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Abstract

During the past decade, our research group has been engaged in experiments in the archi-
tecture and programming of multicomputers. This research has progressed steadily toward
the ideal of small granularity, both of the computing nodes within a multicomputer, and of
the execution units within concurrent programs. The context for the runtime-system and
program-behavior experiments reported in this thesis are: (1) the reactive-process, message-
passing computational model, (2) C+-, a C++-based, concurrent-programming notation, and
(3) the Mosaic C, an experimental, fine-grain multicomputer.

We present first a long-sought solution to the formulation of an unbounded queue of
elements within the reactive-process model. This result is applied to allow messages to be
received selectively using purely reactive semantics.

The primary contributions of this thesis are distributed algorithms and a design
method for runtime systems for fine-grain multicomputers. To evaluate the algorithms and
design, a prototype runtime system called MADRE was developed, C+- programs whose
behaviors are typical of a variety of applications were written, these programs were executed
on the Mosaic C under MADRE, and the program behavior was instrumented.

In addition to conventional operating- and runtime-system functions such as lo-
cal memory management and quiescence detection, MADRE automatically manages user-
process placement and naming. MADRE can also be configured to include capabilities for
distribuﬁng resource demands across the nodes of the multicomputer. Buffered messages
can be exported from congested nodes so that incoming messages can continue to be re-
ceived. The code of user programs can be distributed across the ensemble, and accessed
automatically. Fach of these capabilities depends upon the formulation of selective receive

demonstrated in the solution to the unbounded queue.
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Our experiments evaluate various automatic process-placement strategies. We show
that one algorithm, called k-biased placement, distributes loads nearly as well as random
placement, while providing a tunable degree of locality between parent and child processes.
Other experiments demonstrate that the message-exportation capability is crucial to fine-
grain multicomputers; unless messages can be exported, computations fail due to receive-
queue overflow when only a fraction of the multicomputer’s memory resources are being

used.
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1 Introduction

1.1 Rules of the Game

Imagine a computation expressed as a collection of small processes that communicate by
messages. The cost of a message-passing operation is roughly equivalent to the time required
for a procedure call. FIFO-buffered, asynchronous channels comprise the message network.
The order of messages sent between pairs of processes is preserved — messages arrive, after
an arbitrary travel time, at the destination process in the order in which they were sent from
the sender process. However, if two messages are sent from the sender process via different
intermediate processes, the arrival order at the final destination process is non-deterministic.

Each process is identified by a unique reference wvalue that acts as its address for
message passing. A process is defined by a body of code to be executed and a small set of
private variables. New processes can be created dynamically at a cost that is only slightly
more than the cost of sending a message. The parent process initializes some or all of
the private variables of the new process. As part of creating a new process, the reference
value of the new process is returned to the parent. A process may obtain a reference value
either as an initialized variable, by having created the process, or by receiving the value in
a message.

Since each process contains little state, it relies on passing messages to obtain new
tasks and new data. Just as in the Actor model of computation [1], a process executes code
for a bounded period of time in response to the arrival of a message. Based on the state
of the process and the contents of the message, this code may create new processes, send
messages, and modify its own state. These semantics were heavily influenced by the Actor
model of computation [1].

When receiving a message, the process must accept the message at the front of the



QM->put(value)

\

QM->get(requester)

QM.front

requester->reply(value)

QM Process

Figure 1.1: Single-Process Unbounded-Length Queue. Pro-
ducer/consumer processes interface with the queue-manager

process (QM) using put, get and reply messages.

queue (ie, the message that has been in the queue for the longest time). No hidden facilities
for buffering unwanted messages are provided; each message must be processed in the order
received. This reactive handling of messages [39, 4] is a significant departure from traditional
protocols used for process interaction. Selective-receive capabilities, the ability to receive
messages based on their contents and/or the state of the process, must be implemented

using purely reactive semantics.

These groundrules outline a model of computation that has developed along with
the evolution of the multicomputer architecture. The factors that motivate this model are

discussed in the literature [30, 39] and in subsequent sections of this chapter.

1.2 The Unbounded Queue Problem

1.2.1 A Single-Process Implementation

Figure 1.1 and Program 1.1 illustrate an implementation of a single-process, unbounded-

length queue using the groundrules described in the previous section. The specification for

this queue is:

® a put operation appends the argument value to the queue rear,

¢ a get operation eventually returns the value at the queue front in a reply message,



class element

{ int value;
element* next;
public:
element(int V) { value = V; next = NIL;}
void set_next(element *N) { next = N;}
int get_value() { return value; }
element *get_next() { return next; }

h

processdef QM

{ element« front;
elementx* rear;
public:
QM() { front = rear = (element *) NIL;}
atomic void put(int);
atomic void get(USER «);

I

void
QM::put(int value)
{ elementx new_rear = new element(value);

if (rear == (element x) NIL)
front = new_rear;
else
rear—set_next(new_rear);
rear = new_rear;

}

void

QM::get(USER #requester)

{ if (front == NIL)
ERROR_UNDERFLOW();

requester—reply(front-—get_value());
front = front—get_next();

}

Program 1.1: C+- Program for a Single-Process, Unbounded-
Length Queue.




e through this interface, multiple producer and/or consumer processes should be able

to use the queue as a FIFO data structure.

Program 1.1 is written in C+-, a programming notation based on C++ that has been
developed in our research group at Caltech. The mission of this programming notation is to
apply the essentials of object-oriented programming and modern compilation techniques to
multicomputer programming. As most of the programs in this thesis are written in C+-, the
reader should already be familiar with C++ (or study a good C++ programming reference

such as [37]). The primary differences between C+- and C++ are listed below.

o C+- does not permit global variables.

e C+- adds a process abstraction (indicated by the keyword processdef) that is an ex-
tension of the C++ class abstraction. Processes are created using the new operator;

the return value of the new operation is the reference value of the new process.

¢ Process member functions can be annotated as atomic, indicating that invocation of
these functions is equivalent to sending a message to the process, which then executes
the function on the given arguments. By invoking an atomic function, a process can
trigger delayed and independent computation, yielding potential concurrency. Atomic

functions represent the fundamental semantic difference between C++ and C+-.

o The atomic functions of a process can be enabled/disabled by the process so that

messages can be selectively received.

Chapter 3 includes a description of the C+- notation, along with example application pro-
grams.

In Program 1.1, a pool of producer-consumer USER processes send put and get mes-
sages to the queue-manager (QM) process. The QM process maintains an internal linked
list of elements to queue incoming values. Upon receiving a get request, the QM process

removes the value at the front of the internal queue and returns it to the requesting USER



process via the reply member function. It then updates the front of the queue to point to
the next element.

This implementation satisfies our specification of a queue since the FIFO channels and
the operation of the queue-manager process ensure that values that were put into the queue
are received in order in response to get operations. This implementation does not, however,
satisfy the programming groundrules described in Section 1.1. In that model growth of the
computation is expressed using process creation, whereas Program 1.1 relies on the growth
of internal process state. A better solution to the unbounded queue problem would use

distributed processes to implement the queue of values.

1.2.2 A Solution Using Distributed Processes

The question of how to use distributed processes to implement an unbounded queue has
been studied for roughly a decade [21, 4, 8]. Most of the problem “solutions” were either
restricted to simplified forms of the unbounded queue problem or were quite wasteful of
space and/or work. The development of an acceptable solution within our computational
framework was a key starting point for the research in this thesis. In this section, we present
this solution to the distributed queue problem that satisfies all the constraints outlined above
and is efficient in terms of both space and work. In subsequent sections, we describe and
analyze some of the earlier, unacceptable, solutions, and expose some of the finer points
about this new solution.

Since an individual process may contain little state and there may be an arbitrary
number of elements in the queue, the data structure for the queue elements will contain one
element per process. This choice of one element of the queue per process is for simplicity of
exposition. In the general case, the structure of the program is the same if a queue process
represents a single element of the queue or a sequence of elements. Figure 1.2 illustrates
the reference connectivity of the queue-manager (QM) process and a set of queue-element
(E) processes.

The difficulty with simply extending the solution in Program 1.1 to a distributed



E2.next

Figure 1.2: Queue of Processes Used to Implement an
Unbounded-Length Queue. (Circles represent processes,

heavy lines indicate reference connections).

implementation appears in the get operation. When a get message arrives at the queue
manager, it should relay the get message to the queue element at the front of the queue,
which will eventually reply with the desired value and the reference to the new queue front.
However, what happens if, before the reply message is received from the queue, another get
message arrives at the queue manager? Since the old queue-front reference is no longer valid
and the new one has not yet arrived, the queue manager is effectively cut off from the queue,
meaning that the queue manager must somehow buffer the unwanted get messages until the
new queue front reference arrives. At first, this dilemma may seem nothing more than
an artifact of the algorithms and approach used to attack this problem. However, further
consideration shows that this problem is more fundamental: what we are attempting is to
receive selectively a particular message, while buffering all unwanted messages. Recall that
this type of buffering is expressly not provided in our model.

An obvious solution to this problem is to constrain the queue’s environment so that the
problem does not arise. In [4], Athas defines the environment as a single-consumer process
that does not issue a get message until the reply from the previous get message has arrived.
In this case, the queue manager is guaranteed to be reconnected to the queue before the next
get message arrives. There are two problems with this approach. First, it is a solution to a

different problem from the one initially posed, a general multiple-consumer queune. Second,



Data Queue

DEOQ.next DEl .next DE2.next

/

QM.data_front

QM.req_front

@ REO.next @ RE1.next @ RE2.next
__)

Request Queue

Figure 1.3: Process Structure of a Distributed Unbounded-
Length Queue. The queue-manager QM process maintains two
queues — the data queue, to store values queued by producer
processes, and, the request queue, to store requests for values

from consumer processes.

even in the restricted, single-consumer solution, the behavior of the consumer may exhibit
the same dilemma as outlined above. For example, if the consumer’s program causes it to
respond to messages from other processes by sending get messages to the queue, then it
must buffer those incoming messages until the reply to the pending get message is received.
Consequently, the consumer must selectively receive a get message reply while buffering the
unwanted messages {rom other processes, thus encountering the same difficulty as the queue
manager in the general queue implementation.

A solution for implementing the selective receive for messages returning from the
queue containing data is to use another queue to buffer the get request messages that
cannot be processed immediately. Figure 1.3 and Programs 1.2 — 1.4 illustrate the use of

two such queues.



processdef DE
{ int

DEx*

QM=

public:

atomic void
atomic void

%

processdef RE
{ USER%

RE=«

QM=

public:

atomic void
atomic void

}

processdef QM
{ DEx

REx*

public:

atomic void
atomic void
atomic void
atomic void
void

value;
Next;
gm;

DE(int v,DE*n,QMxq)
next(DExn)
get(USERsx,int);

requester;
Next;
qm;

RE(USERx*u,RExn,QMsq)
next(RExn)

get(int);

data_front,xdata_rear;
req_front, *req._rear;

QM()

put(int);

get(USER«);

data_reply(int, USER*,DEx,int);

req_reply(USER+,REx,int);

data_queue_get(USER«*u)

{ data_front—get(u,data_front
if (data_front == data_rear)

data_rear = NIL;

data_front = (DEx) UNDEF;

}

{ value = v; Next = n; gm = q;

}
{ Next = n;}

{ requester = u; Next = n; gm = q;

}
{ Next = n;}

{ data_front = data_rear = NIL;
req_front = req.-rear = NIL; }

== data_rear);

Program 1.2: C+- Program for a Distributed Unbounded-
Length Queue (a).




void

DE::get(USER *u,int b)
gqm—data_reply(value,u,Next,b);
delete this;

}

void

RE::get(int b)
gm—req_reply(requester, Next,b);
delete this;

}
void
QM::put(int v)
{ DE *qe = new DE(v,(DE «) NIL,this);
if (data_rear # (DE «) NiL)
data_rear—next(qe);
else
data_front = qe;
data_rear = qge;
}
void
QM::get(USER x*u)
{ if (data_front == (DE ) NIL)
ERROR_UNDERFLOW();
else
if ((data_front == UNDEF) || (req_front # (RE %) NiL))
RE *re = new RE(u,(RE ) NIL,this);
if (req_rear # (RE %) NIL)
req_rear—next(re);
else
req-front = re;
req_rear = re;
}
else
data_queue_get(u);
}

Program 1.3: C+- Program for Distributed Unbounded-
Length Queue (b).
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void
QM::data_reply(int v,USER *u,DE xqe,int singleton)
{ u—reply(v);
if (!singleton)
data_front = qe;
else
if (data_rear == (DE ) NIL)
data_front = NIL;
if (req_front # (RE %) NIL)
if (data_front == (DE =) NIL)
ERROR_UNDERFLOW();
else
{ req_front—get(req_front == req_rear);
if (req_front == req.rear)
req_rear = NIL;
req_front = (RE ) UNDEF;
}
}
void
QM::req_reply(USER #u,RE *re,int singleton)
{ data_queue_get(u);
if (!singleton)
req-front = re;
else
if (req_rear == (RE #) NIL)
req_front = NIL;
}

Program 1.4: C+- Program for Distributed Unbounded-
Length Queue (c).
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The basic operation of the queue-manager process is as follows. Values in put messages
received by the queue manager are appended to the data queue, while get messages received
are relayed to the the data queue only if no get message is currently being processed and no
previous get requests are buffered. If either of these conditions is false, the requester value
in the received get message is appended to the rear of the request queue.

The same put mechanism is used for each of these two queues. The queue manager
creates a new queue-element process (a DE process for the data queue or a RE process for
the request queue) to hold the argument (a value or a requester reference). It then appends
the process to the queue by invoking the next function of the queue-rear process. Because
the next message is sent directly from the queue-manager process to the queue-rear process,
message-order preservation ensures that the next message will arrive at that process before
a get message. In addition, this put mechanism can be used even when the queue manager
is effectively disconnected from the front of a queue. In those cases, the queue manager
still possesses the reference to the rear of the queue, the only reference needed to append
processes. Thus, put operations can always be processed immediately.

This point is crucial. The message-order-preservation property dictates that any
request messages that have been buffered must be processed before any incoming request
messages. Thus, when the data_reply méssage is received from the data queue, any get
messages in the request queue must be retrieved and sent in the order in which they were
originally received to the data queue. The queue manager must, accordingly, issue a get
operation to the request queue. Just as the get operation on the data queue disconnects
the queue manager from the data queue, this get operation disconnects the queue manager
from the request queue.

Before the req.reply is received, additional get request messages may arrive and need
to be buffered. Using the put operation, the requester values in these messages can be
appended to the request queue immediately. When the req_reply message is received, the
queue manager sends a get message with the enclosed requester reference to the data queue.

Thus, the queue manager never issues a get message to the request queue until the reply to
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the previous get message to the request queue has been received and processed.

Requiring an additional unbounded queue (here, the request queue) to implement an
unbounded queue (the data queue) might appear to be a recursive requirement. Wouldn’t
one need yet another unbounded queue to implement the second queue, and so on? The error
in this logic stems from classifying the request queue and the data queue as being the same
type of queue. They use the same protocols and mechanisms for put and get operations, but
their environments differ in an important way. The data queue is an unrestricted multiple-
producer, multiple-consumer queue: an unbounded number of put and get operations may
be sent to the queue manager by producer and consumer processes. The request queue,
however, is sent put and get messages only by the queue manager. More importantly, the
queue manager does not send a new get message to the request queue until the reply from
the previous get message is received. Thus, the request queue is an instance of Athas’s
constrained queue solution mentioned above, and described in [4]. Since the multiple-
producer, multiple-consumer queue implementation relies only on a known solution to the
simpler problem, there is no recursive requirement.

The solution to the general unbounded queue problem that has been presented is an
improvement over earlier solutions and approaches (see next section). However, the reader
may have noticed that the put mechanism, which is pivotal to our solution, relies heavily on
one of our programming groundrules. The new queue-rear process is created by the queue
manager, which then sends its reference value immediately to the old queue-rear process.
Since reference values are returned immediately to the parent process in our model, two-
way communication between the parent process and the child process is expected. What if
other messages arrive at the parent process before the reference value of the child process is
received? Are we not attempting to receive the reply selectively from the child process? If
the process-creation mechanism itself requires a selective receive, our solution to the general
queue problem is recursive, and therefore unacceptable (recursion requires the growth of
internal data structures). A reactive implementation of the process-creation mechanism is,

indeed, crucial to our solution, but we shall see in Chapter 5 that it can be implemented
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efficiently using purely reactive semantics.

1.2.3 Previous Work on the Unbounded-Queue Problem

The problem of implementing an unbounded queue using only reactive semantics has been
misunderstood for about a decade. This problem seemed to frame the conflict between
reactive semantics, whose properties are ideally suited for multicomputers (section 1.3.3),
and a selective receive, a programming mechanism so powerful that no “real” system would
be complete without it. Fortunately, armed with a solution, we see now that there is no
inherent conflict — selective receive can be implemented efficiently using purely reactive
semantics.

Members of our research group had searched so long for algorithms to solve this
problem that some believed there was in fact no solution that was both efficient and general.
However, because a selective receive is such a convenient programming mechanism, our
soltware systems included it as a primitive operation. In [21], Lang added a SELECT
construct to Simula so that the programmer could control the order of messages to be
processed. In the original Cosmic Kernel system [28], programmers could embed type
information in outgoing messages and specify the desired type of messages to be received.
The Reactive Kernel system [33] provides message discretion via library functions that are
layered on a kernel that handles messages reactively. In [8], we proposed that a remote
function construct be added to the reactive programming language Cantor [4] (section
1.3.2) to provide the programmer with a selective receive. This construct, in turn, relied on

a system-level mechanism called a custom function to buffer unwanted messages.

During the search for a solution to the general unbounded queue problem, we devel-
oped a family of queue implementations that satisfy the criteria of queue operation, yet
are wasteful of space and/or work. Such queues typically consist of a set of processes that
never decreases in size; new processes are created as needed but none are ever deleted. Each

message to and from' the data queue traverses much of the list of processes. Since the set

! Just as for the queue-element processes described in the previous section, all messages returning values

from the queue must follow the same path. In this case, the messages are relayed through any empty queue
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of queue processes never decreases regardless of the fluctuations in the actual queue size,
these implementations are not efficient in their use of space. Since an unbounded num-
ber of messages are needed to relay messages through the queue, these algorithms are also
inefficient in work.

Other researchers implemented unbounded data structures similar to the queue, but
they often modified the problem specification to solve a restricted case. Notably, in Agha’s
Actor implementation of a stack [1], values are pushed and popped based on the arrival
order of PUSH and POP requests from other processes. However, message order is not
preserved in Actor systems, so messages sent between pairs of communicating actors may
be received in any order. In Agha’s stack, a lone producer-consumer process can issue a
PUSH and then a POP, yet not receive the value it had just pushed. Consequently, although
the operation of the distributed stack is indistinguishable from the operation of a single-
process stack (the nondeterminacy of message arrival order also affects the single-process
case), this solution is not a general LIFO structure. This solution is only LIFO from the

point of reference of the stack itself, not from the point of reference of any user processes.

Nondeterminacy, the absence of a rigid execution order, is fundamental to the con-
current execution of operations [10, page 4]. However, excessive nondeterminacy can sig-
nificantly increase the total amount of work to be performed. Agha describes an actor that
could be used to remove unwanted nondeterminacy, namely, a buffer actor [1] that creates
new actors to buffer messages. Restoring the original message order between pairs of ac-
tors would require some explicit representation of the original message order that buffer
actors could use to identify and forward desired messages, while buffering “out-of-order”
messages. For implementations of structures such as stacks and queues, where the ordering
of messages is important, restoring the message order could significantly increase the total
amount of work. For these problems, total message arrival nondeterminacy is not “useful”
nondeterminacy; the additional actor execution orders do not provide enough benefit to

outweigh the cost of the increased message handling.

element processes, to the queue manager, and then to the requesting consumer process.
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Figure 1.4: Conceptual Model of a Multicomputer. A mul-
ticomputer is a collection of computers called nodes that are
connected by a message-passing network. Each of the nodes
executes its own program and is composed of a processor and

private memory.

1.3 Multicomputers

At first, the unbounded queue problem and its solution may seem to be yet another Com-
‘puter Science textbook problem and solution under an unfamiliar set of arbitrary con-
straints. However, the constraints imposed are directly motivated by the architecture of

multicomputers.

1.3.1 Architecture

Figure 1.4 represents the conceptual model of a multicomputer [3], a collection of
processing nodes interconnected by a message-passing network. Each of the nodes is com-
posed of a processor and local, private memory. Each of the nodes executes its program
independently (Multiple-Instruction, Multiple-Data). Since the memory on each node is not
accessible to other nodes, message passing is the mechanism for internode communication
and synchronization.

Figure 1.5 illustrates the niche of the multicomputer architecture in the concurrent
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Figure 1.5: Design Space of Parallel Computers. Parallel com-
puters that can be built using one square meter of silicon in
1989 technology (1 GB of primary memory) plotted opera-
tions/second versus NN, the number of computing nodes. Gi-
gaops and teraops performance can be achieved by increasing
the operations/second and/or increasing N. As technology im-
proves, additional hardware resources can be purchased within

the same silicon budget. (Figure courtesy of C.L. Seitz)



17

Year System Number of | Memory | Processor Network
Nodes per Node Speed Channel Speed
Caltech
1982 Cosmic Cube 64 128 KB .15 MIPS .5 MB/s
Intel
1985 iPSC/1 128 512 KB .6 MIPS 1.2 MB/s
mediwm-grain Intel
1987 iPSC/2 128 48MB | 5MIPS 2.8 MB/s
Symult
1988 52010 256 4-8 MB 5 MIPS 28 MB/s
Intel
1990 | Touchstone Delta 512 16 MB 25 MIPS 30 MB/s
Caltech
fine-grain | 1992 Mosaic C 16,384 64 KB 11 MIPS 60 MB/s

Table 1.1: Evolution of Medium-Grain Multicomputer Sys-
tems. The increases in processor speed and the network chan-
nel throughput are consequences of organizational improve-
ments in addition to advances in technology [30, page 157].
The increase in the amount of memory per node has consumed
much of the additional technology resources made available
as multicomputers evolved. The Mosaic C clearly follows a
different scaling track from the medium-grain multicomputer
architecture implementations.

computer design space. The architectures plotted represent the approximate configurations
that can be built using 1 square meter of silicon in technology available in 1989. (For a
full analysis of this argument, see [30, pages 142-147].) As technology advances, a fixed
silicon budget purchases more machine resources. The peak performance of a concurrent
machine is the product of N, the number of nodes, and the operations per second on each
node. Peak performance can be improved if additional resources provided by technology
improvements are applied to increasing operations per second and /or the number of nodes.
The sequential operation of an individual node is a familiar execution model, so increasing

the operations per second has little effect on programming models. However, increasing the

number of nodes can require unconventional programming models.
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SCALING TRACKS

The design choices concerning how to apply additional technology resources have defined two
scaling tracks of multicomputer architecture. Table 1.1 details the characteristics of some
implementations of the multicomputer architecture that have been constructed during the
past decade [28, 25, 2, 31, 22]. The increases in processor speed and the network channel
throughput are consequences of organizational improvements in addition to advances in
technology [30, page 157]. However, the increase in the amount of memory per node for the
so-called medium-grain multicomputers has consumed much of the additional technology
resources made available as multicomputers evolved. From the Cosmic Cube to the Delta,
there has been a 128-fold increase in the amount of memory per node. The motivation for
nodes loaded with memory (often called fat nodes) is that these nodes resemble conventional

workstations and can be readily programmed using conventional techniques.

