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Abstract 

Phototrophic Fe(II)-oxidizing bacteria use electrons from ferrous iron [Fe(II)] and 

energy from light to drive reductive CO2 fixation.  This metabolism is thought to be 

ancient in origin, and plays an important role in environmental iron cycling.  It has been 

implicated in the deposition of Banded Iron Formations, a class of ancient sedimentary 

iron deposits.  Consistent with this hypothesis, we discovered that hydrogen gas, a 

thermodynamically favorable electron donor to Fe(II), in an Archean atmosphere would 

not have inhibited phototrophic Fe(II) oxidation.  To understand this physiology and the 

connection to BIF formation at the molecular level, the mechanisms of phototrophic 

Fe(II) oxidation were examined in two purple non-sulfur bacteria, Rhodopseudomonas 

palustris TIE-1 and Rhodobacter sp. SW2. 

Important advances were made in elucidating genes critical to phototrophic Fe(II) 

oxidation.  In R. palustris TIE-1, the first genetically tractable phototrophic Fe(II) 

oxidizer isolated, transposon mutagenesis identified a putative integral membrane protein 

and a potential cobalamin (vitamin B12) biosynthesis protein involved in Fe(II) oxidation.   

Increased expression of a putative decaheme c-type cytochrome, encoded by pioA, was 

observed when cells were grown under Fe(II)-oxidizing conditions.  Two genes located 

immediately downstream of pioA in the same operon, pioB and pioC, encode a putative 

outer membrane beta-barrel protein and a putative high potential iron-sulfur protein, 

respectively.  Deletion studies demonstrated that all three genes are involved in 

phototrophic Fe(II) oxidation. 

In Rhodobacter sp. SW2, a three-gene operon, foxEYZ, was found to be involved 

in phototrophic Fe(II) oxidation through heterologous expression in a close relative, 
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Rhodobacter capsulatus SB1003.  The first gene, foxE, encodes a novel c-type 

cytochrome located in the periplasm.  Expression of foxE alone confers light-dependent 

Fe(II) oxidation activity to SB1003, but maximal activity is achieved when foxE is co-

expressed with foxY and foxZ.  FoxY appears to contain the redox cofactor 

pyrroloquinoline quinone and FoxZ a cytoplasmic membrane transporter.  Recombinant 

PioC was overexpressed and partially purified from Escherichia coli.    

This research presents a detailed study of the physiology and genetics of 

phototrophic Fe(II) oxidation in two purple non-sulfur bacteria, and provides our first 

insight into the molecular mechanisms of this metabolism.   
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Chapter 1 

Introduction 

 

1.1 RESEARCH OBJECTIVES  

The goal of this research is to examine the molecular mechanisms of Fe(II) 

oxidation by anoxygenic bacteria.  These bacteria grow photoautotrophically by coupling 

electrons derived from Fe(II) oxidation with reductive CO2 fixation powered by energy 

from light.  It has been hypothesized that these Fe(II)-oxidizing phototrophs played an 

important role in the deposition of Banded Iron Formations (BIFs), a class of sedimentary 

iron deposits formed during the early history of the Earth.  The Fe(II) oxidation capability 

of two strains of such bacteria was measured under the conditions relevant to  the inferred 

H2 and CO2 level of the ancient Earth.  We found that phototrophic Fe(II) oxidation is not 

significantly inhibited by the presence of H2 gas, a thermodynamically favorable electron 

donor to Fe(II), consistent with the hypothesis that these bacteria (or their ancient 

counterparts) were involved in the deposition of ancient BIFs.  However, in order to test 

this hypothesis, we must be able to identify potential biomarkers preserved in ancient 

rocks that are unique to this metabolism.  Therefore, the elucidation of the molecular 

components of the phototrophic Fe(II) oxidation pathway is critical (see section 2.1).  

Accordingly, we have examined the mechanism of phototrophic Fe(II) oxidation 

in two purple non-sulfur bacteria: Rhodopseudomonas palustris TIE-1 (TIE-1) and 

Rhodobacter sp. SW2 (SW2).  By combining physiology, genetics, and biochemistry 
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studies we have identified key molecular components essential for phototrophic Fe(II) 

oxidation in both systems.  This research is the first mechanistic description of 

phototrophic Fe(II) oxidation and has established a basis for a detailed molecular 

understanding of this metabolism.  

 

1.2 THESIS OUTLINE  

I will first describe the motivation for this research and the geological relevance 

of phototrophic Fe(II) oxidation in the deposition of BIFs in chapter 2 (section 2.1).  

Further details concerning the search for biomarkers and why we think understanding the 

molecular basis of phototrophic Fe(II) oxidation is a key step toward this goal are 

highlighted.  I provide additional background information relevant to my research that 

includes physiological studies about phototrophic Fe(II)-oxidizing bacteria and their 

environmental relevance (section 2.2), and biochemical studies on aerobic Fe(II) 

oxidation by the acidophilic Fe(II) oxidizing bacterium Acidothiobacillus ferrooxidans 

(section 2.3).  

 In chapter 3, I describe our studies on the effect of molecular hydrogen (H2) on 

phototrophic Fe(II) oxidation with TIE-1 and SW2 to evaluate the role of phototrophic 

Fe(II)-oxidizing bacteria within a geological context.  Both H2 and Fe(II) can serve as 

electron donors for anoxygenic photosynthesis and are predicted to have been present in 

the atmosphere and ocean during the Archean time in quantities sufficient for 

phototrophic energy metabolism.  Under the conditions with approximate H2 and CO2 
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concentrations relevant to those proposed in ancient oceanic environments, we tested the 

Fe(II) oxidation capability of TIE-1 and SW2 using pure cell suspensions in the lab.  We 

found that Fe(II) oxidation proceeds at a considerable rate under the maximum amount of 

predicted H2 concentrations, indicating that the phototrophic Fe(II) oxidation activity was 

not likely to be inhibited by the presence of H2 in the ancient atmosphere,  consistent with 

the hypothesis that phototrophic Fe(II)-oxidizing bacteria are involved in ancient BIF 

deposition.  

 In order to study the molecular mechanism of phototrophic Fe(II) oxidation, we 

need to have a model system to work with.  However, prior to this research, none of the 

previously isolated phototrophic Fe(II)-oxidizing bacteria were genetically tractable.  To 

address this problem, I first isolated a new phototrophic Fe(II) oxidizer that was able to 

form colonies on agar plates. This isolate was identified as a strain of the purple non-

sulfur bacterium Rhodopseudomonas palustris, and was named strain TIE-1.  The 

isolation and characterization of TIE-1 are described in chapter 4, which was published as 

a research article in Applied and Environmental Microbiology, August 2005, p. 4487--

4496, vol. 71, no. 8.  Taking advantage of TIE-1’s capability of forming colonies on agar 

plates, I developed a genetic system in this organism, aiming to look for genes and gene 

products essential for photoautotrophic growth on Fe(II).  After random transposon 

mutagenesis and screening of 12,000 mutants, six were found to be specifically impaired 

in Fe(II) oxidation.  Five of these mutants have independent disruptions in a gene 

predicted to encode an integral membrane protein that appears to be part of an ATP-

dependent transporter; the sixth mutant has an insertion in a gene that is homologous to 
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cobS, encoding an enzyme involved in cobalamin (vitamin B12) biosynthesis.  The 

involvement of these proteins in Fe(II) oxidation remains unclear at this time.  

 Because we wanted to identify the genes that encode the catalysts for Fe(II) 

oxidation and none were readily apparent from our genetic screen, a biochemical 

approach was taken to compare protein expression profiles of TIE-1 grown on Fe(II) 

versus other substrates.  In chapter 5, soon to be published as a research article in the 

Journal of Bacteriology (2007), I describe our discovery of two redox active proteins and 

a putative outer membrane protein that are the key players of Fe(II) oxidation in TIE-1.  

Using reverse genetics, a three-gene operon was identified and designated as the pio 

operon (for phototrophic iron oxidation).  Expression of the first gene, named pioA, 

increased under Fe(II) growth conditions.  PioA encodes a novel soluble decaheme c-type 

cytochrome.  The second gene, pioB, encodes a putative outer membrane -barrel 

protein, and the third gene, pioC, encodes a putative high-potential iron-sulfur protein 

(HiPIP).  Mutational studies suggest these proteins interact and form a putative Fe(II) 

oxidoreductase complex, with PioA being the Fe(II) oxidoreductase.   

Besides TIE-1, we have also examined the phototrophic Fe(II) oxidation system 

in another phototrophic Fe(II) oxidizer Rhodobacter sp. SW2.  While this portion of the 

work was the primary work of Dr. Laura Coral, a former graduate student in the lab, I 

have made important contributions in showing FoxE is a c-type cytochrome, re-testing 

the Fe(II) oxidation activity of recombinant clones, and moving the cosmid library from 

E. coli into SB1003.  This work was first described in Dr. Laura Croal’s thesis but an 

updated version is presented in chapter 6 of this dissertation, and will also be published as 
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a research article in the Journal of Bacteriology (2007).  SW2 is also a purple non-sulfur 

bacterium, but is not amenable to traditional genetic analysis.  Thus, we took a 

heterologous expression approach by expressing a genomic cosmid library of SW2 in its 

close relative Rhodobacter capsulatus SB1003 and screened cell suspensions of each 

clone for enhanced light-dependent Fe(II) oxidation activity.  We have identified a three-

gene operon foxEYZ: foxE encodes a novel c-type cytochrome; foxY appears to encode a 

protein containing the redox cofactor pyrroloquinoline quinone; and foxZ appears to 

encode a protein with transport function.  The results suggest that these Fox proteins play 

key roles in phototrophic Fe(II) oxidation in SW2.   

In the final chapter of this thesis (chapter 7), I summarize the key findings of my 

research and provide some viewpoints and future directions pertaining to phototrophic 

Fe(II) oxidation in TIE-1.  

As an extension of the genetic studies about pio and fox genes, I initiated 

biochemical characterizations of the proteins encoded by these genes.  Preliminary results 

on the subcellular localization analysis of PioABC in TIE-1 and FoxE in SW2, are 

presented in Appendix A.  The partial purification of PioC is presented in Appendix B. 
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Chapter 2 

Motivation and Background 

2.1 BIFS AND BIOMARKERS   

A central goal of geobiology is to use the information preserved in the rock record 

to understand the interconnectivity between the evolution of Earth and the evolution of 

life (43, 46).  Since microbial organisms, representing the earliest form of life, appeared 

on the planet, they have had an enormous impact on the geochemistry of Earth over 

geological time.  Our goal is to examine the interplay between the metabolism of these 

microbes and the geochemical environment where they thrived by using modern 

organisms as model systems.  The assumption is that the metabolism of modern 

organisms are good proxies of their ancestral forms. 

One of the best examples lies in the examination of the physiology of 

phototrophic Fe(II)-oxidizing bacteria and their hypothesized role in the deposition of 

Banded Iron Formations (BIFs) (44, 49, 60).  BIFs are a class of ancient sedimentary iron 

deposits formed during the Precambrian (29).  They typically consist of alternating layers 

of chert and iron-bearing minerals such as magnetite (Fe3O4) and hematite (Fe2O3). BIFs 

are present on all the continents, representing one of the world’s major sources of iron ore 

(58).  The formation of the oxidized iron minerals in BIFs in an oxygen (O2)-limited (or 

depleted) environment has been interpreted as the result of an anoxic process potentially 

catalyzed by phototrophic Fe(II)-oxidizing bacteria (61).  In the absence of oxygen these 



 

 

 

7

bacteria, belonging to a group of Purple and Green bacteria, use Fe(II) as an electron 

donor and couple Fe(II) oxidation with reductive CO2 assimilation by using energy from 

light (14 and reference therein, 31, 66).  Interpretation of phylogenetic analyses of 16S 

rDNA and bacterial chlorophyll biosynthesis genes combined with the prediction of 

abundant Fe(II) in ancient oceans have led to the suggestion that phototrophic Fe(II) 

oxidation is one of the most ancient forms of metabolism (45, 48, 61, 67, 68).  

Theoretical calculations based on the predicated depositional rate of iron oxides in the 

Hamersley basin of Australia and the measured rate of phototrophic Fe(II) oxidation by 

pure cultures suggest that these bacteria could have been capable of oxidizing and 

precipitating the large amounts of the Fe deposited in BIFs (37, 38).  However, in order 

to test the hypothesis that ancient Fe(II)-oxidizing phototrophs are indeed responsible for 

early BIF formation, we need to look for biomarkers unique to this metabolism preserved 

in the rock record.  Different approaches have been taken aimed at finding specific 

characteristics that could only be ascribed to this type of metabolism. 

(1)  The mineral products of phototrophic Fe(II) oxidation were examined for 

distinctive features, such as morphology and mineralogy, in hopes of distinguishing 

whether Fe(III) minerals were formed biologically or abiotically.  The product of 

phototrophic Fe(II) oxidation is generally poorly crystalline ferrihydrite that forms 

outside the cell (57) that gradually transforms into more crystalline iron oxides, such as 

goethite and lepidocrocite (36).   During diagenesis, goethite and lepidocrocite can be 

further transformed into more stable forms such as hematite, one of the major iron 

constituents in BIFs.  Because physical and chemical properties of Fe(III) precipitates 
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formed by bacterial cultures are similar to their abiotic counterparts (11, 25, 36) and both 

reaction types are strongly dependent on the medium chemistry (34), it remains difficult 

to elucidate the exact role of microbes in BIF formation from this type of mineral 

analysis.  

(2)   Isotopic signatures have been examined for a few of the phototrophic Fe(II)-

oxidizing bacteria with respect to their ability to fractionate Fe isotopes (15).  Rate 

independent fractionation (
56

Fe/
54

Fe ratio) of ~ +1.5‰ was observed in the oxidation 

product of poorly crystalline (hydro)ferroxide relative to aqueous Fe(II).  This number is 

comparable to that observed for Fe isotope fractionation by abiotic Fe(II) oxidation by O2 

or dissimilatory Fe(III)-reducing bacteria, suggesting that use of Fe isotopes to identify 

phototrophic Fe(II) oxidation in the rock record is limited unless the precipitation of 

Fe(III) minerals can be decoupled with Fe(II) oxidation for Fe isotope measurements (4, 

15). 

(3)  Given the results from studies of Fe(III) minerals and Fe isotope 

fractionation, it is evident that it is non-trivial to find a robust biosignature for 

phototrophic Fe(II) oxidation.  The Fe(II) oxidation process can be divided into two 

steps: [1] biologically catalyzed Fe(II) oxidation and [2] passive nucleation and 

precipitation of (hydro)ferroxides.  Previous to the work outlined in this dissertation, 

nothing was known about the molecular basis of phototrophic Fe(II) oxidation.  However, 

the abiotic chemistry involved Fe(III) precipitation is well understood.  We hypothesize 

that Fe(III), as a byproduct of  Fe(II) phototrophy, is released from the cell in soluble, 

colloidal or ligand-bound forms.  Fe(III) oxide nucleation takes place near the cell surface 
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driven by passive sorption and nucleation reactions (11, 63) through electrostatic 

attractions between the negatively charged cell wall and positively charged Fe(III) 

molecules (17, 24, 29). 

Mineral encrustation of bacterial cell walls is not evident during Fe(II) oxidation 

for most of the phototrophic Fe(II) oxidizers including TIE-1 and SW2, which implies 

that biologically produced substances may be present to prevent cells from encrustation 

and cell death, since mineral precipitation on the surface is likely to act as a barrier for 

solute transport.  Such biologically produced substances could be Fe(III) ligands (41, 62) 

or extracellular polymeric substances (EPS) (65 and reference therein).  Ligands could 

keep positively charged Fe(III) from precipitating on the negatively charged cell wall.  

Similarly, EPS could provide templates for Fe(III) sorption and nucleation that are at a 

distance from the cell surface.  It seem unlikely that large quantities of soluble strong 

Fe(III) ligands are present during phototrophic Fe(II) oxidation, based on examination of 

a few cultures of phototrophic Fe(II)-oxidizing bacteria (36).  Thus, these Fe(III) ligands, 

if present, are probably either weak ligands or are not released into the bulk solution.  

Biologically produced organic rich extracellular polymers produced by neutrophilic 

Fe(II) oxidizing bacteria were shown to be able to promote Fe(III) mineral precipitation 

(10).  However, to our knowledge, EPS production has not been linked to Fe(III) 

precipitation in Fe(II) phototrophy.  Additionally, the protons generated during Fe(III) 

precipitation lower the pH of the local environment and may further reduce the chance of 

potential Fe(III) precipitation.  Indeed, a decrease in pH from 6.50 to 6.25 was observed 

from the edge to the center of the colonies as a consequence of the metabolism of 
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phototrophic Fe(II) oxidation (36).  Whether such a decrease in pH is sufficient to 

prevent Fe(III) precipitation remains unclear. 

(4)  In order to understand how the Fe(III) mineral nucleation and precipitation 

occurs and what Fe(III) ligands (organic or inorganic), if any, are involved in this 

process, we need to understand the molecular mechanisms of biologically catalyzed 

Fe(II) oxidation. This includes understanding where Fe(II) is oxidized, how Fe(II) and 

Fe(III) are trafficked intra- and extracellularly, the enzymes involved in Fe(II) oxidation, 

and how and where the last step of ferric (hydro)oxide precipitation occurs.  In other 

words, elucidation of the molecular components of the phototrophic Fe(II) oxidation 

pathway is necessary both to constrain our interpretation of the Fe-isotopic fractionation 

produced by these bacteria and to identify biomarkers unique to this metabolism that 

might be preserved in the rock record.  The results presented in this dissertation on the 

molecular basis of phototrophic Fe(II) oxidation provide important information for 

searching for imprints of this type of metabolism left behind from the ancient Earth. 

 

2.2 PHOTOTROPHIC FE(II) OXIDATION  

The first example of phototrophic Fe(II)-oxidizing bacteria was reported by 

Widdel et al. over a decade ago (66).  In contrast to oxygenic photosynthesis (such as that 

carried out by plants) where water is split to produce O2, these bacteria use Fe(II) as the 

electron donor, and no O2 is produced in a process called anoxygenic photosynthesis.  

Besides Fe(II), many other reducing compounds can also support anoxygenic 
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photosynthesis, including H2, reduced sulfur compounds, as well as various organic 

compounds (7).  During anoxygenic photosynthesis, these bacteria conduct a cyclical 

light-driven electron transport chain through which a proton motive force is formed 

across the cell membrane that is later used for ATP synthesis (7).  Some electrons are 

diverted out from the cyclic flow to NADH dehydrogenase, through which NAD(P)H is 

generated for reductive CO2 fixation.  The electrons
 
removed from the cyclic flow are 

replaced by the oxidation of the external electron donor, such as H2 or Fe(II).  

Thermodynamic calculations of the redox potential of the iron couple [Fe(II)/Fe(III)] in a 

bicarbonate system at neutral pH is in the range of 100 to +200 mV (34, 66), which is 

low enough to donate electrons to the reaction center of purple (E0’, +450 mV) or green 

bacteria (E0’, +300 mV) and therefore provide reducing power to sustain microbial 

growth (7). 

To date, the phototrophic Fe(II)-oxidizing bacteria that have been isolated are 

phylogenetically diverse, including members of the purple sulfur (Thiodictyon sp. F4), 

purple non-sulfur (Rhodobacter sp. SW2, Rhodovulum iodosum N1, Rhodovulum 

robiginosum N2, Rhodopseudomonas palustris TIE-1) and green sulfur bacteria 

(Chlorobium ferrooxidans KoFox) (20, 30, 34, 56, 57, 66).  F4, a gas vesicle containing 

strain, was isolated from the sediment surface of a freshwater pond in Woods Hole, MA 

(20, 66).  It grows on Fe(II) but not on sulfide, and cells are not physically associated 

with the Fe(III) precipitates.  SW2, isolated from a pond in Germany, can grow 

phototrophically using Fe(II) or H2 as electron donors, but not free sulfide (20, 66).  One 

mM of sulfide was used, but the inhibitory effect of sulfide at this concentration was not 
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tested.  However, SW2 can grow on ferrous sulfide minerals (FeS, 5 mM) with the 

production of Fe(III) and sulfate (20), suggesting that growth inhibition from sulfide is 

concentration dependent.   N1 and N2, isolated from the coastal sediments of the North 

Sea (Germany), are the only marine isolates found so far, and their cell growth is salt 

dependent (57).  Although they are purple non-sulfur bacteria, they can oxidize various 

sulfur species including sulfide, elemental sulfur and thiosulfate.  KoFox is, so far, the 

only isolate that belongs to the green sulfur group (20, 66) but does not exist in pure 

culture and is enriched with another chemoheterotrophic bacterium.  Beside Fe(II), 

KoFox can also use H2 for photosynthesis, but not reduced sulfur species (30).  TIE-1 

was isolated by our laboratory from an iron-rich puddle at Woods Hole, MA (see Chapter 

3).  In contrast to these isolates that can grow photoautotrophically on Fe(II), 

Rhodomicrobium vannielii BS-1 is a purple non-sulfur bacterium that is able to oxidize 

Fe(II) but not grow on Fe(II) alone, and cell growth is dependent on the presence of H2 or 

organic compounds as co-substrates (31).  BS-1 grows poorly on Fe(II) because the solid 

iron oxides accumulate on the cell surface and impede further Fe(II) oxidation after two 

or three generations of cell division.  

 

Microbial Fe(II) oxidation is not restricted to phototrophs: acidophilic and neutrophilic 

Fe(II)-oxidizing bacteria can also gain energy from the oxidation of Fe(II), including 

bacteria that couple Fe(II) oxidation to the reduction of O2 at either low (3 and references 

therein) or neutral pH (22, 54), and bacteria that couple Fe(II) oxidation to the reduction 

of nitrate at neutral pH (6, 56 and references therein).  These microbial Fe(II) oxidizers 
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are widely distributed in the environment and play an important role in Fe cycling (19, 

21, 23, 54, 56, 64).  

In contrast to the comparatively limited reports on phototrophic Fe(II) oxidation, 

microaerobic Fe(II) oxidation at neutral pH, and nitrate-dependent Fe(II) oxidation, 

numerous studies have been reported concerning the molecular mechanisms of aerobic 

Fe(II) oxidation under acidic conditions due to their importance in the formation of acid 

mine drainage (AMD) (3, 35).  AMD is a significant environmental problem worldwide, 

releasing high concentrations of acid and heavy metals, which result in devastating 

effects to fishing industries and drinking water.  Acidophilic Fe(II)-oxidizing bacteria are 

the major driving force for AMD formation (3).  These bacteria can grow 

chemolithotrophically using Fe(II) as the electron donor and O2 as the terminal electron 

acceptor (33).  Among all the acidophilic Fe(II)-oxidizers, Acidithiobacillus ferrooxidans 

( -Proteobacteria) is the only species whose Fe(II) oxidation system has been studied due 

to its ease of cultivation.  However, its environmental relevance under AMD-generating 

conditions may have been overstated (3, 53).  Our current knowledge about the Fe(II) 

oxidation system in A. ferrooxidans is briefly reviewed in the next section as well as in a 

recent review by Croal et al. (14). 

 

2.3 FE(II) OXIDATION IN A. FERROOXIDANS  

Acidithiobacillus ferrooxidans is an acidophilic chemolithotrophic bacterium,  

which can obtain energy through Fe(II) oxidation coupled to the reduction of O2 at acidic 
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pH (33).  Besides Fe(II), A. ferrooxidans can also use H2, formate or various reduced 

sulfur compounds under aerobic conditions (18, 40, 52, 55).  Under anaerobic conditions, 

it can also reduce Fe(III) with H2 or sulfur as the electron donor (16, 47, 50, 51).  Due to 

the lack of genetic tools in manipulating acidophilic bacteria, most of our knowledge 

about the Fe(II) oxidation system of A. ferrooxidans comes from biochemical studies.  

Various redox active proteins that appear to be involved in Fe(II) oxidation have been 

identified and characterized, but the electron transport pathway from Fe(II) to O2 has not 

been established and remains controversial.  

The first protein recognized in the Fe(II) oxidation system of A. ferrooxidans is a 

high potential iron sulfur protein (HiPIP) encoded by the monocistronically transcribed 

gene, iro (39).  Iro is believed to be involved in Fe(II) oxidation and has been proposed to 

serve as the Fe(II) oxidoreductase due to the following reasons.  Iro is stable at low pH, 

shows in vitro Fe(II)-cytochrome c552 oxidoreductase activity (see below), and is a 

feasible electron acceptor with a redox potential of +510 mV at neutral pH.  This 

potential is energetically favorable to facilitate electron transfer between Fe(II)/Fe(III) 

(+650 mV when complexed with sulfate, an anionic species required for Fe(II) oxidation 

by A. ferrooxidans) and H2O/O2 ( E0
’
= 0.82 V) (26, 69).  Iro was characterized in both 

strains of Fe-1 (26, 39) and BRGM (9).  In addition, a HiPIP believed to be a homolog of 

Iro from strain ATCC 33020 was overexpressed and purified from the periplasmic space 

of a recombinant E. coli strain (8).  The translation of this HiPIP to the periplasm of E. 

coli is dependent on the TAT protein translocation pathway, and the purified HiPIP has 

all the biochemical properties of the normal HiPIPs including a correctly inserted [4Fe-
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4S] cluster (8).    

Rusticyanin, a periplasmic blue copper protein, has also been extensively studied 

because of its high levels of expression under Fe(II) growth conditions. This high level of 

expression is correlated with a higher level of Fe(II) oxidation activity of whole cells 

grown under iron conditions (5, 12, 13, 32, 33, 73).  Rusticyanin is generally believed to 

play an essential role in electron transport chain from Fe(II) to O2  based on several 

observations.  First, it gets reduced when intact cells are exposed to Fe(II).  Also, the 

purified protein shows in vitro Fe(II) oxidation activity under acidic conditions.  

Rusticyanin has a high redox potential (+680 mV).  Moreover, strong protein-protein 

interactions of rusticyanin were observed with another periplasmic protein cytochrome 

c4, showing a Fe(II)-cytochrome c4 oxidoreductase activity (27).   

Using reverse genetics, the gene that encodes rusticyanin, rus, was found in an 

operon (called the rus operon) with several other genes that encode redox active proteins 

(2).  As shown by reverse transcription and Northern hybridization analysis, expression 

of the rus operon is regulated by Fe(II) on the transcriptional level (70).  The redox active 

proteins encoded by the rus operon include an outer membrane c-type cytochrome 

encoded by gene cyc2, a putative periplasmic c4-type cytochrome encoded by gene cyc1, 

four proteins encoded by coxABCD that are the subunits of an aa3-type cytochrome c 

oxidase, and a putative periplasmic protein of unknown function (1, 2, 72).  Since Cyc2 is 

localized to the outer membrane and A. ferrooxidans is able to oxidize the insoluble 

mineral iron sulfide (pyrite, FeS2), it has been proposed that Cyc2 is an Fe(II) 

oxidoreductase (72).  Furthermore, an electron transport pathway from Fe(II) to O2 has 
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been proposed based on the electron carrier proteins encoded by the rus operon alone.  In 

this model, electrons are transferred in the order of  Fe(II), Cyc2, rusticyanin, Cyc1, 

cytochrome oxidase and O2 (2). 

Various non-rus-operon-encoded c-type cytochromes have also been identified 

and proposed to be involved in Fe(II) oxidation in different strains of A. ferrooxidans.  

Not surprisingly, the overall cytochrome c content in A. ferrooxidans is high, 

representing ~10% of the total cellular protein (71).  The midpoint redox potentials of 

several c-type cytochromes from A. ferrooxidans typically range between +330 and +360 

mV at pH 7.0, and between +610 and +660 mV at pH 3.5 (42, 69, 71).  A few examples 

of the c-type cytochromes identified are 1) a ~21 kDa membrane bound cytochrome c552 

from strain ATCC 13661 (59),  2) a 14 kDa cytochrome c552 from strain BRGM and 

strain Fe-1, which is a soluble c-type cytochrome with similarity to the N-terminal region 

of cytochrome c2 (59, 69), 3) A ~68 kDa membrane bound cytochrome c550 from strain 

ATCC 13661 (59), and 4) a di-heme c4-type cytochrome from strain BRGM with redox 

potential between 400 and 500 mV at neutral pH (28).  

 

2.4 SUMMARY 

Microbial Fe(II) oxidation is ubiquitous and potentially plays an important role in 

Fe cycling in both modern and ancient environments.  In contrast to acidophilic Fe(II) 

oxidizers, studies of phototrophic Fe(II) oxidation are limited.  However, understanding 

this metabolism has significant interest well outside bacterial physiology because this 
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metabolic capability has been hypothesized to be involved in the deposition of Banded 

Iron Formations in the early history of the Earth.  To test this hypothesis and to identify 

potential biomarkers unique to this metabolism, understanding the molecular mechanisms 

of phototrophic Fe(II) oxidation remains a prerequisite.  In this dissertation, a study of the 

physiology and genetics of phototrophic Fe(II) oxidation in two purple non-sulfur 

bacteria are presented.  
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Chapter 3 

Phototrophic Fe(II) Oxidation in the Presence of H2: 

Implication for Banded Iron Formation 

 

3.1 ABSTRACT 

Banded Iron Formations (BIFs) are an ancient class of iron ore deposits.  

Although their origins remain enigmatic, it has been proposed that phototrophic Fe(II)-

oxidizing bacteria may have catalyzed the deposition of the most ancient BIFs.  Both 

Fe(II) and H2 can serve as electron donors for anoxygenic photosynthesis and these 

substrates are predicted to have been present in the atmosphere and ocean of the Archean 

in quantities sufficient for energy metabolism.  If both Fe(II) and H2 were present and H2 

were the preferred substrate, as might be predicted given its lower redox potential, the 

potential that these bacteria were involved in the BIF genesis may be lessened.  Here we 

investigated the effects of H2 on phototrophic Fe(II) oxidation by cell suspensions of two 

strains of Fe(II)-oxidizing purple non-sulfur bacteria, Rhodopseudomonas palustris TIE-1 

and Rhodobacter sp. SW2.  We found Fe(II) oxidation by these strains still proceeded at 

significant rates under an atmosphere containing approximately three times the maximum 

predicted concentration of H2 in the Archean atmosphere when CO2 was abundant.  Thus, 

it seems unlikely that the presence of H2 in an Archean atmosphere would have posed a 

barrier to phototrophic Fe(II) oxidation, consistent with the hypothesis that these bacteria 

may have catalyzed ancient BIF deposition. 
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3.2 INTRODUCTION   

Recent debates in the literature have called into question the idea that evidence for 

the earliest life in the rock record can be inferred from morphology (Brasier et al., 2002; 

Schopf et al., 2002) or chemical composition alone (Fedo and Whitehouse, 2002; 

Lepland et al., 2005; Mojzsis et al., 1996).  The value of a search strategy that considers 

not only morphology and chemical analyses (e.g., isotopic compositions or rare earth 

element analyses), but also the ecophysiological context of the fossils in question is 

becoming increasingly appreciated (Tice and Lowe, 2004).   

If our goal is to trace not just the presence of life, but more specifically the effects 

of a particular metabolism in the rock record, knowledge concerning how a metabolism 

of interest is regulated by environmental factors must be taken into account.  It has been 

suggested that anoxygenic photoautotrophs able to use ferrous iron [Fe(II)] as an electron 

donor for photosynthesis were involved in the deposition of Banded Iron Formations 

(BIFs) that formed prior to the rise of O2 (Hartman, 1984; Konhauser et al., 2002; Kopp 

et al., 2005; Widdel et al., 1993).  This model assumes that these bacteria used Fe(II) as 

an electron donor for photosynthesis.  However, many anoxygenic phototrophs, including 

those able to oxidize Fe(II), are capable of using a variety of electron donors for 

photosynthetic growth.  One such donor that is broadly used by diverse phototrophic 

bacteria is hydrogen gas (H2) (White, 2000). 
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The atmosphere of the early Earth is thought to have contained between 1,000 and 

300,000 ppm of H2 as a result of volcanic emissions and atmospheric photochemistry 

(Catling et al., 2001; Kasting, 1993; Tian et al., 2005).  These quantities of H2 are 

sufficient to support H2-based photoautotrophy and it is possible that such quantities 

could have interfered with phototrophic Fe(II) oxidation leading to BIF formation, given 

that H2 is a more thermodynamically favorable electron donor than Fe(II).  Coupling an 

understanding of how phototrophic Fe(II) oxidation is regulated with 

biogeochemical/stratigraphic reconstructions of the ancient environment can help refine 

models that consider the role of these phototrophs in BIF deposition. 

Fe(II) based phototrophy is thought to be an ancient metabolism (Croal et al., 

2004) and we assume that extant organisms capable of this metabolism are representative 

of their ancient counterparts (Anbar and Knoll, 2002).  Here, we investigate the effects of 

H2 on the phototrophic Fe(II) oxidation activity of two strains of purple non-sulfur 

bacteria and show that Fe(II) oxidation is feasible at concentrations of H2 and CO2 similar 

to those that have been inferred for the Archean. 

