidean Geometry Code Review 110

6.5.2 Projective Geometry Code Review 112

6.5.3 FSD-ECC Proof for EG-LDPC and PG-LDPC 113

viii

6.6 Design Structure . 114

6.6.1 Fault Secure Detector . 114

6.6.2 Encoder . 116

6.6.3 Corrector . 119

6.6.3.1 Majority Implementation 123

6.6.4 Banked Memory . 126

6.6.5 Nanoscale Demultiplexer . 128

6.7 Reliability Analysis . 132

6.7.1 Analysis . 133

6.7.2 The Impact of Providing Reliability for Supporting Logic . . . 136

6.8 Tolerating Permanent Defect in Memory Cells 138

6.9 Area and Performance Analysis and Results 140

6.10 Summary . 149

7 Summary 150

8 Future Work:

Using ECC to Protect Logic Circuit 153

8.1 Code Selection Criteria . 154

8.2 Random Code Construction . 156

8.3 Integrating ECC to Logic . 159

8.3.1 Parity Check Bit Generation 159

8.3.2 Logic Synthesis and Area Optimization Challenge 160

8.3.3 Output Permutation . 161

8.4 Preliminary Results . 162

8.5 Summary . 163

Bibliography 164

ix

Chapter 1

Introduction

This thesis presents reliability techniques that make designing in sublithographic and

nanometer scale practically feasible.

Considerable amount of research and work is devoted to continue feature size

scaling and also invent new nanoscale electronic devices that can potentially replace

the conventional lithpgraphic–based designs. Scaling the device feature size provides

faster, denser, and consequently more powerful system that can run at higher speeds.

In some of emerging technologies with high on–off ratios it is also expected to bound

power consumption by cutting off the leakage power. These improvements in area,

performance, and power consumption, bring us technical challenges of their own. One

of the main challenges (that is the subject of study in this work) is reliability. It is

expected that devices become less reliable in smaller feature sizes and experience

both more permanent defects due to the imperfect manufacturing process and more

transient faults due to the effect of noise. Providing reliability is becoming constantly

more challenging due to increase in both the device failure rate and system complex-

ity up to the point that the conventional techniques will not be efficient enough or

even capable of tolerating these error rates and complexity for the future generation

systems.

This thesis presents practical techniques with limited area overhead to achieve

reliable systems. To implement such a reliable system we exploit these new design

patterns for reliability:

• Fine-grained reliability: This technique is used to limit the area overhead and

1

bound the impact on the throughput. When the error rate is high, the sys-

tem must be partitioned into fine-grained block size, where the errors strike in

smaller number. Protecting blocks with few errors requires less area overhead.

• Using alternative resources: With this technique, we can shift some of the re-

dundancy from area domain to time domain to limit the area overhead. The

time redundancy can then be reduced with some improvement techniques shown

in chapter 3 and chapter 5.

• Defect pattern matching: This technique is used to maximize resource utiliza-

tion, and make use of almost all the defect free resources, isolating defective

ones. In this technique the design configuration is restructured to match the

defect pattern of the chip.

• Global reliability: When using one unified technique to protect the system,

the area overhead provided to protect one resource can be reused to protect

other resources as well. An instance of this technique, is using the same Error-

Correcting Codes (ECCs) to protect against transient faults and permanent

defects. With this technique the redundancy in the code will be used more

efficiently to protect both errors. Another example is protecting the memory

and its supporting logic (e.g., detector circuit), with single ECC.

Before going into the application of these design patterns in our reliable techniques,

we review the sources of unreliability. The sources of failure are divided into two main

categories, by the nature of the sources and their impacts on the system:

1. Permanent defects

2. Transient faults

Permanent defects: As the result of imperfect fabrication process, devices may

have variation in shape and size. When the device structure is very different from

the designed structure, the device will not perform as intended and will make a

permanent defect. The probability that a node is defective is called the defect rate.

2

These defects could be of the form of a broken interconnect or junction because of

lack of deposited molecules, or a too-high resistance interconnect due to lack of proper

number of doping atoms, or a misplaced connection between devices because of extra

molecule deposition.

In general the feature size scaling reduces control over the fabrication process

which result in higher defect rates. Even for well-studied and largely manufactured

conventional lithographic systems, the technology is facing reliability challenges. It

is expected that Design Rules will become more restricted and require more regular

design structure to bound the rate of manufacturing defects [2]. Furthermore, circuit

designers can no longer design simply by technology design rules and expect a func-

tional, let alone a scalable design. Designers must know when to use more relaxed

rules and not simply relax the rules on the entire design, which negates physical scal-

ing [3]. For emerging nano-technologies the defect rate is even higher due to the small

feature size and bottom-up nature of the design. For example, imprint lithography,

which provides one of the most reliable nanowire fabrication techniques, is reported

to have 15% defective wires [4]. Although defect rate for emerging technologies is

expected to decrease once the technologies are more mature, due to the nature of the

fabrication process it is still expected to be high [5][4].

Transient faults: When a node in the system loses its effective charge due to

ionized particle hit or various source of noises, it may cause the value of a node

to be flipped in the circuit. However, the error does not permanently change the

circuit, and it only generates a faulty bit value at the node that can last for one

or few cycles. The transient fault rate is the probability that a single node loses its

correct value during one clock cycle. Feature-size scaling, faster clock cycles and lower

power designs increase the transient fault rate. Feature-size scaling and voltage level

reduction shrinks the amount of critical charges holding logical state on each node;

this in turn makes each node more susceptible to transient faults, e.g., an ionized

particle strike has higher likelihood of being fatal as the critical charge is reduced

in a node [6], which may cause a glitch or bit-flip. Furthermore operating at higher

clock frequency increases the probability that a glitch in the signal is latched and

3

propagated as an erroneous value throughout the circuit.

In the rest of this chapter, we review our defect- and fault-tolerant techniques to

protect nanotechnology systems against the sources of unreliability explained above.

1.1 Defect-Tolerant Approaches

Traditionally chips were tested and any defective chip would be discarded. However,

as the device defect rate increases and the systems become larger, the probability

of having a perfect chip will become unreasonably low and removing all chips with

any defective node will dramatically decrease the system yield. Therefore, currently

in large and regular systems (e.g., memory or PLA), the system is tested and part

of the system that is defective is isolated and the rest of the chip will be functional.

For example, in memory systems, a row or a column that contains a defective cell

will be burnt-out and the rest of the system performs correctly [7][8]. Tolerating a

few defective rows or columns in the system increases the system yield. However,

as the defect rate increases the probability of having even a single defect free row

will become very slim. For example, in a NanoPLA block that contains a 100× 100

programmable devices and a device defect rate of 10%, the probability that a row of

100 devices is perfect is about (0.90)100 ≈ 2× 10−5, which makes it very unlikely that

there will even be a single perfect row in a block (about 0.2%). Therefore, in order

to keep the system yield high and make use of a defective chip with reasonable area

cost, one must use a more Fine–Grained defect-tolerant technique, which tolerates

defects at the device level. We have to make use of the defect free devices on even

the nonperfect rows that also contain defective devices. Therefore, we use a Fine-

Grained Defect Pattern Matching technique, which makes use of almost all the defect

free devices in the system, although they belong to a defective part. In this technique

the defect pattern of the chip is extracted and then the design configuration will be

restructured to be matched to the defect pattern of the system. The system will be

configured by this matching design configuration.

This technique requires postfabrication configurability which can be achieved with

4

various emerging technology devices, e.g., [2]catenane-based molecule [9], mechanical

nanotube switch [10] or conventional programmable devices like sram-based repro-

grammable switches, floating gate transistors, or fuses. The system also requires the

appropriate hardware to test and locate defects in the chip.

Defect Pattern Matching is the main focus of chapter 4. In this chapter the defect

pattern matching problem is modeled by a graph, and a matching algorithm with

low complexity is proposed. Chapter 4 illustrates that the Fine–Grained Matching

technique can tolerate 10% defect in the wires and another 10% defect in the pro-

grammable devices, in less than 3-fold area for the worst-case design. In contrast,

techniques that are not based on fine–grained matching, require larger area overhead;

e.g., Gate Multiplexing requires 100-fold area to tolerate up to a 3 × 10−3 device

defect rate [11]. The matching technique is feasible since the defect pattern is static

and fixed; and once the defect pattern is discovered, it can be used to configure the

system.

chapter 3, Cost of ignorance and cost of knowledge, quantifies the benefits of

exploiting the static defect map with methods like Fine–Grained Matching from area

overhead perspective. It illustrates the overhead reduction achieved by exploiting this

knowledge compared to the impact of ignoring it. We further introduce the technique

to detect permanent defects in a system and discover the defect configuration pattern.

The cost of defect pattern extraction is also presented and contrasted with the design

costs associated with ignoring this knowledge.

1.2 Fault-Tolerant Approaches

Conventional fault-tolerant systems target Single Event Upsets (SEUs). However, due

to the increase in the fault rate and system complexity this is not a valid assumption

for future systems. For example, in a system with 1012 susceptible nodes and fault

rate of Pf = 10−7 per node per cycle, the system fails every cycle and the number

of failures in the system is about 100, 000 errors per cycle in the average which is

many more than single failure. Therefore, the traditional system-level SEU tolerant

5

techniques can not provide adequate reliability. When large number of errors occur

in the system it is hard to detect the errors. To be able to detect the large number of

errors in the system, one must focus on Fine–Grained block sizes, where errors occur

in smaller number and can be detected more easily with less area overhead.

To detect errors in a block, the simplest way is to duplicate the block and compare

the outputs, or to triplicate and perform the majority to actually correct the error.

When using replication, the amount of replication factor grows super-linearly as the

unit block size under detection and correction grows. Therefore, it seems that using

Fine–Grained block size, minimizes the replication factor. Chapter 2 explains this

fact in more detail. However, there is a constant area overhead associated with each

block that grows with the number of blocks in the system. Therefore, there is an

optimum block size that minimizes the total area cost (more detail will be shown in

chapter 5). The replication technique is shown not to be the most efficient technique

in communication coding theory. However, in the context of combinational logic it

is not clear if other complex coding technique can outperform the simple replication

scheme.

Furthermore, using only area redundancy to achieve the reliability may increase

the area overhead dramatically. It is important to consider Using Alternative Re-

sources, e.g., time redundancy, to bound the area overhead. One way of using time

redundancy is to repeat the operation to generate a correct result, once an error is

detected. The benefits of exploiting time redundancy is that we can only detect errors

of a block in area domain and correct it in time domain which reduces the area over-

head because the error detection circuit takes less area than error correction circuit

(more detail will be shown in chapter 5).

In chapter 5 we suggest a Fine–Grained Rollback technique to tolerate high fault

rates in a complex system. The Rollback technique is essentially detect-and-repeat;

i.e., the outputs of the blocks are checked and once an error is detected in a block

output, the operation of the block is repeated to generates the correct output. This

technique exploits the Fine–Granularity error detection as well as Using Alternative

Resources (time redundancy). In chapter 5 we show that the fault-tolerant system

6

protected with rollback technique will have a more compact, implementation (up to six

times less area) compared to a Feed-Forward technique, which is mostly used in recent

nanotechnology fault-tolerant design in the form of Gate-Multiplexing. Feed-Forward

techniques correct potential errors with enough information redundancy without re-

quiring recomputations. Furthermore, since in most of the cycles each block runs error

free and errors are detected with low frequency, the impact of the rollback technique

on the system performance is minimal.

As mentioned above, in our Fine–Grained Rollback design, we use replication to

detect errors. The area overhead of this technique can be greatly improved by using

a more efficient error detection technique. Error-correcting codes tend to be more

efficient for error detection and correction of individual bits; as is the case for data

transmission and data storage. However, ECC does not necessarily performs better

than replication for protecting arbitrary combinational logic. A potential future work

to this thesis would be to find a more efficient error detection and correction technique

compared to replication, to further improve the area overhead of our Fine–Grained

Rollback technique (chapter 8).

In fact, we have solved this problem for a subclass of combination logic circuits:

encoder, corrector, and detector circuits [12]. Conventionally, only memory bits were

protection against transient faults, however, as the combinational logic are becoming

more susceptible to faults, the supporting logic of the memory system must also be

protected against faults. Here we can use our fault-tolerant encoder, corrector, and

detector circuit to satisfy this demand. In chapter 6, we define a new restriction

on error-correcting codes, that guarantees Fault-Secure Detector circuit. The Fault-

Secure detector can detect any error in the received code-vector, despite having faults

in the detector circuitry. This is a breakthrough in fault-tolerant design, since the

fault-tolerant capability of the detector is achieved by exploiting the structure of the

design and using the redundancy already available in the circuit, compared to the

traditional approach where the extra circuitry has to be added to the circuit under

protection. In chapter 6, we also present a Global Reliability technique that protects

memory cells and supporting logic all in one-shot, and also uses a unified technique

7

to tolerate permanent defect and transient fault together. We have shown codes

that can tolerate fault rate of up to 10−18 faults/bit/cycle and defect rate of 1% and

still achieve memory density of 100 Gbit/cm2. Codes with higher error-correction

capability can also be used to tolerate higher fault and defect rates.

All of the above techniques are general enough that they can be applied to any

architecture and device substrate. In order to perform a detail analysis of the defect

and fault-tolerant technique we analyzed the implementation of the above techniques

on NanoPLA [13] and Nanomemory [14] architecture models. Chapter 2 reviews

NanoPLA and Nanomemory architectures along with other nanotechnology based

architecture models. This chapter also reviews some of the emerging technology

devices and substrates.

In summary in this work we design a reliable system for nanotechnology designs,

where the conventional techniques of tolerating SEU would not suffice due to high

defect and fault rates and large system integration. We present approaches that

achieve high reliability with practical area overhead for nanotechnology system.

8

Chapter 2

Background

Most of the defect- and fault-tolerant schemes for conventional designs assume Single

Event Upset, SEU. This assumption is valid when the error rate is low enough that

with very high probability only single error occurs in the system. However, due to the

certain decline in the device reliability this assumption may not be valid for future

designs. In this chapter, we review some sources of defect and fault and review some

of the related works. We illustrate the reasons why we believe the future generations

of the electronic systems must have a more robust defect- and fault-tolerant designs.

To analyze the details of our proposed reliable designs, we implement these tech-

niques on two nanowire-based architectures, NanoPLA and Nanomemory. The sec-

ond part of this chapter reviews these two architectures and the devices and substrate

model that they are built on.

2.1 Reliability in Nanoscale Designs

Chemists have successfully shown fabricating nanoscale devices that are below 10 nm

wide. At this scale devices are composed of only tens of atoms. We know that atoms

and molecules have statistical behavior and we can only control the statistical be-

havior of these particles. When the devices are made of thousands of atoms and

molecules, the shape and the behavior of the devices follow the statistical predic-

tion, almost all the times. However, at the scale of devices with tens of atoms and

molecules, the variation in the device shape and behavior will be more visible and at

9

higher rate.

The variation in shape will cause permanent defect, and the variation in behavior

will cause noise and transient fault consequently. Sources of defect and fault will be

explained in more detail in the following section.

2.1.1 Permanent Defects

The statistical structure of the devices will results in the following categories of defects

in the system.

• Nanowires may break along their axis during assembly. The integrity of each

nanowire depends on about 100 atoms in each radial cross-section and the lack of

some atoms or atomic bonds may result in a break or high resistance nanowire.

• Nanowire to lithographic scale wire junctions depend on a small number of

atomic scale bounds which are statistical in nature and subject to variation.

• Programmable device located between crossed nanowires will be composed of

only tens of programmable molecules. The lack of functional molecules results

in a high resistance device which is no longer programmable.

• Statistical doping of nanowires may lead to high variation among nanowires. If

the doping location or density is sufficiently different from the designed device, a

nanowire current may not be controlable or the wire may not conduct properly.

In the above list, we particularly gathered the defects that are related to nanowire-

based architectures e.g., NanoPLA and Nanomemory. At this scale, we expect wires

and devices to be defective in the 1%− 10% range.

However, since these technologies has not been mass produced and are still under

active research, not many device defect rates has been reported. Some of the reported

defect rates are given next. For example, an array of 250 nanowire fabrication is

reported in [15], the nanowires has width of 100 nm and can be spaced 100 nm apart.

The work in [15] reports 95% of the wires measured had good contacts. Another work,

10

reported fabrication of 6×6 nanowire crossbar with 40 nm wide nanowires [16]. They

reported that 85% of cross-point junctions measured were usable. Both of these are

early experiments and we expect the yield rates to improve. However, based on the

physical phenomena involved, we anticipate the defect rates will be closer to the few

percent range which is quite higher than the defect rates of conventional lithographic

processing.

2.1.2 Transient Faults

A transient fault is an event that lasts for about one cycle. If a charge disturbance

on a circuit node is smaller than the noise margin, the circuit will continue to operate

properly. Otherwise, the disturbed voltage may be interpreted as the opposite logic

state and the circuit will malfunction. A transient fault on any node has a finite

probability of causing a glitch. There is a difference in the response of static circuits

and actively clocked circuits. In a static circuits like memory, a glitch on a node may

cause a bit flip. In actively clocked circuits, the glitch may propagate to an input of

a sequential cell, get latched as a wrong value, and affect the machine operation. In

precharged combinational circuits, a glitch on a node if happens after the precharge

phase, gets latched and cause an erroneous signal that can propagate through the

system.

However, many transient faults will not be latched. Some of the latched data may

not be relevant to machine operation and there will be no perceivable error in the

program operation. Hence, the effective error rate of a large combinational circuit

needs to be derated. Three types of derating are applied to a typical circuit for

calculating its error rate [17].

• Logical masking: If the transient fault strike happens on an input of a 2-input

nand gate, but one of the other inputs is 0, the strike will be completely masked

and the output will be unchanged, i.e., this particle strike will not cause a soft

error. In order for an error to propagate, there must be a sensitized path from

the input to the output.

11

• Temporal masking: A glitch on a node may be outside the latching window of

all the latches in the subsequent paths. Hence, the error will not be latched,

and there will be no soft error.

• Electrical masking: The glitch pulse amplitude may reduce after passing through

some logic stages, which may cause the glitch to attenuate. This phenomenon

is called electrical masking.

In the fault-tolerant analysis in this work, we do the worst-case analysis and

assume that any transient fault strike will result in a soft error. However, the real

fault rate is less than the worst-case analysis. In order to achieve the exact analysis

one must consider the detail of the circuit design and check for the above masking

processes.

Many different sources can give rise to transient faults including: high-energy

ionized particles impacts, thermal noise, and shot noise. In advanced VLSI systems

feature size and voltage scaling lead to small node capacitance and voltage, resulting

in decreased critical charge on nodes holding logical states. With fewer electrons

representing states, each node in the system becomes more susceptible to charge

disruption, that may be caused by any of the sources below.

2.1.2.1 High-Energy Particles

High-energy particles come from two sources

• High-energy alpha particles

• High-energy neutrons.

Alpha particles contains two protons and two neutrons. Alpha particles are emit-

ted by various radioisotopes undergoing radioactive decay [18]. Metals such as lead

that are used in packaging materials, emit low-energy alpha particles that can go as

deep as 15 to 30 µm in silicon and are very effective in causing upsets in circuit. Alpha

particles are also generated by elements such as some isotope of natural boron that

is contained in the doping material. Boron-related upsets have been demonstrated in

12

DRAMs [19] and SRAMs [20]. It is shown that boron can result in as many as 81% of

the SEUs in a 0.25 µm SRAM [21]. Alpha particles caused by radioactive impurities

from packaging or doping materials remain an important source of errors in SRAMs

and other sensitive circuits.

Charged particles, like alpha particles, create a direct ionization in semiconductor

devices, causing a current surge that is responsible for errors in the memory and

processing elements. However, high-energy neutrons do not have electrical charges;

their effects occur through nuclear collisions that give rise to charged particles, which

in turn cause ionized particles; thereby causing SEUs and the degradation of electrical

properties. The probability of nuclear collisions occurrence is extremely low. It is

reported in [22], that one out of 40,000 neutrons hits a silicon nucleus. However,

once it hits the silicon nucleus it is very effective and will cause an error.

As mentioned above, not all the high-energy particle hits are fatal, but as the

critical charge reduces the probability that a high-energy particle hit becomes fatal

increases. It has been shown that the transient fault rates per chip induced by alpha

particle increases 30 times as the manufacturing process goes from 0.25 µm to 0.18 µm

and the supply voltage drops from 2 V to 1.6 V; at the same time the transient fault

rates per chip due to the neutron’s impact increases by 20% [6].

2.1.2.2 Shot Noise

Besides high-energy particles, noise is another source of electrical property disrup-

tion. Shot noise is one of the sources of noise that increases as we increase the clock

frequency and further reduce supply voltage, and can become a significant source of

transient faults. It is shown in [23] how to compute the error rate due to shot noise

using Rice’s generalized formula [24]. The error rate of a single transistor is

Bit Error Rate =
2√
3
fc exp

(
−0.09I

fce

)
, (2.1)

where fc is the clock frequency, e is the electron charge, and I is the on-state current

of the device. This is with the assumption that the noise margin is 60% of the on-

13

0 2 4 6 8 10

x 10
9

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Fault Rate Due to Shot Noise

Frequency (Hz)

F
au

lt
R

at
e

(P
f)

Figure 2.1. The device (e.g., transistor, nanowire) failure rate increases with the system
frequency, for current per nanowire of 100 nA.

state current. Fault rate due to shot noise increases as the on-state current decreases.

Next we estimate the on-state current to predict the device fault rate. The on-state

current is estimated using the maximum tolerable power dissipation in the system.

Based on ITRS 2005, the maximum tolerable power dissipation in the system is

around 250W/cm2 [1]. If the system works at 1 V, the maximum current consumed

per area is 250A/cm2. Using the nanoPLA structure (section 2.3), the nanowire

density of this structure is ≈ 240 × 107 /cm2. Therefore, each nanowire has a drive

current around 100 nA. Using (2.1), we can estimate the device fault rate of such a

system. Figure 2.1 shows how the fault rate grows as a function of system frequency

when on-state current equals 100 nA. For operating frequencies in the 1–5GHz range,

this model suggests that the individual device (e.g., transistor, nanowire) fault rates,

Pf , are in the 10−20 to 10−5 range.

The effect of any of the above transient fault sources, ionized particle hit or noise,

may ultimately cause a node in the logic circuit or memory unit loses its effective

charge and consequently obtain a faulty value. This node can be a transistor or

a precharged nanowire. To design a fault-tolerant system we assume the following

general fault model for transient faults: A node (e.g., a transistor, or a precharged

14

nanowire) may lose its correct value and holds an erroneous value with random proba-

bility. The node holds an erroneous value for as many cycles before obtaining the new

value. Further we assume the transient fault has identically independent distribution

(iid).

2.1.3 Related Reliable Designs

Now that we know the sources of unreliability, we review some of the conventional

reliable designs. We also present the reasons that these conventional reliable design

may come short for high defect and fault rate nanotechology designs.

2.1.3.1 Defect-Tolerant Works

In conventional VLSI designs, a system undergoes a chip level test and all the non-

perfect chips are discarded. However, as mentioned above, the defect rate of nan-

otechnology design is expected to be few percentages. With this defect rate almost

every system have significant number of defective devices.

For example, assume a system with 1011 transistor and the defect rate of 1%. The

expected number of defects in this system is 1 in every 100 nodes or 109 defective

node in total, and with probability of 99%, the number of defective nodes is at least

108.

At this point most of the fault-tolerant techniques tolerate single error; a simple

example is Triple Modular Redundancy (TMR) [25], which provides three copies of

the system followed by a reliable voter. TMR technique guarantees correcting any

single error and multiple errors, as long as they fall in one copy. The reliability of

TMR technique can be improved by generalizing the number of copies to N . In N

Modular Redundancy, NMR, technique, all defects that cause at most d(N − 1)/2e

erroneous copies are detected. The NMR technique, however, is not practical for the

above example, where the system is expected to have 109 defective nodes. The system

would need nine orders of magnitude area overhead!

To tolerate defects in this system with replication based techniques the system

15

must be partitioned into Fine-grained units, and NMR must be applied on each unit.

For example, the above system can be partitioned into 1010 units each of size 10

nodes, where each node can be defective with 1% probability. In this case, each unit

is defective with 9% probability,

Pf unit = 1− (1− Pf)
10 = 1− (1− 0.01)10 = 0.09. (2.2)

For the sake of simple presentation, we assume that the interconnects are reliable

and the error does not accumulate in the system. These may not be practical assump-

tion, however, even with this relaxed assumption the NMR results in impractically

large area overhead. As mentioned, the probability of having a reliable system is the

probability of having less than bN−1
2
c erroneous units.

d(N−1)/2e∑
i=0

 N

i

 P i
f unit(1− Pf unit)

N−i = 0.99.

Equating this probability to our target value, we can find the minimum required

number of copies of N = 45.

The replication factor of 45 is not the final area overhead of the system. Imple-

menting a reliable voter for each unit of size 10 nodes, require a considerable amount

of area. The first approach to design a reliable voter would be to replicate it N times.

Furthermore a circuit to take the majority of 45 signals is a huge circuit compared

to the 10-node unit. In best case the voter grows linearly with the input size (N),

so the voter area in total would grow as N2. Therefore, we should expect seeing the

final area overhead of this technique at about 2025 times the original area! This is

huge area overhead, however, it is a considerable improvement from nine order of

magnitude overhead of the system level NMR! In short, the above example, illus-

trates that NMR technique, even fine-grained NMR technique, will not be practical

for nanotechnology defect-tolerant designs.

Another approach which uses the resources more economically compared to NMR,

is Sparing and Reconfiguration technique. This technique is very popular for regular

16

structures like memory systems [7] [8]. In this technique the resources are overpopu-

lated, and only the nondefective units are used. For example in the memory system

some extra columns are considered, the columns are then tested, and those that con-

tain defective cells will be isolated. So this technique can tolerate a few defective

cells in the system. However, when the defect rate is high, it will be challenging to

find even a single defect free column, let alone a large enough set of columns that can

perform as a full memory system. For example in the memory system with columns

of length 1000 cells, and the defect rate of 1%, the probability that a single column

is defect free is 4 × 10−5! So using Sparing and Reconfiguration technique alone will

not provide a suitable defect-tolerant scheme for nanotechnology designs either.

However, we believe that we can develop a compact defect-tolerant approach for

nanotechnology designs, and we present this in chapter 4. We use Defect Pattern

Matching reliability design pattern, to achieve a reasonable area overhead for prac-

tical designs. In this technique the design of each unit is matched with the defect

configuration of that unit, so we can still make use of defective units. The fact that

make this possible is that permanent defects are statically located at the system.

So if the defects are located, the system can program the design around the defects

and still make use of defect free resources even in defective units. This technique

is applicable for systems with regular structure and fixed configuration like Read

Only Memories (ROM) and Programmable Logic Arrays (PLA), where the rows and

columns configuration do not change during the operation. Once the defect pattern

of the system is discovered, the row configurations of the system will be compared

with the row defect pattern. Each configuration will be mapped to the first row with

the compatible defect pattern, i.e., the configuration is mapped to the defect free

nodes. Using this matching technique we show the most compact results compared

to the related works; it can tolerate 10% defect rate with about 30% area overhead

on average (chapter 4).

17

2.1.3.2 Fault-Tolerant Works

Transient fault-tolerant techniques, can be divided into to two classes: Rollback tech-

niques and Feed-Forward techniques [26][27, 28].

Generally in Rollback Recovery techniques, errors are detected with spatial redun-

dancy (e.g., a duplicated copy of the logic) and corrected with temporal redundancy

(e.g., repeating the operation). The system runs at high speed when there are no

errors, but when an error is detected, the system stops and repeats the affected op-

eration to generate the correct result. Rollback Recovery schemes exploit the fact

that most of the operation cycles pass with no error occurrence, and therefore, the

recovery process occurs infrequently and the throughput impact is potentially low.

In contrast, Feed-Forward Recovery schemes provide enough spatial redundancy in

the system to detect and correct errors with no temporal redundancy. NMR is a

feed-forward technique.

Similar to the discussion on the permanent defect tolerant scheme, the first require-

ment for our design is Fine–Grained reliability. One recent feed-forward approach

that has received considerable amount of attention in nanotechnology community is

Majority-Multiplexing, which provides reliability at the device–level. This technique

was originally invented by von Neumann at 1956 [29], and there has been some im-

provement on the original technique recently [30][31][11]. This technique was the first

fault-tolerant approach that specifically targets nanotechnology designs. We bring a

brief review of this work in the following section.

This technique is suggested to tolerate errors, cause by permanent defects and

transient faults [31][11]. However, the analysis provided for these scheme is more

acceptable for permanent defects. The reliability goal of this system is set at 90%

defect rate which is reasonable chip yield, but too low for a valid fault-tolerant target.

It is shown in [30] that the device defect rate of 10−5 to 10−2 requires 100 to 1000,

replication factor. More efficient Majority-Multiplexing is provided in [11]. However,

they show great improvement for lower defect rates (e.g., 10−8) and for higher defect

rates (e.g., 10−4 <) it stays close to the original Majority-Multiplexing. Next section

18

shows the details of the Majority-Multiplexing technique and the replication factor

required for this technique, which can go as far as 1000 for the defect rate of 0.01.

Later in chapters 4 and 5 we show that we can design defect- and fault- tolerant

techniques that are more efficient than Majority-Multiplexing.

2.1.3.3 Majority Multiplexing for Nanotechnology Designs

The common, fine-grained Feed-Forward fault-tolerant techniques for nanotechnology

designs are based on Multiplexing the logic gates, which was originally developed by

von Neumann as Nand-Multiplexing in 1956 [29]. In the Multiplexing technique, relia-

bility is achieved by logic replication. Each bit is replicated M times and represented

by the bundle of M wires. Computations are also replicated M times. Majority vot-

ing corrects errors in the logic. To prevent the voters from becoming a single point

of failure, the voters are replicated as well. The trick is to make sure that a stage

of computation and voting reduces the number of errors which exist in the bundle of

wires which represent each bit.

For the multiplexing scheme, each processing unit (nand gate) is replaced by

replicated copies of the processing unit and voters. Each of the M wires of an input

bundle has a separate and independent path through the multiplexed unit. A multi-

plexed unit consists of two stages, each using M processing units (nand gate) (see

figure 2.3). The first stage is the executive stage which performs the actual logic oper-

ation and generates replicated results of the logic (nand function). The second stage

is the restorative stage. The restorative stage performs the redundant voting on the

output of the executive stage and is responsible for improving the output reliability.

The executive stage is connected to the restorative stage through a randomized in-

terconnect; this randomization improves the reliability of the design by guaranteeing

errors arriving at the restoration stage are statistically independent (figure 2.3). In

recent work [31], it is shown that Majority gates perform better than nand gates, re-

sulting in more compact fault-tolerant designs. All the devices in the first and second

levels and the randomized interconnects fail with equal probability. The total area

overhead of this design is lower-bounded by its replication factor. The replication

19

factor of this design is 2×M . It is shown in [31] that majority multiplexing can be

further optimized by sharing one restoration stage among multiple executive stages.

Let L be the number of executive stages that share a restorative stage. The value of

L, impacts the reliability of the system, and there is a lower bound on it based on the

desired system reliability. For a system with M multiplexing factor and L executive

stages for one restoration stage, the replication factor is ((L + 1)/L) × M [11]. We

have to note that the total area overhead is larger than the replication factor when

considering the wiring area required by the randomized interconnects, particularly

when M is large.

This technique is suggested to tolerate both permanent defects and transient

faults [32][11]. In the defect-tolerant application, this method is oblivious to the

defect location map, and tolerates defect the same way that it may tolerate transient

faults. Depending on the source of the failure (permanent defects, or transient faults),

the system has different reliability target; i.e., for tolerating permanent defects a chip

yield of around 90% is acceptable yield, while the expected failure probability for

transient fault-tolerant application is around 10−18, which makes the Failure In Time

(FIT) of 360 for a typical system. FIT is an standard way of representing system

reliability, and it is the number of failure in 109 hours of operation. A typical FIT

of a commercial system is around couple of hundreds, so we believe that FIT=360, is

the right target.

The area overhead of this technique is computed for both permanent defects and

transient faults application [11]. The chip size, Ntotal, is assumed 1012 in [11]. In the

same work the system is partitioned into units of size 106 nodes. They assume that

the units have a logical depth D = 10. The graph in figure 2.3 plots the area overhead

for two cases: (1) when tolerating permanent defects with target chip yield of 90%;

(2) when tolerating transient faults with FIT of 360. We would expect that the fault

rate would go as far as 10−7 at most and the defect rate would be above this value

up to a few percent.

20

1

2

M

1

2

M

Inputs Output

Executive
Stage

Randomizer Restorative
Stage

Figure 2.2. A reliable multiplexed unit to implement using von Neumann multiplexing
technique

21

Chart1

Page 1

Majority-Multiplexing Replication factors

0

10

20

30

40

50

60

70

80

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4

log(Pf)

R
ep

lic
at

io
n

fa
ct

or
 (2

M
)

Fault-tolerant (FIT=360)

Defect-tolerant (Yield=90%)

Figure 2.3. Replication factor of majority multiplexing for transient fault-tolerant
(FIT=360) and defect-tolerant (yield=90%).

22

2.2 Substrates

In the rest of this chapter we review some of the promissing nanotechnology devices,

and main building blocks. We then review the a computation (NanoPLA [33]) and

memory (Nanomemory [14]) model built upon these devices. In the following chapters

we show the detail implementation of our defect- and fault-tolerant techniques on

these architectures.

