Analysis and Design of Turbo-like Codes

Thesis by

Hui Jin

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

2001
(Submitted May 23, 2001)

i

© 2001
Hui Jin
All Rights Reserved

il

To
my Parents
and

my wife Yingying

v

Acknowledgements

Looking back at the years I spent at Caltech, I would like to express my deepest grati-
tude to my advisor Prof. Robert J. McEliece. Without his support and guidance, this
thesis would have been simply a dream. It was his wonderful lectures on information
and coding theory that first attracted me into this field, then his appreciation led me
into his group as an undergraduate and later as a graduate student. Not only Prof.
McEliece’s insights and enthusiasm on research problems, but also his devotion to
education and academia have inspired me as to what a true world-renowned scientist
should be. He is a role model that I can always look up to.

My heartfelt thanks go to Dr. Dariush Divsalar at Jet Propulsion Laboratory. His
knowledge in each and every corner of communication theory has been a tremendous
resource for me. Discussions and collaborations with him are always informative and
fruitful.

I also would like to thank Prof. Robert J. McEliece, Prof. Jehoshua (Shuki)
Bruck, Prof. Michelle Effros at Caltech, and Dr. Dariush Divsalar, Dr. Samuel
Dolinar at JPL for serving in my Ph.D. examination committee, perusing my thesis
manuscripts, and giving their insightful advice.

Dr. Masayuki Hottori was very supportive of my work for providing me a summer
scholar position at Sony information-network technologies lab, Tokyo, in 2000. That
experience was truly valuable.

[am deeply grateful to our group secretary Lilian Porter for her professional
assistance on administrative matters and her care and kindness. My special thanks
also go to our former and current system administrators Robert Freeman, Naveed
Near-Ansari, and Dimitris Sakellariou, for their effort to keep the computers working
smoothly.

This thesis is made possible also by the gracious and enriching environment of

California Institute of Technology. The glorious legacy of Caltech and the stimulating

vi

atmosphere abundant on campus have been always an encouragement for me to keep
pursuing. In particular, I am happy to convey my deep appreciation to my good
friends Yi Li (Caltech), Tai Lam (UW), Changchun Shi (UC Berkeley), Alan Yue
(Caltech); to my current and former group mates Aamod Khandekar, Ravi Palanki,
Jeremy Thorpe, Srinivas M. Aji, Gavin Horn, Meina Xu, Mohamed-Slim Alouini,
Lifang Li, Neelesh B. Mehta, Diego G. Dugatkin, Hanying Feng, Michael Felming,
Sidharth Jaggi, and Qian Zhao.

Lastly, I would like to thank my family. My parents, Shunyun Jin and Meizheng
Li, taught me those most valuable “theorems of life” which I could not learn from
any text book or paper. Their love, support, and encouragement have been with me
every single moment. I am deeply indebted to them, as well as to my sister Ping Jin
and my grandmother. My wife Yingying has offered me the moral support and loving
encouragement only she can offer. This thesis is dedicated to her and my parents as

an inadequate but sincere expression of appreciation and love.

vil

Abstract

Fifty years after Shannon determined the capacity of memoryless channels, we finally
know of practical encoding and decoding algorithms that closely approach this limit.
This remarkable feat was first achieved by the invention of turbo codes in 1993 [5].
Since then, turbo codes have essentially revolutionized the coding field and became
one of the central research problems in recent years. While there has been a great
deal of excellent theoretical work on turbo codes, it is fair to say practice still leads
theory by a considerable margin.

This thesis endeavors to fill some of that gap. The main body of the thesis concerns
coding theorems for general turbo codes. By “coding theorems” we mean in a classical
Shannon sense: for a code ensemble, there exists a code threshold, if the channel noise
is below that, the error probability of optimal decoder goes to zero as the code length
approaches infinity. We first prove coding theorems for some simple serial turbo code
ensembles on the AWGN channel. Then we generalize the results for a broader class of
turbo-like codes on any memoryless channel. To closely estimate the noise threshold
in the coding theorems, we develop a method based on “typical pairs decoding.”
This method is powerful enough to reproduce Shannon’s original coding theorems on
any memoryless binary-input symmetric channels. Finally we introduce a class of
codes of linear encoding and decoding complexity with performance provably close to
Shannon’s limit.

One main contribution of both theoretical and practical interests in this thesis is
the introduction of (regular and irregular) “repeat-accumulate” codes. RA codes are

shown to be a serious competitor against turbo codes and LDPC codes.

viil

Contents

Dedication
Acknowledgements
Abstract

1 Introduction
1.1 Coding for Digital Data Transmission
1.2 Thesis Outline

2 Turbo-like Code Ensembles
2.1 Code Ensembleso
2.2 Memoryless Binary-Input Channels and the Union Bound
2.3 “Turbo-Like” Code Ensembles

2.4 The Interleaving Gain Exponent Conjecture

3 Repeat Accumulate Codes
3.1 Introduction
3.2 RA Code Structure L
3.3 Iterative Decoding of RA Codes
3.3.1 Tanner graph representation of RA codes
3.3.2 Message passing on Tanner graph realization
3.3.3 Performance of RA codes with iterative decoding
3.4 RA Codes Achieve Channel Capacity

3.4.1 Proof of main theorem

4 Beyond RA Codes

4.1 Introduction

iii

vii

10
11

14
14
15
20
21
23
25
25
30

35

ix
4.2 RDD Codes
4.2.1 Code structure
4.2.2 Coding theorem L oL
4.2.3 Performance of RDD codes with iterative decoding
4.3 Convolution-Accumulate Code
4.3.1 1OWE of the outer code
4.3.2 Weight spectral shape
4.3.3 Performance of CA code with iterative decoding

4.4 Repeat-Accumulate-Accumulate Codes

Coding Theorems for Turbo Code Ensembles

5.1 Introduction
5.2 The Turbo Code Ensembles
5.3 A Coding Theorem
5.4 Weight Enumerator Estimates for Parallel Turbo Code Ensembles . .
5.5 Weight Enumerator Estimates for Serial Turbo Code Ensembles . . .
5.6 Proof of Main Results,
5.7 Examples

5.8 Discussion and Conclusions L

Typical Pairs Decoding

6.1 Introductiono

6.2 Memoryless Binary-Input Symmetric Channels

6.3 Typical Set Decoder oL

6.4 Binary Symmetric Channel 0oL
6.4.1 Typical pairs
6.4.2 The Shannon ensemble L.
6.4.3 The Gallager ensemble
6.4.4 The ensemble of Repeat-Accumulate codes

6.5 Generalization to Discrete Output Channels

6.6 AWGN Channel

49
49
50
52
56
58
60
63
65

6.6.1 Typical pairs 91
6.6.2 The Shannon ensemble 95
6.6.3 The Gallager ensemble 96
6.6.4 The ensemble of Repeat-Accumulate codes 96
6.7 Generalization to Continuous Output Channels 97
Irregular Repeat-Accumulate Codes 99
7.1 Introduction 99
7.2 Definition of IRA Codes 100
7.3 TRA Codes on the Binary Erasure Channel 103
7.3.1 Notation 104
7.3.2 Fixed point analysis of iterative decoding 104
7.3.3 Capacity achieving sequences of degree distributions 106
7.3.4 Some numerical results00 109
7.4 TRA Codes on the AWGN Channel 110
7.4.1 Gaussian approximation 111
7.4.2 Fixed point analysiso 113
7.4.3 Simulationo 116
7.5 IRA Codes on the Fading Channels 117
7.5.1 Introduction 117
7.5.2 Review: decoding of IRA codes 118
7.5.3 Rayleigh fading channels 119
7.5.4 IRA codes on Rayleigh fading channels 123
7.6 Conclusions 127
AWGN Error Exponents 128
Miscellaneous Derivations for Chapter 4 134
B.1 IOWE for the Inner Code of RDD Codes 134
B.2 Proof of Property 4.1 136

B.3 Spectral Shape of RDD Code Ensembles 137

xi

Miscellaneous Derivations for Chapter 5 138
C.1 Weight Enumerator Estimates for Truncated Convolutional Codes . . 138
C.2 Some Useful Inequalities 139
C.3 Bit Error Probability vs. Word Error Probability 141
Miscellaneous Derivations for Chapter 6 143
D.1 Proof of Theorem 6.2 143
D.2 Derivation of Equation (6.40) 145
D.3 Proof of Theorem 6.5 145
D.4 Proof of Theorem 6.8 147

Hardware Implementation of Iterative Decoding Algorithm of RA
Codes 151

Bibliography 157

xii

List of Figures

2.1
2.2

3.1

3.2

3.3
3.4

3.5

3.6
3.7

4.1

4.2
4.3

A “turbo-like” code with s; = {1,2}, so ={2,3,4},50 ={1}.
C; (an (n;, N;) encoder) is connected to C; (an (n;, N;) encoder) by

an interleaver of size N;. We have the “boundary conditions” N; = n;

Encoder for a (¢/N, N) RA code. The “rep. ¢” component repeats its
N-bit input block ¢ times; the “P” block represents an arbitrary per-
mutation of its ¢ N-bit input block; and the “acc.” is an accumulator,
whose outputs are the mod-2 partial sums of its inputs.
Comparing the RA code “cutoff threshold” to the cutoff rate of random
codes using both the classical union bound and the Divsalar bound,
along with binary-input channel capacity.
Tanner graph of a (3,2) parity check code.
Tanner Graph of a repetition 3, length 2 RA code, with permutation
T = (1,2,5,3,4,6). Each information node is present in three check
nodes; each check node checks the parity sum of two adjacent code
nodes and one information node.o
Simulated performance of iterative decoding of RA codes on an AWGN
channel.
The function of r4(8).
The RA thresholds.

Encoder for a (¢N, N) RDD code. The numbers above the input-
output lines indicate the length of the corresponding block, and those
below the lines indicate the weight of the block.
Tanner-Wiberg graph representation of a convolutional code.

Tanner-Wiberg graph representation of a RDD code.

10

21

4.4

4.5
4.6
4.7

4.8
4.9

5.1

5.2

6.1

6.2
6.3
6.4

6.5
6.6
6.7
6.8

7.1
7.2

xiil

Simulated performance of iterative decoding of RDD codes on an AWGN

channel. 42
Convolution-Accumulate code. 43
Weight spectral shape of Convolution-Accumulate code. 45

Performance of iterative decoding of Convolution-Accumulate code on
an AWGN channel.o 46
Structure of RAA codes. L 46
Performance comparison of rate 1/3 RAA, RDD, and RA codes with
iterative decoding, block length 1024. 48

Encoder for a parallel turbo code with .J branches. The numbers above
the input-output lines indicate the length of the corresponding block,
and those below the lines indicate the Hamming weight of the block.. 51
Encoder for a serial turbo code with J branches. The numbers above
the input-output lines indicate the length of the corresponding block,
and those below the lines indicate the Hamming weight of the block.. 52

Examples of memoryless binary-input symmetric channels. (a) Binary

symmetric channel. (b) Binary erasure channel. (c¢) Binary input finite

output channel. (d) AWGN channel. (e) Rayleigh fading channel. . . 70
The function K (6, p) for p =0.07,0.10.,0.15. 7
The function r(9) for the ensemble of R = 1/3 random codes. 81

The function 7(d) for the ensemble of R = 1/3 linear codes, together

with the function K (0,p) forp=0.174. 82
The function r(J) for the ensemble of (3,6) LDPC codes. 83
The function r(9) for the ensemble of R =1/3 RA codes. 87
Quantizing the AWGN channel. 92
A sequence of channels satisfying (6.46) and (6.47). 94
Tanner graph for (f1,..., f;;a) IRA Code. 101
IRA code as a serial turbocode.o 102

7.3

7.4

7.5
7.6
7.7

E.1
E.2
E.3
EA4
E.5

Xiv
Comparison between turbo codes (dashed curves) and IRA codes (solid
curves) of lengths k = 10%,10%,105. All codes are of rate one-half.
Rayleigh fading channel capacities, where the x-axis represents the rate
between 0 and 1, and the y-axis represents the signal-to-noise ratio
Ey/N,indB.
Plot of log ®(y), for Ex, =1,Np/2=1.0.
Performance of IRA code, rate 1/2, information block length 10%.
Performance of IRA code, rate 1/3, information block length 10%.

Notation for the messages.
Data flow of one iteration in decoding RA codes..
Data flow of INT module.
Data flow of LV-UPDATE module.
Data flow of DELAY module.

117

152

XV

List of Tables

3.1

4.1

4.2

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

7.1

7.2

Numerical data gleaned from Figure 3.2. 21
Numerical data for Ej/N, thresholds of RDD codes. 40
Numerical data for Ej/N, thresholds of RAA codes. 47
RA ensemble thresholds on the BSC, obtained using the union bound. 64

RA ensemble thresholds on the AWGN, obtained using the union bound. 64

Comparison of RA ensemble thresholds using the union bound to those

obtainable using the “typical pairs” technique on the BSC. 65

Comparison of RA ensemble thresholds using the union bound to those

obtainable using the “typical pairs” technique on the AWGN channel. 65

BSC thresholds for LDPC codes. 84
BSC thresholds for RA codes. 87
AWGN thresholds for LDPC codes. 96
AWGN thresholds for RA codes. 97
Performance of some codes designed using the procedure described in

Section 7.3.4. at rates closes to 2/3 and 1/2. § is the code threshold,
N the number of terms in A(z), and R is the rate of the code. 110

Good degree sequences of rate one-third for the AWGN channel and
with a = 2,3,4. For each sequence the Gaussian approximation noise
threshold, the actual sum-product decoding threshold, and the corre-
sponding (ﬁ—(b))* in dB are given. Also listed is the Shannon limit (S.L.). 115

7.3

7.4
7.5

E.1

xvi
Good degree sequences of rate roughly one-half for the AWGN chan-
nel and with a = 8. These two sequences are found by including or
excluding A, in the linear programming. For each sequence, the rate

of the code, the actual sum-product decoding threshold, and the cor-

responding (ﬁ—’;)* in dB are given. Also listed is the Shannon limit. . .
Channel capacities: numerical data gleaned from Figure 7.4.

Degree sequences of the IRA codes in simulation.

Updating rule at a check node.

116

Chapter 1 Introduction

1.1 Coding for Digital Data Transmission

The need for efficient and reliable data communication over noisy channels has been
rising rapidly for decades. This includes applications to telephone modems, wire-
less communication, deep-space communication, internet data transfer, data storage
devices, etc.

The fundamental approach to the problems of efficiency and reliability in com-
munication systems is contained in the Noisy Channel Coding Theorem developed
by C. E. Shannon [46] in 1948. Shannon’s theorem states that over a noisy chan-
nel, if R is less than the channel capacity C, there exists a coding scheme of code
rate R with arbitrarily small error probability. The proof to the theorem is essen-
tially non-constructive. It shows that for long block length, almost all codes of rate
R (< C) would be reliable. However, it does not give an explicit construction of
capacity-approaching codes, nor does it lay out practical decoding algorithms.

In the 50 years since Shannon determined the capacity of noisy channels, the
construction of capacity-approaching coding schemes has been the supreme goal of
coding research. But it was not until the early 90s that we saw the first class of
codes whose performance practically approaches Shannon’s theoretical limit. In 1993,
Berrou, Glavieux, and Thitimajshima [5] introduced turbo codes to the world. The
performance of turbo codes is typically within 1 dB of the Shannon limit on the
AWGN channel.

In brief, the novelty of turbo codes lies in the pseudorandom interleaver and it-
erative decoding. The pseudorandom interleaver introduces enough randomness to
achieve reliable communication at data rates near capacity, yet it has enough struc-
ture to allow practical encoding and decoding algorithms. The invention of turbo

codes has revolutionized the field of error-correcting codes. It led to the rediscovery

2

of low-density parity-check codes [24, 52, 38], and the discovery of the connection be-
tween iterative decoding and belief propagation and inference problems [52, 40, 3, 34].
Also, it has ignited an explosion of interest in the graphical model representations
of codes [48, 52, 34]. Based on these insights, many different powerful schemes have
been proposed. Finally today, we know of several practical codes and decoding al-
gorithms that closely approach the capacity of some classical memoryless channels.
Among those, turbo codes and low-density parity-check codes are still the two central
techniques. While theoretical research on low-density parity-check codes was laid out
by Gallager [24] in 1963, most research on turbo codes to date has been experimental,
and many theoretical questions still remain open.

This thesis deals with the analysis and design of turbo and turbo-like codes.
Two main problems motivate this thesis: proving coding theorems for general turbo
codes and designing better turbo codes. The first problem concerns a theoretical
justification of turbo codes: we move beyond the experimental demonstrations of the
sterling performance to prove that turbo codes are indeed a class of “good” codes. (By
“good” codes we mean code families that achieve arbitrarily small error probability
at some fixed non-zero code rate, which may be less than channel capacity.) The
second problem is an attempt to come up with a design methodology that can lead

to turbo codes achieving rates closer to the channel capacity.

1.2 Thesis Outline

The thesis is organized in such a way that different chapters can be read indepen-
dently, except Chapter 2, which contains some common material for all the other
chapters.

In Chapter 2, general code ensembles are first defined. We focus on turbo-like
code ensembles, which include classical turbo codes and serial turbo codes as special
instances. Then different channel models and union bounds over those channels are
briefly reviewed. Finally, a conjecture (Interleaving Gain Exponent conjecture) about

maximum-likelihood decoding performance of general turbo-like codes is presented.

3
Proving this conjecture is the main subject of Chapters 3, 4, and 5.

In Chapter 3, a simple class of serial turbo codes called repeat-accumulate (RA)
codes is introduced. The coding theorem for RA codes is proved for additive white
Gaussian noise channels by using the classical union bound. We believe this theorem
is the first rigorous proof of a coding theorem for any class of turbo-like codes. We
present the Tanner graph representation and the corresponding iterative decoding
method for RA codes. Surprisingly, despite their extremely simple structure and
sub-optimum iterative decoding, RA codes have performance comparable to the full-
fledged turbo codes.

In Chapter 4, several variations of RA codes are investigated. We show that
those codes generally have better maximum likelihood decoding thresholds, but not
necessarily better performance with iterative decoding.

It is shown in Chapter 5 that the techniques developed in Chapter 3 are sufficient
to prove the IGE conjecture for general turbo codes. This is proven for all parallel
and serial turbo codes on any memoryless binary-input channel, subject to only mild
restrictions.

In Chapter 6, a general upper bound on the probability of decoding error for
symmetric binary-input channels with typical pairs decoding is derived for both in-
dividual codes and arbitrary ensembles of codes. This bound is most useful in the
infinite block length scenario, as it provides an easy way to closely estimate the code
thresholds with maximum likelihood decoding. This method completely decouples
the channel from the code ensembles. In this, it resembles the classical union bound,
but unlike the union bound, it is powerful enough to reproduce Shannon’s channel
coding theorem on many standard channels.

In Chapter 7, an ensemble of codes called irregular repeat accumulate (IRA) codes
is introduced. IRA codes are a generalization of the repeat-accumulate codes. With
careful design, IRA codes can achieve channel capacity on the binary erasure chan-
nel, and perform close to channel capacity on the additive white Gaussian channel.
Remarkable performance is also obtained on the Rayleigh fading channels, although

no design techniques have been proposed.

4
There are five appendices which contain supplementary material. In particular,
Appendix E shows a hardware implementation of iterative decoding algorithm of RA

codes introduced in Chapter 3.

Chapter 2 Turbo-like Code Ensembles

Throughout this thesis, we will mainly consider ensembles of coding systems which are
built from fixed convolutional codes interconnected with random interleavers. We call
these systems “turbo-like” codes and they include as special cases both the classical
turbo codes [5, 6, 7] and the serial concatenation of interleaved convolutional codes
[8]. In Chapters 3, 4, and 5 we will be concerned with a general conjecture about the
behavior of those turbo-like code ensemble (maximum-likelihood decoder) word/bit
error probability as the word length approaches infinity. This chapter provides some

background material for the following chapters.

2.1 Code Ensembles

In this section we will give a careful definition of a code ensemble. By an ensemble
of linear codes we mean a sequence C,,,C,,, ... of sets of linear codes, where C,, is
a set of (n;, k;) codes with common rate R; = k;/n;. We assume that the sequence
ni, N, ... approaches infinity, and that lim;_, . R; = R, where R is called the rate of
the ensemble.

We shall be concerned with the weight structure of the ensemble, and with this
in mind we introduce some notation. If C'is an (n, k) linear code, we denote its
weight enumerator by the list Ay(C), A;(C),...,A,(C). In other words, A,(C) is
the number of words of weight h in C, for h = 0,1,... ,n. When no ambiguity is
likely to occur, we denote the weight enumerator simply by Ag, Ay,...,A,. We also

introduce the cumulative weight enumerator

h
Agh:ZAd forh=1,...,n. (2.1)
d=1

In words, A<j, is the number of nonzero codewords of weight < h.

6

When the code C' is viewed as the set of possible outputs of a particular encoder
E, then we denote by A the number of (z,y) pairs where the encoder input x has
weight w and the correspondlng encoder output y (codeword) has weight h. Usually
the encoder will be understood, and the simpler notation A, will do. The set of
numbers A, , where w ranges from 0 to £ and h ranges from 0 to n is called the input-
output weight enumerator (IOWE) for the code. In analogy with (2.1) we define the
cumulative input-output weight enumerator (CIOWE):

h
Apcn = Z Au.a. (2.2)
d=1

Returning now to the ensemble, we define the average weight enumerator for the set

C,, as the list

where

n 1
El éc—z for h=0,1,...,n. (2.3)
€C,

Similarly, we define the average cumulative weight enumerator Z(ﬁ,z, the average

IOWE A" | and the average CIOWE Z,(Z)Sh.

w,h?

We define, for each n in the sequence nq, no, ..., the nth spectral shape function

ra(0) & “log Ay, for0 <8 <1, (2.4)

S

Thus ZEZL) = ") where § = h/n.

Finally, we define the asymptotic spectral shape :

r(6) £ lim r,(5) for0<é§<1, (2.5)

n—00

provided the limit exists. In this case, we can say, roughly, that for large n, if the

ratio § = h/n is fixed, then

2.2 Memoryless Binary-Input Channels and the

Union Bound

Since turbo codes, as we have defined them, are binary codes, we consider using them
on memoryless binary input channels. Such a channel has binary input alphabet
{0,1} and arbitrary output alphabet 2. If the channel input is a binary random
variable X, then the channel output is a random variable Y. If € is finite, then Y is

characterized by transition probabilities p(y|0), p(y|1), i.e., for y € Q, i € {0,1},
Pr{Y = y|X =i} = p(ylo).

If Q is a subset of R", where R is the real line, then Y is characterized by transition

probability densities p(y|0), p(y|1), i.e., if S is a measurable subset of €2, i € {0, 1}.

Pr{Y € S|X =i} = /Sp(y|z)dy

The “noisiness” of the channel can be summarized by the Bhattacharya parameter

v, which is defined by

v=Y_VpWlo)p(yl), (2.6)

yeN

if € is finite and

) = / Vewl0p(s)y, (2.7)

if Q = R". Tt is easy to see (by the Cauchy-Schwarz inequality) that v < 1, with

equality if and only if p(y|0) = p(y|1) for all y, in which case the channel has capacity

zero.!

For example, for a binary erasure channel with erasure probability p, we have

YBEC = P-

Similarly, for a binary symmetric channel with crossover probability p we have

TBsc = 2 p(l —p).

Also, for the asymmetric “Z” channel, we have

Yz = \/p-

For an additive Gaussian channel with 2 = R and

p(yl0) = e e

Pl = e

a short calculation using (2.7) gives

—1/202
Yage = € 12,

As a final example, for the binary input coherent Rayleigh fading channel with perfect
channel state information available to the receiver, we have Q = R x R™, and for

(y,a) € Q2

p(y,al0) = e~ 2 e

py,all) = \/ﬁef(

!The so-called cutoff rate for this kind of channel is Ry = 1 —log, (1 +), which is positive if and
only if the capacity is positive, i.e., v < 1.

In this case (2.7) yields

1
YrrcsT =1+ —

202"

The significance of v is that 7" is an upper bound on the maximum-likelihood
decoder error probability for a binary code with two codewords separated by a Ham-
ming distance of h (see [39, Theorem 7.5]). It follows that for an (n, k) binary linear
code with Aj; codewords of weight h, we have the following upper bound, usually

called the union bound, on the ML decoder word error probability:
P < 3 A" (28)
h=1

=) Ape, (2.9)
h=1

where a = —log~y > 0 is what we shall call the noise exponent for the channel. Sim-

ilarly, we can use the union bound to estimate the ML decoder bit error probability:

n k
P YD T Awa™ (2.10)

h=1 w=1

Since the union bound is linear on weight enumerators, it also applies to ensembles
of codes, with Aj replaced by Z;n), the average number of codewords of weight h in

Cp:

Py < Y Aeen (2.11)
h=1

= e~ (@d=n(0)), (2.12)
h=1

where in (2.12) 6 = h/n. For the ensemble bit error probability we have

n k
P < 3 %Zme*ah. (2.13)

h=1 w=1

10
2.3 “Turbo-Like” Code Ensembles

In this section, we consider a general class of concatenated coding systems of the
type depicted in Figure 2.1, with ¢ encoders (circles) and ¢ — 1 interleavers (boxes).
The ith code C; is an (n;, V;) linear block code, and the ith encoder is preceded
by an interleaver (permuter) P; of size N;, except C7 which is not preceded by an
interleaver, but rather is connected directly to the input. The overall structure must
have no loops, i.e., it must be a graph-theoretic tree. We call a code of this type a

“turbo-like” code.

W3 h
3
— = F)3 ———
3
w w4 h,
—%
N N, ng

w h
N, n,

Figure 2.1: A “turbo-like” code with s; = {1,2}, so = {2, 3,4}, 50 = {1}.

Define s, = {1,2,... ,q} and subsets of s, by s; = {i € s, : C; connected to input},
so = {i € sy : C; connected to output }, and its complement Sp. The overall system
depicted in Figure 2.1 is then an encoder for an (n, V) block code with n =37, "n;.
Because of the difficulty of analyzing specific interleavers P;, we instead look at the
ensemble codes generated by all possible interleavers. This is also known as the uni-
form interleaver technique [6]. (A uniform interleaver is defined as a probabilistic
device that maps a given input word of weight w into all distinct (]Z; l) permutations
of it with equal probability p =1/ (]Z})) This generates a code ensemble.

If we know the IOWE Agz’hi’s for the constituent codes C}, we can calculate the

11
ensemble IOWE A,,;, for the overall system (averaged over the set of all possible

interleavers) [6]. The result is

- ALY,
Aw,h = Z Z ASB,hl H (l]l\)f:’;l (214)
hi:i.E:SO h;:i€50 =2 w;

Shi=h

In (2.14) we have w; = w if i € s;, and w; = h; if C; is preceeded by C; (see
Figure 2.2). We do not give a proof of formula (2.14), but it is intuitively plausible if

N;
w;

we note that the term Afj?hl/() is the probability that a random input word to Cj

of weight w; will produce an output word of weight h;.

(ni, N;) (ni’NJ)

Figure 2.2: C; (an (n;, N;) encoder) is connected to C; (an (n;, N;) encoder) by an
interleaver of size N;. We have the “boundary conditions” N; = n; and w; = h;.