 

3.3 MATERIAL AND METHODS 

Organisms and Cultivation  Rhodobacter sp. strain SW2 was a gift from F. Widdel 

(Max Planck Institute for Marine Microbiology, Bremen, Germany) and 

Rhodopseudomonas palustris strain TIE-1 was isolated in our lab (Jiao et al., 2005).  

Methods for anaerobic medium preparation and the cultivation of SW2 and TIE-1 under 
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anoxic conditions followed those described by Widdel and Bak (Widdel and Bak, 1992).  

Phototrophic cultures were maintained in a previously described anoxic minimal salts 

medium for freshwater cultures that was adjusted to a pH of 6.8 (Ehrenreich and Widdel, 

1994).  Cultures of TIE-1 and SW2 were incubated at 30 °C and 16 °C, respectively, 20 

to 30 cm from a 34 W tungsten, incandescent light source.  Electron donors for 

photosynthetic growth were added to the anaerobic, basal medium as follows: thiosulfate 

was added from anoxic filter sterilized stocks to a final concentration of 10 mM and H2 

was provided as a headspace of H2/CO2 (80:20 [vol/vol]).  For growth on Fe(II), 4 ml 

anoxic filter sterilized Fe(II)Cl2·H2O stock solution (1 M) was added per liter of 

anaerobic, basal medium.  To avoid the precipitation of ferrous Fe minerals that results 

upon addition of Fe(II)Cl2·H2O to the bicarbonate buffered basal medium and the 

precipitation of ferric Fe minerals that form during the growth of these bacteria on Fe, 

nitrilotriacetic acid disodium salt (NTA, Sigma), was supplied from an anoxic 1 M filter 

sterilized stock solution.  Various concentrations of NTA used in Figure 1 are listed in the 

figure legend.  For all other experiments, 5 and 10 mM of NTA were used for SW2 and 

TIE-1, respectively. 

 

Cell suspension assays  All cell suspension assays were prepared under anoxic 

conditions in an anaerobic chamber (Coy Laboratory Products, Grasslake, MI) to avoid 

exposure to oxygen.  Cells of SW2 or TIE-1 grown on H2, thiosulfate, or Fe(II)-NTA 

were harvested in early exponential phase (OD600 ~0.15 to 0.18) by centrifugation 

(10,000 rpm on a Beckman JLA 10.5 rotor for 20 min).  Pellets were washed once with 
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an equal volume of 50 mM N-2-hydroxyethylpiperazine-N`-2-ethanesulfonic acid 

(HEPES) buffer containing 20 mM NaCl at pH 7 (assay buffer) to remove residual 

medium components and resuspended in assay buffer containing the appropriate amount 

of NaHCO3 and Fe(II)Cl2·H2O or ferric (hydr)oxide to a final OD600 of 1.0.  

Resuspending the cells to the same final OD600 ensured that the assays were normalized 

to cell number, as verified by cell counts using a Petroff-Hauser counting chamber.  For 

Fe(II) oxidation assays, concentrations of NaHCO3 and Fe(II)Cl2 used were 1 or 20 mM 

and 0.5, 1 or 2 mM, respectively.  For Fe(III) reduction assays, ferric (hydr)oxide (final 

concentration 0.5 mM) was substituted for Fe(II)Cl2, and the NaHCO3 concentration used 

was 1 mM.  Ferric (hydr)oxide was synthesized according to the method described by 

Cornell and Schwertmann (Cornell and Schwertmann, 1979).  Briefly, a 500 ml solution 

of 40 g Fe(NO3)3·9H2O was stirred vigorously, followed by the addition of 330 ml of 1 M 

KOH solution to 7-8, which yielded a brown suspension.  The last 20 ml of KOH was 

added dropwise with constant checking of the pH.  A washing procedure using 

centrifugation to collect the particles and sonication to resuspend the particles in fresh 

DDW was repeated 5 times. The pH of the washed suspension was approximately 7.0.  

Unless otherwise stated, assay volumes were 3 ml and cell suspensions of TIE-1 and 

SW2 were incubated at 30 °C and 16 °C, respectively, in 12 ml sealed serum bottles, 30 

cm from a 34 W tungsten incandescent light bulb.  The headspace of the assay bottles 

contained either N2/CO2 (80:20 [vol/vol]) or H2/CO2 (80:20 [vol/vol]). 
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Analytical methods  Fe(II) concentrations in the cell suspensions were measured in 

triplicate by the ferrozine assay (Stookey, 1970).  To measure Fe(II), 10 μl cell 

suspension were added to 90 μl 1 N HCl, to which 100 μl ferrozine solution (0.1% (w/v) 

ferrozine in 50% (wt/v) ammonium acetate solution) were added.  After 10 minutes, the 

absorbance at 570 nm was measured.  To determine the concentration of Fe(III) in a 

sample, the total concentration of Fe in the sample was first determined by adding 10 μl 

of cell suspension to 90 μl of hydroxylamine hydrochloride (HA) solution (10% (w/v) 

HA in 1 M HCL).  100 μl ferrozine solution was then added and after 10 minutes, the 

absorbance at 570 nm was measured.  The Fe(III) concentration in the sample was then 

calculated as the difference between the total and Fe(II) concentrations in the sample.  

The protocol for measuring hydrogenase activity was adapted from Elsen et al. 

(Elsen et al., 2003).  Benzyl viologen (Sigma) was added to the assay to a final 

concentration of 5 mM and the reduction of benzyl viologen was measured as a change in 

the absorbance at 570 nm.   

H2 was measured with a Hewlett Packard 5890 series II
 
gas chromatograph 

equipped with a thermal conductivity detector
 
and a 30-m bonded phase fused-silica DB 

1 capillary column (inner diameter,
 
0.32 mm).  The temperatures of the oven, injector, 

and
 
detector were 80 °C, 80 °C, and 90 °C, respectively.  Hamilton (Reno, NV) sample 

lock syringes were used to inject
 
gas samples into the gas chromatograph.  

The program MINEQL
+
 (Environmental Research Software; 

http://www.mineql.com/homepage.html) was used to calculate the concentrations of the 

various Fe(II) and NTA species in the phototrophic minimal salts medium (pH 6.8) when 
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4 mM Fe(II)Cl2·H2O and 5 or 20 mM NTA were added.  A closed system was assumed, 

the ionic strength of the solution was not considered, the temperature was set at 25 °C 

and component concentrations were:  H2O, 1x10
0
; H

+
, 1.58x10

-7
; Ca

2+
, 3.69x10

-6
; Cl

-
, 

6.97x10
-3

; CO3
2-

, 4.79x10
-6

; Fe
2+

, 5.73x10
-8

; K
+
, 3.55x10

-3
; Mg

2+
, 1.27x10

-4
; NH4

+
, 

5.47x10
-3

; SO4
2-

, 1.81x10
-3

; EDTA
-4

, 1.36x10
-14

; NTA
-3

, 4.5x10
-6

. 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Effects of NTA on Fe(II) oxidation in TIE-1 and SW2  

The mineral products of Fe(II) oxidation by TIE-1 and SW2 are poorly crystalline 

ferric (hydr)oxide precipitates (Croal et al., 2004; Kappler and Newman, 2004).  These 

precipitates greatly hinder our ability to harvest cells grown under these conditions.  To 

prevent the precipitation of ferric phases in our cultures, we added varying concentrations 

of the Fe chelator NTA to our growth medium containing 4 mM Fe(II).  A concentration 

of at least 5 mM NTA was necessary to keep Fe(III) in solution for both cultures.  Similar 

to what has been observed previously for the Fe(II)-oxidizing phototrophic strain, 

Rhodomicrobium vannielli (Heising and Schink, 1998), the addition of NTA accelerated 

the rate of Fe(II) oxidation by both TIE-1 and SW2.  For SW2, the rate of Fe(II) 

oxidation increased approximately 25% when 7.5 mM NTA was added, while the 

addition of 10 and 15 mM had adverse effects on the rate of Fe(II) oxidation (Figure 

3.1A).  For TIE-1, the addition of 5, 7.5, and 15 mM NTA increased the Fe(II) oxidation 

rate approximately 47, 48 and 44%, respectively (Figure 3.1B).  No growth of TIE-1 or 
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SW2 was observed in control experiments where only NTA and no Fe(II) was added 

(data not shown).   

When the Fe(II)-oxidizing phototroph, R. vannielli, grows on Fe(II) alone, the 

ferric precipitate products completely encrust the cells and impede further Fe(II) 

oxidation by this strain (Heising and Schink, 1998).  Given that mineral encrustation is 

not evident with TIE-1 or SW2, the increased rate of Fe(II) oxidation upon addition of 

NTA may be due to a lowering of the redox potential of the Fe(II)/Fe(III) couple, or a 

change in the bioavailable Fe(II) species that effectively facilitates Fe(II) oxidation. 

The concentration of NTA tolerated by the two strains differed.  For SW2, 

concentrations of NTA higher than 7.5 mM were inhibitory whereas TIE-1 was not 

adversely affected by up to 15 mM NTA (Figure 3.1A and B).  MINEQL
+
 modeling of 

the chemical species in medium containing 4 mM Fe(II)Cl2·H2O and 5 or 20 mM NTA 

predicts that 99.8% of the total Fe(II) is present as the Fe[NTA] complex in both cases.  

Because the concentration of the Fe[NTA] complex does not change and is the dominant 

chemical species at all the NTA concentrations tested, the increased tolerance of NTA by 

TIE-1, relative to SW2, may result from differences in cell wall permeability or the 

efficiency/number of generalized solute efflux pumps.  This would be consistent with the 

observation that TIE-1 is more resistant to a greater concentrations of the antibiotics 

kanamycin, gentamicin, tetracycline and chloramphenicol (the mechanisms of resistance 

of the latter two being via efflux pumps), than SW2 and most purple non-sulfur bacteria 

in general (Jiao et al., 2005). 
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Figure 3.1   Growth of SW2 and TIE-1 on 4 mM Fe(II)Cl2·H2O with varying 

concentrations of NTA.  A.  Data for SW2:  - 0 mM NTA,  - 7.5 mM NTA, + - 10 

mM NTA,  - 15 mM NTA,  - Abiotic + 15 mM NTA.  B.  Data for TIE-1:  - 0 mM 

NTA,  - 5 mM NTA,  - 7.5 mM NTA,  - 15 mM NTA,  - Abiotic + 15 mM NTA. 

Data for SW2 and TIE-1 are representative of triplicate and duplicate cultures, 

respectively.For SW2 data, the error bars represent the range of  duplicate cultures; TIE-1 

data is representative of duplicate cultures. 

 

3.4.2 Phototrophic Fe(II) oxidation in the presence of a H2 atmosphere 

In a bicarbonate containing system of pH ~7 the relevant Fe couple, Fe(OH)3 + 

HCO3
- 
/FeCO3, has a redox potential of +0.2 V (Ehrenreich and Widdel, 1994) while the 

relevant H2 couple, 2H
+
/H2, has a redox potential of -0.41 V (Madigan et al., 2003), 

suggesting H2 is a more thermodynamically favorable electron donor than Fe(II) under 

these conditions.  This raises the question – in an environment where H2 and Fe(II) 

coexist, would phototrophic Fe(II) oxidation still proceed?  It is often assumed that 

bacteria preferentially use substrates according to the amount of free energy they can gain 

from them.  To date, most studies that support this idea have focused on the hierarchical 

use of different electron acceptors in respiration (Ingledew and Poole, 1984).  In 
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principle, the same logic also applies to electron donors.  We note, however, that 

thermodyamics cannot provide the full story: the ability/efficiency of microbes to use 

substrates to obtain energy for growth also depends on kinetic issues such as substrate 

affinity, enzyme turnover rate, and substrate availability. 

To investigate the effects of the presence of H2 on phototrophic Fe(II) oxidation 

by TIE-1 and SW2, we measured the rates of Fe(II) oxidation in cell suspensions of these 

strains where the concentrations of Fe(II), NaHCO3 and H2 were comparable to those 

thought to be relevant for the Archean environment.  Specifically, the initial Fe(II) 

concentration of ~0.4 to 0.45 mM is within the upper range of 0.054 to 0.54 mM 

predicted by Holland and Ewers (Ewers, 1983; Holland, 1973), the NaHCO3 

concentration of 20 mM is on the same order as the 70 mM predicted for an Archean 

ocean and an order of magnitude higher than the present day concentration of 2 mM 

(Grotzinger and Kasting, 1993), and the H2 concentration of 800,000 ppm is also on the 

same order as the recently proposed concentration in the early atmosphere of 300,000 

ppm (Tian et al., 2005). 

In our experiments containing 1 mM NaHCO3 in the absence of H2, we observed 

initial rates of Fe(II) oxidation for TIE-1 and SW2 of ~0.07 mM/hr and ~0.15 mM/hr, 

respectively (Figure 3.2A and B).  Under the same low NaHCO3 conditions, in the 

presence of H2, the rate of Fe(II) oxidation by TIE-1 decreased by ~43% compared to the 

absence of H2 (Figure 3.2A, Table 3.1).  SW2 showed an even more dramatic inhibition 

by H2.  During the first five hours of the assay, the rate of Fe(II) oxidation by SW2 in the 
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presence of H2 decreased by ~80% as compared to the absence of H2, and after 10 hours, 

only ~22% of the total Fe(II) added initially was oxidized (Figure 3.2B, Table 3.1). 

In contrast, in the presence of 20 mM NaHCO3, while the rates of Fe(II) oxidation 

decreased for both strains in the presence of H2, the inhibition by H2 was less severe as 

compared to the 1 mM NaHCO3 conditions.  For TIE-1, the initial rate of Fe(II) oxidation 

decreased ~31% as compared to that in the absence of H2 (Figure 3.2A, Table 3.1).  For 

SW2 the initial rate of Fe(II) oxidation decreased ~39% (Figure 3.2B, Table 3.1).  When 

comparing the total Fe(II) oxidized under these conditions, for SW2 all of the Fe(II) was 

oxidized to completion within two hours and for TIE-1, after eight hours, the same 

amount of Fe(II) was oxidized as in the absence of H2 (Figure 3.2A and B). 
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Figure 3.2  H2 inhibits the Fe(II) oxidation activity of both SW2 (A) and TIE-1 (B) to 

varying degrees depending on the concentration of NaHCO3.   - H2 + 1 mM NaHCO3; 

 - N2 + 1 mM NaHCO3;  - H2 + 20 mM NaHCO3;  - N2 + 20 mM NaHCO3.  Data 

are representative of two independent experiments.  The volume of the assay was 1.5 ml, 

the headspace of the cell suspension was exchanged every 2 hours and the assay bottles 

were shaken vigorously at each time point to ensure maximal H2 saturation of the cell 

suspension solution.  Error bars represent the error on duplicate cell suspension assays for 

TIE-1 and triplicate assays for SW2. 

 

Table 3.1  Decrease in rates of Fe(II) oxidation in the presence of H2 relative to no H2 

conditions by cell suspensions of TIE-1 and SW2.  0.5 mM of Fe(II) was used for this 

assay.  Under H2 conditions the headspace contained H2/CO2 (80:20 [vol/vol] while 

under no H2 conditions the headspace contained N2/CO2 (80:20 [vol/vol]).   

 

Strain NaHCO3 [mM] % decrease in rate relative to 

no H2 condition 

TIE-1 

TIE-1 

SW2 

SW2 

1 

20 

1 

20 

43 

31 

80 

39 
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To verify that the apparent decrease in the rates of Fe(II) oxidation in the presence 

of H2 was not due to the ability of these organisms to couple H2 oxidation to the 

reduction of Fe(III) during the assay, we performed Fe(III) reduction activity assays with 

TIE-1 and SW2.  In H2 pre-grown cell suspensions of TIE-1 and SW2 to which 1 mM 

NaHCO3 and 0.5 mM ferric (hydr)oxide were added, no Fe(II) was detected for either 

TIE-1 and SW2 in the presence (Figure 3.3) or absence of H2 (data not shown).  This 

suggests that neither SW2 nor TIE-1 have Fe(III) reduction activity under these 

conditions, and thus the observed decrease in Fe(II) oxidation activity was not due to the 

reduction of oxidized Fe(II).  

 

Figure 3.3  No Fe(III) reduction activity was observed in cell suspension assays with H2 

grown cells of TIE-1 and SW2.  1 mM NaHCO3 and ~500 M ferric (hydr)oxide were 

added at the beginning of the assay.   - TIE-1, Fe(II);   - TIE-1, Fe(III);  - SW2, 

Fe(II);  - SW2, Fe(III).  No Fe(II) increase was detected throughout the incubation 

period and Fe(III) concentration remained constant.  Data shown is from samples 

incubated in the presence of H2 under light.  Similarly, controls that contained no H2 or 

that were incubated in the dark did not exhibit any Fe(III) reduction (data not shown).  

 

Together, these results indicate that phototrophic Fe(II) oxidation may be 

inhibited by H2 in modern environments where the concentration of bicarbonate is low 
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(~2 mM).  However, if the concentration of bicarbonate is high (i.e., >20 mM), as is 

predicted for the Archean ocean (Grotzinger and Kasting, 1993), even in an atmosphere 

containing 800,000 ppm H2, Fe(II) oxidation by these phototrophs could still have 

proceeded at appreciable rates.   

3.4.3 How does H2 inhibit Fe(II) oxidation? 

It is not clear how H2 inhibits Fe(II) oxidation in our cell suspension assays.  All 

the Fe(II) oxidation activity observed in H2 pre-grown cells of SW2 and TIE-1 is light 

dependent (data not shown), suggesting that electron transfer from Fe(II) is linked to the 

photosynthetic electron transport system.  To determine if the same held true for electrons 

derived from H2, cell suspensions of H2 grown TIE-1 and SW2 were incubated in the 

light and dark and H2 consumption was followed over time.  H2 was only consumed by 

the cells exposed to light (Figure 3.4).  Controls without light showed similar decreases in 

H2 compared to no cell controls.  We suspect the decrease of H2 in the headspace of 

abiotic or dark controls is caused by diffusion into the buffer. 
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Figure 3.4   Relative H2 consumption by cell suspensions of H2-grown TIE-1 and SW2 

show that this activity is light dependent.   - SW2 + H2 + 20 mM NaHCO3 + light;  - 

SW2 + H2 + 20 mM NaHCO3 + dark;  - TIE-1 + H2 + 20 mM NaHCO3 + light;  - 

TIE-1 + H2 + 20 mM NaHCO3 + dark;  - no cells + H2 + 20 mM NaHCO3 + light.  All 

data were standardized to the rate of H2 consumption by cells under light (defined as 

100%).  

 

Given that the utilization of Fe(II) and H2 by these strains is light dependent, there 

are several possibilities by which H2 might inhibit Fe(II) oxidation.  1) H2 may inhibit the 

expression of the Fe(II) oxidoreductase, 2) H2 may directly inhibit the Fe(II) 

oxidoreductase itself, or 3) hydrogenase is active in these cells and is effectively out-

competing the Fe(II) oxidoreductase to donate electrons to the photosynthetic electron 

transport chain. 

If H2 were to inhibit expression of the Fe(II) oxidoreductase or the Fe(II) 

oxidoreductase enzyme itself, cells pre-grown on H2 and transferred to assay conditions 

containing both Fe(II) and H2 would be expected to have no Fe(II) oxidation activity 

(during H2 pre-growth the Fe(II) oxidoreductase would be repressed and upon transfer to 

the assay containing H2, the repression of the Fe(II) oxidoreductase would continue due 
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to the presence of H2).  On the contrary, in our experiments where H2 was added to the 

cell suspensions of H2-grown cells to investigate its effects on Fe(II) oxidation, we see 

that both TIE-1 and SW2 do have Fe(II) oxidation activity (albeit, less than the activity 

observed for H2 pre-grown cells transferred to an assay with only Fe(II) (Figure 3.2A and 

B).  This observation implies that the Fe(II) oxidoreductase is expressed and active in the 

presence of H2. 

If both the hydrogenase and Fe(II) oxidoreductase enzymes are present and active 

under our assay conditions, the observed inhibition of Fe(II) oxidation by H2 may result 

from competition between the two enzymes to donate electrons to the photosynthetic 

electron transport chain and ultimately CO2.  Under conditions where the physiological 

electron acceptor, CO2, would be abundant (i.e., 20 mM NaHCO3), H2 inhibition of Fe(II) 

oxidation is observed as a slight decrease in the rate of Fe(II) oxidation for both TIE-1 

and SW2 (Figure 3.2A and B, Table 3.1).  If these enzymes compete to donate electrons 

to the photosynthetic electron transport chain and ultimately CO2, when the concentration 

of the electron acceptor is low (i.e., 1 mM NaHCO3), we might expect the competition 

between the two enzymes to become more intense and be manifested as a greater 

inhibition of Fe(II) oxidation by H2.  In support of this hypothesis, we observe that the 

rate of Fe(II) oxidation for both strains under low NaHCO3 concentrations decreased 

more in the presence of H2 as compared to higher NaHCO3 concentrations, particularly 

for SW2 (Figure 3.2A and B, Table 3.1).  In addition, assuming free iron is the species 

used by SW2 and TIE-1 cells for Fe(II) oxidation (Croal et al., 2004; Kappler and 

Newman, 2004), it is unlikely that the difference observed in the rate of Fe(II) oxidation 
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in the presence of different bicarbonate concentrations is due to a change in Fe(II) 

speciation because MINEQL
+
 modeling of the chemical species in the cell suspension 

buffer containing 0.5 mM Fe(II)Cl2·H2O and 1 or 20 mM bicarbonate predicts that over 

77% of the total Fe(II) is present as the free ion in both cases.  

 

 

Figure 3.5   Hydrogenase and Fe(II) oxidation activity for SW2 and TIE-1 as measured 

by benzyl viologen (BV) reduction and the ferrozine assay, respectively.  A & B.  

Hydrogenase activity for SW2 and TIE-1, respectively:  - H2 + 20 mM NaHCO3 + 1 

mM FeCl2·H2O + 5 mM BV;  - H2 + 20 mM NaHCO3 + 5 mM BV.  C & D.  Fe(II) 

oxidation activity for SW2 and TIE-1, respectively:  H2 + 20 mM NaHCO3 + 1 mM 

FeCl2·H2O;  - N2 + 20 mM NaHCO3 + 1 mM FeCl2·H2O.  The volume of the assay was 

1 ml, and the assay bottles were shook vigorously at each time point to ensure maximal 

H2 saturation of the cell suspension solution.  Error bars represent the error on triplicate 

cell suspension assays. 
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To further test this competition hypothesis, we measured the hydrogenase activity 

of cell suspensions of TIE-1 and SW2 pre-grown on H2 in the presence and absence of 

Fe(II) to determine if the hydrogenase enzyme is in fact present and active under the 

conditions of our assay.  The H2-dependent reduction of benzyl viologen observed 

indicates that the cells used for our assay do have an active hydrogenase, the activity of 

which does not seem to be greatly affected by the presence Fe(II) (Figure 3.5A and B).  

These findings are expected given that the cells are pre-grown on H2, a condition where 

the hydrogenase is expected to be highly expressed (Vignais and Colbeau, 2004).  

Conversely, we found that H2 did not significantly inhibit Fe(II) oxidation in cell 

suspensions of TIE-1 or SW2 pre-grown on Fe-NTA even at low bicarbonate 

concentrations, given that hydrogenase is not expected to be expressed under Fe(II) 

growth conditions (Figure 3.6). 

The proposed flow of electrons from Fe(II) and H2 to the photosynthetic electron 

transport chain and CO2 is shown in Figure 3.7.  The hydrogenase enzyme, presumably 

located in the cytoplasmic membrane (CM) of TIE-1 and SW2 by comparison to 

Rhodobacter capsulatus (Vignais and Colbeau, 2004), donates electrons from H2 to the 

quinone pool.  Enzymes involved in Fe(II) oxidation are not well studied.  Recent 

findings from our lab suggest that redox active proteins located in the periplasm such as 

c-type cytochromes are involved in  Fe(II) oxidation in SW2 and TIE-1 (Croal et al., 

2007; Jiao and Newman, 2007).  Electrons from H2 or Fe(II) then flow through the 

photosynthetic electron transport chain in a cyclic fashion to produce ATP or feed into 
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NAD
+
 reduction (catalyzed by the NADH dehydrogenase also located in the CM).  

NADH can then be used to fix CO2. 
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Figure 3.6   H2 does not inhibit the Fe(II) oxidation activity of Fe(II)-NTA pre-grown 

TIE-1 or SW2 cell suspensions at low concentrations of NaHCO3.  Cells were pre-grown 

on Fe-NTA and washed three times in the assay buffer before resuspension in assay 

buffer containing 1 mM NaHCO3 and ~0.5 mM FeCl2, with an atmosphere of either N2 or 

H2.  The assay volume used was 2 ml.  - TIE-1 + N2;  - TIE-1 + H2;  - SW2 + N2; 

 - SW2 + H2.  Error bars represent the error on triplicate cell suspension assays.  
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Figure 3.7   A cartoon representation of the flow of electrons from Fe(II) and H2 to the 

photosynthetic electron transport chain and CO2.  The red lines, associated with k1, 

represent the pathway and the overall rate of electron flow from Fe(II) to the 

photosynthetic electron transport chain.  The blue lines, associated with k2, represent the 

pathway and the overall rate of electron flow from H2 to the photosynthetic electron 

transport chain.  OM: outer membrane; PERI: periplasm; CM: cytoplasmic membrane; 

ICM: intracytoplasmic membrane; CYT: cytoplasm, RC: reaction center, UQ: 

ubiquinone, NADH DH: NADH dehydrogenase, H2ase: hydrogenase, FOxRed: Fe(II) 

oxidoreductase. 

 

The physiological basis for the difference in sensitivity to H2 under low 

bicarbonate concentrations observed for the two strains remains to be determined.  The 

decreased Fe(II) oxidation activity in the presence H2 observed for SW2 (relative to TIE-

1), may imply that the overall electron flow rate from Fe(II) to the photosynthetic 
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electron transport chain (represented by k1) for SW2 is less efficient than that for TIE-1 

(Figure 3.7).  Such a scenario may result if the electron flow rate from Fe(II) (k1) is less 

than the electron flow rate from H2 (k2) in SW2, and k1 and k2 are nearly equivalent in 

TIE-1, or if there is more hydrogenase relative to Fe(II) oxidoreductase in SW2 versus 

TIE-1.  To further test the competition hypothesis, the dependence of the Fe(II) oxidation 

rate and/or the H2 uptake rate on the bicarbonate concentration should be tested over 

multiple biocarbonate concentrations, both for the wild type and specific mutants that 

lack either the Fe(II) oxidase or the H2 uptake hydrogenase.  Details concerning the rates 

of individual reactions within a physiological pathway cannot be resolved with cell 

suspension experiments and require further investigations with purified enzymes.  Thus, 

purification of the Fe(II) oxidoreductases is a priority for future work.  

 

3.4.4 Implications for Banded Iron Formations 

Inferences on mechanism aside, the implication of our results for BIF genesis are 

that when the physiological electron acceptor for photosynthesis (CO2), is abundant (as is 

presumed to have been the case in an ancient Archaean ocean), Fe(II) oxidizing 

phototrophs have the capacity to oxidize Fe(II) even in the presence of the alternative 

electron donor, H2.  Thus, the presence of H2 in an ancient atmosphere up to 

concentrations of even 800,000 ppm would not preclude Fe(II) oxidation by these 

bacteria.  That our NaHCO3 concentrations (20 mM) are lower than the predicted 
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concentrations in an Archean ocean by ~3.5 fold implies that the slight inhibitory effects 

of H2 observed under our conditions might be even less at concentrations of 70 mM. 

If we assume that photochemical reactions and volcanic emissions were the major 

source of H2 and calculate the concentration of H2 in a photic zone of 100 m over an area 

of 10
11

 m
2
 (equivalent to the depositional basin of the Hamersley Group, which contains 

among the largest BIFs (Konhauser et al., 2002)), using a hydrogen mixing ratio of 30% 

(which is at the upper limit of what has been predicted (Tian et al., 2005)), and a Henry’s 

constant for H2 of 10
-3.1

 (Morel and Hering, 1993), we find the concentration of H2 

expected in this volume of ocean water to be 0.24 ppm (0.12 mM).  Given that diffusion 

and H2 consumption rates by other bacteria are not considered in this calculation, we 

expect the concentration of H2 would be even less with depth.  Additionally, the 

solubility of H2 in water decreases with increasing temperature (Fernandez-Prini et al., 

2003).  If estimations of Archean ocean temperatures at 70±15°C are correct (Knauth and 

Lowe, 2003), our calculated value represents a maximum for the amount of H2 dissolved 

in the photic zone of this basin and is several orders of magnitude less than those used for 

our experiments.  Therefore, it is likely that at depths approaching 100 m in an ancient 

open ocean, H2 would pose no barrier to Fe(II) oxidation by these anoxygenic 

phototrophs.  Further, in sulfide depleted environments, which are thought to have 

prevailed in the ancient oceans prior to 1.8 Ga (Poulton et al., 2004), Fe(II) may have 

been the predominant inorganic electron donor for anoxygenic photosynthesis. 
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3.5 CONCLUSIONS  

We find that even in the presence of 800,000 ppm H2, Fe(II) oxidation still 

proceeds at appreciable rates by two species of Fe(II)-oxidizing purple non-sulfur 

phototrophs when the concentration of NaHCO3 is 20 mM.  Additionally, our 

calculations predict that the concentration of dissolved H2 in the photic zone of an 

Archean ocean may have been less than 0.24 ppm.  Based on our results, we predict this 

concentration would have had little effect on Fe(II) oxidation by anoxygenic phototrophs 

at depth within the photic zone based on our experiments.  These results suggest that the 

presence of H2 in an ancient atmosphere at the currently predicted values would not have 

precluded the involvement of these organisms in BIF deposition.   

The molecular mechanism by which H2 inhibits Fe(II) oxidation by these 

phototrophs when NaHCO3 concentrations are low remains to be proven, but our favored 

explanation involves competition between the hydrogenase and the Fe(II) oxidoreductase 

in donating electrons to the photosynthetic electron transport chain and ultimately to CO2.  

The physiological differences between TIE-1 and SW2 that result in differential 

sensitivity to H2 at low NaHCO3 concentrations are not known, but may result from 

differences in enzyme activities of the two pathways in both strains.  Further studies that 

combine microbial physiology and geological approaches will enable biogeochemical 

reconstructions of ancient environments and help shed light on BIF deposition and the 

ecology of the Archean ocean. 
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Chapter 4 

Isolation and Characterization of a Genetically 

Tractable Photoautotrophic Fe(II)-Oxidizing Bacterium  

Rhodopseudomonas palustris strain TIE-1 

 

4.1 ABSTRACT 

We report the isolation and characterization of a phototrophic ferrous iron [Fe(II)]-

oxidizing bacterium named TIE-1 that differs from other Fe(II)-oxidizing phototrophs in 

that it is genetically tractable.  Under anaerobic conditions, TIE-1 grows 

photoautotrophically with Fe(II), H2 or thiosulfate as the electron donor, and 

photoheterotrophically with a variety of organic carbon sources.  TIE-1 also grows 

chemoheterotrophically in the dark.  This isolate appears to be a new strain of the purple 

non-sulfur bacterial species Rhodopseudomonas palustris based on physiological and 

phylogenetic analysis.  Fe(II) oxidation is optimal at pH 6.5 to 6.9.  The mineral products 

of Fe(II) oxidation are pH dependent: below pH 7.0 goethite ( ·FeOOH) forms, above 

pH 7.2 magnetite (Fe3O4) forms.  TIE-1 forms colonies on agar plates and is sensitive to a 

variety of antibiotics.  A hyperactive mariner transposon is capable of random insertion 

into the chromosome with a transposition frequency of ~10
-5

.  To identify components 

involved in phototrophic Fe(II) oxidation, mutants of TIE-1 were generated by 

transposon mutagenesis and screened for defects in Fe(II) oxidation using a cell 

suspension assay.  Among approximately 12,000 mutants screened, six were identified 
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that are specifically impaired in Fe(II) oxidation.  Five of these mutants have independent 

disruptions in a gene that is predicted to encode an integral membrane protein that 

appears to be part of an ABC transport system; the sixth mutant has an insertion in a gene 

is a homolog of CobS, an enzyme involved in cobalamin (vitamin B12) biosynthesis.  

 

4.2 INTRODUCTION   

Phototrophic Fe(II)-oxidizing bacteria were first reported over a decade ago (20, 

57), but very little is known about how these bacteria oxidize Fe(II) at the molecular 

level. In part, this is due to the lack of a genetic system in any of these isolates.  

