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Theorem: Nothing is truly complicated. The mark of
true intelligence is the ability to see the

simphicity of all real things.

My only hope is that this thesis makes a difference.
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ROBUST LOOPSHAPING
FOR PROCESS CONTROL

Richard Dean Braatz

Abstract

Strong trends in chemical engineering and plant operation have made the control
of processes increasingly difficult and have driven the process industry’s demand for
improved control techniques. Improved control leads to savings in resources, smaller
downtimes, improved safety, and reduced pollution.

Though the need for improved process control is clear, advanced control method-
ologies have had only limited acceptance and application in industrial practice. The
reason for this gap between control theory and practice is that existing control
methodologies do not adequately address all of the following control system require-

ments and problems assoctated with control design:

o The controller must be insensitive to plant/model mismatch, and perform well

under unmeasured or poorly modeled disturbances.

The controlled system must perform well under state or actuator constraints.
e The controlled system must be safe, reliable, and easy to maintain.
e Controllers are commonly required to be decentralized.

e Actuators and sensors must be selected before the controller can be designed.

Inputs and outputs must be paired before the design of a decentralized con-

troller.

A framework is presented to address these control requirements/problems in a general,
unified manner. The approach will be demonstrated on adhesive coating processes

and distillation columns.
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Chapter 1

Introduction

Issues in Chemical Process Control Leaders from industry, government, and
academia meet every few years [21] to critique and assess the current status and future
needs in the field of process control. At each of these meetings, participants reaffirm
that advanced process control methodologies have had only limited acceptance and
application in industrial practice. The reason for this gap between control theory and
practice is that existing control methodologies do not adequately address all of the

following control system requirements and problems associated with control design:

1. The controller must be insensitive to plant/model mismatch, and perform well

under unmeasured or poorly modeled disturbances.
2. The controlled system must perform well under state or actuator constraints.
3. The controlled system must be safe, reliable, and easy to maintain.
4. Controllers are commonly required to be decentralized.
5. Actuators and sensors must be selected before the controller can be designed.

6. Inputs and outputs must be paired before the design of a decentralized con-

troller.



Researchers in the 1940s developed methods for single-input single-output plants
to design controllers to be insensitive to plant/model mismatch and perform well
under unmeasured or poorly modeled disturbances [7]. However, the extension of
these results to multivariable systems was found not to be straightforward. “Optimal”
control theory (e.g., Linear Quadratic Gaussian control) developed during the 1960s
could readily handle multivariable systems. However, it was shown in the 1970s that
optimal controllers can be arbitrarily sensitive to plant/model mismatch—a small
perturbation in the model can lead to poor performance or even instability when the
controller is applied to the real system.

This demonstrated the need to account for model uncertainty in the controller
design procedure, i.e., the controller must be robust. An effective framework for
analyzing robustness in multivariable systems was not developed until the 1980s. A
new function, y, was introduced as a nonconservative measure for system robustness.
A synthesis method for robust controllers soon followed (referred to as DK-iteration
or u-synthesis) and was applied to design controllers for a large number of academic
case studies such as high purity distillation columns [106], CSTRs [76], and packed
bed reactors [116].

Though a framework for robustness analysis and synthesis is available, and the
methods have been applied by academicians to various processes, industrial appli-
cations have not been forthcoming. This is because the other important practical
process control considerations (2-6) must also be addressed. This thesis presents a
framework to address these control requirements/problems in a general, unified man-

ner.

Thesis Overview The structured singular value framework which is used to an-
alyze the robustness of uncertain systems is summarized. The synthesis technique

proposed by Doyle in the early 1980s [30] is applied to a simple mass-spring exam-



ple, both to familiarize the reader with the framework, and to illustrate important
practical control considerations which are not addressed by the design technique.

Next the detailed modeling, identification, and control for an industrial scale ad-
hesive coater is presented. Because the dynamics and interactions for this process
were particularly simple, many important process control considerations (such as the
effect of design on control, and how to design low order controllers and handle ac-
tuator constraints and real parametric uncertainty) could easily be addressed which
would have been much more difficult to address in general. This motivates the core of
this thesis which is the development of a general approach, called robust loopshaping,
for addressing these and other control considerations described below.

The robust loopshaping framework is shown to be a direct generalization of clas-
sical loopshaping which was so successful for single loop design in the 1930s-40s. It is
shown how to use the framework to design low order controllers (e.g., PID) which are
easier for operators to understand and maintain, and decentralized controllers which
are the rule rather than the exception in industrial process control. It is shown how
to analyze the reliability of control systems, and how to design controllers which are
inherently reliable to equipment faults or failures. These techniques are illustrated
on a high purity distillation column.

The robust loopshaping framework is used to develop tools for choosing actuators
and sensors to use for control purposes in the presence of model/plant mismatch.
In decentralized controller design, these tools are also used for determining the ap-
propriate partitions and pairings of controller inputs and outputs. New results are
presented, as well as simplified and unified proofs of existing results. Application to
a distillation column illustrates the importance of considering plant/model mismatch
in choosing actuators and sensors. A branch-and-bound procedure for control struc-
ture selection is described which can greatly reduce the number of candidates under

consideration. These tools also provide recommendations on how to modify the plant



design to improve the closed loop control.

This leads to the next part of the thesis which explores computational issues as-
sociated with both the structured singular value and robust loopshaping frameworks.
First we develop a method to reduce conservatism in the analysis of constraints by
covering them with a nonlinear real parametric uncertainty description. This system
with nonlinear uncertainty is converted into a constant-matrix g problem so that sta-
bility and performance can be analyzed using off-the-shelf software. We discuss how
these results can also be applied to analyze the stability and performance globally for
gain-scheduled systems and locally for general nonlinear systems.

Next we address the computational complexity of the matrix function y, which
1s an integral part of robustness analyses. It is shown that any algorithm for exactly
calculating p has exponential growth in the size of the problem, which motivates the
approach by Doyle and co-workers [29, 37, 119] which is to calculate tight polynomial-
time upper and lower bounds instead. The last computational issue addressed is
the development of a polynomial-time method for calculating the minimized scaled
condition number, which is useful for analyzing robust stability and for choosing and
pairing actuators and sensors for control purposes. This is followed by a summary

and ideas for future research.



Part 11

Robust Control and the

Needs of Process Control



Chapter 2

Structured Singular Value Framework

Summary

In practice, a model is only an approximate description of the physical system.
Unknown disturbances, uncertainty about actuator and sensor dynamics, and inaccu-
rate values for the parameters of the physical system make it impossible to generate
an exact model. The error between the true behavior of the physical process and
that predicted by the model can significantly affect the ability of the control sys-
tem to meet the performance requirements. For the controller to work satisfactorily
on the real system, the controller must be designed to be insensitive to this model
uncertainty. Controllers that satisfy the specified performance requirements and are
insensitive to model uncertainty are said to be robust.

The structured singular value (or x) framework was developed in the early 1980s
to nonconservatively analyze robustness. A method of designing robust controllers
soon followed (referred to as DK-iteration), and was applied to a large number of
academic case studies such as high purity distillation columns, CSTRs, and fixed bed
reactors. This chapter describes the structured singular value framework, and then

provides a simple example showing how to use this framework. Though the structured



singular value framework provides a general approach to addressing many uncertainty
and performance specifications, we list some important process control considerations
which are not directly addressed. This motivates the search for a broader framework

for process control.
2.1 Robust Performance

The goal of any controller design is that the overall system is stable and satisfies
some minimum performance requirements. These requirements should be satisfied at
least when the controller is applied to the nominal plant, that is, we require nominal
stability and nominal performance.

In practice the real plant P is not equal to the model P. The term robust is used
to indicate that some property holds for a set II of possible plants P as defined by the
uncertainty description. In particular, by robust stability we mean that the closed loop
system is stable for all P € II. By robust performance we mean that the performance
requirements are satisfied for all P € II. Performance is commonly defined in robust

control theory using the Hy-norm of some transfer function of interest.

Definition 2.1 The closed loop system ezhibits nominal performance if
1Zlee = sgp'&'(E) <1. (2.1)
Definition 2.2 The closed loop system ezhibits robust performance if
15]]oe = sgpﬁ(g) <1, VPell (2.2)

For example, for rejection of disturbances at the plant output, ¥ would be the

weighted sensitivity
Y=WSW,, S=(I+ PRK)™!,
=W, SW,, S=(I+PK).

(2.3)



In this case, the input weight W; is often equal to the disturbance model. The output
weight W) is used to specify the frequency range over which the sensitivity function
should be small and to weigh each output according to its importance. The transfer
function of the controller is denoted K.

Doyle [29] derived the structured singular value, u, to test for robustness of uncer-
tain systems. To use p we must model the uncertainty (the set II of possible plants
P) as norm bounded perturbations (4A;) on the nominal system. Through weights

each perturbation is normalized to be of size one
Aillo <1, (2.4)

where A, is complex for representing unmodeled dynamics, and real for representing
parametric uncertainty. The perturbations, which may occur at different locations in

the system, are collected in the block-diagonal matrix Ay (the U denotes uncertainty)
AU = dlag {A,} (25)

and the system is arranged to match the left block diagram in Fig. 2.1. The intercon-

nection matrix M in Fig. 2.1 is determined by the nominal model (P), the size and

nature of the uncertainty, the performance specifications, and the controller (K).
Without loss of generality we assume that each A; and M is square [64]. The

definition of y is:

Definition 2.3 Let M € C™*" be a square complex matriz and define the set A of

block-diagonal perturbations by

A = {diag{an,l,---,5;1,k,5,g+11,k+,,---,5:,,1,,,,,A,,,+1,---,A,},

{
6{6R,5§€C,A.~eC"‘"",Zr.-zn}. (2.6)
=1



10

Figure 2.1: Robust performance and the M — A block structure.

Then pa(M) (the structured singular value with respect to the uncertainty structure

A) 1s defined as

0 if there does not exist A € A such that det(I — MA) = 0,
M) = -1 2.7
HalM) [min {7 (A) |det(I — MA) = 0}] otherwise. (2.7)
AeA
Partition M in Fig. 2.1 to be compatible with A = diag{Ay,Ap}:
Man Mj,

The following are tests for robust stability and robust performance [29).

Theorem 2.1 The closed loop system echibits robust stability for all ||Ay|le < 1 if

and only if the closed loop system is nominally stable and

Ha, (My1(Jw)) < 1 Yw. (2.9)

Theorem 2.2 The closed loop system exhibits robust performance for all ||Ay || < 1

”oo

if and only if the closed loop system is nominally stable and

pa(M(jw)) < 1 Vw, (2.10)



11

where A = diag{Ay,Ap}, and Ap is a full square matriz with dimension equal to

the number of outputs (the subscript P denotes performance).

Multiple performance objectives can be tested similarly using block-diagonal Ap.

The value of pa(M) depends on both the elements of the matrix M and the
structure of the perturbation matrix A. Note that the issue of robust stability is
simply a special case of robust performance. Also note that robust performance
implies robust stability, i.e., sup Ha(M) > SUp flay (Myy).

It is a key idea that p is a general analysis tool for determining robust performance.
Any system with uncertainty adequately modeled as in (2.4) can be put into M — Ay
form, and robust stability and robust performance can be tested using (2.9) and (2.10).
Standard programs calculate the M and A [3], given the transfer functions describing

the system components and the location of the uncertainty and performance blocks

A

Computation of g The value of y is commonly calculated through upper and

lower bounds. Define three subsets of C**"
Q={A€eA:-1< <L)l =1,AA; =1}, (2.11)

D = {diag [D1,**, Dm,dms1Lrpy, -+ il 10 < Dy = D} €CH¥",0 < d; € R},
(2.12)
G = {diag [G1, -+, Gk, Orpyyse++, 00| : Gi = Gy € C¥71 Y (2.13)

Then [37]

max p.(QM) = pa(M) < |max {0, . (MM +j (GM - MG)] }, (2.14)
Geg
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d — > e
.| N J <> d—>{Fi(N,T) |>e

T

Figure 2.2: Definition of the linear fractional transformation Fj(N,T).

where M = DM D', X(A) is the maximum eigenvalue of A, and p,(A4) = max{|A| : A
is a real eigenvalue of M }.

The leftmost maximization defined in (2.14) is not convex, so an algorithm which
attempts to calculate the maximum may converge to a local optimum which would
be a lower bound for . In contrast, the computation of the upper bound in (2.14)
is convex, and so convergence is assured. However, a gap may exist between the
upper bound and u. The upper and lower bounds are almost always within a percent
or so for pure complex uncertainty [87]. The gap may be larger when there are real
uncertainties. Off-the-shelf software computes the upper and lower bounds for general
uncertainty and usually gives a narrow gap [3, 119]. Chapter 8 discusses the pitfalls

in attempting to calculate y exactly.

Linear Fractional Transformations The linear interconnection structure in
Fig. 2.2) is called a linear fractional transformation (LFT). The lower LFT denoted
F(N,T) is defined by

FI(N, T) =N+ leT(I — N22T)—1N21. (2.15)

The LFT F(N,T) is well-defined if and only if the inverse of I — N, T exists. A
superscript is sometimes used on N, e.g. N, to denote that N depends on the choice
of T.

The subscript [ on F; is used to denote that the lower loop of N is closed by T.
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Figure 2.3: General interconnection structures.

When the upper loop is closed, the transfer function between inputs and outputs is

the LFT FU(N, T) = N22 + ]Vz]T(I — N]]T)—lng.

Controller Synthesis With Complex A The H-optimal control problem is to
find a stabilizing K which minimizes st:p'&(Fl(G,K)) (see Fig. 2.3). The state-space
approach for solving the H,, control problem is described in {40].

For pure complex uncertainty, the upper bound in (2.14) reduces to
li)réfp T (DM D_l). The DK-iteration method (often called p-synthesis) is an ad hoc

method which attempts to minimize this tight upper bound of u for complex uncer-

tainty, i.e., it attempts to solve
inf inf sup? (DER(G,K)D™). (2.16)

The approach in DK-iteration is to alternatively minimize sgp‘& (DF,(G, K) D"l)
for either K or D while holding the other constant. For fixed D, the controller
synthesis is solved via H-optimization. For fixed K, the quantity is minimized as
a convex optimization. The resulting D as a function of frequency is fitted with an
invertible stable minimum-phase transfer function and wrapped back into the nominal
interconnection structure. This increases the number of states of the scaled G, which

leads the next H. -synthesis step to give a higher order controller. The iterations stop
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Figure 2.4: Coupled mass-spring system:.

after sgp? (DF}(G, K)D—l) is less than 1 or is no longer diminished. The resulting
high-order controller is typically reduced using Hankel model reduction {39}. Though
this method is not guaranteed to converge to a global minimum, it has been used to
design robust controllers for many mechanical systems, e.g., flexible space structures
[2], missile autopilots [92, 55], and rockets [36].

Synthesizing controllers with mixed real and complex perturbations is much more
difficult than in the pure-complex case, and no reliable optimization-based synthesis

algorithm currently exists.

2.2 Example: A Coupled Mass-Spring System

To illustrate the use of the structured singular value framework, we now apply it to
design a robust controller for an undamped pair of coupled masses with a noncolo-
cated sensor and actuator. This simple problem captures many of the features of
more complex aircraft and space structure vibration control problems. It is shown
how design specifications such as settling time, actuator constraints, insensitivity to

measurement noise, and parameter uncertainty are addressed in this framework.

Problem Description Consider the two-mass/spring system in Fig. 2.4, which
is a generic model of an uncertain dynamical system with noncolocated sensor and

actuator.
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The system is represented in state-space form as

Ty 0 0 10 o 0 0
= = 2.17
7 i?g —k/ml k/m1 00 I3 + l/ml ut 0 v ( )
.’i‘4 k/m2 —k‘/mg 0 0 T4 0 1/m2
y==I3+v (2.18)
z = Iy (2.19)

where r, and z; are the positions of body 1 and body 2, z3 and z4 are the velocities
of body 1 and body 2, u is the control input acting on body 1, y is the sensor
measurement, w 1s the disturbance acting on body 2, v is sensor noise, and z is the
output to be controlled. The spring constant is denoted by k, the mass of body 1 by
my, and the mass of body 2 by m,.

The coupled spring-mass system is assumed to have negligible damping. The
spring constant and masses are assumed to be uncertain. The actuator is located
on body 1 while the sensor is located on body 2, i.e., the sensor and actuator are
noncolocated. This makes the system much harder to control than in the colocated
case.

The design specifications are:

(i) Maximize the stability margin with respect to the three uncertain parameters

my, my, k whose nominal values are m; = my = k = 1.

(ii) For w(t) = unit impulse at t = 0, the performance variable z has a settling time
of 15 seconds for the nominal system m; = m, = k = 1. The settling time is
defined to be the time required for the output to reach and stay within 10% of

its peak value.

(iii) The control system can tolerate Gaussian white noise with variance of 9 * 1076,
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(iv) Because of finite actuator response time, the controller bandwidth must be < 50

rad/s.
(v) The control input u(t) is limited to |u| < 1.

(vi) The number of controller states should be < 4.

Building the Generalized Block Diagram The uncertain spring constant and

the two masses are described by

k= kO + wk5k7
m; = myo+ ’UJ161, (220)
my = My + wiby,

where kg, myo, and my are the nominal values and the weights wx, wy, and w, are
used to normalize the uncertainties §; so that [§;] < 1. Simultaneous perturbations in
the é; are allowed, as long as |é;| < 1 for each uncertainty :.

Weighted versions of the noise, disturbance, control input, and performance vari-

able are given by

Vo= wy,
!
w o= wyuw,
v = wyu, (2.21)
!
2 = w,z,

where in general the input weights w, and w, weigh the frequencies to be rejected
and determine the relative important of the noise and disturbance. The performance
weight is w, and w, is used to limit the magnitude of the control input.

The expressions for k, my, and m; from (2.20) and w, v, z, and u from (2.22) are
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Figure 2.5: Block diagram for coupled mass-spring system.

substituted into the state-space equations (2.17-2.19) and written in block diagram
form in Fig. 2.5. The block diagram has z, u, v/, w’ as inputs and z, v’, 2’, and y as

outputs.

Ay *
Ap le

o
—

Qu
Yy
>

Figure 2.6: Simplified block diagram for coupled mass-spring system.
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By inspection, the block diagram in Fig. 2.5 is rearranged to form the block

diagram in Fig. 2.6, where

(0 0o 10 0 0 0 0 0 0 )
0 0 01 0 0 0 0 0 0
-k £ 90 -1 1 0 0 0 1
my my m) my my
L _k g9 L o L 9 Wy 0
m2 m2 m2 ma mgy

—wr 0 0 0 0 0 0 0 0
N=| Ctu 00 w _wm g g o —w [0 (222)
m m m m) m
_kup kwp 0 0 _w 0 -2 9 wawy 01
m2 m2 ma mo mo
0 0 00 0 0 0 0 0 w,
0 w, 00 0 0 0 0 0 0
\ 0 -1 00 0 0 0 -—w, O 0

and the normalized performance variable €, the normalized disturbance J, and the

é = ( :: ) : (2.23)
d= ( ;’) ) : (2.24)

b2

uncertainty block Ay are given by

The performance block Ap relates the outputs to inputs, K is the controller transfer
function, and Iy is the 4 x 4 identity matrix. Closing the integrator loop in Fig. 2.6
gives the system interconnection structures in Fig. 2.3.

It can be seen from (2.17-2.19) that the transfer function between the disturbance
w and the output z contains a double-integrator. In this case assumptions Al and
A3 in [40] needed to solve the H-control problem are not satisfied. Ways of refor-
mulating the problem to satisfy the assumptions are discussed in [40] and [94]. It is

suggested in [94] to either use a bilinear transform to move all open loop poles off
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the imaginary axis, or to choose the disturbance and performance weights to cancel
the integrators. Three methods are suggested in [40); the simplest method is to in-
troduce an e perturbation so that assumptions Al and A3 are satisfied. Choosing
this method, we slightly perturbed the poles on the imaginary axis by using 74—_(1'.(1)—00071
instead of % m Fig. 2.6. However, all results reported here use the true integrator,
and no problems were found to result from using the “almost-integrator” instead of
the true integrator for the controller synthesis.

The DK-iteration method does not handle real uncertainty directly, so we will
treat the real parametric uncertainty in k, m;, and m; as being complex. As such,
the DK-iteration method will give a controller whose performance is insensitive to
the complex uncertainties. This will also tend to make the controller less sensitive to
real uncertainty in k, m;, and my. We will later test the conservatism in allowing the

real uncertainty to be complex.

Strategy for Choosing Input and Output Weights The advantage of the struc-
tured singular value framework over many other design methods is that it yields di-
rectly controllers that are insensitive to model uncertainty. One disadvantage is that
performance specifications such as (ii) and (v) can not explicitly be put in terms of the
co-norm in (2.2). Though there is no explicit relationship between the performance
specifications and the oo-norm, decreasing the oco-norm of the transfer function be-
tween the inputs w’ and v to the outputs 2’ and u’ does improve the speed of response
and decrease the peak outputs.

The key to the synthesis technique is the selection of the weights w,,, w,, w,, and
wy. The controller synthesis procedure is much faster when lower order weights are
used, so constant weights should be used when possible.

The approach to choosing the weights w,,, w,, w,, and w, will be as follows. It

can be shown that multiplying w,, and w, by a scalar transfer function and dividing
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w, and w, by the same scalar transfer function does not change the co-norm in (2.2).
Thus without loss of generality we can take w, = 1. Since the noise v is expected to
have much smaller effect on the system than the disturbance w, we will choose the
noise weight w, to be small. Noise weights typically are chosen to have larger gain
at high frequency, but we expect that the effect of the noise on the system is small
enough that choosing a frequency-dependent w, will not give a controller much better
than that when choosing a constant noise weight. If the simulations show sensitivity
to measurement noise, then w, will be increased.

There is no known explicit relationship between the frequency-dependent output
weights w, and w, and the resulting settling time and peak control input. Some

general empirical guidelines for choosing frequency-dependent weights are [55]:

1. choose high gain weight at mid-range to high frequency in order to give small

peak values, and
2. choose an even higher gain at low frequency for good tracking.

Guideline 1 implies that w, should have high gain at high frequencies to keep the
peak control input small. High gain for w, at high frequencies should also cause the
controller to avoid high frequency control inputs (specification (iv)).

It can be shown from (2.17-2.19) that an impulse disturbance will give no steady-
state offset in u and z as long as the controller is internally stable. Thus w, and
w, need not have a higher gain at low frequency (it is suspected that guideline 2
was intended only to be used to design for tracking of step inputs). Since high gain
at low frequency is not needed for w, and w,, and low-order weights are desirable
for comtroller synthesis, we will use constant w, and w,. Increasing w, and w, will
increase the overall performance of u and z; this will decrease the peak control input
and decrease the settling time, respectively. w, will be chosen large enough so that

the peak control input constraint max |u(t)| = 1 is met. The performance weight w,
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will be chosen large enough so that the settling time specification (ii) is met. I we
could not achieve the design specifications using constant weights, then frequency-

dependent weighting would be considered.

Defining u for Robust Performance Since the performance specifications are
not explicitly in terms of the co-norm, we are not particularly interested in meeting
condition (2.10). We are not interested in meeting condition (2.9) for robust stability
for complex uncertainties either. We are interested in meeting the stability robustness
specification (i). In other words, the design is complete when specifications (i-vi) are
met, regardless of whether conditions (2.9) or (2.10) are satisfied.

The performance block Ap was chosen to be a diagonal matrix with two indepen-
dent 1 x 1 blocks for all designs. This decouples the performance specifications that
u be small (peak magnitude less than 1) and that z respond quickly to a unit impulse
in w. This makes choosing a satisfactory w, and w, easier. Also, u for robust perfor-
mance defined with this choice of Ap is less than u for robust performance defined
using the typical choice of full block Ap. Thus, this choice for Ap gives a smaller dif-
ference between the structured singular value for robust performance and for robust
stability, allowing the DK-iteration design method to more directly enhance stability

robustness. The specific control design follows.

Robust Controller Design The goal is to maximize the stability with respect to
uncertain m;, my, and k with nominal values mo = mgo = ko = 1. Initially we design
for 20% complex uncertainty, i.e., w; = wy = wg = 0.2.

First we choose only constant weights to specify wy, w,, w,, and w,. Without
loss of generality we can choose one of these weights to be 1; we took w, = 1. Since
the measurement noise is small in magnitude compared to the size of the disturbance,
we initially chose the noise weight to be much smaller than the disturbance weight,

Wy = W, /100 = 0.01. Increasing w, decreases the peak value and settling time for z.
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Figure 2.7: p for robust performance.

Increasing w, decreases the peak control mnput.

The DK-iteration design procedure was initially performed for w, = w, = 1.
Simulations with the resulting controller showed that the nominal settling time speci-
fication was easily met, but the nominal peak control input was 11 and robust stability
was not satisfied. To decrease the peak control input, w, was increased to 15. Since
robust stability was not satisfied and there was excess performance in z, we decided
to trade off performance to get increased stability by iterating w, with w, and w,
unchanged. After several iterations, the performance weight w, = 0.12 was chosen
which meets all the design specifications (i-vi).

The settling time and peak control input were close to their maximum values,
so performance could not be traded off for an appreciably larger stability margin
(specification (1)).

Fach time the DK-iteration method was used, one “D” iteration was needed—
further “DK” iterations did not diminish the objective in (2.16). The 24-state con-
troller was reduced to 4 states with negligible loss in stability and performance. The

structured singular value for performance with the resulting controller is in Fig. 2.7.
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The controller after Hankel model reduction is given by:

—0.5178 —1.521 -1.558 —0.0820
4.725 —5.510  5.878  0.4984

A = , 2.26
0 0 —2.039  2.432 (226)
0 0 —2.974 —0.0832

—0.8847

2.702
B, = , (2.27)

~3.259

—0.8716
C.=[-1471 4125 -0.5234 —0.1214 |, (2.28)
D, = 0.00372. (2.29)

The zeros for the above controller are {—3847,—0.1392,1.780 + 0.5621:} and the
poles are {—3.014£0.9775¢, —1.061 + 2.505i}. The zero at -3847 is far in the left half
plane, and so has a small effect on stability and performance. This zero was dropped
to make the final controller strictly proper. See Fig. 2.8 for the root locus.

The controller bandwidth (read from the controller’s Bode magnitude plot) is 21
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Figure 2.9: p for complex robust stability.

rad/s. The gain and phase margins are read from the Nyquist plot and found to be
1.43 and 28.2°, respectively. Fig. 2.9 is a plot of the structured singular value for
robust stability with complex uncertainty. The peak value on this plot is ugs = 1.11.

The value of y with pure real parametric uncertainty was calculated (details on
calculation are described in [9]) to be phs = 0.67. This implies that the closed loop
system is stable under simultaneous independent real parameter variations up to 30%,

1.e., the closed loop system is stable for any values of k, m;, and m, given by
k €1[0.7,1.3], m; € [0.7,1.3], ma € [0.7,1.3]. (2.30)

The conservatism in using complex uncertainty in k, m;, and m, over using real
uncertainty is (phs — phs)/ihrs = (1.11 — 0.67)/0.67 = 67%. The lower and upper
parameter margins (with m; = my = 1) for k are 0.55 and 2.5, respectively. The lower
and upper parameter margins for m; (with k = m, = 1) are 0 and 3.4, respectively.
mq has the same parameter margins as for m;.

The time domain plots for the mass positions z; and z, and the control input u

are given for m; = my = k = 1 (see Fig. 2.10 and 2.11). The settling times for both
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mass positions

30

Figure 2.10: Time responses for masses 1 and 2.

zy and z, are less than 15 seconds. The maximum control input is less than one. All

responses are insemnsitive to measurement noise.

Discussion The gain and phase margins are low for both designs, though the phase
margin for Design #2 is very near the 30° — 60° suggested in most textbooks. The
gain and phase margins can be included in the structured singular value framework

(though this is cumbersome, see [55]). This was not done here because gm and pm
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Figure 2.11: Time response for control input.
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were not in design specifications. As seen in both designs, gain and phase margins
are not necessary for having good parameter margins.

Covering real parameter variations by complex uncertainties was found to be quite
conservative. This implies that a controller design procedure that directly takes into
account the real nature of k, m;, and m; may give better designs.