For example, for the (ny + n3 + n4, N) encoder of Figure 2.1 the formula (2.14)

becomes
A h = Z A(l) . Af(xi),fw AS??,hg Al(i),hz;
7 hysho,hg.hg B (]1:2) (uN;:) (g:)

(ha+h3+hq=h)
(2) (3) (4)
— Z A(l) AUJ,hz Ahl,hg hi,hg

GGG

w

hy,ho,hg,hy
(ho+hg+hga=h)

2.4 The Interleaving Gain Exponent Conjecture

In this section we consider systems of the form depicted in Figure 2.1, in which the
individual encoders are truncated convolutional encoders, and study the behavior of
the average ML decoder error probability as the input block length N approaches
infinity. If Zﬁh denotes the ensemble IOWE when the input block has length N, we

12

introduce the following notation for the union bound (2.8) for systems of this type:

Next we define, for each fixed w > 1 and h > 1,

a(w, h) = limsuplogy A,, -
N—o0
It follows from this definition that if w and h are fixed,
Zg,hvh = O(Nowhtey ag N — oo,
for any € > 0. Thus if we define
Py = maxmaxa(w, h)

it follows that for all w and h,

Zﬁwh = O(NPMT) as N — oo,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

for any € > 0. The parameter 3,;, which we shall call the interleaving gain exponent

(IGE), was first introduced in [6] and [7] for parallel concatenation and later in [8] for

serial concatenation. Extensive numerical simulations, and theoretical considerations

that are not fully rigorous, lead to the following conjecture about the behavior of the

union bound for systems of the type shown in Figure 2.1.

The IGE Conjecture. There exists a positive number 7y, which depends on the

q component convolutional codes and the tree structure of the overall system, but

not on N, such that for any fixed v < 7, as the block length N becomes large,

PYP = O(NPM).

(2.20)

13
Eq. (2.20) implies that if 55, < 0, then for a given v < 7o the word error probability
of the concatenated code decreases to zero as the input block size is increased. This
is summarized by saying that there is word error probability interleaving gain. 2
In [18], the calculation of a(w,h) and 5y, for a concatenated system of the type
depicted in Figure 2.1 was discussed, using analytical tools introduced in [7] and [8].

For example, for the parallel concatenation of ¢ codes, with ¢ — 1 interleavers, we

have

with equality if and only if each of the component codes is recursive. For a “classical”
turbo code with ¢ = 2, we have [y, = 0, so there is no word error probability
interleaving gain. This suggests that the word error probability for classic turbo
codes will not improve with input block size, which is in agreement with simulations.

As another example, consider the serial concatenation of two convolutional codes.

If the inner code is recursive, then

2 1
BM S . \‘dfreeQ‘F J + 1, (221)

where dg, is the minimum distance of the outer code. Therefore, for serial concate-
nated codes, if d > 3 there is interleaving gain for word error probability. (If the

inner code is nonrecursive 3y, > 0 and there is no interleaving gain.)

2There is a similar conjecture for the bit error probability which we do not discuss here. Suffice
it to say that the interleaving gain exponent for bit error probability is Sy — 1.

14

Chapter 3 Repeat Accumulate Codes

In this chapter we prove the Interleaving Gain Exponent conjecture introduced in
Section 2.4 for a simple class of rate 1/q¢ serially concatenated codes where the outer
code is a ¢-fold repetition code and the inner code is a rate 1 convolutional code with
transfer function 1/(1 + D). We believe this represents the first rigorous proof of a
coding theorem for any class of turbo-like codes. The iterative decoding performance
of RA codes is seen to be remarkably good, despite the simplicity of the codes and
the suboptimality of the decoding algorithm. Finally, we prove RA codes achieve
the ultimate Shannon limit —1.592 dB as the code rate goes to zero on the AWGN
channel. For practical interests, a hardware implementation of the decoding algorithm

of RA codes is shown in Appendix E.

3.1 Introduction

This chapter is an attempt to illuminate the “near Shannon limit” capabilities of
turbo-like codes on the AWGN channel.

Our specific goal is to prove AWGN coding theorems for “turbo-like” codes (Sec-
tion 2.3). Our proof technique is to derive an explicit expression for the ensemble
input-output weight enumerator (IOWE) and then to use this expression, in combina-
tion with either the classical union bound, or the “improved” union bound of Viterbi
and Viterbi [50], of Divsalar [15], or the recent “typical pairs” bound [2], to show that
the maximum likelihood word error probability approaches zero as the block length
is increased, provided signal-to-noise ratio exceeds some threshold. In the chapter we
demonstrate this technique for some very simple coding systems, which we call repeat
and accumulate codes. It is satisfying to have rigorously proved coding theorems for
even a restricted class of turbo-like codes. In Chapter 5 we prove coding theorems

for a much broader class of interleaved concatenated codes.

15
3.2 RA Code Structure

In this section we introduce a class of turbo-like codes which are simple enough so
that we can prove the IGE conjecture. We call these codes repeat and accumulate

(RA) codes. The general idea is shown in Figure 3.1. An information block of length

BT Y S

Figure 3.1: Encoder for a (¢N,N) RA code. The “rep. ¢” component repeats its
N-bit input block ¢ times; the “P” block represents an arbitrary permutation of its
gN-bit input block; and the “acc.” is an accumulator, whose outputs are the mod-2
partial sums of its inputs.

N is repeated ¢ times, scrambled by a ¢/N x ¢N interleaver, and then encoded by a
rate 1 accumulator. The accumulator can be viewed as a truncated rate-1 recursive
convolutional encoder with transfer function 1/(1+ D), but we prefer to think of it as
a block code whose input block [z1, ... ,z,] and output block [y, ... ,y,| are related
by the formula

y = 1
Yo = T+ Ta

Y3 = T+ To+ T3

Yn = $1+l‘2+1’3+"'+l‘n. (31)

To apply the union bound from Section 2.2 to the class of RA codes, we need the
input-output weight enumerators for both the (gn,n) repetition code, and the (n,n)

accumulator code. The outer repetition code is easy: if the input block has length n,

16
we have
0 if h w
AL = # (3.2)
(Z) if h = qu.
The inner accumulator code is less trivial, but it is possible to show that (again

assuming the input block has length n):

40 () (ot =0) o

(Sketch of the proof: Assume the output sequence yi, ... ,y, of weight h is divided
into runs of zeros and ones. Clearly z; is a 1 if and only if ¢ is at the conjunction of
runs, hence w = 2k or w = 2k + 1 if k is the number of runs of ones. So A, is the
number of sequences which have hamming weight A and have k£ runs of ones, where
k=|w/2].)

It follows then from the general formula (2.14), that for the (¢/N, N) RA code
represented by Figure 3.1, the ensemble IOWE is

qgN A(O) A(Z)
—(N) w,h1 h1,h
A, = —
" AT
O Gl) (3.4)
B (M) | |

quw

From (3.4) it is easy to compute the parameters a(w,h) and [y in (2.16) and
(2.18). The result is

e (3.5)

Bu = — [(Q;QW. (3.6)

It follows from (3.6) and the IGE conjecture (Section 2.4) that an RA code can have

word error probability interleaving gain only if ¢ > 3.

We are now prepared to use the union bound to prove the IGE conjecture for RA

17
codes. In order to simplify the exposition as much as possible, we will assume for the
rest of this section that ¢ = 4, the extension to arbitrary ¢ > 3 being straightforward

but rather lengthy. For ¢ = 4, (3.6) becomes (), = —1, so the IGE conjecture is
PJB = O(N1) for Ey/Ny > 7 in this case.

The union bound (2.8) for the ensemble of ¢ =4 RA codes is, because of (3.4),

4N h/2) 4N h)(hfl) ,

PP=3"%) " (w) 2w 1/ b (3.7)

h=2 w=1

Denote the (w, h)th term in the sum (3.7) by T (w, h):

A h (]u\)[) (Mgu_;h) (22;_—11) h
Ty(w,h) = Appz" = o i
e)

Using standard techniques (e.g., [41, Appendix A]), it is possible to show that for all
(w, h),

Tn(w, h) < D2ME(@y)+logs 7] (3.8)

where D = 4/\/7 is a constant, © = w/4N, y = h/4N,

3 Ho(4x) + (1 — y) Hy(-22 H,(%
Flo.y) = (4z) + (1 y; () +y (y),

and Hy(z) = —xlogy(x) — (1 — x)log,(1 — x) is the binary entropy function. The
maximum of the function F(x,y) in the range 0 < 2z < y < 1 — 2x occurs at
(x,y) = (0.100,0.371) and is 0.562281, so that if log, vy < —0.562281, the exponent
in (3.8) will be negative.

Let us therefore assume that log, v < —0.562281, which is equivalent to E},/Ny =
—(1/r)lny = —4lny > 4-1n2-0.562281 = 1.559 = 1.928 dB. If FE is defined to be
E = —log, v + 0.562281, it follows from (3.8) for all w and h,

Tn(w, h) < D27ME (3.9)

18
What (3.9) tells is is that if E,/Ny > 1.928 dB, most of the terms in the union bound
(3.7) will tend to zero rapidly, as N — oo. The next step in the proof is to break the
sum in (3.7) into two parts, corresponding to those terms for which (3.9) is helpful,

and those for which it is not. To this end, define
h’ é (lOgZ N))

and write

AN h/2

PP = Y Tn(w,h)

h=2 w=1
hy h/2 AN h/2

= > N Tw(w,h)+ > > Tn(w,h)

h=2 w=1 h=hn+1w=1

= 51+ S.

It’s easy to verify that when N is large enough, A1 4/Ays < 1 for h < hy and
w < h/2 < hy/2, which shows A, ;, is a decreasing function of w for large N. Thus

the sum S; can be overbounded as follows (we omit some details):

hn h/2
Sl — ZZTN(wah)
h=2 w=1
hy h/2
= ZTN (Lh)+) > Tn(w,h)
. 2/2211) 2
= O(N"H+>) Ty(w,h)
P
< 1+ ZZz‘h,h’Yh
h=2 w=2
hy h/2
= O(N"HY 4D D OM’/N*)"
h=2 w=2

= ONY)+O0(h}/N?
= O(N7h).

19
For the sum Sy, we bound each term Ty (w, h) by (3.9):

AN h/2
Sy = > > Ty(w,h)
h=hn+1w=1
AN h/2
< Y Ype
hy+1w=1
AN
= D/2) h2™"
hn—+1
< pX(hw+1)
= (1—2E)?

= 02 "= (log, N)?)

= o(N?).

We have therefore shown that for the ensemble of ¢ = 4 RA codes, if E,/Ny >
1.928 dB,

PP =81+S=0N"Y+oN1H=0(N1, (3.10)

which as we saw above, is the IGE conjecture in this case.

Although the union bound is adequate to prove the IGE conjecture for RA codes,
the threshold value vy derived is by no means the best possible. A tighter bound
generally yields smaller threshold values. For example, Viterbi-Viterbi bound [50]
and Divsalar bound [15] can be applied to improve the ensemble thresholds. That is

discussed in Appendix A. In particular, for RA codes, we have the following theorem.
Theorem 3.1 For an RA code ensemble with spectral shape r(0), we define

A 1—-61— 6_27(5)
= su ,
o<51<)1 d 2

Co

if Ey/N, > 1/Rc,, the average mazimum-likelihood word error probability for the

ensemble code approaches 0 as the block length is increased.

Using this theorem, we can lower the value of v, considerably, e.g., for ¢ = 4 from

20

- == threshold of random codes — union bound
—— threshold of random codes — new bound)
-—-—-+ binary input channel capacity
61| * * threshold of RA codes —union bound /
+ + threshold of RA codes — new bound

) I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Code Rate R

Figure 3.2: Comparing the RA code “cutoff threshold” to the cutoff rate of random
codes using both the classical union bound and the Divsalar bound, along with binary-
input channel capacity.

1.928 dB to —0.052 dB. In Figure 3.2 and Table 3.1 we display our numerical results
on RA codes. There we compare the “cutoff threshold” 7o for RA codes with ¢ in the
range 3 < ¢ < 8 using both the classical union bound and the Divsalar improved union
bound to the cutoff threshold for the ensemble of all codes (i.e., “random codes”) of
a fixed rate. These values of 75 can be further reduced, by “typical pairs” decoding

method, and that will be discussed in Chapter 6.

3.3 Iterative Decoding of RA Codes

The results of the previous section show that the performance of RA codes with

maximum-likelthood decoding is very good. However, the complexity of ML decoding

21

Rate 1/3 1/4 1/5 1/6 1/7 1/8

RA Codes (UB) 2200 | 1.928 | 1.798 | 1.721 | 1.670 | 1.631
Random Codes(UB) 2.031 | 1.853 | 1.775 | 1.694 | 1.651 | 1.620
RA codes (DB) 0.792 | -0.052 | -0.480 | -0.734 | -0.900 | -1.015
Random Codes(DB) | -0.453 | -0.774 | -0.953 | -1.066 | -1.146 | -1.203
Binary Shannon Limit | -0.495 | -0.794 | -0.963 | -1.073 | -1.150 | -1.210

Table 3.1: Numerical data gleaned from Figure 3.2.

of RA codes, like that of all turbo-like codes, is prohibitively large. But an important
feature of turbo-like codes is the availability of a simple iterative, message passing de-

coding algorithm that closely approximates ML decoding. In this section, we discuss

the iterative decoding of RA codes.

3.3.1 Tanner graph representation of RA codes

We start with a consideration of a Tanner graph realization of RA codes. A Tanner
graph [48, 52] G = (V, E) is a bipartite graph whose vertices can be partitioned into
variable nodes V,, and check nodes V., with edges £ C V,,, x V.. In a Tanner graph,
check nodes represent certain “local constraints” (or generalized “equation system”)

on subsets of variable nodes; an edge indicates that a particular variable is present in

a particular constraint.

Figure 3.3: Tanner graph of a (3,2) parity check code.

22
Figure 3.3 shows a Tanner graph of a (3,2) code C. The definition of this code C'
is a vector (xy, x5, x3) belongs to C if and only if z; +x9+x3 = 0. In the Tanner graph,
the empty circles represent three variables x1, x9, x3; and the filled circle represents

the constraint over those variables, namely, their mod-2 sum should be zero.

The Tanner graph representation of RA codes is quite simple. For a repetition
¢ RA code with block length n, let’s denote the n information bits by wu; (ie[n)), the
gn code bits by y; (i[gn]), and the intermediate bits (which are the outputs of outer
code and inputs to the inner code) by z; (icjgn]). We know y; and x; are related by the
formula

T if i =1,

Yi = (3.11)
r; +1y;1 otherwise.

Notice every z; is a replica of some u; (where the mapping ¢ : i — j is completely
determined by the permutation m € s,,), so if we represent all gn equations in (3.11)
by check nodes ¢; (iclgn]) and represent both information bits u; and code bits y; by
variable nodes, the edges can be naturally generated by connecting each check node
to the u;s and y;s present in its equation. Using the notation C' = {¢;,i € [¢n]},
U= {u;i€[n]}, Y ={y;i € [¢gn]}, we have a Tanner Graph representation of RA
codes, with V,, =UJY and V. = C.

Figure 3.4 shows a Tanner Graph for a repetition 3 block length 2 RA code, with
permutation 7 = (1,2,5,3,4,6). In the graph, we have also included the received
version of code bits y, which are denoted by v,. The received bits ¥, provide evidence

in the decoding procedure, but they are not part of the Tanner Graph.

Generally, in a Tanner Graph for a repetition ¢ RA code, regardless of the block
length n, every u; is present in ¢ check nodes. Hence every vertex v € U has degree
q. Similarly, every vertex ¢ € C' has degree 3 (except the first vertex ¢;, d(c;) = 2),
and every vertex y € Y has degree 2 (except the last vertex y,,, d(y4,) = 1). Those

facts are illustrated in Figure 3.4.

23

Yr
fffff O
””” © D Information noe
fffff O . Check node
””” @ Q Code node
,,,,, D O Evidence node
fffff O

Figure 3.4: Tanner Graph of a repetition 3, length 2 RA code, with permutation
7 = (1,2,5,3,4,6). Each information node is present in three check nodes; each
check node checks the parity sum of two adjacent code nodes and one information
node.

3.3.2 Message passing on Tanner graph realization

Using the Tanner graph realization, message passing algorithms (belief propagation)
can be applied to decode RA codes. This algorithm is an instance of the GDL
algorithm [3] with a specific scheduling. In a belief propagation decoding algorithm,
the messages passed on an edge e represent posterior densities on the bit associated
with the variable node. A probability density on a bit is pair of non-negative reals
po, p1 satisfying po+p; = 1. Such a pair can be represented by its log likelihood ratio

log 1%’ and we shall assume that the messages here use this representation.

There are four distinct classes of messages in our belief propagation decoding
algorithm of RA codes, namely messages sent (received) by some vertex u € U to
(from) some vertex ¢ € C, which are denoted by m[u, ¢| (mc, u]), and messages sent

(received) by some vertex y € Y to (from) some vertex ¢ € C, which are denoted

24

by mly,c] (m|c,y]). Messages are passed along the edges in the Tanner graph, as
shown in Figure 3.4. Both m|u,c] and mlc,u] have the the conditional value of
2833, and both m[y, ¢] and m[ec, y] have the conditional value of log 5833 Each
code node y also has the belief provided by received bit y,., which is denoted by

log

B(y) = log %. With this notation, the belief propagation decoding algorithm of
RA codes can be described as follows: (A hardware implementation of this algorithm

is shown in Appendix E.)

Initialize all messages mlu,c|, m[c,u], m[y, c|, m[c,y] to be zero. The messages
are continually updated in K rounds (the number K is pre-fixed or is determined
dynamically by some halting rule). Fach round consists of a sequential execution of

the following script:

e Update mly,c]|:

B(y) ify = Yqn,
B(y) +m[d,y] otherwise, where (c',y) € E and ¢’ # c.

mly, c] =

e Update m[u,c]:

mlu,c] =Y, mlu,c], where (u,c') € E and ¢ # c.

e Update at check nodes, m|c,y|: and m]|c, u] :

ey mlu, c| if ¢ = ¢;, where (u,c) € E and u € U,
m C, y = miu,c m ! c .
% otherwise, where (u,c), (y,c) € Eandy #vy' €Y.
mly, c| if ¢ = ¢;, where (y,c) € E andy €Y,
mlc,u] =

emly.el L gmly’ el
14emly,cl+mly’ c]

otherwise, where (y,c),(y',c) € E andy #y' € Y.

25

After K iterations, we calculate s(u) =). mlu,c| for every u € U, where the
summation is over all the ¢ such that (u,c) € E. If s(u) > 0, bit u is decoded to be
1; otherwise, it is decoded to be 0.

It turns out that the iterative decoding capacity of RA codes can be obtained by
the use of density evolution [44]. By “capacity” we mean if the noise is below that,
iterative decoding of RA codes can achieve arbitrarily small error probability for long
enough block length; while if the noise is above that, iterative decoding always has
non-zero error probability. Those numbers were first reported by Richardson and
Urbanke (refer to Table 6.4). For example, for ¢ = 3 RA code, the iterative decoding
capacity is 0.479 dB; for ¢ = 4 RA code, it is 0.106 dB.

3.3.3 Performance of RA codes with iterative decoding

We wrote a computer program to implement this “turbo-like” decoding for RA codes
with ¢ = 3 (rate 1/3) and ¢ = 4 (rate 1/4), and the results are shown in Figure 3.5.
We simulated codes of information block length 4096 and 16384. Those performance
curves are for word error rate (WER) instead of bit error rate (BER). We see in
Figure 3.5, for example, that the empirical cutoff threshold for RA codes for ¢ = 3
appears to be less than 1 dB, which confirms its iterative decoding capacity 0.479 dB.

3.4 RA Codes Achieve Channel Capacity

For the theorist, the most important thing about RA codes is that their combinatorial
properties are reasonably well understood. For the practitioner, the most important
thing is the experimentally verified fact that if an iterative decoding algorithm derived
from belief propagation on the appropriate Tanner graph is applied to them, their
AWGN channel performance is scarcely inferior to that of full-fledged turbo codes.
In this section, we will give a partial explanation of the latter property, by using the
former property to show that on the AWGN channel, RA codes have the potential

for achieving channel capacity. That is, as the rate of the RA code approaches zero,

26

10 T T
E — (=4, n=16384
— - g=4, n=4096
—— =3, n=16384
. —— (=3, n=4096
10 F [R
107 e =
2
IS
]
Ro]
<]
o -3
§10 e =
i
B
S
=
107k =
107k - i
i v E
10‘5 L L l l l l l I l
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Eb/No (dB)

Figure 3.5: Simulated performance of iterative decoding of RA codes on an AWGN
channel.

the average required bit Ej,/N, for arbitrarily small error probability with maximum-

likelihood decoding approaches log 2, which is the Shannon limit.

Consider the ensemble of rate R = 1/¢ RA codes. It can be shown that the

spectral shape for this ensemble of codes is given by the formula

r(6) = max {f(u,é)—l—Héu)}, (3.12)

0<u<min(26,2—25)

where

)+ 6H (-~

f(u,6) = —H(u) + (1 6)H(55

=3 (3.13)

and H(u) = —(ulogu+(1—u)log(l1—w)) is the (natural) entropy function. Figure 3.6

27

shows the function r,(d) for ¢ = 4.

Weight Spectrum of 4-RA code

0.2
0.1
S
0
01 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5=h/N

Figure 3.6: The function of r4(d).

Theorem 3.1 says that if we define, for each integer ¢ > 2,

EN 1—61—e2ra®
0<s<1 0 2

¢o(q)

and

A
Vg = qco(q),

(3.14)

(3.15)

then if ¢ > 3, and E,/Ny > 7,, as n — 00, the average maximum-likelihood word

error probability for the ensemble of rate 1/¢ RA codes approaches 0. A short table

of these thresholds, together with the corresponding AWGN Shannon limit, is given

28

below.

q R v, (dB) Shannon (dB)
2 1/2 3.384 0.184

3 1/3 0.792 —0.495

4 1/4 —0.052 —0.794

5) 1/5 —0.480 —0.963

6 1/6 —0.734 —-1.071

7 1/7 —0.900 ~1.15

8 1/8 —1.015 —1.210

© 0 (~-1.592) —1.592

For example, the ¢ = 3 line of this table tells us that if E,/Ny > 0.792 dB, then as
n — oo, the word error probability for the ensemble of rate 1/3 RA codes approaches
zero.! On the other hand, for E,/Ny < —0.495 dB, (the Shannon limit for binary
codes of rate 1/3) as n — oo, the word error probability for any sequence of codes of
rate 1/3 must approach 1.

In the table, and more clearly in Figure 3.7, we see that as the rate R approaches
zero, the Shannon limit approaches log2 = —1.592 dB. This is of course well known,
and in fact the value —1.592 dB is usually referred to as the Shannon limit for the
AWGN channel. The interesting thing for us, however, is that the RA code thresholds
also seem to approach —1.592 dB. This empirical observation is in fact true, and it

is the object of this section to prove the following theorem.

Theorem 3.2 We have lim,_,o v, =log2, i.e., RA codes achieve the Shannon limit

for the AWGN channel.

We will give a proof of Theorem 3.2 in Section 3.4.1. But here we note that it is

easy to prove that the limit cannot be smaller than log 2:2

!'We have included the threshold for ¢ = 2 in the table because it can be shown that for rate 1/2
RA codes, if E,/Ny > 72, the ensemble bit error probability approaches zero, although the word
error probability does not.

20f course, Theorem 3.3 follows from the fact that log 2 is the Shannon limit for the channel, but
it is interesting to have an “elementary” proof.

29

Binary Shannon Limit
RA code threshold (GD bound)

+ +

E/N_ (dB)

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9
Code Rate R

Figure 3.7: The RA thresholds.

Theorem 3.3 With the threshold vy, defined as above, liminf, ., v, > log2.

Proof: First note that in (3.13), we have f(u,1/2) =0, so that

ra(1/2) = g H(w/a = H(1/2)/q = 5

Thus by taking 6 = 1/2 in the definition (3.14) of ¢y(g), we have the lower bound

1—(1/2)1 — e 2rall/2)
(1/2) 2

1— 67210g2/q

2

colq) >

It therefore follows that

1 — ¢ (2/a)log2

—ig (3.16)

V¢ = qco(q) >

30
The desired result now follows by observing that the limit, as ¢ — oo, of the right

side of (3.16) is log2. u

3.4.1 Proof of main theorem

In this section, we present the proof of Theorem 3.2. We begin with some preliminary

technical results which concern the spectral shape functions 7,(0).

Lemma 3.1 The function f(u,d) defined in (3.13) is nonpositive, i.e., for any (u,d) €
[0,1] x [0,1], f(u,d) < 0. Furthermore, f(u,d) =0 if and only if 6 =1/2 oru = 0.

Proof: Jensen’s inequality, and the fact that H(u) is strictly convex N, implies that

for any ¢ € [0, 1], and any two numbers u;, us € [0, 1], we have

with equality if and only if u; = uy and/or § = 0 or 1. Letting u; = u/(20) and
us = u/(2(1 — §)), we obtain the desired result. u

Corollary 3.1 We have, for each ¢ > 2 and § € [0, 1],

rqe(6) < log 2

— Y

q

with equality if and only if 6 = 1/2.

Proof: Let u(g,) denote the optimizing value of u in the computation of r,(0), i.e.,

u(q,d) = arg max {f(u, q)+ H((]u) } : (3.17)

0<u<min(26,2—25)

Then by the definition of r,(d), we have

rq(0) = f(ulg,9),0) + H(u(g,9))/q.

31

But since by Lemma 3.1, f(u,0) < 0, we have

ro(8) < H(u(q,9))/q < 1052. (3.18)

For equality to hold in (3.18), we must have, for u = u(q,d), both f(u,d) = 0 and
u = 1/2. But by Lemma 3.1, if f(u,d) = 0, then either v = 0 or 6 = 1/2. Thus
equality can hold only when § = 1/2, as asserted. []

Lemma 3.2 If u(q,9) is defined as in (3.17), then

(g, 8) - (1 — u(g,6))" < (2 51— 5))q. (3.19)

Proof: It is easy to check that the “max” in (3.12) does not occur at either endpoint
(at u = 0 the function is zero and its derivative is infinite, and at © = min(24, 2(1—0)),
the function is negative), so at the point u = u(q,0), the partial derivative of the
function in braces on the right side of (3.12), with respect to w, must be zero. This

condition works out to be
—(1—1/q)log(l —u) — (1/q)logu + (1/2)log(2 — 26 — u) + (1/2) log(2d — u) = 0,

or in exponential form,

\/(2—25—u)(25—u) _

(1 — u)lfl/'lul/q

(3.20)

But since 0 < u < min(24,2(1 — 4)), the numerator on the left side of (3.20)
V(2 =20 —u)(20 —u) is < 24/0(1 —). Therefore, at the maximizing point u =

u(q,9), we must have

2, /3(1 = 3)
(1 — u)I*I/Qul/q -

(3.21)

Rearranging this, we get (3.19).]

32
Corollary 3.2 If(,) is a sequence of real numbers in the range [0, 1], and lim,_,, 0, =

0% #1/2, then lim,_, u(q,d,) = 0.

Proof: If 6* # 1/2, then 2,/0*(1 —6*) < 1, and so the right-hand side of (3.19)

approaches zero as ¢ — oo. Thus by (3.19), u(qg,) must approach either zero or one.

But since v < min(2§*,2 — 2§*) < 1, the only possibility is u(g, d;) — 0. [|

Corollary 3.3 There exists a gy > 2 and dg > 0 such that if ¢ > qo and § < &gy, then
u(q,d) < 62

Proof: Let 0 < 1/2. Then u < min(26,2 — 2J) = 24, so that the left side of (3.19) is
lower bounded by the quantity u(1 — 26)?. Thus from (3.19), we obtain

2,/6(1—0)\"
u(q,0) < (ﬁ) . (3.22)

If the quantity in parentheses in (3.22) is less than one, which is true for 6 < 0.14,

then the right-hand side is decreasing in ¢q. For example, if ¢ > 6, we have

20 /51=0)\
u(g,6) < (W) ; (3.23)

which, being of order §%, will plainly be < §2 for small enough 4.]
In the definition of ¢y(¢) in (3.14), let §(g) be the optimizing value of ¢, i.e.,
1—61—e 2@

A
0(q) = arg su
(4) 8 0<6I<)1 J 2

(3.24)

The following proposition is the key to the proof of Theorem 3.2.
Property 3.1 The sequence §(q) approaches 1/2 as q goes to infinity.

