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Abstract

Directed evolution has proven a successful strategy for protein engineering.

To accelerate the discovery process, we have developed several computational

methods to optimize the mutant libraries by targeting specific residues for

mutagenesis, and subunits for recombination. In achieving this goal, a statistical

model was first used to study the dynamics of directed evolution as a search

algorithm. These simulations improved our understanding of the relationship between

parameters describing the search space (e.g., interactions between amino acids) and

experimental search parameters (e.g., mutation rate and library size). Based on these

simulations, a more detailed model was used to calculate the structural tolerance of

each residue to amino acid substitutions. Further, a computational model was

developed to optimize recombination experiments, based on the three-dimensional

structure. Together, these computational techniques represent a major step towards

information-driven combinatorial protein design.
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Chapter 1

Introduction to Directed Evolution Theory

Enzymes can catalyze a wide range of difficult reactions with high specificity in

mild conditions. Despite these advantages, it is difficult to coax enzymes to work on an

industrial scale (Thayer, 2001). Enzymes may have low activity towards desired, non-

natural reactions and they are often destabilized by reactor conditions, such as high

temperatures and organic solvents. It is desirable to optimize enzymes to reduce their

disadvantages while retaining their beneficial properties. However, the development of

reliable enzyme-modification methods is limited by multiple competing constraints in

proteins. For example, a change that improves activity may reduce some other desired

property, such as the stability or expression yield. An approach to this problem is to

reproduce evolution in vitro, through iterative rounds of mutation and selection (Figure 1-

1). Within this approach, there is potential for optimization based on principles gleaned

from statistical mechanics, computer science, and protein design. The focus of this thesis

is the development of computational techniques to model and accelerate the directed

evolution of enzymes.

An enzyme is a catalytic protein, which is a linear polymer of amino acids that

folds into a well-defined three-dimensional structure. At each monomeric unit, or residue,

one of twenty possible amino acids can exist, where the amino acid identities differ in

size, polarity, charge, and mobility. The amino acid sequence encodes the ability to fold

into a three-dimensional structure and perform some biological function. Changes in the

amino acid sequence can alter the thermodynamic and catalytic properties of an enzyme.
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Those properties that incur survival in evolution are collectively referred to as the

protein’s fitness.

During evolution, nucleotide mutations are made spontaneously in the DNA of

genes, which translate into amino acid substitutions in proteins. Those mutations that are

either neutral or lead to an increase in fitness survive, whereas those mutants that have

decreased fitness die. This process can be visualized as a random walk through sequence

space – the hyper-dimensional set of all possible amino acid combinations, connected via

single amino acid substitutions. A useful analogy in understanding sequence space is the

concept of a word space (Figure 1-2) (Smith, 1970). In this space, words are connected

by single letter substitutions and movements can be made if the substitution results in an

English word. Similarly, mutations can cause drift in sequence space along paths where

the intermediate sequences are adequately fit to survive selection.

In sequence space, each amino acid combination has an associated fitness. This

additional dimension produces a characteristic fitness landscape (Figure 1-3). The

topology of the fitness landscape affects the success of evolution as an optimization

algorithm (Kauffman and Levin, 1987; Kauffman, 1993). If the space is very smooth with

a single optimum, then any starting sequence can find the global optimum by mutating

the sequence and accepting those mutations that increase the fitness (Figure 1-4).

However, if the space is very rugged, with many local maxima, then it is far more

difficult to optimize the sequence (Derrida, 1981; Macken and Perelson, 1989). An

algorithm that accepts all randomly generated uphill steps is unlikely to discover the

global optimum.
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In proteins, rugged landscapes arise from competing interactions between residues

(Figure 1-5). For example, if the side-chains of two amino acids interact, then mutating

either residue first may lead to a disruption of the interaction and a decrease in fitness

(Baase et al., 1999). However, if both residues are mutated simultaneously, then this has

the potential of replacing the interaction entirely, thus improving the likelihood of

increasing the fitness. Another way to describe this scenario is to note that the sum of the

individual changes in fitness is not equal to the change in fitness of the two mutations

made simultaneously. This effect is referred to as non-additivity and it reflects the fact

that the residues are interacting. This interaction leads to ruggedness in the fitness

landscape and makes the search problem more difficult for evolutionary techniques.

Models have been developed in statistical mechanics to describe the effect of

competing interactions on the set of energetic states of a system. In particular, spin-

glasses, where the interactions between the spin states of atoms contribute to the ground

state of the system, have been extensively studied (Sherrington and Kirkpatrick, 1975;

Fischer and Hertz, 1991). Because of their ability to capture competing constraints on

biomolecules, these simplified models have been used to study the dynamics of evolution

(Anderson, 1983; Prügel-Bennet and Shapiro, 1994). In Chapter 2, a spin-glass-like

model is introduced to study the effect of inter-residue interactions on the optimal

evolutionary parameters.

The introduction of energetic constraints reduces the entropy of a system. For

example, consider a closed box of molecules at constant volume and temperature (Figure

1-6) (Hill, 1960). When the molecules can access the entire volume of the box, the total

number of states is Ω. This represents the case when the molecules can exist on the left-
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and right-hand sides with equal probability. When the molecules are restricted to the left-

hand side through the addition of a restraint, this reduces the number of states to ΩL. The

change in entropy ∆S is









Ω
Ω−=−=∆

L
L kSSS ln , (1-1)

where k is Boltzman’s constant. By dramatically decreasing the number of available

states, the introduction of a restraint can significantly reduce the entropy of a system. The

addition of a constraint can be thought of as the reduction or removal of a potential

barrier or free energy (Hill, 1960).

The reduction of entropy through the introduction of constraints can be

demonstrated by returning to the concept of word space (Shannon, 1951; Abramson,

1963). Considering two different starting points -WORD and ALSO- the number of

single-mutant neighbors that are also English words can be enumerated (Figure 1-7 A).

Due to the spelling rules of English, some of the letters are more easily substituted.

Based on the alignment of words, the entropy of each position can be calculated (Figure

1-7 B). In terms of proteins, constraints are imposed at each residue by the particular

three-dimensional topology of the backbone and interactions with other amino acids.

These constraints restrict the number of amino acids that can be substituted at each

position.

While the statistical models have proven useful in understanding the generalized

dynamics of evolution, their simplicity impedes their ability to model specific enzymatic

systems. To achieve this, more realistic energies have to be calculated based on the

interactions between amino acids, a task that is suitable for computational protein design
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tools (Figure 1-8). The original goal of protein design is computationally optimize an

amino acid sequence to fold into a defined three-dimensional structure (Hellinga and

Richards, 1994; Desjarlais and Handel, 1995; Dahiyat and Mayo, 1997b). The first step

of protein design is to reduce the conformational complexity of amino acids by assigning

a set of discrete rotamers for each amino acid at each residue. Then, all of the interaction

energies between all pairs of rotamers are calculated. Finally, a minimization algorithm is

used to find the amino acid sequence that has the lowest predicted energy in the folded

state of the protein. These techniques are valuable in modeling molecular evolution

because they can be used to calculate the constraints between amino acids for a particular

three-dimensional structure. This facilitates the prediction of the evolutionary dynamics

for experimentally relevant systems, as is done in Chapter 3.

The recombination of several homologous sequences has proven a successful

strategy for directed evolution (Stemmer, 1994; Crameri et al., 1998). This technique

creates a library of hybrid genes where each mutant has inherited portions of their genetic

material from different parents. The power of recombination can be demonstrated by

considering the construction of a library of sentences (Figure 1-9). Recombination

promotes word swapping whereas mutations alone are more likely to destroy the integrity

of a word. The utility of recombination as a search technique has been studied

extensively in computer science (Holland, 1975; Mitchell, 1992). An interesting result

from these studies is that crossovers are not universally advantageous for all search

problems (Schaffer and Eschelman, 1991; Spears and De Jong, 1991; Mühlenbein, 1992).

In fact, they have often been shown to hinder the search (Table 1-1) (Mitchell et al.,

1994). The success of recombination is related to the topology of the fitness landscape
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(Manderick et al., 1991; Kauffman, 1993; Hordijk and Manderick, 1995; Voigt et al.,

2001). When crossovers do not divide the constraints of a system, then recombination is

more likely to be successful. In the case of a sentence, this means that crossovers should

occur between words. In protein evolution, crossovers should not divide interactions

between amino acids. Methods to identify regions of protein structures where crossovers

are likely to disturb interacting residues are presented in Chapter 5.

There are several future goals in expanding the development of computational

tools for directed evolution. Foremost, the targeting strategies proposed here have to be

assessed for their ability to accelerate the discovery of novel enzymatic properties. In

constructing enriched libraries, two conditions need to be optimized. First, the

destabilizing effects of mutations and crossovers have to be minimized. Second, the

diversity of the library should be maximized. Balancing these two factors is nontrivial

and could be aided by techniques borrowed from multi-objective optimization (Loughlin

and Ranjithan, 1997). A second goal is to extend directed evolution theory to model and

optimize the evolution of genetic circuits and metabolic networks (Cremeri et al., 1997;

Schmidt-Dannert et al., 2000). Models of biochemical networks can be used to identify

those components that are most likely to generate diverse network functions when

mutagenized. By expanding the theory to explore the evolution of different hierarchies in

biology, it may be possible to develop an understanding of the organizational strategies

that lead to robust and evolvable systems.
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Table 1-1. Discovery Times for Evolutionary Algorithms

Algorithma Timeb

Steepest ascent hill-climbingc >265,000
Random mutation hill-climbingd 6179
Genetic algorithme 61334

a. Algorithms and data taken from Mitchell (1992).
b. The mean number of function evaluations required to find
the optimal string for a “royal road” fitness landscape,
averaged over 200 landscapes.
c. An initial string is chosen at random. All single mutations
are attempted and the most fit mutant becomes the next
parent. This process is repeated until no more fit mutations
are found.
d. An initial string is chosen at random. Mutations are
randomly attempted and the first mutant that has an increased
fitness becomes the next parent. This process is repeated until
convergence is achieved.
e. Two initial strings are chosen at random and a population
of offspring is produced with crossover rate pc and mutation
rate pm. Selection pressure is then applied to the population.
Rounds of crossover, mutation, and selection are repeated
until the population converges.
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Figure 1-1:

A schematic is shown of the directed evolution algorithm with potential areas for

optimization marked in red. The first step of directed evolution is to isolate the DNA

sequence that encodes the wild-type protein. Through PCR techniques, a library of

mutant or recombinant DNA sequences is produced. Each member of this library has a

sequence that is slightly perturbed from the parent. This library is then screened for those

properties in which the researcher is interested. The mutant with the best combination of

properties (highest fitness) becomes the parent to the next round of mutation and

selection. Within the directed evolution algorithm, there is much potential for

optimization. The evolutionary parameters are interdependent, for example, the optimal

mutation rate depends on the screening capacity. Further, after each generation, the list of

mutant fitnesses contains information about the local search space. Rather than discarding

this information, it is desirable to use it to optimize the evolutionary parameters for the

next generation. Finally, information, such as the three-dimensional structure of the

protein or alignments of naturally occurring sequences, is being rapidly accumulated for

many enzymatic systems. This information has the potential to optimize the evolutionary

search.
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Figure 1-2:

Transitions between words are similar to movements through sequence space (Smith,

1970). In this example, WORD is transformed into GENE via two paths consisting of

single letter substitutions. A requirement is that each intermediate set of four letters

composes an English word. Two independent paths are shown. The probability that a

transition will occur between two sequences during evolution is related to the number of

connected paths between the sequences.
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Figure 1-3:

A two-dimensional projection of the hyper-dimensional fitness landscape is shown. In

this simplified representation, for a four-residue sequence is considered where the colors

represent amino acid identities. The all-blue sequence is the global optimum whereas the

lower fitness peaks are local optima. The problem of in vitro evolution is how to search

this space effectively, without becoming trapped at a sub-optimal fitness.
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Figure 1-4:

An example is shown of a smooth (A) and rugged (B) fitness landscape. Rugged

landscapes are characterized by multiple maxima, which act as traps for an evolving

sequence. Conversely, a smooth landscape contains fewer such peaks. Hypothetical

random starting points are marked by the red dots. From any starting point, the smooth

landscape is easy to climb. Any algorithm of mutagenesis of selection is guaranteed to

discover the global optimum. However, it is more difficult to optimize a sequence on a

rugged landscape, as a steepest-ascent mutagenesis algorithm is likely to converge onto a

sub-optimal peak.
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Figure 1-5:

A simple example is shown that demonstrates constraints in the protein structure. In this

example, a particular set of two mutations leads to an increase in fitness. However, if

either mutation is made individually, this leads to a decrease in fitness (here, due to the

over- or under-packing of atoms). Another way to describe this scenario is to note that the

sum of the individual changes in fitness is not equal to the change in fitness of the two

mutations made simultaneously.
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Figure 1-6:

The box shown contains ten freely diffusing molecules. In this simplification, each

molecule can exist in either one of two states: the left or right of the box (demarcated by

the dashed gray line). When the molecules are allowed to diffuse freely, the probability

that each molecule will exist on either side is 0.5. When a barrier is imposed on the

system, the probabilities change to either 1.0 or 0.0 and the entropy of the system

decreases. This example was inspired by a presentation by Jeffrey Saven (University of

Pennsylvania).
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Figure 1-7:

(A) The sets of four letters attainable with single substitutions from WORD and ALSO.