This example points out that design specifications must be chosen carefully before
the controller is designed. For example, recall that the performance weight w, was
not chosen to have higher gain at low frequency because an impulse disturbance to
the mass-spring system gives no steady-state offset. Though the designed controllers
will reject impulse disturbances, they give poor rejection of step disturbances. If step
disturbances are to be expected, then this must be put into the design specifications
so that the appropriate weights are chosen in the design procedure. Similar comments
can be made concerning sinusoidal disturbances.

Additional designs, including two-degree-of-freedom designs, are described in [9,

10].

2.3 Important Issues in Process Control

The strengths of the structured singular value framework are that it addresses un-
certainty and performance specifications in a general, unified manner. The following

important practical process control considerations also need to be addressed:

e Actuator constraints are of great importance in industrial processes. A pro-
cess typically operates at or near constraints—otherwise the process would be
overdesigned leading to large equipment costs. Including a sufficiently large
weight on the control action to avoid actuator constraints for a specific distur-
bance, as done in the example, will provide a controller which is sluggish for

small disturbances, and ineffective for disturbances of larger magnitude.
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e Though off-the-shelf software exists for analyzing systems with real parametric
uncertainty, the synthesis method (DK-iteration) does not directly address real
uncertainty. Covering real uncertainty by complex can be conservative, as shown

in the example.

e Many specifications are difficult (or impossible) to address within the DK-
iteration design procedure. These include gain and phase margin, fault and
failure tolerance, controller order, and multiple but independent performance

specifications.

e Practical control problems often involve more actuators and sensors than are
needed for designing effective, economically viable control systems. An appro-
priate set of actuators and sensors must be selected from the available can-
didates. A related problem is the selection between different plant designs in

terms of the achievable closed loop performance.

o Decentralized controllers are the rule rather than the exception in process in-
dustries. DK-iteration cannot be used effectively to design these controllers.
Another task in the design of decentralized controllers is that inputs and out-

puts must be paired before the controller design.

In the next chapter we show how to address some of these process control con-
siderations for a class of adhesive coating processes commonly found in industry. We
then develop a framework for general processes for addressing all of these control

requirements/problems.

2.4 Conclusions

This chapter summarizes the structured singular value framework, and illustrates the

approach on a simple mass-spring system. Though the structured singular value pro-
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vides a general approach to addressing many uncertainty and performance specifica-
tions, many other important process control considerations are not directly addressed.

This motivates the search for a broader framework for process control.
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Chapter 3

Identification and Cross-Directional

Control of Coating Processes

Summary

Of special industrial interest is the cross-directional control of coating processes,
where the cross-direction refers to the direction perpendicular to the substrate move-
ment. The objective of the controller is to maintain a uniform coating under un-
measured process disturbances. Assumptions that are relevant to coating processes
found in industry are used to develop a model for control design. This model is used
to derive a model predictive controller to maintain flat profiles of coating across the
substrate by varying the liquid flows along the cross direction. Actuator constraints,
measurement noise, model uncertainty, and the plant condition number are inves-
tigated to determine which of these limit the achievable closed loop performance.
From knowledge of how these limitations affect the performance we can make some
recommendations on how to modify the plant design to improve coating uniformity.
The theory developed in this chapter is rigorously verified through experiments on

a pilot plant. The controller rejects disturbances within two sampling times. The
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proposed controller can reduce the variance in coating thickness by as much as 80%
compared to what is possible by manual control or simple control schemes. The ap-
plicability of the control techniques to the industrial scale coating process motivates

the development of an approach for general processes.
3.1 Introduction

Coating refers to the covering of a substrate with a uniform layer of liquid. Coating
processes are of great importance to manufacturing, especially in the photographic,

magnetic and optical memory, electronic, adhesive, and paper industries [19].

Plant Description Fig. 3.1 is a simplified diagram of a typical plant. The process
begins with a feed roller from which substrate is unwound. From there, the substrate
passes between a roller and a stainless steel die. The liquid flows through a slot in
the die to the substrate. The cavity in the die i1s designed to distribute a uniform
flow of liquid through the slot. A controlled pump supplies a constant flow of liquid
through the die.

The term “gap width” refers to the distance across the slot at a given point along
the die. The gaps through which liquid flows are adjusted by means of n equally
spaced bolts. The bolts are adjusted manually.

After being coated with liquid, the substrate passes through a drier. After the
drier, the time-averaged coating thickness at each of the n positions corresponding to
the die bolts is measured by a traversing coat-weight sensor. The coated substrate is
wound on the product roller.

For further details on die design, die flow phenomena, drying phenomena, coat-
weight sensors, and other aspects of coating, see [95, 19, 20, 96| and the literature

cited therein.
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Figure 3.1: Typical coating plant.

Control Objective The cross-directional control problem is aimed at maintaining
a uniform profile of liquid across the substrate. Successful control of coating thickness
improves product quality and reduces the time needed to bring the plant on-line.
Poor control can lead not only to coating thickness nonuniformity but also coating
instabilities that leave portions of the substrate uncovered; such substrate must be
rejected (for a short summary of coating instabilities, see Sartor, 1990).

We will consider coating processes with a large time delay between a change in
gap width and the resulting sensing of the change in coating profile downstream. This
time delay could be due to a sensor installed at a fair distance from the die as in the
coating plant considered above. Because the controller cannot be expected to reject
disturbances faster than this time delay, detailed process dynamics are not considered
in the modeling, identification, and control of the cross-directional coating process.
Thus the objective of the controller is the elimination of slow disturbances in the
coating thickness. The disturbances were of this nature in the Avery/Dennison pilot

plant; the control of this plant is studied in this chapter.
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Organization Assumptions that are relevant to a subset of coating processes found
in industry are used to develop a model for control design. This model is used to
derive an unconstrained model predictive controller to maintain flat profiles of liquid
across the substrate by varying the gap widths. Several modifications to the uncon-
strained controller are proposed to prevent physically infeasible actuator movements
(gap widths). The simplest yet effective constraint-handling method is chosen.
Actuator constraints, measurement noise, model uncertainty, and the plant condi-
tion number are investigated to determine which of these limit the achievable closed
loop performance. The theory developed throughout the chapter is applied to a pilot
plant liquid coating process at the Avery/Dennison Research Center in Pasadena.

The majority of this chapter was published in AIChE Journal [13].

Notation Because of the large amount of matrix manipulations made in this
chapter, the notation for this chapter is more specialized than for the rest of the
thesis. All scalars are italicized. Matrices are upper case bold. The (i,;) element of
the matrix M is denoted by M; ;. Vectors are lower case and bold. The ith element

of the vector x is represented as z;. The vector x(t) refers to the value of x at time ¢.

3.2 Model Development

Below we make assumptions on the plant that are relevant to a subset of coating
processes found in industry. These assumptions are used to develop a dimensional
model. This model is transformed to a dimensionless form. The dimensionless model

is then rearranged into a form suitable for controller design.

Dimensional Model

Consider a plant with the number of actuators n equal to the number of sensors

(or sensor measurement positions). It has been found experimentally (through ex-
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amination of pilot plant data) that the plant behaves approximately linearly in the
operating region. Let il be the vector of gap widths, X be the vector of coating thick-
nesses, and V collect any effects on the coating thickness not due to changes in gap
width. If the process dynamics are approximated by a pure delay, then the coating
thickness at sampling instant ¢ is related to the gap width at the previous sampling
instant through

X(t) = Pu(t — 1) + v(t), (3.1)

where P is a constant n X n matrix.

Assumption on V The vector ¥V accounts for unmeasured input effects such as
measurement noise and disturbances. We assume that V is a non-zero-mean stochastic
variable, i.e., {V(0),V(1),...,¥(h),...} is a sequence of independent random vectors
with non-zero mean [68]. We define the steady-state disturbance d as the time-

averaged value of V, and define it by
ii(t) = ¥(t) — d. (3.2)

We will assume that §i is white noise. It will be referred to as measurement noise.
The unmeasured inputs V are chosen to be stochastic because this describes well
the apparently random fluctuations of the process. In practice, equal gap widths do
not give a uniform coating because of imperfections in the roller or the die, non-
uniformities in the drying process, or poor calibration of the gap widths. These

imperfections lead V to have non-zero mean.

Assumptions on P Typically, the total flow of coating through the die is main-
tained constant through a high gain controller. Because of constant total flow, in-
creasing the flow through one actuator will necessitate decreasing the flow through

the others. In the development of the model, we make the following assumptions:
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1. The total liquid flow (and therefore the sum of the coating thicknesses) is con-

stant.

2. The responses to all actuators are similar and symmetric about the actuator

posttions.

3. The only interactions between the actuators are due to the constant flow as-

sumption.

Assumption 2 implies that P is symmetric. Assumption 3 implies that P can be

separated into two matrices

P=FkI-M, (3.3)

where k is the gain between the ith gap width and its corresponding coating thickness
for an infinitely wide die (i.e., n — o0). The n x n identity matrix is denoted by I, k1
is the contribution that changing gap widths would have on the coating thicknesses if
there were no interactions, and M represents the effect that increasing one gap width
has on decreasing the flow through all the gaps. Assumption 3 also implies that all

elements of M are equal, 1.e., M;; = m fori,j =1,2,---,n. Then

/lvc—m -m  -m .- —m

I\;‘ —-m —-m
\ —-m -m -m k-m ),

Assumption 1 implies that Z #; is constant for all gap widths . Then (ignoring the
1=1
noise 1), we have from (3.1) that
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must be a constant for all #;(¢t — 1). This implies that

Y P;=0, for j =1,2,---,n. (3.6)

=1

By substituting the elements of P from (3.4) into the summation (3.6), we find that

m must be related to k by

k
= —. 3.7
m= (37)
Substituting for m in (3.4) gives the final form for P:
k
P=-B
"B, (39)
where
n—1 -1 -1 -1
-1 n-1 -1 :
B = _1 -1 . (3.9)
.on—-1 -1
\ -1 -1 -1 n-1
nxn

The single model parameter k does not depend on the number of actuators n.

Dimensionless Model

The model is transformed to a dimensionless form for two reasons. First, using a
dimensionless model will allow the control parameters to vary little between different
plants. Second, the controller is designed to produce a coating of uniform thickness
and will not be able to change the mean coating thickness. A flow controller which
maintains constant flow to the coating die is used to adjust the mean coating thickness.
Therefore the non-dimensional variable x is chosen to represent coating thickness as

a deviation from the mean.
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Define 7 = % Z #; and @ as the nominal gap width. The nominal gap width should
i=1
be chosen well within the stable coating region. Define the following dimensionless

variables:

(3.10)

Solve the above expressions for ¥;, u;, J;, 7;, and I;, substitute into (3.1), and

rearrange to give the dimensionless model:

x(t) = kBu(t — 1) +d + n(%). (3.11)

Model for Control Design

The matrix B in (3.9) is singular. This is because the coating thicknesses x are not
uniquely determined by the gap widths u. Any increment in gap width added to
all the gap widths u; does not change the coating thicknesses. However, to keep a
stable film, the dimensionless gap widths u must not stray too far from the preferred
position of 0. We augment the model with the additional equation Zn: u; = 0 to both
keep u from straying and to give a unique mapping of the coating ’zlzu}cknesses to the

gap widths. This is done as follows:

¢ Add a component to x, d, and n, and set this component to zero, i.e., T,y =

Nppr = dn+1 =0.

e Add a row of ones to the plant matrix kB to give the new (n + 1) x n plant
kB

1---1 |

This leads to the augmented model

matrix C =

x(t) = Cu(t — 1) + d + n(?). (3.12)
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Since the mean value of u is a free independent variable (it does not change coating
thicknesses), a controller design based on the above model which seeks to minimize
x will automatically adjust its control action so that the mean value of u will be
exactly zero. Also, the singularity of the original gain matrix B is removed; C has
full column rank.

To derive the model predictive controller in the next section, it is convenient
to express the model in terms of the changes in the inputs rather than the inputs
themselves. For this purpose, we subtract Equation (3.12) for ¢ — 1 from that at £ to
arrive at

x(t) = x(t — 1) + CAu(t — 1) + An(t), (3.13)

where

Au(t —1) = u(t — 1) — u(t — 2). (3.14)

The controller calculates the inputs to the plant based on the measured variables.

The model for control design is:

x(t) = x(t — 1) + CAu(t — 1). (3.15)

3.3 Estimation and Prediction

Recall that our objective for using a model is to predict the effect of changes in gap
widths on the coating thicknesses. This will allow us to find the “best” adjustments

in gap widths to reject disturbances.

State Estimation - Filter

The state estimator is most conveniently expressed in the following two-step form

(74, 73]:
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Model Prediction:

x(t|t —1) =x(t — 1|t — 1) + CAu(t - 1). (3.16)

Correction Based on Measurements:

x(tt) = x(t|t — 1) + v [X(t) — x(t]t — 1)], v € (0,1]. (3.17)

The estimate of x(-) based on measurements up to time ¢—1is denoted by x(-|t—1).
The measurement of x at time t is denoted by %(t). The filter parameter v € (0, 1]
is used to filter noise and to obtain robustness to model uncertainty. The larger the
measurement noise and model uncertainty, the smaller 4 should be chosen.

By substituting (3.16) into (3.17) we obtain the state estimator

x(t|t) = (1 —~) [x(t — 1]t — 1) + CAu(t — 1)] + vX(¢), (3.18)

which allows one to compute the current state estimate x(¢|t) based on the previous
estimate x(t—1|t—1), the previous input move Au(t—1), and the current measurement
%(t). The state estimator is initialized with x(0[0) = %(0).

The state estimator (3.18) suggests that x(t]t) is a filtered version of X. Indeed,

In a noise-free system with the manipulated variables constant, we have

x(t[t) = (1 — 7)x(t — 1]t — 1) + 7%(2), (3.19)

which shows that the state estimate x(¢]t) is X passed through a first-order filter.

If the output X suddenly changes to a constant value then the state estimate x(t|t)
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approaches the true value X with the filter time constant:

1,

= m, (3.20)

T

where t, is the time between sampling instances {74, 73].

Prediction

The control algorithm prescribes the gap widths u which reject disturbances in x.
In order for the control algorithm to determine the “best” current gap widths there
has to be a means for predicting the effect of the gap widths on the future coating

thicknesses x. The predictor is given by writing (3.16) for the next time step t + 1:

x(t + 1Jt) = x(t]t) + CAu(t). (3.21)

3.4 Control

We begin by stating the unconstrained control objective. We derive the unconstrained
controller that minimizes this objective. Then we discuss three methods of modifying
this controller to handle actuator constraints, in our case constraints in adjacent gap

widths.

Unconstrained Control Algorithm

Performance Criterion The performance criterion is to minimize the quadratic
objective

z = |Ix(t + 1), (3.22)

where || - || represents the Euclidean norm, ||zl = z%.
i=1
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Unconstrained Control Problem We express the control problem as an opti-

mization by combining the objective (3.22) with the predictor (3.21):
/ini(?) IIx(t + 1)1, where x(t + 1]t) = x(t]t) + CAu(t). (3.23)
o
The least-squares solution to the unconstrained control problem is

Au(t) = —(CTC)'CTx(t]t). (3.24)

Methods for Handling Actuator Constraints

Excessive stresses in the die constrain adjacent actuator positions. We will consider
two ways of specifying these constraints. First, the specification could be that the

difference between adjacent actuator positions is himited, 1.e.,
|6u,| = |u,'+1 — u,-l S ]6u|maz, for : = 1,. Lo — 1. (3.25)

An additional specification could be that the difference between adjacent actuator
positions must be even less when large adjacent gap differences are made in opposite

directions. This constraint can be written as
|62u;] = |uiz2 — 2uip1 + ui] < 16°%)mazs fori=1,...,n—2. (3.26)

For those plants where |6%ulmay > 2|6U|maz, the first constraint (3.25) implies the
second constraint (3.26), so for these plants the second constraint need not be con-
sidered.

Constraint-handling will be needed when the disturbances are sufficiently large
and have sharp spatial variations across the substrate. When the disturbances are

uniform across the substrate, then the control action calculated from the uncon-
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strained control algorithm will be uniform, and constraint-handling is not needed.
Actuator constraints can be handled in three ways: by including additional terms
in the objective function, by adding the constraints explicitly to the control algorithm,
or by scaling the control actions to be “feasible,” 1.e., to satisfy the constraints. Below
we describe each method of handling actuator constraints. We will choose the simplest

yet effective constraint-handling method for our control problem.

Additional Terms in the Objective Function

Additional terms weighting |u;41 — u;| and |uiy2 — 2u,41 + u;| could be added to the

objective function (3.22), i.e.,

n—1 n—2
2= X+ 1)+ B Y uivr — wil? + B2 Y Juige — 2uigr + wil® (3.27)

=1 =1

The disadvantage of this approach is that the added weighted terms always affect
the control action. The weights for these terms must be large enough to keep the
control action feasible for disturbances which contain sharp spatial variations, but
large weights on the control action will substantially slow the control action when the

disturbances are uniform across the substrate and the extra terms are not needed.

Explicitly Adding Constraints to the Control Algorithm

The constraints could be added explicitly to the control algorithm. Then the con-
strained control problem will be the unconstrained control problem (3.23) plus the

additional constraints (3.25) and (3.26):

i t 2 .
min {|x( + 1|15, (3.28)
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Figure 3.2: Projection of an infeasible control action to the feasible space.

such that x(t + 1[t) = x(¢[t) + CAu(t)

I(SU,I = IU,'+1 - U,’l S léu!maxz, for 1 = 1,. NN (e 1.
[6%u;| = [wiv2 — 2uip1 + uil < |6%U|max, fori=1,...,n—2.
(3.29)

This is a quadratic programming problem that must be solved at each time step for
the optimal actuator movements Au(t). This approach is not as simple to implement

and analyze as the third constraint-handling method discussed next.

Scaling Control Actions

Constraints can be handled by projecting any infeasible u given by the unconstrained
control law (3.24) to the feasible space. Fig. 3.2 illustrates this idea for the first
constraint (3.25) for n = 3. All feasible control actions u are given by the shaded
region. When the unconstrained control law (3.24) suggests an infeasible control
action, a feasible control action is found by projecting u to the feasible space. Many
projections could be used, but the projection shown (which involves simple scaling

of the control action) maintains the direction of the control action, which can be
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important for multivariable systems [16].
Now consider satisfying the first constraint (3.25) for general n. This is done by

scaling the control action u calculated from the unconstrained control law (3.24):

ll(t) max léu.(t)l < |6ulmar
ui(t) =19 _ |sulmes (t) max |6u(t)] > |6u|maxz- (3.30)

max [bu,(t)] 1
3

In addition, the control action from the above equation can be scaled to satisfy

the second constraint (3.26):

u*(t) max |6%uf(t)] € |6%u|maz

t —
u(t) = 8%u|mas * -

© maxu52u;(¢) u”(?) max |62u; (t)] > [6%u|maz-
1

(3.31)

Thus u' satisfies both constraints (3.25) and (3.26).

This constraint-handling method is easy to implement and performs exactly as
the unconstrained algorithm when constraint handling is not needed. It is shown in
[12] that, provided the assumptions in Section 2 hold, the scaling method performs

nearly as well as explicitly adding the constraints to the control algorithm.
Constrained Control Algorithm In summary, the constrained control algorithm
1s:

e Calculate the estimated state through (3.18).

e Calculate the unconstrained control move from (3.24).

e Scale the unconstrained control move using (3.30) and (3.31) to obtain the
constrained control move which is implemented. The state estimator for the
next step (3.18) will use the constrained implemented move from the previous

step.
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3.5 Limits of Performance

We would like to know how well the controller can be expected to reject disturbances
in coating thicknesses. This leads us to study the various factors that limit the
achievable closed loop performance. Knowledge of how these limitations affect the
performance can show us how to modify the plant to improve the uniformity of the
coating process. Also, because identification of model parameters is time-consuming
and costly, we study how accurate the identification must be to achieve a given level of
performance. We would also like to compare the performance of our control algorithm
to the best closed loop performance achievable by any control algorithm. This allows
us to convince ourselves that we have indeed designed the best possible controller.
We begin by making the assumptions necessary to achieve perfect one-step rejec-
tion of disturbances. This provides a standard to which the various himitations on

the closed loop performance can be compared.

Perfect Control We are interested in the ability of the controller to reject slow
disturbances. Let us study the rejection of a steady-state disturbance and let the
control algorithm start at t = 0. For simplicity of presentation, let the disturbance d
have zero-mean and the initial gap widths u(—1) = 0. If we make the following three

assumptions:

1. no actuator constraints,
2. no measurement noise, and

3. our model is exactly equal to our plant,

then it can be shown that the control algorithm with v = 1 perfectly rejects the
steady-state disturbance in one step.
We will drop the assumptions of no actuator constraints, no measurement noise,

and no model uncertainty in turn and show how each of these prevent the controller
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from rejecting the steady-state disturbance in one step. We will also investigate if

the plant condition number limits performance.

Constraints on Actuator Movements

The constraints on the actuator positions will degrade performance only when the
control move from the unconstrained algorithm must be scaled to keep the gap widths
feasible. It can be shown that in this case the coating thicknesses at the next time
x(1) do not equal zero. We will also show below that the coating thicknesses x may
never reach zero.

Assume no measurement noise, ¥ = 1, that the model 1s perfect, and for simplicity
of presentation that d has zero mean and the initial gap widths u(—1) = 0. Then
the measured coating thicknesses at ¢t = 0 is X(0) = x(0) = d. The control move for

the first step from (3.24) is
u(0) = —(cTc)='c’d. (3.32)

If the control move from the unconstrained algorithm must be scaled to keep the gap

widths feasible, the constrained control move is

ut(0) = =X\(CTC)1C74d, (3.33)

where 0 < A < 1. If the operator implements the control move u'(0) exactly and
there is no measurement noise, then applying the control move to the plant (3.12)

gives that (after some matrix manipulation)

x(1) = (1 - \)d. (3.34)

We see that the effect of the disturbance has been diminished by a factor of 1 — A.
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It can be shown that under the given assumptions, the control move will not change,
and the coating thicknesses will continue to be x(t) = x(1) = (1 — A)d.
The constraints on gap widths prevent the steady-state disturbance from being

completely rejected. This is true regardless of the control algorithm used.

Plant Modifications to Improve Performance The gap widths are constrained
to prevent high stresses in the die. A die can be designed to have weaker constraints
on its die gap widths by either placing the bolts further apart, by making the die
lip thinner, or by making the die out of a more flexible metal. Putting the die bolts
too far apart leads to strips of uncontrolled coating thickness between the die bolts.
Machining a die to tight tolerances becomes increasingly difficult as the die metal

becomes thinner or more flexible.

Measurement Noise

Measurement noise always limits performance. A noise filter is used to diminish the
effects of noise. Because increased noise filtering also slows the controller response
time, there is a tradeoff between improved coating uniformity and slower response
times. We now define a measure of coating uniformity and study this tradeoff in
more detail.

Consider the closed loop system with a perfect model without disturbances, only
measurement noise. For a stabilizing controller, the expected value for the estimated
state z(t|t) is zero. The estimated state will not exactly equal zero because the
controller will treat the measurement noise as a disturbance and will try to reject it.
Thus the estimated state will have some variance depending on the size of the noise.
The variance of the estimated state z(t|t) is an appropriate measure of the uniformity
of the coating. For simplicity of presentation, assume a perfect model and that the

noise at each gap position is equal—dropping these assumptions only slightly affects



47

State Estimate / Noise Variance

Controller Response Time

Figure 3.3: Relationship between coating uniformity and controller response time.

the following. Then it can be shown that

Variance(z;) = Variance(n;) fori=1,...,n. (3.35)

A measure of the controller’s speed of response is the filter time constant plus 1,
i.e., 7 + 1 (The ‘1’ accounts for the delay through the plant).

Both Variance(z;) and 7 [through (3.20)] are functions of the noise filter parameter
~. Fig. 3.3 compares the controller response time versus the ratio of the variance of the
state estimate to the measurement noise variance for different values of y. A small
amount of filtering (7 — 1) corresponds to fast response times, but poor coating
uniformity. A large amount of filtering corresponds to good coating uniformity, but

with slow response times.

Plant Modifications to Improve Performance Ways to decrease the sensor
noise should be investigated. The cables to the sensor should be shielded adequately to
keep the sensor noise as small as possible. The effect of air currents can be diminished
by decreasing the distance between the sensor and the coated substrate. The vibration

of the substrate and the sensor should be minimized. Of course, an accurate sensor
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reading requires a stable film.

Model Uncertainty

Model uncertainty refers to the mismatch between the model and the plant. The
error between the true behavior of the physical process and that predicted by the
model can significantly affect the ability of the control system to perform adequately.
Controllers that are insensitive to model uncertainty are said to be robust. Below
we quantify the effect of uncertainty. More specifically, we show that the control
algorithm proposed in this article is robust to gain uncertainty. Also, we will analyze
the robustness as a function of the filter parameter v to determine the effect of the

noise filter on robustness.

Uncertainty in Gain Matrix The closed loop stability can be analyzed from
the state-space equation for the closed loop system. A system will be considered
stable when the effect of small disturbances remains small. A system is considered
unstable when the effect of small disturbances grows until the constraints (3.25) and
(3.26) are reached. The effect of disturbances will never grow unbounded because
the constraints (3.25), (3.26), and i u; = 0 hold, which bound the magnitude of the
control action. =

Let the measurement be described in terms of the real plant:
X(t) = Cru(t — 1) + vy (2). (3.36)

No assumptions are made on the unmeasured inputs v;.
Define IT" by
r=—(c’c)"'c. (3.37)
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Then the control law (3.24) is given by
u(t) = u(t — 1) + I'x(t}t). (3.38)

Substitute %(¢) and u(t — 2) from (3.36) and (3.38) into (3.18) and rearrange to

give
x(t|t) = (1 — )T+ CT)x(t — 1]t — 1) + 7Cru(t — 1) + vv,(t). (3.39)
Substitute x(¢[t) from (3.39) into (3.38) to give
u(t)=(1 -9+ CO)x(t -1t = 1)+ (I+vTCr)u(t — 1) + 4Tve(t).  (3.40)

Let u(t) be a state, then (3.39) and (3.40) give the state-space equation that defines

the closed loop system,

x(tt) | _ | 1-7)({I+CI) vCr
u(t) | | Q=TI+ Cr) I+4TC,

x(t — 1}t — 1) I
u(t—1) :l * [ T ] vi(t).
(3.41)

For a discrete time system, we have closed loop stability if and only if the eigen-
values of

Ao [ ((1 —y)I+CT)  +C: (3.42)

1—~)T(I+CT) I+4TC;

are inside the unit circle. More specifically, the effect of disturbances will decay to
zero if the spectral radius of A 1is less than one, and the effect of small disturbances
will grow until the constraints are met when the spectral radius of A is greater than

one [1].

Uncertainty in Gain This section considers uncertainty in the gain; interaction

uncertainty for the Avery/Dennison pilot plant will be considered in Section 3.6. The



50

1 '
0.8F .
0.6+ Stable Region i

¥
04} .
0.2+ .
Unstable Region

0 1

0 0.5 1

Y

Figure 3.4: Closed loop stability as a function of v and K = k/k,, no interaction
uncertainty.

real plant gain will be denoted as k, and the augmented real plant is

k.B

C, =
i 1----1

(3.43)

Recall that k is the gain and C 1s the gain matrix for the model.

By calculating the eigenvalues of A in (3.42) we determine which values of the ratio
K = k/k, give a stable closed loop system for each value of filter parameter « (see
Fig. 3.4). If the gain of the real plant is not underestimated by more than a factor of
two (K > 1/2), then the closed loop system is stable. For increased filtering (smaller
7v), the model gain k need not be as accurate. In other words, increased filtering
adds robustness to gain uncertainty. It can be shown that the stability boundary in
Fig. 3.4 is the straight line given by k = vk, /2.

The plant gain need not be known accurately for the closed loop system to be sta-
ble. Uncertainty in the plant gain will lead only to slower rejection of disturbances.
Since we need approximate only a plant gain to design the controller, detailed identi-
fication runs are unnecessary for controller design. Any reasonable estimate will do.

This makes it easier to apply the control algorithm to new cross-directional systems
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when k does not change much between systems.

