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Abstract

The physics of quantum wires and quantum dots is investigated theoretically. We de-
velop an analytical formalism for determining the energy eigenstates and bandstructure of
spherical quantum dots and cylindrical quantum wires. The technique is based upon a
reformulation of second order K - P theory in a basis of eigenstates of total angular mo-
mentum. We are led by analysis of quantum wires and dots based upon the InAs-GaSb
material system to propose a novel class of self-doping nanostructures for carrier transport
experiments and possible future application. The polarization dependence of linear optical
absorption and gain spectra in cylindrical quantum wires is calculated. Applicability of the
results derived for cylindrical quantum wires to the case of wires with lower symmetry is
addressed using symmetry group theory.

Fabrication of quantum wires and dots is attempted by several techniques. A method for
fabricating nanometer-scale GaAs wire structures from quantum well material by selective
impurity induced disordering is demonstrated. The technique produces lateral bandgap
modifications on a 100 hm scale, as verified by cathodoluminescence imaging and spec-
troscopy. We demonstrate vapor phase synthesis of nanometer-scale III-V semiconductor
clusters in the 5 to 20 nm diameter regime. Clusters form by homogeneous nucleation from
a non-equilibrium vapor created by the explosive vaporization of a bulk semiconductor fil-
ament in an inert atmosphere. The clusters produced have zincblende crystal structure
and are faceted. The optical absorption spectra of the clusters are suggestive of quantum
confinement effects. A second method of cluster formation utilizes homogeneous nucleation
from volatile metal-organic and hydride precursors to produce nanometer-scale, zincblende

GaAs clusters.
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Chapter 1

Introduction

1.1 Semiconductor structures in the quantum size regime

Progress in semiconductor device fabrication technology in the last two decades has pro-
duced a new field of study in condensed matter physics — the physics of materials in the
quantum size regime. Quantum structures with physical dimensions smaller than the char-
acteristic length scales of several key physical processes exhibit macroscopic behavior gov-
erned by quantum mechanical effects. This “mesoscopic” size scale is distinct from the
microscopic world of atoms, molecules, and elementary particles, because mesoscopic sys-
tems can be engineered. In particular, carrier wavelengths in semiconductors are in the 10
nm range, a range now accessible to semiconductor device fabrication technology. This has
enabled physicists and device engineers to bestow physical reality upon a host of model text-
book quantum mechanics problems. A partial listing of the classic experiments accessible to
semiconductor quantum structures includes the particle-in-a-box “quantum well” problem

(1], the phenomena of resonant tunnelling through double barriers [2], the Aharonov-Bohm



effect [3], and the Kronig-Penney “superlattice”[4,5].

These experiments, in addition to exhibiting quantum phenomena in a strikingly direct
way, have led to new discoveries (e.g., the fractional quantum Hall effect) and useful devices.
One particular device, the quantum well semiconductor laser, is now commercially produced
and is revolutionizing the telecommunications and industrial laser industries. This revolu-
tion has come about as a result of the new technology of confining electrons and holes in

nanometer-thick semiconductor layers.

1.2 Quantum wells

Confinement of carriers to nanometer-thick layers is made possible by the precise layer-by-
layer growth control available in molecular beam epitaxy (MBE) and organometallic vapor
phase epitaxy (OMVPE). In these techniques, crystals are grown at a rate of roughly an
atomic layer per second. Mechanical control of the composition of source materials from
which the crystal grows is easily achieved at this time scale so that the composition of the
crystal may be tailored to sub-nanometer precision.

For several reasons, the GaAs-Al;Ga;_xAs material system is extensively used to fab-
ricate these structures. First, the system is nearly perfectly lattice matched over the entire
alloy system; so misfit dislocations do not develop in the growth of heterojunctions between
GaAs and AlyGaij_xAs. Second, because GaAs is a direct bandgap semiconductor, elec-
trons and holes injected into a GaAs structure can recombine and radiate light with high
efficiency. The bandgap of AlyGa;_xAs increases with the aluminum mole fraction, x, in
the alloy. This enables one-dimensional potential wells to be formed by sandwiching a thin

layer of GaAs between slabs of Al,Gaj_xAs barrier material, as in Fig. 1.1(a). The GaAs
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Figure 1.1: Quantum wells, wires and dots. The quantum well, (a), consists of a thin
planar slab of low bandgap material, such as GaAs, sandwiched between barrier layers of
a higher bandgap material such as Al,Ga;_xAs. These structures are grown by MBE or
OMVPE. Quantum wires and quantum dots, labeled (b) and (c), respectively, are the two-
and three-dimensional analogues of the quantum well, in which carriers are confined in the
lateral dimensions. The theoretical properties and the experimental effort to fabricate these

structures is the subject of this thesis.



wells confine both electrons and holes because at a GaAs-Al;Ga;_xAs heterojunction, only
60% of the bandgap difference is offset by the conduction band. This is shown schematically
at the top of Figure 1.2. Carriers confined in the GaAs wells occupy discrete energy levels
familiar from the particle-in-a-box problem of quantum mechanics. Carrier energies are
shifted up from the bulk band edges by a quantity related to the thickness of the well, L,,
the effective mass, m*, of the carriers, and the particular state, n, occupied in the well. The
allowed energies of a carrier in GaAs well relative to the bulk GaAs band edges are given

approximately by

h? 2 212
E:En+2—n;;(kx+ky) , (1.1)
where
h? nr,
E, = T (f;) . (1.2)

Here the effective mass, m*, depends on the carrier type (electron, heavy hole, light hole,
etc.). The first term in Eq.( 1.1) represents the confinement energy. This is the formula
for a particle confined in an infinitely deep square potential well; the effect of finite well
depth is easily incorporated. The second term arises from the fact that carriers remain free
to move about in the plane of the well, so that the confined electrons and holes behave
as two-dimensional particles. In this term, kx and ky, are the in-plane wavevectors of the
carriers. In the quantum well, the bandstructure of the bulk semiconductor is split into a
series of quasi-two-dimensional subbands each corresponding to a confined state in the well.
The energy expressions above accurately describe the electrons in GaAs. For the holes,
the expressions apply at zone-center (ky = ky = 0) but are increasingly inaccurate as the
in-plane wavevector increases from zero. This inaccuracy is due to band-coupling effects

neglected in this simple model.



The quasi-two-dimensional nature of the carriers has great practical significance because
of its effect on the density of states (DOS) and optical properties of a quantum well. The
optical properties are affected because absorption and gain are proportional to the DQS.
The DOS of a quantum well is step-like, in contrast to the gradual VE dependence of
the bulk. This is shown in Figure 1.2. Thus, when carriers are injected into a quantum
well, higher values of optical gain occur for a given carrier density than in bulk material.
As a result, semiconductor lasers employing quantum well gain media have yielded lower
threshold currents [6], higher modulation bandwidths [7] and far higher power levels than

possible in bulk material [8].

1.3 Quantum wires and quantum dots

Quantum wires and quantum dots are hypothetical quantum well structures confined later-
ally in a second or third dimension, respectively. These structures are shown in Figure 1.1.
The advances made possible by planar quantum well fabrication technology suggest that if
we can create quantum wires and dots, further improvements in semiconductor laser per-
formance is possible. Carriers confined in a quantum wire behave one-dimensionally and, in
a one-band model, are thought to have a DOS proportional to 71§ Thus the DOS for the
quantum wire Is singular at the subband edges. The states in a quantum dot are entirely
spatially quantized, so the ideal DOS should be a set of Dirac delta functions. Because of
the singularities in the quantum dot and quantum wire DOS, sevéral significant devi;e im-
provements may ensue if these structures are successfully fabricated and incorporated into
semiconductor lasers. Predicted improvements include reduced linewidth, lower threshold

current, and higher modulation bandwidth [9]-[11]. Some of these predictions have been
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Figure 1.2: The physics of quantum confinement. The DOS of carriers is shown for the bulk
and for quantum wells, wires, and dots. The allowed states in a quantum dot are entirely
discrete so that its ideal DOS is a set of Dirac delta functions. The quantum dot DQOS in

the figure is drawn to indicate a slight broadening due to fabricational inhomogeneities.



realized in simulation experiments in which quantum well lasers were subjected to high

magnetic fields [12].

1.4 Outline of the thesis

This thesis can be naturally divided into two halves, representing theoretical and experi-
mental efforts to understand the properties of semiconductor quantum wires and quantum
dots. Chapters 2 - 4 form a relatively self-contained unit describing the theoretical work.
Chapter 2 contains the formulation of an analytical technique for studying the effect of
lateral confinement on coupled band systems. Applications of this theory are described
in chapters 3 and 4. In chapters 5 - 7, experimental efforts to fabricate and characterize
quantum wires and quantum dots by various means are presented.

Chapter 2 presents a new formalism for determining energy eigenstates of spherical
quantum dots and cylindrical quantum wires in the multiple band envelope function ap-
proximation. The technique is based upon a reformulation of the K - P theory in a basis of
eigenstates of total angular momentum. The bound states are studied for the conduction
band and the coupled light and heavy holes as a function of radius for the GaAs-Al,Gaj_xAs
quantum dot. Quantum wire valence subband dispersion and effective masses are deter-
mined for GaAs-Al,Gaj_yxAs wires of several radii. We find that band-coupling, which is
ignored in the one-band analyses such as that employed in Egs.( 1.1- 1.2), is critical to
understanding the structure of the valence subbands in quantum wires and dots. This is in
distinct contrast to the case of the quantum well, where light- and heavy- hole bands are
decoupled at zone-center. The effective masses of the quantum wire valence subbands are

determined by inter-subband coupling. These masses are found to be independent of wire



radius in an infinite well model, but strongly dependent on wire radius for a finite well, in
which the mass of the highest energy valence subband is as low as 0.16 m,. I first published
the work presented in this chapter in Refs. [13,14].

The techniques developed in chapter 2 for studying quantum confinement in coupled
band systems are applied to the InAs-GaSb material system in chapter 3. The unusual
type-II, broken gap-band line-up in this system allows charge transfer across the InAs-GaSb
interfaces. The analysis, which must account for coupling between the valence and conduc-
tion bands, shows that appropriately fabricated nanostructures that contain high free carrier
densities are possible without intentional impurity doping. Quantum dots in this system
should behave as artificial quasi-atoms, with ionization energy and valence determined by
fabricationally determined parameters. Synthetic p-(n-)type semiconductors may therefore
be formed from arrays of InAs(GaSb) quantum dots embedded in GaSb(InAs). InAs-GaSb
quantum wires are also investigated and predicted to exhibit semimetallic behavior. We
have previously published this study in Ref.[15].

In chapter 3, the analysis of polarization dependence of the absorption and gain spectra
in cylindrical quantum wires using the results of chapter 2 is reported. This work, which we
have presented in Refs.[16] - [17], was the first analysis of the optical properties of quantum
wires that included band coupling effects. Contrary to assumptions employed in previous
studies, the valence states involved in these transitions are a strong admixture of light and
heavy-hole character. Analytical expressions are derived for the polarization dependence
of optical matrix elements, and model optical absorption and gain spectra are calculated.
Applicability of the results derived for cylindrical quantum wires to the case of wires with

lower symmetry is discussed using group theory. It is shown that the optical polarization



anisotropies predicted for cylindrical quantum wires will be qualitatively present in quantum
wires of lower symmetry, but that lateral inter-wire coupling in quantum wire arrays will
reduce these anisotropies.

In chapter 5 the reader will encounter the first of three chapters describing the ex-
perimental work. A logical approach to the synthesis of quantum wires and dots would
be to pattern, at a nanometer-scale, prefabricated quantum well material. Structures in
the 10 nm size range should be sufficient to observe effects of lateral confinement even at
room temperature. Unfortunately, existing technologies for creating the necessary lateral
confinement are unsatisfactory for a variety of reasons. The pattern generation problem
at the nanometer-scale has largely been solved by electron-beam lithography or focussed
lon-beam lithography and conventional liftoff procedures. Pattern transfer, however, has
been more challenging. Anisotropic etch techniques such as reactive ion etching or ion
beam assisted etching have been employed to create nanometer-scale mesa structures with
embedded quantum wells [18]-[21]. Although the lateral dimensions of the wire and dot
structures fabricated in this fashion are in the necessary 10 nm size range, the anisotropic
etching step creates a damaged semiconductor surface [22]. Thus, the structures produced
have extremely low radiative recombination efficiency. Such structures, although useful for
quantum transport experiments in which confinement of only one carrier type is necessary,
are useless as quantum sized structures for photonics applications.

An alternate approach to quantum sized structure fabrication is developed in chapter
5. To circumvent the problem of damaged free surfaces, this method utilizes a selectively
masked shallow zinc impurity diffusion to locally disorder quantum well material. Strips

of less disordered quantum well material are left behind. Cathodoluminescence spectra of
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these strips show a systematic blue shift of luminescence as the width of the diffusion mask
is reduced in the range from 500 nm to 100 nm. Additionally, we have observed blue shifted
luminescence from individual wires demonstrating that the technique can be used to create
100 nm scale lateral bandgap modulation. Unfortunately, considering the size of the wires
produced, the observed luminescence peak blue shifts are most likely the result of diffusion
of aluminum into the quantum well strips, rather than a quantum size effect. This work
has been published in Ref. [23].

A very different approach to the fabrication of quantum dots is adopted in the experi-
ments described in chapters 6 and 7. In these experiments, nanometer-scale II1I-V quantum
dots are fabricated directly by homogeneous nucleation from a nonequilibrium vapor phase.
Chapter 6 describes two related cluster sources that we have demonstrated. In the first
technique, filaments of GaAs or other III-V semiconductors are explosively vaporized in
an inert atmosphere, e.g., Ar or He. A non-equilibrium vapor is generated which homo-
geneously condenses to form stoichiometric, crystalline clusters. Electron micrographs and
diffraction measurements show the clusters to be faceted microcrystallites in the 10 nm
size range with a zincblende structure. The optical extinction of a colloidal suspension of
GaAs clusters differs substantially from that of bulk material in a manner consistent with
a quantum confinement effect. We have previously presented these results in Ref. {24].
In the second technique, GaAs clusters are produced by homogeneous nucleation from a
nonequilibrium vapor produced by pulsed laser ablation from a GaAs target.

The problem of passivating the surfaces of these clusters to create optically active quan-
tum dots with low surface carrier recombination rates is yet to be solved. The issue of

passivation is addressed in more detail in chapter 7. There, a hypothetical experimental
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process is described in which an AlyGa;_xAs passivating layer is to be grown on the surfaces
of GaAs clusters. A hot-wall OMVPE reactor has been designed and constructed to carry
out this experiment and has recently been used successfully to synthesize crystalline GaAs
particles. High resolution transmission electron microscopy studies reveal that under atmo-
spheric OMVPE growth conditions using trimethyl-gallium (TMG) and arsine precursors,
an aerosol of highly faceted single crystal GaAs particles in the 10 to 20 nm range is formed.
The size distribution of the nanometer-scale crystallites can be controlled by variation of
reactant concentration and residence time in the reactor. These results have been published
in Ref.[25]. Preliminary passivation experiments are then described. However, these exper-
iments have only recently been attempted so that this section should be considered in the
spirit of a progress report.

The direction this field will take in the future is uncertain, but it is appropriate to
speculate here. For quantum wires and dots to make an impact on the optoelectronic
technologies, the problems of fabricationally induced inhomogeneities in these structures
will have to be solved. As serial lithographic patterning techniques seem unequal to this
task, it seems clear that a technology must be developed that is capable of massively parallel
production of quantum structures with self-regulated size. Early efforts to grow quantum
wire arrays on vicinal substrates [26] seemed promising, but three years of work have not
solved fundamental problems of terrace width nonuniformity. A structure-size feedback
mechanism is lacking.

The aerosol techniques described in chapters 6-7 for creating nanometer-scale semicon-
ductor clusters are extremely promising because almost everything that was tried, worked.

The aerosol techniques seem to naturally produce quantum size regime clusters with faceted
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surfaces. Our early efforts, based upon lithographic patterning, were characterized by a con-
stant struggle to achieve even 100 nm dimensions. One might speculate that a technique
may be developed in the future that results in clusters with “magic number” sizes [27]. It
is possible that an aerosol or colloidal cluster synthesis process involving an orientationally
selective etch will provide the necessary feedback on cluster geometry and size.

A fascinating aspect of nanometer-scale semiconductor physics is that unexpected phe-
nomena occur at these mesoscopic dimensions. An example of such an unexpected phe-
nomenon is the observation of visible photoluminescence both from porous silicon [28] and
nanometer-sized silicon clusters produced by gas evaporation methods [29]. The mechanism
responsible for these phenomena is still unknown. It seems clear that other surprises await

in this emerging field.
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Chapter 2

Quantum wire and quantum dot

bandstructure

“The more abstract the truth is that you would teach, the more you have to seduce the senses

to it” — Nietzche

2.1 Introduction

The rapid progress of experimental efforts to fabricate quantum wires and quantum dots
(the two- and three-dimensional analogs of the conventional quantum well in zincblende
semiconductors) is a strong impetus to develop theoretical techniques for their study. In
this chapter we present a complete account of a new analytical method for this problem,
first presented by Sercel and Vahala in Refs. [1,2]. We show how to determine simple ex-
pressions for eigenstates and eigenenergies of the spherical quantum dot and the cylindrical

quantum wire, rigorously incorporating band coupling effects, through simple dispersion
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relations accessible to experimentalists, in contrast to complex numerical procedures previ-
ously required.

We begin in Sec. 2.2 with a review of the conventional approaches to the calculation
of states in heterostructures, intending to show the shortcomings of existing techniques for
studying quantum wires and dots so as to motivate the rest of the discussion. We find in
Sec. 2.3 that the analysis of spherical quantum dots and cylindrical quantum wires in the
multiband envelope function approximation is simplified due to the high symmetry of these
structures and the separable nature of their heterostructure potentials. This simplification is
made possible by the observation, originally made in the context of the theory of acceptors,
that total angular momentum, defined in section 2.4, commutes with the Hamiltonian in the
spherical bandstructure approximation [3,4,5]. We therefore proceed, in Secs. 2.4 and 2.6, to
develop the K -P bandstructure Hamiltonian in representations appropriate to the quantum
dot and quantum wire, respectively, based on the eigenstates of this operator. Using the
bulk crystal eigenstates that arise in these new repesentations, we construct eigenstates of
the spherical quantum dot and cylindrical quantum wire in a piecewise continuous fashion
across the heterostructure interface in Secs. 2.5 and 2.7. This leads naturally to exact
solutions for the bound states. Representative calculations are performed on the coupled
conduction and valence bands in quantum dots and wires to illustrate application of the

formalism.
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2.2 Conventional techniques for studying quantum confine-
ment effects

Prior to the introduction of our technique, theoretical analyses of conduction and valence
band states in quantum wires and dots employed either the simple one band effective mass
analysis used initially in this field, or computational approaches based on the standard
multiband envelope function theory. The former approach, while of great value in the
study of conduction band states, breaks down fundamentally in the study of the valence
bands as well as the conduction band in narrow gap semiconductors. Studies which use
this technique to calculate optical transition matrix elements and gain [6,7], and exciton
states [8]-[10] entirely neglect band-coupling. This effect, which determines the valence
subband structure in quantum wells [11], will be shown here to be even more important in
quantum dots and quantum wires. In chapter 4, band-coupling will be shown to determine
the polarization dependent optical transition matrix elements in quantum wires.

The latter approach, standard multiband envelope function theory, has been applied to
the study of confinement in quantum wires in an effort to correct this flaw. However, the
calculations that have been performed, while including band-coupling effects, have certain
other drawbacks, the foremost of which is mathematical complexity. The problem consists
mathematically of a set of coupled, simultaneous, second-order partial differential equations,
one for each band included in the analysis, to be solved for envelope functions in conjunction
with appropriate boundary conditions. Even the simpler problem of the valence subband
dispersion in a quantum well has an analytical solution only in the approximation of an

infinite potential barrier [11]. A more realistic model of the quantum well, with finite band
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Figure 2.1: Quantum wells, quantum wires and quantum dots. The cube on the left rep-
resents bulk semiconductor. The drawings labeled a), b), and c) represent quantum well,

quantum wire and quantum dot structures, respectively, with planar boundaries.

discontinuities, requires numerical solution.

The quantum wire and quantum dot problems are more complicated than the quantum
well (which is essentially a one-dimensional potential problem), because these structures
are multidimensional. This is depicted in Figure 2.1, which shows a geometrical model of
the quantum wire and quantum dot employed in much of the work that has been done in
this field [12]-[14]. In analogy with the conventional quantum well, there is a well region
of low bandgap material with square or rectangular cross-sections imbedded in a higher
bandgap barrier region, so that the structures have planar interfaces. However, the finite
heterostructure potential is non-separable in this case, a serious complication even in the
simple one-band problem. As such, workers studying quantum wires frequently resort to the

use of infinite well barriers to simplify the problem mathematically [13] — an approach which
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can cause certain interesting physical effects to be overlooked [15,16], while still leaving a
complex problem. Other workers have retained finite barriers in their model, employing
approximation methods [12], or more computationally intensive approaches [14,17]. While
these studies are valuable, the relationship between the physics of the structures and fun-
damental parameters is therefore somewhat obscured, a quality which reduces usefulness to
experimentalists and device engineers.

An alternate approach is to use a model characterized by separable finite potentials,
as in the cylindrical quantum wire and the spherical quantum dot depicted in Figure 2.2.
These high symmetry geometries greatly simplify the mathematics of the problem to be
solved, so that an analytical solution might be expected, while retaining the fundamental
features of the problem: namely, two- and three-dimensional quantum confinement, with
finite well depths. Furthermore, the cylindrical and spherical configurations are reason-
able approximations to actual quantum wire and quantum dot nanostructure geometries
which lack the planar interfaces characteristic of the conventional quantum well [18]-[21].
These geometries have therefore been used frequently in one-band calculations [10,15,16].
Additionally, valence band states in quantum wire and dots with these geometries have
been studied in the infinite well approximation by an elegant coupled band technique which
is specific to the holes [22,23]. In the next section, we will develop a general formalism
for incorporating band-coupling effects among the conduction and valence bands in quan-
tum dots and wires, building upon simplifying techniques originally developed for another

centrosymmetric problem, that of charged impurities.
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Spherical Quantum Dot:

¢

Cylindrical Quantum Wire:

Figure 2.2: A cylindrical quantum wire and a spherical quantum dot. The drawings to
the left represent the structures, those to the right represent the confining potential as a
function of the radial coordinate in each case. The well depth, Vy in the figure, represents

a discontinuity of the band edges across the heterostructure interface.
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2.3 The envelope function method in centrosymmetric prob-
lems

The starting point of the envelope function techniques which have been used so effectively
in the study of quantum wells and Coulombic impurities is the K-P theory of bandstructure
[24]-[27]. The technique begins with the Bloch form for the energy eigenstates of a periodic
potential,

¥, = uL(F) ExpliK -1, (2.1)

where u;.{(i") has the periodicity of the crystal lattice and j is a band index. At the band
edges, these functions are characterized by symmetry arguments as eigenstates |J,J,) of an
angular momentum J, which we shall refer to as Bloch angular momentum. These are given
for the conduction and valence bands in the Appendix at the end of this chapter. Using
these functions as a basis, one can develop a representation H(K) for the Hamiltonian
governing the conduction and valence bands ( such as that given in the Appgndix, Table
2.5).

To find heterostructure or impurity states, a potential V() modeling the problem is

added to the Hamiltonian. A solution is assumed of the form

v =3 13,3,) Fis(5), (2.2)

3,1,
where F is an envelope function which replaces the plane waves of the perfect periodic
crystal, and the sum may include conduction and valence bands. K is replaced by —ihV in

the Hamiltonian H (K), creating a differential operator which acts on the envelope functions.
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We are left with an effective envelope Schroedinger equation [11,26,27],

Y _[Hij(—ihV) + V()] Fj() = EF;(D). (2.3)

J

where we use the simplified notation 1,j in place of angular momentum quantum numbers, to
represent band indices. In conjunction with appropriate boundary conditions this coupled
set of equations is solved for the envelope functions.

Extensive work done on the Coulomb impurity problem for degenerate valence bands
has established several important results applicable to our problem. The first is that, in
most materials of interest (with the notable exception of silicon) it is acceptable, at least
as a first order approximation, to replace anisotropic terms in the K - P Hamiltonian by
a suitable spherical average, neglecting “warping” terms of cubic symmetry [4,5]. In such
a spherical approximation, the sum of the angular momenta, T of the band-edge Bloch
functions and L of the envelope functions, is a constant of the motion [3,4,5]. We call
this conserved operator the total angular momentum, F = J+ L. Based on this result,
Baldereschi and Lipari [4,5] utilized an analogy between L and J and the L-S coupling
scheme used in atomic physics to greatly simplify the acceptor state problem. The role of
the atomic orbital wavefunction is assumed by the envelopes. Instead of the electron spin
1/2, the “spin” in the acceptor problem assumes the value J=3/2 which characterizes the
underlying band edge Bloch states of the light and heavy holes (the I'g states). The acceptor
wavefunctions are then simplified by application of the theory of angular momentum, and
computed variationally using Eq.( 2.3) without the warping terms. The warping can be
added as a small perturbation if desired [5].