2.2.1 Wires

This section reviews two of the most studied and developed interconnect wires using

nanotechnology: Nanowire [34] and Nanotube [35]. Both of these wires can be semi-

conductor and metallic wires, and therefore, they can be both used as interconnect

or as active devices, as will be shown later in this chapter.

2.2.1.1 Nanowires

Chemical Technologies have been developed to grow silicon and germanium nanowires [34,

36] which are only nanometers wide. These nanowires can be hundreds of microm-

eters long [37]. Atomic-scale nanowires can be fabricated in chemistry labs to have

a variety of conduction properties (i.e., semiconductor or metal). Nanowires can be

grown in the controlled environment using seed catalysts (e.g., gold particles). The

size of the seed catalysts define the nanowires diameter. The catalyst constrains the

growth of the semiconductor to only one dimension [34]. Nanowires with diameters

down to 3 nm have been demonstrated [36, 34]. Seed catalysts with controlled diame-

ter can be produced by self-limiting chemical processes (e.g., [38]). The composition

of a nanowire can be varied along its axis and along its radius, which offers a single

two-dimensional structure that works as an interconnect and a controllable device at

the same time.

Langmuir-Blodgett (LB) flow techniques can be used to align a set of nanowires

into a single orientation, close pack them, and transfer them onto a chip surface [15][39].

The resulting wires are all parallel with nematic alignment. By using wires with an

23

oxide sheath around the conducting core, the wires can be packed tightly. The oxide

sheath defines the spacing between conductors and can, optionally, be etched away

after assembly. The LB step can be rotated and repeated so that we get multiple

layers of nanowires [15][39] such as crossed nanowires for building a crossbar array

or memory core (section 2.3.1).

The other successful fabrication technique is imprint lithography. Nanowires with

sub-10 nm feature size can be made using imprint lithography [40]. This new tech-

nique has high throughput and low cost. Imprint lithography includes little damages

to sensitive circuit components, including active molecules, which are used in making

programmable cross-points (section 2.2.3). Chen et al. have developed an inexpen-

sive process to fabricate nanoscale devices and circuits utilizing imprint lithography,

shown in [16]. This technique for fabricating aligned metal nanowires through a one-

step deposition process without subsequent etching or lift-off is demonstrated in [41].

Their technique uses Molecular Beam Epitaxy (MBE) to create physical template for

nanowire patterning. The template is a selectively etched GaAs/AlGaAs superlat-

tice. The wires are defined by evaporating metal directly onto the GaAs layers of the

superlattice after selective removal of the AlGaAs to create voids between the GaAs

layers. By depositing the metal solely on the GaAs layers, the wire width is defined by

the thickness of the GaAs layers and the separation width by AlGaAs layers. Transfer

of the metal nanowires to a silicon wafer is performed by contacting the metal-coated

template to a silicon oxide surface with subsequent heating process. Wires deposited

with this technique were uniform and continuous over 2 to 3mm length, with very

few defects.

2.2.1.2 Nanotubes

Carbon nanotubes that are nanometers in diameter and micrometers long can be

fabricated in chemistry labs [42]. Carbon nanotubes can also be grown from seed cat-

alysts with diameters down to roughly 1 nm in diameter and microns long. They can

be semiconducting, allowing field-effect control, or metallic, perhaps offering superior

electrical properties to silicon nanowires or even copper. To date, we cannot control

24

the conducting properties of nanotubes; i.e., metallic and semiconductor nanotubes

cannot be differentiated during the growth process. Unlike nanowires, nanotubes are

not rigid, and consequently it is more challenging to align carbon nanotubes into

straight, parallel arrays. Some techniques are being developed (e.g., [35]) and more

techniques are under research.

2.2.2 Field-Effect Controllable Cross-Point

By controlling the density of doping material in the environment during growth,

semiconducting nanowires can be doped to control their electrical properties [34].

Heavily doped nanowires always conduct, while conduction through lightly doped

nanowires can be controlled via an electrical field similar to Field-Effect Transistors

(FETs) [15]. Off resistances can be over 10 GΩ and on resistances under 0.1 MΩ,

off/on resistance ratios are at least 104 [43]. A nanowire field-effect gating has

sufficient gain to build restoring gates [44]. The threshold voltage for the nanowires

can be controlled by material properties (e.g., doping or composition) and geometry

factors.

By changing the density of doping material in the environment during growth, a

doping profile can be made along one nanowire, e.g., in a highly doped nanowire that

can always conduct only one region can be lightly doped to control the conduction.

The differentiated doping profile gives the ability to selectively control the conduction

of one nanowire among other nanowires in an array (section 2.3.2).

2.2.3 Programmable Cross-Point

Chen et al. demonstrate a nanoscale Pt-rotaxane-Ti/Pt sandwich which exhibits

hysteresis and nonvolatile state storage showing an order of magnitude resistance

difference between on and off states for several write cycles [4]. After an initial

“burn”-in step, which permanently reduces the the high resistance of > 100 MΩ

to 9 MΩ, the state of these devices can be switched at ±2 V and read at ±0.2 V.

[4] reports a 40 nm×40 nm junctions, with the on resistance of roughly 500 kΩ

25

, and the off resistance of 9 MΩ . The exact nature of the physical phenomena

involved is the subject of active investigation. The basic hysteretic molecular memory

effect is not unique to the rotaxane. Many technologies have been demonstrated for

nonvolatile, switched cross-points, where the common features include: (1) resistance

which changes significantly between on and off states; (2) the ability to turn the

device on or off by applying a voltage differential across the junction; (3) the ability

to be placed within the area of a crossed nanowire junction.

LB techniques can also be used to place the switchable molecules between crossed

nanowires (e.g., [9]). The molecules are formed into a single monolayer in an LB

trough and then transferred onto a set of parallel nanowires [45]. An orthogonal

set of nanowires is then transferred on top creating the conductor-device-conductor

sandwich for the cross-point array. The 8 × 8 molecular crossbar was constructed

using this approach [4].

This programable cross-point is comparable with a sram-based programmable

switch for reconfigurable systems (e.g., FPGA). However, a typical sram-based switch

might take about 2500 nm2 compared to a 5 nm×5 nm bottom level metal wire

crossing of molecular switches. Consequently, the molecular cross-points offers 100

times smaller switches.

2.3 NanoPLA

In this section we review the building blocks that can be constructed using the tech-

niques in the previous section. These building blocks are useful in developing many

system architecture including NanoPLA, which will be reviewed later in this section.

2.3.1 Programmable Crossbar Array

Nanowires can be fabricated in tight-pitched parallel arrays, but we cannot fabri-

cate arbitrary geometries with equally tight conductor and device pitches. Assembly

process allows crossed nanowires array the switchable resistance from section 2.2.3 in

between (see figure 2.4). The effective diode in the junction comes from the crossing

26

N-type nanowires

P-type
nanowire

Input

Output

P-type
nanowire

N-type
nanowire

Input

Vhigh

GND

Output

Vhigh

Insulator

P-type
nanowire

N-type
nanowire

Inputs--

Vhigh

GND

Inverted
Restored
Outputs

Insulator

GND

000

001

010

011

100

A2 ~A2 A1 ~A1 A0 ~A0

111

Figure 2.4. Programmable nanowire crossbar

nanowires doping. A low resistance junction between an n-typed nanowire and a

p-type nanowire works as a diode from the first nanowire to the second one. This

nanowire crossbar with programmable junctions is the core of many nanotechnology

architectures, including nanoPLA and nanoMemory. This crossbar can be used as

memory cores, programmable logic cores, and programmable crossbar interconnect

arrays. When crossbar is used as logic core, each horizontal nanowire implements

the wire-or logic function of the selected vertical nanowires with turned on switches.

When the crossbar is used as memory core, each junction stores single memory bit

and it can be accessed by putting the appropriate voltage on both nanowires passing

the junction. When the crossbar is used as interconnect array, each junction is pro-

grammed to route the incoming signals in vertical nanowires to horizontal nanowires.

2.3.2 Restoration and Inversion Array

As noted in section 2.3.1, the programmable, wired-or logic is passive and nonrestor-

ing, drawing current from the input. Further, or logic is not universal. To generate

any arbitrary combinational logic, we need universal building gate and further we

need to restore signals to maintain the appropriate voltage level in multilevel circuit

implementation. We can achieve all of the above with a restorable inverter integrated

with the or gates, which generate a universal nor gate. As developed in section 2.2.2,

nanowires can be field-effect controlled. This gives us the potential to build FET-like

27

N-type nanowires

P-type
nanowire

Input

Output

P-type
nanowire

N-type
nanowire

Input

Vhigh

GND

Output

Vhigh

Insulator

P

N

Inputs--

Vhigh

GND

Inverted
Restored
Output

Insulator

GND

Figure 2.5. Structure of nanowire inverter

gates for restoration. Using a highly doped nanowire with a lightly doped region as

shown in figure 2.5 can provide a gatable junction, where the electrical voltage on

the horizontal nanowire, passing through lightly doped region, controls the current

on the vertical voltage. If the vertical nanowire is p-type doped and the Vhigh and

GND signals are connected as figure 2.5 then the inverted and restored value of the

horizontal nanowire is transferred into the vertical nanowire. If the location of Vhigh

and GND are swapped the vertical nanowire only holds the restored value with no

inversion.

These restoration gates can be closed packed to generate a nanowire restoration

inverter crossbar as in figure 2.6. In ideal case, each vertical (output) nanowires has

exactly one controllable lightly doped region that can be controlled by exactly one

horizontal nanowire. However, due to limited control over alignment of nanowires

the nanowires with different doping profile is stochastically located. Furthermore,

to generate a nanowire set with different doping profiles, each nanowire has to be

selected from a bach of grown nanowires with a unique doping profiles. However,

with our nanowire assembly technique (section 2.2.1.1) this is practically impossible.

28

N-type nanowires

P-type
nanowire

Input

Output

P-type
nanowire

N-type
nanowire

Input

Vhigh

GND

Output

Vhigh

Insulator

P-type
nanowire

N-type
nanowire

Inputs--

Vhigh

GND

Inverted
Restored
Outputs

Insulator

GND

Figure 2.6. Restoration crossbar with nanowire

Instead we can overpopulate the vertical nanowires with various doping profile to

make sure that there exists enough correctly aligned and uniquely controlled vertical

nanowires (figure 2.5).

2.3.3 Lithographic to Sublithographic Decoder

An important challenge is to access nanowires from lithographic scale wires and be

able to programm nanowire junctions by applying appropriate differential voltage on

the nanowires of each junction. Furthermore, we must be able to drive and sense each

nanowire to read back the status of each junction (e.g., in memory cores). A decoder

structure from lithographic scale wires to nanowires proposed in [44] provide these

functionalities.

To interface with lithographic-scale wires, address bit regions are marked off at

the lithographic pitch. Each such region is then either doped heavily so that it is

oblivious to the field applied by a crossed lithographic-scale wire or is doped lightly

so that it can be controlled by a crossed lithographic scale wire (see figure 2.7). In

this way, the nanowires will only conduct if all of the lithographic-scale wires crossing

29

N-type nanowires

P-type
nanowire

Input

Output

P-type
nanowire

N-type
nanowire

Input

Vhigh

GND

Output

Vhigh

Insulator

P-type
nanowire

N-type
nanowire

Inputs--

Vhigh

GND

Inverted
Restored
Outputs

Insulator

GND

000

001

010

011

100

A2 ~A2 A1 ~A1 A0 ~A0

111

Figure 2.7. Lithographic to sublithographic Decoder

its lightly doped, controllable regions have a suitable voltage to allow conduction.

If any of the lithographic-scale wires crossing controllable regions provide a suitable

voltage to turn off conduction, then the nanowire will not be able to conduct.

Now the conduction through the nanowires can be controlled with lithographic

scale wires, each nanowire can be selected separately with the following procedure.

All the nanowires are either precharged or weakly pulled to a nominal voltage. We

then apply the desired nanowire address to the lithographic-scale address lines. We

also apply the desired drive voltage to a common line attached to all the nanowires. If

the selected address is present in the array, it will allow conduction from the common

line into the array charging up the selected nanowire (see left side of figure 2.8). The

other nanowire crossing the junction can be selected with the same procedure, and

the junction can be programmed by applying the appropriate voltage at the crossing

nanowires. Note that there is no directionality to the decoder. Consequently, this

same unit can also serve as a multiplexer. That is, when we apply an address to the

lithographic scale wires, it allows conduction through the addressing region for only

one of the nanowires. Consequently, we can sense the voltage on the common line

rather than drive it.

30

2.3.3.1 Nanowire Codes

A dual-rail binary code is used for each logical lithographic address bit. That is, for

each logical address bit, we provide the value and its complement. This results in

two bit positions on the nanowire for each logical input address bit, one for the true

sense and one for the false sense. To code a nanowire with an address, we simply

code either bit position to be sensitive to exactly one sense of each of the bit positions

(figure 2.7). This results in a decoder which requires 2 log2(N) address bits to address

N nanowires. The technique in [44] shows a denser addressing using Na/2-hot codes

(Na is the number of address bits). That is, it simply requires that half of the address

bits, Na, be set to a voltage which allows conduction and half to be set to a voltage

that prevents conduction. This scheme requires only d1.1 log2(N)e+ 3 address bits.

If each nanowire in the array has a unique address in our selected coding scheme,

we can uniquely address each individual nanowire in the array. However, similar to

issue in the restoration plane, our nanowire assembly techniques (section 2.2.1.1) do

not allow us to uniquely select and place particular nanowires in particular locations.

However, if the code space for the nanowires is large compared to the size of the

nanowire array, it is statistically guaranteed that with arbitrarily high probability

every nanowire in an array has a unique address. That is, we start with growing

a very large number of nanowire codes. We mix up the nanowires before assembly,

and randomly select an array of coded nanowires. As long as the array formed

is sufficiently small compared to the code space, with high probability each array

contains nanowires with unique codes [44]. It turns out that we do not need a large

number of address bits in order to guarantee this uniqueness. For example, the Na/2-

hot codes need a total of only d2.2 log2(N)e+11 bits to achieve over a 99% probability

that all nanowires in an array will have unique addresses. If a few duplicates are

tolerable, then the codes can be much tighter [46][47]. More information about

tolerating nanowire code misalignment can be found in [44].

31

 programmable
diode crosspoints Lightly doped

control region

Precharge or static
 load devices

Stochastic
 Buffer
 Array

Stochastic
 Inversion
 Array

Vrow1

Vrow2

A0 A1 A2 A3

Lightly doped
control region

(OR Planes)

OR term

Restoration
 Wire

Ohmic
Contact
to Power
Supply

Programing
and Precharge
Power Suppplies

Stochastic
 Inversion
 Array

Stochastic
 Buffer
 Array

Restoration Columns Restoration Columns

Ohmic contacts
to high and low
supply voltages

Vcommon

 Stochastic Address
 Decoder
[for configuring array]

Nanowires

Ohmic contacts to supply
Programmable
Diode
Crosspoint

Figure 2.8. Single nanoPLA block

2.3.4 Architecture

Combining the building blocks introduced above, we can construct complete, pro-

grammable logic architectures with all logic, interconnect, and restoration occurring

in the atomic-scale nanowires. Programmable switch crossbar (section 2.3.1) provides

wired-or programmable logic, field-effect restoration arrays (section 2.3.2) provide

gain and signal inversion, and the nanowires themselves provide interconnect among

arrays. Lithographic scale wires provide a reliable support infrastructure which al-

lows device testing and programming, by addressing individual nanowires using the

decoders introduced in section 2.3.3. Lithographic-scale wires also provide power and

control logic evaluation.

figure 2.8 shows a simple nanoPLA block organization with no interblock routing.

The array forms a two-plane PLA cycle. Each plane consists of a programmable

cross-point or array (section 2.3.1) followed by a restoration and inversion array

(section 2.3.2). Consequently, each plane is a programmable nor. The combination

of nor-nor planes is essentially an and-or PLA. As figure 2.8 shows, each horizontal

wire forms a wired-or. Crossed nanowire inputs connected to a horizontal nanowire

through a junction programmed into the low-resistance on state can potentially pull

up the nanowire, whereas inputs connected through high-resistance off junctions do

32

 Input
(AND)

Output
 (OR)

Microscale
 Inputs

Microscale
 OutputY Route Channel

B I

Buffer Array Inversion Array

Inv.

nanoPLA
Block

Figure 2.9. Interconnected nanoPLA blocks

not allow sufficient current to pass through the junction to pull up the nanowire.

We precharge the nanowire to a low voltage, using the lithographic scale connections

(right side of figure 2.8) so that the output is appropriately low when none of the

programmed input nanowires is high. The vertical nanowires serve as buffers or

inverters to restore and potentially invert the signals formed on the horizontal, wired-

or nanowires. Each horizontal nanowire can act as a field-effect gate for a vertical

wire so that each vertical wire output is simply a restored, potentially inverted, version

of a horizontal wire (section 2.3.2).

The lithographic to sublithographic decoder lets the lithographic superstructure

test each nanowires connectivity. Furthermore, we can exploit the restoration con-

nections to set or reset a single cross-point in either the top or bottom or plane by

using both of the decoders and via one of the restoration plane. In principle, all the

nanowires should be equivalent. Therefore, we can assign a given or function to any

of the nanowires within the array, avoiding defective nanowires.

A typical array has 100 nanowires in each plane. To build large components,

we can extend these nanoPLA blocks to include I/O to other nanoPLA blocks and

assemble them into a large array, as figure 2.9 shows. The logic structure is basically

the same. However, a given nanoPLA block now has horizontal input nanowires

from arrays above and below it. By carefully arranging the overlap between these

33

P-type
nanowire

N-type
nanowire

Inputs--

Vhigh

GND

Inverted
Restored
Outputs

Insulator
000

001

010

011

100

A2 ~A2 A1 ~A1 A0 ~A0

111

Lithographic
Decoder

Memory Core

Stochastic
Decoder

Programmable
Decoder

Figure 2.10. Nanomemory organization

arrays, we can support arbitrary Manhattan routing (orthogonal routing on a 2D x,

y grid) [33]. At a high level, this provides a structure similar to conventional, Island-

style FPGAs, [48] where logic blocks consist of lookup tables (LUTs) rather than

PLAs but otherwise comprise bit-level logic blocks inside a bit-level, configurable

network. Switching occurs through the nanoPLA logic blocks, and the or arrays

now serve as both wired-or logic and crossbar switching points. A more complete

description of these architectures, their fabrication, and their operation, is available

in [33][13].

2.4 Nanomemory Architectures

Combining the programmable crossbar core (section 2.3.1) with a pair of decoders

(section 2.3.3), we can build a tight-pitch, nanowire-based memory array [49]. Fig-

ure 2.10 shows how these elements come together in a small memory array. The

entire array is formed using crossed, tight-pitch nanowires. Programmable diode

cross-points are assembled in the nanowire-nanowire crossings. Lithographic-scale

address wires form row and column addresses that can access each nanowire junction

separately through the lithographic stochastic decoder (section 2.3.3). However, as

explained in section 2.3.3 due to the stochastic selection of codded nanowires, and

high defect rate, the present and functional nanowire codes are unknown.

34

In order to address the present and functional nanowires, we must either (re)discover

the present addresses when we need to access the device, or we need to store away

the set of addresses for known good nanowires so we can address them directly. For

applications like nanoPLA programming, rediscovering the addresses when we want

to (re)program the device may be viable. However, for data storage applications, it is

unreasonable to search through an address space which is O(N2) large in order to find

a particular address. Consequently, we will need to store a translation table which

maps the good addresses within the total address space. Unfortunately, the size of

this translation table is too large to store in a lithographic-scale memory without

negating much of the density advantage of the sublithographic memory core.

A programmable deterministic address decoder is proposed to resolve this prob-

lem [50][51]. It provides deterministic addressing in the face of random assembly

to make the operational address decoders deterministic and programmable. This

way, we can assign each address we would like to see in the array to a good wire

in the array. However, in order to program up a nanoscale junction, we generally

need to address just that junction; that is, we need to place a programming volt-

age differential across only the micro-wire and nanowire which make up the junction.

Consequently, we will need to start with nanowire addressability in order to bootstrap

the programming process. To achieve this addressability, we build a pair of address

decoders on each set of nanowires (see figure 2.12). The first address decoder is built

using the previously mentioned stochastic decoder scheme (section 2.3.3) to achieve

unique addressability of nanowires. We can then use this address decoder to configure

the programmable address decoder (see figure 2.11). During operation, we use only

the programmed address decoder. Once we have this programmable address decoder

scheme, we compose a pair of them to build a deterministically addressable memory.

Write operations into the memory array can be performed by driving the appro-

priate write voltages onto a single row and column line. Read operations occur by

driving a reference voltage onto the common column line, setting the row and column

addresses, and sensing the voltage on the common row read line. To provide multiple-

bit access to and from a single memory bank, we simply split the common read line

35

Deterministic
Programmable

Decoder

Stochastic Decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

Output
(n=3)

M
em

or
y

ro
w

s
(r=

12
)

(a) (b)

Common
Read Line

Figure 2.11. Nanomemory with programmable deterministic address decoder

P-type
nanowire

N-type
nanowire

Inputs--

Vhigh

GND

Inverted
Restored
Outputs

Insulator

000

001

010

011
100

A2 ~A2 A1 ~A1 A0 ~A0

111

Lithographic
Decoder

Memory Core

Stochastic
Decoder

Programmable
Decoder

Figure 2.12. Programmable deterministic address decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

Output
(n=3)

M
em

or
y

ro
w

s
(r=

12
)

(a) (b)

Common
Read Line

Deterministic
Programmable

Decoder

Stochastic Decoder

Common
Read Line

Figure 2.13. Multi-bit memory access

36

into separate microscale connections to the nanowire array (see the right-hand side of

figure 2.13). We then program up the nanowire addresses so that the same address is

present in each of the nanowire bundles associated with a distinct microscale output

contact.

Limitations on reliable nanowire length and the capacitance and resistance of long

nanowires prevent us from building arbitrarily large memory arrays. Instead we break

up large nanowire memories into banks similar to the banking used in conventional

DRAMs. Reliable, lithographic-scale wires provide address and control inputs and

data inputs and outputs to each of the nanowire-based memory banks. We expect to

yield only a fraction of the nanowires in the array due to wire defects. Error-correcting

codes (ECC) can be used to tolerate nonprogrammable cross-point defects as will be

shown in more detail in chapter 6. After accounting for defects, ECC overhead, and

lithographic control overhead, net densities on the order of 100 Gbits/cm2 appear

achievable, using nanowire pitches around 10 nm [49].

2.5 More Nanotechnology-Based Architecture

Several groups have been studying variants of these nanowire-based architectures.

Heath et al. articulated the first vision for constructing defect-tolerant architectures

based on molecular switching and bottom-up construction [52]. Luo et al. elabo-

rated the molecular details and diode-logic structure [53]. HP introduced a random

particle decoder scheme for addressing individual nanowires from lithographic-scale

wires [54]. These early designs assumed diode logic was restored and inverted using

lithographic scale CMOS buffers and inverters. CMU described an interconnected set

of these chemically-assembled diode-based devices [55]. They uses only two-terminal

nonrestoring devices in the array, but add latches based on resonant-tunneling diodes

(RTDs) for clocking and restoration [56]. HP suggests nanoFET-based logic and also

tolerates nonprogrammable cross-point defects by matching logic to the programma-

bility of the device [57]. RPI also explore cross-point programmable nanowire-based

programmable logic [58]. They use lithographic-scale buffers with an angled topology

37

and nanovias so that each long nanowire can be directly attached to a CMOS-scale

buffer. These designs all share many high-level goals and strategies as described in

this article. They suggest a variety of solutions to the individual technical compo-

nents including the cross-point technologies, nanowire formation, lithographic-scale

interfacing, and restoration. The wealth of technologies and construction alterna-

tives identified by these and other researchers increases our confidence that there are

options to bypass any challenges which may arise realizing any single technique or

feature in these designs.

38

Chapter 3

Cost of Ignorance and Cost of
Knowledge

Exploiting the knowledge of the defect map in system design, can lead to better results

from area, time, and power point of view. The system can have more compact area,

because the design program can be tailored to the available defect free resources. It

can have faster clock cycles, because the critical path does not pass through extra

resources and are shorter. Finally it can consume less power, because only the defect

free and required devices are turned on.

Due to the above reasons, there are many defect-tolerant approaches that extract

the defect location map and exploit this information to develop a closer-to-optimum

defect-tolerant design [59][60]. However, extraction of defect location map becomes

more challenging due to the increase in the system complexity and expected high

defect rate in nanotechnology designs. Therefore, many recent works suggest defect-

tolerant techniques that are oblivious to the defect location maps. It is true that

extracting the defect location map can become more challenging for nanotechnology

systems, however, it is important to understand and compare the cost paid for gaining

this knowledge and the cost paid for ignoring it. This chapter is an effort to make

this cost and gain quantified.

Defect-tolerant approaches can be partitioned into two categories based on the

approach that they take against using defect location map: (1) knowledge-based ap-

proach, which discovers the defect location map, and configures the system around the

defect locations and (2) ignorant-based approach, which designs the reliable systems

39

independent of the defect locations.

The knowledge-based approaches which exploits the defect location maps requires

the following capabilities in the system

1. The system must have postfabrication configurability, to isolate defects.

2. There must be enough redundant resource in the system to guarantee the system

functionality even after removing the defective parts.

3. The defect location map must be discovered before programming the system.

For the first condition, the postfabrication configurability can be achieved with

various emerging technology devices, e.g., [2]catenane-based molecule [9], mechanical

nanotube switch [10] or conventional programmable devices like sram-based repro-

grammable switches, floating gate transistor, and fuses. To satisfy the second con-

dition, the critical resources must be overpopulated until it statistically guarantees

the system functionality. Probably the most challenging requirement is to satisfy

the third condition which is discovering the defect locations map. Testing integrated

circuits is generally a time consuming process, however, testing and localizing the

defective nodes demands even larger set of test vectors and is potentially even more

time consuming.

The alternative defect-tolerant approach would be to ignore the defect location

map and provide reliability, oblivious to the defect locations. This method does not

demand discovering the defect node locations. However, since it is oblivious to the

defect locations, it cannot exploit the full capability of the hardware, and therefore,

results in suboptimal designs. This method provides enough resource redundancy

that if some of the resources are defective the correct value can still be extracted as

long as the majority of the replicated resources holds the correct value.

We partition the defect-tolerance techniques based on the part of the circuit that

they protect, into two categories. The defect-tolerant designs protecting

1. Computation resources (logic circuit)

2. Interconnect resources.

40

In this chapter we analyze different fault-tolerant techniques to protect each of the

above resources in a separate section, and compare the techniques using ignorant-

based and knowledge-based approaches for each of them. This chapter focuses on

the area overhead and analyze the impact of ignoring the defect locations on area

overhead.

The knowledge-based techniques (detect-and-configure techniques) are another

instantiations of Using Alternative Resource design pattern described in chapter 1.

In these techniques the cost of extra area overhead in the ignorant-based technique

is shifted to the cost of defect map extraction and design mapping technique in the

knowledge-based techniques. Knowledge-based techniques require extra hardware

support for testing the circuit. Some time is also needed to extract the defect map,

match the design configuration with the defect pattern, and map the design. By

spending these resources (time and test hardware), the cost is essentially shifted from

area redundancy to time redundancy (test and configuration time). Then the time

redundancy can be further reduced by the technique shown in section 3.3.

3.1 Cost of Ignorance in Interconnect

This section analyzes the defect-tolerant schemes protecting interconnect resources.

We compare the two type of defect-tolerant schemes introduced above and quantify

the advantage of exploiting defect map. We compare these schemes over a simple

routing example. In ignorant-based approach, each interconnect channel in this tech-

nique is implemented with a reliable network that guarantees connectivity with the

existence of defects. In knowledge-based approach the interconnect defect pattern

has to be discovered using a comprehensive test and localization technique. Then the

system will be configured around the defects. This technique is similar to conven-

tional routing that prevents congestion, while some of the resources are already taken

(in this case these resources are marked as defective).

In our routing example, we assume a channel with W wires and S buffering

segments, where each of the buffer sets is preceded with a fully connected switch

41

Switch Block Buffers

Config.
Bit

Figure 3.1. Fully connected switch box and buffers

1

2

R

Inputs Output

Executive
Stage

Randomizer Majority
Stage

Switch Block Buffers

Segment

W Pchannel

P(s=2)P(s=1) P(s=3)

Figure 3.2. Channel of width W = 4 with S = 3 segments, each containing fully
connected switch block. P (s = i), is the probability that N signals are routed up to
the ith segment.

block (figures 3.1). The switches are configured to on and off states to route the

signals, similar to a simplified FPGA channel (figure 3.2). In this example we assume

that the defects are in the wires or buffers and the switches are defect free. The goal

is to route N independent paths from N input points on one end of the channel to

N output points on the other end of the channel.

3.1.1 Ignorant-Based Interconnect Defect-Tolerant Scheme

In this section we use a general ignorant-based scheme based on Majority-Multiplexing

scheme [29]. A complete review of this scheme is provided in section 2.1.3.

Based on the majority-multiplexing technique, each wire is implemented using a

bundle of size M . Figure 3.3 shows a reliable unit implementing a single buffer and

42

1

2

R

Inputs Output

Executive
Stage

Randomizer Majority
Stage

Switch Block Buffers

Segment

W Pchannel

P(s=2)P(s=1) P(s=3)

Figure 3.3. Single wire protected with majority multiplexing

interconnect stage using majority-multiplexing technique. All the W wide channels

with S buffering stages, are implemented with majority-multiplexing technique as

shown in figure 3.4. Each of the W wires is replaced with a wire bundle of size M .

Since each of the W routes guarantees the connection, there is no need to overpop-

ulated the channel; i.e., for routing N signals we need exactly N routes. Therefore,

W = N .

The M -wide bundle passes through an executive stage, randomizer interconnect,

and restorative stage, to implement a reliable processing unit. The executive stage is

essentially replicated copies of the unit under protection, since in this case the unit is

a wire followed by a buffer and a wire does not have any functionality, the executive

stage contains of only buffers (figure 3.3).

In the majority multiplexing, the resource redundancy and the effective integration

in each bundle tolerates any potential defects in the wires, buffers, or majority gates,

and guarantees the correct routing. Therefore, there is no need to discover the defect

location map of each chip and a fixed configuration is used for all the chips.

Now we analyze the system reliability based on this technique. In one bundle an

output of a majority gate at segment s is correct if the majority gate is correct and

the majority of the input signals into the gate is also correct. This is shown in the

43

M

W x M
=

N x M

bundle

channel

P(s=2)P(s=1) P(s=3)

Pinput(s=2) Pinput(s=3)Pinput(s=1)

Figure 3.4. A channel implemented with majority multiplexing buffers

Segment
1

2

3

1

2

3

W

Figure 3.5. One possible routing of N = 3 paths, isolating a broken wire and a
defective buffer

44

following equation.

P (s) = Pgate

M∑
i=dM+1

2
e

 M

i

 Pinput(s)
i(1− Pinput(s))

M−i. (3.1)

P (s0) is the probability that a wire coming out of a segment s = s0 is cor-

rect. Pinput(s0) is the probability that a wire entering the majority stage of majority-

multiplexing unit at segment s = s0 is correct (figure 3.4). Thereby, Pinput(s0) can be

computed from the P (s0 − 1) as follows

Pinput(s0) = P (s0 − 1)× Pgood buffer × Pgood wire. (3.2)

Here we assume that P (0) is 1; the primary input signals are defect free. At the

final segment, each bundle holds the correct value if at least half of the wires of the

bundle are correct. Therefore, the probability that a bundle yield through the final

segment S is

Pbundle =
M∑

i=dM+1
2

e

 M

i

 P(S)
i(1− P(S))

M−i. (3.3)

The final segment is fed into a reliable majority gate to generate the output signal.

The channel yields when all the N bundles yield through the final segment, which is

computed with the following approach.

Channel Y ield Maj = Pbundle
N . (3.4)

Here we assume that Pgood buffer = Pgood wire. The channel width growth as the

function of Pgood wire to route N = 100 signals is plotted in figure 3.6. For this simu-

lation the target Channel Y ield Maj is 0.999, and the channel width that guarantees

this yield is computed for different values of Pgood wire and is plotted in figure 3.6. We

compare this channel width with the channel width of the knowledge-based technique

in the coming section.

45

3.1.2 Knowledge-Based Interconnect Defect-Tolerant Scheme

Here we perform the above routing operation on overpopulated channel with full

knowledge of the defect locations. For detect-and-configure techniques the defect

location map has to be discovered first and all the defective nodes have to be localized.

Once the defect location map is available N independent and defect free paths must

be routed through the W wires of the channel. Figure 3.5 shows a simplified example

of routing N = 3 wires over W = 4 wide channel.

Remember from the problem assumption stated in section 3.1.1, that the switch

block is fully connected and fault free. Using this assumption, to find N independent

defect free paths among W wires, we must find N defect free paths in each segment.

The N independent defect free paths of each segment can then be connected using

the fully connected defect free switches. The channel yield with this technique is

computed with the following approach.