Those sets that correspond to English words are marked in red. The first and last letters

in WORD are variable whereas the middle letters and the letters of ALSO are less

mutable. (B) Based on the alignment in (A), the entropy of each position can be

calculated. Low entropies indicate intolerance to substitutions due to constraints. Here,

the constraints are the spelling rules of English. In protein structures, the constraints are

interactions between residues.
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ADSO
AESO
AFSO
AGSO
AHSO
AISO
AJSO
AKSO
AMSO
ANSO
AOSO
APSO
AQSO
ARSO
ASSO
ATSO
AUSO
AVSO
AWSO
AXSO
AYSO
AZSO

ALSO
ALAO
ALBO
ALCO
ALDO
ALEO
ALFO
ALGO
ALHO
ALIO
ALJO
ALKO
ALLO
ALMO
ALNO
ALOO
ALPO
ALQO
ALRO
ALTO
ALUO
ALVO
ALWO
ALXO
ALYO
ALZO

ALSO
ALSA
ALSB
ALSC
ALSD
ALSE
ALSF
ALSG
ALSH
ALSI
ALSJ
ALSK
ALSL
ALSM
ALSN
ALSP
ALSQ
ALSR
ALSS
ALST
ALSU
ALSV
ALSW
ALSX
ALSY
ALSZ

0 0 1 0

(A)
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Figure 1-8:

The typical set of computational tools for protein design is shown schematically. First,

the three-dimensional structure is retrieved and the side chains are stripped, leaving a

fixed backbone structure. Then, each residue is classified as existing in the core,

boundary, or surface of the protein. Only hydrophobic amino acids are allowed in the

core, hydrophilic amino acids at the surface, and all amino acids in the boundary. The

flexibility of the amino acid side chains is captured using a set of discrete conformational

rotamers. Next, all of the side-chain/side-chain and side-chain/backbone energies are

calculated using a force field that includes terms for solvation, H-bonding, electrostatics,

and van der Waals interactions. Finally, the optimal set of rotamers is obtained using a

search algorithm, such as dead-end elimination or Monte Carlo simulated annealing (see

Chapter 6).
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Figure 1-9:

(A) From a partial starting sentence, point mutations are unlikely to discover new

sentences because the number of simultaneous mutations required is too large to be

sampled in a reasonable amount of time. The vast majority of single- or multiple-

substitution sentences will be nonsensical. (B) If recombination is allowed to swap the

words from two sentences, then it is more likely to create a library of potentially new

sentences. However, if recombination is allowed to divide the words, the library will be

significantly less viable (Table 1-1).
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THE HRAD AND IN A FRONTAL ATTACK
THE HEAD AND IN A FOONTAL ATTACK
THE HEAD ANT IN A FRONTAL AUTACK

THE HEAD AND IN T FRONTAL ATTACK

THEXHEAD AND IN A FRONTAL ATTACK
THE HEMD AND IN A FRONTAL ATTACK
THE HEAD AND IQ A FRONTAL ATTACK
THE HEAD AND IN A FRONTPL ATTACK

THE HEAD AND IN I FRONTAL ATTACK
THE HRAD AND IN A FRONTAL ATTACK

THE HEAD AND IN A FRONTAL ATTACK

THE HEAD AND IN A FRONTAL ATTACK

THIS POINT IS THEREFORE METHOD

THIS POINT IN A FRONTAL ATTACK

THE HEAD AND THEREFORE METHOD
THIS HEAD AND IN A METHOD ATTACK
THIS POINT IN A FRONTAL METHOD
THE POINT IS THEREFORE ATTACK

THIS POINT IN A FRONTAL METHOD

THE HEAD AND IS THEREFORE METHOD
THIS HEAD IS THEREFORE ATTACK
THE HEAD POINT IS THEREFORE
THIS POINT AND IN A FRONTAL ATTACK
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Chapter 2

Modeling the Dynamics of Directed Evolution

Portions of this chapter are reproduced from:
Voigt, C. A., Mayo, S. L., Arnold, F. H., and Wang, Z-G. (2001). Computational method
to reduce the search space for directed protein evolut
Voigt, C. A., Mayo, S. L., ion. Proc. Natl. Acad. Sci. USA 98, 3778-3783Arnold, F. H.,
and Wang, Z-G. (2001). Computationally focusing the directed evolution of proteins. J.
Cell. Biol. 37, 58-63.
Voigt, C. A., Kauffman, S., and Wang, Z-G. (2001). Rational evolutionary design: The
theory of in vitro protein evolution, Adv. Prot. Chem. 55, 79-159.

Abstract

Several models are introduced to study the directed evolution algorithm as a search

technique. First, a spin-glass-like energy function is developed to capture the statistical

features of fitness landscapes and is used to study the effect of a finite screening capacity

on the optimal mutation rate. We demonstrate that the optimal mutation rate is low when

the screening capacity is small, the parent sequence is highly fit, or there are many

interacting residues. Further, when the mutation rate and the screening capacity are

limited, the beneficial mutations discovered by directed evolution tend to be at

uncoupled, or non-interacting, residues. Using a probabilistic model of the mutant library,

a transition in the dynamics of directed evolution is shown where the benefit from

simultaneously mutating coupled residues becomes significant in large libraries. Finally,

we use mean-field theory to study the effect of the mutation rate on the moments of the

mutant fitness distribution.
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1. Introduction

A key constraint in directed evolution is the limited screening capacity.

Typically, screening is limited to 103 to 106 mutants (Giver et al., 1998; Petrounia and

Arnold, 2000; Daugherty et al., 2000). The state-of-the-art high throughput selection

techniques, such as RNA-protein fusion, can only handle on the order of 1012 mutants

(Roberts and Szostak, 1997). Despite impressive experimental advances, the sampling

ability remains tiny when compared with the vastness of sequence space. To reduce the

project time and cost of an experiment, it is desirable to optimize the search parameters,

such that the maximum fitness improvements can be found with the minimum screening

effort. Towards this goal, this chapter is devoted to a model describing the properties of

small libraries of mutants, such as those generated by error-prone PCR.

Simulations using a statistical model of the fitness landscape demonstrate the

relationship between the screening capacity, the parent fitness, the landscape ruggedness,

and the optimal mutation rate. Further, we demonstrate that when the screening capacity

and mutation rate are small, directed evolution tends to discover beneficial mutations at

uncoupled residues. In addition, the mutant data collected from the screen contain

information about the structure of the local search space. To extract this information, we

first use a probabilistic model to analyze the transition at which beneficial coupled

mutations dominate the mutant library. Next, a mean-field solution to the model is

derived to study the statistics of the mutant distribution.
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2. Modeling Directed Evolution

2.1. The Search Space

Our strategy for simulating the evolutionary dynamics is to start with a statistical

description of the fitness landscape. The directed evolution algorithm is then tested on an

ensemble of landscapes and the relationship between evolutionary parameters is

observed. Ruggedness, caused by interacting residues, is the dominant feature of the

fitness landscape that determines the success of an evolutionary search. There has been

extensive research in statistical physics to quantify the relationship between coupling and

the ruggedness of energy landscapes (i.e., frustration) (Sherrington and Kirkpatrick,

1975; Fischer and Hertz, 1991). Spin glasses are simple models of frustration and have

been frequently used to model evolution (Anderson, 1983; Bryngelson and Wolynes,

1987; Prügel-Bennett and Shapiro, 1994).

Husimi and Aita used an uncoupled (fully additive) fitness landscape to compare

the effectiveness of several evolutionary search strategies (Aita and Husimi, 1996; Aita

and Husimi, 1998). This model can be expressed as the fitness function,

( )a

N

i

iF ∑= γ , (2-1)

where N is the number of residues and γ(ia) is the individual contribution of amino acid a

at residue i to the total fitness of the sequence, F. The uncoupled fitness function

corresponds to a fitness landscape with a single optimum, which is easily found by

mutation and selection.

Mutational effects often appear remarkably additive in amino acid substitution

experiments (Wells, 1990; Matsuura et al., 1998; Brown and Sauer, 1999). The observed

additivity of mutations is partially determined by the mutational distance from the wild-
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type sequence. If only a few mutations are made on a large protein, then their effects

could appear additive if the regions perturbed by each mutation do not overlap (Shoichet

et al., 1995). As mutations are accumulated, it becomes more likely that non-additivity

will be observed. This suggests that an additive fitness function may adequately describe

the behavior of evolution up to some mutational distance from the wild-type sequence.

Based on this argument, the fitness function can be written as an expansion

( ) ( )∑∑∑ +−++=
≠

N

i

N

ij
baa

N

i

jiiF K)body terms3(,
2

1 γγ , (2-2)

where the higher-order terms become increasingly important as the mutational distance

from wild-type gets larger. Directed evolution generally makes on the order of 10 amino

acid mutations on a 300−500 residue protein, indicating that the length of the walk is

small with respect to the total number of residues (Arnold and Wintrode, 1999).

However, some non-additive effects have been observed frequently in directed evolution

experiments and are important in modeling the process (Moore and Arnold, 1996; Moore

et al., 1997; Spiller et al., 1999).

Two-body coupling interactions have been added to model thermostability

(Shakhnovich, 1994; Li et al., 1996; Dahiyat and Mayo, 1997; Saven and Wolynes, 1997)

and catalytic activity (Matsuura et al., 1998). Equation (2-2) can be truncated to account

for only one- and two-body terms

( ) ( )∑∑∑
≠

+=
N

i
ij

N

ij
baa

N

i

ji
b

iF λγγ ,
2

, (2-3)

where b determines the relative strength of coupled versus uncoupled interactions and

λij = 1 if residues i and j are coupled and 0 if not. The form of Equation (2-3) is similar to

an energy expression commonly used in protein design (Dahiyat and Mayo, 1997) and
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has been used by Wolynes to study combinatorial libraries (Saven and Wolynes, 1997).

The number of non-zero terms in λ is given by a model parameter τ, which determines

the degree of coupling between residues and is therefore a measure of landscape

ruggedness. The interactions are symmetric: if residue i interacts with residue j, then

residue j interacts with residue i.

The property of smoothness (weak coupling) can be viewed as the tolerance of

sequence positions for amino acid substitutions (Reidhaar-Olson and Sauer, 1988;

Reidhaar-Olson and Sauer, 1990; Saven and Wolynes, 1997). In our model, tolerance

arises out of two effects: (1) the fitness distribution of a site γ, and (2) coupled

interactions. When the distribution is skewed towards low fitness, the position will be

intolerant. A model where each residue has a different standard deviation in the

distribution of fitnesses was used by Husimi and Aita to model the effects of tolerance on

evolution (Aita and Husimi, 1996; Aita and Husimi, 1998). Tolerance is also related to

the number of interactions in which a residue participates. Residues that are weakly

coupled tend also to be tolerant, such as residues that lie on the surface (Reidhaar-Olson

and Sauer, 1988; Saven and Wolynes, 1997, Brown and Sauer, 1999). The parameter b in

Equation (2-3) can be viewed as determining the origin for tolerance. If b is small, effect

(1) dominates whereas if b is large, effect (2) dominates.

At the beginning of the simulation, the fitness landscape is generated by randomly

placing the τ interactions between N residues and randomly assigning the one-body γ(ia)

and two-body γ(ia,jb) fitness contributions from a Gaussian distribution. Both the

placement of the interactions and their strengths remain quenched after the landscape has

been initialized. The directed evolution algorithm of mutagenesis and screening is then
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simulated from starting sequences with different fitnesses. These simulations are used to

observe the effect of various evolutionary parameters (i.e., mutation rate) on the

properties of the mutant library.

In the simulations, mutations are made on the DNA level and transcribed to amino

acid sequences through a representation of the genetic code. As a result of the special

connectivity and degeneracy of the triplet code, some amino acid substitutions are

impossible via a single nucleotide mutation. The gene on which random mutagenesis is

performed is large, making it unlikely that two adjacent DNA mutations will occur in a

single round of error-prone PCR. This reduces the number of possible paths in sequence

space from 20N to about 5.7N. Because the number of available single-point mutations

decreases, it decreases the number of fitter sequences in the mutant library at each step.

A higher mutation rate increases the probability that a nucleotide substitution will

lead to the creation of a stop codon. The presence of stop codons causes an acceleration

in the generation of inactive mutants as the mutation rate increases, thus reducing the

effective size of the library. The fraction of screened mutants that are dead due to a

mutation to a stop codon is described by the binomial distribution

N
stopa

nN
stopa

N

n

n
stopastop qqq

nNn

N
f )1(1)1(

)!(!

!

1
→

−
→

=
→ −−=−

−
=∑ , (2-4)

where N is the number of codons and qa→stop is the probability that a mutation will cause

a transition to a stop codon. The average probability of appearance of a stop codon is

qa→stop = (3/63)Q, where Q = 1 − (1−pm)3 is the probability that a codon is mutated, given

the per-nucleotide mutation probability pm. When an average of 5 DNA mutations are

made on a 1000 nucleotide gene then fstop = 0.21 and when the average is 20 then



2-7

fstop = 0.61, indicating that even a moderate mutation rate can cause a significant fraction

of mutant sequences to contain stop codons.

2.2. Optimal Search Parameters and Finite Screening Capacity

The model described by Equation (2-3) was used to investigate the effect of the

finite screening capacity on libraries generated by mutagenesis (Voigt et al., 2001a; Voigt

et al., 2001c). For a given screening capacity, there is an optimal mutation rate, defined

as the rate that produces the largest fitness improvement for a given library size. This is a

consequence of two opposing effects. On the one hand, a large enough mutation rate is

required to generate adequate diversity in the mutants. On the other hand, because the

probability of an individual mutation demonstrating improvement is small, multiple

mutations on the same sequence (the result of large mutation rate) are generally

deleterious. In a limited screening pool, the probability of observing improvement thus

decreases rapidly as the number of mutations increases.

The optimal mutation rate is typically low (about one amino acid substitution per

sequence) because the probability of an individual mutation demonstrating improvement

is small (Moore and Arnold, 1996; Moore et al., 1997). When multiple mutations are

accumulated, it is likely that most are deleterious and these mutations quickly erode the

improvement from the few beneficial mutations that may exist. This effect worsens as the

number of mutants that can be screened decreases (Figure 2-1A).

As the mutation rate increases, the number of possible combinations increases

exponentially. Therefore, to adequately sample higher mutation rates, exponentially

larger libraries are required. Similarly, as the fitness of the parent sequence increases, the
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probability of improvement decreases, thus exaggerating the effect of deleterious

mutations (Figure 2-1C). Thus, as the generations of mutation and selection progress, an

exponentially increasing screening size is required (Macken and Perelson, 1989).

