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ABSTRACT

Artificial neural networks are a computational paradigm inspired by biologi-
cal neural systems. By modeling neural networks to a certain degree after their
counterparts in nature, it is hoped that they can capture those aspects of biological
neural systems that allow them to outperform more conventional processing sys-
tems in tasks such as motor control and pattern recognition. A brief overview of
neural networks is provided in Item 1, concentrating on those aspects pertinent to
the remainder of this thesis.

The application of neural networks to control is examined in Item 2. A general
control system can be divided into feedforward and feedback components. Specif-
ically, the use of neural networks in learning to generate the feedforward control
signal for unknown, potentially nonlinear, plants is examined. A class of learn-
ing algorithms applicable to feedforward networks is developed, and their use in
learning to control a simulated two-link robotic manipulator is studied

An optoelectronic implementation of a multilayer feedforward neural network,
with binary weights and connections, is described in the final part of this thesis.
The neurons and connections are implemented electronically on a custom VLSI chip.
The pattern and strength of the connections is controlled, through photodetectors
placed in the connections, by a pattern of light illuminating the chip. This pattern
is read out, 1n parallel, from an optical disk. Issues concerning parallel readout
of information from optical disks are discussed in Item 3, while Item 4 contains a
description of both the design of the Optoelectronic Neural Network Chip (ONNC)

and experiments involving the optical disk and neural network chip.
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1 Computation and Artificial Neural Networks

1.1 Introduction

Computers are everywhere in our society; in our homes and offices, our trans-
portation, news, and entertainment, etc. Most of the computers that are a part
of our everyday lives fall into a class of digital electronic computers with a Von
Neumann-type architecture. By digital electronic, we mean that they represent in-
formation as strings of 1s and 0s and perform computation by storing and moving
electrons within their components. By Von Neumann, we mean that they contain
a single processing element connected to a memory bank as shown in Fig. 1.1. A
processor in a Von Neumann machine accesses data in memory, performs some op-
eration on the data, and stores the result back into memory. To a lay person, it may
seem quite remarkable that machines based on such a simple model can be used
to perform such complex tasks as controlling a nuclear power plant or animating
a movie; however, getting a computer to perform these tasks is simply a matter of
breaking a complicated process into successively smaller pieces that can eventually
be accomplished by a sequence of operations using a single processor and memory.

Artificial neural networks represent an alternative computing paradigm (Sec.
1.5) that have been studied for a number of years. In the 1950s, Rosenblatt in-
troduced his perceptron model (Subsec. 1.5.3). However, it was shown that the
perceptron was incapable of solving the parity problem-a problem easily solved
algorithmically.

More recently, there has been a revival of interest in neural networks. This
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Fig. 1.1 - Von Neumann Architecture

increased interest has been sparked in part by new neural network models, new
training algorithms, and a new theoretical understanding of neural networks. In
this chapter, we begin by placing into perspective, the prospective benefits of neu-

> and our

ral network research on computer architecture, computer “programming,’
understanding of biological systems. We conclude by reviewing the development of

artificial neural networks as it relates to the rest of this thesis.

1.2 Computational Power and Computer Architecture

The continuously increasing complexity of the tasks that computers are asked to
perform has fueled the demand for increasing computational power, while increasing
computational power opens the way for even more complex tasks which we ask them
to perform. Various techniques some evolutionary, some revolutionary as described

below are being pursued to provide greater computational power.

1.2.1 Incremental Increases in Performance

Until recently, the demand for increased computational power has been met by
the incremental development of both faster processors capable of performing more
complex instructions and ever larger and faster memories. As the minimum feature
size (the smallest wire we can fabricate on the chip) has steadily decreased, the
number of transistors we can pack on a chip has increased while the clock speed has

increased as well. However, we will eventually reach physical limits on the minimum



size of wires and transistors on chips.

1.2.2 Cache Memories, Pipelining, and RISC Machines

Most recently however, more radical approaches have been adopted to provide
even greater gains in computational power. The organization of memory has also
been affected by splitting it into a pyramidal hierarchy (Fig. 1.2) with a small
number of high-speed registers built into the processor, one or more levels of fast
cache memory, a large store of slower dynamic memory, and finally low-speed mass
memory. By keeping the most used pieces of information “closer” to the processor in
higher-speed memory, the amount of time spent waiting to retrieve information can
be reduced. Less used pieces of information are not placed in high-speed memory
partly because of the increased cost of high-speed components and partly because

the actual speed of high-speed memory decreases as the size of the memory increases.

Processor
Registers

Dynamic Memory

Mass Memory

Fig. 1.2 - Memory Hierarchy

Because the time it takes to fetch an instruction or piece of data from memory
can be significant, pipelining (typically in the form of prefetching instructions and
data) has become popular. In pipelining, the processor predicts what instructions

and data will be required and requests them from memory ahead of time and places
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them in a “pipeline” so that they will be available when needed. If the incorrect
instruction or data is prefetched (for instance because of a branch), the pipeline

must be cleared and the correct instruction and data fetched before continuing.

It has also been determined that by reducing the complexity of instructions
that the processor can perform, its speed can be increased enough to offset the
reduction of instruction complexity. This has led to the development of so-called

Reduced Instruction Set Computers or RISC machines.

1.2.3 Parallel Processing

Perhaps the greatest gains in computational power are to be reaped by aban-
donment of the single-processor Von Neumann architecture in favor of multipro-
cessor architectures. Ideally, increasing the number of processors should result in
a proportional increase in computing power. Unfortunately, many questions must
be answered before a parallel processing computer can be designed. One important
question is how to divide the task into pieces that can be performed in parallel. If
the pieces must be performed serially, no actual gain in computational power will
be realized. We must also ensure that no processor will have to wait long periods

of time for another processor to provide it with intermediate results.

Another question is whether the processors will operate synchronously with
a global clock or asynchronously with respect to one another. In the latter case,
interprocessor communications become more difficult while in the former we must
develop techniques to broadcast the clock so that clock-skew (variations in the time
it takes the clock signal to reach a processor) does not become a problem. If the
processors act synchronously, certain applications may allow us to operate them in
lock-step using the same instruction at each clock cycle. In this case, we have a
Single Instruction Multiple Data or SIMD machine; if they use different instructions,

it 1s a Multiple Instruction Multiple Data or MIMD Machine.
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Another question is how to organize the memory; if all processors share the
same memory through a single port (Fig. 1.3a), there will be contention between
them over use of the memory and little gain will be achieved. On the other hand, if
each processor has either its own port to main memory (Fig. 1.3b) or its own local
memory (Fig. 1.3c), we must develop means to maintain data integrity—i.e., prevent
one processor from changing the value of a piece of data while another processor is

using the old value.

Processor Processor Processor Processor Processor Processor
Processor Processor Processor
A\@,’—A ¢ [ Memory | [ Memry | [ Hemory
Memory Memory
(@ ®) ©

Fig. 1.3 - Multiprocessor Memory Organization
(a) Single-, (b) Multi-port, or (c¢) Distributed

As we increase the number of processors, communications becomes an increas-
ing problem. If every processor can communicate directly with every other one
(Fig. 1.4a), we have a virtual explosion in the amount of hardware that must be
dedicated to communications. On the other hand, if we decide to restrict the com-
munications, we must determine how this will be done. In a hypercube architecture
(Fig. 1.4b), we place each processor at the corner of a hypercube and allow it to com-
municate directly only along the edges of the cube. In a systolic array (Fig. 1.4c),
we place the processors in a grid and allow it to communicate only with its nearest
neighbors.

These questions have been answered in one way or another in the multiprocessor
and multicomputing systems commercially available today. These systems vary
from those like the Cray Y-MP with eight powerful processors to the Connection

Machinel!l with 65,636 one-bit SIMD processors. As we shall see, neural networks
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Fig. 1.4 - Interprocessor Communications: (a) Fully Interconnected, (b) Hypercube,

and (c¢) Systolic Array

provide yet another set of answers to the questions above, that though closer to the
Connection Machine in appearance, are actually quite different in spirit. The reason
for the large variety in parallel processing architectures is that there is simply no
single best architecture; the optimal tradeoff between cost and performance as well

as raw performance itself depends to a great extent on the application.

1.3 Programming

No matter how powerful the computer, it cannot solve a single problem without
the proper programming. As long as a problem and its solution are well understood,
no matter how complex, it should be possible to write a program to implement the
solution. Thus, we find computers solving large systems of equations or controlling
complicated systems like the space shuttle about which we have adequate models.

However, there are tasks that we would like to perform with computers that
we have not yet been able to do. We are less interested in those tasks which have
an algorithmic or software solution but currently lack the hardware to solve the
problem given real-world constraints. We are more interested in those problems for
which we do not have good algorithmic or software solutions.

Pattern recognition, machine vision, and the like are problems whose solutions
are still not well understood. Some researchers look to Artificial Intelligence (AI)

techniques to attack these types of problems. Expert-systems that incorporate the
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knowledge of so-called human experts in a rule-based approach to processing the
given information are one solution typical of Al

However, because problems like pattern recognition and machine vision are
routinely solved in nature by some of the simplest life forms, some researchers
look to biology to provide a solution. By modeling parts of our solutions on our
understanding of biological systems, we hope to capture those aspects of biological

neural computation that lend themselves to solving these types of problems.

1.4 Biological Neural Networks

The basic unit in a biological neural network is the neuron (Fig. 1.5). The
neuron is a highly specialized cell. Typically, a neuron will have many protrusions,
one of which is called an axon. Electrochemical signals can propagate down the axon
by the motion of ions into and out of the cell membrane. These signals typically

take the form of an electrical pulse train.

Dendrites

Synapse

Fig. 1.5 - Neuron

The other protrusions, called dendrites, often connect to the axons of other
neurons at points called synapses. A given synapse then connects the axon of the
presynaptic neuron to the dendrite of the postsynaptic neuron. A passing electrical
pulse stimulates a reaction at the synapse which results in a change in the post-
synaptic neuron. A typical neuron can connect to between 1000 and 10000 other

neurons. The frequency and pattern of pulses emitted by a neuron depend on the
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type of the neuron and the stimulus that it receives through its many synaptic

connections to other neurons.

There have been many different types of neurons that have been identified in
the nervous system. The structure of neurons and their connections is known in
simple networks such as the central pattern generators in lower life forms(?! as well
as in highly regular networks such as the early vision layers in the visual system.
By developing artificial neural network models, those studying them hope to gain

a better understanding of how the biological neural networks work.

1.5 Artificial Neural Networks

One may quibble over the definition of the term “neural network.” However, we
will define them as any computing technique, implemented in hardware or software,
that is in part inspired by our understanding of the central nervous system and
other biological neural systems. Although the above definition is rather loose, we
generally expect to find the following characteristics in artificial neural networks:

e Large number of processing elements

e Large number of connections

e Functionality determined by pattern and strength of connections
Many artificial neural networks also have very simple processing elements, typically
single-input single-output and a thresholding transfer function. However, those
networks that more closely follow biological models can have a significant degree of
complexity.

Research into artificial neural networks is highly interdisciplinary. The study
of these networks can lend themselves to the solution of a whole host of prob-
lems. For example, they can provide a model for the organization of processors
and communications in a parallel processing architecture. They can inspire tech-

niques for attacking problems such as pattern recognition and machine vision that,
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though seemingly solved with ease in nature, remain intractable using conventional
algorithms running on even the most powerful general purpose computers available
today. Finally, they can help us understand the design and operation of the actual
biological systems on which they are modeled. In the remainder of this chapter, we
review the development of artificial neural networks as it relates to the rest of the

thesis.

1.5.1 The McCulloch-Pitts Neuron

McCulloch and Pitts studied the behavior of neurons in squids. They noticed
that pulses from a presynaptic neuron tended to stimulate or inhibit a postsynap-
tic neuron. Furthermore, if the level of stimulation exceeded a certain threshold,
the postsynaptic neuron would begin to emit a train of pulses along its axon as
well. They thus modeled the neuron as a single-output thresholding device.l’! If
the stimulation from other neurons to which a given neuron connected exceeded a
certain threshold, that neuron would generate an output that would stimulate other

neurons to which it connected.

1.5.2 Hebb
Hebb modeled the input of the neuron as a weighted sum of the outputs of
other neurons. He determined that information could be stored in a neural network

within the strength and pattern of the connections between neurons.!]

1.5.3 Perceptron

The perceptron model, developed by Rosenblatt,l®! consists of a single neuron
implementing a hard threshold on the weighted sum of the perceptron inputs as
shown in Fig. 1.6. We assume the following form for the transfer function of the

perceptron:

(1.1)

(SIS
S
I8 I8
NV
OO
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X
1
Wy
X
X3
W
4
Xy

Fig. 1.6 - Perceptron
In order to train the perceptron, we begin with a training set, a set of or-
dered pairs of input vectors & and their known associated outputs y¢: {(z[1],y%[1]),
..(z[N],y%[N]}. We then use the following algorithm:
1) Present the first training vector z(*=1 to the input of the perceptron.

2) Modify the weight vector using the following equation:

wlk] + afk]z[k] w'z <0andy? >0
wlk +1] = { w[k] — a[k]z[k] wTz >0 and y¢ <0 (1.2)

wlk] otherwise.

3) Go back to step 1. Repeat for all training vectors until we can correctly classify
all vectors.
The key to this algorithm is in step 2. If we examine the change in the response
of the presynaptic input to the training vector, we see that the weight vector is
adjusted in a way that will drive the presynaptic input in the direction required to

properly classify the training vector:
. - alk]||z[k]||>  y[k] =0 and yq[k] =1
w [k + 1)z[k] —w” [k]z[k] = ¢ —a[k]l|z[k]|[* y[k] =1and ya[k]=0  (1.3)
0 y[k] = yalk]

In the original perceptron algorithm, «[k]=1. This does not guarantee that the
training vector will be properly classified by the new weight vector, only that the
presynaptic input will move in the desired direction. We could also dynamically
adjust alk], as shown below, so that the training vector will be properly classified

by the new weight vector:
w kK]

o> e

(1.4)
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Any adjustment to the weight vector to properly classify a given training vector can
lead to misclassification of a training vector that was properly classified by the old.
It has been shown, however, that as long as a weight vector exists that properly
classifies the training vector, the perceptron will converge to a solution.

The perceptron classifies points by placing a hyperplane in input space that
passes through the origin and is normal to the weight vector. If we provide the
perceptron with an additional degree of freedom via an adjustable threshold, the
hyperplane can be placed arbitrarily and no longer needs to pass through the origin.

Minsky demonstrated a weakness of perceptrons by showing that they could
not solve the XOR or parity problem.[®) In this problem, we try to train a perceptron

to implement the truth table shown in Table 1 known as the exclusive-or.

Table 1.1 - Truth Table for Exclusive-Or

T ) Y
0 0 0
0 1 1
1 0 1
1 1 0

Although this problem is easily solved algorithmically, we can see graphically
why a solution does not exist using the perceptron. Figure 1.7 shows the position
of the training vectors in input space with dark circles for those with y4 = 0 and
light circles for yg=1. We see that it is impossible to place a single line that will
separate the dark circles from the light.

This leads to an interesting question. Given N randomly selected points in d
dimensions, what is the probability that they can be separated by a single (d — 1)-
dimensional hyperplane. The answer to this question has been derived and is given

below:

d
1-N N-1
P, i(N pts in d dims) = 2 l_;g ("7) N>d (1.5)
1 N <d
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Fig. 1.7 - XOR Problem

Fig. 1.8 shows a plot of this function for d=3, 10, 25, and 100. Note that as d grows
very large, there will almost always be a solution for N < 2d and almost never a

solution for N > 2d. Because the perceptron can always find a solution if one exists,

we say its capacity C' = 2d.

P(N.d)

Fig. 1.8 - Probability That a Given Dichotomy of N Points in d Dimensions
Will Be Linearly Separable
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1.5.4 Binary Perceptron

Although we can speak theoretically of neural networks with analog connections
of unlimited dynamic range, a real hardware implementation will have a limited
dynamic range. To understand the consequences of a finite dynamic range, we
can consider the limiting case of binary (+1) connections. The binary perceptron
is structurally identical to the regular perceptron (Fig. 1.6), but the weights are
limited to values of £1. Mok has proposed a training algorithm!™ for the binary
perceptron that proceeds as follows:

1) Find an analog solution vector using the regular perceptron algorithm (Sub-
sec. 1.5.3). Binarize the result by thresholding the weights.

2) Present a training vector.

3) If it is misclassified, search through all weight vectors within a Hamming dis-
tance of d = 1 (by randomly flipping a single bit) for a vector that classifies
the input properly.

4) If no such solution exists, expand the search radius to d = 2.

5) Present the next training vector and repeat until all vectors are classified prop-

erly

1.5.5 Adaline

In the area of signal processing and adaptive filters, Widrow developed another
learning rule for an architecture similar to that of the perceptron called the ADAp-
tive LINEar device or adaline. In the adaline, we replace the nonlinear transfer

Ty, We can

function of the neuron depicted in Fig. 1.6 with a unity gain y = w
derive the adaline learning rule by defining an error ¢ equal to the squared error
at the output of the adaline summed over the entire training set, which consists of

ordered pairs of {(z[n],y[n])} of inputs z and corresponding outputs y:

e =5 Syl ~ wafn]) (L6)
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We then apply the gradient descent algorithm to adjust the weight vector w in the
local direction that leads to the greatest reduction of error (Eq. 1.7). Typically, gra-
dient descent is approximated by cycling through the training vectors and adjusting
the weights after each presentation (Eq. 1.9). The quantity p in Eq. 1.9 represents
the stepsize or learning rate of the adaline. As we increase p, learning proceeds at

a faster rate, but the gradient is not followed precisely.

Aw o =Vye (1.7)
o« Y (y[n] — w'z[n))z[n] (1.8)
wlk + 1] = wlk] + p(y[k] — w” [k])z[k] (1.9)

1.5.6 Multilayer Feedforward Neural Networks

In Subsection 1.5.3, we encountered the XOR problem and found that the
perceptron could not solve it. If we allow neurons to use the outputs of other
neurons in a feedforward fashion, we find that the resulting networks can implement

a larger variety of functions than the single perceptron. For example, the network

shown in Fig. 1.9 1s able to solve the XOR problem.

Fig. 1.9 - Multilayer Network Solution to XOR

A multilayer feedforward network is a class of neural networks in which neurons
are grouped into layers. Neurons in each layer receive inputs from neurons in the
previous layer only. Specifically, each neuron generates its output by applying a

possibly nonlinear transfer function to the weighted sum of the outputs of neurons
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in the previous layer. Figure 1.10 shows the structure of the multilayer feedforward

neural network. Equations 1.10 and 1.11 describe the function of the network.

k-1 k+l1
()x(k) y(k) x(+)

Fig. 1.10 - Multilayer Feedforward Neural Network

E(k) — W(k)g(k‘-l) (1.10)

k k k
g = £ =My (1.11)

Typically, we augment the neurons in each layer with a neuron whose output
is always 1. The weights for this neuron allow us to shift the origin of the transfer
function. We often use sigmoidal functions such as f(z) = (1 + e *)~! for the
transfer function of all the neurons, but different functions may be used for the
output neurons in order to limit the range of the outputs. For example, if a given
output is Boolean, we can give the corresponding neuron a hard-thresholding trans-
fer function. If a given output is analog with an unknown range, we can give the
corresponding neuron a linear transfer function.

The multilayer feedforward neural networks, then apply a series of alternating
linear and possibly nonlinear transformations. As mentioned previously, these net-
works can implement a large variety of mappings. In fact, it has been shown that it
is possible to learn any arbitrary mapping using a network of only two layers given

a sufficient number of resources (neurons and connections).[®%]
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1.5.7 Back Error Propagation

A large number of training algorithms can be used to train multilayer networks
to implement arbitrary mappings. Perhaps the most popular is the Back Error
Propagation (BEP) algorithm.['°~13] The BEP connection update rule can be de-
rived by applying a gradient descent search in the space of all possible weights to
minimize the summed squared error at the output of the network (Eqgs. 1.12,1.13).

Equation 1.15 is the update rule for a connection in the /** layer.

. %Hyff) e (1.12)
Aw x —=Vye (1.13)
o (Vauy DTyl — 10 (1.14)
Aw() = 50y (1.15)
o [ut=d%e e |
C [Z 6,(cl+1)w§clz.+1)] ﬁ%ﬂ]r(‘,) otherwise. (19

- .

BEP has become popular because of its simplicity and its proven ability. How-
ever, because it is a gradient descent algorithm, BEP will always change the connec-
tions in the direction of greatest reduction of error, and stops adjusting the weights
when it reaches a local minimum-where every direction leads to increasing error.
There is however no guarantee that the error at this local minimum will be satis-
factory. Another problem with BEP is that in order to follow the error gradient
precisely, it is often necessary to take “small” steps in adjusting the weights and

thus, a large number of total steps before reaching the local minimum.

1.5.8 Learning by Choice of Internal Representations
Grossman, Meir, and Domani proposed an alternative algorithm!!*l for training
two-layer networks by extension of the single-layer perceptron algorithm. They

empirically found faster convergence than BEP. Their algorithm can be described
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as follows:

1) Assign random initial weights to connections in the first layer.

2) Tabulate the internal representation (response of the hidden layer un'its) for
the input training vectors.

3) Use the perceptron algorithm (Subsec. 1.5.4) to properly classify the internal
representation. If the perceptron algorithm succeeds, we are done.

4) Else randomly flip bits in the internal representation and apply the perceptron
algorithm until an internal representation for the inputs is found which can be
properly classified.

5) Use the perceptron to train the first layer to generate the desired internal
representation from the actual inputs. If the perceptron succeeds for all hidden
units, we are done, else we stop and go back to step 2), tabulating the internal

representation generated by the new first layer weights.

1.5.9 Training Binary Multilayer Networks

An algorithm for training binary multilayer networks can be constructed by
replacing every use of the standard perceptron in Grossman, Meir, and Domani’s
algorithm (Subsec. 1.5.8) with the use of Mok’s binary perceptron (Subsec. 1.5.5).
Snapp has demonstrated successful application of this algorithm to two-layer binary

networks.[15]

1.5.10 Generalization and the VC-Dimension

After a network has successfully learned to map a set of training vectors to
their associated outputs, we would like it to be able to map inputs it has not
seen to “reasonable” outputs. Note that we assume that there exists a compact
representation of the underlying mapping. If such a representation does not exist,
there is no way to learn the entire mapping except to memorize each input and its

associated output. If a compact representation exists, we would like to say that a



- 18 -

network has memorized the mapping if it can correctly map the training vectors
but fails to provide reasonable responses for untrained inputs. On the other hand,
we would like to say that it has generalized if it provides reasonable responses for
untrained inputs.

We can define generalization more precisely in classification problems by con-
sidering the VC-dimension. If we train a network with M random training vectors
from two classes, we can measure the classification error rate #(s) over the training
set for the resulting network s where s € S, a class of networks of fixed structure
consisting of threshold elements connected in a feedforward fashion. The proba-
bility that the true classification error rate P(s) differs from the measured one by

more than € is bounded by the Vapnik-Chervonenkis!'®! inequality:

Pr(sup |#(s) — P(s)] > €) < 4®(2M, d)e~ % = h(2M,d,e)  (1.17)
s€S

®(2M,d) = i <2M> (1.18)

1
=1
where d is the VC-dimension of S.

It can be shown that h has a sharp transition at M’ about O(d) for large d such

that h ~ 0 for M > M' and that

7(s)—P(s)] < e with probability approaching 1 for
all s and e. Thus, if a network is able to load more than M’ training samples with
7(s) small, it will most likely demonstrate small error or generalization to samples
it has not seen.

Baum and Haussler have shown that the VC-dimension da, for two layer feed-
forward networks with NV inputs, L hidden units, 1 output, and a total of W weights

can be bounded as follows:[17]

O(W) < dyr < O(WlogW) (1.19)

Ji has shown that the VC-dimension for two-layer binary networks dp with 2L units
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in the hidden layer can be bounded as follows:[18]

0 (kf:!l) < d, < O(W) (1.20)

Thus, we find that there is not a significant loss in network performance for classi-

fication problems when switching from analog to binary connections.

1.5.11 Resource Minimization and Algo-A1l

Because the VC-dimension of a network depends on the number of neurons and
connections, it is important to select a network of appropriate size and structure in
order to achieve generalization. Rumelhart proposed a method{!®! for accomplishing

this goal by adding a term of the following form:

cw =Y of(w) (1.21)

o(w) = , (1.22)

to the energy function on which we apply gradient descent. This additional term
acts to reduce the magnitude of the weights. Weights with small magnitudes may
be pruned when learning is complete.

Ji has developed a number of algorithms designed to dynamically adjust the
number of neurons and connections. Algo-Al, one such algorithm, proceeds as
follows:

1) We begin with a two-layer network with a single neuron in the hidden layer.
2) We train the network using BEP until a local minimum is reached. If the error

is low enough, we go to step 5, otherwise we proceed to step 3.

3) We add a neuron to the hidden layer, “freeze” connections to the other hidden
units, and train using BEP until a local minimum is reached. By “freeze,” we

mean that those weights are not allowed to change during training.
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4) We then “thaw” the frozen neurons and continue training with all weights free
to change until a local minimum is reached. If the error is small enough, we
proceed to step 5. Otherwise, we return to step 3.

5) We continue training the network, but apply gradient descent on the following

energy function to reduce the number of neurons and connections:
€ =¢go0 + Aep + peg (1.23)
o =) lly,lnl =y Pl (1.24)
&= S (1.25)

Si=Y ow)o(w?) (1.26)

7k
€q = Z/tanh(wi)dwi (1.27)

€2 acts to reduce the magnitude of weights; it has a stronger effect on smaller
weights. S; represents the “significance” of the :** hidden unit. This function is
more sensitive to changes in the weights for neurons connected to small weights.
Thus, €; acts to reduce the weights of connections to “less significant” neurons.
The second and third terms should only play a role once the error (measured by
€0) has been reduced sufficiently. The following dependence of the regularizers

A and g on gy was found to be effective in simulation:[2°]

A o e Beo (1.28)
dE()
— 1.2
poe— (1.29)

Step 5) is itself another of Ji’s algorithms called the Network Reduction Algo-

rithm.

1.5.12 Incremental Learning
Experimentally, Ji has found that training takes an inordinate amount of time

as the size of the problem grows. Thus it may prove easier to divide a problem into
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smaller subtasks and build a network by training on each subtask. This procedure

is implemented in the following incremental learning algorithm, Algo-12:
1) Divide the training set into related groups called subtasks.
2) A network is trained using Algo-Al to learn the first subtask.
3) Freeze the resulting network and use Algo-Al to learn the next subtask.

4) Thaw the network and train on both tasks using the network reduction algo-

rithm.

5) Repeat 3) and 4) for each remaining subtask.

1.5.13 The Hopfield Model

A large number of neural networks have been proposed (for a review see
Lippman).[m] Some have supervised learning like BEP where connections are learned
given a training set of inputs and outputs. Some have feedback (recurrent) and some

(22] jpclude random noise

do not (feedforward). Some, like the Boltzmann machine
that allows the network to temporarily increase its error in order to find potentially
better solutions than the local minimum. Connections can also be learned in an

unsupervised fashion as in Kohonen’s self-organizing feature maps.[??l

Hopfield has proposed a class of networks(?4 which is quite different in flavor
from BEP on multilayer feedforward neural networks. In a Hopfield style network,
the a priori knowledge of the desired solution of a problem is used to generate an
energy function whose minimum corresponds to the desired solution. This energy
can then be used to calculate the connections between neurons. These networks can
be fully interconnected and generally have feedback. Different initial conditions or
inputs result in the network settling to different stable states, each corresponding
to a solution. For a Hopfield autoassociative memory for example, we wish the

stable states to correspond to the stored vectors. We then set the weight T5; of the
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connection between neurons ¢ and j as follows:

n 1.30
0 1= ( )

{ >2(2yi[n] = 1)(2y;[n] = 1) i #j
Tz‘]‘ =
Hopfield has shown that this type of network will converge if it is updated asynchro-

nously.[?*) Convergence depends only on the fact that the connection matrix Tj; is

symmetric.
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2 Neural Network Control

2.1 Introduction

According to Webster’s, control means, “...to have under command; to regulate,
to check; to restrain; to direct....”{!} In a real world process such as driving a car,
control of it implies that by adjusting certain inputs such as the steering wheel,
brakes, and accelerator (aspects of the process that we can directly manipulate), we
regulate or direct the outputs such as the position, speed, and direction of the car
(aspects of the process that we cannot directly manipulate). An automatic control
system 1s designed to adjust the inputs of the process such that the actual outputs
are close or equal to desired outputs that are specified. In this chapter, we consider

several techniques for utilizing neural networks in control systems.

2.1.1 The Control Problem

We call the process that we wish to control, the plant (as in a chemical plant).
The plant has inputs u, outputs y, and internal state x as shown in Fig. 2.1. The
inputs are aspects of the process that we can directly manipulate. The outputs are
the aspects of the process that we can measure. The state consists of those aspects
of the process that at any given time are necessary to predict the future outputs of
the system given the future inputs. We assume that the inputs, outputs, and state
of the plant can be fully characterized by real vectors u, y, and z. The behavior of

the plant can then be modeled by a set of dynamic equations that we can typically
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cast into the following form:

z=F(u,z) (2.1)

where Eq. 2.1 is a differential equation driven by the inputs u describing the time
evolution of the state z, and Eq. 2.2 describes the output y as a function of the

input and current state.