Configurations of these multicomputers under a constant-cost assumption are plotted
in Figure 1.6. The amount of memory per node is a significant factor in how many nodes
can be constructed within a fixed budget. The largest Cosmic Cube constructed contains
64 processing nodes, each with 128 KB of memory and capable of 100K operations/second
(using 1982 technology). If this machine had been sold commercially, each node would
have cost about $4K. Using a fixed budget of $4M, a configuration of 1000 nodes could
have been constructed. For the Intel Delta, the complexity of each node (including up
to 16 MB of memory) dictates that the same fixed budget could be used to construct
a machine with only about 128 nodes (each node is about $30K). Configurations of the
other multicomputers in Table 1.1 can also be constructed. (iPSC/1, iPSC/2 and Symult
52010 nodes each cost approximately $10K.) Using the constant-cost assumption, it is clear
the scaling track represented by the medium-grain multicomputers in Table 1.1 does not
lie in the direction of increasing peak performance. Advances in technology during the
evolution of these medium-grain multicomputers have been used to increase the complexity

and available memory of the individual nodes rather than increase the number of nodes.
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Figure 1.6: Multicomputer Scaling Tracks. The multicom-
puter architectures illustrated in Figure 1.1 are plotted under
a fixed dollar budget (about $4M). The amount of memory per
node has a significant impact on the number of nodes that can
be purchased within the budget. The direction of increasing
peak performance is shown, along with the direction in which

application programming becomes more unorthodox.
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FINE-GRAIN MULTICOMPUTERS

The other scaling track in Figure 1.6 reflects architectures in which new hardware resources
are devoted to obtaining additional concurrency rather than additional node performance
or memory([30, page 146]. From an initial multicomputer configuration such as the Cosmic
Cube in Figure 1.6, if the number of nodes is increased while the amount of memory
per node is held constant, the resulting configuration is a fine-grain multicomputer. The
“granularity” of a multicomputer architecture refers to the amount of resources on each
node and the total number of nodes in the ensemble. A medium-grain multicomputer is
comprised of a few hundred nodes with several megabytes of memory per node; a fine-
grain multicomputer consists of several thousand nodes, each with a few tens of kilobytes
of memory. The Caltech Mosaic C multicomputer in Table 1.1 (described in Chapter 2) is
an implementation of the fine-grain architecture.

For a medium-grain and a fine-grain machine to have the same peak performance
levels, the increased number of nodes in the fine-grain machine must be offset by a pro-
portionate decrease in the operations per second of the fine-grain node. However, the cost
of the processor is a relatively small fraction of the cost of a node, so fine-grain nodes
can contain processors with roughly the same performance as processors in medium-grain
machines. The increased number of nodes in a fine-grain machine provides not only the
potential for increased concurrency, but also higher aggregate performance and improved

performance/cost.

1.3.2 Programming
EvoruTion

The evolution of multicomputers? has been driven by the goal of improving the performance
and performance/cost of parallel computers. The development of hardware, although at

times technologically challenging and often innovative, does not represent the critical path

2Some parts of the description of the evolution of multicomputer programming notations and their im-
plementations were based on discussions with my advisor, C.L. Seitz, who was involved in the development

of most of these programming systems.
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Year | Notation Target RTS
Multicomputers | Implementation

1982 | Simula [21] | fine/medium | not implemented

1985 | Cosmic Cube C [40] medium Cosmic Kernel  [40]

1985 | CST [13] | fine/medium | not implemented

1986 | Cantor [4] fine Cantor [4]

1986 | Cosmic C [32] medium Reactive Kernel [33]

1989 | Reactive C [39] | fine/medium | Reactive Kernel [33]

1992 | Affinity [36] medium Affinity Kernel  [36]

1993 | C+- [34] medium C+- [34]

fine MADRE

Table 1.2: Evolution of Multicomputer Software Systems.

to achieving this goal. Rather the development of software — programming notations and the
runtime support systems executing on nodes— has been the critical effort. As the memory
on individual nodes decreases, it becomes less practical to program nodes as conventional
computers. As the number of nodes increases into the tens of thousands, conventional

programming models and methods are unable to harness the available concurrency.

Throughout the development of new programming notations and runtime systems,
the expressive power of the notation and the efficiency of the runtime execution of the
program must be carefully balanced. A very expressive, high-level, programming notation
usually leads to a commensurately inefficient implementation. Conversely, a very efficient
implementation typically relies on limiting the expressive power of the notation [4, pages
155-159].

In this section, the programming models and notations that have been developed
specifically for multicomputers will be briefly discussed. In the next section, the runtime

systems for executing programs on multicomputers will be described.
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Process Model Table 1.2 illustrates the multicomputer programming systems that have
been developed within our research group. FEach of these system is based on a process
model. A process executes its program independently of other processes and maintains a
private memory: a process is thus an abstraction of a multicomputer node. By mapping
processes to nodes, concurrency can be exploited. If the nodes support multiprogramming

(ie, multiple processes per node), a degree of machine independence can be achieved.

Simula An extension of the early object-oriented language Simula (1982) [21] was
one of the first multicomputer programming notations. By extending Simula to include
representations for message passing and concurrent processes, Lang demonstrated that pro-
grammers can expose ai the language level the available concurrency in an application.
However, the complexity of the base language, Simula, precluded efficient parallel imple-

mentation. Runtime support for this notation was confined to sequential computers.

Cosmic Cube C The language C, extended with primitives for passing messages and
creating/destroying processes dynamically (1984) [40], was the first multicomputer pro-
gramming notation to be used extensively. It was supported on many first-generation
multicomputers (Cosmic Cube, iPSC/1, NCUBE) in conjunction with the Cosmic Kernel
node operating system (see next section). Since the nodes of early multicomputers were
nearly conventional computers, the choice of a conventional programming notation such as
C provided a suite of established languages, programming techniques, and tools.

The behavior of each process is defined by a program. These process programs are
separately compiled; thus, each process operates within a private address space. Within a
program, a process may call primitive functions to create new processes or to send/receive
messages. The programmer explicitly controls all process placement by specifying a physical
node number and a process identifier during process creation. Messages may contain a user-
defined type field; each process can specify which type of message to receive next, based on
the process state and the type of the incoming message. If an acceptable message is not

available, the process can block (e, not execute additional instructions) until an acceptable



23

message is received.

Reactive-Process Model As experience grew with using this approach to multicomputer
programming, it became clear that, for programs engaged in a significant amount of message
passing, the arrival of a message was actually the catalyst for the process to execute. These
observations were influenced by the work of Agha [1]. Consequently, later programming
models focused on computations composed of reactive processes.

A reactive process is a process that is normally at rest. It executes for a bounded time
in response to receiving a message and then either prepares to receive another message or
exits. During execution, the process may send messages, create new processes, and modify
its internal state. In the earlier process model, a process could specify which message to
receive next. A purely reactive process cannot receive incoming messages selectively; it

must consume the message at the front of its message queue.

CST The programming notation CST (Concurrent Smalltalk) by Dally (1985) [13]
was an early reactive-process programming language. At the time of its development, CST
was primarily a reference language. The base language Smalltalk complicated the imple-
mentation of parallel runtime support, so CST was supported only on sequential computers.

CST now follows its own evolutionary track [12].

Cantor Between 1984 and 1987, Athas developed Cantor, an experimental Actor
language [1] that our research group used to study the pfogramming limits of reactive se-
mantics. The Cantor Experiment [4, 5, 8] also explored the balance between programming
expressivity and efficiency of implementation. In its early form, Cantor was a deliberately
restrictive programming language: programmers could not express pointers, internal iter-
ation, or internal data structures. Cantor is a completely machine-independent notation:

machine references, such as node numbers, are not named.

In contrast to the C-based languages, the definitions for all Cantor process types

appear lezically together. Thus the processes exist in a single address space. However,
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since there are no pointers, each process can operate safely within a private section of that
address space. Since the definitions are compiled together, an analog of interprocedural
analysis can be used to perform significant error checking on the messages being passed,

and on the processes being created, thus decreasing the required runtime support.

Cosmic C' The programming notation Cosmic C (1986) [32], the language C extended
with reactive primitives for message-passing and process creation, is semantically equivalent
to Cantor with respect to reactive processes and messages. However, like the earlier C-
based notation, process programs are compiled separately, and machine resources are named
directly. Cosmic C is currently used as an efficient, reactive-process programming language

for most of the multicomputers in Table 1.1.

Reactive € Another C-based language, Reactive C (1989) [39], was developed by
Wen-king Su to experiment with processes executing within a single address space. Since
the runtime system does not have to support multiple address spaces and address transla-
tion, Reactive C is more efficient than the earlier C-based notations. Reactive C contains
little syntactic support for multicomputer programming so it is used primarily for building
application-oriented software systems and as a target for higher-level programming nota-

tions.

C+= Cantor holds several advantages over its C-based contemporaries: concurrency
is expressed at the language level, machine resources are not explicitly named, and compiler
analysis provides error checking and runtime information. However, since the complexity
of the implementation of the Cantor system does not facilitate experimentation, Seizovic
has developed a programming notation derived from C++ called C+- (1992) [34]. Basing
a notation on an established language provides a suite of programming tools that can be
tailored for experimentation. With its constructs for member functions and classes, C+-
provides much of the abstraction necessary to express reactive semantics while also providing
significant error checking at compile-time. The C+- notation is briefly described in Chapter

3 and several example application programs are presented and discussed in Chapter 6.



Affinity The Affinity programming notation and runtime system were recently de-
veloped by Steele (1992) [36]. Using Affinity, programmers partition the computation into
pieces of code and data. Light-weight, reactive processes called actions are executed to pro-
vide atomicity and maintain the consistency of data modifications. Shared data structures
can be accessed in a shared-memory fashion, but without the need for explicit locking to

control access and provide mutual exclusion.

FINE-GRAIN PROGRAMMING

Each of the programming notations described above can be used to program any multi-
computer. The programming techniques used, however, tend to reflect the underlying ar-
chitecture. For example, programmers of medium-grain multicomputers may express their
applications as collections of tens or hundreds of processes, each with kilobytes of data.
These processes infrequently send each other messages that are kilobytes in length. New
processes are seldom created; the large cost of creating a new process is weighed carefully
against the amount of computation that can be performed by that new process. Applica-
tions written to be executed on medium-grain machines may consist of processes that are
simply too large even to be loaded on a fine-grain machine.

In contrast, fine-grain computations are typically collections of hundreds, thousands,
or tens of thousands of small cooperating processes [8]. Messages are frequently sent between
processes; these messages may be only a few words in length. New processes are created
liberally; virtually any opportunity for concurrency is exploited. Applications written to
be executed on fine-grain machines would be grossly inefficient on a medium-grain machine
where the number of nodes is small and context switching times are large; message latencies
are much higher; and the cost of creating new processes is prohibitive.

The light-weight process model, in which processes with a small amount of state
execute within a single address space, is a good fit to the fine-grain architecture. (This model
was described as “The Rules of the Game” in Section 1.1. Chapter 3 describes the fine-

grain programming methods that are used to express computations using this programming
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model.) This refinement in the programming model reflects the axiom that as nodes of a
multicomputer become more unconventional, the accompanying programming models also

must become more unconventional.

1.3.3 Operating and Runtime Systems

EvoLuTiON

Table 1.2 lists the operating and runtime systems that have been developed to support
multicomputer programming notations. Runtime support on parallel machines for the early
programming systems such as Cosmic Cube C [40] was essentially conventional. The Cosmic
Kernel [28] was widely distributed as the operating system running on individual nodes
of the first-generation multicomputers (Cosmic Cube, iPSC/1, NCUBE). In this system,
a process is represented by a code segment and a data segment. The runtime system
performs address translation to support a private address space for each process. Processes
are scheduled to run by the runtime system using round-robin scheduling. If a process
_blocks on receiving a message, a full context switch occurs to allow another process to
be scheduled to run. As the entire state of the process must be saved, context switches
are quite expensive. The runtime system also uses timers to ensure fairness in process
execution, swapping out long-running processes. Intel’s NX node operating system (1987)

[26] was (and is) based on this runtime model.

The next generation of runtime systems adopted the reactive property as its primary
scheduling mechanism and provided support for reactive processes. The Reactive Kernel
(1988) [33] is a widely distributed node runtime system that is based on reactive processes.
(The Cosmic Environment [39] is the companion host runtime system.) Processes are rep-
resented by a code segment and a data segment, but process scheduling is dictated by the
queue of messages entering the node. The runtime system ezecutes the message queue, in-
voking the process that is the destination of the message at the front of the message queue

and then removing that message from the queue.

The Cantor runtime system [4, 5] is also based on reactive scheduling. Cantor aggres-
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sively exploits compiler technology to minimize runtime support. In addition, this system
automatically manages system resources, including placing processes. A series of simula-
tions [4], conducted using a simplified machine model, demonstrate that a runtime system
can do a reasonable job of automatic resource management.

The Affinity Kernel (1992) [36] is a node runtime system that supports the execution
of reactive processes that share data structures.

The MADRE (MosAic Distributed RuntimE) system has been developed as the
runtime system for the Mosaic C. This runtime system incorporates the goal automatic
resource management and the reactive-scheduling mechanisms from earlier multicomputer

runtime systems. MADRE is described in detail in Chapter 5.

FINE-GRAIN RUNTIME SYSTEMS

Aggressive fine-grain runtime system design is facilitated by the reactive-process computa-
tional model. Consider programs where processes do not reactively consume messages. As
the amount of memory is quite limited on a fine-grain node, few unwanted messages can be
buffered before exhausting the available node resources. When a node can no longer receive
messages, additional messages remain queued in the message network, blocking communica-
tion channels and potentially causing deadlock in the network. Reactive programs consume
messages in the order received hence there are no messages needing to be buffered indef-
initely. This “consumption assumption” [24] ensures that, even though queued messages
may temporarily block communication channels in the network, all messages will eventunally
be received and consumed by the node, thus avoiding communication deadlock.

In addition, since a reactive process executes (by definition) for a bounded time, no
timing mechanisms are needed to ensure fairness in process execution. Runtime support
for fine-grain computations can be simplified so that process scheduling is analogous to
invoking a function. [30, page 160].

However, the physical realities of a fine-grain node do have significant repercussions

for process placement and other runtime resource-management issues. In general, a mul-
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ticomputer node maintains an internal queue for incoming messages so that messages can
be removed from the network as quickly as possible. If, on a medium-grain machine, the
memory of a single node is exhausted, due to the programmer placing too many processes
on the node or due to overflow of the resources allotted for this incoming message queue,
the computation fails. Since there are typically several megabytes of memory resident on
the node, such a failure is not likely to occur and can usually be completely avoided by
better process placement or communication strategies. However, if the same runtime model
is used on a fine-grain machine, a local memory fluctuation of a few kilobytes of memory
can cause the entire computation to fail. At the point of failure, only a tiny fraction of
the total memory of the machine may actually have been exhausted. In addition, since
process placement is managed by the runtime system, the failure of the computation may
be directly attributable to the automatic placement algorithm. In fact, if the placement
algorithm exploits nondeterminism, the failure may not be repeatable on successive exe-
cutions of the program. Robustness clearly must be a high priority for fine-grain runtime
systems. |

The small amount of memory on a fine-grain node also precludes the abstraction of
infinite memory that is conveniently available on medium-grain nodes. For example, in
a medium-grain machine, the code for each process type can be resident on every node
without a significant impact on the computations that can be performed. Even if all the
code could fit onto a fine-grain node (which it often cannot), devoting such a large fraction
of the total memory of the machine to maintaining thousands of identical copies of the code
is clearly unreasonable. The fine-grain runtime system must find more sophisticated ways
to handle the code replication problem .

These two problems highlight the apparent conflict between the convenient abstrac-
tion of a global address space containing infinite memory and the reality of distributed
memory. The solutions to these problems stem from the observation that the memory of a
fine-grain machine is actually less distributed than the memory of a medium-grain machine.

As the overhead to send and receive messages decreases, and the performance of the message
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network increases, the barriers to cooperation between nodes are reduced. Fine-grain run-
time systems are distributed operating systems that cooperate heavily to blur the physical
boundaries of the nodes.

The principal goal of this thesis is to develop and present a family of algorithms that
form the basis for fine-grain multicomputer runtime systems. Included in these runtime
systems will be robust mechanisms for automatic resource allocation and memory load bal-
ancing, solutions to code replication and large data structure problems. These algorithms,
although designed primarily for fine-grain machines, will be applicable to both coarser grain
and future multicomputer architectures. The queue result presented earlier is particularly
important to this effort since it provides the selective-receive capability not only to the user

program, but also to the runtime system, thus permitting more latitude in algorithm design.

1.3.4 Significance of the Queue-Problem Solution

The solution to the queue problem, which enables the queue manager to perform a selec-
tive receive (waiting on the reply to a get message), illustrates how a fine-grain node can
selectively receive messages without overflowing its small local memory. In this analogy,
the queue manager is replaced by a fine-grain node runtime system, and the data queue by
a process. In normal, reactive operation, the node runtime system consumes messages in
the node receive queue by delivering the oldest queued message to its destination process
for processing. If a process decides to selectively receive a message, that process is, in ef-
fect, disconnecting itself from the message delivery operation of the runtime system. This
disconnection is analogous to the data queue being disconnected from the queue manager
during a get operation. Until the desired message arrives and the process is logically re-
connected to the runtime system, the runtime system queues unwanted incoming messages
by creating remote processes that store the messages as private data. Transforming queue
messages into processes uses the only available mechanism for growth of the computation —
process creation — to satisfy the message consumption property. Queued messages are later

retrieved and delivered in order to the destination process. Thus, we have implemented
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a selective-receive mechanism using only the reactive semantics that are ideally suited for

fine-grain machines.

1.4 Thesis Overview

Figure 1.7 illustrates the various levels of computation for a fine-grain computation.
At the top level, a programming agent (either a programmer or a high-level program trans-
lation tool) expresses a computation as a set of processes that communicate via messages.
At the next level, compile-time analysis and error-checking reduce the support required
from lower levels of computation. The runtime system level, the focus of this thesis, is the
vital interface between a program and the hardware on which it is to be executed. At the
bottom level, machine hardware operates at the level of sending and receiving messages,
and executing instructions. In Figure 1.7, the thesis chapter that addresses each level of
computation is also indicated. Throughout the thesis, an attempt will be made to sepa-
rate the fundamental ideas of the programming system, runtime system, and the hardware
architecture from their implementations.

The experimental apparatus used to investigate this thesis consisted of a prototype
runtime system, an experimental fine-grain multicomputer called Mosaic C, and an exper-
imental programming notation and compiler called C+~. Fach of these components was
developed by members of C.L. Seitz’s research group at Caltech. The chapters on the hard-
ware and programming describe the essentials required for this thesis to be self-contained;

full discussion of these topics can be found in the cited literature.

In Chapter 2, we describe the essential characteristics of the Mosaic C. Each node
of this multicomputer is implemented as a single VLSI chip, and the composite machine
contains 16K nodes. C.L. Seitz, Jakov Seizovic, Don Speck and Wen-king Su are the primary
members of the design team. The software-development tools that were used to develop
and profile the prototype runtime system are described.

Chapter 3 presents a synopsis of the programming notation C+-, designed and im-

plemented by Jakov Seizovic. This notation is used throughout this thesis to express appli-
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cation programs. Several fine-grain programming methods that have evolved for fine-grain
multicomputers are also presented.

In Chapter 4, the runtime system design criteria used in this thesis are outlined. We
present a method for expressing fine-grain runtime systems as fine-grain programs.

Chapter 5 describes a complete runtime system for Mosaic ensembles, which I designed
and implemented using C+~. This prototype runtime system is itself composed of fine-grain
processes that are distributed across the nodes of an ensemble. Components of the runtime
system cooperate to provide a robust environment for the efficient execution of application
programs. Several alternative runtime algorithms for resource management are discussed
in detail. The modular design of the Mosaic runtime system permits substitution of these
alternative runtime algorithms.

Chapter 6 presents several application programs that [ developed to assess the al-
gorithms and performance of the runtime system. The application programs were chosen
to represent expected programming patterns so that we could identify which runtime algo-
rithms perform best for different classes of programs. Experiments were run with different
runtime system algorithms on various configurations of Mosaic nodes. An evaluation of the
resource management algorithms in Chapter 5 is presented.

Chapter 7 ends the thesis with an assessment of the contributions and future directions
of this thesis work.

The execution of fine-grain programs and the efficient utilization of the physical re-
sources of fine-grain ensembles present special challenges to a runtime system. The contri-
bution of this thesis is to demonstrate that a runtime system can meet these challenges.
The overall success of the fine-grain multicomputer architecture depends upon the suc-
cessful implementation and integration of application programs, the runtime system, and

hardware.
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2 The Mosaic Project

By definition, the fine-grain multicomputer architecture consists of many small nodes and
permits a range of implementations. Our research group at Caltech is implementing a fine-
grain multicomputer called Mosaic C. The goal of this project is not only to develop a high-
performance machine, but also to develop the experimental apparatus for investigations
into other issues for fine-grain machines. For example, the Mosaic is a target for the
Program Composition Notation (PCN) of Chandy and Taylor [11], a high-level architecture-
independent concurrent language. The Mosaic is also the experimental platform for the
series of runtime experiments presented in this thesis. (For a description of the design and
implementation of the Mosaic, see [9]).

As depicted in Figure 1.4, the multicomputer architecture can be decomposed into
its constituent parts, the computing node and the message-passing network. It is the im-

plementation of these two parts that defines the overall multicomputer implementation.