The Plant Condition Number

It is well-known that high condition number plants (called ill-conditioned) can be

difficult to control [72, 102, 106]. By the condition number we mean

k(C)= —= (3.44)

where @ and o denote the maximum and minimum singular values of the plant

_ |Cull,
0(C) = max ———, a(C) =
(©) =22 Tl (©)

[[Cull,
w0 lulf

(3.45)

A plant with a high condition number is characterized by strong directionality because
inputs in directions corresponding to high plant gains are strongly amplified by the
plant, while inputs in directions corresponding to low plant gains are not. Thus,
ill-conditioned plants may be sensitive to actuator uncertainty [106].

Recall from Section 3.2 that C = 1{6.1?1 . The last row of C was augmented
to the plant matrix kB to keep u from straying from zero. The elements of the last
row of C need not be 1’s—the last row can be any constant multiplied by a row of
1’s. Because the controllability of the process is not dependent on what scalar is used

in the last row of C, a true measure of the controllability of the process must be

independent of this scalar. A “true” measure of the controllability of the plant can

) : (3.46)

It can be proven using the theory of circulant matrices (23, 52] that x*(C) = 1

be defined as
kB

3.--8

k*(C) = inf « (

for all n (the s that minimizes the condition number in (3.46) is s = /n). This

means that ill-conditioning is not a serious problem for cross-directional processes of
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die width 035 - 25m
die bolt spacing 30 - 60 mm
coating thickness | 10 - 60 um
coating weight 15 - 50 g/m?
substrate speed 0.5 - 6m/s

Table 3.1: Typical ranges of physical parameters for adhesive coaters.

the type studied here.

3.6 Application to Avery/Dennison Pilot Coater

The control algorithm of Section 4 is applied to a pilot plant coater at Avery /Dennison
Research Center! (see Fig. 3.1). Typical ranges of physical parameters for such coaters
are given in Table 3.1.

First the model is identified and the model assumptions are justified based on
input-output data. Then the effect of interaction uncertainty on the stability of the
closed loop system was investigated using the model fit to the pilot plant data. This
was done to ensure that uncertainty in the interactions [i.e., deviations from the
structure implied by (3.4)] would not cause the controller to perform poorly. We then
demonstrate that the controller can be effectively tuned on-line. We conclude the

section with an experimental closed loop test of the controller.

Identification

For the pilot plant, the number of actuators n = 12. The plant gain k was fitted
by least-squares from fifty input-output data sets. In Fig. 3.5 the predicted coating

thicknesses are compared with experimental data for a typical input.

1All figures and data are given in terms of dimensionless variables for proprietary reasons.
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Figure 3.5: Comparison of coating thicknesses predicted by P and P44 with exper-
imental data.

To test the assumptions used to develop the form of the gain matrix P in Sec-
tion 3.2, we fitted the entire 12 x 12 gain matrix in (3.1) to estimate a total of
144 parameters—we denote this matrix by Py44. As shown in Fig. 3.5, this model
gives little improvement over the gain matrix P satisfying the assumptions, so the
assumptions on P are valid.

The die had been designed to give a small interaction between nearest-neighbor
positions. Assumption 3 in Section 3.2 would not have been justified if the spacing

between the actuators had been much smaller.

Robustness to Interaction Uncertainty

The effect of interaction uncertainty on the stability of the closed loop system was
investigated using the model fit to the pilot plant data. This was done to ensure

that uncertainty in the interactions would not cause the controller to perform poorly.

. . . P

The same procedure as in Section 3.5 was used, but with C; = 1 1441 for the
kB : .

real plant and C = 1.1 for the model. Fig. 3.6 shows the stable region as a

function of the normalized model gain K = k/k, where k, denotes the best fit gain



54

S
o )
T
-

Stable Region

o o
E=N ()}
T T

Unstable Region

0 0.5 1
M

Figure 3.6: Closed loop stability as a function of v and K = k/k,. Interaction
uncertainty was included through the use of Py44.

in C. As in Fig. 3.4, the boundary between the stable and unstable regions is a
straight line, but the slope in Fig. 3.6 is steeper. Introducing interaction uncertainty
decreases the stable region, but an accurate estimate of k is still not required. This

will be experimentally verified below.

Experimental Closed Loop Control

The main purpose of the experiments was to verify that detailed identification of k is
not required for the resulting controller to give good performance. This is important
because gathering detailed input-output data is expensive.

All the die gaps were set equal to their nominal value. Because of imperfections in
the die and roller and inaccuracy in the die gap settings, this gives non-uniform coating
thicknesses. The goal of the controller is to make the coating thicknesses uniform.
This disturbance is small enough that constraint-handling was not needed. Because
the number of experiments was limited, we decided to perform all experiments with a
fixed v near one. As discussed in Section 3.5, in plant operation v would be chosen to

trade off the closed loop speed of response with the variance of the coating thicknesses.
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There were two major differences between the coater used for the identification
experiments and the coater used for the closed loop experiments. First, the mea-
surement noise was smaller for the second coater. Second, the coaters had different
dies, so the responses with the two dies are expected to be different. A comparison
of the die designs showed that the interactions are negligible for both dies but the
steady-state gains k are expected to be substantially different. Because experiments
are costly, our strategy was to avoid re-identifying k from open loop experiments
but to perform closed loop experiments instead for a few values of k and choose the
one that gives good control—effectively determining the optimal k¥ through on-line
tuning.

Fig. 3.7 shows the variance of the coating thicknesses for £ = 0.17, 0.1, and 0.05.
Since v was chosen near 1 and the interactions were negligible, we expect a fast
response when the model steady-state gain k is close to the true gain. Because the
gain k = 0.17 identified for the previous die gave slow response, the controller gain
is too small. This implies that the steady-state gain for the model is too large. The
response for k£ = 0.1 also gave sluggish response. Therefore we tried a smaller k. For
k = 0.05, the disturbance was rejected in two sampling times.

If we had perfect control and v = 1, the disturbance would be rejected in one
sampling time. If the assumptions of perfect control in Section 3.5 were satisfied with
4 = 0.95 then the closed loop time constant would be 7+ 1 = —1/log(1-0.95)+1 ~
4/3 > 1. Since we do not satisfy all the assumptions of perfect control, we cannot
expect the disturbance to be rejected in less than two sampling times, i.e., k = 0.05
gives the best achievable performance. We see that k needed to design the controller
was determined from only three closed loop experiments.

From Fig. 3.6 we expect that using k much less than 0.05 would give poor perfor-
mance. This agrees with experiment—the control actions calculated using k = 0.025

were excessively large and were not implemented.



56

0.004
0.0035
0.003
0.0025 ]
0.002 |
0.0015 |
0.001 }
0.0005 {

— ®— k=0.17
— U= k=01

—*— k=005

Variance(x)

< k=0.05

Coating Thickness Variance,

Sampling Time, t

Figure 3.7: Comparison of coating thickness variances (the control actions calculated
using k = 0.025 were excessively large and were not implemented).

Fig. 3.8 shows the closed loop response for £k = 0.05. The disturbance was not
completely rejected by the controller because of measurement noise and stiction-like
effects in the die gaps.

The purpose of the next closed loop experiment was to test the closed loop per-
formance with the controller designed above (k = 0.05, v = 0.95). Fig. 3.9 shows the
closed loop response (the variance of the coating thicknesses) with the designed con-
troller to two types of disturbances. The first disturbance was caused by a roller that
had a larger radius for the intermediate sensor positions than for the edge positions—
this disturbance was rejected within 2 sampling times as shown in Fig. 3.9. The
second disturbance was caused by ramping the roller speed and liquid flow rates (in a
constant ratio) to double their values between the fourth and fifth sampling instances.
The nominal gap width was kept at a constant value. We see from Fig. 3.9 that chang-
ing the roller speed and liquid flow rates in a constant ratio does not substantially

affect the variance of the coating thicknesses.
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Figure 3.9: Closed loop response for two disturbances.
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3.7 Discussion

The model predictive control algorithm rejects slow disturbances in coating thick-
nesses for a class of industrial coating processes. The control algorithm can be applied
to processes other than coating, for example to the control of paper machines [61],
as long as the assumptions in Section 2 are valid. The most restrictive assumption
regarding the form of the plant matrix P is that the only interactions are due to
the constant flow assumption. Additional interactions make the analysis and control
much more complex. Significant interaction uncertainty makes plots such as Fig. 3.4
and 3.6 more difficult to determine and less useful. The plant condition number can
become a serious limitation on closed loop performance. Laughlin et al. [61] give
examples of plants with only nearest-neighbor interactions for which the condition
numbers are infinity—this implies that the plants are uncontrollable.

On-line tuning becomes difficult when there are interactions—both because the
controller depends on multiple model parameters and because the closed loop response
can be extremely sensitive to poor estimates of the model parameters. When the plant
condition number is large, an inexact estimate of the interactions can give an unstable
closed loop system [106].

This chapter shows that there are strong advantages to spacing the actuators
far enough apart to keep the interactions minimal. The actuators must be spaced
close enough together to prevent strips of uncontrolled coating thickness between the

actuators. This is how the Avery/Dennison pilot plant was designed.

3.8 Addressing the Needs of Process Control

In this chapter we addressed plant/model mismatch, the effect of plant design on
control, and actuator constraints for a class of coating processes commonly found

in industry. Below we relate the approaches used for handling these process control



59

considerations for these simple coating processes to the general approaches developed

in the remainder of this thesis.

Plant/Model Mismatch The approach in this chapter to addressing model uncer-
tainty was very simple—the controller was designed ignoring plant/model mismatch,
and then shown to be relatively insensitive to the main model parameter which was
the overall process gain. Identification experiments suggested that interaction uncer-
tainty was negligible.

Interaction uncertainties are often not negligible, and process dynamics (and the
associated model uncertainty) tend to be much more complicated than for the simple
class of coating processes studied here. Also, in general the controller based only on
the nominal model may perform arbitrarily poorly. For these reasons, Laughlin et
al. [61] developed a method to analyze gain, interaction, and dynamic uncertainties
for cross-directional processes (such as adhesive coating, paper manufacturing, plastic
extrusion, and other processes with similar structure as described in [61]), and to
design controllers which are robust to these uncertainties. A different approach by
Hovd et al. [53, 54] does not address real parametric uncertainties, but can be used
to design robust optimal controllers via a modified DK-iteration procedure which
has much lower computation requirements than standard DK-iteration described in
Chapter 2. Both the approaches of Laughlin et al. [61] and Hovd et al. [53, 54] exploit
the structure of cross-directional processes (which is symmetric circulant, see citations
for details). An approach to design controllers for processes of arbitrary structure,
which satisfy a variety of performance specifications including tolerance to faults or

failures in actuators and sensors, 1s developed in Chapters 4 and 5.

Interaction Between Design and Control This chapter included a detailed
study of the potential limitations on the achievable performance posed by actuator

constraints, measurement noise, model uncertainty, and the plant condition number.
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This information provided recommendations on how to modify the plant design to
improve the closed loop control. In general, information on potential limitations to
the achievable performance can be used to choose actuators and sensors for control
purposes, and to choose pairing and partitioning of inputs and outputs for the design
of decentralized controllers. A unified approach to studying this problem is presented

in Chapter 6.

Actuator Constraints Three constraint-handling methods were explored in this
chapter: including additional terms in the objective function, explicitly adding con-
straints to the control algorithm, and scaling the control actions to satisfy the con-
straints. The first method is taken in the structured singular value approach discussed
in the previous chapter—a weight on the control action is increased for a specific dis-
turbance until the control action avoids the actuator constraints. The disadvantage
of this approach is that the resulting controller will be sluggish for small disturbances,
and ineffective for disturbances of larger magnitude.

The method of explicitly adding constraints to the control algorithm is referred
to as model predictive control (MPC). A quadratic program must be solved at each
sampling instance, and off-the-shelf software is available for performing these calcula-
tions [75]. Unfortunately, MPC is computationally too complex for many industrial
processes, which is part explains why MPC is typically implemented in a supervisory
mode, i.e., on top of the regulatory control systems. Two additional disadvantages are
that some operational requirements are impossible to express through a single objec-
tive function, and the stability and performance analysis with the resulting nonlinear
controller is difficult.

The third approach of scaling the control actions to satisfy the constraints, while
maintaining the direction of the unconstrained control move, is referred to as di-

rectionality compensation. For the industrial scale adhesive coater studied in this
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chapter, directionality compensation was found to perform nearly as well as model
predictive control. A detailed discussion of the importance of applying directional-
ity compensation to otherwise linear controllers, especially when the controller is an
inverse-based design, is provided by Campo [16]. Analyzing the stability and perfor-
mance of systems under directionality compensation is studied in Chapter 7.

The analysis in this chapter shows that many important process control consid-
erations can be addressed, at least for simple processes. The chapters which follow

develop a general approach for addressing these practical control considerations.

3.9 Conclusions

A model predictive control algorithm was presented which rejects slow disturbances
in coating thicknesses for a class of industrial coating processes. An industrial scale
adhesive coater was rigorously shown to be in this class. The overall plant gain
was determined on-line, and the resulting controller rejected disturbances within two
sampling times. The proposed controller can reduce the variance in coating thickness
by as much as 80% compared to what is possible by manual control or simple control
schemes.

Because this class of processes was particularly simple, many important process
control considerations (such as the effect of design on control, and how to design low
order controllers and handle actuator constraints and real parametric uncertainty)
could easily be addressed which would have been much more difficult to address in
general. This motivates the development of a general approach for addressing these

control considerations.
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A Unified Approach

to Process Control
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Chapter 4

Loopshaping for Robust Performance

Summary

Robust performance is said to be achieved if the performance specifications are
met for all plants in a specified set. Classical loopshaping was developed decades
ago by Bode to design for robust performance for single loop systems, where the un-
certainty can be represented as a single complex A-block, and the sole performance
specification is an upper bound on the closed loop sensitivity. Uncertainty and perfor-
mance specifications are often not so simple—control problems may involve multiple
performance specifications, and uncertainty may be more conveniently described as
real parameter variations. Also, it is important for multivariable systems that un-
certainty may be present at different locations, for example actuator uncertainty is
located at the input of the plant whereas sensor uncertainty is located at the output
of the plant. In this work classical loopshaping is extended to multiple parametric
and unmodeled dynamic uncertainty descriptions, more general performance specifi-
cations, and to the design of decentralized controllers. The authors refer to this more

general loopshaping technique as robust loopshaping.
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4.1 Introduction

Loopshaping involves directly specifying a transfer function that parametrizes the
controller based on magnitude bounds on the transfer function. These bounds are
either necessary conditions or sufficient conditions so that the closed loop system
satisfies desired stability and performance specifications. Examples of transfer func-
tions that parametrize the controller include the sensitivity S = (I + PK)™!, the
complementary sensitivity H = PK(I + PK)™!, and the open loop transfer function
L = PK. The controller K is then calculated from the specified transfer function.

Robust performance 1s said to be achieved if the performance specifications are
met for all plants in a specified set. Controller design methods can be classified as
being either optimization methods, or not. The optimization approach involves min-
imizing an objective function over the set of stabilizing controllers. The optimization
objective for robust control is to minimize the robust performance measure y over
the set of all stabilizing controllers, where y 1s a function of the nominal model, the
controller, the model uncertainty, and the performance specifications. How to solve
this optimization problem for centralized controllers is an open question—the ad-hoc
“DK-iteration” method proposed by Doyle [31] is the only method of tackling the
optimization to date. The DK-iteration method assumes that all uncertainties are
complex, involves iterative optimization, has many fragile steps, and produces high
order controllers. The DK-iteration method cannot be used effectively to design de-
centralized controllers, or controllers that are tolerant to faults or failures in actuators
OT Sensors.

Loopshaping can be classified as a non-optimization approach. The advantages
of loopshaping over optimization approaches are that: 1) the controller can be kept
simple, 2) decentralized controllers can be designed, and 3) the properties of interest
to the engineer are often directly in terms of the designed loopshape.

The technique of loopshaping was introduced by Bode (7] for the design of feedback
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amplifiers. Doyle et al. [32] review classical loopshaping, where the system is single-
input single-output (SISO), the uncertainty can be represented as a single complex
A-block, and the sole performance specification is an upper bound on the closed loop
sensitivity. Uncertainty and performance specifications are often not so simple—
control problems may involve multiple performance specifications, and uncertainty
may be more conveniently described as real parameter variations. Also, it 1s important
for multivariable systems that uncertainty may be present at different locations, for
example actuator uncertainty is located at the input of the plant whereas sensor
uncertainty is located at the output of the plant.

In this work classical loopshaping is extended to multiple parametric and unmod-
eled dynamic uncertainty descriptions, more general performance specifications, and
to the design of decentralized controllers. The authors refer to this more general
loopshaping technique as robust loopshaping. Robust loopshaping can handle perfor-
mance specifications that are not addressed directly through “DK-iteration”, such as

gain and phase margins or fault and failure tolerance requirements.

Organization The remainder of this chapter is organized as follows. First we give
formulas which parametrize several common transfer functions in terms of the con-
troller. Second, we derive the robust loopshaping bounds. We discuss how to calculate
these bounds, and how to use these bounds to design robust controllers. Robust loop-
shaping is shown to agree with and extend the original classical loopshaping bounds
derived by Bode [7] when applied to SISO systems. Then we show how to include gain

and phase margin specifications, and to handle multiple performance specifications.

4.2 Parametrize Controller in Terms of T

Robust performance is described in detail in Chapter 2. In this section we show how

to parametrize the controller in terms of a transfer function of interest 7. For exam-
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Figure 4.1: Equivalent representations of system M with perturbation A. The trans-
fer function T is chosen to be a parametrization of the controller K.

ple, T could be the complementary sensitivity H = PK(I + PK)™!, the sensitivity
S = (I+PK)™!, the open loop transfer function L = PK, or the controller K. Math-
ematically, we need to find an LFT in terms of T which describes M (see Fig. 4.1).
In many cases, this is done by inspection. When this is not possible, the equations
given below (which are derived in the appendix of this chapter) can be used.

To get an LFT in terms of T, begin with the interconnection structure in terms
of G and K. The generalized plant G is determined by the nominal model, the
location and magnitude of the uncertainties, and the performance specifications. The
generalized plant G is found directly by rearranging the system’s block diagram (the
subroutine sysic does this in u-tools [3]). We calculate N for T = H (denoted as N¥)

directly from G:

Gy; Gy P71
NH = G; ﬁ) (4.1)
For T = S, L, and K, respectively, we have
NS = Gu + (élzzlp—lczl —Glgp_l ] , (4.2)
G G P!
NP = , 43
[ Gy GpP™! (43)

NE =G. (4.4)
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A simple program can be written that calculates N¥ N5 NI and N¥| given
the transfer functions describing the system components and the location of the un-

certainty blocks A;.

4.3 Robust Loopshaping Bounds

Controllers which satisfy robust performance can be designed via robust loopshaping.
To perform robust loopshaping, the robust performance conditions are expressed as
norm bounds on the transfer function T.

Consider a system in M — A form as shown in Fig. 4.1. The interconnection
structures in Fig. 4.1 are equivalent. The closed loop transfer matrix M is written as
a linear fractional transformation of the transfer function of interest, namely 7. We

define the set of perturbations
A7 = {Ar |Ar has the same structure as T'}, (4.5)
the set of norm-bounded perturbations
yBAr = {Ar|Ar € A7, (A7) < v}, (4.6)
and its near-complement
vBAr = {Ar|Ar € A1,5 (A7) > 7). (4.7)

The following theorem gives a sufficient upper bound on the transfer function T

for robust performance to be achieved.

Theorem 4.1 (Sufficient Upper Bound for Robust Performance {104, 105])
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Let M = Fi(N,T) = N11+ N12T(I—= N3pT) ! Ny, let k be a given constant, and define

fler) =, max  pa(Fi(N,A7)). (4.8)

Assume

(i) det(I — NpT) # 0,
(i1)  f(0) = pa(Nu1) < k, and (4.9)
(iii)  f(c0) > k.

Let cf* solve

F(e2) = k. (4.10)
Then pua(M) < k if
7 (T) < & (4.11)

Proof: ~ Assumption (¢) is a necessary (and sufficient) condition for the LFT M =
F(N,T) to be well-defined. In general, T will have some block structure as in (2.6),

ie. T € Ar. If (T) < cr, then the inequality

max = UA(Fi (N, Ar)) > pia(Fi (N, T)) = pa(M) (4.12)

AT€cr BAT

holds because the right-hand side is an element of the set maximized on the left-hand
side. (The equality cannot hold because of monotonicity and that the set maximized
on the left-hand side is strictly larger than required to cover the element of the set

on the right-hand side.) It follows that

o, max, pa(Fi(N,A7)) = k == pa(M) <k, (4.13)

provided that there exists cr which satisfies f(cr) = k. Since the function f(cr) is

monotonically nondecreasing with ¢r (see Fig. 4.2), we need f(0) < k < f(o0) for
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Figure 4.2: The function f(cr) is monotonically nondecreasing.

f(er) = k to be satisfied for some positive cr. QED.

Remark 4.1 (Interpretation of Assumptions) Assumption (i) will hold for any
well-posed problem. If assumption (iii) does not hold, then any T will give pA(M) <
k—the uncertainty and performance weights would have to be very weak for this to be
the case. Assumption (i1) may or may not hold. For reasonable choices of uncertainty
and performance weights, assumption (i1) will hold for low frequencies when T = S
and will hold for high frequencies when T = H, L, or K. This will be illustrated in

more detail later.
The next theorem gives a sufficient lower bound for robust performance.

Theorem 4.2 (Sufficient Lower Bound for Robust Performance) Let M =
F(N,T) = Ny + Ny2T(I — NyoT)"' Ny, let k be a given constant, and define

e(cr) = max_ pa(F (N,Ar)). (4.14)
ArecrBAr

Assume

(i)  det(I — NooT) #0,
(1) e(0) = pmax pa(F(N,Ar)) > k, and (4.15)
(ii") e(o0) < k.
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Let ¢ solve

e(cf) = k. (4.16)

Then pa(M) < k if
7 (T) > . (4.17)

Proof: Similar to the proof of Theorem 4.1.

Remark 4.2 (Interpretation of Assumptions) Assumption (i) will hold for any
well-posed problem. If assumption (1i') does not hold, than any T will give pa(M) <
k—the performance specifications are trivially achieved in this case. For reasonable
choices of uncertainty and performance weights, assumption (i1i') will hold for low
frequencies when loopshaping K or L. This bound does not ezist when loopshaping

with closed loop transfer functions (with reasonably chosen weights).

Next we will derive the necessary upper and lower bounds on @ (T') for the transfer
function T to achieve robust performance. In each case, we will begin by deriving
a sufficient bound for not achieving robust performance. These sufficient bounds
for not achieving robust performance are also necessary bounds for achieving robust

performance.

Lemma 4.1 (Sufficient Upper Bound for Not Achieving Robust Performance)
Let M = Fy(N,T) = N11+N12T(I— Ny T)" Ny, let k be a given constant, and define

gler)= min _ pa(F (N, A7)). (4.18)
ArecrBAT

Assume

(l) det(I - N22T) # 0,
(") 9(0) = ;min pa(F(N,Ar)) <k, and (4.19)
(11i") g(o0) > k.
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Let c* solve

9(ct’) = k. (4.20)
Then pa(M) > k if
7 (T) > . (4.21)

Proof:  Assumption (¢) is a necessary (and sufficient) condition for the LFT M =
E(N,T) to be well-defined. Now if (T') > cr then the inequality

min _ pa(F (N,Ar)) < pa(Fi (N, T)) = pa(M) (4.22)

ATECTBAT

holds because the right-hand side is an element of the set minimized on the left-hand

side. It follows that

mm__ [tA(FI (N, AT)) =k = HA(]W) > k’, (423)
AT€CTBAT

provided that there exists ¢y which satisfies g(cr) = k. Since the function g(cr) is
monotonically nondecreasing with ¢, we need ¢(0) < k < g(o0) for g(cr) = k to be
satisfied for some positive cr. QED.

The next theorem which gives the necessary upper bound requirement for robust

performance follows directly from the above lemma.

Theorem 4.3 (Necessary Upper Bound for Robust Performance) Let M =
Fy{(N,T) = Ny1 + N1i2T(I — NpyT)™' Ny, let k be a given constant, and define

gler)=min _ pa(F (N,Ar)). (4.24)
Ar€crBAr
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Assume

(i)  det(I — NpoT) # 0,
(") o(0) = min pa(R(N,Ar) < b, and (4.25)
(iii")  g(oo) > k.

Let c* solve

o) = k. (4.26)
Then pa(M) < k only if
c(T) < cr. (4.27)

Remark 4.3 (Interpretation of Assumptions) Assumption (i) will hold for any
well-posed problem. If assumption (it") does not hold, than no T will give pa(M) <
k—when T parametrizes the controller K, this implies that no controller with the
given structure exists that will achieve robust performance. If assumption (i1i") does
not hold, then the optimization (4.24) is too conservative to give a useful necessary
upper bound on T. For reasonable choices of uncertainty and performance weights,
assumption (121") holds for high frequencies when loopshaping K or L. This bound
exists for all frequencies when loopshaping with closed loop transfer functions (with

reasonably chosen weights).

Next we will perform a similar development to get a necessary lower bound for
a transfer function to achieve robust performance. The following lemma gives a

sufficient condition for not achieving robust performance.

Lemma 4.2 (Sufficient Lower Bound for Not Achieving Robust Performance)
Let M = Fi(N,T) = Ni1+ N1i2T(I— N2, T)" ' Nyy, let k be a given constant, and define

hier) =, min pa(Fi(N,Ar)). (4.28)



73

Assume

(i)  det(] — NpT) #0,
(i1")  h(oco) = AITnEjRT Ua(Fi(N,A7)) < k, and (4.29)

(721")  h(0) = pa(Ny1) > k.
Let ¢ solve
h(c¥) = k. (4.30)

Then pa(M) > k if
(T) < c}. (4.31)

Proof: Similar to that of Lemma 4.1.

The next theorem follows immediately from the above lemma.

Theorem 4.4 (Necessary Lower Bound for Robust Performance) Let M =
F(N,T) = Ny1 + NioT(I — No2T) "INy, let k be a given constant, and define

h(CT) = minAT ,LLA(FI (N,AT)) . (4.32)

Ar€crB

Assume

(l) det(] - N22T) # O,
(") h(oo) = min pa(F(N,51)) <k, and (433)

(112")  h(0) = pa(N11) > k.
Let ¢ solve

h(cF) = k. (4.34)

Then pa(M) < k only if
7 (T) > ¢}, (4.35)

Remark 4.4 (Interpretation of Assumptions) Assumption (i) will hold for any
well-posed problem. If assumption (i) does not hold, then no T will give pua(M) <

k—when T parametrizes the controller K, this implies that no controller with the
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given structure exists that will achieve robust performance. Assumption (:ii"') may

or may not hold. For reasonable choices of uncertainty and performance weights,
assumption (1i1"") will hold for high frequencies when T = S and will hold for low

frequencies when T = H, L, or K. This will be illustrated in more detail later.

General Remarks

Remark 4.5 When the necessary upper and the sufficient upper bounds are very
close to each other, we have essentially a necessary and sufficient upper bound for
robust performance in terms of (T). A similar statement holds for the necessary

lower and sufficient lower bounds.

Remark 4.6 Note that the sufficient upper bound and the necessary lower bound can-
not both ezist at the same frequency. Actually, when a robustly performing controller
ezists (assumption (i1") must hold in this case), and provided that robust performance
is not trivial to satisfy (so assumption (iti) holds), exactly one bound ezists for each
frequency. Svmalarly, the sufficient lower bound and the necessary upper bounds can-
not both exist at the same frequency. When a robustly performing controller exists,

and provided that robust performance is not trivial to satisfy, exactly one bound ezists

for each frequency.

Remark 4.7 Many parameterizations T exist for the controller K, for ezample K
can be parameterized by the sensitivity S, the complementary sensitivity H, the open
loop transfer function L = PK, or just the controller K. Controllers can also be
designed via loopshaping the IMC filter F [82] or the IMC filter time constant A [51].

Parametrizations for decentralized controllers are given in Chapter 5.