Pseg =
W∑

i=N

 W

i

 P i(1− P)W−i. (3.5)

This is the probability that each segment yields N paths, where P is the probability

that a wire and the corresponding buffer is defect free,

P = Pgood wire × Pgood buffer, (3.6)

The channel yields when all the segments yield at least N wires and buffers,

therefore,

Channel Y ield Config = (Pseg)
S , (3.7)

figure 3.6 shows the channel width required to route N = 100 signals with 0.999

yield. This graph shows that for 11% defect rate the knowledge-based technique

result an order of magnitude narrower channel width compared to the ignorant-based

technique. The curves show that the channel width of ignorant-based technique grow

considerably faster than the knowledge-based technique.

46

0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
1

2

3

4

5

6

7

8

9

10

11
Channel Overpopulation

P
wire

C
ha

nn
el

 W
id

th
 R

ep
lic

at
io

n
F

ac
to

r

Multiplexing
Configuration

Figure 3.6. The overhead on the number of wires in a channel for defect-tolerant
design. The yield is 0.999 and defect rate of all the defect-prone components range
from 0.10 to 0.01. The required number of paths to be routed is N = 100.

This simple example illustrates the advantage of a knowledge-based technique

over ignorant-based technique from area point of view. For this reason there are

many defect-tolerant work on programmable substrates like FPGA based on detect-

and-configure technique [59][60]. The defect pattern can be discovered with the test

and defect localization techniques [61][62][63]. Once the defect configuration map

is present then the signals can be routed to avoid defective wiring resources. This

is similar to the normal routing problems that avoid congestions. We use a detect-

and-configure based technique to program logic in nanowire-based substrate. This

techniques shows about 30% overhead on average to tolerate 10% defect rate. The

detail of this technique will be shown in chapter 4

3.2 Cost of Ignorance in Logic

In this section we analyze defect-tolerant approaches protecting computation (logic

circuit). Similar to the previous section, we compare the knowledge-based and ignorant-

47

based techniques.

We compare the above two technique using a simple example. Assume we want to

have a single reliable logic gate. Using a simple ignorant-based technique, the gate is

replicated R times followed by a reliable majority gate. This unit compute the logic

function reliably if the majority of the R gates are defect free. Therefore, with P

being the failure rate of a logic gate the probability that the unit works correctly is

Gate Y ield Maj =

RM∑
i=dRM +1

2
e

 RM

i

 Pgate
i(1− Pgate)

RM−i. (3.8)

For knowledge-based technique, the gate is also replicated into RC copies and

performs correctly if at least one defect free gates exists. The defect free gates are

located and assuming defect free configuration, one of them is configured as the single

logic gate and the rest of the copies will be isolated. Therefore, the probability that

this technique performs the logic function correctly is when it yields at least one gate,

Gate Y ield Config = 1− (1− Pgate)
RC , (3.9)

figure 3.7 shows the area overhead of the above two techniques (ignorant-based

and knowledge-based techniques) to yield a single reliable gate with the probability

99.9%. For 10% defect rate the ignorant-based majority scheme requires 17 copies,

while the knowledge-based configuration scheme takes only 3 copies.

In the above analysis we fixed the target yield and the number of yielded gates (at

least 1 reliable gate), and then we compared the final area overhead. We can analyze

the above comparison from another point of view. With the same reliability target

for both techniques, we replicate the defect-and-configure techniques with RM copies,

equal to the replication of the majority technique. Then the detect-and-configure

technique can potentially yield at least half of the gates dRM + 1e/2 while majority

only yield a single gate. Therefore, with the same amount of resource the detect-and-

configure technique provides more computational power compared to the majority

technique.

48

0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
2

4

6

8

10

12

14

16

18

20
Number of Gate Overhead

P
gate

G
at

e
R

ep
lic

at
io

n
F

ac
to

r

Multiplexing
Configuration

Figure 3.7. Number of logic gates required for detect-and-configure technique and
majority technique to yield at least one gate with 99.9% probability.

The comparison of majority scheme and configuration scheme can be generalized

further to the case that the majority gate and the configuration devices are not

reliable either. These cases are addressed in von Neumann-type majority-multiplexing

scheme [29] [11] (section 2.1.3.2) and defect-tolerant matching technique (chapter 4).

The above simple examples for interconnect and logic defect-tolerant techniques

showed an absolute advantage of the knowledge-based defect-tolerant techniques over

ignorant-based techniques in area overhead. In the following section we review the

potential cost to gain this benefit: cost of extracting defect location map.

3.3 Cost of Knowledge

Above we reviewed the benefits of having defect map and how defect-tolerant tech-

niques can improve the area overhead by exploiting this knowledge. However, ex-

tracting the defect map is not a cheap process, especially as the chips become more

complex and the defect rate increases. Localizing the defects compared to the normal

test operation is a more complicated process. The normal test process is an accept-

or-reject process. I.e., as soon as an error is detected, during the test operation, the

49

chip is marked as defective and will be discarded. For defect localization in the other

hand, all the nodes of the chips have to be tested and the defect map is generated.

Below we review our test and localizing approaches. In this technique, the defec-

tive nanowires is localized in NanoPLA architecture this work suggests a technique

that combines the detection process with mapping process, which will expedite the

detection process and reduce the time costs.

3.3.1 NanoPLA Test and Defect Localization

To test and localize defective points in nanoPLA [64] structure we use a built-in mi-

croprocessor that performs the test operation. The test is performed by an on-chip

microprocessor. The microprocessor is responsible to test and detect the manufac-

turing defects and remap the configuration to nanoPLA blocks. The microprocessor

need to be free of defect to perform the test operation correctly. Therefore, it must

be implemented in reliable CMOS. This processor will only occupy a tiny fraction of

the die area on the chip. The microprocessor serves the following purposes: (1) Dis-

covering the live nanowire addresses existing in the stochastic lithographic scale to

nanowire decoder (section 2.3.3). (2) Identifying the usable nanowires which are cor-

rectly restorable/invertable. (3) Identifying the programmable cross-points in usable

nanowires and isolating the defective ones during mapping.

Since addressing and restoration is stochastic, we will need to discover the live ad-

dresses and their restoration polarity. Further, since we will have defective nanowires,

we must identify which nanowires are usable and which are not. We use the restora-

tion columns (see figures 2.8) to help us identify useful addresses. The gate side

supply (e.g., top set of lithographic wire contacts in figures 2.8) can be driven to a

high value, and we look for voltage on the opposite supply line (e.g., bottom set of

lithographic wire contacts in figure 2.8; these contacts are marked Vhigh and GND

but will be controlled independently as described here during discovery). There will

be current flow into the bottom supply only if the control associated with the P-type

restoration wire can be driven to a sufficiently low voltage. We start by driving all

the row lines high using the row precharge path. We then apply a test address and

50

drive the supply (Vrow) low. If a NW with the test address is present, only that line

will now be strongly pulled low. If the associated row line can control one or more

wires in the restoration plane, the selected wires will now see a low voltage on their

field-effect control regions and enable conduction from the top supply to the bottom

supply. By sensing the voltage change on the bottom supply, we can deduce the

presence of a restored address. Broken nanowires will not affect the bottom supply.

Nanowires with excessively high resistance due to doping variations or poor contacts

will not be able to pull the bottom supply contact up quickly enough. We sense the

buffering and inverting column supplies separately so we will know whether the line

is buffering, inverting, or both. We need no more than O(K2) unique addresses for

K logical p-terms to achieve virtually unique row addressing [14], so the search will

require at most O(K2) such probe tests. A typical address width for the nanoPLA

blocks of 90 is Na = 14 which provides 3, 432 distinct 7-hot codes. We might thus

need to probe 3, 432 addresses to find all the live row wires. This process has to be

done for both of the decoders in each nanoPLA block (see figure 2.8). So for one

nanoPLA we have to perform 6, 863 = 2× 3, 432 distinct address check.

Once we know all the present addresses in an array and the restoration status

associated with each address, we can assign logic to each nanowire of programmable

crossbars. To program each nanowire, each of the junctions has to be selected and

programmed one at a time. In order to program a nanowire in the top programmable

crossbar (figure 2.8), the top address decoder selects the nanowire and the other

address decoder selects each junction via the restoration plane. When the suitable

programming voltage is applied to the nanowires of each junction, the junction will

be programmed. If any of the junction is broken then the microprocessor adds this

junction to its defect configuration map and tries mapping the or function on another

nanowire. In this way the defect location map is generated accumulatively and can

be used for mapping the next nanowires.

The logical configuration for each nanoPLA block (the “bitstream”) is given to

the microprocessor, and it runs the lightweight greedy algorithm [65] to discover the

present and functional addresses and perform the local matching (chapter 4) necessary

51

to assign block configuration to physical nanowires. This technique takes linear time

in the number of nanowires to map the whole or-plane. In this way, the device

never stores the entire defect map for the component, but simply rediscovers it one

nanoPLA block at a time, and it never exposes the user to the defect details of the

array.

3.4 Summary

The defect rate of VLSI design is increasing and the defect rate in emerging nanotech-

nology designs is expected to be even higher. High defect rate decreases the perfect

system yield, and the low system yield increases the chip cost and price. The alterna-

tive would be to relax the chip quality condition, i.e., instead of having perfect chip,

allowing limited number of defects in the system. This approach has already found

its place in memory systems and FPGA chips. The memory chips are overpopulated

in the number of rows and columns to compensate for potential defects in the rows

or columns. If there are a few defective rows or columns those rows or columns are

isolated and the rest of the memory is functional. Therefore, during the test process,

only memory chips with too many defects are rejected and memory chips with a few

defects that can be isolated is accepted.

In FPGA technology, Xilinx is the pioneer in using defective chips by the technique

called EasyPath [66]. It matches the configuration bitstream to the defect pattern of

the defective chips. Therefore, once the users know their design is fixed and no longer

requires the full programmability of a standard FPGA, the design configuration will

be mapped to the FPGA chip. This approach provides a great total cost reduction.

As the above two examples illustrate there is a tradeoffs between yield and cost,

which is determined by the quality (number of accepted defect) of the system. Toler-

ating zero defects in the system results in highest chip quality with lowest yield and

consequently highest price. Tolerating some defects, however, increases the number

of chip yields and consequently the costs decline. Therefore, by improving the design

to tolerate some number of defects, the quality condition can be more relaxed and

52

more defective chips can be accepted, which increases the system yield and reduces

the cost.

Tolerating defects in the system is potentially a costly process. The current chap-

ter revealed, that knowledge-based techniques can result in an order of magnitude

more compact designs. These techniques, however, demands the defect locations

map. Section 3.3 reviewed some of the approaches to extract this information. Al-

though the test and defect localization techniques are potentially costly process, this

chapter reviewed a technique that can reduce these costs, and make it more practical.

53

Chapter 4

Permanent Defect-Tolerant Design
Using Reconfiguration

Tolerating defects is one of the most challenging issues in design nanoscale systems.

In this chapter we propose using reconfiguration to tolerating the defective wires and

devices in the system. The location of the defective wires and devices in the system

is extracted and the system is configured around them. Based on the discussion

of chapter 3, since this technique exploits the knowledge of defect locations, it can

improve the final design area overhead.

chapter 2 reviewed some of the potential sources of permanent defects. In this

chapter, these potential defects are abstracted to the following defect models

1. Wire defects

2. Nonprogrammable cross-point defects.

(1) Wire defects. A wire is either functional or defective. A functional wire has

good contacts on both ends, conducts current with a resistance within a designated

range, and is not shorted to any other nanowires. Broken wires will not conduct

current. Poor contacts will increase the resistance of the wire leaving it outside of

the designated resistance range. Excessive variation in nanowire doping from the

engineered target can also leave the wire out of the specified resistance range. We

can determine if a wire is in the appropriate resistance range during testing (chapter 3)

and can arrange not to use the ones which are defective, applying the technique in

this chapter.

54

(2) Nonprogrammable cross-point defects. A cross-point is programmable, non-

programmable into on state, or shorted into the on state. A programmable junction

can be switched between the resistance range associated with the on-state and the

resistance range associates with the off-state. A nonprogrammable junction can be

turned off, but cannot be programmed into the on-state; a nonprogrammable junc-

tion could result from the statistical assembly of too few molecules in the junction or

from poor contacts between some of the molecules in the junction and either of the

attached conductors. A shorted junction cannot be programmed into the off-state.

Based on the physical phenomena involved, we consider nonprogrammable junctions

to be much more common than shorted junctions. Further, we expect fabrication can

be tuned to guarantee this is the case. Consequently, we will treat shorted junctions

like a pair of defective wires and avoid both wires associated with the short. We do

not currently consider bridging of adjacent nanowires as a major defect source. Radial

shells around the (semi)conducting nanowire cores prevent the shorting of adjacent

nanowires. At present, there is insufficient experience to determine if variations in core

shell thickness, imperfect planar nanowire alignment, or other effects may, nonethe-

less, lead to bridging defects between adjacent nanowires. If such bridging were to

occur, it could make a pair of nanowires indistinguishable, perhaps effectively giving

two addresses to the nanowire pair. These bridged nanowire pairs could be detected

and avoided but their occurrence would necessitate slightly more complicated testing

and verification algorithms than the ones detailed in chapter 3.

For our analysis, we assume the defects have random and identically independent

distribution (iid). This assumption is consistent with broken wires resulting from as-

sembly strain, poor contacts made by statistical assembly, and statistical distributions

of molecules and connections in junctions. The defect mechanisms anticipated here

are very different from those typical in lithographic-scale assemblies, and there is in-

sufficient experience with manufacturing of these arrays to suggest more sophisticated

models (e.g., clustering) at this point.

In the rest of this chapter we start by showing how to tolerate defective wires

and then nonprogrammable cross-points in each nanoPLA block, followed by the

55

experimental results.

4.1 Tolerating Defective Wires

Tolerating wire defects is a simple matter of provisioning adequate spares, separating

the good wires from the bad, and configuring the nanoPLA blocks accordingly. For a

given PLA design, we want each block to have a minimum number of usable wires (or-

term and interconnect wires). Since we will have wire losses, we design the physical

array to include a larger number of physical wires to assure the yield of enough usable

wires to meet our logical requirements.

For the detailed architecture described in section 2.3.4, wires actually work in

pairs. A horizontal or-term wire provides the programmable computation or pro-

grammable interconnect and a vertical restoration wire provides signal restoration

and perhaps inversion. Since the gatable junction between each restoration wire and

its associated or-term wire is not programmable, a defect in either wire will result

in an unusable pair. Consequently, each logical or-term or output will yield only

when both wires yield. Let Pwire be the probability that a wire is not defective. The

probability of yielding each or-term is

Por = Pout = (Pwire)
2 . (4.1)

We can perform an M-choose-N calculation to determine the number of wires we

must physically populate (N) to achieve a given number of functional wires (M) in

the array. The probability that we will yield exactly i restored or-terms is

Pyield(N, i) =

((
N

i

)
(Por)

i (1− Por)
N−i

)
. (4.2)

That is, there are
(

N
i

)
ways to select i functional or-terms from N total wires, and

the yield probability of each case is

(Por)
i (1− Por)

N−i . (4.3)

56

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

N

Pwire

Population (N) to achieve yield of M=100

PMofN=0.500
PMofN=0.990
PMofN=0.999

Figure 4.1. Physical Population (N) of wires to Achieve 100 Restored or-terms (M)

We yield an ensemble with M items whenever M or more items yield, so our

system yield is actually the cumulative distribution function,

PMofN =
∑

M≤i≤N

((
N

i

)
(Por)

i (1− Por)
N−i

)
, (4.4)

Given the desired probability for yielding at least M functional or-terms, PMofN ,

equation 4.4 gives us a way of finding the number of physical wires, N , we must

populate to achieve this. For our interconnected nanoPLA blocks, the product terms

and interconnect wires will be the M ’s, and we will calculate a corresponding N to

determine the number of physical wires we must place in the fabricated nanoPLA

block. Figure 4.1 plots the N required to achieve 50%, 99%, and 99.9% yield rates

(PMofN) as a function of Pwire when building M = 100 wire arrays.

Once we know the number of physical wires to populate, we can build physical

area models to calculate the size of a given array. From this we can calculate the area

overhead associated with sparing for a given wire defect rate. figure 4.2 plots the area

overhead as a function of Pwire for a typical array assuming the reliable, lithographic

substrate uses 105 nm pitch wires (e.g., 45 nm technology node) and the nanowires

have 10 nm pitch. If the design consisted only of nanowires, we would expect the

area to scale as
(

N
M

)2
; however, since the nanowires only make up a fraction of the

57

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

A
re

a
O

ve
rh

ea
d

Pwire

Area Overhead Pp=80 Wseg=25

Pblock=0.99

Figure 4.2. Impact of Wire Yield Rate (Pwire) on Area for an Interconnected nanoPLA
Block with 80 net product terms and 25 net interconnect wires per channel (nanowire
pitch is 10 nm; reliable superstructure pitch is 105 nm.)

area (see figure 2.8), the area overhead scales more slowly; at 80% wire yield rate and

the target yield rate (PMofN) of 99%, we only see an overhead around 2.4 instead of

(1.8)2 = 3.2.

The lithographic-scale addressing units and lithographic-scale contacts allow us to

identify the addresses of individual, restored or-term wires. A typical testing routine

would sequentially test all the possible addresses for nanowires in an array, attempting

to charge one wire at a time for conduction and restoration. By watching the voltage

on the lithographic-scale supply contact attached to the far end of a restoration

column (see figure 2.8), it is possible to determine if the address is present, properly

restored, and identify the resistance associated with the nanowire’s signal path. We

record the address of each nondefective wire discovered and use only those addresses

during subsequent device configuration. Section 3.3.1 shows more detail of the testing

process.

4.2 Tolerating Defective Cross-Points

Since each wire in a nanoPLA block has around 100 logical junctions, it is unlikely that

any single wire is free of defective junctions. For example, at a 10% nonprogrammable

58

(a)

w1 f1

w5

w4

w3

w2
f2

f4

f3

(d)(c)

f1

f2

f4

f3

w1

w5

w4

w3

w2

a b c d e

w1

w2

w3

w4

w5

Defective
junction

f1=a+b+c+e
f2=a+c+e
f3=b+c
f4=d+e

(b)

Figure 4.3. (a) A logic array with defective junctions. (b) An example set of or-
terms. (c) A bipartite graph with or-terms in the right and nanowires in the left.
An edge shows that an or-term can be mapped to a nanowire. (d) One possible
assignment of the or-terms to nanowires.

cross-point defect rate, the likelihood of a wire with 100 junctions having no defects

is (0.9)100 = 3 × 10−5; this further suggests there is only a 0.3% chance that there

is even one defect free wire in an array of 100 nanowires. Consequently, in order to

cope with these high junction defect rates, we must be able to use wires even when

they contain defective junctions.

In practice the or-terms are sparsely programmed. Each or-term receives both

the true and complement sense of each input, and in most terms only a subset of all

the input variables appear. Consequently, most or-terms will need fewer than 50% of

their junctions enabled, and we can tolerate nonprogrammability defects in the rest.

The main idea is to match the logic of an or-term to the defect pattern of a

nanowire. An or-term is compatible with the defect pattern of the nanowire if and

59

only if the inputs of the or-term are a subset of the nondefective junctions of the

nanowire. For example if a programmable crossbar of a nanoPLA has defective junc-

tions as marked in figure 4.3, the or-term f1 = a + b + c + e can be assigned to

nanowire w4, despite the fact that it has a defective (nonprogrammable) junction at

(w4, d)—i.e., the or-term f1 is compatible with the defect pattern of nanowire w4.

We can combine this idea with the fact that the or-term inputs are sparse and turn

nanowire assignment into a matching problem.

4.2.1 Algorithms

Assume we have a logic array with a defect pattern similar to figure 4.3(a) and we

want to program it to the set of or-terms in figure 4.3(b). We first determine which

or-terms are compatible with the defect pattern of each nanowire. We then make

a graph, like the one in figure 4.3(c), showing which or-terms can be assigned to

which nanowires. The nodes on the right side of the graph in figure 4.3(c) are the

or-terms and the nodes on the left side are the nanowires. An edge between an

or-term and a nanowire indicates that the or-term is compatible with the defect

pattern of the nanowire. Next we try to find a complete assignment from the or-

terms to the nanowires. Figure 4.3(d) shows one possible assignment. Finding an

assignment is equivalent to identifying a bipartite graph matching. While we could

find the matching with a standard, optimal bipartite matching algorithm, we find a

linear-time greedy heuristic provides reasonably good results for these defect rates

while running in substantially less time [65].

Let F be the set of or-terms and W be the set of nanowires; let fi represent an

or-term in F and wj represent a nanowire in W . Our heuristic algorithm (shown

in figure 4.4) picks the fi’s in decreasing order of their fanin size (because larger

fanin or-terms are harder to map) and the wj’s randomly. When the number of on

junction per nanowire is bound to a constant, the number of wires tested in line 5

for each or-term, fi, is a constant and this algorithm runs in linear time, O(|F |).

Note that this is even smaller than the O (|W |2) or O (|W |5) operations which would

be required to diagnose the programmability of the cross-points in the array, which

60

1 do {
2 fi = unmapped or-term in F with largest fanin
3 do {
4 wj = nanowire randomly selected from unused nanowires in W
5 if (fi can be mapped to wj)
6 assign fi to wj

7 mark fi as mapped
8 mark wj as used
9 } while (fi unmapped)

10 } while (there are unmapped fi in F)

Figure 4.4. Greedy Algorithm for Matching or-terms to Nanowires with Potentially
Defective Crosspoints

would be necessary to construct the full graph used for matching in the optimal

algorithm [49].

4.2.2 Fanin Bounding

In order for the preceding algorithm to succeed, there must be enough nanowires in

the logic array to allow every or-term to be assigned to a nanowire. We can derive

a lower bound on the number of spare nanowires we need in the array based on the

or-term fanin. The probability that an or-term fi can be mapped to a nanowire

in the graph is (Pj)
ci because all the ci junctions need to be programmable. The

expected number of nanowires connected to fi in the graph is |W | · (Pj)
ci , where |W |

is the number of nanowires. In order to find a complete assignment from or-terms

to nanowires, the expected size of the node degree of each or-term must be at least

one. Assuming ci’s are bounded by C,

|W | · (Pj)
C > 1. (4.5)

This immediately implies that |W | should be greater than (Pj)
−C . When C is large,

|W | must be unacceptably large. For example with Pj = 0.85 and C = 40 the above

bound suggests |W | > 665. To allow reasonably sized logic arrays, the maximum

fanin, C, must be bounded. For example, if we want to map |F | = 100 with little

overhead (|W | ≈ 100), we must keep C < 28 since (0.85)−28 ≈ 95.

61

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
0

10

20

30

40

50

60

70

80

90

100

Programmability Probability (P
j
)

F
an

in
 B

ou
nd

 S
iz

e
(C

)

Fanin Limit vs. Defect Rate

Overhead Ratio=1.50
Overhead Ratio=1.25
Overhead Ratio=1.15
Overhead Ratio=1.10

Figure 4.5. Fanin Limit to Tolerate Different |W |
|F | Overhead Ratios versus Pj Values

for |F | = 100

Ultimately, we must map all the or-terms in each array; consequently, equation 4.5

is a weak bound. In [65] we derive tighter bounds useful for design. figure 4.5 show

the fanin limits for different area overhead ratios based on these tighter bounds.

4.2.3 Guaranteeing Sparseness during Mapping

We control the fanin bound, C, during logic mapping. A typical step in mapping

for clustered PLA designs, such as these nanoPLA blocks, is to group the logic into

clusters which can be feasibly implemented by the base logic blocks. For example,

PLAMAP [67] can take in a netlists of primitive logic gates and cover the logic while

assuring that each logic cluster does not exceed architectural limitations, including:

• I the maximum number of inputs to a cluster

• P the maximum number of p-terms in each cluster

• O the maximum number of outputs from a cluster

• Pmax the maximum number of p-terms which fan in to any or-term

62

Inputs Outputs

I O

P

Imax

Pmax

AND-Plane OR-Plane

Figure 4.6. The parameters of PLAMAP on a nominal PLA: I, P , O, Imax, and Pmax

We might also wish to separately bound:

• Imax the maximum number of inputs which fan in to any particular p-term

figure 4.6 illustrates these parameters on a nominal PLA.

In our nanoPLAs, the critical p-term fanin limit, C, corresponds to the number of

inputs, Imax, for the and-plane and the or-term fanin, Pmax, for the or plane. Con-

sequently, once we know the effective defect rate for a given fabrication technology

we can set Pmax and Imax appropriately and synthesize logic clusters that are guaran-

teed to meet the appropriate fanin bounds (i.e., equation 4.5 and extensions in [65]).

Restricting Imax and Pmax may lead to an increase in the number of blocks needed

by the circuit and the logic depth; this must be compared against the alternative of

using less sparse logic and paying a larger mapping overhead.

4.2.4 Interconnect Nanowire Integration with Logic Resources

section 2.3 and [33], show interconnect signals are routed through the same nanoPLA

blocks that are used as computation block at the same time. Once the design is par-

63

titioned and and clustered into nanoPLA blocks, the interconnect signals are routed

through the nanoPLA blocks. The interconnect routing configuration is added to the

logic configuration of the corresponding PLA blocks. Since the routing configuration

only has single cross-point per nanowire, they will have the smallest fanin, C = 1, and

therefore, will be mapped once all the p-terms of the PLA configuration is mapped.

Routing interconnects through the logic blocks need very limited area overhead for

defect-tolerance purpose, since the fanin is only 1 (equation 4.5 and extensions in

[65]).

4.3 Experimental Results

To characterize the impact of defective cross-points, we mapped 16 of the benchmarks

in the Toronto20 [68] place-and-route challenge suite to nanoPLA arrays with varying

cross-point and wire defect rates. We used PLAMAP [67] to create clusters. To

control Imax, we asked PLAMAP to generate (I = Imax, P = Pmax, O = 1) single-

output covers, then used T-Vpack [48] to combine the single-output covers into I = 20,

P = 64 clusters.

Table 4.1 shows relative area versus defect rate for the 16 designs. For all designs,

the additional overhead of fanin bounding and defect-tolerance is below 120% up to

a defect rate of 10% (Pj ≥ 0.9).

The modest overhead for most designs arises from the fact that they can be

mapped to bounded fanin without significantly increasing the number of clusters

required to cover the logic task. Table 4.2 shows how the design sizes scale as we map

to different fanin bounds: C = Imax = Pmax. Many of the designs show no increase

as we tighten the fanin bounds. In fact larger fanin bounds can lead to excessive

logic duplication and increased area in many cases [67]. For a few designs there is

an appreciable increase in block count as the fanin bound is tightened, and this is

the major factor accounting for the area overhead jumps for ex1010, pdc, s298, and

spla.

Table 4.3 summarizes the composite area overhead of pdc, the design with the

64

Table 4.1. Relative Area versus Pj (nanowire pitch is 10 nm; reliable superstructure
pitch is 105 nm.)

Pj

Design 0.85 0.9 0.95 1
alu4 1.81 1.64 1.00 1.00

apex2 1.19 1.19 1.00 1.00
apex4 1.30 1.16 1.00 1.00
bigkey 1.00 1.00 1.00 1.00
clma 1.00 1.00 1.00 1.00
des 1.00 1.00 1.00 1.00
dsip 1.00 1.00 1.00 1.00

elliptic 1.00 1.00 1.00 1.00
ex1010 3.81 2.15 1.00 1.00
ex5p 1.00 1.00 1.00 1.00
frisc 1.00 1.00 1.00 1.00

misex3 1.31 1.31 1.00 1.00
pdc 4.75 1.79 1.00 1.00
s298 1.84 1.84 1.00 1.00
seq 1.20 1.12 1.00 1.00
spla 3.46 1.83 1.00 1.00

Table 4.2. nanoPLA Mapped Block Count versus Fanin Bound
C = Imax = Pmax

Design 4 6 8 10 12 16 48
alu4 107 110 98 81 52 26 19

apex2 136 150 152 167 179 178 183
apex4 108 115 123 47 48 34 36
bigkey 99 111 139 147 132 165 168
clma 454 513 557 634 663 646 520
des 102 110 114 130 149 158 120
dsip 70 88 82 108 87 108 79

elliptic 162 209 225 289 338 397 262
ex1010 380 404 402 233 272 351 81
ex5p 88 98 50 50 46 30 8
frisc 213 229 244 285 326 376 276

misex3 97 109 105 102 83 44 37
pdc 291 322 267 292 304 160 41
s298 81 85 84 88 90 102 57
seq 121 135 140 143 138 111 76
spla 211 235 201 219 221 109 33

65

Table 4.3. Relative Area for pdc Benchmark as a Function of Pwire and Pj

Pwire Pj

0.8 0.85 0.9 0.95 1
0.80 25.01 21.07 17.11 14.52 11.02
0.85 10.75 9.17 7.34 6.28 4.71
0.90 4.06 3.46 2.79 2.39 1.80
0.95 2.26 1.91 1.55 1.31 1.00
1.00 2.26 1.91 1.55 1.31 1.00

largest overhead, as a function of both wire and junction defects. The composite

area overhead at Pwire = 0.90 and Pj = 0.90, is less than a factor of three. After

accounting for overheads at these defect rates, the design achieves over 100 times

greater density than a 4-LUT based FPGA implementation in 22 nm CMOS. This

density benefit is typical of these designs [33].

4.4 NanoPLA Block Sparing

On top of the individual wire sparing described above, we will likely still need to

spare entire nanoPLA blocks.

• Larger scale contaminants during assembly or large cluster faults may leave an

entire nanoPLA block unrepairable; these defects are not appropriately modeled

as independent, random junction or wire defects.

• As discussed, we can guarantee high statistical yield of each nanoPLA block, but

with millions of nanoPLA blocks in an array, some blocks will not be repairable.

Now that we have used the wire sparing techniques to bring the yield of the nanoPLA

blocks to a respectable level (e.g., PMofN=99%), we can use the M -choose-N sparing

idea at a higher level on the nanoPLA blocks. For example, Lach et al. describe a

strategy for tolerating FPGA defects by omitting one logic block from a k × k tile

of FPGA logic blocks and generating logic configurations which accommodate the

failure of each physical logic block in the tile [69].

section 3.3 suggested using a built-in reliable microprocessor responsible for lo-

calizing defects and performing the procedure of figure 4.4. We will give the device

66

the logical configuration for each nanoPLA block. The on-chip reliable microproces-

sor will then run the test to discover the present and functional addresses of each

nanoPLA block and perform the local matching procedure (figure 4.4) necessary to

assign logical configuration to physical nanowires. In this way, the device never stores

the entire defect map for the component, but simply rediscovers it one nanoPLA block

at a time, and it never exposes the user to the defect details of the array.

4.5 Summary

In this chapter we illustrated how to tolerates defect in the nanoPLA architecture.

The defects are abstracted to two defect models: broken wires, and nonprogrammable

open cross-points. We used detect-and-reconfigure technique to isolate the defective

nodes and program around them. This technique takes only three-fold area to tolerate

10% broken wires and 10% nonprogrammable cross-points in the worst-case, where

in the average for typical design it is about 30% overhead. Using a built-in reliable

microprocessor to discover the defect map and stochastic nanowire addresses facili-

tates the testing process. The microprocessors never stores the whole defect map, it

simply discovers it one nanoPLA block at a time. This microprocessor is further used

to perform the greedy mapping procedure to program the nanoPLA blocks.

67

Chapter 5

Transient Fault-Tolerant Design
with Rollback Technique

Chapter 2 pointed out that the transient fault increases as the reason of feature size

and supply voltage scaling. In this chapter we propose a fault-tolerant design to

tolerate high fault rates. We propose a fine-grained rollback technique to tolerate

transient faults. We used temporal redundancy to contain the spatial redundancy.

The potential impact on the system throughput is further reduced by using streaming

buffers between the blocks. We mainly compare our fine-grained fault-tolerant design

with Majority-Multiplexing technique which gathered much attention recently. We

illustrate that this technique can bring close to an order of magnitude improvement

compared to the related nanotechnology fault-tolerant works. Our technique provides

the flexibility to choose the right area–throughput trade–off to adjust the design with

the desired area overhead or throughput loss limit.

5.1 Design Structure

Rollback recovery has been widely used for large block sizes with coarse-grained

recovery, typically at the processor level [26][27, 28]. In this section we design a

Fine-grained rollback technique that can tolerate higher fault rates than previous

rollback techniques and achieve highly reliable system. Later in this section, we

show how the block size affects the reliable system design and why small blocks

(i.e., at logic level size) are essential, to achieve reasonable area overhead and system

68

 RB_Block_Depth .

Reliable
Streaming

Interconnect

Reliable
Streaming

Interconnect

Reliable Blocks

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

Buffered
Connection

Detection Block
with R replication

Majority
Circuit

Rollback (RB) Block

 DepthRB .

Rollback (RB) Block

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k
logic

ch
ec

k

Dl. Dl. Dl. Dc.

This checker
Detects an error.

3xDl +Dc+1Ds

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

Streaming Buffer

Rollback Buffer

Figure 5.1. The RB block consisting of detection blocks.

throughput.

This fined-grained rollback design has a two-level hierarchical structure, as shown

in figure 5.1. At the base, the system is partitioned into fine-grained blocks called

Detection Blocks. Each detection block has an embedded fault detection circuit to

guarantee detection of a certain number of errors inside the block. At the next level

the detection blocks are clustered to form a Rollback (or RB for short) Block. Each

RB block guarantees the correctness of its output signals by performing rollback

operations. Once a detection block inside an RB block signals an error, all the blocks

inside the RB block stop their normal processes and the RB block rolls back, meaning

it returns to a previously error free state, recovers the inputs which arrived subsequent

to that state, and repeats the affected operations to generate the correct result.