The probability of improvement is also affected by the ruggedness of the fitness

landscape. As the number of interactions increases, the probability that a mutation is

deleterious also increases. When multiple mutations are accumulated on a gene, a larger

fraction of these mutations will decrease the fitness. This effect quickly erodes the

beneficial effect of any positive mutations. Therefore, when a small library is used to

search rugged landscapes, a smaller mutation rate is optimal (Figure 2-1B). If the

topology of the protein structure is particularly tolerant to amino acid substitutions, thus

creating a smooth fitness landscape, then fewer mutants must be screened in order to

achieve the benefit of a higher mutation rate. The ability to absorb mutations without

affecting fitness, or neutral evolution, allows sequences to drift through sequence space,

improving the likelihood of discovering fitness improvements (Kimura, 1983; Fontana,

1987).

2.3. Beneficial Mutations Occur at Uncoupled Positions

The fitness model is also used to observe where beneficial mutations are found

with respect to the protein structure (Voigt et al., 2001b). In this model, the structural

topology is described by the pattern of τ interactions distributed among the N residues.

We find that the probability of a beneficial mutation occurring at a highly coupled residue

decreases significantly as the fitness of the parent increases (Figure 2-2). The bias

towards mutating uncoupled residues late in evolution is a result of the finite screening
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capacity. A highly coupled group of residues requires several simultaneous mutations to

demonstrate improvement. When a mutation is made at a coupled residue, it is necessary

to improve all the coupled terms in addition to the uncoupled term, the probability of

which rapidly decreases as the sequence becomes more highly optimized. This result is

independent of the specific form of Equation (2-3) and can be demonstrated using any

model that incorporates a variable degree of coupling between residues, such as

Kauffman's NK-model (Kauffman and Levin, 1987; Kauffman and Weinberger, 1989;

Kauffman, 1993), lattice proteins (Shakhnovich, 1994; Li et al., 1996), or RNA

secondary structure models (Fontana and Shuster, 1998).

2.4. The Probability of Coevolving Residues

In Section 2.3, we demonstrated that at low mutation rates and small library sizes,

beneficial mutations will tend to occur at uncoupled residues. This implies a transition in

the dynamics of directed evolution based on these evolutionary parameters. At some

critical library size and mutation rate, pairs of beneficial coupled mutations will begin to

be discovered. In this section, data from a large library of antibody 26-10 mutants is

analyzed to demonstrate this transition (Daugherty et al., 2000).

A probabilistic model is developed to describe the fraction of the library that

retains function Pf as the mutation rate m is increased (Figure 2-3). For low m, Pf decays

rapidly, representing an accumulation of deleterious mutations. However, at some critical

mutation rate, the behavior changes drastically. At this point, the slope of the decay

decreases so that Pf remains relatively unchanged for large mutation rates. As the

mutation rate continues to increase, Pf starts to degrade again, albeit much less rapidly
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than the initial burst. The goal of our model is to capture the effects that underlie these

transition points.

The initial decay represents the accumulation of deleterious single mutations and

stop codons. First, using a variant of Equation (2-4), we separate the portion of the library

that is free of stop codons Ps,

33

1
63

3

63

60
N

s N

m
P 
















 −+= , (2-5)

where N is the number of nucleotides. Further, we assume that a certain fraction of

single-point mutations make the mutants non-functional fd. The fraction of the mutant

library that does not contain one of these lethal mutations Pd is

N

dd N

m
fP 






 −= 1 . (2-6)

The fit parameter fd can be obtained easily from the low mutation rate data and is found

to be fd = 0.7. In this experiment, survival is determined by using a stringent screen for

binding to antigen. The value of fd may decrease as the definition of functionality is

relaxed, or only the effect of the mutation rate on stability is measured.

The critical point occurs because a coupled interaction is improved by a

simultaneous double mutation. The improvement initially overwhelms the damage caused

by the deleterious single mutations, thus allowing a mutant to remain functional. This

causes a decrease in the decay. The simplest way to model this effect is to assume that

there are nc coupled interactions in the protein. If the two coupled residues are mutated

simultaneously to the correct amino acid state, then the mutant retains functionality. We
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do not consider 3-way and higher-order coupling interactions because the probability that

these will occur in a library of 105−107 mutants is negligible.

Here, we treat the coupled interactions on the nucleotide level. In this model, a

single amino acid substitution that requires two simultaneous nucleotide changes is

coupled. The simultaneous mutagenesis of coupled residues is modeled by considering

the fraction of the library Pc that has at least one out of nc possible coupling interactions

mutated simultaneously to the proper nucleotide

cn

c N

m
P 











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


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







−−=

22

3

1
11 . (2-7)

The (m/N)2 term is the probability of simultaneously mutating two positions and the

(1/3)2 term is the transition probability that the offspring has the proper two new

nucleotides.

Finally, even a coupled interaction that initially provides a large fitness

improvement is eventually degraded by the accumulation of too many single mutations.

This can be accounted for by introducing a third parameter ns which is the number of

single mutations that will, on average, overcome the beneficial effects from an improved

pair of coupled mutations. Assuming a Poisson distribution of mutations, the fraction of

the library that has less than ns mutations Pn is

∑
−

=

−

=
1

1 !

sn

i

im

n i

me
P . (2-8)

Note that up to this step the Poisson assumption has not been invoked.

Combining these results, the fraction of functional mutants is given by
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)( ncdsf PPPPP += . (2-9)

In this treatment, there are three fit parameters: the fraction of single mutations that lead

to loss-of-function fd, the number of good potential coupling interactions nc, and the

number of mutations required to overcome a good coupled interaction ns. The parameters

fd = 0.7, nc = 110, and ns = 12 fit the data well (Figure 2-3). There are two interesting

behaviors in the class of curves generated by this approach. First, the transition point is

robust with respect to nc and ns. By decreasing fd, the transition point can be moved

towards higher mutation rates. It may be possible to test this prediction by using a less-

stringent definition of function (thus lowering fd). A class of curves based on altering fd

would be very useful in developing a more refined model. Second, the value found for ns

(10−14 mutations) agrees well with the number of mutations found on the improved

mutants in the antibody data set (Daugherty et al., 2000).

2.5. Calculating the Moments of the Mutant Library

During the screening experiments, a large amount of fitness data is generated, but

only the fitness information of the improved mutants is used to continue to the next round

of evolution. The large ensemble of less-fit mutants provides a view of the local fitness

landscape. By analyzing these data, certain statistical landscape parameters can be

deduced, such as τ and b, which can then be used in conjunction with the simulation

results to guide the setting of evolutionary parameters. In this analysis, sequencing is time

consuming and expensive, so a sequence cannot be assigned to each measured fitness.

The lack of sequencing data means that only the probability distribution of mutant

fitnesses can be analyzed (Figure 2-4A). We can analytically model the behavior of the
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moments of this distribution (mean and standard deviation) as the sequence ascends the

fitness landscape under the influence of different per-nucleotide mutation rates, pm. In our

analysis, only the portion of the mutant distribution that is not dead (zero fitness) or

parent (unmutated) is considered, thus removing the discontinuities in the mutant fitness

distribution (Figure 2-4B).

To obtain the moments of the mutant fitness distribution, we average the change

in fitness from the wild-type to mutant, w = Fmut - Fwt, over all sequences

},{),( B
S

A
S

BA SSPSSww
A B

∑∑>=< , (2-10)

where SA indicates the sum over all wild-type sequences and SB indicates the sum over all

mutant sequences. The probability term can be split into the probability that sequence SA

exists and the transition probability that SA mutates to SB

}{}{},{ BAABA SSPSPSSP →= . (2-11)

Mean-field theory can then be invoked to further divide the probability P{SA} into the

product of the probabilities p(ia) of amino acid a existing at residue i multiplied by the

additional probability qia→ib that ia mutates to ib,

∏
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N
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1
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Inserting the one-body assumption for the fitness function (Equation 2-1) and Equation

(2-12) into the mutant average gives
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We can rearrange the probabilities to group the i = j terms,
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If both probabilities are normalized such that the sum of p(ja)qja→jb over ja and jb is equal

to one, then Equation (2-14) can be reduced to
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where

)()( abi ii γγγ −=∆ . (2-16)

However, we are interested in removing all the mutant sequences that contain at least one

stop codon and all the mutant sequences that are identical on the DNA level to the wild-

type. When the possibility of these transitions is removed, the probabilities are no longer

normalized and removing the product of probabilities from Equation (2-13) is nontrivial.

The unmutated and stop-codon-containing mutants can be removed as follows.

The transition probabilities sum such that

astopi
I

i
ii iqqq

a

b

ba
∀=++ →→∑ 1 , (2-17)

where qI = (1 − pm)3 is the probability that the codon does not mutate and qia→stop is the

probability of residue i mutating from amino acid a to a stop codon. The probability that

the mutant sequence SB contains no stop codons and at least one mutation is

( ) ∏∏
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i
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a
11

1}mutation1stop;no{ . (2-18)

We can simplify the normalization procedure by assuming that all codons have an equal

probability of mutating to a stop codon so
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where Q = 1 − qI is the probability that the codon was mutated. Equation (2-19) is used to

normalize the transition probability P{SA→SB} so Equation (2-13) can be rewritten as
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After, some rearrangement, the analogy with Equation (2-16) can be made,
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where δ is a delta function. Thus, removing transitions to stop codons and unmutated

sequences only requires renormalizing the probabilities p(ia) and adding a constant C.

The average of the mutant distribution generated from the two-body fitness function can

be found similarly,
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where

( ) ijbabbij jiji λγγγ ),(),( −=∆ . (2-25)

The second moment of the two-body mutant distribution can also be calculated, the

details of which are shown in Appendix A.

Using the mean-field solution, the change in the fitness distribution is captured as

the sequence ascends the fitness landscape (Figure 2-5). By increasing the number of

two-body coupling interactions between residues, the effect of the landscape ruggedness

on the moments is calculated. As the fitness of the wild-type increases, the first and

second moments increase. In other words, as the sequence ascends the fitness landscape,

the mutant distribution spreads out (diffuses) and becomes skewed towards less-fit

mutants (drifts). In addition, the dependence of the moments on mutation rate can be

predicted by recalculating the transition probabilities q. As the mutation rate increases,

both the drift and the diffusion of mutants from the parent increases. Because rugged

landscapes have less correlation between sequence points, the drift-diffusion effect

becomes exaggerated as the coupling between residues increases.

4. Conclusions

In this chapter, we have introduced several statistical models to study the

dynamics of directed evolution. Using a spin-glass-like model, we explored the

relationship between the optimal mutation rate, library size, fitness of the parents, and the

interactions between amino acids. A bias was also discovered that mutations

preferentially occur at uncoupled residues, when the mutation rate and number of mutants

screened is small. A probabilistic model is then used to study the emergence of
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compensating mutation in large libraries. Finally, the moments of the mutant fitness are

calculated using mean-field theory and the fitness model. Ultimately, while these tools

are useful in studying general trends in directed evolution, it became increasingly

difficult to make the extension to real protein evolution systems. The large number of fit

parameters that exist in the landscape-based models largely hindered this step. This

difficulty is what inspired the use of inverse folding algorithms to calculate the energetics

of interacting residues for specific protein structures, as described in Chapter 3.
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Figure 2-1

The optimal DNA mutation rate as determined from a statistical model that captures the

effect of interactions between amino acids. The genetic code is included in the model.

The fitness improvement is the average maximum change in fitness for a given library

size, as averaged over 10,000 landscapes. To compare the relative location of the optima,

the curves have been scaled so that the optima are at 1.0. (A) The optimal mutation rate

for the uncoupled landscape as the number of mutants screened increases M = 1000 (red

line), 10,000 (purple line), and 50,000 (blue line). (B) The optimal mutation rate for a

1000-mutant library as the total number of interactions between residues (the “landscape

ruggedness”) increases. The number of coupling interactions is 75 (dotted line) and 0

(solid line). As the landscape ruggedness increases, the optimal mutation rate decreases.

(C) The optimal mutation rate is shown as a function of the parental fitness for a smooth

τ = 0 (blue line) and rugged τ = 75 (red line) landscape. As the parental fitness increases,

the probability that a mutation is deleterious also increases, making a smaller mutation

rate optimal.
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Figure 2-2

The probability distribution p(c) that a beneficial mutation is found by directed evolution

at a residue with c coupled interactions. The distribution is shown at two fitness values as

the sequence ascends the fitness landscape, F = 0.0 (O) and F = 17.0 (�). Mutations

were made on the DNA level and then translated into amino acid substitutions. A

mutation rate of three nucleotide substitutions (corresponding to an average of one amino

acid substitution) per gene was applied to a N = 50 amino acid residue sequence (b =

10.0). During each generation, 3000 mutants were screened and the coupling of the

positions where mutations occurred on the most improved mutant was recorded.
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Figure 2-3

Data are shown from screening libraries of antibody mutants (Daugherty et al., 2000).

The average mutation rate of a library m is plotted against the log fraction of functional

mutants in the library Pf. After the initial exponential decline of Pf with m, a transition

occurs and more mutants are functional at high m than is expected from the initial trend.