Remark 4.8 The norm bounds on different T’s can be combined over different fre-
quency ranges. For ezample, for Ty = § and Ty = H, robust performance is achieved

if either of the conditions T (S(jw)) < c§' or 7 (H(jw)) < ¢} is met for each w.
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Remark 4.9 The bounds given by each theorem are the tightest bounds possible. For
ezample, if we have o Ty with @ (Ty) larger than c§* defined by Theorem 4.1, then

there ezists a Ty with & (T2) = @ (Ty) where Ty does not meet robust performance.

Remark 4.10 The least conservative bounds are obtained when Ar is a repeated
scalar block. For this reason, the repeated scalar block (i.e. assuming all loops are
identical) is used when designing decentralized controllers for robust performance via
loopshaping. When designing controllers to have failure tolerance properties, it can be
useful to allow At to consist of independent 1 x 1 blocks when calculating sufficient
bounds for robust stability. For further details on decentralized controller design and

failure/fault tolerance, see Chapter 5.

Remark 4.11 [t is straightforward to derive alternative bounds in terms of o(T)
using Lemma 4.3 which we present in the next section. We will not ezplore this

further in this thests.

4.4 Efficient Calculation Procedures

For loopshaping design, A7 is repeated scalar (see Remark 4.10). Below we pro-
vide methods for calculating the necessary and the sufficient bounds for loopshaping

design.

Sufficient Bounds Theorem 4.1 which gives the sufficient upper bound is a re-
statement of a result in [104, 105]. In fact, Skogestad and Morari [104] show that

Theorem 4.1 remains valid if f(cr) is replaced by

: _ Ni Niy
P (| —
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-

Since f(cr) is monotonic, ¢y that satisfies f(c3*) = k can be found by bisection,

which involves multiple g calculations. These multiple 4 calculations can be avoided

) _—.0}. (4.37)

The above minimization is solved exactly as for standard p calculation except that

by using the following explicit expression for c7*:

k7INy, k7INg,
det | I +
( [ Ny Ny

A

= min {’y
A € BA

Ar € ’7BAT

At

only the subblocks in A7 are scaled by v [107].
For loopshaping design the sufficient lower bound ¢ (when it exists) can be defined
in terms of the same scaled p problem as above but for a different “M” matrix. To

show this, we need the following lemma:

Lemma 4.3 (LFT of Inverse) Consider an LFT in terms of A, F;(N,A). Assume

Njj is invertible. Define

V = Ny — NioNp' Nyy NioNgy!

N ! X (4.38)
- 221N21 ‘N221

Then the following equality holds:

F(N,A) = F(N,A™). (4.39)

Proof: The equality follows from the definition of the lower LFT and some algebraic
manipulation. QED.
Since Ar is repeated scalar for loopshaping design, we have (assuming Nj; is

invertible)

e(er) = max__ pa(Fi (N,Ar)) (4.40)
Ar€crBAr
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= max_ (x(F(N,61)) (4.41)
51€CTBAT

= v 51

T (/6)1e0)en)BAL /“LA(F’ (N"S I)) (4.42)

- F N’A 4.43
Are(fr/lgno‘, ”A( '< T)) (4.43)

= f(tfer). (4.44)

Thus the method for calculating the sufficient upper bound on & (T') discussed above
can also be used to calculate the sufficient lower bound on 7 (T) whenever A7 is
repeated scalar (inspection of (4.1-4.4) shows that the assumption that N, be invert-
ible does not limit the usefulness of above transformation). This fact was used by
Hovd [51] to design decentralized controllers via loopshaping the IMC filter parame-

ter.

Necessary Bounds The necessary bounds c7* and ¢} are defined in terms of
more unfamiliar multivariable optimizations (4.18) and (4.28). Currently there exists
no method to solve optimizations (4.18) and (4.28) for general block diagonal Ar.
However, the optimizations can be solved for the special structure of At used when
designing SISO and fully-decentralized controllers via loopshaping.

For loopshaping design we have Ar € Ar, where

Ar={6I,|6€C}. (4.45)

The set Ar can be parametrized in terms of two parameters—the magnitude and
phase of §. We show here that the two-parameter minimization can be replaced by a
one-parameter minimization. We show that both necessary bounds are roots of the
same function calculated through the one-parameter minimization.

Using Ar given by (4.45), Theorems 4.3 and 4.4 state that the upper and lower
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necessary bounds ¢}* and ¢} solve

o(c§") = i, walFL(V,81)) = (4.46)
and
h(c}) = “6@“112?"1 Ua(F1 (N,61,)) = k. (4.47)
Define
m(er) = H?Hlilclr Ua(Fi (N,61,)), (4.48)
then it follows that
gler) = min m(y) h{er) = min m(y) (4.49)
g(er) < m(er) h(cr) < m(er) (4.50)
m(oo) = g(o0) m(0) = h(0). (4.51)

Let assumptions (z), (:2”), and (477”) hold so that the necessary upper bound exists.
Then m(oo) = g(c0) > k and m(cr) < k for some cr, and we have from Theorem 4.3
that c7" is given by

g(cz*) =k <= min m(y) =k <= " is the largest zero of m(cr) — k. (4.52)

y2ep

Let assumptions (7), (i¢""), and (27¢"") hold so that the necessary lower bound

exists. Then m(0) = ¢(0) > k and m(cr) < k for some cr, and we have from

Theorem 4.4 that ¥ is given by

h(c}) =k <= min m(y) = k < ¢ is the smallest zero of m(cr) — k. (4.53)

{
y<cy

The minimizations in (4.46) and (4.47) are over two parameters—the phase and mag-
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m(c_T)-k

Figure 4.3: The function m(cr) — k for a given frequency. The N matrix is for
loopshaping the diagonal complementary sensitivity for w = /10 for the high-purity
distillation column in the next chapter.

nitude of §. The necessary bounds c}* and ¢} are solved from (4.46) and (4.47) by
locating the one zero of g(cr) — k and h(cy) — k, respectively. The functions g{cr) —k
and h(cy) — k are monotonic, so these zeros are easy to locate via bisection.

In contrast, the minimization in (4.48) is over only one parameter—the phase of 6,
which is between 0 and 27. The necessary bounds cj* and ¢ are solved by locating
the largest and smallest zeros of the same function m(cr) — k.

In general m(cy) is not monotonic. Fig. 4.3 is a plot of m(ecr) — k used for
determining ¢} and ¢ in the loopshaping design of a decentralized controller in
Chapter 5. In this case, assumptions (), (i¢"), (¢1¢"), (22"), and (27¢"") hold, so both
necessary bounds exist. We can use (4.49) to determine g(cr) — k and h(cr) — k from
the plot of m(cr) — k (as shown in Fig. 4.3).

There is slight tradeoff in solving for the bounds using m(cr) instead of by the
original equations (4.46) and (4.47). The roots found in (4.46) and (4.47) are of
monotonic functions and so were very easy to find, for example by bisection with zero
and a large cr as interval endpoints. The function m(cr) — k can have multiple zeros.

This could make finding the zeros of m(cr) — k more difficult, but in practice we have
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found m(cr) to have one global minimum (for cr > 0), so that m(cr) — k would have

two zeros when both bounds exist and one zero when only the upper bound exists.

Remark 4.12 Ezplicit expressions for ¢ can be derived for the necessary bounds as
was done for the sufficient upper bound. Unfortunately, it 1s not as clear what to do
with the explicit ezpressions because they do not reduce to standard p calculation as

for the sufficient upper bound.

4.5 Controller Design via Loopshaping

In robust loopshaping design, the nominal closed loop transfer functions are specified
directly based on necessary bounds and sufficient bounds for robust performance.
We need to satisfy separate conditions to guarantee nominal stability. For example,
when designing an SISO controller via loopshaping closed loop transfer functions,
nominal stability is guaranteed by specifying stable S and H and by satisfying the

interpolation conditions [32]
H(z;) = 0 and S(z;) = 1 for all closed right half plane zeros z;, (4.54)

S(p;) = 0 and H(p;) = 1 for all closed right half plane poles p;. (4.55)

The interpolation conditions are equivalent to the condition that the right half plane
poles and zeros of the plant cannot be canceled by the controller. These conditions
are easy to satisfy when there are few right half plane poles and zeros; when there
are more then the Internal Model Control (IMC) method can be used to stabilize
the system, and the filter can be designed via loopshaping (for details see [76, 32]).
Guaranteeing nominal stability is more difficult in the multivariable case. A detailed
discussion of stability for multivariable systems is given in [114]. A loopshaping

method for guaranteeing nominal stability is described in Chapter 6.
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There are many advantages to designing controllers via loopshaping closed loop
transfer functions. One advantage is that the properties of interest to the engineer
are specified directly by the nominal closed loop transfer functions. For example,
the sensitivity is directly related to the capability of the closed loop system to reject
disturbances at the output of the plant. The complementary sensitivity is directly
related to the closed loop speed of response and the insensitivity of the output to
measurement noise. Thus directly specifying the closed loop transfer functions allows
“intuition” in the design procedure. Also, gain and phase margins can be specified
when loopshaping the sensitivity S or H, as will be shown in Section 4.8. When de-
signing controllers via loopshaping closed loop transfer functions, robust performance
can be guaranteed using sufficient bounds on the sensitivity and complementary sen-
sitivity (as will be shown in Section 4.7). It is also shown that robust performance
cannot be guaranteed using sufficient bounds on open loop transfer functions.

A simple form is usually chosen for S and H, and the controller is calculated via
K = P'HS™!'. A disadvantage of designing controllers via loopshaping closed loop
transfer functions is that in practice the order of the controller is larger than the
order of the plant. It is difficult to design a controller with a specified structure when
specifying closed loop transfer functions. The advantage of loopshaping design using
open loop transfer functions (e.g. L or K) is that the controller complexity (e.g. PID,
or low order) is directly specified. It is difficult to do this using other robust controller
design methods. For example, the DK-iteration method proposed by Doyle [31] gives
controllers of very high order, though the order can be somewhat reduced using model
reduction (3].

A general advantage of loopshaping (whether loopshaping closed loop or open
loop transfer functions) over other robust controller design methods is that decentral-
ized controllers can be designed. Controllers can also be designed to meet specified

gain and phase margins, multiple performance specifications, and failure and fault
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Figure 4.4: The plant with output uncertainty Ao of magnitude wo(s). Robust
performance is satisfied if ¢ (wp(I + PK)"I) <1 for all Ap with ||Aplle < 1.

tolerance specifications.

4.6 Robust Loopshaping Reduces to Classical
Loopshaping for SISO Systems

Classical loopshaping was developed decades ago by Bode [7] to design for robust
performance for single loop systems, where the uncertainty can be represented as a
single complex A-block, and the sole performance specification is an upper bound on
the closed loop sensitivity. We show below that in this case the classical loopshaping
bounds can be derived via the robust loopshaping theorems. We also show the robust
loopshaping bounds provide additional information which was not available from the

original classical loopshaping bounds.

Loopshaping Closed Loop Transfer Functions

Assume that we are interested in disturbance attenuation, then our performance
condition is to keep the norm of the sensitivity function & (S) = |S| small. If we let
our frequency dependent performance bound be 1/|wp|, then robust performance is
satisfied if 7 (S) < 1/|wp| for all plants in our uncertainty description. Let the set of
possible plants be given in terms of multiplicative uncertainty of magnitude |wo| (see

Fig. 4.4). Robust performance is satisfied if and only if pia(M) < 1 for all frequencies
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where
on on Ao
[ pr 'pr ] Ap ] ( )
The generalized plant G is found from inspection to be
0 0 woP
G = Gu G wp wp|—wpP |. (4.57)
Ga G
1 1| -P

We write M as an LFT of H either by inspection or using (4.1):

0 0 w
N{{:{ ],N{é:[ 0},1\/{{:[1 1], N =0 (4.58)

Sufficient Bounds Theorem 4.1 gives the sufficient upper bound on H for robust

performance to be achieved. The upper bound is c}f, where cjf at each frequency

solves
0 0 wo
max flra F wp wp —wp |,An =1. (4.59)
lami<es " [A0 4, ] L1 o

The structure of Ay is the same as for H, namely 1 x 1.
Theorem 4.1 gives us that pa(M) < 1 for all frequencies for which |H| is lower
than c§f. The minimization in (4.59) can be solved analytically (from the definition

of 1) to give the following expression for c}}':

pa(M) < 1 < |H| <c}}‘=l—;ﬂ—u—;;—|})—l. (4.60)

Similarly, the sufficient upper bound theorem applied to the sensitivity S gives

UAM) <1 <= |S| < ' = (4.61)
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The expressions for c}f and c§ above are most easily derived from

woH woH

= H S .
wpS  wpS } lwoH| + |wpS]| (4.62)

ua(M)=M[AO ] [
Ap

combined with the triangle inequality [e.g., use |S| = |1 — H| < 1 + |H| to derive
(4.60)].

Notice that the sufficient upper bound on |H| is defined only for |wp| < 1 and
the sufficient upper bound on |S] is defined only for |wp| < 1. This corresponds to
the requirement that fta(N17) < 1 hold for the sufficient upper bound to be defined
in Theorem 4.1.

For the sufficient lower bound on H to exist, we need

0 0 wo
e(00) = lim max__ K wp wp —wp |,Ay <1l. (4.63
)=, e [2° ) 1 1 0 e

Analytically solving the expression for e(oo) gives that e(oo) = oo, so from The-
orem 4.2 we see that the sufficient lower bound on H does not exist. A similar

development shows that the sufficient lower bound on S does not exist either.

Necessary Bounds For the necessary bounds to exist in Theorems 4.3 and 4.4, we

need
0 0 Wwo
nAlinu[AO ] Fl|wp wp —wp |,Ax|]| <1l (4.64)
" Ap 1 1 0

The above minimization can be solved analytically to give

0 0 wo
nAlinu Ao Fil| wp wp —wp |,Any || = min{|we|,|wpl|}. (4.65)
LA 1 1 0
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This equation is most easily derived using (4.62). The left-hand minimization in
(4.65) is achieved for Ay = 1 when |wg| < |wp| and for Ay = 0 when |wo| > |wp|.
A necessary condition for robust performance is that for each frequency either
|wo| or |wp| is less than one. This will be assumed in the following derivation of the
necessary bounds, since if this condition is not met, then robust performance cannot
be met for any controller.
Theorem 4.3 gives the tightest necessary upper bound on H for robust performance

to be achieved. The upper bound is ¢}, where ¢ at each frequency solves

0 0 wo
min F wp wp —Ww A =1, 4.66
el H [Bo, ] | P lP 1P 0 p|,An (4.66)

Theorem 4.3 gives us that for fa(M) to be less than 1 it is required that |H| is
lower than c}. The minimization in (4.66) can be solved analytically to give the

following expression for cfj':

|w“|_“’,; | if lwo| > 1,
pa(M) <1= |H| < ' = oIer (4.67)
——L—l—‘wjﬁgﬂ if [wo| < 1.

Similarly, the necessary upper bound theorem applied to S gives

o2 if jwp| > 1,
palM) <1=|5S|<cs" = pimito (4.68)
———L——J—wl};mgo! if lwp| < 1.

Again the expressions for ¢} and c¢%* above are most easily derived from (4.62)
combined with the triangle inequality.
Notice that the necessary upper bound is defined for all frequencies provided that
min{|wo|, |wp|} < 1.

Theorem 4.4 gives the tightest necessary lower bound on H for robust performance
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to be achieved. The upper bound is c}f, where c}} at each frequency solves

0 0 Wo
min flra, Fillwp wp —wp |, Ay || =1 (4.69)
lanlseg” [40a,] L1 o

Theorem 4.4 gives us that for pa(M) to be less than 1 it is required that |H| is
larger than c}}. The minimization in (4.69) can be solved analytically to give the

following expression for c}i:

1— |wp|

M)<l=|H|>cjj= —"—. 4.70
MA( ) l l H ‘u’Ol — lel ( )
Similarly, the necessary lower bound theorem applied to S gives
Ha(M) <1 = |S|> ¥ = —I—T—!L-U—OL. (4.71)
lwp| — |wol

Again the expressions for ¢}l and ¢¥ above are most easily derived from (4.62)
combined with the triangle inequality.

Notice that the necessary lower bound on |H| is defined only for |wp| > 1 and the
necessary lower bound on |S] is defined only for |wp| > 1. This corresponds to the

requirement that fta(/N1;) > 1 holds for the necessary lower bound to be defined.

Remark 4.13 Consider the bounds on the sensitivity S. The necessary upper bound
is defined for all |wo|. The sufficient upper bound ezists only for |wo| < 1. The
necessary lower bound ezists only for |wo| > 1. It makes sense that only one of these
bounds can exist for a given frequency. It is interesting that, except for frequencies
where |wp| = 1, ezactly one of these bounds must ezist at each frequency. Similar

statements hold for the complementary sensitwvity H (but with wp instead of wp ).



87

Loopshaping Open Loop Transfer Functions

Now we derive loopshaping bounds on L for an SISO plant. The corresponding
bounds for K are immediately given by the bounds for L, since |L| = |P| - |K]|.
To loopshape with L, we calculate N from G using (4.3):

0 0 wo
Gu Gy P71
NL — Gll GIZP—I ] — wp wp —wp |. (472)
21 22 1 1 -1

Sufficient Bounds Theorem 4.1 gives the sufficient upper bound on L for robust

erformance to be achieved. The upper bound is 3%, where c®* at each frequenc
P PP L L q y

solves
0 4] wo
max F wp wp —w ,A =1. 4.73
oo H [AOAP] ! 1P 1P —IP L (4.73)

The structure of Ay is the same as for L, namely 1 x 1.
Theorem 4.1 gives us that pa(M) < 1 for all frequencies for which |L| is lower
than cj“. The minimization in (4.73) can be solved analytically to give the following

3 su.,
expression for c*:

1- ]wp]
M)<le=|L| < = ——. 4.74
palM) < 1= 1] < et = 10 (@74
Similarly, the sufficient lower bound theorem gives
1
PaA(M) <1 <= |L| > = —+—|—uﬂ. (4.75)
1 - |wol

The expressions for ¢%* and c¥ above are most easily derived from
L L

woH woH
pr wPS

otz +
YOTTIITIYPTE L

(4.76)

pa(M) = p s, | [ ] = lwoH| + |wpS| =

combined with the triangle inequality [e.g., use |1 — |L|| < |1+ L| < 1+ |L| (see [32]
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for details))].

Notice that the sufficient upper bound on |L| is defined only for |wp| < 1 (typically
true for high frequencies), and the sufficient lower bound on |L| is defined only for
lwo| < 1 (typically true for low frequencies). These conditions correspond to the
requirement that f4a(N1;) < 1 holds for the sufficient upper bound to be defined in
Theorem 4.1, and to the requirement that e¢{co) < k holds for the sufficient lower

bound to be defined in Theorem 4.2.

Necessary Bounds For the necessary bounds to exist in Theorems 4.3 and 4.4, we

need
0 0 wo
n&inu[Ao ] F wp wp —wp |,Ar]] <1 (4.77)
* P 1 1 -1

The above minimization can be solved analytically to give

0 0 wo
121'11/1 Ao F wp wp —-wp |,AL =min{lw0],|wpl}. (478)
’ Ar 1 1 -1

This equation is most easily derived using (4.76). The left-hand minimization in
(4.78) is achieved for A7' — 0 when |wo| < |wp| and for Ay = 0 when |wo| > |wp].
A necessary condition for robust performance is that for each frequency either
|wo| or |wp| is less than one. This will be assumed in the following derivation of the
necessary bounds, since if this condition is not met, then robust performance cannot
be met by any controller.
Theorem 4.3 gives the tightest necessary upper bound on L for robust performance

to be achieved. The upper bound is c7¥, where c}* at each frequency solves

0 0 wo
F} wp Wp —wWp ,AL = 1. (479)

min
1arizep H [Bo ] L1 1
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Theorem 4.3 gives us that for fta(M) to be less than 1 it is required that |L| is
lower than c}¥. The minimization in (4.79) can be solved analytically to give the

following expression for c7*:

1— |wp]

pa(M) < 1= |L| < " = (4.80)

lwol — 17

Again the expression for ¢}* is most easily derived from (4.76) combined with the
triangle inequality.
Theorem 4.4 gives the tightest necessary lower bound on L for robust performance

to be achieved. The upper bound is c}', where c}' at each frequency solves

0 0 wo
min F[ wp wp —wp ,AL =1. (4.81)

Theorem 4.4 gives us that for fia(M) to be less than 1 it is required that |L| is
nl

larger than ¢}'. The minimization in (4.81) can be solved analytically to give the

. . nl.
following expression for c}:

nl_lwpl—l

M)<l=|L|> = . 4.82
pa(M) L1> e = (482)

Again the expression for c}' is most easily derived from (4.76) combined with the
triangle inequality.

Notice that the necessary upper bound on |L| is defined only for |wo| > 1 (typically
true for high frequencies), and the necessary lower bound on |L| is defined only for
|wp| > 1 (typically true for low frequencies). These conditions correspond to the
requirement that g(oco) > 1 holds for the necessary upper bound to be defined in
Theorem 4.3, and to the requirement that fta(/Ny;) > 1 holds for the necessary lower

bound to be defined in Theorem 4 .4.
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Comparison of Robust Loopshaping with Classical Loop-
shaping

The loopshaping bounds for the open loop transfer functions derived above agree
with classical loopshaping. Similarly, the sufficient bounds on the closed loop transfer
functions have been known for decades (see [32]); however, the necessary bounds were
incomplete. The robust loopshaping theorems were used to calculate all the bounds
for all frequencies. The distance between the necessary and the sufficient bounds
quantifies the conservatism of the bounds near crossover. This complete picture also
gives us a priori bandwidth ranges which must be satisfied by the controller, as will
be shown in the next section. The real advantage of robust loopshaping over classical
loopshaping is its ability to handle mixed real and complex uncertainty descriptions,

multiple performance specifications, and decentralized controller design.

4.7 Example: DC Motor

Description Assume the nominal transfer function is the double integrator
P(s) = —. (4.83)

This could describe a DC motor with negligible viscous damping. The nominal model,
uncertainty description, and performance specifications for this example come from
[32].

We are interested in good tracking over a bandwidth of about 1. If S| < 1/|wp],

where
10
34282425 +1’

wp = (4.84)

then the tracking error is at most 10% over the desired closed loop bandwidth. The

true plant is assumed to have a time delay, which was covered by a multiplicative
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uncertainty of magnitude |wo| in [32], where

0.21s

0.1s+1 (4.85)

wo =

Analytical expressions for the robust loopshaping bounds are given in the previous

section.

Closed Loop Design The upper plot in Fig. 4.5 gives the loopshaping bounds on
H and the lower plot give the bounds on S. The complementary sensitivity H and
sensitivity S are shown for an example design.

Our design approach is to find an S that satisfies nominal stability and has the
sufficient bound on S satisfied for one part of the frequency range and the suffi-
cient bound on H satisfied for the other part of the frequency range so that robust
performance is guaranteed for all frequencies.

To have internal stability, the two plant poles at s = 0 cannot be canceled by the
controller. So for nominal internal stability, S = (1 + PK)~! must have two zeros at
s = 0 (interpolation condition (4.55)).

From Fig. 4.5 we see that the following form for S guarantees nominal stability,
satisfies the necessary bounds on S for robust performance, and satisfies the sufficient

bound on S for low frequencies:

s?

S = ;
As?2 4+ 2Xs 4+ 1

(4.86)

Then the complementary sensitivity 1s

(A2 =1)s? +2Xs+1

H=1-S§=
A2s2 4 225 +1

(4.87)

We have chosen A = 1/4 for H and S in Fig. 4.5.
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Figure 4.5: Loopshaping bounds on H and S for DC motor. The upper plot is for H
and the lower plot is for S. The dashed lines are necessary upper bounds, the dashed
and dotted lines are necessary lower bounds, and the dotted lines are sufficient upper
bounds.
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First focus on the bounds on H. We see the necessary lower bound exists only
at low frequencies. This tends to always be the case—to meet high performance at
lower frequencies, H must be very near one at low frequencies. The necessary lower
bound requires that H have a bandwidth > 1.5 to meet robust performance at low
frequencies.

The sufficient upper bound exists only at high frequencies; this tends to always
be the case. The necessary upper bound at high frequencies requires that H roll
off with a bandwidth < 20. The complementary sensitivity H meets the necessary
and sufficient upper bounds at high frequencies. Note also that the necessary upper
bound and sufficient upper bound coincide at high frequencies—this coincident bound

is then a necessary and sufficient upper bound for robust performance. It is true in
general that the bounds coincide when |wp| >> 1 > |wp|, since in this case the

necessary bound and the sufficient bound (4.67,4.60) both approach

1- (’wp|

(4.88)
lwol

The inequality |wo| >> 1 > |wp]| usually holds at high frequencies because uncer-
tainty is largest at high frequencies and performance requirements are smaller at high
frequencies.

Now focus on the bounds on S. The necessary lower bound exists only at high
frequencies; the sufficient upper bound exists only at low frequencies. The necessary
lower bound requires that S have a bandwidth < 30 to meet robust performance
at high frequencies. The necessary upper bound for w < 2 requires that S roll off
at low frequencies with a bandwidth > 2. The sensitivity S meets the necessary
upper bound and sufficient upper bound at low frequencies. Since P is strictly proper
and the controller K must be proper, S must approach 1 at high frequencies. The

necessary upper bound and sufficient upper bound coincide at low frequencies. This
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is true in general when |wp| >> 1 > |wo], since in this case the necessary upper

bound and sufficient upper bound (4.68,4.61) both approach

1- Iwol

(4.89)
lwp|

The inequality |wp| >> 1 > |wo| usually holds at low frequencies because perfor-
mance requirements are large at low frequencies (for example, for integral control |wp|
approaches infinity as s approaches zero) and uncertainty is smallest at low frequency.

The most interesting region to consider is crossover. The sufficient upper bound
on H ensures that robust performance is satisfied for w greater than about 3. The
sufficient upper bound on S ensures that robust performance is satisfied for w less
than about 6. Thus robust performance is satisfied for all frequency. The controller

corresponding to S and H is

.15, 1
= —— — 1. 4.9
K 168 + 23 + (4.90)

The controller K is augmented with a second-order filter to make K proper; then

15241
165 +23+1

-1-1033 + 1)?

K =(SP)'(1-9) =

(4.91)

Fig. 4.6 is a plot of the structured singular value for the proper controller. The value
for y is less than one for all frequencies, as implied by the satisfaction of the sufficient
bound on S and/or H for each frequency.

The necessary bounds on S at high frequency are very lenient (far apart). This
implies that the closed loop system can maintain robust performance for much more
uncertainty than was used to cover time delay in the plant. At low frequencies, the
bounds on H are also lenient, since H must approach 1 as w approaches 0 (because of

the integrators in the plant and the requirement of internal stability). The structured
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Figure 4.6: Robust performance test for DC motor: A = 0.25.

singular value is much less than 1 at high and low frequencies, which confirms our
judgment that the requirements on S and H are lenient at high and low frequen-
cies. An increase in the steady-state performance requirement or the high frequency
uncertainty would lead to a “flatter” structured singular value plot.

Our design goal was to meet the performance specification |S| < 1/|wp| for all
plants described by the multiplicative uncertainty wg. Since y is much less than 1,
better performance than specified can be achieved for a larger set of plants, i.e. the
design is conservative. We will now remove the conservatism by designing our con-
troller to give the fastest closed loop response while still meeting the sufficient bounds
on S and H.

The value for A was decreased until the sufficient bounds on S and H were barely
satisfied—this was for A = 0.136. The loopshaping plots are shown in Fig. 4.7.
For A > 0.136, the sufficient bound on H is no longer satisfied at w = 15. Since
the necessary and sufficient bounds are essentially equal for w = 15, we expect the
structured singular value for this design to be 1. Fig. 4.8 shows the structured singular
value for this design. We see that the structured singular value is 1 at w = 15, so in

this case loopshaping is not conservative.
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Figure 4.7: Loopshaping bounds on H and S for DC motor. Plots of S and H are
for A = 0.136. The upper plot is for H and the lower plot is for S. The dashed lines
are necessary upper bounds, the dashed and dotted lines are necessary lower bounds,
and the dotted lines are sufficient upper bounds.
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Figure 4.8: Robust performance test for DC motor: A = 0.136.