Plant

Fig. 2.1 - General Plant

A general control system takes as input the desired and actual outputs of the
plant and generates a plant input designed to keep the output of the plant close or
equal to the desired output. As shown in Fig. 2.2, a general control system may be
divided into feedforward and feedback parts. The feedforward controller generates
a component of the plant input uppr based on the desired plant output only. This
controller embodies the ¢ prior: understanding of the required plant input given the
desired plant output. Ideally, (i.e., given a perfect model of the plant, the absence of
noise, etc.) feedforward control alone will suffice to keep the plant output exactly at
its desired value. The feedback controller generates a component of the plant input
upp using both the desired output and the actual output of the plant. Typically,
the feedback controller takes as input only the difference between the desired and
actual plant outputs (the plant output error). Given such an error, it contributes a
correction term to the plant input that drives the plant output toward its desired
value. Using feedback, it becomes possible to correct for a variety of nonidealities

such as errors in the feedforward signal, noise, etc..
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Fig. 2.2 - General Control System

When we use feedforward control alone without reference to the plant output,
we call it open-loop control. As an example of open-loop control, consider the
grilling of a steak. The desired output may be the doneness, e.g., rare, well-done,
etc.. The plant input may be the grilling time. If we simply throw the steak on
the grill for a prescribed time, perhaps using our prior grilling experience, we are
implementing a form of open-loop control. Open-loop control may be sufficient for
some processes; however, in all but the simplest processes, incomplete knowledge
about the process or the presence of noise results in unsatisfactory open-loop control
of the output. Anytime we refer to the output of the plant in generating its input,
we call it closed-loop control. Even in the steak-grilling example, one typically uses
the appearance and smell of the steak, sometimes even cutting the steak open,
to estimate the doneness of the steak-thus actually closing the control loop. For

complex processes, control without reference to the output would be impossible.

The burden of control can be viewed as being shared by the feedforward and
feedback controllers. If the feedforward controller is not well designed, the error at
the output of the plant will tend to be larger and the feedback controller will be
doing most of the work in reducing the output error. On the other hand, with a
well-designed feedforward controller, the error at the output of the plant will tend

to be smaller with the feedforward controller taking a greater share of the control
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burden. Since the feedback controller is error-driven, one hopes that by better
design of the feedforward controller, one can operate the plant with superior speed
and accuracy.

In some cases, we may not know what plant outputs correspond to our desired
goals and objectives. In these cases, we assume the presence of a planner as shown
in Fig. 2.3. The planner takes the desired goals and objectives and translates them
into a desired plant output. As shown in the figure, the planner may use the actual
plant output to change or modify the desired plant output. Although planning is
an important aspect of control, the focus of this chapter is on the control of the
plant given a desired plant output.

Goals and
Constraints Ya
———

Planner Controller Plant

Fig. 2.3 - Trajectory Planning and Control

2.1.2 Conventional Control

Conventional control is a name applied to control theory prevalent in the United
States and Western Europe through the 1950s. A conventional control system feeds
back corrective terms, dependent on the plant output error, and adds them to the
plant input.

The simplest form of linear feedback involves adding a term proportional to

the plant output error to the input of the plant as follows:

urpp = K(yq — y) (2.3)

A typical response to a step input for such a system might look like that shown

in Fig. 2.4. One can also add a term to the plant input proportional to the time
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integral of the output error. The magnitude of this integral feedback would grow
in the presence of a steady-state error until the steady state error was reduced to
zero. The addition of a term to the plant input proportional to the time derivative
of the output error would act to damp the ringing in the response of the output
to sudden changes. Different combinations of proportional, integral, and derivative
feedback result in different control laws. The combination of all three is called PID
control and has developed as an effective method for the control of many industrial
processes. When using a PID controller, one must choose the coefficients weighting
each term, shown in the following equation, so as to meet the specifications for the

control system:

t
upp = Kpe + .K[/ edr + Kpé (2.4)
0
e=Yyq—y (2.5)
f 1
1.2 + -
" Yq
o=t ———— - —— —]
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Fig. 2.4 - System Step Response

Conventional control emphasizes the use of frequency domain techniques to

analyze the stability of control systems. The root-locus method, introduced in



- 30 -

1948 by W.R. Evans, became particularly important in the 1950s. In the root-
locus method, a graph in the s-plane is produced tracing the path of the poles and
zeroes of a system as a single parameter is varied. By observing the behavior of the
poles and zeroes as a control parameter changes, one can then choose appropriate
values for that parameter. Other frequency-domain techniques involve the use of
Bode plots of the open-loop frequency response of the system in combination with
the Nyquist stability criterion. The Nichols chart plotting the magnitude of the
frequency response versus the phase is also useful in choosing appropriate values for

parameters using the frequency domain.

Typically, one adjusts the behavior of the system by first adjusting proportional
gain elements in the feedforward and/or feedback paths. However, the addition of
dynamic elements (compensation) may be required to meet specified response char-
acteristics. Compensation can be divided into lead and lag networks. Lead networks
behave roughly like derivative feedback and act primarily to increase bandwidth
and reduce rise time. Lag networks act roughly like integral feedback and raise

low-frequency gain to reduce steady-state error.

Conventional control techniques are useful primarily in single-input single-
output control systems because they utilize the frequency domain for parameter
selection. Modern control techniques based on time domain formulation and anal-
ysis must be used for control of multivariable systems. There are many good refer-
ences on conventional and modern control including textbooks by Franklin, Powell,

and Emami-Naeinil?l and Ogata.l®!

2.1.3 Modern Control

While U.S. and Western European researchers concentrated on frequency do-
main techniques until the 1950s, Russian and Eastern European researchers con-

centrated on time domain techniques where system dynamics can be cast as a set of
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ordinary differential equations and the behavior of systems analyzed in state-space.
The ability to analyze multivariable control systems as well as the stability of non-
linear systems are strong motivations for the development of modern state-space
techniques. The desire to control systems optimally according to specified criteria
also spurred the transition to state-space techniques since conditions for optimality
are most often specified in the time-domain.

In a typical modern control system, the output of the controller is a linear
combination of the desired plant output and the state of the plant. State feedback
is used because the output of the plant depends on the input and state of the plant,
$O the.required input should naturally depend on the desired output and state of
the plant. Hf the state of the plant is unknown, an estimate of the state z is often
used as shown in Eq. 2.6. This estimate often depends on the input, output, and

current estimated state of the plant as shown in Eq. 2.7.

u

Ay, +BZ (2.6)

i

z

Ci + Dy +Ey, (2.7)

Lyapunov functions are often used in modern control for the stability analysis
of control systems. A scalar function of system variables measuring a potential
or energy, V, called a Lyapunov function is defined. Given a model of the system
dynamics, one determines the stability of the system, by analyzing the behavior of V
and its time-derivative V. Typically, the key to successful application of Lyapunov

stability analysis is the choice of an appropriate Lyapunov function.

2.1.4 Nonlinear Control

Many of the real-world processes that we wish to control are nonlinear in na-
ture. The techniques we have reviewed for controlling linear plants have generally
been applied to nonlinear plants by linearizing the plant around an expected op-

erating point. This technique has proven quite successful for processes with weak
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nonlinearities or those in which the state does not deviate far from a given point
during operation. However, nonlinear control laws must be used for processes with
strong nonlinearities or where we wish to extend the region over which a controller

can provide stable operation.

Fixed nonlinearities, whether intentional or otherwise, can be introduced into
controllers for a variety of reasons. An example of an unintentional nonlinearity is a
saturating transfer characteristic at the input or output. Intentional nonlinearities
may be introduced to simplify or improve control. For example, if a nonlinear plant
can be changed into a linear one using a nonlinear transformation, a linear control
law can be designed using more conventional techniques in the transformed variables
and changed back into a nonlinear one using the reverse transformation.

Another possibility for control of a nonlinear system is to change the parame-
ters of a linear controller based on measurements of certain aspects of the process
(typically the measured or estimated state). Although we might term any such
system adaptive, we generally reserve this term for systems in which we modify
controller parameters in a closed-loop fashion. Systems in which the parameters

are dependent on state in an open-loop fashion are nonlinear but not “adaptive.”

Gain scheduling is an example of the latter case. In gain scheduling, certain
aspects of the process are used to delineate different operating regimes. Each operat-
ing regime is then assigned a set of controller gains designed to provided satisfactory
operation in that regime. During operation, these aspects are monitored and the
appropriate gains used in the controller.

Variable structure systems (VSS) are another form of a nonlinear control system
where the controller changes are based on the state of the system being controlled.
The name refers to the change in the structure of the controller as the state changes.
Typically, a VSS controller is formulated as follows. We define a surface o(z) = 0

in state space on which we wish to operate. The control law switches at the surface
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such that whether o(z) is greater or less than zero, the state is driven towards the
surface o(z) = 0. Even if the state leaves the surface due to noise, deviations in the
system, or intentional control inputs, the switching control laws drive it back to the
surface. We then look for sliding modes-trajectories that remain on the surface. If
these modes are stable, motion along the switching surface can be controlled and is

insensitive to parameter variations of the plant.

The advantage of open-loop nonlinear control is that it is simpler to implement.
The disadvantage is that we must precalculate the system gains, and if they prove
to be wrong in operation for the given state, there is no way to adjust the input.
For those nonlinear plants where it is difficult or impossible to precalculate desired
gains, we must close the loop and provide full adaptive control. Once again, there

are many good references for nonlinear and adaptive control including Astrom and

Wittenmark.[4]

2.1.5 Adaptive Control

Any control system designed using only a priori knowledge may fail if the model
is poor. However, in adaptive control, important parameters are adapted on-line
while operating the actual plant. In model reference adaptive control, the controller
1s provided with a model of how we want the plant to respond. We then build a
controller for the plant and modify the controller parameters continuously based
on the measured or estimated state in order to reduce the difference between the

model plant and the actual plant.

In self-tuning regulators, we measure or estimate plant parameters and at each
stage redesign or update controller parameters to control the plant. In stochastic
adaptive control, instead of using a single estimated state representing the maximum
likelihood, we use the estimated probability distribution of the state as a hyperstate

that is fed back in the control algorithm.
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In many adaptive control algorithms, we must estimate plant parameters.
There are a variety of standard techniques for making such an estimate given the
inputs and outputs of the plant. The method of least squares can be used to ad-
just each estimated plant parameter such that the squared error between the plant
model and the outputs is minimized. If we assume that we have a plant with inputs
u, outputs y, and a plant model with parameters § and outputs Y, we find a set of
plant parameters 8, such that the squared error ¢ is minimized for either discrete
(Eq. 2.9) or continuous (Eq. 2.11) time cases by setting to zero the gradient of the
error with respect to the parameters yielding a set of equations in a like number of

unknowns:

Veelo. =0 (2.8)
N

o= llyln] -y [n]II” (2.9)
N

0=> Vg [nl(yln] -y, [n]) (2.10)

If the plant model is linear in the parameters, we can cast it in the following form:

y = Ou (2.13)

m

Substituting back into Egs. 2.10 and 2.12, we find the following expressions:

N

N -1
O[N] = }:y[nlf[n]} [Zy[n]f[n]] (2.14)

n
-1

o = || tw)ﬁ(r)dr] | t_q(rm’f(r)dr] (2.15)

For the discrete case, we can reduce the number of calculations required by
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recasting Eq. 2.14 in a recursive form as follows:

N -1
PV] = {Zu[n]ﬁ[n]] (2.16)

n

N N+1
> ynu"[n] = O[N] {Z ulnju”[n] — u[N +1]u’ [N +1] (2.17)
[ N
O[N +1] = Zg[n]gT[n] +y[N + 1T [N + 1]} P[N +1] (2.18)

= O[N] + (y[N +1] — O[Nu[N + 1)) «"' [N + 1)P[N + 1](2.19)

-1

[ N
PN +1] = | Y ulnlu"[n] + u[N + 1JuT[N + 1] (2.20)
= I;[N] — P[NJu[N + 1] [1 + &7 [N + 1JP[N]u[N + 1]
uT[N +1]P[N] (2.21)

where Eq. 2.21 follows by inspection.

The nonlinear plant that we wish to control may be viewed as a linear plant
with time-varying parameters. If the parameters change quickly, we can periodi-
cally reset our estimate of the plant parameters. For example in the recursive-least-
squares algorithm, one would reset P to oI, with o a large constant, to “forget”
input /output pairs corresponding to different operating regimes. If, however, the
parameters change continuously but slowly, we may exponentially weight the im-

portance of the input/output pairs using energy functions of the following form:
N
e = a" Mllyln] —y,_[n]|? (2.22)
¢
o= [ Olly(r) -y, (r)IPdr (2.23)
0 .

yielding the following modifications to Eqs. 2.14, 2.15, and 2.21 respectively:

N N -1
O[N] = {Z a""Ng[n].uT[n]] [Z a"-Ng[an[nl] (2.24)
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O(t) = [/0 ar_tg(r)yT(T)dT} [/0 o "tu(r)ul (1)dr (2.25)
PIN + 1] = a{ PIN] — PVulN + 1] [1/a -+ [V + UPINIulN + 1]

ulN + 1]P[N]} (2.26)

Even using the recursive least squares algorithm, we require a large number of
calculations to maintain our estimates of plant parameters. Projection algorithms
can be used to provide estimates of plant parameters using fewer calculations. For
the discrete case, we add components of the plant inputs to the plant model pa-

rameters to move the model outputs toward the actual outputs:
O[N + 1) = O[N] + au”[N +1] (2.27)

If we choose a such that the most recent plant model output matches the plant

output, we get Kaczmarz’s projection algorithm:

y[N +1] = O[N + 1Ju[N + 1] (2.28)
=y [N +1] + lul/” (2.29)
YN 1] -y [N +1] 50)
& Tull? (2.
UT
O[N +1] = O[N] + (y[N + 1] — O[N]u[N + 1]) II;H? (2.31)

We often modify Kaczmarz’s projection algorithm as follows to prevent it from

diverging for small u:

yuT

O[N + 1] = O[N] + (y[N + 1] — O[N]u[N +1]) EESPE

(2.32)

where # >0 and 0 < v < 2.
The plant input must be chosen properly for any of these parameter estimation

techniques to work properly. In adaptive control, we say that we want the input to
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Fig. 2.5 - Use of Probing Signals for Parameter Estimation

be persistently exciting. It is also possible to impose probing signals on the input
as in Fig. 2.5 and look for correlations at the output to measure plant parameters.

Sinusoids and white-noise are often used as probing signals.

2.1.6 Neural Networks and Control

In Chapter 1, we defined the term neural network as it applies to this thesis and
reviewed some important historical developments in the theory of neural networks.
Of particular interest to this chapter was the fact that it is possible to implement
any analog mapping using a two-layer feedforward network (Subsec. 1.5.6). In this
chapter, we develop a method for training a neural network feedforward controller.
We are motivated to do so for a number of reasons. Many systems that we wish to
control are nonlinear in nature, and, as we saw, neural networks such as the multi-
layer feedforward neural network, are capable of implementing any static mapping.
Because many of these systems may be difficult to model; the ability of neural net-
works to learn mappings from examples may prove quite powerful for allowing us
to control previously unmanageable systems or control systems with greater speed
and accuracy than previously possible. Finally, by developing on-line learning tech-
niques, we may design a network capable of controlling time-varying systems and

adapting to changing system parameters that are difficult to quantify, such as those
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due to wear-and-tear of machinery.

2.2 Feedforward Control and Functional Inversion

As described in Sec. 2.1, a general controller can be divided into feedforward
and feedback components. The function implemented by the feedforward controller
should be as close as possible to the inverse of the plant. Several proposed train-
ing methods were mentioned for finding both the connection pattern and weights
between neurons and the network architecture itself. In these methods, sample or-
dered pairs of inputs and associated outputs (a training set) are used to train the
neural networks. By simply switching inputs and outputs, one might expect that
one could just as easily learn the inverse of the function described by the training
set. However, when trying to control a plant which either is difficult to accurately
model or about which we have little knowledge, a training set may not be available.
Thus, it may be desirable to learn to control the plant through actual operation of
the plant itself.

In this section, we consider a number of techniques, each based on extension of
the standard BEP algorithm, for training multilayer feedforward neural networks to
implement the inverse of a function through actual experimentation with the plant
itself. The extensions to BEP described in this section could also be used to extend

other algorithms using different architectures to learn inverse functions.

2.2.1 Generalized Learning

The most straightforward method for trying to train a feedforward controller
would be based on the idea that the feedforward controller should be something like
the inverse of the plant function. That is, given a plant performing the mapping of

Eq. 2.33, we wish the feedforward controller to perform the mapping of Eq. 2.34.
y=Py;z) (2.33)

u= E_l(y_; z) (2.34)
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One way to accomplish this task would be to place the neural network controller
after the plant during training as shown in Fig. 2.6. This is called the generalized
learning architecture. We present training inputs u, to the plant, feed the plant
output y to the network, and measure the resulting network output u. If we treat
the plant inputs as the desired output of the network, each step in the training
provides us with a network input y, a network output u, and a desired output u,.
Back-error propagation, or another desired training algorithm, can then be used to
modify the network to drive the output of the network towards the desired output.
The goal of the generalized learning architecture is to train the network in as direct
a manner as possible to implement the “inverse” of the plant. Generalized learning,

also called inverse system identification or direct inverse learning, has been discussed

by a number of authors.[3=19]
PI Neural
" s ant y Network
x Feedforward
Controller
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Fig. 2.6 - Generalized Learning Architecture

The advantage of the generalized learning architecture is that we can train
the network directly without the use of a preliminary learning step or an auxiliary
controller. The disadvantage is that we do not know precisely which set of training
inputs u;, will provide network inputs y in the desired region Yy of plant operation.
Instead, just as a child might try random combinations of exhalation, tongue place-
ment, etc. resulting in babbling as 1t tried to learn to speak; we might provide the
plant with random inputs u; which will produce “babbling” of the plant. Hope-

fully, the babble input u; will be sufficiently rich that the resulting plant outputs
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will train the network over a region of plant operation Y, that contains the desired
region of plant operation Yy. Any a prior: knowledge of the relationship between
y and u could be used to more carefully select the set of plant inputs u, used in

training. Note that if we know the precise correspondence between y and u, we
could use this relationship between plant output and input to train the network
directly off-line. We could even use our knowledge of this relationship to implement

a nonneural feedforward controller.

2.2.2 Specialized Learning and BEPing Through The Plant

In the specialized learning architecture, we place the neural network controller
before the plant-in the same configuration as we would when we actually use the
network (Fig. 2.7). We present training inputs y, to the network, feed the network
output u to the plant, and measure the resulting output of the plant y. Note that
we cannot use the standard back-error propagation algorithm to train the network

since we do not know u,. Several techniques exist for estimating u, as described

below.
Neural
Yy Network y
Feedforward
Controller
A )

Fig. 2.7 - Specialized Learning: Unknown Target

2.2.2.1 FEEDBACK ERROR LEARNING

Any effective control system for all but the most simple processes, requires a
feedback path. Thus, practically all control systems employing a neural network
in the feedforward path will also have a feedback controller. Assuming that the

feedback control signal acts to correct the feedforward control signal, the sum of
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the feedforward and feedback control signals may be viewed as the desired output
of the network (Eq. 2.35), and thus the feedback control signal can be used as an
estimate of the output error of the feedforward neural network used to train the

neural network (Eq. 2.36)

Ug R U=Upp +Upp (2.35)

€ =Ug —Upp R Upp (2.36)

Figure 2.8 shows the basic architecture for using the output of the feedback con-
troller to train the neural network. Both Kawatol!!l and Hosogi{m] have proposed

using proportional feedback for the feedback controller.

, Neural Pl
a Network ant .
’ Feedforward x
Controller
“\
Conventional
NN Feedback [
Controller *

Fig. 2.8 - Specialized Learning with Feedback Controller

Because a feedback controller must be present in any case for effective control,
an advantage of using the feedback controller to generate the error signal at the
output of the network is that no additional hardware is required. This feedback
controller may be designed using techniques such as those described in Sec. 2.1.
A disadvantage of feedback error learning is that we must have enough a prior:
knowledge about the plant to design a feedback controller. The feedback controller
need not provide completely effective control, however, as long as it acts to correct

the feedforward control signal. With an iterative training scheme, an estimate of the
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direction of parameter change is more important than an estimate of the magnitude
of that change. Given the ability to estimate the direction of parameter change
yielding maximal error reduction and a restriction to small parameter adjustments,
we can implement a descent algorithm that will reduce the error in the plant output

signal.

2.2.2.2 NEURAL MODEL OF THE PLANT
In this method, a neural network forward model of the plant is trained as shown
in Fig. 2.9 using observed plant inputs and associated plant outputs as a training

set.

yry (wW,,) (2.37)
AW, o =Vw lly-y, I (2.38)
, Neural Pl
." Network u ant
Feedforward ¢ x
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______________________________________ +

Fig. 2.9 - Neural Model of the Plant

Because the structure and parameters of the neural model of the plant are
known, once it has been trained, it can be used to estimate the error at the output
of the feedforward network by linearizing the network about its operating point as

follows:

e~ (Vy Ny, —y) (2.39)

~ (Yo )y, —v) (2.40)
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For a multilayer feedforward neural network plant model, the estimated error cor-

responds to the back-propagated error at the input of the neural plant model:

€4 = &g (2.41)
[ fi(z}) 0]

é.l - 0 . [WF,H-I] é_l.}.] (242)
[ fi(e}) 07

T N (243)

The advantage of using a forward model of the plant in training is that a good
model of the plant should provide greater accuracy in choosing both the direction
and magnitude of the correction required at the output of the feedforward controller.

The disadvantage, of course, is that greater resources are required, and the
feedforward model must be learned. Training in this case may occur on- or off-line.
A feedback controller is required in the former case. The neural plant modeling

technique has been used by Rumelhart,[*3! Jordan, [14—16] Widrow,[!719 and others.

2.2.2.3 BEPING THROUGH THE PLANT

In BEPing through the plant, we consider the plant to be an extra, unmodifiable
layer of our network. The input of the controller is then the desired output of the
total network. We define an energy, E, equal to the squared error at the output of
the enlarged network, and modify the weights in the neural feedforward controller

using gradient descent in the parameter space of the feedforward controller:

E=ly,~yll (2.44)
Awp =V, E (2.45)
=2(Vwry )y, — ) (2.46)

=2 [VuraTy, Wo)] |32 (-0 (2.47)

In order to successfully implement this algorithm, we need to estimate |dy; /-

Oujlsj, the plant Jacobian. In the plant model method, the Jacobian is estimated
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using a neural model of the plant. The spirit of BEPing through the plant, however,
is that we generate this estimate by shorter term observation of the plant inputs
and outputs. In effect, we are trying to identify the plant. In modern control, this
can be accomplished by perturbing the input with a small signal sinusoid or white
noise. In our original neural control paper,l®! we used small perturbations on the
input and estimated the elements of the Jacobian using the following equation:

Ay yilu+6i;) — yi(u)
Ouj - )

(2.48)

where 6 is a small constant and @; a unit perturbation of the j** plant input. In

Subsec. 2.2.4, other techniques for estimating the plant Jacobian are discussed.
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Figure 2.10 - Back Error Propagation Through the Plant

2.2.3 Dynamic Inputs

Thus far, we have only considered the inversion of plants with static input-
output mappings. In most real world applications; however, the dynamics of the
input and output signals are important. We can provide our network with infor-
mation about these dynamics using a tapped delay line at the input, as shown in
Fig. 2.11, feeding an additional dynamic input layer of linear neurons. For example,
by using just three closely spaced taps for each input, we could configure the new

dynamic input layer to provide the old static input layer with the input signals
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and their first two time derivatives. In fact, the output of each input neuron can be
viewed as an approximate convolution of a multivariate signal with a Finite Impluse
Response (FIR) filter. We can then view the responsibility of the dynamic input
layer as providing the rest of the network with an input representation, generated
by filtering the controller inputs, appropriate for calculating control inputs using a
static nonlinear mapping. Using e prior: knowledge about the form of the equations
governing the behavior of the plant, we can hardwire the dynamic input layer to
convert the representation at the output of the tapped delay line into a representa-
tion appropriate for generation of the plant input. If we have no a priori knowledge
with which to choose a good input representation, we do not lose any functionality
by eliminating the dynamic input layer and connecting the outputs of the tapped
delay line directly to the original input units because the dynamic input neurons

are linear.

Y (t+2A )

Neural u YsYs--
Plant
Network

Fig. 2.11 - Providing Input Dynamics Using a Tapped Delay Line

2.2.4 Alternative Methods for Estimating the Plant Jacobian
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Perturbation methods such as the one we discussed in Subsubsec. 2.2.2.3 for
use with static systems can be used for estimating the plant Jacobian of dynamic
systems as well. These techniques may be implemented for dynamic systems in one
of two ways: first, the same control input may be fed to the plant many times with a
single input at a single timestep perturbed each time the control input is fed to the
plant followed by comparison of the resulting plant outputs; or second, small signal
sinusoids or white noise may be added to each plant input and the magnitude of
correlated signals at the plant output measured to estimate the plant Jacobian. The
perturbation method discussed previously corresponds to introducing a small step-
or delta-function at the input. Alternative methods we have proposed for dynamic
systems include using a linear model for the plant and estimating the coefficients

by observation of plant inputs and outputs:

¥y, =Au+Bx+c (2.49)

= Ai (2.50)

A=[A B (] (2.51)
u

i= |z (2.52)
1

We then wish to identify the elements of the matrix A, lgiu; i~ '%%‘ilij =A; =
A,‘j.
Given n = n, +n; + 1 input and output samples (@',...,4") and (El, co Y™,

where n, is the dimension of the plant input and n, is the dimension of the plant

output, we can attempt to find A by solving the following matrix equation:
[y' ... y"]=AlE ... @] (2.53)
A=yt .o oym)Et . @)t (2.54)

In order to reduce the effects of measurement noise, we might instead use a

least squares estimate of A. Let us minimize an exponentially weighted sum of the
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squared error E of our linear plant model with respect to model parameters A by

solving the following system of equations:

E=Y o™y -y (2.55)
0= 9F Vi, j (2.56)
dA;

=3 a "Ny - ZAika;") Vi, j (2.57)
0=>) a™™i;"(y™"—AiL"") Vj (2.58)

0=)Y oy ~Az "z "7 (2.59)

A {Za—n n~—nT:l I:Za ng n;—"T} (2.60)

By comparison with Eq. 2.24, we see that this is exactly the same formula we found
for exponentially weighted least squares parameter estimation in a self-tuning adap-
tive regulator using a linear plant model. In fact, another way to view BEPing
through the plant is that we use adaptive control type techniques to estimate the
parameters for a linear model of the plant. Instead of updating a more convention-
ally designed controller using these estimated parameters, we use them to estimate
the error at the output of the feedforward network. We then see BEPing through
the plant as a bridge between the use of a conventional feedback controller and
the use of a neural plant model since BEPing through the plant essentially uses a
nonneural adaptive plant model to estimate the error at the input of the plant.
Using established adaptive control parameter estimation techniques as inspi-
ration, we might also try projection algorithms to estimate the plant parameters.
Comparison of Egs. 1.19 and 2.31 show that the projection algorithms may in fact

be viewed as an array of adalines used to model the plant.

2.3 Experimental Results
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In this section, we present experimental results using various training algo-
rithms paralleling the chronlogical order of their development within our group.
We develop a number of simulated tasks, each of which is used to compare the

performance of some of the different training algorithms described above.

2.3.1 Coordinate Transformation

The first task involves the “control” of a two-input, two-output static plant
that converts polar coordinates (r,8) to Cartesian coordinates (z,y). Because the
dynamics of the inputs are irrelevant, we are simply comparing the ability of the
different algorithms to learn, given a function, the inverse of that function. In all
cases, we use a two-layer network with no tapped-delay-line at the input. Note that
the desired ideal feedforward controller, the inverse of the plant, is not unique in
that the plant implements a many-to-one mapping. Assume that we are particularly
interested in operating the plant in two disjoint rectangular regions defined in the

output space of the plant and labeled “2” and “3” in Fig. 2.12.

2.3.1.1 GENERALIZED LEARNING

With generalized learning, recall that our training inputs consist of a set of
plant inputs and that we may have little or no a priori knowledge about which
plant inputs correspond to the desired plant outputs. In this case, assume that we
know that our desired region of operation is contained in a region of the plant input

space defined as follows:

{(r,G)]r € [0,10],8 € [O,g]}.

We then choose a training set defined essentially as a grid over this region of the

input space (circles in Fig. 2.12) as follows:

oo (13).0.3) 60, (63).(6.3)
00.(0.5).(03) (0.3}
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We choose a two-layer network with 10 hidden units. Weights are initialized to ran-
dom values w; € [—.5,.5]. The acceleration constant p = .01. Each iteration consists
of the presentation of every point in the training set, in order, with modification of

weights after the presentation of each input.

Figure 2.12 shows the squared error at the output of the plant versus the input
of the neural network when the output of the network is fed directly to the plant.
Dark areas indicate high error, light areas low. Each contour in the plot represents
lines of constant squared error, with a squared error differential of 20 between
contours. Fig. 2.12 shows the error after 0, 100, 1000, and 10000 iterations. The
circles in the figures represent the points of generalized training. Note that the error
rapidly decreases over the entire region, but then begins to climb in between the

training points as we continue training.

A disadvantage of generalized learning is that one cannot specifically choose
training points that lie in and around the desired operating region. With generalized
learning, we might have to sample a large region of the input space in hopes of
sufficiently sampling the desired region of operation, rectangles 2 and 3. This will
of course require greater resources and training time than otherwise required for

satisfactory performance.

2.3.1.2 BEPING THROUGH THE PLANT

With specialized learning, we may concentrate our learning efforts in the desired
region of operation. For this static problem, we choose to use BEPing through the
plant with perturbation of plant inputs to estimate the plant Jacobian. We present
a point in the training set to the neural network, either unperturbed or with a
small (10%) perturbation of each input separately. Comparison of the resulting
plant outputs with the unperturbed input and the perturbed inputs allow us to

estimate the plant Jacobian. This can then be used to propagate the error at the
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(a) O Iterations (b) 100 Iterations

(¢) 1000 Iterations (d) 10000 Iterations

Fig. 2.12 - Squared Error for Coordinate Transformation

with Generalized Learning

output of the plant back to the output of the network. We use back propagation
with the same parameters as before to modify the weights in the network.
Figure 2.13a and b show the results after 1000 iterations i regions 2 and

3 respectively. Note that in both cases, the network can learn effectively with
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specialized learning. Note also that interpolation in the desired regions of operation
is better in the specialized learning case. This is most likely because the training

points are sufficiently close together to sample the mapping.

(a) Rectangle 2 (b) Rectangle 3

Fig. 2.13 - Squared Error for Coordinate Transformation

After 1000 Iterations of BEPing Through the Plant

Figure 2.14 shows the cerror after 100 iterations ot generalized learning followed
by 1000 iterations of specialized learning in any region of mterest. \We note that
a little generalized learning hefore specialized learning can lead to better overall
generalization.

Figure 2.15 shows that when switching from one specialized learning region
to the other. there 1s a tendency to forget about the first error region. Thus it is

important to develop techniques to learn in multiple regions.