This indicates that compensating mutations are being found in libraries at high mutation

rates. The squares represent experimental data and the solid line is our model with fd =

0.7, nc = 110, and ns = 12.
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Figure 2-4

The experimental and theoretical mutant fitness distributions. (A) An example of high-

quality experimental mutant fitness data (May et al., 2000). The abscissa has been scaled

so the range of fitnesses from parent to dead mutants is equal to one. The probability

distribution has two discernable peaks: at w = 0, representing unmutated sequences, and

at w = -1.0, representing non-functional mutants. (B) The theoretical mutant fitness

distribution for the uncoupled fitness function as the sequence ascends the fitness

landscape. The unmutated and stop-codon-containing mutants have been removed. The

data is shown for F = 0.0 (black), 1.03 (red), and 1.83 (blue).
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Figure 2-5:

The change in the mean (A) and standard deviation (B) of the mutant fitness distribution

as determined using mean-field theory. The data is for an N = 50 residue sequence. As the

fitness is increased, the distribution drifts to lower fitnesses (the mean decreases) and

diffuses (the standard deviation increases). Two landscapes are shown: (�) τ = 0 and (O)

τ = 30. As the ruggedness of the landscape is increased, the distribution drifts and

diffuses more rapidly.
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Chapter 3

Focusing Mutagenesis with Structural Information

Portions of this chapter are reproduced from:
Voigt, C. A., Mayo, S. L., Arnold, F. H., and Wang, Z-G. (2001). Computational method
to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA 98,
3778-3783

Abstract

We introduce a computational method to optimize the random mutagenesis of proteins. In

Chapter 2, a statistical model of interacting residues was used to demonstrate that

beneficial mutations tend to occur at amino acid positions that are tolerant to

substitutions, in the limit of small libraries and low mutation rates. We transform this

observation into a design strategy by applying mean-field theory to a structure-based

computational model to calculate each residue's structural tolerance. Thermostabilizing

and activity-increasing mutations accumulated during the experimental directed evolution

of subtilisin E, T4 lysozyme, and antibody 4-4-20 are strongly biased to residues

identified using this computational approach. This method can be used to predict

positions where the probability of discovering beneficial mutations is maximized. Based

on this strategy, we pick ten residues of β-lactamase that have high calculated structural

tolerances and created libraries by mutagenizing these residues to all twenty amino acids.

In seven out of ten of these libraries, amino acid substitutions are found that improve the

antibiotic-resistance towards moxalactam. In contrast, beneficial mutations were not

found at residues that are predicted to have low structural tolerances, but high solvent-

exposed surface area or variability in an alignment of natural sequences.
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1. Introduction

As techniques to alter the properties of proteins, directed evolution and

computational design have matured separately. The aim of directed evolution is to

accumulate stepwise improvements by iterations of random mutagenesis and screening

(Moore and Arnold, 1996; Miyazaki et al., 2000). As a fundamentally different approach,

the objective of computational protein design (Street and Mayo, 1999) is to solve the

inverse folding problem by constructing a force field that describes the interactions

between amino acids and then computing the globally optimal amino acid sequence

(Dahiyat and Mayo, 1997; Malakaukas and Mayo, 1997). Directed evolution has the

benefit of improving any enzyme property that can be captured by a screen, however, the

search is restricted by the number of mutants that can be experimentally screened at each

generation (∼103−106). Conversely, computational design can effectively search a much

larger number of sequences (>1026) (Dahiyat and Mayo, 1997), but is limited as to the

size of the protein and is currently restricted to optimizing the stabilization energy. This

chapter introduces a new approach to protein engineering in which computational design

is used as a guide to focus an evolutionary search, thus combining the benefits of both

design strategies.

An effective and widely used directed evolution strategy is to produce a library of

mutants from a parent sequence through random point mutagenesis using error-prone

PCR (Moore and Arnold, 1996; Miyazaki et al., 2000). The usual practice of

mutagenizing the whole gene has several problems. The probability that any single

random mutation improves a property is small, and the probability of improvement

decreases rapidly when multiple simultaneous mutations are made. Therefore, the limited
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number of mutants that can be screened imposes a low upper limit on the mutation rate

(Zhao and Arnold, 1999; Voigt et al., 2001a; Voigt et al., 2001b). Furthermore, the

negligible probability that two or three mutations occur in a single codon and the

significant biases of error-prone PCR severely restrict the possible amino acid

substitutions. These effects can be overcome by intensely mutagenizing a limited number

of positions (Skandalis et al., 1997; Nikolova et al., 1998; Miyazaki et al., 1999). The

challenge, however, is to identify the residues where such experiments are likely to be

successful, as beneficial mutations often appear far from sites that would be predicted

heuristically (e.g., catalytic sites) (Moore and Arnold, 1996; Miyazaki et al., 2000). In

Chapter 2, we used a simple fitness model to demonstrate that beneficial mutations

preferentially occur at residues sharing the fewest interactions with the remainder of the

protein. In Chapter 3, this observation is transformed into a design strategy through a

detailed energetic model of structural interactions.

2. Computational Methods

2.1. Calculating the Tolerance of Protein Structures

As a strategy for directed evolution, concentrating mutagenesis on the regions of

weak coupling to reduce the search space to the positions that are most likely to show

improvement. We can extend this result from the simple model to make experimentally

relevant predictions by using a detailed protein design model that calculates the

stabilizing energy of a sequence folded onto a fixed backbone (Dahiyat and Mayo, 1997;

Malakaukas and Mayo, 1998) to determine the coupling of each residue (Section 2.2).

The protein backbones of subtilisin E (274 amino acids), T4 lysozyme (164 amino acids),
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and antibody 4-4-20 (227 residues) were retrieved from high-resolution crystal structures

(Matsumura et al., 1989; Whitlow et al., 1995; Jain et al., 1998), and the interactions

between residues were calculated by coarse-graining the flexibility of each amino acid

into rotamers and constructing a force field to calculate the rotamer/backbone and

rotamer/rotamer stabilizing energies. An initial elimination of rotamers makes the

problem computationally tractable; however, the combinatorial complexity remains

enormous. The sequence space considered is hyper-astronomically large, for example,

there are 10343 possible amino acid combinations for subtilisin E. Searching the entire

space for the global optimum is intractable both computationally and experimentally.

To circumvent the combinatorial difficulties, we apply statistical mechanics to

determine the coupling of each position, using structural tolerance towards amino acid

substitutions as a measure of the coupling (Section 2.3). Structural tolerance is crucial for

the success of directed evolution. Maintaining structure is required for the acquisition or

fine-tuning of any other property, leading to the suggestion that properties such as

stability and activity are correlated (Shoichet et al., 1995). A structurally tolerant protein

has a larger number of allowed mutations that can potentially improve a property, making

it more likely that there is a connected path in sequence space of single mutations that

leads to regions of higher fitness. By reducing the evolutionary search to regions of

sequence space that are consistent with the structure, functional space can be more

thoroughly explored.
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2.2. Force Field and Rotamer Library

Analogous in form to Equation (2-3), the energy term consists of two

contributions: rotamer/backbone e(ir) and rotamer/rotamer e(ir,js):

( ) ( )∑∑∑
−

= >=

+=
1

11

,
N

i

N

ij
sr

N

i
r jieieE , (3-1)

where N is the number of residues and ir is rotamer r at position i. Because the backbone

remains fixed, its internal energy contribution is not relevant to the optimization

procedure. Note that the fitness functions described in Chapter 2 represent the negative of

energy (i.e., F = −E). Potential functions and parameters for van der Waals interactions,

hydrogen bonding, and electrostatics are described in previous work (Dahiyat and Mayo,

1996; Dahiyat and Mayo, 1997). We use the DREIDING force field parameters for the

atomic radii and internal coordinate parameters (Mayo et al., 1990). The van der Waals

energies are modeled using a 6−12 Leonard-Jones potential with an additional 0.9 scale

factor applied to the atomic radii to soften the lack of flexibility implied by the fixed

backbone and the rotamer descriptions. A ceiling of 500 kcal/mol was set for the

rotamer/rotamer energies to avoid unhindered van der Waals contributions and to

expedite mean-field convergence. All rotamer/backbone and rotamer/rotamer energies

are computed and stored prior to the mean-field calculation, requiring 165 (113, 138)

minutes for subtilisin E (T4 lysozyme, antibody 4-4-20) on 10 Silicon Graphics R10000

processors running at 195 MHz.

The rotamer library is backbone-dependent as described by Dunbrack and Karplus

(Dunbrack and Karplus, 1993; Dunbrack and Karplus, 1994). The following

modifications were included as previously described (Dahiyat et al., 1997). The χ3

angles that were undetermined from the database statistics were assigned the values: Arg,
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−60°, 60°, and 180°; Gln, −120°, −60°, 0°, 60°, 120°, and 180°; Glu, 0°, 60°, and 120°;

Lys, −60°, 60°, and 180°. The χ4 angles that were undetermined from the database

statistics were assigned the following values: Arg, −120°, −60°, 60°, 120°, and 180°; Lys,

−60°, 60°, and 180°. Rotamers with combination of χ3 and χ4 resulted in sequential g+/g−

or g−/g+ angles were eliminated.

Due to memory constraints, the entropy calculation is currently limited to

handling up to 33000 rotamers on a SGI Origin 2000. Several filters had to be employed

to reduce the number of rotamers below this limit. Rotamers that interact with the

backbone with energies greater than 5 kcal/mol (subtilisin E), 20 kcal/mol (T4 lysozyme),

and 1 kcal/mol (antibody 4-4-20) are eliminated from the calculation. The amino acids at

residues 1−4 and 269−274 of subtilisin E are fixed in their wild-type identity and

conformation. For subtilisin E, an average of 121 rotamers per residue are considered,

corresponding to 3.2 × 104 one-body energies and 5.1 × 108 two-body energies. For T4

lysozyme, an average of 176 rotamers per residue are considered, corresponding to 2.9 ×

104 one-body energies and 4.1 × 108 two-body energies. For antibody 4-4-20, an average

of 144 rotomers per residue are considered, corresponding to 3.3 × 104 one-body energies

and 5.3 × 108 two-body energies.

2.3. Mean-field Theory

The observation that some sequence positions are more tolerant to mutation

initiated the application of information theory as a method to understand the importance

of these residues to the structure and function of the protein (Reidhaar-Olson and Sauer,

1988; Saven and Wolynes, 1997). A residue that is intolerant to mutations has high
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information content, whereas a residue that can be easily substituted has low information

content. Directed evolution drives the system to minimum entropy by reducing the

number of amino acid possibilities at each residue as the sequence becomes more

optimized. We estimate the change in the number of sequences at increasing fitnesses by

calculating the sequence entropy at a given energy, S(E) = kB ln Ω, where the number of

states Ω is the number of sequences at energy E.

The sequence entropy can be calculated from the probability distribution of

allowed amino acid substitutions (Fontana and Shuster, 1987; Saven and Wolynes, 1997).

The entropy si for a given residue i is calculated from

( ) ( )∑−=
A

a
aaBi ipipkEs ln)( , (3-2)

where A is the total number of amino acids, p(ia) is the probability that amino acid a

exists at position i, and kB is taken to be 1. A residue intolerant to mutations has a low

entropy whereas a tolerant residue has high entropy. If all amino acids are equally likely,

then si = ln A ≈ 3.0.

The total sequence entropy can be rewritten as the sum of the individual entropy

of each residue,

∑=
N

i
i EsES )()( . (3-3)

We apply mean-field theory to calculate the amino acid probabilities required by

Equation (3-2), as a function of the energy (Lee, 1994; Koehl and Delarue, 1994; Koehl

and Delarue, 1996; Saven and Wolynes, 1997). It is difficult to do the variation with a

fixed energy. Instead, we use the thermodynamic equivalence of ensembles to work with
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a fixed energy <E>A, where the average is over all sequences corresponding to a

temperature T. Thus, the variational free energy

AA
TSEF −= (3-4)

is minimized subject to the normalization condition,

∑ =
iK

r
rip 1)( , (3-5)

for all i. The average energy is obtained from
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where the averages are taken over all amino acids at each position. Utilizing the mean-

field approximation, this can be rewritten as
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Introducing the Lagrange multiplier µi in the normalization of the probabilities for each

site, the variational free energy is
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Minimization of F is performed by setting the partial derivative ∂F/∂p(ir) to zero for all i

and r. After rearrangement, this gives

[ ]irr iip βµβε −−−= 1)(exp)( , (3-9)

where β=1/kBT and
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By solving for µi using the normalization condition (3-5), we find the partition function

i
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i Zee
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r ≡=∑ −+ )(1 βεβµ (3-11)

and therefore,
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Equations (3-10) and (3-12) constitute a set of self-consistent equations for p(ir). The

probability that an amino acid exists at a residue can then be calculated by summing over

the rotamer probabilities for that amino acid, in other words,

∑=
ai

K

r
ra ipip )()( , (3-13)

where Kia is the total number of rotamers associated with amino acid a at residue i. The

sequence entropy of each residue can then be calculated using Equation (3-2). Equation

(3-13) assumes that the contribution of residue entropy to the free energy is small (e.g.,

the ambient temperature is 0 K). We solved the mean-field equations including a non-

zero ambient temperature, but found that the resulting equations did not converge

(Appendix D).

Operationally, the mean-field calculation is started by uniformly initializing the

rotamer probabilities to 1/Kj and the mean-field energies are calculated via Equation (3-

10) for each residue. The algorithm iterates between Equations (3-11) and (3-13) until

self-consistency is achieved. Convergence is significantly improved if the probability

vector p is updated with a memory of the previous step as described by Lee (Lee, 1994).
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An initially high temperature (50,000 K) is set and the convergence algorithm is repeated

as the temperature is lowered in increments of 100 K, until the final temperature (600 K

for subtilisin E, 300 K for T4 lysozyme, and 500 K for antibody 4-4-20) is reached. The

final temperature corresponds with an estimated energy above which the structural

stability is compromised (Figure 3-1). The sequence entropy at this temperature

effectively counts the number of sequences that are stable in the defined fixed backbone.

The mean-field solution of subtilisin E required 8900 minutes on a single Silicon

Graphics R10000 Processor running at 195 MHz and 2.1 gigabytes of physical memory.

These are typical computing times and memory requirements for the entropy calculation.

Other algorithms, based on the dead-end elimination and Monte Carlo algorithms, can be

used to determine the energies required for the entropy calculation (Appendix B).