We could have designed the controller without knowledge of where the necessary
bounds were. The necessary bounds give the additional information of when the de-
sign is conservative and what are the minimum and maximum closed loop bandwidths

required for robust performance to be achieved.

Open Loop Design The structure of the controller designed by specifying closed
loop transfer functions is somewhat awkward, with a right half plane zero at s =
4/3. When loopshaping an open loop transfer function, we can directly specify the
structure of the controller. We could try to design a PID controller, but it is clear that
the integral term is not needed and would add additional phase lag which would be
difficult to counteract using the derivative term. Thus we will design a PD controller
by loopshaping L.

The formula for a PD controller, where the derivative action is assumed to be

effective over one decade, is
s+ 1

K=k———
01mps+1

(4.92)

where k 1s the gain and 7p is the derivative time.

The loopshaping bounds on L are given in Fig. 4.9. The open loop transfer



98

103 T T T7TTTH L3 T7F l;!lll] T T TeT
0 ;
5 0 p<l T
E 101 ililiEnLin ;v".‘ :"
.;Eo . .
100 N T
= - T S N
101 U< 1
l 2t ergnn fo4 g Lodo1 1l
101 100 101 102
frequency

Figure 4.9: Loopshaping bounds on L for DC motor. The solid line is |L]|, the dotted
line at low frequencies is the sufficient lower bound, the dotted line at high frequencies
is the sufficient upper bound, the dashed line is the necessary upper bound, the
dashed-dotted line is the necessary lower bound.

function for an example design (k = 10, 7p = 0.5) is also shown. Dropping the
second-order term in s in the numerator of K in (4.91) gives us a numerator time
constant of 0.5—we take this to be the derivative time 7p. The gain was then chosen
to ensure that the loopshape L would satisfy the low and high frequency necessary
conditions (this gave k = 10). The Bode magnitude and phase plots for the resulting
loopshape are given in Fig. 4.10.

We see from Fig. 4.10 that the derivative term adds phase lead to the loopshape,
which is needed to stabilize the system since the plant has phase lag of 180°. We see
from Fig. 4.9 that the sufficient bounds are satisfied for high and low frequencies. It
is impossible to satisfy the sufficient bounds on L at crossover—this will be true in
general when loopshaping with an open loop transfer function. Also, though nominal
stability cannot be guaranteed ¢ priori while loopshaping L, it was still easy to
stabilize the system by adding the necessary phase lead at crossover. The closed loop
poles with the above PD controller are {—13.8,—3.10 & 2.21:}.

Fig. 4.11 is a plot of the structured singular value for the PD controller. The
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Figure 4.10: Bode magnitude and phase plots for the open loop transfer function L.

maximum g is equal to 1.14, which is larger than for the previous design (4.91).

The optimal PD controller was found through optimization to have parameters

= 8.395, 7p = 0.5594, (4.93)

which gives a u value of 1.10. We see that the PD controller designed via loopshaping
L is very close to optimal.
A natural question to ask is why the u value is so much larger for the PD controller

than for the controller designed via closed loop loopshaping in (4.91). One reason is
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Figure 4.11: Robust performance test with the PD controller designed for the DC
motor.

that the controller in (4.91) has a much faster time constant (0.01 vs. 0.05). Another
reason is that the PD controller stabilizes the system by introducing only phase lead at
crossover (no RHP zeros), and since the derivative time is active over only one decade,
the PD controller can introduce only a limited amount of phase lead at crossover. It
is interesting to note that the optimal PD controller which has derivative time active
over two decades (and so has a faster time constant and can introduce more phase
lead) has a peak p value of 0.954, which satisfies robust performance.

It is interesting to consider the high and low frequency limits for the necessary
and the sufficient bounds.

The necessary and the sufficient upper bounds exist only at high frequencies;
this tends to always be the case. The necessary upper bound at high frequencies
requires that L roll off sufficiently fast. Since L = PK is strictly proper, L must
approach 0 at high frequencies. Note that when |wg| >> 1 > |wp| the upper bounds

coincide—this coincident bound is then a necessary and sufficient upper bound for
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robust performance. In this case, the upper bounds (4.74,4.80) both approach
(4.94)

This would be expected to hold only at high frequencies because here the uncertainty
is largest and the performance requirements are small. The upper bounds do not
coincide for high frequencies in Fig. 4.9 because the uncertainty weight is very lenient
for this example [wp(o0) = 2.1].

The necessary and the sufficient lower bounds exist only at low frequencies. The
necessary lower bound requires that L have sufficiently high gain at low frequencies.
Since L has a double integrator, L must approach oo at low frequencies. The lower
bounds coincide when |wp| >> 1 > |wg|. In this case, the lower bounds (4.75,4.82)

both approach
lwp|
1 — |wol

(4.95)
The inequality |wp|] >> 1 > |wp| usually holds at low frequencies because here the
performance requirements are large (for example, for integral control |wp| approaches
infinity as s approaches zero) and the uncertainty is small. As expected, the lower
bounds nearly coincide for low frequencies in Fig. 4.9. The bounds would coincide
at low frequencies if integral action had been an explicit performance requirement.
Since the plant is a double integrator, integral action is satisfied automatically.
From Fig. 4.9 we see that we have |L| >> ¢} at low frequencies and [L| << ¢}* at
high frequencies. This suggests that the closed loop system can meet a more stringent
performance specification at low frequencies and be robust to more uncertainty at high
frequencies. We see from Fig. 4.11 that the structured singular value is much less than
1 at low and high frequencies, which confirms our judgment that the performance

and stability requirements are lenient at low and high frequencies. An increase in

the steady-state performance and the high frequency uncertainty requirements would
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lead to a “flatter” structured singular value plot.

4.8 Gain and Phase Margins for SISO Plants

The gain and phase margins are given directly by the open loop transfer function.
Definition 4.1 (Gain Margin) The gain margin (GM) is defined by

1
L(jwym ’

GM = — (4.96)

where wyy, is the frequency of the leftmost intersection of |L(jw)| with the negative

real azis in the SISO Nyquist plot.

Definition 4.2 (Phase Margin) The phase margin (PM) is defined by
PM =7 — LL(jwpm), (4.97)

where wp,, 1s the frequency of the leftmost intersection of |L(jw)| with the unit circle

wn the SISO Nyquist plot.

The frequencies wyy, and wpm, are commonly referred to as the gain and phase crossover
frequencies [55).
Gain and phase margin goals can be quantified in terms of the sensitivity and

complementary sensitivity. The proofs of the following lemmas are left to the reader.

Lemma 4.4 The sensitivity and complementary sensitivity are related to the gain

margin by
GM -1

S(Jwgm) = GM —1 H(jwgm) = M —1 (4.98)

where wyy s the frequency of the leftmost intersection of |L(jw)| with the negative

real azis in the SISO Nyquist plot.
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Lemma 4.5 The sensitivity and complementary sensitivity are related to the phase

margin by
1

V2(1 = cos(PM))’

1S (jwpm )| = |H (jwpm )| = (4.99)

where wp, 15 the frequency of the leftmost intersection of |L(jw)| with the unit circle

in the SISO Nyquist plot.

Gain and phase margins can be specified by loopshaping the open loop transfer
function L using (4.96-4.97) or by loopshaping the closed loop transfer functions using
(4.98-4.99). For example, to meet specified gain and phase margins, the sensitivity is
shaped to be less than the values given by the right-hand sides in (4.98) and (4.99).
The loopshaping bounds (and perhaps a design iteration) suggest where the gain and

phase crossovers will be. Below we give an example illustrating this technique.

Example: DC Motor with Time Delay Assume the nominal transfer function

is
1 20-s

P(s)= o oo s (4.100)

This could describe a DC motor with negligible viscous damping and a time delay of
0.1 seconds. The time delay is modeled with a first order Padé approximation. The
uncertainty description covers the error introduced by this approximation.

The uncertainty and performance specifications are the same as in Section 4.7,
except that margin specifications must also be met—the gain margin must be greater
than 3, and the phase margin must be greater than 45°. From (4.98) and (4.99) we
see that specifying these margins is equivalent to specifying that |S(jw,m)| < 1.5 and
|S(jwpm)| < 1.31.

In Section 4.6 we listed the bounds for S and H. The upper plot in Fig. 4.12
gives the loopshaping bounds on H and the lower plot gives the bounds on S. The

complementary sensitivity H and sensitivity S are shown for an example design.
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Figure 4.12: Loopshaping bounds on H and S for the first control design for the DC
motor with time delay. The upper plot is for H and the lower plot 1s for S. The
dashed lines are necessary upper bounds, the dashed and dotted lines are necessary
lower bounds, and the dotted lines are sufficient upper bounds.
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To have internal stability, the two plant poles at s = 0 and the plant zero at s = 20
cannot be canceled by the controller. So for nominal internal stability, § = (1+PK)™!
must have two zeros at s = 0 (interpolation condition (4.55)), and must satisfy
5(20) = 1 (interpolation condition (4.54)). Since the plant is strictly proper and the
controller must be proper, S must also satisfy S(o0) = 1.

Let us try the following form for S which gives a nominally stable system:

A2g? s+a
= . 4.10
(As+1)2 s+’ (4.101)
where
20\ +1)2

and b is arbitrary. For simplicity, we initially take b = 1/) so that the denominator
time constants of S are equal. The complementary sensitivity H is given by H = 1—S.
The controller calculated from K = (SP)~'(1 — S) is improper, and so is augmented

with the second-order filter
1

(0.01s 4+ 1)? (4.103)
before calculating gain and phase margins and the structured singular value. The
closed loop poles are calculated to ensure that nominal stability is still satisfied by
the augmented controller.

The loopshaping bounds in Fig. 4.12 suggest that we try A ~ 0.2. Plotting S and
H for different values of A near 0.2 shows that the necessary bounds on S and H are
satisfied for 0.16 < A < 0.18. The design shown in Fig. 4.12 is for A = 0.18. Since
the sufficient bound on S is satisfied for w < 3.8 and the sufficient bound on H is
satisfied for w > 4.0, we expect robust performance to be approximately satisfied.
The structured singular value is plotted in Fig. 4.13, and the peak p value is 0.998.

We calculated the margins for several controllers with ) in the range from 0.16 to

0.18. We found that A = 0.18 gives the best margins of all the controllers that satisfy
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Figure 4.13: Robust performance test with the first control design for the DC motor
with time delay.

robust performance and are given by (4.101), (4.102), and b = 1/A. The margins,
with their respective crossover frequencies, are

GM = 2.93 < 3, Wom = 13.9,
PM = 38.7° < 45°, Wy = 4.93.

The margin specifications are not satisfied.

Now we modify the design to improve the margins. The peak in the sensitivity
occurs at w = 7.83, which is between wp, and wgm. This suggests that we should
be able to improve the margins by reducing the peak in the sensitivity. This can be
done by choosing b = 10/). Again we augment the controller with the second-order
filter (4.103) before calculating margins and the structured singular value.

The loopshaping bounds are given for A = 0.28 in Fig. 4.14. The necessary
bounds on S and H are satisfied for all frequencies. Since the sufficient bound on
S is satisfied for w < 4.4 and the sufficient bound on H 1s satisfied for w > 3.5, u
must be less than 1 for all frequencies. The structured singular value is plotted in
Fig. 4.15. The peak u value of 0.96 is less than 1, as implied by the satisfaction of
the sufficient bound on S and/or H for each frequency. The closed loop poles are

{-116.1 + 44.5¢,—20.0, —15.5,—6.92, —2.75}, so the system is nominally stable.
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The margins for this design are

GM =3.02 > 3, Wem = 19.6,
PM =47° > 45°, Wpm = 5.42.

Both the crossover frequencies and the peak in the sensitivity is shifted to higher
frequencies. The peak in the sensitivity is reduced from 1.85 to 1.65, and this results

in the improved margins.

4.9 Multiple Performance Specifications

The control engineer is often interested in meeting multiple performance specifica-
tions. For example, one might want a controller that remains stable under slow sensor
drift or variations in actuator or sensor gain (this is referred to as fault tolerance). If
there are sensors or actuators that are prone to failures, then we would like to spec-
ify that the closed loop system remain stable or satisfy some minimum performance
whenever these sensors/actuators fail (this is referred to as failure tolerance).

Often the designer prefers to give specifications not in terms of robust perfor-
mance, but in terms of nominal performance plus robust stability. For example, the
specifications for the 1990-92 ACC Benchmark Problem [9, 10] are that the overshoot
and settling time should be minimized for the nominal plant, and that stability is
satisfied for some set of plants. Separate specifications are used whenever the de-
signer expects that an overall robust performance specification will lead to an overly
conservative design. Multiple performance specifications are easy to handle using
loopshaping—the bounds are calculated individually for each specification, and the
most restrictive bounds are used for loopshaping. This is illustrated further in the

next chapter.
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Figure 4.14: Loopshaping bounds on H and S for the second control design for the
DC motor with time delay. The upper plot is for H and the lower plot is for 5. The
dashed lines are necessary upper bounds, the dashed-dotted lines are necessary lower

bounds, and the dotted lines are sufficient upper bounds.
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Figure 4.15: Robust performance test with the second control design for the DC
motor with time delay.

4.10 Conclusions

Robust loopshaping bounds have been derived for general mixed real/complex un-
certainties. Low order robust controllers can be designed by loopshaping open loop
transfer functions. Either open loop or closed loop transfer functions can be loop-
shaped to meet gain and phase margin specifications. Robust controllers that meet
multiple performance specifications are designed by using the most restrictive bounds
for loopshaping. Robust loopshaping was shown to agree with and extend the orig-
inal classical loopshaping bounds derived by Bode [7] when applied to simple SISO
systemé. The next chapter shows how to design robust decentralized controllers to

meet failure and fault tolerance specifications.

4.11 Appendix

Here we derive the expressions given in Section 4.2.
To use the robust loopshaping theorems we need to find an LFT in terms on T

which describes M (see Fig. 4.1). In many cases, this is done by inspection. When
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]

the controller K can be written as an LFT of T, the following procedure is often

applicable:

1. The interconnection structure in terms of G and K is found directly by rear-

ranging the system’s block diagram.

2. Write the controller R as an LFT of T, i.e.

K = FR(J,T) = Ji+ J1uT(I — J5oT) ' . (4.104)

3. Assume I — Gy,Jy; is invertible. Then, given G and J, N follows (see Fig. 4.16)
because any interconnection of LFT’s is again an LFT:
Gu + Gr2Ju(I — GoJ11) 'Gy Gi2(I — J11G22) Vi

Ja(I = GaaJ11) ' Gy J22 + I Goo(I = J11Gaa) M sz .
(4.105)

N= Nll N12
N21 N22

Many examples of using this procedure, and some more detailed comments, are
given in [76]. We will use the above procedure to find N¥ in terms of G and will get
N? by inspection from N¥. The transfer function G in step one of the procedure is

calculated by the subroutine sysic [3] from the block diagram.
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Using K = P"'H(I — H)™?, we have K = Fy(J¥ H) where

JH =

0o p?
17| (4.106)

Using (4.105), we get N¥ in terms of G

NH = gz G”OP_I ] : (4.107)
Substituting H by I — S into
M =N} + NEHNE (4.108)
gives N
NS = | Gt GuPTGn —GpP™ (4.109)

G21 0

The expressions for N and N¥ follow by inspection of Fig. 4.1.
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Chapter 5

Fault /Failure Tolerant Decentralized

Controller Design

Summary

Equipment never behaves perfectly all the time—actuator gains may vary, sensor
outputs may slowly drift over time, valves may get stuck, composition analyzers are
typically prone to failure. Fault tolerance refers to the ability of the control system to
meet some performance specifications even when pieces of equipment become faulty.
. Failure tolerance refers to the ability of the control system to meet some (weaker than
normal) performance specifications under equipment failure. Conventional feedback
control designs for a multivariable plant may result in poor performance, or even
instability, in the event of equipment faults or failures, even though it may be possible
to control the plant using only the available inputs and outputs.

Even though the importance of designing fault/failure tolerant controllers is clear,
no current design method exists with guarantees on system performance while taking
into account the mismatch between the model and the plant. This chapter develops

such a design technique for decentralized controllers, based on the robust loopshaping
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paradigm presented in the previous chapter.
5.1 Introduction

Equipment never behaves perfectly all the time—actuator gains may vary, sensor
outputs ﬁaay slowly drift over time, valves may get stuck, composition analyzers are
typically prone to failure. Fault tolerance refers to the ability of the control system to
meet some performance specifications even when pieces of equipment become faulty.
Failure tolerance refers to the ability of the control system to meet some (weaker than
normal) performance specifications under equipment failure. Conventional feedback
control designs for a multivariable plant may result in poor performance, or even
instability, in the event of equipment faults or failures, even though it may be possible
to control the plant using only the available inputs and outputs.

For a more detailed example illustrating the importance of designing failure tol-
erant controllers, consider a distillation column where the setpoints are the top and
bottom compositions. Composition measurements are often too slow for effective
control, so usually the controller is designed to use temperature measurements. The
drawback of using temperature measurements only is that it is then impossible to
have zero steady-state error in the compositions. Thus it is advantageous to design
the control system that uses temperature measurements, and also uses composition
measurements when these are available. Composition analyzers are typically prone
to failure. When a composition measurement fails, the control system should be ca-
pable of giving acceptable performance using only temperature measurements. Such
a controller 1s said to be failure tolerant.

Even though the importance of designing fault /failure tolerant controllers is clear,
relatively few design methods have been proposed (see Veillette et al. [113] for a
survey). None of these methods, except for the method of Veillette et al. [113], gives

guarantees on system performance. Their method designs for nominal performance,
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Figure 5.1: Decentralized control structure.

i.e., the satisfaction of a bound on the H-norm of some transfer function of interest.
The model is always an imperfect representation for the true process, thus it is needed
to design the controller to be robust. This chapter presents the first method for
designing robust fault/failure tolerant decentralized controllers, based on the robust

loopshaping paradigm presented in the previous chapter.

Decentralized Control Decentralized control involves using a diagonal controller
(see Fig. 5.1)
K = diag {K}. (5.1)

This includes controllers that can be made diagonal by reordering the measured van-
ables and manipulated variables.

Some reasons for using a decentralized controller are

tuning and retuning is simple

e they are easy to understand

they are easy to make failure tolerant

e implementation and maintenance is simpler

These reasons explain the predominance of decentralized controllers in applications.
The design of a decentralized control system involves two steps. First the control

structure must be selected. This involves the choosing of the actuators and sensors and
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the pairings between the chosen actuators and sensors, and is discussed in Chapter 6.
The second step is the design of each single loop controller K;. These controllers will

be designed using the robust loopshaping method.

Diagonal Open Loop and Closed Loop Transfer Functions To design de-
centralized controllers via robust loopshaping, we will need the following definitions.

Define P to be the diagonal part
P = diag{P;). (5.2)

Define the diagonal open loop transfer function by L = I3K, the diagonal complemen-
tary sensitivity by H = PK (I + PK)~! and the diagonal sensitivity by S (I+PK)™.
Note that L, H, and S parametrize the decentralized controller K. Decentralized con-

trollers are designed by loopshaping these transfer functions. Note that H + S = I.

Parametrize Controller in Terms of T To design controllers via robust loop-
shaping, we need to find an LFT of T which describes M (see Fig. 5.2), where T
parametrizes the controller we are to design. In the previous chapter we derived

LFTs of H, S, L, and K which describe M. For decentralized control, T is usually

chosen to be H, S, L, or K. We will derive these LFTs starting from the expression
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for N in terms of G given in the previous chapter:

G G P!

N =
Gg] 0

We have by definition of the LFT of M that

M= N[+ NEHEN].

The following expression can be verified:

H=PP'H(I+(PP' - DH)™.

Substituting the above equation into (5.4) and rearranging gives

Gn Gu»ﬁ_1

N = .
G, I—Pp-!

Similazly, substituting S = S(I — (I — PP~1)§)"1PP~! into (5.4) gives

NS =

Gi+ G2 P 'Gyy =GP}
PP1Gy I-PpP!

The expressions for N L and N¥ follow by inspection of Fig. 5.2.

G Glzf)"l

NL = .
G G P!

b

NKE=gG.

(5.3)

(5.4)

(5.6)

(5.7)

(5.8)

(5.9)

A simple program can be written that calculates Nﬁ, Ng, NL, and NX given the

transfer functions describing the system components and the location of the uncer-

tainty blocks A;.
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Simultaneous Versus Sequential Design In industry decentralized controllers
are usually designed sequentially, i.e., the SISO loops are tuned and closed one at a
time. The advantage of sequential design is that at each step in the design procedure
we have a SISO control problem. A drawback of this approach is that closing a loop
during the design procedure may make previously closed loops perform poorly. A
procedure for deciding the appropriate bandwidth for each SISO control loop, and
the order in which to tune and close the SISO loops, is given in [51].

Another approach is to design the SISO controllers simultaneously—this is referred
to by Skogestad and Morari as independent designs [105]. The SISO controllers are
designed simultaneously by requiring that each SISO loop be designed with the same
closed loop time constant. An advantage of this approach is that it is easy to design
for quite advanced forms of failure and fault tolerance as will be shown later in
this chapter. A disadvantage of this approach is that it may be required to reject
disturbances much faster in some outputs than others, and so the loops corresponding
to these outputs must be designed to have shorter closed loop time constants.

Robust loopshaping can be used to design controllers for either of these approaches
to decentralized controller design. Simultaneous design of decentralized controllers via
robust loopshaping will be illustrated through examples in this chapter. In sequential
design, the SISO control loops can be designed via robust loopshaping. The speed of
response for the currently-designed SISO controller is based on estimates of the speed

of response for control loops yet to be tuned (see Hovd [51] for details).

Organization The remainder of this chapter is organized as follows. First we design
a robust decentralized controller for a high purity distillation column. Second, we
discuss how to handle multiple performance specifications in the robust loopshaping
framework. We show how to analyze fault and failure tolerance, with reference to

earlier research in the area. We discuss how to design fault /failure tolerant controllers,
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Figure 5.3: High purity distillation column in DV configuration.

and illustrate the technique on the high purity distillation column.

5.2 Example: High-Purity Distillation

Description We will now illustrate how to design robust decentralized controllers
via robust loopshaping on a high-purity distillation column given in [105] and dis-

cussed in more detail in {106]. The nominal model is

1 —0.878  0.014
[ } : (5.10)

T T5s+1| —1.082 —0.014

This nominal model may correspond to a high-purity distillation column using dis-
tillate and boilup as manipulated inputs to control top and bottom composition (see
Fig. 5.3) using measurements of the top and bottom compositions. The plant has

a large condition number, so input uncertainty strongly affects robust performance
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Figure 5.4: The plant with input uncertainty A; of magnitude w;(s). Robust perfor-
mance is satisfied if & (wp( + PK)™) <1 for all Ay with ||A]]o < 1.

[106]. The uncertainty and performance weights are

5s +1 7s +1
1T = 0.25 . 5.1
0.25s + 1 wp(s) 7s (5.11)

wi(s) =

The robust performance condition is a bound on the sensitivity, i.e., 5(S) < 1/|wp|,
VP € 1. The input uncertainty includes actuator uncertainty and neglected right
half plane zeros of the plant. The performance bound implies zero steady-state error
and a closed loop time constant of 7 minutes. The uncertainty block A; is a diagonal
2 X 2 matrix (independent actuators) and the performance block Ap is a full 2 x 2

matrix. Fig. 5.4 is a block diagram of the system.

Decentralized Control Design Robust performance is satisfied if and only if

Ua(M) < 1 for all frequencies where

-—'U)IP_IHP —w;P‘lH Aj
M= , A= . (512
prP pr AP ( )

The expressions for N H and NS can be found by inspection or G could be found and

the equations in Section 5.1 could be used.
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The transfer function M = F}(N H JH ), where

0 0 7
pr ’wpI

——'U)IP_1

NA = ~
11 _wPPP—l

NE =[P 1],Nf=1-PP.

(5.13)

Note that the equation (35b) given in [105] is incorrect.

As discussed in Chapter 4, the sufficient lower bound for closed loop transfer
functions does not exist at any frequency for reasonable choices of performance and
uncertainty descriptions. Theorems 4.1, 4.3, and 4.4 are applied with NH (and NS)
to give the sufficient upper bound and the necessary upper and lower bounds on H
(and NS ) for robust pérforma.nce to be achieved.

The loopshaping bounds for H = hI and S = sI are plotted in Fig. 5.5 for

1 4s
s = .
45+ 1’ 45+ 1

(5.15)

The necessary bounds are tight at low frequencies—forcing h to be near one for low
frequencies. At high frequencies the necessary upper bound and the sufficient upper
bounds are close, and rolling off » meets both of these bounds. Around crossover the
bounds are very conservative. This tends be true in general, but is especially true for
this plant because it has a large condition number (k(P) = &(P)/a(P) = 70.8). It is
well-known that loopshaping is conservative for systems with large condition number
[76].

The given h meets the sufficient condition for robust performance for frequencies
above about 0.45.

At zero frequency, the necessary bounds are equal to one; this implies that h(0)
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Figure 5.5: Loopshaping bounds on H =hIand S = s for high purity distillation
column. The plots for s and h are for A = 4. The upper plot i1s for h and the lower
plot is for s. The dashed lines are necessary upper bounds, the dashed and dotted
lines are necessary lower bounds, and the dotted lines are sufficient upper bounds.



122

0-8 LILRARLL T v 1y rrrrrrar LA

0.6
H 04
0.2
0 Lt § taitil Lol 1 L111l) Lo L LLLigs 1 11t
103 10-2 10-1 100 10!
frequency

Figure 5.6: Robust performance test for decentralized controller with A = 4.

must equal one. This is in agreement with the performance weight, which requires
zero steady-state error.

Now look at the loopshaping bounds for § = sl in Fig. 5.5. At low frequencies the
necessary upper bound and the sufficient upper bounds converge—s(0) must be zero
to meet these bounds. Again, around crossover the bounds are very conservative. The
necessary bounds approach one at high frequency. Since the plant is strictly proper,
and the controller must be proper to be physically realizable, s must approach one
for high frequencies anyway. The s shown in Fig. 5.5 meets the sufficient condition
for robust performance for frequencies below about 0.45.

Combining the sufficient conditions over the different frequency ranges ensures
that 4 < 1 for all frequency. Robust performance is guaranteed when p < 1 and
nominal stability is satisfied. The plant is stable and minimum phase, so h stable
implies nominal stability for the diagonal plant P. We calculated the closed loop
poles using the full plant P and found that they are in the left half plane, so we have

nominal stability. The plot of x in Fig. 5.6 agrees that robust performance is satisfied.
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Figure 5.7: Robust performance test for decentralized controller with A = 1.8.
The controller corresponding to S = sI and H = kI is

. s A Tss41| -1 0
K=(SP)yY(I-S9)= 5 { 00878 e ] . (5.16)
0.014

Fig. 5.6 shows the conservatism of the sufficient bounds. The design that just
meets the sufficient bounds gives y = 0.7. The conservatism of the sufficient bounds
was predicted by the large difference between the necessary and the sufficient upper
bounds at crossover. This large difference suggests not to bother with meeting the
sufficient conditions for frequencies near crossover.

The conservatism in the design was removed by increasing speed of response.
Using h = 1/(1.85 +1),s = 1.8s/(1.8s + 1) gives u = 0.99 (see Fig. 5.7). The
loopshaping plots in this case are in Fig. 5.8. The sufficient bounds are not met for

0.7 < w< 1.5.
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Figure 5.8: Loopshaping bounds on H = hIand § = sI for the high purity distillation
column. The plots for s and h are for A = 1.8. The upper plot is for h and the lower
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lines are necessary lower bounds, and the dotted lines are sufficient upper bounds.
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5.3 Multiple Performance Specifications

The control engineer is often interested in meeting multiple performance specifica-
tions. For example, one might want a controller that remains stable under slow sensor
drift or variations in actuator or sensor gain (this is referred to as fault tolerance). If
there are sensors or actuators that are prone to failures, then we would Like to spec-
ify that the closed loop system remain stable or satisfy some minimum performance
whenever these sensors/actuators fail (this is referred to as failure tolerance).