The interconnects between the RB blocks are Buffered Connections that are de-

signed to facilitates relatively independent operation flow between the RB blocks; i.e.,

the buffered connection provides buffer capacity between RB blocks, allowing an RB

block to continue while an adjacent RB block is in rollback mode.

The above building blocks: Detection Block, RB Block, and Buffered Connections

are developed in detail in the rest of this section.

69

Logic
Block

Checker

Extra
Circuitry

Checker-feedback R
el

ia
bl

e
C

on
tro

lle
r

Logic
Block

Checker

Extra
Circuitry

R
el

ia
bl

e
C

on
tro

lle
r

Figure 5.2. The general structure of concurrent error detection scheme.

5.1.1 Detection Block

The detection block consists of the logic circuit block protected with enough redun-

dant data to make errors in the logic circuit identifiable. A checker circuit follows

the original circuit block and the redundant logic circuitry to detect any error at the

output signals of the logic circuits. The main idea behind error detection is to com-

pute redundant data concurrently with the main computation and compare the main

and the redundant output signals, detecting any error in the main computation (fig-

ure 5.2). There are many different ways to generate the extra information to protect

the main block [70]; e.g., parity signals, error correcting codes, and logic replication.

Here we use a simple error detection technique, Replication with Comparison. It

consists of multiple (R) independent copies of the main logic block, followed by a

checker, which detects any disagreement among the copies of the logic block. We

select R based on the device fault rate, Pf , and the desired FIT rate.

The Replication with Comparison technique is a general-purpose structure and

does not demand any special design specification, while design-specific alternatives

may provide more lightweight and less expensive solutions. In the present article

we show that even with this basic and nonoptimized detection scheme the rollback

recovery will require less overhead than feed-forward fault-tolerant technique. The

area overhead can be further reduced by using more optimized detection techniques,

such as a multiple parity scheme [70], as long as the encoder and the decoder take

small area and short delay.

If the checker block is equally error prone as the logic blocks then the checker

needs to be protected as well (see figure 5.3). Replicating the checker block and

70

Logic Block
1st Copy

Outputs

Logic Block
2nd Copy

Checker-feedback

Checker
Checker

Block

R
el

ia
bl

e
C

on
tro

lle
r

Logic Block
1st Copy

Outputs

Logic Block
2nd Copy

Checker
Checker

Block

R
el

ia
bl

e
C

on
tro

lle
r

Figure 5.3. A detection block, consisting of two copies of logic block followed by two copies
of checker blocks.

reporting an error when any of the checker block copies reports an error decreases the

probability that errors in the checker will go undetected.

A checker design which can detect any disagreement between R copies of the logic

block is simple. It basically computes the and and or functions of the R copies of

each logic block outputs. If the R signals are identical then the and and or functions

of those signals have the same value. However, if there is any disagreement between

the signal values, the and function holds “zero” and the or function holds “one”.

This is illustrated in figure 5.4 by a truth table. This implementation of the checker

is minimal for the nanoPLA structure and other two-level implementation as will be

shown in section 2.3.

A detection block is the combination of the R copies of logic blocks with the R

copies of checker blocks. The structure of the detection block is shown in figure 5.3 for

R = 2. In this example each detection block detects any single error and most cases of

multiple errors inside the block. For any value of R, each detection block detects any

R− 1 errors and most cases with greater number of errors. One important feature of

this design is that the checker blocks are placed off the normal computational path,

hence the latency of the checker block does not add to the latency of the normal

system operation; checker latency only affects the operational latency when an error

is detected.

71

Signals Values

ai
′s all 0 all 1 mixed

OR(ai) 0 1 1
AND(ai) 0 1 0

AND(OR(ai),AND(ai)) 0 0 1

Figure 5.4. The truth table of the checker block logic. The checker block reports any
disagreement among the inputs, ai

′s. The inputs ai
′s are R copies of an output signal from

a logic block. If all of the inputs hold the same value, the outputs of the and and or will
be the same, otherwise the outputs of the and and or signals will be complements of each
other. The last row of the table shows the error indicator function; on detecting and error,
it holds the value of “1”.

5.1.2 Rollback Block

When an error is detected in one of the detection blocks inside an RB block, the

control circuit stops the computation of all the detection blocks inside the RB block

and forces the RB block to repeat the affected process and generate the correct result.

The control circuit guarantees the correctness of the rollback flow and uses the result

of the checker block to switch the block operation between rollback and normal modes.

The correctness of the system flow depends on the reliability of the control circuit, and

therefore, the control circuit must be designed with higher reliablility. For example

we can implement the control circuitry with reliable, coarse-grained CMOS even

when otherwise using nanoscale sublithographic devices for the compute block. The

reliable devices take greater area but since the control circuit is a small fraction of the

detection block, its area overhead is negligible compared to the area of the compute

blocks.

When an error is detected, the reliable controller stops the normal operation of

the circuit, resets the pointer of the input buffer to the input data associated with

the last correctly retired output, and recomputes the operation from that state to

recover the corrupted data. How far the inputs roll back depends on the depth of the

RB block and the latency of the logic blocks and checker blocks.

figure 5.5 illustrates the latencies of different parts of an RB block that affect the

rollback design. When an error is detected, the detection is delayed by the checker

block latency (Dc cycles). Furthermore the data needed to recover the erroneous

72

 RB_Block_Depth .

Reliable
Streaming

Interconnect

Reliable
Streaming

Interconnect

Reliable Blocks

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

Buffered
Connection

Detection Block
with R replication

Majority
Circuit

Rollback (RB) Block

 DepthRB x Dl.

Rollback (RB) Block

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

Dl. Dl. Dl. Dc.

This checker
Detects an error.

3xDl +Dc+1Ds

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

logic

ch
ec

k

Streaming Buffer

Rollback Buffer

Figure 5.5. RB block with timing parameters.

computation may have come from the RB block inputs after multiple levels of the

logic block latency; e.g., figure 5.5 shows a case where the error is detected 3 levels

deep in the block and each level has delay of Dl cycles. So the inputs should rollback

for 3 × Dl + Dc + 1 cycles (with one extra cycle being for the reliable controller to

perform the feedback). In general the inputs of the RB block must be registered to

support correct rollback operation for the following number of cycles,

DR = DepthRB ×Dl + Dc + 1, (5.1)

where DepthRB is the number of levels in the RB block (figure 5.5). Therefore, we

need a DR-deep buffer for any of the RB block inputs. We call these DR buffers

Rollback Buffers.

The system runs fully pipelined at high throughput until an error is detected. Then

the system freezes and spends a relatively long time (i.e., DR = DepthRB×Dl+Dc+1)

recovering from the error. Although this situation happens infrequently, it can have

a severe impact on the system throughput. In the next section we describe how

streaming buffer interconnects reduce the impact on the system throughput.

73

1 2 L

RB block Streaming
buffers

Figure 5.6. A simple structure model designed with buffered connections between RB
blocks.

5.1.3 Streaming Buffer

When an RB block stops to rollback, the other RB blocks in the system must also

stop due to the data dependencies between the blocks. Consequently the system

throughput drops to zero whenever any of the blocks is in rollback mode. In large

systems with many RB blocks, this can potentially cause high throughput loss.

In order to avoid much of this throughput loss in large systems, we use streaming

connections or Streaming Buffer between the RB blocks. The Streaming Buffers allow

most of the RB blocks to continue their normal process while some of them are in

rollback mode. Note that the Streaming Buffer are extra buffers added to the required

Rollback Buffers of size DR (equation (5.1)). For example, if a Streaming Buffer of

depth Ds is embedded at the inputs of an RB block, then the total depth of the buffer

at the inputs of this block is Ds + DR.

To build intuition on how the streaming buffers prevent throughput loss, we con-

sider a simple chain structure as an example (see figure 5.6). This structure is also

considered in [32] and [31]. It is a chain of L levels of RB blocks separated by an

adequate number of buffers. Specifically let us consider a simple scenario that reveals

the improvement in throughput due to the streaming buffers. Assume some errors

are detected inside the Lth and the 1st RB blocks and they start the rollback process

at time t1 and t2 respectively (figure 5.7). If the rollback time takes DR cycles, in

the case of no streaming buffer the system is idle for 2 × DR cycles. Therefore, the

system throughput during t1 to t3 is (t3 − t1 − 2×DR) / (t3 − t1).

In the presence of streaming buffers the blocks before the Lth block continue their

normal process while the Lth block is in rollback mode from t1 to t1 + DR and the

data is stored in the intermediate buffer between the L − 1st and the Lth blocks.

74

1st block

Lth block

t1 t2 t3

Detects an
error

 DR DR

Rollback mode

Detects an
error

Figure 5.7. This is a timing diagram of the system. It shows a simple scenario where the
streaming buffer can improve throughput. The Lth block detects an error at time t1 and
stays in rollback mode for DR cycles, then the 1st block detects an error at time t2 and
switches to rollback mode.

Later when the first block is in rollback mode during t2 to t2 + DR the Lth block

continues its normal process by consuming the saved data in the buffer between the

(L− 1)st and the Lth blocks. Therefore, the total throughput loss is only DR cycles,

and the throughput during this period is (t3 − t1 −DR) / (t3 − t1). The streaming

interconnects allow the blocks in the chain to run more independently and therefore,

as you can see, the final throughput of (t1 − t3 −DR) / (t1 − t3) is the same as the

average throughput of a single block. That is, the streaming buffers reduced the

throughput loss by half in this example. Section 5.4 uses a simulation to estimate

the best depth of the streaming buffers, Ds, to achieve acceptable throughput with

reasonable area overhead.

5.1.3.1 Reliable Buffered Interconnect

Each buffered interconnect consists of two parts: Streaming Buffer and Rollback

Buffer, each similar to a shift register of length Ds and DR respectively. Figure 5.8

shows how the two shift registers are connected to generate the buffer structure. In

normal operation mode the data flow through the Streaming Buffer. One new data

values are shifted into the streaming buffer from the previous RB block and one datum

is shifted out to the next RB block. As long as both the previous and the next RB

block are in normal operation mode, the number of data elements in the streaming

buffer stays the same. The number of data elements in the streaming buffer can be

anything from 0 to Ds − 1.

75

Latch outm_outin

sel

MUX

M
U
X

Streaming Buffer
(Ds buffers)

Rollback Buffer
(DR buffers)

012Ds-1

-2 -3 -DR-1

select

From the output
of the previous

RB block

To the input
of the next
RB block

M
U
X

Figure 5.8. This figure shows a simple block diagram of a buffered connection. Each
buffered connection consists of two parts: the rollback buffer and the streaming buffer. The
numbers on the buffer elements represents the order of the data, “0” representing the data
currently being processed in the RB block following the buffer. Each of the buffer elements
in the Streaming buffer or Rollback Buffer has structure similar to figure 5.9.

Register
outm_out

in

sel

MUX

M
U
X

Streaming Buffer
(Ds buffers)

Rollback Buffer
(DR buffers)

012Ds-1

-2 -3 -DR-1

select

From the output
of the previous

RB block

To the input
of the next
RB block

M
U
X

Checker

From 3 copies of
Buffered Connection

Vo
te

r
Vo

te
r

Control Signal to
Buffered Connection

Checker

Other Input
Signals

Logic
Block

Logic
Block

Detection Block

Clock

Figure 5.9. A simple block diagram of a buffer element.

If the next block detects an error and starts the rollback operations, it will stop

consuming data from streaming buffer and will start consuming the data from DR

cycles ago which is stored in rollback buffer. During the period that the next RB block

is in rollback mode, the previous RB block continues generating data and storing them

in the streaming buffer until it fills up.

The streaming and reliable buffers are each composed of a chain of buffer elements

shown in figure 5.9. Each buffer element consists of a register and a multiplexer

(figure 5.9). The multiplexer allows either the new input or the current value into

the buffer. If the buffer is in shift mode, the multiplexer selects the new input value,

which replaces the current value. If the buffer is in keep mode the multiplexer selects

the current value and the current value will be restored.

The data coming out of the buffered connections into the RB block must be correct.

To guarantee the correctness of the buffered connection data, an error correcting

76

technique is embedded in the buffers.

For simplicity and consistency with the error detection technique in the logic

blocks we use the majority voting scheme for error correction in the reliable buffer.

In this scheme multiple copies of the data are stored and a voter circuit following the

multiple copies determines the majority among these copies. This scheme needs large

data redundancy (i.e., minimum of 3) but the encoder (replicator) and the decoder

(voter circuit) are relatively cheap when the replication factor is small.

We call the replication factor for each buffer element Rbuf . The minimum Rbuf

for majority voting is 3 and it grows for high fault rates. The voter circuit receives all

the Rbuf copies of buffer element. It computes the majority of the Rbuf input signals.

This is the value of at least (Rbuf/2 + 1) of the inputs.

If there were a single voter circuit for every Rbuf copies of the buffered data, the

voter circuit would be a single point of failure and the reliability bottleneck; the

reliability improvement achieved by multiple copies of buffer element will be wasted.

To prevent this effect, the computation of the voter circuitry must also be protected.

Therefore, similar to the logic blocks the voter circuit is replicated into R copies and

the correctness of the results is verified by checker blocks following them. When a

checker block identifies a disagreement among the voter results, the recovery process

is similar to the case when an error is detected in a logic block; that is, the process

of the following RB block is stopped, and the voter circuits repeat the operation to

identify the correct value of the majority of the incoming signals from the buffered

connections.

5.1.4 Block Size

Key parameters in rollback system design are the detection block size and RB block

size. The detection block affects the likelihood of detecting transient faults and,

hence, determines the reliability of the system. The RB block size controls the latency

of rollback and the rate at which rollback occurs and, hence, is largely responsible

for determining the throughput of the system. By treating the detection and RB

block sizes independently, we can separately engineer the system for reliability and

77

Latch outm_outin

sel

MUX

M
U
X

Streaming Buffer
(Ds buffers)

Rollback Buffer
(DR buffers)

012Ds-1

-2 -3 -DR-1

select

From the output
of the previous

RB block

To the input
of the next
RB block

M
U
X

Checker

From 3 copies of
Buffered Connection

Vo
te

r
Vo

te
r

Control Signal to
Buffered Connection

Checker

Other Input
Signals

Logic
Block

Logic
Block

Detection Block

Figure 5.10. This figure shows how the reliable voters are structured and connected to
separate replicas of logic blocks in each detection block.

performance. Both block sizes affect the overhead in the system.

As we will see in section 5.3 the reliability of a detection block for a fixed device

fault rate depends on the replication factor and the block size. Larger replication fac-

tors and smaller block sizes increase the reliability of the detection block. Therefore,

for a fixed reliability target and device fault rate, we have to limit the detection block

size to keep the required replication factor small. Nevertheless interconnect locality,

fixed block overheads, and reliable control circuitry make the smallest block sizes

(e.g., single p-terms or even p-terms with only two inputs) inefficient [64]. Therefore,

there is a practical lower bound on efficient block sizes. The area minimizing block

sizes for various nanoPLA designs is shown in [64]. These efficient designs have fine-

grained block size (i.e., logic level). Here we try to design the rollback system where

the size of the detection blocks is close to this efficient size.

The RB block size affects the throughput and area overhead of the rollback system.

The impacts of the RB block size are summarized in the following categories:

1. In rollback mode, the operation of the block will be recomputed. The main

part of the rollback latency is the latency of the main block, which was shown

in equation (5.1). Small block size, or more specifically small block depth,

DepthRB, helps keep the rollback latency short and, in turn, keeps DR small.

2. The larger the block is, the higher the probability of transient fault occurrence

78

in the block, and therefore, the higher rollback frequency. If the device failure

probability is Pf and the block has N devices, the block fails with the probability

below if we ignore fault masking,

PRB = 1− (1− Pf)
N . (5.2)

When N ×Pf � 1, the failure probability is approximately N ×Pf , and we see

that rollback frequency grows linearly with the size of the block.

3. The RB block size also affects the area overhead; but in different directions.

Larger block size results in smaller area overhead by reducing the number of

buffered connections. Large blocks tends to enclose connections between the de-

tection blocks inside it, thus reducing the number of inter-RB-block connections

which are implemented in buffered connections.

As you can see, the first two effects above favor small RB block size to achieve high

system performance, while the last one favors large RB block size to reduce area

overhead; this suggests the RB block size selection provides a tradeoff between area

and time. When fault rates are low, we can employ large RB block sizes to minimize

area overhead, but as fault rates increase, the RB block sizes must decrease to main-

tain performance, at the cost of additional area overhead. Section 5.4 quantifies this

tradeoff.

Note that the optimum size of the RB block is much larger than the detection

block size. This is the main motivation for designing fine-grained rollback system in

two hierarchical levels with two different block sizes. We can have larger RB blocks

which amortize the overhead of streaming inputs without decreasing reliability or

increasing error detection overhead.

5.2 NanoPLA Implementation

In this section, the implementation of the fine-grained streaming rollback design will

be demonstrated on a nanoPLA substrate. As explained in chapters 2 and 4, the

79

nanowires operate in pairs; the nanowires in the logic plane generate the wired-or

logic and the nanowires in the following restoration plane invert their value and restore

their voltage level. We consider each pair of nanowires and the corresponding input

diode switches and the gate-controlled junction in between nanowires as a unified

element. We define the fault rate, Pf , the probability that this unified element is

erroneous. We also measure the area of our system based on the number of nanowire

pairs.

5.2.1 Detection and Rollback Block

The detection block developed in the previous section is implemented on the nanoPLA

substrate. Multiple logic blocks may be implemented by each nanoPLA block; each

logic block is replicated R times and followed by the checker blocks which are also

implemented in nanoPLA blocks. The checker function consists of an R-input and

function and an R-input or function and can easily be implemented in two-level logic

as described in section 5.1.1. Figure 5.11(a) shows the checker design implemented

in a nanoPLA block with R = 3. The nanoPLA checker block needs one p-term to

implement the R-input or function and R p-terms and one or-term to implement

the R-input and function (figure 5.11(a)). Overall a checker circuit needs R p-terms

and 2 or-terms to check the agreement between R signals, which in total takes R+2

pairs of nanowires.

Since the checker size is relatively small the R copies may be integrated into

one nanoPLA block. As shown in figure 5.11(b), the R copies of the checker takes,

R× (R + 2) nanowire pairs.

The final outputs of the checker block connects to reliable control circuitry through

a wired-or (figure 5.11(b)) to generate the final reliable feedback control signal.

That is, we want to signal a rollback when any of the checker ouputs signals an

error; the nanoscale checker outputs are wired via diode connections to a reliable,

lithographic-scale wire so that it is pulled high when any of the checker outputs is high.

Strictly speaking the efficient implementation shown in figure 5.11(b) implements(
and0 + and1 + and2

)
· (or0 + or1 + or2) rather than and0 ·or0 +and1 ·or1 +and2 ·or2,

80

a1 a2 a3

OR

Inputs

Inputs

Restored/Inverted
Inputs

AND

a1 a2 a3

OR

Inputs

Inputs

Restored/Inverted
Inputs

AND

OR
OR

AND
AND

Reliable
Rollback
Signal

(a)

a1 a2 a3

OR

Inputs

Inputs

Restored/Inverted
Inputs

AND

a1 a2 a3

OR

Inputs

Inputs

Restored/Inverted
Inputs

AND

OR
OR

AND
AND

Reliable
Rollback
Signal

(b)

Figure 5.11. (a) The checker block implemented with nanowires taking R+2 (R+2 = 5 in
this example). (b) The R copies of the checkers integrated with reliable lithography-scale
circuitry.

where andi’s are the ands and orj are the ors; the extra cross terms should also

always be zero in a fault free case, so these additions do not cause any false rollbacks.

The detection blocks, including logic blocks and checker blocks, are clustered to

form an RB block. The interconnect signals among the detection blocks inside an

RB block are routed in the bundle of R nanowires. The interconnect signals are

implemented on the nanoPLA planes. The details of how interconnect routing can

be implemented on nanoPLA planes is provided in [13].

81

5.2.2 Buffer Connection

The buffered connection, as described in section 5.1.3.1, is a chain of buffer elements

each consisting of a multiplexer and a register. Figure 5.12 shows how this can

be implemented on a nanoPLA substrate. The details of the buffered connection

implemented on the nanoPLA can be found in [13]. This design takes 4 pairs of

nanowires per cell and multiple buffer element can be implemented in one nanoPLA

plane.

The voter circuit following a buffered connection is an or function of all the

possible (Rbuf/2 + 1)-input and gates from Rbuf signals. Therefore, the number of

and gates in the voter circuit is

Avoter (Rbuf) =

 Rbuf

(Rbuf/2 + 1)

 . (5.3)

When Rbuf is small, the above number is not very large. For large values of Rbuf ,

there are alternate options that can provide more compact implementations (as small

as O (Rbuf)) at the expense of greater checker latency, Dc. Figure 5.13 shows the

voter circuit for Rbuf = 3. It has 3 and gates (p-terms) followed by an or-term.

Using the above design, the number of the nanowire pairs required for a buffered

connection of depth DR + Ds including R copies of the voter circuit is

Abuffer + Avote = Sizebuf × (DR + Ds)×Rbuf + R×

 Rbuf

(Rbuf/2 + 1)

 .

where Sizebuf is the number of nanowire pairs in one buffer element which equals 4.

5.3 Reliability and Area Analysis

In this section we analyze the area and reliability of our fine-grained rollback scheme.

The main goal in this section is to determine how large the replication factor must be

to achieve a desired FIT rate. To do so, this section is organized as follows: we first

82

in sel sel out

out

m_out

Input signals

Figure 5.12. This figure shows a shift register element implemented with nanowires. The
schematic view of this design is shown in figure 5.9. The m out signal is an intermediate
signal (output of the MUX), which is routed into the input plane to generate the final
output signal. This implementation needs 4 pairs of nanowires.

a1 a2 a3

Inputs

Figure 5.13. The voter circuit designed with nanoPLA, for redundancy factor Rbuf = 3.

83

compute the undetected error probability of the system using a bottom-up approach;

i.e., we compute the undetected error probability of the building blocks of the system

from the base-level detection block, to RB block, to the complete system. Once we

have the undetected error probability of the system and know the system frequency,

we can compute the expected number of undetected errors in one billion operation

hours, which is the FIT rate of the system.

5.3.1 Error Probability of a Detection Block

To compute the undetected error probability of a detection block, we first have to

compute the error probability of its building blocks: logic blocks and checker blocks.

Here we consider each logic block as the logic cone of each output signal. The

logic cone of an output signal is the set of all the logic elements required to generate

the output signal and therefore is the only part influencing the output signal.

With a conservative estimate, an or-term (an output signal of a logic block in

the nanoPLA architecture) has an erroneous result if any element inside the block

is erroneous. It is conservative since it does not consider the effects of any kind of

error masking, e.g., logic masking, electrical masking, or latching-window masking [71].

Logic masking is when the error might not propagate to the output because a gate

on the path is not being sensitized to facilitate the propagation. Electrical masking is

when an error is attenuated passing through multiple gates on the path to the output.

Finally latching-window masking is when the fault effect reaches the output but the

latch is not open to store the erroneous value.

Using this conservative assumption, any fault in the logic block will result in

an error in the or-term signal. Therefore, the probability that an or-term has an

erroneous value is

Por err = 1− (1− Pf)
Nlogic , (5.4)

where Nlogic is the size of the logic cone of the or-term. With a similar calculation

84

the error probability of a checker block is

Pcb err = 1− (1− Pf)
R+2, (5.5)

where R + 2 is the size of the checker block as shown in section 5.2.1.

Now that we know the error probability of building blocks of a detection block,

we can compute the probability of an undetected error in a detection block. In a

detection block with R copies of a logic block and R copies of a checker block, an

erroneous or-term is undetected under two scenarios: First, when all the R copies

of the or-term are erroneous and all the checker blocks are correct, in this case no

disagreement among the or-term copies can be detected. Second, when at least one

of the or-term copies are erroneous but all the R checker copies are erroneous and

fail to detect the error. These two cases generate the undetected error probability of

a detection block as below,

Pdet block und err = (Por err)
R × Pcb crr

R +
(
1− (Por crr)

R
)
× (Pcb err)

R . (5.6)

Note that Por crr and Pcb crr are the probability that an or-term signal or a checker

block is correct, these are the complement of Por err and Pcb err respectively, which

are computed in equations (5.4) and (5.5).

Remember that the reliability of the voter circuitry following each buffered con-

nection at the input of an RB block is provided by replication of the checker circuitry.

Therefore, the voter circuitry generates an undetected error in the same scenario as

a logic block in a detection block does: (1) When all the R copies of the voter cir-

cuitry are erroneous, which results in identical erroneous output signals, and all the

checker copies are correct. (2) When at least one of the R copies of the voter signal

is incorrect but all the checker copies fail to detect the erroneous voter circuit copy.

This probability is similar to equation (5.6)

Pvote block und err = (Pvote err)
R × Pcb crr

R +
(
1− (Pvote crr)

R
)
× (Pcb err)

R . (5.7)

85

Pvote crr and Pvote err are the probabilities that a voter circuit is error free or er-

roneous, respectively, which is essentially the same as a logic block’s with Nlogic = Rbuf

(Rbuf/2 + 1)

 nanowire pairs.

5.3.2 Undetected Error Probability of an RB Block

Each RB block includes a number of detection blocks. It also includes a number of

voter blocks following any incoming buffered connection. An RB block has an unde-

tected error in it if any of its detection blocks or the voter blocks has an undetected

error. Therefore, the undetected error probability of an RB block with B detection

blocks and I inputs is

Prb block und err =
(
1− (1− Pdet block und err)

B
) ⋃ (

1− (1− Pvote block und err)
I
)

.

Note
⋃

is used here to denote a probability union calculation, where we avoid counting

the overlap probability twice; that is

A
⋃

B ≡ A + B − A ·B. (5.8)

5.3.3 Buffered Connection Reliability

The error probability of a buffer element depends on the number of consecutive cycles

that a buffer element holds a single logic value in the system, and therefore, it is

susceptible to errors. In order to have a realistic estimate on the number of consecutive

cycles that a buffer element holds a single value, we simulate the performance of

the system. This simulation is explained in section 5.4 for the same chain structure

introduced in section 5.1. The error probability that a buffer element has an erroneous

value in a single cycle is

Pbuf elem err per cycle = 1− (1− Pf)
Sizebuf , (5.9)

86

where Sizebuf is the number of devices in one buffer element. Once we have the

maximum number of consecutive cycles that a buffer element holds a single value, we

can compute the error probability of a buffer element as below, where c is the number

of those cycles

Pbuf elem err = 1− (1− Pbuf elem err per cycle)
c, (5.10)

A protected buffer element with replication (Rbuf) has an undetected error when the

number of erroneous replicas are more than half of the replication factor (Rbuf), and

therefore, the majority computes the wrong value. This probability is written below,

Pbuf und err =

Rbuf∑
i=dRbuf /2e

 Rbuf

i

 Pbuf elem err
i (1− Pbuf elem err)

Rbuf−i. (5.11)

5.3.4 Undetected Error Probability of the Complete System

The undetected error probability of the system will be computed similarly to the

undetected error probability of an RB block. There is an undetected error in the

system if there is an undetected error in any of the RB blocks of the system or any of

the buffered connections of the system. An undetected error in an RB block results

from an undetected error in its constituent detection blocks, and an undetected error

in a buffered connection results from an undetected error in any of its constituent

buffer elements. Therefore, we can conclude that any undetected error in the system

results from either an undetected error in any of the detection blocks or the buffer

elements of the system. In a system with the total of SD detection blocks and SB

buffer elements, the probability that the system has at least one undetected error is

Psys und err =
(
1− (1− Pdet block und err)

SD

) ⋃ (
1− (1− Pbuf und err)

SB

)
. (5.12)

equations (5.4) through (5.12) develop the undetected error probability in the whole

system. Once we have the undetected error probability of the whole computation and

having the system frequency, we can compute the FIT rate of the system, which is

87

the number of undetected errors in 109 hours of system operation,

FIT = Psys und err × 109 × System Frequency. (5.13)

Later in this section, using the above analysis, we show the required replication

factor of R for a sample system specification. The complete area overhead including

the buffered connections will come in the following section, at section 5.4.

5.3.5 Redundancy Analysis

Using the above analysis, we show the required replication to achieve the desired FIT

rate for a sample system. In this section we focus on the logic replication factor R

and compare this value with a feed-forward fault-tolerant approach. The detailed

complete area overhead analysis including the buffered interconnect will be shown in

the next section.

In order to use the equations (5.4) through (5.12), we have to specify the following

system parameters:

• Nlogic, logic block (logic cone) size: The logic block size depends on the design

substrate. For the nanoPLA architecture model, we identify the efficient logic

block sizes for permanent defect-tolerance in [65]. In [65] we bound the mapping

redundancy for defects by limiting the fanin size of each or-term. From the

experiments in [64], we see that a logic block size of Nlogic = 16 achieves compact

systems close to the minimum size. Here we keep the same Nlogic = 16 in

our analysis since it is small enough to minimize the replication factor, R, as

explained in section 5.1.4.

• SD, the system size: The value of SD, the number of detection blocks in the

system, can be computed from the total number of devices in the system, Nt,

divided by the size of a detection block. The size of a detection block is R ×

(Nlogic +(R+2)), consisting of R logic blocks and R checker blocks. Estimating

the number of devices in the system built on the nanoPLA substrate, excluding

88

the buffered connections, around Nt = 1012, the number of detection blocks in

the system would be

SD = Nt/(R× (Nlogic + (R + 2)))

= 1012/(R× (16 + (R + 2))).

The size of SB, the number of buffer elements in the system, is determined

through the simulation described in section 5.4.

• The system frequency: The system runs at 10 GHz frequency, which is a rea-

sonable expectation for future system design.

• Desired FIT rate: The desired FIT rate in this example is 360. With the above

system frequency of 10 GHz the undetected error probability for the system will

be Psys und err = 10−20.

• Pf , device failure rate: The device failure rate, ranges from 10−32 to 10−7 similar

to previous studies [31][23].

We compare our rollback recovery results with feed-forward recovery results of [31]

(reviewed briefly in section 2.1.3.3). In [31] the analysis was done for system reliability

rate of 90%. Here we perform the calculation in [31] with the new Psys und err = 10−20

(for FIT=360, and system frequency of 10 GHz), which is much lower than the 10%

target used in [31].

figure 5.14 plots the value of R for different values of Pf . These curves compare

the replication factor of rollback recovery and feed-forward recovery. For fault rates

smaller than 10−32 the system with no protection satisfies the system reliability goal

of (1− 10−20). For higher fault rates just above 10−32 (left side of the graph) the

rollback recovery has a replication factor of 2 (the minimum replication factor for

error detection) and the feed-forward recovery has a replication factor of 3 (the mini-

mum replication factor for Majority Multiplexing feed-forward recovery technique as

described in section 2.1.3.3). As the fault rate increases the gap between the rollback

and the feed-forward technique increases. The gap starts to grow dramatically for Pf

89

 0

 10

 20

 30

 40

 50

 60

-7-8-9-1
0

-1
1

-1
2

-1
3

-1
4

-1
5

-1
6

-1
7

-1
8

-1
9

-2
0

-2
1

-2
2

-2
3

-2
4

-2
5

-2
6

-2
7

-2
8

-2
9

-3
0

-3
1

-3
2

R
ep

lic
at

io
n

F
ac

to
r

log(Pf)

Replication Factor

Feed-Forward R
Rollback R

Figure 5.14. This graph compares the replication factor of rollback and feed-forward
recovery. The feed-forward recovery data is from the majority-multiplexing shown in [31].
In their analysis the system reliability goal is 90%. We recomputed their results for a
system reliability of

(
Psys und err = 1− 10−20

)
, which is equivalent to a FIT of 360 used for

our system specifications.

larger than 10−18. The feed-forward replication factor grows to almost an order of

magnitude greater than rollback recovery for Pf ≥ 10−9.

In this section we analyzed the replication factor of the rollback technique and

demonstrated that the rollback recovery technique requires about one order of mag-

nitude lower replication factor than feed-forward recovery technique. In the next

section we see how the complete area including the checker and the buffered connec-

tions compare against feed-forward recovery technique. We also estimate the system

throughput and see how rollback impacts the system performance.

5.4 Simulation and Comparison

In this section, we simulate our proposed reliable technique in the presence of random

transient faults with various fault rates. We measure the system throughput and

demonstrate the complete area overhead including the checker blocks and the buffered

connections area. There are two variable parameters in our system specification that

need to be specified to achieve the desired area-time tradeoff: the RB block size and

90

the streaming buffer depth. The RB block size, as explained in section 5.1.4, has two

different effects on the system: First, larger RB block sizes, enclose more interconnects

inside them, and therefore, reduce the total number of buffered connections in the

system. As a result larger RB blocks allow compact system implementation. The

second phenomenon has the the opposite effect; larger RB blocks tend to have more

logic levels in the block, which increases the rollback latency, and a higher frequency

of rollbacks. Therefore, using smaller RB blocks results in higher system performance.

In our simulation we will find the best RB block size which balances these effects to

minimize the area overhead and maximize the system throughput.

In order to meaningfully estimate the number of interconnects and the number of

logic levels in an RB block, we tune our estimation with the toronto20 benchmark

set [68]. We map the designs in this benchmark set to nanoPLAs using a logic

block size, Nlogic, of 16. Figures 5.15 and 5.16 show the results of this mapping.