When solving the self-consistent equations, decreasing the temperature is

analogous to decreasing the energy (increasing the fitness). As the energy is decreased,

the number of sequences consistent with that energy decreases, thus decreasing the total

entropy (Figure 3-1). The probabilities calculated as the temperature decreases are used

to calculate the mean-field energy and entropy. The list of sequences consistent with an

energy describes the tolerance of each position to amino acid substitutions, as measured

by the sequence entropy. A small entropy represents the conservation of identity and a

large entropy indicates mutability. When the energy is decreased, the sequence entropies

of some positions drop rapidly, indicating a freezing of the amino acid identity while

other positions remain highly variable (Figure 3-2). The sequence entropy captures the

structural constraints on the amino acid identity at certain residues (Reidhaar-Olson and

Sauer, 1988; Saven and Wolynes, 1997).
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3. Results and Discussion

3.1. Correlation with Directed Evolution Experiments

To test our prediction that beneficial mutations discovered by directed evolution

are biased towards structurally tolerant positions, we compared our calculations with

mutations found from previous evolution experiments on subtilisin E (Chen and Arnold,

1993; You and Arnold, 1996; Zhao and Arnold, 1999) and T4 lysozyme (Pejura et al.,

1993). Seven out of the nine mutations that improved the thermostability of subtilisin E

occur at positions computed to be highly tolerant (Figure 3-3A and Table 3-1). The

stabilizing mutations discovered by the evolution of T4 lysozyme also preferentially

occur at the high-entropy positions (Figure 3-3B and Table 3-2). Thus, for both enzymes,

the entropy predictions would aid an evolutionary search to improve thermostability,

indicating that the computational method is valid independent of the specific protein or

experimental protocol.

In directed evolution, it is often desired to improve properties other than stability.

If the desired property is correlated with stability, then the structure-based entropy

predictions will be more accurate. For instance, it has been suggested that improving

thermostability is a good approach for enhancing activity at high temperatures (Giver et

al., 1998; Zhao and Arnold, 1999). When libraries of subtilisin E mutants were screened

for improved thermostability while retaining activity, some mutations improved both

properties. In addition, the activity and stability are highly correlated in the screen used

for T4 lysozyme; thus, the activity-improving mutations also occur at highly tolerant

positions (Figure 3-6). There is a weaker correlation with improving the activity of

subtilisin E in organic solvent (Figure 3-4A), implying that retention of structure is less
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important. However, the mutations are still strongly biased towards the high entropy

positions.

A directed evolution-type experiment was run to improve the binding of antibody

4-4-20 to fluorescein (Boder et al., 2000). In this experiment, yeast-displayed mutant

libraries of antibodies were created and run over a binding column. The antibodies that

bound tightly to the fluorescein were harder to wash from the column. Four rounds of

increasing stringency (the level of required binding was increased) were performed and

sets of improved mutants were isolated. Some mutations occurred only a few times in

each data set and are considered neutral. Others occurred in less stringent rounds and

became fixed as the stringency was increased. These mutations were considered essential

for improved binding.

The average entropy for mutations discovered each round of improved stringency

(excluding the neutral mutations) is compared to the experimental round in which the

beneficial mutations were found (Figure 3-7). We find that as the fitness of the parent

sequence increases, mutations are more concentrated at the high-entropy residues of the

antibody. In addition, the standard deviation of individual entropies decreases as the

fitness increases (data not shown). Together, these results indicate that, when the parent

sequence is highly optimized, the beneficial mutations can be reliably found at the high-

entropy positions. This correlation is an experimental verification of the dynamics of

directed evolution discovered using the generic statistical model (Figure 2-3). As the

parent sequence becomes more optimized, the probability that a beneficial mutation will

occur at a highly coupled residue decreases dramatically.
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3.2. Solvent Accessibility and Natural Diversity

The entropy profile is mapped onto the subtilisin E structure in Figure 3-5. There

is a trend towards the most variable sites being on the surface and the more conserved

being in the core of the protein. However, the correlation between the entropy and solvent

accessibility is poor (R2 = 0.55 for subtilisin E and 0.54 for T4 lysozyme, Figure 3-8A).

The computed sequence entropies are derived from the fundamental physical features that

lead to tolerance, whereas solvent accessibility is a secondary measure. The sequence

entropy captures details of structural tolerance beyond solvent accessibility, including

side chain packing, the coupling of backbone and side chain conformations, electrostatic

interactions required by the backbone conformation, and a residue's local environment. In

addition, the mean-field algorithm considers the energetic effects of all amino acid

substitutions, rather than using a measure based on the single wild-type amino acid

identity, as in the solvent accessibility calculation. This leads to a more accurate

assessment of the tolerance of a residue for amino acid substitutions.

A comparison is made in Tables 3-1 and 3-2 between the sequence entropies and

solvent accessibilities of the positions where beneficial mutations were found. Some

residues with low solvent accessibility are predicted to have a high sequence entropy.

Several specific residues have a high sequence entropy, but a low solvent accessibility,

which demonstrate the physical principles underlying our method. For example, residue

107 in subtilisin E has an above-average sequence entropy (1.62), but a very low solvent

accessibility (1%). Residue 107 is on an α-helix and the wild-type isoleucine side chain is

oriented towards the center of the protein and is completely buried. However, the packing

of the side chains of the surrounding residues is such that several other amino acids can
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be substituted with minimal effect on the stabilization energy. After the mean-field

calculation, the amino acids that are acceptable at this position (and their probabilities)

are: Ile (0.42), Cys (0.23), Val (0.12), Met (0.09), Glu (0.09), Asp (0.03), Thr (0.01), Ser

(0.01), and Ala (0.01). The result of the evolution experiment was an Ile → Val

substitution, which increased the activity in organic solvent.

A similar example exists in the T4 lysozyme data set. Residue 151 is on an α-

helix near the surface and is partially blocked from the solvent by surrounding atoms. It

has an above-average site entropy (1.53) and below-average solvent accessibility (17%).

The mean-field calculation reveals that the amino acids possible at this position are: Met

(0.37), Leu (0.34), Cys (0.11), Glu (0.09), Gln (0.05), Asp (0.03), Ser (0.01), and Thr

(0.01). The evolution experiment generated a Thr → Ser substitution. Typically, the

positions with high entropies (greater that one standard deviation above the mean) and

below average solvent accessibilities (< 24% exposed) are close to the surface and their

side chains are partially buried.

We also compared the sequence entropies with the diversity accumulated during

natural evolution, calculated from a sequence alignment (Figure 3-8B). The sequence

alignment entropy was determined from the sequences of subtilisins SSII, S41, S39,

BPN', E, Carlsberg, and thermitase (Siezen and Leunissen, 1997). The amino acid

probabilities p(ia) are calculated as the fraction of aligned sequences where amino acid a

exists at position i. We find that the calculated entropies correlate poorly with the natural

amino acid variability. Because the natural sequence variability among subtilisins is

great, the correlation worsens as more sequences are compared.
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That the site entropy can predict the positions where mutations occur in in vitro,

but not in natural evolution, is interesting. This disparity is due to a combination of two

effects, both related to the limited number of mutants that can be screened. First, the

theory that we present relies on the assumption that the number of mutants screened is

relatively small. The analog of this in nature is unclear; however, it is expected that many

more mutants have been attempted in nature than can be currently analyzed in the

laboratory. Second, long periods of neutral evolution have eroded the information in the

sequence alignment. Multiple mutations can be made to achieve a punctuated fitness

improvement over long time periods via the accumulation of neutral mutations, which

eventually discover beneficial combinations (Fontana and Shuster, 1998). However, the

probability of finding a good multiple mutant during in vitro evolution is small due to the

sampling limitation of the experiment (analogous to a time limitation).

3.3. Combinatorial versus Site-directed Mutagenesis Data

The sequence entropies condense the energetic information from the

computational design calculation in a way that is useful to guide directed evolution. It is

important to emphasize that our algorithm describes the positions where mutations will

be discovered with the intention of optimizing directed evolution as a search algorithm.

The probability that beneficial mutants are found increases when the high entropy

positions are targeted and low-entropy sites are neglected. Non-combinatorial

experiments, such as rational design strategies of alanine-scanning mutagenesis, will

generally not correlate with the entropy prediction.
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The requirement for a combinatorial component to the experiment is

demonstrated by the example probabilities given above for residue 107 in subtilisin E and

residue 151 in T4 lysozyme. In both examples, the amino acid substitution found by the

evolution experiment does not correspond with the highest probability case determined

by the calculation. Once the algorithm determines the positions where substitutions do

not disrupt the structure, evolutionary experiments can determine the specific mutations

that generate the greatest fitness improvements.

3.4. Correlation with Site Saturation Experiments

Exhaustive datasets have been experimentally generated to test the functional

tolerance of all the residues of T4 lysozyme (Rennell et al., 1991), β-lactamase (Huang et

al., 1996), and λ repressor (Reidhaar-Olson and Sauer, 1988; Reidhaar-Olson and Sauer,

1990). The tolerance data for each of these examples was linked to a selection, thus

allowing for more variants to be screened and reducing the problem of obtaining

adequate sampling. Figure 3-9 compares each of these datasets with the structural entropy

calculated using our methodology. In general, the results between the theory and

experiments correlate well. There are several difficulties in using the functional datasets

to test and refine the entropy calculation. Functional diversity is not exactly comparable

to structural diversity and differences between the two measures often reveal functionally

important residues or regions surrounding the active site. In addition, to reduce the

materials required for the experiments, sets of residues are often mutated simultaneously,

which allows for the possibility of generating compensating mutations. Individually

mutating residues could result in a different measure of tolerances.
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4. Computationally Focused Mutagenesis

4.1. Focusing Strategies

The information from the sequence entropy calculations can be incorporated in

several experimental methods. First, site saturation mutagenesis can be applied at

positions that are predicted to be the most tolerant. The beneficial mutants can then be

recombined using DNA shuffling (Stemmer, 1994) to compound the fitness

improvement. As a second method, a portion of the gene that is determined to have an

above-average total tolerance (such as residues 240 to 255 in subtilisin E) can be targeted

using regional combinatorial mutagenesis. The choice of experimental approach is

determined by the accuracy of the entropy profile. If the correlation between the screened

property and stability is high, then site saturation mutagenesis is appropriate. However, if

the correlation is weaker, a combinatorial search of a region that is predicted to be able to

withstand the additional diversity is better.

The experiment can also combine mutagenesis with recombination, a method

conceptually similar to family shuffling, in which homologous genes are recombined

(Crameri et al., 1998). In family shuffling, the sequences have previously survived

natural selection; thus, the inherent diversity is less likely to have a deleterious effect on

the structure and function. In our approach, the calculated entropy profile predicts the

positions that are essential to maintain the structure, allowing the tolerant sites to be

mutated en masse to produce a family of artificially divergent sequences. Recombining

these sequences could generate a mutant library with large sets of mutations that are

calculated to retain structural integrity.
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4.2. Saturation Mutagenesis Experiments with ββββ-lactamase

The antibiotic-degrading enzyme TEM-1 β-lactamase was chosen as a model

system to test the entropy calculation as a predictive method. The structure of the TEM-1

variant is available (Jelsch et al., 1993) and the mean-field and DEE-entropy calculations

were run and the residues were ranked by their entropy. Many studies have been

performed that evolve β-lactamase to improve its antibiotic resistance or to compare

naturally occurring β-lactamase variants. As a result, there is much information on which

residues can be mutated to confer improved activity in degrading various antibiotics. To

avoid selecting residues where mutations have been found previously, we removed these

residues from our list. The top ten remaining residues were then selected for mutagenesis

(Figure 3-10).

The TEM-1 gene was obtained from the pSTBlue-1 vector offered by Stratagene.

Each of the ten chosen residues was individually mutated to all twenty amino acids, using

the standard Quickchange saturation mutagenesis protocol. For each mutated residue, a

forward and reverse primer is synthesized with the bases of the mutated residue

randomized. The libraries were then transformed into XL1-BLUE (106) competent cells.

Each library was screened for mutants that have a higher activity in degrading the

antibiotic moxalactam. To rapidly screen for this property, agar plates are made with

following exponentially increasing concentrations of moxalactam: 0.45, 0.9, 1.8, and 3.6

µg/ml. Aliquots of the cell libraries are spread on the plates and allowed to grow for 24

hours. More active hybrids will grow on plates with greater concentrations of

moxalactam. The activity is measured as the minimum inhibitory concentration (MIC), in
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other words, the lowest concentration of ampicillin that kills the cells. Wild-type TEM-1

has a MIC of 0.38 towards moxalactam.

Improvements were found at seven out of ten of the high entropy residues

targeted (Table 3-3). The largest improvement we obtained from a single mutant is 4-fold

(residue 198). Interestingly, while this residue has a high entropy, it is partially buried

and would not be selected based on its solvent exposure. All of the beneficial mutations

retained wild-type ampicillin resistance. As a negative control, we performed the same

experiment at two low entropy residues. Residue 229 was chosen because it has a high

solvent accessibility, but a low entropy. Residue 268 was chosen because it also has a

low entropy, but has a high sequence variability when compared to a sequence alignment

of naturally occurring β-lactamase variants. No improvements were found at either of

these residues. These experiments demonstrate the success of using the entropy

calculation as a method to assess the structural impact of mutations.

The beneficial mutations were found individually by screening libraries created

by randomizing a target residue. The beneficial mutations that are found by this process

can be combined onto a single gene through a myriad of methods. Currently, we are

individually combining the mutations onto a single gene by using the Quickchange

protocol (described above) with primers that correspond with each single mutation. This

can be achieved by various other methods, including using in vitro recombination to

fragment and recombine the best mutants that are found at each residue. This method is

also advantageous when multiple improvements are found at a single residue. The

optimal combination of mutations can be determined using in vitro recombination and
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screening the library for the combination of mutations that results in the largest

improvement.

5. Conclusions

Because beneficial mutations are found at high entropy sites, we propose that

mutagenesis should be preferentially applied to these regions. An alternative approach is

to make specific mutations at a highly coupled set of residues, a strategy that has been

successful in improving the stability of small proteins (Dahiyat and Mayo, 1997;

Malakaukas and Mayo, 1998). However, we are interested in improving properties such

as activity, where the exact fitness contributions cannot be accurately computed.