Two important features emerge in applying this formalism to a centrosymmetric het-

erostructure problem. The first is that, whereas the wavefunctions and energy levels of the
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acceptor problem must be computed variationally, and then corrected approximately for
such effects as the “central cell” overlap of the wavefunction, we can expect exact solutions
for a flat band quantum dot or quantum wire heterostructure. Second, the formalism must
be generalized if it is to be applicable to problems other than the coupled light and heavy
hole bands. In narrow gap semiconductors, for example, coupling between the conduction
and valence bands causes appreciable non-parabolicity in the bandstructure [24]. To in-
corporate such effects it will be necessary to treat the K - P coupling term between the
conduction and valence bands explicitly in developing the envelope Hamiltonian. However,
the conduction band is characterized by J=1/2, different from that of the J=3/2 states to
which the acceptor problem is restricted, so that in a direct application of the formalism
developed for acceptors, the envelope state “spin” evidently has internal variables. In light
of this, we have developed a more general analogy. We imagine a two particle system com-
prised of an “envelope” particle and a “Bloch” particle, with respective angular momenta
L and j., and total angular momentum F = i-}— f, as before. Thus the model reduces to
the formalism developed for the acceptor problem in the case of the I's states. However,
in contrast to the orbit-spin analogy of Baldereschi and Lipari, we will see that this model
incorporates the direct K - P coupling term between the conduction and valence bands in a
natural way, through the kinetic energy of the two-particle couple. Furthermore, the model
emerges naturally in the context of the envelope function approximation.

A subtle feature of the theory leading to Eq.( 2.3) illustrates the last point. In re-
placing K by the operator —ihV which acts only on the envelope functions F;, we have
implicitly treated the envelopes, Fj, and the underlying Bloch functions, |J,J,) as func-

tions of spatial coordinates corresponding to different state spaces. Examination of how
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wavefunctions developed in the envelope theory are used to calculate observables confirms
this interpretation— the envelope and Bloch parts of matrix elements factor into separate
integrals. A familiar example is the K-selection rule for band to band optical transitions in
bulk semiconductors or quantum wells [28]. This factoring is a result of the separate nature
of the envelope and Bloch function state spaces. The Bloch functions u% are defined in a
coordinate space “interior” to the unit cell, while the envelope functions F; are essentially
defined over the lattice points, in a coarse-grain approximation valid for describing functions
which are slowly varying on the scale of the unit cell of the crystal.

The total wavefunction describing a carrier exists in a composite state space which is a
direct sum of the envelope space and the Bloch space. Operato}s pertaining to the envelope
space commute with those belonging to the Bloch space. The two spaces are coupled through
the kinetic energy of the carrier they describe. This is given by T = ]l_)'lr"/an0 where m,
is the free electron mass and P is its momentum, equal to the sum of the momenta of the
Bloch and envelope “particles”, P = ﬁb + ﬁe. We note that this seems equivalent to a
classical “center of mass” momentum of the two particle couple. However, in contrast to a
system of two real particles, there is no relative coordinate in our model, since the envelope
and Bloch “particles” pertain to the same physical carrier. Thus, the kinetic energy takes

the form
[Py|? + [P.|? + 2P, . P,
2m,

T = |P|?/2m, = : (2.4)

which is invariant with respect to the total angular momentum F. If we represent this in
a basis of the Bloch form, Eq.( 2.1), the matrix element of Py, - B, becomes the K - P of

conventional bandstructure theory, |I3.b|2 i1s incorporated in the band edges E(0), and Iﬁe|2

enters the free electron kinetic energy term. Thus, the two particle model leads to the full
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K . P Hamiltonian governing valence as well as conduction bands in an intuitive way. As
in the (less general) acceptor formalism, the total angular momentum is a constant of the
motion in the absence of anisotropic coupling to remote bands.

We can therefore take full advantage of the theory of angular momentum in the cen-
trosymmetric heterostructure problems at hand. For example, a basis of common eigenstates
of the Hamiltonian H, the operator F? and the projection of total angular momentum along
the quantization axis, F, will greatly simplify problems with spherical symmetry such as
the spherical quantum dot. The common eigenstates of H, F, and P,, the component of
envelope linear momentum along the z axis, will similarly aid us in the cylindrical quantum

wire problem.

2.4 Bandstructure in a spherical representation

We found in the last section that the set of operators (H,F2,F,) form a complete set
of commuting observables (CSCO) for the bandstructure Hamiltonian in the absence of
anisotropic remote band-coupling. This makes sense intuitively; we expect the Hamiltonian
of our two-particle system to be a scalar with respect to the total angular momentum in
the absence of anisotropic interactions.

The conceptual model that we have adopted amounts to replacing a finite symmetry
group, the space group of the crystal, with the full rotation group. We reiterate that this
simplification requires a spherical bandstructure approximation. In the Kane model [24,25],
coupling of the valence and conduction bands is isotropic and the effects of remote bands
not explicitly included in the analysis are ignored, so that this requirement is automatically

satisfied. Many problems, however, necessitate the use of the generalized Hamiltonian given
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in the Appendix, which additionally incorporates Luttinger-type coupling terms among the
valence bands [27]. These terms represent indirect coupling via remote bands, and generally
impart cubic symmetry to the bandstructure. However, many materials are modeled well
by setting the Luttinger parameters 2 and y3 equal, in which case this coupling becomes
isotropic [4]. For greater accuracy, band warping terms in 73 — 73 can be introduced later
as a perturbation [5].

In a spherical approximation, the Hamiltonian will be block diagonal in a basis of eigen-

states of F2 and F,, assuming the form

H= ) Hpp,. (2.5)
F.,Fz

Using the familiar rules of addition of angular momentum we form such a basis as follows:

J L
IK;F,Fo; 3, L)y = > Y (3,050, LIF,F) 3,1,) [KL,L,). (2.6)
Jo=—J ;==L

The first term in the sum is the Clebsch-Gordan coefficient for adding states of angular
momenta J and L. The states |J,Jz) as before are the band edge functions of the Bloch
state space, explicitly given in the Appendix, and |K;L,L,) are envelope functions with
angular momentum quantum numbers L and L,.

We anticipate that the appropriate envelope basis for a flat band region consists of free

spherical waves. The envelope kets |K; L, L,) therefore have the coordinate representations

(p,ﬂ,d:]K,L,Lz):\/g il h(Kp) YI*(4,9), (2.7)

where hy, is a spherical Hankel function, Y is a spherical harmonic, and K is the radial
wavenumber. These envelope functions form a complete set in the envelope state space,

obeying the orthonormality relation

5(K — K')

(KvL:Llelela L;) = K2

bL.L OL,Lt, (2.8)
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and the envelope space closure relation

=ZZ/ K%dK |K,L,L,}(K,L,L,|. (2.9)

L=0L,=-L
To obtain the explicit form of the bandstructure Hamiltonian, Eq.( 2.5), in the total
angular momentum representation |K;F,F,;J,L), we apply a unitary basis transformation
to the Hamiltonian matrix given in the conventional Bloch plane wave basis, IK;J ) =
IK) |J,Jz). We begin by establishing the relationship between the plane wave gnvelope states

IK) and the spherical wave envelope states just introduced:

= DIV ()" IK,L,Ly). (2.10)

L,L,
In this equation Qp = (6, 9z) are the polar coordinates of the vector K. Projection of
this relationship onto the bra (K',L’,L}|, using Eq.( 2.8), results in the following unitary

transformation matrix relating the two envelope bases—

5(K — K')

— L’ "
(K,, L, L’le) = [Yle (01-(" ¢K)] K2 (2.11)

Next, we write the closure relation for the product Bloch plane wave basis:
1=1,01 = {3 1,3)0,%] } o /K?dK/dQK VR ), (212)

J,Jz
where the subscripts e and b denote envelope space and Bloch space respectively. We insert
this closure relation into the expression for the components of a state 1 written in the total

angular momentum basis:

{310,303, }{/K'sz’/dQ YK ). (2.13)

JJ4
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Using Eqs.( 2.6) and ( 2.11), this results in
J L
(K,F,F5;J,Ligy= > >
Jz=—JL;=-L
(3,75 L, (L, = F, Jz)|F,Fz>/dQK Y@l (K;3,0.0¢),  (2.14)

which is the required unitary transformation. We use this to derive an expression giving

the matrix elements of the K - P Hamiltonian in the basis of eigenstates of F:

(K,F,F;;J,LIHIK, F', F;; J, L) =

J J
> Y 3IsL (L = F, - L)F,F)(I, 3L, (L, = F) — J,)|F, F)
I=—J)=-¥
Fz_Jz * F;—J; -" —0.
/ a0z [y @) vE W () (R3,1.81K,3,3L). (2.15)

The matrix elements (K;J,JZIHIK;J',J;) belong to the conventional K - P Hamiltonian
written in the basis of zone center Bloch functions. We used the fact that this matrix does
not mix waves of different K to eliminate one integration in ( 2.15). For reference, we give
the Hamiltonian in the conventional basis in the Appendix.

Using the transformation equation ( 2.15), we have derived the explicit representation of
the bandstructure Hamiltonian Eq.( 2.5) in a spherical wave basis. Since states of different
total angular momentum do not couple, it is most useful to present each angular momentum
sub-matrix Hp g, separately. We begin with the two degenerate sub-spaces corresponding
to F=1/2, F, = £1/2. It is simple to show that for the conduction and valence band system,
these matrices are each six-dimensional, each sub-space being spanned by the two possible
kets from each of the band edges that can be constructed with F, = +£1/2. For reference,
the explicit form of these basis vectors are shown in Table 2.1. We use the notation |J, L)
for our basis with the quantum numbers F = 1/2 and F, = £1/2 in |F, F,;J, L) understood

and therefore omitted.
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Hijpo 172 =
n/2,1)  |1/2,0) 13/2,1) 13/2,2) 11/2,0) 11/2,1)

1/2,1) (Ec+%K2 0 0 -iy/ZPK -i\/IPK 0

1/2,0) 0 E.+1K? -i\/2PK 0 0 -i\/IPK

13/2,1) 0 iV/ZPK  Bu-(m +2m)% 0 0 —2v2y K2

13/2,2) | iW/3PK 0 0 Ev—-(m+ 2’72)K72 —2\/5’)'21(72 0

n/2,0) | i\/IPK 0 0 -2vZ7, K2 Ey~A-mE 0

/21 \ o iv/IPK N L 0 0 Eo-A-mE
(2.16)

In this expression, P = —i(s|P2|z) is equivalent to the Kane momentum matrix element

[24,25]. Atomic units are used throughout this paper. Ec, Ey, Ey — A denote the conduction
band edge, heavy-hole and light-hole band edges, and split-off Band edges, respectively. The
dashed lines delineate regions of the matrix corresponding to the conduction band system
(upper left) the upper spin-split-off valence band system (middle) and the lower spin-split-
off bands (lower right). The vy parameters in this full matrix are the so-called “modified”
Luttinger parameters which are related to the “true” Luttinger coupling parameters by the

relations [29)]

2p2
— true
n=mn 3(Ec — Ey)
t P2
— rue

In Luttinger’s original work [27] the conduction band was treated as remote, hence the
above correction is necessary when the conduction band coupling is treated explicitly.
From selection rules for parity, Hamiltonian sub-matrix H, /2 +1/2 can be further decom-

posed to

HI:O 0
Hyso 172 = ( ) (2.18)
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Basis Vectors For F=1/2, F, = +1/2

Band |7, L) Explicit Representation Radial Envelope
Conduction | |1/2,0) 11/2,1/2) ® | K, 0, 0) fo(Kp)
(Te) [1/2,1) VE1/2,1/2) ® |K,1,0) — \/Z|1/2,-1/2) ® | K, 1,1) fi(Kp)
Light Holes | |3/2,1) V113/2,3/2) ® |K,1,-1) = \/1[3/2,1/2) ® | K, 1,0) f1(Kp)

+v/113/2,-1/2) ® |K,1,1)
(Ts) | 13/22) | VE3/2,3/2) @ 1K,2,-1) — /TI3/2,1/2) ® K, 2,0) f2(Kp)
+/313/2,-1/2) ® |K, 2,1) — \/Z|3/2,-3/2) ® | K, 2,2)

Split-Off | |1/2,0) 11/2,1/2) ® | K, 0,0) fo(KDp)
(T7) [ 1/2n | VE/2,+1/2) ©1K,1,0) — \/E[1/2,-1/2) © | K,1,1) F1(Kp)

Table 2.1: Explicit representations for basts states of total angular momentum corresponding
to quantum numbers F=1/2 and F, = 1/2. The heavy holes are not contained in the F=1/2
space, as discussed in the text. The fj(K p) are spherical Bessel functions or spherical Hankel

functions.
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where the sub-matrices HI={0:1} take the form
[1/2,{0,1}) 13/2,{1,2}) 11/2,{1,0})

1/2,{0,1}) ( E.+3K* —i\/2PK —i/IPK

1={0,1} _ .
HEOD = 1300 1,9)) | o/FPK B-(m+2m)&  —2v2K0 | (219)
/240,13 \ i/iPK ~WIRE B -A-pE

The envelope angular momentum quantum number is to be read as the first or second
number in the braces, {7,5}. Other than this, the two matrices assume identical forms.
When we diagonalize these matrices, we obtain eigenvalues corresponding to the light
holes, split-off holes, and the conduction electrons. This is most easily seen if we make
certain simplifications. If we consider the case, equivalent to the Kane model [24,25], in
which all the higher band-coupling terms and the free electron energy are neglected, we

recover the nonparabolic dispersion relation

2

A - E)P?K2, (2.20)

(Ec — E)(Ey — E)(Ey — A —E) = (Ey —

which is the well-known result for the split-off, light hole, and conduction bands. If A is
large, we can describe the coupled electrons and light holes with the two-band dispersion
relation
(Ec —E)(Ey -E) = §P2K2. (2.21)
On the other hand, considering only the I's states, treating the conduction bands and the
split-off bands as remote, we immediately see that the states |3/2,1) and [3/2,2) decouple
with eigenvalues E(K) = E, — (11 + 272)&>, as we expect for the light holes. Again, the
heavy hole states are not found in this sub-space.
These observations lead us to point out that states must be labeled “light hole” or

“heavy hole” solely on the basis of the eigenvalue dispersion, E(K), to which the states
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correspond, and not on the basis of the quantum number J, of the Bloch component of the
wavefunction, |J,J;), as some authors prefer. The eigenstates of the conventional Luttinger
Hamiltonian for K = K3 correspond to J, = +1/2 for the light holes and J, = +3/2 for
the heavy holes [26,27]. However, J, is generally not a good quantum number and this
correspondence does not hold for all directions of the vector K. In fact, the light hole states
13/2,1) and [3/2,2) discussed above are superpositions involving various |J,Jz), as shown
in Table 1. (It remains true, however, that a projection of either state onto the space of
Bloch eigenstates with K = Kz, recovers a superposition of Bloch states characterized by
J, = £1/2).

The heavy holes first appear in the four degenerate spaces corresponding to F = 3/2, and
its four projections F, = +1/2 and F, = £3/2. These are each spanned by eight vectors.
As before we find that each of these sets decouple into 2 sub-sets of four vectors, due to
parity selection rules. The four degenerate Hamiltonian sub-matrices thus each assume the
form

H' 0
H3/2,:§:1/20r:i:3/2 = ( )) (2-22)
0 H?

with the parity sub-matrices given respectively by

[1/2,1) [3/2,0) 13/2,2) [1/2,2)
1/2,1) [ Ec+3k* i\/iPKk -i\/IPK  -i\/IPK
o P20 | SVEIPK Bo-mE 2pi 2 K2 019
B/2,2) | iv/IPK I E,-mEl 2y, K

. 2 2
|1/21 2) 2 %PK 2’72}(7 ‘2’72KT E,— A —‘YIKT



34

and

11/2,2) 13/2,1) 13/2,3) [1/2,1)

(1/2,2) { Ec+ 3iK? iv/EPK -i\/2PK ~iy/IPK
. 2 2 2

H? - 13/2,1) | —iy/%PK By~ (n-&n)5- Ev &~ S (2.24)

: 2 2 2 ’ .

13/2,3) | iV/$PK Sy £ Ey— (v1 + $w) & —-\%'yz—lg—
. 2 2

/2.1) \ /3PK Ll S B-A-mE

where the quantum numbers F, F, have again been omitted in the vectors. Diagonalization
of these matrices yields the conduction, light hole, heavy hole, and split-off band eigenvectors
for these spaces. It is interesting to examine the form of these matrices after application of
a unitary transformation which diagonalizes the inner 2 x 2 system, which represents the
projection of the Hamiltonian onto the I's band edge. For example, transformation of the
inner block in ( 2.23) using the basis vector definitions: |LH) = (|3/2,0) —|3/2,2))/+/2 and

|HH) = (|3/2,0) + 3/2,2))/V?2, yields

1/2,1) ILH) |HH) 1/2,2)
11/2,1) [ Ec+ 1K? iy/ZPK 0 -iy/IPK
o ILHY | =i/ZPK E,~(m+2m)% 0 i &2
H = {(2-25)
2
|HH) o o Ey - (mi —2m)&- 0
11/2,2) \ i/IPK 22y B2 0 E,-&-mE

It is clear that the vector |HH), which is decoupled from all other states, belongs to the
heavy hole band. The conduction, light hole and split-off bands are coupled. Interestingly,
this is the same matrix that one obtains with the conventional theory, when K is directed
along the z axis. In the present case, however, the coupling parameter is the isotropic radial
wavenumber K.

As before, it is useful to explore certain simplifying limiting cases. If the spin orbit
parameter A and the energy gap, Ec — E,, are large compared to the kinetic energies of

the light holes, we can treat the split-off and conduction bands as remote. In this case, the
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7’s are true Luttinger parameters and we retain only the I's block of the matrix in ( 2.25).
Then the vector |[LH) is rigorously identified as the light hole eigenstate, with the familiar
eigenvalue E(K) = Ey — (v, + 272)K72. On the other hand, in the limit where the terms
in K? can be neglected, we again retrieve the Kane dispersion relations, Eqs.( 2.20- 2.21),
plus one more for the heavy holes: Egg = E,. The heavy hole band is entirely flat in this
approximation,

Continuing in this fashion, the Hamiltonian could be developed for spaces of higher
angular momentum. Having demonstrated that our technique for computing bandstructure
in a spherical representation gives the correct bulk crystal dispersion relations within a
spherical bandstructure approximation, we now apply the technique to the calculation of

states in the spherical quantum dot in the next section.

2.5 Electronic structure of the spherical quantum dot

Since the spherical quantum dot heterostructure is an isotropic potential, F and F, remain
good quantum numbers. Thus the quantum dot may be very simply modeled by considering
the bandstructure parameters in our Hamiltonian sub-matrices as functions of the radial
coordinate p. The states are governed by the Hamiltonian matrices HpgF, in each separate
total angular momentum subspace. Consequently, the approach is algebraic, and, with only
minor exceptions, is identical to that used in standard heterostructure envelope calculations
[30].

As a first example, we compute the two lowest energy conduction band states in a GaAs
quantum dot of radius R embedded in AlGaAs. We will compare our results against those

of the one-band model, which is accurate in this case, as a check of the formalism. In this
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simple problem, coupling to remote bands is negligible. We neglect the free electron energy
term and coupling to the split-off bands. The lowest states turn out to be contained in
the F = 1/2 sub-space. The Hamiltonian in this case becomes a simple two-band, 2 x 2
matrix with bandstructure constants EL, EL within the structure and EQ, EQ exterior to
the structure. Eigenvectors of the 2 x 2 Hamiltonian are computed interior and exterior to
the quantum dot. We require that the wavefunction be regular at the origin. Boundary
conditions are then applied at the interface of the dot to arrive at a relation between
spherical wave numbers inside and outside. This condition is combined with the known
energy dispersion relations to determine the eigenvalues of the quantum dot. The energy

dispersion relations follow from Eq.( 2.21) and are given by the expressions

2

(EL —E)El-E) = §P2k2
(E® —E)YEQ —E) = —§P2/\2, (2.26)

where the exterior spherical wavenumber is taken as 7A in anticipation of solving for bound

energy eigenstates. Eigenvectors resulting from the diagonalization process have the form:

E—Ec

o5 B/21+1)) (2.27)

lve) = A {[1/2,1) +

where [ = 0,1 depending on the parity of the conduction band envelope and where “A” is a
constant to be determined by matching boundary conditions and applying normalization.
The angular and Bloch space elements of Eq.( 2.27) are the same inside and outside the dot,
so this vector is projected onto only the envelope space radial coordinate representation.

This results in the following two-dimensional column vector:

hi(kp)
vE(p) = A ( ) . (2.28)

v BB hisa(kp)
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The form of Eq.( 2.26) is such that +k (+)) are degenerate roots. Using these roots and
the basic form given by Eq.( 2.28), state functions within each region are constructed. The
requirement of regularity at the origin leads to combinations of Hankel functions within the
quantum dot that are equivalent to spherical Bessel functions of the first kind. Qutside
the quantum dot, only the Hankel function of imaginary argument which decays for large
p is retained. Applying continuity of the resulting envelope states at the boundary of the

quantum dot leads to the following condition:

i(kR) hip1(iAR) _ [ (E — EI)(E — E?)
ji+1(kR) M(iAR) ~ V (E — EL)(E — E?).

(2.29)

Equations ( 2.26), and ( 2.29) form a system of three equations in the three unknowns,
E, k, and A. In Figure 3 we present the energy of the conduction state in a quantum
dot relative to the bulk crystal conduction band edge, as a function of radius for the two
cases of interest (I = 0 and I = 1) in the F = 1/2 subspace. These states are two-fold
degenerate. Parameters have been selected so that the band curvature at the zone center
yields an effective mass that is equivalent to the conduction band effective mass in GaAs
(mg = 0.067m, ; Egap(GaAs) = 1.424 eV ; in addition mj;, = 0.082m, ~ m? indicating
that the two-band model is approximately correct). The band energy constants have been
selected to reflect the quantum dot embedded in an Alg3Gag7As barrier (mZ = 0.092m,
; Egap(Alo.3aGag.7As) = 1.798 eV, 60/40 conduction/valence energy offset ). An important
feature of the calculated result is the appearance of a critical quantum dot radius below
which no bound states are allowed. This result was previously predicted for quantum dots
by solving a simple one band effective mass Hamiltonian in spherical coordinates [15].

As a check of the formalism, the above results are compared in Figure 2.3 with a

calculation based on a simple one band effective- mass Hamiltonian. The one band effective-
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Figure 2.3: Confinement energy of the conduction band states in a spherical GaAs dot
embedded in a Alp.3Gap7As barrier relative to the bulk GaAs band edge, plotted as a
function of dot radius. The ground and first excited states are shown for both the two-band
model and the one-band model. The dashed line represents the well depth, equal to 224
meV. The difference between the two curves for the first excited state is due to the neglect

of band-coupling in the one band model.
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mass Hamiltonian assumes a parabolic bulk dispersion relation and neglects mixing of the
zone center conduction band wavefunction with other bands for nonzero wavenumbers. In
comparision against the two-band model discussed above, the ground-state energies are in
good agreement for all quantum dot radii. Only in the excited state does a slight difference
appear, which becomes more pronounced for stronger confinement (i.e., smaller radii). On
the whole, however, the two models agree in this case as we expect.

An extreme situation in which the one band model would fail for the conduction band
states in a quantum dot is in so-called “type-II”, broken gap heterostructures. An InAs
dot embedded in GaSb provides an example. In this system, the conduction band edge
of bulk InAs is below the I's valence band edge of GaSb. Thus, coupling between the
conduction and valence bands across the heterostructure interface cannot be ignored, so that
the assumptions underlying the one-band model break down. To determine the conduction
band states in this structure, we employ the two-band formalism that we developed for
the GaAs dot. We use the material parameters of Ref. [31] and calculate the position of
the lowest conduction band state relative to E. in InAs as a function of InAs dot radius, in
Figure 2.4. For comparison we also plot the results calculated using a one-band model of the
conduction band in the same figure. It is clear that the two models disagree significantly in
this case, by as much as 100 meV for smaller radii, due to the neglect of band-coupling effects
in the one-band calculation. We do not extend the calculation beyond the radius at which
the InAs conduction state sinks below the GaSb valence band edge as at this point charge
transfer across the surface of the dot may be expected to occur. Quantitative analysis of this
interesting effect, which has been observed in InAs-GaSb superlattices [32], must incorporate

a self-consistent determination of the band bending as in Ref. [33]. The possibility of using
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this effect to create artificial, “self-doping” semiconductor heterostructures is discussed in
the next chapter.

We return to the study of type-I systems such as GaAs-AlGaAs, in which the band
edges line up closely across the heterostructure, to study the coupled valence band states
In a quantum dot. We first consider states characterized by total angular momentum
quantum number F=1/2. We neglect the split-off band, retaining only the projection of
the Hamiltonian sub-matrix in this space onto the I's band edge. As discussed in the last

section, the Hamiltonian assumes the form:

13/2,1) 13/2,2)
ry 18/2,1) [ By~ (m + 212) 5 0
H1/2,ﬂ:1/2 = " (2.30)
13/2,2) 0 By — (1 +21)%

The 7’s in this matrix are “true” Luttinger parameters. This diagonal matrix contains only
light hole eigenvalues since the F=1/2 space contains no heavy hole character. Because of
this decoupling, the vectors |3/2,1) and |3/2,2) each form quantum dot bound states with
the same energy as that determined in a one band model of the light holes, corresponding
respectively to the first and second excited light hole states. It should be noted, however,
that the total wavefunctions are very different between the coupled band and one band
models. The one-band model of these states predicts a degeneracy of three for 1=1 and five
for 1=2, plus the two-fold spin degeneracy, while the multiple band calculation yields only
the two-fold degeneracy in F, = £1/2 for these states. As the radial part of the envelopes
happens to be the same in the two models, the energy calculation from this point proceeds
in a familiar way so we do not pursue it further.