Figure 5.15 shows the number of primary inputs and outputs of a design as the

function of the design size in p-terms. In this figure, each data point represents a

design from the benchmark, and the trend shown is a fitted Rent’s Rule [72] curve

(i.e., IO = c · (Nblocks)
p) to the data points. Similarly, figure 5.16 shows the logic

depth of a design as the function of the design size. The data points represent the

designs from the benchmark and are fitted to a logarithmic curve. In our simulation,

we use the fitted curves from figure 5.15 and figure 5.16 to estimate the number of

buffered connections at the boundary of an RB block or the number of logic levels in

an RB block respectively.

We simulate the throughput of the system on the chain structure introduced in

section 5.1.3. The building blocks of the chain are RB blocks and the length of the

chain is 100 blocks. This is the same structure that was used in [31] to estimate

redundancy factors required in the feed-forward approach.

The rest of the system parameters are the same as the previous section: Nt = 1012,

the system frequency is 10 GHz, and the FIT rate is 360.

During the simulation, random faults are injected into the system with probability

of Pf . For each Pf we use the simulator to examine a range of RB block sizes and pick

91

Chart6

Page 1

Number of IO vs. Design Size

1

100

10000

1000 10000 100000
Pterm Count

IO
 C

ou
nt

Figure 5.15. This graph shows the number of primary inputs and outputs (IO) versus the
number of p-terms in a design. The data is from toronto20 benchmark set implemented on
nanoPLA substrate with logic block size of 16. The curve shows the exponential function
fitted to the data points, which is IO = 3.2× (p− terms)(0.51)

Chart5

Page 1

Logic Level vs. Design Size

0

1

2

3

4

5

6

7

8

9

10

1000 10000 100000

Pterm Count

D
ep

th
 I

n
P

LA
 C

ou
nt

Figure 5.16. This graph shows the depth of the design in the number of nanoPLA planes,
versus the number of p-terms in the design. The data is from toronto20 benchmark set
implemented on nanoPLA substrate with logic block size of 16. The curve shows the loga-
rithmic function fitted to the data points. This function is Depth = 0.92 log10 (p− terms)

92

the best RB block size. For each RB block size we compute the area overhead and

simulate the system throughput; this operation starts with the streaming buffer depth

Ds = 1, and if the throughput is not high enough, increments Ds by one for each

trial until the desired throughput is achieved. Here we set our throughput threshold

at 98% for ≤ 10−9, and 90% for > 10−9 (i.e., we add buffers until the throughput is

at least 98% (or 90% for > 10−9) of the throughput of the fault free case). Table 5.2

shows the RB block sizes which achieve the minimum area overhead while keeping the

throughput above 98% (or 90% for > 10−9). Table 5.1 shows the required streaming

buffer depth to achieve the throughput target.

The RB block size and transient error rates determine the probability that each RB

block detects an error and rolls back and, consequently, determines the throughput

sustainable by the RB block. Table 5.2 shows the probability that an RB block detects

an error (Pdetect). For each Pf the RB block size is made small enough to keep Pdetect

low while not increasing the area overhead impractically large. We observed that for

low Pdetect, small streaming buffer depth is required (e.g., Ds = 1) while larger Pdetect

demands larger streaming buffer depth. The system needs the minimum of Ds = 1

to achieve high system throughput even for smaller fault rates. With no buffering, a

single rollback stalls all the logic on the chip; however, the elasticity provided by even

the minimum size Ds limits the impacted number of RB blocks. For example, let Ds

be 1, and the rollback latency (DR) be 4 (which is the minimum rollback latency).

Then if the ith RB block detects an error and stops to rollback at time t, the rollback

wave expands to the i − 4th RB block over the period of 4 cycles, such that, the

i−1st block run for one more cycle after cycle t, filling up the single streaming buffer

following that block and stopping at cycle t + 1. The i− 2nd block runs for another

cycle, filling up the single streaming buffer following this block and stopping at cycle

t−2. This continues until the i−4th block stops at t+4, after filling up its following

streaming buffer. The ith block had zero throughput from cycle t to t + 4, however,

4 data elements are stored in the 4 streaming buffers distributing over 4 stages. So

if any block preceding the i− 4th stage detects an error and stops to rollback in the

future, the 4 data element will be consumed by the following blocks, preventing these

93

downstream blocks from sitting idle for another DR cycles, the same effect that was

shown earlier in section 5.1.3. Consequently, this minimum buffering guarantees that

RB blocks further away in the chain are not impacted by this failure; if we see only

one rollback occurring at a time, only the few RB blocks immediately adjacent to the

affected RB block stall, while the majority of RB blocks continue their operation.

We observed the following interesting effect of the streaming buffer depth and the

rollback block size on the system throughput: The simulation shows that the impact

of RB block size on the throughput is stronger than the depth of the streaming

buffers. This means that in a nominal design, reducing RB block size yields a larger

throughput improvement than increasing the depth of the streaming buffers between

the RB blocks. Therefore, to achieve high throughput and keep area overhead low,

it is more beneficial to minimize the RB block size and use the minimum required

streaming buffer depth. Note that the RB block size reduces to 300 detection blocks,

or 188000 p-terms, by Pf = 10−7; these results show how the strong dependence

of RB block size on device fault rate drives us to fine-grained rollback blocks for

designs at these fault rates. We also note that, even at this high transient fault rate

and relatively high rollback overhead, the RB block size does not reduce to a single

detection block, underscoring the value of keeping the detection block size separate

from the RB block size (section 5.1.4).

5.4.1 Area and Throughput Simulation Results

The areas determined from the simulation are plotted in figure 5.18. Figure 5.18

shows the replication factor, R, and the total area overhead of the rollback recovery

technique. The figure also plots the replication factor of the feed-forward technique

for comparison. The replication factors are computed as explained in section 5.3.5.

The total rollback area overhead curve includes the complete area of the RB blocks

and the buffered connections.

figure 5.17 plots the throughput of the system. As you can see for Pf ≤ 10−9

the impact on the throughput is almost negligible and for higher fault rate the drop

in throughput is less than 10%. This minimal impact on the throughput is achieved

94

log (Pf) ≤-16 -15 -14 -13 -12 -11 -10 -9 -8 -7

Ds 1 1 1 1 1 1 2 2 3 3
Rbuf 3 5 5 5 5 5 7 7 9 9

Table 5.1. This table shows the depth, Ds, and the replication factor of buffered connec-
tions, Rbuf .

while reducing the area required by a factor of 6 compared to the feed-forward recovery

technique.

In order to understand the area curve in figure 5.18, it is helpful to understand how

the system area is distributed over different part of the system. Table 5.3 summarize

the equations used to compute the area of each component in an RB block; area is

calculated in terms of nanowire pairs. Table 5.4 shows how the area of the system

is distributed over different parts of the system for different fault rates, Pf . As

you can see the logic and checker area is the dominant portion of the total system

area for moderate fault rates (Pf < 10−9). The buffered connection area (Abuffer)

plus the voter area (Avoter) increase as the fault rate Pf increases. Achieving high

throughput with high fault rate, demands smaller RB block size, and smaller RB

block size results in more buffered connection in the system, which also increases the

overall system area. This effect can also be seen in the area curve in figure 5.18. This

figure shows that for Pf < 10−9 the total area is dominated by the logic replication

factor which is the minimum possible area overhead. The area curve follows the

replication curve closely. For these fault rate, we also see a very small drop in the

system throughput (figure 5.17). For higher fault rates the RB block size is reduced

to prevent throughput loss. Reducing the rollback block size, however, results in more

streaming interconnects in the system. Therefore, the buffered connections start to

consume a larger fraction of the total area. This fact causes the divergence of the

total area overhead curve from the replication factor curve around Pf = 10−9.

figure 5.19 plots the area/throughput ratio for rollback recovery and feed-forward

recovery techniques. As you can see our rollback technique, not only reduces the area

overhead by up to a factor of 6, but from an area-time product point of view it is also

a more efficient design.

95

log (Pf) RB Block Size Pdetect

≤ −11 10000 ≤ 9.3× 10−6

-10 3500 3.2× 10−5

-9 3000 2.7× 10−4

-8 2500 3.1× 10−3

-7 300 4.9× 10−3

Table 5.2. This table shows the number of detection blocks in an RB block.

One RB block area in the number of nanowire pairs

Alogic R×B ×Nlogic

Achecker (R− 1)× (R + 2)×B
Abuffer IO ×Rbuf × Sizebuf

×(Ds + DepthRB ×DL + DC + 1)

Avoter IO ×
(

Rbuf

Rbuf/2 + 1

)
×Rbuf

Table 5.3. In Alogic the value of B is the number of logic blocks in RB blocks. The value
of Nlogic is 16 nanowires. In Abuffer, IO is the number of buffered connections of an RB
block, which is estimated by the curve in figure 5.15. For nanoPLA detection block DL = 1
and DC = 2. The streaming buffer depth, Ds, is defined by the throughput simulation and
Table 5.1 shows the selected values of Ds for different fault rate values, generated by our
simulation.

Pf Range Alogic Acheck Abuffer Avoter

10(−29) − 10(−17) 66.56 10.40 22.51 0.52
10(−16) − 10(−11) 60.85 15.21 22.87 1.06

10(−10) 49.75 16.32 30.07 3.86
10(−9) 48.40 15.88 31.66 4.06
10(−8) 27.88 11.15 53.61 7.36
10(−7) 15.28 7.16 67.86 9.69

Table 5.4. This table shows the distribution of the area over different parts of an RB
block.

96

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

-7-8-9-1
0

-1
1

-1
2

-1
3

-1
4

-1
5

-1
6

-1
7

-1
8

-1
9

-2
0

-2
1

-2
2

-2
3

-2
4

-2
5

-2
6

-2
7

-2
8

-2
9

-3
0

-3
1

-3
2

T
hr

ou
gh

pu
t

log(Pf)

System Throughput

Throughput

Figure 5.17. This graph shows the system throughput as the function of failure rate, Pf .

 0

 10

 20

 30

 40

 50

 60

-7-8-9-1
0

-1
1

-1
2

-1
3

-1
4

-1
5

-1
6

-1
7

-1
8

-1
9

-2
0

-2
1

-2
2

-2
3

-2
4

-2
5

-2
6

-2
7

-2
8

-2
9

-3
0

-3
1

-3
2

A
re

a

log(Pf)

Area vs. Pf

Feed-Forward R
Rollback Area Overhead

Rollback R

Figure 5.18. The solid curve with “+” markers show the replication factor of the feed-
forward technique from [31] with higher reliability goal of FIT=360. The curve with “B”
markers is the replication factor of the rollback recovery. The third curve with “×” markers
show the total area of the rollback recovery technique.

97

 0

 10

 20

 30

 40

 50

 60

-7-8-9-1
0

-1
1

-1
2

-1
3

-1
4

-1
5

-1
6

-1
7

-1
8

-1
9

-2
0

-2
1

-2
2

-2
3

-2
4

-2
5

-2
6

-2
7

-2
8

-2
9

-3
0

-3
1

-3
2

A
re

a/
T

hr
ou

gh
pu

t

log(Pf)

Area over Throughput Ratio

Feed-Forward Area/Throughput
Rollback Area/Throughput

Figure 5.19. This graph plots the area/throughput for the rollback and feed-forward
recovery techniques.

5.5 Summary

Reliability techniques, such as Feed-Forward Recovery, rely only on spatial redun-

dancy. These techniques require large area overhead as the device failure rate in-

creases. Here we developed and analyzed a recovery technique, Fine-Grained Roll-

back Recovery, that exploits redundancy in time as well as space. This technique has

lower area overhead with negligible impact on performance for fault rates as high

as Pf = 10−10. At Pf = 10−9 the replication factor is almost an order of magnitude

smaller in rollback recovery than feed-forward recovery. For Pf ≤ 10−9, even the total

area overhead of rollback can be about 6 times smaller than feed-forward replication

factor—and consequently much smaller than the complete area overhead required for

a feed-forward implementation. At these fault rates, we show that detection is best

performed using fine-grained detection blocks using 88 p-terms to protect 16 logical

p-terms and rollback is best performed on larger blocks containing 450K p-terms to

protect 56K logical p-terms.

Although the replication factor of rollback recovery remains relatively low for

high fault rates, the total area overhead becomes large due to the streaming buffers.

At high fault rates, buffer area is the dominant area in streaming design. E.g., for

98

Pf = 10−7, the buffered connection takes almost 2/3 of the total area. Therefore,

techniques which reduce this buffer overhead could offer even greater area benefit.

We used replication with comparison as the error detection technique because it

has compact encoder and decoder circuits and allows general-purpose analysis. The

total area overhead may be further reduced by using smarter technique, as long as

the encoder and decoder circuits remain small.

99

Chapter 6

Defect and Fault-Tolerant
Nanomemory Design

6.1 Introduction and Motivation

Chapter 5 introduced fine-grained rollback technique to protect any arbitrary logic cir-

cuit against transient faults. The fine-grained rollback technique use general-purpose

replication-and-compare to detect errors. The area overhead can be further reduced

by using a more complex error-detection techniques. One potential approach is using

error-correcting codes. Error-correcting codes are shown to be more efficient than

replication in data storage and communication applications. However, for combina-

tional logic it is not yet shown if error-correcting/detecting codes can outperform

replication. A special case of protecting logic with error-detecting codes is solved

for single error detection in arbitrary logic by using parity prediction [73][70]. In this

technique the parity function of the output signals is predicted concurrently using the

input signals. Checking the output signals against the parity signals reveals a poten-

tial error in the outputs or parity signals. However, generalization of this scheme to

tolerate multiple errors in the output set is not straight forward. Despite the active re-

search in this field there has not been any work to report an error-detecting/correcting

technique for arbitrary logic that outperforms replication in the area overhead. In

this chapter we solve this problem for one subset of combination logic: encoder, cor-

rector and detector circuits. We show how to protect these units exploiting ECC to

outperform the area overhead compared to replication scheme [12][74].

100

Fault-tolerant encoder, corrector, and detector can be used to design a completely

fault-tolerant memory system. Conventionally, only memory bits were protected

against transient faults, however, since combinational logic is becoming more sus-

ceptible to faults as the feature size scales [6], the supporting logic of the memory

system must also be protected against transient faults as well. Therefore, there have

been an increasing amount of research on designing fault-tolerant encoders and de-

coders [75][76]. Most of these techniques consider only single event upset, and using

conventional fault-tolerant techniques which are based on adding extra circuitry to

the encoder, corrector, and detector.

We suggest a technique that can tolerate multiple errors in these units. The

unique characteristic of this technique is that it does not add any extra protection

circuitry to the encoder, corrector and detector units. There is a class of ECCs

that guarantees fault-tolerant encoder, corrector, and detector design. This class is

defined with the new restricted definition for ECC. The redundancy accumulated in

these units to perform their ECC-related operation is enough to detect multiple errors

in these units. This subclass of ECCs has the property that their detector circuitry is

Fault-Secure, i.e., It can detect any error in the input code vector successfully, despite

experiencing errors in its own circuitry. We call this type of error-correcting codes,

Fault-Secure Detector capable ECCs, FSD-ECC. The FSD-ECC, allows detection of

as many errors in the received code-word and detector circuitry as the ECC minimum

distance allows, without compromising the detection capability of the system when

adding the protection for the supporting circuitry. The other important advantage of

this technique is its flexibility. Once an FSD-ECC code is found, the usual detector

circuit, which is based on the parity-check matrix of the code, has the fault-secure

property.

The fault-secure detection unit is used to design a fault-tolerant encoder and cor-

rector by monitoring their outputs. One fault-secure detector monitors the outputs

of each encoder and corrector. If a detector detects an error in either of these units,

that unit has to repeat the operation to generate the correct output vector. Us-

ing this rollback technique, we can correct potential transient errors in the encoder

101

and corrector outputs and provide fault-tolerant memory system with fault-tolerant

supporting circuitry.

The ECC mentioned above can also be used to correct erroneous bits in the

memory words due to the permanent defects. We present a unified technique for

tolerating transient faults and permanent defects. When using a single ECC to correct

both transient and permanent errors, the first advantage is that only one encoder

and corrector unit is required. If using separate ECC for defect- and fault-tolerant

technique, then each memory word has to pass through two encoders, one for the

defect-tolerant ECC and one for the fault-tolerant ECC. Similarly each memory word

has to pass through two corrector, one for defect-tolerant ECC and one for fault-

tolerant ECC. Therefore, the unified technique, which requires only one encoder and

corrector unit saves area, time, and power. The analysis and implementation detail

of this approach will be presented later in this chapter.

In the rest of this chapter we first review the related works and compare our

approach with other fault-tolerant encoder and corrector techniques. We then show

the restricted ECC definition (FSD-ECC) which guarantees having a fault-secure

detector. Then the encoder, corrector, and detector designs and implementation is

presented. Later in this chapter we show a unified technique based on FSD-ECC

to tolerate permanent defects and transient faults together. Finally we present the

reliability analysis and the area and performance of the design.

6.2 Related Works

Traditionally, memory cells were the only susceptible part to transient faults. How-

ever, the supporting logic of memory system is also expected to be affected by tran-

sient faults as well [6]. Consequently, developing fault-tolerant encoders, correctors,

and detectors for memory system attracted considerable attentions recently [75][76].

Almost all of the techniques use the conventional fault-tolerant schemes(e.g., parity-

prediction) to protect the encoder and corrector circuitry similar to other general

purpose fault-tolerant schemes. In contrast the technique introduced in this work

102

does not use the conventional fault-tolerant schemes. It exploit the structure of the

Error-Correcting Code and based on the specific structure of the code guarantees the

fault-secure detector unit.

The work presented in [75] is based on parity-prediction. It predicts a set of parity

bits for the generating code-word from the information bits, which are the inputs of

the encoder unit. Then the predicted parity bits will be compared against the similar

parity bits of the encoder outputs, which are the parity bits of the code-word. The

general structure of this technique is illustrated in figure 6.1. For cyclic codes, the

parity predictor essentially performs a vector division on the k-bit information vector

or (n−k)-bit ECC parity bits, and the parity function is an (n−k)-bit remainder. To

implement a compact parity generator (divider) unit, the right denominator vector

must be found, which depends on the specific ECC. For this reason, the related works

are usually designed for one specific code.

In our suggested technique, however, any codes that satisfies the FSD-ECC con-

dition, guarantees the fault-secure capability of the detector without demanding any

other fault-tolerant technique. This characteristic make this technique very compact

and more important flexible; once a code is proved to be FSD-ECC, it has the fault-

secure detection capability without requiring to go through any design detail to make

the detector fault-secure.

6.3 System Overview

In this section we outline our memory system which can tolerate errors in any part

of the system, including the storage unit, encoder and corrector circuit, using the

fault-secure detector. Let E be the maximum number of error bits that the code can

correct and D be the maximum number of error bits that it can detect, and in one

error combination that strikes the system let ee, em, and ec be the number of errors

in encoder, memory word, and corrector. In conventional designs, the system would

guarantee error correction as long as em ≤ E and ee = ec = 0. In contrast, here

we guarantee that the system can correct any error combination as long as em ≤ E,

103

ENCODER:
Generates parity
signals of ECC

Divider:
Parity

Generator

Divider:
Parity

Generator
Comparator

Information
vector

Information
vector

ECC parity
Signals

Encoder
Error Detector

n-k

k

k

n-k

n-k

Figure 6.1. The fault-tolerant parity-prediction based encoder

ee + ede ≤ D, and em + ec + edc ≤ D, where ede and edc are the number of errors in

the two separate detectors, monitoring the encoder and corrector units. This design

is feasible when the following two fundamental properties are satisfied:

1. Any single error in the encoder or corrector circuitry can at most corrupt a

single code-word digit (i.e., cannot propagate to multiple code-word digits).

2. There is a fault secure detector that can detect any combination of errors in the

received code-word along with errors in the detector circuit. This fault-secure

detector can verify the correctness of the encoder and corrector operation.

An overview of our proposed reliable memory system is shown in figure 6.2, and

is as described below: The information bits are fed into the encoder to encode the

information vector, and the fault secure detector of the encoder verifies the validity

of the encoded vector. If the detector detects any error, the encoding operation must

be redone to generate the correct code-word. The code-word is then stored in the

memory. Later during operation, the stored code-word will be retrieved from the

memory unit. Since the code-word is susceptible to transient faults while it is stored

in the memory, the retrieved code-word must be fed into the detector to detect any

potential error and possibly to the corrector to recover any erroneous bits. In the

104

Encoder

Detector
(Encoder)

Information
Vector

Corrector

Memory Block
Correct

Codeword Suspected
Codeword

Information
Vector

Corrected
Codeword

Detector
(Corrector)

Corrected Codeword
after Scrubbing

Encoder

Detector
(Encoder)

Information
Vector Serial

Corrector

Memory Block
Correct

Codeword

Information
Vector

Corrected
Codeword

Detector
(Corrector)

Corrected Codeword
after Scrubbing

Encoder

Detector
(Encoder)

Information
Vector Parallel

Pipelined
Corrector

Memory Block
Correct

Codeword

Suspected
Codeword

Corrected Codeword
after Scrubbing

Detector
(Corrector)

Information
Vector

Figure 6.2. The overview of our proposed fault-tolerant memory architecture.

Encoder

Detector
(Encoder)

Information
Vector

Corrector

Memory Block
Correct

Codeword Suspected
Codeword

Information
Vector

Corrected
Codeword

Detector
(Corrector)

Corrected Codeword
after Scrubbing

Encoder

Detector
(Encoder)

Information
Vector Serial

Corrector

Memory Block
Correct

Codeword

Information
Vector

Corrected
Codeword

Detector
(Corrector)

Corrected Codeword
after Scrubbing

Encoder

Detector
(Encoder)

Information
Vector Parallel

Pipelined
Corrector

Memory Block
Correct

Codeword

Suspected
Codeword

Corrected Codeword
after Scrubbing

Detector
(Corrector)

Information
Vector

Figure 6.3. The overview of our proposed fault-tolerant memory architecture, with
pipelined corrector.

105

design flow shown in figure 6.2, all the memory words pass through the detector. If

an error is detected in a memory word, that word is sent to the serial corrector to

be corrected. The detector then checks the output of the corrector and if memory

word is correct it sends the information bits out. The detector circuit is implemented

in parallel for each code-bit and fully pipelined, and therefore memory words are

pipelined through the detector circuit one codeword every cycle. However, when an

error is detected in a codeword, the normal pipeline flow of the detector is stopped and

waits for the serial corrector to generate the corrected memory memory word. This

serial corrector can take n (code length) cycles to correct all the n bits of the memory

word. Therefore, this technique is useful when errors happen with low frequency.

If memory words are error free most of the times and only rarely are detected with

error, then spending n cycles plus the latency of the detector will not impact the access

throughput. However, when errors happen in higher frequency, e.g., the system also

correct errors due to permanent defects, a more efficient design, which has shorter

corrector latency, must be used.

Figure 6.3 shows the structure of a system with faster corrector. In this design

the corrector circuit has parallel structure and is implemented fully pipelined similar

to the detector. All the memory words are pipelined through the corrector and then

detector, therefore, one corrected memory word is generated every cycle. The detector

following the corrector, would raise an error-detection flag only if a transient fault

occurs in the corrector or detector circuitry. Due to the relative lower transient fault

rate compared to the permanent defects and the relative small corrector and detector

circuitry, this happens with low frequency. Therefore, the potential throughput loss

of this system is low.

Data bits stay in memory for number of cycles and during this period each memory

bit can be hit by transient fault with certain probability. Therefore, transient errors

accumulate in the memory words over time. In order to avoid accumulation of too

many errors in the memory words that surpasses the code correction capability, the

system has to perform memory scrubbing. Memory scrubbing is periodically reading

memory words from the memory, correcting any potential errors and writing them

106

back into the memory [77] (figures 6.2 and 6.3). To perform the periodic scrubbing

operation, the normal memory access operation is stopped and the memory goes under

the scrubbing operation, where each memory word is read, checked and corrected

if necessary and then written back into the memory. The number of faults that

accumulate in the memory is directly related to the scrubbing period. The longer

the scrubbing period is, the larger number of errors can accumulate in the system.

Therefore, to control the number of errors in the memory word, the right scrubbing

period must be selected. If the fault rate is high the scrubbing interval must be short

for reliability purpose, furthermore short scrubbing interval can decrease the system

performance; since the memory system has to be idle frequently to go through the

scrubbing operation. One approach to reduce the impact on the system performance

for the case where the fault rate is high and consequently the scrubbing is frequent,

is to make the scrubbing operation fast. This can be done by providing multiple

detectors and correctors that correct the memory words in parallel (similar to the

corrector structure of figure 6.3). Later in this chapter we will explain more details

of scrubbing operation and potential optimization to achieve high performance and

high reliability. We also explain each of the above units and memory operations in

more details in the following sections.

6.4 ECCs with Fault Secure Detector

In this section we present our novel, restricted Error-Correcting Code definition for our

fault-secure detector capable codes. Before starting the details of our new definition

we briefly review the basic linear Error-Correcting Codes.

6.4.1 Error-Correcting Code Reviews

This section provides a brief introduction to linear block ECCs. Let i = (i0, i1, ..., ik−1)

be the k-bit information vector that will be encoded into a n-bit code-word, c =

(c0, c1, ..., cn−1). For linear codes the encoding operation essentially performs the

107

following vector-matrix multiplication,

c = i×G, (6.1)

where G is a k × n generator matrix. Checking the validity of a received encoded

vector is done by employing the Parity-Check matrix, which is an (n− k)× n binary

matrix named H. The checking or detecting operation is basically summarized as the

following vector-matrix multiplication,

s = c×HT . (6.2)

The (n− k)-bit vector s is called syndrome vector. A syndrome vector is zero if c is a

valid code-word, and non-zero if c is an erroneous code-word. Each code is uniquely

specified by its generator matrix or parity-check matrix.

A code is a systematic code if any code-word consists of the original k-bit infor-

mation vector followed by n − k parity-bits [78]. With this definition, the generator

matrix of a systematic code must have the following structure,

G = [I : X], (6.3)

where I is a k × k identity matrix and X is a k × (n− k) matrix that generates the

parity-bits. Figure 6.4 shows a systematic generator matrix. This generator matrix

generates a Hamming code of (7,4,3). The advantage of using systematic codes is

that there is no need for a decoder circuitry to extract the information bits. The

information bits are simply available in the first k bits of any encoded vector.

A code is said to be a cyclic code if for any code-word c, all the cyclic shifts of

the code-word are still valid code-words. A code is cyclic iff the rows of its parity-

check matrix and generator matrix are the cyclic shifts of their first rows. It is shown

in [79] that any generator matrix of a cyclic code can be transformed into systematic

generator matrix.

The Minimum Distance of an ECC, is the minimum number of code-bits that are

108

c0 c1 c2 c3 c4 c5 c6

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1

i0
i1
i2
i3

I X

Figure 6.4. A systematic generator matrix: The generator matrix of (7,4,3) Hamming
code.

different between any two code-words, and it is shown by d. The maximum number

of errors that an ECC can detect is d− 1, and the maximum number that it corrects

is bd/2c.

6.4.2 FSD-ECC Definition

The restricted ECC definition which guarantees a Fault-Secure-Detector capable ECC

(FSD-ECC) is as follows:

Definition I: Let C be an ECC with minimum distance d. C is FSD-ECC if it

can detect any combination of overall d− 1 or fewer errors in the received code-word

and in the detector circuitry.

Theorem I: Let C be an ECC, with minimum distance d. C is FSD-ECC iff any

error vector of weight e ≤ d− 1, has syndrome vector of weight at least d− e.

Note: The following proof depends on the fact that any single error in the detector

circuitry can corrupt at most one output (one syndrome bit). This can be easily

satisfied for any type of circuitry by implementing the circuit in such a way that no

logic element is shared among multiple output bits, therefore, any single error in the

circuit corrupt at most one output (one syndrome bit).

Proof: The core of a detector circuitry is a multiplier that implements the vector-

matrix multiply of the received vector and the parity-check matrix to generate the

109

syndrome vector. Now if e errors strike the received code-vector the syndrome weight

of the error pattern is at least d−e from the assumption. Furthermore, the maximum

number of tolerable errors in the whole system is d− 1 and e errors already exist in

the encoded vector, therefore, the maximum number of errors that can strike in the

detector circuitry is d − 1 − e. From the above note, this many errors can corrupt

at most d − 1 − e syndrome bit, which in worst-case leaves at least one non-zero

syndrome bit, and therefore, detects the errors. Q.E.D

The difference between FSD-ECC and normal ECC is simply the demand on

syndrome weight. That is, for error vector of weight e, a normal ECC demands

non-zero syndrome weight while FSD-ECC demands syndrome weight of ≥ d− e.

6.5 FSD-ECC Example: Euclidean Geometry and

Projective Geometry Codes

In this section we prove that two classes of known error-correcting codes, are FSD-

ECC. These two classes are Euclidean Geometry and Projective Geometry codes. We

first review these two codes and then prove they have the FSD-ECC property.

6.5.1 Euclidean Geometry Code Review

This section reviews a simple construction of Euclidean Geometry and Projective

Geometry codes based on the lines and points of the corresponding two finite geome-

tries [80]. Since these two codes generate Low-Density Parity-Check (LDPC) ma-

trices [81], they are called EG-LDPC and PG-LDPC codes. We follow the notation

of [79] here. We start by showing the construction of EG-LDPC. The construction of

PG-LDPC which is very similar to EG-LDPC will come afterward.

Let EG be a Euclidean Geometry with n points and J lines. EG is a finite

geometry that is shown to have the following fundamental structural properties:

1. Every line consists of ρ points

2. Any two points are connected by exactly one line

110

3. Every point is intersected by γ lines

4. Two lines intersect in exactly one point or they are parallel, i.e., do not intersect.

Let H be a J × n binary matrix, whose rows and columns corresponds to lines

and points in EG Euclidean geometry, respectively, where hi,j = 1 if and only if the

ith line of EG contains the jth point of EG, and hi,j = 0 otherwise. A row in H

displays the points on a specific line of EG and has weight ρ. A column in H displays

the lines that intersect at a specific point in EG and has weight γ. The rows of H

are called the incidence vectors of the lines in EG, and the columns of H are called

the intersecting vectors of the points in EG. Therefore, H is the incidence matrix of

the lines in EG over the points in EG. It is shown in [79] that H is a Low-Density

Parity-Check matrix, and therefore, the code is an LDPC code.

A special subclass of EG-LDPC code, type-I two-dimensional EG-LDPC, is con-

sidered here. It is shown in [79] that type-I two-dimensional EG-LDPC has the

following parameters for any positive integer t ≥ 2:

• Information bits, k = 22t − 3t

• Length, n = 22t − 1

• Minimum distance, dmin = 2t + 1

• Dimensions of the Parity-Check matrix, (22t − 1)× (22t − 1)

• Row weight of the Parity-Check matrix, ρ = 2t

• Column weight of the Parity-Check matrix, γ = 2t

It is important to note that the rows of H are not necessarily linearly independent.

The rank of H is n− k which makes the code of this matrix (n, k) linear code. The

(22t − 1) × (22t − 1), parity-check matrix H of an EG euclidean geometry, can be

formed by taking the incidence vector of a line in EG and its 22t − 2 cyclic shifts as

rows, therefore, this code is a cyclic code. A cyclic code’s parity-check matrix is the

cyclic shifts of the first row [79]. Figure 6.12 shows a parity-check matrix for (15, 7)

111

EG-LDPC code. You can see that all the rows of this parity-check matrix are the

cyclic shift of the first row.

6.5.2 Projective Geometry Code Review

Construction of Projective Geometry codes are very similar to the Euclidean Geom-

etry codes. The main difference is that the Euclidean Geometry codes are based on

the Euclidean geometry, and the Projective Geometry codes are based on Projective

geometry. Let PG be a projective geometry. The parity-check matrix of Projective

Geometry code is the incidence matrix of the lines in PG over the points in PG. The

projective geometry PG has the same fundamental structural properties as Euclidean

geometry, and it is shown that the code constructed based on PG is a Low-Density

Parity-Check code. The special subclass of these codes that are considered here is

type-I two-dimensional PG-LDPC codes. It is shown that this subclass of codes has

the following parameters, for any positive integer t ≥ 2:

• Information bits, k = 22t + 2t − 3t

• Length, n = 22t + 2t + 1

• Minimum distance, dmin = 2t + 2

• Dimensions of the Parity-Check matrix, (22t + 2t + 1)× (22t + 2t + 1)

• Row weight of the Parity-Check matrix, ρ = 2t + 1

• Column weight of the Parity-Check matrix, γ = 2t + 1

It is shown in [79] that PG-LDPC codes are cyclic codes. Therefore, the (22t +

2t + 1)× (22t + 2t + 1), parity-check matrix H of a PG projective geometry, can be

formed by taking the incidence vector of a line in PG and its 22t + 2t cyclic shifts as

rows.

112

6.5.3 FSD-ECC Proof for EG-LDPC and PG-LDPC

Theorem II: Type-I two-dimensional EG-LDPC and PG-LDPC codes are FSD-ECC.

Proof: Let C be an EG-LDPC or PG-LDPC code with column weight γ and

minimum distance d. We have to show that any error vector of weight e ≤ d − 1,

corrupting the received encoded vector, has syndrome vector of weight at least d− e.