2.3.2 Robot Manipulators
The rest of our tasks consist of simulations iuvolving robot manipulators.

Robot manipulators or robot arms, such as those shown in Fig. 2.16 are mechanical



(a) Rectangle 2 (b) Rectangle 3

Fig. 2.14 - Squared Error for Coordinate Transformation
After 100 Iterations of Generalized Learning

and 1000 Iterations of BEPing Through the Plant

(a) 3 then 2 (b) 2 then 3

Fig. 2.15 - Squared Error for Coordinate Transformation

After Switching Regions of Specialization

devices designed to move objects through space. Robot manipulators are currently
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used to perform a wide variety of tasks from welding automobiles to deploying
satellites.

We often model manipulators as a series of rigid links connected at joints. Joints
may either be rotational or translational. Each joint is presumed to have a single
degree of rotational or translational freedom. If two links meet at a joint having
multiple degrees of freedom, we assume the presence of links of zero length between
each “joint.” Given rigid links, a set of variables describing the “position” of each
joint uniquely determines the configuration of the manipulator. Often, useful work
is performed only by the end of the last joint or end-effector. Given a physical model
of the system, it is possible to derive (kinematic) equations that map each set of joint
coordinates to a position and orientation for the end-effector. Each joint typically
has some means by which the position of the joint may be adjusted. We assume
that mechanical devices governing the position, linear or angular velocity, or force
or torque at each joint are available and are the inputs of the manipulator. Various
sensors may also be integrated into the manipulator to either directly or indirectly

measure the state of the manipulator and its interaction with the environment.

©) End Effector

Link 2
Link 1

Joint 1 \
(Rotational) Joint 2
n (Translational)

Fig. 2.16 - Links and Joints

Robot manipulators are an exciting application for neural networks. Their
dynamics are often nonlinear in nature, and can often become quite complex as the
number of joints increases. Furthermore, factors such as flexibility in the links and
friction in the joints can make modeling very difficult. Finally, the objects that the

manipulator move or operate on may be nonuniform in size, weight, position, etc.



_54 -

The ability of neural networks to learn and adapt is very attractive in both planning
and control phases of robot manipulator operation. In the tasks that follow, we

consider utilizing neural networks for control of one- and two-link manipulators.

2.3.3 One-Link Manipulator

The first task demonstrated that both generalized and specialized learning
can be used to train a network to invert a static mapping at a set of training
points. In the second task, we test whether the tapped delay line provides adequate
information for control of a dynamic system. This next task involves the control of

a one-link manipulator as shown in Fig. 2.17.

Fig. 2.17 - One-Link Manipulator

The manipulator consists of a single rigid body, anchored through a rotational
joint to the ground, and constrained to move in a vertical plane. We model the
single-link as a massless rigid body, one meter long with a one kilogram load at
the end-effector. We assume a gravitational acceleration of 10 m/s?. The dynamic

equation for such a single-link manipulator takes the following form:
7 =mi 120 + myl gcos(6) (2.61)

Notice that even with a single link, the dynamics of the one-link manipulator are
nonlinear in the joint position, §. We assume that we wish to operate the manip-
ulator on trajectories with the following limits on joint position and acceleration:

0 <8 <7 radians and l9[ <15 radians/s?.
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We simulate the network and manipulator in discrete time. Each step in dis-
crete time represents dt = .1 s of real time. We integrate Eq. (2.61) using forward

Euler integration as follows:

z[n + 1] = z[n] + z[n)dt (2.62)

We use a three-layer network for the feedforward controller. Because we need
joint angle and desired acceleration information only to calculate the required
torque, we use a delay line with three taps at the input and hardwire the first

layer to estimate the joint acceleration:

[ Hd[n]
yOn] = | 84[n + 1] (2.63)
] Gd[n -+ 2]
[ (0)
Y O|n
_31(1)[”] = y§°)—2£§°)+yé") } ~ [O%n” (2.64)
L az

The weights for the second and third layer are initialized to random values in w; €

[—.5,.5] and determined through learning. We arbitrarily choose to us ten neurons in

1

the second layer, each of which implements a sigmoidal nonlinearity f(z) = =

2.3.3.1 FIXED TRAINING POINTS

We use off-line specialized learning to train the network. During off-line train-
ing, we bypass the first, hardwired layer and initially choose to train the network
on a fixed training set of 100 points chosen on either a 5x5 or a 10x10 uniformly
spaced Cartesian grid over the desired operating region. The plant Jacobian is es-
timated using perturbation of plant inputs. We used an acceleration constant of
p = .01 during training.

Tables 2.1 and 2.2 show the squared error at the output, averaged over the
training points and over the entire input space after various numbers of iterations

for the two grids. They also show the maximum squared error over the input space.
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Table 2.1 - One-Link Error after Learning on x5 Grid

Iterations Av. Sq. Err. Max. Err. Av. Sq. Tr. Err.
112000 1047 8731 651
317800 1571 19238 528

Table 2.2 - One-Link Error after Learning on 10x 10 Grid

Iterations Av. Sq. Err. Max. Err. Av. Sq. Tr. Err.
24200 436 3639 466
37800 332 3399 324
39400 220 3224 252

We find that the squared error is quite large in comparison to the maximum torque
of squared output of 625.

Figure 2.18 shows the squared error at the output over the operating regime
after (a) 112 000 and (b) 317 800 iterations of specialized learning. The contour
spacing 15 2000. The black circles mark the location of the training points. Notice
that just as we saw for the coordinate transformation task. the error tends to be

lower at the training points. but can grow quite large between training points.
28 { £ g2

-15-6 n
(a) 112000 Iterations

(h) 317800 Iterations

Fig. 2.18 - Squared Error for One-Link Manipulator Using Fixed Training Points
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2.3.3.2 RANDOM TRAINING POINTS

As we saw in the coordinate transformation task, as well as the one-link ma-
nipulator with fixed training points, we must adequately sample the input space
to generate a network that achieves good generalization. The problem that arises
when we use too many resources or too few training points is that the error can
become quite large between training points.

When using random training points, we randomly select a training point in the
desired operating region, feed it to the network followed by the plant, and modify the
weights such that the plant output moves towards the desired output to complete
each iteration. That training point is then discarded, and another one chosen from
the continuum of training points available in the desired operating region. The idea
behind the use of random training points is that instead of minimizing the error
at a fixed set of points, we minimize a Monte-Carlo integration of the error over
the entire operating region. In effect, as the number of iterations grows without
bound, the number of training points around any fixed neighborhood of a point in
the operating regime also grows without bound.

Table 2.3 shows the average and maximum errors after specialized learning
using random training points chosen from the region of operation after 34100, 89100,
142100, and 163300 iterations. We notice that in this case, both the average and

maximum errors decrease as we increase the number of iterations.

Table 2.3 - One-Link Error after Random Learning

Iterations Av. Sq. Err. Max. Err.
34100 89 663
89100 24 278

142100 12 108
163300 10 99

Figure 2.19 shows the squared error at the output over the operating regime

after 34100, 89100, and 163300 iterations of specialized learning with random train-
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ing points. The contour spacing is 100. Notice that unlike the case with the fixed
training set. the error with random learning tends to decrease uniformly at all points

in the desired operating regime.

15

(a) 34100 Its. (b) 89100 Its. (c) 163300 Its.

Fig. 2.19 - Squared Error for One-Link Manipulator Using Random Training Points

Figure 2.20 compares the squared error after (a) 39400 iterations with a 10x 10
grid over the input and (b) 34100 iterations of random learning. The contour spacing
15 500. We see that random training tends to provide better generalization than the

use of a fixed training set for a similar number of iterations.

2.3.3.3 RANDOM TRAINING POINTS AND GENERALIZATION

In Chapter 1. we found that if a network effectively learns a mapping at a
number of training points greater than the VC-dimension or capacity of the network.
it must have discovered a means of representing the problem that achieves some
measure of generalization. In this context, the use of random training points with a
network of fixed size may be viewed as an attempt to force the network to generalize
by increasing the number of training points while holding the capacity of the network

constant.

2.3.4 Two-Link Manipulator

The next task involves the control of a two-link manipulator as shown n
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15 ik ' x 150 n
(a) Fixed (h) Random

Fig. 2.20 - Comparison of Squared Error for One-Link Manipulator

using Fixed and Random Training Points

Fig. 2.21. This manipnlator consists of a massless rigid body, two weters in length
and anchored to the ground through a rotary joint at one end with a two kilogram
load at the other. A second massless rigid body, one meter long, connects through
a rotary joint to the first link and carries a one kilogram load at the end-effector.
Once again. we assumne a gravitational acceleration of 10 1n/s%. The Newton-Euler
cquations for the dynamies of such a manipulator may be expressed in the following
formy where M is the mass matrix. ¢ the vector of centrifugal and Coriolis terms.

and ¢ the vector of gravitational terms:

T = M(§)8 + o(8.6) + g(6) (2.65)
M) = 2mylilcos(6y) + gl + malf + mald molilyeos(6y) + mayls
8) = malilycos(6y) + mal3 mal;
(2.66)

0 —nzglllg.s'm(ﬁg)éé — 2mylilysin(6; )6, 6, -
v(g.8) = [ mylylysin(6,)6% (2.67)

malygeos(8; + 62) + myligeos(8,) + mal geos(8,)
malygcos(6y + 6,)
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Fig. 2.21 - Two Link Manipulator

Notice that in comparison with the case of a single-link manipulator (Eq. 2.61),
the addition of a link significantly increases the complexity of dynamic equations.
Again, we assume joint angle, velocity, and acceleration limits, as follows, for the
operation of the manipulator: 0 < 6, < 7 radians, |62] < =« radians, |6;| <

5 radians/s, |62 < 10 radians/s, |6;] < 15 radians/s®, |6y < 75 radians/s?.

We simulated the network and manipulator in discrete time with dt = .1 s.
We employed forward Euler integration (Eq. 2.62) of the differential equations. We
generally use three-layer networks for the feedforward controller. With joint angle,
velocity, and desired acceleration information required to calculate torque, we again
use a delay line with three taps at each input and hardwire the first layer to estimate

the joint velocities and accelerations:

Hld[n] ]

0 6,dn + 2]
£l = |
L92d{n -’r 2] J




_ (0) i
Yo
3O —y® 61 ([n] 7]
6:ln
o y(® 2d(:)+y‘()0) ejH
_ t ~
vy -y 02[n]
ygo)—2;§°)+y§0) L6, [n] .
- dt? -

The weights for the second and third layer were initialized to random values in

w; € [~.5,.5] and determined through learning. Each neuron in the second layer

1
14+e—%

implemented a sigmoidal nonlinearity f(z) =

We initially trained the networks at fixed points along a specific trajectory using
9, 10, 20, and 30 neurons. Fig. 2.22 compares the output of the neural networks
versus the actual torque along the trajectory, at or in between the training points
for the 5 and 30 neuron cases. We find that there are regions of both high and low
error. In addition, the behavior of the networks does not seem to change appreciably
as we vary the number of neurons.

We also trained networks of 30, 50, 100, and 200 neurons using random learning
over the entire operating region. Fig. 2.23 compares the desired torque with the
torque produced by the random sample trained network. As shown in the figure,
although the random learning algorithm provides a smoother response and is able
to learn rudimentary features, it is far from being able to learn how to control the
two-link manipulator.

Because we have two outputs to our network, corrective actions for one of the
outputs may lead to degradation of the other. Thus, we also tried “splitting” the
network by providing separate hidden units for each output. Fig. 2.24 shows the
response after random training when each output had 100 hidden units of its own.
As in regular random learning, the response is smooth and shares the general shape
of the desired response, however it also falls short of acceptable error levels. We

also tried a network with three variable layers and one fixed. Again, the response
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Fig. 2.22 - Learning on Specific Trajectory

was smooth, but the error was unsatisfactory. Fig. 2.25 shows the response when
we had 80 neurons in the first hidden layer and 20 neurons in the second hidden
layer.

Although one could speculate endlessly on the reason why we were unable to

successfully train the network, I believe that the nonlinear mapping of (Eq. 2.65)
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Fig. 2.23 - Random Learning Over All Space

was too difficult to learn over large operating regions using standard BEP with ad

hoc choice of network architecture.

2.3.5 The Two-Link Manipulator Revisited

We look once again to controlling the two-link manipulator, but with a num-
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Fig. 2.24 - Random Learning Over All Space With a Split Network

ber of modifications.

First, we refine the task itself to focus on a specific appli-

cation, thus effectively reducing the region over which we must learn to operate

the plant. Second, we switch from standard BEP to Ji’s algorithms decsribed in

Subsections 1.5.11 and 1.5.12.
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Fig. 2.25 - Random Learning with Three Layer (+1 Hardwired)

2.3.5.1 DRAWING HANDWRITTEN CHARACTERS

In this subsection, we focus the training on achieving a specific task-drawing

handwritten characters. In other words, the trajectories we attempt to follow are

specifically designed to trace out handwritten characters with the end-effector.

We begin by defining a square region (Fig. 2.21), one meter on a side within



- 66 -

which we will train the network. First, a handwritten character is drawn in a square
region on a piece of paper (Fig. 2.26a). Second, a human operator chooses points
along the character that “define” the general shape of the character (Fig. 2.26b).
Third, a 2-D cubic spline is fitted to the chosen points to generate a parametric
version of the character. The parametric version is compared to the original to
determine whether it is a good approximation. If not, the sample points may
be adjusted. Fourth, the parametrized character is sampled at uniform intervals
corresponding to the position of the end-effector at each discrete time step. The
resulting sequence of positions represents a constant speed trajectory. The points

at the start and end of the trajectory are chosen such that the initial and final
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(q) input (b) Semple

(c) Spline (d) Resample

Fig. 2.26 - Character Generation (a) Input Handwritten Character,
(b) Select Salient Points, (¢) Fit With Cubic Spline,

and (d) Resample at Uniform Intervals for Constant Speed Trajectory

velocities are zero.

All the operations above are performed in Cartesian coordinates. We assume,
however, that the sensors in the manipulator measure its position in joint coor-
dinates. We must thus convert between Cartesian and joint coordinates. The

equations for conversion from joint to Cartesian coordinates are as follows:

z = l1cos(6y) + l2cos(6; + 02) (2.71)
y = lisin(6y) + lpstin(6y + 62) (2.72)
However, this is not a one-to-one mapping. Thus, there exist degenerate positions in

joint coordinates that correspond to the same position for the end-effector in Carte-

sian coordinates. For the two-link manipulator, the degenerate arm configurations,
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if they exist, correspond to whether the angle between the first link and the second

link 6, is less than or greater than zero (Fig. 2.27). For those cases where 6, is pos-

itive, the “elbow” or second joint will be to the right of an imaginary line between

the “shoulder” or first joint and the end-effector or “hand.” This configuration will

be called “right-handed” while the corresponding degenerate configuration will be

called “left-handed.” The shaded areas of Fig. 2.27 show the regions in Cartesian

space that the end-effector may access in a right-handed configuration of the arm.

We assume all characters are drawn in a right-handed configuration. The equations

for conversion from Cartesian coordinates to right-handed joint coordinates are as

follows:

6, = tan™"! (g) — tan™? M

T p+ Ui/l
6y = cos™(p)
(22 +y*) — (1 + 1)
p ==
Ly

Left Handed

Right Handed
Range

Right Handed

Fig. 2.27 - Right- and Left-Hand Degenerate Configurations

(2.73)

(2.74)

(2.75)

This refinement of the task acts to reduce the operating regime over which the

network must effectively learn to control the manipulator. By reducing the amount

of information the network must learn, we may simplify the learning process.

2.3.5.2 FEEDBACK THROUGH TRAJECTORY MODIFICATION
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It became clear in simulation that neural network feedforward control alone
is not sufficient. Because of the inherent instability of feedforward control, even
the exact equations governing the simulated motions of the arm could not be used
effectively in simulation over long periods of time. Clearly then, feedback is required
to maintain adequate control.

Although we could have introduced more conventional linear or adaptive feed-
back elements to correct for errors in operating the plant, we used feedback through
trajectory modification. Let the solid line in Fig. 2.28 represent the desired trajec-
tory through state-space, and the dashed line the actual trajectory. If we assume
that the feedforward controller will adjust the plant inputs in the proper direc-
tion given changes to the desired outputs, then by modifying the desired trajectory
(dotted-line) to lead from the actual current position in state-space to the desired
trajectory, we introduce corrective action to move back towards the desired trajec-

tory.

Desired Trajectory

"« Modified Desired
e Trajectory

Actual Trajectory

Fig. 2.28 - Trajectory Modification

We modify the trajectory by splitting the tapped delay line of Fig. 2.11 at the
position representing the current time. Actual measurements of the manipulator
output are provided to the network as shown in Fig. 2.29 at taps representing

the output at points up to and including the present. Points representing future
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points are still taken from the desired trajectory. This procedure, in effect, presents
a modified desired trajectory g4 to the network based on the desired and actual
trajectories yg4 and y. For the current task, this procedure feeds the actual joint
angles and velocities directly back from the plant into the network and generates
a modified desired angular acceleration based on the future desired angle and the

current actual angle and velocity as follows:

ga(t) = y(t) (2.76)
ya(t) = y(t) (2.77)
Ga(t) = A7 (ya(t + 2A,) — y(1) — 287 9(t) (2.78)

¥ (t42A )

—>Trajectory ¥ | Neural u Plant ¥ ,y,;
r Modifier Network

Fig. 2.29 - Trajectory Modification Using Tapped Delay Line

The sudden change from desired to actual joint angles in the tapped delay
line could lead to rather abrupt changes in joint angles, velocities, and /or accelera-
tions, this was not observed during simulation. Nevertheless, in order to reduce the
abruptness of any corrective action, we may modify the trajectory more gradually

over a number of timesteps. The following equations show how we can modify the
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trajectory with a desired linear reduction of the error in time:

z[n n < ng
Z4ln] = q z4[n] + 252 (2[no] —z4[n]) no<n<ng+ N (2.79)
z4[n] n>ng+ N

Third, we utilize a more advanced training algorithm to dynamically choose
the network architecture as it learns to minimize the number of resources required
to learn mappings within certain error bounds. This algorithm allows us to avoid
costly trial-and-error runs to determine which network architecture from a given

class provides near-optimal performance.

2.3.5.3 DyNAMIC CHOICE OF ARCHITECTURE

In addition to reducing the operating regime over which the network must
learn to control the plant, we utilize a more advanced training algorithm, Algo-A1,
in this task. This algorithm is described in Subsec. 1.5.11 and dynamically adjusts
the number of neurons and connections in order to minimize the number of resources
required to control the plant within specified error bounds. Algo-A1l allows us to
avoid costly trial-and-error runs to determine which network architecture chosen
from a given class provides near-optimal performance.

We performed off-line training on a trajectory tracing out a handwritten “p.”
The resulting network had three neurons in 8 of the 10 runs. Figure 2.30 demon-
strates the ability of the network to draw the “p” for which it was trained, as well
as to draw an “m”, an “o”, and a line. The resulting network was compared with
BEP networks with fixed sizes of 2, 6, 10, and 20 units. The networks with large
numbers of units failed with consistently higher frequency.

The networks had the most difficulty adjusting to drawing characters at differ-
ent positions. In order to expand the range of the neural controller, the incremental
learning technique, Algo-12, was used. The network learned five separate subtasks—

[1k)

drawing the character “p” at five locations as shown in Fig. 2.31a. Fig. 2.31b
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Fig. 2.30 - Feedforward Trained Handwritten Characters

demonstrates the ability of the resulting network to draw other shifted characters

as well.

2.3.5.4 ON-LINE LEARNING AND FEEDBACK TRAINING

In this task, we also experiment with making the training more “realistic” by
simulating on-line learning and adaptation. We claim that one of the strengths of
neural network control is that instead of requiring accurate plant models to derive

control laws, the networks can be trained to control plants by experimenting with
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Table 2.4 - Generalization vs. Number of Hidden Units

Character # Units (Algorithm) # Failures/10| Av. Sq. Err.
P (trained) 3 (Algo-Al) 0 .005
2 (BEP) 0 .004
6 (BEP) 2 011
10 (BEP) 0 046
20 (BEP) 9
M 3 (Algo-Al) 0 .005
2 (BEP) 0 .003
6 (BEP) 2 .010
10 (BEP) 0 .009
20 (BEP) 7
Circle 3 (Algo-Al) 0 .004
2 (BEP) 0 .002
6 (BEP) 0 .010
10 (BEP) 1 011
20 (BEP) 7
Line 3 (Algo-Al) 0 .004
2 (BEP) 0 003
6 (BEP) 2 012
10 (BEP) 1 013
20 (BEP) 6

the plants, observing the effect on the outputs of changing the inputs, to learn how
to operate the plants. With off-line learning in the preceding tasks, we assumed that
we could somehow maneuver the state of the plant, if it existed, to the operating
points corresponding to the individual training points. However, this may not be
possible without an effective means of controlling the plant. Here, we consider on-
line training techniques that enable us to effectively learn to control certain plants

without the ability to arbitrarily set their state.

We will assume that some method exists for resetting the plant to a known
state, and that the desired trajectory begins at that point in state-space. As in
the previous subsubsection, we feed back the actual plant outputs to the network
input. Although we choose to split the delay line as before, we could in general

provide the network with parallel delay lines containing both desired and actual
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Fig. 2.31 - Incrementally Trained Handwritten Characters

trajectories. Because the actual trajectories can deviate from the desired, training
may occur outside the desired operating region. Further, on-line training may not
occur around a given point on the desired trajectory unless we have learned enough

of the preceding part of the trajectory to move the manipulator to that point. If we
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use algorithms such as BEP, we are using gradient descent algorithms that reduce
the error at the training points. With continuous neurons (e.g., sigmoidal instead of
step) and a continuous desired control law, the change in error for a given change in
weights will be continuous as well; thus, the error will be reduced in a neighborhood
of each training point. Heuristically speaking, as we train on-line using feedback
training, the actual trajectory will deviate from the desired one, thus the actual
training points will differ from the desired ones. However, if each training point is
within a sufficiently small neighborhood of the desired one, the error reduction at
the actual training point will carry over to the desired one. Thus, we hope that
on a subsequent feedback learning attempt, the actual trajectory will move closer
to the desired trajectory. In feedback learning, we set an error threshold such that
if an actual training point deviates from a desired training point by an amount
exceeding the bound, the system is reset and learning continues from the beginning
of the trajectory. This reset serves two purposes: one, it hopefully prevents the
network from training at points too far from the desired training points to do any
good at the desired points, and two, it hopefully prevents the system from “going
out of control” or becoming damaged. In some sense, the system might always be
considered “stable” since it resets before becoming “unstable.” However, the system

1s not guaranteed to converge (i.e., learn the entire trajectory within a given error

bound).

We trained neural networks using feedback learning with the same parameters
as in the previous subsubsection ( e.g., dynamic modification of network architecture,
etc.). Instead of Algo-A1l, we used BEP with seven hidden units. We found that
although the number of iterations required for convergence was typically a factor
of three to five larger, on-line feedback learning worked as well as off-line learning,.
Fig. 2.32 shows the characters traced by the manipulator when operated by the

network trained on-line.
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Fig. 2.32 - Test of Neural Network Controller Trained On-Line

2.3.5.5 GENERALIZATION

Figure 2.32 also shows the ability of a neural network, trained to draw the letter

[13 [2

p,” to draw the letter “m.” Note that the characters are drawn very closely to the
desired characters. Figure 2.33 shows the ability of the neural network to generalize
to drawing the same characters at different speeds. Here, a network trained to
draw the character “p” at one speed is tested in its ability to draw the letter “o”
drawn at four times that speed. We see that once again, the network demonstrates
a good ability to generalize. Figure 2.34 shows the relative sizes of the angular
acceleration 7y, centrifugal and Ceriolis 7,, and gravitational 7, contribution to
the total desired output torque. We see in fact that the dynamic terms are indeed
significant in comparison to the gravitational term.

Figure 2.35 shows the ability (or inability) of the network to generalize well to
shifts in the position of the character drawn. Specifically, a network trained to draw
the letter “p” is tested in its ability to draw shifted “p”s and “m”s. Although we

have not established a good metric for measuring the closeness or similarity of two

trajectories, we believe that the trajectories tracing out different characters drawn
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at different speeds at the same location as the original must somehow be closer to
the original trained trajectory than the same character drawn at the same speed at
a different location. When such a metric has been established, it may provide help
in selecting training sets and estimating how well a new character will be drawn

based on its similarity to previously learned characters.

2.5 — 25 ;

20 B 20+ B
1.5 1 1.5 L
-0.5 0.0 a5 -0.5 0.0 0.5

— — — Desired Characters
Drawn Characters

Fig. 2.33 - Generalization to Different Speeds

2.3.5.6 INCREMENTAL LEARNING

We were also able to demonstrate on-line incremental learning. Once again,
we trained a network to draw the letter “p” in a restricted region of the robot’s
range. Then, by concurrently extending the training set and increasing the resources

available, we were able to train it to draw letters in other regions of space as shown

in Fig. 2.36

2.4 Future Directions
In this chapter, we demonstrated that BEPing through the plant does work

when using perturbation of the inputs to measure the plant Jacobian. However,
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such perturbation is not as attractive a technique for measuring the Jacobian as

some of the other parameter estimation techniques such as the least squares and
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Fig. 2.36 - Incremental Learning

projection algorithms decribed in the chapter. It would be useful to test these
methods for estimating the plant Jacobian as well.

If the convergence time of the plant Jacobian estimates is longer than the time
constants of the time-varying Jacobian itself, then BEPing through the plant may
no longer work. Thus comparison of different parameter estimation techniques in
terms of convergence time versus accuracy will be important in determining which
technique to use for controlling a given plant.

Feedback is an important part of any control system. The use of adaptation
and learning in the feedback path needs to be explored as well. Some researchers
are already beginning to do this.[2)

Many researchers are already studying the application of neural networks to
other aspects of the control problem such as sensory processing and planning, efc..

Finally, more actual implementations of neural control systems are required to find

and focus attention on any problems with current neural control techniques.
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3 Parallel Readout from Optical Disks

3.1 Introduction

Optical disks have developed into a mature commercialized technology for in-
formation storage. Magnetic storage technology presents the main source of com-
petition for optical disk technology in those applications where optical disks are
now utilized. Although optical disk technology has established itself as a viable
technology by exploiting many of its advantages over magnetic storage, none of the
commercially available optical disk systems exploits one of the strongest potential

advantages of optical storage technology—namely optical parallel access.

In this chapter, we begin by briefly reviewing optical disk storage technology
and applications. We then charact;arize the SONY sampled-format optical disks
including those aspects relevant to the parallel readout of information from the
disks. Next, we discuss techniques for storing information on these disks and reading
it out in parallel and present experimental results. Finally, we describe a number

of potential applications for the parallel readout of information from optical disks.

3.1.1 Commercial Optical Disk Applications

Surprisingly, optical disks have a long history of commercialization. In 1935,
Baird Radiovision offered a wax disc displayed by an optical scanner.l!] Today,
optical disks come in a variety of forms, the most ubiquitous of which is the digital
audio compact disc or CD. Together with the consumer video LaserDisc introduced

in 1978, these two products represent the most well-known forms of optical storage
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available today. For the storage of computer accessible archival information, the
CD-ROM (an adaptation of the digital audio CD) has been developed. These three
forms are all read-only disks—that is, the information is prerecorded on the disk and
cannot be altered by the user. Write-once read-many or WORM disks have been
available for a number of years, but have not been as popular as the erasable optical

disks available today for the storage of computer information.

All these commercial applications of optical disks have achieved some degree
of success in the marketplace by exploiting some of the advantages of optical stor-
age vis-a-vis competing technologies in the niche of high-density archival storage.
Currently, the main competition in these applications are the phonograph, com-
pact audio cassette tape, and digital audio tape, in consumer audio; videotape in

consumer video; and magnetic disk and tape in computer storage applications.

Optical disks now hold an edge over magnetic disks in terms of storage density.
The resolution of any optical system is essentially limited by the wavelength of the
light used in the system. The shorter the wavelength, the higher the resolution.
In current systems, this is on the order of 1 um? per pixel of information. The
resolution in current magnetic systems is limited by the “fiying height”~the distance
between the head and the disk. Commercially available systems have flying heights
of about 200 nm, although magnetic storage with a flying height of less than 50 nm![?!
yielding storage areas of 4 pm X .16 um has been demonstrated in lab. This storage

density is comparable to that of available optical disk systems.

Although a number of paths exist for increasing the storage density of optical
disks, they are still many years from commercialization. The most obvious path-
reduction of wavelength-is limited to gains of a factor of four or so. Wavelength
multiplexing is also being investigated.[®] Superresolution techniques have been pro-
posed and are being studied as well.[¥] Perhaps the most promising path is volume

recording with layers of pixels or volume holograms.[®! Reduction of flying height is
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still the primary means of increasing storage density of magnetic disks. However,
to achieve smaller flying heights, the study of disk tribology (the effects of friction

and methods for obviating them) becomes of primary importance.

With subsubmicrometer flying heights, contaminants and mechanical vibration
can cause serious problems, and high-density magnetic media must remain in fixed
locations. However, because optical lenses exist that can be used to transfer in-
formation between the storage medium and an optical detector(/modulator), an
optical read(/write) head can “fly” high above the disk, typically 1 mm, and still
access information at the highest available resolution. Because information can
be accessed at a distance, it is also possible to include a protective layer between
recording medium and the outside world, and the optical disk is not as sensitive
to contamination and vibration. Thus, optical disks have a decided advantage in

applications requiring removable or transportable storage media..

On the other hand, a disadvantage of current optical disks is their slower access
times and data rates relative to magnetic disks. This is a direct result of the
larger size and weight of optical heads (with laser sources, beamsplitters, lenses,
and detectors) which are more difficult to position. Thus work on reduction of the
size, weight, and number of components and servo improvement is the direction in

which the most effort has been focused to decrease access times.

Because magnetic storage is not diffraction limited, it will likely eventually
surpass wavelength-limited optical storage through continuing incremental improve-
ments in storage density. Electronic storage in the form of DRAM:s is also approach-
ing similar resolutions with 1.28 um? capacitors for storage in 64 Mbit DRAMs.[8]
Thus for practical applications, research on optical disks must concentrate on those
areas in which optics has potential advantages in the long term: rugged, trans-
portable, archival storage; high density through superresolution or volume hologra-

phy; and optical parallel access as discussed in this chapter.
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3.1.2 Optical Disk Recordability

The different types of optical disks can be categorized in a number of ways—
three important such ways being the recordability or whether information can be
recorded and/or erased on the disk, the media or the structure of the material which

makes up the disk, and the format or the way in which data is stored on the disk.