2.1 A Mosaic Node

A Mosaic node is a self-contained computer implemented as a single VLSI chip. Each node
includes a processor, random-access memory(RAM), and read-only memory (ROM). In
addition to these conventional elements, the node contains a router and a packet interface.
A shared bus connects the processor and the packet interface to the RAM and ROM, and
vice versa. The router communicates with the node only via the packet interface. Similarly,
the other nodes in the network communicate with the node only via the router. Each of
these components is discussed further in following subsections.

The VLSI layout of the Mosaic node is shown in Figure 2.1; Figure 2.2 identifies the

major components in the layout. This layout was developed entirely within our research
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group [34].
Implementing nodes as single-chip computers has been a goal throughout the multi-

computer evolution. In [28] (1985), Seitz says

“The Cosmic Cube nodes were designed as a hardware simulation of what we

expect to be able to integrate onto one or two chips in about five years”.

Table 1.1 illustrates the similarity between the configurations of a Cosmic Cube node and

a Mosaic node.

2.1.1 Processor
The processor design of a Mosaic node is essentially conventional. The 16-bit, integer,
microcoded processor is rated at 11 MIPS using a 30 MHz clock. One of the unconventional
aspects of the Mosaic processor is that it is a two-context processor. In other words, the
Mosaic processor includes two independent program counters. Nominally, one program
counter is used for executing system programs, the other for the user’s computation. The
two contexts, SYSTEM and USER, provide the illusion of two processors (one with priority)
working in the same address space.

The register file of the processor reflects the dual-context nature of the node. The
processor has 24 data registers — 8 private to each context, and 8 that can by accessed by
both contexts. Including the two program counters, there are 16 address registers that are

accessible by both the SYSTEM and the USER contexts.

2.1.2 Random-access Memory

A computation is insensitive to message latency that is less than the interval during which
the message would otherwise have resided in the node receive queue. Thus, the latency
of interprocess communication (Ze, message passing) can be at least partially hidden using
multiprogramming [30, page 195]. In addition, since message passing typically transfers
blocks of data at once, the cost per data item is small. However, the latency of intra-process

communication (4e, processor-to-memory communication) cannot be hidden or amortized.
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The processor becomes idle if memory access time is more than about one instruction time.
With the processor and memory on the same chip, the latency of processor-to-memory
communication for Mosaic is reduced.

In addition to being fast, the Mosaic memory must also be dense, given that all the
memory is resident on the chip. The Mosaic RAM cells were designed to achieve both goals
[35]. The RAM is composed of 1-transistor cells, with a total of 64 KB of memory. The
access time is 2B per cycle (every 33 ns running at 30 MHz). Since the memory is fast
relative to the speed of the processor, large register files or sophisticated register allocation

are not warranted. Accesses to memory are nearly as fast as register accesses.

2.1.3 Read-only Memory
In addition to RAM, the Mosaic node includes 1 KB of ROM. This memory contains self-
test and bootstrap code. Self-testing is particularly important for fine-grain computers since
there are thousands of nodes, and most of the complexity is internal to a node.

Upon reset and successful self-test, the node begins executing the bootstrap code in
the SYSTEM context. This code configures the node so that a program can be loaded. The

bootstrap code

¢ configures interrupts to receive a message,

e configures message-pointer registers so that the incoming message will be written

beginning at the lowest RAM address,

¢ when the message arrives, the program counter jumps to the lowest RAM address and

begins executing instructions.

(See next section for description of Mosaic interrupts and message pointer registers.) The
initial message contains the runtime system, or whatever code is to be executed in the
SYSTEM context. By setting the APC (Alternate Program Counter) register, the code to

be executed in the USER context is specified.
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The Mosaic ROM does not presently contain the runtime system. This decision is
based on the desire to experiment with different runtime system algorithms. In future

implementations, established runtime algorithms could be moved to the ROM.

2.1.4 Router

The unconventional components of the runtime system are those concerned with message
passing, the router and the packet interface. The router design in the Mosaic is an oblivious,
dimension-order router as described in [16]. The router on each node has eight channel
connections to its neighbors (bidirectional in each compass direction). Each channel consists
of 8 data lines, a line to indicate that the current byte is the last byte in the message (ie, tail
bit line), and lines for data request and acknowledge (used for flow control). The channel
connections of the router require 88 pins and are in fact the only external logical connections

of a Mosaic node.

2.1.5 Packet Interface

The packet-interface logic within the node controls the flow of messages between the node
and the message network. The packet-interface unit and the processor communicate to
send and receive messages via interrupts. The packet interface transfers incoming mes-
sages from the router directly into the memory using Direct Memory Access (DMA) logic.
Two address registers denote the boundaries of the receive buffer — the Message Receive
Pointer register (MRP) and the Message Receive Limit register (MRL). The packet inter-
face writes a word at the MRP location and then increments MRP. If the entire message
is copied into the provided buffer, ie, the tail bit of the message is observed by the packet
interface, a receive_interrupt is generated. If the buffer is exhausted (MRP == MRL), a
buffer_full_interrupt is generated. When the buffer_full_interrupt is acknowledged indicating
that a new buffer has been allocated, the packet interface resumes transferring the incoming

message using the new values of MRP and MRL.

Similarly, the packet interface uses DMA access to transfer outgoing messages from

the node memory, through the router, into the network. The buffer to be injected into
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the network is demarcated using two address registers — the Message Send Pointer register
(MSP) and the Message Send Limit register (MSL). The processor indicates that the mes-
sage is ready to be sent by writing the relative coordinates of the destination node in the
Delta-X, Delta-Y address register (DXDY). The packet interface transfers the word at the
MSP location to the router and then increments MSP. When MSP equals MSL, the entire
message has been sent so the tail bit is sent and a send_interrupt is generated.

Two additional address registers are used to manage interrupts. IMR, the Interrupt
Mask Register, is written by the processor to enable or disable each of the three interrupts. If
an interrupt is generated by the packet interface, but the IMR indicates that that interrupt
is disabled, the interrupt is queued. ISR, the Interrupt Status Register, represents the set of
pending interrupts, one bit per interrupt. To acknowledge interrupts, the processor writes
back the values of the interrupt bits.

The effect of an interrupt differs depending on the context of the processor. If the
processor is in the USER context and the interrupt is enabled, a context switch occurs. Now
executing in the SYSTEM context, the processor is expected to handle, and then acknowl-
edge, the interrupt. A machine instruction called punt is executed to resume processing in
the USER context. If the processor is executing in the SYSTEM context, enabled interrupts
can be set but no context switch occurs. When the processor switches to the USER context,

these pending interrupts may trigger an immediate context switch to the SYSTEM context.

Nominally, Mosaic interrupts are used in the following manner. To send messages,
the processor queues outgoing messages with their destinations. If no send_interrupt is
pending, the processor sets MSP and MSL and then triggers the sending of the message by
writing DXDY. (Note that writing these three registers constitutes the minimum software
overhead for sending a message.) When the processor is notified via the send.interrupt
that the message has been sent, the buffer containing the sent message can be freed and
the sending of the next outgoing message is initiated. To receive messages, the processor

must first indicate, using MRP and MRL,! the area of memory where an incoming message

1MRL actually points to the word after the last word that should be written. Thus, when the last word



40

should be written. Upon receiving a receive_interrupt, the processor can queue the message
or deliver it immediately to the destination process. If a buffer_full_interrupt is reccived, the
processor is expected to allocate a new receive buffer, reconstruct the message that may have
been fragmented, reset MRP and MRL, and acknowledge the interrupt so the remainder of
the message can be received. However, the simple design of the Mosaic interrupt system
provides great flexibility in runtime approaches to message handling. In section 5.2.2, we

discuss an aggressive use of the Mosaic interrupt mechanism for receiving messages.

2.2 The Mosaic Message-Passing Network

The Mosaic interconnection network is logically a two-dimensional, bidirectional mesh.
Buffering within the channels provides asynchronous message passing between nodes. Mes-
sages travel along communication channels within the mesh using algorithmic, cut-through
routing. Messages travel first along the z-dimension of the mesh, and then along the y-

dimension until the destination node is reached.

When a message is sent, the packet interface on the sending node prepends a message
header containing the direction (positive or negative) and distances in each dimension to the
destination node. The router of each node along the message path examines the message
header; non-zero distances in the dimension being routed are decremented and the message
is routed to the next node in that dimension. I the x-component is zero, the message
is routed into the y-dimension. If the y-component is zero, the message has reached its
destination. This routing algorithm preserves the FIFO order of messages sent from a
source node to a particular destination node.

The choice of a light-weight process model (section 1.3.2) impacts the throughput and
latency requirements for message network implementations.

Medium-grain computations are expressed as collections of processes that communi-
cate infrequently, using large messages. Since a fine-grain computation is partitioned into

many small pieces, those pieces are more interdependent, and thus communicate more fre-

has been filled and MRP incremented, the buffer_fullinterrupt is generated.
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quently, using smaller messages. In addition, the message load on a fine-grain message

network can be heavier, simply because more nodes can send messages concurrently.

A fine-grain computation is more sensitive to message latency since, due to the in-
creased concurrency of message consumption, messages stay enqueued at a node for less
time [30, page 195]. Using efficient network hardware and low software overhead for mes-
sage passing (section 2.1.5), the message system of the Mosaic exhibits latencies more than
one order of magnitude less than medium-grain systems.

The emphasis on message-passing performance can be observed by comparing the
network capabilities of the Mosaic and the Intel Delta [22]. The communication channels for
both machines are essentially identical except for their throughput rates: Mosaic channels
run at 60 MB/s, Delta channels at 80 MB/s. The Mosaic possesses a significant architectural
advantage over the Delta however: the speed of the Mosaic processor and memory (30 MHz)
is roughly 60 MB/s. This speed matching of the node and the communication network
means that the node can source and sink at the network rate. In contrast, a Delta node
can receive or inject messages into the network at only 30 MB/s. For message sending,
the Mosaic can inject a word of the message per cycle. The Delta however can inject a
word only on every third cycle. By not injecting packets during the two other cycles, the
effective length of the message is trebled. Similarly, for receiving messages, the Mosaic can
remove messages from the network faster, improving throughput and reducing latency. In
comparison with medium-grain machines, the speed matching of the Mosaic node to the

network rate provides a significant improvement in communication performance.

2.3 Mosaic Ensembles

Mosaic nodes are currently being fabricated using a 1.2um, 2-level-metal, Hewlett-Packard
CMOS process. Each chip contains about 1.2M transistors, mostly located in the RAM.
The typical yield from prototype runs has been roughly 40%, resulting in an unpackaged
cost per node of about $30.

A board of 64 Mosaic chips, arrayed 8x8, is the fundamental unit of construction of
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Mosaic ensembles (Figure 2.3). Mosaic chips are packaged using tape-automated bonding
(TAB) technology. TAB packaging differs from conventional packaging in that chips are
bonded directly onto boards. This approach provides improved chip density: the size of
the 8 X8 array is only 6 inches square; and reduces the cost of packaging: the cost of each
packaged node is about $75, or $4800 per board.

Mosaic boards self-compose using stack connectors so that arbitrary two-dimensional
configurations can be assembled. The largest ensemble of Mosaics used for the experiments
reported in this thesis is a 16 X16 array (4 8x8 boards). Chips are currently being fabricated

to construct an ensemble of 128128 nodes (16,384 nodes).

2.4 Host-Interface Boards

The first Mosaic-C node prototypes were fabricated as “memoryless” nodes in 1990. These
nodes included the processor, packet interface and router, but no RAM or ROM. The
motivation for this prototyping decision was twofold. First, debugging the Mosaic processor
was simplified because the memory addresses it emits could be examined directly.

Second, these nodes can be mounted, along with commercially available dRAM, onto
circuit boards to construct a Mosaic Development Board. By plugging these boards into a
conventional workstation, the external memory is readable and write-able by both the work-
station and the Mosaic processor. Because this shared memory simplifies debugging and
monitoring of code (see section 2.5.2), several small ensembles (< 32 nodes) of Development
Boards were constructed to facilitate program development.

A Development Board is used as the host interface between the workstation and the
Mosaic ensemble. The host-interface configuration currently used for Mosaic ensembles in-
cludes 2 memoryless-Mosaic nodes mounted on a Sun SPARCstation Sbus board. Each
node includes 64K x16 external memory. The Shus board is connected to the Mosaic en-
semble using cables and custom “slack” chips that execute a zero-slack (non-interference)

protocol [27].
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2.5 Programming Toolkit

2.5.1 Compilers

The low-level programming toolkit for the Mosaic C includes a C compiler and a C++
compiler. Each of these compilers was developed by porting the corresponding Gnu compiler
to the Mosaic. A complete Pascal programming system, including compiler and runtime

system, has been developed by van de Snepscheut and his students [23].

2.5.2 Debugger
An assembly-level debugger is available for use with Mosaic Development Boards. The in-
teractive user interface for this tool allows the following debugging operations to be executed

on some or all of the nodes in the ensemble:

e stop address
Since the program being debugged is loaded into memory that is readable/write-able
by the workstation, the instructions at the location address can be overwritten with
instructions that cause the processor to jump to a special dump routine. This routine
causes the values of the registers to be written to a reserved region of memory. The
execution then enters a loop, awaiting a command to resume program execution, eg,

run or step.

e run
When this command is received from the user interface, the original program code that

was overwritten is restored, and execution resumes after the most recent breakpoint.

e step [count ]
count assembly instructions are executed ,or instructions are executed until a break-

point is encountered, whichever occurs first. The default count is 1.

e print [<address> | <register> |
The values of memory locations and the values of the registers (sampled at the most

recent breakpoint) can be examined.
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Other debugging commands include trace, to control whether the instructions being exe-
cuted are echoed, set, to set the value of a memory location, and cont, which causes the
program to run until the next breakpoint or the next context switch.

Programs can be debugged in this environment and then moved over to the larger
ensembles constructed from 8 X8 boards. The Mosaic runtime system discussed in this thesis

was developed using this tool.

2.5.3 Host-Interface Routines

The host program running on the workstation communicates with the Mosaic ensemble via
the host-interface board (section 2.4). Mosaic ensembles currently use one node on the
host-interface board for messages sent from the host to the ensemble (host-sending node),

and one node for messages sent from the ensemble to the host (host-receiving node).

The code executed by the host-sending node configures the memory on that node as a
circular queue. The host program writes messages into this shared memory, and then writes
message-pointer values into pre-defined memory locations to inform the sending node that
a message is ready to be sent. The sending node sends the message to the ensemble by
writing the MSP, MSL and DXDY registers (section 2.1.5).

The host-receiving node also configures its node memory as a circular queue. The
registers MRP and MRL are set so that messages sent from the ensemble are written into
the queue by the node’s packet interface. When a message has been completely received,
the receiving node modifies the message pointers in pre-defined memory locations.

The host program running on the workstation interacts with the sending and receiving
interface nodes using a set of message-passing primitives patterned after the z primitives
used in earlier programming systems such as Cosmic C[32]. The Mosaic primitives are

called m primifives.

e void *mmalloc(int size)
This function returns a message buffer of size size. The length of the buffer is implicitly

stored within the buffer.
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¢ void msend(int *message-pointer)
The contents of the message buffer pointed to by message-pointer are copied into the

circular queue in the host-sending node.

e void *mrecv()
This function returns a pointer to the next message sent from the Mosaic ensemble
to the host. If no message is pending, this function returns NIL. A variant function,

mrecvb(), blocks until a message is received.
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3 Fine-Grain Programming Using C+-

As illustrated in the opening of Chapter 1, the “rules of the game” of fine-grain concurrent
programming are easy to state. These rules, however, have evolved through the past decade
of our research group’s investigations of multicomputer programming (section 1.1). Our
approach has been first to design a programming notation based on a computational model
that appears to have properties favorable to expression and implementation. Then we write
- enough non-trivial programs in the new notation to evaluate both the expressivity of the
notation and the programming techniques that necessarily emerge.

The programming language C+- is the latest in a series of programming experiments
using this approach (section 1.3.2). In this chapter, we first present the C+- notation, with
particular emphasis on the aspects of the notation used to express programs in this thesis.
We then present a general description of the fine-grain programming methods that have

evolved in conjunction with the multicomputer architecture.

3.1 C+-

C+- is a C++-based programming notation developed by Jakov Seizovic that will be de-
scribed in detail in his upcoming Ph.D. thesis [34]. C+- is a translation-based system -—
programs are written in C+- and then translated into C++. The translated program is
then compiled using conventional C++ software tools. C+- is currently supported on com-
puter systems that run the Cosmic Environment [39], which includes multicomputers and
networks of workstations. C+- programs can also be executed on the Mosaic C. Section
3.1.4 briefly presents the interface between C+- and the Mosaic runtime system. Chapter

5 details the Mosaic runtime system, which itself is written in C+-.

C+- is a superset of C++, with the exception that global variables are not supported in
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C+—. C+- extends C++ by including language support for process abstraction and message
passing. Advanced features include support for executing computations on heterogeneous
ensembles and the capability to send dynamically-defined data structures, eg, linked lists,

in messages.

3.1.1 Process Abstraction
In C++ and in C+- programmers can define new data types using the class construct. These
data types can include member variables, member functions and constructors and destruc-
tors [37]. Unlike C++ C+- is based on a concurrent model of execution. A mechanism for
process abstraction is fundamental for expressing concurrent computations. In C+-, process
types can be defined using the keyword processdef. Process-type definitions are syntacti-
cally analogous to the definition of a C++ class: programmers can define member variables,
functions, constructors and destructors. The primary difference between a processdef and
a class is that the process definition implicitly describes a thread of execution that can be
concurrent with other processes in the computation.

Program 3.1 contains a naive calculation of the factorial function using C+- processes.
The process type fac is defined, which contains two local variables, an integer and a pointer
to another fac process. T'wo member functions, a fac constructor and the rcv_value function,
define the interface to this process. New C+- processes are created using the new operation.
Within the fac constructor definition, a new fac process, with constructor arguments n-1

and parent, is created if n is greater than 1.

3.1.2 Message Passing

The public interface to a process consists only of atomic functions and constructors. In
Program 3.1, a fac process communicates with its parent process by invoking the rev_value
member function (parent—rcv_value(n)). Invoking an atomic function of a process on a set of
arguments is equivalent to sending that process a message containing those arguments. The

destination process, upon receiving this message, executes the appropriate atomic function.

Invoking an atomic function that returns void, such as the rcv_value function, does
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processdef fac
{ intn;
facx parent;

public:
fac(int N, facx P)
{ n=N; parent = P;
if(n>1)
(void) new fac(n-1,this);
else
parent—rev_value(n);
}

atomic void rcv_value(int v)
{ parent—rcv_value(v * n); }

Program 3.1: C+— Program for Computing Factorial.

not suspend the execution of the invoking process. Similarly, invoking the constructor of a
process as part of the new operation does not suspend the invoking process if the returning
reference value is not used. Void atomic functions and constructors thus provide (poten-
tially) concurrent execution of the invoking and destination processes. Atomic functions
can, however, return values, in which case the invoking, or sending, process suspends its
execution until the return value is received. Atomic functions that return values are the
C+- syntactic construct for Remote Procedure Calls.

In addition to supporting RPCs, C+- includes the keywords active and passive so
that a process can selectively enable/disable its atomic functions. If a particular atomic
function of a process has been made passive, any messages arriving that would invoke that
function are queued. This mechanism for selectively receiving messages based on their
“type” is significantly less expensive to implement than an RPC. When a process suspends
to execute an RPC, the temporary state of that process, eg, its stack, must be saved. When

the return value is eventually received, this state must be restored before process execution
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can resume. In contrast, a process is only scheduled to execute by the runtigne system if the

destination atomic function is active, so the process does not suspend during its execution.

3.1.3 Advanced Features

USER-DEFINED SEND OPERATIONS

Using languages such as C++ and, by extension, C+-, programmers can construct arbitrarily
complex data structures. In earlier multicomputer programming systems such as Cosmic
C [32], sending these data structures in messages to other processes required that the
programmer explicitly “flatten” the structure at runtime. When the message arrives to its

destination, that process interprets the “flattened” structure in the message.

In contrast, C+- allows programmers to define special send and recv member functions
in class definitions. In these functions, the programmer defines how the structure should be
flattened on the sending side and restored on the receiving side, respectively. This special
data handling is invoked at runtime when the data type, or any data type that includes it,

is sent in a message.

ExEcUTION ON HETEROGENEOUS ENSEMBLES
In heterogeneous multicomputers ensembles, some nodes may possess special capabilities
eg, floating-point accelerators or file-system access. The hardware implementation of these
special nodes may be fundamentally different from other nodes in the ensemble. For ex-
ample, the byte order may be reversed, or a different word size may used. Using C+-, a
programmer can express at compile-time the characteristics of the different machine types
in the ensemble. The programmer defines a special function called translate that, given a
reference value, returns the machine type of the node on which that process resides. If that
machine type is different from the sending node, the contents of the message are translated
so that they are consistent with the machine characteristics of the destination node.

This capability is also useful for multicomputer ensembles such as the Mosaic C used
for the experiments in this thesis. This ensemble is configured as a set of identical Mosaic

nodes that is connected to a host computer. The host “node” is a SUN SPARCstation
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which has fundamentally different machine characteristics than the nodes internal to the
ensemble. The prototype Mosaic runtime system includes a C+- program that executes on
the host to provide services such as error reporting and I/0.

In systems such as the Cosmic Environment [39], programmers are required to include
code that invokes a special function that translates the contents of the message each time
that message travels to or from the host. C+- provides an abstraction mechanism that allows
the programmer to declare the the characteristics of the target ensemble at compile-time.
Any translation required when messages travel between incompatible nodes is handled at

runtime.

3.1.4 Runtime System Interface

As mentioned in section 1.3.3, the code for a fine-grain program is often too large to fit
entirely on a fine-grain node. Even if the code could fit, dedicating such a large fraction
of the total memory of the ensemble to storing thousands of copies of identical code is
inefficient. The C+- programming system includes a software linking tool that “splits”
the user code into code pieces. Each code piece includes the code for one atomic member
function plus code for each ordinary function called by that atomic function. The linking
tool assigns an index to each code piece and links the program by replacing all program
references to the code piece with the index. In sections 5.3 and 5.2.3, we briefly present
algorithms for the assignment of code pieces to nodes and algorithms for accessing the code
pieces during program execution, respectively.