Now a specific bit in the syndrome vector will be one if and only if the parity-check

sum corresponding to this syndrome vector has an odd number of error bits present in

it. Looking from the Euclidean geometry perspective, each error bit corresponds to a

point in the geometry and each bit in the syndrome vector corresponds to a line. Now

we are interested in obtaining a lower bound on the number of lines that pass through

an odd number of error points. We further lower bound this quantity by the number

of lines that pass through exactly one of the error points. Based on the definition of

the Euclidean geometry, γ lines pass through each point; so e error points potentially

impact γe lines. Also at most one line connects two points. Therefore, looking at the

e error points, there are at most

 e

2

 lines between pairs of error points. Hence

the number of lines passing through a collection of these e points is lower bounded by

γe−

 e

2

. Out of this number, at most

 e

2

 lines connect two or more points of

the error points. Summarizing all this, the number of lines passing through exactly

one error point is at least γe− 2

 e

2

.

From the code properties in the previous two sections that d = γ + 1, we can

derive the following inequality

γe− 2

 e

2

 = e(γ + 1− e) = e(d− e) ≥ d− e.

The above inequality says that the weight of the syndrome vector is at least d − e

which is the required condition of Theorem (I). Therefore, EG-LDPC and PG-LDPC

are FSD-ECC. Q.E.D.

113

Table 6.1. The detector circuit area in the number of 2-input gates
Type EG PG EG PG EG PG EG PG
Code (15,7) (21,11) (63,37) (73,45) (255,175) (273,191) (1023,781) (1057,813)

Det. Area 45 48 501 584 3825 4368 31713 33824

6.6 Design Structure

In this section we provide the design structure of the encoder, corrector, and detector

units of our proposed fault-tolerant memory system. We also present the implemen-

tation of these units on a sublithographic nanowire-based substrate. Later in this

section we presents a demultiplexer that integrates the nanoMemory core with the

supporting logic in nanoscale devices.

6.6.1 Fault Secure Detector

The core of the detector operation is to generate the syndrome vector, which is basi-

cally implementing the following vector-matrix multiplication on the received encoded

vector c and parity-check matrix H,

s = c ·HT . (6.4)

Therefore, each bit of the syndrome vector is the product of c with one row of

the parity-check matrix. This product is a linear binary sum over digits of c where

the corresponding digit in the matrix row is 1. This binary sum is implemented with

an xor gate. Figure 6.5 shows the detector circuit of (15, 7) EG-LDPC code, the

parity-check matrix of this code is shown in figure 6.12. Since the row weight of

the parity-check matrix is ρ, to generate one digit of the syndrome vector we need

a ρ-input xor gate, or (ρ − 1) 2-input xor gates. For the whole detector, it takes

γ(ρ− 1) 2-input xor gates. Table 6.1 illustrates this quantity for some of EG-LDPC

and PG-LDPC codes. Note that implementing each syndrome bit with a separate

xor gate satisfies the assumption of Theorem I on no logic sharing in detector circuit

implementation.

114

.

c14 c7 c8 c10

s14

c0 c8 c9 c11

s0

cj cj+9
cj+8 cj+11

sj

Error
Detector

Figure 6.5. The fault-secure detector for (15, 7) EG-LDPC code

An error is detected if any of the syndrome bits has a non-zero value. The final

error detection signal is implemented by an or function of all the syndrome bits.

The output of this n-input or gate is the error detector signal. In order to avoid a

single point of failure, we have to implement the or gate with a reliable substrate,

e.g., in a system with sublithographic nanowire substrate, the or gate is implemented

with reliable lithographic technology– I.e., lithographic-scaled wire-or. This n-input

wired-or is much smaller than implementing the entire n × (ρ− 1) 2-input xors

at the lithographic scale. The area of each detector is computed using the model

of nanoPLA and nanoMemory form [33] and [50] accounting for all the supporting

lithographic wires.

figure 6.7 shows the implementation of the detector on a nanoPLA substrate.

The framed block shows a γ-input xor gate, implementing a log2(ρ)-level xor tree

in spiral form (figure 6.6). The solid boxes display the restoration planes and the

white boxes display the wired-or planes of nanoPLA architecture model [82][33]. The

signals rotate counter clock-wise, and each round of signal generates the xor functions

of one level of the xor-tree. The final output then gates a robust lithographic-scale

wire. This lithographic-scale wire generates a wired-or function of all the n ρ-input

xors and is the final output of the detector circuit. The xor gate is the main building

115

2 x n

InverterBuffer

2
γ

xors

2
γ

2
γ

4
γ

4
γ

2
γ

4
γ

2
γ

γ

4
γ

4
γ

γ Pterms

Restored Memory-bits
(Buffered and Inverted)

Restored
Pterms

Logic Plane
(Intermediate XORs)

Logic Plane
(Intermediate Pterms)

2 x n

γ Pterms

Restored Memory-bits
(Buffered and Inverted)

g-1

1.1log(g)
+1

1.1log(g)
+1

Widht=[2*(1.1log(g)+1)+3]*Wlitho +[2g-2+2*(g/2)]*Wnano
Hight=4*Wlitho+[(g-1)*2]*Wnano

Reliable wired-OR

O
utput

Figure 6.6. A γ-input xor tree implemented on nanoPLA structure.

block of the encoder and corrector as well.

6.6.2 Encoder

An n-bit code-word c, which encodes k-bit information vector i is generated by multi-

plying the k-bit information vector with k× n bit generator matrix G, i.e., c = i ·G.

From section 6.5 we know that the EG-LDPC and PG-LDPC codes are cyclic

codes. Figure 6.8 shows the generator matrix of (15, 7) EG-LDPC code. As you

can see all the rows of the matrix are cyclic shifts of the first row. This cyclic

code generation does not generate a systematic code and the information bits must

be decoded from the encoded vector, which is not desirable for our fault-tolerant

approach due to the further complication and delay that it adds to the operation.

The generator matrix of any cyclic code can be converted into systematic form (G =

[I : X]) as shown in [78] and [79]. We used the procedure presented in [78] and [79]

to generate systematic generator matrices of all the EG-LDPC and PG-LDPC codes

116

Restore

Restore

Restore

DEMUX
(Inverted)

DEMUX
(Buffered)

n n

C
D

B

A

Restore

A=n*gamma
B=[Plane(g-1)+Plane(g-1)]
C=[Plane(2g-2)+2*Plane(g-1)]
D=n/2*[Plane(2g-2)+2*Plane(g-1)]

Figure 6.7. A detector circuit implemented on nanoPLA: The parameters in the figure are
A = n× γ, B = 2× Pl(γ − 1), C = Pl(2× γ − 2) + 2× Pl(γ − 1), and D = n/2× C.

117

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
0 1 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

i0
i1
i2
i3
i4
i5
i6

p0

i0 i2 i6

p1

i0 i1 i3

p2

i1 i2 i4

p3

i2 i3 i5

p7

i0 i2 i6

p4

i0 i2 i3 i4 i6

p5

i0 i1 i3 i4 i5

p6

i0 i1 i4 i5 i6

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

i0
i1
i2
i3
i4
i5
i6

Figure 6.8. The generator matrix of EG-LDPC code of (15, 7) in cyclic format

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
0 1 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

i0
i1
i2
i3
i4
i5
i6

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 1 1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 1 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 1 1 0 0 0 0 0 1 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

i0
i1
i2
i3
i4
i5
i6

i0 i1 i2 i3 i4 i5 i6
7 Information Bits

8 Parity Bits

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0 0 0 0 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 1 1 0 0 1 1 0
0 0 0 0 0 1 0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0 1 0 0 0 1

i0
i1
i2
i3
i4
i5
i6

(a) (b)

c7

i0 i4 i6

c12

i1 i3 i4

c13

i2 i4 i5

c14

i3 i5 i6

c11

i0 i2 i3

c8

i0 i1 i4 i5 i6

c9

i0 i1 i2 i4 i5

c10

i1 i2 i3 i5 i6

Figure 6.9. The generator matrix of EG-LDPC code of (15, 7) in systematic format,
which consists of identity matrix in the left columns

under consideration.

figure 6.9 shows the systematic generator matrix to generate (15, 7) EG-LDPC

code. The encoded vector, which is generated by the inner product of the information

vector and the generator matrix, consists of information bits followed by parity bits,

where each parity bit is simply an inner product of information vector and a column

of X, from G = [I : X]. Figure 6.10 shows the encoder circuit to compute the parity

bits of the (15, 7) EG-LDPC code. In this figure i = (i0, ..., i6) is the information

vector and will be copied to c0, ..., c6 bits of the encoded vector, c, and the rest of

encoded vector, the parity bits, are linear sums (xor) of the information bits.

If the building block is two-input gates then the encoder circuitry takes 22 two-

input xor gate. Since the systematic generator matrix of EG-LDPC and PG-LDPC

codes does not have the standard row and column density, we have to construct all the

generator matrices to compute the encoder area. To compute the area of an encoder

circuitry the corresponding systematic generator matrix has to be constructed using

the procedure in [78] and [79]. Once the systematic generator matrix is constructed

118

Table 6.2. The encoder circuit area in the number of 2-input gates
Type EG PG EG PG EG PG EG PG
Code (15,7) (21,11) (63,37) (73,45) (255,175) (273,191) (1023,781) (1057,813)

Enc. Area 22 47 355 643 6577 7429 93823 98730

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
0 1 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

i0
i1
i2
i3
i4
i5
i6

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 1 1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 1 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 1 0 0 0
1 1 1 0 0 1 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 1 1 0 0 0 0 0 1 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 1

i0
i1
i2
i3
i4
i5
i6

i0 i1 i2 i3 i4 i5 i6

7 Information Bits

8 Parity Bits

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0 0 0 0 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 1 1 0 0 1 1 0
0 0 0 0 0 1 0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0 1 0 0 0 1

i0
i1
i2
i3
i4
i5
i6

(a) (b)

c7

i0 i4 i6

c12

i1 i3 i4

c13

i2 i4 i5

c14

i3 i5 i6

c11

i0 i2 i3

c8

i0 i1 i4 i5 i6

c9

i0 i1 i2 i4 i5

c10

i1 i2 i3 i5 i6

c4 c5 c6c3c0 c1 c2

i4 i5 i6i3i0 i1 i2

7 Information Bits

Figure 6.10. The structure of an encoder circuit for (15, 7) EG-LDPC code. Each of
the xor gates generate one parity bit of the encoded vector. The code-word consists
of 7 information bits followed by 8 parity bits.

the fanin size of the xor gates can be determined by the column densities of the

generator matrix. For example, consider the generator matrix of figure 6.9 which

represents the systematic generator matrix of (15, 7) EG-LDPC code. Columns 7

to 14 determines the xor function of parity bits c7 to c14, as shown in figure 6.10.

Table 6.2 shows the area of the encoder circuits for each EG-LDPC and PG-LDPC

code under consideration. The fanin size of the xor gates are determined by the

column densities.

Once the xor functions are known, the encoder structure is very similar to the

detector structure shown in figure 6.7, except it consists of (n− k) xor gates. Each

nanowire-based xor gate has structure similar to the xor tree shown in figure 6.6.

6.6.3 Corrector

One-step majority-logic correction is a fast and relatively compact error-correcting

technique [79]. There is a limited class of ECCs that are one-step-majority cor-

119

rectable which includes type-I two-dimensional EG-LDPC and PG-LDPC. In this

section we present a brief review of this correcting technique. Then we show the

one-step majority-logic corrector for an EG-LDPC and PG-LDPC codes.

One-step majority-logic correction is the procedure that corrects one bit of the

received encoded vector at a time. This method consists of two parts: (1) Generating

a specific set of linear sums of the received vector bits. (2) Finding the majority

value of the computed linear sums. The majority value shows the correctness of the

code-bit under consideration. If the majority value is 1 the bit is inverted, otherwise

it is kept unchanged.

A linear sum of the received encoded vector bits can be formed by computing the

inner product of the received vector and a row of a parity-check matrix. This sum

is called Parity-Check sum. A set of parity-check sums is said to be orthogonal on

a given code bit if each of the parity-check sums include the code bit but no other

code bit is included in more than one of these parity-check sums. If for each code

bit there are j parity-check sums that are orthogonal on it, then the code is one-step

majority-logic correctable up to bj/2c bit errors. This proof can be found in [79]. In a

cyclic code, a set of j parity-check sums orthogonal on a code-word bit is orthogonal

on all the n code-word bits. Therefore, using one set of parity-check matrix rows

orthogonal on one code bit, we can design a majority circuit that corrects all the

other bits, serially.

The one-step majority logic error correction is summarized in the following pro-

cedure. These steps correct a potential error in one code bit, e.g., cn−1.

1. The j parity-check sums orthogonal on cn−1 are formed by computing the inner

product of the received vector and the appropriate rows of parity-check matrix.

2. The J orthogonal check sums are fed into a majority gate. The output of the

majority gate corrects the bit cn−1, by inverting the value of cn−1 if the output

of majority gate is “1”.

It is shown in [79] that type-I two-dimensional EG-LDPC and PG-LDPC codes

are one-step majority logic correctable up to γ/2 bits, meaning that there are γ

120

a

b

Max(a,b)

min(a,b) 2
γ

-input Sorting Netwrok
2
γ

Majority
Signal

(b)

(c) (d)

2
γ

(a)

c3 c11 c12 c14 c1 c5 c13 c14 c0 c2 c6 c14 c7 c8 c10 c14

Majority
Gate

n-bit Coded Vector

γ
ρ

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12c13 c14

c3 c11 c12 c14 c1 c5 c13 c14 c0 c2 c6 c14 c7 c8 c10 c14

Majority Gate

n-bit Coded Vector

γ

ρ

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

Figure 6.11. The serial one-step majority logic corrector structure to correct last bit
(bit 14th) of 15-bit (15, 7) EG-LDPC code.

parity-check sums orthogonal on a code-bit, thereforej = γ.

The circuit implementing a serial one-step majority logic corrector for (15, 7) EG-

LDPC code is shown in figure 6.11. This circuit generates γ parity-check sums with

γ xor gates and then computes, the majority value of the parity-check sums. Since

each parity-check sum is computed using a row of the parity-check matrix and the

row density of EG-LDPC codes are ρ then each xor gate that computes the linear

sum has ρ inputs. The single xor gate on the right, corrects the code bit cn−1, using

the output of the majority gate. Once the code bit cn−1 is corrected the code-word is

cyclic shifted and code bit cn−2 is placed at cn−1 position and will be corrected. The

whole code-word can be corrected in n rounds.

121

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9
i10
i11
i12
i13
i14

Figure 6.12. The parity-check matrix of (15, 7) EG-LDPC code.

122

If implemented in flat, two-level logic, a majority gate could take exponential

area. The majority gate is implemented by computing all the

 γ

dγ+1
2
e

 product

terms that has γ+1
2

on input and one

 γ

dγ+1
2
e

-input or-term. For example, the

majority of 3 inputs a, b, c is computed with

 3

2

 = 3 product terms and one

3-input or-terms as below,

Majority(a, b, c) = ab + ac + bc. (6.5)

In the following section we present a compact implementation for the majority

gate using Sorting Networks [83]. The majority gate has application in many other

error-correcting codes, and this compact implementation can improve many other

applications.

6.6.3.1 Majority Implementation

A majority function of γ binary digits is simply the median of the digits (were we

define the median of even number of digits the γ/2 + 1st smallest digit).

To find the median of the γ inputs we do the following:

1. Divide the γ inputs into two halves with size γ/2.

2. Sort each of the halves

3. The median is 1 if for i = 1, 2, ..., γ/2 the ith element of one half and the

(γ/2 + 1− i)th element of the other half are both 1.

We use binary Sorting Network to do the sort operation of the second step effi-

ciently. An n-input sorting network is the structure that sorts a set of n bits, using

a 2-bit sorter building blocks. Figure 6.13(a) shows a 4-input sorting network. Each

of the vertical lines represents one comparator, which compares two bits and assign

the larger one to the top output and the smaller one to the bottom (figure 6.13(b)).

123

a

b

Max(a,b)

min(a,b) 2
γ

-input Sorting
Netwrok2

γ

Median/Majority
Signal2

γ

c3 c11 c12 c14 c1 c5 c13 c14 c0 c2 c6 c14 c7 c8 c10 c14

Majority
Gate

n-bit Coded Vector

2
γ

-input Sorting Netwrok
2
γ

Majority
Signal

2
γ

γ
ρ

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

(a)

a

b

Max(a,b)

min(a,b) 2
γ

-input Sorting
Netwrok2

γ

Median/Majority
Signal2

γ

c3 c11 c12 c14 c1 c5 c13 c14 c0 c2 c6 c14 c7 c8 c10 c14

Majority
Gate

n-bit Coded Vector

2
γ

-input Sorting Netwrok
2
γ

Majority
Signal

2
γ

γ
ρ

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

(b)

Figure 6.13. (a) A 4-input sorting network Each of the vertical lines shows a 1-input
comparator. (b) One comparator structure

a

b

Max(a,b)

min(a,b) 2
γ

-input Sorting
Netwrok2

γ

Median/Majority
Signal2

γ

c3 c11 c12 c14 c1 c5 c13 c14 c0 c2 c6 c14 c7 c8 c10 c14

Majority
Gate

n-bit Coded Vector

2
γ

-input Sorting Netwrok2
γ

Median /Majority
Signal

2
γ

γ
ρ

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

Figure 6.14. An 8-input majority gate using sorting network

124

The 4-input sorting network has 5 comparator blocks, where each block consists of

two 2-input gates, so overall the 4-input sorting network consists of ten 2-input gates

in total.

To check the condition in the third step we use γ/2 2-input and gates followed by

a γ/2-input or gate. Figure 6.14 shows the circuit implementing the above technique

to find the median value of 8 bits. It has two γ/2-input (4-input) sorting networks

followed by combinational circuitry, consisting of four 2-input and gates and a 4-input

or gate, which can be implemented with three 2-input or gates. Therefore, in total

an 8-input majority gate implemented with sorting networks take 27 2-input gates;

In contrast, the two-level implementation of this majority gate takes

 8

5

 = 56

5-input and gates with one 56-input or gate.

As mentioned earlier, the same one-step majority-logic corrector can be used to

correct all the n bits of the received code-word of a cyclic code. To correct each code-

bit, the received encoded vector is cyclic shifted and fed into to the xor gates as shown

in figure 6.11. The serial majority corrector takes n cycles to correct an erroneous

code-word. If the fault rate is low the corrector block is used infrequently, and since

the common case is error free code-words, the latency of the corrector will not have

a severe impact on the average memory read latency. Figure 6.2 shows the system

integration with serial corrector. The serial corrector is placed off the normal memory

read path. The memory words retrieved from memory unit is checked by detector

unit. If the detector detects an error, the memory word is sent to the corrector unit

to be corrected, which has the latency of the detector plus the n round latency of the

corrector. Since the serial corrector is used when the fault rate is low, the corrector is

used infrequently and consequently not having severe throughput impact. However,

for high error rate (e.g., when tolerating permanent defects in memory words as

well), the corrector is used more frequently and its latency can impact the system

performance. Therefore, we can implement a parallel one-step majority corrector

which is essentially n copies of the single one-step majority-logic corrector. Figure 6.3

shows a system integration using the parallel corrector. All the memory words are

125

Table 6.3. The corrector circuit area in the number of 2-input gates
Type EG PG EG PG EG PG EG PG
Code (15,7) (21,11) (63,37) (73,45) (255,175) (273,191) (1023,781) (1057,813)

Cor. Area 19 32 83 108 331 376 1263 1358

pipelined through the parallel corrector. This way the corrected memory words are

generated every cycle. The detector in the parallel case monitors the operation of

the corrector, if the output of the corrector is erroneous, the detector signals the

corrector to repeat the operation. Detecting a fault in the corrected memory word

is not because of the fault in the memory words, it is solely because of faults in the

detector and corrector circuitry. Since detector and corrector circuitry are relatively

small compared to the memory system, the failure rate of these units is very low, and

therefore, the error detection and repeat process happens very infrequently, and do

not impact the system throughput.

Assuming our building blocks are 2-input gates, the xor gates to generate γ

number of ρ-input parity-check sums will take γ × (ρ− 1) 2-input xor gates. The

size of the majority gate is defined by the sorting network implementation. Table 6.3

shows the overall area of a serial one-step majority-logic gate in the number of 2-

input gates for the codes under consideration. The parallel implementation consists

of exactly n copies of the serial one-step majority-logic.

Generating the linear binary sums (xors) of the one-step majority-sum is the

same as figure 6.7. The majority gate is simply computed following the structure

shown in figure 6.14 using the nanowire-based substrate.

6.6.4 Banked Memory

Large memories are conventionally organized as sets of smaller memory blocks called

banks. The reason for breaking a large memory into smaller banks is to trade-off

overall memory density for access speed and reliability. Excessively small bank sizes

will incur a large area overhead for memory drivers and receivers. Large memory

banks require long rows and columns which results in high capacitance wires that

consequently increases the delay. Furthermore long wires are more susceptible to

126

breaks and short defects when they are excessively long. Therefore, excessively larger

memory banks have higher defect rate and lower performance. The organization of

nanoMemory is not different than the conventional memory organization, except that

the overhead per bank is larger due to the scale difference between the size of a

memory bit (a single wire crossing) and the support structures (e.g., microscale wires

for addressing and bootstrapping). The work presented at [49] provides more detail

on memory banks and shows how the banks would be integrated into a complete

memory system.

The memory system overview shown in figure 6.3 can be generalized to multiple

banks as shown in figure 6.15. The encoder encodes the information bits and send it

to the memory banks. The bank that contains the “write” address will be selected and

the memory word is written into the memory bank. A fault-secure detector monitors

the operation of the encoder. If the output vector is not a valid code-word, then

the detector sends a feedback to the encoder to repeat the encoding process. When

reading a memory word form the memory, the memory word is pipelined through

the corrector unit. A fault-secure detector following the corrector unit, monitors the

output vector of the corrector unit. If it detects an error, it send a signal to the

corrector unit and the corrector unit must perform its process again.

Memory words have to be scrubbed frequently to prevent error accumulation in

them. However, scrubbing memory words one by one can take long time especially if

scrubbing has to occurs often due to high fault rate, and therefore, it can seriously

reduce the system performance. To prevent that we can potentially scrub all the

memory banks in parallel. For this, each memory bank requires a separate corrector

and detector unit. This model is shown in figure 6.16. This model takes one-quarter of

the original scrubbing latency. However, having one corrector and detector for each

bank decreases the density of the memory dramatically. Furthermore the system

performance is often high enough even when more than one memory bank share

one corrector and detector. Therefore, we can cluster a number of memory banks

together and consider a corrector and detector unit for each Cluster. Figure 6.17

shows a memory system with two parallel corrector units. Here each cluster contains

127

Detector

Corrector

DetectorEncoder

MEM
Bank

MEM
Bank

MEM
Bank

MEM
Bank

Common
Address

MUX Error (retry)

Codeword

Input Data
(Information Vector)

Read Data
(Information Vector)

DetectorEncoder

MEM
Bank

MEM
Bank

MEM
Bank

MEM
Bank

Common
Address

Codeword

Input Data
(Information Vector)

Read Data
(Information Vector)

Corrector

Detector

Corrector Corrector Corrector

DetectorDetector Detector

Detector

Figure 6.15. Banked memory organization, with single global corrector.

two memory banks. This model takes half of the original scrubbing latency.

6.6.5 Nanoscale Demultiplexer

The nanoMemory architecture introduced in [50] and reviewed in section 2.4 has a

lithographic scale interface. Each memory bit (a nanowire cross-point) is addressed

from two lithographic scale to sublithographic scale decoders and the value of the bit

is read by a common read line (see figure 2.11). To provide multiple-bit access to

and from a single memory bank, we simply split the common read line into separate

microscale connections to the nanowire array (see the right-hand side of figure 2.13).

We then program up the nanowire addresses so that the same address is present in

128

Detector

Corrector

DetectorEncoder

MEM
Bank

MEM
Bank

MEM
Bank

MEM
Bank

Common
Address

MUX Error (retry)

Codeword

Input Data
(Information Vector)

Read Data
(Information Vector)

DetectorEncoder

MEM
Bank

MEM
Bank

MEM
Bank

MEM
Bank

Common
Address

Codeword

Input Data
(Information Vector)

Read Data
(Information Vector)

Corrector

Detector

Corrector Corrector Corrector

DetectorDetector Detector

Detector

Figure 6.16. Banked memory organization with, fully parallel correcting units (cluster
of size 1).

129

DetectorEncoder

MEM
Bank

MEM
Bank

Common
Address

Detector
MUX Error (retry)

Codeword

Input Data
(Information Vector)

Read Data
(Information Vector)

Corrector

MEM
Bank

MEM
Bank

Detector CorrectorDetector

Figure 6.17. Banked memory organization, with cluster size of 2.

130

each of the nanowire bundles associated with a distinct microscale output contact.

For our fault-tolerant system where the supporting logic is implemented at the sub-

lithographic scale, the read and write operation to the memory core is done through

sublithographic scale units. Therefore, there is no need to have lithographic scale

to sublithographic scale memory read line. To integrate the supporting sublitho-

graphic units (i.e., detector, encoder, and corrector) with the memory core we need a

sublithographic demultiplexer (demux). The r-wide rows of the memory core are de-

multiplexed into n-wide memory words. The main part of the demux is the gate-able

nanowires (section 2.2.2 and [84]). A simplified overview of this demux is shown in

figure 6.18 with r = 12 rows and memory word width of n = 3. Each of the demux

nanowires (vertical wires) is gate-able by r/n nanowires of the memory row, where r

is the number of memory rows, and n is the memory word width. To access a memory

word with this demux, the column address is placed on the lithographic address wires

of the column decoder. The row address decoder is programmed in a way that selects

exactly one nanowire in each demux lightly doped regions. To read a memory word,

the demux outputs are precharged to high value. During the evaluation phase, the

memory word nanowires are selected by the row and column address decoders. The

memory word nanowires representing each memory word controls the current of the

demux nanowires. Those memory word nanowires that represents “0” memory bits,

carry low voltage, and therefore, let the demux wires conduct (when demux wires

are p-typed) the low voltage from the “GND” wire to their outputs. Those nanowires

that carry high voltage do not let the current go through, and the demux outputs

will keep the high precharged voltage.

figure 6.19 shows an example of selecting a memory word of width n = 3. The

column address selects a single nanowire. The row address selects the nanowires rep-

resenting the memory word bits at their junctions with the selected column nanowire.

Each row nanowire representing a memory bit of the selected memory word, gates

exactly one demux output. Therefore, the n = 3 memory word signals are present

at the demux output.

figure 6.20 (a) shows a demux with ideal nanowire placement. However, similar to

131

the restoration plane (section 2.3.2) and lithographic to sublithographic decoder (sec-

tion 2.3.3) the demux can only be stochastically fabricated. We do not have control

over the placement, alignment, or even the doping pattern selection of nanowires in

an array. Therefore, it is not possible to select and align of the demux nanowires per-

fectly as shown in figure 6.18 (a). The idea is to increase the number of valid pattern

combinations and placements; so that when nanowires are selected and placed ran-

domly, with higher probability a valid configuration exists. The perfect demux shown

in figure 6.18 (a), has only 3! = 6 valid configuration among all the possible align-

ments and selections. If we separate the doping patterns as shown in figure 6.18 (b),

there are more valid configurations, i.e.,

 12

4

  8

4

 . (6.6)

figure 6.18 (b) shows a perfect alignment and selection with disjoint doping re-

gions, however, with stochastic placement the practical demux would be similar to

figure 6.18 (c). Note that the demux nanowires are overpopulated to guarantee exis-

tence of all the required patterns. In this demonstration example in figures 6.18 (c),

the three left most nanowires make a functional demux and the rightmost nanowire

is not used.

6.7 Reliability Analysis

In this section we analyze the reliability of the system. To measure the system

reliability, we estimate the probability that system fails, i.e., system experiences more

number of errors in a memory word than the number of errors the error-correcting

code can tolerate. With this analysis we then show the impact of protecting the ECC

supporting logic in section 6.7.2.

132

Deterministic
Programmable

Decoder

Stochastic Decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

DEMUX
Ouputs

M
em

or
y

ro
w

s

Common
Read Line

Deterministic
Programmable

Decoder

Stochastic Decoder

Common
Read Line

DEMUX
Ouputs

M
em

or
y

ro
w

s

DEMUX
Ouputs

M
em

or
y

ro
w

s

Column
Decoder

Row
Decoder GND

Pre-charge
Controller

Figure 6.18. A simple demux for n = 4, and r = 12

6.7.1 Analysis

We assume the fault probability of each device at each cycle (Pf) has i.i.d. and

random distribution over the devices of the memory system. Recall ee and ede are the

nominal number of errors that occurs in encoder and decoder during memory write

operation. Similarly, em, ec, and edc are the number of errors that occur in a memory

word and its corresponding corrector and detector. Let ne, nc, and nd be the size of

the circuitry involved in an operation on a single code-bit in the encoder, corrector,

or detector, respectively. This is the size of the logic cone of a single output of each

of the above units. For example, in a detector each logic cone is a ρ-input xor gate

generating a single bit of the syndrome vector.

Let a nominal unit have a logic cone size of x. With worst-case analysis the

output of the logic cone fails when any of the devices in the logic cone fails. So when

at least one of the x devices inside the cone is erroneous, the output of the logic cone,

which is a code-bit, would be erroneous. Therefore, the probability that a code-bit is

133

Deterministic
Programmable

Decoder

Stochastic Decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

GND

Pre-charge
Controller

Figure 6.19. An example of the memory word selection with the nanoscale demux

Deterministic
Programmable

Decoder

Stochastic Decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

DEMUX
Ouputs

M
em

or
y

ro
w

s
Common
Read Line

Deterministic
Programmable

Decoder

Stochastic Decoder

Common
Read Line

DEMUX
Ouputs

M
em

or
y

ro
w

s

DEMUX
Ouputs

M
em

or
y

ro
w

s

Column
Decoder

Row
Decoder GND

Pre-charge
Controller

(a)

Deterministic
Programmable

Decoder

Stochastic Decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

DEMUX
Ouputs

M
em

or
y

ro
w

s
Common
Read Line

Deterministic
Programmable

Decoder

Stochastic Decoder

Common
Read Line

DEMUX
Ouputs

M
em

or
y

ro
w

s

DEMUX
Ouputs

M
em

or
y

ro
w

s

Column
Decoder

Row
Decoder GND

Pre-charge
Controller

(b)

Deterministic
Programmable

Decoder

Stochastic Decoder

Deterministic
Programmable

Decoder

Stochastic Decoder

DEMUX
Ouputs

M
em

or
y

ro
w

s
Common
Read Line

Deterministic
Programmable

Decoder

Stochastic Decoder

Common
Read Line

DEMUX
Ouputs

M
em

or
y

ro
w

s

DEMUX
Ouputs

M
em

or
y

ro
w

s

Column
Decoder

Row
Decoder GND

Pre-charge
Controller

(c)

Figure 6.20. Stochastic demux structure connected region, (a) Ideal demux, (b) Ideal
demux with repeating regions, (c) Stochastic demux with random pattern.

134

erroneous in any of the above units is

Pbit circuit = 1− (1− Pf)
x, (6.7)

where x has one of the values: ne, nc, or nd. Similarly the probability that a memory-

bit is erroneous in scrubbing interval of s cycles is

Pbit mem = 1− (1− Pf)
xs, (6.8)

where x is the number of devices contained in one memory cell. If using sram cells,

x = 6. If using a nanoMemory, then the memory bit is essentially a single nanowire

cross-point. However, since accessing each memory bit requires reading the signal

value through a pair of nanowires (see figure 6.19), the correctness of each memory

bit depends on the correctness of two nanowires. Therefore, for the nanoMemory

design x = 2. Each unit or a memory-word experience e errors among n bits of the

code-word with the probability

Punit =

 n

e

 Pbit
e(1− Pbit)

n−e, (6.9)

which is simply a binomial distribution, and n is the code-length, Pbit is either Pbit mem

or Pbit circuit and e is ee, em, ec, ede, or edc.

As explained in section 6.6.1, errors in the encoder unit are detected by its fol-

lowing detector, and are corrected by repeating the encoding operation to generate

a correct encoded vector. The detector can detect up to d− 1 errors overall in these

two units. Where d is the code distance. With worst-case assumptions, the detector

fails to detect the errors if there are more than d − 1. Therefore, we define the first

reliability condition as

(Condition I) ee + ede < d,

which states that the total number of errors in the encoder unit and the following

detector unit must be smaller than the minimum distance of the code. The detector

135

of the corrector is also capable of detecting up to d − 1 errors accumulated from

memory unit, corrector unit and the second detector unit. Similarly with worst-case

assumption, detector fails to detect errors when they are more than d− 1. Therefore,

the second reliability condition is defined as

(Condition II) em + ec + edc < d.

Furthermore the corrector can recover a memory-word with up to γ/2 errors from

the memory unit. If more than γ/2 errors are accumulated in a memory word, then

the EG-LDPC and PG-LDPC codes cannot correct the memory word. Therefore, the

third reliability condition is formulated as

(Condition III) em ≤ γ/2,

which states that the maximum number of tolerable errors in each memory word

is γ/2. Satisfying the three above conditions guarantees that the memory system

operates with no undetectable or uncorrectable errors. We calculated the probability

of each of the above conditions employing equation (6.9), for all the various EG-LDPC

and PG-LDPC codes. Section 6.9 illustrates the reliability of the system for different

device failure rate, Pf . It also presents the optimum design points for optimizing

reliability, area and throughput.