One way to classify optical disks is according to “recordability” or whether and
how many times data can be recorded and rerecorded in situ at the same location
on the disk. If the data is recorded once at the “factory” and never recorded in the
field, it is a ROM-Disk (Read-Only Memory). If the data can be recorded just once
at each disk location, it is a WORM-Disk (Write-Once Read-Many). Finally, if the
data can be recorded and rerecorded multiple times, it is an Erasable Disk. Although
the erasable disk provides the greatest flexibility, there are other applications such as
database record storage for WORM disks or storage of prerecorded audio or visual

information for ROM disks where erasability is not required or even not desired.

3.1.3 Optical Disk Storage Media

A large number of materials have been considered for optical recording. For
ROM disks, injection molded stamped plastic substrates with a sputtered layer
of metal for reflection probably best satisfy the requirement for low cost, mass
producibility, and stable long-term storage. Disks of this type are currently used
for both the CD and LaserDisc.

Both WORM and erasable disks require media whose physical properties can
be altered using light. Bartolini, et al.,[”) have divided such media into 11 classes.
Media for WORM disks typically fall into one of the following four classes: pho-
tographic, photoresist, photopolymer, or ablative. Photographic materials consist
of emulsions in which a photochemical reaction changes the optical density (trans-

missivity) of the material upon development; chemical bleaching can convert this
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into an index change. Photoresists are organic materials sensitive to light such
that either exposed or unexposed areas are removed upon development depending
on whether the medium is a positive or negative photoresist, resulting in thickness
(phase) variations in the medium. Photopolymers are organic materials whose in-
dex can be changed upon exposure to light, possibly after a separate developing
step. Ablative media are either metal or organic and rely on localized heating by
a focused laser beam to melt or ablate the medium to vary the reflectivity and/or

transmittivity.

Erasable disks typically fall into one of the following seven classes: thermoplas-
tic, photochromic, chalcogenide, magnetooptic, photoferroelectric, photoconductive-
electrooptic, and electrooptic. Thermoplastic consists of a conductor, a photocon-
ductor, and a thermoplastic; after establishing a charge across the photoconductor
and thermoplastic, illumination selectively discharges regions via the photoconduc-
tor, and upon heating, the plastic deforms according to static force variations. Pho-
tochromic materials are those which have two stable states with different optical
properties with optical switching from one state to the other. Chalcogenides materi-
als can be switched optically between crystalline and amorphous states having differ-
ent optical properties. Magnetooptic media rotate the polarization of a transmitted
or reflected readout beam through the Faraday or Kerr effect respectively; the angle
of rotation is determined by the magnetization which is determined by an applied
field upon heating using a focused laser beam. Photoferroelectric media consist of
ferroelectric crystalline and photoconductive layers; an incident light pattern strik-
ing the photoconductor modulates the field across the ferroelectric thus resulting in
modification of the polarization of transmitted or reflected light. Photoconductive-
electrooptic media are sandwiched between charged insulators that are selectively
discharged through illumination; the resulting charge distribution produces vari-

atlons in the retardation of the medium. Electrooptic media are those such that
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carriers are generated in illuminated areas and diffuse into dark regions establishing
a charge distribution producing variations in the index of the medium. These media

are also called photorefractive.

3.1.4 Optical Disk Storage Formats

There are many ways to classify disk storage formats. For instance, if the disk
is spun at a constant velocity and data accessed with a constant bandwidth, the
amount of information stored on the disk will be constant per unit angle resulting
in a constant angular velocity (CAV) disk. If the angular velocity of the disk or
the data bandwidth depend on the radius of the stored information on the disk
such that the amount of information stored on the disk is constant per unit length,
we have a constant linear velocity (CLV) disk. A CAV disk results in a simpler
mechanism since the disk spins at a uniform velocity but CAV disks waste storage
space since they pack information less densely at larger disk radii.

Information recorded on the disk can be encoded in different ways as well. Each
bit of information can correspond to a pixel on the disk, or the information can be

recorded by pulse code modulation as in the CD.

3.1.5 Desirable Characteristics for Parallel Access

Considerations for optimal characteristics of disks for parallel access are very
much the same as those for serial access; high storage density, the stability of
the medium, etc., are important concerns whether we wish to access information
serially or in parallel. However, in a world where laser power limitations will often
play a significant role, the recording sensitivity of the disk medium and the readout
reflectivity or transmissivity, contrast, and fill-factor take on greater importance
where parallel access is concerned.

Data recorded on the disk for parallel readout may be organized in one of three

possible natural formats as shown in Fig. 3.1. In the along-track format (Fig. 3.1a),
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data is recorded azimuthally on the disk in the direction of disk rotation. This
format allows a parallel readout head aligned in the same direction to view shifted
versions of the same data in time as the disk rotates. This form of parallel readout
may be useful for applications where the correlation or convolution of data recorded

on the disk with a sample pattern is desired (see Sec. 3.4).
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Fig. 3.1 - Data Organization for Parallel Readout

In the across-track format (Fig. 3.1b), data is recorded radially on the disk in
the direction perpendicular to that of disk rotation. This format allows each element
of a parallel readout head aligned in the same direction to view a different set of
data in time as the disk rotates. This form of parallel readout maximizes potential
bandwidth since each element in the readout head can read out an independent
stream of data.

In the 2-D format (Fig. 3.1c), data is recorded in a two-dimensional array
with one axis of the data along-track and the other across-track. This format is
best-suited for data which is naturally two-dimensional in nature, such as images,
matrices, etc..

It is necessary for data recorded in the across-track format and highly desirable
for data recorded in the 2-D format that recorded pixels can be aligned radially on
the disk—a property called across-track coherence. Across-track coherence is not a

requirement for serial recording and readout, and is not guaranteed in commercially
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available disk recorders which are designed for serial readout applications. Fig. 3.2a
shows pixels recorded by a typical disk system. Note that pixels are not aligned
across tracks. In fact, the drift between corresponding pixels in different tracks
can casily reach several pixels in size. Fig. 3.2b shows that pixels recorded on the
Sony sampled-format disk system are in fact aligned across track. This across-track
coherence is not designed for parallel readout purposes; rather. it is a byproduct
of the data format required to maintain tracking in a sampled-format system as

described in Sec. 3.2.3.

Standard SONY

Fig. 3.2 - Across-Track Colherence

3.1.6 Organization of Data for Parallel Readout

Given a large memory storage capacity and a number of channels with which
to access it in parallel. we could conceivably allow ecach channel to independently
and arbitrarily access any of the memory storage locations. With .\ locations on
the disk and A chaunels, arbitrary access would require a readout system with
VM distinet configurations. With .V = 10" bits on the disk, we sce that arbitrary
access 15 only possible with small-scale parallel readout (small M) hefore the sheer

number of configurations becomes unmanageable.



- 90 -

In order to achieve large-scale parallel readout with M ~ 1000, we must restrict
the allowed mappings between memory storage locations and readout channels. In
parallel block access, we impose a fixed relationship between storage locations that
can be accessed in parallel at a given time. For example in 2-D block access, we only
allow access to a rectangular neighborhood of fixed dimensions in the 2-D array of
pixels recorded on disk. In block access, by specifying the correspondence between
a single storage and detection element, we specify the correspondence between all
others as well. Thus, we require a readout system with N distinct configurations.
In fact, if each storage location can only be accessed by a single specific detector
element, we require a readout system with only N/M distinct configurations. This
scheme is also called paged readout. A large number of 2-D holographic paged

readout schemes proposed in the past.(8:*]

3.1.7 Mechanical Scanning

Although non-mechanical optical scanning may provide the fastest possible ac-
cess time, it requires the use of optical components with space-bandwidth product
large enough to view the entire optical disk. In addition, optical scanning tech-
niques often require the consumption of space-bandwidth product on the disk to
encode diffractive carriers required to keep the readout light within the optical sys-
tem. Mechanical scanning by either spinning the disk or radially translating the
head simply provides a method for drastically reducing the requirements on optical

system and the diversion of disk storage area for readout purposes.

3.1.8 Parallel Readout

A number of authors have proposed using various parallel readout techniques
with optical disks. Many of these have proposed 1- or 2-D holographic recording
and readout using disks with photographic film.['°~13] Because of the limitations of

optical disk technology at the time, most of these proposed systems were intended



_ 91 -

for limited applications mainly involving the readout of prerecorded images. More
recently, other authors have proposed both holographicl! and imaging!'®! read-
out from pixellated disks. However. none have discussed in detail. imaging and
holographic encoding techniques appropriate for use with the high-density, pixel-
lated, binary optical disks available today; nor have they discussed the alignment
of the optical disk and detector. These are the areas that will be discussed in the

remainder of this chapter.

3.2 Characterization of the SONY Sampled-Format Disk

We use a prototype Sony sampled-format disk recording and playback system
(Fig. 3.3) to write information on the disks used in our experiments. The disk
system itself is interfaced to a PC which provides serial read/write access to the

disks. It can utilize both write-once and erasable storage media which are described

write data at 15 Mbps.

Fig. 3.3 - Prototype Sony Sampled-Format Disk System
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3.2.1 Physical Characteristics of the SONY Disks

The disks themselves are 53” (12 ¢m) in diameter. The disks can be single-
or double-sided because both the write-once and erasable media operate in a re-
flective mode. Both types of disk are formed on a protective substrate of glass or

polycarbonate (PC).

3.2.2 Storage Media of the SONY Disks

The Sony sampled-format disk system is capable of serial recording on and
readout from both write-once and erasable disks. The actual storage media for the
two disk types are described below. Because of the relatively high energies required
for recording compared to lower energies for readout, parallel recording of millions
of pixels is at present infeasible with the types of disks used in our experiments;
thus the experiments in this chapter are restricted to those concerning only parallel

readout of data.

3.2.2.1 SONY WRITE-ONCE STORAGE MEDIUM

The storage medium of the SONY write-once disks that we use in our exper-
iments is rather unusual. These disks are the same as those described in detail
in Ref. [16] except that the disks that we use do not have a guide-groove. The
medium consists of a layered structure as shown in Fig. 3.4. The bottom layer is
1000 A thick and consists of a reflective aluminum backing. The next layer is 1400
A thick and consists of SbySe;. Next comes a 150 A layer of Bi,Te; followed by
another layer of SbySes 300 A thick. Finally comes a 1.2 mm layer of protective
polycarbonate or glass.

Table 3.1 shows the refractive index and absorption of each of the above ma-
terials at the laser diode wavelength of 860 nm for which the disk is optimized.
When a read beam strikes an unwritten portion of the disk from above, part of

the beam is reflected at each interface due to discontinuities in the refractive index.
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Fig. 3.4 - Sony Write-Once Recording Medium

The thickness of each layer is chosen to create a destructive interference filter at

860 nm thus resulting in a low reflectivity between 12 and 14%.

Table 3.1 - Index and Absorption of Write-Once Disk Materials!®]

Sbg Seg Bi2T63 Al PC
3.7 4.6 2.0 1.56
.06 3.7 6.0 0

Because the Bi;Te; layer has a much higher absorptivity than the surrounding
layers, as shown in Table 3.1, it experiences the greatest temperature increase upon
illumination. At a laser power of 0.8 nJ/um?, a sharp threshold in the material
characteristics of the medium is reached where the Bi;Tes diffuses into the sur-
rounding layers of SbySe; sandwiching it. The medium is write-once because this
process of diffusion is irreversible. Figure 3.5 shows the simulated change in con-
centration of BiyTez and SheSes as a function of depth in the medium for various
pulsewidths of a 6 mW laser. Figure 3.6 shows the simulated change in index and
absorptivity for the same conditions. The sharp index variations in the medium

present before recording are no longer present after recording thus effectively de-
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stroying the intereference filter resulting in two to four times higher reflectivity after

recording.
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Fig. 3.5 - Metal Alloy Composition After Exposure [16]
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Fig. 3.6 - Index and Absorptivity Variations After Exposure [16]

The thicknesses of the three metal alloy layers are chosen to achieve high reflec-
tivity and sensitivity at 860 nimn. High sensitivity 1s achieved with high absorption

in the BiyTes layver, low thermal diffusion, and low heat capacity.
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Many of our experiments were carried out using illumination from a He-Ne laser
source at 633 nm. Because the reflectivity of an interference filter is wavelength
dependent, we measured the reflectivity using the optical setup of Fig. 3.7. We
collimate a He-Ne laser beam and focus it on the disk using a microscope objective.
The size of the focused spot can be estimated by calculating the distance from the
center of the first zero in the radially symmetric intensity pattern. Because we
are focusing a planewave, we will be approximately one focal length f = 4.34¢ mm
behind the objective. We estimate the aperture to be [ = 6 mm in diameter. The
resulting amplitude distribution will be a Bessel function given by the following

equation:

A(p) o< Ji(mrl/2Xf)/r (3.1)

This distribution is known as the Airy pattern and has its first zero at r = 1.22\f /[
= .56um.

When the collimated beam is focused properly on the disk, the reflected beam,
passing back through the objective, will also be collimated. We then focus a portion
of the reflected beam using a beam-splitter and lens, onto a detector. We calibrate
the system using a mirror of known reflectivity, R,, = .94. We then measure the
reflectivity of recorded and unrecorded portions of the write-once disk. We found
the reflectivity of unrecorded portions of the disk to be Ry = .049. Because recorded
portions of the disk have a fill-factor less than unity, we perform our measurement
indirectly by recording the reflectivity at many spots in a recorded region near the
inner radius and calculating the average R}. We then calculate the fill factor o and

solve for the reflectivity R; as follows:

A
gf’; V2 = 22da

AGAr/‘)
R =Ry + — (R’ Ry) (3.3)
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Fig. 3.7 - Experimental Setup to Measure Optical Disk Reflectivity

We found the average reflectivity of recorded portions at the inner radius to be

R} = .075 yielding a reflectivity R, = .090.

3.2.2.2 SONY ERASABLE STORAGE MEDIUM

The erasable medium consists of an aluminum backing with an alloy of TbFeCo
as the recording medium covered with a 1.2 mm layer of glass or polycarbonate for
protection. The erasable disk, like the write-once disk, operates in a reflective
mode. Using the same setup for measuring reflectivity as for the write-once disk,
we measured the reflectivity of the magnetooptic disk to be 17% at 633 nm. The
polarization of light incident upon the disk surface is rotated 4.15° due to the mag-
netooptic Kerr effect. The direction of this rotation depends on the magnetization
recorded at the spot from which the light is reflected. This polarization rotation is
detected through a linear polarizer set such that the amplitudes of the light corre-
sponding to the two states are either (a) plus/minus or (b) on/offl!” as shown in

Fig. 3.8.

3.2.3 Data Format of the Sony Sampled-Format Disks
Data is recorded on the Sony sampled format disks as circular pixels, 1 gm in
diameter. As shown in Fig. 3.9, the pixels are recorded along a single spiral on the

disk, much like that on a conventional LP (record), extending from an inner radius



Magnetooptic Disk (TbFeCo)

Fig. 3.8 - Magnetooptic Disk

of 3 ¢m to an outer radius of 6 ¢m. Each turn of the spiral is called a track with a
track-to-track spacing of 1.5 um. Because of the low pitch of the spiral, the tracks
can be modeled as concentric circles separated by 1.5 um. There are 20 000 circular
tracks on each side of the disk. Because the sampled-format disk is intended for CAV
systems, the angle between adjacent pixel locations remains a constant 1/1000%* of
a degree, but the linear distance varies from track to track with 1 um between
adjacent pixel locations at the outer radius of 6 ¢m and .5 um between adjacent
pixel locations at the inner radius of 3 ¢rn. Thus adjacent pixels are tangential at

the outer recording radius and overlap by half at the inner recording radius.

Track (32 Sectors)

Lol 2]

Jump Back Sector
Sector (43 Servo-Areas)

1] 2] | 2 |

Servo-Area (270 Channel Clocks)

0 3435 269
Disk (20000 Tracks) Timing & Tracking Data

Info

Fig. 3.9 - Pixel Locations on Sony Sampled-Format Disk

The disk is divided, in the azimuthal direction, like a pizza into 32 pie-shaped
wedges called sectors. Information about the track and sector location is recorded

in each track at the beginning of every sector. Each sector is further azimuthally
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subdivided into 43 servo-blocks. Each servo-block contains 270 channel clocks or
pixel positions. The first 35 pixel positions of every servo-block contains timing
and tracking information used by the sampled-format system to maintain alignment
between the read/write head and the data on the disk. With these specifications
for recording area and pixel separation, the Sony disks provide 6.5 billion pixels per
side of the disk. Thus the optical disk provides a high density, high capacity optical

storage medium.

The timing and tracking information recorded at the beginning of each servo
block consists of three pixels as shown in Fig. 3.10. The first two pixels are tracking
pixels and are separated by 4-5 pixels along track and offset by half a track from the
track center in opposite directions. If the head is offset outside a track, the readout
signal from the first tracking pixel will be larger than that from the second as shown
in Fig. 3.10a. If the head is offset inside a track, the readout signal from the second
tracking pixel will be larger than that from the first as shown in Fig. 3.10b. If the
head is aligned with a track, the readout signal from the tracking pixels will be as

shown in Fig. 3.10c.

The timing pixel is offset from the tracking pixels by a fixed angular distance of
19 pixel locations. By measuring the elapsed time between the readout signals from
the tracking pixels and the timing pixel, one can determine the angular velocity
of the disk. This time is used to generate a clock signal in the disk system locked
to the rotation of the disk. Pixels recorded on the disk are recorded at fixed time
intervals and thus fixed angles beyond the timing and tracking information. Because
the timing and tracking information in each track is embossed in a radially aligned
fashion on the disk, the information recorded on the disk will also be aligned radially,

thus providing the desired across-track coherence.

3.2.4 Modulation Transfer Function
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Tracking Pixels Timing Pixel
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Fig. 3.10 - Timing and Tracking Information

The modulation transfer function is one important way to characterize an op-

tical system. Modulation is defined as follows,

Imax - Imin )
M=————— 3.4
Imaz + Imzn ( )

and always lies between 0 and 1. For a sinusoidal intensity pattern, the modulation

is defined as follows:

I = Iy + Licos[2m(urz + v1y)] (3.5)

M=1/I (3.6)

The modulation transfer function, which measures the frequency response of
an optical system, is defined as the output modulation over the input modulation
as a function of frequency:

MTF(f) = Mo(f) (3.7)

 M(f)

The optical disk, like film, is a nonlinear medium. As Goodman points out about

ilm,[18] it does not make sense to talk about a transfer function of a nonlinear
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system, but it is often possible to separate the nonlinear system into a cascade of
a linear system followed by a memoryless nonlinearity; one can then talk about the
MTTF of the linear part of the system. The same holds true for optical disks.

In Subsubsec. 3.3.1.4, we model the pixel pattern recorded on the disk given
a desired binary image. The recorded reflectivity pattern is a linear function of
the binary image. We can extend this model to an analog image by applying a
hard-limiting nonlinearity at the output of the linear system as shown in Fig. 3.11.

The frequency domain representation of Eq. 3.5 is as follows:

O(u —u1,v —vy) + 8(u+ up,v+vp)

I= Ioé(u,v) + .[1 5

(3.8)

If we record this pattern on the disk, we find the following response in the frequency

domain before hard limiting;:

A(u,v):S(u,v)Z [IO(S (U—Zn;,v— Z) —{—%(5 (u——ul —gé,v—vl — ZL>}

I n m
+§—6<U+U1——A—9,U+U1~A—r> (39)
d
S(u,v) = Agsinc(Agu) ® —ggﬂp—l (3.10)
P

If we restrict our attention to the zero-order, we find the following expression for

the recorded pattern and MTF:

I=5(0,0)Iy + S(u1,v1)Icos[2m(u1x + viy)) (3.11)
MTF(f) = %%5;’—;) (3.12)

The amplitude plot of Figure 3.12 shows the MTF for information recorded at the

inner and outer radii of the disk.

n%:n d(x-nAg,y-mA )

h(X,Y) = R 1 I
a(x,y) ,JQL rect(x/Ag)

x circ(2r/d) —--R,

Fig. 3.11 - Optical Disk as Linear System Followed By Hard Limiter
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(a) u,v(pm™") (b)
Fig. 3.12 - MTF of Optical Disk for Recording at (a) R=3cm and (b) R=6cm

3.2.5 Optical Flatness of Disks

Many of the parallel readout techniques that will be described are diffractive or
holographic in nature. Thus the optical flatness of the disks are an important con-
sideration. Any variations in the optical flatness can be viewed as phase variations

in the recorded data that if too large can effectively destroy parallel readout.

Possible sources of phase variations include actual imperfect flatness of the
recording medium, and nonuniformities in the thickness and index of the protective
layer. The recording medium itself is essentially flat optically to within less than
a wavelength. Thus thickness and index variations in the protective layer are the

main source of phase variation across the disk.

A Fizeau interferometer!!¥] was used to measure phase variations across large
areas of the disk. In the interferometer (Fig. 3.13), a collimated laser beam strikes
the disk. Part of the beam is reflected at the air-PC or air-glass interface at the
surface of the protective layer. The rest of the beam is reflected by the storage
medium. The two reflected beams interfere creating a fringe pattern where adjacent
fringe lines correspond to optical pathlength differences of a single wavelength in

the optical thickness of the disk upon reflection. This interference pattern may be



Fig. 3.13 - Fizeau Interferometer

viewed by the naked eye or imaged onto film or a CCD camera.

Figure 3.14a and b show typical fringe patterns from 24 x 36 mm regions of
the glass- and PC-covered disks respectively. The marked curve near the left side of
each pattern represents the inner recording radius and the marked curve near the
right side represents the outer recording radius. The glass-covered disks generally
show a greater degree of optical flatness than the PC-covered disks. In general,
polycarbonate will have greater index variations than glass; in fact, polycarbon-
ate can also be highly birefringent. This birefringence can be problematic during

polarization dependent readout of magnetooptic disks.

Note that both glass- and PC-covered disks exhibit greater phase variations at
outer radii. This 1s most likely due to index or thickness variations introduced by
the molding process used to create the protective base onto which the metal-alloy

layers are deposited.

Although phase variations greater than a wavelength are evident in all disks,
regions where the phase varies by significantly less than a wavelength over areas
corresponding to the size of blocks of data to be read out in parallel are sufficient
for parallel readout. In our experiments, this corresponds roughly to 2-D arrays,
thousands of pixels or millimeters on a side. Note that candidate recording regions

are numerous on the glass-covered disks, especially at the inner recording radii.

3.2.6 Disk Diffraction Patterns
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Fig. 3.14 - Optical Flatness
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In order to verify that the disk has sufficient optical flatness for diffractive or
holographic readout techniques, a simple diffraction grating is recorded on the disk
and illuminated by a collimated laser beam. The resulting diffraction pattern is
then observed.

The test diffraction grating consists of alternating sets of L tracks with all
pixels on and L tracks with all pixels off. In Subsubsec. 3.3.1.4, we estimate the
optical efficiency of the disk for reading out an arbitrary image. Using Eq. 3.30, we
can mode] the amplitude reflectivity of the diffraction grating recorded on the disk

as follows:

W(z,y) =10+ (r1 — ro){ [rect (lZ ) ® Z o(y — ZZLA,«)}
" !

X Zé(m—nAg,y—mAr—g—L—_;JA—’)} ® s(z,y) (3.13)

s(z,y) = rect (ZT';) cire (27;") | (3.14)

where s(z,y) represents the shape of a recorded pixel (Fig. 3.27). The shift in the

pixel sampling y — (L — 1)A,/2 is to align the sampling array with the grating.
The farfield or Fraunhofer diffraction pattern is then given using Eq. 3.31 as

follows:

o =nteersin - [ (e o)

l

1 - n m
—jrm(L—-1) _ . .
® W E e’ ) (u ——e,v T) }S(u,v) (3.15)

nm

_ dJy(wdp)
=37

S(u,v) ® Agsine(Agpu)d(v) (3.16)

where S(u,v), the 2-D Fourier transform of the shape of the recorded pixel, acts
as an envelope over the entire diffraction pattern. Figure 3.15a and b show the
amplitude and magnitude squared of S(u,v) for patterns recorded at the innermost

and outermost radii on the disk respectively.
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Fig. 3.15 - Amplitude and Magnitude Squared of Diffraction Envelope

We can simplify the Eq. 3.13 by performing the innermost convolution of two

delta functions as follows:

, AN [
o = Z sme | = Joluv— ——
[ 2 _ 2LA,

) n m
D) Z(—l)mu—”b u—EaU“E (3.17)

n,m

n I‘ m(L—1) .
—Zh (L——/S;"L_—?L—LX,. Z (—-1) S11C
nk +2Lm=k

; k . k—2L
:Z» u——%.u—m Z(—l)'””’—”smc —3—'3 (3.19)

nk m

(3.18)

SV
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n k sin (7 A=2Lm)
— 6 A . _1 m(L—l) 2 .2
; <u Ae’v QLAT> zm:( ) Wk—_%—li—m— (3 0)
n k sin (kE)
= 6 _— Y = — —1)y™L-1) Lr)———22 21
> (u Ae,v 2LAT) ;( ) cos(m W)ﬂ_k—QQLm (3.21)
k—1
(D LT (D" ek odd
=4 (=)™ = 2Lm (322)
0 otherwise

Substituting «; into Eq. 3.15, we find the following expression for the far-field

diffraction pattern:

rp—rg 1
2 AgAT

k n k
— — 2
% Za’”‘s < A9 QLAT) o (Ag’ 2LAr> (3.23)

Thus, the expected dlffractlon pattern 1s a series of impulses weighted by both a

P(u,v) = roé(u,v) +

and S(u,v).
Refraction at the air-glass or air-PC interface at the surface of the protective
layer causes barrel distortion of the diffraction pattern. Taking this factor into

account, we find the following pair of equations for the expected diffraction pattern:

ry —rg 1
2 AQA,«

k
Zaké ( ﬂmﬁg ﬁnkQLAr) S(u,v) (3.24)

(@) e

where n, is the refractive index of the protective layer.

P(u,v) =roé(u,v) +

We record the alternating track diffraction pattern with L = 2 and L = 10 at
the inner R = 3 ¢m and outermost R = 6 ¢m recording radii. At the innermost
recording radii, we find that the overlap of the pixels is so great that we can ap-
proximate the recorded pattern by sampling in the across-track direction only. In

this case, the expected diffraction pattern simplifies to the following equation:

T —To

2A,

P(u,v) = rob(u,v) +



- 107 -

(3.26)

ok . .
zk: ( BOkzLAr) 5(U)d31nc(vd) inner
1
Ay

n k dJl(ﬂ'dp)
Zk ( Brkle U ﬁnkZLAr> 2 p outer

Figure 3.16 shows the desired pixel patterns for L = 2 gratings recorded at
both the inner and outer radii. The actual recorded pattern is essentially the same
as the desired pattern except that we cannot record over the embossed timing and

tracking information at the start of each servo-area.

(a) (b)
Fig. 3.16 - L = 2 Diffraction Gratings Recorded on the Disk
at (a) Inner and (b) Outer Radii

Figures 3.17a and b show the expected and actual diffraction patterns for
R=3,6cm and L=2 and 10 respectively. The actual diffraction patterns match
the expected ones pretty well. Notable exceptions are the lines passing through
points corresponding to a continuum of along-track frequencies at the across-track
sampling frequency and its harmonics, and (in the case of the diffraction pattern
from the outer radii) lines corresponding to a continuum of across-track frequencies
at the along-track sampling frequency and its harmonics. These lines correspond to
“noise” in the diffraction pattern nonperiodic along-track and periodic across-track
at the sampling frequency, and nonperiodic across-track and periodic along-track

at the sampling frequency. Potential sources of such noise include track curvature
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and the embossed timing and tracking information as well as the round shape of
the pixels.

Another notable difference between the expected and observed diffraction pat-
terns is the elongated shape of the reconstructed points. This is most likely due to
track curvature. As later explained, one effect of position error due to track curva-
ture is an effective phase error that differs for each diffracted order. For diffraction
in the across-track direction, this phase error corresponds to a cylindrical lens at
the surface of the disk.

We can estimate the diffraction efficiency by taking the magnitude squared of
the coefficient at each diffraction order. For the case of recording at the inner radii,

we can estimate the diffraction efficiency 7y of the kt* order as follows:

d ry— dk
M = |rol?éx + Z;rl 5 2 sinc <2LAT> ak

2

(3.27)

In Tables 3.2 and 3.3, we compare the expected diffraction efficiencies with the
measured ones. Zeroes in the measured efficiency column correspond to no ob-
servable light above background level. We find that although the predicted and
measured diffraction patterns match, the diffraction efficiencies do not match very
well. This discrepancy is mostly attributable to the difficulty in isolating the light
diffracted into each of the closely spaced orders, especially for those orders with

lower diffraction efficiency.