We expect the uppermost valence states (lowest energy in the hole picture) in the spher-
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Figure 2.4: Confinement energy of the conduction band states in a spherical InAs dot
embedded in a GaSb barrier, plotted as a function of dot radius. The ground state is shown
for both the two band model and the one band model. The dashed line is the position
of the GaSb valence band edge, 150 meV above the conduction band edge in bulk InAs.
The difference between the two curves is far larger than in Figure 2.3 due to the strong

band-coupling effects in this type-II structure.
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ical quantum dot to have envelopes with a degree of “s” character, which is not contained in
the I's states spanning the F=1/2 space. It is straightforward to show that such states can
only appear in the space characterized by total angular momentum F=3/2. We consider

the sub-matrix of H3/y +3/90r+1/2, Eq.( 2.22), which corresponds to the I's band edge:

H§72,¢3/2¢1/2 =
13/2,0) 13/2,2) 13/2,1) 13/2,3)
13/2, 0) (Eu -nE 27,5 0 0
3/2,2) | 27K E,-u& 0 0
13/2,1) 0 0 E, — (m - &) &2 8 B2
3/2,8)\ 0 0 Sy, By~ (n + $0) 5 |

(2.31)

The matrix is itself block diagonal with the upper left matrix corresponding to even parity
states and the lower right, to odd parity states. For each of the four possible values of F,
(£3/2,£1/2) there are therefore four eigenvectors: a heavy hole and a light hole eigenvector

of each parity type. The even parity vectors are

LB = \[513/2,0) - [3/2,2)

HH)ewen = \/2413/2,0) 4 13/2,2)) (2.52)

while the odd parity vectors are given by

|LH)odd = 13/2,1) — 3]3/2,3)}

——

V10
1

'HH)odd = \/1—0{3|3/2) 1) + |3/2) 3>} (233)

As before, we form these states separately for the regions inside and outside the dot. We

then project them onto the radial coordinate of the envelope space. We consider the even



43

parity eigenvectors first. Using Eq.( 2.7), and anticipating the requirement of regularity at
the origin, we obtain a two-dimensional column vector for the heavy hole eigenvector inside

the dot in terms of spherical Bessel functions:
- T [ JolKrH(E)p]
5" (p) = al (2.34)
72[Knu(E)p]

and similarly for the light hole eigenvector,

Jo[KLH(E)p]
BEH (o) = 1( ) (2.35)
#0=\; KB

Here Kyy and Kpy are the heavy and light hole wavenumbers inside corresponding to the
dispersion relations: Egp(K) = Ey — (71 — 272)5-23, and Exg(K) = Ey — (11 + 272)%2-.

If we assume at this point that the confining potential outside the dot is infinite (an
infinite valence band discontinuity) the total wavefunction must vanish at the dot surface.
Because the radial envelope wavefunctions are in this case two-component vectors, this
boundary condition manifests itself as two independent equations. Thus the quantum dot
eigenstate generally can not be purely light hole or heavy hole in character. The solution

must take the form

YE = A (p) + BokH (p). (2.36)

The requirement that 1 vanish at p = R leads to the simple dispersion relation
Jo[Kuu(E) R] J12[Kiu(E) R] +Jo[KrLu(E) R] J2[Kuu(E) R] = 0, (2.37)

yielding the valence state eigenenergies E as a function of the dot radius R. Once the energy
1s known, the constants A and B may be determined, specifying the light and heavy hole
amplitudes of the state. It is therefore in general qualitatively incorrect to characterize a

quantum dot as having light or heavy hole states: the quantum dot confinement potential
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hybridizes these bands. This effect was recently reported for the infinite well quantum dot
in Ref.[23]. We will see below that it is also true for the finite well case.

The infinite well dot eigenstates which arise from the odd parity block of Eq.( 2.31)
are governed by a dispersion relation similar to the one just determined for the even parity

states. Proceeding as we did for the even states, we arrive at the dispersion relation

9 J1[Kun(E) R] ja[Kru(E) R] + j1[Kuu(E) R] j3s[Kuu(E) R] = 0. (2.38)

For the more realistic case of a dot surrounded by a medium with a finite relative
valence band discontinuity, such as GaAs in AlGaAs, these dispersion relations fail. We
must construct a non-vanishing wavefunction outside the dot. Light and heavy hole vectors
are formed according to Eqs.( 2.32- 2.33) outside the dot. Projecting them upon the envelope
space radial coordinate as before, we obtain expressions similar to Egs.( 2.34- 2.35) except
we use spherical Hankel functions to insure vanishing probability at infinity for the bound
states. The wavefunction inside and outside the dot is then written as a linear combination
of the HH and LH vectors in each region, yielding a total of four unknown coefficients.
Continuity of the wavefunction and probability current are required at the interface at
radius p = R between well and barrier regions, resulting in four equations. The requirement
that a solution to this set of equations exist leads to a four by four determinantal dispersion

relation for the allowed eigenenergies. For the even parity states, this is

jol[Kuu(E) R] jo[KLu(E) R]  holidun(E) R]  holidpu(E) R
jz[KHH(E) R] —72[KLu(F) R] halidgu(E) R] —ho[iALu(E) R]
Det =0. (2.39)
JolKnu(E) R) jo[KLu(E) R]  hylidga(E) R]  hjlidpu(E) R]

J2[Kun(E) R] -5|Kru(E) R) hy[idgn(E) R] —h4lidLe(E) R]
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In this expression, “h” is the spherical Hankel function h(') which decays for imaginary
argument, f' denotes derivative of f with respect to p, ie f'(kR) = 5‘%];—”2],,:3. Kru(E)
and Kyn(E) are defined as before, and iALg(E) and idgu(E) are the light and heavy hole
wavenumbers outside the dot, taken to be imaginary in anticipation of solving for bound

states. A similar dispersion relation follows straightforwardly for the odd parity states:

371[Kuu(E) R] 71[Kra(E) R] 3hi[idgu(E) R) h1[iALu(E) R}
Det J3[Kuu(E) R) —343[KLu(E) R] h3[iApu(E) R] —3h3[idLu(E) R] _ 0
371lKun(E) R] jiKru(E) R]  3Mi[iAgu(E) R]  h|[iAru(E) R]

53[Kun(E) R]  =3j3(Kin(E) R) hy[idgu(E) R] —3R4[idLu(E) R]

(2.40)
We have assumed that the effective masses are the same inside and outside the dot for
simplicity. Solution of these dispersion relations gives the allowed energies of the quantum
dot with a finite well depth, in the F=3/2 spaces.

The highest states calculated with the finite well quantum dot dispersion relations are
plotted in Figure 2.5(a) in the electron picture. The plots reflect a GaAs dot embedded
in Alp3Gag.7As with a 40 % valence band offset, so the “well depth” is 150 meV. We have
assumed my, = 0.082m, and m{y = 0.45m,. The figure displays the energies of even and
odd parity states found with Eqgs.( 2.39, 2.40) respectively, relative to E, in bulk GaAs. The
state with lowest confinement energy (highest curve in the figure) is of even parity as we
expected, while the next is an odd parity solution. As in the conduction band calculation,
there is a critical radius below which no bound states exist. We point out that each state
displayed is four-fold degenerate due to the four-fold degeneracy of F=3/2. In Figure

2.5(b) we compare the energies of the highest even and odd-parity states determined using



Energy [mevV]

0 ~+—t
o]
-504
_ Vi
> ! o Even 1
[ }] .
E '.... e e e odd ]
> ~1001 :,5! Even 1:Inf well
P i1 F memeeeee Odd 1: Inf Well
b4 b 1
c i
w F
L}
R il
well Depth
-200 v
[¢] 5 10 15

Dot Radius [nm]

Figure 2.5: Confinement energy of bound valence band states in a spherical GaAs quantum
dot plotted versus dot radius, relative to E, in bulk GaAs. The dot is embedded in an
Alo.3Gag.7As barrier, reflected in a well depth of 150 meV. (a): Coupled band model of the
light and heavy holes. The states belong to the F=3/2 space and are labeled according to
parity (even/odd) and order in energy (1,2,..). (b): Finite vs. infinite well models for the

highest even and odd parity states.
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the infinite well dispersion relations, Eqs. ( 2.37- 2.38), with the results of the finite well
calculation. The infinite well causes an overestimation of the confinement energy for both
states. Note that in the finite well, the energy separation between the even and odd states
is enhanced relative to the infinite well calculation because the odd parity state has higher
probability to be in the barrier region than the even state. Thus the infinite well model yields
energles for these states that are inaccurate both qualitatively as well as quantitatively.

The results of a one band calculation for the heavy and light hole states in a GaAs
quantum dot surrounded by Alg3Gag7As, using the same material parameters as in our
multiple band calculation, are shown in Figure 2.6 for comparison to the coupled band
model used in Figure 2.5. Note the level crossings which occur in the one-band model
do not occur when band-coupling effects are included. Furthermore, the highest state in
our multiple band calculation is significantly lower than the highest heavy hole state in
the one-band model. This is due to the fact that the dot eigenstates are an admixture of
light and heavy hole character. Any admixture of lower mass light hole character into the
heavy hole ground state would naturally tend to increase the confinement energy, pushing
1t downwards on the energy scale of Figure 2.6.

This admixture has a significant impact on the electrical properties and optical spectra
of these structures, and hence must be taken into account if applications involving quantum
dots, such as to semiconductor lasers, are to be accurately studied. Information about
the optical properties of the quantum dot may be straightforwardly obtained by using the
dot eigenstates, such as Eq.( 2.36) for the valence bands, to calculate matrix elements
for optical transitions between conduction and valence band states. A calculation of the

optical matrix element between the lowest conduction and highest valence band states shows
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Figure 2.6: Confinement energy of bound valence band states in a spherical GaAs quantum
dot plotted versus dot radius, calculated in the one-band model. Energy is plotted relative
to Ey in bulk GaAs. The dot is embedded in an Alp3Gag7As barrier, reflected in a well
depth of 150 meV. Effective masses are the same as in the previous figure. The states
are identified by the band (HH or LH),and [L — z,n], where L — z is the envelope angular

momentum and n is the order in energy. Note the level crossings, which do not occur in

the coupled band model.
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that this transition in the quantum dot is optically isotropic, as we expect in a spherical
bandstructure approximation [1]. This result could not be obtained in a one-band model.
We mention that all of the calculations presented here were performed either analytically,
or where necessary, on a desk top personal computer, implying that incorporation of band-
coupling effects into device analyses is simple and therefore warranted. We next turn our

attention to the quantum wire.

2.6 Bandstructure in a cylindrical representation

Our success in solving the multiple band quantum dot problem arose from the compatibility
of the total angular momentum F with the bandstructure Hamiltonian in the spherical
approximation. A similar simplification applies in the case of the quantum wire. In contrast
to the spherical case, where we used the complete set of commuting observables including
H, F?, and F,, we now a use a basis of eigenstates shared by H, F, and P,, the component
of envelope linear momentum along the z axis. This basis has the desired symmetry for
studying the cylindrical quantum wire. F, is a good quantum number so the Hamiltonian

in this basis is again block diagonal:
H=) Hp,. (2.41)
Fgz

In contrast to the approach in section IV for the spherically symmetric problem, it is
most convenient to work in an “uncoupled” angular momentum representation. We use the

fact that F, = J; 4+ L, to construct a basis in the product form
Kz, k, Fz;3,3,) = 13,32) K, k, L, = F, — 1,). (2.42)

The envelope vector {K,;k,L;), described below, is an eigenstate of L;, the projection
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of envelope angular momentum along the z axis with quantum number L,. The zone-
center Bloch function [J,],), as before, has Bloch angular momentum quantum numbers
J,J,. The envelope vectors are simultaneously eigenstates of P,, the z-component of the
envelope momentum operator, with eigenvalue hK,. The envelope states therefore have the
cylindrical coordinate representation

'Lz - .
(r,6,2]Ky;k, Ly) = ‘5_ Hy, (kr) eil=? eiKez (2.43)

T

where k is a radial wavenumber and H is a Hankel function. It is clear that the resulting

basis has the necessary cylindrical symmetry. It is also an orthonormal basis:

5(k' — k)

— 6(k; — ka). (2.44)

(Ky, X', Fp; 3, 3, |Ky, k, Fp;3,0,) = bpy 5, 8303 6313,

The process of expressing the bandstructure Hamiltonian in this basis involves a unitary
transformation similar to that carried out in the spherical case. It is simple to show that
the transformation from the conventional Bloch plane wave basis into the new cylindrical

wave basis is

(Ko, k,Fp; 3,3,00) = / dog, e iF—Jbe (K15 3, 1y). (2.45)

In this equation, (f(" ;3,3z2|1) are the components of a wavefunction 4 written in the conven-
tional basis of Bloch plane waves. 0, is the angular coordinate of the vector K’ expressed
in cylindrical coordinates. Using this unitary transformation we find the matrix elements
of the bandstructure Hamiltonian in the new bésis in terms of the conventional matrix

elements ( found in the Appendix):

1 27 . , ’ - -
(K, k, By 7', Ty [HIKy K, Fas 3,00 = o /0 dog ellF=~Fa=Ca=Rlox (R33! |H|K; T, 1),

(2.46)
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Employing this transformation equation, we find that each Hamiltonian sub-matrix Hp,
(see ( 2.41)) assumes the identical 8 x 8 form given in Table 2.2. This is the full Hamiltonian
governing conduction, light and heavy holes, and the split-off bands. In the table, the basis
vectors are written as products of a zone-center Bloch function, |J,J z) and an envelope state,
|F, — J,) so that L, = F, — J,. This form ensures that all the basis vectors correspond
to the same quantum number F,. In the envelope vector, k and K, are understood and

therefore omitted. P is the Kane matrix element. The other terms are given by

T k2 K?
—3 = mtn)g+n-2m)3
T 2Q k? K?
—(g+3) = m-—m)s+Mn+ 272)—5"
. kK, . . .
—-L = —12\/573 5 (Azial Approzimation)
kK, . .
—L = —i2/3y, (Spherical Approzimation)
k2
-M = \/3727 (2.47)

These sub-matrices are quite similar in structure to the conventional Cartesian coordi-
nate Hamiltonian (see the Appendix), but Ky and K, are everywhere replaced by the radial
wavenumber, k. Either the spherical or the axial approximation may be employed as indi-
cated in the expression for the term L. In the more accurate axial approximation, we equate
72 and 3 only in the term M, so that warping effects are neglected only in the (Kx, Ky)
plane. Thus the energy bands remain cylindrically symmetric about the quantization axis
and F, remains conserved. The axial approximation is therefore naturally incorporated into
the present formalism, in contrast to coordinate free methods which have been previously
applied to the cylindrical quantum wire [22]. It is easily shown that the bandstructure rela-

tions which result from diagonalizing these sub-matrices agree with those obtained via the
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Table 2.2: Matrix representation, Hy,, of the K - P Hamiltonian in a cylindrical wave basis.

This matrix represents coupling among conduction, light and heavy hole, and split-off bands,

including indirect coupling through remote bands. The symbols are defined in the text.
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conventional K - P method using the same approximations. However, the eigenvectors have
cylindrical symmetry, so that the cylindrical quantum wire problem is now easily solved by

the same algebraic method that we used for the spherical quantum dot.

2.7 Electronic structure of the cylindrical quantum wire

By treating the bandstructure parameters such as E. and E, as functions of the radial
coordinate in the Hamiltonian given in Table 2.2, we can model the cylindrical wire het-
erostructure just as in the case of the quantum dot. We find that the one-band model is
adequate for conduction band states in systems like GaAs-AlGaAs, but fails in the case of
type-II systems such as InAs-GaSb.

We narrow our focus now to the more interesting I's states — the light and heavy holes—
and calculate the quantum wire subband dispersion relations, E(K,), for these bands. For
the light and heavy holes, we retain only the middle 4 x 4 block of the Hamiltonian in Table
2.2, incorporating the effects of coupling to the conduction and split-off bands through the
Luttinger parameters in the spherical approximation:

13/2,3/2)\F= = 3/2) ]3/2,1/2)|F: = 1/2) 13/2,~1/2)|F: +1/2) 13/2,-3/2)|F; +3/2)

E,+ % —iL -M 0
iL* E,+T+32 0 -M
Hri - vrTET3 . {(248)
-M* 0 E,+L+22 iL
0 -M* —iL* E,+%

In Eq. 2.48, the basis vectors are written as products of a zone-center Bloch function, |J,J,)
and the envelope state, |L,), where L, = F, — J,. This form ensures that all the basis
vectors correspond to the same quantum number F,. In the envelope vector, k and k, are

understood and therefore omitted. The terms in the matrix are given by Eq[ 2.47] where
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the parameters 7, and v, are the usual Luttinger parameters, and we invoke the spherical
approximation (y2 = v3) [26,27]. E, denotes the bulk valence band-edge, which will later
be taken to be a function of position in modeling the quantum wire heterostructure.

For a given F,, the heavy and light holes each have two eigenvectors. The heavy hole

vectors are 2 s
1 k“+4K 2K
(/7 ) (7%
[HH); = |HH), = , (2.49)
1 0

\ o \ 1/

where the heavy-hole eigenvalue is Egu(k) = E, — (11 — 272)&-;—15?&. The light-hole vectors

are (_\/.?;\ ( 2%(5_ \

2K, 1 K’+4K?
k 3k
]LH)1 = |LH)2 = (2.50)
1 0

0/ \ 1)

with eigenvalue Erg(k) = Ey — (11 + 272)]—(%!52. Note that if K, = 0 the I's Hamiltonian,
Eq.( 2.48), decouples into two 2 x 2 matrices of even or odd parity. The vectors subscripted
1 and 2 will then contain separately envelopes of either purely even or purely odd parity,
depending on F,. Thus, by taking the quantum wire axis to be the quantization direction,
we not only obtain a simple radial boundary condition for the wavefunctions of the quantum
wire, but also a significant simplification in determining subband edge (K, = 0) wavefunc-
tions and energies. This is pointed out because the optical properties of the quantum wire
will be dominated by the subband edge states.

As in the quantum dot calculation, we treat the bandstructure parameters as a function

of the cylindrical radial coordinate r, form heavy and light-hole vectors separately inside
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and outside the quantum wire, and project them onto the envelope space radial coordinate.

Inside the wire, the envelopes must be regular so these projections are

2 2
I Ir, _spplkn (E)r] Lt Tr s plkan (Eyr]
2K
255 Jp, 120k H(E)r] V3Jp, _1/2lkru(E)r]
¢§f“ (r,2) = * Exp[iKzz] ¢gf2 (r,2z) = / Exp[iK,z]
JF,+1/2[’CHH(E)T] 0
0 Jp, yap2lkam(E)r]
(2.51)
and
—V3JF, _ap2lkLu(E)r] 2K Jp, _a2lkru(E)r]
s Jp, —1 p2lkrm(E)7) -3 ﬁt‘zﬁ‘gﬂfn_ 2lkL m(E)r]
opil(r,z) = * ExpliK,z)  ¢Fi%(r) = VEE Y Expl[iK,z].
Jr,+1/2lkLm(E)7] 0
0 Jr, 4372lkLa (E)r]
(2.52)

For bound states, the wavefunctions outside the wire must be normalizable, so the projec-
tions in the barrier region involve Hankel functions H(!) in place of the Bessel functions J
appearing in the expressions above.

The quantum wire eigenstates are then formed in each region as a superposition of the
bulk light and heavy-hole vectors. If we specialize for the moment to the case of a quantum
wire with an infinite well depth, the boundary condition is that the wavefunction inside
must vanish at the surface of the wire, r=R. Since the states are four-component vectors,
this requirement can be satisfied generally only if the wavefunction is a superposition of the

four bulk light and heavy-hole eigenstates for a given F,, such as
¥r,(E) = A |HH); + B [HH); + C |[LH); + D |LH),. (2.53)

By forcing this state to vanish at R, we obtain a 4 x 4 determinantal dispersion relation

giving the allowed energies for the infinite well quantum wire. This is
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2 2
k2, 44 K2 2K 2K
ég—ﬂ%———kHH JFz—3/2[kHHR] F—LHH JFz—3/2[kHHR] —‘/SJFz—:i/Q[kLHR] l——z—LH JF;—3/2[kLHR]

2 2

2K 2K K2 ak2
det Fgi TFz—1/2lkHH A MRV S 73RSV L v o kaL_H Irs-1/2lk LRl | 2 g,

Ip +1/2lFHE R 0 Jp,+1/2lkL =R 0
0 Jr,+3/2lkau R 0 Jp+3/2lkLE R

(2.54)

This dispersion relation is equivalent to one reported in Ref.[22], which was derived using a
coordinate free form for the Luttinger Hamiltonian. The formalism presented in this work is
more general in that explicit coupling to the conduction and split-off bands is incorporated
into the general Hamiltonian. The formalism reduces to that presented in [22] for the case
of the isolated T's states we are presently calculating.

Before returning to the finite well problem, we stop to examine some qualitative features
which become apparent in the steps leading to the infinite well dispersion relation. The
only possibility for the light and heavy holes to decouple in the wire exists in the spaces
corresponding to F, = £1/2 at the zone center (K, = 0) where parity is a good quantum
number. In this case, the odd-parity vectors in Eqgs.( 2.51- 2.52) have two non-zero envelope
components, proportional to Jiqlkr]. Since J_i[x] = —J;[x], the infinite well boundary
condition at the wire interface is equivalent to just one equation: Ji[kr] = 0. Thus the
light and heavy-hole vectors decouple in this specific case, and the corresponding sub-band
edge energies are identical to those predicted by a one-band model. However, for the even-
parity vectors corresponding to ¥, = £1/2, and for all other zone center vectors, both
even and odd, with |F,| > 1/2, the indices of the Bessel functions for the two non-zero
components are not equal. As a result, light and heavy-hole waves must be mixed to
satisfy the boundary conditions at the wire interface, and the one-band model fails even
to predict correct subband edge energies. The quantum wire eigenstates are therefore in

general hybrids of light and heavy-hole character, even at the zone center. With non-zero
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K, this mixing further increases. This effect, which has been reported for wires of square
cross-section [12,14] in addition to the cylindrical wire result reported here, is in distinct
contrast to the situation in the conventional planar quantum well, in which light and heavy
hole states are always decoupled at the zone center. It is therefore not possible to label
quantum wire subbands as light or heavy hole in character as is done in the quantum well.

This remains true for the finite well quantum wire. To solve this problem, we must
construct states in the barrier region in addition to the states inside the wire. As indicated
above, the barrier states contain Hankel functions which decay as r increases to infinity.
The quantum wire eigenstates in the well and in the barrier are formed separately as su-
perpositions of the two light and two heavy hole vectors in the respective regions, leaving
four constants in the well and four constants in the barrier to be determined. By requiring
continuity of the wavefunctions (four equations) and the probability current (four more
equations) across thé interface between well and barrier regions, we obtain an 8 x 8 deter-
minantal dispersion relation which determines the allowed quantum wire eigenenergies and
eigenstates. We take the effective mass parameters to be the same in the well and barrier,

and write this dispersion relation in the compact form:

(I)Inside q>0utside
det =0 (2.55)

! /
(I)Inside ‘I)Outside

where the ® are 4 x 4 matrices given by

Plnside =
K2 a2 2K 2K
%_Hﬁ;ijﬁ‘z—:a/z["ﬂ}!ﬁl T I3 uaRl —V3Jp, _aplkigR) tr i TFe—32tkLu R
2K, 2K, T e
Y JFe-12lkHE A V3,12 mHR L E IR -1/2FLE R —75—1‘137—1}«“,—1/2[’%3}31
LH
Iy t1/2lka g Rl 0 Jry 41,2k R 0
° Ip,43/2lknp Al ° Jry+3/2lkLH ]

(2.56)
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and
DOutside =
1 :%i_%_“.x_gy [<g R LKLHF olsggR) =VBHp _aplep g R 2_K_:_HF 3/2ln L Rl
73- "HH Fz—-3/2 KOH 2—3/ 2—3/' KLH 'y =3/
2K 2K K2 ek
FgeHp,—1p2lan R V3Hp _1plsppFl i Hp, _a1plxLHR _% _L%;_HFZ_I/QIKLHR]
Hp, y1/2lxaH Al 0 Hp 172050 R] 0
(1] HF:+3/2["HHR] 0 HF2+3/2[”LHR]

(2.57)

and each term in the matrices labeled ® is the derivative with respect to r of the cor-
responding term in ®. kynp and kpy are the wavenumbers corresponding to E(k) =
Ev—(m=F 272)]53';—K?~, where the minus applies to the heavy holes and the plus to the
light holes. kyy and kpy are similarly defined in the barrier.

We have solved this dispersion relation for a GaAs wire embedded in an Alg3GagrAs
barrier region for séveral wire radii, using the same bandstructure parameters as in Sec.
2.5. We begin by presenting plots of the subband edge (K, = 0) energies of bound states as
a function of wire radius. Figure 2.7(a) shows edge energies for all of the bound subbands
corresponding to F, = £1/2 for radii up to R=10 nm, relative to E, in GaAs. Figures
2.7(b) and 2.8(a) similarly show the bound subband edges in F, = £3/2 and F, = £5/2,
respectively. The states are labeled according to parity in Figures 2.7(a)-(b) and 2.8(a)
since at the quantum wire zone center, parity is a good quantum number. In Figure 2.8(b)
we show the position of the four highest subband edges versus wire radius calculated in a
one-band model for heavy and light holes using the same bandstructure parameters as for
the coupled band calculations. A comparison of these plots shows the effect of the admixture
of light and heavy hole character in the zone center quantum wire states, discussed above.
The highest state in Figure 2.7(a) is substantially lower for all radii than the HHO state in

the one-band model, reflecting admixture of light hole character into the wavefunction. The
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confinement energies increase as we decrease wire radius, as expected. Also, confinement
energies for a given radius tend to be larger for states of higher F,. The highest subband
(lowest confinement energy) corresponds to an even parity state with F, = £1/2. Note
that, in contrast to the situation in the quantum dot, there is always at least one bound
state in the wire, though as r approaches zero the subband edge of the state approaches the
top of the well asymptotically. This was first pointed out for the one-band case in Ref.[16].