Accordingly, we set out to isolate a new Fe(II)-oxidizing species that would be amenable 

to genetic analysis.  We were motivated to understand the process of phototrophic Fe(II) 

oxidation in detail because it likely represents one of the most ancient forms of 

photosynthesis and organisms with this metabolism may have catalyzed the deposition of 

Banded Iron Formations (BIFs), an ancient class of iron-containing sediments (20, 36, 

57). To test the hypothesis that Fe(II)-oxidizing phototrophs played a role in BIF 

deposition at discrete intervals in earth history, we must be able to evaluate putative 

molecular biosignatures that are preserved in ancient rocks.  These biosignatures 

generally fall into two classes: organic and inorganic.  At present, there are no unique 

organic biomarkers associated with this physiology, nor are there clear inorganic 

biosignatures, although stable Fe-isotopes may hold promise in this regard (14).  Given 

this, elucidation of the molecular components of the phototrophic Fe(II) oxidation 
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pathway is necessary both to constrain our interpretation of the Fe-isotopic fractionation 

produced by these bacteria and to identify biomolecules specific to Fe(II) oxidation that 

may be preserved over geologic time (14).   

 To date, the phototrophic Fe(II)-oxidizing bacteria that have been isolated are 

phylogenetically diverse and include members of the purple sulfur (Thiodictyon sp. strain 

F4), purple nonsulfur (Rhodobacter ferrooxidans strain SW2 and Rhodovulum sp. strains 

N1 and N2) and green sulfur bacteria (Chlorobium ferroxidans KoFox) (14, 20, 27, 53).  

In addition to the Fe(II)-oxidizing phototrophs, Fe(II) oxidation is also catalyzed by 

nitrate dependent Fe(II)-oxidizing bacteria (4, 37) and acidophilic or neutrophilic Fe(II)-

oxidizing aerobic microorganisms (19, 22, 52, 55).  Most of what is known about the 

molecular mechanisms of Fe(II) oxidation derives from biochemical studies of the 

acidophilic Fe(II)-oxidizing aerobe Acidithiobacillus ferroxidans (13).  Proteins thought 

to be involved in the transfer of electrons from Fe(II) to O2 include the blue copper 

protein rusticyanin (11, 12), a high redox potential Fe-S protein (23), an outer membrane 

porin (46), several types of cytochromes (1, 42, 56, 60), and one or more cytochrome 

oxidases (29).  The exact role of each of these carriers in the electron transport pathway 

of Fe(II)-oxidation, however, is uncertain and controversial.  In particular, there is debate 

on where Fe(II) oxidation takes place in the cell (2, 5, 58), although there is general 

agreement that the Fe(II) oxidase is located external to the cytoplasmic membrane.  

 Here, we describe the isolation and characterization of a genetically tractable 

Fe(II)-oxidizing phototroph that is closely related to the type strain of 

Rhodopseudomonas palustris.  As a first step in the identification of the molecular 
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components of the phototrophic Fe(II) oxidation pathway, we performed a genetic screen 

to identify genes involved in Fe(II) oxidation.  The potential functions of these genes in 

the process of phototrophic Fe(II) oxidation are discussed. 

 

4.3 MATERIAL AND METHODS 

Bacterial strains and plasmids.  Bacterial strains and plasmids used in this study are 

listed in Table 4.1. 

 

Medium and culture conditions.  Basal medium for phototrophic Fe(II)-oxidizing 

bacteria was prepared as described by Ehrenreich and Widdel (20).  Medium containing 

dissolved Fe(II) but no Fe(II) precipitates (called filtered Fe(II) medium) was prepared by 

adding FeCl2 (to a final concentration of 10 mM) and subsequent filtration of the 

precipitated Fe(II) minerals leaving ~4 mM Fe(II) in solution (for details see (13)).  Fe(II) 

containing medium refers to filtered Fe(II) medium unless specified otherwise. For 

phototrophic growth with Fe(II) as the electron donor, cultures were incubated at 30 °C in 

Fe(II)-containing medium with a N2:CO2 (80:20) headspace ~20 cm distance from a 40 

W incandescent light bulb.  For phototrophic growth with H2 as the electron donor, H2 is 

supplemented in the headspace (H2:CO2 80:20).  For aerobic growth, TIE-1 was grown in 

YP medium that contains 0.3% yeast extract and 0.3% bactopeptone (Difco).  

Escherichia coli strains were cultured in Luria-Bertani (LB) broth at 37 °C (44). E. coli 

2155 and WM3064 were supplemented with DAP (diaminopimelic acid, 300 μM final 
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concentration).  Kanamycin and tetracycline were used at 200 and 50 μg/ml for TIE-1 

and 50 and 15 μg/ml for E. coli respectively.  

 

Table 4.1  Bacterial strains and plasmids used in this study 

Strain or plasmid Genotype or markers; characteristics and uses 
Source or 

reference(s) 

Bacterial strains   

E. coli 

2155 

Donor for bacterial conjugation; ThrB1004 pro 

thi strA hsdS lacZ M15 (F´ lacZ M15 lacI
q
 

trajD36 proA
+
 proB

+
) dapA::erm (Erm

r
) 

pir::RP4 [::kan (Km
r
) from SM10] 

(17) 

WM3064 Donor strain for conjugation: thrB1004 pro thi 

rpsL hsdS lacZ M15 RP4–1360 (araBAD)567 

dapA1341::[erm pir(wt)] 

W. Metcalf, 

Univ. of 

Illinois, 

Urbana 

 

UQ950  E. coli DH5   (pir) host for cloning; F (argF-

lac)169 80dlacZ58( M15) glnV44(AS) rfbD1 

gyrA96(NalR) recA1 endA1 spoT1 thi-1 hsdR17 

deoR pir+ 

 

D. Lies, 

Caltech 

 

Rhodopseudomonas 

palustris CGA009 

Wild type (ATCC BAA-98) 
(34) 

   

Plasmids   

pSC189 The transposon delivery plasmid. National 

Center for Biotechnology Information accession 

no. AY115560 

(10) 

pRK415 10.5 kb incP-1 (pK2) Tc
r
 lacZ (32) 

pT198 T198 PCR fragment, including the promoter 

region, cloned into the Xba I site of pRK415 
This study 

pT498 T498 PCR fragment, including the promoter 

region, cloned into the Xba I site of pRK415 
This study 
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Isolation.  Cultures of phototrophic Fe(II)-oxidizing bacteria were enriched by 

inoculating medium supplemented with 10 mM FeCl2 (without filtration) with samples 

taken from an iron-rich mat from School Street Marsh in Woods Hole, MA.  Enrichments 

were incubated at room temperature in the light. After a few days, rusty patches 

developed on the inner surface of the bottles.  Cultures containing rusty patches were 

transferred successively to Fe(II) containing medium.  After three transfers, the 

enrichments were subjected to an anaerobic agar dilution series where 6 ml of prewarmed 

medium supplemented with FeCl2 and 1 ml of bacterial culture were mixed with 3 ml of 

3% (w/v) molten agar in a test tube under a constant N2 stream.  Sequential dilutions 

were made by transferring 1 ml of bacteria/agar mix from one tube to the next until a 

series of 10 tubes were completed.  The tubes were incubated in the light at room 

temperature (22°C).  After 2 weeks, ovoid-shaped red colonies consisting of cells and 

rusty particles developed. Colonies were picked and subcultured in the filtered Fe(II)-

containing medium.  To select specifically for Fe(II)-oxidizing bacteria that could grow 

aerobically on agar plates, colonies formed in the agar dilution tubes were streaked to YP 

agar plates and incubated aerobically at 30 °C in the dark.  Agar dilution series were 

repeated three times to obtain pure cultures; the purity was checked by phase contrast 

microscopy. 

 

Analytical techniques.  Fe(II) oxidation was monitored by measuring the consumption 

of Fe(II) over time. Fe(II) was quantified by the ferrozine assay (51).  Cell mass was 

quantified by protein content determined by the method of Bradford (6), using reagents 
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obtained from Bio-Rad (Richmond, CA).  The cell mass versus protein ratio was 

determined with 200 ml of cell culture grown with 10 mM acetate phototrophically: cell 

mass was dried completely at 70 °C.  For protein measurement and microscopic cell 

counts of Fe(II) grown cultures, the Fe(III) precipitates in 1 ml culture were dissolved by 

addition of 800 μl of oxalate solution (28 g/L of ammonium oxalate and 15 g/L of oxalic 

acid in 1 L ultra pure H2O) plus 100 μl of ferrous iron ethylenediammonium sulfate (100 

mM) as described by Suter et al. (54).  Protein was precipitated by trichloroacetic acid 

(0.5 M), collected by centrifugation and dissolved in NaOH (0.1 N) as described by 

Ehrenreich and Widdel (20).  Cells were counted by epifluorescence microscopy after 

fixing with glutaraldehyde (2.5%) and staining with diamidino-2-phenylindole.  The 

mineral products of Fe(II) oxidation were identified by X-ray diffraction (XRD) analysis 

as described by Kappler and Newman (31).  Sample preparation and analysis by scanning 

electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission 

electron microscopy (TEM) were done as described by Kappler and Newman (31).  

MINEQL+ (Environmental Research Software) was used to calculate the Fe(II) 

speciation of the medium at different pH values given the total soluble Fe(II) 

concentration measured prior to inoculation.  We assumed a closed system and the model 

solution had basal component concentrations equal to the growth medium.  We did not 

account for the small decrease of phosphate concentration by the precipitation of 

vivianite [Fe3(PO4)2·8H2O] in our model, as the amount of phosphate removed from 

solution was less than 4% (estimated by assuming that the decrease in soluble Fe(II) 

measured at the highest pH tested, 7.5, was due to the precipitation of vivianite, and 
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calculating the corresponding amount of phosphate that would have been removed from 

solution).  The total Fe(II) concentration was set to the experimentally measured total 

dissolved Fe(II) concentration at different pH values, and no solid was removed. The 

ionic strength of the solution was not considered and the temperature was set at 25 °C. 

 

Determination of physiological and phototrophic characteristics.  To test for growth 

with different carbon sources, sterile stock solutions of various carbon sources (acetate 

lactate, succinate, pyruvate, malate, fumarate, benzoate, formate and glucose) were added 

to the basal medium at a final concentration of 10 mM. Sulfide, sulfite or thiosulfate were 

tested as electron donor at 5 mM. Elemental sulfur (1 g/L) was added from an autoclaved 

suspension and growth was checked visually for pinkish turbidity. Growth of non-

precipitate-containing cultures was monitored by increase of optical density at 600 nm. 

To determine the pH dependence of Fe(II) oxidation, the pH of the filtered Fe(II) 

containing medium (initial pH 6.8) was adjusted between 5.5 and 7.5 with 1 M HCl or 1 

M Na2CO3. The headspace of the cultures for this experiment was initially flushed with 

H2:CO2 (80:20) to stimulate bacterial growth, and end point measurements of Fe(II) 

concentration and protein content were taken after 5 days when Fe(II) oxidation had not 

proceeded to completion. Whole cell absorption spectra were recorded in 40% (w/v) 

sucrose using a multidetection microtiterplate reader (Synergy HT, Bio-Tek, Winooski, 

VT). Carotenoids were extracted from phototrophically grown TIE-1 and R. palustris 

CGA009. Cells from 15 ml of cultures grown with acetate as the electron donor were 

harvested by centrifugation (10 min; 7,800 x g). For pigment extraction, 5 ml of a 
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mixture of acetone and ethanol (1:1) were added and all following procedures were done 

under extremely dim light to protect the pigments from photo transformations. The 

suspension was sonicated for 2 minutes and incubated in the dark at 30°C for 1 hour. The 

pigments were transferred to hexane by adding 3 ml of hexane and 0.5 ml of H2O 

followed by vigorous mixing. The upper phase was collected and replaced several times 

until it stayed clear. The combined hexane fractions were concentrated ~10-fold under a 

stream of N2 and stored at -20ºC before further analysis. The extracted pigments were 

separated using a normal-phase thin-layer chromatography (TLC) system with silica as 

adsorbent (Kieselgel 60, Merck, Darmstadt, Germany) and a mixture of petrolether and 

acetone (4:1) as the mobile phase. Absorbance spectra of the crude extracts were 

recorded in a quartz 96-well microtiterplate and identified by comparison to extracts from 

the closely related reference strain R. palustris CGA009 (7).  

 

16S rDNA sequence determination.  Cells grown in YP medium for 2 days were 

harvested by centrifugation. Genomic DNA was extracted using the DNeasy Kit 

(Qiagen). 16S rDNA was amplified using primers 8F (5’-

AGAGTTTGATCCTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGATCC-3’). 

The PCR product was eluted in water after purification using a QIAquick PCR 

Purification Kit (Qiagen). DNA was sequenced by the DNA Sequencing Core Facility at 

the Beckman Institute at Caltech using primers 8F and 1492R, with 2X coverage. 

Sequence alignment was performed on the National Center for Biotechnology 

Information (NCBI) website (http://www.ncbi.nlm.nih.gov/blast/). Distance and 
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maximum likelihood phylogenetic trees were constructed using the ARB software 

package (40).  

 

Antibiotic sensitivity.  Sensitivity of strain TIE-1 to antibiotics (chloramphenicol, 

tetracycline, kanamycin, gentamycin and ampicillin) was determined by growth tests on 

YP agar medium containing the antibiotics at various concentrations. 100 μl of a cell 

suspension (~10
8
 cells/ml) were spread on the agar plates with antibiotics and the number 

of colonies formed was counted after aerobic incubation at 30°C in the dark for 5 days. 

The minimal inhibitory concentration (MIC) was defined as the minimal antibiotic 

concentration at which no colonies formed on the plate during the allotted incubation 

time. 

 

Genetic screen.  To generate a library of transposon mutants to screen for Fe(II)-

oxidation defects, the plasmid pSC189, carrying the kanamycin resistant hyperactive 

mariner transposon (10), was moved via conjugation from the donor strain E.coli 2155 

to TIE-1. A deletion of the dapA gene of E. coli 2155 renders it unable to grow without 

the exogenous addition of DAP to the growth medium (17). Thus, TIE-1 exconjugants 

with transposon insertions can be selected on YP agar plates containing kanamycin (75 

μg/ml) but no DAP. Transposon containing TIE-1 exconjugants were picked to 96-well 

microtiter plates containing YP plus kanamycin and incubated aerobically at 30 °C 

overnight with shaking.  To test the transposon containing isolates for Fe(II) oxidation 

activity by a cell suspension assay, 20 μl of these YP cultures was transferred to 96 well 
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microtiter plates containing 200 μl phototrophic basal medium without Fe(II). These 

plates were incubated anaerobically in the light under an atmosphere of N2:CO2:H2 

(80:15:5) in an anaerobic glove box. After 3 days of incubation, the plates were 

centrifuged and the supernatant was removed. Under anaerobic conditions, cell pellets 

were resupended in a buffer (50 mM Hepes, 20 mM NaCl, 20 mM NaHCO3, pH 7) 

mixed with 200-300 μM of FeCl2. After a 5-hour incubation in the light, 100 μl of 

ferrozine solution (1 g of ferrozine plus 500 g of ammonia acetate in 1 L of ddH2O) was 

added into each well, and the OD570 was recorded to determine the concentration of the 

remaining Fe(II) (51). Putative mutants were identified in instances where the total Fe(II) 

removed from the system was less than ~50% relative to the wild type.  At least three 

independent checks were performed for each mutant. 

 

Southern blot.  To verify that the mariner transposon inserted in a random fashion, we 

performed southern blot on 10 randomly selected mutants from different mating events. 

SmaI and SphI digested genomic DNA from the mutants was separated on a 1% agarose 

gel and transferred to nylon membrane using a positive pressure blotting apparatus 

(Stratagene, CA) according to the manufacturer's instructions. Probe DNA was prepared 

from a gel-purified MluI restriction fragment of pSC189 that contained an internal part of 

the mariner transposon including the kanamycin resistance gene. Approximately 25 ng of 

probe DNA was labeled with 50 micro-Curries of alpha-P
32

-dCTP using the Ready-To-

Go labeling beads (Amersham Pharmacia Biotech). Prior to hybridization, 

unincorporated radioactive nucleotides were removed from the reaction by centrifugation 
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through sephadex columns (ProbeQuant G-50 Microspin columns, Amersham Pharmacia 

Biotech) according to the manufacturer's instructions. Nylon membranes were hybridized 

overnight at 65˚C. Hybridized membranes were washed 3 times for 5 minutes each in 2x 

SSC buffer (20 x SSC: 175.3 g/L NaCl plus 88.2 g/L of trisodium citrate) plus 0.1% SDS 

(sodium dodecyl sulfate) at room temperature, then twice of 15 minutes each with 0.1x 

SSC plus 0.1% SDS at 65˚C. The membrane was exposed to X-ray film at -80°C for 48 

hr prior to development. 

 

Cloning of mariner-containing fragments.  To identify the DNA sequence flanking the 

transposon in the mutants, genomic DNA was digested with restriction enzyme SacII 

followed by ligation at a DNA concentration (2-3 μg/ml) that favored intramolecular 

ligation (49). Ligated DNA was washed and concentrated using a DNA purification kit 

(Qiagen) and transformed into E. coli UQ950 cells. Plasmid DNA was extracted from 

overnight cultures of kanamycin resistant clones. The sites of transposon insertions of 

these mutants were determined by sequencing with primers Mar3 (5’-

CTTCTTGACGAGTTCTTCTGAGC-3’) and Mar4 (5’-

TAGGGTTGAGTGTTGTTCCAGTT -3’) that anneal near the ends of the mariner 

transposon in opposite directions. Sequence analysis and homology searches were 

performed by using the BLAST and the ORF Finder utilities that are available on the 

NCBI website (http://www.ncbi.nlm.nih.gov/blast/). Protein analysis including 

subcellular localization analysis and motif finding was done using TargetP and 

MotifScan on the ExPAsy proteomics server (http://us.expasy.org/). 
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Complementation.  Plasmid pT198 and pT498 were constructed to complement the 

genetic defect in mutants 76H3 and A2, respectively. Primers were designed based on the 

corresponding gene sequences in R. palustris CGA009 that were analogous to the 

disrupted genes in the mutants. For mutant 76H3, a 1.4 kb gene fragment was amplified 

through PCR from wild type TIE-1 with primers T198L (5’-

GGCTCTAGATCAACCAGAAACCAGCTTCC-3’) and T198R (5’-

GGCTCTAGATGTGAGCCACTCTGTCATCC-3’). For mutant A2, a 1.3 kb gene 

fragment was generated with primers T498L (5’-

GGCTCTAGACAATTGCGACAGCTTACGAC-3’) and T498R (5’-GGCTCTAGA 

AGAACCGCCTTCTTGGTCT-3’). The purified PCR products were digested and ligated 

to the XbaI cloning site of the broad host plasmid pRK415 vector to generate the vectors 

pT198 and pT498 for complementation. pT198 and pT498 were introduced into E. coli 

UQ950 by transformation. Transformants with the inserts were isolated through a 

blue/white screen on LB plates with tetracycline (15 μg/ml). The plasmids pT198 and 

pT498 were purified from E. coli UQ950, transformed by heat shock into the dapA 

donor strain E. coli WM3064 and moved via conjugation into the mutant TIE-1 strains.  

TIE-1 exconjugants containing vector pT198 and pT498 were selected on YP agar plates 

supplemented with 75 μg/ml of tetracycline. Colonies were picked and grown up in YP 

liquid medium with tetracycline (75 μg/ml). YP cultures were washed and subcultured in 

the basal medium plus tetracycline (75 μg/ml) with H2 as the electron donor. Cells were 
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then collected by centrifugation and tested for complementation of Fe(II)-oxidation 

activity by the cell suspension assay as described.  

 

4.4 RESULTS  

4.4.1 Isolation  

Phototrophic Fe(II)-oxidizing bacteria were enriched from samples taken from an iron-

rich mat from School Street Marsh in Woods Hole, MA.  The pH ranged from 6 to7 at 

this site.  Rusty orange-brown crusts formed on the inner surface of the enrichment 

bottles incubated in the light but not in the dark, suggesting the presence of phototrophic 

Fe(II)-oxidizing bacteria. After several transfers in liquid medium and purification in agar 

dilution series, several isolates that looked microscopically identical were obtained. One 

isolate named TIE-1 was chosen for all further experiments. In the agar-shake tube, TIE-

1 develops ovoid-shaped purple colonies containing orange-brown particles resembling 

iron rust. Phototrophically grown cells are motile and dumbbell shaped with a length of 

1-4 μm (Figure 4.1A). The heterogenous cell morphology suggests that cells divide 

asymmetrically by budding, as is the case for closely related species (35). Electron 

microscopy reveals that phototrophically grown cells contain lamellar intracytoplasmic 

membranes (Figure 4.1B). TIE-1 forms colorless colonies with purple centers on YP agar 

plates aerobically in the dark (Figure 4.1C). TIE-1 is colorless in liquid medium under 

aerobic conditions, and purple when grown phototrophically. 
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4.4.2 Phylogeny  

The 1,396 bp 16S rDNA sequence of TIE-1 was obtained and deposited in the 

Genbank database under the accession number AY751758. The 16S rDNA sequence was 

compared with the sequences from representative species of its close relatives, along with 

the phototrophic Fe(II)-oxidizing bacteria that have been isolated so far (Figure 4.1D). 

The 16S rDNA sequence of TIE-1 shares an identity of 98.9% and 99% to that of 

Rhodopseudomonas palustris ATCC17001
T
 and strain CGA009, respectively, belonging 

to the alpha subdivision of the Proteobacteria, affiliated closely with the nitrogen fixing 

phototrophic rhizobia. TIE-1 clusters differently from the other known purple nonsulfur 

Fe(II) oxidizing phototrophs such as Rhodobacter sp. strain SW2 and Rhodovulum sp. 

strains N1 and N2.  
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Figure 4.1   A. Phase contrast micrographs showing the cell morphology of TIE-1 grown 

phototrophically with acetate as the electron donor.  B. Lamellar intracytoplasmic 

membranes (arrow) of a cell from a one-week-old culture grown with Fe(II) as the 

electron donor. Fe(III) precipitates form outside the cell.  C. Colony morphology on a  

YP agar plate incubated aerobically in the dark for 5 days.  D. 16S rDNA based tree 

showing phylogenetic relationships between TIE-1 and related organisms.  Bootstrap 

values are given at branch points. Anaerobic phototrophs able to oxidize Fe(II) are 

underlined. TIE-1 (boxed) is separated significantly from the other known purple 

nonsulfur Fe(II) oxidizing phototrophs such as Rhodobacter sp. strain SW2 and 

Rhodovulum sp. strains N1 and N2. 
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Figure 4.2  Phototrophic growth of strain TIE-1 with Fe(II) as the electron donor. Shown 

are Fe(II) concentration ( ), protein content ( ), cell density ( ). Data are 

representative of  three independent cultures. The increase in cell number is consistent 

with the increase of protein content and the progress of Fe(II) oxidation throughout the 

incubation. No Fe(II) oxidation occurs for the duration of the incubation in the abiotic 

control and bacterial growth and Fe(II) oxidation are light dependent (data not shown). 

Approximately 5.36 mg of biomass is produced per mmole of Fe(II) oxidized.  

 

4.4.3 Phototrophic oxidation of Fe(II)  

TIE-1 is able to grow photoautotrophically with Fe(II) as electron donor under 

anaerobic conditions (Figure 4.2). The increase in cell number is concomitant with the 

increase of protein content and the progress of Fe(II) oxidation throughout the incubation. 

No Fe(II) oxidation occurs for the duration of the incubation in abiotic controls, and 

bacterial growth and Fe(II) oxidation are light dependent (data not shown). Based on the 

experimentally determined ratio of protein to cell mass of 47%, there is 2.52 mg of 

protein, i.e., 5.36 mg of biomass produced per mmol of Fe(II) oxidized. This represents 
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~72% of the theoretical cell yield of 7.5 mg/mmol of Fe(II),  based on the stoichiometry 

of CO2 reduction coupled to Fe(II) oxidation according to the equation: 4 Fe
2+

 + HCO3
- 
+ 

10 H2O = < CH2O > + 7 H
+
  + 4 Fe(OH)3. This number is comparable to what has been 

measured for a Rhodomicrobium-like isolate, which has 4.5 mg biomass produced per 

mmole of Fe(II) oxidized (57).  

The final product of Fe(II) oxidation accumulates exclusively outside the cell in 

the form of Fe(III) precipitates. The spherical aggregates resembling poorly crystalline 

Fe(III) (hydr)oxides appear the most in the youngest cultures (one week) and the more 

crystalline needle-like structures resembling goethite appear only in the older cultures (  

3 weeks).  Figure 4.3 shows that the Fe(III) precipitates are of two morphologies in a 

three-week-old Fe(II) grown culture.  One comprises small spherical aggregates of ~1 μm 

in size (black arrow I) and the other has a needle-like shape (black arrow II).  TEM and 

XRD analysis suggest that the change of mineral morphology with time reflects mineral 

transformation, consistent with previous findings for minerals in cultures of Rhodobacter 

sp. strain SW2 (31). This type of mineral transformation is suggested to result from the 

adsorption of Fe(II) onto ferric (hydr)oxide, promoting its transformation to the 

thermodynamically more stable goethite (61). Elemental analysis of both types of 

precipitates using EDS give signals only for iron and oxygen with the atomic ratio (O/Fe) 

of 1.4 ± 0.1.  
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Figure 4.3  Scanning electron micrograph of ferric iron precipitates produced by TIE-1, 

showing the presence of two types of Fe(III) minerals including nano-spherical (black 

arrow I) and needle-like structures (black arrow II) in a two week old culture. The 

relative proportion of each morphological type varies with the age of the culture (see 

text). The white arrow indicates a TIE-1 cell.  

 

4.4.4 Physiological and biochemical characterizations  

Similar to other R. palustris strains, TIE-1 was able to grow aerobically in the 

dark with a doubling time of ~3 hours in YP medium (Figure 4.4A). TIE-1 could also 

grow photoautotrophically with H2 as the electron donor (Figure 4.4B).  Among sulfur 

compounds, TIE-1 uses thiosulfate, but not sulfide, elemental sulfur or sulfite as an 

electron donor to support photosynthetic growth. Phototrophic growth of TIE-1 can be 

supported by a number of organic substrates including acetate (Figure 4.4C), lactate, 

succinate, pyruvate, malate, fumarate and benzoate, but not formate or glucose (data not 
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shown). We also tested Fe(III) reduction by TIE-1 and found that TIE-1 was not able to 

reduce Fe(III) citrate with acetate as the electron donor in the dark (data not shown).

 Fe(II) oxidation by TIE-1 is stimulated by the presence of H2.  In an atmosphere 

with 80% H2, about 80% of the total Fe(II) in the system is oxidized within 5 days (data 

not shown), whereas the same amount of oxidation takes about 2 weeks when Fe(II) is as 

the sole electron donor (Figure 4.2). The cell density of a culture grown on H2 (~10
9
 

cells/ml) is about 10 times as much as that when Fe(II) is the electron donor (Figure 4.2 

and Figure 4.4B).  Thermodynamically, this makes sense because the redox potential 

( E0’) of the 2H
+
/H2 redox couple (- 0.41 V) (41) is significantly lower than that of the 

Fe(OH)3/Fe
2+

 redox couple (- 0.11 V), calculated by setting [Fe
2+

] = 1 mM and assuming 

equilibrium constants give by Morel and Hering (47); H2, therefore, is expected to be the 

preferred electron donor, providing more free energy to support bacterial growth. Cells 

grown on H2 alone can immediately oxidize Fe(II), i.e., H2 does not reduce the rate of 

Fe(II) oxidation (data not shown).  Together, these results suggest that the stimulation of 

Fe(II) oxidation in the presence of H2 is due to the stimulation of bacterial growth by H2.  
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Figure 4.4  Growth of TIE-1 chemoheterotrophically in YP medium aerobically in the 

dark (A), photoautotrophically with H2 as the electron donor (B), and 

photoheterotrophically with acetate as the electron donor (C). Doubling time (Td) is 

calculated for each growth condition from the slope of the curve over the exponential 

growth phase.  

 

4.4.5 pH dependence of Fe(II) oxidation  

To determine the optimal pH of Fe(II) oxidation by TIE-1, cells from Fe(II) grown 

cultures were inoculated into Fe(II)-containing medium with H2 in the headspace and the 

pH of the medium was adjusted to values spanning 5.5 to 7.5.  Bacterial growth and 

dissolved Fe(II) were measured after a 5-day incubation.  The pH was measured at the 

end of the experiment, and in each case was within 0.2 units of the initial pH.  

Appreciable Fe(II) oxidation occurred over the entire pH range tested, nevertheless, 

under these conditions, the highest rate of Fe(II) oxidation occurred between pH 6.5 and 

6.9 (Figure 4.5A), similar to the pH measured for other phototrophic Fe(II)-oxidizing 

bacteria (20, 28). In contrast, the amount of bacterial growth (represented by the protein 

content) was maximal and not appreciably different within the pH range 6.5 to 7.5.  This 

suggests that Fe(II) oxidation did not significantly contribute to cell growth in these 

experiments (i.e., cells were growing on H2).  We also observed that the mineral product 



 

 

 

69

of Fe(II) oxidation was pH dependent, with poorly crystalline ferric (hydr)oxide and 

goethite dominating at lower pH and magnetite at pH > 7.2 ± 0.2 (Figure 4.3, Figure 

4.5B).  The same pH trend in iron mineralogy was observed for cultures grown on Fe(II) 

alone (data not shown). 

 

 

 

Figure 4.5   A. pH dependence of phototrophic Fe(II) oxidation in the presence of H2: 

dissolved Fe(II) concentration in the supernatant at the end of the experiment ( ), protein 

content after the incubation ( ). The optimal pH for Fe(II) oxidation occurs from 6.5 to 

6.9. The total amount of Fe(II) oxidized decreases significantly at pH higher than 7.0, 

although the amount of bacterial growth represented by the protein content remains 

constant compared to that at pH 6.8.  B. X-ray diffractograms of the product of Fe(II) 

oxidation by TIE-1 shows goethite and magnetite formation at medium pH of 6.8 and 7.5  

respectively. For comparison, reference diffractograms of goethite and magnetite mineral 

standards are included. 

 

Because the total amount of dissolved Fe(II) remained in excess of 1.5 mM at pH 

 6.9, it seems unlikely that the amount of Fe(II) oxidation measured over this time 

period was limited by soluble Fe(II).  However, the possibility exists that changes in 

concentration of a minor species of Fe(II) might have controlled the rate of Fe(II) 
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oxidation.  Considering this, we used MINEQL+ to calculate the equilibrium 

concentrations of soluble Fe(II) species over this pH range in the context of the 

composition of our medium.  As pH increases from 6.5 to 7.5, MINEQL+ predicts that 

Fe
2+

 is the major Fe(II) species and only decreases by 0.4 mM over this pH range.  Three 

minor Fe(II) species, including Fe(OH)3
-
, Fe(OH)2(aq) and Fe(OH)

+
 increase in 

concentration 1000-, 80- and 10-fold, respectively.  In the discussion, we consider how 

changes in these species’ behavior with increasing pH might affect the overall Fe(II) 

oxidation rate. 

 

4.4.6 Pigment characterization  

The absorption spectrum of whole cells of TIE-1 grown with acetate as the 

electron donor shows three major peaks at 590, 805 and 871 nm similar to that of R. 

palustris CGA009, indicating the presence of bacteriochlorophyll a. The absorption 

spectrum obtained from TIE-1 grown with Fe(II) as the electron donor is similar and 

shows approximately the same peaks of absorbance as cells grown on acetate except that 

the peak at 871 nm is wider for the Fe(II) grow culture (Figure 4.6A). The absorption 

spectra of carotenoid extracts (Figure 4.6B) and thin-layer chromatography separations 

(data not shown) obtained from TIE-1 and CGA009 grown on acetate also look identical. 

The absorption spectra of carotenoid extracts show major peaks overlapping between 400 

and 600 nm, suggesting the presence of carotenoids commonly present in R. palustris 

including spheroidene (450, 482, 514 nm), okenone (521 nm), lycopene and rhodopsin 

(463, 490, 524 nm) (43).  
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Figure 4.6  Pigment analysis:  A. Absorption spectrum of cell suspension of strain TIE-1 

grown with acetate (a) and Fe(II) (b) as the electron donor, and strain CGA009 (c) grown 

with acetate as electron donor under phototrophic conditions. All curves look similar and 

show major absorption peaks at 590, 805 and 871 nm, indicating the presence of 

bacteriochlorophyll a.  B. Absorption spectra of carotenoid extraction from strain TIE-1 

(a) and strain CGA009 (b) grown with acetate as the electron donor show major peaks 

overlapped intensively between 400 and 600 nm, indicating the presence of the normal 

spirilloxanthin series. 

 

4.4.7 Characterization of antibiotic sensitivity  

Growth of ~10
7
 cells on YP solid or liquid medium is inhibited completely by 

chloramphenicol (300 μg/ml), tetracycline (75 μg/ml), kanamycin (100 μg/ml), 

gentamycin (300 μg/ml) and ampicillin (50 μg/ml).  These results indicate that it should 
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be possible to select for the acquisition of these antibiotic resistant markers, which will 

facilitate genetic manipulation.  

 

4.4.8 Transposon mutagenesis and mutant characterization 

We used transposon mutagenesis to identify genes involved in phototrophic Fe(II) 

oxidation in strain TIE-1. The frequency of transposon insertion obtained for TIE-1 is 

~10
-5

 with the mariner transposon. Southern blot analysis of 10 randomly selected 

isolates derived from independent transposition events indicated that the transposon 

integrates as a single event in random locations (data not shown).  