Experimentally incorporating a sufficiently high mutation rate to reliably discover highly

coupled mutants requires a screening effort larger than is practically feasible. Our

algorithm provides a methodology by which enzymes can be computationally pre-

screened, thus reducing the required experimental effort. By computationally calculating

the entropy of each residue and using this information to guide an experimental

evolutionary search, the most powerful aspects each technique are combined as a new

approach to protein design.
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Table 3-1. Site Entropies and Solvent Accessibility of Subtilisin E

residue site entropy % exposeda

9 2.55 56
14 2.50 34
48 2.09 20
60 0.00 0
76 2.45 46
97 0.06 19
103 2.48 61
107 1.62 1
118 2.37 79
131 2.43 37
156 2.19 53
161 2.69 92
166 0.96 8
181 0.36 23
182 1.81 52
188 2.50 88
194 2.59 71
206 1.94 40
218 2.54 50
255 2.54 41

a The percent surface area of the side chain accessible by
solvent. The surface areas were calculated using the Lee and
Richards definition of solvent accessible surface area using
1.4 Å as the radius of water (Lee and Richards, 1971). The
average solvent accessibility is 24% and the standard
deviation is 26%.
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Table 3-2. Site Entropies and Solvent Accessibility of T4 Lysozyme

a The percent surface area of the side chain accessible by
solvent. The surface areas were calculated using the Lee
and Richards definition of solvent accessible surface area
using 1.4 Å as the radius of water (Lee and Richards,
1971). The average solvent accessibility is 24% and the
standard deviation is 26%.

residue site entropy % exposeda

14 2.59 47
16 2.02 53
22 1.66 19
26 1.03 2
40 2.54 80
41 1.91 34
93 2.52 81
113 2.54 69
116 2.50 51
119 2.11 54
147 2.10 50
151 1.53 17
153 0.55 0
163 2.49 63
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Table 3-3. Saturation of High-Entropy Residues of ββββ-lactamase

a. The improvement represents the improvement in MIC
over wild-type TEM-1. The notation ‘2-fold’ refers to a
MIC of 0.9 µg/ml and ‘4-fold’ refers to a MIC of 1.8
µg/ml.

Residue Improvementa Mutations
39 2-fold Q → R

Q → N
57 none
90 2-fold Q → S
99 2-fold Q → R
114 none T → K

T → A
T → N

140 2-fold
158 2-fold H → Y
198 4-fold L → I
227 2-fold A → D
273 none
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Figure 3-1:

A plot is shown of sequence entropy versus stabilization energy. The entropy is the log of

the number of sequences, S = ln Ω. At E = 0, all sequences are possible and the entropy

is at a maximum. At zero entropy, only a single sequence, the global optimum, remains.

A critical energy (marked by the arrow) represents a threshold, below which sequences

are stable in the defined structural context (blue) and the sequences above this threshold

are unstable (red).
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Figure 3-2:

The sequence entropy of each residue is plotted as a function of increasing fitness (from

light to dark blue). The data is for the simple model of fitness used in Chapter 2

(Equation 2-3). The correlate of increasing fitness is decreasing stabilization energy, in

other words, F = −E. If all amino acids are equally likely, then si = ln A ≈ 3.0. As the

fitness increases, the number of possible amino acid substitutions at each residue

decreases, thus decreasing the total sequence entropy. At high fitness, some residues

remain tolerant to substitution, while others become fixed in a single amino acid identity.
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Figure 3-3:

The predicted sequence entropy profile (black line) and solvent accessibility (red line) for

subtilisin E. If all amino acids are equally likely, then si = ln A ≈ 3.0. The solvent

accessibility is the percent side chain surface area exposed, as calculated by the Lee and

Richards method with a solvent radius of 1.4 Å (Lee and Richards, 1971).
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Figure 3-4:

The entropy of each residue mapped onto the structure of subtilisin E (A) and T4

lysozyme (B). The yellow residues are the most variable sites (2.16 < s < 3.00, greater

than one standard deviation above the mean), the red residues are moderately variable

(1.31 < s < 2.16, between the mean and one standard deviation), and the gray residues

have below average variability (s < 1.31). Site saturation experiments should be directed

at yellow positions whereas the contiguous yellow-red regions lend themselves to

cassette mutagenesis. This figure was generated using MolMol (Koradi et al., 1996).
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Figure 3-5 (A):

The probability distribution of site entropies p(si) for subtilisin E. The bar indicates the

mean and standard deviation of the distribution. The fraction of residues with zero

entropy is 0.078, as indicated by the arrow. The site entropies of positions where

experimental directed evolution found positive mutations are indicated by the lines.

These beneficial mutations were found by screening ~103 mutants generated with an

average mutation rate of 2 − 3 nucleotide substitutions. (top) Mutations made when the

screen was to improve thermostability while retaining activity (Zhao and Arnold, 1999).

From left to right, the positions (entropies) are 181 (0.36), 166 (0.96), 118 (2.37), 76

(2.45), 14 (2.50), 218 (2.54), 9 (2.55), 194 (2.59), and 161 (2.69). (bottom) Mutations

made when the screen was to improve activity towards s-AAPF-pNa in the organic

solvent dimethyl formamide (Chen and Arnold, 1993; You and Arnold, 1994). From left

to right, the positions (entropies) are 60 (0.0), 97 (0.06), 181 (0.36), 107 (1.62), 182

(1.81), 206 (1.94), 48 (2.09), 156 (2.19), 131 (2.43), 188 (2.50), 103 (2.48), 218 (2.54),

255 (2.54). Note that residues 181 and 218 are common to both data sets (different amino

acid substitutions were made at residue 181, whereas the same substitution was made at

218).
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Figure 3-5 (B):

The probability distribution of site entropies p(si) for T4 lysozyme. The bar indicates the

mean and standard deviation of the distribution. The fraction of residues with zero

entropy is 0.039, as indicated by the arrow. The site entropies of positions where

experimental directed evolution found positive mutations are indicated by the lines (Pjura

et al., 1993). These beneficial mutations were found by screening ~103 mutants generated

with an average mutation rate of 2−3 nucleotide substitutions. The red bars indicate

mutations that improved stability, blue bars indicate mutations that improved activity,

and purple bars indicate mutations that improved both properties. From left to right, the

positions (entropies) are 153 (0.55), 26 (1.03), 151 (1.53), 22 (1.66), 41 (1.91), 16 (2.02),

147 (2.10), 119 (2.11), 163 (2.49), 116 (2.50), 93 (2.52), 113 (2.54), 40 (2.54), and 14

(2.59).
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Figure 3-6:

The percent of improvement in activity is plotted against the entropy at which the

mutation was found for the T4 lysozyme dataset (Pjura et al., 1993). The largest activity

improvements occur at the highest entropy positions. The degree to which a mutation

stabilizes T4 lysozyme does not correlate with the entropy of the site where the

stabilizing mutation was found (data not shown).
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Figure 3-7:

The entropy calculation is compared to results from the directed evolution of antibody 4-

4-4-20 (Boder et al., 2000). The average sequence entropy of residues where beneficial

mutations were found to improve binding to flourescein is plotted versus the experiment

in which it occurred. After each round, the stringency of selection was increased to reflect

the increase in affinity obtained in the previous round. As the fitness of the parents

increases, beneficial mutations became more biased towards the high entropy residues.

This is predicted using the simplified statistical model of interacting residues introduced

in Chapter 2 (Figure 2-2).
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Figure 3-8:

The entropy of each residue of subtilisin E is plotted versus the fraction of the side-chain

that is surface exposed (A) and the variation that is observed in a natural alignment of

subtilisins (B). The best fit line is shown for both data sets. The solvent accessibility is

the percent side chain surface area exposed, as calculated by the Lee and Richards

method with a solvent radius of 1.4 Å (Lee and Richards, 1971). The natural diversity is

presented as a entropy which is calculated using a sequence alignment. The alignment is

used to calculate the probabilities of amino acids existing at a particular residue. The

probabilities are then converted to entropies using Equation (3-2).
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Figure 3-9 (A):

The site entropy (black line) is compared with the functional diversity (red line) for T4

lysozyme mutants (Rennell et al., 1991). The functional diversity of each residue is a

count of all the amino acid substitutions that retained wild-type activity (a rating of ++).

Those positions that are structurally tolerant and functionally intolerant tend to occur near

the active site. The site entropy was calculated via the mean-field algorithm and the

calculation was stopped at T = 300 K. The data is identical to that which was used to

create Figure 3-5B.
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Figure 3-9 (B):

The site entropy (black line) is compared to the functional tolerance (red line) of TEM-1

β-lactamase (Huang et al., 1996). The functional tolerance is defined as the number of

amino acid mutations at a residue that conferred wild-type activity towards the

degradation of ampicillin (measured as a minimum inhibitory concentration). The amino

acid substitutions were performed in sets of 3-6 contiguous residues simultaneously. This

could produce very different results from an experiment where substitutions are made at

each residue independently. The entropy was calculated using the DEE-entropy algorithm

(Appendix B) using β = 0.6. The break in the profiles at 238 reflects a numbering

convention in β-lactamases.
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Figure 3-9 (C):

The site entropy (black line) is compared to the functional tolerance (red line) of two

helices in λ repressor (Reidhaar-Olson and Sauer, 1988; Reidhaar-Olson and Sauer,

1990). The functionally acceptable mutants were discovered using a selection on which

variants with 5-10% of wild-type activity survived. The entropy was calculated using the

mean-field algorithm with a final temperature of T = 300 K.
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Figure 3-10:

The ten high-entropy β-lactamase residues chosen for site saturation are shown in blue.

The amino acid identity and the improvement found at each residue are listed in Table 3-

3. The three active site residues are shown in red.
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Chapter 4

Tolerance of the CDRs of Antibody D1.3

The research presented in this chapter was done in collaboration with K. Dane Wittrup
and Brenda Kellogg at the Massachusetts Institute of Technology. All experiments
described herein were performed in the Wittrup laboratory.

Abstract

The tolerances of the complementarity determining regions (CDRs) of the antibody D1.3

interacting with hen egg white lysozyme (HEL) are calculated using mean-field theory

and a structural model. The sequence entropy is recorded as a measure of the number of

amino acids that can be introduced at a residue without disrupting the structural stability

or binding interactions. Mutations discovered during the affinity maturation of antibody

D1.3 are biased towards residues that have a high calculated sequence entropy. To test

the predictive ability of the entropy calculation, a library was created by simultaneously

mutagenizing four residues on the heavy chain that are computed to have high sequence

entropy (VH30, VH56, VH61, VH62). While the library was enriched with functional

mutants, the best mutant only has a modest 2-fold gain in affinity. In this chapter, we

discuss potential improvements to our targeting strategy and use the ORBIT protein

design tools to analyze alternative targeting strategies.
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1. Introduction

Directed evolution often discovers beneficial mutations in surprising places.

Rather than directly modifying the active sites of enzymes or the binding region of

antibodies, mutations often occur far from these areas and affect catalysis or binding

through subtle, long-range interactions (Spiller et al., 1999; Boder et al., 2000).

Accumulating these mutations over rounds of selection has been very successful

approach for improving industrially germane properties of enzymes (Petrounia and

Arnold, 2000). However, the improvement of antibodies for pharmaceutical applications

poses a difficult dilemma. As with enzymes, directed evolution experiments have yielded

novel mutations throughout the frame of the antibody (Chen et al., 1999; Linden et al.,

2000; Boder et al., 2000). While these mutations lead to improved binding properties,

they can ultimately pose problems for using the modified sequences as pharmaceuticals.

The immune system is particularly effective at removing these artificial antibodies by

recognizing the amino acid mutations in the frame as foreign and inducing a rapid

immune response. To circumvent this problem, mutations can be directed towards the

complementary determining regions (CDRs), thus mimicking natural diversity.

Limiting the regions of diversity to the CDRs poses a conceptual difficulty for

directed evolution. The binding region is more constrained than the scaffold of the

protein so mutations in this region are more likely going to have deleterious, non-additive

effects (Mackan and Perelson, 1989; Kauffman and Weinberger, 1989; Brown et al.,

1996). Finding beneficial mutations in highly interacting regions is difficult for random

mutagenesis methods when the mutation rate and screening capacity are small.

Discovering mutations at interacting residues requires multiple mutations to collectively
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generate beneficial effects. As the number of required mutations increases, the

combinatorial possibilities grow exponentially and it becomes increasingly unlikely that

beneficial combinations will be discovered.

Limiting mutagenesis to the CDR regions reduces the size of the search space, but

it remains impossible to sample all of the possible combinations of mutations. It is useful

to have a guide as to which residues should be mutagenized to maximize the probability

of discovering affinity-improving mutations. In addition, a benefit of saturating a few

residues is that the restrictions imposed by the genetic code can be avoided and all amino

acids can be sampled at the chosen positions.

In this manuscript, we calculate the tolerance of each CDR residue of D1.3

complexed with HEL. The tolerance is determined by calculating the energetic effects of

all amino acid substitutions at each position through a mean-field calculation, as

described previously (Voigt et al., 2001). A library is produced experimentally by

targeting four high entropy residues for simultaneous saturation mutagenesis. The

resulting library is screened and found to be particularly tolerant to mutagenesis. Further,

we test the idea that these predictions could be useful as a guide for saturation

mutagenesis experiments, where the most tolerant residues should be targeted first. When

the library of high-entropy positions were aggressively screened for improvements in

HEL-binding, only a modest 2-fold improved mutant was found.