In Figures 2.9(a) and 2.9(b) we show the subband dispersion, E(K;) for bound states
corresponding to F, = £1/2 and F, = £3/2, respectively, in a GaAs-Alp3Gag.7As quantum
wire with radius 5 nm. Reference to Fig. 2.8 shows that there are no bound states
for the 5 nm radius wire in the spaces F, = £5/2 : Figure 2.9 represents all bound
states for this radius. These plots were made by solving Eq.( 2.55) numerically on a desk
top personal computer. The states are labeled according to the parity of the zone center
envelope wavefunction. The strong non-parabolicity of the subband structure is a result of
the no-crossing rule for coupled states, reflecting the importance of band-coupling effects in
this systermn. The most extreme result of this coupling is seen in Fig. 2.9(b), in which the
highest subband is actually electron-like at zone-center. Similar effects manifest themselves
in Figure 2.10, which shows the dispersion of the bound subbands in a wire of radius 2.5
nm. Reference to Figures 2.7- 2.8 shows that these plots describe all bound states for this
radius.

It is instructive to examine the effective masses at the subband edges as a function of
wire radius. We have determined these masses by performing a quadratic best fit to the
subband dispersion curves near the subband edges, as in Ref.[13]. The results for the highest

subband, for both infinite and finite well depths, are shown in Table 2.3. The mass is as low
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Quantum Wire: Radius

Well Depth 2.5 nm 5 nm 10 nm
Infinite 0.25 m, | 0.25 m, | 0.25 m,
150 meV 0.16 my, | 0.19 m, | 0.27 m,

Table 2.3: Effective mass at the subband edge of the highest valence subband in a GaAs
quantum wire embedded in an Alg3Gag 7As barrier, for several wire radii. Also included in

the table are values determined in the approximation of infinite well depth.

as 0.16 m, for the 2.5 nm radius wire with finite well depth, and increases somewhat with

increasing wire radius. In the approximation of an infinitely deep well, the mass is found to
be m* = 0.25m,, independent of wire radius. A similar result was reported for a quantum
wire of square cross-section in the infinite well approximation, in Ref.[13]. However, in that
study, the mass of the highest valence subband was found to be m* = 0.027m,, nearly ten
times lighter than our value for the infinite well case. This discrepancy is explained by the
fact that the light and heavy hole states are assumed to decouple at the quantum wire zone
center in Ref. [13], an assumption which has been shown here to be invalid, as well as in
previous studies by other workers [12,14,22].

The effective mass of the highest valence subband in a quantum wire of a given diam-
eter tends to be heavier than that for the corresponding state in a planar quantum well
with a comparable thickness. This is best seen in the approximation of infinite well depth.
In this approximation, the mass of the highest valence subband in a GaAs quantum well

is m* = 0.118m,, independent of well thickness [11], in contrast to m* = 0.25m, for the
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highest state in this space is electron-like near the subband edge.
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that the highest state in this space is electron-like near the subband edge.
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highest quantum wire subband. The valence subbands in a quantum wire tend to be more
numerous and therefore more closely spaced in energy than in a quantum well with com-
parable thickness due to the additional confinement and band-coupling effects in the wire
structure. (This rather counter-intuitive effect is not true in a simple one-band model in
which band coupling is neglected). This is seen in Table 2.4. There, the edge energy of
the highest valence subband (HH1) in an infinitely deep quantum well of thickness 10 nm
is listed, with the energy separation to the next state (HH2) and the effective mass for
in-plane dispersion. The corresponding parameters are given for the highest valence state
of a 10 nm diameter quantum wire with infinite well depth (which belongs to the F, = £1/2
subspace). The energy separation to the second highest state is lower in the quantum wire
than in the planar well by over a factor of two. As a result, the coupling between these
levels is stronger in the wire, causing the higher subband to “flatten out” due to the no
crossing rule. This is reflected in the mass which is more than two times higher in the wire
than in the well.

A more comprehensive study of the subband structure and effective masses in a cylin-
drical quantum wire would require the incorporation of band warping effects into the calcu-
lation. This could be done by employing the axial approximation discussed in Sec. 2.7. In
the axial approximation, actual bandstructure in a cubic semiconductor is more accurately
reproduced than in the spherical approximation, yet, since F, remains a good quantum
number, the calculation would be only moderately more complicated.

Finally, we point out that it 1s straightforward to obtain exact, closed form expressions
for the quantum wire wavefunctions using the formalism we have presented. This is nec-

essary for studying such important topics as excitons in the quantum wire, and matrix
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State E AEz,l m*

Well: HH 1 -8.3 meV | 249 meV | 0.118 m,

Wire: 7, =1/2 Even 1| -39.6 meV | 9.8 meV | 0.250 m,

Table 2.4: A comparison of the effective mass for valence band in-plane dispersion in a GaAs
quantum well and down-wire dispersion in a quantum wire. The values are calculated in the
approximation of an infinite well depth. The quantum well state labeled HH1 is heavy hole
like with even parity at the subband edge. AE2 is the energy separation between HH1
and HH2, the next highest state, which has odd parity. Corresponding values are given for
the highest even and odd-parity states for the quantum wire, which have quantum number
F, = £1/2. The larger energy seperation between HH1 and HH?2 implies a lighter effective

mass in the quantum well.
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elements for optical transitions. The band-coupling has a profound effect on these calcu-
lations and must not be ignored if realistic results are to be obtained. In chapter 4, the
formalism developed here will be applied to the calculation of polarization dependent optical

transition matrix elements, absorption, and gain in the cylindrical quantum wire.

2.8 Conclusions

We have demonstrated an analytical formalism for studying bandstructure in quantum dots
and quantum wires. The technique is based upon the critical observation that the envelope
function approximation is equivalent to a two-particle model of the electrons in a semicon-
ductor. In the spherical approximation, the bandstructure Hamiltonian commutes with the
sum of the angular momenta of these particles, which we term Bloch and envelope. The
total angular momentum F therefore provides good quantum numbers in centrosymmetric
systems, a general result previously applied in the more limited context of the acceptor prob-
lem. Application of the theory of angular momentum thus greatly simplifies the spherical
quantum dot and the cylindrical quantum wire bandstructure calculations. Additionally,
for the cylindrical quantum wire, the more accurate axial approximation may be invoked
to incorporate band warping effects.

Utilizing the two-particle model to develop unitary basis transformations, we recast the
K- P bandstructure Hamiltonian into a coupled total angular momentum basis for the quan-
tum dot and an uncoupled basis of eigenstates of F, for the quantum wire. The resulting
Hamiltonians are block diagonal, producing eigenstates corresponding to the familiar con-
duction, light hole, heavy hole, and split-off bands. Quantﬁm dot and wire eigenstates are

formed by constructing linear superpositions of the bulk crystal eigenstates inside and out-
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side the structures. By matching these functions at the hetero-interface, we obtain simple
dispersion relations giving the allowed state energies. A two-band dispersion relation was
developed and solved for quantum dot conduction band states in GaAs-AlGaAs and the
type-II system, InAs-GaSbh. We found good agreement between the two band model and
the less accurate one band model for GaAs-AlGaAs, but the one band model failed for the
conduction band in the type-II system. In the next chapter we will discuss the possibility of
using the unusual band line-up in InAs-GaSb to fabricate novel self-doped quantum trans-
port structures. For the valence band states in GaAs-AlGaAs quantum wires and dots, the
one band approximation breaks down completely. The multiple band calculation which we
introduced shows that the valence band states in the quantum dot and quantum wire are
admixtures of light and heavy hole character. This admixture has a significant affect on the
confinement energies in the quantum dot and on valence subband dispersion in quantum
wires. This dispersion is highly non-parabolic and electron-like in some cases. Analytical
expressions derived in this chapter for quantum dot and wire eigenstates rigorously include
band-coupling effects and will be used in chapter 4 to calculate polarization dependent

matrix elements for optical transitions.

2.9 Appendix: The conventional K - P Hamiltonian

In this section we present the conventional K - P bandstructure Hamiltonian describing cou-
pling among the two conduction and six valence bands. We use a somewhat different phase
convention in our definition of the band-edge Bloch states than that used by other investi-
gators. The states |J,J,) are written below in terms of orbital wave functions transforming

as s-states (the conduction bands), p states (the valence bands), and the spin states up and
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down. Our phase convention is determined by the reality of the Clebsch Gordan coefficients
used to combine the spin and orbital angular momenta to form states of total Bloch angular

momentum J:

1/2,1/2,(00) = [s)[ 1)
1/2,-1/2,0)) = Is)| L)

1/2,1/2,()) = —/1/302)| 1) + (12) + ila))| 1]
1/2,-1/2,(1) = /173021 1) = (12) — ilu)| 1]

13/2,3/2) = —/1/2[l=) +ily)]| 1)

V2131201 1) = /1/6(12) + ilu)) | 1)
13/2,-1/2) = /1/6(Iz) — ily))] )] + /2/3012)] 1)

13/2:3/2) = \/1/20l2) - ily)]l 1). (2.58)

13/2,1/2)

We include the orbital angular momentum quantum number in parenthesis for the con-
duction and split-off bands to distinguish between the two. For these bands the following
correspondences apply between the band edge representations of the crystal double group
and the representations of the full rotation group (written Dj, corresponding to the states
that transform as ‘angular momentum j): D/, < T for conduction band, Dy/; < T'7 for
the split-off bands, and D3/, < I's corresponding to the coupled light and heavy holes.

In this basis, the Hamiltofxian matrix H(K) takes the form given in Table 2.5. The
terms E;, Ey, A have their usual meanings, P is the Kane momentum matrix element,

P = —i(s|P,|z), and the other expressions are defined as follows:
K* = K2+ Kl+K?

K, = Kx-}-iKy
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K_. = K;-iK,
~T K2+ K? K?
o = 7))+ 11— <72)
R R o~ LENCHEPIRE.S
T 2 K2+ K? : K?
—(g+ TQ = (n- 72)'(—32—3’) +(n+2m)
—-L = —i2\/?_)73(Kr—;Ky)I§3 (Azial Approzimation)
-L = —i2\/§72£&—*;1{y)—K—2 (Spherical Approzimation)
K; —iKy)?
M = Gy Fe K (2.59)

2
The v parameters in these expressions are so-called “modified” Luttinger parameters which

are related to the “true” Luttinger coupling parameters [27] by the relations [29]

- true 2P2
"= M T3ECE)
P2
_ true __
72 - 72 3(EC _ Ev)
P2
— true 4+ 260
BT T YE ), (2:60)

In these modified parameters we have effectively subtracted out the effects of valence band-
coupling to the conduction bands from the “true” parameters. These effects are included
explicitly in this model. Note that we have also assumed inversion symmetry in this Hamil-
tonian.

We note that a number of simplifications are possible. We can restrict attention solely to
the I's sub-matrix for example, in which case we simply obtain Luttinger’s 4 x 4 Hamiltonian
[27] and the “true” Luttinger parameters are used in place of the modified parameters

discussed above. In the spherical approximation, this gives isotropic lh and hh dispersions

K2

Enn(K) = Ev = (71 - 292) -, (2.61)
K2

En(K) = Ev = (71 + 272) - (2.62)



11/2,1/2,(0))

(

Ec+K?

iPK_

V2

-.'\/g— PK;
_PK.
—t
v

i\/%-_PKz
\ i\/%—PK_',

Table 2.5: The full 8 x 8 K - P Hamiltonian H(ﬁ) representing coupling between conduction

and valence bands as well as indirect coupling through remote bands. The symbols are

11/2,-1/2,(0))

Ec+4 K2

—i\/%-_PKz

defined in the text.

where K = IKI On the other hand, if we neglect the Luttinger coupling parameters and

the free electron kinetic energy term %~

13/2,3/2)

—iPK.
72

Eu+%‘-
iL*

-M*

—iL*

VZM*

discussed in the text [24].
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i\/_gPKz ’

.PK.
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71
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.76-_
i\/?PKz
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13/2,-3/2)

-M
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—VZM

11/2,1/2,(1))

~iy/3PK;
-i/3PK,

—V2ZM*
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-i/IPK_
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entirely, we recover the Kane dispersion relations
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Chapter 3

Self-doping semiconductor

quantum structures

3.1 Introduction

Progress in the field of nanostructure physics and fabrication has been motivated largely by
the prospect of creating a new generation of electronic devices which rely upon quantum
transport effects [1]-[3] for their operation. An issue that has not been adequately addressed
is the question of how nanometer scale transport structures might be doped. The stochastic
nature of impurity dopant distributions is a critical problem in this field because the presence
of an ionized impurity in the vicinity of a quantum wire or dot represents a significant
electronic perturbation to these nanometer scale structures. This discreteness also translates
into uncertainty in whether or not a given nanostructure in fact contains charge carriers.
In this chapter a novel class of nanometer scale semiconductor structures for transport

applications is proposed that avoids these problems. Employing the coupled band formalism
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developed in chapter 2, we examine analytically the bandstructure of quantum dots and
wires based upon the type-II broken gap system InAs-GaSb, and demonstrate the theoretical
feasibility of creating “self-doping” quantum dot and quantum wire arrays which coptain
free charge carriers, without intentional impurity doping. This fact, along with the low
effective mass of InAs, which relaxes the size requirements necessary to observe quantum
effects, make this new class of nanostructures potentially interesting for quantum transport
studies. We conclude by examining the practical issue of how such type-II quantum wires

and dots might be fabricated.

3.2 InAs-GaSb heterostructures

The basic physics of InAs-GaSb heterostructures can be understood by reference to the inset
of Figure 3.1, which shows the band line-ups of the system. Because the conduction band
edge of InAs lies below the valence band edge of GaSb, charge transfer may occur across
the intgrface [4]. Additionally, conduction-valence band mixing across the heterojunction is
significant so that a multiple band model is necessary for theoretical calculations. A rigorous
analysis should therefore be based on multiple band envelope function theory and should
self-consistently include the band-bending due to charge transfer at the InAs-GaSb interface
(an example of such a calculation for superlattices is found in Ref.[5]). Such an approach
is quite computationally intensive, however. A flat band model is preferable because of
its simplicity; and in spite of simplicity, the model successfully explains observations of
a semiconductor-to-semimetal transition in InAs-GaSb superlattices [6]. This transition
was observed to occur for InAs layer thickness in the neighborhood of 10 nm, in rough

agreement with a Kane-type two-band calculation which predicted a transition at 8.5 nm
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[6]. The approximate agreement of experiment with the flat band theory lends confidence
that this simplified approach may be used as well to determine the essential characteristics
of the type-II quantum wire and quantum dot.

Even in a flat band approximation, however, the study of the coupled band states
in quantum wires and quantum dots is significantly more complicated than in the planar
quantum well problem. The multi-dimensional nature of these heterostructures complicates
the boundary conditions, and quantum wires or boxes of square cross-section cannot be
dealt with analytically since the finite square well potential is non-separable in two or
three dimensions. We therefore employ simpler geometries for which the heterostructure
potentials are separable: a cylindrical quantum wire and a spherical quantum dot. The
theory developed in chapter 2 permits analytical solution of coupled band problems for these
geometries. The approach is based upon the observation that in a spherical bandstructure
approximation such as the Kane model [7]-[8], total angular momentum is a conserved
quantity. Total angular momentum F is defined as the sum of the the angular momenta,
j, of the zone-center Bloch functions and, f:, of the envelope functions. In a cylindrical
quantum wire the projection of total angular momentum along the wire axis therefore
provides a good quantum number, F,, while in a spherical quantum dot, the total angular
momentum quantum numbers F and F, are good quantum numbers. The Kane Hamiltonian
may therefore be re-expressed in a basis of eigenstates of the operator F, for the quantum
wire, and in a basis of the eigenstates of F? and F, for the quantum dot. Bulk eigenvectors
in the new bases are then computed in the well and barrier regions just as in the familiar
quantum well problem, and the requirement of continuity at the interface [9] results in an

eigenvalue equation.
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3.2.1 InAs-GaSb quantum dots

We illustrate the method by calculating the energy of the lowest conduction state in an
InAs quantum dot embedded in GaSb. The Kane Hamiltonian will be block diagonal with
respect to quantum numbers F, F,, and parity. Using the familiar rules of addition of

angular momentum we form a total angular momentum basis as follows:

J L
IK;F,F,;3,L) = Y. > (3,J5LLIFF) 3,)) |KL,L,). (3.1)
Jz==JL,=-L

The first term in the sum is the Clebsch-Gordan coefficient for adding states of angular
momenta J and L. The states |J,J,) are the band edge Bloch functions, where J = 1/2
for the conduction bands and J = 3/2 for the upper valence bands [7]. The envelope kets
|k;L,L,) are free spherical waves with angular momentum quantum numbers L and L,.

These therefore have the coordinate representations

(0,81, L L) = /2 & hien) YE(0,9) (32)

where hr, is a spherical Hankel function, YIIj' is a spherical harmonic, and K is the radial
wavenumber.

Since states of different total angular momentum and total parity, =, do not couple, each
Hamiltonian sub-matrix Hy F, . may be separately diagonalized to obtain bulk eigenstates.
We expect the lowest conduction state in a quantum dot to have even parity; this state was
shown in last chapter to have quantum numbers F=1/2, F, = £1/2. It is simple to show

that for the conduction and upper valence band system, the appropriate Hamiltonian sub-



79

matrix (Eq. 2.19) assumes the simple form:
11/2,0) [3/2,1)

/2,00 [ B —iy/2pk
3/2,1) \ i/2pk  E

where the quantum numbers k, F, F, are understood in the basis vectors |J,L). In the

H1/2,:i;1/2,even = (3.3)

matrix, p is the Kane matrix element —i(s|P,|z) [7]. E., E, denote the conduction and
light-hole band edges. Diagonalization gives the familiar Kane two-band energy dispersion

relations [8] inside and outside the dot:

(EL-B)(EL-E) = ZlpPK?
2
(O - B)(EC ) = I, (34)
where superscripts 1,0 refer to regions inside and outside the dot, respectively. The exterior

spherical wavenumber is taken as i) in anticipation of solving for bound energy eigenstates

with energy E > E0. Eigenvectors resulting from the diagonalization process have the form:

[¥E) = AlI/2,0 +) [ g —pc13/2,1), (35)

where “A” is a constant to be determined by matching boundary conditions and apply-

ing normalization. The envelope parts of this vector are projected onto only the radial

coordinate representation. This results in the following two-dimensional column vector:

ho(kr)
YE(r) = A ( ) . (3.6)

Bogcha(kr)
The form of Eq.( 3.4) is such that £k (£)) are degenerate roots. Using these roots and

the basic form given by Eq.( 3.6), state functions within each region are constructed. The

requirement of regular behavior at the origin leads to combinations of Hankel functions
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within the quantum dot that are equivalent to spherical Bessel functions of the first kind.
Outside the quantum dot, only the spherical Hankel function of imaginary argument which
decays for large r is retained. Applying continuity of the resulting envelope states at the

boundary of the quantum dot leads to the following condition:

jo(kR)b1(iAR) _ /(E — E{)(E — E?)

j1(kR)ho(iAR) ~ V (E — EL)(E = EO)" (3.7)

Eqgs.( 3.4- 3.7) form a system of three equations in the three unknowns, E, k, and .

The energy determined with this equation is plotted as a function of InAs dot radius in
Figure 3.1 using the material parameters of Ref. [4]. We see that for dot diameters larger
than 17 nm the lowest conduction state sinks below the position of the GaSb valence band
edge, implying that electrons transfer from the GaSb barrier into the InAs well region. In
essence, the InAs quantum dot is behaving like an artificial acceptor, in this case with a
valence of two. The lonization energy is determined by the position of the InAs conduction
state with respect to the GaSb valence band edge, a tailorable quantity dependent upon
the radius of the InAs quantum dot. In a similar fashion, a GaSb quantum dot embedded
in InAs will behave as a donor. These observations suggest the possibility of creating a
synthetic extrinsic semiconductor with one mobile carrier type (without intentional impu-
rity doping) by fabricating two- or three-dimensional arrays of InAs(GaSb) quantum dots
embedded in GaSb(InAs). Such a system would have an advantage over a conventionally
doped semiconductor because individual quantum dots could be located precisely by litho-
graphic means. We call attention to Ref.[2] where it is shown that appropriately tailored
miniband structure in quantum dot arrays may be used to suppress polar optical phonon

scattering.



81

800
E Ec
GaSb

600 A S
>
[<}]
£

400 1
>
(@)
[ &
[<})]
c
1]

2001 GaSb valence Band Edge

O Y T T 1 v ! ;
00 2.5 5.0 7.5 10.0

Dot Radius [nm]

Figure 3.1: Confinement energy of the conduction band states in a spherical InAs dot
embedded in a GaSb barrier, plotted as a function of dot radius. The dashed line is the
position of the GaSb valence band edge, 150 meV above the conduction band edge in bulk
InAs. Inset: schematic drawing of the relative position of bulk InAs and GaSb conduction

and valence band edges.
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3.2.2 InAs-GaSb quantum wires

The InAs quantum wire embedded in GaSb is studied in a manner similar to the quantum
dot. The Kane two-band Hamiltonian is expressed in a basis of eigenstates of the operator
F, in this case. Following a procedure similar to that taken for the quantum dot, we arrive

at the eigenvalue equation for the lowest conduction state with K, = 0:

Jo(kR)H;(iAR) \/(E ~ EL)(E — E9) (55
J1(KR)Ho(iAR) ~ |/ (E— EL)(E — EO) 8)

Using this equation, we find that for wire diameters greater than 13 nm, we expect charge
transfer to occur across the InAs-GaSb interface. In this manner, quasi-one-dimensional
channels may be created which contain high concentrations of free electrons, without in-
tentional impurity doping. Due to the absence of charged impurity scattering centers, the
quasi-one-dimensional nature of the electrons in the quantum wire, and the low effective
mass of InAs we expect that such a structure would exhibit high mobility. Such a self-doping
structure would be ideal for quantum transport experiments which require long scattering

lengths.

3.3 Potential fabrication schemes

A possible scheme for fabricating InAs-GaSb quantum wires and dots based upon a selective
epitaxial growth process is shown in Figure 2. The process shown has recently been demon-
strated in the GaAs-Al;Ga;_4As system resulting in passivated wire and dot structures with
excellent morphology [10]. To apply the technique to InAs structures embedded in GaSb, a
thin masking layer of SiN would be deposited on a GaSb surface and selectively patterned

by electron beam lithography to open holes and lines in the SiN layer. InAs is then grown



83

itride Mask

GaSb Substrate GaSb Substrate

@ ()

GaSb Substrate GaSb Substrate

(© )]

Figure 3.2: Possible scheme for fabricating InAs quantum wires or dots embedded
in GaSb using a selective epitaxial growth technique similar to that demonstrated for
GaAs-AlyGa;—xAs in Ref.[10]. (a): SiN mask is deposited on a GaSb substrate. (b):
Stripes or holes are created in the SiN mask by electron beam lithography followed by a
chemical etch process. (c): InAs is grown selectively in the mask openings. (d): GaSb

overlayer is grown epitaxially.

selectively in the openings of the SiN layer. Finally the InAs is passivated by overgrowing
GaSb. Wahile effort would be required to develop such a selective epitaxy process in the
InAs-GaSb material system, the basic feasibility of the process has been demonstrated.
Another possible scheme for fabricating InAs or GaSb quantum dots would be to grow
nanometer sized InAs or GaSb clusters by homogeneous nucleation from the vapor phase.
The InAs(GaSb) clusters would then be deposited on a substrate of GaSb (InAs) and over-

grown with an epitaxial layer of GaSb (InAs). The first step of this process, the growth of
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nanometer sized InAs and GaSb clusters by homogeneous nucleation from a supersaturated
vapor, is demonstrated in chapter 6. Deposition of these clusters, and their incorporation

into a growing epitaxial film, is a challenging research problem for future study.

3.4 Conclusions

In conclusion, we have proposed a novel class of quantum wires and dots based upon the
type-II system InAs-GaSb, which are expected to exhibit unique self-doping behavior and
high mobilities. This conclusion is based on a coupled band calculation which assumes a flat
band condition. A more complete theoretical approach which incorporates band bending
effects will be necessary to compute mobilities and carrier densities in such structures.
Finally, we have suggested two schemes for fabricating such structures. The first could be
realised by extending the technology of selective epitaxy to the InAs-GaSb material system.

The second utilizes the cluster generation techniques to be described in chapter 6.
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Chapter 4

Optical absorption and gain in

quantum wires

4.1 Introduction

Polarization dependent photoluminescence excitation (PLE) spectroscopy has emerged re-
cently as a powerful tool for the characterization of quantum wires [1,2]. In particular,
these PLE studies have shown that a strong anisotropy exists in the relative intensity of the
two lowest energy exciton lines in quantum wire arrays as a function of polarization of the
exciting light. Given the importance of this observation to future application of quantum
wires to semiconductor lasers [3]-[4], it is crucial that a rigorous theoretical understanding of
this effect be established. However, the theoretical model which has previously been used to
interpret this effect, and to calculate polarization dependent gain spectra in quantum wires
[5,6], contains two major simplifications which can be shown to be fundamentally invalid.