 We performed a limited screen of ~12,000 transposon insertion mutants for 

defects in phototrophic Fe(II) oxidation using a cell suspension assay. Based on the 

assumption that strain TIE-1 has the same number of genes as strain CGA009 and the 

transposition is purely random, this screen is ~88% saturated assuming a Poisson 

distribution (26).  Fourteen mutants were identified as being defective in Fe(II) oxidation: 

eight mutants had general photosynthetic growth defects; the other six were specifically 

defective in Fe(II) oxidation. BLAST analysis performed on DNA sequences flanking the 

mariner insertions revealed that the sequence flanking the transposon has significant 

similarity to sequences from the genome of R. palustris strain CGA009 (38) in all cases.  

 The eight mutants exhibiting general growth defects grew at least 50% less on 

acetate or H2 compared to the wild type (data not shown). Two of these mutants were 

disrupted in genes that are homologs of bchZ and bchX, known to encode proteins 

involved in bacteriochlorophyll synthesis (8).  It is not surprising that our screen picked 
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up components of the general photosynthetic electron transport system given the large 

variance in cell density in the step prior to the cell suspension assay.  Two mutants, 

however, were identified that are specifically defective in Fe(II) oxidation: 76H3 and A2. 

76H3 is a representative of 5 mutants that have transposon insertions at different 

locations in the same gene, whereas A2 was only isolated once. Both mutants exhibit 

normal photosynthetic growth in minimal medium with H2 as the electron donor, but their 

ability to oxidize Fe(II) is less than 10% of the wild type (Figure 4.7 A and B). 

Complementation of the disrupted genes indicates that their expression is necessary and 

sufficient to restore nearly wild-type levels of activity, suggesting that Fe(II) oxidation 

defects were not caused by the downstream genes (Figure 4.7 C and D).  
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Figure 4.7  Mutants 76H3 and A2 are specifically defective in Fe(II) oxidation.  A. 

Normal growth of mutant 76H3 and A2 with H2 as the electron donor. Data are 

representative of two independent cultures.  B. Defects in phototrophic Fe(II) oxidation 

for mutants 76H3 and A2 compared to wild type. Growth was stimulated with H2 present 

in the headspace initially.  Data are representative of duplicate cultures.  C. Mutant 76H3 

and A2 carrying plasmids pT198 and pT498 respectively show 80% of Fe(II) oxidation 

compared to the wild type in the cell suspension assay.  D. Organization of the genomic 

regions surrounding the mutated genes in mutants 76H3 and A2.  The black arrows 

indicate the disrupted genes and the transposon insertion sites are marked by the open 

triangles.  The numbers provided below the open reading frames (all arrows) are 

consistent with the numbers given for the identical regions from the CGA009 genome. 
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Because the sequence fragments from TIE-1 flanking the transposon insertions 

were highly similar to sequences from strain CGA009, we designed primers based on the 

CGA009 genome to sequence the regions surrounding the transposon insertions in 76H3 

and A2 (Figure 4.7D).  Both regions contained homologs of genes found in the same 

order in CGA009.   Mutant 76H3 has a transposon insertion in a gene that shares 99% 

identity over the entire gene sequence (791 bp) to gene RPA0198 in R. palustris CGA009 

that encodes a putative integral membrane protein.  BLAST search predicts that the 

protein encoded by this gene shares 100% identity to a possible transport protein in R. 

palustris CGA009, 85% identity to a probable ABC transport permease in 

Bradyrhizobium japonicum, and 60% identity to a hypothetical transmembrane protein 

from Magnetospirillum sp. MS-1.  It is predicted to encode a cytoplasmic-membrane 

protein with 6 internal helices based on sequence analysis with the Psort program 

(http://www.psort.org/).  No known motifs could be identified in this protein by the 

Motifscan program (http://myhits.isb-sib.ch/cgi-bin/motif_scan).  Based on the 

annotation of the CGA009 genome, the upstream genes encode a putative ABC 

transporter permease (RPA0197) and a putative ABC transporter ATP-binding protein 

(RPA0196). The downstream gene (RPA0199) encodes a putative phosphinothricin 

acetyltransferase. 

 Mutant A2 has a transposon insertion in a gene that shares 99% identity over the 

entire gene sequence (995 bp) to gene RPA0498 in R. palustris CGA009 that is annotated 

as a cobS gene. The translated protein sequence is 100% identical to a putative CobS in 

strain CGA009, 93% identical to a putative CobS from Bradyrhizobium japonicum, 80% 
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identical to a well-studied CobS from Pseudomonas denitrificans and 76% and 71% 

identical to MoxR-like ATPases from Rhodospirillum rubrum and Rhodobacter 

sphaeroides, respectively.  Studies of CobS function in P. dentitricians have shown that 

CobS is a cobaltochelatase-a cytoplasmic protein involved in cobalt insertion into 

porphyrin rings (16). MoxR-like ATPases belong to a superfamily of proteins with 

associated ATPase activity (AAA) (30). Not surprisingly, members of the MoxR family 

function as chaperons/chelatases in the assembly of specific metal-containing enzymatic 

complexes.  Based on the annotation of the CGA009 genome, the genes downstream 

appear to encode a N-acetylglutamate synthase and related acetyltransferases (RPA0497), 

a CobT homolog (RPA0496), and a conserved hypothetical protein (RPA0495). 

 

4.5 DISCUSSION 

 We have isolated and characterized a genetically tractable Fe(II)-oxidizing 

bacterium, Rhodopseudomonas palustris strain TIE-1.  Two Fe(II)-oxidizing strains of R. 

palustris have been reported previously (20, 28, 57).  Based strictly on morphological 

characteristics, an Fe(II)-oxidizing R. palustris-like strain was first isolated from an iron-

rich ditch in Germany (20). This isolate did not oxidize iron completely and ceased to 

grow at a grayish green intermediate oxidation state; it was not maintained in culture 

collections (F. Widdel, personal communication).  Although the type strain R. palustris 

DSM123
T
 was found to be incapable of Fe(II) oxidation by Ehrenreich and Widdel (20), 

Heising and Schink claimed it was capable of Fe(II) oxidation (28).  In this study, we 
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tested the Fe(II) oxidation capacity of strain R. palustris CGA009, whose genome has 

been sequenced.  Strain CGA009 is not able to grow photoautotrophically on H2 or 

Fe(II), however, photoheterotrophically-grown cells (using acetate as the electron donor) 

can slowly oxidize Fe(II) in the cell suspension assay at a similar rate to that achieved by 

acetate-grown cell suspensions of strain TIE-1 (unpublished data).  In contrast, strain 

TIE-1 can grow photoautotrophically with H2 and Fe(II), and H2-grown cell suspensions 

readily oxidize Fe(II) at rates much higher than those achieved by acetate-grown cell 

suspensions. 

Rates and products of phototrophic Fe(II) oxidation by TIE-1 are pH dependent. 

The amount of Fe(II) oxidation is significantly less at pH higher than 7.0, compared to 

that oxidized at optimal pH, but this is not due to a growth defect.  Previous 

interpretations of a similar result by Heising and Schink (28) suggested that this might be 

due to the lower solubility of Fe(II) at higher pH (28).  Although our measurements 

indicate that the total amount of dissolved Fe(II) in our system does not appreciably 

decrease as pH increases, more subtle species dynamics may control the bioavailability of 

Fe(II) under these conditions.  The transformation from poorly crystalline ferric 

(hydr)oxides to more crystalline ferric (hydr)oxides is promoted by the adsorption of 

Fe(II) species onto the solid phase (61).  Given that the point of zero charge (pzc) for 

ferric (hydr)oxide likely occurs at the upper end of our pH spectrum (3), we would expect 

cationic Fe(II) species to adsorb to the ferric (hydr)oxides as the pzc is reached and then 

exceeded with increasing pH.  Interestingly, the abiotic oxidation rate of Fe(OH)
+
  in both 

freshwater and seawater has been found to be 10
7
 times greater than that of Fe

2+
 (45).  
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Moreover, Fe(OH)2(aq) is thought to be the most readily oxidized form of Fe(II) over a pH 

range from 6 to 8, and the rate-limiting step for the oxidation of Fe
2+

 under these 

conditions (45).  Assuming Fe(OH)2(aq) or Fe(OH)
+
 is the preferred species taken up or 

bound by TIE-1, the decrease in Fe(II) oxidation measured coincident with magnetite 

formation in our medium could be explained if sorption of these species by ferric 

(hydr)oxides out-competed their sorption/uptake by the cell.  Alternatively, it is possible 

that the decrease in Fe(II) oxidation is due to the inactivation of a biomolecule involved 

in Fe(II) binding, uptake and/or oxidation at high pH. 

 Independent of whether magnetite formation affects the bioavailability of Fe(II), 

it is noteworthy that magnetite formation can be associated with this type of metabolism. 

Previous studies with other Fe(II)-oxidizing phototrophs only found various forms of 

ferric oxides (e.g., goethite and lepidocrocite) to accumulate in the culture medium over 

time; magnetite was never observed (14, 31, 52).  In contrast, magnetite formation 

following an intermediate state of green rust was reported for the nitrate-dependent 

Fe(II)-oxidizing bacterium Dechlorosoma suillum strain PS (9).  Magnetite formation has 

been reported for dissimilatory iron-reducing bacteria (DIRB) with magnetite formed 

through the reduction of ferric oxide (39).  Magnetite formation by TIE-1 is unlikely to 

be formed through the re-reduction of Fe(III), however, based on the evidence that TIE-1 

is unable to reduce Fe(III) citrate with acetate as the electron donor in the dark.  

Considering the differences in the chemistry of the medium used to grow these bacteria, 

the simplest way to account for magnetite formation in some, but not all of these cases, is 

that differences in medium chemistry controlled the amount and speed of Fe(II) 
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adsorption onto ferric (hydr)oxides (61).  Because pH 7.5 is a reasonable pH value for 

ancient seawater (25), it is possible that the primary magnetite found in BIFs may record 

the activity of Fe(II)-oxidizing phototrophs. However, this interpretation does not exclude 

the possibility that magnetite in BIFs may also have been facilitated by DIRB or abiotic 

processes (48). 

To begin to identify genes involved in phototrophic Fe(II) oxidation, we first 

needed to develop an efficient method for generating random chromosomal insertions in 

TIE-1.  Transposon mutagenesis has been shown to work in the Rhodospirillaceae 

family, but with mixed success (18).  For example, transposition by Tn5 derivatives were 

found to transpose in R. capsulatus and R. rubrum with frequencies of 10
-4

 to 10
-5 

(24, 

33), however, for R. palustris strain CGA009 and strain EPT100, Tn5 derivatives were 

either not successful or very inefficient (21).  The fact that the hyperactive mariner 

transposon used in this study transposes randomly and at high frequencies in TIE-1, 

suggests that this type of transposon may be an effective mutagenic tool for other R. 

palustris strains.   

Out of a total of 12,000 mutants screened for their ability to oxidize Fe(II) in the 

cell suspension assay, only six were identified as being specifically defective in Fe(II) 

oxidation, and only two genes were implicated in this process.  It is intriguing that both of 

these genes are also present in R. palustris strain CGA009, although this organism cannot 

grow on Fe(II).  Given that photoheterotrophically-grown cells of CGA009 can oxidize 

Fe(II) in the cell suspension assay comparably to TIE-1 when grown under the same 

conditions, this indicates that Fe(II) oxidation can be decoupled from growth.  However, 
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our cell suspension assay did not decouple Fe(II) oxidation from the photosynthetic 

apparatus, as no Fe(II) oxidation occurred in the dark.  It will be interesting to learn what 

allows TIE-1 but not CGA009 to conserve energy from Fe(II) oxidation for growth.  It is 

possible that essential genes for this process are missing from CGA009, mutated, or not 

expressed.  To resolve this, a screen could be performed to identify TIE-1 mutants that 

are incapable of phototrophic growth on Fe(II), or CGA009 could be complemented for 

growth on Fe(II) through provision of genes from TIE-1 (13). 

 Although much remains to be learned about how TIE-1 oxidizes and grows on 

Fe(II), the two mutants identified in this study provide important new information.  Strain 

A2 contains a disruption in a homologue of a cobalt chelatase (CobS).  Because the 

structures of cobaltochelatases and ferrochelatases (which insert Fe(II) into porphyrin 

rings) are similar, it has been suggested that they have similar enzymatic activities (15, 

50).  While it is possible that the phenotype of A2 might be due to the disruption of an 

enzyme that inserts Fe(II) into a protein or a cofactor that is involved in Fe(II)-oxidation, 

this seems unlikely because cobatochelatases and ferrochelatases are typically different at 

the amino-acid level (15).  We hypothesize, instead, that a protein involved in Fe(II) 

oxidation requires cobalamin as cofactor; if true, this would represent a novel use for 

cobalamin (50).  In contrast, strain 76H3 is disrupted in a gene that appears to encode a 

component of an ABC transport system that is located in the cytoplasmic membrane.  

While a variety of things could be transported by this system, whatever is being 

transported (e.g., the Fe(II) oxidase or a protein required for its assembly) likely resides 

at least momentarily in the periplasm.  This raises the question of where Fe(II) is oxidized 
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in the cell?  Because Fe(II) is known to enter the periplasmic space of gram negative 

bacteria through porins in the outer membrane, it is conceivable that Fe(II) could be 

oxidized in this compartment; alternatively, the Fe(II) oxidase could reside in the 

outermembrane and face the external environment, as has been inferred for Fe(II) 

oxidizing acidophilic bacteria (23, 59).  Determining what catalyzes Fe(II) oxidation and 

where it is localized are the most important next steps in our investigation of the 

molecular basis of phototrophic Fe(II) oxidation.  The isolation of the genetically 

tractable strain TIE-1 will enable these studies. 
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Chapter 5 

The pio Operon Is Essential for Phototrophic Fe(II) 

Oxidation in Rhodopseudomonas palustris TIE-1 

 

5.1 ABSTRACT 

Phototrophic Fe(II) oxidizing bacteria couple the oxidation of ferrous iron [Fe(II)] 

to reductive CO2 fixation using light energy, but until recently, little has been understood 

about the molecular basis for this process.  Using Rhodopseudomonas palustris TIE-1 as 

a model organism, here we report the discovery of a 3-gene operon, designated as the pio 

operon (for phototrophic iron oxidation) that is necessary for phototrophic Fe(II) 

oxidation.  The first gene in the operon, pioA, encodes a c-type cytochrome that is 

upregulated under Fe(II) growth conditions.  PioA contains a signal sequence and shares 

homology with MtrA, a decaheme cytochrome c from Shewanella oneidensis MR-1.  The 

second gene, pioB, encodes a putative outer membrane beta-barrel protein.  PioB is a 

homologue of MtrB from S. oneidensis MR-1.  The third gene, pioC, encodes a putative 

high potential iron sulfur protein (HiPIP) with a Tat signal sequence, and is similar to the 

putative Fe(II) oxidoreductase (Iro) from Acidithiobacillus ferrooxidans.  Like PioA, 

PioB and PioC appear to be secreted proteins.  Deletion of the pio operon results in loss 

of Fe(II) oxidation activity and growth on Fe(II).  Complementation studies confirm that 

the phenotype of this mutant is due to loss of the pio genes.  Deletion of pioA alone 

results in loss of almost all Fe(II) oxidation activity, however, deletion of either pioB or 
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pioC alone results in only a partial loss of Fe(II) oxidation activity.  Together, these 

results suggest that proteins encoded by the pio operon are essential and specific for 

phototrophic Fe(II) oxidation in R. palustris TIE-1. 

 

5.2 INTRODUCTION   

One of the distinguishing features of microbial metabolism is its diversity: over 

billions of years of Earth history, microbes have evolved an impressive array of strategies 

to obtain energy for growth.  The process of photosynthesis, for example, goes well 

beyond the ability to split water and produce oxygen.  Different groups of 

microorganisms carry out “anoxygenic” photosynthesis, using substrates such as 

molecular hydrogen (H2), various sulfur species, small organic molecules, or ferrous iron 

[Fe(II)] as an exogenous electron donor to drive reductive CO2 fixation (6, 8, 12, 17).  If 

we seek to understand the origins of the remarkable metabolic diversity that characterizes 

modern life on Earth, it is important to know how different types of metabolisms operate 

at the molecular level.  This is necessary both to be able to compare the components of 

different metabolisms to each other, and to inform our search for biosignatures unique to 

these metabolisms in the rock record. 

As a step towards this general goal, we have chosen to focus on the process of 

phototrophic Fe(II) oxidation, which can be described by the following equation:  

4Fe
2+

 + CO2 + 11H2O + h  = [CH2O] + 4Fe(OH)3 + 8H
+
 .  

This type of photosynthesis is interesting in the context of metabolic evolution for several 
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reasons.  First, phototrophic Fe(II) oxidation is phylogenetically widespread, appearing in 

purple and green bacteria (10, 14, 21, 22, 65, 66); phylogenic comparisons of genes from 

different photosynthetic organisms suggest that anoxygenic photosynthesis is more 

ancient than oxygenic photosynthesis (57, 72).  Second, iron has an intermediate redox 

potential ( E0
’
= -0.11 V) (28) compared to other substrates used as electron donors in 

photosynthesis (e.g. H2 ( E0
’
= -0.41 V) or H2O ( E0

’
= 0.82 V)) (28, 44).  It has been 

suggested, therefore, that Fe(II)-based photosynthesis may represent a transition form of 

metabolism from anoxygenic to oxygenic photosynthesis (57).  Third, Fe(II) is thought to 

have been the most widespread source of reducing power in the late Archean and early 

Proterozoic (3.8-1.6 billion years ago (Ga)) with an estimated concentration of about 0.1  

to 1 mM in seawater (69); atmospheric oxygen seems to have appeared in significant 

amounts only after 2.4 Ga (15, 26, 30, 60).   

Banded Iron Formations (BIFs), are an ancient class of iron ore deposits that may 

record the story of the evolution of photosynthesis.  Because the use of Fe(II) results in 

the production of ferric iron [Fe(III)] minerals, it has been suggested that Fe(II)-based 

phototrophy might have been responsible for catalyzing BIF deposition early in Earth 

history (14, 34, 71).  Later occurrences of BIFs (e.g., at 1.8 Ga), however, are believed to 

have resulted from Fe(II) oxidation catalyzed by molecular oxygen produced by 

cyanobacteria.  Episodic deposition of BIFs throughout the Precambrian thus may reflect 

a transition from anoxygenic to oxygenic photosynthesis.  How did ancient phototrophs 

evolve from using Fe(II) as an electron donor to using H2O? 

To address this question, we must understand the molecular machinery of 
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phototrophic Fe(II) oxidation.  Discovered in the early 1990’s by Widdel and co-workers 

(71), phototrophic Fe(II) oxidizing bacteria such as Thiodictyon, Rhodobacter, and 

Chlorobium species have been isolated from a wide variety of environments, including 

both freshwater and marine settings (14, 21, 29, 66, 71).  However, very little is 

understood at the molecular level about the mechanism of Fe(II) oxidation in any of these 

organisms.  In the companion paper to this article, we report the discovery of a c-type 

cytochrome and a putative pyrroloquinoline quinone containing enzyme from an Fe(II)-

oxidizing strain-Rhodobacter SW2-that stimulates Fe(II) oxidation activity in its close 

relative, Rhodobacter capsulatus SB1003 (11).  Because our ability to explore the 

mechanistic basis of Fe(II) oxidation in SW2 itself is limited due to the impracticality of 

direct mutational analysis (11),  we established a genetic system in a different Fe(II)-

oxidizing phototroph, Rhodopseudomonas palustris TIE-1 (28).   In this report, we 

describe the identification of the pio operon, a 3-gene operon essential for phototrophic 

growth on Fe(II) by R. palustris TIE-1.   

 

5.3 MATERIAL AND METHODS 

Bacterial strains and plasmids.  Bacterial strains and plasmids used in this study are 

listed in Table 5.1.  R. palustris CGA010, derived from parent strain CGA009 after
 
a 

frame shift in the hupV gene was repaired, was kindly provided
 
by F. Rey and C. S. 

Harwood (University of Washington). 

Media and culture conditions.  For aerobic growth R. palustris strains were grown in 
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YP medium (0.3% yeast extract and 0.3% Bacto Peptone (Difco)) with shaking at 30˚C.  

For anaerobic growth R. palustris strains were grown without shaking at 30˚C in FEM, a 

defined basal medium for phototrophic Fe(II)-oxidizing bacteria (12).  For 

photoheterotrophic growth FEM was supplemented with 10 mM acetate.  For 

photoautotrophic growth electron donors were used such as thiosulfate (10 mM), 

hydrogen (80% atmosphere), and soluble Fe(II).  FEM Medium containing soluble Fe(II) 

was prepared as previously described and the final Fe(II) concentration is in the range of 

4 to 6 mM (28).  Cultures were incubated 20 to 30 cm from a 34 W tungsten, 

incandescent light source at 30°C.  All phototrophic cultures, except those grown on 

hydrogen, were grown in an atmosphere consisting of 80% N2 and 20% CO2.  

Escherichia coli strains were cultured in lysogeny broth (LB) at 37°C.  E. coli WM3064 

was supplemented with 300 μM  diaminopimelic acid (DAP).  Kanamycin and 

gentamicin were used at 100 and 200 μg/ml for R. palustris and 50 and 20 μg/ml for E. 

coli, respectively.  
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Table 5.1  Bacterial strains and plasmids. 
Strain or plasmid Genotype or markers, characteristics 

a 
Source or reference 

E. coli stains   

WM3064 Donor strain for conjugation: thrB1004 pro thi rpsL 
hsdS lacZ M15 RP4–1360  (araBAD)567 

dapA1341::[erm pir(wt)] 

W. Metcalf, Univ. of 

Illinois, Urbana 

UQ950 E. coli DH5   (pir) host for cloning; F- (argF-

lac)169  80dlacZ58( M15) glnV44(AS) rfbD1 

gyrA96(NalR) recA1 endA1 spoT1 thi-1 hsdR17 
deoR pir+ 

D. Lies, Caltech 

 

S17-1 thi pro hdsR hdsM
+
 recA; chromosomal insertion of 

RP4-2 (Tc::Mu Km::Tn7) 

(63) 

   

R. palustris 

stains 

  

TIE-1 Isolated from Woods Hole, MA (28) 

CGA009 Wild type (ATCC BAA-98) (32) 

CGA010 hupV
+
 derivative of CGA009 F. Rey & C. S. Harwood, 

University of 

Washington 

TIE-3 R. palustris str. TIE-1, pioABC This study 

pioA R. palustris str. TIE-1, pioA This study 

pioB R. palustris str. TIE-1, pioB This study 

pioC R. palustris str. TIE-1, pioC This study 

   

Plasmids   

pJQ200SK Mobilizable suicide vector; sacB Gm
r
 (59) 

pYQABC 2-kb fusion PCR fragment containing pioABC 

cloned into the Spe I site of pJQ200sk; used to make 
the TIE-3 pioABC strain. 

This study 

pYQA 2-kb fusion PCR fragment containing pioA cloned 

into the Spe I site of pJQ200sk; used to make 
the TIE-4 pioA strain. 

This study 

pYQB 2-kb fusion PCR fragment containing pioB cloned 

into the Spe I site of pJQ200sk; used to make 
the TIE-5 pioB strain. 

This study 

pYQC 2-kb fusion PCR fragment containing pioC cloned 

into the Spe I site of pJQ200sk; used to make 
the TIE-6 pioA strain. 

This study 

pBBR1MCS-2 5.1-kb broad-host range plasmid: Km
r
, lacZ (31) 

pYQ01 PCR fragment, including pioABC, generated using 

primers cyc-start and FeS-end cloned into the 

Hind III and Spe I sites of pBBR1MCS-2 

This study 

pYQ02 PCR fragment, including pioA, generated using 

primers  cyc-start and cyc-end, cloned into the 

Hind III and Spe I sites of pBBR1MCS-2 

This study 

pYQ03 PCR fragment, including pioB, generated using 

primers MtrB-start and MtrB-end, cloned into the 

Hind III and Spe I sites of pBBR1MCS-2 

This study 

pYQ04 PCR fragment, including pioC, generated using 

primers FeS-start and FeS-end, cloned into the 

Hind III and Spe I sites of pBBR1MCS-2 

This study 

a
  Km, kanamycin; Gm, gentamicin. 
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Cell suspension assay.  All cell suspension assays were conducted at room temperature 

in an anaerobic chamber containing an atmosphere of 80% N2, 15% CO2 and 5% H2 (12, 

28).  Fe(II) cultures used for this assay contained 10 mM nitrilotriacetic acid (NTA) to 

prevent ferric iron precipitation.  NTA alone does not support phototrophic growth of R. 

palustris (data not shown).  Cells were pre-grown in the medium indicated until mid-

exponential phase to an OD 660 nm of ~ 0.3 measured by 96-well plate reader (Synergy 

HT, Bio-Tek, Winooski, VT) with a volume of 200 μl.  Cells were harvested by 

centrifugation (10,000 x g for 15 min) and washed in the same volume of HEPES buffer 

(50 mM N-2-hydroxyethylpiperazine-N`-2-ethanesulfonic acid with 20 mM NaCl, 

pH 7.0).   To start the assay, cells were resuspended in HEPES buffer containing 20 mM 

NaHCO3 and either 400 μM or 1 mM (as indicated in Figure 5.1) of FeCl2.  Cells were 

concentrated approximately 3 times compared to the original growth culture and 100 μl 

of the cell suspension was aliquoted into a 96-well plate.  The OD reading is about 0.7 

measured by the 96-well plate reader.  The plates were incubated at room temperature in 

the glove box under a 40 W tungsten light with light intensity of about 3000 lux.  Over 

time 100 μl ferrozine solution (1 g of ferrozine plus 500 g of ammonia acetate in 1 L of 

ddH2O) was added to the wells to monitor Fe(II) levels (64).  The rate of Fe(II) oxidation 

was calculated based on the linear portion of the curves generated.   

 

Extract preparation, SDS_PAGE analysis and heme staining.  R. palustris TIE-1 was 

grown on either H2, thiosulfate or Fe(II) plus NTA until mid-exponential phase and  cells 

were harvested  by centrifugation at 10, 000 g for 15 min.  Cell pellets were resuspended 
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and washed 3 times in the same volume of HEPES buffer and resuspended in the same 

buffer containing Protease inhibitor cocktail (Roche) and 50 μM DNase (Roche) and 

incubated at 4 °C for 30 min.  Cells were disrupted by French press (3 passes at 18,000 

psi) and the cell lysate was clarified by centrifugation at 10,000 g for 15 min at 4 °C.  The 

resulting supernatant was centrifuged at 200,000 g for 120 min at 4°C.  The supernatant 

was defined as the soluble fraction and the pellet, which was resuspended in HEPES 

buffer, was defined as the membrane fraction.  Protein concentrations were determined 

by the Bradford assay (7).  SDS-PAGE was preformed by standard procedures according 

to Laemmli (38).  Soluble and membrane fractions were incubated in loading buffer 

containing dithiothreitol at room temperature for 10 minutes without heating, and 

separated on a 12% Tris/HCl pre-cast gel (Bio-Rad).  Coomassie staining was performed 

using BioRad standard staining protocol as described by the manufacturer.  Gels stained 

for heme-containing proteins were performed according to the in-gel peroxidase activity 

assay as described (16).  
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Table 5.2  Sequence of the oligonucleotides  

 
Oligonucleo

tide 

Length 

(bp) 

Sequence (5’-3’) 

pioA1 28 GGACTAGTCCGACATCGTACTCAACGAC 

pioA1p 41 TATTTAAATTTAGTGGATGGGTACGAACAGCGACGAGATCC 

pioA2 28 GGACTAGTAGTATTGGCCGCTGAGTTTG 

pioA2p 42 CCCATCCACTAAATTTAAATATGCCAGAATTGTCACAACAAC 

pioB1 28 GGACTAGTGTTACTTCGTCGGCTCCAAG 

pioB1p 41 TATTTAAATTTAGTGGATGGGTACGGTCACCACGGAGATTG 

pioB2 28 GGACTAGTTCGACGACGAAGGCTTCTAT 

pioB2P 41 CCCATCCACTAAATTTAAATAGCGCAGTACTTCCAGGTCTC 

pioC1 28 GGACTAGTAACGCCGCTACGACAATTAC 

pioC1p 40 TATTTAAATTTAGTGGATGGGGTCGTTGCGTTTGTCGTTC 

pioC2 28 GGACTAGTTCAGTTCATGTGCCAGCATC 

pioC2p 39 CCCATCCACTAAATTTAAATAAGCCCGATCAGCGAGAAC 

pioA-start 28 GGAAGCTTCCGACATCGTACTCAACGAC 

pioA-end 28 GGACTAGTGAGTCGTTCCATCACCCTTC 

pioB-start 26 AAGCTTGAACGCTTGCCAGAATTGTC 

pioB-end 26 ACTAGTGTCTGTCGTCCTCCCATTGT 

pioC-start 28 GGAAGCTTCAGCCAACGTCAACAACAAT 

pioC-end 28 GGACTAGTGCAGATGACGTGATCAAAGC 

RT-pioA-L1 20 TCAACGACACCTGCTACACC 

RT-pioB-R1 20 TTACGGTCACCACGGAGATT 

RT-pioB-L1 20 GCGCAGTACTTCCAGGTCTC 

RT-pioC-R1 19 GTCGTTGCGTTTGTCGTTC 

RT-pioAL 20 AGG TGA TGG ACA CCT GCT TC 

RT-pioAR 20 ACG CAG GTG ATT TTC GTT TC 

RT-pioBL 20 GCCTGAAGAAGAGCAACACC 

RT-pioBR 20 GCATAGCCGAGCTTGAAATC 

RT-pioCL 19 GAACGACAAACGCAACGAC 

RT-pioCR 19 AGGCCTTCTTGGTGACCTG 

The linker region in the primers for crossover PCR are in bold and the restriction sites are underlined. 

 

RT-PCR.  R. palustris TIE-1 was grown photoautotrophically on Fe(II) plus NTA until 

exponential phase.  Total RNA was extracted as described previously (56).  Briefly, cells 

were harvested and resuspended in 1 ml TE buffer (10 mM Tris/HCl, 1 mM EDTA, pH 

8.0).  Cells were disrupted using a Mini-BeadBeater-8 (BioSpec Products, Bartlesville) in 

2 ml screw-capped tubes containing approximately 1 ml 0.1 mm zirconia/silica beads 

(BioSpec) for 1 min periods, with cooling on ice after each period with a total of 4 min.  

RNA extraction was then carried out using Qiagen RNA extraction kit.  DNase digestion 
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was performed on the Mini-column with the Qiagen RNase-free DNase set.  The RNA 

was eluted from the column, and a second DNase treatment was performed with Roche 

RNase-Free DNase.  The RNA was finally resuspended in 40 l nuclease-free water.  

cDNA was synthesized using BioRad iScript cDNA Synthesis Kit.  Control PCR using 

RNA as template in the absence of reverse transcriptase confirmed that the isolated RNA 

was free of contaminating genomic DNA.  Primers used for all RT-PCR reactions are 

listed in Table 5.2.  To test if pioABC are cotranscribed, primers RT-pioA-L1 and RT-

pioB-R1 were used to detect the presence of transcript pioAB and primers RT-pioB-L1 

and RT-pioC-R1 were used to detect transcript pioBC.  To test the transcription of pio 

genes in the mutant background pioA, pioB or pioC, RT-pioAL and RT-pioAR was 

used to detect pioA, RT-pioBL and RT-pioBR for pioB and RT-pioCL and RT-pioCR for 

pioC. 

 

Cloning, DNA manipulations, and mutant construction.  Standard protocols were 

used for DNA cloning and transformation (28).  Plasmids were purified on QIAprep spin 

columns (Qiagen, Chatsworth, CA).  R. palustris TIE-1 chromosomal DNA was isolated 

using DNeasy kit (Qiagen).  DNA was extracted from agarose gels using the Qiaquick 

gel extraction kit (Qiagen), and plasmid DNA was purified with the Qiaprep spin 

miniprep kit (Qiagen).  DNA was sequenced at the Laragen DNA sequencing center 

(http://www.laragen.com/services.htm) by standard automated-sequencing technology. 
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Construction of deletion mutant.  All primer sequences used in construction of the 

mutants are listed in Table 5.2.  For construction of pio operon deletion mutant TIE-3, a 1 

kb DNA fragment upstream of pioA was produced by PCR with primers pioA1 and 

pioA1p using TIE-1 genomic DNA as template.  Similarly, a 1 kb PCR fragment 

downstream of pioC was generated with primers pioC2 and pioC2p.  The PCR products 

were used as templates for another round of fusion PCR with primers pioA1 and pioC2.  

The resulting 2 kb fusion PCR product was gel purified and restriction digested using 

restriction enzyme Spe I, and cloned into the suicide vector pJQ200sk (59) to generate 

pYQABC.  pYQABC was mobilized into TIE-1 by conjugation from E. coli S17-1 (13).  