Execution of the user computation begins with the instantiation of special root pro-
cess. Fach C+- user program must include a constructor, called root::root, for this process.
The argument to the root constructor is a class ARGS that contains the arge and argv
command-line arguments. The root::root routine is thus the analog of the C++ main rou-
tine. In all non-trivial computations, the root process initiates the dynamic creation of the

set of processes needed for the computation.

When executing on a multicomputer, the new of a C+- process (see Program 3.1)
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class _NODE_; // node identifier class
processdef Console // definition of console process
{ public:
atomic void print(char *,...);
b
class IFC
{
public:
Console *console;
intx malloc(int size);
void free(int* ptr);
int random num();
void wait();
NODE_ my-node();
int num_nodes();
void halt(int code);
}i

Program 3.2: C+— Class Interface between C+— Programs and
the Mosaic Runtime System.

involves bundling up the information about what type of process is to be created and the
constructor arguments within a new message. This message is sent to a special Constructor
process located on a selected node in the ensemble. A node is selected for process placement
by calling a PARENT function ‘that is defined as part of the runtime system. This function
may use a variety of process-placement algorithms (section 6.2). A Constructor process, upon
receiving a new message, executes a function that allocates memory for the new process.
The Constructor process then executes the constructor for the new process. When that
function finishes executing, the Constructor process returns the reference value of the new

process to its parent process.

A C+- program interfaces with the Mosaic runtime system via a pointer to an instance
of a special IFC class. Program 3.2 details the variables and functions that are accessible to

a C+- program.
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3.2 Fine-Grain Programming Methods

As experience grows with a new programming model, programming methods emerge that
are advantageous to program expression or performance. These methods are frequently
suggested by characteristics of the target architecture or by features of available software
tools. For example, in sequential programming, the array data structure is efficient because
its structure and function is directly supported by the structure and use of the memory in
a sequential computer. In compiled code, intermediate values are often stored in registers
because register allocation and access is significantly less expensive than a main-memory
access.

The existing literature concerning medium-grain multicomputer programming (eg,
[18]) contains many programmer observations about the techniques used to achieve high
performance. For example, since memory is plentiful on a medium-grain node and mes-
sage passing is relatively expensive, programmers often build and maintain copies of data
structures such as look-up tables in every process requiring access. Programmers have also
given great care to balancing the process load on the nodes. This load-balancing effort is
motivated by the fact that there are not many processors (prompting concern about pro-
cessor utilization) and that execution times and resource demands of individual processes
may vary widely.

Fine-grain characteristics such as small node-memory size, fast message passing, and
inexpensive process creation stimulate development of programming methods that are sig-
nificantly different from those developed for medium-grain multicomputers. In general,
fine-grain programmers should express the mazimal concurrency in their application using
fine-grain, reactive processes. The Cantor project, as a experiment in how to write fine-grain

programs, was the major vehicle for the development of these methods [4, 8].

3.2.1 Maximal Concurrency

Since a fine-grain multicomputer has a large number of nodes, each of which can support

multiple resident processes, an application program may employ an enormous number of
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concurrent processes. The more processes an application can legitimately use, the more
opportunity there is for concurrency. Concurrency is useful provided that there are enough
processing resources to exploit it, and that the overhead necessary to achieve concurrency
does not outweigh its benefit.

For a fine-grain machine, the general assumption is that there are enough processors
to exploit concurrency and the cost of creating a new process is low, roughly the same
as the cost of sending a message.! For a medium-grain machine, the small number of
processors and the overhead of creating processes means that processes should be created
sparingly. In the literature, one sees reference to “building up the granularity” of processes
in an application. This technique testifies to the fact that high-performance programs must
balance the cost of creating a process to execute concurrently versus the amount of work
that will be performed by that process. For a medium-grain machine, a process needs to
perform many thousands of instructions to overcome the cost of the process’s creation.
For a fine-grain machine, only a few tens of instructions outweigh the low cost of process
creation. Consequently, the rule of thumb in fine-grain programming is: if operations can
be concurrent, spown new processes to erecute them.

The combination of multiprogramming on each node and the large number of small
processes that comprise a computation simplifies the task of distributing the processes across
the nodes of the ensemble. In [6], Bhatf presents a load-balancing algorithm that uses a
simple randomized algorithm to dynamically embed binary trees into hypercubes. This
algorithm requires only local information and has provable bounds on the distance between
the parent and the child processes and on the number of processes placed on each node.
Our experimental results with embedding arbitrary process graphs into meshes (section 6.2)
indicate that similar randomized algorithms perform well for automatic process placement.

Expressing the maximal amount of concurrency in an application from the beginning
has another benefit. If the application is to be run on a computer with different char-

acteristics, such as a medium-grain machine, the concurrent elements can be aggregated

1The cost of a message-passing operation is roughly equivalent to the time required for a procedure call.



to “build up the granularity.” Contrast aggregation of concurrency with the difficulty of
extracting parallelism from programs [15]. By avoiding unnecessary synchronizations in
the application program, fine-grain programming techniques provide greater flexibility in

program execution.

3.2.2 Fine Granularity

A second fine-grain programming method is a direct consequence of the effort to express the
maximal concurrency in an application: fine-grain processes are less complex than processes
of larger granularity. For a given application, if the computation is divided between more
and more processes, in general the amount of work done by each process decreases. The
amount of code needed by the process also decreases. Since less work is being done by
the individual process, it is likely that the process will operate on a smaller set of private
data variables. Processes will depend more heavily on frequent message passing not only
to obtain new tasks but also to synchronize with other processes. Since these messages are
frequent, they will probably be small, e, processes do not spend significant amounts of time
computing and constructing large messages.

Processes require both physical space (memory) and processor resources to execute.
Splitting the application into many, small processes can make the runtime system’s task of
placing those processes on nodes simpler. The memory requirements of the set of processes
can be more evenly spread across the nodes if there are many small processes rather than
a few, large ones. The analogy is that the fine-grain runtime system can pour fine-grain
processes onto the fine-grain machine like sand, filling evenly the overall machine. Balancing
the processing load across the nodes of the ensemble is also facilitated by splitting the

computation into many pieces that execute for a short period of time[29, page 20].

3.2.3 Reactive Behavior
As discussed in section 1.3.3, the reactive behavior of processes is a characteristic that is
ideally suited to fine-grain machines. Since reactive processes consume messages in the

order in which they are received, communication deadlock is avoided and the small local
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memory of the node does not overflow.

In the Cantor experiment [4], all programs were originally written with purely reactive
semantics. This programming constraint was sometimes cumbersome, particularly if the al-
gorithm being implemented included use of “conventional” data structures, such as stacks
and queues (section 1.2). In these instances, the additional effort required for programming
with purely reactive semantics motivated us to consider the addition of a selective-receive
mechanism. The queue-problem solution presented in section 1.2.2 illustrates how selective
receive can be implemented using purely reactive semantics. Requiring programmers to ex-
press selective receive at the level of the queue-problem solution however is unnecessary. By
including selective receive in programming notations and runtime system support, programs
are simplified and runtime execution of selective receive can be optimized.

The question remains, however, to what extent should selective receive be used? In
C+-, programmers use the active and passive construct to indicate which messages should
be consumed next by individual processes. Compatible incoming messages are identified by
the runtime system. Even in this simple case, the use of selective receive should be limited

as the runtime system must do extra work to alter the order of message consumption.

The selective-receive mechanism can, however, be used to implement a more powerful
construct, the remote procedure call (RPC). If a process executes an RPC, it sends out
a message, suspends its own execution, and then waits to receive a returning RPC-reply
message. In a simple selective receive, there is no executing state of the process that must
be saved and then later restored when the selective receive completes. For the RPC, the
executing state of the process —its stack and all the live register variables — must be preserved
so that the process can transparently resume when the RPC completes. The benefit and
cost of the basic selective-receive mechanism seem to justify its inclusion in programming

notations, while the wisdom of including RPC capabilities remains a research question.
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4 Fine-Grain Runtime Systems

The evolution of the multicomputer architecture toward finer granularity has been mo-
tivated primarily by the promise of improved cost/performance (section 1.3). To exploit
the available concurrency, our multicomputer programming has necessarily evolved toward a
fine-grain model (Chapter 3). Since the runtime system is the interface between the machine
and its programming, fundamental changes in the physical machine or in the programming
are reflected in runtime system design and implementation.

In this chapter, we first describe criteria for fine-grain runtime system design. These
criteria are motivated both by the requirements of user programs and by the physical
realities of fine-grain hardware. We present a method for designing and constructing fine-
grain runtime systems. A complete runtime system for Mosaic ensembles called MADRE
{presented in Chapter 5) has been developed using this method. Just as we evaluate our
programming ideas by writing and evaluating programs, we investigate the effectiveness
of fine-grain runtime system ideas by constructing runtime systems and evaluating their

performance through experiment (Chapter 6).

4.1 Runtime System Design Criteria

First of all, we use the term runtime system rather than operating system to describe the
software interface between the Mosaic hardware and user programs. The motivation for this
distinction is the connotation that an “operating system” is a software system that handles
not only process management, but also support for files and users. While these capabilities
are arguably desirable for fine-grain multicomputers, the current effort is to design and
implement runtime support that efficiently handles the most critical operations. The term
“runtime system” is used here to refer to a simple operating system that handles only the

essential elements of runtime support. Historically, a runtime system is an operating sys-
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tem so simple that it is often compiled and loaded together with the application program.
The MADRE runtime system discussed in the next chapter is, in fact, compiled and loaded
separately from the application program, but still provides only essential support for pro-
grams. The modular design of this fine-grain runtime system does permit capabilities such
as multi-user environments, file management, or security measures to be integrated into the
runtime system, thus turning the “runtime system” into a real operating system.

Many of the design criteria for fine-grain runtime systems were actually design criteria
of operating systems of medium-grain machines. However, in some cases, medium-grain
machine characteristics, particularly the expense of process creation and message passing,
precluded development of distributed algorithms to achieve design goals. In other cases,
development of solutions to more critical problems preempted interest in solutions to general
problems, leaving so-called “skeletons in the closet.” With the advent of working fine-grain
hardware, achieving these design goals becomes not only feasible, but critical to the success

of the architecture.

4.1.1 Distributed Runtime System

One of the major weaknesses of medium-grain operating systems is their “node-bound”
view of the machine. A medium-grain operating system is typically composed of component
operating systems that run on each node (eg, [33]). These component operating systems
manage the local resources of the node — performing memory allocation, process scheduling,
etc. Global management of the processors and memory, via process placement and load-
balancing techniques, is left to the programmer. Since message passing is expensive and
each node resembles a conventional workstation, operating-system components usually do
not cooperate to perform any global resource management.

For fine-grain machines, the runtime system controls both local and global resource
allocation (via process placement). The line between the two types of allocation blurs when
one considers that the memory resources on each node are so limited that they can be

easily exhausted regardless of the sophistication of the local-memory allocation algorithm.
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If a node cannot allocate memory for incoming messages, the computation cannot proceed
(see next section). If resources external to a node can be accessed, the potential exists
for improved system reliability, performance, and overall resource utilization. A fine-grain
runtime system thus is composed of components running on each node that communicate
and cooperate to manage their collective resources (Figure 4.1).

This definition of a fine-grain runtime system classifies it as a distributed Tuntime sys-
tem. Traditionally, a distributed operating system [17] is an operating system in which
global-resource management is performed, using only local state information, in a dis-
tributed network of computers. A distributed operating system provides the abstraction of
a virtual uniprocessor to the user. The goal of such a system is to give the user program
transparent, sequential access to global resources. In contrast, a user’s fine-grain program
requires transparent, concurrent access to global resources. The abstraction provided by
the distributed fine-grain runtime system is that of a maximally concurrent multicomputer,
where each user process can be mapped to a processing node. Using this abstraction, user
programs can express the concurrency in the application problem, independent of the num-
ber of nodes in the target machine. Multiprogramming on each node, which is critical to

hiding message latency (section 2.1.2), supports this abstraction.

In the fine-grain runtime system, each component running on a node can be repre-
sented as a single process. Distributed algorithms executed by the runtime system then
are implemented using message passing between these component processes (Figure 4.1).
This process abstraction permits an intriguing generalization: instead of simply viewing
each component as a process, the component itself can be implemented as a collection of
fine-grain processes (Figure 4.2). Since the physical placement of these processes is not
relevant within the programming model (Chapter 3), we can place these runtime system
processes so that each node contains a set of kernel processes. Some processes that help
manage the resources of an individual node, called remote processes, may reside on other
physical nodes. By dividing each component runtime system into processes that are spread

across the nodes of an ensemble, we express a fine-grain tuntime system as a fine-grain
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Figure 4.1: Distributed Runtime System Conceptual Organi-
zation. The runtime system (RTS) for an ensemble of nodes
is partitioned into component runtime systems. These compo-
nent runtime systems provide the interface between the hard-
ware level and the user computation level. Conceptually, mes-
sages are sent between parallel levels, eg, user processes send
messages to other user processes. In practice, outgoing mes-
sages travel through levels down to the hardware, across the
message network, and then up through the levels on the des-

tination node.
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Figure 4.2: Generalization of Components of a Fine-Grain
Runtime System. The component runtime system for each
node is implemented as a collection of processes. In the fig-
ure, runtime system processes are shaded to match the node
whose resources they help manage. Some of these processes,
called kernel processes are physically resident on the node,
while others, called remote processes, are resident on other

nodes.
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program. Thus, a fine-grain runtime system is both a distributed runtime system in that it
manages distributed resources using local state information, and it is a distributed fine-grain

program.

4.1.2 Robust Operation

As described in [24], the assumption that incoming messages will eventually be consumed
by the node is fundamental to ensuring that the message network will not deadlock. In
general, messages stream into nodes, with the node runtime system consuming the message
at the front of its internal receive queue by delivering it to the destination process. If
the receive queue becomes full, messages that cannot enter the node remain queued in
the communication network. However, if the message at the front of the receive queue is
eventually consumed, blocked messages will eventually be consumed, and, thus, the network
does not remain blocked indefinitely. |

If the message at the front of the queue is not actually consumed, but rather is
buffered indefinitely, the consumption assumption can be violated. This problem can occur
if messages are buffered, using selective receive for example, and there are no runtime
mechanisms to make space available in the receive queue. Medium-grain operating systems
provide very few such robustness mechanisms to distribute resource demands. Consequently,
if the receive queue overflows, the computation cannot proceed. To eliminate the overflow
problem during the next run of the computation, the programmer is encouraged to change
the process placement and/or message traffic pattern.

Robustness mechanisms are, however, critical for fine-grain machines. Not only are the
process placement and message traffic patterns removed from the control of the programmer,
but, since the incoming message queue is physically small, the likelihood of queue overflow is
significantly increased. The robustness design goal stipulates that a fine-grain computation
should not fail due to a node resource “hot-spot” if the required resource is available elsewhere
in the ensemble. In many application programs, the load on the machine may peak for short

periods. If the runtime system can provide robust operation, the computation can survive
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temporary resource hot-spots and execute to completion.

As the total machine becomes increasingly loaded, it is reasonable to expect that
remote resources will be increasingly difficult to obtain. An additional design goal is that
the runtime system be capable of detecting that the entire machine is heavily loaded, and

then resort to requesting resource from an off-ensemble entity such as a host computer or a

disk.

4.1.3 Efficiency

The danger of innovative runtime system design is that the runtime system itself becomes
the primary focus. Regardiess of the elegance (or lack thereof) of runtime system design,
the speed of execution of a user program is the fundamental criterion by which runtime
systems should be judged. The runtime system must strive to erecute user programs as
efficiently as possible.

Runtime efforts to improve robustness are a good example of the trade-offs between
functionality and efficiency. It is not acceptable to penalize programs running on a lightly
loaded machine in order to support mechanisms that will be required if the machine becomes
heavily loaded. The goal for fine-grain runtime systems is that, while the machine is lightly
loaded, the overhead incurred to support robust operation will be minimal. When the
machine becomes heavily loaded (when without robust mechanisms, the computation would

fail), increased overhead for process management and message handling is more acceptable.

TIME EFFICIENCY

While all runtime systems seek to minimize the amount of extra work needed to execute
a computation, the fine-grain runtime system must be particularly concerned with min-
imizing the overhead for handling processes and messages. The fine-grain programming
model (section 1.3.2) is based on the tenet that sending a message or creating a process
is roughly equivalent in cost to a procedure call. Since message passing and process cre-
ation are frequent operations, any unnecessary overhead can cause significant performance

degradation.
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One observation about overhead incurred by operating systems for medium-grain
multicomputers has had a significant impact on fine-grain runtime system design: many
include entirely too much copying. Not only are data values necessarily copied across the
nodes of an ensemble during message passing, but data values are copied within individual
nodes. This second form of copying is not only unnecessary, but it can also be expensive.
The copying of each data value requires one memory read operation and one memory write
operation. If the data values are written initially in the proper section of memory, the
vacuous operation of copying within a node can be eliminated. While some instances of
copying remain in our prototype runtime systems, implementing a “copy-less” runtime

system has been a major design goal in this thesis experiment.

SPACE EFFICIENCY

The efficiency of the runtime system must also be evaluated on a “space” level. Some
medium-grain operating systems maintain data structures that contain state information
about other nodes in the ensemble. For example, in the Reactive Kernel [33], each node
keeps a table containing the relative coordinates of each node in ensemble. Use of this table
decreases the time required for each message send, at the cost of dedicating enough memory
to represent the entire ensemble. For a Symult 52010 ensemble [33, 31], this table requires
a few hundred words. For a Mosaic ensemble, such a table could require 16K words, or half

the memory on the node.

In addition to avoiding large system data structures, the resident runtime system on
each node must be quite small, ideally a few kilobytes. Adding sophisticated algorithms to
the runtime system can significantly increase the physical size of the runtime system code.
Every word of memory consumed by the runtime system decreases the amount of memory

available to the application program.

4.1.4 Modularity and Extensibility

Modularity and extensibility are listed in the design goals of all operating systems: an

operating system should not need major modification whenever a new peripheral is added.



Analogously, fine-grain runtime systems should not need to be re-tooled if an additional

thousand nodes are added to the ensemble.

This design goal extends further for fine-grain machines. The fine-grain multicom-
puter architecture is itself so flexible that a practical ensemble can be as many as tens of
thousands of nodes or as few as one node. The range of applications for ensembles is equally
broad. Consider a small embedded application program with static process placement and
message traffic patterns, running on a 4-node ensemble. The runtime system that executes
this program may not need to include sophisticated robustness capabilities; the work and
space that would be required for such algorithms could be better used for directly running
the application. Conversely, a large long-running application program that exhibits very
dynamic process placement and message traflic, running on a 16K-node ensemble, may re-
quire all the robustness a runtime system can provide. The extensibility goal for fine-grain
runtime systems is then to design runtime systems whose capabilities are matched both to the
machine ensemble and to the range of application programs that will be executed. Modular
design of runtime system components, so that capabilities can be added and removed with-

out affecting the overall structure of the system, is the best way to provide this flexibility.

4.2 Runtime System Design Method

4.2.1 Process Layering

As mentioned in section 4.1.1, the distributed runtime system for a fine-grain machine
can be implemented as collection of processes. Rather than the runtime system being a lump
of code that exists to bridge a gap between machine and programming system, a fine-grain
runtime system is itself a fine-grain program running on a fine-grain machine. Conceptually,
a user computation is a collection of processes that is managed by runtime system processes.
Since a process is an abstraction of a multicomputer node (section 1.3.2), the hardware level
can also be modeled as a collection of processes. The processes in each level can be organized

into one or more layers. In Figure 4.3, processes in the runtime-system and user level are
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Figure 4.3: Layered Organization of a Distributed Runtime
System. As illustrated in Figure 4.2, each component of the
runtime system is implemented as a collection of processes,
some of which may be resident on other nodes (the shading of
a process indicates the node with which it is associated.) Pro-
cesses may be layered within a level. For example, a runtime-
system kernel process may dispatch to another kernel process.

A kernel process may in turn dispatch to a user-level process.
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organized into two layers.

The structure of messages reflects the process layering (Figure 4.4). For example, a
user message (ie, message sent from one user process to another) will include information
to route the message to the correct destination node (the Az, Ay relative coordinates),
through one (or more) destination runtime-system processes and eventually to the desti-
nation user process. As the message percolates through each process layer, the message
segment pertaining to that layer is interpreted and conceptually removed from the front of
the message. The runtime system in effect interprets and “executes” the message as if it
were a sequence of instructions.

The layering of a user computation atop a runtime or operating system is common-
place. However, the abstraction of layered processes and the mirroring structure of messages
suggests a unified representation for all levels of computation. Such a unified abstraction
for process layers and the interfaces between them is a powerful organizational tool. The
MADRE runtime system (discussed in chapter 5) illustrates how this abstraction can be
used to organize runtime systems. A practical benefit of this abstraction is that exposing
structure information to a compiler can simplify runtime support through optimization and
error-checking.

An immediate observation is that process layering is not easily implemented using the
process model outlined in section 1.3.2. That model maintains that processes are invoked
only in response to the arrival of a message. How does a process in one layer dispatch, ie pass
control and a message, to a process in another layer? Explicitly sending the message to the
next process layer means in the general case that the message enters the message network,
re-enters the node, and then again needé to be dispatched upon. Equally fundamental is
the question of data communication between the layers of processes. Recall that, in our
model, each process executes in a private address space. If each process executes in a
totally private address space, how can user processes access low-level parameters such as
mynode_id? Clearly, each process should not maintain identical copies of such data nor

should message passing be required to access the data.
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Figure 4.4: Message Layering. The structure of messages re-

flects the process layering. The message in this figure reflects

the process layering in Figure 4.3. A user message (ie, message

sent from one user process to another) will include informa-

tion to route the message to the correct destination node (the

AX, AY relative coordinates), through one (or more) desti-

nation runtime-system processes, and eventually to the desti-

nation user process. As the message percolates through each

process layer, the message segment pertaining to that layer is

interpreted and conceptually removed from the front of the

message.
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typedef struct { FUNC_PTR entrypoint; DATA_PTR data;}
PROCESS;

MESSAGE *msg;
PROCESS *process;

/* Decode message header. */
process = lookup_destination_process(msg);
/* Dispatch to embedded process. */

(*process—entrypoint)(process,msg);

Program 4.1: Runtime Dispatch to an Embedded Process. An
embedded process is represented by a pointer to the code to
be executed in response to a message, and a pointer to the
private data of the process. An embedded process is invoked
by dereferencing the function pointer; the arguments passed
are the pointer to its data and a pointer to the message to be
consumed. (Adapted from [30])

The proposed process-layering capability is summarized as follows:

¢ Processes can be layered; the structure of messages sent to processes mirrors the

process-layering structure.

e Processes can be provided with access to data and system services from processes in

the previous layer.

o Processes can decode a message section and then dispatch to a process in the next

layer.