Proof: We will show that the set {d(¢)} can have no accumulation points in [0, 1]
except 1/2. We begin by proving an inequality, eq. (3.26), below. By definition,

Vg = qco(q)

33

But since we have the elementary inequality
(1—e)/2 <, (3.25)

it follows that

1—4(q)
Vg < 5 qrq(6(q)).

But as noted in (3.18), ¢ry(0) < H(u(g,0)), so that

1—46(q)
"S5

- H(u(q,6(q)))- (3.26)

Now we assume that there is a subsequence of ¢’s for which the §(¢)’s approach
a limit 0* # 1/2. There are two cases to consider, 6* # 0, and §* = 0. In both cases,
we have from Corollary 3.2 that u(q,d(¢)) — 0. Thus if 6* # 0, it follows from (3.26)
that with ¢ restricted to the given subsequence,

lim 7y, < ———

q—o0 o*

which contradicts Theorem 3.3.

On the other hand, if 6* = 0, we have from Corollary 3.3 that for ¢ large enough
u(q,(q)) < 6(¢g)%. Thus from (3.26) again, for large enough ¢, we have

H(9(a)*)

Yq S (1 - 6((])) 5((])

But since H(2?)/x — 0 as x — 0, with ¢ restricted to the given subsequence,

- . H(3(9)*)
< =
qlg{)lo 7(1 — qlggo 5((]) 07

again contradicting Theorem 3.3.

We have therefore shown that the only possible accumulation point of the set

{6(q)} is 1/2, which proves that the limit of the d(¢)’s exists and equals 1/2. n

34
We can now prove the main theorem:

Proof of Theorem 3.2. We have, for every g,

1—06(q) 1 — e ?ral®(@)

Applying the elementary inequality (3.25), we obtain

Vg < ql g(gg(ﬁ 74(6(q))-

Now from Corollary 3.1, we know that r,(d) < (log2)/q, so that we have

1—46(q)
"= 50

log 2.
But by Proposition 3.1, lim, ,+ d(¢) = 1/2, so
lim sup v, < log 2.
q— 00

But we saw in Theorem 3.3 that lim inf, v, > log 2. Therefore

lim v, = log 2.

q—0

35

Chapter 4 Beyond RA Codes

4.1 Introduction

In Chapter 3 we analyzed the class of repeat-accumulate codes. The insights gleaned
from that study are twofold. First, the magic of pseudorandom interleaver. Although
neither the repeat nor the accumulate code has coding gain, the repeat-accumulate
code with interleaver has coding capability (maximum likelihood decoding) close to
Shannon’s theoretical limit. Second, the remarkable iterative decoding performance
despite the simplicity of the code structure. One reason for this surprise is that the
underlying Tanner graph representation is very sparse so that the belief propagation

algorithm is a good approximation to maximum likelihood decoding.

In this chapter we introduce several simple variations of RA codes. The hope is
that a small change in the structure, with some sacrifice in complexity, would produce
even stronger codes (at least in the case of ML decoding).! We concentrate on codes
whose weight enumerators can be derived, so that we can compute their maximum
likelihood decoding threshold. Also, we avoid complicated combinations of codes,
because such codes would have dense graph representation and hence possible poor
practical iterative decoding performance.

Three natural modifications are investigated in this chapter: i) changing the inner
code; ii) changing the outer code; and iii) using more than one interleaver.

Our first idea is to replace the inner code in RA codes by a different rate 1
convolutional code, one with transfer function 1/(1 + D + D?). We call this class
of codes Repeat-Delay-Delay (RDD) codes. A coding theorem for this class of codes
will be proved in detail. It will be seen that for RDD codes, not only the ML code

LOf course this is not generally true for other decoding methods, including iteration decoding.
A strong code doesn’t always perform well with iterative decoding. A good example of that is the
ensemble of low-density parity-check codes discussed in [24].

36
threshold, but also the iterative decoding performance, will improve considerably over
the RA codes.

The second idea is to replace the outer code (the repeat code) in RA codes by
a rate 1/2 convolutional code. This code structure was first analyzed in [51]. We
call it the Convolution-Accumulate (CA) code. We are able to compute the ML code
threshold for this rate 1/2 code, and simulation shows this code also performs well
with iterative decoding.

The third class of codes is generated by extending the serial interconnection.
Instead of one serial concatenation, we add one more accumulate code, interconnected
through another random interleaver. We call this class of codes Repeat-Accumulate-
Accumulate (RAA) codes. This class of codes will be shown to have terrific ML code
threshold, but since its Tanner graph realization is dense, it does not perform well

with iterative decoding method.

4.2 RDD Codes

In this section we introduce and analyze a class of codes named Repeat-Delay-Delay
(RDD) codes. The theoretical analysis of RDD codes is similar to that of RA codes.
However, in iterative decoding, this class of codes should be realized using a Tanner-
Wiberg graph instead of a Tanner graph. Simulation shows that on a Tanner graph
representation of RDD codes, iterative decoding performance is very poor, mainly

due to the presence of many short cycles.

4.2.1 Code structure

The general structure of RDD codes is shown in Figure 4.1. An information block of
length N is repeated ¢ times, scrambled by a ¢/NV x ¢V interleaver, and then encoded
by a rate 1 convolutional encoder with transfer function 1/(1+ D + D?). In practice,
this convolutional encoder is also truncated to length ¢/N. We consider the ensemble

of this class of codes generated by a uniform interleaver.

gN

D "D

Figure 4.1: Encoder for a (¢/NV, N) RDD code. The numbers above the input-output
lines indicate the length of the corresponding block, and those below the lines indicate
the weight of the block.

Our intention is to prove the IGE conjecture for this class of codes. To apply the
union bound from Section 2.2, we need the input-output weight enumerators (IOWE)
for both the (¢n,n) repetition code, and the truncated (n,n) convolutional code. We
already know the IOWE of the repetition code,

0 ifh#quw

AY), = (4.1)
(Z) if h = qu.

The IOWE of the convolutional code, which is derived in Appendix B.1, has the form,

h—1 k-1
; k k h—k—1\(n—h—-Fk—-1
=23 () G20 O S) e
’ e \t)\[s]/\k—-t-1 k—1s]—1
where s = (h —w)/2 +t, and D is a constant between 1 and 7.

It follows from the general formula (2.14), that for the (¢N, N) RDD code repre-
sented by Figure 4.1, the ensemble [OWE is:

Al o~ A At
w, N
hi=1 (31,1)
— D(f},’) — <k><k><h—k—1><qN—h—k—1> (43)
(Z]uvj) i1 1= \! 5]/ \k—1—1 k—T[s]=1)

where s = (h — qw)/2 + t. Because k —t < h — k, we have k —t < h/2. Therefore,

k—[s]—1=k—t—["5] —1 <2 [2=0w] 1 < |qw/2] — 1, with equality if and

38

only if £ = 0. Now from (4.3) is is easy to compute the parameter a(w, h) in (2.16),
a(w,h) =maxw —qw +k — [s] =1 =w — qu + |qw/2] — 1. (4.4)
Hence, the interleaving exponent (), in (2.18) is

By = maxmaxa(w,h)
w h

= [—q/2]. (4.5)

It follows that the IGE conjecture in this case is that a ¢-repetition RDD code
has word error probability interleaving gain only if ¢ > 2, instead of ¢ > 3 for the RA

codes.

4.2.2 Coding theorem

In this subsection, we prove the IGE Conjecture for the g-repetition RDD code en-
semble. Our main analytical tool is Theorem A.1 from Appendix A. The following

theorem is an instantiation of Theorem A.1 for Divsalar bound.

Theorem 4.1 If D, is a sequence of positive integers such that

no
li =0
nho D
and
A 1-61—e 20
C, = Ssup ,
° o<ier O 2

then if ¢ > ¢y, there exists an integer ny and positive constants K and e such that for

712”0;

P < Z"(D,) + Ke=P, (4.6)

39
The following property, which is also a minimum distance property, gives an upper

bound of the first term in (4.6). This is proved in Appendix B.2.

Property 4.1 For RDD codes, asymptotically
Z(D,) = O(n-1/21+), (4.7)

for any constant € > 0.

From formula (4.3), the spectral shape () in (2.5) can be shown (Appendix B.3)
to be

u—s u—s—10/2+qu/2
)+ (1 —6—u)H(T

r(6) = max (- L1 H(gr) + (6 — w)H

0<z,u,v<1 q (S—U
§/2 —qx/2 4w
u

)
) (4.8)

+ uH(v/u)+ uH(

where H(z) = —xlogz — (1 —) log(1 — x) is the binary entropy function. Also, as
n becomes large, r,(0) < r(0) + 3logn/n (see Appendix B.3).
Taking D, = log’n and combining with Property 4.1, Theorem 4.1 gives the

following conclusion:

Theorem 4.2 For a g-repetition RDD Code, if E,/N, > qc,, then asymptotically
PP = O(nfrte) (4.9)

where € > 0, and) = [—q/2] is the interleaving exponent, and

1—e 2@ 1§
Co = Sup)

0<s<1 2 4]

Table 4.1 lists the SNR threshold values for RDD codes using Theorem 4.2, where
g ranges from 3 to 8. Compared with RA codes, RDD codes have considerable

improvements with respect to ML decoding performance, with just a little addition

40
of complexity. For example, a rate 1/4 RDD code has ML code threshold —0.687 dB,
while a rate 1/4 RA code has threshold —0.052 dB.

q 3 4 5 6 7 8
code rate 1/3 1/4 1/5 1/6 1/7 1/8
RA Code 0.792 | -0.052 | -0.480 | -0.734 | -0.900 | -1.015
RDD Code -0.189 | -0.687 | -0.920 | -1.050 | -1.142 | -1.207
Random Code -0.453 | -0.774 | -0.952 | -1.066 | -1.145 | -1.203
Binary Shannon Limit | -0.495 | -0.794 | -0.963 | -1.071 | -1.150 | -1.210

Table 4.1: Numerical data for Ej/N, thresholds of RDD codes.

4.2.3 Performance of RDD codes with iterative decoding

The results of the previous subsection show that the performance of RDD codes
with ML decoding is better than RA codes. In this subsection, we consider the
performance of RDD codes with iterative decoding. Iterative decoding is applied to
a Tanner-Wiberg graph realization [48, 52] of this class of codes. In brief, a Tanner-
Wiberg graph is an extention of the Tanner graph. It introduces a new set of codes,

“state” nodes, in addition to the variable and check nodes in a Tanner graph.

O

Xn
Sn S‘n+l
O Yn

Figure 4.2: Tanner-Wiberg graph representation of a convolutional code.

For example, since a convolutional code can be regarded as a finite state machine,

41
whose current output y, and next state s,.; depend uniquely on the current state
s, and the current input z,, it has a Tanner-Wiberg graph realization as shown in
Figure 4.2.

Now it is well known that if we decode convolutional codes on this graph real-
ization, the min-sum algorithm becomes the traditional Viterbi algorithm, which is
optimal with respect to word error probability; the sum-product algorithm becomes
BCJR algorithm, optimal with respect to bit error probability [52, 3].

It is not difficult to find the Tanner-Wiberg graph representation of RDD codes.
Figure 4.3 shows the Tanner-Wiberg realization of a ¢ = 3 (6,2) RDD code.

X1

S0
O

yl
@ State node
® Constraint node

O Variable node

Figure 4.3: Tanner-Wiberg graph representation of a RDD code.

Iterative decoding performance was simulated on an AWGN channel. Figure 4.4
shows the performance of a rate 1/3 RDD code. The interleaver deployed is an
algebraic LCM interleaver. Block lengths 1024 and 4096 are presented. In Figure 4.4,
solid lines show the BER performance and dashed lines show the WER performance.
This should be compared to the performance of RA codes with iterative decoding.

With the same block length 4096, to achieve BER of 10~ it requires 1.3 dB for the

42

RA codes but only requires 0.6 dB for the RDD code, which is a 0.7 dB improvement.

RDD Simulation, LCM Interleaver, Repetition 3

10 3 T T T T T T
7 - == Length 1026 WER
I , —— Length 1026 BER
10tk T o - Length 4096 WER | |
g ‘ —— Length 4096 BER |
: 7 \
\ =L
107°E \ T]

Error Rate
=
o
&
T

107 3
10_5 e =
10‘6 L ! ! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
SNR (dB)

Figure 4.4: Simulated performance of iterative decoding of RDD codes on an AWGN
channel.

4.3 Convolution-Accumulate Code

In this section we study a serial turbo code introduced in [51]. This serial concate-
nation code consists of a rate 1/2 convolutional outer code and an accumulate inner
code, interconnected by a uniform interleaver. Some theoretical analyses for this code
ensemble were given in [51], where the authors recursively calculated the weight enu-
merators for block length up to 4096 and applied that to an improved union bound
to predict its maximum likelihood decoding performance. Due to the computation

load, this technique is limited to relatively short block lengths. In this section, we

43

will derive the performance limit of this code ensemble for large block length. We
first derive a general expression of the weight enumerators for this ensemble, from
which we are able to prove an AWGN coding theorem by applying Theorem 4.1.
The threshold ~, of this code is shown to be 0.384 dB, only about 0.2 dB from the
binary-input Shannon limit.

Figure 4.5 shows the structure of the CA code. The outer code is a truncated
convolutional code with transfer function (1 4+ D? 1+ D + D?), the inner code is an

accumulate code.

Figure 4.5: Convolution-Accumulate code.

(2) (1)

For the outer code, the input block [z1, . .. , z,] and output block [ygl), Y1y Uny Yn

are related by the formula

(1) _ (2) _

Yy = Ty, Yy =1
P S
ygl) =x3+ 21, y§2) =23+ X9+ 21
y;;,l) = Tn-2 + T, yg) =Tp-2 + Tp—1 + L. (410)

4.3.1 TOWE of the outer code

In this subsection, we derive the weight enumerator of the outer code. The outer code
can be viewed as a composition of two convolutional codes, C) and C®, where C'!)

has transfer function 1 + D? and C'® has transfer function 1 + D + D?. If we are

(2)

]

44
able to obtain weight enumerators for both codes, the overall weight enumerator will

simply be:
_ (1) 42
Aw:h - Z A’w,hlAw,h—hl'
h1

C® is a RDD code if we exchange the roles of input and output, i.e., we view
the input as output and the output as input. Hence the [OWE Afi)h of C® is simply
formula (4.3) after swapping w and h everywhere.

The IOWE of C™ also can be obtained using previous results. A bit closer look
reveals that the input and output sequence of CV) can be completely decoupled
into one evenly indexed and one oddly indexed subsequence, both being a pair of
accumulate code sequences. In other words, (x1,z3,...) and (y1,y3,¥s,...) satisfy
the accumulate condition, and so do (z3, x4, ...) and (y2, Y4, ...). This facilitates the

computation of weight enumerator of C'V),

1
A'Eﬂa)h = Z Awl,hlAwQ,hza (411)
hi1+ho=h,w1+wo=w

where A, , is given in eq. (3.3).

4.3.2 Weight spectral shape

Given the weight enumerators of its outer and inner codes, the spectral shape of CA

code can be easily obtained (omitting the details):

’(6) = maqu<Z4—x>MH(5>+($_U)H<U—U>

T,U,0,2 u r — U

+(1/2— 2 —u)H <%> - <1Z£25>
2/2

+oH <T) ~H(2).

This is plotted in Figure 4.6 together with rate 1/2 random codes and RA codes.

Compared to RA codes, its spectral shape fits more closely to the random codes, which

45
suggests a better ML decoding threshold. Indeed, its SNR threshold as computed by
Theorem A.1 is 0.384 dB, very close to the channel capacity 0.184 dB.

0.4r- =

L — - Random Codes
-0.21~ + RA Codes |
! —— CA Codes \

—0.4 ! ! ! ! ! ! I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

&=h/N

Figure 4.6: Weight spectral shape of Convolution-Accumulate code.

4.3.3 Performance of CA code with iterative decoding

We decode CA code using the traditional BCJR (forward-backward) algorithm, in-
stead of the LDPC-like sum-product algorithm used for RA codes and RDD codes.

Figure 4.7 shows the performance of CA code with information block lengths 1024
and 16384. To achieve BER at 107*, CA code of length 16384 needs E,/N, about
1.25 dB, 1.0 dB away from Shannon’s limit.

4.4 Repeat-Accumulate-Accumulate Codes

RA codes, RDD codes, and CA code demonstrate the importance of the interleaver

in a turbo-like code structure. In this section, we explore the possible advantage of

46

10 ¢ T w \
E —*— Block Length=1024 |]
—+— Block Length=16384 1
10 = -
107 e .

10 °F

Word Error Probability

10 'E

10 E

10" ! ! ! ! ! !
0 0.5 1 15 2 25 3 35 4

Eb/No (dB)

Figure 4.7: Performance of iterative decoding of Convolution-Accumulate code on an
AWGN channel.

using more than one interleaver in a serial concatenation scheme. In this direction, the
only code we have investigated consists of one repetition code and two accumulate
codes. Shown in Figure 4.8, those three codes are serially interconnected by two
pseudorandom interleavers, making an overall repeat-accumulate-accumulate (RAA)

code of rate 1/q. This code was independently investigated in [9] and [42].

Figure 4.8: Structure of RAA codes.

We consider the ensemble generated by two uniform interleavers. The ensemble

47
weight enumerator is
Ale) 4@
o (T‘) dl,dQ dg,h
Aw,h - Z Aw,d1 (n) (n) J (4-12)
di,d2

d1 da

where Ag,)h and Afjf)h are the IOWE for the repetition code and the accumulate code
respectively. Those are given in formula (3.2) and (3.3). Then it is straightforward

to obtain the spectral shape of this code ensemble:

r,(d) = max max) H(y)/q— F(y,x) — F(x,0), (4.13)

0<z<min(26,2(1-9)) 0<y<min(2z,2(1—z

where F(y, x) is defined as

Y Y
F =H(y) —zH(=—)—-(1—2)H .
(v,7) = Hy) — nH(L) — (1= o) H(;2)

We can thus prove coding theorems for RAA codes by applying Theorem 4.1.
Omitting details, we display the code thresholds for RAA codes in Table 4.2. Those
thresholds are extremely close to Shannon’s theoretical limit. For example, at rate
1/4, RAA codes have SNR threshold —0.437 dB, while the Shannon limit is —0.495
dB.

q 2 3 4) 6 7 8
code rate 1/2 1/3 1/4 1/5 1/6 1/7 1/8
RAA Code 0.4455 | -0.437 | -0.771 | -0.951 | -1.066 | -1.145 | -1.203
Random Code 0.308 | -0.453 | -0.774 | -0.952 | -1.066 | -1.145 | -1.203
Binary Shannon Limit | 0.184 | -0.495 | -0.794 | -0.963 | -1.071 | -1.150 | -1.210

Table 4.2: Numerical data for Ej,/N, thresholds of RAA codes.

Although their estimated performance with ML decoding are stunningly close to
the channel capacity, RAA codes don’t perform well with iterative decoding. Fig-
ure 4.9 shows performance curves for a rate 1/3 RAA code of k = 1024, along with
an RDD code and an RA code of the same rate and block length. As shown, RAA

48
codes are worse than RDD codes, despite their consistently superior ML thresholds,
although they are still better than RA codes. It was shown in [19] that the iterative
decoding capacity of a rate 1/3 RAA code is about 0.4 dB, only 0.09 dB better than

the RA code of same rate.

10" ¢ T

I E
—— RAA codes |3
—+— RDD cods
— - RA codes

107 E

-2

10 "E

10°E

Word Error Probability

-4

10 £

-5

10 £

10—6 I I I
0 0.5 1 1.5 2 2.5 3

Eb/No (dB)

Figure 4.9: Performance comparison of rate 1/3 RAA, RDD, and RA codes with
iterative decoding, block length 1024.

49

Chapter 5 Coding Theorems for Turbo

Code Ensembles

5.1 Introduction

This chapter is devoted to a Shannon-theoretic study of turbo codes. By “Shannon-
theoretic” we mean a study of the average performance of the codes in the turbo
code ensemble under maximum likelihood decoding. While there appears to be no
possibility of implementing exact maximume-likelihood decoding of turbo codes, the
celebrated iterative message-passing turbo decoding algorithm seems to be, in most
cases, a close approximation to MLD. Thus it is of interest to know the MLD potential
for this class of codes.

In a way, this chapter is simply an elaboration of the following remark, which was
made in [40]:

“The presence [in turbo-codes] of the pseudorandom interleavers between the com-
ponent codes ensures that the resulting overall code behaves very much like a long
random code, and by Shannon’s theorems, a long random code is likely to be “good”

»
In this chapter, building on ideas pioneered by Benedetto et al. [4], we will prove
that turbo codes are indeed good, in the following sense. For a turbo code ensemble,
parallel or serial, defined by a set of fixed component codes (subject only to to mild
necessary restrictions), if the channel’s Bhattacharya noise parameter is sufficiently
small, we will show that the average maximume-likelihood decoder error probability
approaches zero, at least as fast as n=?, where 3 is the (ensemble-dependent) “inter-
leaver gain” exponent first defined by Benedetto et al. in 1996 [4].

Here is an outline of this chapter. Section 5.2 defines the parallel and serial turbo

code ensemble. Section 5.3 proves a coding theorem for general code ensembles, com-

50
bining the ensemble weight enumerator with the union bound. Section 5.4 and 5.5
give estimates of the weight enumerators of the parallel and serial turbo codes respec-
tively. Section 5.6 states the main results and gives a proof. Section 5.7 illustrates our
main results with several examples. And finally, Section 5.8 contains our discussion

and conclusions. Some complementary material is given in Appendix C.

5.2 The Turbo Code Ensembles

The general structure of a parallel turbo code is shown in Figure 5.1. There are .J
interleavers (pseudorandom scramblers) P;, Py, ... , P;' and J recursive convolutional
encoders Eq, Es, ..., E;. An information block of length £ is scrambled by interleaver
P; and then encoded (and truncated) by E;, producing a codeword of length n;, for
1=1,2,...,.J. These .J codewords are then sent to the channel. The overall code is
therefore a (n, k) linear block code, with n = 327 n;. If R; = k/n; is the rate of the
ith component code Fj, then overall code rate is easily seen to be R = (37, R7') !,
Because there are k! choices for each interleaver, there are a large number of codes
with the structure shown in Figure 5.1. We call this set of codes the [E} || Es|| - - - || E/]
ensemble. (A more precise definition of code ensemble is given in Section 2.2.)

Our first main result (Theorem 5.3) is that if J > 2, the [E\||E:|| - - - || E] ensemble
is “good” on any memoryless binary input channel with nonzero capacity.

A serial turbo code has the general structure shown in Figure 5.2. An information
block of length £ is encoded by an outer encoder E; into a codeword of length N,
which is scrambled by an interleaver P, and then encoded by an inner encoder F,
into a codeword of length n. The outer code E; is a truncated convolutional code,?
and the inner code F5 is a truncated recursive convolutional code. The overall code
is therefore an (n, k) linear block code, with rate R = R; Ry, where R; is the rate of

the outer code and Ry is the rate of the inner code. Because of the choices for the

'Without loss of generality, we may assume that P, is the identity permutation, so that there
are only J — 1 interleavers.

2We note that a block code can be viewed as a convolutional code without memory, so that F;
may be a block encoder.

ol

Figure 5.1: Encoder for a parallel turbo code with .J branches. The numbers above
the input-output lines indicate the length of the corresponding block, and those below
the lines indicate the Hamming weight of the block.

interleaver, there are N! codes with the structure shown in Figure 5.2. We call this

set of codes the [E) = Es] ensemble.

Our second main result (Theorem 5.4) is that if the minimum distance of the outer
code E) is at least three, the [E; = F5| ensemble is also “good” on any memoryless

binary input channel with nonzero capacity.

It is worth noting here that the main difficulty in proving our main results (Theo-
rems 5.3 and 5.4) is that we are unable to compute 7(0) for the [Ey||Eyl| - --||E,] and
[E} = E,] ensembles. Instead, we have had to resort to upper bounds on r(4) (see
(5.18) and (5.26)), based on the work of Kahale and Urbanke [35], which render our

results mere existence theorems.

52

Figure 5.2: Encoder for a serial turbo code with J branches. The numbers above the
input-output lines indicate the length of the corresponding block, and those below
the lines indicate the Hamming weight of the block.

5.3 A Coding Theorem

In this section, we present an upper bound on the ML decoder word error probability

3 It shows that under certain conditions,

for an ensemble of binary linear codes.
there exists a threshold ¢y such that if the channel noise exponent « exceeds ¢,
the ensemble word error probability approaches 0. We shall see that the low-weight

codewords determine whether or not the threshold ¢y is finite.

To begin, we introduce some notation. First, let D,, be a fixed sequence of integers

satisfying
D,
— 0, for all e > 0 (5.1)
nf
logn
0. 5.2
> (5:2)

For example, D,, = logZn will do. Second, we define the noise thresholds for the

ensemble:

A2 sup ra(6)/6 (5.3)

D, /n<s<1

3Parallel and serial turbo codes are important examples of code ensembles, but this result applies
to other ensembles, as well. Refer to Section 2.1 for a general definition of a code ensemble.

23

(weight spectral shape r,,(d) is defined in Section 2.1) and

co 2 lim sup c(()n). (5.4)

n—o0

Finally, the nth innominate sum is defined as follows:
D
Z(n)(D) A Zzh(n),
h=1

where D is an integer with 1 < D < n. In words, Z(™ (D) is the average number
of words of weight < D for a code in the set C,. (It is also an upper bound on the

probability that the minimum distance of a code in C, is < D.)

Theorem 5.1 Suppose the ensemble threshold ¢y defined in (5.4) is finite, and the
channel error exponent o satisfies a > ¢o. Then ifP‘E(}) denotes the ensemble mazximum-
likelihood decoder error probability, there exists an integer ng and positive constants

K and € such that for n > ny,

P < Zz(D,) + Ke=Pr. (5.5)

Proof: Since the channel error exponent « is nonnegative, we have
Ape™ < A
hE S Ap.

Therefore by formulas (2.11) and (2.12) in Section 2.2,

D,
?gi) < ZZE:L)WL Z Zgn)e—ah
h=1

h>Dy,

— Z(n)(Dn) + Z e_h(a_rn(6)/6)_ (56)

h>Dyp,

If @« > ¢y, then there exists an integer ny, and an € > 0 such that for n > ny,

o4

o — cgn) > €. Hence for n > ng and h > D,,, we have

n(0 n
——T(g) Za—cé)>6,
so that
—h(a—rp(d)/5) 7he‘ (57)
Thus
Z e Mo (0)/9) Z = Ke Pre, (5.8)
h>D, >Dn
where K = e7¢/(1 — e™¢). Substituting (5.8) into (5.6), we have (5.5). n

Corollary 5.1 If, in addition, Z™(D,) = O(n=%) where 3 > 0, then for a > ¢,
P =0(mn). (5.9)

Proof: Note that n=? = e #1%8" The result now follows from (5.5) and (5.2).

The question as to whether ¢ is finite is partially answered by the following two

technical results.

Theorem 5.2 For a code ensemble C, the code threshold cq s finite if and only if for

all sequences €, such that €, > Dy/n and €, — 0,

o= lim sup 7r,(0)/d (5.10)

N0 D, /n<d<en

s finite.