Several alternative targeting methods have been proposed, including the residues

where improvements had been found previously by somatic mutagenesis or probing

rounds of random mutagenesis (Miyazaki and Arnold, 1999; England et al., 1999). In

addition, it has been proposed that there are hotspots in the DNA sequence encoding the
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CDRs where improvements can be found independent of the specific antibody-antigen

system (Chowdhury and Pastan, 1999). These strategies require different forms of

information: the entropy calculation requires a structure, the somatic mutagenesis

requires the germline sequence, and the consensus strategy requires an initial

experimental step of mutagenesis and screening. Each of these strategies is examined

using the ORBIT (Optimization of Rotamers by Iterative Techniques) protein design

tools and the results are compared with the entropy calculation. We predict that the

residues mutated by somatic mutagenesis are particularly tolerant, whereas the other sets

of residues are more constrained by their environments.

2. Computational Methods

Various computational tools are applied to calculate the energetic effect of

mutations, both on the stability of the antibody scaffold as well as the effect on the

interactions between the antibody and HEL. First, a high-resolution crystal structure is

used to obtain the backbone structure. At each residue, all amino acids are inserted and

their flexibility is discretized into a set of conformationally distinct rotamers. The

energetic interactions between all pairs of rotamers are then calculated using a force field.

Finally, a single rotamer sequence is obtained by minimizing the energy function.

Alternatively, mean-field theory is used to calculate the tolerance (sequence entropy) of

each residue to amino acid substitutions.

This computational strategy is derived from a set of tools, collectively referred to

as ORBIT, which has been used to solve the inverse folding problem (Dahiyat and Mayo,

1997; Malkauskas and Mayo, 1998). The goal of inverse folding is to design an amino
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acid sequence that will fold into a target three-dimensional structure. The energy function

is highly reliant on obtaining the correct packing by monitoring van der Waals

interactions, as well as through the enforcement of a hydrophobic core and hydrophilic

surface (binary patterning) (Marshall and Mayo, 2001). Additional crude H-bonding and

electrostatic terms are included. This approach has been successful in designing

thermophilic sequences for a variety of structures. However, it is unclear how well this

energetic model will transfer to calculating the interactions between proteins. For

example, electrostatics may dominate protein-protein interactions while side chain

packing and hydrophobic burial may be less important.

2.1. D1.3 – HEL Interaction Thermodynamics

The D1.3–HEL complex has several characteristics that make it particularly

suitable for protein engineering by directed evolution. First, the interface between the

proteins is large and most of the residues have been found to be tolerant to amino acid

substitutions (Ito et al., 1992; Fields et al., 1996; Braden et al., 1998). Alanine-scanning

mutagenesis studies have demonstrated that alanines are not tolerated at only four of the

contact residues, implying that these residues are critical for binding (England et al.,

1997; Dall'Acqua et al., 1998). These essential residues tend to be hydrophobic amino

acids on the VH CDR2 and CDR3 and the VL CDR1 and CDR3 variable loops. The

energetic effect of amino acid substitutions drops as mutations are made further from this

region (Pons et al., 1999). If the interactions were highly coupled and subtly propagated

across many residues, as in the case of many antibody-antigen interfaces (Dall'Acqua et
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al., 1996; Kobayashi et al., 1999), then this would be more difficult for directed evolution

to discover beneficial mutants.

Several types of interactions contribute to the binding between D1.3 and HEL. An

important component is the shape complimentarity between the interfaces (Novotny et

al., 1989; Hawkins et al., 1993). The maximization of van der Waals interactions is

therefore important for binding (Braden et al., 1996). Hydrogen bonding and favorable

electrostatic contacts across the interface contributes strongly to the interaction energy

(Fields et al., 1996). The hydrophobic effect also drives the binding, where interfacial

residues that do not bury hydrophobic area have to compensate through a complementary

electrostatic interaction (a salt bridge or hydrogen bond). Finally, the affinity can be

improved by reducing the entropy of the side chains that participate in antibody-protein

binding (Bhat et al., 1994; Fields et al., 1996). Mutations in the CDR regions can have a

deleterious effect on the association between the VH and VL fragments (Yasui et al.,

1994). Therefore, it is important when mutating the CDRs, that mutations not disrupt the

stability of the VH-VL complex.

Beyond directly improving the interactions between D1.3 and HEL, mutations can

alter the affinity by stabilizing the binding conformation of D1.3. The energetic benefit

from shape complementarity is sufficiently strong to induce small rearrangements in the

backbone to improve fit (Braden et al., 1996). However, there is an energetic cost to bend

the backbone, so the affinity is decreased when this occurs. By stabilizing the antigen-

bound form of the structure, the binding energy can be improved (Braden et al., 1996).

Mariuzza and co-workers demonstrated this effect by comparing the binding of D1.3 with

HEL and turkey egg white lysozyme (TEL). While the amino acid sequences of the two



4-7

lysozymes where nearly identical, a small conformational change was required to bind

TEL, having the effect of reducing the binding by two orders of magnitude. This

reduction is dominated by a slow association rate, implying that there is an energetic

barrier created by the need for the free D1.3 to attain the correct conformation for

binding. Thus, minimizing the conformational variability has the potential to improve

binding.

2.2. Calculating the Interaction Energy

The calculations are based on the high-resolution crystal structure of the HEL-

D1.3 complex (Bhat et al., 1994) (Figure 4-1). A subset of residues’ amino acid side

chains are fixed in their wild-type conformations and the remaining residues are allowed

to vary in identity and conformation. For example, the energy of an amino acid rotamer

sequence {R} threaded onto the CDRs is
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where NCDR is the number of CDR residues, ND1.3 is the number of non-CDR residues in

antibody D1.3, and NHEL is the number of residues in hen egg-white lysozyme. The

interaction energies between non-CDR and HEL residues do not vary in the calculation

and are therefore not considered in Equation (4-1). The single-body term E(ir) captures

the interaction between rotamer ir with the carbon backbone. The energy between

rotomers ir and js, E(ir,js), is composed of van der Waals, electrostatic, and hydrogen-

bonding terms (Gorden et al., 1999). An additional pairwise energy term is included to

calculate the solvation effect of burying hydrophobic surface area (Street and Mayo,

1998).
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In our calculations, the backbone remains fixed. Therefore, its internal energy

contribution is not relevant to the optimization procedure. This is often a limitation in

inverse folding algorithms, but there is some evidence that the backbone of D1.3 does not

significantly deviate during mutagenesis. Using the crystal structures of several mutant

D1.3 antibodies bound to HEL, Mariuzza and co-workers showed that the effect of amino

acid substitutions is dominated by local rearrangements of the side chains, rather than

shifts in the backbone structure (Fields et al., 1996). In addition, there is minimal

structural rearrangement upon binding to HEL (Bhat et al., 1990; Freire, 1999).

A limitation of our model is the inability to explicitly incorporate water

molecules. Water molecules often mediate important interactions in antibody-antigen

binding, both to propagate hydrogen-bonding and to improve shape complementarity

(Bhat et al., 1994; Fields et al., 1996; England et al., 1997; Li et al., 2000). However, the

ability for our model to capture improvements in the shape complimentarity, buried

hydrophobic area, and hydrogen bonding should facilitate the discovery of alternate

binding mechanisms. It has been proposed that direct hydrogen bonds between D1.3 and

lysozyme are more energetically favorable than hydrogen bonds that are mediated by

water molecules (Fields et al., 1996).

2.3. Rotamer Libraries

The amino acid conformations are discretized into a set of rotamers. The rotamer

libraries used in this chapter contain conformations specific to the φ- and ψ-angles of

each residue (“backbone-dependent”) with several modifications that have been

previously described (Dunbrack and Karplus, 1993; Dunbrack and Karplus, 1994;
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Dahiyat et al., 1997). We use three variations on the backbone-dependent library. The e0

library is as described by Dunbrack and Karplus. The e2 library expands the χ1- and χ2-

angles of all rotamers by one standard deviation. The a2h1p0 expands the rotamers

corresponding to aromatic amino acids by two standard deviations, the rotamers

corresponding to hydrophobic amino acids by one standard deviation, and the polar

rotamers corresponding to polar amino acids are not expanded. In all of the libraries, the

wild-type rotamer conformation at each residue is included. The e0 library contains the

least number of rotamers while the e2 library contains the most rotamers. The a2h1p0

library is typically used to design the core of proteins. Increasing the number of rotamers

has a detrimental effect on the calculations: dead-end-elimination is less likely to

converge and the mean-field calculation becomes constrained by memory requirements.

2.4. Sequence Design of CDR residues

To examine the ORBIT’s ability to optimize surface residues in the context of

interacting with a second protein, we ran a full sequence design of the 61 CDR residues

of HEL (Figure 4-1). In this calculation, the non-CDR and HEL residues are fixed in their

wild-type amino acid side chain conformation. The remaining CDR residues are allowed

to mutate to 17 amino acids (Met, Cys, and Pro are excluded) using the a2h1p0 library.

All rotamers that exhibit one-body or pairwise energies above 100 kcal/mol are pruned

from the rotamer list. Then, the dead-end elimination (DEE) algorithm is used to

converge on the global optimum energy conformation of rotamers (Desmet et al., 1992;

Goldstein, 1994; Gordon and Mayo, 1998; Pierce et al., 2000).
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The solution to which DEE converges is shown in Table 4-1 and compared with

the wild-type conformation in Figure 4-2. Only 31% of the amino acids are conserved,

most of which are on the VL CDR3 and VH CDR1 loops. Mutations from polar amino

acids to aromatics occur frequently. This typically occurs to facilitate the filling of void

spaces that were previously occupied water, some of which were mediating H-bonding.

Those residues that are participating in the different design strategies are shown in Table

4-2 (“big”). The consensus residues are the most conserved (3/4) whereas the hotspot and

high-entropy residues were less conserved (2/4 and 1/4) and none of the somatic residues

are conserved.

A second DEE calculation was run that focuses on the changes incurred by

saturating the sets of targeted residues in the background of the wild-type CDR amino

acid sequence (Figure 4-3). For this calculation, all of the residues except for the four

designed positions are fixed in their wild-type identity and conformation. The designed

residues are allowed to vary using the e2 rotamer library and the minimum conformation

is obtained using DEE. The results of this calculation tend to be more conservative than

the full sequence design (Table 4-2). All of the consensus residues remain unmutated and

the somatic and high-entropy residues are mutated to amino acids with properties more

similar to wild-type.

2.5. Structural Tolerance of CDR Residues

To calculate the structural tolerance of the CDR residues, the non-CDR and HEL

amino acid side chains are fixed in the wild-type conformation and the amino acid

identity and side chain conformation of the CDR residues are varied using the mean-field
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algorithm. Since the non-CDR residues and the HEL residues are confined to a single

rotamer, the mean-field treatment yields the energy of rotamer r at position i,
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where Ri is the total number of rotamers at residue i, and p(ir) is the probability that

rotamer r exists at residue i. The probabilities can subsequently be calculated by
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where β is the Boltzman temperature. As the temperature is lowered, the probabilities

become more skewed towards a few dominating amino acids. A threshold temperature

defines a mean-field energy below which sequences are stable in the D1.3-HEL complex

whereas sequences above this energy are unstable (Figure 3-1).

Before the mean-field minimization algorithm is run, all of the pairwise energies

between rotamers required by Equation (4-2) are calculated. The e0 rotamer library is

used and all twenty amino acids are allowed at each residue. From this initial list, all of

those rotamers that interact with the protein backbone with energies greater than 5

kcal/mol are eliminated from the calculation. An average of 121 rotamers per residue

survive this step, corresponding to 3.2 × 104 one-body energies and 5.1 × 108 pairwise

energies. Next, the mean-field algorithm is started by initializing all of the rotamer

probabilities p(ir) to 1/Ri. A high initial temperature is set (100,000 K) and then the

temperature is lowered in increments of 100 K until the final temperature of 500 K is

reached. After each temperature decrease, Equations (4-2) and (4-3) are iterated until

self-consistency is achieved.
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After the mean-field minimization, the amino acid probabilities can be defined as

the sum of the rotamer probabilities for that amino acid at a given position. The tolerance

of each CDR residue can be described by the sequence entropy

∑−=
A

a
aai ipips )(ln)( , (4-4)

where p(ia) is the probability of amino acid a at residue i. A residue with a high entropy is

tolerant to amino acid substitution, whereas a low-entropy residue is intolerant. The

entropy of each CDR residue is shown in Figure 4-4 and is mapped onto the structure in

Figure 4-5. As expected, the center of the D1.3-HEL interface tends to be less tolerant

than the surrounding residues (Figure 4-6). While there are some characteristics that are

shared between the interface and the core of a protein, the extent of this analogy is

unclear. To study the effect of solvation on the tolerance, the entropy of each residue is

calculated with and without an energetic term that accounts for the burial of hydrophobic

surface area. The results of this comparison are shown in Figure 4-7.

3. Results and Discussion

3.1. Somatic Mutagenesis

The primary immune response, representing the result of recombining the V, D,

and J genes, yields antibodies with generally low affinities. It is the secondary response,

involving point mutation and selection, referred to as somatic hypermutation or affinity

maturation, which generates antibodies with the required physiological affinity

(Neuberger and Milstein, 1995). The primary response generates a B-cell clone, which is

then subjected to mutagenesis concentrated in the variable region. The mutagenesis rate

has been estimated to be ~10–3–10–4 per generation (Berek and Milstein, 1987; Neuberger
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and Milstein, 1995). This process leads to the production of offspring B-cells, which are

then selected for improved binding. This process is repeated until adequate affinity is

obtained. The mechanism of somatic mutation is very similar to directed evolution. A

low mutation rate is employed, and a finite number of mutants are “screened.” Due to

these limitations, it is possible that somatic mutagenesis follows the same trend towards

mutating discovering beneficial mutations at residues with high sequence entropy, as was

predicted for directed evolution (Voigt et al., 2001).

The structural effects of somatic mutations have been explored. It has been

observed that the replacement of non-contact residues occurs frequently (Chien et al.,

1989; Sharon, 1990; Bhat et al., 1994; Patten et al., 1996). A study of the somatic

mutagenesis of the NQ10/12.5 antibody raised against a hapten (2-phenlyoxazolone)

demonstrated that the contact residues were rarely mutated (Spinelli and Alzari, 1994).