IMPLEMENTATION
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Embedded Processes The questions of process dispatch and data commmunication have been
addressed previously in multicomputer runtime support systems. In [30, page 161}, Seitz
describes a dispatch mechanism, used at the runtime-system level, that assumes user pro-
cesses are implemented as embedded processes (Program 4.1). An embedded process is
represented by a pointer to the code to be executed in response to a message, and a pointer
to the private data of the process. In this case, a process invokes an embedded process by
dereferencing the function pointer. The arguments passed to the embedded process are the
pointer to its data and a pointer to the message to be consumed. In the systems described
in [30], there is however no unified mechanism for providing specifying which data and ser-
vices should be provided to individual processes. All functions are universally available to

processes.

C+— The development of C+- provides an opportunity to support process layering directly
in user programs. The inclusion of explicit process layering was motivated by the imple-
mentation of MADRE, the Mosaic runtime system, in C+-. Since each layer of a fine-grain
computation from the user level down to the hardware level can be viewed as a collection
of processes, the entire computation should be expressible in C+-. The basic idea for C+-
process layering is that processes, when created, can be dynamically derived from processes
that have already been instantiated!. By using the member-protection capabilities of C++
and C+-, dynamic process inheritance can provide controlled access to data and services in
other process layers. Currently, work is proceeding on integrating mechanisms for process
inheritance, process dispatch and for associating the structure of messages with process
layers [34].

The structure of messages should reflect the structure of process derivation. A message
sent to a derived process type includes segments that are interpreted by base processes. In
C+-, each process type must include, or inherit from a base process, a HEAD and a TAIL

function. The C+- translator translates atomic-function invocations into message-passing

'In the remaining text, the term derived process is equivalent to dynamically derived process.
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operations by first generating a call to the HEAD function for the destination process type.
This function allocates a message buffer, initializes the header of that buffer, and returns a
pointer to segment of the buffer where the message arguments should be written. After the
message arguments are written into the buffer, the TAIL function is called, which should in
turn invoke a function to enqueue the message for sending.

When C+- fully supports process derivation, the generation of message segments
pertaining to each process layer will be statically defined by the process-type declaration.
In the prototype MADRE system, however, the HEAD and TAIL functions are used to

assemble explicitly the outgoing message segments (section 5.2.2).

4.2.2 Runtime-System Level

As illustrated in Figure 4.1, the resources of each node in the ensemble are managed by
a component of the ensemble’s runtime system. For truly distributed runtime systems
(section 4.1.1 and Figure 4.3), each component of the runtime system is decomposed into
kernel processes, processes resident on the physical node, and remote processes, which may

reside on other nodes.

KERNEL PROCESSES

Kernel processes, by being resident on a node, can directly manage node resources. A kernel
process is used to encapsulate a runtime system capability that will be executed frequently
or with very low latency. For example, node-memory management should be controlled
by a kernel process. If the process that manages node-memory allocation were physically
located on another node, efficiency would be sacrificed for little or no benefit.

Each component runtime system is expressed as a small program in which kernel pro-
cesses are statically instantiated. This component program is the program loaded onto each
node when the ensemble is reset (section 2.1.3). Program 4.2 illustrates how a particular set
of kernel processes for a component runtime system is defined and instantiated using C+-.
This component runtime system contains three kernel processes. When this program begins

executing, kernel processes A, B0, and B1 are allocated and initialized automatically.
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processdef Kernel_process_A

processdef Kernel_process_B

Kernel_process_A A;
Kernel_process_B B0,B1;

;T;:;lin()

(..

Program 4.2: Instantiation of Kernel Processes. Each com-
ponent runtime system is expressed as a small program in
which kernel processes are statically instantiated. This com-
ponent program is the program loaded onto each node when
the ensemble is reset (section 2.1.3). When this program be-
gins executing, kernel processes A, B0, and Bl are allocated
and initialized automatically.

Static instantiation has several benefits. First, by compiling the kernel processes as
part of the component runtime system, and then placing a component on each node, we
control kernel process placement. The desired set of kernel processes will reside on every
node. Second, compiling kernel processes together provides the opportunity to streamline
the runtime system. Ordinarily, kernel processes on the same node would communicate by
message passing. This message passing can be eliminated by having the kernel processes
directly invoke the atomic functions of other kernel processes. Third, using C+-, the set
of kernel processes is instantiated when the component runtime-system program begins
executing. In previous operating systems, such as the Reactive Kernel [33], substantial
effort was required to create a process (the spawn handler, in that case) that would be used

to create additional processes.

Kernel processes may be layered, so that kernel processes can inherit access to certain
data and functions. Given thaf process layering is currently not provided in C+-, MADRE,
a fine-grain runtime system developed for the Mosaic C, implements the desired inheritance
of data and services by declaring that all kernel types are friends. By declaring two process

types X and Y as friends, all functions in processes of type X can access the private and
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processdef Remote_process_A

..}

f()
{

Remote_process_A *R = new Remote_process_A (args);

Program 4.3: Remote Process Instantiation. Component run-
time systems and kernel processes may dynamically instantiate
remote processes on other nodes. A remote process is the pri-
mary mechanism by which component runtime systems can
use non-local resources to satisfy local resource demands.

protected parts of processes of type Y. This “implementation” of process layering permits
the inheritance of data and functions across process layers, but at the cost of removing any
protection features that are desired. For the user processes, special locations in memory
are loaded with pointers to a few runtime system processes. Using these pointers, user

processes can access public data and functions in the runtime-system kernel processes.

Whether the functions provided by kernel processes include mechanisms for selective
receive and/or Remote Procedure Call is an important design decision. Adjacent layers of
processes must cooperate to provide a selective receive or an RPC. Ordinarily, messages are
consumed as they percolate through the layers of processes. When a selective receive or
RPC is performed, a lower layer of processes buffers some messages rather than dispatching
them to the next layer of processes. Thus, unless the fine-grain hardware includes message
buffering capabilities, the lowest layer of kernel processes cannot buffer messages. Subse-
quent layers of kernel processes can rely on buffering mechanisms only if provided by a lower

layer of processes.

REMOTE PROCESSES

Component runtime systems and kernel processes may dynamically instantiate run-

time system processes called remote processes on remote nodes (Program 4.3). Remote-
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process creation is the primary mechanism by which component runtime systems can use
non-local resources to satisfy local resource demands. Using the remote system process
mechanism, data structures relevant to the resource management of a node can be dis-
tributed across many nodes in the ensemble (Figure 4.3).

The number and types of remote processes used by individual component runtime
systems may vary. Just as process creation is the mechanism of growth in user computations,
remote processes are the mechanism by which the component runtime system of a node can
grow. Where necessary, remote processes may be layered, as for kernel processes.

When a remote process is instantiated on a remote node, we are, in effect, allocating
remote memory for use by the local node. It is important to note, however, that the remote-
system-process mechanism provides more than just memory allocation. Since the remote
memory is encapsulated in a process, that process can have atomic and ordinary functions
defined for it. For example, by encapsulating a buffered message in a remote process, space
can be made available in a node’s receive queue so that incoming messages can be received.
The remote process that contains the exported message may have atomic functions defined
for modifying, retrieving, or deleting the message. The resident part of the component
runtime system invokes these remote process atomic functions via message passing, thus
providing potential concurrency within the component runtime system itself.

Since remote processes are, by definition, not allocated on the same node as the
runtime system process that created them, they do not dynamically inherit data or functions
from the kernel process structure. Remote processes may rely on message buffering under
the constraints analogous to those for kernel processes: a lower layer of remote processes

must provide the buffering capability.

4.2.3 Correctness Requirements
To build a runtime system, or to extend the capabilities of an existing one, additional
kernel or remote processes may be defined. For each additional kernel process definition,

two conditions must hold. First, the operations on any data inherited from higher levels are



safe. Many processes may be derived from a higher level process, so the operation of derived
processes must not corrupt shared data. Second, the distributed algorithm executed by the
collection of new kernel processes must make progress.

Since remote processes do not inherit data from other layers of computation, the
access of data by the remote process is guaranteed to be safe. However, if additional layers
of processes are derived from remote processes, access of data within the remote process
structure must be safe. The algorithms implemented by the remote process structure must

also make progress.
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5 MADRE: The Mosaic Runtime System

Chapter 4 describes the design criteria and a strategy for constructing fine-grain runtime
systems. Many questions remain however. Can a runtime system for a fine-grain machine
be efficiently expressed as a collection of fine-grain processes that are distributed across the
nodes of the ensemble? Can a fine-grain runtime system deliver the promised concurrency to
application programs with reliability and a minimum of overhead? Does the organizational
strategy outlined in Chapter 4 allow a fine-grain runtime system to be modified or extended
depending upon the machine configuration and the spectrum of application programs? |

The MADRE (MosAic Distributed RuntimE) system is a fine-grain runtime system
expressed as a fine-grain program. C+-, with its abstractions for processes and messages,
is an ideal notation for expressing the MADRE program. Since the programming and
runtime-system levels are distinct, this choice of notation for the runtime system does not
necessarily affect the choice of programming notation for user programs. Any programming
notation whose base model is processes and messages can be supported directly by the
runtime system. Currently, the MADRE system runs atop a Mosaic C node, and supports
user programs written in C+-.

The MADRE system, the C+- programming notation, and the Mosaic C multicom-
puter form the experimental apparatus used to investigate the questions posed above. In
this chapter, we present the general organization of the MADRE system, and then a detailed
description of individual components. A rudimentary host interface for I/0 and loading is

also presented.

5.1 Structure

Figure 5.1 illustrates the conceptual organization of the MADRE system. MADRE
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Figure 5.1: Conceptual Structure of the MADRE System.
Runtime-system processes execute in the SYSTEM context.
When an incoming message has been written into memory, an
interrupt is generated by the hardware and the MADRE Root
process is invoked. The Root process services the interrupt by
decoding a section of the message, and then dispatching to one
of the statically instantiated kernel processes (solid arrows rep-
resent dispatch). One kernel process, the user_message_handler,
queues user messages for consumption by processes executing
in the USER context. The CPM process consumes this queue
by decoding the messages and dispatching to C+- user pro-

cesses.
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processes are organized in layers as described in section 4.2.1. A process operates on a
section of an incoming message and may then dispatch to a process in another layer. Using
C+- terminology, dispatch is equivalent to invoking an atomic function of a process in
another layer. Since C+- does not currently provide direct support for process layering, the
MADRE system implements process inheritance explicitly (see section 4.2.2).

The lowest layer of the MADRE system contains a single process called the Root. The
Root process is defined by a small program that includes interrupt-handling routines and
the static instantiation of the set of kernel processes, as illustrated in Program 4.2. The
runtime system for the ensemble is loaded by instantiating a Root process on each node of
the ensemble.

When an incoming message has been written into memory, an interrupt is generated
(section 2.1.5) and the MADRE Root process is invoked. The Root process services the
interrupt by decoding a section of the message and then dispatching to one of the statically
instantiated kernel processes. This low-level organization is similar to the organization of
the Reactive Kernel [33). The processes to which the Root process dispatches can be viewed
as handlers. Handlers may in turn dispatch to other MADRE processes. User messages
percolate up through layers of the system, and are eventually consumed by user processes.

An incoming message can be categorized by its final destination, which is either a
user process or a MADRE process. Messages sent between MADRE processes are usually
part of a distributed resource-management algorithm executed by the collective runtime
system of the ensemble. Since the efficiency of these algorithms is crucial to performance
and/or robustness, these messages must be consumed as quickly as possible. Consequently,

MADRE messages are not internally queued; they are processed immediately.

An internal message queue is used to queue incoming user messages for consumption
by user processes. This internal queue decouples the arrival of messages from their consump-
tion, thus ensuring that messages are removed from the network as quickly as possible. As
illustrated in Figure 5.1, one MADRE handler, called the user_message handler, is respon-

sible for queuing these user messages. Fach user message contains a section that indicates
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that the message should be routed through this queue-producer handler. After the message
has been appended to the user-process message queue, the Root process acknowledges, 7e,
clears, the interrupt.

The internal user-message queue is consumed by the CPM (C Plus Minus) process.
This process repeatedly executes a loop that removes the message at the front of the queue,
decodes the message to identify the destination user process, and dispatches to that process.
When the message has been consumed, control returns to the CPM process. The specification
of the CPM process and the user.message_handler primarily defines the support for different
programming languages. If a programming language other than C+- is to be supported,
these two processes would need to be re-tooled to accommodate the desired user-message

consumption algorithm.

5.1.1 Use of Dual Contexts

The two contexts of the Mosaic node are used to execute the two software levels of com-
putation illustrated in Figure 5.1. MADRE processes execute in the priority SYSTEM
context, whereas user processes and the CPM process execute in the non-priority USER
context. Since progress is made in the user computation only when user code is executed,
the amount of time spent in the SYSTEM context should be minimized.

The normal mode of operation is that the program in the non-priority, USER context
is executing — the CPM process is removing messages from the internal queue and dispatching
to user processes. When an interrupt arrives, the processor switches to the SYSTEM context
to execute code to service the interrupt. After acknowledging the interrupt, the processor
resumes processing in the USER context. Thus, the user computation is executed by default,

with the runtime-system code being executed in response to interrupts.

5.2 Components

In the following subsections, we detail the component processes in the MADRE system —
the hardware node “process”, the Root process, the various MADRE kernel and remote

processes, and the CPM process. For each process, the following information is described:
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o the message section interpreted,

the algorithm executed,

the pool of processes to which it may dispatch,

e the data and services that it provides to a derived process (e, a process in a subsequent

layer).

5.2.1 The Mosaic Node “Process”
As discussed in section 4.2.1, extending the process abstraction down to the hardware pro-
vides a unified abstraction for all the layers of a fine-grain system. The hardware layer, the
Mosaic-C node, provides the lowest-level data and services. All processes on the node are
conceptually derived from the node “process” so they can access these data and services.
Data that are available to derived processes include data registers (R0...R15), address regis-
ters (MRP, MRL, ...), and each node-memory storage location. Services that are available
include message sending (by writing a value in the DXDY register), and acknowledging
interrupts (by writing the value of the interrupt back to the Interrupt Status Register).
The Mosaic node is a process that is defined in hardware rather than in software. For
software processes, a process is invoked to interpret some section of a message, and then
(potentially) dispatch to another process. The analogy for a Mosaic node is that it detects
a hardware event eg, a message has been received, a message has been sent, or the message
receive buffer has been exhausted, as its “message.” The MADRE Root process is the only

process to which the node dispatches.

5.2.2 The Root Process
THE INTERRUPT “MESSAGE”

The “message” decoded by the MADRE Root process is the interrupt generated by the
Mosaic node hardware. Special address registers MRP (Message Receive Pointer), MRL
(Message Receive Limit), MSP (Message Send Pointer), and MSL (Message Send Limit) are
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used to delimit incoming and outgoing messages, respectively. The three Mosaic interrupts

(described in section 2.1.5) are:

e receive_interrupt indicating that an entire message has been written into the region of

node memory between the MRP and MRL specified by the runtime system,

e send_interrupt indicating that an outgoing message, delimited by the values of MSP and

MSL specified by the runtime system, has completely entered the message network,

o buffer_full_interrupt indicating that the write buffer provided for an incoming message

has been exhausted (ie, MRP == MRL).

When an interrupt is generated, the Root process services and then acknowledges the in-

terrupt.

Two-Phase Receive In section 2.1.5, we outlined a straightforward use of Mosaic interrupts
to receive messages. The processor configures MRP and MRL so that incoming messages are
written into a region of memory maintained as a circular queue. One disadvantage of this
algorithm is that messages that cannot be immediately consumed, te buffered messages,
would probably need to be copied from the queue to another region of memory. This
approach would violate the “copy-less” runtime-system design goal (section 4.1.3). To avoid
copying, the processor could configure MRP and MRL so that incoming messages are written
into preallocated message buffers. If the message were longer than the allocated buffer, a
buffer_full_interrupt would be generated, and a new, larger, buffer would be allocated. The
partially-received message would be reconstructed in the new buffer. Using this strategy,
the processor would probably allocate blocks that are larger than necessary to avoid the
expense of buffer overflow.

The Mosaic interrupt mechanism can be used to allocate a receive buffer of the correct
size before the message is actually received. Figures 5.2 and 5.3 illustrate the two-phase

receive protocol. Every message contains a small header that includes:

e the length of the message,
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Figure 5.2: Message Structure. Each incoming message con-
tains a header that includes the length of the non-header part
of the message (ie, the message payload), the partition of mem-
ory where the message should be written and a few other words
of information. Before the first phase of the receive, MRP and
MRL are set to point to the boundaries of the msg_hdr_buffer,
which has the same structure as the message header. When
an incoming message arrives, the header of that message will
be written into the msg_hdr_buffer until the buffer is full (MRP
== MRL). At that point, a buffer_full_interrupt is generated.
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Figure 5.3: Two-Phase Receive Protocol. The interrupt servie-

ing routines of the Root process extract the memory partition
and the size of the incoming message from msg_hdr_buffer and
allocate a receive buffer. MRP and MRL are set to point to
the boundaries of this new buffer. The second phase of the
receive begins when the buffer_full_interrupt is cleared. The re-
mainder of the incoming message is written directly into the

receive buffer.
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e the partition of memory where the message should be written (Figure 5.4),

¢ a few words of additional information, such as the sending node, the reference value
of the destination handler, and the atomic function of that handler that should be

invoked.

A special buffer called msghdr_buffer is allocated statically within the MADRE Root
process. This buffer has the same structure as the header of each message. Before the first
phase of the receive, MRP and MRL are set to point to the boundaries of the msg_hdr_buffer.
When an incoming message arrives, the header of that message will be written into the

msg_hdr_buffer until the buffer is full (MRP == MRL). At that point, a buffer_full_interrupt

is generated. The interrupt-servicing routines of the Root process extract the information
about the memory partition and the size of the incoming message from msg_hdr_buffer and
allocate a receive buffer. MRP and MRL are set to point to the boundaries of this new
buffer. The second phase of the receive begins when the buffer_full_interrupt is cleared. The
remainder of the incoming message is written directly into the receive buffer. This two-
phase receive can be used to allocate a receive buffer of exactly the correct size without
unnecessary copying.

Using this protocol has two notable disadvantages. During the first phase of the re-
ceive, incoming messages are blocked back into the network while the Root process allocates
a message buffer. Heuristics will be used in memory allocation to balance the time required
to allocate a new buffer versus the memory utilization. The second point is not as crucial:
the header information is not received contiguously with the rest of the message.

The development of the two-phase receive protocol testifies to the remarkable flexi-
bility of the Mosaic interrupt mechanism. This use of the interrupts for receiving messages
was developed long after the Mosaic had been designed and prototyped. If the protocols
for sending or receiving messages had been built into hardware, we would not be able to

experiment with the two-phase-receive protocol.



Process Poor FOrR THE RoOT
In the current MADRE system, a reference value of a process is a 2-tuple

(NODE, memory location on the node)
where NODE is another 2-tuple (z coordinate, y coordinate). The msg_hdr_buffer includes
the reference value of destination handler and the atomic function of that handler that
should be invoked. The pool of processes to which the MADRE Root may dispatch, ie,
handlers, is defined to be the set of kernel processes (section 5.2.3).

For simplicity and efficiency, the MADRE system exploits “forged” references at the
handler level. Ordinarily, processes obtain the reference values of other processes through
process creation, or through message passing. Requiring each handler process on every node
to explicitly obtain the reference for handler processes on other nodes before computation
can begin is inefficient and unnecessary. Recall that the kernel processes are statically
instantiated within the Root process. In the prototype MADRE system, every node in the
ensemble is loaded identically with a Root process. Thus, the memory location within a
node of a particular kernel process is the same on every node. The reference value of a given
handler on a remote node is “forged” by constructing a 2-tuple containing the remote-node

identifier and the local memory address of that handler.

RooT Data

The MADRE Root process provides the following data to derived kernel processes:

mynode the node identifier for this node,

xdim, ydim the number of nodes in the 2 and y dimensions of the ensemble, respectively,
num_nodes the number of nodes in the ensemble,

console_ref the reference to the output device for this node,

error_ref the reference to the error-reporting device for this node,

disk the reference to a disk (4e, host) that may be connected to the ensemble.
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By invoking atomic functions of the console_ref, error_ref and disk processes, derived processes

can access these ensemble resources.

RooT SERVICES

The services provided by the MADRE Root process to derived processes include:

o malloc and free for local-memory allocation and deallocation,

e message-sending functions including as enqueue_msg for queueing outgoing user mes-

sages (section 5.2.2),

o halt to halt the node upon an error condition.

Memory Management Each Mosaic node contains 32 KW (16-bit words) of dynamic mem-
ory, of which approximately 7-10 KW are consumed by the resident MADRE system. The
MADRE Root process manages the allocation and deallocation of the remaining local mem-
ory via malloc and free functions that are inherited by kernel processes. (Recall that remote
processes do not inherit data or services from the Root.) The algorithms used to manage
the allocation/deallocation of local memory are generally independent of the rest of the
MADRE system. However, as illustrated in section 5.2.3, some kernel processes require
knowledge of the memory-allocation strategy.

When the MADRE Root process is instantiated on a Mosaic node and begins exe-
cuting, it segments the available memory into four partitions — the RCVQ, SNDQ, SYS and
PROC. Figure 5.4 illustrates the conceptual memory map of a Mosaic node. The RCVQ
partition is the region of memory where blocks are allocated for incoming user messages.
The SNDQ partition is used for allocating blocks for outgoing user messages. The small SYS
partition is where incoming and outgoing runtime-system messages are written. The PROC
partition is the region of memory where all other allocations are performed, eg, allocation
for incoming runtime-system messages, instantiation of new processes, and allocation of

tables used by the runtime system.
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Figure 5.4: Map of Mosaic Node Memory. After the MADRE
system is loaded into the memory of each node, the remaining
imemory is partitioned into four segments — the RCVQ par-
tition, where incoming user messages are written, the SNDQ
partition, where outgoing user messages are constructed, the
small SYS partition, where incoming and outgoing runtime-
system messages are written, and the PROC partition, where

all other allocations are made.
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The sizes of these partitions are fixed at initialization using heuristic algorithms®. The
size of the RCVQ partition has significant impact on the overall performance of a computa-
tion. If it is too small, processing time must be devoted to ensuring that the consumption
assumption is satisfied. If it is too large, space that could be used for instantiating user
processes is wasted. In practice, outgoing messages are almost always injected immedia}cely
into the message network; hence, the SNDQ partition can be small. The SYS partition must
be large enough to ensure that runtime-system messages can always enter or leave the node
(section 5.2.3). Since the maximum size of the computation that can be executed on a given
ensemble is limited by the number and size of the processes used, the PROC space is the
largest partition of memory.