Proof: Clearly

wo) ¢)

sup < sup
D, /n<é<en 0 D, /n<é<1 o

b

55
so that if ¢y as defined in (5.3) is finite, so is ¢, for any choice of ¢,,.
To complete the proof, we now show that if ¢ is finite, so is ¢y, via the con-

trapositive. If ¢y is infinite, then there is a convergent sequence §, — ¢ such that

D, /n < 6§, <1 with

lim (%) = 00. (5.11)

n—00 571

If 9o > 0, note that ZEL”’ < (}) < e 1 hence r,(6) = logzgn)/n < H(d). Thus

lim 7”n(5n)

n—o0 67’1, (50 ’

which contradicts (5.11). Thus d; = 0. Hence if we define ¢, = min(26,,1), we have

sup
Dn/n<(5<6n

— OQ.

n(0) S T (0n)
) On

Thus (5.11) diverges, which shows that ¢ is infinite. u

Corollary 5.2 If there exists a function s(§) and constants 7, = O(D,/n) such that
rn(0) < vn + s(0) for all sufficiently small 6 and all sufficiently large n, then the

ensemble noise threshold cy s finite provided

J
lim supﬂ < 0. (5.12)
0—0

Proof: We use Theorem 5.2. Thus let €, be a sequence such that ¢, > D, /n and

€, — 0. Then

lim sup 7r,(6)/0 < lim sup (v, +s(9))/0

N=%0 D, /n<d<en n=0 D, /n<d<en
< limsup (ny,/Dy) + lim < sup s(5)/6>
n—00 n—=00 \ 0<f<en
< K +limsups(d)/d
0—0
< 0oQ.

4We have collected several useful inequalities on binomial coefficients in Appendix C.2.

56
Thus by Theorem 5.2, the code threshold ¢y is finite. []

5.4 Weight Enumerator Estimates for Parallel Turbo
Code Ensembles

For the [Ey||Esl|---||E,] ensemble, the average IOWE can be obtained from the
IOWESs of the component codes using the “uniform interleaver” technique [4] (see

Section 2.3 for general formula of turbo-like codes):

J
= kl S 14, (5.13)

J—1
(u)) S hi=h =1

where Az{hi is the IOWE for the ith component code C; (see Figure 5.1). Therefore,

the accumulative weight enumerator (defined in Section 2.1)

J
O = —= 3 1A%

J—1
(w) S hi<h =1

|
|

J

1 h h :
ey J—1 ZZHA’EU],IM
(w) hi=1 hy=1i=1

J h

=TI A,

(w)‘]_1 i=1 h;=1
H{:l Aq[ﬁ,gh

("

Next, we apply the bound of Theorem C.3 from Appendix C to each Az},gh in (5.14).

IN

The truncation length for each Cj is less than its code length n;, which in turn is
strictly less than n =). n;. Defining n = max;n;, and noting that the binomial

coefficient (?) is an increasing function of n, we have

. W2 N
Apan <07 <) (w B j>. (5.14)

=0

o7

If nh < n, then by Proposition C.1, (%) ("fj) attains its maximum for 1 < j < |w/2]

n
7/ \w

at j = |w/2]. Thus (provided h < n/n), each Az},gh can be bounded as follows:

o < et o0 () (1)
< (za)“’(Lw’}Q J> ([572]) o

The second inequality follows since |w/2| +1 < 2%.

Combining (5.14) and (5.15), we obtain

for some constant # > 1. Consequently, for small ¢, Z(Sn,z can be upper bounded as

follows:
—(n) o
Al < YAV,
w=1
o () ()
< Zgw L/2Jk)Jf_1/21 ‘
w=1 w

(The sum in (5.16) stops at ph rather than k because of Theorem C.1). Equa-
tion (5.16) will be used to bound the innominate sum Z(®(D,) that appears in
Theorem 5.1.

To bound r,(d) for small 6, we simplify (5.16) by replacing the summation with
the maximum term times the number of terms. Since (”lh) < 2™ for any integer [,

and ph < n, we have

Z(f) < n27Mgr max -
= 1<w<ph (k) -

(5.16)

Using the inequalities in (C.5), we have

28

J
(n nJH(z/2)
LUJ/QJ) € J-1
nJH(z/2)
¢ n’=!, (5.17)

enR(J—1)H(z/R)

where R = k/n (the rate of the overall code), and z = w/n.

Combining the definition of 7,(d) (2.4) with (5.16) and (5.17), we have

1. —@

IN

1. —m
- log A<h

Jlogn

IN

+T5+ sup {JH(Q) R(J — V)H(Z)}, (5.18)

0<z<pud R

where T is a constant. Equation (5.18) will used with Theorem 5.2 to prove that ¢

is finite for the [E,|| - - -||E;] ensemble.

5.5 Weight Enumerator Estimates for Serial Turbo
Code Ensembles

For the [E} = FE,] ensemble, the average IOWE can be obtained from the weight enu-
merator of the outer code C; and the IOWE of the inner code Cy [8] (see Figure 5.2):

N 1 2
a0 :Z (5.19)
d=1
Hence
N4l 42
A
i 27. (5.20)

d=1

Since if Az}h # 0, d is less than ph by Theorem C.1 (where p = u(Es)), applying
Theorem C.2 to the outer code C; and Theorem C.3 to the inner code Cy with L, as

59
the trellis length for C'; and L, as the trellis length for C5, we obtain

- wh A[I]A[Z]
A(Snfz _ Z de,gh
d—1 (d)
L) ld/2] I i
< Y ¢ i < 2)(g) 5.21
< Z s ()2 (521)

where d; is the free distance of Cy. If C} is an (nq, k1, my) code of rate Ry = k;/n;, and
CQ is a (’I”LQ, kz,mz) code with rate R2 == k‘g/ng, then we have L1 = N/?’Ll, L2 = n/nQ,
and N = Ryn, so that

L, = k2 n=an
ning
k
N = —anﬁn
na
1
Ly, = n—n:fyn
2
Thus (5.21) becomes
0 _ = i ajay) Wf v\ [nh
AL, <) el ()() (5.22)
- =1 (ﬁd) =0 \J d—j

For § = h/n small enough, we have nh = ndn < n, hence

@) <dn—hj> : (L%J) ((%)’ (5:23)

for any 1 < j < |d/2] by Proposition C.1. Therefore, replacing the inner sum in
(5.22) with |d/2]| + 1 times the right side of (5.23), we have

A < ZH Ld;f) a2+ (7)) i)
St () ()

60
(The last inequality because |d/2] + 1 < 2%.) The inequality (5.24) will be used to
bound the innominate sum Z™(D,),).
To bound r,(d), we further simplify (5.24). Using the inequality ("lh) < 2™ and
bounding the summation in (5.24) by the number of terms times the maximum term,

we have

A5 <not mas (00) (o) () (5.29)

Using techniques like those that led from (5.16) to (5.18), the spectral shape can thus

be upper bounded by the following expression, where x = d/n:

logn x x

ra(6) <2 2

+T6+ sup {aH(

0<z<usd ady

)+ BH (=) — vH(%)}, (5.26)

where T is a constant. Equation (5.26) will used with Corollary 5.2 to prove that cg

is finite for the [E} = Ej] ensemble.

5.6 Proof of Main Results

In this section, we give the proofs of our main theorems. These theorems first ap-
peared as conjectures, implicitly in [4] and [8] and explicitly in [18]. Theorem 5.3
can be summarized by saying that the [Ey||---||F,| ensemble has word error proba-
bility interleaving gain exponent —.J + 2, and bit error probability interleaving gain

exponent —J + 1. Theorem 5.4 can be summarized by saying that the [E} = E,]

ensemble has word error probability interleaving gain exponent —| =1 |, and bit error
probability interleaving gain exponent — L%J
Theorem 5.3 For the [E\||---||E,]| ensemble, if J > 2, then there exists a positive

number ¢y, such that for any fixed o > cq and € > 0,

PW = O(n_‘]+2+5)

Pb — O(TL—J+1+E).

61
Proof: Given Theorem 5.1 and Corollary 5.1, it will be sufficient to prove the fol-

lowing two lemmas.
Lemma 5.1 For the [Ey||---||E;] ensemble, if J > 2, then ¢y is finite.

Proof: We use Corollary 5.2, with the upper bound (5.18) on the code spectral
shape:

Jlogn

s(0) = T<5+0<su£ 6(JH(x/2) — R(J—-1)H(z/R)).

To show that limsup s(d)/d < 0o, we need to show that the following limit is finite:

2)— R(J -)H(%)).

1
lim— sup (JH(7

But by Proposition C.3, this is true, since J/2 — R(J —1)/R = —=J/2+1 < 0, for
J > 2.]

Lemma 5.2 For the [Ey||---||E;] ensemble, if J > 2,
Z(")(Dn) = O(n~71?t),

for any positive €.

Proof: Using the upper bound (5.16) on Z(Sn,z, we have

D,
n “(n) ()
h=1

IN

n L\

%9“’ (Lw/QJ)J([ZUI;Q])
J—1

st (%)

uDn

Z @wnJLw/ZJf(Jfl)wDSL?Jfl)w (5.27)
w=1

—
IN&

—~
=

= O(n~71%). (5.28)

62

In (a), we have used the following inequalities (see (C.4)): (L n) < nler2l (1D <

w/2] [w/2]
(nD,,)/? < (nDn)w;(i”) > (Rn)*/w® > (Rn)"/(uD,)". Here © represents a

new constant. For (b), the sum in (5.27) can be upper bounded by pD,, times the
largest term, which by Proposition C.2 is the w = 2 term for large enough n. Notice
D,, = o(nf) for any positive € by (5.1). n

Next, we prove the corresponding theorem for serial turbo codes.

Theorem 5.4 For the [Ey = Es| ensemble, with Ey recursive, if the free distance of
the outer code satisfies di > 3, then there exists a positive number cqo, such that for

any fived o > ¢,

di—1

PW = O(nﬂ 2 J+€)

P, = O(n ™51+

for arbitrary € > 0.

Again, because of Theorem 5.1 and Corollary 5.1, it’s sufficient to prove the following

two lemmas.

Lemma 5.3 For the [Ey = Es] ensemble, if the free distance of the outer code sat-

isfies di > 2, then cq is finite.

Proof: Corollary 5.2 makes it sufficient to show:

o1 T x
lim < ijfw(H(d—l) +H(5) - H(z)) < oo.
But by Proposition C.3, this is true, since 1/d; +1/2 —1 <0, for d; > 2. [|

Lemma 5.4 For the [Ey = FE,| ensemble, if dy > 3,

dyi—1

Z0(D,) = O(n~ 1457 1+)

for arbitrary € > 0.

63
Proof: With the bound (5.24), we have

ZM(D,) = Zi”[’,n

B
& (G \ld2l)\d/2]
(@ 2
<Y @nld—fa/z pi+iof

d=d,
O o=+,

In step (a), we have used the following inequalities (see (C.4)): (Ld7ZIJ) < (an)ld/dl;
("™ > (Bn)?/d? > (Bn)¢/(uDy)?; (sz) < nld/2l; and (ﬂf/’;]) < (nD,)1421, For step
(b), the sum is upper bounded by pD,, times the biggest term, which by Prop. C.2
is the d = d; term, as n becomes large. The conclusion follows, since D,, = o(n¢) for

any positive e. [

5.7 Examples

The original, classic, turbo code introduced by Berrou et al. [5] is a parallel concate-
nation with J = 2 recursive convolutional component codes, with Ry = 1/2, Ry =1,
and overall rate R = 1/3. Extensive experimental evidence with this ensemble on
the AWGN channel suggests that for any value of E,/N, greater than around 0.5
dB, the bit error probability can be made arbitrarily small, in approximately inverse
proportion to the block size, but the word error probability does not go to zero. If we
apply Theorem 5.3 to this same ensemble, we get no quantitative information about
the noise threshold, but we find that above the threshold, we have Pb = O(1/n),
and PE,V) = O(1), in gratifying agreement with experiment. It is important to bear
in mind, however, that: (1) the experiments are with suboptimum iterative decod-
ing, whereas Theorem 5.3 deals with maximum-likelihood decoding; (2) Theorem 5.3

only provides an upper bound on code performance, and does not preclude the pos-

sibility that a more rapid decrease in decoder error probability is possible; and (3)

64
experiments always deal with particular interleavers, whereas Theorem 5.3 treats the
average over all interleavers.

The repeat-accumulative (RA) codes we introduced are serial turbo code ensem-
bles with a Ry = 1/q g-fold repetition code as the outer code, and a Ry = 1 recursive
convolutional code, with transfer function 1/(1 + D), as the inner code. The outer
code has minimum distance d; = ¢. Hence, by Theorem 5.4, on all memoryless bi-
nary input channels, RA codes have word error probability approaching zero for ¢ > 3
and bit error probability approaching zero for ¢ > 2. For this ensemble, we can say
something quantitative about the noise thresholds, since we can compute the exact

spectral shape (refer to Section 3.4)

) = s (A= Hlar) + (1= D) + S

Two short tables of these thresholds, on the binary symmetric channel and the Gaus-

sian channel respectively, are given below.

q| R v, | Shannon Limit
311/3]0.091 0.133
411/40.132 0.191
511/5|0.163 0.228
6|1/6|0.187 0.254
7(1/710.207 0.274

Table 5.1: RA ensemble thresholds on the BSC, obtained using the union bound.

qa| R |7, (dB) | Shannon Limit (dB)
311/3| 220 05
401/4| 1.93 0.8
5(1/5] 1.80 1.0
6|1/6| 1.72 -1.10
711/7] 167 -1.15

Table 5.2: RA ensemble thresholds on the AWGN, obtained using the union bound.

65

In Table 5.1, the noise threshold +, is given as the largest value of the channel
crossover probability for which the union bound guarantees good code performance
for the corresponding RA ensemble. In Table 5.2, the threshold is given as the largest
value of Ej,/Ny for which the union bound guarantees good performance. If the union
bound is replaced with a more powerful tool, these thresholds can be considerably
improved. For example, using the “typical pairs” method (refer to Chapter 6), we
can obtain the thresholds in Table 5.3 and Table 5.4 for RA codes on the BSC and
AWGN channel.

q| R | UB:y, | TP:y, | Shannon Limit
311/3| 0.091 | 0.132 0.174
411/4| 0.132 | 0.191 0.215
511/5| 0.163 | 0.228 0.243
6|1/6 | 0.187 | 0.254 0.265
711/7| 0.207 | 0.274 0.281

Table 5.3: Comparison of RA ensemble thresholds using the union bound to those

obtainable using the “typical pairs” technique on the BSC.

q| R | UB:y,(dB) | TP:v,(dB) | Shannon Limit(dB)
311/3 2.20 0.739 -0.495
411/4 1.93 -0.078 -0.794
511/5 1.803 -0.494 -0.963
6|1/6 0.187 -0.742 -1.071
T11/7 0.207 -0.905 -1.150

Table 5.4: Comparison of RA ensemble thresholds using the union bound to those
obtainable using the “typical pairs” technique on the AWGN channel.

5.8 Discussion and Conclusions

The results in this chapter are in a sense of the culmination of previous Chapters 3

and 4. In those chapters we were interested in computing channel noise thresholds for

66

specific code ensembles on specific channels; in this chapter we have considered general
ensembles on general channels. However, we have paid a price for this generality:
whereas in the earlier chapters our estimates for the noise thresholds were computed
numerically, in this chapter we only prove the existence of the thresholds. To get good
numerical thresholds using our methodology would require at least two improvements.
First, we would have to replace the union bound with a more powerful technique;
and second, we would need much more accurate estimates for the asymptotic weight
spectrum r(d) of the ensembles in question.

The next chapter addresses the first of these two problems. We will develop a
method, the “typical pairs” decoding bound, which is capable of reproducing Shan-

non’s theorem for the ensemble of random linear codes.

67

Chapter 6 Typical Pairs Decoding

6.1 Introduction

In this chapter, we consider the performance of ensembles of codes on general memo-
ryless binary-input symmetric channels, including the binary symmetric channel and
the additive white Gaussian channel as the most important special cases. Our par-
ticular focus is on the question as to whether or not a given ensemble is “good,” in
the sense of MacKay [38]. In short, an ensemble of codes is said to be good, if there
is a v > 0 such that the ensemble word error probability (with maximum-likelihood
decoding) on the channel with Bhattacharya noise parameter v approaches zero as
the block length approaches infinity. The largest such ~ for a given ensemble is called
the (channel noise) threshold for the ensemble. Our main result (Theorem 6.2/6.8) is
a technique for finding a lower bound on the ensemble threshold, which is based on

the ensemble’s weight enumerator.

Of course the classical union bound provides one way of using weight enumerators
to estimate ensemble thresholds, but the estimates are poor. Gallager [24, Chapter 3]
gave a variational method for upper bounding the probability of maximum-likelihood
decoding error for an arbitrary binary code, or ensemble of codes (given an expres-
sion for the average weight-enumerator function) on a general class of binary-input
channels. Gallager’s technique, however, is quite complex, and even in the special
case of the BSC it is difficult to apply to the problem of finding ensemble thresholds.*
Other alternatives, such as Viterbi-Viterbi bound [50] and Divsalar bound [15] on the
additive white Gaussian channel, do improve the estimate considerably (see Section

3.2), but they are not powerful enough to reproduce Shannon’s theorem.

!'We have been able to show that the thresholds obtained by our method are the same as the
best obtainable by the Gallager methodology.

68

In this chapter we abandon the full maximum-likelihood decoder, and instead focus
on a slightly weaker decoding algorithm, which is much easier to analyze, the typical
pairs decoder. This technique was pioneered by Shannon [46, Theorem 11}, but as far
as we can tell was not used to analyze ensembles other than the ensemble of all codes
(which we call the Shannon ensemble in Section 6.4.2, below) until the 1999 paper of
MacKay [38], in which it was used to analyze certain ensembles of low-density-parity
check codes. In brief, when presented with a received word y, the typical pairs decoder
seeks a codeword x such that the pair (x,y) belongs to the set T' of “typical pairs.”
(We give a precise definition of 7" in Section 6.3, which follows.) In Section 6.3, we
develop an upper bound on the typical-pairs decoder’s error probability (Theorem 6.1)
which, like the classical union bound, decouples the code’s weight enumerator from the
channel, but unlike the union bound, when combined with the law of large numbers,
gives good estimates for code thresholds. Theorem 6.2 and Theorem 6.8 specialize

the general results to the BSC and the AWGN channel.

We then apply our method to three families of binary code ensembles: (1) The
Shannon ensemble, consisting of all linear codes of rate R; (2) the Gallager ensemble,
consisting of (j, k) low-density parity-check codes; and (3) the ensemble of Repeat-
Accumulate codes introduced by Divsalar, Jin and McEliece [17]. In the case of the
Shannon ensembles, we show that our method yields thresholds identical to those
implied by Shannon’s theorem. Thus the typical sequence method, despite its sub-
optimality, loses nothing (in terms of coding thresholds) for the Shannon ensemble

(Theorem 6.7 and 6.9).

Finally, we compare our thresholds to the iterative thresholds for the Gallager and
RA ensembles recently obtained by Richardson and Urbanke [44], in order to estimate
the price paid in coding threshold for the benefits of iterative decoding. In most cases,
this loss is quite small, and in the case of j = 2 LDPC codes, there appears to be no

penalty at all.

The method described in this chapter can be readily extended to many other

channel models, including channels with memory (cf. [38, Section IIJ).

69
6.2 Memoryless Binary-Input Symmetric Channels

Suppose C'is an (n, k) binary linear code, with weight enumerator (A, A;,...,A,),
i.e., C contains exactly A, words of Hamming weight A, for h = 1,... ,n. We
suppose that at the transmitter, a codeword x is selected at random, transmitted
over a memoryless binary input channel, corrupted by a noise vector z, and then
received asy = x®z = (x1 ® 21,... ,2, ® 2,). The operation @ is determined by
the specific channel, but we always assume 0 @ z = z. The input alphabet will be
X ={0,1}, or {+1, —1} assuming BPSK modulation maps 0 to +1 and 1 to —1.
We further assume that the channel is symmetric, i.e., for the set of all possible
channel outputs Y, there exists a negation operation : ¥ — Y, denoted by 7, such
that for any y € Y, 7 =y, and p(y|0) = p(y|1). The following gives several examples

of memoryless binary-input symmetric channels.

Example 6.1 Binary symmetric channel.
Input set X = {0,1}. Output set Y = {0,1} with negation operation: 0 = 1 and
1= 0. Noise vector z is a sequence of i.i.d. random variables over GF(2). Here the

operation @ is the conventional addition “+” over GF(2).

Example 6.2 Binary erasure channel.

Input set X = {—1,+1}, output set Y = {—1,0, 1}, with negation operation: § = —y.
Noise vector z is a sequence of i.i.d. random variables over {0,1}. The operation @
is ordinary multiplication. For example, suppose x = (+1,4+1,+1,—1,-1), z =

(1,1,0,0,1), then y = (+1,+1,0,0,—1).

Example 6.3 Binary-input symmetric channel with finite output alphabet.
Input set X = {—1,+1}, output set Y = {vy,v9,... , Uk, —v1, ..., —Ut}, with negation
operation v = —v. The noise vector z is a sequence of i.i.d. random variables
over Y, and the operation & is again ordinary multiplication. For example, suppose

x = (+1,+1,+1, -1, -1), z = (vy, —va, V1, —V1,V2), then y = (v1, —vq, V1, V1, —V2).

The above three examples all have discrete finite output alphabet, with Example

6.3 being the generalization of Example 6.1 and 6.2. We call them binary-input

70

() (b)

0 17p 0 1 1p 1
p
X y X 0 vy
1 = 1 -1 o 1

()

Figure 6.1: Examples of memoryless binary-input symmetric channels. (a) Binary
symmetric channel. (b) Binary erasure channel. (¢) Binary input finite output chan-
nel. (d) AWGN channel. (e) Rayleigh fading channel.

discrete output channels. The following are examples of binary-input continuous

output channels.

Example 6.4 Additive white Gaussian noise channel.
X = {+1,-1}. Y = R (real line) with negation operation § = —y for all y € R.
Noise vector z is a sequence of i.i.d. random Gaussian variables with mean zero and

2

variance o°. The operation @ is ordinary addition: x @ z ey

Example 6.5 Rayleigh fading channel with incoherent receiver.[24, p.65]
X = {+1,-1}. Y = R (real line) with negation operation § = —y for all y € R.

71

Noise vector z 1s a sequence of i.i.d. random variables distributed as

144 -
_) et 220, 61
pz(z) - 144 20+4) ())
et~ 20,

where A = E;/N,. Operation & is ordinary multiplication.

A general decoder tries to infer x based on knowledge of the code C, the garbled
codeword y, and the channel noise statistics. A specific kind of decoder, the typical

set decoder, is defined in the next section.

6.3 Typical Set Decoder

Let T be a set of vectors of length n which is closed under coordinate permutations,
and let z = (21, 29, ... , 2,) be the noise vector, i.e., the z;’s are i.i.d. random variables
over alphabet V' with common density function. If we define the set T" to be a set
of “typical” noise vectors, then T represents the set of typical channel outputs if
the zero-word is transmitted, and the set x @& T represents the set of typical channel
outputs if the codeword x is transmitted. The typical set decoder, T-decoder, works
as follows.

For every codeword x;, the ith “pseudonoise” z; = y © x; is computed, where ©
is the inverse of @, i.e., z;, = yoO x; iff y = x; ® z;. If there are no indices ¢ for
which z; € T, the decoder fails. Otherwise, among those indices such that z; € T,
the decoder chooses the x; for which z; is most probable. In a sense, this decoder
is “typical pairs /\ maximum likelihood” decoding. We will see later the “maximum
likelihood” part is not essential, but it simplifies the technical proof.

In the typical set decoder, decoder errors can result if the channel output is in
the typical set of more than one codeword. Since the channel is symmetric, the
probability of this event is independent of the transmitted codeword x, which we will
subsequently take to be the zero-word. We are therefore interested in the quantity

Priz € TN (x® T)}. Since T is invariant under coordinate permutations, this

72

probability depends only on the weight of x. Thus we define, for h =0,1,... ,n,
P(T)=Pr{izeTn(xaT)}, (6.2)

where x is any vector of weight h. The quantity P,(T) is then the probability of error
in a typical-set decoder in the case of a code having only two codewords separated
by a Hamming distance h.

For example,
Py(T)=Pr{Z € T}. (6.3)
We do not distinguish between decoder error and failure, and denote the proba-

bility of decoder error (or failure) by Pg.

Theorem 6.1 If Pg denotes the probability that the T-decoder does not correctly

identify the transmitted codeword, then

Pp < (1= Py(T))+ > _ Apmin(y", Py(T)), (6.4)

h=1

where y is the channel Bhattacharyya parameter (refer to Chapter 2).?

Proof: Let (xg,X1,...,Xy_1) be an ordering of the code with xq being the all-zeros
word, and suppose X, is transmitted. For ¢ = 0,1,..., M — 1, define the following
events:

T, = {z €T} (z; is typical)
Vi = {Pr(z;) > Pr(zo)} (z; is more likely than z)

S; = T;NV (z; is typical and is more likely than zg)

Then the T-decoder will fail only if at least one of the events Tj, S1,...,Sm—1

occurs. Thus if £ denotes the event “T-decoder fails, given that x, was transmitted,”

2The term 7" in (6.4) is present for technical reasons, e.g., the proof of Theorem 6.2. Normally,
it will be smaller than the term Pj,(T) only for very small values of h.

73

we have (here T} denotes the complement of Tj)
M-1
¢ =null Si>
i=1
M-1
= Tyu|Tn | SZ)
i=1

— TU AGI(TOHSZ-)>. (6.5)

Therefore, the probability of T-decoder error, given that x, was transmitted, can

be upper bounded as follows:

M-—1
Pr{€|xo} < Pr{Tj|xo} + Y Pr{Ty N Silxo}. (6.6)

=1

But Pr{T{|xo} = 1 — Pr{Tp|xo}, and Pr{Ty|xo} = Pr{z € T} = Py (T), from (6.3).
Thus

Pr{Tj|xo} =1 — By(T). (6.7)
Also, since S; = T; N'V;, it follows that
Pr{T, N S;|xo} < min(Pr{Vi|xo}, Pr{To N T;|x¢})-
By the familiar union bound argument [39, Theorem 7.5], we have
Pr{Vilxo} <",

where h; is the Hamming weight of x;.

Also note that by definition z; = y © x;, and so we have, fori =1,... ,M — 1,

z; = Xo D 29 O X; = Zp O X;, since X is the all-zeros word. Thus {z; € T;} < {z €

74
T +x;}, and so

Pr{ToNTi|xo} = Pr{zeTnN(T+x;)}

= B, (1)

where h; is the Hamming weight of x;. Hence

IN

M-1 M—1
Z Pr{TO N Sz'|x0} Z min(7hi7 Phi (T))7
i=1 i=1

=) Aymin(y", P,(T)), (6.8)

since there are exactly A, words of Hamming weight h in C. Combining (6.6) with
(6.7) and (6.8) gives (6.4). [

From now on, we restrict ourselves to a slightly smaller set of memoryless binary-
input symmetric channels. Although typical set decoder does work generally on any
memoryless binary-input symmetric channel, in order to meaningfully define a thresh-
old effect, we need to assume the channel transition probability is characterized by
one parameter, say 7, such that the Bhattacharya parameter is an increasing func-
tion of 7.3 In other words, on a discrete output channel, the conditional probability

distribution p(v;]0) = f, (i), and p(—v;|0) = f.(—7), such that

is an increasing function of 7. On a continuous output channel, the conditional

probability density function p(y|0) = f;(y), such that

) = / VR (6.10)

in an increasing function of 7. This additional condition is inherent to many channels,

3A generalization is possible. If channel transition probability is characterized by two or more
parameters, the threshold will be actually a high-dimension curve.

75
including the binary symmetric channel (7 = p), the binary erasure channel (7 = p),
and the additive Gaussian channel (7 = o).
In the following text, we will treat discrete output channels and continuous output
channels separately. For clarity, we use the binary symmetric channel and the additive
Gaussian channel as their representatives, which also are the most important special

cases, in deriving the general result.

6.4 Binary Symmetric Channel

The “right” definition of the typical set T is self-evident for the binary symmetric
channel, the binary erasure channel, and the binary-input symmetric channel with a
finite output alphabet. Throughout the section, we use binary symmetric channel to
exemplify the derivation of the code threshold for the typical set decoder. Essentially
identical steps can be applied to a more general binary-input symmetric channel with

a finite output alphabet.