Often the designer prefers to give specifications not in terms of robust perfor-
mance, but in terms of nominal performance plus robust stability. For example, the
specifications for the 1990-92 ACC Benchmark Problem [9, 10] are that the overshoot
and settling time should be minimized for the nominal plant, and that stability is
satisfied for some set of plants. Separate specifications are used whenever the de-
signer expects that an overall robust performance specification will lead to an overly
conservative design. Multiple performance specifications are easy to handle using
loopshaping—the bounds are calculated individually for each specification, and the

most restrictive bounds are used for loopshaping.

5.4 Fault Tolerance

Fault tolerance refers to the ability of the control system to meet some performance
specifications even when actuators and sensors become faulty. Fault tolerance speci-
fications can be included through an additional p condition. Below we show how to

do this for the commonly occurring faults of gain variation and slow drift.

Gain Variation To develop a system that maintains a given performance even
under gain variation in the actuators or the sensors, just treat the gain variation as

real parametric uncertainty.
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Below we show how to treat actuator gain variations for two cases: 1) without
additional uncertainty, and 2) with additional uncertainty. A similar development
can be done for sensor gain varations or for combined variations in actuator and
sensor gains. For stability of fully-decentralized control systems without additional
uncertainty, sensor gain variations are equivalent to actuator gain variations.

The nominal controller is defined to be K(s). Then the controller with gain
variation can be described by K(s) = EK(s), where E = diag{e;}, and € jon < €; <
€i high- We can write the set of E described by the gain variation as E = E + W, A",
where E = diag{&}, W, = diag{w;},

g = f_"i'%_e_"’ﬁ (5.17)

€i high — € low

> : (5.18)

and A" 1s a diagonal A-block with real independent uncertainties.
Standard block diagram manipulations are used to arrive at the M — A block

structure in Fig. 2.1, where A = A" and

M = —(I + K(s)P(s)E) 'K (s)P(s)W,. (5.19)

Stability is obtained for all variations in gain if and only if pa-(M) < 1.
To design such controllers via loopshaping, we need to have the expression for the

G matnx in Fig. 5.2. This matrix is

0 I

G = _
-PW, —-PE

. (5.20)

The N7 matrices needed for calculating loopshaping bounds are determined using
(5.3)-(5.8).

If we are interested in maintaining stability or performance with respect to other
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perturbations, then the expressions for M and G are somewhat more complicated.
The designer should avoid asking for the full performance under large variations in
actuator/sensor gains; otherwise the designed controller will be conservative, i.e., will
perform sluggishly even when the actuators and sensors behave perfectly. Let the
original system be described by G(s) with uncertainty A.

The new A matrix is A = diag{A, A’}. The new M matrix is

M- G + GEK(I — GREK) 'Gy Gi(I + EK(I — GREK) 'Gyp)W,
B K(I - GuEK) Gy K(I — G, EK) G, W,
(5.21)

The new G matrix is X X .
G GW, G F

G=] 0 0 I . (5.22)
Gn GuW, GnE

Slow Drift It is quite common for a sensor reading to slowly drift. This slow dnft
does not affect closed loop stability (provided the measurement sensitivity [gain] is
unchanged), and can be treated as a slow disturbance at the output of the plant that
must be rejected by the controller. This is included as an additional specification in
defining robust performance. The disturbance weight is chosen to have higher gain at
low frequency and a time constant approximately equal to the time constant of the

sensor drift. For example, the disturbance weight could be chosen to be

(Td,-,'ﬂ/l())s +1
(Tarige)s +1

wa(s) =M , (5.23)

where M is the magnitude and 74y, is the time constant of the sensor drift. Fig. 5.9
is a bode magnitude plot of the disturbance weight for M = 0.2 and 74,5 = 10.
Another reasonable choice for the disturbance weight is the integrator

M

- (5.24)

wd(s) =
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Figure 5.9: A disturbance weight to describe slow sensor drift.

5.5 Failure Tolerance

Failure tolerance refers to the ability of the control system to meet some (weaker
than normal) performance specifications even though a prespecified set of actuators
and sensors fail. Typically we will design the control system to be failure tolerant to
only those actuators and sensors which we suspect might fail—otherwise the designed
controller could be overly conservative.

The first step in designing a failure tolerant control system 1is to specify which
sensor/actuator combinations are expected to fail. Then a performance specification
is chosen for each set of sensor/actuator failures. Sometimes the requirement on
the failed system is only that the closed loop remains stable. Once the different
performance specifications are set, then robust loopshaping bounds can be calculated
for each separate y problem and the most restrictive robust loopshaping bounds are
used to design the controller. This approach will be illustrated through an example
in Section 5.6.

Below we define a very strong notion of failure tolerance in which closed loop

stability is required for any combination of actuator failures. We then extend this
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notion to uncertain systems. Similar definitions can be given for sensor failures.

Integrity [Integrity is defined by Campo and Morari [17].

Definition 5.1 The closed loop system demonstrates integrity if K(s) = EK(s) sta-
bilizes P(s) for all E € &0 where

Eijo = {E = diag(e;) | & € {0,1},i =1,...,n}. (5.25)

Note that for a system to demonstrate integrity, the plant P(s) must be stable.

A closed loop system which demonstrates integrity remains stable as subsystem
controllers are arbitrarily brought in and out of service. Note that integrity does
not imply sensor or actuator failure tolerance unless the failure is recognized and the
affected control loop taken out of service.

It is clear that whether a system demonstrates integrity can be tested through 2"

stability (eigenvalue) determinations [17].

Robust Integrity We can generalize the definition of integrity to include robust-

ness. Robust integrity 1s defined below.

Definition 5.2 The closed loop system demonstrates robust integrity if the system

is stable with K(s) = EK(s) for all E € & o and all ||Aljos < 1 where
&0 = {E = diag(e;) | & € {0,1},: =1,...,n}. (5.26)

Note that for a system to demonstrate robust integrity, the plant must be stable
under all allowed perturbations. Note also that robust integrity implies integrity.

A closed loop system which demonstrates robust integrity remains robustly sta-
bilized as subsystem controllers are arbitrarily brought in and out of service. Robust

integrity does not imply sensor or actuator failure tolerance unless the failure is rec-
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ognized and the affected control loop taken out of service.
It is clear that whether a system demonstrates robust integrity can be tested

through 2" nominal stability (eigenvalue) and 2" robust stability () calculations.

5.6 Fault and Failure Tolerance

A very strong notion of fault tolerance was defined by Campo and Morari [17] for
fully-decentralized controllers. The requirement is that the closed loop system remains
stable under arbitrary detuning of the controller gains. For fully-decentralized control

systems, this is equivalent to arbitrary detuning of the actuator/sensor gains.

Decentralized Unconditional Stability The following definition of decentralized

unconditional stability is slightly modified from that of Campo and Morari [17].

Definition 5.3 Assume K(s) is fully-decentralized. The closed loop system is decen-
tralized unconditionally stable (DUS) if K (s) = EK(s) stabilizes P(s) for all E € £p
where

Ep = {F = diag(e;) | & € (0,1),1 = 1,...,n}. (5.27)

Note that for DUS to make sense the plant P(s) must be stable.
A closed loop system which is DUS remains stable as the gains of each controller

subsystem are independently detuned. The following result is a computable necessary

and sufficient condition for DUS.

Theorem 5.1 Assume K(s) is decentralized. Define A" to be a diagonal A-block
with independent real uncertainties. Then the closed loop system is DUS if and only

if (I+1K(s)P(s))” K(s)P(s) is stable and

-1
Uar (——;— (I + —;—K(s)P(s)) K(s)P(s)) <1, Vw. (5.28)
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Proof: Let E =W, = (1/2)] in (5.19). The conditions pta-(—3(1 + 1K (s)P(s))™"-
K(s)P(s)) <1, Vw and (I + 3K (s)P(s))"'K(s)P(s) is stable ensure that the closed
loop system is stable for all ¢ € (0,1). QED.

The closed loop system cannot be DUS when the controller K(s) has poles in the
open right half plane—this is because some minimum amount of feedback is required
to have closed loop stability.

To calculate loopshaping bounds to meet the u condition in Theorem 5.1, we need
the expression for the G(s) matrix in Fig. 5.2. This matrix is given by (5.20) with
E =W, =(1/2)I

0 1

“=l-app -apr | (5:29)

Robust Decentralized Unconditional Stability We can generalize the defini-
tion of DUS to include robustness. Clearly with arbitrary detuning of single loop
controller gains it is not reasonable to ask for performance of the arbitrarily detuned
system to be better than open loop. But it could be reasonable to expect that the
system remains robustly stable under arbitrary detuning of single loop controller

gains.

Definition 5.4 Assume K(s) is decentralized. The closed loop system is robust de-

centralized unconditionally stable (RDUS) if the system is stable with K(s) = EK(s)

for all E € & o and all ||A]le <1 where
Ep = {F = diag(e;) | & € (0,1),e = 1,...,n}. (5.30)

Note that for RDUS to be satisfied, the plant must be stable under all allowed per-
turbations.

The following result is a computable necessary and sufficient condition for RDUS.
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Theorem 5.2 Assume K(s) is decentralized, and that the uncertain system is de-
scribed by G(s) and A. Define A" to be a diagonal A-block with independent real

uncertainties. Then the closed loop system is RDUS if and only if M(3) is stable and
Ha(M) <1, Voo, (531)

where A = diag{A, A"}, and

Gu +1G1K(I = 1G0nK) Gy 1Giu(I+1K(I - 1GnK)'Gy)
2

M= . - . .
K(I - %ngﬁ')_lcgl %K(I - %GzzK)—lGn

(5.32)

Proof: Let E = W, = (1/2)I in (5.21). The conditions fa(M) < 1, Vw and M(s)
stable ensure that the closed loop system is stable for all ¢ € (0,1) and ||A]|o < 1.
QED.

The closed loop system cannot be RDUS when the controller K (s) has poles in the
open right half plane—this is because some minimum amount of feedback is required
to have closed loop stability.

To calculate loopshaping bounds to meet the y condition in Theorem 5.2, we need
the expression for the G(s) matrix in Fig. 5.2. This matrix is given by (5.22) with
E=W, =(1/2)I ) A )

G (1/2)Giy (1/2)Gr2
G=1| o 0 o (5.33)
Ga (1/2)Ga2 (1/2)Ga
Remark 5.1 (CDUS, Part 1) Actually, the definition of DUS given by Campo and
Morari [17] requires that the system is stable for all €; € [0,1]—we will refer to this
version as CDUS (closed DUS).
When K (s) is stable, a necessary and sufficient test for CDUS is given by The-

orem 5.1 except with the condition p < 1 replacing p < 1 in (5.28). When K(s) is
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integral, p in (5.28) will equal 1 at w = 0, because setting the proportional gain to
zero in a controller with integral action will remove the feedback around the integrator,
which will then be a limit of instability. Thus pu <1 in (5.28) will be a tight necessary
condition for CDUS, but not necessarily sufficient. The following ezample shows that

i <1 is not sufficient:

p=—t (5 ‘1), K=11 (5.34)

Ts+1(1 1 s

It can be shown by using the Routh criterion that the above system 18 DUS and u < 1.
The system is not CDUS because Loop #1 is not stable (for any €,) when Loop #2 is
open (due to a pole-zero cancellation at s =0).

CDUS can be checked through a finite number of stability and p tests, by using
Theorem 5.1 to check the interior of the e-hypercube, and testing the boundary (the
points, edges, faces, etc.) through additional y tests. The number of u tests required
grows rapidly with the size of the system. Alternative approaches are being investigated
to see if CDUS can be evaluated using a single test.

CRDUS can be defined similarly, and a stmilar discussion applies as for CDUS.

Remark 5.2 (CDUS, Part 2) Nwokah and co-workers [62, 63, 81, 82, 83] consider
conditions under which the controller K(s) = (1/s)I together with P(s) is CDUS.
They claim (Theorem 3 of [62, 63], Theorem 1 of [81], Theorem 5.1 of [82], and
Theorem 7 of [83]) that a necessary condition for K(s) = (1/s)I to provide CDUS
i that P(0) 4s all gain positive stable. A matriz P is all gain positive stable if P,
P, and all their corresponding principal submatrices are D-stable. A matriz P is

D-stable if Re{)\,(PD)} > 0, Vi, VD > 0, where D is real and diagonal.
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The following plant (from [17]) illustrates that the condition by Nwokah and co-

workers is not necessary:

1 0 2
P(s)=| =5 = . (5.35)
0 4 1

It can be shown via the Routh-Hurwitz stability criteria that the closed loop system
for the above plant is stable for K(s) = (1/s)] and remains stable with arbitrary
detuning of the SISO loop gains. The eigenvalues of P(0) are {£i/3,3}, so P(0) is

not D-stable, and P(0) is not all gain positive stable.

Robust Decentralized Detunability Detuning a controller refers to changing
some parameter in the controller or in the control synthesis procedure so that the
control action becomes less aggressive. For example, in Linear Quadratic Control
detuning refers to increasing the magnitude of the control weight. In decentralized
Internal Model Control, detuning refers to increasing the IMC filter time constants in
each single loop controller [51]. The special case of detuning the single loop controller
gains in a decentralized controller was discussed earlier in the sections on DUS and
RDUS.

Hovd [51] introduced the following very general definition for robust decentralized

detunability.

Definition 5.5 For a given design method, a closed loop system is robust decentral-
ized detunable (RDD) if each single loop controller can be detuned independently by

an arbitrary amount without endangering robust stability.

Whenever the controller is detuned by varying parameters in the controller, RDD can
be tested via a p test where the variation in parameters is covered by real uncertainty
(the real uncertainty must be independent for arbitrary detuning). Both the robust

performance and the “RDD” loopshaping bounds are plotted and the most restrictive
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of the bounds are used in the design. The resulting controller meets robust perfor-
mance and gives a system which is RDD. The procedure is illustrated in Section 5.7
below, where a decentralized controller is designed via loopshaping H and S. For
this design procedure, the closed loop system is RDD if the time constants for the sin-
gle loop controllers can be increased independently by an arbitrary amount without

endangering robust stability.

5.7 Example: Fault/Failure Tolerant Decentral-
ized Controller Design

Description We will use the loopshaping bounds to design a robust fault/failure
tolerant decentralized controller for the high-purity distillation column discussed in
Section 5.2. The performance and uncertainty specifications are the same here, but
we add fault /failure tolerance specifications. First we will design the controller so that
the closed loop system is RDD. Then we test that the resulting closed loop system

demonstrates integrity, robust integrity, DUS, and RDUS.

RDD To design for RDD, we plot in Fig. 5.10 the loopshaping bounds for robust
stability where A7 is chosen to be a diagonal block with independent elements (the
bounds are calculated by applying the Theorem 4.1 on the appropriate submatrices
of N¥ and N% in (5.13) and (5.14)).

The closed loop system is RDD if the system remains robustly stable as the con-
troller is dynamically detuned. Dynamic detuning for this example refers to increasing
the single loop closed loop time constants A. A careful consideration of Fig. 5.10 shows
that either the sufficient bound on h or the sufficient bound on s is satisfied for all
frequencies for all A; > 1.8; thus the system given by A = 4 is RDD. A less conserva-

tive bound on the A; can be derived by directly loopshaping A (see [51] for details),
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Figure 5.10: Robust stability loopshaping bounds for fault/failure tolerant decen-
tralized control of a high purity distillation column. The solid lines are h and s for
A = 1.8. The widely spaced dotted line is the sufficient bound for h. The thinly
spaced dotted line is the sufficient bound for s.

but deriving the bounds using h and s allows a direct comparison of the robust per-
formance bounds in Fig. 5.5 and the RDD robust stability bounds in Fig. 5.10. This
comparison shows that the bounds in Fig. 5.5 are more restrictive, so these can be
used to loopshape the controller. The robust performance bounds are not necessarily
more restrictive in general.

We will now test the closed loop system with the designed controller to ensure

that is satisfies integrity, robust integrity, DUS, and RDUS.

Integrity The following four transfer functions are stable for A = 4:

P, [(€1,€2) = (0,0)]; (5.36)
My, = —w/P'HP, [(e1,€2) = (1,1)]; (5.37)
—wiK (1 + P Ky) Py, [(e1,€2) = (1,0)]; (5.38)

-’U)]I{g(l + P22I"])—1P22, [(61, 62) = (0, 1)], (539)
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thus the system has integrity.

Robust Integrity To test robust integrity for a 2 x 2 system, we need to check
robust stability for four failure conditions. Nominal stability was tested above (for
testing integrity), so we need test only the p4 conditions here.

We have robust stability when all loops are turned off provided P(I + w;Aj) is
stable. That P(I + wyAy) is stable follows since P, wy, and A; are stable.

Robust stability for the overall system is satisfied since ta,(My;) = 0.3 < 1.

Robust stability for the cases when exactly one loop has failed is satisfied since

fap, (—wiKi(1+ PuK)™'Phy) =012 < 1, [(e1,€2) = (1,0)];  (5.40)

,LLAL.‘,,‘,('—U)]I{Q(I + P22]"2)—1P22) =012 < 1, [(61,62) = (0, 1)] (541)

Since all four conditions are satisfied, the system demonstrates robust integrity.

DUS, RDUS Since DUS is implied by RDUS, we will only test RDUS here.
The G and A matrices needed to apply Theorem 5.2 are derived directly from the
block diagram in Fig. 5.4:

0 ——w1I
P -P

~

G =

], A=AqL (5.42)

Fig. 5.11 is the p plot to test condition (5.31). As expected, the value u approaches
1 at zero frequency. We see that 1 << 1 for all frequencies away from w = 0. As
expected, y rapidly increases towards 1 at very low frequencies because the integrators
cause a stability problem here as either of the ¢; approach zero. Since p < 1, the

system demonstrates RDUS.
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Figure 5.11: Test for RDUS (upper and lower bounds shown).

RDD vs. RDUS Let us look at the set of controllers which are given by dynami-

cally detuning the system. This set is

.. . 755 +1 | ——2— 0
K=(5P)'(I-9)= SS+ [ b } . (5.43)
0.014A,

We see that for this example dynamically detuning the system exactly corresponds to
decreasing the single loop controller gains. Thus, for this example, RDD is equivalent

to the interior p test (5.31) for RDUS. This will not be true in general.

5.8 Conclusions

Decentralized controllers are the rule rather than the exception in industrial process
control. We have shown how to analyze the reliability of control systems, and use
robust loopshaping to design decentralized controllers which are inherently reliable
to equipment faults or failures. These techniques are illustrated on a high purity

distillation column.
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Chapter 6

Control Structure Selection

Summary

The robust loopshaping framework is used to develop tools for choosing actuators
and sensors to use for control purposes in the presence of model/plant mismatch.
In decentralized controller design, the tools are also used for determining the ap-
propriate partitions and pairings of controller inputs and outputs. New results are
presented, as well as simplified and unified proofs of existing results. A branch-and-
bound procedure for control structure selection can greatly reduce the number of
candidates from further consideration. The tools developed in this chapter can also
provide recommendations on how to modify the plant design to improve the closed

loop performance.
6.1 Introduction

Practical control problems often involve more actuators and sensors than are needed
for designing effective, economically viable control systems. On a distillation column,
for example, there are at least four actuators and as many temperature measurements

as the number of trays, that can be utilized for composition control. In practice, one



140

does not use all the available actuators and sensors since two of the four actuators must
be used for inventory control and a control system based on all the tray temperatures
will be unnecessarily complex and expensive. An appropriate set of actuators and
sensors must be selected from the available candidates.

An additional consideration is that we may be interested in using decentralized
controllers. Then we also need to choose the appropriate partitions and pairings of
inputs and outputs. Control structure selection refers to both choosing the actuators
and sensors, and choosing the appropriate partitions and pairings. Descriptions of
contro] structure selection research to date are provided by Morari and Zafiriou [76]
and Lee et al. [64].

Researchers have especially studied subsets of the control structure selection prob-
lem. This includes secondary measurement selection [60, 47, 117, 67], the decentral-
ized integral controllability problem as studied by Morari and coworkers [71, 44, 76],
and the “selection” and “partitioning” problems [78, 79]. In this chapter we consider
the general control structure selection problem. By approaching the general problem,
the results also apply to the subset problems.

Until recently, tools for control structure selection did not take plant/model mis-
match into account. Numerous process examples are provided in [76, 64, 106, 67)
which show that ignoring or improperly characterizing plant/model mismatch can
lead to erroneous results, thus motivating the need for the tools developed in this

chapter.

Framework For Control Structure Selection At this point, let us consider an
approach to control structure selection illustrated in Fig. 6.1. The transfer function
G* refers to the submatrix of the overall generalized plant matrix G with rows and
columns corresponding to a specified subset of the available actuators and sensors.

The controller K may be assumed to have some structure (e.g., decentralized), and
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Figure 6.1: Block diagram for control structure selection.

the rows and columns of G¥ are rearranged to correspond to the pairing being consid-
ered. Control structure candidates consist of all possible combinations of the available
actuators and sensors and pairings and partitions. Owing to the combinatorial nature
of the problem, the number of candidates is often very large. Naturally, a method
to reduce the number of candidates before applying detailed analyses is of significant
practical value.

The first proposed step is to eliminate the candidates for which a controller achiev-
ing a desired level of robust performance does not exist regardless of what controller
design method is used. The criteria that can be used to accomplish this screening
will be referred to as general screening tools. This screening process leaves candi-
dates for which a control system with satisfactory performance may potentially exist.
However, this alone may not reduce the number of candidates to a low enough level.
Also, it is not clear if control design methods available to the engineer can lead to
a controller achieving the desired performance. Hence, an additional screening may
be carried out subsequently in the context of a chosen design approach. That is,
one may choose to further eliminate those candidates for which the particular design
approach under consideration does not yield a controller achieving a desired level of
robust performance. The criteria that can be used under a particular design approach
will be called design-dependent screening tools.

All screening tools which allow a general uncertainty description, both new and
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old, are derived via the robust loopshaping framework.

Organization The rest of this chapter is organized as follows. First we derive the
screening tools which do not depend on the partitioning or pairing—these are referred
to as pairing-independent screening tools. These tools are useful during initial screen-
ing, since they can remove from further consideration all control structure candidates
associated with a given set of actuators and sensors. Then we derive tools which are
dependent on the partitioning and pairing, which we refer to as pairing-dependent
screening tools. This chapter connects up many tools which researchers previously
considered independently—including those based on loopshaping, interaction mea-
sures, and decentralized integral controllability—and derives and extends these tools

via a unified framework. Most proofs consist of only a few lines.

6.2 Basis for Control Structure Selection

Fig. 6.1 represents the general block diagram for linear systems with uncertainty. We
would like to test if robust performance can be achieved with the ith set of actuators
and the jth set of sensors, and with a choice of pairings and partitions which are
given by the decentralized structure of K (the rows and columns of G* can always

be rearranged so that K is block-diagonal). Mathematically, we would like to test if
Jnf sup ia(F(GY, K)) <k, (6.1)

where k = 1 and K is the set of stabilizing controllers with given structure. There is
no computable necessary and sufficient test for (6.1). This provides the motivation for
developing computable necessary conditions for robust performance. These necessary
conditions are used as screening tools which remove control structure candidates from

further consideration.
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Figure 6.2: Equivalent representations of system M with perturbation A. The trans-
fer function T is chosen to be a parametrization of the controller K.

For notational purposes we will drop the superscript to G*/ for the remainder
of this chapter. Recall that the generalized plant G in Fig. 6.2 is found directly
by rearranging the system’s block diagram or by standard software [3]. Also recall
the definitions of P, S, and H given in the previous chapter, but with the obvious

extensions to include block-diagonal controllers.

6.3 Pairing-Independent Screening Tools

Screening tools which do not depend on the partitioning or pairing of the control loops
are referred to as pairing-independent screening tools. Screening tools for loopshaping
design which were originally developed by Lee and Morari [67] are derived. These tools
are shown to be strongly related to new general screening tools which are appropriate
when the open loop transfer function is strictly proper, or when integral action is

required—both of which are common requirements in practice.

Loopshaping Design Design-specific screening tools can be derived for existence
of a controller designed by loopshaping to meet robust performance.

Recall from the two previous chapters that to design controllers via robust loop-
shaping, we need to find an LFT of T which describes M (see Fig. 6.2), where T

parametrizes the controller we are to design. When designed decentralized controllers
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in the previous chapter, T' was chosen to be the diagonal semsitivity S or the diag-
onal complementary sensitivity H. The nominal closed loop transfer functions are
designed to meet sufficient conditions on the (block-)diagonal sensitivity S for low
frequency and sufficient conditions on the (block-)diagonal complementary sensitivity

H for high frequency. This directly leads to the following screening tools [67].

Theorem 6.1 (Screening Tool for Loopshaping with $) Let M = Fy(N,T) =
Ni1 + Ni2T(I — NpyT)" Ny, and k be a given constant. There ezists a controller

designed via loopshaping S that satisfies pa(M) < k only if

11a(G11(0) + G12(0) P (0)Gn (0)) < k. (6.2)

Proof: In loopshaping design, S must satisfy the sufficient bound for low frequency.
We know from the proof of Theorem 4.1 that the sufficient bound exists if and only
if assumptions (¢ — 7¢7) hold. Assumption (i7) is that /JA(NI%) < k. The expression
for ;LA(le;) in terms of G and P is given by (5.7). QED.

Theorem 6.2 (Screening Tool for Loopshaping with H) Let M = F;(N,T) =
N1 + Ni2T(I — NyoT)" Ny, and k be a given constant. There exists a controller

designed via loopshaping H that satisfies Ha(M) < k only if

pa(Gni(joo)) < k. (6.3)

Proof:  Similar to the proof of Theorem 6.1.
The above conditions [(6.1) and (6.2)] are required for the existence of the robust

loopshaping bounds at the appropriate frequencies. It is interesting that, though the
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magnitude of the sufficient upper loopshaping bounds (when they exist) are dependent
on the partitioning/pairing, the ezistence of the sufficient upper loopshaping bounds
is independent of the partitioning/pairing. The existence of the necessary loopshaping
bounds is dependent on the partitioning/pairing, and later in this chapter it is shown
that this leads to screening tools useful for choosing between decentralized control
structures [via (6.7)].

Note that pta(G11) is the value of y at open loop (K = 0). Since the controller
K does not enter into condition (6.3), this condition cannot aid in control structure
selection. Therefore it can be argued that calling Theorem 6.2 a screening toolis a
misnomer. However, since condition (6.3) is a valid necessary condition for robust
performance to be achieved, with a shght abuse of notation we will refer to it as a
screening tool. Examples in Section 6.5 illustrate the use of this condition to rule out

inappropriate choices of uncertainty and performance weights.

General Screening Tools New general screening tools are derived directly from

the necessary bounds for robust performance.

Theorem 6.3 (Screening Tool for Integral Controllers) Let M = F(N,T) =
Ny + Ni2T(I — N22T) ™' Ny, and k be a given constant. There ezists a controller with

integral action in all channels that satisfies pa(M) < k only if

11a(G11(0) + G12(0) P (0)G (0)) < k. (6.4)

Proof:  For integral action in all channels, S(0) = 0. To have pa(M) < k at
zero frequency, we need UA(M(0)) = ,LLA(F}(NS(O),S'(O))) = MA(F,(Ng(O),O)) =
ﬂA(Nﬁ(O)) = pa(G11(0) + G12(0)P71(0)G21(0)) < k. QED.
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The above screening tool has a nice interpretation when the steady-state robust-
ness requirements hold at open loop, i.e., a(Gy1) < k, and the controlled variable
is equal to the measured variable plus disturbances, 1.e., G;3 = —P. The former
condition would hold, for example, if robust stability was being considered and all
plants given by the uncertainty description were open loop stable. If La(G11) < k
and G3; = —P then it can be shown using the matrix inversion lemma [87] that (6.4)
holds if and only if

det(F,(G,A)) #0, V||Alleo < 1/k. (6.5)

This requirement is that the determinant of all plants given by the uncertainty de-
scription have the same sign. That this condition is necessary for the existence of
an integral controller which stabilizes the set of plants can also be shown using the
closed loop characteristic equation.

All real systems have vanishingly small gain at high frequencies, i.e., transfer
functions describing system components should be strictly proper. If the product of
P and K are strictly proper, then H(coj) = 0. This leads to the following screening

tool.