Selection of single recombinants on PM plates containing 400 μg/ml of gentamicin 

followed by selection of double recombinants on PM sucrose (10%) plates were 

conducted as described (13).  Individual gene deletion mutant pioA and pioB and 

pioC were made in a similar manner via suicide plasmids pYQA, pYQB and pYQC, 

respectively.  Primers used for generating pYQA are pioA1, pioA1p, pioA2 and pioA2p, 

for pYQB are pioB1, pioB1p, pioB2 and pioB2p, for pYQC are pioC1, pioC1p, pioC2 

and pioC2p.  PCR was used to verify that the expected deletion had occurred.  

 

Generation of complementing plasmids.  The pioABC operon and the individual pio 

genes were amplified from genomic DNA of TIE-1 using the FailSafe PCR kit 

(Epicentre, WI).  The PCR products were designed to have EcoR I and Hind III 

restriction sites, and were ligated in trans into vector pBBRMCS-2 (35, 36) digested with 

the same enzymes. The resulting plasmids were conjugated into R. palustris strains 
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indicated (28).  The pioABC operon was amplified with primers pioA-start and pioC-end 

(pYQ01), pioA gene with primers pioA-start and pioA-end (pYQ02), pioB gene with 

primers pioB-start and pioB-end (pYQ03), pioC gene with primers pioC-start and pioC-

end (pYQ04). 

 

5.4 RESULTS  

5.4.1 Identification of an Fe(II)-oxidation specific c-type cytochrome  

With the goal of identifying proteins that are expressed when TIE-1 grows on 

Fe(II), we compared the Fe(II)-oxidation activity of cell suspensions that had been pre-

grown photoautotrophically on different electron donors including H2, thiosulfate and 

Fe(II).  Cells were collected and resuspended in buffer containing Fe(II), and Fe(II) 

oxidation was followed by the ferrozine assay.  When 1 mM initial Fe(II) was provided, 

approximately 0.8 mM of Fe(II) was oxidized within the first half hour with Fe(II)-grown 

cells, whereas only 0.2 mM of Fe(II) was oxidized with H2- or thiosulfate-grown cells 

(Figure 5.1).  Compared to the H2- or thiosulfate-grown cells, Fe(II)-grown cells showed 

a 4-5 fold higher rate of Fe(II) oxidation activity, suggesting that specific proteins were 

induced under Fe(II)-grown conditions.  Given these results, we assayed for differential 

protein expression with cells grown on Fe(II) compared to other electron donors.  Crude 

cell extracts from cells grown on H2, thiosulfate or Fe(II) were separated by SDS-PAGE. 

Although no significant differences were detected visually by coomassie staining (data 

not shown), a difference in expression of c-type cytochromes was observed by heme 
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staining.  Accordingly, we characterized the expression profile of c-type cytochromes 

from soluble and membrane fractions of cells grown on Fe(II), H2 and thiosulfate (Figure 

5.2).  A unique c-type cytochrome (~40 kDa) appeared in significant quantity in the 

soluble fraction only when cells were grown on Fe(II).  Protein identification by mass 

spectrometry indicated that peptide fragments of this protein match those of a putative 

decaheme c-type cytochrome from Rhodopseudomonas palustris CGA009 (encoded by 

gene RPA0746) (39). 

 

 

 

Figure 5.1  Fe(II) oxidation activity of R. palustris TIE-1 tested by a cell suspension 

assay with cells pre-grown phototrophically with Fe(II), H2 or thiosulfate as the electron 

donor. Approximately 5x10
9
 cells/ml were used in the cell suspension assay.  Compared 

to the H2- or thiosulfate-grown cells, Fe(II)-grown cells showed a 4 to 5 fold higher rate 

of Fe(II) oxidation activity,  suggesting that specific proteins were induced under Fe(II)-

grown conditions. 
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Figure 5.2  Heme staining of crude cell extract, soluble and membrane proteins of TIE-1 

grown on Fe(II), H2, and thiosulfate, separated by SDS-PAGE.  A c-type cytochrome 

(~40 kDa) indicated by the black arrow is highly expressed in the soluble fraction of 

Fe(II)-grown cells.  Approximately 100 mg of protein was loaded per lane.  The dark 

diagonal line in the “soluble fraction thio” lane is a tear in the gel. 

 

 

5.4.2 Identification and sequence analysis of pio genes 

By designing primers based on the CGA009 genome, we were able to sequence a 

5.7 kb region from TIE-1 that includes the decaheme c-type cytochrome open reading 

frame (ORF) as well as two downstream ORFs (Figure 5.3).  We designate these genes 

pioA, pioB and pioC, where pio stands for phototrophic iron oxidation.  The DNA 

sequence of pioA, pioB and pioC was deposited in the Genbank database under the 

accession numbers EF119739 , EF119740 and EF119741, respectively.  The deduced 

protein sequences of pioA, pioB and pioC are about 98%, 97% and 100% identical to 

those of RPA0746, RPA0745 and RPA0744, respectively, indicating high sequence 

similarity between TIE-1 and CGA009 over this region, consistent with the highly 
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conserved sequences previously identified between these two strains (28).  To test the 

hypothesis that genes pioABC form an operon, we carried out RT-PCR experiments using 

primers designed to amplify the intergenic regions.  RT-PCR products were obtained for 

both intergenic regions in the cluster (Figure 5.3).  No product was obtained in controls to 

which reverse transcriptase or template was omitted.  These results show that pioABC are 

co-transcribed.  An intergenic region of about 700 bp is present upstream of pioA, 

proceeded by an ORF encoding a protein homologous to a subunit of the putative sulfate 

ABC transporter CysA from E. coli K-12 (27).  The ORF downstream of pioC transcribes 

in the opposite direction relative to the pio operon.  Because of the presence of the large 

intergenic region upstream of the pio operon, as well as the opposite direction of 

transcription for the downstream ORF, it seems likely that the pio operon functions 

independently of the adjacent genes. 

 

 

Figure 5.3  Organization of the pio genes on the R. palustris TIE-1 chromosome. Arrows 

indicate the direction of transcription.  The gene numbers corresponding to these genes in 

R. palustris CGA009 are given.  The small black arrows A, B, C and D indicate the 

locations of primers used for RT-PCR experiments.  PCR products were obtained for 

both of the regions between the pio genes, indicating they constitute an operon: RT 

reactions (lane 1 and 5), control with no reverse transcriptase added to cDNA (lane 2 and 

6), TIE-1 genomic DNA control (lane 3 and 7), and no template control (lane 4 and 8).  
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The deduced amino acid sequence of pioA consists of 540 amino acids with a 

putative signal sequence characteristic of secreted proteins through the Sec pathway; a 

cleavage site is predicted between residue 40 and 41, according to SignalP 

(http://www.cbs.dtu.dk/services/SignalP/).  Lack of hydrophobic regions within PioA, 

with the exception of the signal sequence, as well as the observation that PioA is in the 

soluble fraction (Figure 5.2), suggest that PioA is likely to be a periplasmic protein.  PioA 

contains 10 putative heme-binding sites (CXXCH) characteristic of c-type cytochromes.  

Comparison of PioA to sequences in the NCBI database 

(http://www.ncbi.nlm.nih.gov/blast/) reveals that it is similar to several decaheme c-type 

cytochromes in Shewanella, Vibrio and Geobacter species (4, 40-43, 48, 51-54).  In 

particular, it has 40% identity and 55% similarity over 285 amino acids to MtrA from 

Shewanella oneidensis MR-1, which is involved in metal (e.g., Fe(III) and Mn(IV)) 

reduction (5, 49, 50, 58), and this similarity is mostly due to the highly conserved nature 

of the heme-binding sites that are present close to the C-terminal end of PioA.  However, 

approximately 270 amino acids close to the N-terminus of PioA have no homolog in the 

database.  No significant similarity was found when comparing PioA to other proteins in 

the database. 

 The second ORF, pioB, is 99 nucleotides downstream of pioA.  pioB encodes a 

protein of 810 amino acids and contains a putative signal peptide with a predicted 

cleavage site between residue 25 and 26 based on the SingalP program, suggesting it is 

also secreted through the Sec pathway.  It has a putative porin motif close to the C-

terminus according to InterProScan (http://www.ebi.ac.uk/InterProScan/) and is predicted 
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to be an outer membrane -barrel protein according to Transmembrane Barrel Hunt (20) 

and PRED-TMBB programs (3).  Comparison of PioB to sequences in the databases 

reveals similarities to several outer membrane proteins from Shewanella and Geobacter 

species.  In particular, it has 21% identity and 38% similarity over 536 amino acids close 

to the c-terminus of an outer membrane protein MtrB from Shewanella oneidensis MR-1, 

which is involved in metal (e.g., Fe(III) and Mn(IV)) reduction (4, 51).  However, 

approximately 120 amino acids at the N-terminus show no homology to anything in the 

database.  According to the secondary structure predicted by PRED-TMBB (3), both 

PioB and MtrB are outer membrane porins with 28 transmembrane beta-strands, the 

largest number of beta-strands among all known outer membrane porins (9, 33, 62). 

Similar to other outer membrane porins, PioB and MtrB are predicted to have long loops 

protruding into the extracellular space and short turns on the periplasmic side, except that 

PioB has longer extracellular loops compared to MtrB, consistent with the sequence 

length difference between the two proteins.  The conserved regions between PioB and 

MtrB mainly occur in the transmembrane regions, consistent with the idea that these 

regions are generally more conserved than the loop regions among outer membrane 

porins (62).  

The third ORF, pioC, is 140 nucleotides downstream of pioB.  pioC encodes a 

putative high potential iron-sulfur protein (HiPIP) that contains an iron-sulfur binding 

site. The deduced amino acid sequence of pioC consists of 94 amino acids with a 

predicted twin-arginine translocation (Tat) signal sequence at the N-terminus, suggesting 

export into the periplasm through the Tat protein translocation pathway.  A signal 
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sequence cleavage site was predicted between residues 37 and 38 based on the SignalP 

program.  Because there is no transmembrane region other than the signal peptide 

predicted by HMMTOP (http://www.enzim.hu/hmmtop/html/submit.html), we predict 

PioC resides in the periplasm.  Comparison of PioC to sequences in the database reveals 

similarities to HiPIPs from several bacteria, with most of the similarity occurring over 

approximately 50 amino acid residues close to the C-terminus spanning the iron-sulfur 

cluster binding site.  PioC is 47% identical and 52% similar over 48 amino acids to a 

HiPIP from Rhodopila globiformis (1), is 32% identical to a hypothetical protein encoded 

by gene RPA3566 from R. palustris CGA009, and is 44% identical and 53% similar over 

51 amino acids to a HiPIP from Acidithiobacillus ferrooxidans, a putative iron 

oxidoreductase known as the “Iro” protein (19, 37). 

 

5.4.3 pioABC are specifically required for phototrophic Fe(II) oxidation  

To determine whether the pio operon is necessary for growth on Fe(II), we 

constructed a mutant (TIE-3) in which all 3 genes in the pio operon were deleted from the 

chromosome by homologous recombination.  We tested the ability of mutant TIE-3 to 

grow on different substrates.  When Fe(II) was provided as the electron donor for 

photoautotrophic growth, very little Fe(II) was oxidized by strain TIE-3 in a period of 2 

weeks (Figure 5.4A).  In contrast, wild type strain TIE-1 oxidized Fe(II) to completion 

within this time period.  End point measurements of total protein content in the cultures 

indicated that TIE-3 did not grow over the course of incubation in contrast to TIE-1 

(Figure 5.4A).  To determine if TIE-3 was specifically defective for growth on Fe(II), we 
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tested growth on substrates other than Fe(II).  Photoautotrophic growth of TIE-3 on H2 or 

thiosulfate and photoheterotrophic growth on acetate were tested by measuring cell OD.  

TIE-3 grew on these substrates as well as TIE-1 (Table 5.3). These results indicate that 

the pioABC operon is essential and specific for growth on Fe(II).  

 

 

 

 

Figure 5.4  A. Defect in growth and phototrophic Fe(II) oxidation in the pio operon 

deletion mutant TIE-3.  Data are representative of triplicate cultures.  Whereas TIE-1 

oxidized Fe(II) to completion in a period of 2 weeks, very little Fe(II) was oxidized by 

TIE-3.  End point measurements of total protein content in these cultures revealed that 

TIE-3 did not grow during the course of incubation, in contrast to TIE-1.  B. TIE-3 is 

defective in Fe(II) oxidation activity measured by the cell suspension assay compared to 

TIE-1. Complementation with the pio operon on a plasmid (pYQ01) restored TIE-3’s 

Fe(II) oxidation activity to about 50% of that of TIE-1, whereas a vector control 

(pBBRMCS-2) had no effect (data not shown).  
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Table 5.3  Comparison of doubling time of R. palustris TIE-1 and TIE-3 grown on 

different substrates. 

 
Substrates TIE-1 (hours) TIE-3 (hours) 

Fe(II) 80±10 - 

H2 40±5 36±7 

Thiosulfate 55±7 57±6 

Acetate 8±2 8±3 

“-” means no growth observed. 
 

To further characterize the pioABC operon deletion mutant, with respect to its 

Fe(II) oxidation phenotype, we performed a cell suspension assay.  In this assay, H2 

grown cells of wide type and mutant TIE-3 were washed then incubated with Fe(II) under 

light in the anaerobic chamber.  Fe(II) oxidation activity was followed using ferrozine 

assay.  The Fe(II) oxidation activity we observed was light dependent (Figure 5.4B).  

Over a period of several hours for the equivalent density of H2 grown cells, 400 μM of 

Fe(II) was oxidized to completion by TIE-1, but very little Fe(II) was oxidized by TIE-3.  

This indicates that the pio operon is responsible for almost all the Fe(II) oxidation activity 

in H2-grown TIE-1.  Considering the initial rate of Fe(II) oxidation, the activity of TIE-3 

could be restored to about 50% of the wide type level by complementation with the entire 

pio operon (Figure 5.4B); the total amount of Fe(II) that was oxidized over a period of 9 

hours  was the same between wide type TIE-1 and the complemented strain.  The vector 

alone did not affect Fe(II) oxidation by TIE-3 or TIE-1 (data not shown).  However, 

complementation with each individual gene (pioA, pioB, or pioC), did not restore any 

Fe(II) oxidation activity (data not shown).  This suggests that more than one gene in the 

pio operon is necessary for this activity.   

Because the pio operon is so highly conserved between strain CGA009 and TIE-
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1, we checked whether the pio operon also confers Fe(II) oxidation to CGA009. Deletion 

of the genes corresponding to pioABC (i.e., RPA0746, RPA0745 and RPA0744) in 

CGA009 resulted in a large defect in Fe(II) oxidation activity (data not shown), similar to 

that observed in TIE-1.  Strain CGA009 shows a similar amount of Fe(II) oxidation 

activity in the cell suspension assay as H2-grown TIE-1.  However, it does not show 

measurable growth over the same time period as TIE-1, therefore, we chose to work with 

strain TIE-1 for further analysis 

 

 

 

Figure 5.5  Growth on Fe(II) by individual pio deletion mutants ( pioA, pioB, and 

pioC) when Fe(II) is provided as the sole electron donor.  Data are representative of 

triplicate cultures.  Whereas the wild type (TIE-1) oxidized Fe(II) to completion in a 

period of 3 weeks, very little Fe(II) was oxidized by each mutant.  No growth occurred 

for any of these mutants based on measurement of protein content (data not shown). 

 

 

 

To access the relative importance of the individual pio genes for Fe(II) oxidation, 

we constructed three individual deletion mutants, pioA, pioB, and pioC.  We 

confirmed that the mutations were nonpolar by RT-PCR (data not shown) using primers 
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listed in Table 5.2.  Neither growth nor Fe(II) oxidation occurred for any of these mutants 

during growth assay on Fe(II) (Figure 5.5); growth of these mutants on other substrates 

such as H2, thiosulfate or acetate was unaffected (data not shown).  In contrast, pioA lost 

almost all Fe(II) oxidation activity in the cell suspension assay with H2-grown cells, 

similar to TIE-3, whereas pioB and pioC only partially lost Fe(II) oxidation activity, 

exhibiting approximately 10% and 40% of the initial rate of Fe(II) oxidation of wild type 

level (Figure 5.6A).  The partial defect in Fe(II) oxidation by pioC may be explained by 

functional substitution of other small soluble electron carriers in the cell (e.g., the other 

HiPIP encoded by the homolog of RPA3566).  Complementation by the respective wild-

type copies of the genes restored Fe(II) oxidation activity to different extents in the 

mutants.  In comparing the total amount of Fe(II) oxidized after 12 hours, 

complementation of pioA, pioB and pioC  resulted in 85%, 60% and 99% of that 

achieved by TIE-1 in the same amount of time (Figure 5.6B).  The reason for the 

relatively low extent of complementation for pioB compared to TIE-1 is not clear.  

Perhaps it is caused by different levels of expression of pioB when expressed on a vector 

driven by a non-native promoter versus when expressed from the endogenous promoter.  

Together, these results indicate that all 3 Pio proteins are required for full Fe(II) oxidation 

activity in R. palustris TIE-1.  
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Figure 5.6  A. Fe(II) oxidation activity by individual pio deletion mutants ( pioA, pioB, 

and pioC) in the cell suspension assay.  pioA lost nearly all Fe(II) oxidation activity, 

similar to the pio operon deletion mutant TIE-3.  pioB and pioC mutant showed 

approximately 10% and 40% of the activity compared to TIE-1 (as measured by 

calculating the rate of Fe(II) oxidation for the linear portion of the curve).  Data represent 

the mean ± standard deviations of 3 independent cultures.  B. Complementation by the 

respective wild-type copies of the pio genes restored Fe(II) oxidation activity to different 

extents in the mutants.  In comparing the total amount of Fe(II) oxidized after 12 hours, 

complementation of pioA, pioB and pioC  resulted in 85%, 60% and 99% of that 

achieved by TIE-1 in the same amount of time.  

 

5.5 DISCUSSION 

Iron is thought to have been an important substrate for microbial metabolism on 

the early Earth, including ancient types of photosynthesis.  Although the molecular basis 

of Fe(II) oxidation by acidophilic bacteria has been studied for decades (67, 68, 74, 75, 

77), it is only very recently that Fe(II) oxidation has been examined in anoxygenic 

phototrophs (11, 28).   Because photoautotrophic Fe(II) oxidation is likely to have been 

one of the most ancient forms of microbial Fe(II) oxidation (12), understanding the 

molecular basis of this metabolism is not only relevant for understanding the evolution of 
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photosynthesis, but for understanding the evolution of other Fe(II) oxidizing systems.   

C-type cytochromes with a wide range of redox potentials are involved in Fe(II) 

oxidation by A. ferrooxidans (2, 68, 76, 77) and Rhodobacter sp. SW2 (11) as well as 

dissimilatory Fe(III) reduction by Shewanella and Geobacter species (4, 40, 42, 43, 73).  

Consistent with this, we found a c-type cytochrome to be upregulated when R. palustris 

TIE-1 was grown photoautotrophically on Fe(II).  By reverse genetic analysis, we 

identified a 3-gene operon (the pio operon) that seems likely to encode the phototrophic 

Fe(II) oxidoreductase complex.  Detailed biochemical studies are needed to confirm this 

and understand the mechanism of electron transfer from Fe(II), however, based on the 

results of this study, we can suggest potential functions for the Pio proteins.  

The first gene in the pio operon encodes PioA, a putative decaheme c-type 

cytochrome.  Because the pioA mutant lost almost all its Fe(II) oxidation activity, 

similar to the pio operon deletion mutant TIE-3, this suggests that PioA plays an essential 

role during Fe(II) oxidation.  We postulate that it receives electrons directly from Fe(II), 

serving as the Fe(II) oxidoreductase.  This function would be analogous to that of c-type 

cytochromes in S. oneidensis and in A. ferrooxidans (2, 54) that serve as direct electron 

donors to Fe(III) and direct electron acceptors from Fe(II), respectively.  Although 

confirmation of protein localization is necessary, sequence analyses suggest that PioA is 

a soluble protein that resides in the periplasm. 

 The second gene in the operon encodes PioB, a putative outer membrane beta barrel 

protein with no obvious redox active prosthetic groups.  While not as severe as the pioA 

phenotype, deletion of pioB caused a large defect in Fe(II) oxidation, suggesting that 
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PioB also plays an important role in this process. We suggest that it functions as an iron 

transporter, given its similarity to other known outer membrane porins (55, 62) and its 

lack of redox-cofactor binding motifs.  However, at this stage, neither the transport 

direction nor the substrate (e.g., an Fe(II) or Fe(III) complex) of PioB is known.   The 

closest relative of PioB is MtrB from S. oneidensis MR-1, which is involved in 

dissimilatory Fe(III) reduction (4, 48, 51, 52, 54).  It has been suggested that MtrB helps 

localize the Fe(III) reductase complex in S. oneidensis MR-1 to the outside of the cell 

(51).  By analogy, it is also possible that PioB may assist in the localization of other 

proteins involved in Fe(II) oxidation that remain to be identified.  

The third gene in the operon encodes PioC, a putative HiPIP.  Given that PioC is 

required for growth on Fe(II), we suggest that it functions as an electron carrier from 

PioA to the photosynthetic reaction center.   Based on the redox potential of a HiPIP 

(0.345 V) measured from Rhodopseudomonas marina (23, 47), the calculated iron couple 

Fe(OH)3/Fe
2+

 (-1.1V) (28) and the measured reaction center (0.4 to 0.5 V) in purple 

bacteria (57), a HiPIP is a reasonable candidate for this function because its redox 

potential falls between that of the iron couple and the reaction center (RC). Spectroscopic 

and kinetic experiments have shown that HiPIPs can mediate electron transfer to the RC 

directly or via a RC-bound cytochrome in various purple bacteria (24, 25, 45, 46, 61).  In 

this way, HiPIPs can functionally substitute for cytochrome c2, a common electron 

carrier in the periplasm of purple bacteria that shuttles electrons between the cytochrome 

bc1 complex and the RC during cyclic electron flow (47).  In the case of R. palustris 

CGA009, genome annotation predicts the presence of cytochrome c2 (encoded by gene 
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RPA1535) , along with another HiPIP (encoded by gene RPA3566).  The fact that pioC 

does not have a  phototrophic growth defect on H2 suggests that PioC has a function 

specific for Fe(II) phototrophy.  Interestingly, a HiPIP has been demonstrated to serve as 

the electron acceptor for a thiosulfate:tetrathionate oxidoreductase during phototrophic 

growth of Chromatium vinosum on thiosulfate (18).  PioC is also homologous to a HiPIP 

(Iro) found in A. ferrooxidans, an acidophilic Fe(II) oxidizing bacterium that couples 

Fe(II) oxidation to the reduction of oxygen at low pH.  Because of its high redox 

potential, in vitro ability to oxidize Fe(II) and donate electrons to cytochrome c-552, as 

well as its stability under acidic conditions, Iro was proposed to catalyze Fe(II) oxidation 

in A. ferrooxidans (19, 37); whether this applies in vivo has been disputed, however (76, 

77).  Nevertheless, the finding that a HiPIP is involved in Fe(II) oxidation in both R. 

palustris and A. ferroxidans suggests some evolutionary relationship between the two 

Fe(II) oxidation systems.  

In summary, the pio operon appears to encode proteins that are responsible for 

Fe(II) oxidation in R. palustris TIE-1.  Determining their localization will be important 

for gaining insight into how this organism traffics in iron.  Although much is understood 

about Fe(III) acquisition for assimilatory purposes when Fe(II) is limiting (70), R. 

palustris presents an opportunity to understand the opposite problem: how does a cell 

dispose of Fe(III) when it is growing on Fe(II)?  Interestingly, in phototrophic Fe(II) 

oxidizing bacteria, the Fe(III) mineral product appears to be deposited exclusively outside 

the cell (28, 29); this make sense because precipitation of ferric minerals inside the cell 

could be fatal given the highly insoluble nature of Fe(III) at neutral pH.   If our 
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predictions are correct, and the Fe(II) oxidoreductase complex resides in the periplasm, 

how then does the cell avoid this problem?  Are there specific ligands that keep Fe(III) 

soluble?  Or are there protein complexes that bind and transport Fe(III) out of the cell so 

efficiently that internal ferric mineral precipitation is precluded?  We hope that future 

biochemical studies of the Pio proteins and their associated partners will address these 

questions. 
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Chapter 6 

The Fox Operon from Rhodobacter sp. SW2  

Promotes Phototrophic Fe(II) Oxidation in  

Rhodobacter capsulatus SB1003 

 

6.1 ABSTRACT 

Anoxygenic photosynthesis based on Fe(II) is thought to be one of the most 

ancient forms of metabolism and is hypothesized to represent a transition step in the 

evolution of oxygenic photosynthesis.  However, little is known about the molecular 

basis of this process because, until recently (27), most phototrophic Fe(II)-oxidizing 

bacteria have been genetically intractable.  In this study, we circumvent this problem by 

taking a heterologous complementation approach to identify a three-gene operon (the 

foxEYZ operon) from Rhodobacter sp. strain SW2 that confers enhanced light-dependent 

Fe(II) oxidation activity when expressed in its genetically tractable relative, Rhodobacter 

capsulatus SB1003. The first gene in this operon, foxE, encodes a c-type cytochrome 

with no significant similarity to other known proteins.  Expression of foxE alone confers 

significant light-dependent Fe(II) oxidation activity to SB1003, but maximal activity is 

achieved when foxE is expressed with the two downstream genes, foxY and foxZ. In SW2, 

the foxE and foxY genes are co-transcribed in the presence of Fe(II) and/or hydrogen, 

with foxZ being transcribed only in the presence of Fe(II).  Sequence analysis predicts 

that foxY encodes a protein containing the redox cofactor pyrroloquinoline quinone and 
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that foxZ encodes a protein with transport function.  Future biochemical studies will 

permit the localization and function of the Fox proteins in SW2 to be determined. 

 

6.2 INTRODUCTION   

Oxygenic photosynthesis, the biological process by which water is oxidized to 

molecular oxygen (O2) using solar energy with the concomitant fixation of inorganic 

carbon, has had a profound impact on the biology and chemistry of the Earth, however, 

its origin remains enigmatic (7, 21, 31). Lipid biomarker and stratigraphic geochemical 

analyses of stromatolite assemblages may date the existence of the first cyanobacteria to 

~2.7 Ga (9, 11); however, whether this is indeed the case is debatable (12, 18). Recent 

phylogenetic studies using several photosynthesis-related genes suggest that the 

anoxygenic form of photosynthesis evolved before the oxygenic form, with the purple 

photosynthetic group representing the most ancient taxon (53). In addition, the structural 

and biophysical similarities between the reaction centers of purple phototrophs and the 

oxygen evolving reaction center (PSII) of cyanobacteria are hypothesized to reflect a 

common ancestry (41, 43). Thus, it has been proposed that PSII evolved from the 

reaction center of purple bacteria via a series of transitional stages involving reaction 

centers able to accept electrons from compounds such as Fe(II), Mn-bicarbonate clusters 

or H2O2 (5, 8, 19, 40). Fe(II) is thought to have been abundant in the ancient ocean 

making it likely that Fe(II)-oxidizing organisms evolved early on (15, 50). Further, today 

Fe(II) oxidation is performed by phylogenetically diverse organisms including purple and 
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green phototrophic bacteria—a phylogenetic distribution that may reflect the antiquity of 

this form of photosynthesis (14, 15). In this context, understanding the molecular 

mechanisms by which anoxygenic bacteria oxidize Fe(II) phototrophically is of 

evolutionary interest. 

Although first discovered over a decade ago, the majority of Fe(II)-oxidizing 

phototrophs are not currently amenable to genetic analyses and little is known about how 

they oxidize Fe(II) (14, 52). Recent studies of the newly isolated Rhodopseudomonas 

palustris TIE-1, where the ability to generate mutants has been developed, revealed that a 

homolog of a cobalt chelatase and an integral membrane protein that is likely a 

component of an ABC transport system are required for photoautotrophic Fe(II) 

oxidation (26). The roles of these proteins in Fe(II) oxidation by R. palustris TIE-1 

remain unclear, but given their lack of redox cofactor binding motifs, it seems unlikely 

that they are involved directly in the transfer of electrons from Fe(II). In chapter 5, I 

report the discovery of a three gene operon from TIE-1, designated the pio operon; 

deletion of this operon leads to a specific growth defect on Fe(II). One of the genes in this 

operon, pioA, encodes a c-type cytochrome that is predicted to function in the periplasm 

of this strain as the Fe(II) oxidoreductase (Jiao et al, companion paper ref. (27)). Several 

years ago, at least two c-type cytochromes were found have increased expression in 

Rhodomicrobium vannielii strain BS-1 during phototrophic growth on Fe(II), but whether 

these cytochromes were specific to or required for Fe(II) oxidation was not determined 

(25). 
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Beyond serving as an electron donor for photosynthesis, Fe(II) can support the 

growth of both aerobic and anaerobic chemolithoautotrophs (14 and references therein). 

Yet, very little is understood about how Fe(II) oxidation works at the molecular level for 

these organisms either. To date, our deepest understanding of microbial Fe(II) oxidation 

comes from genetic and biochemical studies of Acidithiobacillus ferrooxidans, a 

bacterium that couples Fe(II) oxidation to the reduction of O2 at low pH. Several proteins, 

including the blue copper protein, rusticyanin (13), a high-redox potential Fe-S protein 

(34), an outer membrane porin (37), and several types of cytochromes (4, 36, 48, 54, 55) 

have been implicated in the enzymatic oxidation of Fe(II) by A. ferrooxidans. How these 

proteins work together, however, is uncertain and may differ strain-by-strain (4, 34, 55). 

Nevertheless, in A. ferrooxidans strain ATCC33020, the protein proposed to be the 

primary acceptor for electrons from Fe(II), Cyc2, is a c-type cytochrome.  In A. 

ferrooxidans strain ATCC33020 this cytochrome is known to be localized to the outer 

membrane (4, 55), which stands in contrast to the predicted periplasmic localization of 

PioA in TIE-1 (27). Thus, while knowledge of the mechanism of Fe(II) oxidation by 

aerobic acidophiles can inform our studies of anoxygenic phototrophs, the mechanism of 

Fe(II) oxidation between these organisms is likely to be different given that anoxygenic 

phototrophs oxidize Fe(II) under anaerobic conditions at neutral pH where the ferric iron 

product of this metabolism is a mineral, whereas Acidithiobacillus grows in aerobic 

acidic environments where the ferric iron product is soluble. 

Here, we use a heterologous complementation approach to identify genes 

involved in phototrophic Fe(II) oxidation in the genetically intractable Fe(II)-oxidizing 
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photosynthetic bacterium, Rhodobacter sp. strain SW2.  We identify the foxEYZ operon - 

a three gene operon from SW2 that confers enhanced light-dependent Fe(II) oxidation 

activity to Rhodobacter capsulatus SB1003. 

 

6.3 MATERIAL AND METHODS 

Strains, vectors, and growth conditions.  The bacterial strains, plasmids, and cosmids 

used or constructed in this study are described in Table 6.1. For aerobic growth of 

Rhodobacter capsulatus SB1003 (SB1003), YP medium was used (51). For phototrophic 

growth of SB1003 and Rhodobacter sp. strain SW2 (SW2), a previously described anoxic 

minimal salts medium for freshwater cultures (pH 6.8) was used (20). As substrates for 

phototrophic growth, H2 was provided as a headspace of 80% H2:20% CO2 and acetate 

was added to a final concentration of 10 mM. 

To test SB1003 for its ability to grow phototrophically on insoluble Fe(II) alone 

or in the presence of added co-substrates, this strain was first grown phototrophically on 

H2 and then transferred to fresh phototrophic medium containing the following substrates 

for growth: [1] 9 mM Fe(II)Cl2·H2O; [2] 9 mM Fe(II)Cl2·H2O + 0.1% Yeast Extract; [3] 

9 mM Fe(II)Cl2·H2O + H2.  To test SB1003 for its ability to grow phototrophically on 

Fe(II) under a condition where both the Fe(II) substrate and the Fe(III) product of this 

metabolism remained dissolved, SB1003 was grown phototrophically on H2 and 

transferred to fresh phototrophic medium containing 3-4 mM Fe(II)Cl2·H2O + 5 mM 

NTA.  These concentrations of Fe(II) and NTA were used because higher concentrations 



 

 

 

123

of NTA were toxic to SB1003 and, at this at this concentration of NTA, higher 

concentrations of Fe(II) resulted in Fe(III) mineral precipitation as bacteria Fe(II) 

oxidation progressed.  To test the SB1003 strains carrying the Fe(II) oxidation activity 

conferring cosmids for their ability to grow phototrophically on Fe(II), these strains were 

first grown phototrophically on H2 and then transferred to fresh phototrophic medium 

containing Fe(II)Cl2·H2O as the sole electron donor.  Concentrations of both 4 and 9 mM 

Fe(II)Cl2·H2O were tested for these cosmid carrying stains. In all of these cultures, Fe(II) 

oxidation was used as a proxy for growth and was monitored via the ferrozine assay (46). 
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Table 6.1  Strains, cosmids, and plasmids used in this study. 