6.7.2 The Impact of Providing Reliability for Supporting

Logic

It is important to understand the impact of protecting the supporting logic on the

system FIT rate. Could the system FIT rate be low enough if only memory words

were protected? What is the potential cost of protecting the supporting logic? We

answer these question with the example below.

Figure 6.21 shows the FIT rate of the system decomposed into the contribution

from the memory bank and the contribution from the supporting logic. The FIT in

the supporting logic is without a fault-secure detector (i.e., any error in the supporting

logic results an erroneous output, with worst-case analysis). Obviously the FIT of the

whole system with no logic protection is the sum of the above two FITs, illustrated

136

Chart1

Page 1

33
34

5 6

9 10

17
18

-50

-40

-30

-20

-10

0

10

20

0 5 10 15 20 25 30 35
Minimum Distance

lo
g(

FI
T)

FIT in Memory
FIT in Unprotected Logic
Total FIT w/ Unprotected Logic
Total FIT w/ Protected Logic

Figure 6.21. The impact of protecting logic on system reliability, for Pf = 10−19.

with a solid line. This graph is plotted for a device fault rate of Pf = 10−19 with

memory scrubbing interval of 10 minutes. As you can see, for codes with minimum

distance larger than 9, the FIT of the system with no logic protection is dominated by

the FIT of the unprotected logic. Using codes with greater redundancy will decrease

the FIT of memory bank; however, since the unprotected logic has a non-trivial FIT

rate, increasing the code redundancy without protecting the logic does not decrease

the FIT of the composite system. To achieve the higher reliability the logic must also

be protected. The FIT of such system with fault secure logic is illustrated with the

dashed line, and as you can see, the FIT of this system follows very closely the FIT of

the memory bank. Protecting supporting logic, is essentially done by the fault-secure

detector and the only cost to achieve the logic protection is the cost that we pay for

the detectors. Table 6.4 shows that the detector takes a negligible fraction of area

compared to the memory core, encoder, and corrector. Therefore with minimal area

overhead the system reliability can be greatly improved.

137

6.8 Tolerating Permanent Defect in Memory Cells

In this chapter, so far we focused on a transient fault-tolerant memory structure.

Equally important is to tolerate permanent defects in the memory systems. Since the

memory unit has a regular structure, most of the defect tolerant designs are based

on row and column sparing. This means that we overpopulate the rows and columns

based on the expected defect rate so that after removing all the defecting rows and

columns the memory has the desired size. For example, if we want to have a 1K×1K

memory, and the junction defect rate is 0.001% which results in nanowire defect rate

of Pwire = 1000×10−5 = 1%, then with 2% row and column overpopulation (20 more

rows and columns) the system yields 1K×1K memory core with 99.6% probability

Prow yield = Pcolumn yield =
20∑
i=0

 1020

i

 P i
wire(1− Pwire)

1020−i ≈ 0.9981, (6.10)

and the memory yields when both rows and columns yield which is the product of

the two probability Prow yield and Pcolumn yield,

Prow yield × Pcolumn yield = 0.99812 = 0.996. (6.11)

So when the defect rate is small (0.001%) even with very small area overhead

(2% overpopulation) the system can yield a perfect 1K×1K with high probability.

However, with higher defect rate, the column and row sparing can be very costly.

For example, a 1% cross-point defect rate on a nanowire with 1000 junctions implies

that with almost 100% probability any nanowire in the memory block has at least one

defective junction. At this defect rate we cannot afford discarding nanowires with any

defective junctions. The work presented in [49] suggests a defect tolerant technique

that is more efficient than the column and row sparing. This technique suggest

discarding nanowires that have more defective junctions than a set threshold. These

nanowires will be replaced with spare nanowires. The limited number of defective

junctions on the remaining nanowires will be tolerated using ECCs.

138

For the above example with junction defect rate of 1%, and keeping nanowires

with up to 12 defective junctions, then the system would require only 31% row and

column overpopulation to achieve the 99% yield. The computation is shown below:

The probability that a wire is accepted, i.e., has at most 12 defective junction is

Pwire =
12∑
i=0

 1000

i

 (0.01)i(0.99)1000−i ≈ 0.792. (6.12)

With only 31% column and row sparing we can get 99% yield,

Prow yield = Pcolumn yield =
310∑
i=0

 1310

i

 P i
wire(1− Pwire)

1310−i ≈ 0.9953. (6.13)

and the final memory yield is

Prow yield × Pcolumn yield = 0.99532 = 0.99. (6.14)

In [49], it is suggested that a reliable lithographic-scale encoder and decoder be

used to tolerate limited defective bits in each row.

Here we use the same EG-LDPC and PG-LDPC codes that we use for transient

faults for tolerating permanent defects as well, and the error correction capability

of the ECC is partitioned between fault-tolerant and defect-tolerant requirement.

For example the EG-LDPC code of (255, 175, 17) can correct up to 8 errors in each

memory word. This can be partitioned to tolerate 4 transient faults and 4 permanent

defect in each junction. With this technique we allow each memory word to contain

up to 4 defective junctions which with a row width of 1000 is about 12 defective

junctions per row, since each row takes three memory words and each memory word

tolerates 4 defects.

This reduces the area overhead compared to solely row and column sparing. The

important point is that this area overhead reduction is achieved with almost no extra

cost, since it uses the structure which already exists for transient fault-tolerance, i.e.,

encoder, corrector, and detector units. The only potential drawback point for this

139

technique is that it increases the effective FIT rate of the memory block relative to

the case where we had all 8 errors available to tolerate transient upsets. Therefore,

to guarantee the desired reliability, codes with larger minimum distance which can

tolerate larger number of defects and faults can be used. Section 6.9 shows more

detail results on how the reliability and area overhead costs are balanced.

In section 6.6.3.1 we showed serial and parallel corrector integration for low and

high fault rates respectively. However, when we also have a limited number of defec-

tive junction in memory words, this means that with high probability a memory word

has erroneous bits and must be corrected. Therefore, as mentioned in section 6.6.3.1,

we use a parallel fully pipelined corrector to prevent throughput loss. The probability

that a memory word has a limited number of defects is computed below. Remem-

ber that the memory words with more than a set threshold is removed. Let the set

threshold of the number of defects in each memory word be Dthr, and the defect rate

be Pd, therefore, the memory words have 0 to Dthr defective bits. The probability

that a memory word is defective and require correction is

Pdef mem word =

Dthr∑
i=1

 n

i

 P i
d(1− P)(n−1)

Dthr∑
i=0

 n

i

 P i
d(1− P)(n−1)

. (6.15)

For example for 1% defect rate and tolerating up to 4 defective bits per memory

word, the probability that a memory word has defective bit is Pdef mem word = 0.91.

Therefore, 91% of the memory words must be corrected, which justifies the parallel

and fully pipelined corrector. In the following section we show the effect of Dthr on

area, throughput, and reliability.

6.9 Area and Performance Analysis and Results

There are three design aspects that are specifically important when designing fault-

tolerant designs: system reliability, area overhead, and performance. It is important

140

to see how these three factors interact and generate various design points. There are

multiple design parameters that determines the balance between reliability, area, and

performance. Among these parameters, those that we keep variable in our simulations

are:

• The maximum number of defects which exist per memory word (Dthr)

• The scrubbing interval (S)

• The cluster size of memory banks for scrubbing (C)

For a fixed memory size, bank size, and transient fault rate, we find the right value

for Dthr, S, and C to achieve the desire area, performance, and reliability. Here we

review the impact of each of these parameters on area, performance, and reliability.

The threshold on the number of defects per memory word affects area, reliability,

and performance all together. It is first suggested to reduce the area overhead of the

nanoMemory core [49]. The example presented in section 6.8 in equation (6.13) shows

how the area overhead can be reduced by large enough Dthr. Increasing Dthr however,

can potentially decrease the system throughput. Equation (6.15) shows the frequency

that the memory word must be corrected. As mentioned in the previous section, the

throughput loss is improved by using a parallel and fully pipelined corrector, which

takes greater area. So increasing Dthr, increases the throughput loss or area overhead.

The third impact of the value of Dthr is on the reliability. Dthr shows the part of the

code error-correction capability that is assigned to defect-tolerant. This means that

the code has weaker capability for tolerating transient faults, and therefore, has lower

system reliability.

The scrubbing interval length, S, impacts the system performance and the reliabil-

ity. The longer the scrubbing interval is, the less reliable the system will be, because

more errors can accumulate in each memory word during longer scrubbing intervals.

Equation (6.8) shows how scrubbing interval impacts the reliability of each single

memory bit. However, the shorter the scrubbing interval is the lower the throughput

will be, because the system puts more time on performing the scrubbing operation.

141

Below we show how the value of S impacts the system throughput. Assume a memory

system has bank size of B and cluster size of C. This means that every C memory

banks share one corrector and detector to perform the scrubbing operation. During

each scrubbing operation all the C × B memory words in each cluster will be read,

corrected, and written back into the memory. With fully pipelined parallel corrector

this takes about B × C cycles. If the scrubbing interval is S cycles then the system

throughput loss is

Throughput loss =
B × C

S
. (6.16)

If S is too small, the throughput loss is large. The impact of memory bank

cluster size and memory bank size is also clear on the system throughput, larger

memory bank size and cluster size increase the throughput loss. In this work we

set the memory bank size to 1K×1K, to achieve the high enough memory density,

which follows the detail analysis on memory bank size provided in [50]. Here we vary

cluster size to optimize the throughput and area overhead. When the cluster size is

large, the parallel corrector is shared among a large number of memory words, and

therefore, the area of the corrector and detector is amortized out over a large number

of memory words. However, the throughput loss can increase for large cluster size

(equation (6.16)). In contrast, small cluster size, reduces the throughput loss but

increases the net area per bit.

For our simulation we set the limit of throughput loss to < 0.1% and reliability to

< 1000 FIT, and then minimize the area overhead. Figure 6.22 shows the reliability

of different codes for different Dthr. We also provided the case with Dthr = 0, which

means that the EG-LDPC and PG-LDPC codes are solely used for transient faults

and the permanent defects are handled with a separate ECC. Setting the limit on

the throughput and reliability, determines the values of S, scrubbing interval and C,

cluster size of memory banks.

figure 6.22 plots the reliability of the systems that satisfy the throughput loss limit

and reliability limit while achieving the minimum area overhead. The decomposed

area of these design points is shown in Table 6.4. All of the above design points are

142

for memory size of 1012 bits. For these simulation, we assume a memory unit with

the following parameters: lithographic wire pitch of 105 nm, nanowire pitch of 10 nm,

defect rate of 0.01 per memory junction, and the memory bank size of 106 bits.

figure 6.23 plots the total area per bit for different memory sizes, when the fault

rate is 10(−28). The area of the memory banks are computed following the area model

provided in [50]. The area of the supporting units (encoder, corrector, and detector)

is computed using the area model provided in section 2.1.3.3 for each of the units.

The codes (255, 175) tolerating 4 defects per memory words and (63, 37) tolerating

2 defects, are the minimum design points for EG-LDPC codes. The area overhead of

the code in the flat part of the curve is defined by multiple factors:

1. The code overhead (n/k)

2. The constant area overhead of the memory bank that decrease for larger memory

size

3. The number of accepted defective junctions per memory word, Dthr

The final area per bit shown in figure 6.23 is the combined result of the above

factors. The code overhead (n/k) is smallest for larger codes; e.g., (273, 191) has

the lowest code overhead. If all the other costs where amortized out over the large

number of memory bits we would expect that the largest code shows the lowest area

per memory bit. However, one important fact that dominates the code overhead is

the limited memory bank size. We set the memory banks size fixed at 1 Mbit, and

for a cluster of memory banks, which can be from 1 to 1000 banks per cluster. We

dedicate one corrector and one detector (figure 6.17). The area overhead of these

units are amortized over the memory bits of a cluster and is not reduced by the total

memory size increase. The only costs that are reduced as the total memory size grow

is the global encoder and its detector units that are shared among all the memory

bit.

Finally the memory core area per bit plays an important roll in the area overhead

of the system, which is greatly influenced by Dthr, the more defective junctions we can

143

tolerate per memory row, the fewer spare rows the system requires and the smaller

the area will be. This effect is visible when comparing the same codes, e.g., (255, 175)

for different Dthr, 2, 3, and 4. The combination of all of these factors results in the

curves shown in figure 6.23.

In order to understand how each part of the memory system contribute to the

final area overhead and how they change with the cluster size, we show a decomposed

area of a memory system of size 1 Mbit, which is essentially one memory bank. First

of all let us look at the memory core area per bit. The memory core area per bit is

fixed for the code and Dthr pair. It does not change with the cluster size or with the

total memory size increase. For one code the larger number of defects it can tolerate

the smaller the area of the core will be, because it can use more defective wires and

requires less wire sparing (Compare rows 3 and 5 of Table 6.5). The maximum number

of defective junctions that the smaller codes can tolerate per row is larger than the

maximum number of defective junctions of the larger codes. For our system with

memory rows of 1000 bits, a (15,7) code that tolerates 1 defect per memory word

essentially tolerates 66 errors per row, and a (255,175) that tolerates 4 defective bits,

tolerates 12 errors per row. Therefore, generally smaller codes could result in lower

area because they can tolerate more defective bits in a row. However, larger codes

have better code rates (n/k). The combination of these factors makes the memory

core using codes (63, 37) and (73, 45) and tolerating 2 defective junctions, the smallest

memory cores, (rows 3 and 4 of Table 6.5).

The second part is the area overhead due to the corrector and detector per bank

cluster. The area of the corrector and detector is amortized out over the memory bits

of one cluster. Table 6.5 shows the area of the corrector and decoder amortized over

1 Mbit-memory bank (one cluster). For larger clusters these net area per memory bit

decrease. For example for cluster of size 1000 memory banks, the per bit area of the

corrector and detector is less than 1 nm2. However, if the cluster size is fixed, the per

bit area of these units does not decrease with memory size increase.

The global encoder and its detector, are shared among the whole memory system.

Therefore, their net per bit area of these units decrease as the memory size increases.

144

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

-30 -28 -26 -24 -22 -20 -18

lo
g(

F
IT

)

log(Pf)

FIT of the Memory System (EG-LDPC)

(15,7,5) 0
(15,7,5) 1

(63,37,9) 0
(63,37,9) 1
(63,37,9) 2

(255,175,17) 0
(255,175,17) 2
(255,175,17) 3
(255,175,17) 4

(a)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

-30 -28 -26 -24 -22 -20 -18

lo
g(

F
IT

)

log(Pf)

FIT of the Memory System (PG-LDPC)

(21,11,6) 1
(21,11,6) 0

(73,45,10) 2
(73,45,10) 1
(73,45,10) 0

(273,191,18) 4
(273,191,18) 3
(273,191,18) 2
(273,191,18) 0

(b)

Figure 6.22. FIT of EG-LDPC codes for a system with 1012 memory bit, memory
bank size of 1 Gbit, system frequency of 1 GHz, and the defect rate of 1%. The curve
labels are of the form: “(n, k, d)Dthr”.

145

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 6 7 8 9 10 11 12 13 14

A
re

a
nm

 s
q.

 p
er

 b
it

log(Memory)

Area per Memory bit (EG-LDPC)

(15,7,5) 1
(63,37,9) 1
(63,37,9) 2

(255,175,17) 2
(255,175,17) 3
(255,175,17) 4

(a)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 6 7 8 9 10 11 12 13 14

A
re

a
nm

 s
q.

 p
er

 b
it

log(Memory)

Area per Memory bit (PG-LDPC)

(21,11,6) 1
(73,45,10) 1
(73,45,10) 2

(273,191,18) 2
(273,191,18) 3
(273,191,18) 4

(b)

Figure 6.23. The area of the memory system vs. the memory size. The fault rate
is Pf = 10−28, the scrubbing interval and the cluster size is set to values that sat-
isfy FIT< 1000 and throughput loss < 0.001. The curve labels ar of the format:
“(n, k, d)Dthr”.

146

T
ab

le
6.

4.
T

h
e

d
ec

om
p
os

ed
ar

ea
p
er

b
it

of
th

e
d
es

ig
n

p
oi

n
ts

se
le

ct
ed

fo
r

th
e

cu
rv

es
at

fi
gu

re
6.

22
.

T
h
e

m
em

or
y

si
ze

fo
r

th
is

d
es

ig
n
s

is
10

1
2

b
it

.
T

h
e

u
n
it

of
ar

ea
is

n
m

2
/b

it
.

C
ol

u
m

n
C

o
d
e

O
ri
gi

n
al

F
in

al
G

lo
b
al

C
or

.
D

et
.

C
D

th
r

S
T

h
r

F
IT

N
u
m

b
er

T
y
p
e,

(n
,k

,d
)

M
em

or
y

M
em

or
y

E
n
c.

+
D

et
.

U
n
it

s
U

n
it

s
(m

in
)

L
os

s

1
E

G
,(

15
,7

,5
)

62
6.

0
10

50
.0

31
.5

E
-6

0.
18

0.
03

10
0

1
10

0.
00

1
-1

.8
8

2
P

G
,(
21

,1
1,

6)
62

6.
0

10
50

.0
53

.1
E

-6
0.

34
0.

05
10

0
1

10
0.

00
1

-1
.8

8
3

E
G

,(
63

,3
7,

9)
52

3.
0

71
9.

0
7.

2E
-5

0.
27

3
0.

02
10

00
2

12
0

0.
00

08
-9

4
P

G
,(

73
,4

5,
10

)
52

3.
0

71
9.

0
21

.1
E

-4
0.

37
6

0.
02

10
00

2
12

0
0.

00
08

-9
5

E
G

,(
63

,3
7,

9)
20

50
.0

28
17

.0
7.

2E
-5

0.
27

3
0.

02
10

00
1

12
0

0.
00

08
-2

3
6

P
G

,(
73

,4
5,

10
)

20
50

.0
28

17
.0

21
.1

E
-4

0.
37

6
0.

02
10

00
1

12
0

0.
00

08
-2

3
7

E
G

,(
25

5,
17

5,
17

)
52

1.
0

74
6.

0
8.

65
E

-3
7.

36
0.

15
10

00
4

12
0

0.
00

08
-3

5
8

P
G

,(
27

3,
19

1,
18

)
52

1.
0

74
6.

0
1.

01
7E

-2
8.

96
0.

17
10

00
4

12
0

0.
00

08
-3

5
9

E
G

,(
25

5,
17

5,
17

)
74

5.
0

10
66

.0
8.

65
E

-3
7.

36
0.

15
10

00
3

12
0

0.
00

08
-4

9
10

P
G

,(
27

3,
19

1,
18

)
74

5.
0

10
66

.0
1.

01
7E

-2
8.

96
0.

17
10

00
3

12
0

0.
00

08
-4

9
11

E
G

,(
25

5,
17

5,
17

)
15

24
.0

21
80

.0
8.

65
E

-3
7.

36
0.

15
10

00
2

12
0

0.
00

08
-6

4
12

P
G

,(
27

3,
19

1,
18

)
15

24
.0

21
80

.0
1.

01
7E

-2
8.

96
0.

17
10

00
2

12
0

0.
00

08
-6

4

147

T
ab

le
6.

5.
T

h
e

d
ec

om
p
os

ed
ar

ea
p
er

b
it

of
m

em
or

y
si

ze
is

1
M

b
it

,
an

d
cl

u
st

er
si

ze
of

1.
T

h
e

u
n
it

of
ar

ea
is

n
m

2
/b

it
.

C
ol

u
m

n
C

o
d
e

F
in

al
G

lo
b
al

C
or

.
D

et
.

T
ot

al
C

D
th

r

N
u
m

b
er

T
y
p
e,

(n
,k

,d
)

M
em

or
y

E
n
c.

+
D

et
.

U
n
it

s
U

n
it

s
A

re
a

O
H

1
E

G
,(
15

,7
,5

)
10

50
.0

5.
41

4
18

.1
9

3.
9

1.
75

1
1

2
P

G
,(

21
,1

1,
6)

10
50

.0
8.

94
1

34
.5

1
5.

8
1.

82
1

1
3

E
G

,(
63

,3
7,

9)
71

9.
0

73
.8

27
3

21
.4

2.
64

1
2

4
P

G
,(
73

,4
5,

10
)

71
9.

0
14

4.
6

37
6

26
.9

3.
19

1
2

5
E

G
,(

63
,3

7,
9)

28
17

.0
73

.8
27

3
21

.4
1.

70
1

1
6

P
G

,(
73

,4
5,

10
)

28
17

.0
14

4.
6

37
6

26
.9

1.
84

1
1

7
E

G
,(
25

5,
17

5,
17

)
74

6.
0

86
93

73
60

15
3.

0
46

.9
6

1
4

8
P

G
,(
27

3,
19

1,
18

)
74

6.
0

12
32

.2
89

60
17

5.
2

57
.1

2
1

4
9

E
G

,(
25

5,
17

5,
17

)
10

66
.0

86
93

73
60

15
3.

0
33

.2
7

1
3

10
P

G
,(
27

3,
19

1,
18

)
10

66
.0

12
32

.2
89

60
17

5.
2

40
.3

8
1

3
11

E
G

,(
25

5,
17

5,
17

)
21

80
.0

86
93

73
60

15
3.

0
16

.9
9

1
2

12
P

G
,(
27

3,
19

1,
18

)
21

80
.0

12
32

.2
89

60
17

5.
2

20
.4

7
1

2

148

For large enough memory (0.1 Gbit<) these units have negligible area overhead per

bit compared to other parts of the system.

The overall area overhead per memory bit for large enough memories is dominated

mainly by the memory core area which is both the result of defect-tolerant over-

population and ECC rate. In the second order, the corrector and detector of each

cluster contributes to the area and finally the global encoder. The curves in figure 6.23

plots the total area per bit for a range of memory size, and shows how it decrease as

the memory increases and shows its final value.

6.10 Summary

In this chapter we presented a fully fault-tolerant memory system that is capable

of tolerating errors not only in the memory bits, but also in the supporting logic

including the encoder and corrector. We used Euclidean Geometry and Projective

Geometry codes. We proved that these codes are part of a new subset of ECCs

that have Fault-Secure Detectors. Using these fault-secure detectors we design a

fault-tolerant encoder and corrector, where the fault-secure detector monitors their

operation. We also presented a unified approach to tolerate permanent defects and

transient faults. This unified approach improves the area overhead. If these two

techniques were not combined then to tolerate defects, we required reliable (and

consequently lithographic scale) encoder and decoder, since we could not tolerate any

transient fault in those circuits. Accounting for all the above area overhead factors,

all the codes considered here achieve memory density of 20 to 100 Gbit/nm2, for large

enough memory (0.1 Gbits).

149

Chapter 7

Summary

The conventional defect- and fault-tolerant techniques is developed for low defect

and fault rate, where the error happens infrequently in the system (i.e., Single Event

Upset). However, if the microelectronic system is going to continue scaling down

to the level that the interconnect wires and active devices are only a few atoms

wide, then the defect and fault rate is going to be much higher and the system

would experience many more than one single error in the system. The conventional

reliability techniques do not simply scale to less reliable regime and larger system

integration. Thereby, the engineers have to redesign the reliability design paradigm.

This process has already started by constantly restricting the Design Rules of VLSI

designs from one feature size to the next feature size and it is expected that Design

Rules will become more restricted and require more regular design structure to bound

the rate of manufacturing defects [2].

In this work we have developed defect- and fault-tolerant techniques that tar-

get the reliability challenges in emerging nanoscale technologies and protect systems

against permanent defects and transient faults. To design a reliable system with

practical area overhead, we have exploited number of conventional design patterns

and developed some new patterns:

• Fine–granularity: With high fault rate the reliability must be applied to Fine–

Grained blocks to bound the area overhead require to detect or correct the

errors. When the error rate is low the system may experience few errors in

the entire system, however, when the error rate is high the system experience

150

errors in almost every small subsets. So the detection or correction techniques

most be applied to Fine–Grained blocks where the errors are not masked and

are detectable with reasonable area overhead.

• Defect pattern matching: We cannot afford discarding any nonperfect chip, since

the yield will be very low. When the defect rate is high we have to make use of

any defect free resources. The systems structure and the placement-and-routing

techniques must facilitates Matching the design on the defect free resources and

isolating the defective devices, to make use of the system despite having many

defective parts.

• Using alternative resources: If only using area to protect systems against defects

and faults, the area overhead can be impractically large. In this case we can use

other resources besides area to protect the system and bound the area. In this

work we exploit time redundancy to contain the area overhead. It is shown in

this work that error correction generally takes more area than error detection.

So to bound the area overhead, we only implement error detection with extra

circuits and then repeat the operation to correct a potential detected error. This

approach takes less area compared to the case that the errors are corrected with

extra circuits.

• Global reliability: When using one unified technique to protect the system, the

area overhead provided to protect one resource can be reused to protect other

resources as well. One example, is to use the same ECC to protect different part

of the system. This will save encoder and decoder time and area overhead to

encode/decode data from one ECC to another ECC moving from one part of the

system to another part of the system. Another example is using the same ECC

to protect against transient faults and permanent defects. With this technique

the redundancy in the code will be used more efficiently to protect both errors.

We have taken this pattern one step further: We have defined FSD-ECC, a new

subclass of ECC, that guarantees enough redundancy in the code that not only

protects the codewords but also protects the detector circuitry. Therefore, by

151

applying ECC to memory we can simply protect the supporting logic as well.

Using the above design patterns, we can tolerate high defect and fault rates with

practical area overhead. We have presented a defect tolerant scheme exploiting Fine-

Grained Reliability, Alternative Resources, and Defect Pattern Matching, that can

tolerate high permanent defect rates with acceptable area overhead. For example, we

reported an average of 30% area overhead for tolerating 10% defect rate in NanoPLA

programmable junctions.

We have designed a fault-tolerant technique, exploiting Fine-Grained Reliability

and Alternative Resources design patterns that can tolerate up to 10−7 transient fault

rate. Our fault-tolerant technique can tolerate up to 10−9 fault rate with less than

9 times area overhead. This technique can achieve close to an order of magnitude

less area overhead compared to the Majority-Multiplexing technique that is the other

fault-tolerant technique proposed for nanotechnology designs [11].

With the above two techniques we protect interconnect resources and logic cir-

cuits. To perform computation, a system needs computational units (logic circuit),

interconnect resources, and memory. In the last part of this dissertation we devel-

oped a unified defect- and fault-tolerant techniques to protect the memory, that use

single ECC to tolerate both permanent defect and transient faults. This technique is

based on the new Fault-Secure Detector capable ECCs, FSD-ECC, that guarantees

fault-secure detector without any extra logic protection. Using this technique, we

reported achieving reliable memory system, that can tolerate up to 10−18 fault rate

and achieve density of 100 Gbit/cm2.

The above techniques show that reliability in the nanotechnology systems can be

achieved with practical area overhead. Although providing reliability will be more

challenging for these technologies compared to conventional microelectronics, it will

not be the bottleneck to scaling or using emerging nanotechnology devices.

152

Chapter 8

Future Work:
Using ECC to Protect Logic
Circuit

In chapter 5 we presented a multiple-error-detection technique based on replication.

We used replication-based error-detection to keep our design general for any logic

circuit. In information and coding theory, replication is known for providing subop-

timal way of protecting information. However, this is not always true for protecting

logic circuit. For single-error detection in logic circuit there have been some works,

reporting more compact error-detection compared to replication-based technique. For

multiple-error-detection, however, there is no known approach better than replication-

and-comparison.

For single-error-detections, Tuba [73] presents a error-detection technique based

on parity-prediction that outperforms duplication-and-comparison. In his technique

the outputs of the logic circuit is partitioned into one or few parity groups, and each

parity group is protected with one parity signal (figure 8.1). If considering the output

bits as information bits of an error-correcting code, then the parity groups can be

represented as the Parity-Check matrix (H matrix) of the error-correcting code. Each

row of the H matrix corresponds to one parity group and consequently one parity-

signal. The 1’s in each row mark the output signals and the parity signal of each

parity group (figure 8.1). The number of parity groups can vary from one to the

number of outputs. When circuit has one parity signal for each output, the parity

153

o1 o1 o3 o4P1 P2o5 o6 o7 P3

1 1 1 01 00 0 0 0
0 0 0 10 11 0 0 0
0 0 0 00 00 1 1 1

H=

Figure 8.1. The parity signals are represented with P and the output signals are
represented with o. This example shows 7 output signals divided into 3 parity groups.

signals make the duplicate of the logic circuit.

The parity signals are generated with parity-prediction functions, concurrently

with the original circuit. The works presented at [73] and [70] report that for some of

the design points in the MCNC benchmark the area overhead of the parity-protected

logic is larger than the area overhead of the duplicated logic. Therefore, for those

circuits it is better to use the duplication compared to parity function.

The above works protect the circuit against single error, however, there has not

been any analysis for multiple-error-detection for general logic circuits, that can per-

form better than replication. In this chapter, we show an approach that can poten-

tially outperform replication in multiple-error-detection applications. This technique

is based on integrating ECC with the logic circuit using parity-prediction technique.

This technique is still under research, and here we show our approach, analysis, and

achievements so far.

In the rest of this chapter we show our criteria to select the right error-correcting

codes, followed by our random error-correcting code generation procedure. Then we

review the challenges to integrate the ECC with the original circuit. Finally we report

some of our preliminary results.

8.1 Code Selection Criteria

Our approach is to predict the parity signals of the code concurrently with the original

circuit and encode the output bits of the circuit with these parity bits. This is the

154

same approach used in [73] for single-error-detection. Any systematic ECC can be

used to encode the output bits with the above technique. In this section we show the

criteria to select an ECC for multiple-error-detection in logic.

Each ECC has different parameters, including Code Length, Minimum Distance,

Code Rate, and Information Bits Length. For our purpose, which is protecting the

logic circuit with ECCs, the information bits length is determined by the number of

outputs of the logic circuit. The minimum distance of the code is determined by the

maximum number of errors that need to be detected in the circuit. Lastly, the code

rate partially determines the area overhead, and therefore, will be minimized after

satisfying the code length and minimum distance. Although in coding theory, the

code rate essentially shows the overhead of the code, in logic circuit it shows only

part of the overhead. The code complexity can dominate the overall area overhead

of the ECC-integrated logic circuit, by determining the amount of logic required in

the parity signal generation. Based on the complexity of the code and the original

logic circuit, the logic implementation of the ECC-integrated circuit may have much

larger overhead than the code rate. Another substantial factor in fault-tolerant logic

design, is the checker area overhead which grows as the code complexity grows, and is

not captured by code rate. So the best ECC is the one that optimizes the minimum

distance, code rate, and code complexity.

To satisfy the above conditions, we need control over the above code parameters.

Therefore, we use random ECC generation to develop codes with desired properties.

We consider random code construction to develop multiple-error-detection technique.

We design codes with relatively low complexity, which potentially result in simple

and compact ECC-integrated circuits and compact checker. By randomly generating

codes, we have control over the code parameters, such as code distance, code rate,

and code complexity. So we can find the optimum design points between the code

rates and code complexity. For example for a fixed relative distance, lower code rate

with lower complexity may result in smaller area overhead than higher code rate with

higher complexity.

In order to minimize the area and time overhead, we use Systematic codes (sec-

155

tion 6.4.1). Systematic codes have the advantage that no decoding is necessary for

the original output bits. In this article we suggest a random technique to develop

small, low-complexity, and systematic codes that is efficient for our fault-tolerant logic

application.

8.2 Random Code Construction

In this section we construct small, low-complexity and systematic codes with random

technique, that achieves the desired code complexity, minimum code distance, and

code rate.

Each error correcting code is defined by its parity check matrix H. Figure 8.2

shows a 10× 4 parity check matrix H of code (n, k, d, c) = (10, 6, 3, 5), where n is the

code block size, k is the number of information bits, d is the code minimum distance,

and c is the column weight of the parity check matrix H; i.e., the number of ones in

each column. Each parity check matrix H, can be represented with a bipartite graph,

called Tanner graph. The Tanner graph representation of this parity-check matrix is

illustrated in figure 8.3.

In an n×m parity-check matrix H (m is the number of parity bits, m = n− k),

each row of H is a left vertex of the graph and each column is a right vertex. If

hij = 1, then there is an edge between the ith left vertex and the jth right vertex.

The right vertices are called the constraint or checker vertices, and each performs

an xor function over all the incoming edges. A code-word c = [x0, x1, ..., xn−1] is

associated with an assignment to the left vertices. The corresponding assignment to

the right vertices is the result of the product c ·HT . Therefore, an assignment to the

left vertices is a code-word if the assignment induced on the right vertices is all 0’s.

The systematic code property, as in this case, enforces the lower m vertices in the

left set to have degree of 1, which represents the identity part of the parity check

matrix in the left m columns of the matrix H. The m single-degree vertices on the

left side represent the parity check bits and the rest of the vertices on the left side

are the information (normal output) bits. There is a one-to-one assignment between

156

0 1 0 1 1 1 1 0 0 0
1 1 1 1 0 0 0 1 0 0
0 0 1 1 1 1 0 0 1 0
1 1 1 0 0 1 0 0 0 1

Figure 8.2. Parity-Check matrix of (10, 6) code.

O1 = ab+cd
O2 = ab+efg
O3 = abc
O4 = cef+deg
O4 = ace+bd

O1

O2

O3

O4

P1

P2

O5

V1 V2 V3 V4

C0 C1

V5

C2 C3

V6 V7 V8 V9V0

V1

V2

V3

V4

C0

C1

V5

C2

C3

V6

V7

V8

V9

V0

Figure 8.3. Tanner Graph presentation of the parity-check matrix of the code (10, 6)
illustrated in figure 8.2.

the parity check bit vertices on the left and the checker vertices on the right. The

information bits connecting to a checker vertex are called the parity group of the

corresponding parity check bit. By construction, the parity check bit is the parity

function of its parity group bits.