3.3 Parallel Readout Techniques

In this chapter, we consider and experiment with many techniques for paral-
lel readout. These techniques can be divided into two major classes: imaging and
holographic as shown in Fig. 3.18. In imaging parallel readout, data is recorded on
the disk to create a reflectivity pattern that matches as closely as possible, the light
intensity pattern that is desired on the detector during readout. In holographic

parallel readout, the data is encoded in such a way that when written on the disk
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R=3cm

R=6cm

Fig. 3.17a - Expected and Observed Diffraction Patterns for L=2
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R=3cm

R=06cm

Fig. 3.17b - Expected and Observed Diffraction Patterns for L=10
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Table 3.2 - Predicted and Measured Disk Diffraction Efficiencies
for L=2 Alternating Track Grating

Order (k) Nk Nk, meas TIk/Uk,meas
0 5.0e-2
1 3.1e-4 3.5e-5 A1
2 0 0
3 1.4e-4 3.2e-5 .23
4 1.2e-4 1.0e-4 .83
5 1.3e-5 44.1e-4 32
6 0 0
7 6.4e-6 2.5e-4 390
8 2.9e-5 3.3e-4 11

Table 3.3 - Predicted and Measured Disk Diffraction Efficiencies
for L=10 Alternating Track Grating

Order Nk Nk meas ratio | Order Nk Nk, meas ratio
0 5.0e-2 21 3.8e-5 1.3e-4 3.4
1 3.1e-4 0 22 0 0
2 0 23 2.6e-6 1.5e-5 5.8
3 1.4e-4 0 24 0 0
4 1.2e-4 25 5.0e-7 4.1e-6 8.2
5 1.3e-5 0 26 0 0
6 0 27 1.0e-7 1.6e-6 16
7 7.2e-6 3.2e-5 .44 28 0 0
8 0 0 1.3 29 8.3e-9 3.0e-6 360
9 5.2e-6 7.0e-6 1.3 30 0 0
10 0 0 31 7.3e-9 2.8¢-6 380
11 4.4e-6 9.5e-6 2.2 32 0 0
12 0 0 33 6.9¢e-8 2.2¢-6 32
13 4.5e-6 6.0e-6 1.3 34 0 0
14 0 0 35 2.6e-7 2.2e-6 8.5
15 5.6e-6 1.0e-5 1.8 36 0 0
16 0 0 37 9.9e-7 2.4e-6 2.4
17 1.0e-5 2.3e-5 2.3 38 0 0
18 0 0 39 1.1e-5 7.5e-6 .68
19 5.9e-5 1.6e-4 2.7 40 2.9e-5 1.8e-5 .62
20 1.2e-4 4.2e-4 3.5 41 1.3e-5 3.5e-6 27

and presented as input to the holographic reconstruction system, the desired recon-
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struction is also obtained. In the following subsections, we consider each of these

techniques in greater detail.

Fresnel Fourier

IMAGING HOLOGRAPHIC

Fig. 3.18 - Parallel Readout Techniques

3.3.1 Imaging Parallel Readout

In imaging parallel readout, the data recorded on the disk is illuminated and
the reflected light passed through a lens or other optical element before striking the
detector. The lens takes light reflected from each point on the disk and focuses it
onto a single point on the detector. Thus a pattern of light matching that reflected
from the disk strikes the detector.

In encoding the data into a pixel array for imaging parallel readout, we are
concerned with reproducing a reflectivity pattern that matches that of the desired
data as closely as possible. With the Sony write-once disks, two problems become
readily apparent. First, the low contrast between written and unwritten pixels seems
to limit the maximum contrast obtainable in the detected light pattern. Second,
it seems like only binary information can be retrieved from the disks since only
binary pixels may be recorded. As we shall see, each of these problems may be

circumvented through techniques described as follows:

3.3.1.1 RECORDING OF BINARY INFORMATION
Recording of binary information is very simple in an imaging parallel readout

system from the Sony write-once disk. A one- or two-dimensional binary array of
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data may be recorded as a one- or two-dimensional binary pixel pattern, one pixel
for each bit (binary piece of data). If the size of the pixels does not match that
of the individual detector elements, a magnification system may be used to enlarge
the pixel array. If the spacing of pixels does not match that of a 2-D detector
array, either an anamorphic imaging system with different magnifications along the
two axes may be used, or pixels formed in larger groups called superpizels, each

superpixel having the desired pixel shape and spacing.

3.3.1.2 INCREASING IMAGE CONTRAST

For the retrieval of binary information, the low contrast ratio between written
and unwritten pixels may not be problematical given detector elements that can
threshold between the two nonzero values. By modifying the imaging system, how-
ever, it is possible to obtain high contrast images from the disk, thus eliminating

the need for special detectors.

Note that the image recorded on the disk will be a sampled version of the
desired readout pattern. As will be readily apparent from Subsubsec. 3.3.1.4 on
the efficiency of imaging readout, recording of a sampled image on the disk surface
causes diffraction of the reflected light into multiple orders. Assuming that the
desired readout pattern is band-limited, each of these orders will contain complete
spectral information about the desired readout light pattern. However, the back-
ground reflectivity that causes low contrast is not itself sampled in the recorded
image. The background light is thus completely reflected in the zero order and not
diffracted at all. By imaging any or all diffracted orders except for the zero order,
a high contrast output may be achieved. Schlieren imaging is a special case of this
technique where the zero order and all negative (or positive) diffracted orders are

blocked in an imaging system as shown in Fig. 3.19.

In many optical systems, it may be most convenient to simply image a single
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Fig. 3.19 - Schlieren Imaging
track-diffracted order as shown in Fig. 3.20. Figure 3.21 compares the low contrast
image obtained using a conventional microscope image with a high contrast image

obtained by imaging the first track-diffracted order.

Fig. 3.20 - Imaging the First Diffracted Order

Finally, the offending zero order may be blocked using a stop as in the central
dark ground method, or an aperture with oblique illumination as in the darkfield

method.



(a) Microscope Image

(b) First Order Diffracted Image

Fig. 3.21 - Image Contrast Enhancement

by Imaging a Single Diffracted Order
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3.3.1.3 RECORDING OF GRAYSCALE INFORMATION FOR IMAGING READOUT

We have thus far only considered the imaging parallel readout of binary infor-
mation from optical disks. Although the disk is a binary recording medium, it is
possible to retrieve grayscale data (data with more than two possible values) from
the disk. This is achieved by using an array of pixels called a superpixel to encode
each piece of grayscale information. By averaging the binary values of each pixel
within the superpixel, a number of discrete levels equal to the number of pixels in
each superpixel plus one can be encoded. As shown in Fig. 3.22, for example, a

superpixel consisting of an array of 4 x 4 pixels can be used to encode 17 different

o e
£

0 1 2 16

gray levels.

Fig. 3.22 - Superpixels for Grayscale Recording

Averaging over the superpixels may be achieved by defocusing the imaging
system or otherwise blurring the image (Fig. 3.23a), or by using a detector that
integrates over an area corresponding to the size of the superpixel (Fig. 3.23b).
There are many well-established techniques[?®! for encoding grayscale images with
binary pixels..

We have used a simple technique where each piece of data is encoded using an
n X m rectangular superpixel. The number of pixels within the superpixel is chosen
stochastically as follows. If we wish to encode a normalized grey level z € [0, 1], we

write N of the nm pixels where the probability distribution of NV is as follows:
N - { lznm| P = [znm] —znm

[xnm] P = anm — |znm|

(3.28)

The expectation value of N is then < N >= znm. In areas of low spatial vari-

ation, by choosing the number of pixels within each superpixel stochastically, we
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Detector
Array

(a) (b)
Fig. 3.23 - Pixel Averaging Over Superpixels

(a) Blurring or (b) Integrating Detector

automatically render gray scales with more discrete levels by averaging over groups
of superpixels. Figure 3.24 compares stochastic versus fixed choice of pixel number

in rendering an image.

Stochastic Fixed
Fig. 3.24 - Stochastic vs. Fixed Choice of Pixel Number

By stochastically choosing the positions of pixels written within each super-
pixel, we hope to eliminate possible artifacts that are caused by repeatedly using
the same pattern within the image. Figure 3.25 compares stochastic versus fixed
choice of pixel position in rendering a constant grayscale level. Figure 3.26 shows a
picture recorded on the optical disk using 6 x 9 superpixels for 55 graylevels with

stochastic choice of pixel number and position.

3.3.1.4 OprTicAaL EFFICIENCY OF IMAGING PARALLEL READOUT
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Stochastic
Fig. 3.25 - Stochastic vs. Fixed Choice of Pixel Position

In this section, we calculate the expected optical efficiency when reading out
an image in parallel from the optical disk following the derivation in Ref. [21]. We
begin by modeling the amplitude of the reflectivity of the disk surface according to

the following equation:

(z,y) =ro + (r1 — ro) [b(a:,y) Z 6(x —nlg,y —mA)| ® circ(%i)

n,m

+(ra—2r1 +10) Y {[b(w,y)ﬂw ~nle,y = mAr)] @ cire (%) }

X {[b(a:, y)o(z — (n+1)Ag,y — mA,)] ® circ(—z—c—;—)} (3.29)

where r? = 22 + y2, b(z,y) is the desired binary image, Ay and A, the along- and
across-track pixel separation respectively, d the diameter of written pixels, and r,
the complex amplitude reflectively of the disk surface when written : times. The
along-track spacing Ay is a function of the radius R at which the image is recorded.
In this analysis, we ignore the effects of track-curvature.

Because the Sony write-once material essentially saturates after a single expo-
sure to the write beam, ro =~ r1. We simplify Eq. 3.29 by dropping the third term
which accounts for the overlap of adjacent pixels and modifying the shape of the
pixel in the second term to account for the overlap instead. We do this by assigning

to each pixel, half the overlap region with 1ts neighbors as shown in Fig. 3.27. This
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Fig. 3.26 - Grayscale Image Recorded on Disk

changes the shape of the pixel from a cire to a rect x cire. The simplified model of

disk reflectivity 1s as follows:

) = v+ (1= r0) | Haoy) Y- ol = ndgoy —ma,)

n.,m

2”) NES 3.30
cire 4 rec A, {3.30)



Modeled Pixel Shape

Fig. 3.27 - Modeled Pixel Shape

The above equation models the reflectivity incorrectly in areas where an un-
written pixel is adjacent to a written one in the along-track direction. Fortunately,
assuming that the along-track spatial frequencies in the desired image are low com-
pared to the sampling frequency A;l, there will be large clusters of written and
unwritten pixels, and fewer written pixels adjacent to unwritten ones. Thus, the
energy in the error term will be low.

Ignoring constant factors and phase factors, we find the following expected

Fraunhofer diffraction pattern:

I(u,v) = reé(u,v) + (r;y — o)

1 n m
Bu.0)® 5o 36 (u- 50 - zsﬂ
J1(mdp)

X [d— ® Agsinc(&gu)é(v)J (3.31)
2p p2=u2+v2

Note that sampling in the image plane causes diffraction of the image spectrum into
multiple orders. Any imaging system which blocks the zero order will produce a high
contrast output because the pixels sample only the image and not the background-
the term containing ro—whose energy is contained entirely in the zero order.

The fraction H,,, of incident light that goes into the n, m-th diffracted order is
given by integrating the magnitude squared of the appropriate term from Eq. 3.31
as follows:

2

diry —r+0)

Hom = l 206A,
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x // ’B(u - —g;,v -~ —A"—"‘;) Dilrdp) o Agsinc(Agu)6(v)}

P

2

dudy(3.32)

The shape of the written pixels determine the characteristic [J; ® dsinc] enve-
lope which modulates the entire diffraction pattern. Assuming that the image is
sufficiently oversampled by the pixels, the envelope will be nearly constant over the

image spectrum allowing us to simplify Eq. 3.32 as follows:

rl —7r+0) m . |?
nm ~ “"’" d
H AgA, | //lB Ar> dudv
d d
X {_ﬂﬂ_p) ® Agsinc(Agu)é(v):l (3.33)
2 P u=n/lg,v=m/A,

The remaining integral corresponds to the energy in the spectrum of the image
which, by Parseval’s Theorem, is equivalent to the energy in the image itself. Thus,
the fraction of incident light energy that goes into the n,m-th diffracted order is

given as follows:

2
/|b (z,9)|*dzdy ‘;ZJI(de) ® Agsinc(Azu)d(v) (3.34)
p

ry —

A(;A

Hnm ~

Defining useful light as the total energy going into image spectra of all orders,

we calculate the fraction of useful light contained in a single diffracted order as

follows:
d Ji(mdp) ; 2
Hnm _ |_______p___ ® AQSIHC(AOUJ)(S(U)I n/Ae,vzm/A,. (3'35)
n;n’ Hpr ld J1(7rdp ) ® Agsinc(Agu')o(v' )’ RPN ;

The denominator is the sum of the squares of the Fourier series coefficients
of an image with every pixel written with unity amplitude, and thus equivalent by
Parseval’s Theorem to the fraction of disk area written when all pixels are recorded.
This fraction varies between 0.877 at the innermost radius to 0.785 at the outermost

radius. We can thus simplify the equation for useful light in a given diffracted order
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as follows:

2

. lg DEd0) @ Apsine(Agu)é(v) (3.36)
o 3.36
n%: Hpy Z}LAT _AA"ﬁZ fA’{izlmrc (3 rect (& ] dzdy
2
lg;h_(%@ ® Agsine(Agu)d(v)
_ (3.37)

1 d*> 1A _ A
AoA, [moarsm ( d )+ a1 d}

The equations derived in this subsubsection can be used to estimate the diffrac-
tion efficiency of an imaging system that captures any or all of the diffracted orders.

For example, for imaging the first track diffracted order, the fraction of incident en-

2
L —Tg

ergy in the first diffracted order is A A

where we find the third term by sampling

the envelope of Figs. x and y at the point corresponding to the diffraction order.

r1—7To
AOAT

For our system

= .114%. So .1% of the fraction of the incident light will

be diffracted into the first track diffracted order.

3.3.2 Holographic Parallel Readout

In holographic parallel readout, the data recorded on the disk is illuminated
and the reflected light strikes the detector after passing through an optical system.
In general, in order to be considered a holographic system, the recorded data must
contain both phase and amplitude information about the wave that reconstructs the
desired output pattern. This information is often stored in a medium that in and of
itself cannot record both phase and amplitude information. The first demonstration
of imaging by reconstructed wavefronts, or optical holography, was by Gabor(?? in

1948. There are many good references on holography(23:241,

3.3.2.1 GABOR HOLOGRAM

Given the complex wavefront U(xz;,y; ) at a plane z = 0, the following equation

can be used to calculate the diffracted wavefront U(zg,yo) at a distance z from the
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original in the Fresnel diffraction regime:['®]

Jjkz
€ 61 2z(z0+y0)

U(TOvyO)

// z1, yl 6]22( 1+y1)e J,\Z(xozl+yoy1)dxldw2 (3.38)

In Gabor’s experiment, he recorded the wave transmitted by a semitranspar-
ent object as shown in Fig. 3.28. Assume that the light transmitted by the object
can be modeled by Eq. 3.39 where B(z,y) is the pattern of the complex wavefront
diffracted by the object and A is the complex amplitude of the planewave of coher-
ent monochromatic radiation transmitted by the object. Equations 3.40-3.42 give
the field amplitude at a distance zo from the object. The intensity pattern is given
by Eq. 3.44. If we place a linear recording medium at this point with transmittiv-
ity proportional to the intensity pattern, we will record a Gabor hologram of the

wavefront at zg.

Uz,y,z2 =0) = A+ B(z,y) (3.39)
U(d',y' 2 = 20) = A"+ B'(2",y') (3.40)
A’ = Aelk=o (3.41)

eikzo 2 2

B = Azg o € !
// (z y)e] 755 (2% +y?) eI 3z (zz +yy’ )da:dy (3.42)
I(a',y',20) = [|A" + B'(z',y")I)? (3.43)
= ||A'|]> + A*B' + A'B” +||B'|? (3.44)

If we illuminate the hologram with a planewave A', the wave transmitted by
the second term will be ||A'||*B'(2’,y'), a reconstruction of the recorded wavefront.
If we propagate the light transmitted by the third term through a distance zy, we

get the following expression for the amplitude:
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Fig. 3.28 - Recording and Reconstructing an On-Axis Hologram

Us(:v"’y”,zZon) A" ! jzzo(xn2+ ”2)// —izs (27 +y"?)

/\20)2
// (2,y)e —j g (2% +y )ef%(“”fyy')d:cdy
( 1242y -—] %‘1(2 " +yly”)d(1,' dy (345)
= A?B*(2"y") (3.46)

which except for conjugated phase is a reconstruction of the original object. A
problem with the Gabor hologram is that all four terms of the transmitted light
overlap along the optical axis as shown in Fig. 3.28. This means, for example, that
if we would like to reconstruct an image on a detector, it would not only detect
the desired image, but also a planewave, a diffracted version of the image, and a

crossterm.

3.3.2.2 LEITH-UPATNIEKS HOLOGRAM

The crosstalk problem of the Gabor hologram can be circumvented by modifi-
cation of the architecture used to capture the hologram as shown in Fig. 3.29. In the
Leith-Upatnieks hologram, a coherent reference wave strikes the recording medium
at an angle relative to the optical axis defined by the medium and the object. We

can thus refer to the Leith-Upatnieks hologram as an off-axis hologram in contrast
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to the on-axis Gabor hologram. The equations describing off-axis holography are
essentially the same as those used to describe on-axis holography, except the ref-
erence wave propagates in a direction with an angle  from the optical axis. If we
-orient the ' — y' coordinate system such that the optical axis and the direction of
propagation of the reference wave are in the 2’ — z plane, we can replace the A’ of

the on-axis equations with A'e/*= ' where k, = ksiné for small 4.

- i
g e Y
i eyl
\ ) Holographic Leith-Upatnieks f-
Recording I Hologram
Medium i . :
. Virtual Real
Object TImage Image
RECORDING RECONSTRUCTION

Fig. 3.29 - Recording and Reconstruction an Off-Axis Hologram

The intensity pattern recorded in the holographic medium will then be given
by Eq. 3.47. If we illuminate this with an on-axis plane wave C, the second term
again produces a reconstruction (Eq. 3.48) of the original wavefront at an angle —6
with the optical axis. The third term produces a reconstruction (Eq. 3.49) of the
original object centered at an angle 6 from the optical axis. If we choose 8 large
enough, we can separate the reconstruction of the original wave, that of the object,

and the planewave and self-intereference terms, from one another.

Ua',y', 2 = z0) = [|A"||* + A*B'e™%=" 4 A'B"*e/%=" 4 ||B'|? (3.47)
Uy(a',y',z = z) = CA*B'(2',y')e k="’ (3.48)

Us(a",y", 2 = 2z9) = CA'B(2" — 2zsin,y") (3.49)
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If we consider the impulse response of the Leith-Upatnieks recording architec-
ture, given an impulse B (Eq. 3.50), the resulting hologram will be given by Eq. 3.51.
This corresponds to a Fresnel zone plate, which acts like a lens with focal length
zg centered at (z¢ + zosind, yo). We thus see that the Gabor and Leith-Upatnieks
holograms act to generate a superposition of Fresnel lenses, each corresponding to
a point in the object and focusing the plane reference wave to a point in the real

image. We thus call these recordings Fresnel holograms.

B(z,y) = é(z — 20,y — yo0) (3.50)
2|A'
U,y 2 = z0) = AN + 28 cos | (27 — (0 + 205n8))? + (' — v0)?)
)\Zo /\Zo
) sinZé m 1

3.3.2.3 FOURIER TRANSFORM HOLOGRAM

A spherical lens can be used to generate the 2-D Fourier transform of an object
if placed in the proper configuration. We can approximate a thin spherical lens with
focal length f as a transparency with the transmittance function in by Eq. 3.52.
Note that a planewave incident on the lens will be converted into a converging
spherical wave upon transmission through the lens. If we place the object one focal
length in front of the lens and calculate the field a focal length after the lens, we
will find that the field in the back focal plane is the exact 2-D Fourier transform
of the field in the front focal plane. Specifically, given the field B(z,y) in the front

focal plane, Eq. 3.53 gives the field in the back focal plane.

t(z,y) = e FIr (YD) (3.52)

jzkf aw |
Ula',y', 2 = 2f) = —e% //B(x,y)e"fvm 99 dzdy (3.53)
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A Fourier transform hologram may be recorded, as shown in Fig. 3.30, by plac-
ing the object in the front focal plane of a spherical lens and placing the recording
medium in the back focal plane, and interfering the resulting 2-D Fourier transform
of the object with an on- or off-axis planewave. By illuminating the hologram with
a planewave, we can reconstruct the original wavefront representing the Fourier
transform of the desired object, its conjugate, as well as the magnitude squared
of the transform and reference beams. If we pass the reconstructed waves through
another spherical lens in the Fourier transforming geometry, the original Fourier
transform will reconstruct an inverted image, the conjugate of the transform will
reconstruct the original image, the DC will reconstruct a planewave, and the final

term will construct an autocorrelation of the object.

Reference
Wave
A
Y
: : — = : |
F F F F
Holographic
Object Fourier Recording Fourier Transform Fourier Reconstructed
Transforming Lens Medium Hologram Transforming Lens Object
RECORDING RECONSTRUCTION

Fig. 3.30 - Recording and Reconstructing a Fourier Transform Hologram

3.3.2.4 CoMPUTER GENERATED HOLOGRAM

In all the holographic techniques that we have discussed thus far, we have as-
sumed that the desired complex wavefront has been generated by a real object and
interfered with a reference wave in order to capture both amplitude and phase infor-

mation in a series of fringes. This pattern of fringes can then be faithfully recorded
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in a medium which stores continuous amplitude-only information. With the advent
of powerful digital computers, it is now possible to calculate the fringe pattern that
would result from interference between arbitrary waves. These fringe patterns can
then be recorded in a number of computer accessible media to produce holograms
of objects. Some advantages of these computer generated holograms (CGHs) are
as follows: unlike photographic films in conventional holography, for instance, the
media used for CGHs typically require no processing; and the objects that generate
the wavefronts to be recorded need never actually exist physically. Media, such as
the SONY optical disk, for recording CGHs are typically binary and often pixel-
lated. Brute-force hard-thresholding of the desired analog fringe pattern to produce
binary fringes often introduces a great deal of noise into the reconstruction; opti-
mization techniques may however be introduced while calculating binary fringes on
the computer that reduce the effect of this noise in the desired reconstruction.
The first CGH was described by Brown and Lohmann in 1966 for spatial fil-
tering applications.(?S] In this type of hologram, the hologram itself is divided into
cells of width A, and height A, as shown in Fig. 3.31. Within each cell is placed
an aperture of height h,, and width w. The aperture is centered at coordinates
(z = nA; + pam,y = mAy). Each cell is responsible for encoding the amplitude
Apm and phase ¢p,p, at its center (z = nA,,y = mAy,). In the Lohmann hologram,
hnm and p,,, are chosen using A,m, and ¢, respectively, thus encoding the phase

and amplitude as follows:

Anm
hnm = 1 Ay (3.54)
maxr
_ bom
Pnm = 2—7r]\—/[— T (355)

where M is a positive integer. We can then model the transmitance of the recorded

hologram, and Fourier transform thereof using the following equation:

G Al'_ nm - A
t(x,y):Zrect(T " P ,y m y) (3.56)

w Prm

n,m
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T(u,v) = Z whymsine(wu, hmnv)e_ﬂ"(“("Az —Pnm)tomAy) (3.57)

— Z[ "m eI Uz ¢nm/MA

sinc(wu, hnmv)e—j2"(“"A*+”mAy)} (3.58)
M ! . 'LDAy j(¢nm+ulAa:¢nm/M) 3 M !
T (Az +u ,v) = ;[Anme sinc | w AL +u ), hemv
e—-jzw((g—’w+u’)nA$+vay)jl (3.59)

The zeroth order term around v’ = v = 0 is given by the following equation:

M A .
T (AI + u,,v> _ Z’ Y sinc <w-f—x,o> ;Anmewm (3.60)

max

This corresponds to the pattern that we wish to record. Because the lateral position
of the hologram encodes the phase at the center of the superpixel, this type of

hologram is called a detour phase hologram.

Pam

Fig. 3.31 - Lohmann Hologram

Lee developed another CGH,!?®! often implemented in detour phase form, in
which the complex amplitude A,me®™ at the center of each superpixel is decom-
posed into nonnegative components along four basis vectors {1,7, —1, —i}. As shown
in Fig. 3.32, the superpixel itself is laterally divided into four regions each repre-

senting one of the basis vectors and containing a centered aperture whose height is
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proportional to the contribution of the basis vector that it represents. At most, two
of the regions will contain apertures of nonzero height. Other detour phase CGHs

have been proposed?"28 in addition to the Lohmann and Lee holograms.

Im
A

Re{A} Im{A} Re

1 i -1 i

Fig. 3.32 - Lee Hologram

Lee was also responsible for developing a nondetour phase hologram in 1979.[29]
In this method, the CGH is calculated placing fringes as if actually interfering the
desired wavefront with a reference beam. The Lohmann method may be modified by
positioning the aperture so that it encodes the phase and amplitude at the center of

the aperture instead of the center of the cell.[3%]

Lee’s original method was actually
proposed in a nondetour phase form with the the height of each aperture encoding
the magnitude of the component at the center of each aperture instead of the center

of the cell. In Burch’s method,®!! each cell contains a square aperture with area

proportional to the value of the following function sampled at the center of the cell:
1
T(z,y) = 5 [1 + Az, y)eos (2muz — ¢(z,y))] (3.61)

Effectively, the desired wavefront is placed on a carrier, combined with its conjugate
to make it real, then added to a bias to make it positive-real. Other nondetour phase
CGHs have been proposed®? in addition to those mentioned here. For a historical
review of CGHs, see the Ref. [33].

Because the CGH generation techniques described above are deterministic in
nature, it is possible to compare them on the basis of bandwidth, efficiency, signal-
to-noise ratio (SNR), etc.. In Ref. [34], these are compared with an eye to electron-

beam fabrication of computer generated holograms. A typical e-beam hologram has
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a space-bandwidth product of 10!°, a feature size of 1/2 ym, and placement resolu-
tion of .1 ym. These numbers are comparable with those of the optical disk. Optical
efficiency and signal-to-noise ratio are image-dependent, but under the assumption
of a planewave hologram for efficiency and a uniform random amplitude and phase
distribution for SNR, Farhoosh, et al., concluded that the non-detour Lohmann
hologram was optimal in terms of bandwidth and efficiency, and the Burch in terms

of SNR.

Many of the above approaches, though originally designed for spatial light mod-
ulators with a continuum of sizes and positions of the apertures, can be extended
to SLMs like the optical disk which have discrete pixel locations. In this case, an
array of pixels or superpixel is used to represent each cell. A group of pixels within
the superpixel is then turned on in each cell. The number of pixels turned on, and
their position, are chosen to best approximate the size and position of the aperture.
The total SBWP used on the SLM is Ny NyM,M,, where N;N, is the number
of samples in the desired wavefront (N, and N, being the number of samples in
the z— and y—dimensions respectively) and M, M, is the number of pixels in each
superpixel (M, and M, being the number of pixels in the z— and y—dimensions

respectively).

The approaches described thus far can be considered cell-based. There exist
another group of so called pixel-based approaches. In a pixel-based approach, the
N3 x Ny field of samples and its conjugate would be embedded in an N, M, x N, M,
array of zeroes. This zero-padding operation has the effect of interpolating a new
set of points in the transform domain, while the addition of the conjugate insures
that the transform takes on only real values. If a unipolar SLM is used, a DC
bias is added to the transform which contributes to a single “DC” pixel in the
reconstruction. Because many spatial light modulators are binary in nature, a

variety of techniques have been proposed for encoding the analog real transform
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into a binarized representation. If we simply threshold the hologram to binarize
it, we typically introduce quantization noise spread throughout the reconstruction.
It would be desirable, however, to push the quantization noise out of the area

containing the reconstructed wavefront and into the zero-padding area.

One distinct advantage of the pixel-based techniques is that they reconstruct
fewer reconstruction-conjugate pairs. Because cell- or superpixel-based techniques
have larger pixels corresponding to a lower sampling frequency, they will generate
M, M, reconstructions for every one generated by pixel-based techniques thus giving
pixel-based techniques a higher diffraction efficiency. In addition, pixel-based tech-
niques provide the zero-padding area into which quantization noise can be pushed

through optimization techniques yielding higher SNRs.

Iterative quantization is one pixel-based technique that has been proposed.[*°]
In iterative quantization, we repeatedly transform between the reconstruction and
hologram planes, imposing a different set of constraints in each domain (Fig. 3.33).
When we transform to the hologram, we convert the continuous analog values
therein into discrete quantized values. When we transform to the reconstruction,
we set the values of the reconstructed points to their desired values, leaving the
values in the zero-padded regions alone. Because we often care only about the mag-
nitude and not the phase of the reconstruction, we often set only the magnitude
of the reconstructed points to their desired values leaving the phase alone. The
unspecified phase provides us with an additional degree of freedom that can be
used to generate a hologram with higher efficiency or SNR. In other methods, a
random phase is often imposed on the reconstruction in order to reduce the DC
component in the hologram, because if we use a constant phase in the reconstruc-
tion plane and an SLM with limited dynamic range, we are often forced to choose
between faithfully representing either the DC peak or the rest of the reconstruction

frequencies—either case yielding a distorted reconstruction. Although the random
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phase allows us to more faithfully represent all the frequencies, it is often undersam-
pled resulting in a noisy reconstruction. This noise takes the form of bright spots
in dark regions and dark spots in bright regions called speckle. However, because
the magnitude is controlled in iterative quantization, the resulting phase generates
much less speckle-type noise. The basic iterative quantization problem has been
found to have a problem in that it can become stuck in an unsatisfactory solution.
It has been found that these “stuck-states” are the result of the hard quantization of
values near decision boundaries. Wyrowskil®®! has proposed a technique that begins

with a soft threshold that becomes harder as the number of iterations increases.

Desired FFT Desired
Reconstruction Hologram
Magnitude Magnitude
Correction Quantization
Current IFFT Current
Reconstruction Hologram

Fig. 3.33 - Tterative Quantization

Error diffusion is another technique, popular for binarization of images, that has

[37) In error diffusion, the entire hologram

been applied to binarization of holograms.
is scanned pixel by pixel. Each pixel is hard-thresholded, and the resulting error
between the desired and thresholded-values is used to adjust the desired values
of unthresholded neighbors. By choosing the way in which error is assigned to
neighboring pixels, one can choose the way the resulting noise is directed in the
reconstruction.

In the direct binary search (DBS) technique,!*®! a random hologram is initially
chosen and scanned pixel-by-pixel. Each pixel is individually flipped and the re-

sulting reconstruction compared to the original. If the error in the reconstruction

is reduced, the change is kept; otherwise, the pixel is flipped back. This process
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is repeated until the entire hologram is scanned with no flips thus converging to
a locally optimum hologram. Because we are flipping only single pixels and are
interested in the result only in a window of the reconstruction, one can calculate
the result of a flip more efficiently by direct calculation in the window instead of

applying an FFT to the entire hologram.