Theorem 6.4 (Screening Tool for Strictly Proper Open Loop Systems)
Let M = F(N,T) = Nyj1 + Ni2T(I — N3;T)"' Ny, and k be a given constant. There

ezists a controller with PK strictly proper that satisfies pa(M) < k only if

pa(Gi1(joo)) < k. (6.6)

Proof: U PK is strictly proper, then H(co) = 0. To have Ua(M) < k at
w = 0o, we need p15(M(joo)) = pa( F(NF(jo0), H(jo0))) = pa( RN (joo),0)) =
pa(N{l(joo)) = pa(Gra(joo)) < k. QED.
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If P is strictly proper (proper), then Theorem 6.4 gives a necessary condition for
the existence of a proper (strictly proper) controller which achieves robust perfor-
mance.

It is interesting that the general screening tool for controllers with integral action
is the same as the design-specific screening tool when designing via loopshaping S.
Also, the general screening tool for strictly proper open loop systems is the same as the
design-specific screening tool when designing via loopshaping H. As discussed earlier,
though condition in Theorem 6.4 does not depend on the effect of the controller and
so 1s not useful for control structure selection, we will continue to refer to it as a

screening tool with a slight abuse of notation.

6.4 Pairing-Dependent Screening Tools

Screening tools which depend on the partitioning or pairing of the control loops are
referred to pairing-dependent screening tools. First we show that the existence of
the necessary robust loopshaping bounds is equivalent to previously-derived general
screening tools [65, 64, 66]. We then derive via the robust loopshaping framework
tools for control structure selection based on interaction measures, and show that

these are strongly related to decentralized integral controllability measures.

General Screening Tools A necessary condition that (6.1) is satisfied is for
. 'J
i pa(F(G7,K)) <k (6.7)

to hold for each frequency w, where A is the set of all complex matrices with the
structure of K. This condition 1is necessary because Ks C Ag.
When the controller K in (6.7) is centralized then it can be parametrized by the

Youla matrix Q to give M = F}(GY,K) as an affine function of Q. Replacing y with
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its upper bound (2.14) then leads to computable screening tools. It can be shown
[66] that (6.7) holds for all frequencies if and only if there exists an acausal Q that
satisfies pUa(M) < k.

The following two theorems show that the existence of the necessary robust loop-
shaping bounds is equivalent to (6.7), and hence the screening tools developed in

[65, 64, 66] immediately follow.

Theorem 6.5 (Necessary Upper Bound and Control Structure Selection)
Let M = Fy(N,T) = Ni1+ N1i2T(I — NyyT)™' Ny, and k be a given constant. Assume

or a given frequency w that
g q

(1) det(I - szT) # 0, and

(iii") g(oo) > k. (6:8)

Then the necessary upper bound (given by Theorem 4.8) at frequency w ezists if and

only if (6.7) holds at that frequency.

Proof: We see from the proof of Theorem 4.3 that assumptions (i), (ii"), and (zi:")
are necessary and sufficient conditions for the existence of the necessary upper bound.
Since (z) and (:¢") are assumed, to complete the proof we need to show that (i:”)
holds if and only if (6.7) holds. But recall (see Fig. 4.1) that F;(G",K) = F}(NY,T),

i.e., (6.7) and (2:") are equivalent representations for the same problem. QED.

Theorem 6.6 (Necessary Lower Bound and Control Structure Selection)
Let M = Fi(N,T) = Ni1+ N12T(I — N2pT) "' Ny, and k be a given constant. Assume

for a given frequency w that

(z) det(I — N;oT) # 0, and

(55")  h(0) = pua(Ny) > k. (6.9)

Then the necessary lower bound (given by Theorem 4.4) at frequency w erists if and

only if (6.7) holds at that frequency.
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Proof: Similar to the proof of Theorem 6.5. QED.

Interaction Measures The screening tools thus far measured the suitability of a
control structure candidate solely in terms of robust performance. Sometimes further
conditions are important when judging the suitability of a candidate. For example,
tolerance of the resulting closed loop system to failures in actuators and sensors should
be considered. More specifically, it may be desirable that the closed loop system will
remain stable as any subset of loops can be detuned or taken out of service (put on
“manual”). Clearly for such a closed loop system to exist, the plant P must be stable,
so we will assume this in what follows.

An interaction measure indicates the effect of off-diagonal blocks of the plant on
the performance of the decentralized controller. Grosdidier and Morari defined the u

interaction measure (43, 42] as
ps) (1= P(jw)P7(jw)) (6.10)

where A; has the same structure as H. The strength of the y interaction measure
is based on the following theorem, which we will prove via the robust loopshaping

framework.

Theorem 6.7 (1 Interaction Measure) Assume P is stable, and that a decentral-
ized controller K is designed which stabilizes the block-diagonal plant P. Then the

closed loop system is stable if

'&‘(ff(]w)) < ug};(]— P(jw)P ' (jw)) Vw. (6.11)

Proof:  If P is stable, then stability is assured if K(I + PK)™! is stable (this is

a special case of the Youla parametrization of all stabilizing controllers [76]). From
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inspection, the value for G in Fig. 6.2 is

G =

0 I

. 6.12
o } (6.12)
Applying (5.6) gives that

7 [ o P (6.13)

NH = .
I I-ppP-1

Applying Theorem 4.1 (but using f(cr) in (4.36) with A = 0), and solving explicitly
for c(w), gives that (6.11) is a sufficient condition that the Nyquist plot of det(] —
(I — PP~Y)H) does not encircle the origin. This implies that the closed loop system
is stable, since (I + PK) = (I — (I — PP~Y)H)(I + PK), and (I + PK)™! is stable
by assumption. QED.

Theorem 6.7 gives conditions for which stability with the decentralized controller
applied to the block-diagonal plant implies the stability of the overall system. When
comparing the y interaction measure with other interaction measures (for example,
those based on diagonal dominance), Grosdidier and Morari [42] note that the u
interaction measure is optimal, since it provides the least conservative bound on (H)
(see Remark 4.9).

Stability is guaranteed by controllers designed by loopshaping H based on the
bound in (6.11). This controller will also have a very strong form of fault/failure
tolerance—closed loop stability is maintained with the controller detuned either dy-
namically or statically.

A controller can always be detuned sufficiently so that (6.11) holds; thus satisfac-
tion of the inequality in (6.11) does not directly provide a useful screening tool for
controllers designed via the y interaction measure. A useful screening tool can be
obtained by also requiring that the controller have integral action. In the case, we

have the following design-dependent screening tool which follows immediately from
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Theorem 6.7.

Theorem 6.8 (Screening Tool for u Interaction Measure Design)
Assume P 1is stable. A decentralized controller with integral action in all channels

can be designed via the u interaction measure only if

pa (I — P(0)P1(0)) < 1. (6.14)

The p interaction measure and its screening tool do not take plant/model mis-
match into account. The following theorem generalizes the y interaction measure to

handle model uncertainty.

Theorem 6.9 (Robust Interaction Measure) Consider a system put into the
general G — K form in Fig. 6.2. Assume G s stable, and that a decentralized con-
troller K is designed which stabilizes the block-diagonal plant P. Then the closed loop

system is stable for all ||Allec <1 if
7 (H(jw)) < cjp(w) (6.15)

where cj(w) solves

Gl](jW) Gm(jw)f}—l (](4)) ~
: [AAﬁ] ([ e (w)Ga(jw) e (w)(I — P(jw)P1(jw)) ]) =1. (6.16)

Proof:  If G is stable, then robust stability is assured if K(I + PK)™! is sta-
ble and pA(Fi(G(jw),K(jw)))) < 1, Vw. Because cj(w) is a lower bound to
,u;;](l — P(jw)P~1(jw)), satisfaction of (6.15) implies stability as in the above the-

orem. Applying Theorem 4.1 gives the result. QED.
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The robust interaction measure is optimal, i.e., it provides the least conservative
bound on 7(H) which guarantees robust stability of the overall system. For processes
in which interactions significantly affect the performance of the block diagonal system,
the bound in Theorem 6.9 will be unattainable at low frequencies. In this case,
bounds on both § and H must be used to design the decentralized controller, and
stability must be checked using separate stability conditions. This design procedure
was illustrated in Chapter 5, and the screening tools given by Theorems 6.1 and 6.2
are then appropnate.

The following design-dependent screening tools follow immediately from Theo-

rem 6.9.

Theorem 6.10 (Screening Tool #1 for Robust Interaction Measure Design)
Assume G 1is stable. A decentralized controller compatible with the block-diagonal plant
P which is stable for all ||Alle < 1 can be designed via the robust interaction measure
only if

pPa(Gn(jw)) <1,  Vw. (6.17)

Note that when the plant is stable, (6.17) is the necessary and sufficient condition
for robustness to be achieved when the system is operating in open loop. Performance
specifications will not be satisfied in open loop, so these should not be included in the
robust interaction measure bounds. The best performance is achieved by choosing
the fastest time constant on H such that the robust stability bounds are achieved.

Robust performance is checked after the design is complete.

Theorem 6.11 (Screening Tool #2 for Robust Interaction Measure Design)

Assume G 1is stable. A decentralized controller compatible with the block-diagonal plant
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P which is stable for all ||Allo < 1 and has integral action in all channels can be de-

stgned via the robust interaction measure only if

G11(0)  Gy2(0)P~Y(0)
G2:(0) I— P(0)P~(0) D <L (6.18)

“ %) (

We will now show that screening tools for the design of controllers via interac-
tion measures are also sufficient conditions for decentralized integral controllability

(defined below) and its generalization to include plant/model mismatch.

Decentralized Integral Controllability A common performance requirement is
that the system rejects step disturbances at steady-state, i.e., integral control is de-

sirable. The following property is then desirable from a practical point of view.

Definition 6.1 A plant P ts Decentralized Integral Controllable (DIC) if there ezists
a diagonal controller K with integral action in all channels such that K(s) = EK(s)

stabilizes P(s) for all E € £p where
Ep = {E = diag(e;)|e; € [0,1],i = 1,...,n}. (6.19)

If a system is DIC then it is possible to maintain stability while detuning the gain
of each loop separately. DIC is a property of the plant P and the selected control
structure, and it is desirable to select a control structure such that the system is
DIC. No necessary and sufficient conditions for DIC 1s available. The most complete
exposition of necessary conditions and sufficient conditions for DIC is given by Campo
and Morari [17].

We will now derive a sufficient condition for DIC.
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Theorem 6.12 (Sufficient Condition for DIC) Stable P is DIC if
ta (I = POP(0)) < 1, (6.20)

where Ay has the block structure of H.

Proof: Equation (6.20) implies that det(P(0)) # 0, so there exists a decentralized
Proportional-Integral controller K which stabilizes the block-diagonal plant (for con-
struction of such a controller, see [46]), so that H(0) = I. The right-hand side of
(6.11) is greater than zero at all frequencies, and P is stable, so this controller can
always be detuned such that (6.11) holds. Theorem 6.7 implies that the closed loop
system will remain stable for all further detuning of the controller. QED.

The above theorem was previously stated in [76], but the above is the first rigorous
proof to the author’s knowledge. The value of i in the above theorem is the inverse of
the steady-state y interaction measure. The above theorem is less conservative than
(and immediately imply) all the computable conditions in Corollary 8 of [17].

Now we will develop a tool for determining whether there exists a decentralized
integral controller for an uncertain system for which stability is maintained while

detuning the gain of each loop separately.

Definition 6.2 A plant P is Robust Decentralized Integral Controllable (RDIC) if
there erists a decentralized controller K with integral action in all channels such that

K(s) = EK(s) stabilizes G(s) for all E € Ep and [|Alle < 1 where
Ep = {E = diag(e;)|e; € [0,1),¢ = 1,...,n}. (6.21)

The following is a sufficient condition for RDIC.
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Theorem 6.13 (Sufficient Condition for RDIC) Steble G is RDIC if

Gn(0)  Gi2(0)P~1(0)
“[AA,.,]( Gan(0) I—P(O)P-‘m)]) <h (622)
and
/‘LA(Gll(jw)) <1, Vw, (623)

where Ag has the block structure of H.

Proof: Equation (6.22) implies that det(P(0)) # 0, so there exists a stable decentral-
ized Proportional-Integral controller K which stabilizes the block diagonal plant, so
that H(0) = I. Equation (6.23) implies that ¢y (w) in (6.15) exists for all frequencies,
and G is stable, so this controller can always be detuned such that (6.15) holds. This
implies that the closed loop system will retain robust stability for all further detuning
of the controller. QED.

The sufficient condition for DIC depends only on steady-state, whereas the suffi-
cient condition for RDIC depends on all frequencies. Condition (6.22) for RDIC forces
the controller to give the correct behavior at zero frequency whereas (6.23) is needed
to guarantee that a controller exists which satisfies the robustness requirements at

other frequencies.

Remark 6.1 A necessary condition for RDIC is given by Theorem 6.8, though this

condition ignores failure/fault tolerance.

Remark 6.2 The sufficient conditions in Theorems 6.12 and 6.18 are much stronger
than DIC and RDIC, since these allow arbitrary (static and dynamic) detuning of H,
and DIC and RDIC require stability when detuning only the controller single loop

gains.

Remark 6.3 The decentralized integral controllability measures DIC and RDIC are

closely related to CDUS and CRDUS defined in Chapter 5. A plant is DIC if there
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ezists an integral controller which i3 CDUS, and similarly for RDIC and CRDUS.
Decentralized integral controllability measures depend only of the plant (and possibly
model uncertainty) and are useful for control structure selection, whereas decentralized
unconditional controllability measures are specifications on the closed loop system,

which depend on the plant (and possibly model uncertainty) and the controller.

Remark 6.4 Nwokah et al. [81] claim that a necessary and sufficient condition for
DIC is that P(0) is all gain positive stable. The plant in Remark 5.2 shows that

having P(0) be all gain positive stable is not necessary for DIC.

6.5 Examples

The following examples are used to illustrate the tools developed in this chapter. For

further examples, see (67, 65, 64].

General Screening Tools for Multiplicative Input Uncertainty Though the
purpose of the screening tools are for control structure selection of nontrivial systems,
we will apply a few of the tools on a simple system with multiplicative input uncer-
tainty (see Fig. 5.4) to provide an understanding of the nature of the screening tools.
For simplicity of presentation we will chose the performance and uncertainty weights
to be repeated scalar. The high purity distillation column studied in Chapter 5 was
assumed to have this form of uncertainty.

The generalized plant G is determined by inspection of Fig. 5.4:

Gu=|P I|,Gp=~P. (624)

0 0 —wII
’GIZ =
pr u)pI —pr

Application of Theorem 6.3 gives the following necessary condition for the existence
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of a controller with integral action to provide robust performance:
#a(G11(0) + G12(0) P (0)G(0)) = |wi(0)] < 1 = p < L. (6.25)

The above necessary condition is independent of the structure of the uncertainty, and
is required for the determinant of the steady-state gain not to change sign for all
plants given by the uncertainty description.

Application of Theorem 6.4 gives the following necessary condition for the exis-

tence of a proper controller with to give robust performance:
pa(Gri(joo)) = lwp(joo)| <1 <= p < L (6.26)

The control engineer should always choose the performance weight so that this con-
dition is satisfied, since it is unreasonable to expect high performance at infinite

frequency where the system is essentially operating at open loop.

General Screening Tools for Inverse Multiplicative Output Uncertainty
In the above example, the necessary condition given by Theorem 6.4 depends on
the performance weight, and not on the uncertainty. The following simple example
llustrates that Theorem 6.4 can depend on the uncertainty. |

We will assume inverse multiplicative output uncertainty (see Fig. 6.3), where the
performance and uncertainty weights are chosen to be repeated scalar for simplicity of
presentation. This form of uncertainty is commonly used to represent uncertainty as-
sociated with poles of the plant. The generalized plant G is determined by inspection

of Fig. 6.3:

wUP

},Gm =[-1 ~1]|,Gp=~P. (627)

'pr
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Figure 6.3: The plant with inverse multiplicative output uncertainty Ay of magnitude
wy(s). Robust performance is satisfied if E(wp(l+ PK)’I) < 1 for all Ay with
“AU”oo <L

Application of Theorem 6.3 gives the following necessary condition for the existence

of a controller with integral action to provide robust performance:
pa(G11(0) + Gr2(0)PTH(0)Gn(0)) =0<1 = p <1 (6.28)

We see that in this case Theorem 6.3 does not give a useful necessary condition for
robust performance. To understand why Theorem 6.3 does not give a useful condi-
tion, consider the set of plants given by the inverse multiplicative output uncertainty

description:

{(I = wva) " Pl Aple < 1} (6.29)

Since det((] — wyAy)~!) = 1/det(] — wyAy) # 0 for all finite Ay, the steady-
state gain must be the same for all plants within the set. Thus inverse multiplicative
output uncertainty cannot change the sign of the steady-state plant gain, and poses
no limitations in terms of the stabilizability of the system under integral control.
That Theorem 6.3 gives no useful necessary condition for robust performance agrees
with this analysis.

Application of Theorem 6.4 gives the following necessary condition for the exis-
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tence of a proper controller which provides robust performance:

1a(G11(joo)) = max {lwy(joo)|, lwp(joo)|} <1 <= p < 1. (6.30)

The above necessary condition requires both that the uncertainty and performance
weights are not too large at high frequency. We note that the condition on the
performance and uncertainty weights are equivalent—this is because the uncertainty
and performance enters the block diagram in the same manner in Fig. 6.3.

We again interpret Theorem 6.4 as providing a test for whether the uncertainty
and performance weights are reasonable at infinite frequency. Only an unreasonable
performance weight would have |wp(joo)| > 1, since high performance cannot be
expected at infinite frequency. The condition |wy(jw)| > 1 at any frequency would
be unreasonable since it would allow I — wyAy = 0, leading to a poorly-defined set
of plants in (6.29). We note that uncertainty weights in other locations (for example,
multiplicative input uncertainty above) are commonly ezpected to be greater than 1

at high frequency.

Measurement Selection for a High-Purity Distillation Column Lee and
Morari [67] studied secondary measurement selection for the high-purity distillation
column described in detail in Appendix A of Morari and Zafiriou [76]. We include
this example both to give a more involved illustration of the use of the tools, and to
compare the screening tools presented in this chapter. The problem description will
be brief since the distillation column is described elsewhere [76, 67].

The 41-tray distillation column is given in Fig. 5.3 except that in this case the
manipulated variables are the reflux (L) and boilup (V), and the measurements are
tray temperatures instead of compositions. Tray temperatures are typically measured
n practice because composition measurements are often slow and unreliable. The

disturbances are in the feed composition and flow rate, and measurement noise is due
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to uncompensated pressure variation in the column. For simplicity of presentation
we will restrict ourselves to two tray temperatures symmetric with respect to the feed
tray. This is reasonable since the column is symmetric with respect to the feed tray.
The uncertainty and performance weights are given in [67).

Lee and Mbrari chose an H, optimal estimator and controller (i.e., IMC) and
applied Theorem 6.1 to test each measurement set for the existence of a diagonal
filter designed by loopshaping which achieves robust performance. Fig. 6.4 is a plot
of the left-hand side of (6.2) for the different measurement sets. The measurement
set of T and T35 is the only one that satisfies the condition (6.2). This result can
be interpretted physically. The temperatures measured close to the reboiler and the
condenser have poor signal/noise ratio because the gains from the feed disturbances
to these measurements are small. On the other hand, the measurements far away
from the reboiler and the condenser are semsitive to model uncertainty since the
relationships between the end-point compositions and the measurements become less
direct. The measurement set {77,755} is apparently the best compromise between
the signal/noise ratio and the sensitivity to model uncertainty. Lee and Morari go on
to design a filter which achieves robust performance. This implies that the necessary
condition given in Theorem 6.1 is tight for this distillation column.

Since the necessary test given by Theorem 6.1 is equal to the necessary test given
by Theorem 6.3, we can immediately re-interpret the above results. With an H,
optimal estimator and IMC controller with integral action, robust performance can
potentially be achieved only for measurement set {77,T35}. Since a controller which
achieves robust performance can be designed for this measurement set, the screening
tool given by Theorem 6.3 is tight for this problem.

We assumed above that the H, optimal estimator and controller would be de-
signed, and then applied the design-independent screening tool given by Theorem 6.3.

This leads to an important point—any design-independent screening tool can be ap-
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Figure 6.4: Screening tools for integral and loopshaping controllers: Tradeoff between
model uncertainty and measurement noise.

plied as a design-dependent screening tool by pre-designing part of the control system
before applying the tool. The H, optimal estimator was designed before application
of Theorem 6.3 so that the test would be for the existence of a robust controller
with integral action on the composition estimates, instead of integral action on the
measured variables.

We also determined for which sets it were possible to achieve robust performance
for the H, optimal estimator and any IMC controller. The H, optimal estimator
and controller were designed, and Theorem 6.5 (or Theorem 6.6) applied at zero
frequency to test whether an IMC filter F' exists which achieves robust performance.
The necessary condition implied by Theorem 6.5

inf pa(F(NT,AF)) (6.31)

Ay diagonal

was solved at zero frequency via an off-the-shelf optimization package (the software
was run repeated with different initial conditions—all runs converged to the same
solution suggesting that the software converged to the global optimum). Solving

this non-convex optimization is impractical in general and is only included here for
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Figure 6.5: Comparison of screening tools for integral and general controllers.

purposes of comparison only.

The necessary conditions for integral and general controllers are given in Fig. 6.5.
We see that, as expected, allowing the controller to not have integral action leads
to a larger number of potential measurement sets. The performance weight specified
by Lee and Morari [67] has a gain at zero frequency of 38, which is quite large and
explains why the curves in Fig. 6.5 are close. This illustrates the general rule that the
necessary condition of Theorem 6.3 approximates the more computationally complex
necessary condition of Theorem 6.5 whenever the performance weight is sufficiently
large. This can be proved rigorously for systems with at least one complex uncertainty
block using the fact that u for such systems is continuous [86] and that the conditions

are equal when the performance weight includes an integrator in all channels.

Interaction Measure for Element-By-Element Uncertainty Many re-
searchers have proposed to describe uncertainty as independent bounds on the in-
dividual transfer function elements. Though in general this is not a good represen-
tation of the actual sources of uncertainty, it is included here for illustration and to
compare the results of this chapter with results from other researchers. In this exam-

ple we determine the optimal interaction measures for systems with this uncertainty



163

description.
Skogestad and Morari [102] show that for testing robust stability with element-

by-element uncertainty, M in Fig. 6.2 is given by
M =LP'HE (6.32)
and A by

A= dlag {611,62], e ,6,-,,,} s (633)

where n is the dimension of the plant, §;; is the perturbation on P;;, and E € R™*"*
and L € R™*" include the magnitudes of the uncertainty of each element of P and
are given in [102).

By inspection, the expression for G in Fig. 6.2 is

0 L
G:(E _P). (6.34)

The robust interaction measure is given by ¢ in Theorem 6.9, where the structure of
A is given by the desired structure of the controller. For example, if the controller
is desired to be fully-decentralized, then Ay consists of independent 1 x 1 blocks.

Thus robust stability is guaranteed by
hi(jw)| < ey (w) Vi, Yoo, (6.35)

where ¢}/ (w) is given by (6.16)

(6.36)

0 E(]w)p—l(]‘:") =1
e (W) L(jw) e (w)(I - P(jw)P (juw)) '

il

The above equation can be used to design a controller which achieves robust stability.

The tightest interaction measure is obtained by requiring the single loop designs to
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have the same speed of response (replacing H = kI above with repeated scalar
H = RI).

The robust interaction theorem (Theorem 6.9) can also be used to quantify the
limitations on the performance of inverse-based controllers on systems with element-
by-element uncertainty. In this case P = P (since the controller is centralized) and

H = hI. Thus robust stability is guaranteed by
Ih(jw)| < epi{w) Ve, (6.37)

where c§%(w) is given by (6.16)

0 EGw)P(w) ]\ _
8 [Aa]([cr;(w)ww) 0 D—l‘ (6.38)

The value for ¢i$ can be solved explicitly using the definition of y to give
¢4 = pz!(LP™'E), (6.39)

which was originally proven by Skogestad and Morari [102] to be the appropriate
bound on kI to guarantee robust stability. Though the proof of Skogestad and Morari
[102] is more direct then the above derivation, the robust interaction theorem also
gives the appropriate bounds when using decentralized controllers (6.35-6.36). These
bounds are more useful, since the use of an inverse-based controller is often impractical
(for example, when the plant has high condition number).

The value for ¢}4 is determined via a g calculation on a matrix of size n2. The
computations can be reduced by using the following inequality which has been found

in practice to be tight {22, 58, 57]:

pa(LP'E) < inf 7(D1ADy)7 (D7'P7'DTY), (6.40)
Dy ,Dr
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where D, and D; are real positive diagonal matrices and A is given by the magnitude
of the element-by-element uncertainties. The above optimization is shown in Chap-
ter 9 to be equivalent to an upper bound g calculation of a matrix of size 2n. Thus

a tight sufficient condition on H = hlI to satisfy robust stability is that

G < (i, 7 (DHAGDN T (D5 P (D7) ) - (641

6.6 Branch-and-Bound

A centralized controller which includes all the actuators and sensors may be unnec-
essarily complex and expensive; whereas a control structure candidate with too few
actuators and sensors or too restrictive of a decentralized structure may perform
poorly. Screening tools provide a method to trade off control system complexity with
closed loop performance. Owing to the combinatorial nature of the problem, how-
ever, the number of candidates is often very large. A branch-and-bound procedure
can be used to ease the computational burden in choosing among control structure
candidates.

The first step in the branch-and-bound procedure is to apply pairing-independent
screening tools. One application of a pairing-independent tool can potentially remove
from further consideration all control structure candidates associated with a given set
of actuators and sensors (note that all pairing-dependent screening tools presented in
this chapter can also be applied as pairing-independent tools by allowing the controller
to be centralized in the tests). In this manner a large number of control structure
candidates can be removed each time a pairing-independent tool is applied.

The second step is applied only to the candidates remaining from the first step.
The screening tools are applied to decentralized controllers which consists of two full

blocks—any partition/pairing which is a subset of a particular two-block decentralized
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structure can potentially be removed from further consideration. At each additional
step in the branch-and-bound procedure, the decentralized structure of the controller
is further refined, potentially removing large sets of more refined structures from
further consideration.

The complementary approach to reducing the computational burden would be to
use sufficient conditions for a control structure candidate to achieve the performance
specifications. The sufficient conditions would first be applied to fully-decentralized
control structures. If a sufficient condition indicates that a fully-decentralized control
structure satisfies the performance specifications, then the procedure can stop since
an acceptable control structure has been found. If no fully-decentralized control
structure satisfies the sufficient conditions, then the sufficient conditions would be
apphed to progressively less restrictive structures.

Unfortunately, the existing sufficient conditions either require the design of the
controller which is computationally extensive, or guarantee only very simple perfor-
mance specifications (for example, Theorems 6.12 and 6.13 do not address speed of
response). Therefore it is currently suggested to only use necessary conditions in the

branch-and-bound approach.

6.7 Interaction Between Design and Control

The approach of this chapter was to develop necessary conditions which must be
satisfied by a control structure candidate for the performance specifications to be
achievable. Control structure candidates which do not satisfy these necessary condi-
tions can then be removed from further consideration.

This same approach can be used for providing recommendations on how to select
plant designs which provide for the best achievable closed loop performance. Any

plant design which does not satisfy the necessary conditions derived in this chapter
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can be labeled as nonviable. When these necessary conditions are tight, they can also
be used to rank both control structure candidates and plant designs in terms of their
ability to achieve the performance specifications (see Lee et al. [65, 64, 66] for details).
This removes the “yes-or-no” nature of the screening tools given in this chapter,
and allows the exploration of how parameters associated with the plant design (for

example, column width and height) affect the resulting closed loop performance.

6.8 Conclusions

Screening tools quickly reduce the potentially large number of control structure can-
didates to a manageable number for detailed analyses. New screening tools are pre-
sented for uncertain processes, as well as unified simple derivations of existing screen-
ing tools. The tools can also provide recommendations on how to modify the plant
design to improve the closed loop performance.