The low-complexity requirement enforces the checker vertices degree to be small

and constant. In other word it means that the parity groups are small and of the

same size. In parity check matrix H this means small and fixed number of 1’s in each

column, which is shown by c in the above code representation, and also shows the

checker vertices degree. The limited degree correspond to smaller parity groups and

less complicated parity signals corresponding to those groups.

In this section we generate code with the desired specifications (i.e., (n, k, d, c))

from a randomly generated bipartite graph. We start with an empty bipartite graph

with n left vertices and m = n − k right vertices. Each of the lower m left vertices

157

is connected to a separate right vertex, to generate the one-to-one mapping shown in

figure 8.3. Then we randomly add edges to the graph, from the top k left vertices to

the right vertices following the limitations on each vertex degree. We do so until all

the right vertices has degree c, and all the top k left vertices have degree v, such that

bm× c/nc ≤ v ≤ dm× c/ne. (8.1)

It is important to note that due to the limitation on the vertices degrees, random edge

selection will not always generate the desired graph; so in the middle of the graph

construction, the graph may be discarded and the construction process restarts. Once

the graph with the desired specification is generated it will be examined for the code

minimum distance.

In fact we examine our generated codes for the FSD-ECC property, introduced in

section 6.4 to protect errors in the checker circuit as well as the main logic circuit. So

for each randomly generated graph, we check all the possible error vector of weight

e < d. The error vectors are assigned to the left vertices of the graph. The code

is FSD-ECC with minimum distance d or above if any error vector of weight e has

syndrome vector of weight at least d − e. It is important to note that errors solely

in the parity signals are exempt from this property. If errors in the parity signals

are masked and not detected, since the code is systematic, the output bits are still

correct, and the masking only prevents a false positive detection.

Once the code with desired rate, distance and complexity is generated, it will be

integrated into the circuit logic to protect the normal output bits. The parity check

bits are appended to the normal output bits to generate the code.

In the next section we show how to generate the parity check bits in two-level

logic concurrently with the normal function of the circuit and how to synthesis logic

to optimize area overhead.

158

O1 = ab+cd
O2 = bcd
O3 = abc
O4 = bc+cd
O5 = acd

O1

O2

O3

O4

P1

P2

O5

V1 V2 V3 V4

C0 C1

V5

C2 C3

V6 V7 V8 V9V0

V1

V2

V3

V4

C0

C1

V5

C2

C3

V6

V7

V8

V9

V0

P1=O1 xor O2 xor O3
P2=O3 xor O4 xor O5

P1 = a b c + a c d + b c d
P2 = a b c + a c d + b c d

(a)

O1 = ab+cd
O2 = bcd
O3 = abc
O4 = bc+cd
O5 = acd

O1

O2

O3

O4

P1

P2

O5

V1 V2 V3 V4

C0 C1

V5

C2 C3

V6 V7 V8 V9V0

V1

V2

V3

V4

C0

C1

V5

C2

C3

V6

V7

V8

V9

V0

P1=O1 xor O2 xor O3
P2=O3 xor O4 xor O5

P1 = a b c + a c d + b c d
P2 = a b c + a c d + b c d

(b)

O1 = ab+cd
O2 = bcd
O3 = abc
O4 = bc+cd
O5 = acd

O1

O2

O3

O4

P1

P2

O5

V1 V2 V3 V4

C0 C1

V5

C2 C3

V6 V7 V8 V9V0

V1

V2

V3

V4

C0

C1

V5

C2

C3

V6

V7

V8

V9

V0

P1=O1 xor O2 xor O3
P2=O3 xor O4 xor O5

P1 = a b c + a c d + b c d
P2 = a b c + a c d + b c d

(c)

O1 = ab+cd
O2 = bcd
O3 = abc
O4 = bc+cd
O5 = acd

O1

O2

O3

O4

P1

P2

O5

V1 V2 V3 V4

C0 C1

V5

C2 C3

V6 V7 V8 V9V0

V1

V2

V3

V4

C0

C1

V5

C2

C3

V6

V7

V8

V9

V0

P1=O1 xor O2 xor O3
P2=O3 xor O4 xor O5

P1 = a b c + a c d + b c d
P2 = a b c + a c d + b c d

(d)

Figure 8.4. (a) The error-correcting code structure, showing two parity signals for
five information bits. (b) The function of the logic circuit. (c) The parity function.
(d) The two-level logic implementation of the parity signals.

8.3 Integrating ECC to Logic

8.3.1 Parity Check Bit Generation

To append the parity check bits to the normal output bits, the parity check functions

are calculated independantly by the primary inputs of the circuit and are implemented

in two-level logic (sum of product) similar to the normal output bits.

figure 8.4 shows the steps to generate the parity functions. Figure 8.4(a) shows the

structure of the two parity groups. Figure 8.4(b) shows an example for the outputs

of a logic circuit. The parity signals are the xor of the output signals in their parity

groups. Figure 8.4(c) shows how these parity functions are generated. The parity

signals are synthesized in two-level logic as represented in figure 8.4(d) generated

concurrently from the original inputs.

159

8.3.2 Logic Synthesis and Area Optimization Challenge

The area of the circuit can usually be reduced substantially from the canonical sum

of min-term forms. There are efficient logic minimization tools to reduce the area of

the two-level logic circuit, such as espresso [85]. There are two main parts in two-level

logic optimization:

1. The min-terms of each output bit can be combined to form a product-term,

following the boolean logic rules, to reduce the number of and functions. This

is 2-level single-output logic function minimization.

2. Similar product-terms between different outputs can be shared and replaced

by one product-term, to further reduce the number of product-terms. This is

called product-term sharing.

However, the area of the concurrent error detecting circuit developed above can

only be minimized using the first optimization step. The logic of each outputs or

parity signals is optimized separately with no logic sharing between the signals. If

logic sharing was allowed, single error in product term can propagate into multiple

output and parity signals and may become masked. Assume we are using a code with

minimum distance d, which detects d− 1 errors in the output. In order to make sure

that any combination of d−1 faults in the logic circuit (including the product-terms)

is detected, we have to guarantee that any combination of d−1 faults in the logic will

result in a detectable error pattern in the output and parity check bits. When there

is no logic sharing, d−1 errors in the product-terms will propagate into at most d−1

erroneous outputs, which can be detected with the code with minimum distance of

d. In the presence of product-term logic sharing, d − 1 errors in the product-terms

may propagate into more erroneous outputs. For example when single product-term

is shared between two outputs, if the product-term is erroneous, it may cause both

of the output signals be erroneous. Therefore, one fault corrupts two output bits.

Similarly d − 1 faults can corrupt more than d − 1 output bits, and since our code

could at most detect d−1 errors, then it cannot detect this error pattern, although it

160

Table 8.1. p-term reduction using logic sharing.
Design Name 5xp1 9sym alu4 apex1 b12 clip duke2 ex1010 inc misex1

Sharing 65 86 575 206 43 120 86 446 30 12
No Sharing 74 86 631 902 53 148 200 452 44 32

was originated from d− 1 errors. Therefore, no logic (product-terms) can be shared

among the outputs.

The restriction on logic-sharing can greatly increase the area overhead. Table 8.1

shows some designs from MCNC benchmark, with both logic sharing and no logic

sharing optimization. You can see for a design like apex1 sharing can reduce the

number of p-terms by more than factor of 4.3. Therefore, one of the challenges in

fault-tolerant logic is to overcome the area overhead of the no-logic sharing. For

replication in contrast, each copy can be optimized exploiting logic sharing, since the

error is detected comparing the copies. To tolerate d−1 errors as the above example,

the system needs d replication copies. With d replication copies any combination of

d − 1 or smaller errors can be detected, and there is no restriction on logic sharing

among the outputs of each circuit copy. Since logic sharing is acceptable for replication

and is not acceptable for ECC-based technique, achieving an area improvement with

the ECC-based techniques compared to replication technique is more challenging.

8.3.3 Output Permutation

The logic complexity of the parity check bits, can vary with the assignments of the

physical outputs to the information bits of the ECC. Each mapping determines the

output bits belonging to each parity groups, and therefore, impacts the parity func-

tion complexity. Here, for each ECC and logic circuit, we map the physical output

bits to the information bits with random permutation, and perform the synthesis.

We repeated this procedure for large number of permutations, and selected the per-

mutation with minimum area.

Table 8.2 shows a 4-bit alu protected with 10 bits ECC parity bits with minimum

distances of 3, 4, and 5. The reported area is the minimum area of 100 random output

permutation. The improvement achieved by changing the mapping of the physical

161

outputs to the information bits can be very large. In the above simulation the ratio

between the maximum and the minimum area of the ECC-integrated circuit can be

more than 1.6. Compared to the number of all the possible permutations of output

bits, 100 is small number. For example in this case an alu with 8 outputs, have

8! = 40, 320 permutations. So one potential path for area improvement would be to

search this area more efficiently and find closer to optimum output permutation.

8.4 Preliminary Results

We randomly generated ECC with different (n, k, d, c), with the procedure explained

in section 8.2, and integrated the codes with the circuits. Table 8.2 illustrates the

number of p-terms of a small alu that is protected with ECCs of minimum distances

of 3, 4, and 5. The alu has 8 outputs, however, the selected codes have 10 information

bits. Larger number of information bits gives us the opportunity to reduce the code

complexity, by reducing the parity group size.

The table shows the decomposed area of the design in the number of p-terms. The

“Org. Logic” column shows the original number of p-terms. The third column shows

the number of p-terms in ECC-integrated logic. This is the minimum number, over

100 output permutations. The next column is the number of pterms in the replication

case, which is d times the original logic. The following two columns are replication

checkers and ECC-based checkers. Note that the replication checker is replicated d

times to have the same reliability as the logic (see section 5.1.1 for more details). The

ECC checker however, does not need to be replicated because the checker is fault

secure as defined in section 6.4. The total ECC-based design (column 9) is smaller

than the replication-based design in the first and second row, for which tolerates 2

and 3 errors respectively. However, the difference is very minimal. In the last row

which can tolerate 4 errors, the result is reversed, replication-based design is slightly

more compact than the ECC-based design. The last column, shows the area of the

ECC-integrated circuit and the checker area, when the circuit is synthesized with

no restriction on logic sharing. You can see that logic sharing can reduce the area

162

Table 8.2. Decomposed area of ECC-integrated circuit.
(n, k, d, c) Org. ECC d× Rep. ECC Rep. ECC Shr.

Logic Logic Logic Checker Checker Total Total
(20,10,3,4) 575 1686 1725 240 120 1965 1806 1348
(25,10,4,5) 575 2269 2300 480 240 2780 2509 1502
(28,10,5,7) 575 3353 2875 800 432 3675 3785 2395

overhead by up to factor of 1.6. This suggests there is great room for improvement.

The question is that “How much of the logic sharing we can exploit? Is it possible to

exploit some logic sharing, or is no logic sharing acceptable?”

One idea is to have larger minimum distance code and allow limited logic sharing.

For example, let e be the number of errors that a circuit must be able to detect. Then

the circuit must use ECC with minimum distance d = e + 1 and no logic sharing.

Or the circuit can use ECC with minimum distance d = e × f + 1, and allow logic

sharing with restriction on p-term fan out to f . This way each error in a p-term can

fan out to at most f output. Therefore, a combination of e errors in the circuit can

at most corrupt e× f outputs, and the code can still detect these many errors since

d = e× f + 1. We have not performed any simulation and logic synthesis using this

approach, it may result some improvement.

8.5 Summary

In this section we presented some of our ongoing research to generate multiple-error-

detection for general purpose logic circuit that can outperform the replication with

comparison. In our approach we construct random ECC with lightweight parity

check bits, and integrate the codes with the logic circuit. The main challenging issue

is to integrate the ECC with logic circuit and bound the area overhead, that caused

by restriction on logic-sharing. Our preliminary results, show that our ECC-based

technique and replication-based technique consumes almost the same amount of area

overhead.

163

Bibliography

[1] “International Technology Roadmap for Semiconductors,” <http://www.itrs.net/

Links/2005ITRS/Home2005.htm>, 2005.

[2] R. Sinnott, A. Asenov, D. Berry, D. Cumming, S. Furber, C. Millar, A. Murray,

S. Pickles, S. Roy, A. Tyrrell, and M. Zwolinksi, “Meeting the Design Challenges

of Nano-CMOS Electronics: An Introduction to an Upcoming EPSRC Pilot Project,”

in Proceedings of the UK e-Science All Hands Meeting, Nottingham, UK, September

2006.

[3] B. P. Wong, A. Mittal, Y. Cao, and G. Starr, Nano-CMOS Circuit and Physical Design.

John Wiley and Sons, Inc., 2005.

[4] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A.

Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale Molecular-Switch Crossbar

Circuits,” Nanotechnology, vol. 14, pp. 462–468, 2003.

[5] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber, “Logic Gates

and Computation from Assembled Nanowire Building Blocks,” Science, vol. 294, pp.

1313–1317, November 9 2001.

[6] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai, “Impact of CMOS

Process Scaling and SOI on the Soft Error Rates of Logic Processes,” in Proceedings

of Symposium on VLSI Digest of Technology Papers, 2001, pp. 73–74.

[7] B. Keeth and R. J. Baker, DRAM Circuit Design: A Tutorial, ser. Microelectronic

Systems. IEEE Press, 2001.

[8] S. E. Schuster, “Multiple Word/Bit Line Redundancy for Semiconductor Memories,”

IEEE Journal of Solid-State Circuits, vol. 13, no. 5, pp. 698–703, October 1978.

164

http://www.itrs.net/Links/2005ITRS/Home2005.htm
http://www.itrs.net/Links/2005ITRS/Home2005.htm

[9] C. Collier, G. Mattersteig, E. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo,

J. Stoddart, and J. Heath, “A [2]Catenane-Based Solid State Reconfigurable Switch,”

Science, vol. 289, pp. 1172–1175, 2000.

[10] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, “Car-

bon Nanotube Based Nonvolatile Random Access Memory for Molecular Computing,”

Science, vol. 289, pp. 94–97, 2000.

[11] S. Roy and V. Beiu, “Majority Multiplexing–Economical Redundant Fault-Tolerant

Design for Nanoarchitectures,” IEEE Transactions on Nanotechnology, vol. 4, no. 4,

pp. 441–451, 2005.

[12] H. Naeimi and A. DeHon, “Fault Secure Encoder and Decoder for Memory Applica-

tions,” September 2007, pp. 409–417.

[13] A. DeHon, “Nanowire-Based Programmable Architectures,” vol. 1, no. 2, pp. 109–162,

2005.

[14] A. DeHon, P. Lincoln, and J. Savage, “Stochastic Assembly of Sublithographic

Nanoscale Interfaces,” vol. 2, no. 3, pp. 165–174, 2003.

[15] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed Assembly of One-Dimensional

Nanostructures into Functional Networks,” Science, vol. 291, pp. 630–633, January 26

2001.

[16] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A.

Nielsen, J. F. Stoddart, D. L. Olynick, and E. Anderson, “Nanoscale Molecular-Switch

Devices Fabricated by Imprint Lithography,” Applied Physics Letters, vol. 82, no. 10,

pp. 1610–1612, 2003.

[17] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On latching probability of

particle induced transients incombinational networks,” in International Symposium on

Fault-Tolerant Computing, 1994, pp. 340–349.

[18] J. Patel, P. Hazucha, and T. Karnik, “Characterization of Soft Errors Caused by Single

Event Upsets in CMOS Processes,” IEEE Transactions on Dependable and Secure

Computing, vol. 1, no. 2, pp. 128–143, 2004.

165

http://ic.ese.upenn.edu/abstracts/ft_memory_dft2007.html
http://ic.ese.upenn.edu/abstracts/ft_memory_dft2007.html
http://ic.ese.upenn.edu/abstracts/nanowirebased_jetc2005.html
http://ic.ese.upenn.edu/abstracts/nanodecode_tnano2003.html
http://ic.ese.upenn.edu/abstracts/nanodecode_tnano2003.html

[19] J. R. Lamarsh and A. J. Baratta, Introduction to Nuclear Engineering. Prentice Hall,

1999.

[20] P. J. Griffin, T. F. Luera, F. W. Sexton, P. J. Cooper, S. G. Karr, G. L. Hash, and

E. Fuller, “The role of thermal and fission neutrons in reactor neutron-inducedupsets

in commercial SRAMs,” IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp.

2079–2086, 1997.

[21] R. C. Baumann and E. B. Smith, “Neutron-induced boron fission as a major source of

soft errors indeep submicron SRAM devices,” in IEEE International Reliability Physics

Symposium, 2000, pp. 152–1257.

[22] J. F. Ziegler, “Terrestrial cosmic rays and soft errors,” IBM Journal of Research and

Development, vol. 40, no. 1, pp. 19–39, 1996.

[23] J. Kim and L. Kish, “Error Rate In Current-Controlled Logic Processors With Shot

Noise,” Fluctuation and Noise Letters, vol. 4, no. 1, pp. 83–86, 2004.

[24] S. O. Rice, “Mathematical Analysis of Random Noise,” Bell System Technical Journal,

vol. 24, pp. 46–156, 1945.

[25] R. E. Lyons and W. Vandekulk, “The Use of Triple-Modular Redundancy to Improve

Computer Reliability,” IBM Journalof Research Development, vol. 6, no. 2, p. 200,

1962.

[26] N. S. Bowen and D. K. Pradham, “Processor- and memory-based checkpoint and roll-

back recovery,” Computer, vol. 26, pp. 22–31, February 1993.

[27] G.-M. Chiu and C.-R. Young, “Efficient rollback-recovery technique in distributed

computing systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 7,

pp. 565–577, June 1996.

[28] D. K. Pradhan and N. H. Vaidya, “Roll-forward and rollback recovery: performance-

reliability trade-off,” IEEE Transactions on Computers, vol. 46, pp. 372–378, March

1997.

166

[29] J. V. Neumann, “Probabilistic Logic and the Synthesis of Reliable Organisms from

Unreliable Components,” in Automata Studies, C. Shannon and J. McCarthy, Eds.

Princeton University Press, 1956.

[30] A. Sadek, K. Nikolić, and M. Forshaw, “Parallel information and computation with

restitution for noise-tolerant nanoscale logic networs,” Nanotechnology, vol. 15, pp.

192–210, 2003.

[31] S. Roy and V. Beiu, “Majority Multiplexing–Economical Redundant Fault-Tolerant

Design for Nanoarchitectures,” IEEE Transaction on Nanotechnology, vol. 4, pp. 441–

451, 2004.

[32] K. Nikolić, A. Sadek, and M. Forshaw, “Fault-tolerant techinques for nanocomputers,”

Nanotechnology, vol. 13, pp. 357–362, 2002.

[33] A. DeHon, “Design of Programmable Interconnect for Sublithographic Programmable

Logic Arrays,” February 2005, pp. 127–137.

[34] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, “Diameter-

Controlled Synthesis of Single Crystal Silicon Nanowires,” Applied Physics Letters,

vol. 78, no. 15, pp. 2214–2216, 2001.

[35] H. D. A. Javey, “Regular Arrays of 2 nm Metal Nanoparticles for Deterministic Syn-

thesis of Nanomaterials,” Journal of the American Chemical Society, vol. 127, pp.

11 942–11 943, 2005.

[36] A. M. Morales and C. M. Lieber, “A Laser Ablation Method for Synthesis of Crystalline

Semiconductor Nanowires,” Science, vol. 279, pp. 208–211, 1998.

[37] Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,”

Chemistry of Materials, vol. 12, pp. 605–607, 2000.

[38] Y. Tan, X. Dai, Y. Li, and D. Zhu, “Preparation of Gold, Platinum, Palladium and

Silver Nanoparticles by the Reduction of their Salts with a Weak Reductant–Potassium

Bitartrate,” Journal of Material Chemistry, vol. 13, pp. 1069–1075, 2003.

[39] D. Whang, S. Jin, and C. M. Lieber, “Nanolithography Using Hierarchically Assembled

Nanowire Masks,” Nanoletters, vol. 3, no. 7, pp. 951–954, July 9 2003.

167

http://ic.ese.upenn.edu/abstracts/inanopla_fpga2005.html
http://ic.ese.upenn.edu/abstracts/inanopla_fpga2005.html
http://pubs.acs.org/cgi-bin/article.cgi/cmatex/2000/12/i03/pdf/cm9907514.pdf

[40] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-

Nanometer Resolution,” Science, vol. 272, pp. 85–87, 1996.

[41] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and

J. R. Heath, “Ultrahigh-Density Nanowire Lattices and Circuits,” Science, vol. 300,

pp. 112–115, April 4 2003.

[42] C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires,” Physics Today, pp.

22–28, May 1999.

[43] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon

Nanowire Field Effect Transistors,” Nanoletters, vol. 3, no. 2, pp. 149–152, 2003.

[44] A. DeHon, “Array-Based Architecture for FET-based, Nanoscale Electronics,” IEEE

Journal of Nanotechnology, vol. 2, no. 1, pp. 23–32, March 2003.

[45] C. L. Brown, U. Jonas, J. A. Preece, H. Ringsdorf, M. Seitz, and J. F. Stoddart, “In-

troduction of [2]Catenanes into Langmuir Films and Langmuir-Blodgett Multilayers.

A Possible Strategy for Molecular Information Storage Materials,” Langmuir, vol. 16,

no. 4, pp. 1924–1930, 2000.

[46] B. Gojman, E. Rachlin, and J. E. Savage, “Decoding of Stochastically Assembled

Nanoarrays,” in Proceedings of the 2004 International Symposium on VLSI, February

2004.

[47] A. DeHon, “Law of Large Numbers System Design,” in Nano, Quantum and Molecular

Computing: Implications to High Level Design and Validation, S. K. Shukla and R. I.

Bahar, Eds. Boston: Kluwer Academic Publishers, 2004, ch. 7, pp. 213–241.

[48] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FP-

GAs. 101 Philip Drive, Assinippi Park, Norwell, Massachusetts, 02061 USA: Kluwer

Academic Publishers, 1999.

[49] A. DeHon, S. C. Goldstein, P. J. Kuekes, and P. Lincoln, “Non-Photolithographic

Nanoscale Memory Density Prospects,” IEEE Journal of Nanotechnology, vol. 4, no. 2,

pp. 215–228, 2005.

168

http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2003/3/i02/abs/nl025875l.html
http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2003/3/i02/abs/nl025875l.html
http://ic.ese.upenn.edu/abstracts/nanoarray_tnano2003.html
http://ic.ese.upenn.edu/abstracts/nanomem_tnano2005.html
http://ic.ese.upenn.edu/abstracts/nanomem_tnano2005.html

[50] A. DeHon, “Deterministic Addressing of Nanoscale Devices Assembled at Sublitho-

graphic Pitches,” IEEE Journal of Nanotechnology, vol. 4, no. 6, pp. 681–687, 2005.

[51] A. DeHon and H. Naeimi, “Deterministic addressing of nanoscale devices assembled at

sublithographic pitches,” US Patent Application 7242601, 2007.

[52] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A Defect-Tolerant

Computer Architecture: Opportunities for Nanotechnology,” Science, vol. 280, no.

5370, pp. 1716–1721, June 12 1998.

[53] Y. Luo, P. Collier, J. O. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R.

Tseng, T. Yamamoto, J. F. Stoddart, and J. R. Heath, “Two-Dimensional Molecular

Electronics Circuits,” ChemPhysChem, vol. 3, no. 6, pp. 519–525, 2002.

[54] S. Williams and P. Kuekes, “Demultiplexer for a Molecular Wire Crossbar Network,”

United States Patent Number: 6,256,767, July 3 2001.

[55] S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Molecular

Electronics,” in Proceedings of the International Symposium on Computer Architecture,

June 2001, pp. 178–189.

[56] S. C. Goldstein and D. Rosewater, “Digital Logic Using Molecular Electronics,” in

ISSCC Digest of Technical Papers. IEEE, February 2002, pp. 204–205.

[57] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like Logic in Defective, Nanoscale

Crossbars,” Nanotechnology, vol. 15, pp. 881–891, June 2004.

[58] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a Reconfigurable Architecture

for Hybrid Digital Circuits with Two-Terminal Nanodevices,” Nanotechnology, vol. 16,

no. 6, pp. 888–900, June 2005.

[59] J. Huang, M. Tahoori, and F. Lombardi, “Routability and Fault Tolerance of FPGA

Interconnect Architectures,” in Proceedings of the International Test Conference, 2004.

[60] A. Yu and G. Lemieux, “Defect-Tolerant FPGA Switch Block and Connection Block

with Fine-Grain Redundancy for Yield Enhancement,” in International Conference on

Field-Programmable Logic and Applications, Tampere, Finland, 2005, pp. 255–262.

169

http://ic.ese.upenn.edu/abstracts/acorrect_tnano2005.html
http://ic.ese.upenn.edu/abstracts/acorrect_tnano2005.html
http://www.cs.cmu.edu/~seth/papers/isca01.pdf
http://www.cs.cmu.edu/~seth/papers/isca01.pdf

[61] D. Mark and J. Fan, “Localizing open interconnect defects using targeted routing in

FPGAs,” in Proceedings of International Test Conference, 2004, pp. 627–634.

[62] W.-J. Huang, S. Mitra, and E. J. McCluskey, “Fast Run-Time Fault Location in De-

pendable FPGA-Based Applications,” in Proceedings of the IEEE International Sym-

posium on Defect and Fault Tolerance in VLSI Systems. IEEE Computer Society,

2001, p. 206.

[63] W.-J. Huang and E. J. McCluskey, “Column-Based Precompiled Configuration Tech-

niques for FPGA,” FCCM, pp. 137–146, 2001.

[64] A. DeHon and H. Naeimi, “Seven Strategies for Tolerating Highly Defective Fabrica-

tion,” vol. 22, no. 4, pp. 306–315, July–August 2005.

[65] H. Naeimi and A. DeHon, “A Greedy Algorithm for Tolerating Defective Crosspoints

in NanoPLA Design,” in ICFPT. IEEE, December 2004, pp. 49–56.

[66] G. Krishnan, “Flexibility with EasyPath FPGAs,” Xcell Journal, vol. 0, no. 4, pp.

96–98, 2005.

[67] D. Chen, J. Cong, M. Ercegovac, and Z. Huang, “Performance-Driven Mapping for

CPLD Architectures,” TRCAD, vol. 22, no. 10, pp. 1424–1431, October 2003.

[68] V. Betz and J. Rose, “FPGA Place-and-Route Challenge,” <http://www.eecg.toronto.

edu/∼vaughn/challenge/challenge.html>, 1999.

[69] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Efficiently Supporting Fault-

Tolerance in FPGAs,” in Proceedings of the International Symposium on Field-

Programmable Gate Arrays, February 1998, pp. 105–115.

[70] S. Mitra and E. J. McCluskey, “Which Concurrent Error Detection Scheme to Choose?”

in Proceedings of the International Test Conference, 2000, pp. 985–994.

[71] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the

effect of technology trends on the soft error rate of combinational logic,” in Proceedings

of International Conference on Dependable Systems and Networks, June 2002, pp. 389–

398.

170

http://ic.ese.upenn.edu/abstracts/seven_strategies_ieeedt2005.html
http://ic.ese.upenn.edu/abstracts/seven_strategies_ieeedt2005.html
http://ic.ese.upenn.edu/abstracts/xpoint_defect_fpt2004.html
http://ic.ese.upenn.edu/abstracts/xpoint_defect_fpt2004.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://doi.acm.org/10.1145/275107.275125
http://doi.acm.org/10.1145/275107.275125

[72] B. S. Landman and R. L. Russo, “On Pin Versus Block Relationship for Partitions of

Logic Circuits,” IEEE Transactions on Computers, vol. 20, pp. 1469–1479, 1971.

[73] N. A. Tuba and E. J. McCluskey, “Logic Synthesis of Multilevel Circuits with Con-

current Error Detection,” IEEE Transaction On Computer-Aided Design of Integrated

Circuit and Systems, vol. 16, no. 7, 1997.

[74] H. Naeimi and A. DeHon, “Fault Tolerant Nano-Memory with Fault Secure Encoder

and Decoder,” in International Conference on Nano-Networks, September 2007.

[75] S. J. Piestrak, A. Dandache, and F. Monteiro, “Designing fault-secure parallel encoders

for systematic linear error correcting codes,” IEEE Transactions on Reliability, vol. 52,

no. 4, pp. 492–500, 2003.

[76] G. C. Cardarilli, “Concurrent Error Detection in Reed-Solomon Encoders and De-

coders,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15,

pp. 842–826, 2007.

[77] A. Saleh, J. Serrano, and J. Patel, “Reliability of Scrubbing Recovery-Techniques for

Memory Systems,” IEEE Transaction on Reliability, vol. 39, no. 1, pp. 114–122, 1996.

[78] R. J. McEliece, The Theory of Information and Coding. Cambridge University Press,

2002.

[79] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Prentice Hall, 2004.

[80] H. Tang, J. Xu, S. Lin, and K. A. S. Abdel-Ghaffar, “Codes on Finite Geometries,”

IEEE Transaction on Information Theory, vol. 51, no. 2, pp. 572–596, 2005.

[81] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-Density Parity-Check Codes Based on Fi-

nite Geometries: A Rediscovery and New Results,” IEEE Transaction on Information

Theory, vol. 47, no. 7, pp. 2711–2736, 2001.

[82] A. DeHon and M. J. Wilson, “Nanowire-Based Sublithographic Programmable Logic

Arrays,” February 2004, pp. 123–132.

[83] D. E. Knuth, The Art of Computer Programming, 2nd ed. Addison Wesley, 2000.

171

http://ic.ese.upenn.edu/abstracts/ft_nanomemory_nanonets2007.html
http://ic.ese.upenn.edu/abstracts/ft_nanomemory_nanonets2007.html
http://ic.ese.upenn.edu/abstracts/nanopla_fpga2004.html
http://ic.ese.upenn.edu/abstracts/nanopla_fpga2004.html

[84] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon

Nanowires,” Journal of Physical Chemistry B, vol. 104, no. 22, pp. 5213–5216, June 8

2000.

[85] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic

Minimization Algorithms for VLSI Synthesis. Norwell, MA: Kluwer Academic Pub-

lishers, 1984.

172

	Acknowledgements
	Abstract
	Introduction
	Defect-Tolerant Approaches
	Fault-Tolerant Approaches

	Background
	Reliability in Nanoscale Designs
	Permanent Defects
	Transient Faults
	High-Energy Particles
	Shot Noise

	Related Reliable Designs
	Defect-Tolerant Works
	Fault-Tolerant Works
	Majority Multiplexing for Nanotechnology Designs

	Substrates
	Wires
	Nanowires
	Nanotubes

	Field-Effect Controllable Cross-Point
	Programmable Cross-Point

	NanoPLA
	Programmable Crossbar Array
	Restoration and Inversion Array
	Lithographic to Sublithographic Decoder
	Nanowire Codes

	Architecture

	Nanomemory Architectures
	More Nanotechnology-Based Architecture

	Cost of Ignorance and Cost of Knowledge
	Cost of Ignorance in Interconnect
	Ignorant-Based Interconnect Defect-Tolerant Scheme
	Knowledge-Based Interconnect Defect-Tolerant Scheme

	Cost of Ignorance in Logic
	Cost of Knowledge
	NanoPLA Test and Defect Localization

	Summary

	Permanent Defect-Tolerant Design Using Reconfiguration
	Tolerating Defective Wires
	Tolerating Defective Cross-Points
	Algorithms
	Fanin Bounding
	Guaranteeing Sparseness during Mapping
	Interconnect Nanowire Integration with Logic Resources

	Experimental Results
	NanoPLA Block Sparing
	Summary

	Transient Fault-Tolerant Design with Rollback Technique
	Design Structure
	Detection Block
	Rollback Block
	Streaming Buffer
	Reliable Buffered Interconnect

	Block Size

	NanoPLA Implementation
	Detection and Rollback Block
	Buffer Connection

	Reliability and Area Analysis
	Error Probability of a Detection Block
	Undetected Error Probability of an RB Block
	Buffered Connection Reliability
	Undetected Error Probability of the Complete System
	Redundancy Analysis

	Simulation and Comparison
	Area and Throughput Simulation Results

	Summary

	Defect and Fault-Tolerant Nanomemory Design
	Introduction and Motivation
	Related Works
	System Overview
	ECCs with Fault Secure Detector
	Error-Correcting Code Reviews
	FSD-ECC Definition

	FSD-ECC Example: Euclidean Geometry and Projective Geometry Codes
	Euclidean Geometry Code Review
	Projective Geometry Code Review
	FSD-ECC Proof for EG-LDPC and PG-LDPC

	Design Structure
	Fault Secure Detector
	Encoder
	Corrector
	Majority Implementation

	Banked Memory
	Nanoscale Demultiplexer

	Reliability Analysis
	Analysis
	The Impact of Providing Reliability for Supporting Logic

	Tolerating Permanent Defect in Memory Cells
	Area and Performance Analysis and Results
	Summary

	Summary
	Future Work: Using ECC to Protect Logic Circuit
	Code Selection Criteria
	Random Code Construction
	Integrating ECC to Logic
	Parity Check Bit Generation
	Logic Synthesis and Area Optimization Challenge
	Output Permutation

	Preliminary Results
	Summary

	Bibliography