First, for simplicity, band coupling effects are neglected, and second, coherence terms are
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neglected in the calculation of the optical transition matrix element.

In this chapter we apply the coupled-band formalism developed in chapter 2 to calculate
the polarization dependent linear optical spectra in cylindrical quantum wires correctly. In
addition to providing a theoretical framework with which to interpret polarization depen-
dent absorption/emission spectra of quantum wires, these calculations can aid in the design
of quantum wire lasers. This is particularly timely since the feasibility of incorporating
quantum wires into the active region of a semiconductor laser has recently been experimen-
tally demonstrated [7]. As an example, Figures 4.1(a) and (b) respectively represent lasers
in which the quantum wires are oriented parallel and perpendicular to the electric field in
the lasing mode.

A determination of the optimal configuration requires calculation of the optical gain
spectrum. The interband optical transition matrix elements and joint density of states
(JDOS) must be calculated while taking into account the effects of band-coupling. The
electron-like structure of the dispersion relations for certain valence subbands which results
from these band-coupling effects will be seen to result in a large JDOS for transitions involv-
ing these subbands, a fact which has important consequences to the optical spectra in these
structures. In the course of developing the gain calculation, the valence subband dispersion
relations, densities of states, interband optical transition matrix elements, and absorption
spectra of cylindrical quantum wires will be presented. Before the conclusion of the chapter,
the applicability of the model to quantum wires of lower symmetry, e.g., wires with square,
rectangular, and triangular cross-sections, will be examined through application of group
theory. In the next section, we begin with a brief review of the formalism necessary to

calculate these quantities.
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Quantum Wire Laser

[a] Quantum Wires Parallel to Electric Field

\ GaAs Quantum Wires

Lasing Emission

[b] Quantum Wires Perpendicular to Electric Field

\ GaAs Quantum Wires

Lasing Emission

Figure 4.1: Two possible schemes for a quantum wire laser. (a): quantum wires are oriented
parallel to the cavity facets (b) quantum wires oriented parallel to the cavity axis. In both
structures the quantum wires are situated inside a graded index region and the laser is

assumed to operate in TE mode.
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4.2 Electronic structure of the cylindrical quantum wire

The determination of the optical properties of the quantum wire involves several distinct
steps. First, it is necessary to determine the conduction and valence subband dispersion
relations and wavefunctions. For the conduction band states, this step may be accom-
plished by invoking simple one-band effective mass theory, in which the quantum wire is
modeled as a two-dimensional potential well. This method is analogous to the calculation
that was presented in chapter 1 for the conventional one-dimensional quantum well [4].
The more complicated coupled valence band problem must then be solved to yield valence
subband wavefunctions and dispersion relations. Once these steps are carried out, it is
then straightforward to calculate matrix elements and JDOS for interband optical transi-
tions. The calculations which follow assume a cylindrical quantum wire with a finite well
depth. The high syr;lmetry permits us to describe the polarization dependence of optical
transitions with simple trigonometric expressions. Despite the simplicity of the model, the
analysis retains the essential physics of the problem — namely, two-dimensional quantum

confinement with finite well depths in a coupled-band system.

4.2.1 Conduction subbands

The conduction subband wavefunctions and energies in the cylindrical quantum wire may
be calculated in a straightforward manner with one-band effective mass theory [4]. The

conduction wavefunction takes the form

) E':cp[iLzﬁ]Ezp[ikzz]l%,—:%l), 4.1)

1 JL: [kLZynr](r < R)
N,

V7, sl =+
3 Hy[\[k}, . — Verl(r > R)
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where J and H are Bessel functions and Hankel functions, and the radial wavenumber
ki, n is a discrete quantity determined by the requirement of continuity of the envelope
and its derivative across the interface between the well and barrier regions. The radius
of the wire is R and the conduction band offset is V.. The energy of the state is given
by E.[k.] = E%(k%,,n + k?). N¢ is a coefficient which normalizes the wavefunction. The
term I%, =—L'2—1) is simply the conduction band Bloch function with spin up or down. In what
follows we will adopt the convention whereby the conduction subband which corresponds to
a particular value of |L,| is labeled “C(L,).” The envelope component of the wavefunction
of lowest subband, C(0), has even parity in the plane perpendicular to the wire, and is only
doubly degenerate (due to the spin degeneracy of the Bloch function). The next subband,
C(1), has quantum number L, = £1 and therefore is four-fold degenerate. This state has
odd envelope parity in the plane perpendicular to the wire axis. As a matter of terminology,
from this point on when we refer to envelope parity, it will be understood to mean parity

in the plane perpendicular to the wire axis.

4.2.2 Valence subbands

The valence band states of the quantum wire represent a more challenging problem than
the conduction states just discussed. In the simplest approximation, the two split-off bands
are assumed to be decoupled from the four I's bands (the light- and heavy-holes). However,
coupling among the remaining four bands still may not be neglected. Thus, a multi-band
envelope function technique must be employed. We adopt the approach of chapter 2, in
which the bulk Luttinger Hamiltonian is expressed in a representation of the appropriate

cylindrical waves rather than of Bloch plane waves. (The approach used here employs an
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explicit representation of the Hamiltonian but is equivalent to the coordinate-free approach
of Ref.[8]). This basis is simply the set of eigenstates of the projection of total angular
momentum along the z axis. The total angular momentum operator is the sum of the
angular momenta of the envelope and Bloch components of the total wavefunction. It is
defined by the relation F=J+ f, where J is the angular momentum which characterizes the
familiar zone-center Bloch functions |J,J;), ( J=3/2 for the light- and heavy-hole states),
and L is the angular momentum of the envelope part of the wavefunction. Since ¥, = J,+L,,

the necessary basis may be written in the product form
Ikz:k, Fz;Jan) = lJsz)ikﬁk,Lz =F, - Jz)- (4-2)

Here the envelope vector |k,;k,L,), which has angular momentum L, about the z-axis, is

represented in cylindrical coordinates by

iLa . .
H il 0 lkzz' )
57 HL. (kr) =" e (4.3)

(r,0,z]k,;k,L,) =

In this expression, k is a radial wavenumber, Hj,, is a Hankel function of order L,, and k,
is the component of crystal momentum along the z-axis.

The process of expressing the bulk bandstructure Hamiltonian in this basis involves
a unitary transformation from the conventional Bloch plane wave representation and is
described in detail in Section 2.7. It is found that the Hamiltonian is block diagonal in F,,
with sub-blocks corresponding to a given quantum number F, taking the identical form :

13/2,3/2)|F: - 3/2) 13/2,1/2)|F: —1/2) 13/2,-1/2)|F;: +1/2) [3/2,-3/2)|F; +3/2)

E,+ L —iL -M 0
- iL* E.+Z+2% 0 -M
HF: = . (4.4)
-M* 0 E.+I+% iL

0 ~M* —iL* E.+ZL
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In Eq.( 4.4), the basis vectors are written as products of a zone-center Bloch function,
{J,J.) and the envelope state, |L;), where L, = F, — J,. This form ensures that all the basis
vectors correspond to the same quantum number F,. In the envelope vector, k and k, are

understood and therefore omitted. The terms in the matrix are given by

2

T k? k2
-3 = (71 + 72)7 +(n - 272)7
T 2 k2 k2
—(g + —3Q = (n- 72)—2‘ +(n+ 272)32
kk,
—L = —i2v3v 5
k2
-M = \/572? (4.5)

where the parameters 7; and 7, are the usual Luttinger parameters, and we have invoked the
spherical approximation (y2 = 7v3) [9,10]. E, denotes the bulk valence band-edge, which will
later be taken to be a function of position in modeling the quantum wire heterostructure.

To calculate the eigenstates and eigenenergies of the quantum wire which correspond
to a given total angular momentum quantum number F,, we model the heterostructure by
a method similar to the conduction band calculation. This is accomplished by introducing
a radial potential V, in the barrier region equal to the valence band discontinuity across
the interface at r = R. Inside and outside the quantum wire, we find the heavy-hole and
light-hole eigenvectors for a given quantum number F, corresponding to a given energy and
down-wire momentum k,. We then form in each region the most general possible linear
combination of these bulk eigenvectors and impose appropriate boundary conditions. To
begin with, the wavefunction must be regular at the origin, so that the solution in the region

r < R takes the general form

v, = {A1gl(r,2) + AogliF%(r,2) + Aol (r,2) + Ayﬁ%fm(r,z)} ,(r<R), (4.6
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where the ¢, (r,2) are the bulk light- and heavy-hole eigenvectors which are regular at r =

0, given in Egs. 2.51 and 2.52 in chapter 2. The wavefunction in the region r > R is
v, = {Asobll(r,2) + Acthi(r, 2) + ArdR(r, 2) + Astft?(r,2) ), > R),  (47)

where for bound states, the ¢p,(r,2) are the bulk light- and heavy-hole eigenvectors which
vanish at infinity, given in Equations 2.51 and 2.52 in chapter 2.

By requiring continuity of the wavefunction (four equations) and the probability current
(four more equations) across the interface between well and barrier regions at r = R, we
obtain an 8 x 8 homogenous, linear system of equations for the eight unknown mixing
coefficients A;...Ag. The requirement that the determinant of the matrix must vanish
for a solution to exist supplies an implicit relation determining the allowed quantum wire
eigenenergies for a given F, and k,. This relation appears in chapter 2, Equation 2.55.

In Figure 4.2 we show the subband dispersion, E(k,) for bound states corresponding
to F, = £1/2 and F, = +3/2, respectively, in a GaAs quantum wire with radius 5 nm
embedded in Alp3Gag7As. Bandstructure parameters have been chosen to reflect mj, =
0.45m, and my, = 0.082m,. Figure 4.2 represents all bound light- and heavy-hole states
for this radius because there are no bound valence states for the 5 nm radius wire with
|[Fz] > 3/2. Since eigenstates in a quantum wire are admixtures of light- and heavy-hole
character even at zone-center, these band labels are not useful. The subbands in the figure
are therefore labeled by the irreducible representation, ngz’n, to which they correspond. The
subband index, n, is assigned on the basis of the energy at zone-center. The superscript
‘4’ is a reminder of the zone-center envelope parity of the subband. Note that this is not
the parity of the total wavefunction, but only of the envelope, and that off of zone-center

parity is not a good quantum number.
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Figure 4.2: Valence subband dispersion E(k.) for a 5 nm radius GaAs quantum wire embed-
ded in an Alp3Gag7As barrier (well depth =150 meV). The dispersion curves are labeled
El:f‘:,,n’ where + denotes the envelope parity of the zone center state, and n is a subband

index. The subbands with quantum number F, = £1/2 and F, = £3/2 and drawn with

solid and dashed lines, respectively.
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The strong non-parabolicity of the subband structure in Figure 4.2 is a result of the
no-crossing rule for coupled states, reflecting the importance of band-coupling effects in this
system. The most extreme result of this coupling is seen in the structure of the highest
subband, E;',f' /2,17 which is actually electron-like at zone-center. Note that subbands with
different F, cross, because they are not coupled. Similar results have been obtained by
others for quantum wires of cylindrical [8] and rectangular [11,12] cross-section.

Having determined the subband dispersion relations of the coupled valence states of the
quantum wire, it is a simple matter to derive the DOS. For a one-dimensional structure, it

is well known that the DOS per unit length is given by

D(E) = Zy;;lr- d’fgﬂ l, (4.8)

where index i runs over all subbands, g; = 2 is the Kramer’s degeneracy of each subband,
and ki[E] satisfies Ei[ki] = E. In Figure 4.3(a-b) we separately present the calculated
DOS corresponding to the F, = 1/2 and F, = 3/2 subbands, whose dispersion relations
are plotted in Figure 4.2. The peaks in these plots represent singularities at the subband
edges, and are labeled according to the subbands to which they correspond. To smooth out
these singularities, the DOS functions have been convoluted with a normalized Gaussian

lineshape function, g(E), with a line width, 6E = of 0.5 meV:

_ N2
o(E) = Zmenpl- ) (49)

The dominant feature in these plots is the large peak in Figure 4.3(b) corresponding
to the electron-like subband denoted E;/z , in Figure 4.2(b). In Section 4.4 we will see
that this feature has a pronounced effect upon the polarization dependence of the optical

spectra of a quantum wire.
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4.3 Interband optical transitions in cylindrical quantum wires

4.3.1 Polarization dependence of the optical matrix element

The technique outlined in the last section for determining the valence subband wavefunc-
tions of the quantum wire permits us to calculate the interband optical transition matrix
elements. For a given valence subband Ef,,, we determine the coefficients A;...Ag in Egs.

( 4.6, 4.7) and obtain a normalized wavefunction of the following general form

[ Fa(r)Ezpli(F: — $)6]\

fa(r)Ezpli(F: - 3)6]
Vg nlks] = Explik,z]. (4.10)
FR(r)Ezpli(F; + 3)6]

\ FA(r)E=pli(F, + 2)8]/

This vector is written in the basis of zone-center Bloch functions |J,J,), taken in the order
12, )...I3,—3). These Bloch function are given explicitly at the end of chapter 2. The

radial functions f1(r) ... £3(r) denote the radial components of Egs.( 4.6, 4.7) determined

[T

for a given subband of quantum number F, and subband index n (see Figure 4.2) and are
parametrically dependent on k,. The conduction states involved in the optical transition
are much simpler and are given explicitly in Eq.( 4.1).

The polarization dependent interaction of a quantum wire with an optical field may be
represented by the A - P interaction Hamiltonian. Here A is the polarization vector of a
linearly polarized optical wave, which we take to be A = Cos(#)z + Sin(#)x where z is the
wire axis. Using the wavefunctions given in Eqgs.( 4.1, 4.10) for conduction subband C(L,)
and valence subband EF, 5, we therefore write a k,-dependent squared transition matrix

element of the general form,

IMIE ), 0 = (05, 3 RalIPTEE nlke]) - AP + (68 Bl alla]) - AP (411)
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Examination of Egs.( 4.1, 4.10- 4.11) reveals two important selection rules that vastly
simplify our analysis. The first is that k, is conserved (k-selection). The second is that there
is a strict envelope angular momentum selection rule. For example, consider transitions
involving the lowest conduction subband C(0) (L, = 0) and any of the quantum wire
valence subbands Ep, , with quantum number F, = 1/2. In this case, integration over the
coordinate 6 eliminates all but the second component of the vector Eq.[ 4.10]. The squared

matrix element for these transitions thus simplifies to the following expression:

IMI%(O)—E% = (I(1/2,1/2B|3/2,1/2)- A" +(1/2, -1/2|P[3/2, 1/2)'A|2)I§‘(%'n)[kz], (4.12)

n

where all of the information about the envelopes is now contained in the radial overlap

integral for the particular transition, Ig(l n)[kz]. Utilizing the explicit representations
1 2’

11/2,1/2) = Is) 1, 11/2,-1/2) = |s) |, and 13/2,1/2) = /Zl2) 1 —/5(x) +ily)) 1, the

matrix element assumes the remarkably simple, analytical, form
MZ)-s, , = (5 Cos’(9) + 5 Sin?@)IPPE s k] (413
C(O)—-E%,n = 3 (1) 6 m 0’(%,11) - . )

Here P is the matrix element of the momentum operator between orbital ‘s’ and ‘p’ states:
P = —i(s|P,|z) [13]. In this work we use the value mlo|P|2 = 28.2 eV, where m, is the free
electron mass [14]. All of the polarization dependence is contained in a simple trigonometric
expression, and is the same for all transitions between the lowest conduction subband and
the valence subbands with |F,| = 1/2. The energy dependence of the matrix element is
entirely contained in the overlap integral for each transition through its dependence on k,.

Similar simplifications apply for transitions between C(0) and the valence subbands

Er,n with quantum number F, = 3/2. In this case, using |3/2,3/2) = —715(IX> +ijy) 1,
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we find the result

1.
|M|%(0)_E%,n =5 S’ @)P[* I} 5 ks, (4.14)

again a remarkably simple analytical form.

In Figure 4.4 we show the polarization dependence of the relative squared optical
transition matrix elements for these transitions. Note that the polarization dependence is
independent of the size or composition of the quantum wire. It is clear that transitions
involving the F, = 1/2 subbands are four times stronger for an electric field vector oriented
along the wire than they are for the perpendicular orientation. For the F, = 3/2 valence
subbands, the trend is the reverse; in this model these states do not interact at all with
optical waves polarized along the axis of the wire. This is perhaps a surprising result, but
one which we will see in Section 4.5 could have been anticipated on the basis of group theory.
The importance of this result arises from the fact that the two lowest energy allowed optical
transitions are respectively the C(0) — E;l and C(0) — E:%k,l transitions. Figure 4.4 shows
that the matrix elements for these transitions have a pronounced relative anisotropy. This
will have a significant effect on the absorption and gain of quantum wires.

In Figures 4.5(a-b) we show the dependence on k, of the overlap integrals in equations
4.13 and 4.14, which describe transitions involving C(0) and each of the bound valence
subbands with quantum number F, = 1/2 and F, = 3/2, respectively. These calculations
were performed for a GaAs quantum wire of radius 5 nm, embedded in Alg3GagrAs. In
contrast to the polarization dependence (Fig. 4.4), the magnitude and energy dependence
of the matrix elements depend on the size and composition of the wire. Note that certain
transitions are forbidden at zone-center (k, = 0) due to an additional selection rule on en-

velope parity. These transitions become allowed as we move away from zone-center because
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there, envelope parity is no longer a good quantum number. Physically, band-mixing effects
cause subbands with odd envelope parity at zone-center pick up an increasing degree of even
parity character as k, is increased from zero. Conversely, strongly overlapping transitions
at zone-center generally becomes weaker as k, increases.

Continuing in this fashion, we can derive expressions for the matrix element for tran-
sitions involving higher conduction subbands. For a 5 nm radius GaAs quantum wire
embedded in Alp.3Gag.7As, there is only one other bound conduction subband, C(1), which
corresponds to quantum number L, = *1. This subband is actually four-fold degenerate
due to the additional two-fold spin degeneracy. Application of the calculational procedure

Jjust developed leads to the following results:

IM%(I)_E%,n = 1 sin?(g)|P|? 12_1’(%'“)[1(2]“% Cos?(8)|P[>+% Sin?(6)[PJ?) If'(%’n)[kz] (4.15)
Mlo)-By, = (G Col@PP+E S @OPP) B o kol (4.16)

Note that, in contrast to the transitions involving the ground conduction subband, the
polarization dependence in Eq.( 4.15) involves the overlap integrals, and thus depends upon
the radius and composition of the wire, as well as on k,. The overlap integrals in these
equations are defined as follows: I—l,(%,n) is the radial overlap between the first excited
conduction state C(1) and the component f1(r) of valence state Ei/2n, Il,(%,n) is the radial
overlap of C(1) and the component f3(r) of valence state Ei/2x, and Il,(%,n) is the radial
overlap between C(1) and the component f2(r) of valence state E3/25- In Figures 4.6(a-b),
we plot the squared transition matrix element for transitions involving the F, = 1/2 valence
states and C(1) for electric fields oriented parallel and perpendicular to a 5 nm radius GaAs
quantum wire embedded in Alp3Gag.7As as a function of down-wire momentum, k,. Figure

4.7 shows the k,-dependence of the matrix element connecting C(1) to the various F, = 3/2
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states. The polarization dependence for these transitions is the same as that depicted in
Figure 4.4 for the transitions connecting the C(0) conduction subbands to the F, = 1/2

valence subbands.

4.3.2 Joint density of states

Figures 4.4- 4.7 describe the polarization dependent optical transition matrix elements
between all bound conduction and valence subbands for a 5 nm radius GaAs quantum wire

embedded in Alg3Gag7As. We now calculate the joint density of states (JDOS) for these

transitions. For k, conserving transitions, the JDOS may be written

2, dk
Jho] =3 ;ldEz |Ee,o=hws (4.17)

cv
where ¢ and v symbolize conduction and valence subband indices, and k, satisfies E., =
Ec[k;] — Ey[k;]. The factor of 2 accounts for the two-fold Kramer’s degeneracy. In Figures
4.8(a) and (b) we separately plot the JDOS for transitions involving the valence subbands
corresponding to F, = 1/2 and F, = 3/2, respectively. The figure actually shows a convo-
lution of the JDOS with a Gaussian lineshape function of width §E = 0.5 meV. The peaks
in the figure are labeled according to the zone-center transition to which they correspond.
It is interesting to compare the JDOS at the onset of the lowest energy transition in Figure
4.8(a), denoted C(0) - E-l*’/Z,l’ with that of the lowest transition in Figure 4.8(b), C(0) -

E+

3/2,1° Due to band repulsion effects, the JDOS for the latter transition is nearly three

times larger at its peak than for the lower energy transition. This ratio will, however, be
lower for larger 6E. The effect of increased 6E on the optical absorption spectra is examined

below.
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4.4 Optical spectra

4.4.1 Absorption spectra

With the JDOS and transition matrix elements determined, we can calculate polarization-

dependent absorption spectra according to the formula,
a(hw) = %" Yt (Bw). (4.18)
c,v

Here, the constant ap is given by

7l'62

(MKS units), (4.19)

Qg = 3
focnmo

where n is the refractive index, c is the speed of light in vacuum, ¢y is the permittivity
of vacuum, and mg is the free electron mass. The partial absorption Y e @cv(hw) on the
transition between conduction and valence states indexed by c,v is given by

» 2 1  dk

ac,V(hw) = ,M C’V;W_R,_zld_E—z—lEc'v=hw. (420)

The transition matrix element, |M]'g’,v, 1s obtained from Eqgs.[ 4.13- 4.16] and again k, satisfies
E.v = Eclk;] — Ey[k,]. The factor %Tl?? gives a volumetric JDOS.

In Figures 4.9(a) and (b) we show calculated absorption spectra for a 5nm radius
quantum wire with the same material parameters as above for an electric field oriented
parallel and perpendicular to the wire, respectively. The spectra shown were convoluted
with a Gaussian linewidth function with §E = 0.5 meV. The peaks arise from singularities
in the JDOS at the subband edges, and should not be confused with excitonic effects,
which are not included in this analysis. The peaks are labeled according to the zone-center
transition to which they correspond. The effects of the polarization dependence given in

Eqgs.( 4.13- 4.16) are clear in these figures. In particular, there is a large polarization
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anisotropy between the two lowest energy peaks, denoted C(0)-E;/21, and C(0)-Ez/5,1, in
Figures 4.9(a) and (b).

It must be pointed out, however, that the height of the calculated peaks depends upon
the linewidth used to broaden the spectra. Figures 4.10 (a) and (b) compare the absorption
spectra of a 5 nm radius GaAs wire convoluted with Gaussian lineshape functions with
linewidths 6E = 0.5 meV and 6E = 5.0 meV. These figures demonstrate the reduction of
peak height with increased broadening, which is particularly pronounced for the C(0)-E3z/5
peak. The anisotropy of the C(0)-E; /31 and C(0)-E3/,,; peaks in these figures is plotted with
respect to the polarization angle between electric field vector and the wire axis in Figure
4.11. The figure shows that the relative polarization anisotropy depends upon the degree to
which the quantum wire optical transitions are broadened. Even so, the anisotropy shown
in this figure qualitatively fits experimental PLE results in which relative anisotropy of the
two lowest energy optical transitions in quantum wire arrays was studied as a function of

the polarization of incident light relative to the wires [1,2].

4.4.2 Gain spectra

We now are close to answering the question posed in the introduction of this chapter con-
cerning the optimal geometry for a quantum wire laser. Given that the lowest energy
transition in the absorption spectra shown in Figures 4.8- 4.9 is strongest when the elec-
tric field is parallel to the quantum wire, the optimal geometry of a quantum wire laser
would seem to correspond to Figure 4.1(a). There, the wires are oriented parallel to the
end-facets of the laser so as to be aligned with the electric field vector of the lasing TE

mode. However, due to the strength of the transition to the next highest energy valence
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subband this conclusion may be incorrect. In fact, the energy difference between the two
lowest energy transitions is only 19 meV, which is less than kT at room temperature. The
optimal configuration for a quantum wire laser might therefore be represented by Figure
4.1(b), in which the wires are parallel to the optical axis.

To settle this question, we have performed calculations of the optical gain for different
values of the injected carrier density. The gain spectrum for fixed carrier density is given
by

v(hw) = % D Yew(bw), (4.21)

where the partial gain 7 v(hw) on the transition between conduction and valence states
indexed by c¢,v is given by

1 2  dk
71'_1{2; |Ez—lEc,v=hw {fC - fV} . (422)

Yo (hw) = [MI2,
Here, [M[2, is obtained from Eqs.[ 4.13- 4.16]. The momentum k, satisfies Ecy = Ec[k,] —
Ey[k;]. The . and f, are Fermi functions for the conduction and valence bands. The quasi-
Fermi levels of the conduction and valence bands are adjusted such that the total electron
and hole concentrations in the wire are equal.