The computation of the screening tools derived in this chapter, though manage-
able, 1s numerically more complex than conventional tools such as the RGA or the
condition number. However, these other tools do not address the issue of plant/model

mismatch in a general rigorous way like the above tools.
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Part IV

Computational Issues
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Chapter 7

Actuator and State Constraints

Summary

All real world control systems must deal with actuator and state constraints.
Standard conic sector bounded nonlinearity stability theory provides methods for
analyzing the stability and performance of systems under constraints, but it is well-
known that these conditions can be very conservative. A method 1s developed to
reduce conservatism in the analysis of constraints by representing them as nonlinear

real parametric uncertainty.
7.1 Introduction

All real world control systems must deal with constraints. The control system must
avoid unsafe operating regimes. In process control these constraints typically appear
in the form of pressure or temperature limits. Further constraints are imposed by
physical limitations—valves can only operate between fully open and fully closed,
pumps and compressors have finite throughput capacity, surge tanks can only hold a
certain volume.

One approach to controlling systems with constraints is to optimize the control
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objective on-line subject to the constraints. This approach is referred to as model
predictive control (MPC). A quadratic program must be solved at each sampling
instance, and off-the-shelf software is available for performing these calculations [75].
Model predictive control does not completely solve the constrained control problem,
however. MPC is computationally too complex for many industrial processes, which
is part explains why MPC is typically implemented in a supervisory mode, i.e., on
top of the regulatory control systems. Two additional disadvantages are that some
operational requirements are impossible to express through a single objective function,
and the stability and performance analysis with the resulting nonlinear controller 1s
difficult.

The traditional method for dealing with constraints was to use simple static non-
linear elements (selectors and overrides) in the control system. Despite their consid-
erable practical importance and extensive use, there is essentially no general theory
to guide the design and analysis of these selector and override schemes. Furthermore,
because they modify the control system configuration dynamically, they often cause
severe performance degradation such as windup and “bumps” when switching modes.
Though ad hoc design methods have been developed for avoiding windup, it has been
shown that all of these techniques perform poorly (or may even lead to instability)
in some situations.

A general method is needed for the design of robust constrained controllers which
avoids the difficulties of model predictive control. This method should give robust con-
trollers, be computationally simple on-line, and handle multiple performance objec-
tives in a transparent manner. A general framework for the design of such controllers
is provided by the Anti-Windup Bumpless-Transfer approach [16], and is illustrated
by Fig. 7.1 for the case of actuator himitations. An additional linear compensator
(R), called the anti-windup compensator, provides graceful performance degradation

by modifying the error into the linear controller (K) when the constraints become
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R(s)

Figure 7.1: Anti-windup compensation.

active. When the constraints are inactive, the controller output equals the plant
input and the anti-windup compensator does not affect the behavior of the closed
loop system. This approach can be shown to be a generalization of the earlier ad hoc
constraint-handling methods.

Note that the closed loop system involves linear systems with static memoryless
nonlinearities. A necessary step in the further development of any anti-windup ap-
proach is to develop tools for analyzing stability and robustness for such systems.
Campo [16] give sufficient conditions for analyzing stability and performance based
on the standard conic sector bounded nonlinearity stability theory, but it is well-
known that these conditions can be very conservative. This purpose of this chapter

1s to reduce the conservatism in these tools.

7.2 Conic Sector Bounded Nonlinearities

Since conic sector bounded nonlinearities are described in detail elsewhere (see, for
example, [16]), here we will only illustrate the approach with an example. Fig. 7.2
shows a SISO saturation nonlinearity (this could due to either a state or actuator
limitation—we will refer to the system component as being an actuator in what
follows) covered by a conic sector. The actuator is assumed to behave linearly when

the control output u is small, whereas the actuator output becomes limited when the
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Figure 7.2: Conic sector bounded saturation nonlinearity.

control output becomes sufficiently large in magnitude. Two linear time invariant
operators, denoted as the cone center C and the cone radius R, describe the conic
sector and are shown in the figure. The purpose of covering the original nonlinearity
by a conic sector is that the conic sector is described in terms of linear operators, and
stability analysis for sets of nonlinearities bounded by linear operators is much more
developed than stability with general nonlinearities. The standard approach [16] is
then to analyze stability for all nonlinearities in the conic sector, giving a sufficient
condition for stability for the original nonlinearity.

All nonlinearities in the system are covered by conic sectors, and the resulting
conic sector descriptions are rearranged into the familiar leftmost block diagram in
Fig. 7.3, where A has block structure as in the linear case [see (2.6)]. The difference in
analyzing stability for this system, as opposed to the linear stability analysis used in
the rest of this thesis, is that this “uncertainty” is a nonlinear time varying operator.
The standard approach is to treat A as being complex, and the resulting stability

condition is the optimally scaled small gain theorem [33].

Theorem 7.1 The leftmost system in Fig. 7.8 is stable for all complez perturbations
F(A)<1if

1. M(s) is stable, and
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A F(N,A)

Figure 7.3: Equivalent block diagrams for continuous systems.

. -1
2. jnf |DM(s)D | < B < 1.

Though the condition is necessary and sufficient for the set of unity norm bounded
operators [98], it can be an extremely conservative stability test for the system with
the original nonlinearities. One way to reduce this conservatism is to reduce the
size of the set which covers the nonlinearities of interest. For example, actuator
constraints are memoryless, 1.e., the output of the actuator depends on its immediate
input and not on past inputs. This means that the set of nonlinearities which cover
the saturation nonlinearity can be taken to be real—this leads to A in Fig. 7.3 being
real. This chapter uses this information to derive a less conservative condition for

stability.

7.3 Stability with Memoryless Nonlinearities

Analyzing stability for discrete systems is simpler than for continuous systems, so
we will first consider discrete systems and then show how to transform continuous

systems into discrete. The following approach parallels that of Packard [87].
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A | F(N,A)

Figure 7.4: Equivalent block diagrams for discrete systems.

Discrete Time Systems Consider the block diagram in Fig. 7.4, where the discrete
nominal transfer function M(z) = C(zI — A)~'B + D. Define

A = {A(k) € A, T (A(k)) < 1,Vk}. (7.1)

We see that AF is allowed to vary over sampling instances, but must maintain the
structure of A [described in (2.6)]. The following theorem provides a sufficient con-
dition for robust stability of a discrete system in terms of the upper bound of u of a

constant matrix.
Theorem 7.2 The equivalent systems in Fig. 7.4 are stable for all A € & if

(i) M(z) = Fy(1,,N) s stable, and

(i) pP(N) < 1, where A = [6CI"A] 06 € C,A € A, and ;L'g’(N) 18 the mized
upper bound [described in (2.14)] for pi(N).
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Proof: Consider the rightmost of the equivalent block diagrams in Fig. 7.4. The

system is described by the difference equation
T+l = E(N,A)(Ek. (72)

Assume the nominal system M(z) is stable. Then a sufficient condition for robust

stability is that there exists an invertible T € C"*" such that

7 (TR(N,A)T") =8 <1, (7.3)

since 1n this case the norm of z; obeys

lzill < &(T)B* |0l (7.4)

where k(T') denotes the condition number of T'.

We have from Theorem 2.2 that

AmeaxA E(TFI(N,A)T‘]) <1 < /LA[( T I)N(T- I)} <1 (7.5)
<

T e CnXﬂ

-1
Robust Stability <= inf Ua [( T I ) N ( T I )] <1 (7.6)
T full
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Calculating the minimization in the above equation is expected to be difficult, so we

will replace y with its upper bound [in (2.14)] to get

Robust Stability <= max < 0, inf inf _ X[N-N +j (GN - NG)|} <1,
T e Can D e D
Tl Geg
(7.7)
where
-1
N—_:_D(T )N(T )D“, (7.8)
I I
diI
D= 7.9
0 0
G = 7.10
( 0 G ) ’ (7.10)

MA) is the maximum eigenvalue of A, d; € R, D, € D,, G; € G,, and the sets D,
and G, are specified by the structure of A. Absorbing d; into T and noticing that
the structure of A is appropriate for the new “D” and “G” scalings gives the result.

QED.

Continuous Time Systems Now we will consider stability of continuous time

systems. We will need the following lemma from [87].

Lemma 7.1 Let n > 0 be an integer, A € C"*", and define a matriz B by

_| L VeI
B:[\mﬂ L } (7.11)

Let ); denote the eigenvalues of A, and p(A) denote its spectral radius. Then

Re(\) < 0,Vi <= I — Ais invertible and p (F(B, 4)) < 1. (7.12)
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We will also need the definition of the star product. Assume that two matrices Q

and M are partitioned such that

Qu Q2 M, My
= : M= , 7.13
? ( Qzn Q2 M; My (7.13)
and Q2;M;, makes sense and is square. If I — Q,,M;; is invertible, then the star

product @ * M is well defined and is given by

(7.14)

Q+M = ( F(Q, My,) Qi2(I — M11Q22) "My, ) .

M (I = Qo2 My1)™'Qx Fu(M,Q2)
Now consider the block diagram in Fig. 7.3, where M(s) = C(sI — A)~'B + D.
Define

A = {A(t) € A, 7 (A(t)) < 1,Vt}. (7.15)

The perturbation A’ may be any norm-bounded nonlinear time-varying operator, but
must maintain the structure of A [described in (2.6)]. Any subblock of A which
corresponds to a real subblock of A is memoryless. The following theorem provides a
sufficient condition for robust stability of a continuous system in terms of the upper

bound of yx of a constant matrix.
Theorem 7.3 The equivalent systems in Fig. 7.8 are stable for all A € & if
(i) M(s) = F(31,,N) is stable, and

(ii) (B + N) < 1, where A = [‘WnA] 8 € C,A € A, and p®(B + N) is the

mized upper bound [in (2.14)] for piz(B * N).
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Figure 7.5: Transformation of the continuous stability test to the discrete stability
test.

Proof: Consider the last of the equivalent block diagrams in Fig. 7.3. The system

1s described by the differential equation

z = Fi(N,A)x. (7.16)

For robust stability, we want to test if the eigenvalues of Fj(N,A) are in the left half
plane. The equivalence of the block diagrams in Fig. 7.5 follows from Lemma 7.1
with A = Fj(N,A). Thus we have converted the continuous robust stability problem

to the discrete robust stability problem of Theorem 7.2. QED.

7.4 Robust Performance

The definition of robust performance is that (see Fig. 7.6)

T(H(M(jw),A) =p<1 Vw,VA € A (7.17)



179

. | M(s)

Figure 7.6: Continuous system with time varying uncertainty.

A similar development can be used to derive the following sufficient test for robust

performance of continuous systems.
Theorem 7.4 The system in Fig. 7.6 ezhibits robust performance for all A € A if

(i) M(s) = Fi(3I,,N) is stable, and

. 6I,
(ii) ,u‘i"(B*N) < 1, where A = ACA , 6 € C, A a full complez block, A € A,

and ug”(B * N) is the mized upper bound for pLz(B * N).

Scaling of the uncertainty and the performance specifications can be incorporated
into the above theorems to give greater flexibility (see [87] for details). We will
now consider an example which shows a substantial reduction in conservatism when
taking into account the memoryless nature of the common nonlinearities encountered

in process industries.

7.5 Example

Consider the discrete 4 x 4 closed loop system (V) given by the following state space

matrices:
—1.6662 —3.2066 0.2522 4.6348
—-3.5907 -~6.5803 0.5290 9.3770
A= , (7.18)
-10.0332 —20.5300 1.7744 27.3046

—2.7552 —4.9830 0.3936 7.2349
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( —1.0801 —0.3601 —0.7408 2.0288
B=| Joats _orar _rores tiases | (119
\ —1.9733 —0.4020 —1.5071 3.1886
[ —6.0014 ~—11.6816 1.0568 17.1462 \
—-9.0589 —18.0075 1.8934 24.7326
¢= —5.3812 —10.7738 1.1081 14.9160 |’ (7:20)

\ —8.5404 —16.9704 1.7568 23.4685}

—4.5765 —1.1854 —3.6748 7.0926 \
—7.2120 —2.2428 —6.2854 10.1094
D= . (7.21)
—4.2841 —1.3153 —3.6850 6.1183

—6.7764 —2.0757 —5.8558 9.6079/

The eigenvalues of A are {—0.1437,0.3945,0.3396, 0.1724}, which all have magnitude
less than one so M(z) is nominally stable. The nonlinearity AF consists of four mem-
oryless repeated scalar 1 x 1 blocks. If we ignore that the nonlinearity is memoryless

(A complex), then the stability margin is
A(B*N)=357>1, (7.22)

so stability of the closed loop system is not assured. If we take the memoryless nature

of the nonlinearity into account (A real), then the stability margin is
pE(B*N)=098 <1, (7.23)

and so stability is guaranteed. The reduction in conservatism is 264%.

7.6 How Much Conservatism is Reduced?

Theorem 7.3 is equivalent to the standard conic sector stability test (Theorem 7.1

when the nonlinearity A is complex [87]. Though Theorem 7.3 can substantially
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reduce the conservatism over the standard conic sector stability test by taking into
account the memoryless nature of the nonlinearity, the following lemma shows that
there is no reduction in conservatism when all the subblocks of A are independent

and 1 x 1.

Lemma 7.2 Theorems 7.3 is no less conservative than the optimally scaled small

gain theorem (Theorem 7.1) when all the subblocks of A € &F are 1 x 1.

Proof:  Follows from results in [118]. QED.

The example in Section 7.5 showed that the conservatism can be reduced when
the nonlinearity was repeated scalar. This nonlinearity is appropriate under direc-
tionality compensation, which was discussed in Chapter 3 and is illustrated again in
Fig. 7.7. When the control output cannot meet the constraints, the directionality
compensator {(which is placed immediately after the linear control and before the ac-
tuator constraints) scales back the control output while keeping the same direction
until the control action becomes feasible. As discussed in Chapter 3, the direction-
ality compensator was found to perform nearly as well as model predictive control
for an industrial scale adhesive coater, but with much simpler computation. A de-
tailed discussion of the importance of directionality compensation, especially when
the controller is an inverse-based design, is provided by Campo [16].

The above approach was to reduce conservatism by accounting for the memory-
less nature of the nonlinearity. To reduce the conservatism of the nonlinear stability
conditions by a larger margin, it is needed to remove nonlinearities such as the one
shown in Fig. 7.8, which can have arbitrary positive or negative instantaneous slope,
and arbitrarily large magnitude as the input increases. The author is currently in-
vestigating the inclusion of bounds on the slope and magnitude of the nonlinearity in

the problem formulation.
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Figure 7.7: Directionality compensation.

(R+Cu

Figure 7.8: Conic sector bounded nonlinearities.

7.7 Nonlinear Stability and Performance

The stability and performance tests developed in this chapter can be used to test
local stability and performance for general nonlinear systems. The nonlinear system
1s hinearized, and the linear part rearranged to form the nominal system M in Fig. 7.6.
A local operating region is defined in the phase plane, and the nonlinearity as a
deviation from the linear system is covered by a conic sector in this region. The

theorems developed in this chapter can be used to test stability and performance
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for the system as long as the process stays in this operating region (for details and
application to a packed bed reactor, see Doyle [34]).

In gain-scheduling, the nonlinear plant is treated as linear with time-varying pa-
rameters. The gain-scheduled controller is also linear, but dependent on the same
time-varying parameters of the plant (which are assumed to be measured or esti-
mated, see [88] for details). The tests in this chapter can be applied to analyze the
global stability and performance for these systems, where the parameters are treated
as tume-varying uncertainty. Because both the controller and the plant depend on the
parameters (i.e., the uncertainties are repeated), the tests can reduce conservatism

by taking the real nature of the parameters into account.

7.8 Conclusions

Less conservative stability and performance tests are derived for memoryless nonlin-
earities. Though the tests cannot reduce conservatism for single-input single-output
systems, the conservatism can be reduced substantially for multivariable systems with
directionality compensation. The stability and performance tests developed in this
chapter can also be used to test local stability and performance for general nonlinear

systems, and global stability for gain-scheduled systems.
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Chapter 8

Computational Complexity of u

Calculation

Summary

The matrix function, g, is an integral part of both the robust loopshaping and the
structured singular value frameworks. Numerous researchers over the last decade have
worked on developing efficient methods for computing p. In this chapter we consider
the complexity of calculating p with general mixed real/complex uncertainty in the
framework of combinatorial complexity theory. In particular, it is proved that the p
recognition problem with either pure real or mixed real/complex uncertainty is NP-
hard. This strongly suggests that it is futile to pursue exact methods for calculating p
of general systems with pure real or mixed uncertainty for other than small problems.
This is strong motivation for the approach to the calculation of x4 of Doyle and co-

workers, which is to calculate tight polynomial-time upper and lower bounds instead.
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8.1 Introduction

Robust stability and performance analysis with real parametric and dynamic uncer-
tainties can be naturally formulated as a structured singular value (or p) problem,
where the block structured uncertainty description is allowed to contain both real
and complex blocks. For a collection of papers describing the engineering motivation
and the computational approaches, see [28] and the references contained within.

In this chapter we determine the computational complexity of g calculation with
either pure real or mixed real/complex uncertainty. To apply computational com-
plexity theory, we formulate y calculation as a recognition problem (a ‘yes’ or ‘no’
problem). We show that this recognition problem is NP-hard, i.e., at least as hard as
the NP-complete problems.

The exact consequences of a problem being NP-complete is still a fundamental
open question in the theory of computational complexity, and we refer the reader
to Garey and Johnson [38] for an in-depth treatment of the subject. However, it
is generally accepted that a problem being NP-complete means that it cannot be
computed in polynomial time in the worst case. It is important to note that being
NP-complete is a property of the problem itself, not of any particular algorithm. The
fact that the mixed u problem is NP-hard strongly suggests that, given any algorithm
to compute yx, there will be problems for which the algorithm cannot find the answer
in polynomial time.

The terminology of computational complexity theory is used extensively in this
chapter. The definitions for NP-complete, NP-hard, recognition problems, and other
terms agree with those in the well-known textbooks by Garey and Johnson [38] and
Papadimitriou and Steiglitz [89].

The proofs are simple. First we show that indefinite quadratic programming can
be cast as a u problem of “roughly” the same size. Since the recognition problem for

indefinite quadratic programming is NP-complete, the u recognition problem must
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be NP-hard.

This chapter has been accepted for publication in IEEE Transactions on Auto-

matic Control [14].

Nomenclature Matrices are upper case; vectors and scalars are lower case. The
set of real numbers is denoted by R; the set of complex numbers by C; and the set of
rationals by Q. The maximum singular value of matrix A4 is denoted by 7 (4), and

the r x r identity matrix by I,. Define the set A of block diagonal perturbations by

A = {disg {61, -, 60y i o280 Ty A, AL |

1
6,-’eR,éfec,A,»eC"""’,Zr;=n}. (8.1)

=1
Let M € C™*". Then pa(M) is defined as

0 if there does not exist A € A such that det(] — MA) = 0,

. -1 ) (8.2)
Lr&rélg{a (A) [det(I — MA) = 0}] otherwise.

Ha(M) E{

Without loss of generality we have taken M and each subblock of A to be square.

8.2 Results

We first show that indefinite quadratic programming is a special case of a g problem.
Let z,p,b,b, € R", A € R™", and ¢ € R. Define the quadratic programming
problem

T T
poax | Az +p'z+¢|, (8.3)

where A can be indefinite. In the following theorem, we cast the above problem as a

i problem.
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Theorem 8.1 (Quadratic Programming Polynomially Reduces to u)

Define
0 0 kw
M= kA 0 kAZ , (8.4)
TTA+pT wT zTAZ+pTi+4¢

A = {diag|é],---,6],67,---,6.,8|6f € R;6°€C}, (8.5)
A= {diag[&{, ey 6y 61, 6y b |67 € R} ) (8.6)

_ 1
=3 (by + &), (8.7)

1
w= (by — by) . (8.8)

Then pa(M) = pz(M), and

llA(M) e bllﬁnxaﬁ)iu

tTAr 4+ px + cl > k. (8.9)

This implies that the indefinite quadratic program (8.3) polynomially reduces to both

a real y problem, and a mized u problem.

Proof: ~ The proof is trivial for k¥ = 0, so assume k > 0. The idea is to treat
the constraints as uncertainty and the objective function as the performance objec-
tive of a robust performance problem (see Chapter 2 for a description of the robust

performance problem). The constraint set is
{zlh <2 <b} = {z)z =2+ A w A = diag|é],---,6);67 € [-1,1]}. (8.10)

For convenience, define an artificial output y € R and an artificial input d € R.
Then the quadratic programming problem can be written as the block diagram in
Fig. 8.1. Block diagram manipulations give us the block diagram in Fig. 8.2, where
we have augmented the block diagram with a performance block 6°. The optimization

objective is the input-output relationship between d and y. Define Ay = diag[A™, A7,
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d > z o e —0— Y
+I -i-?—>
w Ar AA - =T PN

> A" Au}’r

L d

8

+ 4

Figure 8.1: Equivalent block diagram for quadratic programming problem.

4o
P Ar
0 0 w
A 0 AT
TTA+pt wl zTAz 4+ pTz +¢
Y —— t— d
L ---------------------- o 6C ittt ol i -;

Figure 8.2: Quadratic programming as a robustness problem.

N by

0 0 w

N

N = { N“ x” } = A 0 Az : (8.11)
e #TA+p" wl |2TAz+pTz+c

and the linear fractional transformation (LFT) F,(N,Ay) by

Fu(N, Au) = Nn + NglAU(I - N]]Au)_an. (8.12)
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Since det(f — Ny3Ay) = 1, the inverse in (8.12) is well defined. We have

max
blSISbu

T T — — =
2TAz +p"z 4| = Bax [F(N,Av)| = max 7 (Fu(M,Av)). (8.13)

Since fia,(M11) = 0 < k, we can apply the robust performance theorem of Doyle [29]
to give (8.9). Since F,(M, Ay) has no dynamics and is 1 x 1, the complex perturbation
6° can be replaced by a real perturbation.

It can easily be shown that the y problem in (8.9) is described by less than four

times the number of parameters of the quadratic program. QED.

Remark 8.1 Theorem 8.1 can be generalized to handle general linear constrainté
wnstead of the simple ones in (8.8). Any unbounded linear constraints can be con-
verted through a bilinear transform to bounded linear constraints. All bounded linear
constraints can be treated as uncertainty—the details are left to the reader. Unfor-
tunately, for general linear constraints the resulting y problem is impractically large.
Theorem 8.1 can also be modified to solve the optimization problem that does not have
the absolute value in the objective. The idea is simple: the mazimizing x does not
depend on ¢, so choose ¢ > 0 very large. Then solve the resulting “absolute value” p
problem. The mazimizing = for this problem will solve the original problem. Mini-
mazations can be handled just as easily as mazrimizations—choose ¢ < 0 very large in
magnitude and solve the resulting “absolute value” u problem. We do not show the
details of these generalizations here because the generality is not needed to prove the

main results of this chapter.

Remark 8.2 Any nonlinear programming problem with an LFT of z and z7 as an
objective and general linear constraints can be written as a block diagram like that of
Fig. 8.1. The block diagram can always be rearranged to be in the form of Fig. 8.2,
where y = F,(N,Ay)d, but with a different N and Ay. This block diagram has

an equivalent p problem. Therefore, any nonlinear programming problem with an
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LFT of z and =7 as an objective and general linear constraints can be cast as a 7
problem. It is not clear how to efficiently write a given nonlinear (e.g., polynomial)
objective as an LFT in terms of  and x7 ezcept for the specific cases of linear and
quadratic programming. But we have good methods for solving linear and quadratic
(at least in the definite and semi-definite cases) programs—uwhat might be interesting
in terms of computation wouldl be to solve optimizations with more difficult objective
functions. The well-known lower and upper bounds (see Young et al. [119] for a
summary) commonly used to approzimate u are bounds on the mazimum of the “LFT”
programming objective. The x that achieves the value of the lower bound can be
calculated from the perturbation that achieves the lower bound from (8.7), (8.8), and
(8.10). The error in the objective in using x from the lower bound algorithm instead

of the optimal = is no greater than the difference between the upper and lower bounds.

To apply computational complexity théory, we must write the calculation of u as
a recognition problem (a ‘yes or no’ problem). Consider p with M € Q™" k € Q,
and mixed real/complex uncertainty blocks. Define the recognition problem & := “Is
p > k?” = “Does there exist a perturbation of magnitude k™! that ‘destabilizes’ the
system?”

The next lemma is essentially from Murty and Kabadi [77]. This paper is impor-
tant because it is the first to use the techniques of discrete combinatorial complexity
theory to study the computational difficulty of continuous optimization problems.

Consider d; € Q for 1 = 0 to n, and k € Q. Define the following nonconvex
quadratic program

n 2 n
¢ = max ( diz; — do) + 3 (1 - ). (8.14)
=1 i=1

0<r;<1

Lemma 8.1 (NP-Completeness of Indefinite Quadratic Programming)

The recognition problem “Is ¢ > k?” is NP-complete.
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Proof: ~ Murty and Kabadi [77] show that this problem is NP-hard. Vavasis [112]
shows that the problem is in N'P. QED.

The following theorem states that the u recognition problem is NP-hard.

Theorem 8.2 (NP-Hardness of 1 Recognition) & with general perturbation

structure and general M is NP-hard.

Proof: The indefinite program (8.14) can be written as (8.3) through multiplications
and additions (~ O(n?) operations). This problem is NP-complete by Lemma 8.1,
and the quadratic program (8.3) polynomially reduces to a y problem by Theorem 8.1.
Thus @ is in general at least as difficult as indefinite quadratic programming, and &
1s NP-hard. QED.

Though the general u recognition problem is NP-hard, special cases (i.e., with
restrictions on the structure or field of M or A) may be simpler to compute. For
example, when the M matrix is restricted to be rank one, the calculation of 4 has
sublinear growth in problem size, irrespective of the perturbation structure [18].

The case where g has only real perturbations has received an especially large
amount of attention in the y calculation literature. The next result states that I

recognition is NP-hard for this case.

Theorem 8.3 (NP-Hardness of Real y Recognition) & is NP-hard when M

and the perturbations are restricted to be real.

Proof:  Use the real u problem of Thm 8.1 in the proof of Theorem 8.2. QED.
Models for real systems always have unmodeled dynamics associated with them.

Unmodeled dynamics correspond to having at least one complex uncertainty which

enters nontrivially in the p problem. The next result states that u recognition is

NP-hard for this practically-motivated class of problems.

Theorem 8.4 (NP-Hardness of Mixed ; Recognition) Let A consist of both

real and complex perturbations. Arrange the perturbations in A = diag{A;, A}
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such that A, consists of pure real perturbations and A, consists of pure complez

perturbations. Partition M compatibly, i.e.,

My, M,
M= , 8.15
[ M21 M22 } ( )

where pa(M), pia, (M), and pia,(My;) are well-defined. Consider the class of y
problems for which fia (Myy) < pia(M). ® s NP-hard for this class of problems.

Proof: Use the mixed u problem of Thm 8.1 in the proof of Theorem 8.2. QED.
The evaluation problem “What is u?” is at least as difficult to solve as the recog-
nition problem “Is u > k7”7 since the solution of the recognition problem immediately

follows from the solution to the evaluation problem.

8.3 Comparison with Previous Results

It can be shown from results of Rohn and Poljak and Demmel [93, 25] that the
recognition problem for a special case of computing y with only real perturbations
is NP-complete. This implies that the g recognition problems for both the pure real
and general cases are NP-hard (Theorem 8.2 and 8.3).

Here we use a control approach to studying the computational complexity of u.
The proofs use only simple linear algebra—the approach in [93, 25] involves transfor-
mation to the “max-cut problem.” Theorem 8.4, which shows that including complex
perturbations (which appear to be better behaved numerically, see Young et al. [119])
in the u problem does not remove the NP-hardness, follows naturally from the ap-
proach taken here. This result is important since practically-motivated g problems
are in this class.

Another immediate result (follows from [86]) of this chapter is that u recognition

remains NP-hard when the class of problems is restricted to those in which p is a
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continuous function of M.

8.4 Conclusion

The main results strongly suggest that it is futile to pursue exact methods for calcu-
lating u of general systems with pure real or mixed uncertainty for other than small
problems. In particular, one should not expect to find a polynomial time algorithm
that calculates either real or mixed p with general M exactly. These results do not
mean, however, that practical algorithms are not possible. Practical algorithms for
other NP-hard problems exist and typically involve ap