A variation of DBS is akin to simulated annealing in that pixel flips that in-
crease error are kept probabilistically with lower probability the larger the error
and the lower the system temperature. The temperature follows a cooling schedule
that starts at high temperature and drops monotonically to a lower temperature so
that initially almost all changes are kept, but later only those that reduce the error
are kept. As in simulated annealing, we expect that with the appropriate cooling
schedule, the final hologram might converge to the global optimum with probability
approaching unity. If there are many local optima of similar quality to the global
optimum, the iterative technique will more quickly converge to a good hologram.
However if there a very few local optima comparable to the global optimum, the
simulated annealing method may be desirable. Seldowitz, et al., have found that
the resulting holograms from the DBS and simulated annealing algorithms are of
similar quality.

In measuring the error between the actual and desired reconstruction, there is
an arbitrary scale that corresponds to the diffraction efficiency of the final hologram.
This scaling factor can either be set a prior: thus imposing a desired diffraction
efficiency, or it can be adjusted dynamically at any point in the algorithm to most
closely match the current and desired reconstructions. Although one expects a
tradeoff between efficiency and SNR, Seldowitz, et al., have found that dynamic
adjustment of efficiency achieves maximum SNR; one can achieve a higher efficiency

at the cost of lower SNR, but one gets lower SNR by lowering efficiency further.

Finally, Kobayashi has proposed a techniquel®® similar to DBS but cast in
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the form of a Hopfield-style network as follows. Let G, represent the desired
reconstruction and U,,, the actual reconstruction of the binary hologram tu,y.
Because we do not care about the light outside the reconstruction region, we define
a window Wy, equal to 1 in the region of interest and 0 outside. The window
function may be chosen to have a soft transition at the boundary. We define the

following reconstruction error:

E=) ||Gmn — aWnnUnmall? (3.62)

mn

where « is proportional to the desired hologram diffraction efficiency. By Parseval’s

theorem, this energy can be rewritten as follows:

2
E = z <gmn -« Zuklwm—k,n—l) (363)
mn kl
= (g%n — 20gmn SN wkiwm ko
mn kl

-+ a? Z Z K)\uklwm—k,n—lux)\wm——n,n-——/\) (364)
kl
1
=-3 Z Ukt ATkt o) + Zuklsz +C (3.65)
kl£KA ki
=202y Wk Wm—nnx k] # KA
T o = mn m—kn—1IWm—x n-X 3.66
Kl {0 kL= K\ (3.66)
Ikl = —Zngnwm-—k,n—-l (367)
C=a>Y"Y Wiyt Ghn (3.68)
kil mn mn

The error can thus be viewed as the energy of a Hopfield network (Subsec. 1.5.13)
with the hologram represented by the state of the neurons, the connections derived
from the window function, and the input derived from the window and the desired
reconstruction. Since T is symmetric with zero diagonal, the state of the network
will converge to a local minimum of the energy function. Like Seldowitz, Kobayashi

found that there exists a hologram efficiency a corresponding to a maximal value
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of SNR. Although Kobayashi’s technique and DBS are quite similar, Kobayashi’s
technique 1s in a form suitable for efficient implementation on a neural network

parallel processor.

3.3.2.5 FRESNEL HOLOGRAMS ON DISKS

A number of authors[10—14]

have proposed utilizing holographic storage of in-
formation on optical disks. The use of diffraction patterns on optical disks to scan
a laser beam to read Universal Product Code information in supermarket check-
out stands is actually in commercial use. We have successfully recorded a number
of CGHs on our disks. Seiji Kobayashi, a visiting researcher in our group, was
primarily responsible for the development of holographic readout techniques.
Figure 3.34 shows the reconstruction of a Fresnel hologram of the names “Sony”
and “Caltech” recorded on a write-once optical disk. This hologram was calculated
by entering and recording the positions of a series of discrete points tracing out the
two names. The calculated Fresnel diffraction pattern at a focal length of 10 cm
was then sampled and thresholded to generate a 1024x1024 pixel fringe pattern.
This pattern was then recorded on the disk. The hologram was reconstructed
by illumination with a raw HeNe laser beam passed through a hole in a planar
screen placed 10 ¢m from the disk surface. A component of the reflected light
then generates a reconstruction of “Sony” and “Caltech” at the screen. Figure 3.35

shows the reconstruction of a Fresnel hologram of the acronym “CIT” recorded on

a magnetooptic disk.

3.3.2.6 FOURIER HOLOGRAMS ON DISK

Figure 3.36 shows the reconstruction of a Fourier Transform hologram of a
cartoon chicken recorded on the optical disk. This chicken was entered on a 64 x 64
grid of points. A random phase was superimposed over the image to reduce the

DC peak. An FFT of the data is used to transform the data into its Fourler



Fie. 3.34 - Reconstruction of Fresuel Hologram of Recorded on Write-Ouncee Disk

Fie. 3.35 - Reconstruetion of Fresnel Hologram Recorded on Magnerooptie Disk

represeutation. Each complex element in the FET is recorded ina 4+ 1 superpixel
that represceutrs 9 ditferent possible combinations of sanplitude and phase as shownin
Fig. 3.37. The entire hologram is repeated twice m cach direction during recording
ro generate more fightly focused spots m the reconsrrnenion.

A cartoon shorr 16 frames long. wirth the chicken laving an eog which hatches
and erows into o chicken is recorded on the disk. The holoeranis for cacly frame are

recorded side-hy-xide ar the same vadius on the disk. When a laser heamn strikes
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Fig. 3.37 - Fourier Hologram Superpixel

the disk at that radius. with the reflected light passing through a Fourier transform

lens and the disk spinning, the cartoon short is reconstructed.

3.3.2.7 KoBayasHl HOLOGRAM ON DIsK
Figure 3.38 shows the reconstruction of another Fourier Transform hologram
of the cartoon chicken recorded on the optical disk. In this case. the pixel-based

Kobayashi technique was used.
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Fig. 3.38 - Reconstruction of Kobayashi Hologram

3.3.3 Alignment Considerations During Parallel Readout

Alignment essentially consists of tracking (radial alignment) and timing (az-
inuthal alignment) considerations in a disk system. Ideally, once the detector has
been aligned with a certain track with the disk spinning at a constant velocity, the
data recorded on that track should automatically become aligned with the detec-
tor at certain predictable times. Unfortunately, nonidealitics such as disk center
offset, disk wobble. etc., make this idealistic alignment rather unachievable. Here,
we consider a number of these nonidealities and their effects in the various readout
systems.

The difference between the center of recorded data on the disk and the disk
rotational center 1s called disk center offset. The specification for disk center offset
in the SONY disk system is a maximuin of 70 jun. As the disk rotates, then, a
detector at a fixed position would see a variation of £70 pm in the radial position

of a block of data on the disk.
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Disk wobble is a measure of the angle between the detector and disk data
planes. Surface irregularity and improper seating can cause disk wobble. The
specification for disk wobble in the SONY disk system is a maximum of .6 °. Disk
wobble introduces a deviation in the propagation direction of light diffracted from

the disk.

The area on the disk from which we read information out in parallel can be
misaligned with the detector or head. As shown in Fig. 3.39, we can have four
basic types of misalignment: rotation, translation, focusing, and tilt. If we define
the optical axis of the system as the line passing through the center of the detector
and normal to its surface, rotation is measured by an angle ¢ around the optical
axis. Translation 6, measures the offset of the center of the information on the disk
from the optical axis. Focusing error §, measures the offset of the center of the
information on the disk from its intended location along the optical axis. Tilt 6
measures the angle between the normal of the surface on which the information is
recorded and the optical axis. In the following section, we examine how each of these
errors in alignment distort the readout image or reconstruction. This distortion
takes a number of forms: rotation, translation, defocusing, spatial distortion, and
phase distortion. Rotation ¢' of the readout data is measured around the optical
axis. Translation 6, is measured from the center of the detector. Defocusing is
measured by a spot size 8 larger than the diffraction limit. Spatial distortion is
measured by A',, twice the distance between the center and edge of the readout

data. With intensity-sensitive detectors, we ignore phase distortion.

Consider the geometry shown in Fig. 3.40, for an imaging readout system.
There is a detector of width Ap and an imaging lens with focal length F' and
aperture A placed a distance s; from the detector. The image recorded on the disk
has width A; and is supposed to be a distance s, from the information recorded

on the disk with width A;. We must choose the system parameters such that the
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Fig. 3.39 - Optical Disk - Neural Network Chip Misalignment
following imaging condition is met:

1 1 1

So Si f

In this case, we have a magnification M = s;/s, between the information on the disk
and the detector. Assume that the magnification is chosen such that the recorded

information is imaged exactly onto the detector such that Ap/Ar = M.

Detector

Imaging Lens

Image

Fig. 3.40 - Alignment Considerations for Imaging Readout

Rotation of the recorded information through an angle ¢ results in an equal
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rotation of the readout pattern ¢' = ¢. Translation of the recorded information by

0, results in a magnified translation of the readout data by 6, = (s;/s,) * 6;.

From geometric optics, we see that an offset of the recorded data from the
object plane by a distance 6, results in a change in magnification and in spot size.
Magnification changes to s;/(s,+6.) = M(1—6./s,) such that A’y = (1-6./s,)Ap.
As the object distance s, changes, the image distance s; changes as follows: ds; =
—(8i/80)*ds,. According to geometric considerations, light that passes through a
lens of aperture A to form a point in the image at distance s;(A + ds;) from the
lens will form a spot of size A|ds;|/s; = A(s;/s%)|6.| at a distance s; from the lens.
Although the spot size is diffraction limited for very small sizes, as the imaging
system deviates from the ideal, geometric considerations begin to dominate.

As the object plane tilts, the imaging characteristics change due to two con-
siderations. First, points in the object plane experience a change in effective object
distance. Second, is the change in effective spacing in the object plane as the view-
ing aspect changes (a tilted square looks like a rectangle). The former is a first order
change whereas the latter is a second order change dependent on the tilt angle 6.
The maximum deviation due to focusing error is at the edge of the object plane
and given by £(A7/2)6 yielding maximum spot size (AAp/2s,)|f| and maximum
distortion (1 £+ (A76/2s,))Ap.

Next, consider the Fresnel holographic system of Fig. 3.41. We have a Fresnel
reflection hologram of size Ay and focal length F. Upon illumination, the hologram
reconstructs an encoded pattern of size Ap onto a detector of equal size. A rotation
of the hologram by ¢ produces an equal rotation of the reconstruction ¢' = ¢. A
translation of the hologram by 6, produces an equal translation of the reconstruction
by 6! = 4,.

As in the imaging case, a focusing error (translation of the hologram along

the optical axis) results in both a change in the scale of the reconstruction and
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Fig. 3.41 - Alignment Considerations for Fresnel Holographic Readout

an increase in the spot size. In many ways, we can treat the Fresnel holographic
system the same way we treat the imaging system if we replace the aperture A
of the imaging system with the hologram size Ay and the image distance s; with
the focal length F. In addition, we must add the focusing error §, to the image
distance s; instead of the object distance s,. Once again using geometric optics, we
find that scale of the reconstruction changes to Ay = (1 +6,/F)Ap and the spot
size 6, = (Au/F)|b.].

In the Fresnel holographic system, tilt of the hologram results in the reconstruc-
tion of a tilted object. As in the imaging case, this tilt results in image distortion
and spot size bounded by those corresponding to a focusing error in the object
plane of (Ap/2)§. Using this measure in the equations for focusing error in the
Fresnel system, we find distortion A, bounded (1 + (Ap8/2F)Ap and spot size
6, < (ApAp/2F)|6|. In addition, reflection in the Fresnel holographic system
results in a translation of the reconstruction corresponding to §, = 2F4.

Finally, we consider the Fourier holographic system of Fig. 3.42. We have
a Fourier transform hologram of size Ay placed a focal length F in front of a
spherical lens. Upon illumination, the system produces a reconstruction of size Ap

on a detector of equal size placed a focal length F' behind the lens. As described
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in Subsubsec. 3.3.2.3, the reconstruction corresponds to the 2-D Fourier transform
of the hologram. A rotation of the hologram by an angle ¢ produces an equal
rotation of the reconstruction ¢' = ¢. A translation of the hologram corresponds
to a phase variation in the reconstruction with no change of the intensity pattern.
Likewise, a focusing error (translation along the optical axis) also results in phase-
only variation in the reconstruction. In fact, even tilt of the hologram does not
create the distortion and spotsize problems in the imaging and Fresnel holographic
systems. As in the Fresnel system however, tilt of a Fourier hologram by an angle
6 produces a translation of the reconstruction by a distance 8!, = 2F6.
Ap

—
Detector ;F:'
7 ¢

4,

Fourier
Transforming Lens <X>

F

0
Fourier Transform \A 35,
[
o

T'n/

Hologram
X
Ay

Fig. 3.42 - Alignment Considerations for Fourier Holographic Readout

It was not obvious to us at first that rotation of the disk would lead to motion in
the reconstruction. Fig. 3.43 shows a series of double exposures of reconstructions
from a hologram on the disk with reconstructions from the same hologram with
different amounts of disk rotation. As the figure shows, rotation of the disk leads
to rotation of the reconstruction and thus misalignment between the reconstruction
and a detector. Fig. 3.44 shows the measured rotation of the reconstruction ¢’
versus rotation of the disk ¢ and confirms that ¢’ = ¢.

Table 3.4 summarizes the errors caused by the different forms of misalignment

with resulting limitations in imaging, Fresnel, and Fourier holographic systems.
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Fig. 3.43 - Effect of Disk Rotation on Fourier Hologram Reconstruction

We now consider how different forms of misalignment affect the parallel readout
of information in disk systems. Disk center offset, disk wobble, etc. can be broken
down into effective rotation, translation, focusing, and tilt errors of the disk surface
that the tracking system must accomodate at a rate less than the readout rate. In
addition, rotation of the disk results in rotation and translation errors that must
be accomodated with a time constant corresponding roughly to the pixel rate.

Rotation, translation, and distortion of the readout pattern all contribute to
translation of individual pixels of the readout. When this translation exceeds one-
half the size of a detector, we assume that we can no longer read out the information.
Alignment in the azimuthal direction is handled by proper timing operation of
the light source and/or the detector. Rotation of the disk causes rotation and
translation of the readout image and a dwell time during which the readout pattern
may be aligned with the detector to within one-half the size of a single detector
element. In an imaging system, the dwell time corresponds to the time it takes
the disk to rotate half the size of a pixel or superpixel recorded on the disk. In a
Fresnel holographic system, the dwell time corresponds to the time it takes the disk

to rotate half the size of a detector element. In a Fourier holographic system, the
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Table 3.4 - Misalignment in Parallel Readout From Optical Disks

Imaging Fresnel Fourier
o' ¢ ¢ o
o' 2L, o, +2F6 2F6
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dwell time corrsponds to the time it takes to rotate the disk sufficiently to cause
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an effective translation of a reconstructed pixel through a distance corresponding
to one-half the detector spacing. If the hologram is small enough in a Fourier
holographic system, the dwell time will be limited by the time it takes to rotate
through the hologram instead of misalignment due to rotation. For the Sony disk
system, misalignment due to rotation can be ignored for Fourier holograms up to 300
pixels on a sidel?!]. Table 3.5 summarizes the dwell time estimates for the various
parallel readout techniques where the reconstruction has N, x N, pixels, ny x n,

pixels on the disk are used to encode each pixel of the reconstruction, Ay x Ay is

the size of a detector element, and omega is the angular velocity of the disk.

Table 3.5 - Dwell Time for Parallel Readout

Readout Scheme Dwell Time
Imaging ”;TAR"
Fresnel 2%51

Fourier (Misal. Ltd.) — \/(NIA:‘;HMAN
Fourier (Hol. Size Ltd.) e leBo

Assuming n,=10, N, = N,=100, and A, = A, = 50A¢, the Fourier hologram
will be misalignment limited, and Fourier readout will provide a dwell time twice
as long as does imaging readout and 10 times as does Fresnel. If we use a pulsed
illumination system, this dwell time corresponds to the maximum pulse-width and
time resolution of the optical source. If we use continuous illumination, the dwell
time corresponds to the maximum amount of time that we can guarantee valid
readout from the detector elements.

Because radial alignment is handled through mechanical motion of the detector
in current systems, the radial speed of the disk must be significantly lower than the
azimuthal speed. Assuming that translation and tilt misalignment are dominated
by disk center offset and a uniform tilt of the disk surface, we find that the maximum

translational misalignment speed is on the order of 4véy, twice the maximum disk



- 148 -

center offset times twice the disk rotation rate v, and the maximum time derivative
of tilt is on the order of 4v6y, twice the maximum tilt times twice the rotation
rate. Using Table 3.4 with these estimates, we can find the maximum translational
misalignment speed of the readout pattern. In an imaging system, the maximum
readout translational misalignment speed corresponds to the maximum translational
misalignment speed of the disk times the magnification. In the Fourier system, it is
twice the maximum time rate of tilt times the focal length. In the Fresnel system, it
is the maximum translational misalignment speed plus twice the maximum time rate
of tilt times the focal length. Table 3.6 summarizes the translational misalignment

speed estimates for the various parallel readout techniques.

Table 3.6 - Translational Misalignment Speed for Parallel Readout

Readout Scheme Trans. Mis. Speed
Imaging 4(s;/3,)vb0
Fresnel 4vbg + Svby F
Fourier vy F

Assuming 100 x 100 readout pixels with 1000 x 1000 holograms, detectors with
50pum spacing, we need to use F = 50mm in the Fresnel and Fourier systems.
Using the parameters for the Sony system, the imaging system has one fourth the
translational misalignment speed of the Fourier system and one fifth that of the
Fresnel system.

Although we would like to minimize misalignment in both azimuthal and radial
directions while using the least disk space possible, translation is more critical in
the radial direction while disk space is more critical in the azimuthal direction.
Translation is more critical in the radial direction because it requires mechanical
motion of the head versus the simpler timing adjustments required for azimuthal
alignment. Disk space is more critical in the azimuthal direction because it not only

reduces storage capacity, but also the peak readout rate for a given disk rotation
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rate. If the disk wobble can be reduced, the Fourier transform would provide the
best performance in terms of translation while the imaging system consumes the
least disk space (at least when we consider the transfer of binary information).
Thus, imaging in the azimuthal direction with a Fourier hologram in the radial
direction may provide the best solution. This solution would require the design of

anamorphic optical elements.

3.3.4 Effects of Track Curvature

In most applications, it would be most convenient if the pixels within each
block that we read out in parallel from the disk were arranged in a 1- or 2-D
Cartesian array. Thus far, we have assumed this to be the case and have ignored
the fact that pixels are actually arranged in a 1- or 2-D approximately polar array
along essentially circular tracks. In this subsection, we explicitly consider the effects
of track curvature on our parallel readout techniques and consider techniques for

obviating these effects.

Before we begin, note that track curvature only affects the parallel readout
of a single block of information because we record the information serially in the
azimuthal direction. Were we to record the information in parallel in the azimuthal
direction using a linear source or modulator array, the pixels within each block
would be arranged in a Cartesian array although the blocks themselves would be
in an essentially polar array. For example, when we arrange the information within
each block in a 1-D array in the across-track direction, because the array is only
one-pixel wide in the azimuthal direction, we meet the condition of recording the
information within the block in parallel in the azimuthal direction. In this case,
there is no difference between a 1-D Cartesian array and a 1-D polar array with

constant azimuth ().

Our assumption that the pixels are arranged in a Cartesian array is valid if we



- 150 -

restrict attention to a small area of the disk. To see this, consider a region at a
distance R from the disk center. As shown in Fig. 3.45, we establish a Cartesian
coordinate system with x-axis in the azimuthal or along track direction and y-axis
in the radial or across track direction with origin centered in the region of interest.
The following equation can then be used to convert between the polar coordinates

of the disk and the Cartesion coordinates we have established:

T = rsiné

(3.70)

y =rcosd — R

Fig. 3.45 - Coordinate Transformation Axes

The center-to-center spacing of pixels in the radial dimension is A, and the
angular separation between adjacent pixels is Ay in azimuth. We now superimpose

a Cartesian grid on this pixel structure with z and y spacings as follows:

A = RA,
(3.71)
Ay = A,

This choice for A, and A, provides the best match between the pixels recorded on
the disk and the points on the Cartesian grid. We now calculate the deviation of the
pixel locations from their presumed Cartesian locations. The presumed coordinates
of the n,m!* point on the Cartesian grid is

' = nA,

y' =mA,
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whereas its actual location is

AOAT

r=R+mA,+n
27 (3.73)

0 =nlg

Therefore, the actual Cartesian coordinates of the recorded pixels are

( 3

27
Az Ay

AgAr .
x=<R+mAT+n i )sm(nAg)

~nA; +nm

(3.74)

JAVYANR
Yy = (R+mAr+n 20 )cos(nA.g)—~R
m

AIAy 2 Ai

RmAytno =~ op J

We calculate the deviation between the actual and presumed pixel positions by

subtracting Eq. 3.72 from Eq. 3.74 as follows:

€&z =12 —2x
AVYAN T
~nm—2 =
R
< , R (3.75)
€y =Y — Y
Azl TAC S VI
. "%k """ 3R "2%R 3R

For an array of 1000 x 1000 pixels on the Sony disks, the worst case pixel place-
ment error is 1.25% of the array size (12.5 pixels) in the z-direction (at R = 3 em,
Ay = 0.5 pm, and Ay = 1.5 um) and 0.14% of the array (1.4 pixels) in the y-
direction (at R = 6 cm, A, = 1 pm, and A, = 1.5 um).

For diffractive readout, the light reflected from each pixel carries both ampli-
tude and phase information. The amplitude Wili not be sigifnicantly affected unless
the position error is of the same order as the distance between the disk and detector
or lens. However, the phase can be significantly affected by even a slight change

in pixel position. Given a wavevector k£ between a hologram on the disk and a
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diffracted beam, the phase error is given by multiplying the wavevector with the

position error:
Se(z,y; k) = k-e(z,y) (3.76)

For example, if we consider the first order track-diffracted beam, k; = 0 and &, =
2n/A,. For light diffracted in this direction, track curvature induces the following

phase error:

27 E o,
¢e (.’E,y,k;,; = O,ky - Ky‘) = ﬁl‘ (377)
k
f=R— (3.78)
ky

This phase error can be modeled as a cylindrical lens at the disk plane with fo-
cal length f = £RA,/A. For typical experimental parameters: R = 4.5 c¢m,
Ay = 1.5 pm, and A = 633 nm, the cylindrical focal length is 10.7 cm.

For our imaging systems, we are primarily concerned with the effect of track
curvature induced pixel position error on misalignment between recorded pixels
and detector elements. The significance of this position error in imaging readout
depends upon the application. For the readout of images, the slight curvature of
the image induced by track curvature may be negligible. Fig. 3.26 shows an image
3000 x 4500 pixels in size with no apparent visible distortion. However, for the
readout of random data where a single pixel error can be significant, systematic
pixel position error could be fatal. We can compensate for this error in either the
image, the detector, or some combination of both. For instance, given the position
at which we will record the data on the disk, we can predict how the image will
be warped by track curvature. By “pre-warping” the image such that after it is
recorded on curved tracks, the positions of the pixels on the disk match precisely
those on the detector, we can effectively eliminate the effect of track curvature. By
designing the detector such that the individual detecting elements themselves are on

a polar coordinate grid instead of a Cartesian grid, we can also eliminate the effect
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of track curvature. Because curvature varies between the inner and outer tracks,
pre-warping remains the desirable method since it can compensate for the track
curvature at any point on the disk. A customized detector can only be designed
optimally for a single set of tracks on the disk. However, since all tracks are curved,

a certain amount of compensation in the detector design, although unnecessary,

could be helpful.

For the holographic systems, we can compensate for the effective phase error
in a couple of ways. First, as with images, we can obviate the position error by
assuming a Cartesian pixel array and pre-warping the hologram before recording.
Second, we can eliminate the position error by calculating the hologram under the
assumption that it will be recorded on a polar pixel array in the first place. Finally,
we can reconstruct the hologram using illumination containing a compensatory
phase-for example a cylindrical wave for a track-diffracted reconstruction. As in the
imaging readout case, the latter course is undesirable because the position error (and
thus required compensatory phase) depends upon the location at which we record
the information on the disk and we must change an element in the illumination
system as we shift from track to track. Because algorithms such as the Fast Fourier
Transform exist that can be used to rapidly calculate the expected diffraction from
a Cartesian grid, the first course is probably the most practical, although the second

course may be pursued given sufficient computational resources.

3.4 Applications and Future Directions

Parallel readout from optical disks has many potential applications. First,
it can be used to simply increase the bandwidth of data read out from the disk.
Second, it is a natural storage format for applications requiring rapid access to a
large library of information. Examples of the latter case include optical correlation

architectures such as the one shown in Fig. 3.46. Neifeld, et al., describe numerous
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architectures for optical correlation.l37:38 Correlation rates corresponding to over
26 million binary operations per second (BOPS) have been demonstrated, with

maximum correlation rates on the order of 101! BOPS.

Correlation
Plane
Photorefractive w Lens
/ Lens
BS
INlumination Input
X Library
(_— Disk

Fig. 3.46 - Optical Disk Correlator

An optical character recognition system which uses an optical disk correlator
to compare an input character with a library of stored templates and electronically
postprocesses the correlation results has demonstrated an accuracy of 83%.

Database preprocessors are another obvious application of optical parallel read-
out. Databases must naturally be stored on high capacity archival storage. An opti-
cal preprocessor thus can rapidly search for desired keywords on the disk and mark
the records that have a potentially good match for further electronic postprocess-
ing 3940 Figure 3.47 shows how a simple optical preprocessing system can be built
to rapidly perform database query operations. A query is encoded on an input
spatial light modulator (SLM). The light is imaged from the SLM to the disk. The
reflected light contains the inner product which is integrated onto a photodetector.
If the inner product exceeds a threshold, salient portions of the record are latched

into a photodetector array and passed into an electronic buffer for further electronic
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postprocessing. A single rotation of the disk is all that is required to process a single

query.

Detector

Array Buffer

to Electronic
Processor

Inner Product
Detector

Fig. 3.47 - Optical Database Preprocessor

An optical disk can also be used to rapidly change the connection patterns in
optoelectronic neural networks. The disk can play one of two roles in this applica-
tion. As Figure 3.48 shows, the optical disk can either (a) act simply as storage for
the connection patterns or (b) play a role in implementing the connections them-
selves. The Optoelectronic Neural Network Chip described in Chap. 4 is an example

of the former.

(@) (b)
Fig. 3.48 - Optical Disk (a) Storage

and (b) Storage and Implementation of Neural Connections

It 1s difficult to precisely estimate the maximum bandwidth for a parallel read-
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out optical disk. Using exotic technology like air bearings with plastic disks, the
maximum disk rotation rate would be about 35000rpm[*4. If we were able to
maintain alignment at this disk rotation rate, given a 100 x 100 array of detector
elements, we could transfer 10Gbps of data from the disk to a high speed detector
or special purpose processor.

In addition to the ease of alignment offered by Fourier transform holographic
encoding of the data, we could build shift-register like structures into the detector
array to electronically “shift” the position of the head faster than possible me-
chanically. The amount of shift required could be determined by enconding special
alignment markers into the parallel readout data.

In terms of future research into disk technology itself, the main thrust is into
making smaller lighter heads for faster access times and a variety of techniques such
as shorter wavelengths, multiple wavelengths, superresolution, and 3-D storage to
increase storage density. Of these techniques, 3-D storage as depicted in Fig. 3.49
seems to hold the most potential for orders of magnitude increase of optical storage

density.

AO Modulator

Volume
Holographic
Disk

/]
Z—_/output

Fig. 3.49 - Volume Holographic Storage in Optical Disks
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4 An Optoelectronic Multilayer Feedforward

Neural Network

4.1 Introduction

Most neural network research involves testing of the networks. Because neural
networks are complex nonlinear systems that are difficult to theoretically analyze,
everything from theoretical results to ad hoc algorithms based on heuristics are
usually confirmed through testing. This testing typically involves many “runs”
to compare the different sets of parameters or different networks and to generate
sufficient statistics for analysis. Most of this testing consists of simulation of neurons
and connections on general computational platforms ranging from lowly PCs to the
most powerful supercomputers. Unfortunately, as the complexity and especially the
size of networks increases, the time required to simulate the networks can impede
research progress.

Because of this simulation problem, many researchers interested in neural net-
works are working to develop special purpose hardware to implement the networks.
Although many physical processes may be used as analogs to the processes occuring
in neural networks, electronics and optics are the primary technologies being used

to implement special neural network hardware.

4.1.1 Electronic Implementations
Although we may consider the implementation of a neural network in soft-

ware running on a general computing platform ranging from a PC to a Cray as
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an “electronic implementation,” we will concentrate on electronic hardware specif-
ically designed for the implementation of neural networks. There exists an enor-
mous number of special purpose electronic implementations of neural networks in
the literature. Here, we will concentrate on those that can implement multilayer
feedforward neural networks. This excludes a large body of exciting research such

as the neuromorphic analog VLSI systems of Mead.[!]

Even after narrowing the field to special-purpose electronic hardware for the
implementation of the multilayer feedforward neural network, there still remains
a large number of implementations to consider because of the popularity of this
network model. These networks have been implemented at chip, wafer, and board
level in both analog and digital forms. Some have chosen to implement neural net-
works using systolic arrays of special purpose processors designed to perform rapid,
high accuracy, digital multiplication and addition using DSP chips, multiplier chips,
and/or (semi-)custom integrated circuits. Pomerleau, et al[?! achieved 17 million
connections per second (MCPS) using a systolic array of 10 processors operating at
5 MHz. In this case, a connection counted both forward propagation of an input
and back propagation of the error. More recently, systolic arrays capable of 25
to 50 MCPS per processor have been reported.>—¢ Advantages of this approach
include flexibility, high speed, and accuracy, and disadvantages include large area
and high power consumption—aspects characteristic of their general purpose digital
computing brethren. Because these implementations require areas corresponding to
one or more computer boards, the number of processors is relatively small and the
neurons are typically time-multiplexed on the processors. Nevertheless, because of
their raw computing power, these implementations are able to compete in terms of
speed with other current electronic implementations. However, for most neural net-
work applications, the high accuracy calculations that these implementations work

so hard to provide are not necessary, and a better compromise may be achieved by
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trading off accuracy for lower power consumption, greater fault-tolerance, etc.