6.4.1 Typical pairs

Let Z = (Zy,Zs,...,7Z,) be the BSC noise vector, i.e., the Z;’s are i.i.d. random

variables with common density
Pr{Z =0} =1—p, Pr{Z =1} =p. (6.11)

Since any set T" which is invariant under coordinate permutations must consist of
all vectors of weight £ € K, where K is a subset of {0,1,... ,n}, the probabilities

P, (T) depend only on the set K. A short combinatorial calculation gives

P(T) =Y pH(1—p") <(h N klh_ k2)/2> <(k1 _nh_+hk2)/2>. (6.12)

kieK ko€ K

)n—k1

This is because a vector of weight k; has probability p (1 — p , and there are

exactly ((h +k1}ik2) /2) ((kljlj:;c?) /2) vectors of weight ki, which have the property that

76
h n—h
—
when the first A components are complemented, i.e., the vector x = (11---100---0)

is added, the resulting vector has weight ks. Applying (6.12) to the case h = 0, we

obtain

Py(T) =) pH—p)* <Z> (6.13)

keK

in agreement with (6.3).

In our main application (Theorem 6.2) the set T" will be the “typical sequences”

of length n and so will be denoted by T,,. The definition of T}, is

T, = {z : ‘Wt(z) —p‘ < en}, (6.14)

n

1/2

where €, is a sequence of real numbers approaching zero more slowly than n="/° i.e.,

€ny/n — 00. Then by a straightforward extension of the weak law of large numbers,
lim Pr{Z € T,,} = 1. (6.15)
n—o00

Proof: Following the definition,

lim Pr{Z e T,} = 1— lim Pr{Z¢T,}
n—o00 n—0o0

t
= 1- limPr{z:‘W(Z)—p‘Zen}
n

n—o0

> 1—¢,%n 'p(1—p) by Chebyshev’s inequality

= 1. []

Furthermore, by defining K,, = {k : n(p—e¢,) < k < n(p+e,)}, and using the formula

(6.12), it is relatively easy to prove that for any ¢ in the range 0 < 6 < 2p, we have

1
lim —— IOg P&n(Tn) = K(67 p)a (616)

n—oo N

7

where K (6, p) is given by the two equivalent formulas

K(5,p) = H(p)—dlog2— (1—6)H <p1__522> (6.17)
— H(5) - pH (2%) (- p)H <ﬁ> , (6.18)

where H(x) is the entropy function, i.e., H(z) = —zlogz — (1 — z)log(l — z). (In
fact, these formulas are true only for § < 2p; for 6 > 2p, K(d,p) is infinite, since
Py (T,) = 0 for h > 2n(p + €,).) In Figure 6.2, we have plotted the function K (4, p)

for several values of p.*

1 L
0.8}
0.6+
0.4}
p=0.15
0.2+ p = 0.07 p=0.10
0.05 0.1 0.15 0.2 0.25 0.3

Figure 6.2: The function K (4,p) for p = 0.07,0.10.,0.15.

In fact, a closer examination of the limit in (6.16) shows that for a fixed value
of p, the limit is uniform. That is, for a fixed p, there exists a sequence of positive

numbers (3, — 0, such that

1
- log Py, (T,,) — K(6,p)| < f, forall0 < d < 2p. (6.19)

4In Figure 6.2, and all the other figures in the paper, computations using logarithms use natural
logarithms.

78

Alternatively, we can write (6.19) as

Py(T,) = e~ K @p)+o(1)) (6.20)

where 6 = h/n.

On a binary symmetric channel (BSC), the typical set decoder defined in Sec-
tion 6.3 can be simplified to the following: For every codeword x;, the ith “pseudonoise”
z; =y — Xx; is computed. If there are no indices 7 for which z; € T, the decoder fails.
Otherwise, among those indices such that z; € T', the decoder chooses one for which

the Hamming weight w(z;) is smallest.

Suppose we have a code ensemble C, (as defined in Chapter 2), with average

weight enumerator
Zgn) _ en(r(5)+0(1)) (6.21)

where 6 = h/n.

Now we apply Theorem 6.1, using the set T, defined in (6.14), to a code C' in

ensemble C,,:

Po <t S AMCVRT,), (622

h=1

where 0, = Pr{7T,} — 0 by (6.15). If we average (6.22) over all codes in the en-
semble C,,, we obtain the following upper bound on Fgl), the ensemble decoder error

probability:

Py <.+ Y AVPT). (6.23)
h=1

Replacing Zgn) with the right side of (6.21), and P,(T,,) with the right side of (6.20),

79
(6.23) becomes

ﬁ(En) S ,r]n + Z e—n(K((S,p)—T((s)-l-O(l)). (624:)

It now appears that if p is chosen so that the function K(d,p) — r(d) is positive for
all 0 < § < 1, so that the exponent in the sum in (6.24) is always negative, the
ensemble word error probability Fgl) will approach zero, as n — oo. This is in fact
true, provided we make the following two technical assumptions about the behavior
of Zﬁ[’), for h = o(n).

Assumption 1: There exists a sequence of integers d,, such that d, — oo and

dn
lim S" A" =o. (6.25)
n—oo

h=1

(This assumption says, roughly, that the minimum distance of the ensemble is at

least d,,.)

Assumption 2: There exists a sequence of real numbers ,, > 0 such that

r(0) <r(8) +0,, where lim mbn _ 0. (6.26)

- n—00 dn
We now state our main result:
Theorem 6.2 Suppose the code ensemble has spectral shape r(5), and also that it

satisfies Assumptions 1 and 2. Then if the crossover probability p < 1/2 of the

channel satisfies

K(8,p) > r(0) for 0 <6 < 2p, (6.27)

(n)

then Pp" — 0 as n — oo.

There is a slightly weaker version of Assumption 1 that guarantees that the en-

semble bit error probability approaches zero:

80

Assumption 1': There exists a sequence of integers d, such that d, — oo and
d
) ~ h—(n)
fim 2 AT =0
h=1
The corresponding modification of Theorem 6.2 follows.

Theorem 6.3 Suppose the code ensemble has spectral shape r(5), and also that it
satisfies Assumptions 1" and 2. Then if the crossover probability p < 1/2 of the

channel satisfies

K(8,p) > r(0) for 0 <6 < 2p, (6.28)

)

then F,(,n — 0 as n — oo, where P, denotes the T-decoder’s bit error probability.

(A proof of Theorem 6.2 can be found in the Appendix D. The proof of Theo-
rem 6.3 is similar and is omitted.)

In the following three subsections, we will apply Theorem 6.2 to three different
ensembles of binary linear codes: (1) The Shannon ensemble, consisting of all linear
codes of rate R; (2) the Gallager ensemble, consisting of (j, k) low-density parity-check
codes; and (3) the ensemble of Repeat-Accumulate codes introduced by Divsalar, Jin

and McEliece [17].

6.4.2 The Shannon ensemble

For the set of random linear codes of rate R, we have

AW = (Z) 9=n(1-F), (6.29)

from which it follows via a routine calculation that
r(d) = H(0) — (1 — R)log 2. (6.30)

This function is shown for R = 1/3 in Figure 6.3.

81

Figure 6.3: The function r(J) for the ensemble of R = 1/3 random codes.

To apply Theorem 6.2 to the Shannon ensemble,® for a given rate R we must find
the largest p such that K(d,p) > H(0) — (1 — R)log2 for all 0 < § < 2p.
Using (6.30) and (6.18), this inequality becomes

pH <23p> + (1= p)H (ﬁ) < (1-R)log2. (6.31)

The maximum of the left side of (6.31) in the range 0 < 6 < 2p occurs at 6 =
2p(1 — p), and is H(p). Thus the inequality K (d,p) > H(d) — (1 — R)log?2 required
by Theorem 6.2 becomes simply H (p) < (1 — R)log2, or Hy(p) < 1 — R, where H(p)

is the binary entropy function. Thus we have proved

Theorem 6.4 The ensemble of random linear codes of rate R is good on a BSC with

crossover probability p if Hy(p) <1 — R.

The idea of the proof is illustrated in Figure 6.4, where we see the function

K(9,0.174) just touching the r(d) curve of Figure 2. This shows that the thresh-

% Assumptions 1 and 2 are satisified with d,, = Kn for a suitable positive constant K = K (R),
and 6, = 0.

82
old for the ensemble of R = 1/3 linear codes is p = 0.174, which reflects the fact that
H,(0.174) =1—2/3.

Figure 6.4: The function 7 () for the ensemble of R = 1/3 linear codes, together with
the function K (4, p) for p = 0.174.

Of course, Theorem 6.4 is just Shannon’s theorem for linear codes on the BSC.
We have included it only to demonstrate that Theorem 6.2 is powerful enough to
reproduce Shannon’s theorem. In the next two sections we will apply it to more

interesting ensembles.

6.4.3 The Gallager ensemble

In this subsection, we discuss the application of Theorem 6.2 to the ensemble of
(4, k) low-density parity-check codes defined by Gallager [24].° In brief, every code
in Gallager’s (j, k) ensemble is defined by a parity-check matrix which has j ones in
each column and k ones in each row. The rate of each code in the ensemble is at least
Rip=1—(j/k).

The spectral shape r;;(0) for the (j, %) ensemble was determined by Gallager[24].

6There are numerous ways to define this ensemble. The definition we follow was given by Gallager
[24, Section 2.2], and differs, e.g., from the ensemble analyzed by MacKay in [38, Section II].

83

It can be expressed in parametric form, as follows:

als) = 1o, h)
rials) = % <u(s,k) _ sg—’;(s, k) + (k — 1)10g2> _(j-VH (%%(s,k))

where the parameter s ranges from —oo to +o0o, H () is the entropy function —(z log v+

(1 —x)log(l —z)), and the function u(s, k) is defined by

(14e)r 4+ (1 —e)t
2k '

p(s, k) = log

Figure 6.5 shows the function r;; for (j,k) = (3,6).

r(6) 0.2}

)

Figure 6.5: The function r(J) for the ensemble of (3,6) LDPC codes.

Given the spectral shape, it is an easy task to apply Theorem 6.2 to find the
corresponding BSC ensemble thresholds.”
A short table of these thresholds, together with the corresponding Shannon limit,

is given below.

"To satisfy Assumptions 1 and 2 for j > 3, we can take d,, = Kn for a suitable constant K = K (j),
and 6,, = 0. For j = 2, we can prove the existence of a sequence of d,,’s which satisfy Assumptions
1" and 2 with 6, = 0, though we do not have an explicit expression for them.

84

(4,k) | Rjx | pjr | RU limit | Shannon limit
(3,6) | 1/2 | 0.0915 | 0.084 0.109
(35) | 2/5 | 0.129 | 0.113 0.145
(46) | 1/3 | 0.170 | 0.116 0.174
(34) [1/4 | 0205 | 0.167 0.214
(2,3) | 1/3 1 0.0670 | 0.0670 0.174
(2,4) | 1/2 [0.0286 | 0.0286 0.109

Table 6.1: BSC thresholds for LDPC codes.

For example, consider the “(3,5)” line in the table. The corresponding Gallager
ensemble consists of codes which have parity-check matrices with 3 ones per column
and 5 ones per row. The rate of all codes in this ensemble at least R35 =1 —(3/5) =
2/5. Using Theorem 6.2, it is calculated that for any BSC with crossover probability
p < 0.129, the (3,5) ensemble is good, i.e., the average word error probability of the
T-decoder approaches 0, as n — oo. This should be compared to the Shannon limit
for the ensemble of all linear codes of rate 2/5 (cf. Theorem 6.4), which is p = 0.145,
which indicates the price which is paid for having the (3, 5) structure. Finally, we note
that the Richardson-Urbanke limit [44] for the (3,5) ensemble is p = 0.113, i.e., with
belief propagation—style iterative decoding, the ensemble decoder error probability

approaches 0 if and only if p < 0.113.

(The values p,x for (j,k) = (3,6), (3,5), (4,6), and (3,4) given in the above table
appear to agree with the values given by Gallager [24] in his Figure 3.5, although he
gave no numerical values. However, as we mentioned above, we have been able to
show that the thresholds obtained from our Theorem 6.2 are the same as the best
obtainable using Gallager’s methodology, so our threshold values are at least as good

as Gallager’s.)

We conclude this section with some remarks on the ensemble of (2,k) LDPC
codes. Originally dismissed by Gallager because their minimum distance is O(logn)

[24, Theorem 2.5], they are nevertheless quite interesting, and are variously called

bR N4

“graph-theoretic,” “circuit,” or “cycle” codes [41, Section 5.8], [33] because of their

85
close connection to finite undirected graphs. Using Theorem 6.3, we can show that for
p < p*(k), the bit error probability for T-decoding of the (2, k) ensemble approaches

zero, where p*(k) is given by the exact formula

p*(k) = % (1 —y/1- ﬁ) : (6.32)

(The ensemble word error probability does not approach zero for any p > 0.)

Furthermore, Wiberg [52, Example 5.1] showed that with iterative decoding, the
ensemble of (2, k) cycle codes has ensemble bit error probability aproaching zero for
p < p*(k). Numerically, the Richardson-Urbanke method appears to give the same
value, so it seems safe to say that (6.32) gives the exact iterative threshold for the

Gallager (2, k) ensemble.®

Finally, it was shown by Decreusefond and Zémor [14] that for an “expurgated”
ensemble of (2, k) cycle codes, the exact maximum-likelihood BSC coding threshold
is equal to p*(k). Since as we have seen, the threshold for the unexpurgated ensemble
is at least this good, it seems very likely that p*(k) is the exact ML threshold for the
unexpurgated ensemble as well. These results strongly suggest that that for (2, k)
cycle codes, the iterative and maximum-likelihood thresholds are the same, and are

given by the formula (6.32).

6.4.4 The ensemble of Repeat-Accumulate codes

In brief, for an integer ¢ > 2, the ensemble of ¢-repeat accumulate codes consists of
those codes which can be encoded by the serial concatenation of a g-ary repetition

encoder, followed by a pseudorandom permutation, followed by a rate 1 code with

8For a survey of iterative decoding of cycle codes, see [28].

86

(square) generator matrix of generic shape

11111
01111
G=100111
00011
00001

The basic combinatorial fact about the ensemble of (¢k, k) RA codes is the fol-
lowing formula for the average number of input words of weight w which are encoded

into output words of weight h [17, eq. (5.4)]:

A - () (qk_h>< h-1) (6.33)

(2) \lqw/2]) \Tquw/2] =1

It follows then that if quk) denotes the average number of words of weight h,

N
am =y, (6.34)

From (6.33) and (6.34), it can be shown that the the spectral shape r(J) for the
ensemble of ¢-RA codes is as follows:

r(6) = max {—%H(qx) +(1- (S)H(%) + 6H(%)} . (6.35)

Figure 6.6 shows the r(d) curve for the ensemble of ¢ = 3 RA codes.’

Combining (6.35) with Theorem 6.2, it is a straightforward computation to obtain
the thresholds in the Table 6.2.

For example, consider the ¢ = 3 line of the table. It indicates that the common
rate for all ¢ = 3 RA codes is R = 1/3, and that this ensemble is good on any BSC
with crossover probability p < 0.132. By way of comparison, the Shannon threshold

9To satisfy Assumptions 1 and 2 for ¢ > 3, we can take d,, = log”n and 6,, = (K logn)/n for
suitable constants K = K(q). For ¢ = 2, we can only show the existence of a sequence d,, satisfying
Assumptions 1’ and 2 by taking d, = 2 and 6,, = (K logn)/n.

87

0.2

0.15¢

0.05¢

0.2 0.4 0.6 0.8 1

Figure 6.6: The function r(J) for the ensemble of R = 1/3 RA codes.

q| Ry Dq RU limit | Shannon limit
2(1/210.029* - 0.109
311/3| 0.132 0.142 0.174
411/4| 0.191 0.188 0.215
5(1/5| 0.228 0.216 0.243
6|1/6] 0.254 0.235 0.264
711/7| 0.274 0.250 0.281

Table 6.2: BSC thresholds for RA codes.

for the ensemble of all rate 1/3 linear codes is seen to be p < 0.174. Finally, the
Richardson-Urbanke iterative decoding threshold [Richardson and Urbanke, private
commmunication] is p < 0.142. Since we can show that the T-decoding algorithm al-
ways gives the same ensemble threshold as does maximum-likelihood decoding, which
must be at least as good as the iterative threshold, this apparently shows that the
thresholds given in Theorem 6.2 are not always the best possible for T-decoding. A

resolution of this paradox would be very welcome.

Finally we note that for the ensemble of ¢ = 2 RA codes, the word error probability

for T-decoding does not approach zero for any p > 0, but, again by using Theorem 6.3,

88

we can show that the ensemble bit error probability approaches zero for p < 0.029.

6.5 Generalization to Discrete Output Channels

In this subsection, we generalize the results in binary symmetric channel to the gen-
eral memoryless binary-input symmetric channel with finite output alphabet sat-
isfying the one parameter condition (6.9). Suppose the output alphabet is Vj, =
{vk, ... ,v9,v1,—01,...,—vr}. A noise vector z is a sequence of i.i.d. random vari-
ables over Vj with probability distribution function p(v;) 2 p(vi| +1) = f-(9), and
p(—v;) 2 p(—vi| +1) = f(—i), such that >, f-(i) = 1. The Bhattacharya parameter
of this channel is 7, = 327, 2¢/p(v;)p(—v;), which is an increasing function of 7. We
define the typical set T,, as follows. Let I,,(v,z) be the number of appearances of v

in the sequence z, then the typical set is

TW = {z |

n

b2) <0 w0 € i), (6.3

1/2

where €, is a sequence of real numbers approaching zero more slowly than n="/2, i.e.,

€ny/n — 00. Then by a straightforward extension of the weak law of large numbers,

lim Pri{z e T®} =1. (6.37)

n— 00

Now we compute Ph(Ték)) as defined in (6.2). For simplicity of notation, we define p; =
p('Uz) and b= p(_vz) for ¢ = L... ka K, = {(jla e Tk Iy 7jfk) : n(pz - en) <
ji <nlpi+e,) Vi, and S8 ji+j; = n}, and Hy(h) = {(h1, ..., hy) : 35 by = h}.

A simple combinatorial calculation gives us the following:

— h)IA!
Tk pjz]z
ZH XY gt
k

(6, s 2) ((J]f o) (0:3%)

=1

89

It’s relatively easy to prove that for any 0, we have a uniform limit:

lim —— log Py, (T = KW (5, 1), (6.39)

n— 00

where K*)(6,7) is given by the following formula:

K®(5,7) = H(5) — Er?gxalzz;piH() +p- ZH(Q(ZZ)
*)(5,7) can be simplified (as shown in Appendix D)
k 5* *
KM (5,7 ; piH (3 -) +p-iH (3) (6.40)
where 6 = h/n and
5 Apip—i

pi+p_i+(pi+pi)2+4(1— pip—i

0F = d. We therefore have,

i=1"1

The parameter ¢ > 0 is determined by the condition Z
Py (TR)) = e~ (KW @) +o() (6.41)

Now applying Theorem 6.1, using the above typical set Ték), to the code ensemble

with weight enumerator (6.21), we obtain
P < g4 3 e KO0, (6.42)
h=1

Theorem 6.5 Suppose the code ensemble has spectral shape r(5), and also that it

satisfies Assumptions 1 and 2. Then if the noise parameter T of the channel satisfies

(k)((S, T) > r(4d), (6.43)

(n)

then P — 0 as n — oo.

90

Theorem 6.6 Suppose the code ensemble has spectral shape r(5), and also that it

satisfies Assumptions 1' and 2. Then if the noise parameter T of the channel satisfies

K®(5,7) > r(6), (6.44)

then F,()n) — 0 as n — oo, where P, denotes the T'-decoder’s bit error probability.

(A proof of Theorem 6.5 can be found in Appendix D. The proof of Theorem 6.6
is similar and is omitted.)
We apply Theorem 6.5 only to the Shannon ensemble. The result is a generaliza-

tion of Theorem 6.4.

Theorem 6.7 The ensemble of random linear codes of rate R is good on a binary

input discrete output channel if
k D
Z(pi +p_i)Hy <7z) <1-R.
" Pit P

(The proof is similar to the BSC case and hence is omitted.)

6.6 AWGN Channel

In this section, we will develop typical pairs decoding on the additive white Gaussian
channel.'® The difficulty lies in the right choice of typical set T'. In the additive white
Gaussian noise (AWGN) channel, the noise vector z = (21, 29, ... ,2,) is a sequence

of i.i.d. Gaussian random variables with common probability density function:

1
ps(2) = ———=e"2"1?7", (6.45)

By the weak law of large numbers, the noise sequence z will exhibit certain typicality

properties as n gets large. For instance, for large n, it is almost certain that the mean

10The exact same procedure is applicable to any binary-input symmetric channel with continu-
ous output alphabet where the transition probability density function can be characterized by one
parameter 7.

91
of the sequence will be close to zero and the variance will be close to o2. If we define
the typical set to be the set of all sequences satisfying both these conditions, then
the code threshold produced by Theorem 6.1 will be the same as the one derived by
using Divsalar’s bound [15, 1].

But it is possible to devise a stronger notion of typicality, and thus obtain better
thresholds. It turns out the optimal typicality is obtained by comparing the his-
togram of received 2’s with its distribution. Roughly speaking, for any given interval
[w, w + dw], the probability that a Gaussian random variable z lies in this interval is

f;f“w p(z)dz. Hence as n approaches infinity, the probability of the following event

[n[wa w+ (S’UJ] /w+5w <
s €

n

p(z)dz

w

approaches 1 for any small positive number €, where I,,[w, w + dw] is the number of

z;’s in [w, w + dw]. In the following, we will make this idea rigorous.

6.6.1 Typical pairs

Given an increasing sequence 0 = sy < 5§17 < --- < S 1 < S = +00, we can
quantize the received real vector y into a vector y’ over the finite alphabet Vj =
{=vk,...,—v1,v1,...,0} by the following rule: If s; < y < s;41, then y' = v;q;
else if —s;11 < y < —s;, then y' = —v;;;. Because of symmetry, Pr(y| + 1) =
Pr(—y|—1) = p.(y—1) as defined in (6.45). Therefore, y’" has output alphabet V} with
probability distribution Pr(v;|+1) = Pr(—uv|—1) = [/* p.(s—1)ds, Pr(~v|+1) =
Pr(v;| = 1) = fssii_l p.(s+ 1)ds, for any 1 < i < k. Clearly, symmetry is preserved, in
the following, we define p(v;) 2 Pr(v;| +1) and p(—wv;) 2 Pr(—uv;| +1).

Let us look at an example for the above procedure. Suppose k& = 2, s = 1, we
thus quantized a real output vector into a vector over 4-elements {vy, vy, —v1, —v5} as
shown in Figure 6.7. For instance, assume one received vector is y = (—2, 1.4, 7,0.3),
the vector after quantization is y’ = (—wy, vg, U9, V7).

We now apply the general typical set decoding technique to the sequence y’, in-

stead of the original received sequence y. If we treat y’ as the true channel output,

92

y y
Va
+1 |]
Vi
Quantized
0 — —_— = _
Vo
-1 7T —
Voo

Figure 6.7: Quantizing the AWGN channel.

the channel becomes a memoryless binary-input symmetric channel with finite out-
puts alphabet V} as in Example 6.3. The Bhattacharya parameter for this quantized
channel is v, = 2% | 2/p(v;)p(—v;). Clearly channel transition probability is char-

acterized by standard deviation o, for any given sequence s = (s, s1, . . . Si), except

it is not clear that ~, is an increasing function of o.!!

The typical pairs decoding
for this channel is derived in Section 6.5. We call this transformed channel as the
k-quantized channel and the corresponding typical pairs decoding as the k-quantized
typical pairs decoding. By increasing k, we make the typicality of an AWGN channel
more stringent, thus obtaining a more accurate approximation of the original channel.

Indeed, the Gaussian channel can be considered as the limit of a sequence of such

channels, if the following assumption about the dividing sequences of those channels

is true.
Assumption. Suppose a sequence of channels Cy,Cs,... ,C;,... with s; =
(sgj) e s,g)) being the interval-dividing sequence for channel C;, we require

" Generally this is not true, but we can get around this problem in the proof of Theorem 6.8.

93

lim s,(cj_)fl = o0. (6.46)
j—oo
lim max |s§j)—sl(];)1| = 0. (6.47)

j—00 1<i<kj—1

Condition (6.46) ensures the typicality test covers the entire real line, and condition
(6.47) guarantees that the typicality is true for any infinitesimal interval on the real

line.

Example 6.6 A sequence of channels satisfying (6.46) and (6.47).

Take k; = 2201 41, d; = 277+! — 0, and sl(j) =idj fori =1,...k; — 1. It’s easy
to verify that (6.46) and (6.47) are both satisfied. Figure 6.8 shows this sequence of
channels. Clearly, this procedure is nothing but partitioning the real line into small

intervals.

One quick observation is that given any quantized channel C' with dividing se-
quence s, we can build a sequence of channels starting with s and satisfying (6.46)
and (6.47), by simply partitioning the real line in the same way as in Example 6.6.

For a sequence of channels satisfying (6.46) and (6.47), as k — oo, every interval
[si, $i+1] shrinks to zero length. Therefore, roughly speaking, we have p; — psds =

p.(s — 1)ds, so that (6.40) becomes

K (5,0) = H(5) - / w(psm;—i) +p_sH<22§ s, (6.48)

where

45—5
5t PsP

s y (649)
Ds +pfs + \/(ps +pfs)2 + 4(1 - C)pspfs

and ¢ > 0 satisfies:

/ §*ds = 6. (6.50)
0

94

=1 =2 j=3
Sj S Si

2 — +4 —
il w
+1 — +1 — +2 ::
| N

o —m o0 — 0 —e
- 0
-1 -1 -2 —
i a
2 4

Figure 6.8: A sequence of channels satisfying (6.46) and (6.47).

We therefore have

lim P,(T®) = oMK (8,0)+0(1))
k—o00 "

Theorem 6.5 says for any k-state quantization, if o is chosen so that the function

K®)(§,0) — r(0) is positive for all 0 < § < 1, the ensemble word error probability

Pé”) will approach zero as n — o0o. In the limit case as k approaches infinity, we have

the AWGN channel typical pairs decoding threshold theorem,

Theorem 6.8 Suppose the code ensemble has spectral shape r(5), and also that it
satisfies the assumptions 1 and 2. If the standard deviation o of the channel noise
satisfies K(®)(§,0) > r(6), for all 0 < & < 1, then there exists a k-quantized channel

Cy, the k-quantized typical pairs decoding has error probability ?g) — 0 as n — oo.

(The proof is included in Appendix D.)

95

Theorem 6.8 indicates to determine oy we need to compare K(*)(§, o) and (&)
for all 0 < 6 < 1, thus all ¢ > 0 in (6.49). That can be simplified a bit. Suppose ¢ > 2

in (6.49), then 6* > 2min(p,,p_s). However, (6.48) is meaningful only if
0" < 2min(ps, p_s), (6.51)

otherwise K(*)(§, o) is defined to be co. Hence we only need to consider 0 < ¢ < 2

and
6§/ 2 min(ps, p_s)ds.
0

In the following sections, we are going to apply Theorem 6.8 to the ensemble of

random codes, the Gallager ensemble and the repeat-accumulate ensemble codes.

6.6.2 The Shannon ensemble

To apply Theorem 6.8 to the Shannon ensemble, of which the spectral shape is given
in (6.30), we must find the largest o such that

K©®)(§,0) > H(6) — (1 —R)log2 forall0 < <1, (6.52)

for a given rate R. Theorem 6.7 implies (as k approaches infinity) (6.52) is equivalent

to
> p
pet p_o)H (7) <1-R,
/0 (s S) ? Ps + D—s
ie.,

R<1- /Ooo(ps +p_g)Hy <p7> . (6.53)

Ds + P—s

96
Working out the integral, the right-hand side of (6.53) becomes

A log, e 0 57/2
C(o) = U; —/OO 7o log, cosh(1/a? + s/o)ds.