The algorithm used to manage the memory in the SNDQ, RCVQ and PROC partitions
is the buddy-system algorithm described in [20]. The available node memory in each parti-
tion is divided into blocks according to a sequence of Fibonacci numbers (Figure 5.5). Each
block contains header information that includes the block size (equivalently, an index of the
Fibonacci number used), the memory partition, and a pointer to the block’s “buddy.” The
free list of blocks is represented by an array of pointers to available blocks (Figure 5.6).
Programs 5.1 and 5.2 outline the essential elements of the buddy-system allocation and

deallocation routines.

For most memory-allocation strategies, the memory utilization of the algorithm must
be balanced against the time required for each resource-management operation. For exam-
ple, the algorithms that manage memory with little fragmentation or waste are generally
slow, while algorithms that allocate or deallocate memory quickly usually reduce memory
utilization. The buddy-system algorithms are also sensitive to the trade-off between speed
and efficiency. Memory allocation is much faster if a block of the required size is already
free; splitting a large block repeatedly can require hundreds of machine instructions. How-
ever, leaving free blocks un-coalesced fragments memory and may significantly delay the

allocation of large blocks.

Future versions of MADRE will likely include variable partition sizes.
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Assume a block of n words is requested.

1. The index of the lowest Fibonacci number that is greater than n is computed

and copied into a temporary variable In.
2. While the free list corresponding to In is empty, increment In.

3. If the maximum index of the Fibonacci sequence is reached before a free block
is found, no block can currently be allocated so a failure code is returned®. If
a block is available and that block corresponds to index, that block is returned
and the allocation is complete.

Otherwise, while the index In of the available block exceeds index,

(a) split the block into blocks corresponding indices In—2 and In—1,
(b) append the block corresponding to In—2 to the appropriate free list,
(c) In = In—-1.

Return block of size index.

“When allocation for the RCVQ partitions fails, robustness measures are required for the compu-
tation to proceed (section 5.2.3). If allocation for the SNDQ partition fails, the processor busy-waits
until the send quene empties sufficiently. If the PROC partition is full, the node cannot instantiate
any new processes.

Program 5.1: Buddy-System Memory Allocation.
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Figure 5.5: A Fibonacci Sequence Used to Partition Memory
Blocks. This figure illustrates how a sequence of Fibonacci
numbers (1,1,2,3,5,8,13,...) can be used to segment a block
of memory. A block of size 13 can be divided into two blocks
of sizes 8 and 5, respectively. The size-8 block can then be
partitioned into blocks of sizes 5 and 3. Note that a block of
size 13, 8, 5, 3, 2, and 1 share the same physical address.

Some simple heuristics are used to the MADRE system to strike a balance between
memory-management speed and efficiency. The MADRE execution model assumes that
most messages will be small; thus, blocks should not be coalesced beyond a certain threshold
of Fibonacci numbers. If the compiler provides information about the sizes of potential

messages, the MADRE system can preferentially leave free blocks of those sizes un-coalesced.

Sending A Message The structure of messages reflects the process-layering structure at
the destination process that must be traversed. When process layering is fully supported,
C+~ will automatically generate code that constructs messages whose structure reflects
the defined process layering. Currently, layered messages are constructed explicitly using

the HEAD and TAIL functions (section 4.2.1) and a class-derivation tree for the message
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Figure 5.6: Buddy System Data Structures. Each block con-
tains header information that includes the block size (equiva-
lently, an index of the Fibonacci number used) and a pointer
to the block’s “buddy.” The free list of blocks is represented

by an array of pointers to available blocks.

segments.

Every message in the MADRE system includes a header that will be written into the
msg_hdr_buffer during the first phase of the two-phase receive. A message sent to a C+-
process will contain that header, which specifies that this message should be handled by
the user_message_handler, plus sections to route the message through the CPM process and
finally to the destination C+- process. Program 5.3 illustrates the class-derivation tree for
a C+- user message.

Within the HEAD function defined for C+- processes, an instance Outgoing_cpm _msg
is newed. A buffer is allocated for the message and the constructors for the class in the
derivation tree are called. Fach of these constructors initializes the appropriate segment
of the message. The HEAD function returns a pointer to the word in the buffer following
the initialized headers. After the message variables are written into the buffer, the TAIL
function for C+-~ processes is called, which calls the enqueue_msg function provided in the

MADRE interface. The runtime system eventually injects the message into the network
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Assume a block B is freed.
1. The index In of the block is extracted from the block header.
2. B can be immediately appended to the free list corresponding to index.

OR

3. While the buddy of B is free, the block can be coalesced with its “buddy.”

(a) merge the two blocks to form block B,
(b) In = Int1.

Append block B’ to the free list for index In.

Program 5.2: Buddy-System Memory Deallocation.

by computing DXDY and setting MSP and MSL to point to the outgoing message (section
2.1.5). MADRE runtime-system messages are not queued, but rather are injected into the

network as soon as possible (section 5.2.3).

5.2.3 Kernel Processes

As outlined in section 4.1.4, an individual runtime system may be tailored to the target
machine configuration and to the spectrum of applications that will be executed. For a
16K-node ensemble executing large, very dynamic, applications, the runtime system would
likely include all available mechanisms for enhancing robustness and for distributing resource
demands. For a 4-node system dedicated to executing an application that exhibits static
processes and message patterns, a much simpler runtime system should be constructed.
Runtime-system capabilities are encapsulated within kernel processes. By defining the set

of kernel processes, we construct the desired runtime system.

In this section we describe each of the kernel processes that have been developed as



class Outgoing_handler_msg

{ public:
int length;
int partition;
NODE sender;
HANDLER« dest_handler;
FUNC function;

Outgoing_handler_msg();
b

class Outgoing_usr_msg : public Outgoing_handler_msg
{ public:

h

class Outgoing_cpm_msg : public Outgoing_usr_msg
{ public:

MSG *next, xprev;

PROCESS *dest;
FUNC function;

Program 5.3: Class Derivation of C+~ Messages. Within the
HEAD function defined for C+~ processes, an instance Outgo-
ing_cpm_msg is newed. A buffer is allocated for the message and
the constructors for the class in the derivation tree are called.
Each of these constructors initializes the appropriate segment
of the message.
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part of this thesis project. If all of these processes are included in the runtime system, the
result is the most reliable runtime system we know how to construct. In the discussion of
each kernel process, we describe alternatives that vary the robustness and efficiency of the

composite runtime system.

CopE HANDLER

The code handler provides access to the code that comprises the user’s application program.
Recall that a user process begins executing in response to a message. Clearly, the code that
the process executes must be resident on the same node as the incoming message and the
process itself. The confluence of these three entities ~ code, process, and message — is the
catalyst for execution.

In previous operating systems for multicomputers, the requirement that the code be
resident with the process has been satisfied in one of two ways. First, the code for a process
is made resident on a node when the process is created, eg, Reactive Kernel [33]. If a copy
of the code does not aiready exist on the destination node, the code is copied from the
host. This approach is not practical for fine-grain machines, since hundreds of nodes could

simultaneously request code from the host, creating a significant communication bottleneck.

The Cantor runtime system avoided the code-replication problem by assuming that
the entire user program resides on each node. Using this assumption, a new process could be
placed anywhere in the ensemble without any dynamic loading of code. This approach may
be acceptable for embedded applications running on small ensembles, but is impractical for
general fine-grain multicomputers. Any “real” application would likely include more code
than could physically reside in the node memory. Even if the program could be loaded,
the thousands-fold duplication of code would waste a large fraction of the total memory of
the ensemble. Runtime systems for fine-grain multicomputers must use more sophisticated

mechanisms to limit the amount of code duplication and dynamic code copying.

The first step of the fine-grain code-management strategies in this thesis is to split the

user code into pieces. The C+- programming system includes a software tool for splitting



processdef P

{ public:
atomic void f();
atomic void g();

+

processdef Q
{ public:

atomic void x();
i

Program 5.4: Declaration of Sample User-Program Code

Pieces.
user programs so that the code for each atomic function is a code piece (section 3.1.4).
The existing code-splitting tool includes code for functions that are not atomic in the
code for atomic functions that call them. Future versions may generate individual code
pieces for each non-atomic functions. (For a full description of this code splitting, see [34].)
Partitioning the code for a process type by atomic function decreases the granularity of
elements that the runtime system must manage, leading to more flexibility in runtime-
system algorithms.

Since the entire C+- program is linked together, each code piece can be assigned a
unigue index. The code handler uses some mechanism —in the MADRE prototype, a simple
table — to associate the code-piece number with the location of that piece. Program 5.4
and Figure 5.7 illustrate the correspondence between a user program and the MADRE
code-table data structure. Arriving messages specify the index of the code piece to be
executed. The dispatching process uses this index into the code table to locate the required
atomic-function code.

The code table is the mechanism that prevents the duplication of code pieces on a

given node. Since each access to a code piece is via the table, at most one copy of a code
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Figure 5.7: Code Table. The code handler on each node man-
ages a table, indexed by the code-piece number, that contains
the location of each piece. Arriving messages specify the index
of the code piece to be executed. The dispatching process uses
this index into the code table to locate the required atomic-

function code.
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piece will reside on the node. For those code pieces physically resident on the node, the
code-table entry can contain the memory address of the code. For code pieces that are
remote, an algorithm must be specified for achieving the confluence of the code piece, the

message, and the process.

LRU Code Management In the Least-Recently-Used (LRU) Code Management algorithm,
the code handler maintajns two parallel arrays. The code_table array contains memory-
address pointers for resident code pieces, and pointers to a special lookup function for
remote code pieces. The remote_code_table array contains a node identifier for each remote
code piece indicating where the nearest copy of the code can be found. The code handler
is defined to include a loading procedure to fill all the code-table entries, and a procedure
for accessing remote code pieces.

The host loads a user program by sending code pieces to the code handler on a
subset of the nodes of the ensemble according to some mapping (section 5.3). When a code
handler receives a code piece, it fills the code-table entry with the memory address of the
code. In addition, it sends a propagate_code_address message to the code handlers on each
of its four neighbor nodes. This message includes the index of the code piece, the sending
node’s identifier, and the direction and the cumulative Euclidean distance to the sending
node. When a propagate message is received, the code handler may update the appropriate
remote_code_table entry to reference the sending node. Each propagate_code_address messﬁge
propagates through the mesh of nodes until it is consumed by a code handler that already
has reference to a closer node that has a copy of the code piece, or it reaches the edge of
the mesh.

The general approach for LRU code management is that remote code pieces are re-
trieved when needed, ‘e, copied from a remote node, and remain on the requesting node as
a temporary code piece until the space they occupy is required for other memory uses. The

initial placement of resident code pieces persists throughout the entire computation.

When a message arrives for an atomic function, the code_table is used as a jump ta-
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B_Code_handler-->code_copy_request(code_index)

Code Handler Code Handler

A B

A_Code_handler-->receive_code_copy(code_piece)

Node Node

Figure 5.8: Code Retrieval for LRU Code Management. A
code_copy._request is sent to the code handler on a remote node B
that maintains a resident copy of the desired code piece. The B
code handler responds with the requested code piece using the
receive_code_copy atomic function. After the receive_code_copy
atomic function has been executed, the required code piece is
now available so the suspended user process resumes execut-

ing.
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ble to begin executing the code that consumes the message. If the atomic function code
is not resident, the lookup function will execute. Note that the execution of this function
is indistinguishable from the execution of a user atomic function. Conceptually, the des-
tination user process is executing the destination atomic function, but the code for that
function has been replaced by this special function. For LRU code management, the lookup
function uses the remote_code_table to locate the nearest node that maintains a permanent
copy. It then sends a code_copy_request to the code handler on that node (Figure 5.8) and
suspends the user process using the RPC. The code handler on the remote node sends the
requested code piece to the code handler on the requesting node using the receive_code_copy
atomic function. The remote code handler then sends an RPC reply to the suspended
user process. Since message order is preserved, when the user process resumes executing,
the receive_code_copy atomic function has been executed so the required code piece is now

available. The user process begins to execute the user function code.

A linked list records the order of access to temporary code pieces - the least-recently-
used temporary code piece is the rear of this list; the most-recently-used is the head. When
the memory of a node becomes congested, temporary code pieces are deleted, beginning
with the least-recently-used.

The LRU code-management strategy is essentially conventional code caching. The
concept of having some nodes maintain permanent copies code pieces while other nodes
request temporary copies is reminiscent of the librarian entities in [19]. This approach
has been used on medium-grain machines, and will be evaluated for fine-grain machines in

Chapter 6.

Remote Code Fzecution The confluence of message, process, and code is required for process
execution. The LRU code-management strategy brings the code to the message and the
process. The Remote Code Execution strategy sends the message and the process to the
code. This strategy is motivated by the fine-grain programming model and architecture. For
fine-grain programs, the amount of process data is often significantly less than the amount

of code for each atomic function of that process. In those cases, copying the process data
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and the message is less expensive than copying the code piece. The low message latency of
the fine-grain architecture permits experimentation with code-management strategies that
are not based on code caching. For medium-grain machines, the cost of communication
dictates that the code be retrieved infrequently and kept resident on the node as long as
possible. With inexpensive communication, we can afford to access the code remotely more
frequently.

The initialization for this code-management strategy is the same as for LRU code
management. The host loads the user-program code pieces into a subset of the ensemble
nodes. Fach node maintains a code_table array that contains the memory addresses of
resident code pieces, and pointers to the special lookup function for remote code pieces. The
locations of resident code pieces are propagated through the mesh. Each node maintains
a remote_code_table that contains the nearest node that maintains a copy of a remote code
piece.

When a message arrives for an atomic function, the destination user process jumps
through the code_table and begins executing. If the code is resident, the user process is
executing the correct user-code piece; if the code is remote, the user process is executing
the lookup function. For this code-management strategy, the lookup function locates the
nearest node that contains a resident copy of the code piece using the remote_code_table
array. It then sends an execute message to the code handler on that node (Figure 5.9). This
message contains the code-piece index, the message to be consumed, and a copy of the state
of the destination user process. The lookup function then suspends the user process using
an RPC.

The code handler on the remote node, upon receiving the execute message, schedules
the enclosed “shadow” user process to execute by enqueuing the accompanying “shadow”
message. After the function executes, the code handler sends an RPC-reply message, con-
taining the return values of the function and the state of the “shadow” process, back to the
suspended user process. When that process resumes executing (still in the lookup function),

it updates its state to that of the “shadow” process, and then returns any values returned
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B_Code_handler-->execute(code_index,ms g.process)

Code Handler Code Handler

A B

A_Code_handler-->return_results (rtn_value,process)

Node Node

Figure 5.9: Remote Code Execution Strategy. An execute
message, which contains the message to be consumed and a
“shadow” copy of the destination user process, is sent to the
code handler on a remote node B that maintains a resident
copy of the desired code piece. The B code handler causes
that code piece to be executed on node B. The B code han-
dler returns whatever results the code piece returned, and it
returns the state of the process, which may have been mod-
ified. The state of the suspended user process is updated to

the returned process state.



102

by the function to the originél invoking process.

The Remote Code Management strategy is certainly more ambitious than LRU Code
Management or other more conventional strategies. If it performs well, we have illustrated
the algorithmic flexibility of the fine-grain architecture. The low cost of communication has
a tremendous impact on the set of runtime-system algorithms. In addition, the Remote
Code Management strategy is an excellent vehicle for experimenting with “blurring the
boundaries” between nodes. In this strategy, one node is actually allocating, for its own

use, some of the processing resources of a remote node.

EXPORTED-MESSAGE HANDLER

The ezxported-message handler process is a primary part of the robustness mechanisms of the
MADRE system. This handler, in conjunction with the Remote-Process Handler (page 111),
frees space in the node by exporting user messages. A message is exported by encapsulating
it within a remote process and then instantiating that process on a remote node. The
exported-message handler can later invoke an atomic function of the remote process to
retrieve the message for processing. Just as remote code execution is an experimental
method for allocating remote processing resources, exporting messages is an experiment in

allocating remote memory resources.

MADRFE Robustness Mechanisms The importance of consuming incoming messages was
described in section 4.1.2. The simple analogy is that the memory available on a node is
a bucket with a certain capacity. Messages flow into the node like water into the bucket.
As the bucket fills to capacity, some water must be removed from the bucket if more water
is to be added. Otherwise, the bucket overflows. For medium-grain machines, the memory
“bucket” was conceptually infinite. For fine-grain machines, the memory “bucket” is too
small for that questionable abstraction. Active measures must be taken by the MADRE
system to free memory so that incoming messages can continue to be received. With finite
resources available on the ensemble, even these measures will eventually fail. The goal is to

execute the computation until a large fraction of the total ensemble resources are exhausted,
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or the computation terminates.

There are two basic types of messages in the MADRE system: system and user
messages. For communication deadlock to be avoided, a node must not be permanently

blocked from

allocating space for receiving an incoming message of either type,

deallocating space by consuming the message,

allocating space for sending an outgoing message of either type,

deallocating space by transferring the message into the communication network.

The robustness mechanisms in the MADRE system are based on the following claim:
MADRE system messages are not permanently blocked from entering the message network.
If this claim holds, then the system messages that export user messages from the node will
eventually leave the node. These export messages free space so that incoming user messages
can be written into memory. The space occupied by user messages is deallocated when the
message is consumed by the destination process, or the message is exported to another
node.

To ensure that MADRE messages can eventually be written into memory, an empty
buffer must eventually be available. The SYS partition is sized so it includes at least one
buffer large enough to hold any incoming system message®. Since the MADRE system
consumes system messages immediately rather than queueing them, this incoming-message
buffer will eventually be free. The SYS partition also includes buffers for writing outgoing
messages.

Thus, incoming system and user messages can eventually be written into memory.
Outgoing system and user messages then cannot be permanently blocked from leaving a

sending node. If the robustness claim holds, user messages can eventually be sent and

?Remote-process new messages are written directly into the PROC memory partition. If space is not

available in that partition, the new message must be received and forwarded in fragments.
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Figure 5.10: Deadlock of Message Exportation. Each node has
a congested receive queue. To receive the incoming user mes-
sage, each node must export a message by newing an exported-
message remote process. If the destination node is blocked
from receiving the user message because it too cannot export
a message, the consumption property is violated and a com-

munication deadlock has occurred on this subset of nodes.

received, and system messages can be eventually sent and received, so the consumption
assumption is satisfied.

The key to satisfying the robustness claim is to ensure that outgoing system messages
will eventually enter the message network. These outgoing messages could be permanently
blocked only if some other message is currently being sent, and the messages filling the
network channel are permanently blocked from being received.

Consider Figure 5.10. Each node has a congested receive queue. To receive the incom-
ing user message, each node must export a message by newing an exported-message remote
process. This new message will be queued at the destination node bekind an incoming user

message. In the worst case, the new message itself cannot entirely leave the sending node



105

until the destination node receives its incoming user message. If the destination node is
blocked from receiving the user message because it too cannot export a message, the con-
sumption property is violated and a communication deadlock has occurred on this subset
of nodes.

A user message is the only incoming message whose reception may depend on the
sending of another message‘, specifically a remote-process new message. The deadlock situa-
tion occurs because each node in the cycle must send a remote-process new message in order
to receive a message. On page 111, we argue that the likelihood of this deadlock can be
reduced by ensuring that, if it occurs, the cycle includes a large fraction of the nodes in the
ensemble. On page 116, we present a handler process that implements a message-passing

protocol that can be used to reduce arbitrarily the risk of this form of message deadlock.
Ezxporting a Message

The RCVQ Partition The purpose of exporting a message is to free space to guarantee
that an incoming message can be received. For the current MADRE system, neither user
processes nor runtime-system tables can be exported. Exporting an outgoing message is
illogical (and unnecessary since the send queue will eventually empty if the destination
nodes can receive). Thus, a user message is the only computational element that can be
exported if the node’s memory is congested.

The creation of the RCVQ partition was motivated by the need for message expor-
tation. If a partition contains only user messages, then, conceptually, the entire contents
of the partition can be exported to free space. If incoming user messages, processes, and
tables were interspersed through the node memory, it would be possible to export all the
messages on the node and still not have freed a large enough buffer for the incoming user
message.

The minimum size of the RCVQ partition is fundamental to the correct operation
of the message exportation algorithm. Assume the largest message that will be received

is » words. Recall that a user process may be executing in the USER context when the
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message-exportation algorithm begins executing in the SYSTEM context. Exporting and
then retrieving the message that the user process is currently consuming would be useless.
If the current user process is consuming the reply from an RPC, that message is also
required for continued processing of the user message. Consequently, the RCVQ partition
must contain three buffers of size greater than or equal to n — one buffer for the active
user message, one for the active RPC-reply message, and one for the incoming message. If
the RCVQ partition meets this size requirement, the claim is that as long as MADRE can
send a message, the consumption property is satisfied. An incoming message will always be
received.

If the compiler can extract and provide information about the size of the largest
message in the computation, the RCVQ partition could be sized exactly. If the largest
message is much larger than an average-size message, this algorithm can be quite wasteful.
Again, the runtime system can be more efficient if the user computation is expressed using
small messages. In general, the performance of the computation can be improved if the
RCVQ partition is larger than the minimum. Exporting and retrieving messages is certainly
more costly than leaving messages in situ on a node. However, devoting memory resources
to enlarging the receive queue means that less memory is available for user processes, thus

limiting the size of the computation that can be performed.

The Ezportation Mechanism Incoming user messages are queued in doubly-linked list
(Figure 5.11). If the node memory is not congested, all of these messages may reside on
the node in memory buffers. The pointer to the next or prev buffer is then just a memory
pointer. I, however, the node memory becomes congested such that no free buffer exists
to receive an incoming user message, space in the RCVQ partition must be freed via the
exported-message handler.