 
Strain or plasmid Genotype, markers, characteristics and uses Source and/or reference(s) 

Bacterial Strains 

E. coli WM3064 Donor strain for conjugation; thrB1004 pro 

thi rpsL hsdS lacZ M15 RP4–1360 

(araBAD)567 dapA1341::[erm pir(wt)] 

W. Metcalf (UI-Urbana-

Champaign) 

E. coli DH10  Host for E. coli cloning; F- mcrA (mrr-

hsdRMS-mcrBC) 80dlacZ M15 lacX74 

deoR recA1 endA1 araD139 (ara 

leu)7697 galU galK rpsL nupG (Str
R
) 

Invitrogen (Carlsbad, CA) 

Rhodobacter 

capsulatus SB1003 

rif-10 R. Haselkorn (U. Chicago), (56) 

Rhodobacter sp. strain 

SW2 

Wild type F. Widdel (MPI, Bremen, 

Germany), (20) 

Cosmids and Plasmids 

pLAFR5 21.5 kb broad-host-range cosmid cloning 

vector derivative of pLAFR3, ori RK2 

(Tc
R
, lacZ ) 

(30) 

9E12 Contains SW2 genomic DNA cloned into 

the BamHI site of pLAFR5 that confers 

Fe(II) oxidation activity to SB1003 

This work 

pBBR1MCS5 Gm
R
 derivative of pBBR1 (33) 

pP3-gm1 Contains a ~9.4 kb PstI fragment from 

9E12 in pBBR1MCS5 (Gm
R
) 

This work 

pP3-gm2 Contains a ~9.4 kb PstI fragment from 

9E12 in pBBR1MCS5 (Gm
R
). Insert is 

cloned in the opposite orientation to that of 

pP3-gm1 

This work 

pBBR1MCS2 Kn
R
 derivative of pBBR1 (33) 

pAK20 Derivative of pBBR1MCS2 (Kn
R
). Inserts 

can be expressed from a tac promoter fused 

to GFP 

Komeili, A. (UC-Berkeley), (32) 

pfoxEYZ Contains a 3235 bp PCR product derived 

from 9E12 containing the foxE, foxY and 

foxZ genes cloned into the EcoRI/SpeI sites 

of pAK20 

This work 

pfoxE Contains a 1273 bp PCR product derived 

from 9E12 containing the foxE gene cloned 

into the EcoRI/SpeI sites of pAK20 

This work 

pfoxY Contains a 1351 bp PCR product derived 

from 9E12 containing the foxY gene cloned 

into the EcoRI/SpeI sites of pAK20 

This work 
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pfoxZ Contains a 1290 bp PCR product derived 

from 9E12 containing the foxZ gene cloned 

into the EcoRI/SpeI sites of pAK20 

This work 

 

 

Phototrophically grown cultures of SB1003 and SW2 were incubated under 

continuous illumination ~30 cm from a 34 W incandescent light at 30˚C and 16˚C, 

respectively. Luria-Bertani (LB) medium was used for routine culturing of E. coli strains 

DH10  and WM3064 at 37˚C. 0.2 mM diaminopimelic acid (DAP) was added to permit 

growth of WM3064 cultures. Antibiotic concentrations were as follows: for SB1003, 1 

μg/ml tetracycline (Tc), 5 μg/ml kanamycin (Kn), and 3 μg/ml gentamicin (Gm) were 

used; for E. coli strains, 15 μg/ml Tc, 50 μg/ml Kn, and 20 μg/ml Gm were used. 

Phototrophically grown cultures supplemented with Tc were incubated behind UV light 

filters to minimize light mediated degradation of this drug (17). 

 

Rhodobacter sp. strain SW2 genomic cosmid library construction.  Genomic DNA 

was isolated from SW2 according to standard protocols (16). Plasmid and cosmid DNA 

were purified using Qiagen Mini or Maxi Kits, respectively. After purification, the 

cosmid vector pLAFR5 (30) was digested sequentially with ScaI and BamHI. SW2 

genomic DNA was partially digested with Sau3AI, dephosphorylated and ligated with 

digested pLAFR5 at a 9:1 molar ratio of insert to vector in the presence of 5 mM ATP. 

The ligation was packaged into recombinant  phage using the Stratagene Gigapack III 

XL packaging extract and E. coli WM3064 was infected with the resultant phage lysate. 
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Cosmids from WM3064 were transferred to SB1003 via conjugation. Selection against 

the donor strain was achieved by omitting DAP from the medium. The resulting library 

contained 1536 clones with an average insert size of 23.5 kb. Based on comparison to the 

genome sizes of R. sphaeroides and R. capsulatus, which are ~4.5 and 3.6 Mb, 

respectively, we estimate that our library represents 5-6 times coverage of the SW2 

genome (24, 35). 

 

Cell suspension assay for Fe(II) oxidation activity.   All cell suspension assays were 

prepared and conducted at room temperature in an anaerobic chamber containing an 

atmosphere of 5% H2:80% N2:15% CO2. A light intensity of ~ 500 lux from an 

incandescent bulb was used for light-incubated assays. Our initial screen to identify 

cosmids able to enhance Fe(II) oxidation was an end-point assay. Here, SB1003 

transconjugants were grown photoautotrophically on H2 in 96 well plates, washed once 

with an anoxic buffer containing 50 mM HEPES (N-2-hydroxyethylpiperazine-N`-2-

ethanesulfonic acid) and 20 mM NaCl at pH 7 (assay buffer) and resuspended in 100 μl 

of assay buffer containing ~0.2 mM of Fe(II)Cl2·H2O and 20 mM NaHCO3. After a ~20 

hour incubation in the light, the concentration of Fe(II) remaining in each clone-

containing well was measured by adding 100 μl of ferrozine solution (0.1% (w/v) 

ferrozine in 50% (wt/v) ammonium acetate solution) (46). Cosmids from clones that 

showed less purple color than the negative control, SB1003+pLAFR5, were purified, 

moved into a clean SB1003 genetic background, and the resultant strains were re-tested 
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quantitatively for their Fe(II) oxidation activity through a time-course cell suspension 

assay. 

All time-course cell suspension assays contained the same number of cells. To 

prepare these assays, ~50 ml of an early-exponential phase culture was harvested by 

centrifugation, washed once with an equal volume of assay buffer, resuspended to a final 

OD570 of ~0.3 in assay buffer containing 0.5 mM Fe(II)Cl2·H2O and 20 mM NaHCO3 and 

dispensed in 300 μl aliquots to a 96 well plate. For each Fe(II) measurement, 10 μl of cell 

suspension was transferred to 90 μl of 1M HCl. 100 μl of ferrozine solution was added 

and the OD570 was read after 10 min. Samples for total Fe measurements were diluted 

1/10 with a solution of hydroxylamine hydrochloride (10% (w/v) in 1 M HCL) and 

incubated at 65 ˚C overnight to facilitate the reductive dissolution of Fe(III) precipitates. 

100 μl of these samples were combined with 100 μl of ferrozine solution and the OD570 

was read after 10 min. Fe concentration measurements were corrected for cell 

interference and rates of Fe(II) oxidation were calculated through the initial linear portion 

of the Fe(II) oxidation curves. 

 

Cloning, sequencing, annotation and RT-PCR.  Cosmid 9E12 was digested with PstI 

and the subsequent restriction fragments were gel purified, ligated with PstI digested 

pBBR1MCS5 (33) and transformed into E. coli DH10 . Strains of SB1003 with 

representative plasmids containing the correct size insert in both transcriptional 

orientations, were constructed and tested for light-dependent, Fe(II)-oxidation activity. 
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Shotgun cloning and sequencing of P3 were performed by Laragen (Los Angeles, 

CA). To annotate the sequence, an initial set of putative ORFs was identified using ORF 

finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Initial functional assignments and 

homology identifications were made by comparison of the translated ORFs to proteins in 

the BLAST database using BlastP (http://www.ncbi.nlm.nih.gov/blast/). Additional 

protein analyses (e.g., membrane-spanning domains, subcellular localization and motif 

identification) were performed using the tools on the ExPASy proteomics server 

(http://us.expasy.org/). Predicted operons, promoters and terminators were identified 

using the tools at Softberry (http://www.softberry.com/berry.phtml). The R. capsulatus 

genome was accessed at the Integrated Genomics website 

(http://www.integratedgenomics.com/). The sequence of the fox operon has been 

deposited in GenBank (accession number DQ381537). 
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Table 6.2  Oligonucleotides used in this study. Nucleotides in lowercase denote 

engineered restriction site sequences. Oligonucleotides 9, 13, 17, and 21 have a MfeI and 

a PstI restriction site at the 5’ end. Oligonucleotides 10, 14, and 18 have a SpeI restriction 

site at the 5’ end.  

 
Oligonucleotide 

Name 
Description Sequence (5'-3') 

 

9 Forward primer used to 

amplify pfoxE insert 

cgcccaattgctgcagTTATTGCGCCCTTTTTCATC 

 

10 Reverse primer used to 

amplify pfoxE insert 

ggcgactagtAGGCGATCCTCACCATAGG 

 

13 Forward primer used to 

amplify pfoxY insert 

cgcccaattgctgcagTCCACGAGCTGAACCTGAC 

 

14 Reverse primer used to 

amplify pfoxY insert 

ggcgactagtGTTATAGGTGGCGGTTGCTG 

 

17 Forward primer used to 

amplify pfoxZ insert 

cgcccaattgctgcagTCAGACCACCGATTACGACA 

 

18 Reverse primer used to 

amplify pfoxZ insert 

ggcgactagtGGTTTGAGTTTGAGGCAGGA 

 

21 Forward primer used to 

amplify pfoxEYZ insert 

cgcccaattgctgcagAGGAAGTGCTGACCGACATC 

 

18 Reverse primer used to 

amplify pfoxEYZ insert 

ggcgactagtGGTTTGAGTTTGAGGCAGGA 

1 Used for RT-PCR  AAGGTGTTCCAGCACCTGAC 

2 Used for RT-PCR  GGCATAGGCGATGATGGTAT 

3 Used for RT-PCR  CCTTTGACGGCAAGCTTTAT 

4 Used for RT-PCR  GTGATCACCTTGACCAGCAG 

5 Used for RT-PCR  CGATCAAGGAATGGATCCTG 

6 Used for RT-PCR  GGCACACCGATCTGAATCTT 

7 Used for RT-PCR  CGAGTTGTGGAGCTTTTACG 

8 Used for RT-PCR  CAGGGCGTTGGAGAAGAAC 
 

 

54 Forward primer used to 

verify transcription of foxZ 

from pfoxZ in SB1003 

TTTCATCAACTCGCAACTGG 

 

 

55 Reverse primer used to 

verify transcription of foxZ 

from pfoxZ in SB1003 

ATAAAGCTTGCCGTCAAAGG 

 

 

29 Forward primer used to 

verify transcription of foxY 

from pfoxY in SB1003 

GACCCTGTGCTATGCCATC 

 

 

51 Reverse primer used to 

verify transcription of foxY 

from pfoxY in SB1003 

GGCACCTGGTAGTTCGACAG 
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The insert fragments of pfoxE, pfoxY, pfoxZ, pfoxEY and pfoxEYZ were generated 

by PCR amplification from 9E12 using Mix D from the FailSafe PCR System by 

Epicentre and the primers listed in Table 6.2. Primers were designed with SpeI or MfeI 

and PstI restriction sites to facilitate cloning. PCR products were digested with SpeI and 

MfeI and ligated into EcoRI and SpeI digested pAK20 (32) to create pfoxE, pfoxY, pfoxZ, 

pfoxEY, pfoxEYZ. After insert sequence verification, strains of SB1003 carrying these 

plasmids were constructed and tested for Fe(II) oxidation activity. 

For RT-PCR experiments, total RNA was extracted from H2-grown SW2 cells 

and H2-grown SW2 cells incubated in the light in assay buffer containing 0.5 mM 

Fe(II)Cl2·H2O and 20 mM NaHCO3 for ~30 min (Fe-induced cells) using the RNeasy 

Protect Bacteria Mini Kit (Qiagen). cDNA was synthesized using the BioRad iScript 

cDNA Synthesis Kit. Control reactions contained no reverse transcriptase. These cDNA, 

as well as genomic DNA from SW2, served as templates for PCR amplification using the 

primers described in Table 6.2. The same cDNA template was used for the data presented 

in Figure 6.5B and C and the same cDNA template was used for the data presented in 

Figure 6.5D and E. 

To confirm expression of the pfoxY and pfoxZ inserts, RT-PCR was performed on 

total RNA extracted from YP grown cultures of SB1003 carrying these plasmids using 

primers integral to these two genes. A product was obtained in both cases (data not 

shown). 
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Biochemical methods.  For total protein extraction, cells from 1 liter (L) cultures of 

acetate and H2-grown SW2 and H2-grown SB1003+pfoxE and SB1003+pBBRMCS2 

were harvested in exponential phase by centrifugation and washed once with assay 

buffer. Because the ferric precipitates that form during phototrophic growth of SW2 on 

Fe(II) alone preclude the harvesting of cells for protein extraction, to approximate Fe(II)-

growth conditions and obtain sufficient cells for total protein extraction, cells from a 1 L 

culture of H2-grown SW2 were harvested, washed with assay buffer and resuspended in 

20 ml of assay buffer containing 2 mM Fe(II)Cl2·H2O and 20 mM NaHCO3. This 

suspension was incubated in the light until all Fe(II) was oxidized and cells were then 

harvested by centrifugation. Cell pellets from all conditions were resuspended in 3 ml of 

assay buffer to which a protease inhibitor cocktail (Roche, Complete EDTA-free) was 

added. Cells were lysed via passage three times though a French pressure cell at 16,000 

psi. DNase (Sigma) was added to the extracts followed by a 30 minute (min) incubation 

on ice. Cell debris and unbroken cells were removed by low speed centrifugation 

(10,000xg for 20 min). Crude membrane and soluble fractions were separated by 

ultracentrifugation (200,000xg for 90 min) and the membrane pellet was resuspended in 

assay buffer. Protein concentration was measured using the Bio-Rad protein assay. SDS-

PAGE was performed by standard procedures according to the Laemmli method (1). 

Cytochrome c bands were detected according to the in-gel peroxidase activity assay of 

Francis and Becker (22). Bands of interest were cut from the heme stained gels and 

submitted to the Protein/Peptide MicroAnalytical Laboratory/Facility at Caltech for 

LC/MS/MS analysis. 
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6.4 RESULTS  

6.4.1 Identification of four cosmids that enhance Fe(II) oxidation in SB1003 

The Fe(II)-oxidizing phototroph, Rhodobacter sp. strain SW2, is not amenable to 

traditional genetic analysis (14) but is closely related to Rhodobacter capsulatus SB1003, 

which is genetically tractable (14).  SB1003 is not able to grow photoautotrophically on 

Fe(II) alone (Figure 6.1A) or in the presence of additional substrates such as 0.1% yeast 

extract (Figure 6.1B) or H2 (Figure 6.1C).  However, in the presence of Fe(II)-

nitrotriacetic acid (NTA), both Fe(II) oxidation (Figure 6.1D) and growth occur (data not 

shown); NTA does not support phototrophic growth in the absence of Fe(II) (data not 

shown).  Therefore, to identify genes from SW2 that conferred Fe(II) oxidation activity, 

we expressed a genomic cosmid library of SW2 in SB1003 under conditions where Fe(II) 

oxidation by SB1003 was kinetically slow. Under the conditions used, SW2 oxidized, on 

average, 6-fold more Fe(II) than SB1003. This difference in activity could be clearly 

visualized via our colormetric, end-point ferrozine assay allowing for the identification of 

putative SB1003 clones with enhanced Fe(II) oxidation activity (Figure 6.2). 
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Figure 6.1  Fe(II) oxidation activity by Rhodobacter capsulatus SB1003 under different 

conditions.  Cultures of SB1003 containing Fe(II)Cl2 as the sole electron donor show no 

Fe(II) oxidation over a 27-day period (A). Addition of 0.1% Yeast Extract (YE) or H2 as 

co-substrates does not stimulate Fe(II) oxidation by SB1003 (B and C, respectively) as 

has been found for other Rhodobacter capsulatus strains (20, 25).  When SB1003 is 

inoculated into medium containing Fe(II)Cl2+NTA, however, rapid and complete 

oxidation of Fe(II) is observed (D). The data in A, B, and C are representative of multiple 

independent cultures and the error bars are the standard deviation for triplicate ferrozine 

assays. Data shown in D are the average of three independent SB1003 cultures and error 

bars represent the standard deviation of this average. The legend in A applies to all 

graphs. 
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Figure 6.2  Screen for enhanced Fe(II) oxidation activity in SB1003.  After a ~20-hour 

incubation in assay buffer containing 0.2 mM Fe(II), SW2 oxidizes an average of ~6-fold 

more Fe(II) than SB1003.  This difference in Fe(II) oxidation is clearly visualized upon 

the addition of the colormetric reagent ferrozine, where wells containing Fe(II) turn 

purple and wells with no Fe(II) remain clear.  Likewise, during the screen, Fe(II)-

oxidizing clones like SB1003+9E12 are identified as clear wells upon addition of 

ferrozine.  

 

In our screen of 1536 cosmid-carrying SB1003 clones, four clones with enhanced 

Fe(II) oxidation activity were identified. To further characterize this activity, Fe(II) and 

total Fe concentrations were followed for 3 hours in cell suspensions of these strains 

incubated in the light and dark. This shortened incubation time, as compared to the screen 

(~20 hours), magnified the differences in Fe(II) oxidation activity between the putative 

clones and the control strains. As shown by the representative clone, SB1003+9E12, 

there is an ~1000-fold increase in the amount of Fe(II) oxidized after three hours in light-

incubated SB1003+9E12 cell suspensions compared to the control strain 

SB1003+pLAFR5 (Figure 6.3A). In terms of rate, in the light-incubated cell suspensions 

of SB1003+9E12, the amount of Fe(II) decreased at a rate ~45 times faster than 
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SB1003+pLAFR5 (Figure 6.3A) while the total amount of Fe stayed constant (data not 

shown). In comparison, Fe(II) and the total amount of Fe remained constant when cell 

suspensions of SB1003+9E12 were incubated in the dark (Figure 6.3B and total Fe data 

not shown), demonstrating the light dependence of this reaction.  The light dependence of 

this Fe(II) oxidation activity may be due to the involvement of the photosynthetic 

reaction center complex in generating a proton gradient across the cytoplasmic 

membrane, which in turn drives electron flow from Fe(II) to NAD(P)+; it is not due to a 

need for light in accepting electrons from Fe(II) per se. 

Although the 9E12 cosmid significantly enhanced light-dependent, Fe(II) 

oxidation activity in SB1003 in the concentrated cell suspension assay, this cosmid did 

not enable this strain to grow photoautotrophically on Fe(II) alone over a period of 40 

days, nor did the other cosmids identified (data not shown). 
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Figure 6.3  Cosmid 9E12 confers enhanced light-dependent Fe(II)-oxidizing activity to 

SB1003.  When incubated in the light, the concentration of Fe(II) in cell suspensions of 

SB1003+9E12 decreases at a rate ~45 times faster than that of SB1003 carrying the 

control cosmid, pLAFR5 (A).  In contrast, no decrease in Fe(II) is observed when 

SB1003+9E12 is incubated in the dark (B). This demonstrates that cosmid 9E12 confers 

enhanced light-dependent Fe(II) oxidation in SB1003. Legend in B also applies to A.  

Data shown are the averages of biological triplicates for each strain, and error bars 

represent the standard deviation.  
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6.4.2 Identification and characterization of the fox operon  

Restriction site mapping of the four cosmids revealed a ~9 kb PstI restriction 

fragment (designated P3) common to three of the cosmids, a portion of which was found 

in the fourth cosmid (data not shown). P3 was cloned from 9E12 into the broad-host 

range vector, pBBR1MCS5, in two transcriptional orientations to create pP3-gm1 and 

pP3-gm2. Both of these constructs conferred equivalent enhanced light-dependent, Fe(II) 

oxidation activity to SB1003 (data shown for P3-gm2 in Figure 6.4A and B), suggesting 

that the gene(s) responsible for the observed activity was expressed from its endogenous 

promoter. The rates of Fe(II) oxidation by these clones were equivalent to that of 

SB1003+9E12, indicating that P3 contained all the genes necessary to confer maximal 

Fe(II) oxidation activity (Figure 6.3A and 6.4A). 
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Figure 6.4  Stimulation of light-dependent Fe(II) oxidation activity in SB1003 by the fox 

genes.  When incubated in the light, cell suspensions of SB1003 strains carrying the 9E12 

subclones, pP3-gm2, pfoxEYZ, and pfoxE show a significant increase in light-dependent 

Fe(II) oxidation activity, whereas SB1003 strains carrying pfoxY, pfoxZ, and the vector 

controls, pBBR1MCS2 and pBBR1MCS5, do not (A). When incubated in the dark, the 

concentration of Fe(II) (B) remains constant in cell suspensions of all the 9E12 subclone-

carrying strains of SB1003, showing the light dependence of this Fe(II) oxidation. 

Legend in B also applies to A. Data shown are the averages of biological triplicates for 

each strain, and error bars represent the standard deviation.  
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In purple non-sulfur bacteria, of which Rhodobacter is one type, the capacity to 

use inorganic electron donors such as sulfide or H2 as reductants for NAD(P)+ is enabled 

by redox active enzymes that are able to accept electrons from these substrates and 

subsequently donate them to the cyclic electron transport chain (23, 49). Thus, our 

primary criterion to identify open reading frames (ORFs) in the P3 sequence encoding 

putative Fe(II)-oxidizing proteins was the predicted presence of redox cofactor binding 

sites. Among the 10 ORFs identified in P3, ORFs 2 and 3 were the most promising 

candidates (Figure 6.5A). ORF2 is 876 base pairs (bp) and is predicted to encode a 

soluble, 291 amino acid (aa) protein with two C-X-X-C-H peptide motifs - the classic 

sequence suggestive of covalent heme attachment (47). A signal sequence characteristic 

of secreted proteins is found at the N-terminus of this protein, predicting transport across 

the cytoplasmic membrane. The predicted product of ORF2 shows no significant 

similarity to other proteins in the BLAST database or the SB1003 genome. ORF3 is 1089 

bp and appears to encode a soluble 362 aa protein with conserved repetitive domains 

similar to those found in eukaryotic and bacterial WD-repeat regulatory proteins as well 

as bacterial dehydrogenases and serine/threonine kinases containing the redox cofactor 

pyrroloquinoline quinone (PQQ) (3, 42, 44). A putative signal sequence is also found in 

this protein. 
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Figure 6.5  In SW2, foxE, foxY and foxZ are co-transcribed in the presence of Fe(II). A 

Cloning strategy to identify foxE, foxY and foxZ, genes from SW2 that enhance light 

dependent, Fe(II) oxidation activity in SB1003. Numbered arrows identify the positions 

of the oligonucleotides used for RT-PCR experiments (described in Table 6.2). The 1 kb 

scale bar applies to P3 segment only. Using total RNA extracted from H2-grown, Fe(II)-

induced SW2 as a template for cDNA synthesis and oligonucleotides 5 and 6 (B) and 7 

and 8 (C), PCR products were obtained for both of the regions between the fox genes 

(+RT lanes). Using total RNA extracted from H2-grown SW2 as a template for cDNA 

synthesis and oligonucleotides 5 and 6 (D) and 7 and 8 (E), a PCR product was obtained 

for the region between foxE and foxY, but not between foxY and foxZ. Additional 

experiments with oligonucleotides 1, 2, 3, and 4 confirmed the results in B, C, D and E 

(data not shown). –RT lanes: controls with no reverse transcriptase added to the cDNA 

reactions, + lanes: controls with SW2 genomic DNA; – lane: no template controls.  

 

ORFs 2 and 3 are predicted to be part of the same transcriptional unit along with 

the downstream ORF4. ORF4 is 906 bp and is predicted to encode a 301 aa cytoplasmic 

membrane protein with 10 transmembrane domains, a signal peptide and two domains of 

unknown function conserved among known drug/metabolite transporters like PecM from 

Erwinia chrysanthemi (DUF6, Pfam accession number PF00892). A putative 
70

 

promoter consensus sequence resides 113 bp upstream of ORF2 (TTACCG(12 

bp)CGGTATATT) and a predicted Rho-independent bacterial terminator is found 

upstream of this promoter (Figure 6.5A). ORFs 2, 3, and 4 could be PCR amplified from 
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all four of the identified cosmids (data not shown). With RT-PCR using RNA from Fe(II) 

induced, H2-grown cells of SW2, we verified that these three genes are co-transcribed 

and thus form an operon (Figure 6.5B, C). We designate ORFs 2, 3 and 4 as foxE, foxY 

and foxZ (Fe(II) oxidation), respectively. ORF5 and 6 are predicted to be transcribed in 

the opposite direction relative to ORF4 and are thus segregated from the fox operon. 

The vectors pfoxEYZ, pfoxE, pfoxY, and pfoxZ were constructed (Figure 6.5A) to test the 

gene products for their effects on light-dependent Fe(II) oxidation activity in SB1003. 

SB1003+pfoxEYZ showed light-dependent Fe(II) oxidation activity at a rate equivalent to 

SB1003+pP3-gm2, suggesting that foxEYZ are sufficient to confer this activity (Figure 

6.4A and B). Of the individually cloned genes, only SB1003+pfoxE showed significant 

light-dependent Fe(II) oxidation activity, at a rate ~20% that of SB1003+pfoxEYZ, while 

SB1003+pfoxY and SB1003+pfoxZ behaved similarly to the control, 

SB1003+pBBR1MCS2, showing little Fe(II) oxidation activity (Figure 6.4A and B).  

These experiments show that foxE is sufficient to promote Fe(II) oxidation activity in 

SB1003, but they do not demonstrate that the fox genes are required for phototrophic 

growth of SW2 on Fe(II). Because we cannot delete genes in SW2, the closest we can 

come to addressing whether the fox genes are involved in phototrophic Fe(II) oxidation in 

SW2 is to determine whether they are differentially expressed under different growth 

conditions.  RT-PCR revealed that the fox genes are co-transcribed in SW2 in the 

presence of Fe(II) (Figure 6.5B and C). In contrast, under H2-grown conditions, foxZ is 

not transcribed, whereas foxE and foxY are (Figure 6.5D, E). Although sequences with 

weak similarity to promoters are predicted 305 and 805 bp upstream of foxZ, no 
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corresponding Rho-independent termination sequences are identified, making it unlikely 

that this difference in foxZ transcription results from its independent transcription in the 

presence of Fe(II). The cause of this layered transcriptional regulation is not yet clear. 

 

6.4.3 FoxE is a c-type cytochrome  

Cytochromes of the c-type are characterized by the covalent attachment of 

heme(s). In these proteins, heme is bound via thioether bonds to the two cysteines of a 

conserved sequence motif. Although less common sequence motifs have been identified, 

the classic sequence motif for heme-binding sites in a c-type cytochrome is C-X-X-C-H 

(6, 47). The predicted protein sequence of foxE has two of these classic heme-binding 

motifs (Figure 6.6A). To test if foxE encodes a c-type cytochrome, we performed in-gel 

heme-peroxidase activity stains of crude protein extracts from H2-grown SB1003+pfoxE. 

These stains revealed the presence of a ~25 kDa c-type cytochrome that was not present 

in extracts of the control strain, SB1003+pBBR1MCS2, when an equivalent amount of 

total protein was loaded (Figure 6.6B). A c-type cytochrome of the same approximate 

size was identified in crude protein extracts of SW2 grown photoautotrophically on H2 

with an Fe(II) induction (Figure 6.6B). Mass spectrometry analysis confirmed that these 

bands from SW2 and SB1003+pfoxE contained peptide fragments that matched 

fragments predicted from the FoxE sequence and these fragments showed no similarity to 

any protein in the BLAST database or SB1003 genome. Heme stain analyses of the 

soluble and membrane fractions of these crude extracts showed FoxE to be present in the 

soluble fraction (data not shown). FoxE was also present in crude cell extracts of H2-
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grown SW2 cells without an Fe(II) induction, as identified by heme stains and confirmed 

by mass spectrometry, but was not detected in extracts of cells grown 

photoheterotrophically on acetate (Figure 6.6B). Detection of FoxE in H2-grown SW2 

cells with and without an Fe(II) induction is consistent with our RT-PCR data showing 

that foxE is expressed under both conditions. 
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Figure 6.6  FoxE is a c-type cytochrome. (A) Amino acid sequence of FoxE. In bold are 

two consensus motifs suggestive of covalent heme binding sites and the predicted signal 

sequence of this protein is 32 amino acids long. (B) Heme-peroxidase stains of crude cell 

extracts separated by SDS-PAGE.  SB1003 lanes: pfoxE and C – SB1003+pfoxE and 

SB1003+pBBR1MCS2, respectively, grown phototrophically on H2 and induced with 

Fe(II).  SW2 lanes: H2/Fe – SW2 grown phototrophically on H2 with an Fe(II) induction; 

H2 – SW2 grown phototrophically on H2; Ac – SW2 grown phototrophically on acetate.  

The c-type cytochrome, FoxE, is indicated by the black arrow. Approximately 120 μg of 

total protein was loaded per lane and the molecular weight marker (lane M) is the broad 

range standard from Bio-Rad. 
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6.5 DISCUSSION 

Using a heterologous expression system, we identified an operon from the 

genetically intractable Rhodobacter sp. strain SW2 that confers a significant increase in 

light-dependent Fe(II) oxidation activity when heterologously expressed in R. capsulatus 

SB1003. This operon, which we designate the fox operon, contains three genes: foxE, 

which encodes a novel c-type cytochrome; foxY, predicted to encode a protein with 

repetitive domains similar to WD-repeat family proteins and proteins that bind the redox 

cofactor PQQ; and foxZ, predicted to encode a protein with transport function. 

Given the precedent for a c-type cytochrome Fe(II) oxidoreductase in A. 

ferrooxidans and our observation that the foxE gene from SW2 encodes a novel c-type 

cytochrome that significantly enhances light-dependent, Fe(II) oxidation activity in 

SB1003 when expressed alone, it is possible that FoxE is the native Fe(II) oxidoreductase 

in SW2. Although we are unable to prove this via deletion of the foxE gene in SW2, it is 

perhaps not surprising that mutational analysis of R. palustris strain TIE-1 demonstrates 

that a soluble c-type cytochrome (PioA) is essential for phototrophic growth on Fe(II) in 

that organism (Jiao et al., companion paper ref. (27)). Given that ours is a heterologous 

expression system, it is possible that FoxE stimulates Fe(II) oxidation indirectly in 

SB1003. By drawing analogy to PioA, however, the simplest interpretation is to predict 

that FoxE stimulates Fe(II) oxidation directly by serving as the Fe(II) oxidoreductase. In 

both strains, c-type cytochromes are found in an operon with another putative electron 

carrier (FoxY in SW2, PioC in TIE-1). Although potentially similar in function, the fox 
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and pio gene products are not homologs. Interestingly, foxZ is dispensable with respect to 

stimulating Fe(II) oxidation in SB1003, yet its expression in SW2 correlates specifically 

with the presence of Fe(II).  More work needs to be done to understand the regulation of 

the fox genes, and biochemical experiments are required to elucidate their functions. 

Electrons derived from Fe(II) must ultimately make their way to NAD(P)+ via 

electron carriers in the intracytoplasmic membrane of Fe(II) phototrophs. Because these 

bacteria oxidize Fe(II) at neutral pH, where the mineral product of this metabolism is 

insoluble, the question of where the Fe(II) oxidoreductase is localized is important to 

consider because intracellular precipitation of the Fe(III) mineral product of this 

metabolism presents a hazard to these organisms. We have previously reported that 

Fe(III) does not precipitate inside SW2 during growth on Fe(II) (29), and in line with 

this, others have proposed that Fe(II) oxidation might occur on the cell surface (20). This 

prediction is consistent with the model for Fe(II) oxidation by the acidophilic Fe(II) 

oxidizing bacterium A. ferrooxidans ATCC33020, where the purported Fe(II)-oxidizing 

enzyme, Cyc2, is localized to the outer membrane (55). FoxE, however, appears to lack 

-sheets or lipoprotein attachments characteristic of known integral or associated outer 

membrane c-type cytochromes like Cyc2 or OmcA and OmcB from Shewanella 

oneidensis MR-1 (39, 55). In addition, our detection of FoxE only in the soluble fraction 

of cell extracts suggest that it resides either in the cytosol or periplasmic space. Although 

the localization of FoxE remains to be experimentally determined, the fact that c-type 

cytochrome maturation occurs in the periplasm in gram-negative bacteria, and we know 
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of no examples of bacterial c-type cytochromes that function in the cytosol, we 

hypothesize that FoxE functions in the periplasm of SW2 (2). 