Thus we have proved,

Theorem 6.9 The ensemble of random linear codes of rate R is good on an AWGN

channel with noise standard deviation o if R < C(0).

Since C'(0) is the capacity for the binary input AWGN channel [39, p.103], The-
orem 6.9 is just Shannon’s theorem for linear codes on the AWGN channel. This

demonstrates that Theorem 6.8 is powerful enough to reproduce Shannon’s theorem.

6.6.3 The Gallager ensemble

In this subsection we apply Theorem 6.8 to the Gallager ensemble. Unlike on BSC,
thresholds of this ensemble on AWGN were not studied in [24]. A short table of these
thresholds, together with the correponding Shannon limit, the thresholds derived by

the Divsalar bound [15], is given below.

(4,k) | Rjx | snrp | snrjy | Shannon limit | RU limit
(3,6) | 1/2 | 0.793 | 0.673 0.187 1.110
(4,6) | 1/3 | -0.381 | 0.423 | -0.495 1.674
(3,4) | 1/4 | -0.483 | 0510 | -0.794 1.003

Table 6.3: AWGN thresholds for LDPC codes.

6.6.4 The ensemble of Repeat-Accumulate codes

In this subsection we apply Theorem 6.8 to the ensemble of repeat-accumulative
codes. Given the spectral shape (6.35), it is a straightforward calculation to obtain
the thresholds in the following table. Note that we use the parameter SN R instead
of 0 (SNR =1/(2Ro0?)).

97

q| Ry | SNRp | SNR, | Shannon limit | RU limit
311/3| 0.792 | 0.739 -0.495 0.479
411/4| -0.052 | -0.078 -0.794 0.106
511/5| -0.480 | -0.494 -0.963 0.044
6|1/6| -0.734 | -0.742 -1.071 0.085
711/7| -0.900 | -0.905 -1.150 0.168

Table 6.4: AWGN thresholds for RA codes.

6.7 Generalization to Continuous Output Chan-

nels

A general continuous output channel doesn’t differ from the AWGN channel in our
derivations, given its own one-parameter-characterized probability density function
p(7). One important result is that the equivalent statement of Theorem 6.9 holds,
i.e., typical pairs decoding is powerful enough to prove Shannon’s theorem on any of

those channels.

Theorem 6.10 The ensemble of random linear codes of rate R is good on a continous

channel with capacity C(7) if R < C(7), where T is the channel noise parameter.

Proof: Applying Theorem 6.7, as k approaches infinity, we have reliable communi-

cation with a typical set decoder as long as

/Ooo(ps +p_s)Hy <p7> <1-R, (6.54)

Ds + P—s

where py = p,(s — 1)ds, p_s = p,(—s — 1)ds and Hy() is the binary entropy function.
On the other hand, the capacity of the channel is given by (in bits)

p(y|w)
C=maxI(X;Y) = maxFE,,,lo
nax (X3 Y) sy P 082 T

= max E, ;) log plyl) .
) VTP plr = +1)p(y| + 1) + p(r = —1)p(y| — 1)

98

Because the channel is symmetric, the capacity is achieved when the input signals

are equal probable, i.e., p(z = +1) = p(xr = —1) = 1/2. Hence the capacity is

Y e . 2p(y| +1) B o 2p(y| — 1)

¢ = /_oo P(+1,y)log, plyl+1) +plyl = 1) Lyl S+ 1)+ plyl - 1)dy
_ [. 2p(y| + 1) O 2p(y| — 1)
= [ol Dory o ol — g By
_ >~ Dy
=1 —/0 (py + p—y)H> (M) : (6.55)

Comparing (6.55) with (6.54), we conclude that as long as

R < C(1),

we have reliable communication using random codes with a typical set decoder. m

99

Chapter 7 Irregular Repeat-Accumulate
Codes

7.1 Introduction

With the hindsight provided by the past seven years of research in turbo-codes and
low-density parity-check codes, one is tempted to propose the following problem as the
final problem for channel coding researchers: For a given channel, find an ensemble of
codes with (1) a linear-time encoding algorithm, and (2) which can be decoded reliably
in linear time at rates arbitrarily close to channel capacity. For turbo-codes, both
parallel and serial, (1) holds, but according to the recent work by Divsalar, Dolinar,
and Pollara [19], on the AWGN channel there appears to be a gap, albeit usually
not a large one, between channel capacity and the iterative decoding thresholds for
any turbo ensemble. For LDPC codes, the natural encoding algorithm is quadratic
in the block length, and from the work of Richardson and Urbanke [44] we know that
for regular LDPC codes, on the binary symmetric and AWGN channels there is a
gap between capacity and the iterative decoding thresholds. On the positive side,
however, Luby, Shokrollahi et al. [36, 37, 47], have established the remarkable fact
that on the binary erasure channel irregular LDPC codes satisfy (2). Recent work by
Richardson, Shokrollahi and Urbanke [43] shows that on the AWGN channel, irregular
LDPC codes are markedly better than regular ones, but whether or not they can reach
capacity is not yet known. In summary, as yet there is no known noisy channel for
which the final problem has been solved, although researchers are very close on the
AWGN channel and extremely close on the binary erasure channel.

In this chapter, we will introduce a class of codes called irreqular repeat-accumulate
codes, which generalizes the repeat-accumulate codes of [17]. After defining the codes

in Section 7.2, and observing that they have a simple linear-time encoding algorithm,

100
in Section 7.3 we will prove rigorously that IRA codes solve the final problem for the
binary erasure channel. In Section 7.4, we will discuss, less rigorously, the performance
of IRA codes on the AWGN channel, and show that their performance is remarkably

good. In Section 7.5 we will show their performance on some non-standard channels.

7.2 Definition of IRA Codes

Figure 7.1 shows a Tanner graph of an irregular RA code with parameters (fi,... , f;;a),
where f; >0, >, fi =1 and a is a positive integer. The Tanner graph is a bipartite
graph with two kinds of nodes: variable nodes (open circles) and check nodes (filled
circles). There are k variable nodes on the left, called information nodes; there are
r = (k)_,if;)/a check nodes; and there are r variable nodes on the right, called
parity nodes. Each information node is connected to a number of check nodes: the
fraction of information nodes connected to exactly i check nodes is f;. Each check
node is connected to exactly a information nodes. These connections can be made in
many ways as indicated in Figure 7.1 by the “random permutation” of the ra edges
joining information nodes and check nodes. The check nodes are connected to the
parity nodes in the simple zigzag pattern shown in the figure.

If the “random permutation” in Figure 7.1 is fixed, the Tanner graph represents a
binary linear code with &k information bits (u1, ... ,ux) and r parity bits (z1,... ,z,),
as follows. Each of the information bits is associated with one of the information
nodes; and each of the parity bits is associated with one of the parity nodes. The
value of a parity bit is determined uniquely by the condition that the mod-2 sum of
the values of the variable nodes connected to each of the check bits is zero. To see
this, let us conventionally set xy = 0. Then if the values of the bits on the ra edges

coming out of the information nodes are (vy,...,v,,), we have the recursive formula

XTj=1Tj-1 + Z V(j—-1)a+i (71)
1=1

for j = 1,2,...,r. This is in effect the encoding algorithm, and so if a is fixed and

101

Variable Node Check Node
Fraction of nodes degree a
degree i

//'—\\
i
f2 b
\ I‘
oM. /
N O
)
_ =
// \\ |§
o---+-)§ 5
[=
f3 | : : Y
) o
®---r-
O§ =
S - (@)
o
Z
- <
// \ D:
i . \ !
fa Lo
v Uy !
....\..-O%
\ :
\ /’

Figure 7.1: Tanner graph for (fi,..., f;;a) IRA Code.

n — 0o, the encoding complexity is O(n).

There are two versions of the IRA code in Figure 7.1: the nonsystematic and
the systematic versions. The nonsystematic version is an (r, k) code, in which the
codeword corresponding to the information bits (us,...,ux) is (x1,...,2,). The

systematic version is a (k + r, k) code, in which the codeword is

(Ui, U T,y e e, Ty,

The rate of the nonsystematic (fi,..., fj;a) ensemble is easily seen to be

a
Rysys = ~ 7 7.2
Yy ZZ Zfi ()

102

Figure 7.2: IRA code as a serial turbo code.

whereas for the systematic ensemble the rate is

Ryys = (7.3)

a

For example, the original RA codes are nonsystematic IRA codes with a = 1 and
exactly one f; equal to 1, say f, = 1, and the rest zero, in which case (7.2) simplifies
to R = 1/q. (However, in this chapter we will be concerned almost exclusively with

systematic IRA codes.)

A closer look of the structure of IRA codes reveals that it is a serial concatenation
of two familiar codes, low-density generator-matrix code and accumulate code. This

is shown in Figure 7.2.

As the name implies, low-density generator-matrix (LDGM) codes are codes whose
generator matrices are sparse. Like low-density parity-check codes, LDGM codes can
also be realized on a Tanner graph. In [11] it has been shown LDGM codes are
performing comparable to LDPC codes under the iterative decoding method.

In the serial turbo structure of IRA codes, the usual interleaver is excluded since
randomness is already present in the structure of LDGM code.

In an iterative sum-product message-passing decoding algorithm, all messages are
assumed to be log-likelihood ratios, i.e., of the form m = log(p(0)/p(1)). The outgoing
message from a variable node u to a check node v represents information about u, and
a message from a check node u to a variable node v represents information about w.

Initially, messages are sent from variable nodes which represent transmitted symbols.

103

The outgoing message from a node u to a node v depends on the incoming messages

from all neighbors w of u except v. If v is a variable node, the outgoing message is

m(u — v) = Zm(w — u) + mo(u), (7.4)
wH#v
where mg(u) is log-likelihood message associated with the channel observation of the
codeword bit u. (If u is not a codeword node, this term is absent.) If v is a check
node the corresponding formula is [25]

tanh w = H tanh M (7.5)

7.3 IRA Codes on the Binary Erasure Channel

The sum-product algorithm defined equations (7.4) and (7.5) simplifies considerably
on the Binary Erasure Channel (BEC). The BEC is a binary input channel with three
output symbols, 0, 1 and “erasure.” The input symbol is received as an erasure with
probability p and is received correctly with probability 1 — p. It is important to note

that no errors are ever made on this channel.

It is not difficult to see that the messages defined in (7.4) and (7.5) can assume
only three values on the BEC, viz. +00, —oo or 0, corresponding to a variable value
0, 1 or “unknown.” No errors can occur during the running of the algorithm; if a
message is +00, the corresponding variable is guaranteed to be 0 or 1, respectively.
The operations at the nodes in the graph given by equations (7.4) and (7.5) can
be stated much more simply and intuitively in this case. At a variable node, the
outgoing message is equal to any non-erasure incoming message, or an erasure if any
incoming messages is an erasure. At a check node, the outgoing message is an erasure
if any incoming message is an erasure, and otherwise is the binary sum of all incoming

messages.

104
7.3.1 Notation

In this section and the next, it will be convenient to use a slightly different represen-
tation for an IRA code than the one used in Section 7.2. Firstly, we will begin with
the assumption that the degrees of both the information nodes and the check nodes
are non-constant, though we will soon restrict attention to the “right-regular” case,
in which the check nodes have constant degree.

Secondly, let \; be the fraction of edges between the information and the check
nodes that are adjacent to an information node of degree 7, and let p; be the fraction of
such edges that are adjacent to a check node of degree i+2 (i.e., one which is adjacent
to ¢ information nodes). We will use these edge fractions \; and p; to represent the
IRA code rather than the corresponding node fractions. We define A(z) =, \jz*™!
and p(z) = >, pi*~"' to be the generating functions of these sequences. The pair
(A, p) is called a degree distribution. It is quite easy to convert between the two
representations. We demonstrate the conversion with the information node degrees.

Let the f;’s be as defined in Section 7.2 and let L(z) = >, fiz*. Then we have

Zj)‘j/j,

L(z) = /0 AWt/ /0 IA(t)dt. (7.7)

and (7.6)

The rate of the systematic IRA code (we shall be dealing only with these) given
by this degree distribution is given by

ijj/j>_ . (7.8)

Rate= | 1 4+ =——
(Zj)‘j/]

(This is an easy exercise. For a proof, see [47].)

7.3.2 Fixed point analysis of iterative decoding

In [44], it was shown that if for a code ensemble, the probability of the depth-I neigh-
borhood of an edge (in the Tanner graph) being cycle-free goes to 1 as the length of the

105

code goes to infinity (we will call this condition the cycle-free condition), the density
evolution gives an accurate estimate of the bit error rate after [iterations, again as
the length of the code goes to infinity. In density evolution, we evolve the probability
density of the messages being passed according to the operations being performed on
them, assuming that all incoming messages are independent. The cycle-free condition
does indeed hold for IRA codes. The proof of this fact is almost exactly the same as
in the irregular LDPC case, which was done in [44].

Now, in the case of the erasure channel, we have seen that the messages are only
of three types, so in effect we have a discrete density function, and the probability
of error is merely the probability of erasure. With this in mind, we will now study
the evolution of the erasure probability, and derive conditions which guarantee that
it goes to zero as the number of iterations goes to infinity. Under these conditions
iterative decoding will be successful in the sense of [44], i.e., it will achieve arbitrarily

small BERs, given enough iterations and long enough codes.

Let p be the channel probability of erasure. We will iterate the probability of
erasure along the edges of the graph during the course of the algorithm. Let x, be
the probability of erasure on an edge from an information node to a check node,
the probability of erasure on an edge from a check node to a non-information variable
node (the rightmost column in Figure 7.1), x5 the probability of erasure on an edge
from a non-information variable node to a check node, and x5 the probability of
erasure on an edge from a check node to an information node. The prior probability

of erasure on the message bits is p.

We now assume that we are in a fixed point of the decoding algorithm and solve

for zy. We get the following equations:

Tr = 1-— (]_ - l‘z)R(]_ - 1'0),
To = PIi,
3 = 1—(1—23)%p(1 —),

xy = pA(z3),

106
where the R(x) is the polynomial in which the coefficient of x* denotes the fraction

of parity check nodes of degree i. R(x) is given by (cf. eq. (7.7))

R@y—ﬂf@f (7.9)

[(bt

We eliminate x; from the first two of these equations to get x5 in terms of z, and
then keep substituting forwards to get an equation purely in xy, henceforth denoted

by x. We thus get the following equation for a fixed point of iterative decoding:

PpA (1 - {#_(f—x)] p(1 — x)) = 2. (7.10)

If this equation has no solution in the interval (0, 1], then iterative decoding converges

to probability of erasure zero. Therefore, if we have

PA (1 - {#&x)] p(1— x)) <z, Vx#0, (7.11)

iterative decoding is successful.

7.3.3 Capacity achieving sequences of degree distributions

We will now derive sequences of degree distributions that can be shown to achieve
channel capacity. First, we restrict attention to the case p(z) = %! for some a > 1,
since it turns out that we can achieve capacity even with this restriction. In this case,

R(z) = z*, and the condition for convergence to zero BER now becomes

) (1 - [1_1;1’)] (1- x)“_1> <z, Vo#0. (7.12)

p(l—x

We now make the following new definitions

ﬁ@ﬂél—{——L:EjJZG—xVA. (7.13)

(7.14)

*s?‘
~—
=
S—
11>
—t
|
| — |
—t
|
—_
|
=
N—
o
_ 1
[N}
—~
[S—
|
8
N—
=}

| >

g(@) 2 b\ (). (7.15)

Notice that f,(z), h,(z) and g,(z) are all monotonic functions in [0, 1] and attain the
values 0 at 0 and 1 at 1. In addition, h,(x) can be inverted by hand (by making the
substitution (1 —x)* = y and it can be shown that g,(x) has a power series expansion

around 0 with non-negative coefficients. Let this expansion be g,(z) = Y, g,7".

Now, the condition (7.12) can be rewritten as

pA(fp(x)) <z, Vo #0 (7.16)

which can be rewritten as

(7.17)

We make the following choice of A(x):

N-1
1 .
Az) == (Z GpiZ" + exN) ; (7.18)
P \i=1
where 0 < € < g, nv and Zz]\:ll gpi + € = p. Such a choice of IV and e exists and is
unique since the g,;’s are non-negative and .~ g,; = gp(1) = 1. For this choice of

A(z), we have

PA(E) < gp(2) = by (@) < (1) Vo £0 (7.19)

where the last inequality follows because f,(z) < h,(z) Vz # 0.

Thus, the condition (7.17) for BER going to zero is satisfied and the degree dis-
tributions we have thus defined yield codes with thresholds that are greater than or
equal to p. We now wish to compute the rate of these codes in the asymptotic of

a — oo to show that they achieve channel capacity. Now, the rate of the code is given

108
by eq. (7.8) which simplifies to (1 + (@Y, A;/7) ') ! in the right-regular case. Now,

N-1
A Opi €
li =1 P4 — . 7.20
Jimed 3 QH&G(Z Z- +N> (7:20)

=1

We also have
. Gp.i . a _ .a
JH&“Z = s im oy Z gpi s 5 =0, (7.21)

where the last equality is a property of the function g,(x) and is also proved by manual

inversion of h,(x). We now have

i = Gpi

. 1 . A

lim a E — = lima E 2Bt

a—00 — 400 L= 4
2 1=

1
= lim a/ gp(x)dx
0

a— 00

~ <1 —/01 h,,(x)dx)
_ a/ol (11__pia)2x“dx.

The integrand on the right can be expanded in a power series with non-negative

coefficients, with the first non-zero coefficient being that of x*. Keeping in mind that

we are integrating this power series, it is easy to see that

a L/1—p 2 1 !
“d 1— h d 7.22
a_|_1/0 <1—pl‘a> x T < /0 P(x) x ()
L/ 1_ 2
< / < p) oV dx.
o \1—px®

Both bounds in the above equation can be computed easily and both tend to (1—p)/p

in the limit of large a. Plugging this result into the formula for the rate, we finally
get that the rate tends to 1 — p in the limit of large a, which is indeed the capacity
of the BEC.

Thus the sequence of degree distributions given in eq. (7.18) does indeed achieve

109

channel capacity.

7.3.4 Some numerical results

We have seen that the condition for BER going to zero at a channel erasure probability
of pis pA(x) < f,*(x) V& # 0. We later enforced a stronger condition, namely
pA(x) < hy'(z) = gy(x) Vo # 0 and derived capacity-achieving degree sequences
satisfying this condition. The reason we needed to enforce the stronger condition was
that h,'(z) = g,(z) has non-negative power-series coefficients, while the same cannot
be said for f, ' (z). However, from (7.22) we see that enforcing this stronger condition
costs us to the extent of a factor of 1 —a/(a+ 1) = 1/(a+ 1) in the rate which is
very large for values of a that are of interest, and therefore the resulting codes are
not very good.

If, however, fp_l(x) were to have non-negative power series coefficients, then we
could use it to define a degree distribution and we would no longer lose this factor
of 1/(a+ 1). We have found through direct numerical computation in all cases that
we tried, that enough terms in the beginning of this power series are non-negative to
enable us to define A\(x) by an equation analogous to eq. (7.18), replacing g,(x) by
fpfl(x). Of course, the resulting code is not theoretically bound to have a threshold
> p, but again numerical computation showed that the threshold is either equal to
or very marginally less than p.

This design turns out to yield very powerful codes, in particular codes whose
performance is in every way comparable to the irregular LDPC codes listed in [47]
as far as decoding performance is concerned. The performance of some of these
distributions is listed in Table 7.1. The threshold values p are the same as those in [47]
for corresponding values of a (IRA codes with right degree a + 2 should be compared
to irregular LDPC codes with right degree a, so that the decoding complexity is about
the same), so as to make comparison easy. The codes listed in [47] were shown to
have certain optimality properties with respect to the tradeoff between 1 —4/(1 — R)

(distance from capacity) and a (decoding complexity), so it is very heartening to note

110

that the codes we have designed are comparable to these.

5 |N|] 1-R [6/(01-R)
0.20000 | 1 | 0.333333 | 0.6000
0.23611 | 3 | 0.317101 | 0.7448
0.28994 | 6 | 0.329412 | 0.8802

0.31551 | 11 | 0.336876 | 0.9366
0.32024 | 16 | 0.333850 | 0.9592
0.32558 | 26 | 0.334074 | 0.9744
0.48090 | 13 | 0.502141 | 0.9577
0.49287 | 28 | 0.502225 | 0.9814

CU | © 0 1 O O |2

Table 7.1: Performance of some codes designed using the procedure described in
Section 7.3.4. at rates closes to 2/3 and 1/2. ¢ is the code threshold, N the number
of terms in A(z), and R is the rate of the code.

We end this section with a brief discussion of the case a = 1. In this case, it
turns out that fp_l(x) does indeed have non-negative power-series coefficients. The
resulting degree sequences yield codes that are better than conventional RA codes
at small rates. An entirely similar exercise can be carried out for the case of non-
systematic RA codes with @ = 1 and the codes resulting in this case are significantly
better than conventional RA codes for most rates. However, non-systematic RA codes
turn out to be useless for higher values of a, as can be seen by manually following the
decoding algorithm for one iteration, which immediately shows that decoding does
not proceed at all. This is the reason that all the preceding analysis was performed

for systematic RA codes.

7.4 IRA Codes on the AWGN Channel

In this section, we will consider the behavior of IRA codes on the AWGN channel.
Here there are only two possible inputs, 0 and 1, but the output alphabet is the set
of real numbers: if the x is the input, then the output is y = (—1)* + z, where z is a
mean zero, variance o2 Gaussian random variable. For a given noise variance o2, our

objective will be to find a left degree sequence A(z) such that the ensemble iterative

111
decoding error probability approaches zero, while the rate is as large as possible.
Unlike the BEC, where we deal only with probabilities, in the case of the AWGN
channel we must deal with probability densities. This complicates the analysis, and

forces us to resort to approximate design methods.

7.4.1 Gaussian approximation

Wiberg has shown [52] that the messages passed in iterative decoding on the AWGN
channel can be well approximated by Gaussian random variables, provided the mes-
sages are in log-likelihood ratio forms. In [12], this approximation was used to design
good LDPC codes for the AWGN channel.

In this subsection, we use this Gaussian approximation to design good IRA codes
for the AWGN channel. Specifically, we approximate the messages from the check
nodes to the variable nodes (both information and parity) as Gaussian at every it-
eration. For a variable node, if all the incoming messages are Gaussian distributed,
then all the outgoing messages are also Gaussian because of (7.4). A Gaussian dis-
tribution f(z) is called consistent if f(x) = f(—x)e® for Yx < 0. The consistency
condition implies that the mean and variance satisfies 02 = 2. For the sum-product
algorithm, it has been shown [43] that consistency is preserved at message updates
of both the variable and check nodes. Thus if we assume Gaussian messages, and
require consistency, we only need to keep track of the means. To the end, we define

a consistent Gaussian density with mean p to be

Gu(z) = eG4, (7.23)

1
VAT
The expected value of tanh £ for a consistent Gaussian distributed random variable

z with mean p is then

Eltanh g] = /_ N G(2) tanh gdz 2 (). (7.24)

o0

It is easy to see that ¢(u) is a monotonic increasing function of u; we denote its

112
inverse function by ¢(="(y). Let ug) and u%) be the means of the message from check
nodes to information nodes and parity nodes respectively at [th iteration. We want
to obtain expressions for ,ugﬂ) and M%H) in terms of ug) and ,u%) . A message from
a degree-; information node to a check node at [th iteration is Gaussian with mean
(1— l)u(Ll) + io, where p, is the mean of message m, in (7.4). Hence if v;, denotes the
message on a randomly selected edge from an information node to a check node, the

density of vy, is

J
; NG 0 (VL. (7.25)

From (7.25) and (7.24) we obtain:

J
Eltank 2] = Y Ao ((i = D) + o) (7.26)

Similarly if vz denotes the message on a randomly selected edge from a parity

node to a check node,

Eftanh =] = ¢(uf) + o). (7.27)
Because of (7.5) we have
Eltanh M] — T Eltanh M]. (7.28)
wHv

Denote a message from a check node to an information node, resp. parity node by
ur, resp. up. Replacing E[tanh %] with the right side of (7.26) or (7.27) depending

upon the message comes from the left or right, (7.28) becomes

(I+1)
E[tanh et

] = Eltanh %L]“_IE[tanh %R]?

J

= YN — D)) + 1)) (kg + 10))%,

=1

113

and

(I+1)
Eftanh =£—] = E[tanh%]aE[tanh%]

J

= O No((i = D + 10)) B + 12o)-

=1

Using the definition of ¢ () in (7.24), we have thus the recursion for ug) and u%):

Oup™) = QN = D) + o) x (Bl +wo))?, (7:29)
O™ = Qo Nl = 1)) + 110))" X Gy + o). (7.30)

In order to have arbitrary small bit error probability, the means ug) and u%)

should approach infinity as [approaches infinity. In the next subsection, we derive a

sufficient condition for this.

7.4.2 Fixed point analysis

We now assume that iterative decoding has reached a fixed point of (7.29) and (7.30),
ie., u(Ll+1) = /L(Ll) = py, and ,ugf;rl) = ,u%) = np. Denote Z;’Zl Nid((i — V) pr, + o) by
x. From (7.26) we can see that 0 < z < 1 and x — 1 if and only if pu;, — 0o. From
(7.30) it’s easy to show that pp is a function of z, denoted by f, i.e., ugp = f(x).

Then, dividing (7.29) by the square of (7.30) gives us

$(pr) = ¢*(ur) /2" = ¢*(f(2)) [z (7.31)

Now replacing pz with ¢(=D(¢?(f(x))/2%!) into the definition of x, we obtain the

following equation for the fixed point x:

r= Y Al + (- 0 D) (7.3

114
If this equation doesn’t have a solution in the interval [0, 1], then the decoding bit
error probability converges to zero. Therefore, if we have

F@) 2 3 Moo+ (- o LD 5 (7.39

i=1
for any = € [z, 1), where xq is the value of x at first iteration, then (the Gaussian

approximation to) iterative decoding is successful.

Since the rate of the code is given by (cf. (7.8)):

N /1
zzil/z_, (7.34)
a+> N/t
to maximize the rate we should maximize), A;/i. Thus, under the Gaussian approx-
imation, the problem of finding a good degree sequence for IRA codes is converted to
the following linear programming problem:

Linear Programming Problem. To maximize

J
> N/, (7.35)
i=1

under the condition

F(x) >z, Vaz € [z,1]. (7.36)

Using this linear programming methodology, we have designed some degree se-
quences for IRA codes. The results and presented in Tables 7.2 (code rate ~ 1/3)
7.3 (code rate ~ 1/2). After using the heuristic Gaussian approximatiob method to
design the degree sequence, we used exact density evolution program to determine
the actual noise threshold. (In every case, the true iterative decoding capacity was

better than the one predicted by Gaussian approximation.)

For example, consider the “a = 3” column in Table 7.2. We adjust Gaussian ap-

proximation noise threshold o054 to be 1.2415 to have the returned optimal sequence

115

a 2 3 4

As 0.139025 | 0.078194 | 0.054485

A3 0.222155 | 0.128085 | 0.104315

A5 0.160813

X6 0.638820 | 0.036178 | 0.126755

Ao 0.229816

M1 0.016485

A2 0.108828

A3 0.487902

A4

A

A7 0.450302

Aag 0.017842

rate 0.333364 | 0.333223 | 0.333218

oaa 1.1840 | 1.2415 | 1.2615

o* 1.1981 | 1.2607 | 1.2780
(%£)*(dB) | 0.190 -0.250 | -0.371
S.L. (dB) | -0.4953 | -0.4958 | -0.4958

Table 7.2: Good degree sequences of rate one-third for the AWGN channel and with
a = 2,3,4. For each sequence the Gaussian approximation noise threshold, the actual
sum-product decoding threshold, and the corresponding (f,—’;)* in dB are given. Also

listed is the Shannon limit (S.L.).

having rate 0.333223. Then applying the exact density evolution program on this
code, we obtain the actual sum-product decoding capacity ¢* = 1.2607, which cor-
responds (f,—’;)* = —0.250 dB. This should be compared to the Shannon limit for the
ensemble of all linear codes of the same rate, which is —0.4958 dB. As we increase
parameter a, the ensemble improves. For a = 4, the best code we have found has
iterative decoding capacity (f,—’;)* = —0.371 dB, which is only 0.12 dB away from
Shannon limit.