The buffer to be cleared is determined using the memory-partitioning tree. For ex-
ample, assume that node memory had been partitioned using Figure 5.5 and a buffer of
size 3 is required, but currently is unavailable. The exported-message handler traverses

the tree until it finds a block of size greater than or equal to 3. If that block (or any of
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Figure 5.11: The Doubly-Linked Queue of User Messages. If

the node memory is not congested, all of these messages may

reside on the node in memory buffers. If, however, the node

memory becomes congested such that no free buffer exists to

receive an incoming message, some messages in the queue may

be exported.
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int
up_from left(BLOCK xblock, int block_size,int size)
{ if (block is large enough and does not contain the RPC_reply_msg)
walk down the tree starting at block
else
continue walking up tree from block
}

int
up_from_right(BLOCK xblock, int block.size,int size)
{ if (block is large enough and does not contain the RPC_reply_msg)
walk down the tree starting at block
else
walk up tree from block
}

int ,
walk_up_tree(BLOCK xblock, int block_size, int size)
{ if (block is a left block)
walk tree up_from left (parent_ptr,block_size, size)
else
walk tree up_from_right (parent_ptr,block_size,size)
return{block_found);

}

int
walk_down_tree(BLOCK xblock,int size)
{ if (block is large enough)
if block is occupied
export message to clear block
else

export occupied messages starting at block, until enough space is cleared

Program 5.5: Traversal of Memory Allocation Tree to Export

Messages.
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int
make_rcvq_space(int size)
{ if (a user message is active)
{ walk up the tree starting at the last exported msg (if not NIL) or walk down from the root
return (block_cleared_flag) _
}
else
{ walk up the tree starting at the active user message
return (block_cleared_flag)

}
}

Program 5.6: Traversal of Memory Allocation Tree to Export
Messages. (cont.)

its sub-blocks) contains the two “non-exportable” messages (the active user message or an
active RPC-reply message) the block cannot be cleared and the tree search continues. Since
there are defined to be at least three blocks of the size of the largest message, this search will
eventually succeed. Programs 5.5 and 5.6 outline the technique used to traverse the memory
partition tree.

Program 5.7 and Figure 5.12 illustrate the definition and operation of an exported-
message remote process. When a message is exported, the message pointers within the queue
are updated. For example, next—prev and prev—next are updated to contain the reference
value of the new remote process. If the next or prev are remote processes, the message
pointers within those remote messages are updated by invoking a link atomic function in
the remote process.

When a message must be retrieved, the retrieve atomic function of the remote process
that holds the message is invoked. The remote process returns the message by invoking
the returning_msg atomic function of the exported-message handler. The exported-message
handler relinks the returned message into the message queue by updating the message

pointers of the next and prev messages.
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EMRP-->link(FLAG,msg_ptr)

EMRP-->tetrieve()

Exported-Msg
Remote
Process

Exported Msg
Handler
A

A_EM_handler-->returning_msg(msg)

H

Node Node

Figure 5.12: Exported-Message Process Operation. When
a message must be retrieved, the retrieve atomic function of
the remote process that holds the message is invoked. The
remote process returns the message by invoking the return-
ing_msg atomic function of the exported-message handler. The
exported-message handler relinks the returned message into
the message queue by updating the message pointers of the
next and prev messages. Node B does not directly dispatch
to the exported-message remote process but must indirectly

invoke the process through the remote-process handler.
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processdef Exported_msg : public Remote_process
{ Exported_msg #next;
Exported_msg xprev;
MSG msg;
public:
atomic void link(int flag,Exported_msg+ msg);
atomic MSG retrieve();

Program 5.7: Process Definition for Exported-Message Re-
mote Process.

The message exportation scheme used in the MADRE system is fundamentally based
on the queue-problem solution detailed in section 1.2. In that solution, new queue elements
were encapsulated within processes that were then appended to a list of processes. For
message exportation, messages in the interior of the queue can be transformed into processes.
Only the operations to update the message pointers are complicated by this generaﬁzation.
The crucial PUT mechanism of the queue result ensures that link messages are received

before a retrieve atomic-function message.

REMOTE-PROCESS HANDLER

The exported-message handler relies on the two services provided by the remote-process
handler: instantiation of remote processes, and delivery of messages to remote processes.
For example, in Figure 5.12, Node B does not directly dispatch to the exported-message
remote process but must indirectly invoke the process through the remote-process handler.

Program 5.8 outlines the declaration of the remote-process handler.

Remote Process Creation As mentioned in section 1.2.2, the reactive creation of remote
processes is critical. Imagine the following situation. An incoming user message cannot be
received, and a buffer that can be cleared is identified. A remote-process new operation
is performed so that the message can be exported. A reference value of this new remote

process will be required before the message can be retrieved. If the new operation for a
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remote process returns a reference value to the parent, how will that message be received
when there is already a blocked incoming message at the node? The essence of the message-
exportation mechanism is that messages are flushed out of the node immediately. No
references can be returned to the creating process as part of the mechanism.

Since there is no returning reference value to the new remote process, there must
be an indirection mechanism that can be used to refer to the process. In the MADRE
system, the parent process of a new remote process assigns a unique identifier to the new
process before placing the process. How these unique identifiers are generated is arbitrary.
In the MADRE system, each node maintains a counter of the remote processes that have
been created. A unique identifier (modulo counter wrap-around) is formed by combining
the creating node number and the current value of this counter. This identifier is then
treated as an ordinary reference value, eg, it can be passed between processes in messages.
Atomic functions of the remote process are invoked through this identifier. By decoding
this identifier, remote-process handlers can locate the remote process (see next section),

thus providing an indirect reference mechanism.

In addition to assigning an identifier, the parent process determines the node on which
the new process should be placed. The parent process sends the new message to the remote-
process handler on that node. If the node cannot accept the remote process (eg, due to
space constraints), the new message is bounced to another node (Figure 5.13). If that node
cannot accept the message, it selects another node for placement and then forwards the
new message to it. In the MADRE system, nodes are selected for remote-process placement
deterministically. Specifically, each new message emanating from a particular node will
first invoke the instantiate_remote process atomic function of the remote-process handler
on the same remote node (called next_neighbor). If the placement algorithm can be locally
computed, no information must be stored about how to forward the message. This approach
then ensures that a new message will bounce from node to node until it locates a node that
can accept it. Since no node memory is consumed by this search (each stop at a node leaves

no residue), the placement of a remote process can continue indefinitely without consuming
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remote-process
new message

Figure 5.13: Forwarding of a Remote-Process New Message.
Each new message emanating from a particular node will invoke
the instantiate_remote_process atomic function of the remote-
process handler on the same remote node called next_neighbor.
A new message will bounce from node to node until it locates
a node that can accept it. Since no node memory is consumed
by this search (each stop at a node leaves no residue), the
placement of a remote process can continue indefinitely with-

out consuming precious memory resources.
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memory resources.

In the prototype MADRE system, next_neighbor is provided by the host program at
load time. The algorithm currently used is simply a particular offset, or stride away from the
parent node. For example, in Figure 5.13, the stride between nodes is two. The stride should
be chosen so that the vast majority of nodes of the machine are touched before a node is
touched twice. If a new message traverses a complete cycle and returns to the original node,
that remote process should be placed on the disk connected to the ensemble. By making the
cycle of nodes as long as possible, we reduce the likelihood of the message-passing deadlock
described on page 102.

Thus, the remote-process creation mechanism is the implementation of the reactive
new mentioned in section 1.2.2. Since no reference value is returned from the new op-
eration, no selective receive of messages is required. This mechanism is crucial to the
MADRE system and to the implementation of Remote Procedure Calls. There are two
primary characteristics that restrict the use of this mechanism. First, all messages sent to
remote processes traverse the entire chain of nodes that were touched during placement.
For exported-message remote processes, at most three messages (new, link and retrieve)
traverse the chain of reference so this algorithm does not introduce~significant overhead.
However, using this algorithm for user-process placement would be inefficient since an un-
known number of messages might follow a potentially long chain of references. Instead,
using the implementation of an RPC provided by the remote-process-creation mechanism,
user processes can be placed and a reference value returned. All subsequent communication
to the process is therefore direct.

The second disadvantage is that there is no built-in indication of when the remote-
process instantiation has completed. Assume that the reference to a new remote process is
communicated to another process and that process sends a message to the remote process.
The order of arrival of this message and the new message is nondeterministic. If the new
message is not received first, an error has occurred. If the remote-process references are

to be used by processes other than the creating process, some form of synchronization is
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processdef Remote_process_handler: public Handler
{ int xhash_table;
int sys_proc_ident_cnt; // counter used to produce identifiers

public:
atomic void deliver_msg(ID destination,MSG msg);
atomic void instantiate_remote_process(ID
destination, ARGS args);

Program 5.8: Process Definition for the Remote-Process Han-

dler.
required to ensure that new operation has completed. This synchronization is not, however,
required for each remote-process new. Instead, many remote processes can be created, with

a single completion signal indicating when the entire structure has been instantiated.

Handler Operation When a process sends a message to a remote process, the destination
identifier must be decoded by the sender to determine which node is the first in the chain of
reference. Since the destination identifier is an indirect reference to the process, the message
is sent via the remote-process handler.

In the MADRE system, a hash table of identifiers within the remote-process handler
is used to locate the remote process. Each index in the table points to a linked list of remote
processes that are resident on the node. When the deliver_msg atomic function is invoked
(Program 5.8), the remote-process handler hashes the destination identifier into the fixed
set of indices. Using the resulting hash index, the corresponding linked list is searched for
the remote process. If the process is not found in the list, the message is forwarded to the

next_neighbor node, which may house the remote process.
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processdef Reply_handler : public Handler

{
public:
Ack ack_sndq_startf NUM_ACKS];
Ack xack_sndq_limit;
Ack xack_sndq_head;
Ack xack_sndq.tail;

atomic void handle_ack();
atomic void handle_nack();

Reply_handler();
void send_ack() ;

void send_nack();
void enqueue_ack(int type, NODE dest);

Program 5.9: Process Definition for the Reply Handler.

REPLY HANDLER

The reply handler is an optional handler that illustrates how handlers can be included
to experiment with different software implementations of message-passing protocols. The
reply handler included in the maximally-robust MADRE configuration implements a two-
trip, or receipt-acknowledged, message-passing protocol. This algorithm is based on the
sending node maintaining a copy of the message until the message has been safely received
by the destination node. This protocol is used for user messages in the maximally-robust
configuration of the MADRE system.

This message protocol has stronger message-order-preservation properties than con-
ventional one-trip protocols. By waiting for an acknowledgment to a message sent from
process A to process B, we are assured that B receives that message before any messages
sent subsequently from A, through a third process, C, to B. If found to be useful, this

protocol could be incorporated into future versions of Mosaic message-passing hardware.

Program 5.9 outlines the definition of this handler. The receiving node invokes the
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handle_ack atomic function of the sending node’s reply handler if a message has been received

and written into RCVQ memory. If the receiving node cannot receive the message, it invokes
the handle_nack atomic function and the incoming message is flushed by being received into a
preallocated buffer that is used in write-only mode. In the case of a large incoming message

and a smaller flush buffer, the message will be received, and then flushed, in fragments.

Note that the outgoing handle_ack/handle_nack acknowledge messages must exit the
node as conventional messages, so they may be temporary blocked from entering the net-
work. However, the receiving node continues to receive and/or flush messages, generating
more handle_acks or handle_nacks, that must be queued for sending.

The acknowledge queue is a statically defined queue in the SYS memory partition. The
outgoing acknowledge messages themselves are not queued, only the type of the acknowledge
(handle_ack or handle_nack) and the destination node for the acknowledge. In the worst case,
every node has sent one message to a particular node. In that case, the destination node
may need to queue N acknowledges. Since N may be as large as 16K, this approach could
require more memory than is available on the node. Fortunately, this worst case is highly
improbable. By increasing the size of the acknowledge queuve, we reduce the likelihood of the
message-passing deadlock described on page 102. In practice, a small acknowledge queue of
order 10 has been used reliably for Mosaic ensembles with 256 or fewer nodes.

handie_ack/handle_nack acknowledge messages are small, requiring only a header that
indicates the destination reply handler and destination atomic function. This header can
be completely received on the destination node during the first phase of the message receive
(ée, into the msg_hdr_buffer). Thus, these acknowledge messages can always be received. If
the handle_ack atomic function is invoked, the message being acknowledged can be freed
and the next message (if any) can be sent. If the handle_nack atomic function is invoked,
the reply handler simply resends the rejected message. The sending node does not send

another message until the handle_ack to the previous message send has been received.
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Implementation The inclusion of the reply-handler in the MADRE configuration cur-
rently requires some minor modifications to the MADRE interrupt-handling routines. In the
buffer_full _interrupt handling routine, if the allocation of a receive buffer fails, MRP and MRL
should be set so that the message is received into the flush buffer. In the receive_interrupt
handling routine, the sending node’s reply-handler atomic functions are invoked: handle_ack
if the message was received, handle_nack if the message was flushed.

Two flags are modified by the reply handler to ensure that a new message is not sent

until the ack from the previous message has been received.

waiting_for_ack A message has been sent to which the ack has not been received. No addi-
tional user messages can be sent. Acknowledge messages (handle_acks or handle_nacks)
and runtime-system messages can be sent however since they can always be received

by their destination nodes.

usr_send_pending A message has been sent, but the send_interrupt has not been been re-
ceived, indicating that the message has not yet entered the network. No messages can
be sent until this interrupt is received. When the send_interrupt is received, the next
queued acknowledge message should be sent. If the acknowledge queue is already
empty, the next queued user message should be sent if not already waiting_for_ack.

usr_send_pending implies waiting_for_ack.

USER-PROCESS HANDLER
The user-process handler queues incoming user messages for consumption by the CPM
(C-Plus-Minus) process (see section 5.2.4). This handler is the producer of the queue of
messages that is the interface between the two contexts (Figure 5.1). All handlers execute
in the SYSTEM context, while user processes operate in the USER context.

Program 5.10 outlines the definition of the user-message handler. When this process is
instantiated, it initializes the qhead and gtail of the message queue to NIL. The constructor
for this handler also configures the USER context by setting the APC (Alternate-Program

Counter) register so that the CPM process (the consumer of the message queue) will execute
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processdef User_process_handler : public Handler
{ MSG xqhead,*qtail;
public:
User_process_handler();
atomic void queue_msg(MSG msg);

Program 5.10: Process Definition for the User-Process Han-
dler.
upon context switch.

When the queue_msg atomic function of the user-message handler is invoked, the
enclosed user message must be appended to the queue of messages. If the queue is not
empty, the next field of gtail message is updated either by sending a link message if the qtail
message is remote, or by simply updating the memory reference. The prev field of the new
message is assigned the value of qtail and then gtail is set to refer the new message.

By adding functions to the user-message handler, capabilities to trap certain user
messages, such as user-process new messages, can be added. These capabilities can optimize

performance since they execute in the priority SYSTEM context.

TERMINATION HANDLER

The termination handler is an example of an optional handler that can be included
in a runtime system configuration. In the MADRE system, this handler is used to detect
acquiescence both of the loading phase and, later, of the user computation. Program 5.11
outlines the definition of this handler.

The distributed algorithm executed by the termination handlers on each node is an
extension of Dijkstra’s algorithm [14] for detecting termination. In [38], Taylor presents
the distributed algorithm and a proof of its correctness. A similar termination detection
algorithm is used in the Cantor runtime system.

Each node maintains a “color” variable depending on whether it is busy (BLACK) or
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processdef Termination_handler : public Handler
{ .
public:
int num_msgs.sent;
int num_msgs_revd;
int node_color;
int node_holds_token;
int token_color;
int token_sum;
Termination_handler();
atomic void receive_token(int,int);
void send_token();
void is_rts_idle();
b

Program 5.11: Process Definition for the Termination Han-

dler.
idle (WHITE). In the MADRE system, a node is WHITE only if no interrupts are pending,
the user-message queue is empty, and no user message is currently being processed. The
node becomes BLACK whenever a send_interrupt or receive_interrupt is received for non-
termination-detection messages. Each node also keeps a count variable that is the difference
between the number of messages sent from this node and the number of messages received.
A token is comprised of a color variable and a count variable.

The termination detection algorithm uses a token that circulates through the nodes

in the ensemble. A phase of the algorithm begins with the host sending out a (WHITE, 0)
token to a node. When a token enters a node, if the node is BLACK, the token becomes
BLACK. Later when the node becomes idle, the node’s count of messages is added to the
token count of messages and the token is sent to the next node. If the node is WHITE
when the token arrives, the count variable is added to the token count and the token is
immediately sent to the next node. If two consecutive phases of this algorithm return a
WHITE token with a count of zero to the host, the ensemble has reached an acquiescent

state.
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This algorithm does not add significant overhead to the user computation. The token
propagates slowly through the nodes as they become idle and then very quickly through
the nodes when the computation has terminated. In the MADRE system, we use a linear

ordering of all the nodes (including the host node) for simplicity.

5.2.4 The CPM Process

The modular design of the underlying MADRE system allows direct substitution of handlers
and processes that implement support for different programming languages. The MADRE
components mos;c likely to be substituted are the code handler (page 94), and the user-
message handler (page 118). The CPM process (Figure 5.1) is not a MADRE process, but
rather a C+-—-specific process that is layered atop the MADRE system. Hence, to support
additional programming notations, this process would also be replaced.

Recall that the user-message handler queues incoming user messages for consumption
by user processes within the USER context. In general, the CPM process consumes the
message queue by decoding the relevant message section and then invokes an atomic function
of the destination user process. If the message-exportation capability is included in the
MADRE system, the operation of the CPM process is more complex. The message at the
front of the message queue may have been exported. This message must be retrieved before
any other user message can be processed by the CPM process. This constraint is dictated by
our choice of queuing strategy. The next pointer in the quene of messages resides within the
message. Thus, when a message has been exported, the information about how to access

the remainder of the queue is not available to the CPM process.

RPC HANDLING

The C+- programming notation includes the capability for a Remote Procedure Call (RPC)
(section 3.2.3). However, the MADRE system does not explicitly provide an RPC to user
processes, but rather provides the mechanism for guaranteeing that messages can be received
(relying on message exportation). The CPM process must provide the necessary runtime

support for the execution of RPCs. Relegating this function to the CPM process adheres
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CPM::CPM
{ while (1)
if (qhead ! = NIL)
{ if (ghead is local)
{ invoke destination function of user process
if (process did not suspend)
free space occupied by message
if (messages had been buffered at process) and (message was consumed)
prepend buffered messages to message queue
if (RPC-reply message exists)
free space occupied by RPC-reply message
}

else
if (not already waiting for returning ghead)
retrieve ghead message

Program 5.12: Operation of the CPM Process.

to the layered-system philosophy. From the perspective of the MADRE processes, user
messages are “consumed” as soon as they are placed into the internal user-message queue.
Independent of the runtime system, the CPM process and user processes can cooperate to
modify the order of message processing (eg, a RPC-reply message is processed before a
message that was received earlier).

The algorithm executed by the CPM process is outlined in Program 5.12. In normal
operation, the ghead message is removed from the message queue and delivered to the
destination process for consumption. If the message is completely consumed, the memory
occupied by the message is freed, and control is returned to the CPM which removes the next
message from the queue. Assume instead that, while consuming the message, the destination
process executes an RPC. In that case, the user process uses an inherited function called
wait to suspend its own execution and return control to the CPM function. The space

occupied by the message being consumed by the now-suspended user process is not freed.
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user
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msg

Figure 5.14: Buffered-Message Queue for a Process. If the
destination process has been suspended and the message is not
the reply to the RPC, or if the destination atomic function is
not active, the message is appended to a local queue for that
process. Note that messages buffered at the process may also

be exported to free space for incoming user messages.

The CPM process decodes the destination of the next message in the queue. If the
destination process has been suspended and the message is not the reply to the RPC, or
if the destination atomic function is not active, the message is appended to a local queue
for that process (Figure 5.14). If the message is an RPC reply, execution of the suspended
destination user process is resumed. The desired returning values are extracted from the
RPC-reply message.> When the user process suspends again, or when it finishes consuming
the original message, the memory occupied by the RPC-reply message can be freed.

When a message has been consumed by a process, any messages that were buffered
must be re-examined. In the case of active and passive operations, the consumption of
a message may have altered whether or not a particular message will be accepted. For
RPCs, when the process is revived, each of the messages that were buffered while the

process was suspended must now be processed. Consequently, all messages in the process’s

3The code for this extraction is generated automatically by the C+— compiler.
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local message queue are prepended to the front of the message queue. The CPM process
proceeds to dispatch off each of these messages as if they had never been handled. If these
buffered messages have been exported, they must be retrieved. Again, our choice of queuning
strategies, such that no queue information is permanently resident in the node, precludes
shortcuts that allow the CPM process to identify messages that will be immediately re-
buffered. Future runtime systems will likely include hybrid algorithms that keep some local
information about the queue contents, without allowing the space occupied by that queune

to grow arbitrarily.

5.3 Host Services and Loading

A program running on the ensemble host executes the following operations to load and

execute a C+- program.

o After resetting the ensemble, the host sends a message that contains the MADRE run-
time system to each node in the ensemble. Upon receiving this, the Mosaic node begins
executing instructions at the beginning of the runtime-system message. The code for
the runtime system includes space allocated for the statically instantiated MADRE
Root and kernel processes. Ensemble parameters such as mynode and num_nodes are
mnitialized by directly modifying the internal variables of the MADRE Root process

within the message before it is sent.

e A message containing the number of user-code pieces that will be loaded is sent to the
code handler on each node. This handler then allocates the code-management tables

described on page 94.

¢ Each user-code piece is loaded onto a subset of nodes in the enserble. In the prototype
MADRE system, the host program uses simple mapping schemes for selecting nodes.
Even-numbered code pieces are loaded on even-numbered nodes, or every nth code-
piece is loaded on every nth node, etc. Future MADRE systems will experiment

with more sophisticated code-mapping heuristics. Beginning on page 94, two of the
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algorithms used to allow access to non-resident code pieces are described.

e The host program initiates sends the termination-detection token to node (0, 0) of
the mesh. This token circulates through each of the nodes in the ensemble to detect

when all of the loading messages have been consumed (page 119).

e When the host program detects that loading has terminated, it instantiates the root
process of the C+- program on a node in the ensemble. In the prototype MADRE
system, the node selected is a node near the center of the ensemble. The host program
then initiates another termination-detection cycle; this token cycle is used to detect

when the user computation has terminated.

The host program includes a set of C+- processes that corresponds to the set of
kernel processes instantiated on each node in the ensemble. During the execution of the
C+- program, messages sent from the ensemble to the host processes are delivered to the
destination handler on the host. For example, remote-process new messages may be sent to
the remote-process handler if they could not be placed on the nodes in the ensemble (page
111).