The calculated polarization resolved gain spectra are shown in Figure 4.12 for car-
rier injection levels of 3.0 x 10%cm™2 and 6.0 x 10'¥cm™3. The spectra are broadened
with a Gaussian lineshape function with E= 5 meV. This approximately corresponds to a
Lorentzian lineshape function with a dephasing time of 0.1 pSec — a value typical of GaAs
laser diodes. The peak gains for the given carrier densities are over an order of magnitude

larger than corresponding values calculated for GaAs quantum well lasers. This results from

several factors, the most important of which is the existence of subband edge singularities
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Figure 4.12: Calculated polarization dependent gain spectra for different field orientations
for a 5 nm radius GaAs quantum wire embedded in an Alg3Gag.7As barrier, for carrier

concentrations of 3.0 x 10'8%m~2 and 6.0 x 10'8cm~3. The spectra are broadened with a

Gaussian lineshape function with §E= 5 meV.
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in the DOS of the quantum wire. Also, the effective mass of the uppermost valence sub-
band, which was reported in the last chapter to be 0.16my, is significantly reduced over the
bulk heavy hole mass. Lastly, the optical transition matrix element for the lowest energy
transition is larger than that in a quantum well by a factor of 4/3, and larger by a factor
of 2 over that in bulk GaAs.

The figure shows that at low carrier injection levels, the peak gain is obtained for
an electric field oriented parallel to the quantum wires. This indicates that the optimal
geometry of a low threshold laser with a quantum wire array active region corresponds to
the configuration of Figure 4.1(a), where the wires are fabricated parallel to the end-facets
of the laser. At higher injection levels, the ratio of the peak gain calculated for the two
polarization directions tends towards unity. Thus, laser configurations which require large
material gain, such as would be the case in lasers incorporating a single quantum wire,

would be best designed with the quantum wires aligned parallel to the lasing direction.

4.5 Quantum wires of lower symmetry

Our discussion of the subband dispersion, DOS, and interband optical transition matrix
elements has been vastly simplified due to the high symmetry of the cylindrical model we
have chosen for the quantum wire. The prime reason for choosing such a symmetrical
geometry is simply that the problem becomes extremely complex when lower symmetry
structures are considered. However, it is possible to use the theory of symmetry groups
to make certain judgements regarding the applicability of results obtained in this model
to structures of lower symmetry, in particular quantum wires of four-fold, three-fold, and

two-fold rotational symmetry about the wire axis. Examples include wires with square,
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triangular, or rectangular cross-section ( Figure 4.13), and wire arrays with weak lateral
inter-wire coupling (Figure 4.14). This is important since several promising fabrication
technologies produce wires of these lower symmetries. For instance, growth of quantum
wire arrays on vicinal substrates, a technique which results in quantum wires of four-fold or
two-fold rotational symmetry, has been recently demonstrated [1,2]. Also, GaAs wires with
equilateral triangular cross-section have been fabricated by selective organometallic vapor
phase epitaxy [15].

To address the question of applicability of our model, we must apply the arguments of
group theory to characterize the symmetry of the states in these lower symmetry struc-
tures. If we imagine adiabatically deforming a cylindrical quantum wire into the shape of
a square, triangular, or rectangular wire, it is reasonable to assume that the lowest lying
states (which we have now completely characterized ) will adjust themselves adiabatically
to the perturbation. The quantum wire eigenstates will then adopt new symmetries and
degeneracies. These can be determined by decomposing the irreducible representation of
the cylindrical group, Cy, ,, to which the state originally belonged, into the irreducible rep-
resentations of the new group, e.g., Cj ,, C3 , and C3 ,, which describe the quantum wire of
square, triangular, and rectangular cross-section, respectively. This is shown schematically
in Figure 4.13.

The case of a four-fold perturbation is illustrative. The two spin degenerate conduction
states of the cylindrical quantum wire with envelope angular momentum L, = 0, i.e., the
states we have referred to as C(0), span the irreducible representation Ei’"/2 of the group
C&,v- Use of the group character tables given in Ref. [16] shows that these states are

distorted by the four-fold “square” perturbation into new states which belong to the I'g
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Figure 4.13: Schematic representation of the effect of imposing square, triangular, and rect-
angular symmetry upon a cylindrical quantum wire. The states are labeled for the cylinder
according to the irreducible representations of the group C7, , to which they correspond.

The resulting symmetry of the statesin Cj ,, C3 , and C3 , are labeled following the notation

of Ref.[16].
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representation of CJ ,, with no loss of degeneracy. Similarly, valence states E'l*'/z, with total
angular momentum F, = +1/2, and Eg'/z, with F, = £3/2, deform into new states with I'g
and I'; symmetries, respectively, also with no loss of degeneracy.

Two important consequences therefore follow. The first is that the new I'¢ and I';
valence subbands will not couple because they have different symmetry. Thus, Figure 4.2
will qualitatively describe the valence subband dispersion of the square quantum wire. In
particular, the level crossings seen in that figure will still occur. The second consequence
is the existence of optical transition selection rules. Consider the dipole operator P,. This
operator is invariant under all operations of the symmetry group of a quantum wire. For
instance, a rotation of 7 about the wire axis, z, takes P, into itself. It is well known that
the matrix element of an invariant operator vanishes between states belonging to different
irreducible representations. Therefore, transitions between the I's conduction state and the
T'7 valence states will be strictly forbidden for electric fields polarized parallel to the wire
axis. On the other hand, it can be shown that these states couple through electric fields
polarized perpendicular to the wire. Additionally, the I's conduction and valence states can
couple through electric fields polarized in any direction. Hence, the polarization anisotropies
shown in Figures 4.8- 4.12 will qualitatively apply to the two lowest energy transitions in
the square quantum wire.

The validity of this adiabatic relaxation argument is confirmed by comparison with the
work reported in Ref.[12] in which the valence subband structure of square GaAs quantum
wires is calculated using conventional envelope function theory. The subbands Ei‘—/z,l and
shown in Figure 4.2 correspond well, both in energy and in shape, to the highest

+
E3/2,1

lying states labeled I's and I'7 in Ref.[12]. This similarity indicates that the absorption and
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gain spectra calculated here will apply qualitatively to the square quantum wire.

The same conclusions are obtained in the case of a quantum wire with three-fold rota-
tional symmetry. Use of the character tables of Ref.[16] leads to the conclusion that the
lowest spin degenerate conduction subbands, C(0), and the valence subbands with quan-
tum number F, = £1/2, adiabatically deform into states of symmetry I'y of the C3, group.
In contrast, the states characterized by F, = £3/2 are split into new states belonging to
representations I's and I'g, different from I'y. As a result, the states which originate from
the subband E'3*'/2’1 in the cylinder have zero interaction with the lowest conduction state
through optical transitions involving z-polarized light. Thus, the basic conclusions found
for cylindrical wires remain valid for the triangular quantum wire.

We consider next the case of a quantum wire of two-fold rotational symmetry, which
has symmetry C3,. This situation would be realized in a quantum wire of rectangular
cross-section, or in a planar array of wires positioned in close enough proximity that weak,
lateral inter-wire coupling exists (Figure 4.14). Applying the same perturbation argument
as above, we find that the F, = £1/2 and F, = £3/2 valence states of the cylinder both
decompose into the same irreducible representation I's of group C;,. The subband C(0)
also transforms into I's symmetry. Thus, the valence subbands now may couple, and the
crossing behavior seen in the subband dispersion curves, Figure 4.2, may be replaced by
anticrossing behavior. Additionally, the polarization anisotropies found in the cylindrical
quantum wire will be washed out with increasing aspect ratio in the case of the rectangular
wire, or increased interwire coupling in the case of a quantum wire array. This result makes
intuitive sense, since in the limit of infinite aspect ratio or interwire coupling, the system is

indistinguishable from a planar quantum well.
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Figure 4.14: Schematic representation of the effect of weak lateral coupling on the states in
a quantum wire array. The unperturbed states in the isolated cylindrical wire are labeled
according to the irreducible representations of the group C% v to which they correspond.
The lateral coupling reduces the symmetry of the system to C3,v- It can be shown that the
perturbed states in the wire array all belong to the irreducible representation I's of Ciy
and therefore can couple. The polarization anisotropy shown in Figure 4.9-4.12 is therefore

reduced by the lateral perturbation.
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4.6 Conclusions

We have presented an analytical study of the density of states, interband optical transition
matrix elements and optical absorption and gain spectra in cylindrical GaAs quantum wires.
Band-coupling effects have been shown to be critical for a correct analysis of these properties.
We have derived simple trigonometric expressions for the polarization dependence of the
optical transition matrix elements. Polarization dependent absorption spectra have been
calculated which should aid in the interpretation of polarization resolved optical spectra
of quantum wires. In particular, the results obtained can explain polarization anisotropies
observed in PLE spectra performed on quantum wire arrays [1,2].

Polarization resolved gain calculations performed here indicate that for minimum thresh-
old current, a semiconductor laser with a quantum wire array active region should be de-
signed so that the electric field is parallel to the wires. We showed by application of group
theory that the analysis for cylindrical quantum wires presented here remains qualitatively
valid in quantum wires of four-fold and three-fold rotational symmetry. In rectangular
quantum wires, and in planar arrays of quantum wires with lateral inter-wire coupling, im-
portant qualitative features of the model are predicted to break down as the cross-sectional

aspect ratio or the lateral inter-wire coupling become large.

4.7 Appendix: One-band models of polarization anisotropies

Utilizing polarization dependent photoluminescence excitation (PLE) spectroscopy, a strong
relative anisotropy between the two lowest energy optical transitions in quantum wire arrays

has recently been observed [1,2]. We have shown in this chapter that the optical polarization
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anisotropy reported in Refs. [1,2] is well explained by the coupled band model presented in
chapter 2. However, these experimental results have also been interpreted in the context of
a one-band model, in which the two transitions are identified as conduction-to-heavy-hole
and conduction- to-light-hole exciton lines, under the assumption that the valence states are
decoupled at the zone-center of the quantum wire [1,2,5,6]. The neglect of band coupling
effects in these previous analyses is incorrect, despite the reported agreement of the one-
band theory with experiment. Furthermore, a critical examination of the one-band model
used in Refs.[1,2,5,6], finds an unjustified neglect of coherence terms in the transition matrix
element. When these coherence terms are retained, the one-band model does not explain
the observed polarization anisotropy.

These studies model a quantum wire structure of square or rectangular cross-section as
a two-dimensional potential well with infinite well depth. The squared transition matrix
element was computed between electron and hole Bloch waves corresponding to the four

wavevectors k; propagating into each of the four corners of the well, and then averaged:
IM[* = 1(1/2,1/2[P|U (ki) - A% (4.23)

Here, |Uv(l€:)) is the zone-center Bloch function for a heavy or light-hole wave corresponding
to wavevector l-(: [13]. This approach leads to the following expression for the relative squared

matrix elements of the [e-lh] and [e-hh] transitions:

IM2_pn _ 7Cos?(8) + 2Sin%(9)

IM|2_, — 3Cos2(8) + 3Sin2(g)’ (4.24)

which is equivalent to Eq. (1) of Ref.[1]. However, since the waves involved in the sum-
mation in Eq.( 4.23) are part of a coherent superposition (Cos[kxx]Cos[Kyy]) forming a

stationary state in a quantum wire, it is incorrect to treat them as independent. Equations
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( 4.23, 4.24) neglect this coherence, and should therefore be corrected. This is accomplished
by performing the summation in Eq.( 4.23) before squaring. For the light and heavy waves,

this results in the corrected formula:

|M|3_lh _ %Cos2(0)+%Sin2(9) _

1
IMZ ., ~ 2Cos?(6) + LSin?() 3 (4.25)

which is constant with respect to polarization. The one-band model is therefore incapable
of explaining the polarization dependent absorption observed in Refs. [1,2]. The observed
polarization dependence must be explained by the coupled band approach developed in this

chapter.
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Chapter 5

Nanometer-scale wire structures
fabricated by diffusion induced
selective disordering of a

GaAs-AlxGa;_,As quantum well

5.1 Introduction

A logical approach to the synthesis of quantum wires and dots is the patterning, at a
nanometer-scale, of prefabricated quantum well material. This strategy, which has been
dubbed the “cookie cutter” approach, requires two independent steps to succeed. The
first is pattern generation of some kind at the nanometer-scale, to create a stencil for the
production of the quantum wires and dots. The second is pattern transfer — the transfer of

the nanometer scale stencil into the quantum well material.
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The first approaches to the creation of nanometer-scale lateral confinement potentials
employed pattern generation by electron-beam lithography or focussed ion-beam lithogra-
phy and conventional liftoff procedures to create a Cr or NiCr etch mask on the surface of a
sample. Pattern transfer was accomplished in these experiments by using anisotropic etch
techniques such as reactive ion etching or ion beam assisted etching to create nanometer-
scale mesa structures with embedded quantum wells [1]-[4]. Although the lateral dimensions
of the wire and dot structures (more accurately, ribbon and disk structures) fabricated in
this fashion are in the 10 nm size range, the anisotropic etching step creates a damaged
semiconductor surface. This causes the structures to have extremely low radiative recom-
bination efficiency [5].

An alternate approach that has been developed to circumvent the problem of damaged
free surfaces is to selectively disorder a quantum well in such a way as to leave behind a
quantum wire. In this scheme, the quantum wire would consist of a buried strip of GaAs
quantum well surrounded on all sides by Al,Ga;_xAs material. The technique was first
implemented by Cibert et al. using ion implantation followed by rapid thermal annealing
to selectively disorder the quantum well material [6]. Electron-beam lithography and liftoff
were used in that experiment to create a Ti/Au-Pd mask for selective Ga* beam implan-
tation. After the rapid thermal annealing step, wire structures with lateral dimensions as
small as 60 nm were formed which exhibited a blue shift of the luminescence spectra relative
to the unpatterned quantum well material [6]. A similar approach in which a focussed Ga*t
beam is used to directly disorder quantum well material without a mask has been employed
to create wire structures with lateral dimensions down to 50 nm [7]. The photoluminescence

spectra of these structures exhibit fine structure at a temperature of 4 K which is attributed
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to lateral quantization.

In this chapter we report a new technique for selective disordering of quantum well
material to produce wire structures with lateral dimensions in the 100 nm range. The
method utilizes a selectively masked shallow zinc impurity diffusion to locally disorder
quantum well material, leaving behind strips of undisordered (or less disordered) quantum
well material. Cathodoluminescence spectra are presented which show a systematic blue
shift of luminescence as the width of the diffusion mask is reduced in the range from 500
nm to 100 nm. Additionally, blue shifted luminescence from individual wires 1s shown
which demonstrates that the technique can be used to create 100 nm scale lateral bandgap
modulation. Considering the size of the wires produced, the luminescence peak blue shifts
observed are most likely the result of diffusion of aluminum into the quantum well strips,

rather than a quantum size effect.

5.2 Disorder of GaAs-Al,Ga;_yAs heterostructures by zinc
diffusion

The GaAs-Al,Ga;_xAs heterostructure interface is nearly lattice matched and is ordinarily
stable to very high temperatures. It is possible, however, to induce layer interdiffusion by
thermal annealing at temperatures in the neighborhood of 900 °C. This technique has been
used, for example, to shift the emission wavelength of GaAs-Al,Ga;_xAs quantum well
heterostructure laser diodes [8]. It has recently been shown, however, that zinc diffusion
into GaAs-Al,Ga;_xAs heterostructures causes the GaAs-Al,Ga;_,As interface to‘ become

unstable and to disorder at temperatures as low as 500 °C [9]. The activation energy of the
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Al-Ga interdiffusion coefficient is lowered from the impurity free value of 3.6 eV to 1.0 eV
in the presence of zinc at concentrations above 10'¥cm=3 [10].

An important feature of the zinc diffusion process is that the diffusion coefficient of
zinc in GaAs is proportional to the square of the zinc concentration [11]. As a result, the
zinc concentration drops off abruptly across the diffusion front. When zinc is applied to
interdiffuse GaAs-AlGaAs heterostructures at low temperatures (500-600 °C), this leads to
relatively sharp definition of the interface between disordered and non-disordered regions.

To utilize the zinc-impurity-enhanced interdiffusion process to create lateral bandgap
modulation, it is important that an appropriate diffusion mask be identified. It has been
demonstrated experimentally that silicon deposited by electron beam evaporation on the
surface of GaAs samples makes an excellent diffusion mask with nearly unity lateral to
depth diffusion rate [12]. Selective zinc-impurity-induced disordering with a silicon diffusion
mask has been successfully applied at the 1 gm scale to fabricate a number of integrated
optical components including waveguides and phase modulators [13]. In contrast, in our
experiment, a silicon diffusion mask with nanometer scale dimensions is fabricated using

electron-beam lithography followed by silicon evaporation and liftoff.

5.3 Selective disordering of a shallow quantum well to pro-

duce 100 nm scale wire structures

A schematic diagram illustrating the goal of the present experiment is shown in Figure
5.1. The sample contains a GaAs quantum well 50 nm below the surface, with Al,Ga;_yAs

barrier layers on both sides. Electron-beam lithography and conventional liftoff procedures
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Figure 5.1: Schematic of selective impurity diffusion experiment. The sample structure is
described in the text. A quantum well near the surface of the sample is selectively disordered
by diffusion of zinc. Narrow silicon diffusion masks are fabricated on the sample surface by
electron-beam lithography and liftoff. The quantum well remains relatively undisordered

beneath the diffusion masks, producing a lateral bandgap modulation at the 100 nm scale.
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are employed to create silicon diffusion masks of various widths on the surface of the sample.
Zinc is diffused into the sample, disordering the unmasked material, and hopefully leaving
a narrow strip of quantum well material beneath the diffusion masks.

The sample used in our experiment was grown by molecular beam epitaxy in a Riber
2300 RD system. The layers were grown in the following order: a 1 ym buffer layer, a
50 nm AlAs blocking layer, a 1.5 pum Al 3Gag.7As buffer layer, a superlattice buffer layer
nominally consisting of three 7.0 nm GaAs layers separated by 7.0 nm Alp3Gag.7As layers,
a 0.23 pm Alp3Gag 7As layer, a 10.0 nmm GaAs quantum well, and a 50 nm Alg17GaggsAs
cap layer. All layers were undoped. The luminescence spectrum of the sample is shown in

Figure 5.5 and is discussed below.

5.3.1 Electron-beam lithography

To address the problem of pattern generation at the submicron scale, we have converted a
Cambridge SE-240 scanning electron microscope (SEM) into an electron-beam lithography
system. This system is shown in Figure 5.2. A Mac-II personal computer is used to
generate patterns, which are converted into a data set fixing the position of the electron
beam as a set of (x,y) coordinates as a function of time. This data set is output through
two 16 bit digital to analogue converters to drive the (x,y) scanning coils of the SEM. The
electron beam is thus driven in a vector scan over the sample. The sample is spin coated
with an electron beam sensitive resist, polymethylmethacrylate (PMMA). Upon exposure
to 30 keV electrons, chemical bonds are broken in the PMMA layer, rendering the exposed
material soluble in a developer. Since the spot size in the SE-240 SEM is approximately 20

nm, a nanometer-scale pattern can be written into the PMMA resist layer.
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Figure 5.2: Schematic of electron beam lithography system. A Mac-II computer is used as
a pattern generator to drive the scanning coils of a Cambridge SE-240 SEM. Samples are

spin coated with PMMA| an electron sensitive resist.
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The resist solution used in our experiments was 3 % PMMA in chlorobenzene. The
solution was spun onto the samples at 3500 rpm for 30 seconds. Typical beam exposures
were in the range from 3.5 to 35 nCoulombs per cm of beam travel, using a beam current
of 10 pAmperes (measured with a Faraday cup). After developing the resist in a solution of
cellosolve:methanol, the sample is ready for conventional liftoff processing to produce the

Si diffusion mask.

5.3.2 The diffusion

Using the electron-beam lithography system just described, narrow lines, 4.5 ym in length,
ranging from 160 nm to 500 nm in width, were written in array patterns and as isolated
lines in the PMMA resist. In addition, a 40 pm square was exposed uniformly to provide
a broad area mask for comparison. After development in a solution of cellosolve:methanol
(3:7), the sample was placed in an electron-beam evaporator and a 50 nm layer of silicon
was deposited. Liftoff was done in dichloromethane. Figure 5.3 shows a typical array of
silicon diffusion mask stripes on the surface of the sample.

Following the standard procedure for zinc diffusion in GaAs, the sample was sealed in
an evacuated, fused-quartz ampoule with solid ZnAs as the diffusion source. The sample
was placed in a tube furnace at 535 °C for 1 hour. Zinc diffusion at this temperature in
GaAs-AlGaAs heterostructures is known to enhance the interdiffusion of Ga and Al and
disorder the regions with a high concentration of zinc while leaving other areas unaffected
[9]. From the CL measurements (described in a later subsection), we know that the diffusion
was deep enough to disorder the quantum well but not so deep as to completely disorder

the superlattice. This places the disorder front at a depth of between 60 nm and 280 nm.
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Figure 5.3: Scanning electron micrograph of a typical array of silicon-stripe diffusion masks.
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5.3.83 Cathodoluminescence

Investigation of the effects of the zinc diffusion on the band structure of the sample was
done by cathodoluminescence (CL) imaging and spectroscopy. Cathodoluminescence is a
term indicating the emission of light from a sample bombarded by cathode rays. In a SEM,
energetic electrons incident on a semiconductor sample lose energy by creating electron-
hole pairs. In a direct-bandgap semiconductor, these carriers can recombine radiatively,
producing a cathodoluminescence spectrum characteristic of the sample. By performing CL
in an SEM, one can fix the electron beam on a specific region and obtain a local spectrum.
Alternatively, one can choose a particular wavelength and raster the beam across the sample
to obtain a spatially resolved cathodoluminescence image (SRCL) [14]. In either case, the
spatial resolution of the technique is generally determined by the carrier diffusion length.
We have equipped the SEM in our laboratory with a unique optical-fiber-based CL imag-
ing system [14] and a continuous flow cryogenic cold stage for performing low temperature
spectroscopy. Figure 5.4 shows a schematic diagram of the system [14]. An optical fiber
with a 100 pm diameter core and a numerical aperature of 0.2 is placed in close proximity
to the sample using a motorized x-y-z translation stage. The surface of the optical fiber is
coated with a thin (5 nm) film of gold to prevent charging. A fraction of the light emitted
from the sample enters the optical fiber and is guided out of the SEM sample chamber to a
monochromator. The signal output from the monochromator is detected with a photomul-
tiplier tube and is preamplified. The signal can then be sent through a video amplifier and
used to generate SRCL images, or lock-in detection can be employed to measure spectra.

The cold stage can be used with liquid helium, or liquid nitrogen.
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Figure 5.4: Schematic of cathodoluminescence (CL) imaging system. The sample is mounted
in the SEM chamber on a cold stage capable of operation at liquid helium or liquid nitrogen
temperature. Cathodoluminescence from the sample is collected by a 100 pm core diam-
eter, large numerical-aperature optical fiber which is positioned close to the sample using
motorized translation stages. The light is coupled into a monochromator and detected with
a photomultiplier tube. The system may be used to generate spectrally resolved cathodo-

luminescence (SRCL) images, or CL spectra from individual structures on the sample.
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5.3.4 Experimental results

The cathodoluminescence spectra taken at 12 K from regions of the sample located under
the 40 ym square mask, and an unmasked region, are shown in Figure 5.5. The electron
energy used in these measurements was 10 keV and the beam current was approximately 20
nA. The peak at 785 nm in the spectrum of the masked region is identified as the emission
from the quantum well. In the spectrum of the unmasked region, the quantum well emission
peak is entirely absent, suggesting that the diffusion has completely disordered the quantum
well. The peaks labelled SL1 (722 nm) and SL2 (765 nm) originate from wells of different
thickness in the superlattice. By depth profiling the sample it was determined that the
SL1 (722 nm) peak emanates from the bottom one or two wells, while the peak SL2 (765
nm) originates from the top well (closest to the surface of the sample). The depth profiling
was done by measuring cathodoluminescence spectra at different beam energies. The beam
energy determines the penetration depth of the electrons and thus permits non-destructive
depth profiling. Our interpretation of the energy dependent CL measurements is confirmed
by etch profiling. The peaks at 727 nm and 767 nm in the spectrum of the unmasked region
originate from the SL1 and SL2 wells, respectively.

The reduction of the emission intensity of the 767 nm peak is probably due to diffusion
of zinc into the superlattice. This observation is consistent with previous studies which
show that zinc doping at the levels produced in this experiment (= 108cm™3) significantly
lowers the radiative recombination efficiency of bulk GaAs [15]. Note that the presence of
zinc at these concentrations is expected to lead to a band-gap shrinkage of about 15 meV
[16], corresponding to a 7 nm redshift of the superlattice. The 5 nm shift of the SL1 peak

Is consistent with this expectation. The smaller 2 nm redshift of the SL2 peak suggests
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Figure 5.5: Cathodoluminescence spectra of a uniformly masked region (40um x 40um
square mask) and an unmasked region. SL1, SL2, and QW locate the emission peaks from
the superlattice and quantum well, respectively (see text). The sample temperature is 12

K. Electron beam energy is 10 keV.
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that a small amount of aluminum has been introduced into the top well which effectively
compensates for the bandgap shrinkage effect. Since the top superlattice well is slightly
disordered and the quantum well is completely disordered, this would place the disorder
front at a depth slightly less than 280 nm.

Figure 5.6 shows both the secondary electron and CL images of a region containing
several arrays. The left half shows several arrays of silicon wires similar to those of Fig. 5.3.
The width of the diffusion masks in each array increases from 160 nm in the lower right
array to 370 nm in the upper left array. To the right of the array on the lower left is the
widest wire in the field of view with a width of 0.54. The right half of Fig. 5.6 is the
spatially resolved CL taken at a sample temperature of 77 K and an emission wavelength
of 780 nm, which is between the peak emission wavelength of the undisordered quantum
well and superlattice at this temperature. At this wavelength, the contrast between the
arrays and the background is the greatest. Note that individual wires in the arrays are
not resolved in the SRCL image due to carrier diffusion, but that the single 0.5 u wire is
resolved. These results suggest that the zinc diffusion has resulted in a lateral modulation
of the bandgap of the sample on a 100 nm scale.