If FoxE functions as the Fe(II) oxidoreductase in the periplasm of SW2, this 

implies that SW2 has a mechanism for preventing the precipitation of Fe(III) in the 

periplasmic space. While Fe(III) may be released as a soluble inorganic species (45) and 

quickly transported out of the cell, it is also possible that the cell produces organic 

ligands that aid in this process. This hypothesis has been previously put forth to explain, 

in part, the Fe isotope fractionations produced by Fe(II)-oxidizing phototrophs (15, 29). If 

such cell-associated ligands exist and are stable over geological time scales, they may 

provide a means to identify traces of this metabolism in the rock record, enabling studies 

directed at understanding the environmental impact of these organisms over time (15, 

28). For this to be possible, these ligands would need to be extractable from organic 

remains in ancient rocks, and their structures would need to be recognizable. While of 

course this cannot be guaranteed, the fact remains that organic geochemists have 

unearthed a plethora of “orphan” biomarkers whose functions are unknown (10). As the 

structures of molecules required for Fe(II) oxidation in contemporary organisms are 

determined, with luck, perhaps a match will be found. Additionally, if SW2 has a 

mechanism to avert Fe(III) precipitation in the periplasm that SB1003 does not, this may 

help explain why SB1003 can only use Fe(II) as an electron donor for growth when an Fe 

chelator, such as NTA, is added to the medium (Figure 6.1A, B, C and D).  This is not the 

only scenario, however.  Addition of NTA to the medium will decrease the redox 

potential of iron (38), which could facilitate Fe(II) oxidation by SB1003 by an Fe(II) 
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oxidoreductase optimized for substrates with low redox potentials.  Elucidation of the 

native Fe(II) oxidoreductase from SB1003 should be possible with traditional genetic 

analysis and is one of our future goals.   

The roles of foxY and foxZ in Fe(II) oxidation by SW2 are currently unclear. 

Sequence analyses predict that FoxY contains motifs suggestive of PQQ binding. If FoxY 

does bind PQQ, its role in phototrophic Fe(II) oxidation by SW2 may be to assist FoxE in 

electron transfer to a component of the cyclic electron transfer chain. Recent findings 

support a role for a quinoprotein in Mn(II)-oxidation by Erythrobacter sp. strain SD21, 

providing precedent for the involvement of PQQ-containing enzymes in metabolisms 

involving metal oxidation (H. Johnson and B. Tebo, personal communication). Sequence 

analysis of FoxZ predicts that it is a cytoplasmic membrane protein with transport 

function. The involvement of a putative cytoplasmic membrane transporter is consistent 

with the finding that a homolog of the permease subunit of an ABC-type transporter is 

necessary for full Fe(II) oxidation activity by R. palustris TIE-1 (26). 

The discovery of a putative Fe(II) oxidoreductase from the neutrophilic, 

anoxygenic phototroph, SW2, that is different in its predicted cellular localization from 

that involved in Fe(II) oxidation by the acidophilic aerobe A. ferrooxidans is curious, as 

one might have expected the opposite based on the respective growth environment of 

these organisms (e.g., Fe(III) is more soluble at acidic pH compared to neutral pH). 

Moreover, evidence from studies with R. palustris strain TIE-1 suggests that the putative 

Fe(II) oxidoreductase from this strain also functions in the periplasm (Jiao et al, 

companion paper ref. (27)). While an emerging theme among the Fe(II) oxidoreductases 
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from both phototrophs and acidophilic bacteria is that they involve c-type cytochromes, it 

seems that the topology of the components involved is quite different. Whether these 

differences are reflective of differing evolutionary origins for biologically-catalyzed 

Fe(II) oxidation remains to be explored. For such studies, more knowledge of the 

mechanisms of Fe(II) oxidation by diverse organisms is needed so that comparative 

studies can be conducted. Our work demonstrates that a heterologous complementation 

approach can be used to identify genes involved in Fe phototrophy even from genetically 

“intractable” species. 
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Chapter 7 

Conclusions and Outlook 

 

7.1 CONCLUSIONS  

During my doctoral studies I have examined the mechanism and geological 

relevance of phototrophic Fe(II) oxidation by anoxygenic phototrophic bacteria.  These 

bacteria grow photoautotrophically with Fe(II) as the electron source, coupling Fe(II) 

oxidation to reductive CO2 fixation while harvesting light energy.  Important advances 

were made in understanding which genes are involved in Fe(II) oxidation in two of these 

bacteria, Rhodopseudomonas palustris TIE-1 and Rhodobacter sp. SW2.  In addition, by 

mimicking the environmental parameters comparable to conditions thought to be relevant 

for the ancient Earth when these bacteria might have thrived, we were able to constrain 

the geological role of these phototrophic Fe(II) oxidizers.  Major findings of my thesis 

are briefly summarized below: 

 

1) Both Fe(II) and H2 can serve as the electron donor for anoxgyenic photosynthesis 

and these substrates are predicted to be present in significant amount in the early 

Earth history.  Since H2 has a more negative redox potential than Fe(II) under 

physiological conditions, one would expect that H2 is a better choice of electron 

donor for phototrophic Fe(II) oxidizers when both are present.  Under the 

constraint of H2 and CO2 concentrations  comparable to values predicted under 
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the ancient oceanic conditions, pure cell suspensions of TIE-1 and SW2 showed 

significant amounts of phototrophic Fe(II) activity without inhibition by the 

presence of H2.  This suggests that phototrophic Fe(II) oxidizers may have 

thrived, consistent with the hypothesis that these bacteria may have played a role 

in the deposition of Banded Iron Formations (BIFs) in the early Earth history. 

 

2)  The Fe(II) oxidation system was investigated in the purple non-sulfur bacterium 

Rhodobacter sp. SW2, which is not amenable to traditional genetic analysis.  

Through heterologous expression of a genomic library of SW2 in its close relative 

Rhodobacter capsulatus SB1003 (which has minimal amount of Fe(II) oxidation 

activity under the conditions tested), the foxEYZ operon of genes was identified to 

be critical for the phototrophic Fe(II) oxidation activity in SW2.  FoxE was 

identified as a novel c-type cytochrome localized to the periplasm, FoxY a protein 

containing a putative redox cofactor pyrroloquinoline quinone, and FoxZ a 

putative transporter of unknown function. While foxE alone confers light-

dependent Fe(II) oxidation activity to SB1003, maximum activity is achieved 

when foxE is expressed with foxY and foxZ.  

 

3) The first genetically tractable phototrophic Fe(II) oxidizing bacterium R. palustris 

TIE-1 was isolated and characterized.  A genetic system was developed in the 

organism, aiming to identify genes and gene products essential for 

photoautotrophic growth on Fe(II).  
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4) Random transposon mutagenesis and screening of 12,000 mutants was carried out 

in TIE-1 to identify mutants specifically defective in Fe(II) oxidation.  Of the six 

mutants obtained, five of have independent disruptions in a gene that is predicted 

to encode an integral membrane protein with similarity to an ATP-dependent 

transporter.  The sixth mutant has an insertion in a gene that is homologous to 

cobS, encoding an enzyme involved in cobalamin (vitamin B12) biosynthesis.  The 

involvement of these proteins in Fe(II) oxidation remains unclear. 

 

5) A three-gene operon designated the pio operon was identified in TIE-1.  The first 

gene, named pioA, encodes a c-type cytochrome that was upregulated under Fe(II) 

growth conditions.  The second gene, pioB, encodes a putative outer membrane 

beta-barrel protein, and the third gene, pioC, encodes a putative high-potential 

iron-sulfur protein (HiPIP).  Mutational analysis showed that the pio operon is 

essential and specific to phototrophic Fe(II) oxidation in TIE-1.  Both PioA and 

PioC are soluble proteins, and based on the presence of signal sequences, both 

PioA and PioC are likely to reside in the periplasm. 

 

6) PioC was overexpressed and partially purified from E. coli.  
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7.2 OUTLOOK  

Perhaps the most exciting aspect of my research is that it provides an opportunity 

for a detailed understanding of the molecular mechanisms of phototrophic Fe(II) 

oxidation.  Using two purple non-sulfur bacteria Rhodopseudomonas palustris TIE-1 and 

Rhodobacter sp. SW2 as model systems, novel genes and proteins involved in 

phototrophic Fe(II) oxidation were identified.  Because of the limitations of genetic 

analysis in SW2, future studies will mainly involve TIE-1.  With the identification of the 

Pio proteins, continued research will enable us to reveal the remarkable nature of this 

metabolism with respect to the mechanisms of energy conservation.  Some efforts have 

already been made regarding the subcellular localization and purification of the Pio 

proteins (see appendixes A and B).  Future work concerning the biochemical 

characterization of the purified Pio proteins includes measuring their redox potentials, 

investigating the molecular interactions between the Pio proteins, and electron transfer 

between the Pio proteins, Fe(II) and other electron carriers that are also potentially 

involved.   

Lessons should be learned from the studies on the electron transport pathway of 

Fe(II) oxidation in Acidithiobacillus ferrooxidans.  Although many efforts were made in 

addressing this question, the electron carriers involved are still debatable. These studies 

were carried out mainly by testing in vitro assays for Fe(II) oxidation activity with 

purified proteins.  Does it mean that the complexity and redundancy of the Fe(II) 

oxidation system in A. ferrooxidans preclude the pure biochemical methods without the 
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aid of the genetic tools?  One aspect is reflected by the unspecific nature of the redox 

reactions between Fe and c-type cytochromes.  Therefore, in TIE-1, both biochemistry 

and genetics should be applied to more efficiently address the electron transport process 

in phototrophic Fe(II) oxidation; in vitro biochemical studies with purified proteins, 

membrane vesicles, and whole cells, should be combined with in vivo mutational 

analysis. 

It is interesting to note the similarities between the Pio proteins involved in 

phototrophic Fe(II) oxidation in TIE-1 and the Mtr proteins involved in the dissimilitary 

Fe(III) reduction in Shewanella oneidensis (see Chapter 5).  In both systems, a decaheme 

c-type cytochrome (PioA and MtrA) and an outer membrane beta-barrel protein (PioB 

and MtrB) are involved.  Does this suggest an evolutionary connection between the 

enzymes for Fe(II) oxidation and Fe(III) reduction?  In order to address this question, a 

sufficient number of Fe(II) oxidizing and Fe(III) reduction enzymes from physiologically 

diverse bacteria must first be obtained.  However, our current knowledge about the 

enzymes involved in phototrophic Fe(II) oxidation precludes any significant phylogenetic 

or functional predictions be made from such a limited sample set.      

The functions of PioA and PioB are rather intriguing.  The predicted function of 

PioA as an Fe(II) oxidoreductase located in the periplasm of TIE-1 suggests that Fe(III) 

would form in this cell compartment.  Then, how does TIE-1 prevent potential Fe(III) 

precipitates from forming?  If Fe(III) ligands are involved in Fe(III) transport, how does 

Fe(III)-ligand association and dissociation happen before and after crossing the outer 

membrane?  Such knowledge is of great importance in understanding the unique features 
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of extracellular biomineralization catalyzed by phototrophic Fe(II)-oxidizing bacteria.  

Due to the structural prediction of PioB as a beta-barrel outer membrane protein similar 

to general porins and genetic localization to pioA and pioC, we predict that PioB may 

function as an Fe(III) transporter.  In contrast to all known Fe transport systems involved 

in Fe acquisition that are repressed in the presence of Fe, PioB is induced when Fe is 

abundant.  Understanding the function and regulation of PioB will broaden our 

understanding of transporters in general, including specific insights into the key elements 

that are responsible for the specificity of these porins to different metals.   

The discovery of Pio and Fox proteins involved in phototrophic Fe(II) oxidation 

in two purple non-sulfur bacteria TIE-1 and SW2, respectively, suggests that the 

phototrophic Fe(II) oxidation system are diverse, even within this one group of 

microorganisms.  Ultimately, elucidation of the mechanisms of phototrophic Fe(II) 

oxidation of bacterial isolates of different phylogenetic groups and environments will 

increase our knowledge about the diversity of phototrophic Fe(II) oxidation systems.  

Experiments that seek to address the contribution phototrophic Fe(II)-oxidizers in the 

global Fe cycle include an examination of the environmental distribution of TIE-1, SW2, 

and their respective iron oxidation systems couple with detailed kinetic measurements of 

the expression and activity of key indicator genes and enzymes. 

The work presented in this thesis will lead to detailed understanding of the 

mechanisms of phototrophic Fe(II) oxidation, which is a necessary to test the 

involvement of these phototrophs in the deposition of BIFs in the early Earth history.  

The putative Fe(II) oxidoreductase, Pio and Fox proteins,  found in TIE-1 and SW2, 
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respectively, permit a more fundamental understanding of the biomineralization process 

catalyzed by phototrophic Fe(II)-oxidizing bacteria.  In addition, the discovery of the Pio 

proteins may lead to findings of novel Fe transporters within biological systems. 
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Appendix A 

Subcellular Localization of PioABC in  

Rhodopseudomonas palustris TIE-1 and  

FoxE in Rhodobacter sp. SW2 

 

 
A.1  INTRODUCTION 

In establishing protein function, it is important to determine the subcellular 

environment in which the protein resides.  Subcellular localization influences protein 

function in several aspects by determining the local chemical environment such as pH 

and redox potential, availability of interaction partners and substrates, and where reaction 

products will form, which may serve as the substrates for subsequence reactions.  

Although many efforts have been made predicting the subcellular localization of 

hypothetical proteins through bioinformatic approaches, definitive subcellular 

localizations for most proteins should be tested experimentally, especially for those that 

have no significant homologs in the database.  

Recently our lab has made some progress in identifying molecular components 

important for phototrophic Fe(II) oxidation in two model organisms, Rhodopseudomonas 

palustris TIE-1 and Rhodobacter sp. SW2.  In TIE-1, we discovered the three-gene pio 

operon to be essential for phototrophic Fe(II) oxidation (see Chapter 5).  Expression of 

the first gene in the operon, pioA, is increased when TIE-1 is grown under conditions of 

Fe(II) phototrophy.  PioA is a putative decaheme c-type cytochrome present in the 

cytoplasm or periplasm.  The second gene, pioB, encodes a putative outer membrane -
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barrel protein.  Both pioA and pioB contain a signal sequence characteristic of proteins 

secreted across the cell membrane through the Sec protein secretion pathway (37).  The 

third gene, pioC, encodes a putative high redox potential iron sulfur protein (HiPIP) with 

a twin-arginine translocation (TAT) signal sequence, suggesting PioC is secreted across 

the cell membrane through the TAT protein secretion pathway (27).  Our hypothetical 

model for phototrophic Fe(II) oxidation in TIE-1 based on the Pio proteins is as follows:  

PioA is a periplasmic protein that binds and oxidizes Fe(II).  PioB interacts with PioA 

and/or serves as an Fe(III) transporter to remove the Fe(II) oxidation product [Fe(III)] 

across the outer membrane.  PioC is in the periplasm and shuttles electrons from PioA to 

the photosynthetic reaction center (RC), either directly or indirectly via cytochrome c2 as 

the electron mediator (for details about functional role of PioC, see Appendix B). 

The three-gene fox operon from SW2 was found to confer enhanced light-

dependent Fe(II) oxidation activity when heterologously expressed in Rhodobacter 

capsulatus SB1003 (see Chapter 6).  The first gene in this operon, foxE, encodes a 

soluble novel c-type cytochrome.  The second gene, foxY, appears to encode a putative 

soluble periplasmic protein with a redox active cofactor.  The third gene, foxZ, appears to 

encode a cytoplasmic membrane protein with 10 transmembrane domains.  A signal 

sequence characteristic of secreted proteins is found at the N-terminus of all three Fox 

proteins.  Our model for phototrophic Fe(II) oxidation in SW2 based on the Fox proteins 

is as follows:  FoxE is a soluble periplasmic protein that serves as the Fe(II) 

oxidoreductase.  FoxY is also a soluble periplasmic protein containing a pyrroloquinoline 
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quinone redox active cofactor and assists FoxE in electron transfer to a component of the 

cyclic electron transfer chain. 

Subcellular localization analysis of proteins is a key step towards elucidating their 

functional roles.  Although genetic analysis showed that Pio and Fox proteins play an 

important role in phototrophic Fe(II) oxidation in TIE-1 and SW2, respectively (see 

Chapter 5 and 6), the individual functions of these proteins remain unclear.  The 

subcellular location of these proteins, especially of the putative Fe(II) oxidoreductases 

PioA and FoxE, has substantial influence on our model of phototrophic Fe(II) oxidation. 

Since PioA and FoxE are both c-type cytochromes (which mature exclusively in the 

periplasm in Gram-negative bacteria (32, 37)), we hypothesize that PioA and FoxE 

function in the periplasm of TIE-1 and SW2, respectively.  The location of PioA and 

FoxE will determine where their interactive partners are localized and how electrons 

enter the cyclic electron flow.  In TIE-1, PioC is thought to be the electron acceptor for 

PioA, and in SW2 this electron carrier is predicted to be FoxY.  The Fe(II) 

oxidoreductase is likely located where Fe(II) is readily available.  Free ions of Fe(II) 

present in the growth medium (see Chapter 4) can readily diffuse into the periplasmic 

space through general porins on the outer membrane (33, 34) into the periplasm where 

Fe(II) oxidation by PioA and FoxE would occur.   

Based on these premises, the Fe(II) oxidation product, Fe(III), will likely form in 

the periplasmic space.  Due to the low solubility of Fe(III) at neutral pH, precipitation of 

Fe(III) in the periplasm would be expected to occur.  The absence of Fe(III) precipitation 

in the periplasm of any phototrophic Fe(II) oxidizing bacterium including TIE-1 and 
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SW2 (21, 22) suggests mechanisms to overcome Fe(III) mineral precipitation, possibly 

with the involvement of specialized Fe(III) chelators and/or transporters.  If such Fe(III) 

ligands exist and are stable over geological time scales they may provide a means to 

identify traces of this metabolism in the rock record and thereby enable studies directed 

to understanding the environmental impact of these organisms over geological time. 

In this chapter of my thesis, I describe the results of several biochemical 

experiments performed to localize PioABC and FoxE proteins in their native organisms.  

Continued studies into this area will be required to fully elucidate the localization and 

function of these proteins in phototrophic Fe(II) oxidation. 

 

A.2  MATERIAL AND METHODS 

Bacterial strains and plasmids.  Bacterial strains and plasmids used in this study are 

listed in Table A.1.  R. palustris CGA010 (CGA010), derived from parent strain CGA009 

where a frameshift in the hupV gene was repaired, was kindly provided
 
by F. Rey and C. 

S. Harwood (University of Washington). 
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Table A.1  Bacterial strains and plasmids (
a
Gm, gentamicin). 

Strain or 

plasmid 

Genotype or markers, characteristics 
a 

Source or 

reference 

E. coli 

stains 

  

WM3064 Donor strain for conjugation: thrB1004 pro thi rpsL 

hsdS lacZ M15 RP4–1360  (araBAD)567 

dapA1341::[erm pir(wt)] 

W. Metcalf, Univ. 

of Illinois, Urbana 

UQ950 E. coli DH5   (pir) host for cloning; F- (argF-

lac)169  80dlacZ58( M15) glnV44(AS) rfbD1 

gyrA96(NalR) recA1 endA1 spoT1 thi-1 hsdR17 

deoR pir+ 

D. Lies, Caltech 

 

   

R. 

palustris 

stains 

  

TIE-1 Isolated from Woods Hole, MA (21) 

CGA009 Wild type (ATCC BAA-98) (24) 

CGA010 hupV
+
 derivative of CGA009 F. Rey & C. S. 

Harwood, U. of 

Washington 

PioA-HA R. palustris str. TIE-1, HA tagged to the C-terminus 

of pioA 

This study 

PioB-HA R. palustris str. TIE-1, HA tagged to the C-terminus 

of pioB 

This study 

PioC-HA R. palustris str. TIE-1, HA tagged to the C-terminus 

of pioC 

This study 

PioA-3HA R. palustris str. TIE-1, 3-HA tagged to the C-

terminus of pioA 

This study 

Plasmids   

pJQ200SK Mobilizable suicide vector; sacB Gm
r
 (23) 

pPioA-HA 2-kb fusion PCR fragment containing PioA-HA 

cloned into the SpeI site of pJQ200SK; used to make 

the PioA-HA strain. 

This study 

pPioB-HA 2-kb fusion PCR fragment containing PioB-HA 

cloned into the SpeI site of pJQ200SK; used to make 

the PioB-HA strain. 

This study 

pPioC-HA 2-kb fusion PCR fragment containing PioC-HA 

cloned into the SpeI site of pJQ200SK; used to make 

the PioC-HA strain. 

This study 

pLARS A derivative of pBBR1MCS2 (25, 26); insertion 

mamA gene is under the control of a tac promoter 

and fused to a 3xHA tag at its 3' end. 

L. Dietrich, 

Caltech 

pPioA-

3HA 

2.3-kb fusion PCR fragment containing PioA-3HA 

cloned into the XbaI site of pJQ200sk; used to make 

the PioA-3HA strain. 

This study 
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Media and culture conditions.  For aerobic growth R. palustris strains were grown in 

YP medium (0.3% yeast extract and 0.3% Bacto Peptone) at 30 ˚C with shaking.  For 

anaerobic growth R. palustris strains were grown without shaking at 30 ˚C in FEM, a 

defined basal medium for phototrophic Fe(II)-oxidizing bacteria (14).  Hydrogen (80% 

H2: 20% CO2) was used for photoautotrophic growth of TIE-1 and SW2.  Cultures were 

incubated at a distance of ~15 cm from a 34 watt tungsten incandescent light source.  

Escherichia coli strains were cultured in LB at 37 °C with shaking.  E. coli WM3064 was 

supplemented with 300 μM diaminopimelic acid (DAP).  Kanamycin and gentamicin 

were used at 100 and 200 μg/ml (or 400 μg/ml as indicated) for TIE-1 and 50 and 20 

μg/ml for E. coli, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

166

 

Table A.2  Sequence of the oligonucleotides. 

 
Oligonucleotide Lengt

h (bp) 

Sequence (5’-3’) 

HA-PioA1 28 GGACTAGTATGGTTCGACCGAGAACTTG 

HA-PioA1p 57 AGCGTAGTCTGGAACGTCGTATGGGTACGATCCTCTTCGG

TGCCAGCGCGATCCGGA 

HA-PioA2 57 AGAGGATCGTACCCATACGACGTTCCAGACTACGCTTAG

CTCGGAGCCGGGGACAGC 

HA-PioA2p 28 GGACTAGTCATCGTGGTGTACTGGAACG 

HA-PioB1 28 GGACTAGTTCGCTGTCGATGTCCTACAC 

HA-PioB1p 57 AGCGTAGTCTGGAACGTCGTATGGGTACGATCCTCTCCAT

TTCGCGTTGAGCGAGAC 

HA-PioB2 28 GGACTAGTTCGACGACGAAGGCTTCTAT 

HA-PioB2p 57 AGAGGATCGTACCCATACGACGTTCCAGACTACGCTTGA

GCGGCGGCGGCGGCGCCA 

HA-PioC1 28 GGACTAGTGCCTGAAGAAGAGCAACACC 

HA-PioC1p 57 AGCGTAGTCTGGAACGTCGTATGGGTACGATCCTCTTGCC

TTGCCGGCGTAGAGGCG 

HA-PioC2 28 GGACTAGTTCAGTTCATGTGCCAGCATC 

HA-PioC2p 57 AGAGGATCGTACCCATACGACGTTCCAGACTACGCTTAA

CGCGGCTTTGATCACGTC 

3HA-PioA1-

Hind 

28 GGAAGCTTATGGTTCGACCGAGAACTTG 

3HA-PioA1p-

BamH 

29 GGGGATCCTCGGTGCCAGCGCGATCCGGA 

3HA2-PioA2-

Spe 

29 GGACTAGTTAGCTCGGAGCCGGGGACAGC 

3HA-PioA2p-

Xba 

28 GGTCTAGACATCGTGGTGTACTGGAACG 

3HA-PioA1-Xba 28 GGTCTAGAATGGTTCGACCGAGAACTTG 

* HA linker regions in the primers for crossover PCR are underlined and restriction sites 

are shown in bold. 

 

Construction of HA-tag on C-terminus of pioA, pioB and pioC.  All primer sequences 

used in making the constructs are listed in Table A.2.   In-frame hemagglutinin (HA) tags 

on the C-terminal end (right before the stop codon) of pioA, pioB and pioC were 

engineered to the chromosome of the native strain of TIE-1 by double recombination 

events using suicide vectors followed by sacB selection.  The HA-tagged constructs were 

made by overlap extension PCR.  Briefly, ~1 kb DNA was amplified at the 5’- direction 
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near of the C-terminus of pioA just prior to the stop codon, using primers HA-PioA1 and 

HA-PioA1p.  The HA tag was engineered on the reverse primer, HA-PioA1p.  Similarly, 

a ~1 kb region downstream of pioA starting from the stop codon was amplified using 

primers HA-PioA2 and HA-PioA2p.  The two resulting PCR products were then used as 

templates for another round of PCR with primers HA-PioA1 and HA-PioA2p.  The final 

PCR product was cloned into the SpeI sites of pJQ200sk (39), a suicide vector encoding 

gentamicin resistance and sucrose sensitivity, to generate pPioA-HA.  pPioA-HA was 

transformed into E. coli WM3064 by heat shock and introduced into TIE-1 by 

conjugative matings (13).  Single recombination events were selected on PM agar (20) 

containing 10 mM succinate and 400 μg/ml of gentamicin.  Colonies that had undergone 

a second recombination event were selected for growth on PM agar containing 10 mM 

succinate and 10% (w/v) sucrose.  The resulting HA-tagged clone, PioA-HA, was 

checked by sequencing.  Clones PioB-HA and PioC-HA were made in a similar manner 

with primers HA-PioB1, HA-PioB1p, HA-PioB2 and HA-PioB2p for clone PioB-HA, 

primers PioC1, HA-PioC1p, HA-PioC2 and HA-PioC2p for clone PioC-HA, 

respectively.  

 

Construction of 3xHA-tag on the C-terminus of pioA.  The length of a primer 

containing 3xHA (three epitopes of HA peptide) exceeds what is feasible by direct PCR 

amplification.   For making this construct, the PCR product amplified from TIE-1 

genomic DNA using primers 3HA-PioA1-Hind and 3HA-PioA1p-BamH (Table A.2) and 

cloning vector pLARS were digested by HindIII and BamHI restriction enzymes and then 
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ligated with T4 DNA ligase.  A second PCR product was obtained with primers 3HA2-

PioA2-Spe and 3HA-PioA2p-Xba using TIE-1 genomic DNA as template and 

subsequently inserted into the above construct via the corresponding restriction sites SpeI 

and XbaI.  With the resulting plasmid as a PCR template, a second round of PCR was 

done with primers 3HA-PioA1-Xba and 3HA-PioA2p-Xba and the resulting PCR product 

was cloned into XbaI sites of vector pJQ200sk (39) to generate plasmid pPioA-3HA.  

Plasmid pPioA-3HA was introduced into TIE-1 to generate strain PioA-3HA following 

the same procedure as described for making clone PioA-HA.  

 

Homogenate fractions.  50 ml of TIE-1 cells grown photoautotrophically on H2 were 

harvested at mid-exponential phase (OD660, ~0.4) by centrifugation at 10,000 g for 15 

minutes.  Cells were washed and resuspended in 3-ml HS Buffer (50 mM HEPES, 20 

mM NaCl, pH 7.0), lysed by four passages through a French Press at 18,000 psi, and 

lysate clarified by centrifugation at 10,000 g for 15 minutes at 4 °C.  Soluble and 

membrane fractions from this clarified cell lysate were obtained by ultracentrifugation at 

200,000 g for 1.5 hours. 

 

Periplasmic fractionation of Rhodobacter sp. SW2.  Periplasmic proteins from SW2 

were obtained by generating spheroplasts, using a lysozyme-EDTA treatment adapted 

from Vasquez-Laslop et al. (44).  Lysozyme hydrolyzes repetitive N-acetylglucosamine-

B-1 and 4-N-acetylmuramic acid bonds present in the bacterial cell wall, and 

ethylenediamine tetracetic acid (EDTA) weakens the cell by binding divalent cations, such 
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as Mg2+ and Ca2+, from the cell envelope and to cause the release of phospholipids and 

protein-lipopolysaccharide complexes needed for membrane stability.  Briefly, 50 ml of 

SW2 cells grown photoautotrophically on H2 to a mid-exponential phase were harvested 

by centrifugation and washed once in TRIS buffer (50 mM Tris-HCl, pH 8.0).  The cell 

pellet was then resuspended in 2 ml of the TRIS buffer containing 0.5 M sucrose.  5 μl of 

50 mM EDTA stock solution and 5 μl of 60 mg/ml of freshly made lysozyme stock 

solution were slowly added into the cell suspension.  The components were mixed by 

gentle pipetting and inversions followed with incubation on ice for 30 minutes.  

Spheroplast formation was periodically checked by microscopy over time.  After 30 

minutes, the suspension was centrifuged at 6,000 g for 15 minutes at 4 °C.  Periplasmic 

proteins collected in the supernatant were concentrated (about five fold v/v) using a 

Microcon centrifugal membrane filter with a 10 kDa cut off (Millipore) before 

electrophoresis.  This concentrated solution was analyzed for alkaline phosphatase 

activity and heme-containing proteins (see below).  

 

Periplasmic fractionation of TIE-1.  General protocols attempted for obtaining the 

periplasmic fraction of TIE-1 have not been successful.  Subcellular fractionation 

methods for R. palustris strain No. 7 was previously published in one study (38) which 

modified protocols from previous studies on Rhodobacter spheroides and E. coli (42, 46), 

but could not be reproduced with R. palustris TIE-1 or R. palustris CGA010 in our hands.  

In the literature, two methods described for obtaining periplasmic proteins through 
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spheroplast formation for Gram-negative cells include a treatment with lysozyme-EDTA 

and a treatment with osmotic shock (11, 44).  The lysozyme-EDTA treatment protocol is 

similar to what is described above for periplasmic fraction of SW2, with variations of 

lysozyme and EDTA concentrations and incubation temperature and time (17, 19, 40, 41, 

44, 46).  Following the basic principle of the protocol, the harshest condition tested for 

TIE-1 used lysozyme at 1 mg/ml and EDTA at 10 mM, incubated overnight at 37 °C.  

The majority of the cells still remained intact when checked by microscopy and the 

protein concentration of the supernatant after centrifugation at 6,000 g for 15 minutes was 

below the detection limit using the Bradford assay. 

In an attempt to lyse cells by osmotic shock treatment, several published protocols 

were tested with variations in EDTA concentration, incubation temperature, and 

incubation time (6, 28, 35, 42).  Briefly, cells washed in 30 mM Tris-HCl, pH 7.5 were 

resuspended in the osmotic buffer (30 mM Tris-HCl, pH 7.5, 20% sucrose, 10 mM 

EDTA).  After 10 or 30 minute incubations on ice or at room temperature, cells were 

pelleted by centrifugation for 20 minutes at 6,000 g at 4 °C and gently resuspended in 1 

ml of ice-cold water or 1 ml of ice-cold 5 mM MgSO4.  These cells were then incubated 

on ice for 10 minutes or more.  The cell suspension was monitored by microscopy over 

time but no spheroplast formation was observed after one hour of incubation. 

 

Biochemical analysis of proteins.  24 μl of the SW2 periplasm protein solution was 

supplemented with 6 μl of 5x sample buffer (containing DTT) and analyzed by standard 

Laemmli sodium dodecyl sulfate (SDS) electrophoresis using 12% Pre-cast 
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ployacrylamide gels (BioRad) in a BioRad Mini-Protein apparatus.  BioRad Precision 

plus protein standards (dual color) were used as molecular weight markers.  C-type 

cytochrome bands were detected according to the in-gel peroxidase activity assay of 

Francis and Becker (15).  Bands of interest were cut from the heme-stained gels and 

submitted to the Protein/Peptide MicroAnalytical Laboratory/Facility at Caltech for 

LC/MS/MS analysis. 

Alkaline phosphatase activity of the periplasmic fractions from SW2 was tested as 

described with E. coli as a positive control (5, 8).  90 μl of the periplasmic fraction from 

SW2 or E. coli was mixed with 10 μl of freshly prepared p-nitrophenyl phosphate 

(PNPP) solution (0.5 M Tris-HCl, 4% PNPP, 0.5 mM MgCl2, pH 9.0) in a 96 well plate, 

and incubated at room temperature.  The absorbance at 405 nm was followed over time 

with a Synergy HT, Bio-Tek, plate reader (Winooski, VT).   

 

Western blot analysis.  SDS-PAGE gels were transferred to a Immobilon p
SQ 

transmembrane (Millipore) by electrophoresis overnight at 22 volts at 4° C.  The 

membrane was blocked in the TBST solution (20 mM Tris-HCl, pH 8.0 ,125 mM NaCl , 

0.1% Tween 20) containing 5% non-fat dry milk, and washed three times in TBST 

solution for five minutes.  100 μl of primary antibody (rabbit anti-HA antibody, Sigma) 

stock solution was mixed into 50 ml of TBST solution containing 5% non-fat dry milk.  