The host program also includes an error process, to which ensemble processes send
messages to report error conditions. The prototype MADRE system includes a single console
process, to which ensemble processes send print messages. By increasing the number of
console processes and initializing the console_ref given to each node in the ensemble, more

sophisticated algorithms for concurrent I/O can be implemented.
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6 Experimental Results

Our research group has developed a complete set of prototypes that span the computational

levels (section 1.4):

¢ C+- as the high-level programming environment,
¢ MADRE as the fine-grain runtime system,

e and the Mosaic C as the hardware implementation of the fine-grain multicomputer

architecture.

These prototypes allow the algorithms employed by the MADRE system to be evaluated
experimentally. In this chapter, we present experiments in which test C+- programs are

executed on a 256-node Mosaic C.

6.1 Experimental Method

The experimental method used in this thesis has been to define and then test several
hypotheses concerning runtime-system design and implementation. For example, we hy-
pothesize that a runtime system can do a good job of automatic process placement. We
hypothesize that runtime-system operation can be made more robust by including message-
exportation capabilities, without excessive loss of efficiency. We hypothesize that efficient
code-management algorithms are required, and feasible, for fine-grain multicomputers.

We investigate these hypotheses by varying the runtime-system implementation and
measuring its performance when executing a suite of test programs. Test programs have
been selected for inclusion in the suite because they satisfy two criteria: their behaviors are
simple enough to be immediately understood, yet they illustrate the performance differences

between runtime-system algorithm alternatives.
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processdef coliector_handler : public Handler

{ public:

int number_of_processes;

int num_msgs._cross_bisection;
int num_usr_msgs _sent;

int num_msgs.sent;

DIST_ARRAY usr_msg length_array;
DIST_ARRAY length_msgs_array;
DIST_ARRAY msg_distance_array;
DIST_ARRAY placement_distance_array;
DIST_ARRAY hop_atray;

collector_handler();

atomic void collect_phase(DIST_ARRAY usr.msglength,
DIST_ARRAY message_length,
DIST_ARRAY message distance,
DIST_ARRAY placement_distance,
DIST_ARRAY hop_distribution);

Program 6.1: Process Definition for the Collector Handler.
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processdef Host_collector
{ public:
atomic void rcv_node_data(int x,int y,int num _processes,
int num_existing_processes,int num_usr_msgs,
int num_msgs,int num_msgs_cross_bisection,
int proc_memory_available,int proc_memory size);
atomic void rev_vector(int usr_msglength{[ARRAY SIZE],
int msglength[ARRAY SIZE],
int msg_distance[ARRAY_SIZE],
int placement_distance]ARRAY SIZE],
int hop_distribution]ARRAY_SIZE]);
Host_collector();
void  print_output();
b

Program 6.2: Process Definition for the Host Collector.

Each program is executed for a number of Monte Carlo trials [7]. The random-number
generator of the runtime system is seeded differently for each run. Executing the program
repeatedly mitigates the effects of initial conditions on runtime-system performance and
provides a more accurate estimate of output distributions. For each program, we can
measure distributions on variables such as the number and locations of processes that are
created, the number of user messages sent, the size of the messages, the memory utilization of
each node, and the distance traveled by user messages. These measurements are performed
by adding a collector handler to the set of kernel processes on each node (Program 6.1).
This handler includes counter variables that are updated throughout the execution of the
program.

A host collector process (Program 6.2) is included on the host to assimilate data from
the ensemble. When the unser computation terminates or halts due to an error, the host
program initiates a data-collection phase by invoking the collect_phase atomic function of
the collector handler on node (0, 0). The collector handler on that node replies immediately

to the host-collector process using the rcv_node_data atomic function. The arguments to this
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function include the performance data that pertain exclusively to that node, such as the
number of processes as a function of (z, y) coordinates. The collector then invokes the
collect_phase atomic function of its next_neighbor. This message contains the cumulative
values of ensemble performance data, such as the distribution of user-message lengths.
Eventually, the ensemble replies to the host collector with the cumulative data using a

rcv_vector message.

6.2 Process Placement

The choice of process-placement algorithm is a crucial aspect of runtime-system design
and implementation. The overall execution performance of the user program is directly
dependent on the placement of processes, particularly for large diameter machines such as

a 16K-node Mosaic ensemble.

6.2.1 Algorithms

The modular design of the MADRE system allows the direct substitution of different
process-placement algorithms by defining two functions, pick_node and failure_pick_node.
The pick_node is called by the parent process to select a node for plécing a new process.
The failure_pick_node function is called by the runtime system when a process-placement at-
tempt fails. Process-placement attempts may fail due to memory congestion on the selected
node. The failure_pick_node function uses a threshold function to determine when process
placement should be re-attempted or the computation should be halted. In the current sys-
tem, the number of placement attempts is one of the arguments in a new message. When
this hop count exceeds a predefined limit called hop_threshold, the computation is halted.
By defining separate mechanisms for initial process placement and for process-placement

failures, we can experiment with placing processes using one algorithm when the machine is
lightly loaded and another algorithm when resources become more scarce. There are three

algorithms used in this thesis for selecting nodes for process placement.

random A node in the ensemble is selected at random by computing a random number



130

modulo the number of nodes in the ensemble. No locality between the parent and
child processes is preserved using this algorithm. Placing processes purely at random
provides a useful base case for the class of randomized process-placement algorithms.

The practicality of this algorithm has been demonstrated by Athas in earlier work [4].

walk One of the four neighbors of the node where the parent process resides is selected at
random. If the placement attempts repeatedly fail, this algorithm in effect executes
a random walk of the machine. This algorithm can vary by whether the edges of
the mesh reflect the random walk, or they allow the walk to “wrap-around” to the
opposite side of the mesh. In contrast to purely random placement, this algorithm
represents the other endpoint of the locality vs. dispersal spectrum. This algorithm
is not expected to be practical for fine-grain multicomputers as its emphasis on local

placement encourages congestion of processes.

k-biased A distribution on a variable k, the distance from the parent node to the selected
node, is input to the runtime system at initialization. A distance d is selected ac-
cording to this distribution: a node at distance d from the parent node is selected
at random. This algorithm varies according to whether the mesh edges reflect or
wrap-around placement attempts and according to the type of the distribution used.
Currently, the distribution of & can be either uniform, normal or Poisson. The mean

and variance of the normal and Poisson distributions can also be varied.

6.2.2 Experiments

To evaluate the various process-placement algorithms, we have developed a test suite of
C+- programs and the performance-measuring tools discussed in section 6.1. The program
test suite currently includes a n-queens program, a prime-number sieve, a perfect-number
generator and Program 6.3. Each of these programs was selected because its behavior
is simple enough to be readily understandable and the problem size, eg, the number of

processes created, can be varied easily.
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processdef P
{ public:

atomic void f(int x);
b

void
P::Af(int x)
{.  Hc—console—print(x);

P+ p = new P(x+1);
p——>f(X+1);
}

root::root(ARGS a)
{  Pxp = new P(0);
p—1(0);

Program 6.3: Process-Placement Test Program.

Program 6.3 contains the C+- code for the simplest test program used to investigate
the process-placement algorithms. The behavior of this program is that a process is in-
stantiated on a node; this process then instantiates another process. The program halts in
error when the hop count of the process-placement attempt exceeds the preset threshold
hop _threshold.

Program 6.3 was executed for a number of trials (typically 10) using each of the nine
process-placement algorithms (random/random, random/walk, random/k-biased, etc.). In-
tuitively, one can predict the behavior of some of these algorithms. For example, ran-
dom/random should do a good job of dispersing the process load across the machine, but
will not preserve any locality between parent and child processes. Walk/random and walk/%-
biased should preserve as much locality as possible when the machine is lightly loaded, and
then switch to wider dispersal when nodes become congested. The k-biased algorithms
should exhibit locality and dispersal that is tunable, due to the fact that the input distri-

butions can be varied.



132

EFFECT OF INCREASING HOP_THRESHOLD

Figures 6.1 and 6.2 contain histograms of the number of processes per node using
a random-node initial placement and a random-node failure placement strategy (Ze, ran-
dom /random). Each histogram corresponds to a different value of hop_threshold — 0, 1, 2,
5, 10, 20, 50. For Program 6.3, the capacity of each node is about 170 processes. As the
number of hops that a new message may traverse increases, more nodes have been filled to
capacity before the program fails.

Figures 6.3 and 6.4 contain three-dimensional histograms of the occupancy of each
node in the ensemble after one trial execution of Program 6.3, using random /random place-
ment, for each value of hop_threshold. Intuitively, the random/random algorithm should do
the best job of balancing the process load across the ensemble. Even for this algorithm,
increasing hop_threshold results in a noticeable smoothing of the distribution of processes
across the machine. Figures 6.5 and 6.6 illustrate the effects of increasing hop_threshold for
the walk/walk placement algorithm. This algorithm is most susceptible to failure due to
congestion in the neighborhood of the parent. The node-occupancy figures also illustrate
that this algorithm may do a poor job of utilizing the entire machine, particularly if the
edges of the mesh reflect the walk and no information about the history of the walk has
been maintained.

Figure 6.7 plots the total number of processes as a function of hop_threshold for three
algorithms that use a random initial placement. Random/random is plotted as a solid
line, random/walk as a dashed line and random/k-biased-normal as a dotted line. Fig-
ures 6.8 and 6.9 contain similar plots for the walk and k-biased placement algorithms.
From these curves, one can see that permitting a small number of hops in process-placement

significantly improves the utilization of the machine.

PARENT-CHILD DISTANCE

The distance from the node on which the parent process resides, the parent node, to the

node on which the child process is placed, the child node, is a good metric for evaluating how
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Figure 6.3

The number of processes resident on each node is plotted as a

function of the node coordinates (z, y).
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well a particular algorithm disperses the process load. The walk/walk algorithm minimizes
parent-child distance, but at the cost of aggregating the process load near the parent node.
Conversely, the random/random algorithm disperses the process load without regard for
the distance from parent to child node. Figures 6.10 and 6.11 contain histograms of the
distance from parent to child node using the random/random and walk/walk algorithms,
respectively. The initial placement algorithm determines the shape of these curves; varying
the algorithm used when process placement fails does not appreciably alter the curves.

Note that the average distance between two nodes chosen at random of an n x » mesh
is

2 1

3 %)
or 10.625 for a 16 X 16 mesh. Figure 6.10 illustrates that the random/random algorithm
results in a mean parent-child distance of 10.64, conforming to the predicted value.

Figures 6.12 — 6.17 illustrate the parent-child distance for the uniform, Poisson, and
normal distributions used in the k-biased placement algorithm. Each of these figures depicts
first the input distribution used to select the distance from parent to child, and the measured
distribution of parent-child distances.

The difference between the input distribution in Figure 6.12 and output distribution
in Figure 6.13 is the result of choosing the input distance to be uniform over the maximum
distance from one corner of the mesh to another, in this case, a distance of 32. Ounly
the corner nodes can however place child processes at a distance of 32 without having the
placement reflect off of (or wrap-around) the edges of the mesh. The output distribution
in Figure 6.13 illustrates the effects of the mesh boundaries on the measured parent-child
distances.

Figures 6.14 — 6.17 illustrate that k-biased family of algorithms permits the distance
from parent to child node to be a tunable parameter that is input to the runtime system. The
output distributions are shifted slightly toward zero in comparison to the input distributions.
This effect is attributable to placement attempts that reflect off the edges of the mesh. For

larger meshes, this shift should be less significant. If the placement attempts are allowed to



143

[ ID 700
1} Entries 155
2400 Mean 10,64
|- RMS 5.348
I L
2000
L
r
1500 F {—

T
|

1200

A Vo

800 _\_

_J_l

T

0 4 8 12 18 20 24 28 32

Random/Random Placement

Figure 6.10: Distance Distribution from Parent to Child —

Random/Random Placement.

40000 : 5 5
[ Entriels 51
- Mean 0.9539
35000 L RMS 03447
30000 [H-1-
25000
L
20000 |-
15000 |-
10000 -
5000 FJ SR SR R
o ] Lt Tt il A 1oy 1 L1l 11 111
o 4 B 12 16 20 24 28 %2
Walk/Walk Placement

Figure 6.11: Distance Distribution from Parent to Child —
Walk/Walk Placement.



144

F D 900
F Entrieis 33
[ Mean 18.00
0.006 RMS 8941
0.005 r’
[
0.004
0.003
0.002
©.001
o il
o] 4 8 12 18 20 24 28 32
Probability of Distance to Child

Figure 6.12: Probability of Distance from Parent to Child -

k-Biased-Uniform /Random Placement.

[ i 1] 700;
3200 Eritel 53
Mean B.925;
- RMS 5.388
2800 i
i J—l L\
2400 B _[ L,]_‘
2000 |- Ll
1600 I3 1 -
1200 |- !
800 LL
400 E_ il
I ‘_L‘l_L
0 [ i3 I LodL S PR t 1 1T el )
a 4 8 12 18 20 24 28 32
k—Biased /Random Placement

Figure 6.13: Distance Distribution from Parent to Child — k-

Biased-Uniform/Random Placement.



145

5 500
r Entries 33
3 Mean 4,999
0.035 | RS 2.234
0.03 |
0025 |- .)
0.02 -
0015 [ (J

T

0.01 .t

0.005 L‘ -

g 12 16 20 24 28 32

T

A
i

=1
ES

Probability of Distance to Child

Figure 6.14: Probability of Distance from Parent to Child —

k-Biased-Poisson/Random Placement.

I 700
o 143
8000 1 Mean 4 5as
& J ‘{ RMS 2.673!
7000 [ ' L‘
6000 |-
F L
5000
4000 |- -
3000 t
2000 |- l’ 3 -
r ‘,
1006 [+ LLL
0 4 8 12 16 20 24 28 32
k—Biased /Random Placement

Figure 6.15: Distance Distribution from Parent to Child — k-

Biased-Poisson/Random Placement.



146

1o} 900;
0.06 - Eftrigs 33
[ Mean 5.000!

H RMS 1.413

=]
=}
G
T
 pbbi
—

T

0.04

Luwow o

Q.03

T

0.02

o
o
00 U OO OO |

L
s} 4 8 12 16 20 24 28 32

Probabitity of Distance to Child

Figure 6.16: Probability of Distance from Parent to Child —

k-Biased-Normal/Random Placement.

& ; D 700;
[ Entries 142,
[ Mean 4.596;
10000 i1 R 281
8000
- L
6000
4000
2000 r( .‘[L
t
0 PRSI BRI PRI SRR WA
0 4 8 12 16 20 24 28 32
k—Biased/Random Placement

Figure 6.17: Distance Distribution from Parent to Child — k-

Biased-Normal/Random Placement.



147

(&

)\
"‘V
)

fal

Randorm/Random Placement

Figure 6.18: Percentage of Messages Crossing Bisection — Ran-

dom/Random Placement.

wrap around the edges of the mesh rather than reflect, the output distribution is shifted to

the right.

MESSAGES CROSSING THE NETWORK BISECTION

The choice of process-placement algorithm directly affects the the number of messages
that cross the message-network bisection. For the experiments in this section, the Mosaic
ensemnble was divided in half in the z-dimension. Each node in the ensemble maintained a
count of the user messages that cross this boundary.

Figures 6.18 and 6.19 contain histograms of the percentage of messages that cross the
network bisection for each node in the ensemble. The first graph depicts the percentage of
messages crossing the network bisection using the random /random placement algorithm. As
expected, roughly half of the messages sent between random pairs of nodes in the mesh cross
the network bisection. The second graph illustrates the same metric using the walk/walk al-

gorithm. Figure 6.20 contains similar histograms of the percentage for the k-biased /random
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Figure 6.19: Percentage of Messages Crossing Bisection —
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algorithm using uniform, Poisson, and normal input distributions, respectively.

6.3 Robustness Evaluation

Although each of the test-suite programs is quite simple, ensuring the robustness of their ex-
ecution has proved to be non-trivial. The test-suite programs each generate combinatorially-
large trees of processes and then compute some function using that tree. As the tree is be-
ing constructed, process-placement attempts may flood into a given node in the ensemble,
quickly overwhelming its receive queue. For several of the process-placement algorithms,
such as the walk /walk strategy, that do not widely disperse the process-placement attempts,
this problem is particularly acute. The message-exportation mechanism described in section
5.2.3 is crucial for ensuring that the computation can proceed through the initial period of

building the tree of processes and execute to completion.

Analytical methods can be used to examine the probability of receive-queue overflow

using the random/random placement strategy. If I is the number of process-creation re-
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quests that are concurrently being attempted, N is the number of nodes in the ensemble,
and C is the number of such requests that can reside in the receive-queue of a node, the

probability of receive-queue overflow is given by

c

L 1 g 1 —1
Pouerflow =1- Z . (—]\7) (1 - J_V—')L

=0 1

Figure 6.21 illustrates this probability for L equals 1, 2, 5, 10, and 20 times N. For
each of these curves, the probability of receive-queue overflow is about 45% if the expected
number of process-creation requests received by each node is equal to the receive-queue ca-
pacity. These curves demonstrate that the likelihood of receive-queue overflow is unaccept-
ably high unless the receive queue capacity is significantly larger than the expected number
of process-creation requests received. The message-exportation mechanisms discussed in
Chapter 5 effectively increase the receive-queue capacily, thus decreasing the possibility of
receive-queue overflow. For placement strategies that emphasize locality, the expected num-
ber of processes per node can be much larger than if random/random placement were used;

thus making the message exportation capability crucial.

6.4 Future Experimental Work

6.4.1 Process Placement

Section 6.2 presented the experimental results of different process-placement algorithms
being used to execute the simple test program, Program 6.3. These results illustrate how a
tunable degree of locality can be employed in the process-placement strategy. The process-
placement algorithms need to be further evaluated on the current suite of test programs
plus more sophisticated application programs. Additional placement algorithms that rely
on limited knowledge of the history of previous placement attempts will be included in these

experiments.

6.4.2 Robustness Evaluation

Experiments to further evaluate the robustness measures of the MADRE system include:
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e Measure the memory utilization of the ensemble when a computation fails with and
without message exportation. Preliminary results indicate that the computations
frequently fail very early in the computation if messages cannot be exported, so that

a tiny fraction of the machine is utilized when the computation fails.

e Monitor the number of messages that are exported as a function of (z, y). This

experiment should illustrate message “hot-spots” of the computation.

e Vary the algorithms used to place exported-message remote processes (section 5.2.3).
Increasing the distance that remote-process new messages travel increases the dissi-

pation of “hot-spots”.

e Monitor the number of times a message is exported and retrieved to ensure that the

message-exportation algorithm does not introduce needless overhead.

Anticipated experiments with message exportation also include the simulation of ensembles
that include nodes with special capabilities. For example, is the performance of message
exportation significantly improved if the ensemble includes nodes that have a large available

memory?

6.4.3 Code Management
The test-suite programs are, in effect, the inputs to experiments concerning the code-
management strategies presented in section 5.2.3. The test suite already includes programs
that, when split into code pieces, have a variety of numbers and sizes of code pieces, but
additional programs should be added to extend this range.

Experiments with the code-management strategies in the MADRE system are ex-

pected to include:

¢ Vary the algorithms used for the initial placement of code pieces on ensemble nodes.
Deterministic algorithms, eg even-numbered code pieces reside on even-numbered

nodes, and randomized algorithms will be explored.
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o Measure the performance of the Least-Recently-Used and Remote-Code-Execution
code-management algorithms. Compare the wall-clock measurements of time required

to the execute programs using each management algorithm.

e Evaluate the performance of hybrid code-management algorithms. For example, when
the machine is lightly loaded, the code handlers should retrieve code pieces using the
LRU strategy. As the machine becomes congested, the code handlers on affected
nodes could begin using the RCE algorithm. Using a different hybrid algorithm, code
handlers could compare the size of the desired code piece with the size of the state
of the requesting user process. If the code piece is larger, the process state should be
copied to the remote node as per the RCE algorithm. If the process state is larger,

the code piece should be retrieved from its remote location using the LRU algorithm.
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7 Conclusions and Future Work

By developing prototypes at each level of computation, our research group has created a
framework for investigations into multicomputer software and hardware. In addition, since
each of these prototypes has been developed with high-performance goals, the end result is
an integrated system of practical value in solving application problems.

The Mosaic C has proved to be a versatile, reliable hardware platform for experi-
menting with system-level programming and higher-level user programming. The results
presented in Chapter 6 illustrate the execution of C+- programs, supported by the MADRE
runtime system. Our research group is currently working on the next version of the Mosaic
architecture. This new prototype, called the Mosaic T, is a two-level multicomputer, where
the first level handles message passing and the second level the execution of the user compu-
tation. The design of the C+- programming system and the MADRE runtime system have
been guided by the eventual goal of separating message-passing function from execution of
the user computation.

Using C+- to write the Mosaic runtime-system program has illustrated that C+- is
a powerful programming tool. The expressivity of this notation is higher than previous
multicomputer programming systems, without sacrificing execution efficiency. Future work
on C+-includes the final implementation of process layering and refining the heterogeneous-
machines interface mechanisms. An intense round of application-writing will follow to
develop further C+- and object-oriented fine-grain multicomputer programming techniques.

The contributions of this thesis have centered on the MADRE runtime system. The
design philosophy and structure of the MADRE system illustrate how a fine-grain runtime
system can be efficiently distributed. The modular design of the MADRE system facilitates

the tailoring of a runtime system to the target ensemble and the spectrum of expected
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application programs. By building an effective fine-grain runtime system, we demonstrate

that the fine-grain architecture can exploit the concurrency in application programs.

This thesis also presents several effective runtime-system algorithms. The process-
placement algorithms in Chapter 6 illustrate how easily algorithms can be interchanged in
a modular runtime-system design. The process-placement performance results demonstrate
that a runtime system can use a range of placement algorithms that trade off locality
and machine utilization. Future work will include investigations of algorithms that rely on
limited knowledge of the history of previous placement attempts. Each of process-placement
algorithms also needs to be evaluated during execution of more sophisticated user programs.
Executing programs on larger meshes is necessary to evaluate the practical effects of mesh
boundaries on placement algorithms. A significant number of experiments also need to
be conducted to evaluate the performance of algorithms used in MADRE for user-code
management and ensuring robust execution of user programs (section 6.4).

Future work on the MADRE system will likely include the optimization of key runtime-
system operations, such as computing DXDY, allocating buffers for incoming messages, and
user-process stack management. The remote-process creation mechanism will probably be
made available to C+- programmers. Given the proper mechanism for naming processes at
the parent node, programmers can build process structures and refer to their constituent
processes by computing reference values. The host program will become more sophisticated,
including the capability for concurrent I/0 to exploit the I/0 bandwidth at the edges of a

Mosaic mesh.
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