Most of the remaining implementations that we discuss are single-chip imple-
mentations of neural networks. Here, we summarize the results of a comparison
by Holler["] of a number of VLSI implementations. Micro Devices has a chip with
eight neurons and a single time-multiplexed synapse per neuron performing a dig-
ital multiplication and accumulation between a binary input and a 16-bit weight.
AT&T has a chip which contains an array of synapses that multiply a digital weight
with a binary input to generate a current which gets summed in an analog fash-
ion before hard-thresholding by a neuron.!] Adaptive Solutions has a chip called
CNAPS which is a systolic array of 64 processors running at 25 M Hz with digital
fixed point multiplication and addition on a single chip.[®! Intel has a chip provides

nonvolatile EEPROM storage of connection weights.[1%!

4.1.2 Optical Implementations

There have also been many optical implementations of neural networks. Many
of these implementations are variations of the canonical vector-matrix multiplier

[11] where the intensity of each LED in a linear array

based associative memory
represents the output of a neuron, the transmittance of a 2-D mask the connection
strength between a pair of neurons, and the light incident on each photodetector in
a linear array the input of the neuron. By expanding the light from each LED such
that it illuminates a column of the 2-D mask and integrating the light from each
row onto a photodetector, each neuron receives as input the weighted sum of the
outputs of the other neurons. A dual-rail encoding scheme in the mask with a pairs

of photodetectors in the linear array can be used to implement bipolar weights.

Psaltis ef. al. have demonstrated an optical associative memory!!Z

using a
Hughes liquid crystal light valve (LCLV)'®! as a 2-D array of neurons. The output

reflectivity of the neurons is roughly proportional to a soft threshold applied to the
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input light intensity. The output of the neurons is readout by a laser beam and
enters a optical system (Vanderlugt correlator!!®!) that performs a 2-D correlation
between the output of the neurons and a library of reference images stored in holo-
graphic form. The correlation between the neuron output and each reference is then
sampled by a pinhole array and used to reconstruct a superposition of the reference
images on the input side of the neuron array. Each reference image is weighted by
the magnitude of its correlation with the output of the neurons. When the loop is
closed, the output of the neurons tends to be driven towards the reference image
that most closely matches the initial state of the neurons. The associative memory
loop has been demonstrated capable of recalling stored images given a certain de-
gree of distortion and noise at the input. With approximately 400x400 resolution
elements on the LCLV, the optical memory loop implements some 160000 neurons
and the connections between them, thus demonstrating the massive interconnection

capabilities afforded by optics.

Photorefractive crystals can be used to dynamically store volume holograms.
Because they store in volume, they provide O(L?) degrees of freedom to arbitrarily
specify connections where L scales as the linear dimension of the system. This
means that photorefractives can be used to store arbitrary connections between an
input and output plane consisting of O(ly) and O(lz) neurons respectively where
i1y = L3. For example, we can choose I; = l, = L3/2. Fractal sampling grids can

be used to specify the location of the neurons in each of the neural planes.!5]

Because photorefractives can be dynamically recorded and erased, they can be
used in architectures with learning. An optical implementation!'®l of the perceptron
algorithm (Subsec. 1.5.3) has been demonstrated where holograms are recorded in
a photorefractive that upon illumination with a training pattern reconstruct the
same pattern which is then integrated onto a point detector. The amount of light

incident on the photodetector in response to a training pattern depends in part
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on the strength of the hologram associated with that pattern. The strength of
this hologram can be adjusted by interfering the training pattern with itself in the
photorefractive. A piezoelectric mirror can be used to adjust the modulation depth
and phase of the interference pattern which then either strengthens or weakens the
hologram. A computer interfaced to the experiment can then cycle through the
training patterns and selectively strenghten or weaken the holograms so that the
output of the photodetector is either above or below a given threshold depending
on the classification of the pattern. An optical implementation of a multilayer
feedforward neural network with back error propagation (Subsec. 1.5.6) has also

been proposed.[!”]

4.1.3 Optoelectronic Implementations

Although most optical implementations involve some aspects of electronics,
we will mainly consider here those applications where each plays a strong role.
Typically, each technology is used in areas where they are strong—electronics for

processing and optics for connections and communications.

Agranat, et al., of Caltech have designed a CCD based neural network['®] with
optical loading of the synaptic weights onto a CCD detector, followed by selective
gating of the charge representing each weight, according to the activation of the cor-
responding neuron, into an accumulator for summation with subsequent electronic
detection.

Ohta, et al., of Mitsubishi have constructed a 32 neuron optoelectronic chipl']

with a metal connection mask sandwiched between crossed strip LEDs and strip
photodetectors, thus implementing a collapsed version of the vector-matrix archi-
tecture described in Subsec. 4.1.2. The intensity of each LED represents the output
of a neuron, the transmittance of each mask element the connection strength be-

tween a pair of neurons, and the total light incident on each photodiode the input of
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each neuron. The photogenerated current through each photodiode is proportional
to the weighted sum of the neuron outputs.

Rietman, et al., of Bell Labs have demonstrated a 120 neuron optoelectronic
chipl?% with an amorphous silicon photoconductor sandwiched between orthogonal
conducting strips. The conducting strips on the “top” side of the chip are made
of ITO, a transparent conductor. The current through the photoconductor at the
intersection between crossed conductors approximates the product of the applied
voltage and a monotonic function of the incident light. By proper encoding of light
intensity, the Bell Labs chip can also generate a series of output currents propor-
tional to the weighted sum of neuron outputs. In all three of these optoelectronic
implementations, the thresholding operation is performed off-chip and the result

fed back to the optoelectronic chips.

4.2 An Optoelectronic Multilayer Feedforward Neural Network

In this section, we describe special-purpose hardware that implements certain
types of neural networks using available, mature technologies. Fig. 4.1 shows the
basic idea behind the system. A VLSI circuit called the Optoelectronic Neural
Network Chip (ONNC) is designed incorporating both electronic neurons and elec-
tronic connections. Photodetectors are placed on the chip so that the pattern and
strength of the connections can be set by illuminating the chip with different light
patterns. A library of different light patterns that program the chip to implement
different functions or parts of functions are encoded and stored on an optical disk

and optically read out in parallel from the disk to the chip.

4.2.1 Design of the ONNC
The neurons and synapses on the ONNC are laid out in a crossbar as shown in
Fig. 4.2 so that each neuron can potentially be connected to any other. The design

incorporates optically reconfigurable unipolar connnections and hard-thresholding
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Fig. 4.1 - Optical Disk/Chip Architecture

binary bipolar neurons. We first discuss the decision to provide optically reconfig-
urable connections, then describe the actual hardware design and operation of the

neurons and synapses.
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Fig. 4.2 - Crossbar Configuration of Neurons and Synapses

4.2.1.1 RECONFIGURABLE CHIPS
In a typical neural network, the processing performed at each neuron is fixed
and the functionality determined by modifying the pattern and strength of connec-

tions. When building special purpose hardware to implement neural networks we
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typically fix the function of the neurons but must choose between fixed and recon-
figurable connections. In some applications, we wish to implement a single specific
function using a connection pattern that can be determined once and then fixed. In
this and only this case, we can build a network with fixed connections on our chip.
In all other cases, we must use reconfigurable connections to provide more flexible
functionality. This flexible functionality may simply consist of choosing from a set
of predetermined connection patterns much as the function of a conventional com-
puter may be altered by choosing from a set of machine code programs. This is
the path chosen for the system described in this chapter. Alternatively, the flexible
functionality may actually consist of learning and/or adaptation of the connection

pattern and function.

Reconfigurable connections also provide another advantage for networks that
are too large to fit on a single chip or wafer. When using fixed connections we must
divide the network into smaller pieces with off-chip connections between neurons
on separate chips. These off-chip connections are considerably slower than on-chip
connections and can limit the maximum processing rate. With certain types of net-
works, it is possible however to use reconfigurable connections to time-multiplex the
hardware and implement a large network on a smaller chip. In this case, although
we pay a penalty in pipelined processing rates, we can reduce the required hardware

and possibly the delay time as well.

4.2.1.2 ON-CHIP vS. OFF-CHIP STORAGE

The pattern and strength of connections used to program the function of a
reconfigurable chip must be stored either on- or off-chip. If they are stored on-chip,
they consume valuable area that could otherwise be used for more neurons and
connections. Because the capacity of a network and the complexity of functions

that it can implement depend on the number of neurons and connections, we would
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prefer to place as large a number of neurons and connections as possible on our
chip. Further, although there is a fixed cost in area for the circuitry to communicate
connection information from off-chip to the appropriate synapses, the marginal cost
in area of storing an additional weight will exceed the fixed cost of communication

circuitry after a small number of weights.

4.2.1.3 OPTICAL RECONFIGURABILITY

Assuming off-chip storage of connection information, we may access the infor-
mation either electronically or optically. For electronic access, we see a potential
communications bottleneck. In a crossbar architecture with N neurons, we need
to specify N? potential connections between them. However, using one side of the
crossbar to select a row of connections and the other to convey information to every
column in that row, we can only load N neurons at a time with information—thus
requiring IV cycles to fully program the connections. Even if we could provide in-
dividual lines to each connection, the number of pads or external communication
channels will only grow as O(NN), once again leading to O(N) cycles to program
the connections. With optical access, however, we can bring all the connection in-
formation in parallel from above the chip in a fixed amount of time no matter how
large the chip.

Both electronic and optical access may ultimately be limited by the commu-
nications bandwidth of the mass storage element. However, optical reconfiguration
still has an advantage since it interfaces nicely with parallel optical readout from

optical storage elements such as the optical disk (see Chap. 3).

4.2.1.4 FABRICATION TECHNOLOGY
The ONNC is fabricated using a 2.0 yum p-well CMOS process with double-
metal and double-poly layers. This means that the smallest linewidth we can specify

on the chip is 2.0 ym wide. The chip is built on an n-type substrate into which
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we can fabricate p-channel MOSFETSs; we can also construct p-wells into which we
can fabricate n-channel MOSFETs. With both NMOS and PMOS FETs, we have
Complementary MOS or CMOS. We also have two mask layers of metal and two
mask layers of polysilicon to use as interconnection and, in the case of polysilicon,
as gate material. This process allows us to build good capacitors using two parallel
plates of polysilicon with a thin layer of gate-oxide in between. Most importantly
for our chip, as pioneered by Mead,[! one can construct both photodiodes and

phototransistors. Figure 4.3 shows the basic structures that we can use.

L L

n-channel

MOSFET bipolar transistor capacitor
p-channel

MOSFET phototransistor photodiode

Fig. 4.3 - Available Components

Because we will allow light to strike our device, we must cover all circuitry
excluding photodetectors with an opaque layer of material. We sacrifice the second
layer of metal for this purpose leaving a single metal layer for interconnection. The

second metal layer may still be used to distribute power or global signals.

4.2.1.5 THE SYNAPSE

Because most of the chip area will be consumed by synapses, optimization
of the synapse design is by far the most important. Although a large number
of approaches may be taken for the design of optically reconfigurable synapses,
we decide to minimize the size of the synapse in order to maximize the number

of connections available on the chip. Figure 4.4 shows a circuit diagram of the
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synapse that we have designed. The synapse circuit can be divided into two parts:
the connection and the photodetector. The connection consists of a single synaptic
PFET that connects the output of one neuron to the input of the next. The voltage
on the gate of this FET determines the strength of the connection. This gate
voltage is controlled by the photodetectdr which consists of a pulldown PFET and
a reverse-biased photodiode. With no incident light, the photodiode is essentially
an open circuit and the gate voltage will be low, turning the synaptic transistor on.
With light incident on the photodiode, current will flow from the positive voltage

(Vga) rail, raising the gate voltage and turning the synaptic transistor off.

Photodiode "\ ">
Ve Synaptic
Transistor
Pulldown Py 4
V,
Transistor P

Fig. 4.4 - Circuit Diagram of Synapse

Figure 4.5 shows the layout and Fig. 4.6 a photograph of rougly six synapses.
The dark regions are the photodiodes and only the metal connections and contacts
are easily discernible. Minimization of area given a square-shaped synapse was a
major concern 1n the synapse design in order to maximize the number of connections
and generate a square array of synapses. Because the pixel-spacing on the optical
disk varies from a 2:1 aspect ratio at the inner recording radius to a 1:1 aspect ratio
at the outer recording radius, there is no single optimal aspect ratio for spacing the
photodetectors. A square aspect ratio was chosen because, although not universal,
it is the most obvious standard for SLMs in general.

The synapse was not quite designed to be of minimal size. Although smaller

synapses increase the maximum number of connections, larger photodiodes simplify
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Fig. 4.6 - Photograph of Synapse

manual alignment of illumination patterns with photodetectors. An arbitrary com-
promise was chosen in the design in that the remaining circuitry was designed in

as small a thin strip as possible, with the photodiode filling the rest of the synapse
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out into a square shaped region. The resulting synapse was 43% pm on a side with
a total area of 1892 um?. The photodiode was roughly rectangular in shape with
a maximum length of 32 um and width of 17 um and area of 474 um? (part of the
photodiode is obscured by the contacts). The synapse transistors (3x6 um?) were
slightly longer than minimum to increase their resistance because in steady-state,
the chip has current flowing from V4 to Gnd through the synapse transistors. On
the other hand, the pulldown transistors (8 x2 um?) were made as wide as possible
given space constraints in order to reduce the turn-on RC time-constant at the gate
of the synaptic transistor.

We can operate the synapse in either an instantaneous or clocked mode. In
the instantaneous mode, given the gate voltage of the pulldown transistor, the gate
voltage of the synaptic transistor is determined by the instantaneous photocurrent.
Actually, the synaptic gate voltage lags the photocurrent, and the photocurrent
must remain constant for a given time before the neurons evaluate their inputs.
The time constant of the lag is upper-bounded by the RC time constant with the
maximum impedance of the pulldown transistor and the maximum capacitance of
the gate of the synaptic transistor given the voltage swing corresponding to the
change in photocurrent. An additional RC margin is required for the response of
the synapse furthest from each neuron to reach the neuron.

In order to predict the electrical characteristics of the synapse, we will use the
following simple models for the NFETs (Eq. 4.1), PFETs (Eq. 4.2), and photodiodes

(Eq. 4.3) that make up the synapse circuit:

0 Vys < Vin

I = 4 £nS(Vos = Vin — ¥ )Wao Vg < Vg — Vi (4.1)
o § Yo Vin) Vi > Vys — Vin
0 Vgs > Vip

Iy = —kpS(Vgs — Vip — %)Vds Vis > Vs — Vi (4.2)
iy War=Vip) Vis < Vgs = Vip

I=TIy(efV/™T _1) -1, (4.3)
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Although an NFET would typically be used as a pulldown, we have chosen to

use a PFET in order to reduce area loss to the spacing required between NFETs

and PFETSs or substrate photodiodes. Using Eqgs. 4.2 and 4.3, we can estimate the

voltage V, at the gate of the synaptic transistor as a function of the photocurrent

I,. Figure 4.7 shows the modeled dependence of synaptic transistor gate voltage

Vy on input photocurrent I,. In steady-state, I, will be proportional to the light

power incident on the photodiode.

Vg vs Ip Vg vs Ip
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Fig. 4.7 - V4 vs. I, for PFET and NFET pulldowns

250

We see that as long as the photodiode is reverse-biased, we can drop the first

term of Eq. 4.3 and set the current through the diode equal to the photocurrent.

Because the gate of the synaptic transistor acts essentially as a capacitor, no current

flows through it in steady-state. Thus, the source voltage of the pulldown PFET
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adjusts itself so that the current through the pulldown transistor equals the pho-
tocurrent. With no photocurrent, V, is free to float between Gnd and V, — V4,
a threshold above the gate voltage V}, of the pulldown transistor. With an ap-
plied photocurrent, the gate will charge-up until the pulldown transistor turns on
at Vy =V, — Vip. Because the drain voltage of the pulldown PFET will always be
below its gate voltage, the pulldown will always be in cutoff or saturation. Once
the transistor turns on, the load behavior is determined by the V-I characteristic of
the PFET in saturation and the synaptic gate voltage increases like the square root
of the photocurrent. The pulldown gate voltage acts as a bias on the synaptic gate
voltage. The synaptic gate voltage continues to increase with increasing photocur-
rent until the photodiode becomes forward biased. At this point, the forward diode
current increases exponentially, essentially constraining the synaptic gate voltage to
rise no higher than .6V above V;;. We see that the PFET pulldown gives us better

control of the gate voltage near V4 while the NFET gives better control near Gnd.

In the clocked mode, we apply a 0 V pulse to the pulldown transistors with
a pulsewidth sufficient to precharge the gate capacitors to their minimum value
of =V, ~ .8V. After turning off the pulldown, we illuminate the photodiodes
and integrate the resulting photocurrent on the gates of the synaptic transistors,
raising the gate voltage towards a maximum value of V44 + .6V. Although the
maximum processing rate of the chip is lower for the clocked mode because of the
precharge time, the synchronization between the source of the illumination pattern
and the chip clock 1s not as critical, because the neurons may be operated at any
time between the end of illumination and the beginning of the next pulse on the

pulldown transistors.

It was thought that the synapse could be used to implement either binary
digital or continuous analog weights. In either instantaneous or clocked modes, for

binary digital weights we set the gate voltage of the synaptic transistor to one of
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two voltages representing an on and an off connection; for analog weights we would
set the voltage anywhere in between. Further analysis, however, shows that analog
weights can only be implemented in one special case.

Whether neurons have a current or voltage input, the conductance of the
synapse g; is proportional to the weight w; that it implements. For current in-
puts, we set the input voltage of the neuron to some fixed voltage V5 and measure
the resulting current (Eq. 4.4). For voltage inputs, we set the input current of
the neuron to some I (typically Ip=0) and compare the resulting voltage with a

threshold V; (Eq. 4.5).

I=Y g(Vi-V) (4.4)
>_9:Vi—Io

Ve—re—
Zgi

(4.5)

With a hard threshold, however, the two cases, fixed current or fixed voltage,
ére equivalent because we can determine whether the voltage will be above or below
the threshold by fixing the voltage to the threshold V; and measuring the current 1.
If1I>1,thenV >V, when I = I, whileif I < Iy then V < Vy when I = I;,. With
a soft threshold, a current input (fixed voltage) is more desirable since we can set
the weights arbitrarily and rely on Kirchoft’s Current Law to generate the desired
weighted sum. With a voltage input (fixed current), the effective weight of a synapse
gi will depend in a nonlinear fashion on both the input and output voltage of the
synapse such that its weight relative to the other synapses will change depending
on the input of the synapses and resulting weighted sum at their output. Thus, we
will consider only the case for a neuron with a fixed voltage, current input noting
that the results also apply for a fixed current, voltage input with hard-thresholding

neurons.
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With a fixed voltage Vy at the input of the neuron, the weight implemented
by the synapse is proportional to its conductance which depends now only on the
synaptic gate voltage V,; and the input voltage of the synapse V;, (i.e., the output
voltage of the neuron at its input). Using Eq. 4.2, we can estimate the conductance

g of the synapse as a function of V,; and V;,, for a fixed V; as follows:

0 Vo2 Vo+ Vi and Vy, > Vi + Vi
(‘/in"*‘vtp_vg)z A
SE D S Vine V) Vy > Vo + Vip and Vy < Vi + Vi w6
g= V2 i
S"Cp(vggkv‘;/t_v:)) Vg > Vm + th and Vg < Vb + th

Skp (Vip = Vy+ Letin) V) <V, + Vip and V, < Vo + Vi

Figure 4.8 plots the synapse conductance g as a function of V; and V;,,. In order
to implement an analog connection, we must be able to control the conductance over
a range of gate voltages V;, independent of the synaptic input voltage V;, for at least
two values of the synaptic input voltage Vi(nl) and Vl(nz) . Unfortunately, we find that
the shape of the ¢ — V, characteristic varies continuously as we change V;,. Thus,
we generally cannot implement analog weights using a single MOSFET simply by
adjusting its gate voltage with the following exception.

Note that in the special case of V;,, = V4, the source and drain of the FET
are at the same voltage and no current flows through the device regardless of its
g — Vy characteristic. Thus it is possible to implement analog weights in the special
case of unipolar binary neurons with V;, = Vi representing a “0” output. Using
the voltage Vj, representing a “1” output, we can choose a curve from Fig. 4.8 that
allows us to predict the voltage V, required at the gate of the synaptic transistor to
implement a given analog weight. Using Fig. 4.7, we can then convert this required
voltage V, into a required photocurrent I,,.

It is also possible to implement binary connections when using our synapse
with binary neurons. In this case, we need only match the conductance at two
values of V;. We can match the conductance at V,=Vyq because ¢ = 0 independent

of the input voltage V;,. We match the conductance at some other V;, by adjusting
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Fig. 4.8 - Synapse Conductance vs V;, and V,

the neuron input voltage (for current inputs) or the neuron threshold voltage (for
voltage inputs) Vj to equalize the conductance of the synapse when connected to
either neuron input voltage.

Because of the design of the neuron (described in the next subsubsection),
Vin=0V or 5V only. Unfortunately, because we made no provision for adjusting
the threshold of the neuron away from the origin, it makes no sense to use unipolar
analog connections with unipolar binary neurons. We therefore restrict ourselves

to binary bipolar neurons and binary unipolar connections. Because we implement
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only binary weights, we choose to perform all our experiments with clocked binary

connections because of their simpler implementation.

4.2.1.6 NEURON DESIGN

The design of the neuron is also critical to the proper functionality of the chip.
However, because the neurons occupy only the periphery of the array, minimization
of their size is not a critical aspect of the design. The only constraint on their size is
that each neuron have a maximum width equal to that of two synapses. Each neuron
can occupy two synapse widths because every pair of synapse rows or columns can
have one neuron on each side. Although the synapse design calls for neurons with
current inputs, none of the designed neurons operated correctly when tested using
the analog simulation tool, anaLOG, used at the California Institute of Technology.
Instead, a last minute substitute was used to meet the MOSIS deadline. The actual
neuron circuit used is pictured in Fig. 4.9. It takes a voltage input, applies a
hard threshold, and generates a voltage output. Although such a neuron is not
conducive for performing the summation of synapse outputs via KCL, it turns out
that the neuron will operate properly for binary synapses with a zero threshold.
With bipolar binary neurons and unipolar binary synapses, such a neuron should
generate a HIGH output if it is connected to more neurons with HIGH outputs
than LOW and vice versa. If it is connected to an equal number of neurons with
HIGH and LOW outputs, the input voltage will be V,.s-the voltage generated by
a voltage divider consisting of equally sized synaptic transistors between Vzq and
Gnd with V; corresponding to a 1 weight. Using Eq. 4.2, we find that the resulting
threshold voltage should be about V,.y = 3.3V. When the input of a neuron is
connected to more HIGH neurons than LOW, the input voltage will be above V.
and vice versa. Thus, by setting Vi, = V,ey, the neuron will implement a zero

threshold. Using the voltage divider view of the crossbar, we see that the crossbar
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implements a threshold at a given ratio of connections to neurons with HIGH and
LOW outputs—-the zero threshold corresponding to a 1:1 ratio. We see that by
adjusting V;p, we can choose different ratios, but not different thresholds, at which
to switch the neuron. Because of the neuron design then, we are limited to binary

neurons, binary connections, and (essentially) switching at a zero threshold.
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Fig. 4.9 - Neuron Circuit Diagram
4.2.1.7 PADS

There are 40 pads on the ONNC. Four of these pads are for power and ground.
Eight of these are barepaeds connected directly into the chip. The other 28 pads are
inpads, input pads with protection circuitry. Each of these inpads were converted
to one of three pads shown in Fig. 4.10: input/output, input w/complement, or
threshold voltage. The input/output circuitry consisted of a three stage gated
buffer to drive an off-chip output, and an inverter to buffer the input. The input

with complement circuitry passed the input and generated an inverted version of
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the input for internal use. The threshold voltage circuit used a voltage divider
consisting of a pair of PFETs whose gates were biased by a PFET pullup to generate
the reference voltage, V.. This voltage could be viewed externally or set by driving

the pad with an external voltage.

vdd

%

Pad

load — I

3 %
A

Fig. 4.10 - (a) Input/Output, (b) Input with Complement,
and (c) Threshold Voltage Pads

©

4.2.1.8 THE ONNC

Figure 4.11 shows the ONNC as fabricated on a MOSIS TinyChip. The Tiny-
Chip measures 1.4x1.4mm?. There is a 15x15 array of synapses, .645x.645mm? in
size, at the center of the chip. Because of the nature of the padframe as described
below, direct connections could only be provided for 22 neurons. Thus, 22 neurons
are placed around the synaptic array. The neuron and synapse circuitry combined
occupy approximately .8x.8mm? in the center of the chip.

The TinyChip padframe that we used had 40 pads (Fig. 4.12), 12 of them fixed.
Four of the fixed pads provided power and ground connections. Eight of the pads
provided direct, unprotected connections to the inside of the chip, and as such,
could not be connected directly to MOSFET gates at the neuron inputs. These

eight pads connected to 4 rows and 4 columns of neurons and were used for testing



Fig. 4.11 - The ONNC

of the chip. The remaining 28 pads are configured as inputs. Six of these are used
for control and clocking signals. The remaining 22 connect to neurons grouped into

two layers of 11 neurons cach.

Hn = Neuron of Synapse Row #n
Vn = Neuron of Synapse Column #n

*X = No Neuron on Synapse (H) Row
or (V) Column

Lx = Load (h) Row er (v) Column

®x = Clock (h) Row Neurons, (v) Column

Neurons, or (s) Synapse Array
*H1

Vt = Neuron Threshold Voltage

Gnd *V1 Vt V3 V5 V7 V9 VII*VI3gp Gnd

Fig. 4.12 - Pinout of ONNC

4.2.2 Characterization of the ONNC
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Although we may perform a number of experiments to characterize the chip as
completely as possible, we report only those experiments that measure characteris-

tics important to the clocked unipolar binary operation of the synapse.

4.2.2.1 SYNAPSE SWITCHING TIME

In the first experiment, we measure the synapse switching time as follows. The
ONNC, has 4 rows and columns of test synapses. We disable the neuron outputs and
connect to Gnd a line connecting a column of the test synapses. We also connect a
line connecting a row of test synapses, to a current sense amplifier that maintains
the row voltage at V4 as shown in Fig. 4.13b. The voltage across the sense amplifier
measures the net current flowing through the 15 synapses in that row to/from the
different columns. Because all but one of those columns is floating, the measured
current corresponds to that flowing through the synapse at the intersection between
the chosen row and column.

We begin by electrically precharging the synapse into its “on” state. We then
uniformly illuminate the chip using a collimated beam from a 633 nm HeNe laser
that passes through an electronically controlled shutter as shown in Fig. 4.13a.
Fig. 4.14 shows the typical output of the sense-amplifier during one of the exper-
iments. The upper flat region in each trace represents 0V across the resistor and
thus zero current. We measured the time required to switch the synapse from its
initial low impedance state to its high impedance state as shown in Table 4.1. For

intensities in the 10s of uW/cm?, we found switching times on the order of ms.

Table 4.1 - Switching Time and Energy

Incident Intensity Switching Time Switching Energy
(W fem?) (ms) (»])
7.9 27 1.01
15.3 8.5 .62
16.6 7.0 .55
33.7 4.5 72
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Fig. 4.13 - (a) Optical and (b) Electronic Setup

to Measure Synapse Switching Time

4.2.2.2 SYNAPSE SWITCHING ENERGY

The optical energy e required to switch the synapse is given by the intensity &
of the incident beam times the area A, of the photodiode times the switching time
7, and is also calculated in Table 4.1. We expect the switching time to be inversely

proportional to intensity as follows:

e =734, (4.7)

(4.8)

Figure 4.15 shows switching time plotted against intensity for the data in Table 4.1.
The curve in the figure represents a switching energy of .865 pJ calculated through

a least squares fit of the data.

4.2.2.3 DETECTOR EFFICIENCY
We can also calculate the quantum efficiency of our detector as follows. The

quantum efficiency 1 equals the number of electrons n, divided by the number of
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CH2 ¢

15.3uW/cm= 8.5 s

Fig. 4.14a - Synapse Switching Times

photons n,. The number of electrons equals the change in charge ) at the node
connected to the gate of the synaptic transistor, divided by the charge ¢ of a single

electron. The number of photons equals the switching energy divided by the energy

per photon he/A.

n=ne/ny (4.9)
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iy (4.10)
(‘/T

Q= C(Vy)Vy = C(Vi)V; (4.11)

Vi=-V, (4.12)

Vi=Via+Vy (4.13)

We calculate the capacitance of the node at the gate of the synaptic transistor
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Fig. 4.15 - Synapse Switching Time vs. Incident Intensity

using the area and circumference measurements extracted from the layout of Fig. 4.5
and the MOSIS measured capacitances, both listed in Table 4.2. We estimate the

gate capacitance using the following equation with €g;0,=3.9¢¢ and #,, =370 A:

C, ~ e—f& = 933fF/um? (4.14)
Using the following parameters, Vi, = —.801V, V; = 6V, Vyy = 5V, X =

633nm, and C' = 162fF we find the quantum efficiency to be 124%. Because we do
not expect any avalanche-type process, we do not expect the quantum efficiency to
exceed 100%. However silicon photodiodes have a quantum efficiency above 90% in
the red, and the difference could easily be accounted for by a slight underestimate

of the switching energy and/or an overestimate of the capacitance.



- 188 -

Table 4.2 - Synaptic Node Capacitance Parameters

Type Capacitance Area
(fF/um?) (um?)

Poly-Subs 071 54
Pdiff-Subs 216 494
Metall-Subs .032 28
Metall-Poly .043 6
Metal2-Poly .022 46
Metal2-Metall .037 46
Gate 933 25
Pdiff-Subs .263 91
(Fringe) (fF/um) ()

4.2.2.4 SYNAPSE RESET TIME

In the next experiment, we measure the time required to precharge or reset the
synapse. We do this by using the same electrical setup as in the previous experiment
(Fig. 4.13) and measuring the time between the assertion of the reset line V, and
the cutoff of current flowing through the synapse. Figure 4.16 shows a typical pair
of traces measured on the oscilloscope with one channel measuring V, and the other
the current through the synapse. The figure shows that the precharge time is on
the order of ps. We find that although there is ringing on the response, the current

settles to zero in about 4 us.