Luminescence spectra of individual arrays were taken by placing the electron beam at
the center of an array. Spectra of arrays with mask stripe widths of 370 nm and 160 nm
are shown in Fig. 5.7 along with the spectra from beneath the broad area mask and an
unmasked region. The wire spectra each contain a peak at 730 nm which is redshifted from
the SL1 peak of the masked spectrum by 8 nm. As discussed above, such a shift is expected
due to the bandgap shrinkage effect caused by the heavy zinc doping of the sample. The

wire spectra each contain a second peak in the region indicated ‘A’ in the figure. These
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Figure 5.6: Secondary electron and cathodoluminescence images of several wire arrays and
an isolated wire. The width of the silicon stripes in each array varies from 370 nm on the
upper left, to 160 nm on the lower right. The width of the single line mask on the lower

left is 0.5 pm. The luminescence image is taken at 780 nm. Sample T=77 K.
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Figure 5.7: Cathodoluminescence spectra of 370 nm wide wire masked region (broad wires),
and 160 nm wide wire masked regions (narrow wires). Sample T=12 K. Electron beam
energy is 10 keV. For reference, the emission peaks of the quantum well and superlattice
from the large area mask are indicated with arrows. The origin of the peaks from the wires,

labeled A, are discussed in the text.
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peaks, located at 774 nm and 768 nm for the broad wires and narrow wires, respectively,
are of less certain origin. In the discussion that follows these peaks will be referred to as
the ‘A’ peaks.

Several possible interpretations of this feature can be made. One interpretation is that
the quantum well peak is blue shifting with decreased wire size and coalescing with the
superlattice peak to produce the ‘A’ peaks. A possible mechanism for blue shifting of the
quantum well emission peak is lateral quantum confinement. Shifts of 22 meV and 32 meV
are seen in the broad and narrow wire arrays as compared to the quantum well. The shape
of the confining potential being unknown, no width can be assigned to it from these shifts.
However, partial disordering of GaAs-AlAs superlattices over a scale of 100 nm occurs at
the temperature range used in these experiments [10]. Thus, a more likely mechanism
for producing a shift of the quantum well would be the introduction of a small amount,
approximately 2 percent, of aluminum. It is also possible that the ‘A’ peaks originate from
the top superlattice well. The apparent blueshift with reduced wire size would then be
explained by partial disordering of the top superlattice well superimposed upon a bandgap
shrinkage of about 15 meV due to the zinc doping.

In an effort to clarify the origin of these peaks, additional CL spectra were taken at
a lower beam energy of 3 keV. The shallower electron penetration depth at this energy
should enhance the quantum well emission peak relative to the superlattice peaks SL1 and
SL2 and thereby enable us to determine the origin of the ‘A’ peaks. These spectra, which
were measured at 77 K, are plotted in Figure 5.8. For clarity, the spectra are shown over
a range which includes only the SL2 and QW peak. The uniform redshift in this figure

relative to the spectra in Figures 5.5 and 5.7 is due to the temperature dependence of the
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Figure 5.8: Cathodoluminescence spectra of 370 nm wide wire masked region (broad wires),
and 310 nm wide wire masked regions (narrow wires). Sample T=77 K. Electron beam
energy is 3 keV. Spectra of a uniformly masked region (40pgm x 40pm square mask) and
an unmasked region are shown as well. For reference, the peak emission wavelength of the
quantum well and the top well of the superlattice from the large area mask are indicated

with arrows. The ‘A’ peaks from beneath the wires are discussed in the text.
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bandgap of GaAs. The spectrum of the masked region shows a pronounced enhancement
of quantum well emission as expected at this energy. The SL1 peak (not shown in the
plot) does not appear in the masked spectrum, placing an upper limit of 280 nm on the
electron penetration depth at this energy. (Recall that the SL1 peak originates from the
bottom well of the superlattice). The spectra from beneath the wires and the unmasked
region are of comparable intensity and appear similar to the plots in Figure 5.7. The lack
of enhancement of the wire ‘A’ peaks relative to the SL2 peak in the unmasked spectrum
seems to suggest that the wire ‘A’ peaks originate from the top superlattice well. This
determination is not conclusive, however. If the ‘A’ peaks originate from the quantum
well, the volume of the undisordered quantum well material beneath the wires is certainly
small, and the zinc impurity concentration high. Both effects would tend to decrease the
emission intensity. To distinguish between the two proposed interpretations, it would be
necessary to fabricate samples large enough for analysis by cross-sectional transmission
electron microscopy. Regardless of the origin of the shifts, it is clear from the CL image,
Figure 5.6, that this technique has produced lateral variations in the bandgap on a 100

nanometer scale.

5.4 Conclusions

In conclusion, a technique for selective disordering of GaAs quantum well material to pro-
duce 100 nm scale wires has been demonstrated. Silicon diffusion masks as narrow as 120
nm are fabricated using electron beam lithography. Masked samples were diffused with zinc
which disordered the quantum well around the masked region and shifted the luminescence

peak from the area under it. Spatially and spectrally resolved cathodoluminescence were
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presented indicating changes in the bandgap on a 100 nanometer scale. This method could

also be useful in creating nanometer-scale waveguides and doping structures.



145

References

[1] M. B. Stern, H. G. Craighead, P.F. Liao, and P. M. Mankiewich, Appl. Phys. Lett. 45,

410 (1984).

[2] M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee, and

H. D. Shaw, J. Vac. Sci. Technol. B 4, 358 (1985).

[3] K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M. C. Tamargo, Appl.

Phys. Lett. 49, 1043 (1986).

[4] R. L. Kubena, R. J. Joyce, J. W. Ward, H. L. Garvin, F. P. Stratton, and R. G. Brault,

J. Vac. Sci. Technol. B 6, 353 (1988).

[5] A. Scherer, H. G. Craighead, M. L. Roukes, and J. P. Harbison, J. Vac. Sci. Technol.

B 6, 277 (1988).

[6] J. Cibert, P.M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English,

Appl. Phys. Lett. 49, 1275 (1986).

[7] Y. Hirayama, S. Tarucha, Y. Suzuki, and H. Okamoto, Physical Review B 37, 2774

(1988).



146

[8] M. D. Camras, N. Holonyak, R. D. Burnham, W. Streifer, D. R. Scifres, T. L. Paoli,

and C. Lindstrom, J. Appl. Phys. 54 5637 (1983).

[9] W.D. Laidig, N. Holonyak, M.D. Camras, K.Hess, J.J. Coleman, P.D. Dapkus, and J.

Bardeen, Appl. Phys. Lett. 38, 776 (1981).
[10] J. W. Lee and W. D. Laidig, J. Electron. Mater. 13 147 (1984).
[11] Brian Tuck, J. Phys. D.: Appl. Phys. 18 557 (1985).
[12] E. Omura, G.A. Vawter, L. Coldren, and J. L. Mertz Electron. Lett. 22 23 (1986).

(13] T. Hausken, T. C. Huang, K. W. Lee, R. J. Simes, N. Dagli, and L. A. Coldren, Appl.

Phys. Lett. 53 728 (1988).
[14] M. E. Hoenk and K. J. Vahala, Rev. Sci. Instrum. 60 226 (1989).

[15] D. B. Darby, P. D. Augustus, G. R. Booker, and D. J. Stirland, J. Microsc. 118, 343

(1980).

[16] H. C. Casey and M. B. Panish, ” Heterostructure Lasers,” (Academic Press, , San Diego,

1978), p. 150 ff.



147

Chapter 6

Nonequilibrium vapor phase
synthesis of nanometer-scale III-V

semiconductor clusters

6.1 Introduction

The challenge of engineering artificial semiconductor structures which exhibit quasi-atomic
photonic properties has stimulated a world-wide experimental effort in the last ten years
devoted to the fabrication and optical characterization of quantum dots. The effort in the
semiconductor device physics community has been characterized by a succession of herojc
efforts to extend conventional lithography tools into the nanometer size regime. These efforts
have resulted in highly refined lithographic technologies based on electron and focused ion
beams, and have led to the development of new concepts such as the use of scanning

tunneling microscopes for lithography.
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Unfortunately, progress in solving the difficult problem of pattern transfer at the nano-
meter-scale has lagged behind the impressive achievements in the area of pattern generation.
Anisotropic etch techniques such as reactive ion etching create structures with unavoidable
surface damage which leads to electrical depletion. Such structures, although useful for
quantum transport experiments in which confinement of only one carrier type is necessary,
have been singularly unsuccessful in the area of quantum sized structures for photonics
applications. Efforts to avoid this surface damage problem by employing selective quantum
well disordering, e.g., the selective impurity induced disordering technique described in the
last chapter, have been of limited success due to the inherent lack of spatial resolution found
in a stochastic diffusion process.

These observations have led our research group to try a very different approach to quan-
tum dot fabrication from the lithographic patterning methods which have previously been
applied in this field. In this chapter, we describe a new approach for the direct fabrication
of nanometer-scale III-V quantum dots by nonequilibrium vapor phase synthesis. Qur ef-
forts were motivated in part by the success of physical chemists in synthesizing nanometer
sized 1I-VI semiconductor crystallites by “arrested precipitation” in glasses and in solution
[1], which exhibit distinctive quantum size effects in optical absorption spectra. The chief
drawback of these chemical synthesis routes is that the clusters are typically produced in
colloidal form or embedded in highly dissimilar host materials such as silica glasses. As a
result, if the clusters exhibit luminescence, it results from surface traps rather than from
intrinsic interband transitions.

Recently reported syntheses of nanometer-scale GaAs clusters, though representing im-

portant steps forward, have not provided entirely satisfactory results. Using organometallic
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solution phase chemistry, Olshavsky et al. [2] and Uchida et al. [3] have grown GaAs clus-
ters which appear in transmission electron microscopy (TEM) and x-ray diffraction to be
of good crystalline quality. However, elemental analysis of the particles reveals a significant
incorporation of nitrogen and carbon and nonstoichiometric abundances of Ga and As. Ad-
ditionally, molecular species mask the optical properties of the clusters produced by this
method [3]. A different approach has been employed by Sandroff et al. [4], who have grown
nanometer-scale GaAs particles on high surface area silica using molecular beam epitaxy
(MBE). The MBE technique produces particles which are stoichiometric and crystalline.
However, the particle shapes produced by this method are highly nonuniform, implying
severe inhomogeneous broadening of their optical transition energies. Furthermore, the in-
fluence of the silica substrate on the cluster properties is unknown, leading to potential
complications in the interpretation of optical data.

The direct fabrication of nanometer-scale I1I-V quantum dots by nonequilibrium vapor
phase synthesis has several intrinsic advantages over other techniques, including guaranteed
high chemical purity, a free cluster surface which is available for subsequent growths of epi-
taxial passivation layers, and facility of size classification. However, vapor phase synthesis
is technically challenging from the stan&points of both stoichiometry and crystallinity. At
low temperatures, defect mobilities are low and the formation of crystalline clusteré is diffi-
cult. At the higher temperatures conventionally employed in GaAs epitaxy, the differential
between the partial pressures of Ga and As is large and stoichiometry is not preserved [5].

Two related approaches will be described which circumvent these problems. In the first
technique, by explosively vaporizing “wires” of highly doped GaAs or other III-V semicon-

ductors in an inert atmosphere, e.g., Ar or He, a non-equilibrium vapor is generated which
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homogeneously condenses to form stoichiometric, crystalline clusters. Electron micrographs
and diffraction measurements are presented which show the clusters to be faceted micro-
crystallites in the 10 nm size range with a zincblende structure. The optical extinction of
a colloidal suspension of GaAs clusters differs substantially from that of bulk material in
a manner consistent with a quantum confinement effect. In the second technique, GaAs
clusters are produced by homogeneous nucleation from a nonequilibrium vapor produced
by pulsed laser ablation from a GaAs target. The problem of passivating the surfaces of
these clusters so as to create optically active quantum dots with a low surface carrier re-
combination rate is yet to be solved; however, the vapor phase nature of the techniques
presented here should facilitate the epitaxial growth of a passivating surface layer. The

issue of passivation is addressed in more detail in the next chapter.

6.2 Cluster sources

6.2.1 The exploding wire cluster source

We have developed a technique for producing stoichiometric, crystalline ILI-V semiconduc-
tor clusters from a non-equilibrium vapor generated by the explosive vaporization of bulk
semiconductor wires. QOur apparatus is adapted from those used to study the exploding
wire phenomenon [6]. Shown in Fig. 6.1 is a schematic diagram of our apparatus.

The wires, typically 0.2 x 0.2 x 10mm?®, are made from (100) oriented n - doped GaAs
wafers using standard photolithography and etch techniques. Alternatively, (100) wafers
of GaAs or other semiconductors are lapped to the desired thickness and cleaved into thin
filaments. Ohmic contacts are made at the ends of the wire by applying In with a soldering

iron. The wire is then soldered into its holder using a Ga/In eutectic solder. The holder
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.ﬁ
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Figure 6.1: Schematic diagram of the exploding wire apparatus. By discharging the capaci-
tor through the semiconductor wire, e.g., a wire of GaAs, a stoichiometric vapor, e.g., of Ga
and As, is produced which subsequently nucleates to form crystalline clusters. Typically V
186-12kV and C = 1 u F. The stored energy corresponds to approximately 100 eV /atom.
The explosion is performed in a vacuum chamber back filled with high purity argon or

helium.
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is installed in a vacuum chamber which is evacuated and back-filled with high purity gas
(typically 99.999 % Ar) to a pressure of approximately 1 atm. With the capacitor, C,
charged to 6 - 12 kV, the spark gap is triggered, completing the circuit and vaporizing the
wire. The vaporization is expected to occur in a few tens of nanoseconds [7], a result which
we have confirmed by analysis of the IV characteristic of the exploding wire measured with
a digital sampling oscilloscope. The total energy stored in the capacitor corresponds to
roughly 100 eV per atom in the wire. Though not all this energy is dissipated directly into
the wire, it appears that sufficient energy is deposited to cause complete vaporization. The
details of aerosol formation by exploding wires is not completely understood [8]. However,
it is plausible that the background gas quenches the vapor and induces the homogeneous
cluster nucleation before vapor-solid equilibrium is established. While explosions of GaAs
in inert gases such as argon and helium produce clusters with the zincblende structure, we
have found that clusters produced in Hy do not.

An analysis of GaAs particles produced under typical explosion conditions (capacitor
charged to 6 kV with a background gas of Ar at 1 atmosphere pressure) shows that the
size distribution is approximately log-normal with a mean cluster diameter of 8.3 nm and a
standard deviation of 40 %. The most probable cluster size is 6 nm. We have not directly
measured the amount of recoverable aerosol, though under similar experimental conditions,
recovery efficiencies exceeding 80 % have been reported [9]. Taking these numbers as typical,
we estimate that approximately 10'® clusters are produced per wire explosion.

A transmission electron microgaph of the GaAs clusters is shown in Figure 6.2. The
particles are collected on a copper electron microscope grid with a holey carbon film by

attaching the grid directly to a liquid nitrogen temperature cold finger which inserts into
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the vacuum system. Typically, the grid is exposed to the cluster aerosol for 10 minutes.
The micrograph, taken near Scherzer focus (first contrast minimum) with 300 kV electrons,
clearly shows the atomic order of the clusters. Due to the high density of particles generated
by the exploding wire and the small volume of the experimental apparatus, individual
clusters agglomerate into long chains, up to several microns in length, on time scales used for
particle collection. This has the advantage that the agglomerates will sometimes span holes
in the carbon film, permitting the imaging and diffraction measurements on the particles
without interference from the carbon background. Within several of the individual particles
in the micrograph, atomic rows are easily recognized. The particle shapes are reasonably
uniform and roughly spherical. In several places, hexagonal features are readily apparent,
suggesting that the cluster growth is not mass transport limited.

The relative orientations of the particles appear to be random, providing strong evi-
dence that particle nucleation occurs on a time scale much shorter than the time scale for
agglomeration. The absence of lattice fringes which extend to the particle boundary sug-
gests that a native oxide layer, approximately 1.5 nm thick, surrounds each particle. The
formation of an oxide layer is expected since the microscope grid is transfered in air. Figure
6.3 shows the measured interplanar spacings plotted versus bulk interplanar spacings for
the GaAs clusters of Figure 6.2. The plot demonstrates that the clusters have the bulk
cubic zincblende structure and lattice constant (within the 5% uncertainty of the electron
diffraction measurement).

The exploding wire method is readily adapted to the production of nanometer sized
clusters of any conductive material which may be obtained in bulk form. We have applied

the technique to produce clusters of InAs, GaSb, InP, Si and metals such as Cu and Au.
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Figure 6.2: A high resolution transmission electron micrograph of GaAs clusters. Due
to a high cluster density and small volume of the experimental apparatus, the clusters
agglomerate into micron length chains. This has the advantage that the agglomerates
may span holes in the carbon film, permitting measurements without interference from
the carbon background. Lattice fringes and hexagonal features, suggesting faceting, are

apparent. Inset: Electron diffraction pattern which indexes to the zincblende structure.
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Figure 6.3: Measured interplanar spacings for GaAs clusters shown in Figure 6.2 versus
bulk interplanar spacings. Measured values correspond to the ring radii R according to
the equation dmeasured = ARL, where AL is the camera constant. The lattice constant of the

GaAs clusters is equal to the bulk value to within experimental uncertainty (5 %).
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Figure 6.4 shows a high resolution transmission electron micrograph of an InAs cluster
produced by the exploding wire technique. The particle is approximately 20 nm x 30 nm.
Lattice fringes are plainly visible and reveal the existence of a grain boundary in the cluster.
In general, we rarely observe stacking faults or grain boundaries, and never observe them
in clusters smaller than about 10 nm. This observation concurs with that of Sandroff et al.
who observe stacking faults in GaAs particles in the size regime near 30 nm.

Micrographs of InP clusters generated by exploding InP wires of equal size at different
energies in one atmosphere of helium are shown in Figure 6.5. In Figure 6.5(a), the
capacitor was charged to 7 kV, while in Figure 6.5(b) the capacitor was charged to 10
kV, thus increasing the energy of the explosion by a factor of two. InP was used for these
experiments owing to the relative ease and reproducibility of making ohmic contacts to InP
as compared to GaAs. The figure demonstrates that increasing the explosion energy results
in a reduction of the mean size of the primary particles produced by the explosion. This
phenomenon, which has been observed in the production of aerosols of various metals and
metal oxides by the exploding wire technique [10], is presumably due to increased shock
wave velocity in higher energy explosions, resulting in more rapid rarefaction of the exploded
wire vapor and smaller cluster sizes. In both cases electron diffraction revealed that the

clusters possess the bulk zincblende crystal structure.

6.2.2 Clusters formed by pulsed laser ablation

The successful application of the exploding wire method to the synthesis of nanometer-scale,
stoichiometric ITI-V clusters suggests that other techniques which induce rapid vaporization

(vaporization on a time scale of 10 to 100 nSec) might be also employed to advantage in
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InAs

Figure 6.4: A high resolution transmission electron micrograph of an InAs cluster produced

by the exploding wire method. A grain boundary is plainly visible.
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Figure 6.5: Bright field transmission electron micrograph of InP clusters produced by the
exploding wire method at two different explosion energies. Increasing the energy of the
explosion reduces the mean particle size. The discharge voltage is 7 kV and 10 kV in (a)

and (b), respectively. Clusters were produced in one atm. of helium.
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synthesis of stoichiometric ITI-V clusters. Laser ablation is commonly used as a non-thermal
evaporation source for compound materials such as high-Tc superconductors, where the
preservation of bulk stoichiometry is important. In these applications, laser ablation is
done in vacuum or near-vacuum conditions. We have done preliminary experiments with
laser ablation of bulk GaAs in a one atmosphere argon ambient. In our experiment, a
pulsed, frequency doubled Nd:YAG laser was used to ablate material from a GaAs target
mounted in a vacuum chamber back filled with high purity argon gas ( 99.999 % purity).
Clusters are produced by homogeneous nucleation from the plume of ablated material. We
believe that the hot plume intersects the ambient gas, which serves to confine and cool the
vapor in much the same fashion as in the exploding wire method, inducing homogeneous
nucleation of stoichiometric clusters.

The apparatus used in our experiment is shown in Figure 6.6. A portable vacuum
chamber was constructed using standard quick-flange components and was equipped with
an optical grade quartz window, a target mounting fixture, and a cryogenic feedthrough
for cluster collection. The ablation target was a (100) GaAs substrate. A copper TEM
grid coated with a holey carbon film was mounted inside the chamber on the cryogenic
collection fixture. The chamber was pumped out and purged with argon several times and
finally filled with one atmosphere of high purity argon gas. The valve was then closed and
the chamber was detached from the vacuum pump - gas fill apparatus and transported to
the laser facility which was situated in another laboratory.

The flash lamp pumped Nd:YAG laser was operated with a KDP frequency doubling
crystal and produced 120 mJ pulses at 532 nm with a spot area of 10 mm? and a repetition

frequency of 10 hz. A total of 300 shots were delivered to the target. We estimate the total
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Figure 6.6: Apparatus used for laser ablation experiment. A pulsed, frequency doubled
Nd:YAG laser is used to ablate material from a GaAs target in 1 atm. of high purity Argon
gas. Clusters are collected thermophoretically on a copper TEM grid coated with a holey

carbon.

volume of ablated GaAs to be approximately 0.3 mm?3 based upon an assumed ablation
layer thickness of 100 nm per shot. Note that this is approximately the same volume of
material as a single wire used in the exploding wire experiment. Clusters were collected by
thermophoretic deposition onto the collection fixture which was cooled to liquid nitrogen
temperature prior to beginning the laser ablation. We find that laser ablation produces
particles in the same size regime as that of the exploding wire, though with a qualitatively
broader distribution of cluster sizes. A bright field transmission electron micrograph of the
collected clusters is shown in Figure 6.7. The bottom of Figure 6.7 shows an electron
diffraction pattern of the clusters which indexes to the bulk zincblende structure of GaAs
(Figure 6.8).

The technique of producing nanometer-scale clusters by pulsed laser ablation has a num-

ber of significant advantages over other cluster synthesis techniques such as the exploding
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Figure 6.7: Bright field transmission electron micrograph of GaAs cluster produced by

pulsed laser ablation. Bottom: Electron diffraction pattern.



162

4.0
3.5 —
< 3.0+
i
~
i |
~ 2.5
I
go]
QL
5 2.0 -
By
£ (531)
T 1.5
1.0
0.5 ] | | | I |

05 10 15 20 25 30 35 40
d pux A

Figure 6.8: Measured interplanar spacings for GaAs clusters shown in Figure 6.7 versus
bulk interplanar spacings. Measured values correspond to the ring radii R according to
the equation dpeagured = AF%’ where AL is the camera constant. The lattice constant of the

GaAs clusters is equal to the bulk value to within experimental uncertainty (5 %).
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wire method. The most important advantage is the flexibility of target materials inherent in
the method. Many interesting materials that cannot yet be obtained in bulk ingot or wafer
form, such as ternary or quaternary alloy semiconductors, and many of the II-VI semicon-
ductors, are readily obtained as epitaxially grown films. These films, if grown thicker than
the ablation depth of the laser, would make suitable pulsed laser ablation targets. Addition-
ally, there are many wide gap semiconductors and insulators which are not readily doped,
making application of the exploding wire technique, which requires conducting filaments of
material, difficult or impossible. Pulsed laser ablation would be the method of choice to
investigate quantum size phenomena in such systems. Another advantage of pulsed laser
ablation over the exploding wire method is that cluster production may be done in an on-
line, semi-continuous fashion. The major disadvantage of the technique is the requirement
of a high cost, high power pulsed laser source. The experiment described here employed a
borrowed laser system; the technique has to date not been pursued further because of the

cost of obtaining a dedicated laser system.

6.3 Optical characterization of GaAs clusters

Optical extinction measurements on GaAs clusters produced by the exploding wire method
described above are strongly suggestive of quantum confinement effects. The clusters are
collected for these measurements by entraining them in a flow of Ar saturated with iso-
propyl alcohol vapor and then concentrating the flow onto a cooled collector, producing a
cluster colloid which is sufficiently dense for measurements with a commercial spectropho-
tometer. The measured extinction for a GaAs cluster sample produced by the exploding

wire technique is shown in Figure 6.9.
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Figure 6.9: The measured optical extinction of a colloidal suspension of GaAs particles
produced by the exploding wire technique (-o-). The absorption efficiency of bulk GaAs
(—), showing the rise in optical absorption at the bulk band gap at 1.42 eV, is included for
comparison. The absorption of the GaAs clusters rises slowly, with no measureable feature
at the bulk band gap, and is suggestive of quantum confinement effects. A slight feature in

the cluster absorption curve is apparent at 1.9 eV.
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For comparision, the bulk absorption coefficient of GaAs is also plotted. The optical
extinction of the clusters rises gradually with increasing photon energy with the only re-
markable feature being a broad rise in absorption near 1.9 eV, with inflection points at 1.8
and 2.0 eV. The spectrum shown was taken within 10 minutes of the wire explosion. Qver
a period of an hour, the extinction spectrum loses even this slight feature and scattering
increases, presumably due to continued coagulation of clusters in the colloid. For clusters
whose radius, R << A where A is the wavelength of light, Qext, the optical extinction

efficiency, [11] is given by

Qext = —87R/A Im[(m? — 1)/(m? + 2)]

~ 12onR/(n? + 2)2, (6.1)

where a = 47k /) is the bulk absorption coefficient, and n and k are the real and imaginary
parts of the complex refractive index, m = n - ik. In deriving (6.1), it is assumed that
k << n. For GaAs, m = 3.64 - i 0.079 at a photon energy of 1.5 eV (A = 827 nm) [12].
Since n varies by less than 5 % over the range of Fig. 6.9, to a good approximation the
extinction efficiency of the clusters, Qext, should be proportional to a, provided the dielectric
response of clusters and bulk are identical. Conversely, one may conclude that the observed
difference between the cluster and bulk data of Fig. 6.9, notably the absence of an abrupt
step at the bulk band edge (1.42 eV), implies that the cluster and bulk dielectric response
are not the same. The measurement suggests that the absorption edge in the clusters is
shifted to higher energy, which is consistent with the qualitative behavior expected for
quantum size effects. Furthermore, the position of the 1.9 eV feature is consistent with the

confinement energy expected for GaAs clusters in the 5 - 10 nm size range [1,13]. Although
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sharp spectral features are expected for a monodisperse cluster sample, a distribution of
particle sizes tends to broaden them since the exact position of the spectral feature depends
strongly on the particle size. Thus, while definitive measurements on quantum confinement
in these systems will require more refined experimental technique, our results suggest that
quantum confinement effects are indeed playing a role in the optical properties of these
systems.