The above analysis is for bit error probability. In order to have zero word error
probability, it is necessary to have Ay = 0. (This can be easily proved by the following
argument: if A\, > 0, then in the ensemble the number of weight 2 codewords A, > 0,

hence even the optimal maximume-likelihood decoder would have non-zero decoding

error probability.) In Table 7.3, we compare the noise thresholds of codes with and

116
without M.

a 8 8
Ao 0.057713
A3 0.252744 | 0.117057
A7 0.218992
g 0.033384
A1 0.081476
A2 0.327162
Mg 0.214722
A2o 0.075226
A6 0.184589
A4g 0.154029
As5 0.080868
As3 0.202038
rate 0.50227 | 0.49794
o* 0.9589 0.9720
(%2)*(dB) 0.344 0.266
Shannon limit 0.197 0.178

Table 7.3: Good degree sequences of rate roughly one-half for the AWGN channel
and with a = 8. These two sequences are found by including or excluding As in the
linear programming. For each sequence, the rate of the code, the actual sum-product
decoding threshold, and the corresponding (%)* in dB are given. Also listed is the
Shannon limit.

We choose rate one-half because we wanted to compare our results with the best
irregular LDPC codes obtained in [43]. Our best IRA code has signal-to-noise thresh-
old 0.266 dB, while the best rate one-half irregular LDPC code found in [43] has
threshold 0.25 dB. These two codes roughly have the same decoding complexity, but
unlike LDPC codes, IRA codes have straightforward linear encoding.

7.4.3 Simulation

We simulated the rate one-half code with Ay = 0 in Table 7.3. Figure 7.3 shows the

performance of that particular code, with information block lengths 103, 10%, and 10°.

117

10 °f

— IRA code
— - Turbo code |]

10°F

m r k=100000

-5

10 "k

10

*

| |
0 0.5 1 15 2 2.5
SNR (dB)

Figure 7.3: Comparison between turbo codes (dashed curves) and IRA codes (solid
curves) of lengths k = 10%,10*,105. All codes are of rate one-half.

7.5 IRA Codes on the Fading Channels

7.5.1 Introduction

We know of practical codes and decoding algorithms that can closely approach chan-
nel capacity of some classical channels, e.g., the binary erasure channel, the binary
symmetric channel, and the additive white Gaussian noise (AWGN) channel. While
it appears on those channels there is not much left to be done (at least practically),
other channels remain to be investigated. Those include channels of non-binary input,
non-symmetric, and/or with memory.

In this section, we will focus on one of those non-standard channels, namely
Rayleigh fading channels. The fading channels stand out as wireless communication

becomes more important nowadays. Since the Rayleigh fading channels are time-

118
varying Gaussian channels, it is natural to wonder whether powerful codes designed
for the Gaussian channel still work in a fading environment. In [26], turbo codes were
analyzed and simulated on the Rayleigh fading channel with coherent BPSK signal-
ing. In this section we investigate the performance of IRA codes on the Rayleigh
Fading channels using BPSK signaling. Three different Rayleigh fading models are
considered: coherent detection and known (only to the receiver) fading coefficients;
coherent detection and unknown fading coefficients; and noncoherent detection. For
those three different channel models, we show that IRA codes can generally perform

close to corresponding channel capacities.

7.5.2 Review: decoding of IRA codes

The decoding rules for IRA codes are given in eqs. (7.4) and (7.5). Before decoding,
messages m(w — u) and m(u — v) are all initialized to be zero, and mg(u) is
initialized to be the log-likelihood ratio based on the channel received information.
If the channel is memoryless, and y is the output of the channel code bit u, then
mo(u) = log(p(u = 0ly)/p(u = 1]y)). After this initialization, the decoding process
runs in a fully parallel and local manner. In each iteration, every variable/check node
receives messages from its neighbors, and sends back updated messages. Decoding is
terminated after a fixed number of iterations or detecting that all the constraints are
satisfied. Upon termination, the decoder outputs a decoded sequence based on the
messages m(u) =Y m(w — u).

Thus, on various channels iterative decoding only differs in the initial messages

mo(u). For instance, on the binary erasure channel, y € {0, E, 1} with E being the

erasure, then

+oo ify=0
mo(u) =4 0 ify=FE (7.37)

—00 ify=1.

119
On the binary symmetric channel, y € {0, 1}, then
log lp%p ify=20

mo(u) = L (7.38)
—log T” if y =1.

And finally, on the additive white Gaussian channel with BPSK signaling which maps
0 to the symbol with amplitude /E; and 1 to the symbol with amplitude —/Fj,
output y € R, then

mo(u) = 4y /E,/N,,

where N,/2 is the noise power spectral density.

7.5.3 Rayleigh fading channels

We consider BPSK signaling over a Rayleigh fading channel. The BPSK signaling
maps bit 0 to the amplitude /E, and maps bit 1 to the amplitude —+v/F;. The
fading coefficient is assumed constant over 1 symbol time, but changes to a different
constant at the next symbol time, and so on. With appropriate sampling, the discrete

representation of this channel is
r=ae’z +n, (7.39)

where 7 is the complex channel output, z is a BPSK symbol amplitude (++/F), and
n is an i.i.d. AWGN component with zero mean and power spectral density Np/2.

The fading amplitude a is Rayleigh distributed with pdf,
pa(a) = 2ae™ for a > 0. (7.40)

The random phase (3 is uniformly distributed over [0,27]. Assuming the channel is
fully interleaved, the a’s are mutually independent.

Assume s is the channel information provided to the receiver. Three different

120

Rayleigh fading models are considered, all being symmetric:

i) s = (a,), i.e., coherent detection and known fading amplitudes. With coherent
detection, discrete representation of this channel eq. (7.39) can be simplified to an

equivalent channel model
y=ar+n (7.41)

where y is now a real number, and a,x,n are the same as in the original model.
Conditioned on the fading amplitude a and transmitted signal z, the received signal

y is a Gaussian random variable, with conditional probability density function

p(yle = VEq,a) = N(av/E,, No/2), (7.42)

a Gaussian pdf with a mean a/F; and variance Ny/2.

ii) s = (), i.e., coherent detection and unknown fading amplitudes. Because of
coherent detection, eq. (7.41) still holds. However, without the knowledge of a, the

conditional probability distribution is

p(y|x = \/Es) = EpA(a)[p(y|x = \/Esa a)]a (743)

where p(y|z = /Es, a) is given in eq. (7.42) and pa(a) is given in eq. (7.40).

iii) s = ¢, i.e., noncoherent detection and unknown fading amplitudes. In [24,
pp.63-65], it is shown this channel is equivalent to the following channel model. The

output of the channel is y € R, with transition density function

1+A)€—% y>0

A A
plyle = VE) = "0 (7-44)
eint 4~ y=0

.
where A = Tt

We now consider the channel capacity of each channel model. Channel capacity is

defined as the maximum over the input distribution Py (x) of the mutual information

121
between the channel output and input I(X; R). For the fading channel if the fading
phase and/or fading amplitude is known, the mutual information is conditioned on
this knowledge. We calculate the maximum of 7(X;Y) for these channels models
with input X and output Y, conditioned on « if that is known. For this, we write

the capacity expression as

CPPSE = max I(X; R|S)
= max [(X;Y|Z)
Px(x)
p(ylz, 2)
= max E,,, »|log,(——=
PX(:L') P(,y,)[2(p(y|z))]
p(ylz, 2)
= max FE,;, »|lo .
PX(x) p(x,y,)[g2(zml px(x/)p(mxl,z))]

I(X;Y|Z) is the mutual information between X and Y conditioned on knowledge of
the channel side information Z (it only exists for the first channel model, in which
case, 2 = a.) Ep, .|| is the expectation over the distribution p(x,y,2). Based on

the independence of z and x, this expectation can be written as

p(x,y, 2) = plylz, 2)px (¥)pz(2). (7.45)

Since in all three models the input is symmetric, the maximization in the capacity
definition is achieved by an equiprobable input distribution Py (z = \/E,) = Px(x =
—+V/E,) = 1/2. Thus, the channel capacity could be evaluated given the relation eq.
(7.45) and eqs. (7.42), (7.43), (7.44).

Numerical results of different channel capacities are shown in Figure 7.4. In the
figure, from the top to the bottom, the first curve is incoherent detection and unknown
fading amplitudes; the second curve is coherent detection without knowledge of fading
amplitudes; the third curve is coherent with the knowledge of fading amplitudes. The

fourth curve is additive white Gaussian channel, which is included for comparison.

We list the numerical numbers for those different channel capacities at rate R =

1/2,1/3,1/4,1/5 in Table 7.4. Table 7.4 tells us, for instance, at rate 1/2, an error-

122

~— o2 —04 06 08 1

Figure 7.4: Rayleigh fading channel capacities, where the x-axis represents the rate
between 0 and 1, and the y-axis represents the signal-to-noise ratio E,/N, in dB.

free transmission scheme would require a minimum signal-to-noise ratio of 0.2 dB on
the Gaussian channel. If the channel experiences Rayleigh fading but the receiver
does coherent detection, then the minimum SNR requirement increases to 1.8 dB if
the receiver has side information; and 2.7 dB if the receiver does not have. If the
receiver is unable to do coherent detection, then the minimum signal-to-noise ratio

increases to 9.0 dB.

Rate 12[1/3[1/4]1/5
Rayleigh-SI (dB) 1.8] 0.7 [-0.1]-04
Rayleigh-NSI (dB) 271 1.2 1 08| 05

Rayleigh-Noncoherent (dB) | 9.0 | 8.2 | 8.0 | 8.1
AWGN (dB) 0.2 |05]-08|-1.0

Table 7.4: Channel capacities: numerical data gleaned from Figure 7.4.

123
7.5.4 IRA codes on Rayleigh fading channels

As described in Section 7.5.2, on various channels iterative sum-product decoding
algorithm for TRA codes only differs in initializing messages mg(u). Suppose uy is
the codebit transmitted during time k; xj is the transmitted symbol, a is the fading
amplitude; y; is the received symbol. With coherent detection and known fading

amplitudes, the likelihood ratio is

plug = Olyk, ar) plug = 0, yxlay)
plug = ye,ar) — plug = 1, yklar)
_ p(yk|ur = 0, a)
— p(yklug = 1, ax)

p(yklzr, = VEs, ai)
p(yk|xk = -V Es,ak)

4aryrv'Es/No

= €

Hence the initial message is

p(ur = 0|y, ak) _
p(uk = 1|yk, ax)

4akyk\/ ES/N()- (746)

mo(uy) = log

With coherent detection and unknown fading amplitudes, the likelihood ratio is

pluk =Olye) _ plur =0,k
plug = 1|yx) plug =1, yk)
EpA(ak)[p(yka =0, ak)]
Ep o) [Pk ur = 1, ag)]
A
= (I)(yk)a

where E,,q)[p(y|z,a)] is given in eq. (7.43). Hence the initial message mq(uy) is

given by

mo(ux) = log ©(yx). (7.47)

The function ®(y) has no known closed form, so we use an approximation to log ®(y).

Figure 7.5 shows a typical log ®(y;) function. It indicates that this function can be

124

well approximated by the linear function 2C'yx\/E;/Ny. Conventionally this constant
C' is chosen to be C' = 0.8862 [26] (although we believe C' = 0.82 is a more accurate

approximation); that number is used in our simulation as well.

7.5¢

2.5¢

-2.5¢

-7.5¢

Figure 7.5: Plot of log ®(y), for Ex =1, Ny/2 = 1.0.

For the noncoherent channel without any side information, the initial message

mo(ug) is [24, eq. (6.7)]

mo(ux) = Y. (7.48)

All three Rayleigh fading channels were simulated by using a pseudorandom num-
ber generator to produce outputs y according to the probability distribution of eq.
(7.42), (7.43), or (7.44). Since we have not designed IRA codes specifically for any of
these channels, we used some of the degree profiles designed for the AWGN channel
from Section 7.4. We expect reasonable performance because Rayleigh fading channel
can be regarded as a time-varying Gaussian channel.

In Table 7.5, the first column shows the degree profile of an IRA code of rate
approximately 1/2. The second columns gives the degree profile of an IRA code of

125

rate | 0.509095 | 0.333218

a 8 4

fa 0.218052
fs | 0.667892 | 0.278317
fe 0.169094
Fro 0.183948

fi1 | 0.058720 | 0.011995
fi2 | 0.216137
for 0.133492
fos 0.005100
fi6 | 0.031812
fis | 0.025439

Table 7.5: Degree sequences of the IRA codes in simulation.

rate 1/3. Both are taken from Section 7.4.!

In all simulations, 20 word errors were accumulated to reduce the variance in the
bit error rate estimates.

Figure 7.6 shows the performance of the rate 1/2 IRA codes in Table 7.5. The
code has information block length 10*. Reading from right to left, the curves represent
the performance on a Rayleigh fading channel with noncoherent detection, Rayleigh
fading with coherent detection and unknown fading coefficient, Rayleigh fading with
coherent detection and known fading coefficient, and AWGN channel. The marks on
the x-axis are the channel capacities for each of those channels.

In Figure 7.6, for the SI channel, BER=10"" is achieved at signal-to-noise ratio
of 2.75 dB, while the channel capacity is 1.8 dB. For the NSI channel, the same BER
is achieved approximately at 4.8 dB, while the channel capacity is 2.7 dB. And for
the non-coherent case, this is achieved at about 9.8 dB, comparing with the Shannon
limit 9.0 dB.

Figure 7.7 shows the performance of the IRA codes with rate 1/3 in Table 7.5.
The code has information block length 10*. From the right to left, the performance is
on Rayleigh fading channel with incoherent detection, Rayleigh fading with coherent

!Except here we use node fraction, instead of edge fraction, to represent the degree profile. For
both notations, refer to Section 7.3.

126

10" ¢ \
— AWGN
— - Rayleigh fading SI
—— Rayleigh fading NSI
1 — — Rayleigh noncoherent
10 " \
\
\
\
107 e ! \\
_ |
_ \
! |
] 10—3 | \ |
| \.
|
i,
107} \ i
10_5 2 =
10‘6 * ! * | * 1 ! ! ! ! ! *
0 1 2 3 4 5 6 7 8
SNR (dB)

10
Figure 7.6: Performance of IRA code, rate 1/2, information block length 10%.

detection and unknown fading coefficient, and Rayleigh fading with coherent detection

and known fading coefficient. The marks on the x-axis are the channel capacities for
each of those channels.

Again, IRA codes are performing within about 1 dB of the channel capacity. To
achieve BER of 107*, on the SI channel it requires SNR about 1.0 dB; on the NSI
channel it requires SNR about 2.0 dB; on the noncoherent channel, it requires 8.9

dB. The corresponding channel capacities are 0.7, 1.2, and 8.2 dB respectively.

127

10_1 r T T
: — Rayleigh fading Sl
— — Rayleigh fading NSI
Rayleigh noncoherent
| _
107} ' |
3 |
|
\ .
| _
l !
| |
10° ' \
| .
|
|
x \ |
W
m | |
\ |
10" \ \
\ |
|
.\»
. \
10~ o »
10‘6 * L % ! ! ! ! ! ! L% !
0 1 2 3 4 5 6 7 8 9 10
SNR (dB)

Figure 7.7: Performance of IRA code, rate 1/3, information block length 10%.

7.6 Conclusions

In this chapter, we have introduced a class of codes, the IRA codes, that combines
many of the favorable attributes of turbo codes and LDPC codes. Like turbo codes
(and unlike LDPC codes), they can be encoded in linear time. Like LDPC codes
(and unlike turbo codes), they are suited to an exact density evolution style analysis.
In simulated performance on some typical channels, including the AWGN channel
and Rayleigh Fading channels, they appear to be slightly superior to turbo codes of

comparable complexity, and just as good as the best known irregular LDPC codes.

128

Appendix A AWGN Error Exponents

In this appendix we will discuss the general class of AWGN error exponents, which
can be used to prove coding theorems from weight enumerators (for detail, refer to

[16]). Such an exponent is a function E(d,r,c) of three variables:

S >
o o
IA - IA
= >
IAN - IA
el
€

o
o
v
o

Here are two examples of error exponents that enjoy the properties we describe

below: the UB (union bound) exponent and the DB (Divsalar bound) exponent.

e The UB exponent:

Ey (9,7, ¢) = max(0,dc — 7). (A.1)

e The DB exponent [15]:

08¢

Ep(8,r,¢) = max (—r + %111(5 + (1 - B)e™) + -t

0<p<1

(A.2)

(Note that if the maximum in (A.2) is restricted to the two values f =0 and § =1,
the bound (A.1) results.)

Here are the postulated properties of E(d,r,c).

Property A.1 If C is a binary code with Ay words of weight h, and if the all-zeros
word s transmitted over the AWGN channel, the probability that ML decoder will

129

prefer some word of weight h to the all-zeros word is bounded as follows:
PE‘,h(C) S e—nE((S,r,c),
where 6 = h/n, r = (1/n)log Ay, and ¢ = E;/N, = RE,/N,.

Property A.2 E(d,r,¢) must satisfy the following conditions:

E(§,rc) > 0

aa—]f(é, re) > 0

0> %—f(& re) > 0
0’E

%(5, T, C) > 0

We now define
co(0,7) = inf{c: E(d,r, c) > 0}.
e For the UB:
co(0,1) =1/0.

e For the DB:

1—§ 1—e %
00(6,7"): 6 (2)

(A.3)

(A.8)

Property A.3 For any A > 0, there exists € > 0 such that if ¢ — co(0,7) > A > 0,

then

E(6,7,¢) > de.

130
Proof: We only prove this porperty for Ep(d, r, ¢) because it is obvious for Ey (6, r, ¢).
Define

a I _B)e2ry 4 0P
B(o,r,c) = argma (=r+5n(f+ (1= B)e™) + — S1=F) (A.9)
The expression is given in [15]:
. 1—=96, [c—co(d,r)
56,7,) = min(1, - <\/ - ra). (A0
Denote (9,7, co(0,7) + A/2) by 5*. For ¢ > ¢o(d,7) + A,
E(S,r,c) = E(6,r,B(0,r,¢),¢)
2 B0
(®) i 53 A
> E((S,T,ﬂ ,Cg(é,T)—FA/Q)—FmE
© _ o A
1= 5(1-p%) 2
_ A/2 (A.11)

5(1 —0)/p*+46

where (a) is according to definition of 3(d,r,c); (b) follows from the fact E(d,r,¢) is
increasing and linear in ¢; (¢) because E(d,r, ¢) is non-negative. If * = 1, the lemma

is proved by letting e = A/2. If §* < 1, the exact expression is given by (A.10),

, 1—90 A
b=) (\/200(6,7")+K2_K)’

where K =14 ¢y(6,7) +A/2.

131

Taking this formula for £*, we obtain

(1-9)/8"+06 < 0 +0

A
\/ 2co(6,r) + K2 - K

_ \/200(5,7")A+(ch(5,7")K)2+K 1 (A1)

< F(M,A). (A.13)

The last inequality (A.13) follows as (A.12) is an increasing function of cy(d,7),
which is bounded by M. Hence, by setting A/(2F(M,A)) = € in (A.11), we ob-

tain E(d,r,¢) > de. n

Property A.4 For any (0,7) and 6 > 0, we have

00(6,7" + 9) S 00(6, 7") + 9/(5

Proof: Simple algebra gives us

1-0 1-9
_p2(r+0) - T =20, —2r\ - Y
(1—e) 55 (1—e e ™) 55
1-0
< _ _ —2r - =
< (I—=(1—20)e) %
1—6 6
< o2 ¢ —.
< (1—e™) 55 T3]

Let us assume that we have some information about the rate at which r,(J)

approaches r(¢), of the form

rn(8) < r(8) + 0y, (A.14)

where 0, > 0, is a sequence of positive real numbers tending to zero.

Now we define the ensemble thresholds for a code ensemble with spectral shape

132

co 2 sup co(3,7(3)). (A.15)

0<6<1

The nth innominate sum is defined as follows:
D
Z0(D) 2y 4",
h=1

where D is an integer with 1 < D <n.

The following is our main theorem of this section.

Theorem A.1 If D, is a sequence of positive integers such that

lim "% _ o, (A.16)

n—oo D,

and if ¢ > ¢y, there exists an integer ny and positive constants K and € such that for

712”0;

PP <5 Posle) < Z20(D,) + KeePn. (A.17)
h=1

Proof: By Property A.1, we have
PE,h(C) S e—nE((S,rn(é),c).

For any § > D, /n,

co(0,m(0)) < (8, 7(0) + 0y) assumption A.14
< ¢(d,7(0))+6,/0 Property A.4
< 00(5,7”(5))4—719“/1)“

133
With assumption (A.16), we have

lim ¢ (6, 7, (8)) = o (0, 7(5)).-

n—00

Hence, for ¢ > ¢y = sup;co(d,7(J)), there exists an integer ny and A > 0, such that

for n > ny

c—co(0,7,(0)) > A (A.18)
for any 6 > D,,/n. By Property A.3, there exists € > 0 such that

E(6,rn(0),¢) > de.

Hence, when n > ngy, we have

n D,
Z Pyp(c) < Z Ay + Z e EO(0:0))
h=1 h=1

h>D,,

< ZM(D,)+) e
h>D,,

ZM(D,) + Ke . =

IN

Corollary A.1 If in addition, Z™(D,) — 0 and D, — 0, then for E,/N, >
(1/R)co,

P =0, (A.19)

i.€., the ensemble is “good.”

134

Appendix B Miscellaneous Derivations

for Chapter 4

B.1 TIOWE for the Inner Code of RDD Codes

As defined, the inner code of RDD codes is a truncated rate-1 convolutional code
with transfer function 1/(1+ D + D?). Thus an input block x = [z, T, ... ,2,] and

an output block y = [y1, 99, ... , ys] are related by the formula:

Tk = Yp—2 + Yr—1 + Yk, (B.1)

if we define y_; = yo = 0. To count A, 5, the number of input-output pairs such that
input block has weight w and output block has weight A, we divide the output block
y into runs of 1s (1-run) and 0s (0-run). There are four possibilities regarding the
structure of y: (1) y starts with an 1-run, ends with a 0-run; (2) y starts and ends
with an 1-run; (3) y starts with a O-run, ends with an 1-run; (4) y starts and ends

with a O-run. We first focus on the first case, i.e.,

y=1.--10---01---1---1---10---0, (B.2)

a1 a2 ak

where positive integers a; and b; satisfy

k
Zai:h; Zbi:n—h. (B.3)
i=1

=1

According to (B.1), possible 3-tuples (y;—2, yi—1, ¥;) generate x; = 1 are (100), (010), (001), (111).
To count the number of those 3-tuples, let us first assume there are s 0-runs with

length 1 and there are ¢ 1-runs with length 1. Since each O-run of length > 2

135
generates 1 (100), there are totally & — s (100)’s. Similarly, there are ¢ (010)’s,
D oa>2(@i —2) =h+t—2k (111)’s, and k — s or k — s+ 1 (001)’s depending whether

b, = 1. Because the input weight is w, we have the constraint
h+2s—2t=w, or h+2s5s—2t+1=w. (B.4)

Now, A, for case (1) is the total number of pairs (x,y) satisfying eqs. (B.3) and
(B.4). This computation is straightforward:

A= Z D)0 e

The other three cases involve similar calculation. It is verified that in each case

Ay is bounded by QAS’)h in (B.5). Hence the overall A, is

- t 3 () <kL;J1> (’,ﬁ:f: 11) <nk_—h(;1k—_11>

Wheres:h’T“’th,andlng?.

??‘

Il
o

136

B.2 Proof of Property 4.1

e

(©) [h/2] —+|n/2l-Th-a)/2]
(1o o

Hereby, step (a) follows from the fact s = [(h—qw+2t)/2] > 0, and ¢t < k < h, hence

3h > h+2t > quw, i.e., w < 3h/q; (b) is obtained by plugging in the expressions for

Ay and rearrange the sum. To see (c), we can verify for fixed w, k,t,h = O(log N),

S(w) is a decreasing function of w. So the sum can be upperbounded by the first

term times the summation range, which is O(N°¢) for any € > 0. For step (d), it’s easy

to show that for fixed ¢, k, h = O(log N), Q(t) is a decreasing function of ¢. Step (e)

follows because for fixed k,h = O(log N), U(k) is an increasing function of k. Step

(f) follows from the fact that the binomial coefficient can be overbouned by N¢ for

any € > 0, and n = ¢N.

Taking the summation for h < D,,, we have
Z(”)(Dn) < O(R—W?HE)

since the summation range is n¢ for any € > 0.

137
B.3 Spectral Shape of RDD Code Ensembles

Given A“Y) in (4.3), we have

w,h
quN) < DN®max (]l]:’;)
w,k,t (Zw)

() G0) () e

where s = (h — qw)/2 + t. By definition, § = qLN. Further let us define z = %,

v Therefore, % = 6/2 — qz/2 + v. Follow from the fact that

_ _k _
U= 25 andv_qN.

%HQ”H(’“/") < (§) < 2™ for any 1 < k < n, (see, e.g., [13]), we have

. rn +a _ Y
nh_)rgo log <yn N b) /n = xH(x) (B.9)

where 0 < z,y < 1 and a, b are arbitrary. Hence r(¢), as defined, can be simplified to

r(@) = lim logAy/(gN)

< gﬁg((l/q—1)H(qx)+uH(u/U)+uH(5/2_q5/2+v)
i (5_U)H(g:2)+(1—5—u)H(U_U1__65/2_qu/2). (B.10)

Here we can exchange the order of max and lim because the convergence in (B.9) is

() () G20 ()

which again can be simplified to

uniform. On the other side,

r) > max((1fg —1)H(ga) +ub /o) +upi (2T
b — W HE) s (16— (L2 a2y

O —u 1—60—u

Combining with (B.10) and (B.11), r(d) equals to the RHS of (B.11). Moreover,
from (B.8), r,(0) < 3logn/n + r(9). n

138

Appendix C Miscellaneous Derivations

for Chapter 5

C.1 Weight Enumerator Estimates for Truncated
Convolutional Codes

In this Appendix we shall state for reference three useful combinatorial facts about
the weight structure of convolutional codes, due essentially to Kahale and Urbanke

[35].

Theorem C.1 (The n-u theorem.) For a non-catastrophic convolutional encoder E,
there exists a constant p, i = p(E), such that if the output weight is h, then the input
weight is at most puh. Also, there is a constant n = n(F) such that if a codeword in
the truncated code consists of several detours, of total length Ly, then the codeword

weight d satisfies d > L.

In what follows, AgL) denotes the number of codewords of weight A in the Lth
truncation of the code and Afﬁl denotes the corresponding number of codewords
with input weight w and output weight h. Thus A;LL) => . Aq(UL;L Similarly, Aff’)gh
denotes the the number of codewords with input weight w and output weight less

than or equal to h, i.e., AEUL,)gh = ZZZI AEUL")i.

Theorem C.2 (/35, Lemma3]) Let C' be an (n,k,m) convolutional code, as repre-
sented by a noncatastrophic encoder E. Then for the (nL, kL—m) block code obtained
by truncating C' at depth L,

A< (i) (©1)

where dy s the free distance of the code, and 6 is a constant independent of h and n.

139

We define a recursive convolutional code to be one for which any input of weight

1 produces an output of infinite weight.