4.2.2.5 SYNAPSE CURRENT

With all synapses on, we measured the amount of current required to maintain
the neuron input at a specified voltage. For a synapse connected to a neuron with
a +1 (5 V) output, the input of the synapse corresponds to the source and the
output to the drain of the synaptic transistor. As we sweep the output voltage V,,
the synaptic transistor will be in the linear regime for V, > V34—V; and in saturation
for V, < Vaa — V4. For a synapse connected to a neuron with a -1 (0 V) output,
the input of the synapse corresponds to the drain and the output to the source of

the synaptic transistor. In this case, as we sweep V,, the synaptic transistor will
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Fig. 4.16 - Synapse Reset Time

be in the linear regime for V, > Vyy — Vi and off for V, < V44 — V. We thus find

the following equations for the synaptic current as a function of the synapse output

voltage.
:-‘L("’(ld + 2‘/1‘1))2 1VO < '—2‘”[[) -
. =2 d , R h s 4.1
Li+1) { S (Vi +2Vip)? = (Vo + 2V )] Vo > =21, (419
. 0 ‘{) < —2"!])
Iﬁ(—]-) - { *%‘"("ro _*_.2th)2 Vr() > _.2vrrp (4:16)

Notice that the forms of the two functions are identical with only a bias equal
to w(Vya + 2Vip)? /2 separating them. With all 15 neuron outputs at +1 or -1.
the current will simply be 15 times the current through a single synapse. As we
adjust the number of neuron outputs at 1, the output current will be of the
same form with a bias that varies linearly with the number of neuron outputs at
+1. Fig. 4.17 shows the expected output current and Fig. 4.18 shows the measured
output currents for 0, 7, 8, and 15 +1 neuron outputs. The measured curves appear
similar in many respects to the expected curves; however, the measured curves are

essentially flat over a smaller voltage range than expected when more neurons have
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+1 outputs. Furthermore, the magnitude of the current in each direction is not
equal. Nevertheless, we see that the magnitude of the synapse current is on the

order of 20 pA.

300 T T T T v T v T

I 15 +1s
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100

b, ()
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-200

—300 1 n L " 1 n i

Y, V)

Fig. 4.17 - Expected Synapse Current vs Vj

By taking the curves for an opposite number of on and off neurons (15 +1s vs
15 -1s for example) we can estimate the neuron switching voltage V. s as follows.
The neuron should switch at the neuron input voltage where the current through
a group of synapses connected to Vyg exactly matches the current through a like
number of synapses connected to Gnd. The solid line in Fig. 4.18 represents the
current through 15 synapses to +1 (Vy4) while the dashed line represents the cur-
rent through 15 synapses to -1 (Gnd). The neuron switching voltage should be
where the magnifude of the two currents are equal (intersection of solid and dotted

lines) yielding a measured switching voltage of 3.93V. This compares to the 3.3V
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switching voltage we estimated in Subsubsec. 4.2.1.06.

PRSI

We also measured the amount of leakage current passing through the synapse
with all synapses off and all neurons with either 41 or all -1 outputs. Figure 4.20
shows the measured synapse current as we sweep the synapse output voltage from
0 to 5V. The leakage current was found to be in the p4 regime indicating that for

arrays up to well over 100000 neurons per layer, leakage current is not a limiting

factor.

ol

To measure the electrical uniformity of the array, we recorded the neuron input
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Fig. 4.19 - Measurement of ..y

voltage as a function of the position of a single +1 neuron output in a field of -1s
(Fig. 4.21), and a single -1 in a field of +1s (Fig. 4.22). Although the neuron input
voltage should be independent of the position of the +1 and -1 inputs. we found a
roughly 25 m L variation in the neuron input voltage as we changed the position of
a single +1 or -1.

Looking at Fig. 4.22, the lower voltage for -1s at positions 0, 1, 13, and 14 can be
explained by the fact that these rows of synapses were driven by discrete devices off-
chip instead of the neurons on-chip as shown in Fig. 4.23. These devices have a lower
output impedance or greater drive capability, thus lowering the resulting neuron
input voltage. The alternating pattern with even-numbered positions yielding lower

neuron input voltages than odd-numbered positions is due to parasitic resistance



- 193 -

Iv0 vs VvO (syn off) ((h*=-5v(circ),0v(tri))

2.5 T

A
204
151
10+
X o5t
kS
s 0.0+

0.5 J[-

-1.0T

L5+

2.0 t } + } 4 g
-6 5 4 -3 2 -1 0

Vv0 (V)
Fig. 4.20 - Synapse Leakage Current

and the layout of the network (Fig. 4.23). Figs. 4.21 and 4.22 measure the input
voltage for a neuron at the edge of the array. Because we sacrifice a layer of metal
for shielding, we are forced in places to run signals in polysilicon or diffusion. This
means that there is less impedance between neurons that are close together and more
impedance between neurons that are further apart. Because alternate neurons are
placed on opposite sides of the synaptic array, the neuron input voltage bounces
up and down as we shift the position of the single -1 input. Fig. 4.21 shows this
parasitic resistance again in that not only does the neuron input voltage hounce
up and down as we shift position due to the placement of alternate neurons on
opposite sides of the array, but the input voltage generally decreases as we increase

the distance between the neurons. It is unclear why this second manifestation of
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Fig. 4.21 - Neuron Input Voltage vs +1 Input Position

parasitic resistance is absent in Fig. 4.22. The effect of parasitic resistance is to
introduce an uncertainty of about 25 mV in the input voltage of a neuron. We
found that the cffect of other electrical nonuniformitities in the synapse were small

compared to effect of the parasitic resistance.

4.2.2.8 NEURON INPUT VOLTAGE

In this experiment, we measure the input voltage seen by a neuron given dif-
ferent numbers of connections to high and low neuron outputs. Because we do
not normally have access to this point in the circuit, we use a row of synapses not
connected to a neuron to make this measurement. Figure 4.24 shows the optical

setup for the experiment. A shuttered laser beam is collimated before it illuminates
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an aluminum foil mask (Fig. 4.25) which 1s then nnaged with 50:1 demagnification
through a beamsplitter onto the chip. The light reflected from the chip is then
reimmaged with 50:1 magnification (in effect, through a microscope) onto a CCD
which is used to align the imaged pattern and the chip as shown in Fig. 4.26. The
rectangles are the photodiodes and the bright circles are the imaged pinholes in
the foil mask. By changing the foil mask, we can change the connection pattern
implemented by the chip. We control the inputs to each synapse in the row by
cither loading the associated neurons with desired values or direct manipulation of
inputs not connected to neurons. We use an oscilloscope to measure the resulting
neuron input voltage.

Figure 4.27 shows the neuron input voltage versus the ratio of the number of
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connections to high and low neuron outputs. Remembering that the voltage ac-
tually depends on the ratio of high connections to low, we expect the curves to

intersect only at the point where the number of high and low connections are equal
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which corresponds to a 1:1 ratio (normalized input equals 0). However, we notice
that the measured neuron input voltage at this point depends on the total number
of connections although it should be independent of this number. A leakage path

from the neuron input to Vg4 could explain such behavior. The more connections
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to V44 and Gnd, the higher the conductance. The higher the conductance, the less
effect a leakage path will have on the input voltage. We suspect a leakage path from
the neuron input to Vg4 since the neuron input voltage is drawn closer to V34 than
expected with greater effect the smaller the total number of connections. We can
estimate the magnitude of the impedance of the leakage path by using Eq. 4.2 to
calculate the expected impedance of each connection. We use the following param-
eters Vy = —Vip & -.77V and &, &~ 5.16uA/V? with V, = 5V and V; ~ V; = 3.3V
for a connection to a high neuron output, and V, =~ Vy ~ 3.3V and V; = 0V for
a connection to a low neuron output. From Eq. 4.2, we find that connections to
high neuron outputs are not saturated while connections to low neuron outputs are
saturated. Using the above parameters in Eq. 4.2 and assuming an equal number
of connections to V4 and Gnd, we find that connections to high neuron outputs
have an impedance of about 74 k{2 while connections to low neuron outputs have
an impedance of about 107 k{). We are thus able to rule out the 10M oscilloscope
probe as the source of leakage. Although we are unsure of the leakage path, we

know that it has an effective impedance in the tens of kiloohms range.

4.2.2.9 NEURON SWITCHING TIME

In the next experiment, we measured the switching time of the neuron. Fig-
ure 4.28 shows an example where we clock the neuron (exponential decay) and
observe the output of the neuron through an external HCMOS buffer (sharp tran-
sition). Apparently, the capacitive load of the clock line was large compared to the
drive capability of the external clock. Nevertheless, if we take the beginning of the
decay as the beginning of the clocking signal, we find the neuron switching time
to be on the order of 200 us or less. Theoretically, using a bistable comparator, it
is possible for the neuron to become metastable with an arbitrarily long switching

time; however such a situation was never observed.
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Neuron Input Voltage vs. Normalized Input
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Fig. 4.27 - Neuron Input Voltage

4.2.2.10 NEURON TESTS

In the next experiment, we test the function of the neurons by precharging all
the connections on and measuring the output of the neuron versus the threshold
voltage V; and the ratio of connections to neurons with high outputs and low. First,
we allow the voltage divider on-chip to set V; = Vj which we measure to be 3.9V.
Next, we turn various numbers of input neurons high and low. We find that all the
neurons generate a low output with 7 or fewer outputs low and a high output with 8
or more neurons high. We then drive V; externally and find that we can adjust it so

that neurons switch at any desired ratio of connections to neurons with high and low
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iputs. We also notice that as the threshold voltage approaches a voltage generated
by a given ratio of connections to high and low neuron outputs, some neurons will
generate an output high while others generate an output low given the same set of
mputs. Moreover, we find that as the threshold voltage passes through one of these
“boundary” voltages, there will be a pattern to the neurons that generate high and
low outputs. This pattern can be explained by the parasitic resistance due to the
ligher resistance material (polysilicon, diffusion. and contact cuts) used to connect
the synapses. As discussed carlier. this parasitic resistance results in every other
neuron being connected more strongly together and a variation of about 25 mV in
the neuron input voltage. Once again. variations in the electrical characteristics of

the neurons were small compared to the effects of parasitic resistance on the chip.

4.2.2.11 TESTING THE ENTIRE Cuip
In the final experiment. we test the accuracy of the ONNC. There are many
potential sources for error i such a system, some of which we list below.

Transistor Nonuniformity - Results in nonuniform neuron switching voltages
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and nonuniform connection strengths.
Parasitic Resistance - Results in nonuniform connection strengths.
Nonzero neuron output impedance - The neuron output may drop below a full
+1 or above a full -1 depending on the load that it drives.
Electrical Crosstalk - Electrical activity in neighboring neurons or synpases can
effect the behavior of a given neuron or synapse. This problem may be especially
bad in neurons where neuron switching may affect Vyy, Gnd, and/or V; voltage
levels resulting in incorrect neuron switching.
Spatially Nonuniform Illumination - Depending on the quality of the beam that
lluminates the spatial light modulator, the uniformity of the modulator elements,
and for holographic storage the quality of the reconstruction, the intensity of light
striking each detector may differ from the desired intensity. When using binary
connections, this nonuniformity does not cause a significant problem as long as
each synapse that is supposed to be turned off receives sufficient illumination.
Optical Noise and Crosstalk - Scattering in the optical system, waveguiding on
the chip, and for computer generated holographic storage the deterministic encoding
noise causes the actual illumination of each detector to deviate from the desired.
With binary synapses, this may produce a partial connection when either a zero or
full connection is desired.
Nonuniform Illumination Time - Variation in the illumination time from cycle
to cycle can also cause the connection strengths to deviate from their desired val-
ues. If the illumination time is too short, a partial connection may be left where
no connection is desired. If the illumination time is too long the strength of full
connection may be degraded in the presence of optical scattering or crosstalk.

The net result of these and other potential sources of error is that the neuron
will sometimes generate an output that deviates from the desired output based on

the input and the desired connection pattern. In this experiment, we measured the
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net switching error of the neurons using the same optical setup as in the experiment
to measure neuron input voltage (Fig. 4.24). The measured neuron switching error
after 3270 total trials using various connection and neuron input patterns are tabu-
lated in Table 4.3. With up to 15 neurons, we found switching errors only for inputs
that were just above or just below the switching threshold. With the greater noise
that we expect to find in larger chips, we expect that neuron inputs further from
the switching threshold will also result in switching errors. However, if we assume
that the errors are independent and Gaussian in nature, we expect that the region
of neuron switching error will become increasingly small in comparison to the total

range of the input domain of the neuron.

Table 4.3 - Neuron Switching Error

Dist. from Thresh. # Switching Error (%)
-15
-13
-11

-7

4.2.3 Optical Disk-ONNC Neural Network Implementations
In this subsection, we describe two experiments in which we use the optical
disk in conjunction with the ONNC to implement multilayer feedforward neural net-

works. In the first experiment, we implement a two-layer heteroassociative memory.
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In the second experiment, we implement a two-layer autoassociative memory.

4.2.3.1 HETEROASSOCIATIVE MEMORY

For the first experiment, we implement a heteroassociative memory. Because
we had not yet developed a learning algorithm for multilayer networks with binary
connections, we implemented a two-layer network with a grandmother-cell repre-
sentation in the hidden layer. In such a network, each cell in the hidden layer is
responsible for recognizing a given input and generating the resulting output. We
can choose the weights for such a network deterministically. Because each hidden-
layer neuron must simply recognize a given input, we connect it to all the neurons
in the input layer which should have low outputs when presented with that input.
Using Fig. 4.27, we initially set the threshold to 4.88 V' such that if the hidden layer
neuron is connected to any input units with low outputs, the hidden layer neuron
will generate a low output itself. Thus when any of the training inputs is presented
to the network, the specified hidden-layer neuron will generate a low output while

the outputs of the other hidden layer neurons will be high.

Upon recognition of the input, each hidden layer neuron is responsible for
driving the outputs to their associated value. We thus connect each hidden layer
neuron to the output neurons corresponding to elements in the associated output
which should have outputs low. For the second layer, we use Fig. 4.27 to set the
threshold at 1.5 V' such that if the hidden layer neuron is connected to any low

inputs, its output will be low.

In order to avoid possible variations in threshold voltage for different numbers
of connections, we use only inputs with a fixed number of input neurons with high
outputs and low. We choose 7 high and 8 low because we have the maximum

number of combinations with half the inputs high and half low.

We see that with the threshold set as described above, we have actually built a
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neural network PROM with input ORs and output ANDs. However, by adjusting
the threshold voltage we can expand the domain of each hidden layer neuron such
that inputs nearby in Hamming distance get mapped to the same output. This

would then act to correct error or noise in the input.

The grandmother cell representation does not provide many of the touted ad-
vantages of neural networks. Its capacity is limited to the number of units in the
hidden layer, and by concentrating information about each association in a single

unit it is not very resistant to implementation errors.

Table 4.4 shows the input vectors, the hidden representation, and the associated
outputs. Table 4.5 shows the weights required to implement the network. In our
first implementation, with the same optical setup (Fig. 4.22) as in the experiment
to measure the neuron input voltage, we used a foil mask instead of an optical
disk to load the connection patterns. Fig. 4.29 shows the response of the neural
network chip to the second training vector. The horizontal array of LEDs at the
top show the states of the horizontal neurons, while the vertical array shows the
states of the vertical neurons. Only the LEDs with white triangles are active. The
objective used to image the connection pattern onto the ONNC is visible in the
lower right hand side of each photo in front of the ONNC which is also in the lower
right hand side. Initially, we set the states of the horizontal neurons (LEDs at the
top of Fig. 4.29a) to the input (second training) vector, load the connection pattern
by imaging the mask onto the chip, then propagate data through the array to the
hidden (vertical layer) (LEDs at right side of Figs. 4.29a and b). The fact that the
second LED from the top is off indicates that the second vector has been recognized.
We then change masks, reset the synapses, and load the connection pattern for the
second layer through the objective and before propagating data from the hidden
layer to the output (horizontal) layer whose states are shown in the LEDs at the

top of Fig. 4.29b. We were able to successfully recall all 11 vector heteroassociations
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Neuron # Input Vector Output Vector
1 -— ettt - et ———
2 ++ ++———=t-+-+ -+ ——++-t—t+-=
3 += =ttt de—— 44 e B et
4 -4 =ttt - ttb =ttt
5 +4+ Fh——tdem—t 4 —=t+tt-—t-+
6 ++ -ttt - -ttt it
7 -+ +-t-—t++t-- -+ +——d=t+++++
8 -+ ~—tttt——t-t -+ ——d =ttt
9 ++ —tp-———- +-+ ++ =ttt
10 -+ Ft-——t—tt-t- -+ Rt il Tl DL
11 -+ —=t+-==t+++ -+ +=+++——++++

Table 4.5 - Heteroassociative Connection Matrices

0 01 110010O0T1T1T1T1 0y
1 11100O0O01O01O0101
1001 10011100011
01 0011110101010
1111001 10O0O0O0T1T1TO0

wP=¢11110010000T1T110
0110100111 10O0601
60 1001111001010 1
1101 1000O0O01O0T1T11
0111001011010 01
0 1001100011110 1)
0 611001 O0O0O01
10110100010
11011001111
0 0111000101

Ls®»_)0 1011110000

- 100 00 01 1 010
0100001 1010
0601001110101
0 0100111111
0 000101 O0O0OCO01

(Fig. 4.30).

Next, we recorded images of the mask patterns on the optical disk and used

the setup of Figs. 4.31 and 4.32. This time, we used a PC to control the entire
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ayer
Fig. 4.29 - Recall of Second Vector Heteroassociation

experiment: shutter, clock signals, input and output data. efe.. An optional mi-
croscope was built to align the mask pattern on the disk with the detectors on the
chip. Fig. 4.33 shows such an alignment through the microscope. In this case. the
light reflected from the mask on the disk selectively illuminates the svnapses. Light
reflected from the chip is imaged through the beamsplitter onto a CCD and only
those synapses receiving illumination are seen on the video monitor. An alternative

method for alignment involved using the chip in “imaging-mode.” In this case, a
single +1 neuron output is placed in a field of -1s in the vertical neurons. By adjust-
ing the threshold voltage to detect the presence of a single +1, we are able to scan a

single row of synapses and readout the mask pattern on the horizontal neurons. We
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Fig. 4.30 - Recall of Vector Heteroassociations
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are then able to scan the entire array by shifting the position of the +1. Fig. 4.34
shows the resulting computer reconstruction of the mask pattern detected by the

chip when illuminated using the same mask as that used for Fig. 4.33.

= . Computer
==
"> e Controlled
Shutter
P.C.

Mirror

CCD Microscope

-

ONNC

Imaging Lens

Optical Disk

Fig. 4.31 - Optical Disk-ONNC Setup

Fig. 4.32 - Photograph of Optical Disk-ONNC Setup
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Fig. 4.33 - Microscope Alignment of Disk and Chip

Again, we found that we were able to successfully store and recall all 11 vector

heteroassociations.

4.2.3.2 AUTOASSOCIATIVE MEMORY

For the second experiment, we implement an autoassociative memory. In this
case, however, we use a more distributed representation in the hidden layer. We use
an algorithm developed in our group (Subsec. 1.5.9) for training two-layer networks
with binary connections. In our experiments with the algorithm, we found superior
performance for bipolar binary synapses as opposed to the unipolar binary synapses
implemented by the ONNC.

However, if we restrict all inputs to having the same number of high elements
and the same number of low elements, we can implement a network with bipolar

binary synapses using unipolar synapses. Let the following equation describe the
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Fig. 4.34 - Imaging-Mode Alignment of Disk and Chip

switching threshold of the neuron:
0= w*e, (4.17)

where 8 is the threshold, {wz(il)} the set of weights connecting the neuron to its
inputs, and {z;} the inputs (the outputs of other neurons). We wish to implement
this network using a similar weighted sum of unipolar binary connections {wgo’l)}.
We can relate the individual bipolar and unipolar equations using the following
equation:

wF =25 " — 1 (4.18)
Substituting Eq. 4.18 into Eq. 4.17, we find that the neuron must now switch under
the following condition for the network to act as if it had binary connections:

% g+ Z z; | = ngo’l)xi (4.19)

7
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We see that if all the inputs have the same number of high elements and the same
number of low elements, the sum over the elements of the inputs will be the same
for all inputs, and every threshold will be adjusted by the same amount. In our
experiment, we restricted ourselves to having only inputs with 5 elements high and
5 low. Furthermore, we restricted the algorithm to search for bipolar networks with
neurons switching at zero threshold. We see from comparison of Eqs. 4.18 and 4.19,
that a desired bipolar network with an equal number of high and low inputs can be
implemented with a unipolar network.

Table 4.6 shows the stored vector autoassociations and the associated hidden
representations. Table 4.7 shows the weights required to implement the network.
We used the same two setups (foil and disk) as for the heteroassociative mem-
ory. Fig. 4.35 shows the propagation of all 6 vector autoassociations through the
foil-ONNC setup (see Subsubsec. 4.2.3.1 for explanation of figure). In order to im-
plement bipolar weights in the second layer, we detected the states of the five active
neurons in the hidden layer, and set five additional neurons in the hidden layer
to complementary values. We then implement positive weights by connecting the
active neurons and negative weights by connecting to complementary neurons. In
both the foil and disk cases, we were able to successfully store and recall all vector
autoassociations.

Table 4.6 - Vector Autoassociations

Vector # Vector Hidden Rep.
1 bt ————— R
2 s e & -t
3 e st +4+---
4 ++—ttt—— ——t—-
153 +4——tt-——e +44+4-
4] ——t ==ttt ———t+

4.3 Future Directions
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Table 4.7 - Weights
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Fig. 4.35 - Recall of Vector Autoassociations

In the near term, it would be interesting to experiment with some alternative
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synapse designs. In the long term, optical connections instead of electronic will be

developed.

4.3.1 Alternative Optically Controlled Electronic Connections

Many potential alternative architectures exist for implementing analog connec-
tions. For example, we could use the photodiode to provide the bias current for an
analog multiplier as shown in Fig. 4.35a. In this case, the output current would be

given as follows:

I = Itanh [_q_(vk%] (4.20)

If we remain in the linear regime, this synapse would allow us to use analog neurons
and connections. The synapse of Fig. 4.36b uses unipolar binary neurons to gate
analog weighted currents. We can also make use of a multiplying digital-to-analog
converter (MDAC) style neuron such as those used by Alspector?!]. As shown in
Fig. 4.36¢, the photodiodes would control the gates of a series of transistors with
exponentially scaled width/length ratios. N photodiodes per synapse would give

each synapse N-bits of dynamic range.

Xm.u
Imll Vi —‘i
vi _{ I—‘ vref
A VA 4 1
EAYA 1 1 » 1 P
(b)

(a)

A A AN e Vot gy AN P Vol

v [4 v. [z v [1 —-’V“-%

(© @

Fig. 4.36 - Alternative Optoelectronic Synapse Designs

Boyd has proposed a synapse (Fig. 4.36d) consisting of back-to-back photodi-
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odes.[?2] The I-V characteristic of this synapse is as follows:

v ,

For I, >> I; and small V", this synapse can implement analog connections for
bipolar analog neurons.

In order to implement bipolar weights, we can use a pair of lines to each row
and column of synapses corresponding to positive and negative currents (excitation
and inhibition). For example, the MDACs pictured in Fig. 4.37 could be used to
implement a 5-bit signed discrete connection. We actually fabricated a synapse of
type (a) (Fig. 4.38) to test its ability to implement discrete weights and found that
it worked properly. However. the large size of this synapse (120um x120um) led us

to abandon this technique in favor of the single photodetector implementation.

' 4T Ak g Ve e FRAEIINE MRS O, S 0 E vy ¥y
e e TS TN S R e Lo b

P, A y A ?Aﬂ" RN

A & e = A P by ~ et 2L

AR TR St Ah e S oM
by K oy A - ’ . o >

. ’ “’ kgt 7 8 R4 .

Fig. 4.38 - Photograph of 5-Bit Bipolar Synapse

4.3.2 Optical Connections
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Fig. 4.37 - Bipolar Synapses with 5-Bits of Dynamic Range

Although we were able to successfully demonstrate an optoelectronic neural
network, the main contribution of this work is the demonstration that optical stor-
age and parallel readout from an optical disk can be effectively exploited with

processing elements fabricated on a custom chip.

Most of the chip area in this design however is occupied by connections. This
is a direct result of the fact that we provided no means for the neurons to optically
broadcast their outputs. In the future, with the possibility of neurons with optical
detectors and either sources?3] or modulators,?¥ it should be possible to fill the
chip area with processing elements and use the vertical or third dimension to provide

connections. Because the optical disk is a planar medium, the number of degrees of
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freedom it provides grows as Q(L?) where L represents the linear scale of the system.
Although the number of neurons can grow as O(L?), full interconnection requires
O(L*) degrees of freedom. We can use a canonical vector-matrix architecture in
an imaging configuration to provide connections between a row and a column of
neurons as shown in Fig. 4.39a. We can also use holographic techniques between
fractal planes!?] to provide connections between two planes containing O(l;) and

O(l2) neurons respectively where 31, = L* (Fig.4.39b).

Opu Disk
()

Fig. 4.39 - Optical Disk Implementation of Neural Connections
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5 Conclusions

In Chap. 2, we noted that a control signal can be divided into feedforward and
feedback componenets. We stated the belief that the greater the role of feedforward
control, the better we can fully exploit the capabilities of the plant. We then
considered the application of multilayer feedforward neural networks to feedforward
control. We feel that neural networks have a role to play in control because learning
and adaptation of neural networks could be used to advantage for the control of
plants that are uncertain, complex, nonlinear, time-varying, or otherwise hard to
model. Plants with one or more of these characteristics can be difficult to control

using conventional techniques.

The problem with using the supervised techniques we considered to learn feed-
forward control is that we must have an estimate of the error at the output of the
(control) network in order to modify the connection weights in the network. How-
ever, we assume that we have incomplete knowledge about the plant input (network
output) required to generate a desired plant otuput. We thus considered two archi-
tectures/algorithms, generalized and specialized learning, for training feedforward
controllers. Generalized learning provides a direct measurement of error but not the
ability to completely specify the region in which we train the network to operate the
plant. On the other hand, provided that we can estimate the error at the output of
the network given the error at the output of the plant, specialized learning allows

us to specify the region in which we train the network.

We derived a specialized learning algorithm called BEPing through the plant
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by considering the plant to be an unmodifiable part of the network and applying
gradient descent. In order to do this, we require estimates of the plant Jacobian.
In simulations, we accomplish this by perturbing plant inputs and observing the
effect on the outputs of the plant. We also proposed alternative techniques such
as least squares estimation of the Jacobian, and noted the parallel between our
problem of estimating the plant Jacobian and the problem of parameter estimation
for self-tuning regulators in adaptive control. Other authors have proposed using
either fixed gains or a neural network model of the plant to estimate the control

network output error given the plant output error.

We then performed a series of experiments. In the coordinate conversion prob-
lem, we found that both generalized and specialized learning (in the form of BEPing
through the plant) were effective in inverting a static mapping. In the one-link ma-
nipulator problem, we found BEPing through the plant effective and noted that
random selection of training points from an infinite set provided better generaliza-
tion than the use of a fixed finite training set. In light of the VC-dimension results,
we note that the random training set attempts to provide a number of training
samples far in excess of the VC-dimension. In the two-link manipulator problem,
we found that even random training sets were unable to provide good generaliza-
tion given ad hoc selection of network architecture. In the two-link manipulator
problem revisited, we found that by restriction of the task (and thus the region of
operation) and by using improved algorithms that dynamically adjust the network
architecture, we were able to train an effective controller for the two-link manipula-
tor. Furthermore, we demonstrated techniques to incrementally increase the region

of operation so that a difficult task could be learned, one piece at a time.

We also noted that a tapped delay line could be used to convert a dynamic
input signal into a static vector of samples so that a feedforward network could

respond to input dynamics. We found that as expected, feedback is required for
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effective control of the plant. We incorporated feedback in operation by modifying
the desired trajectory given to the feedforward controller based on both desired and
actual trajectories. Finally, we noted that one could not train a network online to
control a plant without the an initial ability to control the plant. We proposed and
demonstrated a technique called feedback learning that allows us to train online

using a plant that we have only the most rudimentary ability to control.

In Chap. 3, we noted that current commercial optical disk systems do not ex-
ploit a major advantage of optical storage over its magnetic counterparts—the ability
to access data in parallel. We then characterized an existing prototype disk system
in terms of its suitability for parallel access. Next, we proposed and demonstrated
several techniques, both imaging and holographic, for the parallel readout of infor-
mation from optical disks. We noted that if nothing else, parallel access of optical
disks can be used to significantly increase the bandwidth of information readout
from the optical disk. We concluded by proposing several applications such as
character recognition, database processing, and neural network weight storage that
further exploit the advantgaes of optical disk. These applications typically involve

the rapid search through a large library of information.

In Chap. 4, we described an optoelectronic implementation of a multilayer feed-
forward neural network using a custom VLSI chip with neurons and recoonfigurable
connections and an optical disk for the storage of connection weights. In order to
provide the maximum possible number of neurons and connections, we chose to min-
imize the circuitry in the synapse by using a pulldown FET and photodiode to set
the gate voltage of a single synaptic FET connecting a pair of neurons. We described
in detail the design and operation of the chip, and found that except in the case of
unipolar binary neurons, the single FET could be used only for binary connections.
We then experimentally demonstrated that the successful transfer of connections

from the disk to chip, and the successful operation of the chip itself. Although



- 223 -

this technique may not be optimal for the implementation of neural networks, the
experiments in this chapter demonstrated that parallel readout from optical disks
can be exploited successfully using special purpose optoelectronic readout elements.

Neural networks provide a computational alternative to conventional comput-
ers based on the Von Neumann machine. With their emphasis on learning and
adaptation instead of algorithmic solutions, they may provide solutions to prob-
lems such as the control of complex, nonlinear systems, that are currently difficult
to solve using conventional techniques, especially if those problems involve a large
amount of sensory or input information best handled through the parallel process-
ing inherent in neural architectures. Although there is much work to be done on
theoretical development of neural networks, this must take place concurrently with
experimental implementation. Experimentation not only serves to test theoreti-
cal results, but also to generate new questions as unexpected behavior comes to
light. Although conventional computers continue to increase in power, they can
only be used to effectively simulate hundreds or at the very most tens-of-thousands
of neurons. Special purpose hardware must be developed for experimental testing
of systems involving even greater numbers of neurons that may be required for
real-time sensory information processing or the emergence of new and interesting

behavior in collective computation.