The primary antibody was bound at room temperature for two hours after which the 

membrane was washed three times in TBST solution for five minutes before binding to 
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the secondary antibody (goat anti-rabbit HPR conjugate, BioRad).  The secondary 

antibody solution was prepared by mixing 25 μl of antibody stock solution into 50 ml of 

TBST solution containing 5% non-fat dry milk.  The secondary antibody was bound for 

one hour at room temperature with gentle shaking and washed three times in TBST 

solution for five minutes for one hour at room temperature on a rocker.  Immobilon 

western chemiluminescent horseradish peroxidase substrate (Millipore) and a BioRad 

imager were used for detection following the manufacture’s instructions.  

 

A.3  RESULTS AND DISCUSSION 

A.3.1   Western blot for detecting HA-tagged Pio proteins   

Among all the TIE-1 clones generated only clone PioC-HA could be detected by 

Western analysis with a HA antibody (Figure A.1).  Separation of the soluble and 

membrane fractions by ultracentrifugation of the clarified cell extract showed that PioC is 

localized in the soluble fraction in H2 grown TIE-1 (Figure A.1).  In future studies, the 

resuspended membrane faction after ultracentrifugation should also be included as a 

negative control in Western analysis.  TIE-1 derivatives containing HA-versions of the 

Pio proteins showed wild-type levels of Fe(II) oxidation activity in the cell suspension 

assay (Figure A.2).  This suggests that the HA-tag did not significantly affect the 

functions of the Pio proteins nor their subcellular locations.  

Proper in-frame HA tag insertions were confirmed in all clones by DNA 

sequencing.  While it is unclear why PioA-HA and PioB-HA clones could not be detected 
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by Western blot analysis, the following explanations are possible:  

1)  Low expression of PioA and PioB in TIE-1 under H2 phototrophy.  As shown 

in Chapter 5, expression of PioA increases during Fe(II) phototrophy as detected through 

heme-staining.  However, it is unclear at this stage whether regulation is at the level of 

transcription, translation or post-translation.  Since the expression of Pio proteins may be 

dependent on Fe(II), it is worthwhile repeating the Western blot with Fe(II) grown or H2 

grown and Fe(II) induced cells of these HA-tagged constructs.   

 

 

 

Figure A.1  Western blot of HA-tagged Pio proteins and subcellular localization of PioC.  

All proteins were extracted from cells grown phototrophically on H2.  Lane 1: soluble 

fraction of PioC-HA (i.e., supernatant fraction after ultracentrifugation);  Lane 2: clarified 

cell extract from PioA-HA;  Lane 3: clarified cell extract from PioB-HA;  Lane 4: 

clarified cell extract from PioA-3HA;  Lane 5: clarified cell extract from PioC-HA.  

Bands of ~10 kDa detected in lane 1 & 5 are probably PioC, but mass spectrometry 

analysis should be done for confirmation.  These results demonstrate that PioC is 

expressed in the soluble fraction of H2 grown TIE-1.  
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  2) The C-terminus of PioA and PioB are not surface exposed in the protein (or 

protein complex) structure formed during cooling and refolding, and therefore, the HA 

tags at these positions are not likely to be detected by the antibody. Although protein 

samples were boiled at 95 °C for 5 to 10 minutes for complete denaturation before 

loading on the gel, protein refolding might have occurred during the cooling process.  If 

this is the case, other denaturing conditions could be tested, e.g.,  using urea instead of 

heating for protein denaturation (4).   

 

Figure A.2  Endpoint measurements for testing the Fe(II) oxidation activity of the HA 

tagged clones made in the study through cell suspension assay using wild type TIE-1 and 

pio operon deletion mutant TIE-3 as positive and negative controls, respectively.  About 

4X concentrated H2 grown cultures (OD660 nm ~0.3) were used for this assay and cells 

were normalized by OD.  Measurements shown were made after incubation for two hours 

under light. 

 

3) Other technical reasons that could have accounted for the failure to detect 

PioA-HA and PioB-HA on the Western include low detection sensitivity of the Western 

blot, which could be improved by obtaining more concentrated protein samples, 

prolonging antibody incubation time, and modifying the stringency of the washing steps, 
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such as omitting Tween 20 from the TBST buffer. 

Because PioA-HA and PioB-HA constructs could not be detected by Western 

analysis, a variant of PioA was constructed with three epitopes of the HA tag fused to the 

C-terminal end of the protein.  This PioA-3HA construct was also not detected by 

Western analysis (Figure A.1).  An N-terminal fusion to PioA and B could be tested in 

the future.  However, such a construct could interfere with the transport of these proteins 

due to the presence of the putative signal sequences on the N-termini.  For PioA, two 

putative signal sequence cleavage sites were predicted: one between residues 32 and 33 

and the other between residues 40 and 41.  Construction of a 3xHA tagged PioA in both 

locations is underway.  

 To overcome potential issue of low expression, future studies could employ 

immunogold labeling of the HA-tagged clones.  In this method, the secondary antibody is 

conjugated with 10 nm gold particles, and whole cells or cry-ultrathin sections of cells 

are visualized using transmission electron microscopy (TEM) (18).  Alternatively, after 

we have purified PioA and PioB, we could raise antibodies directly against these proteins 

or their peptide fragments.  

 

A.3.2   Heme staining of periplasmic fraction of SW2 

  Because SW2 is not amenable for genetic analysis, we did not construct 

fusion proteins for Western blot analysis.  However, the predicted Fe(II) oxidoreductase 

in SW2, FoxE, is a c-type cytochrome (see Appendix A) which can be detected by heme-

staining (15).  To determine the cellular localization of FoxE, the periplasmic fraction 
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from H2 grown SW2 cells was isolated by spheroplast formation.  Alkaline phosphatase 

activity was assayed as a periplasmic marker protein, with the periplasmic fraction from 

E. coli serving as a positive control (Figure A.3).  In future studies a cytoplasmic marker 

protein such as malate dehydrogenase, should also be included in future studies (1, 11).  

Periplasmic proteins from SW2 were separated by SDS-PAGE followed with an in-gel 

heme-peroxidase activity stain, which revealed the presence of a ~25 kDa heme-

containing protein (Figure A.4), similar to the reported size for FoxE (see Chapter 6).  

This band was excised and analyzed by tandem mass spectrometry analysis.  One peptide 

(sequence: VIIPGDPEASK) identified from this band corresponded to FoxE, but ideally, 

two or three peptides are needed for definitive identification.  In summary, detection of 

FoxE in the periplasmic fraction of H2-grown SW2 cells is consistent with our prediction.  

Future work should include more rigorous controls for subcellular fractionation and also 

optimize the fractionation protocol to obtain pure periplasmic proteins at high 

concentrations for mass spectrometry analysis. 
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Figure A.3  Alkaline phosphatase activity (measured by the increase in absorbance at 

405 nm) was tested on the periplasmic fraction (~400 μg/ml) of H2 grown SW2, using the 

periplasmic fraction from E. coli as a positive control. 

 

 

Figure A.4  Detection of FoxE in the periplasmic fraction of H2 grown SW2 by heme 

staining of SDS-PAGE.  The ~25 kDa weak band is similar to the reported size for FoxE, 

and is partially confirmed by mass spectrometry analysis (see text). 

 



 

 

 

178

A.3.3   Alternative methods for spheroplast formation in R. palustris   

  It is not clear what is responsible for the inert nature of the R. palustris cell 

wall that makes it resistant to cell lysis and fractionation.  Similar levels of resistance to 

standard lysis and fractionation treatments was observed in both TIE-1 and CGA010, 

suggesting a general phenomenon for R. palustris.  However, the difficulty encountered 

here with R. palustris is not unique.  Resistance to lysozyme-EDTA treatment was also 

observed with the fermenting Gram-negative bacterium Brevibacterium ketosoreductum 

(45), suggesting that the resistance mechanism of R. palustris to lysozyme is unlikely to 

be due to the presence of laminar intracytoplasmic membranes of phototrophic grown 

cells.  

 In depth understanding of the R. palustris cell wall structure will be necessary to 

develop protocols for efficient spheroplast formation.  Many unknown factors could be 

responsible for the recalcitrant nature of R. palustris cell walls.  An example of the 

complex nature of cell wall structure is illustrated by a study examining the basis of 

chlorhexidine resistance in Pseudomonas.   The nitrogen and phosphorus content of the 

cell walls was compared to elucidate the nature of chlorhexidine resistance (12).  The 

chlorhexidine resistant strain of Pseudomonas contained 8-fold less lipopolysaccharide 

phosphorus than a chlorhexidine sensitive strain of P. aeruginosa.  Since the 

antimicrobial effects of chlorhexidine are associated with the attraction between the 

positively charged antibiotic with the negatively charged bacterial cells, the increase in 

chlorhexidine resistance is likely due to a decrease in surface charge from fewer 

phosphorus groups (12).  Until information on the cell wall composition is available for 
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R. palustris, it is still prudent to assay various methods already developed for making 

spheroplasts in other organisms.  Below is a list of conditions one may consider. 

 1) Although the addition of sucrose in the lysozyme-EDTA treatment was reported 

to accelerate and stabilize spheroplast formation in E. coli and other bacteria (29), this 

does not always hold true in other systems.  For example, in Acetobacter melanogenus 

and Gluconobacter oxydans, the presence of sucrose in lysozyme-EDTA solution 

inhibited spheroplast formation (45).  Further, a heat shock treatment following the 

lysozyme-EDTA treatment was reported to achieve more efficient spheroplast formation 

in E. coli (30).  In addition, varying salt concentrations in the lysis solution or pre-

treatment of cells in salt solution may also facilitate spheroplast formation (36).  

 2) Various lysis reagents that “soften” the cell wall are reported to be useful in 

spheroplast formation.  One example is polymyxin B, a peptide antibiotic particularly 

active against gram-negative bacteria, which damages the outer membrane and allows 

lysozyme to reach and digest the cell wall (16).  Short exposure to polymixn B followed 

by lysozyme incubation produced E. coli spheroplasts efficiently (10).  Chloroform has 

also been used to release periplasmic proteins in E. coli (2), and because of the relative 

ease of this procedure, it should be explored in R. palustris.  In case chloroform alone is 

not effective, low concentrations of SDS may also be added.  In a trial run with TIE-1, 

one drop of 0.1% SDS and one drop of chloroform were added into 1 ml of ~5X 

concentrated H2 grown TIE-1 cells, and gently vortexed for 5 seconds.  This procedure 

did not yield spheroplasts.  However, optimization of this protocol by varying SDS, 

chloroform, or cell concentration might still be useful.  Following the same logic, 1X 
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BugBuster reagent with recombinant lysozyme (EMD Biosciences, Madison, WI) was 

tested and yielded promising preliminary results.  50 ml of H2 grown TIE-1 cells were 

harvested and washed in 50 mM Tris-HCl, pH 8.0, before the cell pellet was resuspended 

in the 1X BugBuster solution and incubated at room temperature.  A fraction (10%-20%) 

of cells transformed into spherical shapes after incubation for 30 minutes. 

 3) Other reagents have been supplied in the growth medium or fractionation 

solution in order to facilitate spheroplast formation of bacteria with stronger/thicker cell 

walls.  For example, the addition of L-glycine to the growth medium of Mycobacteium 

smegmatis was required for spheroplasts formation (43).  Many efforts have been made in 

the cell wall disruption of gram-positive bacteria due to their importance in the food 

industry and clinical applications (31).  Supplementing 10 mM L-threonine (weakens cell 

wall cross-links) or 10 mM L-lysine (mechanism of action currently unknown) in the 

growth medium increases sensitivity to lysozyme treatment in Streptocooci mutans (9).  

Moreover, mutanolysin is generally used to liberate reducing sugars and free amino acids 

from the peptidoglycan layers of the cell wall.  Pre-digestion with mutanolysin (120 

U/ml) for one hour at 37 °C followed by a half hour treatment with lysozyme led to 

spheroplast formation in Rhodococcus species (3).   

4) It is generally considered that stationary-phase cells are more resistant to 

lysozyme than those collected from actively growing cultures, due to increases in cell 

wall O-acetyl groups and decreases in N-acetyl groups as cells age (7).  However, the 

presence of polyethylene glycol appears to improve breakage even for stationary-phase 

cells of Lactobacillus and Streptococcus (9).  
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Appendix B 

Overexpression and Purification of PioC in E. coli 

 

B.1  INTRODUCTION 

Rhodopseudomonas palustris TIE-1 uses Fe(II) as an electron donor for 

photoautotrophic growth.  Genetic studies show that a putative high redox potential iron-

sulfur protein (HiPIP), encoded by gene pioC, last gene in the pio operon, is important in 

phototrophic Fe(II) oxidation (18).  The first gene in this operon, pioA, encodes a putative 

decaheme c-type cytochrome that is up-regulated during Fe(II) phototrophy.  An in-frame 

deletion of pioC resulted in a decrease in phototrophic Fe(II) oxidation activity in the cell 

suspension assay and the inability to grow on Fe(II), while growth on other substrates 

was not affected.  Protein sequence analysis predicts that pioC encodes a putative HiPIP 

94 amino acids in length, containing an iron-sulfur binding site, a twin-arginine 

translocation (TAT) signal sequence, and a cleavage site between residues 37 and 38.  

Based on observations that [1] no hydrophobic regions are predicted other than the signal 

peptide, [2] the presence of the TAT signal sequence at the N-terminus, and [3] detection 

of PioC in the soluble fraction of crude cell extracts of TIE-1 grown photoautotrophically 

on H2, we predict that PioC resides in the periplasmic space (see appendix A for more 

detail).  Comparison of PioC to sequences in the NCBI sequence database revealed 

similarity to bacterial iron-sulfur proteins, with greatest homology occurring near the 

iron-sulfur cluster binding site.  PioC is 47% identical and 52% similar over 48 amino 
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acids to the HiPIP from Rhodophiala globiformis (2), and is 44% identical and 53% 

similar over 51 amino acids to a putative HiPIP iron oxidoreductase, encoded by gene 

iro, involved in aerobic Fe(II) oxidation from Acidithiobacillus ferrooxidans (9, 19).  

HiPIPs are soluble electron carrier proteins containing a [4Fe-4S] cluster with 

redox potentials mostly ranging from 260-450 mV, albeit sometimes a low as 50-100 

mV.  They are present in great abundance in the periplasmic space in both photosynthetic 

and non-photosynthetic Proteobacteria (5, 6) including a variety of purple sulfur and 

purple non-sulfur bacteria (32, 36).  With divergent primary sequence, the greatest 

homology of HiPIP proteins has the greatest homology near iron-sulfur cluster binding 

site (36). 

Based on relatively high redox potentials, being small soluble proteins localized 

to the periplasmic space, HiPIPs are thought to serve the same functional role as 

cytochrome c2 (redox potentials ranging between 260 and 330 mV) in purple bacteria, 

transferring electrons from the cytochrome bc1 complex to the photosynthetic reaction 

center (RC, with redox potentials of 450-500 mV) to complete the cyclic electron flow (5, 

36) during phototrophic growth.  This prediction is consistent with spectroscopic and 

kinetic evidence showing that HiPIPs can be photooxidized by bacteriochlorophyll in 

whole cells and membrane vesicles (21-24, 33).   Although electron transfer distance and 

free energy may be sufficient to allow electron transfer in vitro, they do not necessarily 

address in vivo cellular chemistry.  For example, the RCs from both Rubrivivax 

gelatinosus and Rhodocyclus tenuis interact with and accept electrons from cytochrome 

c2, HiPIP and horse heart cytochrome c in vitro (29, 30).  However, under physiological 



 

 

 

186

conditions R. gelatinosus only utilizes HiPIP (33) and R. tenuis utilizes HiPIP or 

cytochrome c8 as electron donors, depending on ambient redox potentials present in the 

photoinduced cells (24). 

The functional role of HiPIP in photosynthetic electron transfer in purple bacteria 

is further complicated by the structural difference of the RC within the purple bacteria 

(26). Based on the subunit composition of the RC complexes, RCs are divided into two 

groups including Groups I and II (5).  Both Groups I and II RCs contain three core 

subunits, L, H and M subunits,  but Group II RCs possess an additional c-type 

cytochrome subunit (usually a tetraheme c-type cytochrome) peripherally bound to the 

periplasmic face of the complex.  A combination of several mutagenesis, kinetic, and 

crystal structure studies in Blastochloris viridis and Thermochromatium tepidum have 

demonstrated that under physiological conditions the cytochrome subunit in the Group II 

RC serves as the electron mediator from the soluble electron carriers (such as cytochrome 

c2 and HiPIP) to the RC (10-14, 27).  Biophysical analysis of the Group I RC from  

Rhodobacter sphaeroides co-crystallized with cytochrome c2 (1, 3) have sown that the 

physiological electron donor docked within the proximity of the special pair of the 

chlorophyll molecules of the RC for direct electron transfer (4, 34).  Although HiPIP has 

been shown to function as a mediator between cytochrome bc1 complex and the 

tetraheme c-type cytochrome subunit in Group II RCs (16, 23, 24, 29, 30, 33), to our 

knowledge, the role of HiPIP in group I RC system has not been addressed.  It may 

simply be due to the fact that the commonly studied purple bacteria with Group I RCs, 

such as Rhodobacter sphaeroides, Rhodobacter capsulatus or Rhodospirillum rubrum, do 
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not contain HiPIPs.  

R. palustris, however, contains a Group I RC in which no c-type cytochrome 

subunit is attached to the RC complex (5) and genome analysis predicts the presence of 

both cytochrome c2 and HiPIPs. This bacterium, to our knowledge, is the only 

photosynthetic bacterium containing a Group I reaction center and HiPIP electron carriers 

identified to date (23, 25, 32, 36).  Besides the cytochrome c2 encoded by gene RPA1535 

on the R. palustris CGA009 genome, another homolog of cytochrome c2 (encoded by 

gene RPA3693) is also present.  Furthermore, besides the pioC present in the pio operon, 

the R. palustris CGA009 genome predicts the presence of another gene (RPA3566) that 

also encodes for a putative HiPIP, which, based on genomic organization, seems 

unrelated to the pio operon.  A previous study also revealed the presence of two HiPIPs 

in Rhodospirillum salinarum, however, but no functional analysis has been reported (2).  

In addition to a direct role of HiPIP in cyclic electron transfer, it was found that 

HiPIP could serve as an electron acceptor for a thiosulfate-tetrathionate oxidoreductase in 

Chromatium vinosum (15).  This suggests, in at least some cases, HiPIP can provide 

electrons to the photosystem from an external electron donor.  Following this logic, we 

hypothesize that PioC carries electrons from the Fe(II) oxidoreductase, PioA, to the 

cyclic electron transport chain via RC or cytochrome c2, based on the following reasons:  

1)  Cytochrome c2 is predicted to be present in the R. palustris genome, which can serve 

as the electron carrier from the cytochrome bc1 complex to the reaction center in most 

purple bacteria;  2) PioC is only required for phototrophic growth on Fe(II), but not other 

substrates such as H2 or thiosulfate;  3) The partial defect of Fe(II) oxidation activity 
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observed in the Fe(II) oxidation activity with whole cells can be explained by the 

presence of another putative HiPIP from the R. palustris genome (see Chapter 3).  

However, this model does not rule out the possibility that PioC may have a dual function 

in the cyclic electron flow mediating electron transfer from the cytochrome bc1 complex 

to the RC, interchangeable with cytochrome c2.  Furthermore, the substitution of 

cytochrome c2 by PioC may depend on redox potentials of the external electron donors 

supplied in the growth medium, similar to the system in R. tenuis (24). 

To test our hypothesis that PioC is the electron shuttle between PioA and the RC 

during Fe(II) dependent phototrophic growth of TIE-1 we hope to construct an in vitro 

electron transfer pathway for phototrophic Fe(II) oxidation. In this chapter of my thesis, I 

describe my preliminary work towards purification of PioC.  

 

B.2  MATERIAL AND METHODS 

Bacterial stains, plasmids and growth conditions.  Wild-type Rhodopseudomonas 

palustris TIE-1 was used (17).  E. coli strain BL21 was obtained from Stratagene, TX.  

Over-expression vector pET32h (35) was kindly provided by Dr. Christian Ungermann 

(Osnabrueck, Germany).  TIE-1 was grown at 30 °C under aerobic condition in YP 

medium (0.3% peptone plus 0.3% yeast extract).  E. coli was grown at 37 °C in LB under 

aerobic conditions, and in LB plus 20 mM lactate under anaerobic conditions.  Ampicilin 

(Ap) was used at 100 μg/ml for E. coli. 
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Cloning of pioC   Amplification of pioC was achieved by PCR with forward primer 

(#159) PioC-N-NcoCap (5’-CATGCCATGGGTATGAACGACAAACGCAAC-3’) and 

reverse primer (#160) PioC-C-XhoCap (5’-CCGCTCGAGTTATGCCTTGCCGG 

CGTAGA-3’), using genomic DNA extracted from aerobically grown TIE-1 as template.  

The PCR product was  digested with restriction enzymes NcoI and XhoI and ligated into 

pET32h vector (35) to generate plasmid pET32hPioC.  The ligation product was 

transformed into E. coli strain UQ950 (31) and colonies were selected on LB-Ap agar 

plates.  DNA sequencing of the pET32hPioC insert verified that pioC was successfully 

cloned.  For recombinant expression of PioC, pET32hPioC was then introduced into E. 

coli BL21, which carries the T7 RNA polymerase structural gene under the control of the 

IPTG-inducible lac promoter.  

 

Purification of the recombinant PioC.  One colony of E. coli BL21 carrying the 

pET32hPioC plasmid was picked and grown in 10 ml LB-Ap overnight at 37 °C.  This 10 

ml overnight culture was inoculated into 1 L of LB-Ap.  After incubating under the same 

condition for about 4 hours until the OD (absorbance at 600 nm) reached 0.5-0.6, 1 ml of 

1 M IPTG stock was added into the 1 L culture (final IPTG concentration was 1 mM and 

incubated for an additional 2-hour induction.  Cells were then collected by centrifugation 

at 8,000 g for 20 min at 4 °C, and resuspended in 4 ml of TS buffer (50 mM Tris-HCl, 

0.3 M NaCl, pH 7.0).  60 μl of 5 mg/ml DNase stock was added into the cell suspension 

and incubated for 30 minutes on ice before cells were passed 3 times through a French 

pressure cell at 20,000 psi.  An additional 8 ml of TS buffer was added into the cell lysate 
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to a total volume of 12 ml before the lysate was centrifuged at 10,000 g for 30 minutes to 

remove unbroken cells and cell debris.  The resultant supernatant is called clarified cell 

lysate.   

TALON Superflow metal affinity resin (cobalt based, Clontech) was gently 

stirred before 1 ml slurry solution was taken out, washed three times with filtered TS 

buffer by gentle resuspension and centrifugation at 800 g for three minutes.  For protein 

binding, 1 ml of washed cobalt resin was added into the clarified cell extract in a 15 ml 

conical tube, and incubated at 4 °C for 2 hours with gentle swirling.  The resin was then 

removed by centrifugation at 800 g for 5 minutes, and the supernatant is called “binding 

waste solution”.  The pelleted resin was washed three times with 15 ml of TS buffer 

containing 20 mM imidazole by resuspension, incubated for 10 minutes at 4 °C, and 

centrifuged at 800 g for 5 minutes at 4 °C.  The protein was eluted from the resin with 3 

ml of filtered TS buffer containing 200 mM imidazole followed by incubation at 4 °C for 

10 minutes.  

Because of the presence of the engineered thrombin protease cleavage site in the 

construct, thrombin protease was used to remove the thioredoxin and 6-His tags.   

Different conditions for thrombin protease cleavage were tested by varying incubation 

temperature (room temperature or at 4 °C) and protease concentration (1 to 10 unit per 

100 μg of protein). 

 

B.3  RESULTS AND DISCUSSION 

The entire pioC gene was cloned into the NocI and XhoI sites of pET32h, 
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resulting in a thioredoxin and His tag on the N-terminal end of PioC with a thrombin 

protease cleavage site between the His tag and PioC (Figure B.1).  Because of the 

presence of His tag on the N-terminal of PioC, we expect that the over-expressed PioC in 

E. coli resides in the cytosol, and the putative TAT signal sequence of PioC is not cleaved 

in the purified protein.  In other words, the purified PioC using this construct is probably 

different from the native PioC in R. palustris TIE-1 where the TAT signal sequence is 

cleaved during secretion into the periplasmic space.  A solution for obtaining native PioC 

is to clone the gene from TIE-1 minus the predicted signal sequence.  The signal 

sequence cleavage sit for PioC is predicted to be between amino acid 37 and 38.  

 

 

 

Figure B.1  Illustration of the overexpression construct pET32hPioC (not to scale).  The 

entire pioC gene was cloned into the Noc I and Xho I restriction sites of pET32h, 

resulting in thioredoxin and 6-His tag to the N-terminal end of PioC, with a thrombin 

protease cleavage site in between. 

 

Conditions for the over-expression of PioC in recombinant E. coli cells were 

tested by varying oxygen availability, temperature, and IPTG concentration (Figure B.2).  

Cells grown under different conditions were incubated to an OD of ~ 0.5 before IPTG at 

indicated concentrations was added.  Induction was allowed to proceed for two hours 

before an equal volume of cell cultures (16 μl) were withdrawn and analyzed by SDS-

PAGE (Figure B.2).  Since recombinant E. coli exhibited different growth rates under the 
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conditions tested, we did not necessarily load the same amount of protein in each lane.  In 

IPTG-induced BL21/pET32hPioC, a band of ~25 kDa was detected on SDS-PAGE, in 

contrast to the non-IPTG-induced controls (Figure B.2).  Based on the protein sequence, 

the predicted mass of PioC is ~ 9.9 kDa before cleavage (precursor form) and ~6.2 kDa 

after signal sequence is cleaved (mature form).  The thioredoxin is ~12 kDa, and 

therefore we expect a ~22 kDa over-expression product with our construct.  The ~25 kDa 

product shown in Figure B.2 was confirmed to be PioC by mass spectrometry analysis 

with ~60% coverage of the PioC protein.  These results showed that under all the 

conditions tested, the expression of PioC in the recombinant E. coli is inducible and 

under tight regulatory control.  Qualitatively, the expression of PioC was improved under 

aerobic conditions than anaerobic conditions.  Under aerobic conditions, greater 

expression was observed at 37 °C than at lower temperatures (Figure B.2).  Therefore, we 

chose the following growth and induction conditions for all further experiments: aerobic 

growth at 37 °C and induction with 1 mM IPTG (varying IPTG concentration was not 

tested in this study). Under these conditions, the protein concentration of the final PioC 

eluate was estimated to be 300 μg/ml in a total volume of 3 ml. 
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Figure B.2  Test of induction in the over-expression of PioC (the protein bands of ~25 

kDa) in the recombinant E. coli BL21 under varying growth and induction conditions.  

Upper gel: aerobic conditions in LB-Ap medium.  “--“: no IPTG; “+”: 1 mM IPTG.  Lane 

1: dual color Precision plus protein standards;  Lane 2 & 3: 16 °C;  lane 4 & 5: 25 °C;  

lane 6 & 7: 30 °C;  lane 8 & 9: 37 °C.  Lower gel: anaerobic conditions in LB-Ap 

medium supplemented with 10 mM lactate.  Two temperatures were tested, 16 °C and 25 

°C, respectively, with IPTG concentration at 0, 25, 100 and 1000 μM, respectively. In 

IPTG-induced BL21/pET32hPioC, PioC (proteins bands of ~25 kDa) was detected, in 

contrast to the non-IPTG-induced controls. The best over-expression was obtained under 

aerobic conditions at 37 °C. 
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Figure B.3  Test of thrombin protease cleavage in the purification of PioC.  Left gel: lane 

clear: clarified cell extract; bind: binding waste solution (see text); w1, w2 and w3:  three 

washes with 20 mM of imidazole; ellu: elute with 200 mM of imidazole; 2 hrs, 4 hrs and 

8 hrs: After thrombin protease proceeded for 2, 4 and 8 hours in the cold room at enzyme 

concentration of 1 unit per 100 μg of protein; bf and af: the mixture was loaded on the gel 

before and after passing through the GST column, respectively. These results show that 

the thrombin cleavage works poorly under these conditions, because the protein bands at 

~25 kDa (indicated by black arrows) are expected to be cut into 2 smaller bands with size 

of 10 and 12 kDa, respectively.  

 

Because of the presence of the engineered thrombin protease cleavage site in our 

construct, we were able to use thrombin protease to cleave off the thioredoxin and 6-His 

tag from PioC.  Different conditions for thrombin protease cleavage were tested by 

varying cleavage temperature and enzyme concentration (Figure B.3 and B.4).  Since the 

thrombin protease cleavage site is between PioC and thioredoxin, we expect a ~ 12 kDa 

(thioredoxin) and a ~ 10 kDa (PioC) product after thrombin protease cleavage.  The 

protein mixture eluted from the cobalt column was mixed with of 1 unit of thrombin 

protease per 100 μg of PioC protein at 4° C (Figure B.3). Three milliliter volumes was 

extracted from the mixture after two, four, and eight hours, and individually applied to a 

glutathione
 
S-transferase (GST) chromatography column to separate the cleaved 
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thioredoxin from PioC.   

 

 

Figure B.4  Optimization of thrombin protease cleavage conditions for purification of 

PioC: incubated overnight at room temperature or at 4 °C with varying thrombin protease 

concentration at 0, 1, 4 and 10 units per 100 μg of protein.  The disappearance of ~25 

kDa bands representing PioC plus the thioredoxin tag (indicated by the upper arrow) and 

the appearance of ~10 kDa bands representing PioC by itself (indicated by the lower 

arrow) suggest that the best cleavage can be obtained by at 4°C with thrombin protease at 

10 units per 100 μg of protein. 

 

Protein mixtures before and after GST-mediated separation were examined by 

SDS-PAGE to evaluate the efficiency of protease cleavage (Figure B.3).  Thrombin 

cleavage was relatively poor under the conditions tested, and therefore the GST column 

binding affinity was not clear.  To determine optimal conditions for cleavage a series of 

reactions were performed varying concentrations of protease added from 0 to 10 units per 

100 μg of protein in incubating at room temperature or 4 °C overnight (Figure B.4).  

With prolonged incubation time and increased protease concentration the efficiency of 
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cleavage was greatly improved.  The best cleavage was observed after incubating the 

protein mixture with 10 units of thrombin protease enzyme per 100 μg of protein 

overnight at 4 °C. 

Based on these preliminary results, it seems that over-expression and purification 

of PioC in E. coli is relatively straightforward.  However, additional attention is needed 

in the following areas:   

1) As described in the results section, the purified PioC with this construct is 

likely to yield a PioC precursor with the putative TAT signal sequence attached.  The 

signal sequence can be checked by mass spectrometry analysis of the purified protein.  

Alternatively, expression of PioC in the periplasmic space of E. coli can also be 

examined.  The periplasmic fraction of E. coli can be obtained through spheroplast 

formation by a method of lysozyme-EDTA treatment (7).   

2) Tests need to be done to see if the over-expressed PioC contains the [4Fe-4S] 

cluster.  Because proteins secreted through the TAT pathway do have the cofactors 

assembled and attached to the apoprotein in the cytosol before secretion (20), it is likely 

that the overexpressed PioC will have the Fe-S cluster attached, as observed with 

purification of Iro from A. ferrooxidans (8).  Electron paramagnetic resonance (EPR) 

analysis can be used to confirm the iron sulfur (Fe-S) cofactor in the purified protein (8).  

If we find the purified PioC lacking the Fe-S center, in vitro reconstitution of the Fe-S 

can be achieved (28).   

3) Once the purified protein with the Fe-S cluter is obtained, redox potentials of 

PioC can be measured by cyclic voltammetry, UV/Vis titration, and EPR analysis (21).   
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4) With the purified protein Fe(II) oxidation activity can be measured through 

direct and indirect Fe(II) oxidation activity assays.  Direct oxidation activity assay can be 

done by mixing Fe(II) and oxidized PioC in an anaerobic cuvette and following the 

reduction of PioC spectrophotometrically.  Additionally, we can also test if Fe(II) can be 

oxidized by PioA with PioC as the electron acceptor.  This experiment can be performed 

with purified PioA, or by comparing the rate of Fe(II) oxidation or PioC reduction with 

total cell extract from TIE-1 and the pioA deletion mutant.  A double mutant of pioA and 

pioC should be used to replace the pioA deletion mutant for this experiment if PioC itself 

shows high Fe(II) oxidation activity.   

5) In addition to testing the Fe(II) oxidation activity of PioC, as described in the 

Introduction, the ability to oxidizing cytochrome c2 and/or reducing the RC should be 

examined.  Mixtures of purified cytochrome c2, PioC, and whole cells or membrane 

vesicles containing the RC prepared from TIE-1 can be used for these experiments:  PioC 

is first reduced and combined with oxidized cytochrome c2, and then both the oxidation 

of PioC and reduction of cytochrome c2 can be followed spectrophotometrically.  

Alternatively, reduced PioC can be mixed with whole cells or membrane vesicles 

containing the RC,  and then flash-induced oxidation of PioC or reduction of the RC can 

be followed spectrophotometrically (24).   
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