The absorption spectrum of Fig. 6.9 shares some common qualitative features with
the absorption spectrum reported by Sandroff et al. [4], who noted a smooth increase in
absorption without a sharp onset at the bulk bandgap. However, presumably because of
the broad size and shape distribution in that sample, and also possibly uncharacterized
interaction with the supporting silica, no features attributable to quantum size effects were
observed. On the other hand, Olshavsky et al. [2] and Uchida et al. [3] report a sharp peak
in cluster absorbance near 500 nm which is due to the presence of a molecular species in

the colloid rather than the GaAs clusters themselves [3].

6.4 Conclusion

In conclusion, we have demonstrated for the first time the vapor phase synthesis of crys-
talline nanometer-scale clusters of GaAs and other III-V semiconductors including InAs,
InP and GaSb. The exploding wire method relies on the rapid condensation of a non-
equilibrium vapor (containing equal numbers of group III and group V atoms) produced by
the explosive vaporization of a semiconductor wire in an inert atmosphere (argon or helium).
Electron microscopy and diffraction show that the cluster sizes fall well within the quantum

size regime and that they are crystalline with the bulk zincblende crystal structure. Pulsed
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laser ablation from GaAs targets in an inert gas has also been shown to result in the forma-
tion of nanometer-scale, zincblende clusters. The success of these two techniques, combined
with optical measurements which are suggestive of quantum confinement effects, imply that
a major technological hurdle in the vapor phase synthesis of semiconductor quantum dots
has been overcome.

Further work toward characterizing the influences of parameters such as gas pressure,
explosion/ablation energy, and vaporization time scale on aspects of cluster production such
as size distribution and crystallinity will no doubt be required if the technique is to mature
into a viable quantum dot synthesis technology. Additionally, the clusters produced by the
exploding wire method and by pulsed laser ablation have free, unpassivated surfaces and
have not exhibited photoluminescence. However, among the most important advantages
of vapor phase synthesis is that the surfaces of the clusters are undamaged and accessible.
A next important step toward producing light emission from semiconductor clusters is to
reduce non-radiative carrier recombination at the cluster surface by coating the cluster

surface with epitaxial passivating overlayers.
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Chapter 7

Nanometer-Scale GaAs Clusters

from Organometallic Precursors

“The surface was invented by the devil.” — Wolfgang Paul:

7.1 Introduction

In the last chapter, a new vapor phase synthesis technique was demonstrated for produc-
ing nanometer-scale clusters of GaAs and other ITI-V semiconductors. The success of the
exploding wire method in producing structures in the quantum size regime is particularly
notable considering the simplicity of the process. However, while the clusters produced by
this method exhibit quantum size effects in optical absorption, they show no detectable
luminescence under conditions of photoexcitation or electron beam excitation. This is not
surprising considering the tremendous surface to volume ratio in a nanometer sized cluster.

It has been observed that a (100) surface of GaAs with submonolayer oxide coverage has
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a surface density of mid-bandgap traps on the order of 10'2cm~2 [1], and that even GaAs
surfaces freshly prepared by molecular beam epitaxy in an ultra high vacuum environment
exhibit mid-bandgap surface Fermi level pinning [2]. These surface trap states, which arise
from unsaturated bonds at the crystal surface, have the undesirable property that they act
as efficient nonradiative carrier recombination centers. Thus a bare GaAs cluster is not
expected to luminesce under photoexcitation.

One way to avoid the nonradiative loss of excited carriers at the surface of a GaAs
cluster is to prevent the carriers from “seeing” the surface. In principle, an excellent way to
accomplish this is to epitaxially grow a wider bandgap semiconductor barrier layer on the
cluster surface. The ternary alloy semiconductor Al,Ga;_4As is an ideal candidate for such
a surface passivation layer because the lattice mismatch with GaAs is minimal over the whole
range of aluminum mole fraction, and the technology for epitaxial growth of Al,Ga;_xAs
from gaseous precursors is well developed. In addition, it has long been suspected that
homogeneous nucleation of GaAs occurs in GaAs OMVPE due to the reduction in the
efficiency of the overall growth reaction with increasing temperature above approximately
700 © C.

We have therefore constructed a novel hot wall OMVPE reactor with two goals in mind.
The first is the synthesis of nanometer-scale GaAs clusters by homogeneous nucleation
from volatile organometallic and hydride precursors. The second is the epitaxial growth
of a passivating layer of Al;Gaj_xAs on the surfaces of these clusters to produce optically
active quantum dots. The process is shown schematically in Figure 7.1.

We have determined conditions under which nearly defect free, 10-20 nm scale GaAs

microcrystallites form. These particles are in the quantum size regime which suggests
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Figure 7.1: Conceptual schematic of gas-phase synthesis of passivated nanometer-scale GaAs
clusters from organometallic precursors. Trimethyl gallium and arsine react homogeneously
to produce nanometer scale GaAs clusters. Subsequent vapor phase growth of a passivating
layer of AlAs or AlyGa;_xAs on the cluster surface occurs by reaction of trimethyl aluminum

and arsine.
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that the process may be used to form optically active quantum dots [3]. Thus gas-phase
homogeneous nucleation in OMVPE, which has been regarded as a troublesome parasitic
reaction until now, may ultimately form the basis of an aerosol technology for the fabrication
of novel optoelectronic devices such as a quantum dot laser [4]. In this chapter, the design
and results of this experiment will be described. We will conclude by discussing progress
made so far on the ultimate goal of passivation by vapor phase epitaxial growth of an

Al;Gaj_xAs layer on the GaAs clusters.

7.2 Reactor design

7.2.1 Process configuration

The aerosol particle reactor is designed to produce GaAs clusters by homogenous nucleation
from gaseous precursors and subsequently to passivate the clusters by vapor phase epitaxial
growth of AlyGaj_xAs on the cluster surfaces. The growth nutrients used in the process are
trimethyl gallium (TMG), trimethyl aluminum (TMA), and arsine (AsH3). These precur-
sors are carried in hydrogen gas and introduced into a horizontal, hot wall quartz process
tube where the gas is heated. Reactant pyrolysis and subsequent gas-phase reactions occur,
producing the GaAs clusters. The actual process tube configuration has evolved as the
experiment has progressed. As a result, detailed discussion of the tube geometry will vary
according to the particular experiment under discussion.

The piping and instrumentation diagram corresponding to the present reactor configura-
tion is shown in Figure 7.2. In this configuration, the process tube is heated by a multizone
tube furnace. The tube consists of three main sections. Zone 1 is the GaAs cluster nucle-

ation zone into which a mixture of TMG and arsine in hydrogen are injected. Clusters
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formed by homogeneous nucleation in this zone flow into zone 3, the passivation zone.
TMA, TMG and arsine are introduced into the main process tube at this point through the
heated injector, zone 2. Particles flow into zone 5 and are collected thermophoretically on
a demountable fixture. Zone 4 is used to inject hydrogen to dilute the cluster aerosol so as
to prevent gas phase agglomeration.

The gas injection system utilizes precision mass flow controllers (MFC) for the two
TMG sources, the TMA source, and the arsine, hydrogen, and nitrogen sources. The
organometallics are introduced into the reactor by bubbling hydrogen through liquid source
material. Pneumatic control valves for these gases are interlocked through a relay board
to prevent unsafe operation and to handle abort conditions. The reactor is controlled by
a programmable controller located on the control panel on the front of the reactor. The
piping and instrumentation diagram for the reactor, shown in Figure 7.2, will illustrate the

complexity of the process and the need for computer control.

7.2.2 Safety issues and reactor construction

Each of the materials used in the OMVPE process has significant hazards. Hydrogen is
an inflammable gas, while the organometallics are pyrophoric liquids at room temperature.
The most dangerous substance used is arsine, which is a potent hemolytic toxin. Brief
exposure to as little as 10 parts per million of arsine is deadly, and the safe occupational
exposure limit is 50 parts per billion [5]. The design of an OMVPE reactor must incorpo-
rate features to prevent the possibility of operator exposure to these chemical hazards. To
ensure that the design of our reactor conformed to state-of-the-art industrial safety prac-

tices, we contracted with Caleb Corporation (Torrance, California) to design and construct
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the ventilated reactor enclosure, gas source cabinet, failsafe relay safety interlock system,
and pneumatic valve control system. The actual process tube and gas mixing manifolds
were designed and constructed at Caltech. The reactor is located at the arsine qualified
Microdevices Laboratory located at the Jet Propulsion Laboratory in Pasadena.

The primary hazardous gas containment systerm in the reactor is the process tube itself,
along with associated gas feed and exhaust lines. All gas lines are 316L stainless steel
tubing with weld joints and VCR connections. The hydrogen and 10 % arsine gas cylinders
are located in a separate gas bunker and are connected to the reactor via coaxial gas lines
with a counter flow of nitrogen purge gas in the line jackets. All valves are Nupro BN
series bellows sealed valves. Quartz components comprising the process tube have all been
annealed for 24 hours at 700°C to relieve stress. Glass/metal seals utilize viton O-rings
and Ultra-Torr fittings. KF fittings with viton O-rings are utilized in the exhaust system
and elsewhere in the process cabinet. The second line of protection is the vented, enclosed,
process cabinet, gas cabinet, and vacuum pump area. The reactor is equipped with local
combustible gas sensors interlocked to the relay control board to shut off the flow of all
hazardous gases in the event of a breech of the process tube. Additionally, sampling tubes
leading to a toxic gas monitor are located at several points both inside the reactor and in
the laboratory space around the reactor. This monitor is interlocked to shut off the flow
of all hazardous gases in the laboratory building and to trigger evacuation alarms in the
event of detection of arsine at a level of 20 parts per billion. Exhaust gas from the reactor
is treated in a controlled decomposition and oxidation unit (CDO) and passes through a

wet chemical scrubber before being exhausted to the outside air.
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7.3 Synthesis of nanometer-scale GaAs clusters from organometal
lic precursors

We report the first direct observation of gas-phase homogeneous nucleation of GaAs by the
thermophoretic collection of an aerosol of nanometer-scale microcrystallite GaAs clusters
in an atmospheric organometallic vapor-phase epitaxy (OMVPE) reactor. In addition to
shedding light on a fundamental question about the reaction kinetics involved in OMVPE,
this is the first report of gas-phase synthesis of nanometer-scale IIT/V clusters from volatile
precursor molecules. We have determined conditions under which 10-20 nm scale GaAs
microcrystallites form. Thus, gas-phase homogeneous nucleation in OMVPE, which has
been regarded in the past as a troublesome parasitic reaction [6,7], may be useful for the
fabrication of quantum size regime structures.

A simplified schematic of the reactor configuration used in these experiments is depicted
in Figure 7.3. Note that this configuration is different from that shown in Figure 7.2, which
represents the present state of the reactor and is designed for Al,Ga;_xAs passivation
experiments to be described in Section 6.5. In Figure 7.3, a 34 mm diameter, 700 mm long
quartz process tube is mounted in a multizone furnace. TMG was introduced by bubbling
hydrogen through a liquid source held at -10 ° C. Heated injectors (Z1, Z2) permit TMG
and 10 % AsHs in hydrogen to be introduced into the process tube separately, allowing for
the possibility of precracking the precursor molecules. Alternatively, the reactants can be
mixed prior to injection by rerouting the arsine flow as shown in Figure 7.3. The nucleation
zone, Z3, is 18 cm long. Aerosol particles are collected thermophoretically on a holey carbon

film which is mounted on a stainless steel fixture aligned coaxially in the collection zone,
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Figure 7.3: Schematic of the experimental apparatus for gas-phase synthesis of nanome-
ter-scale GaAs clusters. The group III precursor (TMQ) is introduced into the hot wall
reactor by bubbling Hj carrier gas through a liquid source. The group V precursor, AsHg,
can be mixed with the TMG outside the furnace (at room temperature) or inside the furnace
(at elevated temperature). All flows are regulated by mass flow controllers (MFC’s). The
process runs at atmospheric pressure. A quadrupole mass spectrometer connected to the

exhaust of the process tube by a sampling line is used to monitor reactant concentrations.
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Z5, of the process tube (Fig. 7.3). Z5 is held at a temperature of 350°C in all experiments
to prevent the condensation of arsenic on the collection apparatus. Hydrogen, purified with
a resin filter, is used as the carrier gas. The composition of the gas exiting the process tube
is monitored with a quadrupole mass spectrometer (QMS).

In a typical experiment the TMG and AsHjz are preheated to 400°C in Z1 and Z2,
respectively, before being introduced into the reaction zone. At this temperature negligible
pyrolysis of the TMG or AsH3z occurs as previously determined by infrared absorption
spectroscopy and mass spectroscopic analysis [8,9]. This is verified by negligible decreases
in the arsine partial pressure and no CH,4 partial pressure detected on the QMS. The total
flow is 2 SLM, with the partial pressures of TMG and arsine typically 1.25x10~4atm and
6.25x1072 atm, respectively. For these flow conditions, the residence time in the reaction
zone (Z3) is 5 seconds.

When the temperature in the nucleation zone (Z3) is held at 700 °C, solid GaAs deposits
on the reactor walls within the first 10 cm of the nucleation zone, indicating that the TMG
is entirely consumed within approximately 3 seconds of entering Z3. Downstream of this
point, in Z5, a semitransparent yellow deposit is observed on the walls of the reactor tube
and on the collection fixture. A TEM micrograph of the collected deposit reveals it to
consist of individual GaAs microcrystallites and some chain-like agglomerates (Fig. 7.4).
The electron diffraction pattern of the particles, shown in the inset of Figure 7.4, indexes
to cubic zincblende structure, as shown in Figure 7.5.

Figure 7.6 shows a high resolution transmission electron micrograph (HRTEM) of an
agglomerate of smaller primary particles. In practice, HRTEM is easier to perform on the

agglomerated clusters than on individual particles, owing to the fact that the agglomerates
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Figure 7.4: Bright field transmission electron micrograph of GaAs clusters collected on a
holey carbon substrate. The temperature in Z3 was 700°C, the partial pressure of TMG
was 1.25x10~*atm, the V/III ratio was 50, and the total flow was 2 SLM. Inset: electron

diffraction pattern of the clusters. The pattern indexes to zincblende (see Figure 7.5).
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Figure 7.5: Interplanar spacings for GaAs clusters shown in Figure 7.4 versus bulk inter-
planar spacings. Measured values correspond to the ring radii R according to the equation
dmeasured = ARL, where AL is the camera constant. The lattice constant of the GaAs clusters

is equal to the bulk value to within experimental uncertainty (5 %).
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Figure 7.6: High resolution transmission electron micrograph of a chain agglomerate pro-

duced under the same conditions as Figure 7.4.
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are better able to dissipate excess charge and heat induced by the electron beam than
are individual particles. Within several of the clusters shown, lattice fringes and faceting
indicative of {111) bounding planes are clearly evident. Some of the crystalline faces have
as few as 30 atomic rows. The lattice fringes on the particles extend to within 1 nm of the
cluster surface, consistent with the formation of an amorphous oxide layer on the particles
on exposure to air.

We have investigated the role of growth temperature and reactant concentration on the
nucleation and morphology of the clusters. By analyzing low magnification micrographs,
such as Fig. 7.4, we have measured the size distributions of the primary particles for runs
at different growth temperatures in the nucleation zone (Z3). We find that the mean
particle diameter is strongly influenced by the growth temperature. By fitting the measured
particle size distributions to a log-normal distribution, a median particle diameter, ng,
and geometric standard deviation, o, for the distribution are found. Geometric standard
deviations are in the range 6, = 1.2 —1.3. A typical data set and its fit are shown in Figure
7.7. Figure 7.8 shows the behavior of the median crystallite diameter and o, as a function
of reciprocal temperature. As the temperature in the nucleation zone (Z3) is increased from
600 °C (1000/T = 1.14 K~1) to 800 °C (1000/T = 0.93 K~1), the median particle diameter
rises continuously from 12 nm to 19 nm. Doubling the input TMG and AsH3 concentrations
relative to the conditions of Figures 7.4 - 7.5, the mean particle diameter is increased by
approximately 10 % with no noticable change in particle morphology. Additionally, we have
generated clusters by mixing TMG and arsine both at room temperature and at 400 °C
and find no difference in particle morphology.

Several important questions remain regarding the growth mechanism of the primary
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Figure 7.7: Analysis of the size distribution of GaAs clusters produced at a growth temper-
ature 600 © C, plotted as a histogram AN/ALogD,, versus Dy, the particle diameter. The

solid line is a best fit to a log-normal distribution.
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GaAs clusters. Gas-phase infrared absorption measurements showing the presence of TMG—
AsHj adducts [8], suggest that GaAs may form homogeneously, nucleating (GaAs), clusters
with n in the range 10 - 20 [10]. This possibility is supported by the observation of GaAs
clusters in the 2-50 atom size range produced in a supersonic beam by pulsed laser ablation
from a GaAs target [11]. These clusters may then increase to the 10 nm size range by coagu-
lation. Subsequent grain boundary migration through the sintered particle may consolidate
the agglomerate into the single crystal, faceted clusters seen in Figures 7.4 - 7.5. Alter-
natively, further growth to the observed sizes in the 10 nm range may proceed by epitaxial
deposition from the supersaturated vapor phase. Since the microscopic crystal planes of the
clusters are much smaller than surface diffusion lengths, adsorbed Ga and As atoms can
diffuse to fast growing crystal planes, leaving the cluster bounded by slow growth planes as
observed in Figure 7.6 [12]. With the present data, it is impossible to distinguish between
these two mechanisms, although the particle size distributions are somewhat narrower than
would be expected if coagulation were the dominant growth mechanism (og =~ 1.46) [13].
It is also possible that GaAs cluster growth occurs through a two step process by the reac-
tion of nanometer-scale droplets of Ga or poly-monomethyl gallium polymer with the AsHs
ambient.

To investigate the possibility of the latter reaction mechanism, a set of experiments was
performed in which TMG was precracked at 600 °C to induce the formation of nanometer-
scale Ga droplets priorto reaction with AsHz. Pyrolysis of TMG at a temperature of 600 °C
leads to the formation of an aerosol of Ga droplets which leaves a diffuse white film on the
walls of the TMG precracking zone (Z1 in Figure 7.3). Monomethyl-gallium polymer, which

would result in black wall deposits [14], is not observed at these temperatures, indicating
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complete reaction to elemental gallium. Samples of the gallium aerosol (formed with no
arsine present) were collected as before and examined by TEM. Figure 7.9, which shows a
bright field image of the collected particles, shows that Ga droplets in the size range from 10
to 100 nm are formed in this manner. The larger particles probably resulted from Brownian
coagulation of the aerosol in transit from Z1 to the collection zone. Next, AsHj preheated
to 400 °C was injected into the Ga aerosol and the mixture subsequently introduced into
the reaction zone held at 700 °C.

A positive test for growth mediated by Ga droplet formation would consist of the ob-
servation of GaAs clusters of the same morphology as in the previous runs. However, the
bright field micrograph of the collected particles, Figure 7.10, shows that this is not the
case. The particles are elongated, and irregular in shape in contrast to Figures 7.4 and
7.6. Although the median particle size was roughly 50 nm, some particles in the 10 nm
range were observed. The electron diffraction pattern is consistent with cubic zincblende
structure. The whisker morphology seen in some of the clusters is indicative of the vapor-
liquid-solid growth mode [15], entirely different from the observed cluster morphology in
Figs. 7.4 and 7.6. This suggests that the GaAs cluster growth described in the previous

experiment is not mediated by Ga droplet formation.

7.4 Passivation experiments

The results described in the last section provide encouragement that the ultimate goal of
producing passivated GaAs clusters is achievable. In particular, the observation that the
GaAs clusters are bounded by slow growth planes is consistent with a growth mechanism

involving vapor phase condensation on smaller nucleii to produce the observed cluster sizes
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Figure 7.9: Bright field transmission electron micrograph of Ga droplets produced by py-

rolysis of TMG at 600 ° C, collected on a holey carbon substrate.



189

Figure 7.10: Bright field transmission electron micrograph of GaAs clusters produced by
reaction of nanometer-scale Ga droplets with arsine. Ga droplets were produced by pryrol-
ysis of TMG (cracking temperature 600 ° C). The reaction with arsine was performed at a

temperature of 700 ° C in Z3.
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of 10-20 nm. This interpretation was supported by the analysis of cluster size distributions.
By changing the composition of the reactant vapor, it should thus be possible to grow an
epitaxial Al,Ga;_yxAs passivating layer on the surfaces of the clusters.

To implement this concept, we have had to significantly modify the reactor from its
original configuration. In its original form, the reactor had two separate process zones. The
front process zone was to have been used for GaAs cluster nucleation, while the second
zone was to have been used for the passivation experiments. In between these two zones
we intended to install an electrostatic particle mobility classifier to enable the selection of
a mono-sized aerosol for subsequent passivation. Unfortunately, it was discovered early on
in the experiment that the temperature drop of the gas stream upon exiting from the front
process zone was sufficient to induce the homogeneous nucleation of arsenic clusters. The
extremely dense arsenic aerosol produced renders subsequent mobility classification and
passivation of the GaAs clusters impossible. As a result, a multizone, single process tube
design has been implemented for both GaAs cluster nucleation and passivation. Figure 7.2
shows the piping and instrumentation diagram of the reactor in its new configuration which
implements these changes. For greater clarity, Figure 7.11 shows a drawing of the new
process tube.

The tube consists of three main sections. Zone 1 is the GaAs cluster nucleation zone
into which a mixture of TMG and arsine in hydrogen are injected. Clusters formed by
homogeneous nucleation in this zone flow into zone 3, the passivation zone. TMA, TMG and
arsine are introduced into the main process tube at this point through the heated injector,
zone 2. Particles flow into zone 5 and are collected thermophoretically on a demountable

fixture. Zone 4 is used to inject hydrogen to dilute the cluster aerosol so as to prevent gas
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z1 z3

Figure 7.11: Drawing of OMVPE reactor process tube used for passivation experiments. In
this configuration, zone 1 (z1) is used for GaAs cluster nucleation, and zone 2 (22) is used
to inject TMA into the passivation zone (z3). Zone 4 (z4) is used to inject diluent hydrogen
to prevent aerosol particle agglomeration. Zone 5 (25) is the collection zone where particles

are collected thermophoretically.
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phase agglomeration.

We have performed preliminary passivation experiments using the new reactor configu-
ration. Reactant concentrations and flow velocities in the nucleation zone were identical to
those used in the nucleation experiments in the last section, and the nucleation zone tem-
perature was held at 650 °C. TMA, TMG and AsHg were introduced into the passivation
zone in concentrations expected to lead to a passivation layer of composition Alp3Gap.7As
and thickness 3 nm, if all of the material was incorporated into the growing clusters. The
temperature in the passivation zone was varied between 750 °C and 800 °C, consistent
with common practice in Al,Ga;_xAs growth by OMVPE. Unfortunately, under these con-
ditions, the collected clusters contained no aluminum as determined by energy dispersive
x-ray analysis. The Al;Gaj_xAs appears to have deposited on the injector wall, rather than
creating an epitaxial layer on the GaAs “seed” clusters. In an attempt to prevent deposition
of the AlyGaj_xAs on the walls of the injector, we have performed experiments in which
arsine and TMA are injected into the reactor separately. Arsine is injected into zone 1,
and TMA and TMG are injected through zone 2. Under these conditions, the Al,Gaj_xAs
homogeneously nucleates to form clusters. The presence of aluminum in the clusters was
verified by energy dispersive x-ray analysis. Further study will doubtless be required to
determine conditions under which an AlyGa;_xAs passivating layer can be grown on the
surfaces of GaAs seed clusters without homogeneous nucleation of uniform Al,Ga;_xAs

clusters.
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7.5 Conclusions

The present aerosol technique has several significant advantages over previous methods
for producing nanometer-scale GaAs clusters. For example, synthesis in quinoline solution
produces GaAs clusters with significant impurities and unequal Ga and As abundances
[16,17], while GaAs MBE on silica substrates produces irregular particles in intimate contact
with a foreign substrate [18]. Synthesis of nanometer-scale GaAs clusters by homogeneous
nucleation from an exploding wire vapor has been recently demonstrated [19]. However,
the process described here is more readily compatible with the incorporation of the GaAs
clusters in a passivating medium of AlGaAs, both in the aerosol phase [20] and ultimately

in a growing epitaxial structure.
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