Theorem C.3 ([35, Lemmal]) Let C be an (n,k,m) recursive convolutional code,
with corresponding noncatastrophic encoder E. Then for the (nL, kL —m) block code

obtained by truncating the E-trellis representation of C at depth L,

o Lw/2] I nh
Aw,gh S ew Z < > (’U] .])7 (C2)

=0

where 0 and n are constants independent of w, h, and n. (For the significance of n,

see Theorem C.1.)

C.2 Some Useful Inequalities

Suppose n, k are positive integers, 1 < k < n. Then

~—
> 3
N
(VAN
N
]
Q
=

e /) [(1, 4 1)

IN

>
ol
(VAN
A~
> 3
N~
(VAN
3
Ead
Q
=

(For (C.5), see [13, Example 12.1.3, p. 284])

Proposition C.1 Ifn>m, 1 <j < |w/2], then

()G) = ()) = Q) () €9

Proof: It suffices to show that given the condition, f(j) = (?) (w’fj) is an increasing

function of j. Consider the ratio

fGG) n—j+lw—-j+1

fG=1) m-w+j

140
Sincew —j+1>jandn—j54+1>m—w+j, we have f(j)/f(j — 1) < 1. Hence
the conclusion follows. [|
Proposition C.2

(1) Given F,(w) = wntlw/2l=(I-Dw p@I=bw 1 <y < D, F,(2) will be the largest

term as n becomes large.

(2) Given G,(d) = ©pld/dl+ld/2l=dp2d g < g < uD,, G,(dy) will be the largest
term as n becomes large.
Proof: (1): It is easy to show that F,(w) satisfies F,(1) > F,(3) > F,,(5) > ... and
F,(2) > F,(4) > F,(6) > ... as n gets large by taking the ratio of two consecutive
terms. Verifying that F,(2) > F,,(1) for large n, we have the claim.

(2): Similarly, we can show G, (d;) > G,(d; +1) > ... > G,(uD,) by taking the

ratio of two consecutive terms. []

Proposition C.3 Given real numbers «;, b; fori=1,... ,n, with b; > 0, define

A= Xn: Oéibi,
=1

and let
1 n
L =1lim—- su o; H(b;x). C.7
00 0 0<$<pu6 ; () ()
Then
+00 if A >0
L=9 ud . ab; log(b%) if A=0
0 if A <O0.

Proof: (Sketch). It is easy to see that for small x,

1
H(z) = xlog; + x4+ O(2?),

141

and so
S aiH(b) = Arlog = + [S abi(1 +log—) | 7+ 0(s?).

If A # 0, the first term in the above expansion dominates, and the result follows

immediately. If A =0 we have

in which case the “sup” in (C.7) is attained at z = pd as § — 0. n

C.3 Bit Error Probability vs. Word Error Proba-
bility

The union bound on the bit error probability for maximum likelihood decoding of
an (n, k) binary linear code C' with IOWE (A, ;) over a memoryless binary input

channel has the form
n w n —Q
V<3S :EASU}Le , (C.9)

In this appendix, we will state, and sketch a proof of, a theorem on the ensemble

bit error probability F,(,n), analogous to Theorem 5.2, whch deals with word error

probability. To that end, we define another innominate sum:

D k
n A W —(n)
YOy 237 :EAw,h. (C.10)

Theorem C.4 If the threshold co defined in (5.4) is finite, then if o > ¢y, there exists

an integer ng and positive constants K and € such that for n > ny,

P <Y™(D,) + Ke™"n. (C.11)

142
Proof: (Sketch.) Beginning with eq. (C.9), we have

IN

n k
DI

h=1 w=1

D k k
S5 A+ 3 Fale

h=1 w=1 h>D w=1

k
= YD) +> > %Zg’}e—ah

h>D w=1

k
< YD)+ > ZZfﬂe—ah

h>D w=1

= YD)+ Y Aemen (C.12)

h>D

P

IN

Theorem C.4 now follows immediately from (C.12) and the proof of Theorem 5.2. m

Corollary C.1 If in addition, Y™ (D,) = O(n™?), then for a > c,
P =0(n?) (C.13)

The following lemma shows why the results on word error probability can be easily
extended to bit error probability. In essence, Lemma C.1 shows that Z(™(D,) =
O(n=?) if and only if Y™ (D,) = O(n=?*1),

Lemma C.1 There exists a positive constant p, such that
Z"(D,)/k <Y™(D,) < uD,Z™(D,)/k. (C.14)

Proof: Applying w/k > 1/k to (C.10), we obtain the left inequality. From Prop.
C.1 we know that if Zfﬁl # 0, then w < ph. Thus if h < D,,, and ZE:L # 0, then
w < ph < pD,. The right-hand side inequality now follows if we upper bound w/k
by uD,/k in (C.10). Finally, since k¥ = Rn, where R is the rate of the ensemble, it
follows as an immediate corollary that Z(™(D,) = O(n®) iff Y("(D,) = O(n®~"'). =

143

Appendix D Miscellaneous Derivations

for Chapter 6

D.1 Proof of Theorem 6.2

We first define the ensemble threshold as follows:

po =sup{p: K(5,p) > r(d),0 < < 2p}. (D.1)

Lemma D.1 If p < p,, then there exist real numbers ag > 0 and 6y > 0, and a

positive integer Ny, such that for n > Ny,

aopn

Z Zgn)Vh _ O(e—dnao)7

h=dn

where v = 24/p(1 — p).
Proof: Using the definition 6.17, it is straightforward to show that

. K((Sap()) _ aK(07p0) .
e R S

where vy = 24/po(1 — po). Hence for p < pg, we have

r(9)

lim sup —= lim L((S’ Po)
§—0) 0—0)

= —logy = —log(2v/po(1 — po))

< —logy = —log(2y/p(1 - p)).

144
This, together with Assumption 2, implies that there exists oy > 0, 6y > 0, and a

positive integer Ny such that for n > Ny, we have

n(0 6,)
sup r()<n_+ sup @<—log7—90.
dn/n<é<ap 0 dn 0<d<ap)

Hence we have, for n > Ny,

aopn aon

ZZEJL)V’Z _ Zefh(log%rn(@/(?)

h=dy h=dp,
aon

< E e~ hbo
h=d,
0

< Z e~ oo

h=d,

= O(em),
which completes the proof. []

Now we can give the proof of Theorem 6.2. With the notation being as established

above, we have, by Theorem 6.1, for p < py,

dn, aon n
—(n) —(n) —(n)
Py <Y A7+ A+ Y AT + o(n). (D.2)
h=1 h=d, h=aopn

The first sum in (D.2) approaches zero by Assumption 1, the second sum approaches

zero by Lemma D.1 together with the fact that d,, — oo. The third sum is

Z Z;H)Ph(T) — Z oK (0,p)—r(0)+0(1))
h=agn h=aon
< Z ¢ K @G.p) K (Gpo)+o(1) (D.3)
h=agn

where the first line follows from (6.20) and Assumption 2, and the second line follows

from the definition (D.1) of po.

145
Finally, let € be such that

K(0,p) — K(d,po) > € for a, <€ < 2p. (D.4)

Then for n sufficiently large, the exponent in (D.3) will be > ¢/2, and so the sum

—ne/2

willl be upper bounded by n - e , which goes to zero. []

D.2 Derivation of Equation (6.40)

Using Lagrange multiplier, we construct the function

k

T =S pH () b p (2 A6 - 0), (D.5)

2p; 2p; ,

i=1 7

and differentiating with respect to ¢; and setting to zero, we have

\/(22%' —6;)(2p_; — &)

3

+A=0. (D.6)

log

Hence the optimum point are (taking ¢ = e ?*)

4p;p_;
5t = bib . (D.7)
pi+p_i+(pi+pi)?+4(1 —c)pip—i

The parameter ¢ is determined by the condition SF_, 6% = 4.

i=1 "1

D.3 Proof of Theorem 6.5

The proof is a generalization of the proof for the BSC. We first define the ensemble

threshold as follows:
7o = sup{7 : K®(6,7) > r(6),0 < § < 1}. (D.8)

Lemma D.2 If 7 < 7,, then there exist real numbers ag > 0 and 6y > 0, and a

146

positive integer Ny, such that for n > Ny,

agn

Z Ah = 7dn00)7

h=dn,

A
where vy, = Zle 2/Pip—i = V(7).

Proof: Similar to the proof of Lemma D.1, the key point is to prove that

o
lim sup "2 < — log 34(70) < — log 14(7).
0—0 J
For that, we first show
Lemma D.3
K®(5
lim KO _ log vk (7).
0—0

Proof: Using definition of K*)(,7) (6.40), we have

Wo,r) _ oKW(s,7)

lim

550 0 - 90 50
-6 V@pi =5 @p—i — 07) | 96;
= log—— 5 ; (log 57 % ls50
= lo 400
Z 6(5 C
067
= log(1 —6(c Zlog (VEd(€)) 5 5 leosoc: (D.9)

The third line follows by plugging (D.6) and realizing § is a function of ¢ which
approaches 0 as ¢ — oo. It is easy to verify (by (D.7))

lim /cd(c) Zwm, (D.10)

c— 00

147

and

907 _ 2\/pip—i (D.11)
96 T N2 pips '

Plugging (D.10) and (D.11) into (D.9), we have

lim K(o,7)
6—0 (5

k
= - IOgZQ\/pip—i = —log (7).

Now, we give the proof of Lemma D.2. For 7 < 7y, we have

: r(9) :
| — < 1
mep=5 < fin

K(k) ((5, 7'0)

= —logvk(Tg):—log(ZQ pi(70)p-i(70))

< _log/Yk(T) :—lOg(ZQ pT(Z)pT(_Z))

=1

From this point on, the proof for Lemma D.2 is identical to the proof in Lemma D.1
except v should be changed to .
Given Lemma D.2, the proof for Theorem 6.5 is the same as to the one for Theorem

6.1. []

D.4 Proof of Theorem 6.8

1

e~ REy/No — o= 5,7

Lemma D.4 For an k-quantized channel C, (o) >

Proof: First, assume channel C' has dividing sequence s. From the observation
followed after Example 6.6, we can build a squence of channels starting with the
current quantized channel and satisfying (6.46) and (6.47). Now we show that for

such a sequence of channels, v;, (o) is decreasing with respect to j. Because 13, (0) =

148

Z?; 2v/p(v;)p(—v;), and

kjt1

SRR Sl N e o

=1

ki m;
= Z Z 2v/p(v))p(—v}), according to the partition

i=1 m=1

it suffices to show

Vp(ui)p(v-i) 2 i Vp(0)p(=vi), (D.12)
m=1
given
po) = Yop) p(-v) = 3 a0l (D13
m=1 m=1
This can be easily seen (e.g., by applying Cauchy-Schawz inequality). Now, because

Yoo = 2/ pz(y - l)pz(y + l)dy = 6_2"% = e—RE‘b/N(),
0

we have the conclusion in Lemma D .4.]

Now we define the ensemble threshold of AWGN channel as follows:
oo = sup{o : K(*(5,0) > r(6),0 <6 < 1}. (D.14)

Lemma D.5 On an AWGN chanel, if o < o,, there exist real numbers ay > 0 and

0y > 0, and a positive integer Ny, such that for n > Ny,

aopn
SoA A = 0@,
h=d,

Proof: Again, the key point is to show that

I r(9) - 1
msup — < —.
-0 P J 20?2

149
Because o < 0y, by definition (D.14), for a fixed o1 € (0,09), there exists a k-

quantized channel C}, such that

K®(8,01) > r(6) for any 9. (D.15)
Hence we have
) K® (s
lim sup @ < limsup M
0—0 0—0

= —logv(oy) By Lemma D.3

1
< 5= By Lemma D.4
207
< 1
202
The rest of the proof is identical to the proof of Lemma D.1. []

Now we can give the proof of Theorem 6.8. Suppose that given o1 € (0, 0), a

k-quantized channel Cj has
K®(5,01) > r(6) for any . (D.16)

We now do the typical pairs decoding on the k-quantized channel Cy. With the

notation being as established above, we have, by Theorem 6.1, for o < oy,

dy, aopn n
Pp <Y AT+ XA+ X AREY) wom). (D7)
h=1 h=dy, h=aon

The first sum in (D.17) approaches zero by Assumption 1, the second sum approaches

zero by Lemma D.5 together with the fact that d,, — oo. The third sum is

Z Zgn)Ph(T(k)) _ Z o UE R (6,0)r(8)+o(1))
h=agpn h=agn
< Z e—n(K(’“)(6,0)—K(k)(6,01)+0(1)), (D.18)

h=agn

150
where the first line follows from (6.20) and Assumption 2, and the second line follows
from the definition (D.14) of oy.
Finally, let € be such that

K®(5,0) - K®(6,00) >€¢ fora, <e. (D.19)

Then for n sufficiently large, the exponent in (D.18) will be > ¢/2, and so the sum

—ne/2

will be upper bounded by n - e , which goes to zero. []

151

Appendix E Hardware Implementation
of Iterative Decoding Algorithm of RA
Codes

This appendix considers a hardware implementation of the RA codes iterative decod-

ing algorithm defined in Section 3.3.

We assume messages are 4-bit integers (mimomsmy4) € {0,1}*, which we use
the convention that the most significant bit m; represents a guess on the value of a
variable, and (mym3my) indicates how reliable the guess is. For example, a message
(0111) carries a strong belief that the variable is 0, while a message (1000) says the
variable is likely to be 1 without any confidence. This quantization from real to 4-bit

value causes a degradation in performance about 0.5 dB.

In this appendix, we focus on the module that executes one iteration in the it-
erative decoding. To obtain multiple iterations we can either pipeline this module
or feed its own outputs back as its inputs. One iteration, in brief, has two main
steps: to update messages at check nodes and to update messages at variable nodes.
Between those two steps, some messages are exchanged via a pseudo-random per-
mutation which connects the information bits to the parity nodes. It turns out that
in this module the computation do not take many gates, it is the permutation step
that invokes lots of memory and hence dominates the number of gates on the chip.
Usually, an additional block of N x 1 memory is needed to store the permutation,

but in this implementation, an LCM interleaver [27] is used to save that memory.

We assume that messages are coming toward check nodes (see Figure 3.4) at the
beginning of each iteration. Hence messages are first updated at the check nodes,
and then passed to the information bits (with permutation) and parity bits (without

permutation). Then messages are updated at the variable nodes before passed back

152
to the check nodes. For simplicity, let’s label different messages. First, we order the
check nodes as 1,... , N from the top to the bottom. Consider a check node k, we
name the inward message from some information bit as AI[k|, the message from the
up-branch parity bit as CI[k — 1], and the message from the low-branch parity bit
as BI[k]. Channel information for those parity bits are called as RV [k]. Figure E.1

RV[k-1]
toll|
Al[K]

RVIK]

Wkﬂ]

Figure E.1: Notation for the messages.

shows our conventions.

Allk+1]

We assume data feed into this one-iteration module serially. An ‘enable’ line
indicates when a block of N data starts and ends. Using all those notations, a one-
iteration decoding process can be decomposed in Figure E.2. Let’s consider the data
flow of each message. Messages Al are first updated at the check nodes (module
CHK-UPDATE), then are permuted (module INT) before updated at the variable
nodes (module LV-UPDATE). Those updated messages are then de-permuted (mod-
ule DEINT) and coming back towards check nodes. Similarly, messages BI,CI are
first updated at the check nodes (module CHK-UPDATE), then updated at the vari-
able nodes (module RV-UPDATE). To synchronize them with messages AI, we have
to delay them (module DELAY).

In the following, we will briefly go through the design of each module.

Module: CHK-UPDATE.
This module updates messages at the check nodes. The updating rule is a quantized
approximation to the exact updating rules in Section 3.3.2. In the updating, the most

significant bit of the resulting message is easy to determine. By the definition, a check

153

EN_S | |Sum
SINGLE_DEC
RAM RAM
CHK-UPDATE ' '
4 -
Al 4 k ! A }] Al
Bl 4 3 1 3
a4 = f
4 4 OE —_|4, Bl
Enablf &ﬁ D E—— E 4 CI
[
| Enable
. al %ﬂ}
e 4RV
RV 4 — i — ==
[@\—T TAIL S

@ TAIL
data 11:0

RAM3 data 11:0
RAM4

[] 1 Delay

Figure E.2: Data flow of one iteration in decoding RA codes.

node checks the parity of all its incoming bits, hence the resulting message should
have the most significant bit satisfy this condition, namely it should be the XOR of
the two incoming messages’ most significant bits. The other three bits indicate how
strong this belief is. Table E.1 shows the updating rules as a function f(a,b), where
both its domain and range are 3-bit vectors. Because of symmetry, it is sufficient to

show half of the entries.

a L] 1]2] 273
b 1]>223]|>4]34]5,

Fan ol 1 [1] 2 |2

4 4 15] 5 6 |7
, 74,5 |6,7 6,7]6,7
3 4 14] 5 6 |7

ot
EN |

WO W

Table E.1: Updating rule at a check node.

Module: INT.
This module permutes AI. The selected permutation is an LCM interleaver[27].

Its basic idea is Fermat’s little theorem, which says that if P is a prime number,

154
then a*,k = 1,2,...,P — 1 modular P is a permutation of 1,2,...,P — 1 for any
2 < a < P—1. Therefore, if we use block length N = P —1 for some prime number P,
we could have a very simple permutation. Figure E.3 shows an implementation of this

module, which also includes an external memory to store data during permutation.

INTLEAVER

IN_CNT

RD

WR

EN
EN_I
WAD
OR

DATA_I

(o]

EN_O
D 4
DATA_O
SEL_ADI

ADD| cH oOE | wE

=

ADD CE OE WE DIN DOUT

RAM

Figure E.3: Data flow of INT module.

In this module, submodule IN-CNT is the core. It generates WE (write enable)
and OE (read enable) and ADDR (address) signals. This is done by using two coun-
ters, one outputs 1,2,..., N and the other outputs a,a?, ..., a".

Module DEINT does the de-interleaving. Its implementation is almost identical

to INT and hence omitted.
Module: LV-UPDATE
This module updates messages at the information bits. Since each information bit
is repeated ¢ times, messages cannot be updated until all the messages of the same

information bit arrive. Figure E.4 shows an implementation of this module for ¢ = 3.

Inside this module, submodule LV-CAL does the actual messages updating at the

information bits. We simply take the addition of the messages and truncate them to

155

LV-UPDATE
SEL_3
LV_CAL
oD1 Q1
inl outl D 2
- in2
Din_D1 1 CLK delay | OD2 Q2 DATA_O
DATA—I D D in3 out2 D 3
Din_D2
| OD3
en ou
3
1 D Q 1
CNT o
_ 2]\
I
EN | SEL
- IEN EN_O
OEN D= D
SUM
JAN

Figure E.4: Data flow of LV-UPDATE module.

magnitude € [=7,+7]. Module RV-UPDATE is almost identical to this module and
hence omitted.

Module: DELAY

Module DELAY stores a block of data in memory and outputs that when the data is
needed. In structure it resembles the module INT. Figure E.5 shows an implementa-

tion.

156

DELAY
D_CNT
REN 1 clk delay of REN
RD
RAD
D_CNT
1 1 clk delay of WEN
—+—|en WR
WEN
WAD
OR I
D
12 [
DATA
DATA_I
- 12
D
ADD| cg OE | WE
ADD CE OE WE DI DO

RAM

Figure E.5: Data flow of DELAY module.

DATA_O

157

Bibliography

[1] S. Aji, Graphical models and iterative decoding, Ph.D. thesis, California Institute
of Technology, Pasadena, 2000.

(2] S. M. Aji, H. Jin, A. Khandekar, D. MacKay, and R. J. McEliece, “BSC Thresh-
olds for Code Ensembles based on ‘Typical Pairs’ Decoding,” Proc. IMA Work-
shop on Codes and Graphs, August 1999, pp. 195-210.

3] S. Aji and R. J. McEliece, “The Generalized Distributed Law,” IEEE Trans. on
Info. Theory, vol. 32, no. 1, March 2000, pp. 325-343.

[4] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel
concatenated coding schemes,” IEEE Trans. on Info. Theory, vol. 42, no. 2,

March 1996, pp. 409-428.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: turbo codes,” Proc. 1993 IEEE International
Conference on Communications, Geneva, Switzerland, May 1993, pp. 1064-1070.

(6] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel
concatenated coding schemes,” IEFE Trans. on Info. Theory, vol. 42, no. 2,

March 1996, pp. 409-428.

[7] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional
codes,” IFEFE Transactions on Communications, vol. 44, no. 5, May 1996,

pp. 991-600.

[8] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of
interleaved codes: performance analysis, design, and iterative decoding,” IFEE

Trans. on Info. Theory, vol. 44, no. 3, May 1998, pp. 909-926.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

158
S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Analysis, Design, and
Iterative Decoding of Double Serially Concatenated Codes with Interleavers,”
IEEE J. on Selected Areas in Comm., vol. 16, no. 2, February 1998, pp. 231—
244.

S. ten Brink, “Rate one-half code for approaching the Shannon limit by 0.1 dB,”
Electr. Lett., vol. 36, no. 15, July 2000, pp. 1293-1294.

J. F. Cheng, Iterative Decoding, Ph.D. thesis, California Institute of Technology,
Pasadena, 1998.

S.-Y. Chung, R. Urbanke, and T. J. Richardson, “Analysis of sum-product de-
coding of low-density parity-check codes using a Gaussian approximation,” IEEE

Trans. on Info. Theory, vol. 47, no. 2, February 2001, pp. 657-671.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New York:
John Wiley and Sons, 1991.

L. Decreusefond and G. Zémor, “On the error-correcting capabilities of cy-
cle codes of graphs,” Combinatorics, Probability, and Computing, vol. 6, 1997,
pp- 27-38.

D. Divsalar: “A simple tight bound on error probability of block codes with
application to turbo codes,” JPL TMO Progress Report 42-139, November 1999,
pp. 1-35.

D. Divsalar, S. Dolinar, H. Jin, and R. J. McEliece, “AWGN coding theorems
from ensemble weight enumerators,” Proc. ISIT 2000, p. 458.

D. Divsalar, H. Jin and R. J. McEliece, “Coding theorems for ‘Turbo-Like’
Codes,” Proc. 36th Allerton Conf. on Communication, Control and Computing,
September 1998, pp. 201-210.

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

159
D. Divsalar and R. J. McEliece, “On the design of concatenated coding systems
with interleavers,” JPL TMO Progress Report vol. 2-134, August 1998, pp. 1-22.
(http://tmo.jpl.nasa.gov/tmo/progress_report/42-134/134D.pdf.)

D. Divsalar, S. Dolinar, and F. Pollara, “Iterative turbo decoder analysis based

on Gaussian density evolution,” submitted to IEEE J. Selected Areas in Comm.

D. Divsalar and F. Pollara, “On the design of turbo codes,” TDA Progress Report
vol. 42-123, November 1995, pp. 99-121.

S. Dolinar, L. Ekroot, and F. Pollara, “Improved Error Probability Bounds for
Block Codes for the Gaussian Channel,” Proc. ISIT 1994, p. 243.

G. D. Forney, Jr., “Convolutional Codes 1: Algebraic Structure,” IEEE Trans.
on Info. Theory, vol. 17, 1970, pp. 720-738.

G. D. Forney, Jr., “Codes on graphs: news and views,” Proc. 2nd International

Symposium on Turbo Codes, Brest France, September 2000, pp. 9-16.

R. Gallager, Low-Density Parity-Check Codes. Cambridge, Mass.: The M.I.T.
Press, 1963.

J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes,” IEEE Trans. on Info. Theory, vol. 42, no. 2, March 1996,
pp. 429-445.

E. K. Hall and S. G. Wilson, “Design and Analysis of Turbo Codes on Rayleigh
Fading Channels,” IEEE J. Selected Areas in Comm., vol. 16, No. 2, February
1998, pp. 160-174.

D. Hatori, J. Murayama, and R. J. McEliece, “Pseudorandom and self-
terminating interleavers for turbo codes,” 1998 Information Theory Workshop,

San Diego CA, February 1998.

G. B. Horn, “The iterative decoding of cycle codes,” submitted to IEEE Trans.

Inform. Theory.

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

160
H. Jin, A. Kandekkar, and R. J. McEliece, “Irregular Repeat-Accumulative

Codes,” Proc. 2nd International Symposium on Turbo Codes, Brest France,

September 2000, pp. 1-8.

H. Jin and R. J. McEliece, “RA codes achieve AWGN Channel Capacity,” 13th
Symp. on Applied Algebra, Algebraic Algorithms and Error Correcting Codes,
Hawaii, November 1999, pp. 10-18.

H. Jin and R. J. McEliece, “AWGN coding theorems for serial turbo codes,” Proc.
37th Allerton Conf. on Communication, Computation and Control, September

1999, pp. 893-894.

H. Jin and R. J. McEliece, “Typical pairs decoding on the AWGN channel,”
Proc. 2000 International Symp. on Info. Theory and its Applications, Hawaii,
November 2000, pp. 180—183.

D. Jungnickel and S. A. Vanstone, “Graphical codes revisited,” IEEE Trans. on
Info. Theory, vol. 43, January 1997, pp. 136-146.

F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor Graphs and the Sum-
Product Algorithm,” IEEE Trans. on Info. Theory, vol. 47, no. 2, February 2001,
pp- 498-519.

N. Kahale and Riidiger Urbanke, “On the minimum distance of parallel and

serially concatenated codes,” submitted to IEEE Trans. on Info. Theory.

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,
“Practical loss-resilient codes,” Proc. 29th ACM Symp. on the Theory of Com-
puting, 1997, pp. 150-159.

M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Analysis of low-
density codes and improved designs using irregular graphs,” Proc. 30th ACM
Symp. on the Theory of Computing, 1998, pp. 249-258.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

161
D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEFE Trans. on Info. Theory, vol. 45, March 1999, pp. 399-431.

R. J. McEliece, The Theory of Information and Coding. Reading, Mass.:
Addison-Wesley, 1977.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as as
instance of Pearl’s ‘Belief Propagation’ algorithm,” IEEE J. Selected Areas in
Comm., vol. 16, no. 2, February 1998, pp. 140-152.

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, 2nd. ed. Cam-
bridge, Mass.: The MIT Press, 1972.

H. Pfister and P. Siegel, “The serial concatenation of rate-1 codes through uni-
form random interleavers,” Proc. 37th Allerton Conf. on Communication, con-

trol, and computation, 1999, pp. 260-269.

T. J. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably good
low-density parity-check codes,” IEEE Trans. on Info. Theory, vol. 47, no. 2,
February 2001, pp. 619-637.

T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check
codes under message passing decoding,” IEEE Trans. on Info. Theory, vol. 47,
no. 2, February 2001, pp. 599-618.

T. Richardson and R. Urbanke, “Thresholds for turbo codes,” Proc. ISIT 2000,
p. 317.

C. E. Shannon, “A Mathematical Theory of Communication,” Bell system Tech-

nical Journal, 1948.

M. A. Shokrollahi, “New sequences of linear time erasure codes approaching

channel capacity,” Proc. 1999 AAECC, Hawaii, November 1999, pp. 65-76.

M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. on

Info. Theory, vol. 27, September 1981, pp. 533-547.

162
[49] S. Vialle and J. Boutros, “Performance limits of concatenated codes with iterative

decoding,” Proc. ISIT 2000, p. 150.

[50] A. J. Viterbi and A. M. Viterbi, “Improved union bound on linear codes for
the input-binary AWGN channel, with applications to turbo decoding,” Proc.
Winter 1998 Information Theory Workshop, San Diego, California, February
1998, p. 72.

[51] A. J. Viterbi and A. M. Viterbi, “New Results on Serial Turbo Code and Accu-

mulated Convolutional Code Performance,” preprint.

[52] N. Wiberg, Codes and Decoding on General Graphs. Link6ping Studies in Science
and Technology. Dissertation no. 440. Linkoping University, Linkoping, Sweden,
1996.