Further, by comparing the structures of germline and affinity-matured antibodies, it has

been demonstrated that most somatic mutations do not significantly rearrange the binding

hole in antibody-hapten complexes (Orencia et al., 2000). Many of the mutations in this

system were found to occur far from the binding site and the mechanism by which

affinity was approved was attributed to long-range effects. These studies demonstrate that

the structure of the binding site, as well as the specific pattern of antibody-antigen

binding interactions are often preserved by somatic mutations (Spinelli and Alzari, 1994;

Orencia et al., 2000).

Five somatic mutations occur during the affinity maturation of D1.3 from

germline. Bedoulle and co-workers determined the contribution of each mutation to the

overall 60-fold increase in affinity (England et al., 1999). In addition, the mutations were
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shown to be additive. Each mutation independently improved the interaction with

lysozyme and the order that these mutations were made was inconsequential. Four non-

silent somatic mutations in the CDR regions were identified: VL 50 N→Y, VL 51 A→T,

VL 52 K→T, and VH 56 S→N. The amino acid substitutions at residue VL 50 and VH 56

most contribute to the improvement in HEL binding (England et al., 1999). Three out of

four of these mutations occur at high-entropy positions (Figure 4-4). These residues form

the basis for the somatic targeting strategy.

3.2. Mutagenesis of Selected Residues

Based on each of the design strategies, libraries were experimentally constructed

corresponding to the simultaneous mutagenesis of all four targeted residues. To create the

library, a forward primer is designed with a NN(G/T) codon for each residue that is being

mutagenized. A reverse primer is also designed to overlap with each forward primer.

After PCR, sets of DNA fragments are generated for each target residue, which are then

being pieced together using the SOEing procedure to produce the full-length gene

(Horton, 1995). The gene was then inserted into the pCT303 display vector via

homologous recombination in yeast. The randomization of the NN(G/T) codons were

confirmed by sequencing.

The antibody libraries were displayed on yeast, and the mutants were analyzed by

fluorescence-activated flow cytometry (FACS). Between two to four conservative rounds

of sorting were initially performed where those clones with affinities near wild-type were

isolated. This enriched library was then subjected to several rounds of aggressive sorting.

The aggressive sorting is based on the off rate of the D1.3-HEL interaction, which is
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measured by allowing the mutant antibodies to bind a labeled HEL and then incubating

with unlabeled HEL. The top 0.1% of the clones was isolated after each sorting round.

When the population converges, the remaining clone(s) is (are) analyzed as the highest

affinity mutants in the library.

The libraries corresponding to the four design strategies were created and

analyzed (Table 4-3). The fraction of each library with affinities above 100nM and the

highest-affinity mutant discovered are reported. The library based on the sequence

entropy calculation is very enriched in functional mutants (13.3%), but the best mutant

found in the library had only a 2-fold increase in affinity. The somatic and hotspot

libraries have 3.4% and 0.4% functional mutants, respectively. The library that has

surprising characteristics is the one constructed via the consensus strategy. While these

positions are buried in the core of the antibody and D1.3-HEL interface and are predicted

to have low sequence entropy, they are found to be tolerant to substitutions (4.8% are

functional). Further, in this library, a mutant with 20-fold improvement in affinity was

found - the best of any of the libraries.

Our inability to calculate the tolerance of the consensus residues may reflect

several difficulties in our algorithm. It is possible that mutations at these positions may

induce structural rearrangements or have some other affect that is not explicitly described

in our energy function. The loops of the CDR region may have more flexibility than the

typical structural targets of inverse folding algorithms. A related problem may be in

understanding the difference between interactions that stabilize a protein structure (in

particular in the core of the protein) and those that are important for improving affinity.
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The original motivation for the entropy algorithm is to be to able predict a set of

residues that may be good targets individually for saturation mutagenesis. There may be a

set of different constraints on mutagenizing multiple interacting residues simultaneously.

By targeting several residues, the possibility for compensating mutations arises and the

entropy calculation becomes less accurate. To overcome this limitation, we are

developing of algorithms that can sort through sets of multiple residues to discover the

optimal one for mutagenesis. While this will be a useful tool for protein engineering, it

still is unlikely to explain the tolerance of the consensus residues, as the partial and full

sequence designs failed to make amino acid substitutions at these residues (Table 4-2).

While we have observed that beneficial mutations tend to occur at residues with

high sequence entropy (Chapter 3), it may not be the best strategy to optimize this value

when targeting residues. For example, while there are high entropy residues close to the

center of the binding interface of D1.3, when the entropy is maximized, the residues that

are chosen are far from this region (Figure 4-6). Somatic mutagenesis found beneficial

mutations at the high-entropy residues that are relatively close to the interface. In

designing a targeting strategy, it may be required to maximize multiple constraints.

Chowdhury and Pastan took this approach when they formulated the hotspot strategy

(Chowdhury and Pastan, 1999). Many residues were predicted to be hotspots, but they

chose those that were closest to the binding interface.

4. Conclusions

Four design strategies are analyzed in this chapter using the mean-field entropy

algorithm and other ORBIT design tools. Those residues that have the highest sequence
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entropy are chosen to undergo simultaneous mutagenesis. The resulting library was

significantly more enriched in functional mutants than the other design strategies.

However, when compared to the other libraries, the smallest improvement in affinity was

found. Improvements could be made to this strategy by assessing the difficulty in

calculating protein-protein interactions, the differences in single- and multiple-residue

mutagenesis, and introducing multiple optimization constraints.
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Table 4-1: Full ORBIT CDR sequence design

Light Chain
CDR1 24 25 26 27 28 29 30 31 32 33 34

wt R A S G N I H N Y L A
D Y - T N D - Y H F I -

CDR2 50 51 52 53 54 55 56
wt Y T T T L A D
D F D W Q R E W

CDR3 89 90 91 92 93 94 95 96 97
wt Q H F W S T P R T
D E E - - - W - E Y

Heavy Chain
CDR1 26 27 28 29 30 31 32 33 34 35

wt G F S L Y G Y G V N
D - - N - - E - A - A

CDR2 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
wt M I W G D G N T D Y N S A L K S
D - - - - E A R R Y L - Q W Y R N

CDR3 98 99 100 101 102 103 104 105
wt E R D Y R L D Y
D L F V F F A - -
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Table 4-2: ORBIT design of targeted residues

Consensus Hotspot
L34 L91 L93 H103 L25 L26 L33 L34

wt A F S L A S L A
big - - - A - T I -
small - - - - - R - T

Somatic Entropy
L50 L51 L52 H56 H30 H56 H61 H62

wt Y T T N Y N S A
big F D W R - R Q W
small F S S Q - Q Q N
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Table 4-3: Comparison of Experimental and Computational Results

Consensus Hotspot Somatic Entropy
% functionala 4.8 0.4 3.4 13.3
maximumb 0.1 0.6 - 1.1

<entropy>c 0.3 0.9 1.7 2.3
∆Emax

d -5.4 -8.0 -10.6 -10.1

a. The percent of the library that is experimentally determined to be functional, with
100nM or better binding as a criterion for functionality
b. The Kd of the best mutant in the library, in units of nM. Wild-type D1.3 has Kd =
2.4 nM.
c. The average entropy of the four residues targeted in each meathod, as determined
using the mean-field algorithm (Figure 4-4).
d. The change in energy between the wild-type and GMEC sequence, as determined
using the ORBIT partial sequence design. The units are in kcal/mol.
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Figure 4-1:

The structure of antibody D1.3 bound to HEL (Bhat et al., 1994). The blue and green

structures are the heavy and light chains and the black structure is the bound HEL. The

CDR regions are shown in red.
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Figure 4-2:

The wild-type (blue) and designed (red) amino acid sequences for the CDR region of

D1.3, as shown from the perspective of the bound HEL. The full sequence design was

performed by allowing all of the CDR residues to vary simultaneously in amino acid

identity while holding the non-CDR residues in D1.3 and HEL in their wild-type identity

and conformation. The energy is then minimized using dead-end elimination. The

sequence obtained from the full design tends to be more tightly packed, notably by

aromatics. The core of the binding region is more highly conserved in the calculation

than the surrounding residues. The amino acids chosen by the full sequence design are

listed in Table 1.
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Figure 4-3:

The wild-type amino acid identities (blue) are compared with those identified by the full

sequence design (red) and the limited sequence design (green). The heavy and light chain

CDRs are shown from the perspective of bound HEL. The limited sequence design was

performed by allowing the set of four chosen residues to vary in amino acid identity

while holding the remaining residues of D1.3 and HEL in their wild-type identity and

conformation. The energy was then minimized using dead-end elimination. This

calculation was performed on the residues chosen by the (A) consensus, (B) hotspot, (C)

somatic, and (D) sequence entropy strategies. The amino acid identities converged on by

this calculation are listed in Table 2.
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Figure 4-4:

The entropy of each CDR residue in the light (A) and heavy (B) chains are shown. The

dotted lines mark the mean entropy and one standard deviation above the mean. The

residues corresponding to the four design strategies are color-coded: (blue) consensus,

(green) somatic, (red) hotspot, and (yellow) sequence entropy. Residues L34 and H56 are

shared between two strategies.
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Figure 4-5:

The entropy of each CDR residue is mapped onto the D1.3-HEL structure (Bhat et al.,

1994). Two views are shown: (A) from the perspective of HEL (the center of the image is

the center of the D1.3-HEL interface) and (B) a side perspective. The high entropy

residues are shown in yellow (greater than one standard deviation above the mean) and

the above average entropy residues are shown in red (greater than the mean). The low-

entropy CDR residues are blue. There is a trend for conserved sites to be near the center

of the binding interface (Figure 4-7).
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Figure 4-6:

The sequence entropy is plotted against the distance from the center of the D1.3-HEL

interface. The distance is measured from the Cβ of VH Tyr101, the approximate center of

the interface. Residues further from the center tend to have higher sequence entropies, but

the overall correlation is weak. When residues are chosen that maximize the sequence

entropy, these tend to be a peripheral locations, as are the four positions chosen by the

entropy method (red points). It may be advantageous to introduce a second constraint

when optimizing the library, such as choosing high entropy residues that are participating

in the interaction (marked with the black box).
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Figure 4-7:

The sequence entropy of the CDR residues calculated with and without an energetic term

for solvation. The solvation term is a large contribution to the energy, so to equate the

average entropy for each dataset, the data with solvation is shown for T = 800 K and the

data without solvation is shown for T = 500 K. The residues chosen for mutagenesis (30,

56, 61, 62) are indicated by the red points. It is noteworthy that they are predicted to have

a high entropy using both energy expressions.
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Chapter 5

Protein Building Blocks Preserved by Recombination

Portions of this chapter are reproduced from:
Voigt, C. A., Martinez, C., Wang, Z-G., Mayo, S. L., and Arnold, F. H. (2002).
Recombination Preserves Protein Building Blocks, Nature Struct. Biol. 9, 553-558

Abstract

Borrowing concepts from the schema theory of genetic algorithms, we have developed a

computational algorithm to identify the fragments of proteins, or schemas, that can be

recombined without disturbing the integrity of the three-dimensional structure. When

recombination leaves these schemas undisturbed, the hybrid proteins are more likely to

be folded and functional. Crossovers found by screening libraries of several randomly

shuffled proteins for functional hybrids strongly correlate with those predicted by this

approach. Experimental results in the construction of hybrids of two β-lactamases sharing

40% amino acid identity demonstrate a threshold in the amount of schema disruption that

the hybrid protein can tolerate. To the extent that introns function to promote

recombination within proteins, natural selection would serve to bias their locations to

schema boundaries.
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1. Introduction

In vitro recombination is a powerful tool for the tuning and optimization of

proteins. It promotes the combination of traits from multiple parents onto a single

offspring, thus exploiting information obtained in previous rounds of selection (Holland,

1975; Stemmer, 1994; Crameri et al., 1998). Recombination plays a key role in the

natural evolution of proteins, notably in the generation of diverse antibodies, synthases,

and proteases (Ostermeier and Benkovic, 2000). In these examples, crossovers occur at

well-defined domain boundaries. The role of recombination in evolution is less well

understood when the domain structure of a protein is not obvious. Here, we introduce a

computational algorithm to divide a protein structure into pieces that can be swapped by

recombination and compare the predictions with data generated by in vitro recombination

experiments.

Ever since the first protein structures were elucidated, researchers have attempted

to divide their otherwise complicated topologies into well-defined domains, defined

variously as secondary structure units, structural elements that fold independently, or

clusters of residues close in geometric space (Rossman and Liljas, 1974; Crippen, 1978;

Rose, 1979; Gō, 1981; Zehfus and Rose, 1986; Holm and Sander, 1994; Panchenko et al.,

1996; Tsai et al., 2000). An operationally relevant domain definition is a protein fragment

that can be swapped among related structures. The locations of certain types of introns

were shown to occur at structural domain boundaries, suggesting that larger proteins are

composed of smaller domains discovered earlier in evolution and pieced together by gene

duplication and recombination (Gō, 1981; Gō, 1983; De Souza et al., 1996; Gilbert et al.,

1997). Using in vitro recombination experiments to observe that a crossover is
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acceptable, rather than inferring it from the existence of introns, provides a direct

approach to understanding how domains can be interchanged to create new, functional

proteins.

2. Materials and Methods

2.1. The SCHEMA Algorithm

It has been previously suggested that the optimal recombination points allow

swapping of structural domains (Ranganathan et al., 1999; Bogarad and Deem, 1999;

Ostermeier and Benkovic, 2000; Riechmann and Winter, 2000). The difficulty has been

to identify what these smaller building blocks look like. Research in computer science

has demonstrated that the optimal crossover locations in genetic algorithms correspond to

those that retain and combine clusters of bits that interact favorably (a “schema”)

(Holland, 1975; Forrest and Mitchell, 1993; Mitchell, 1996). Solutions in which

recombination divides a schema such that an offspring inherits fractions of it from

different parents are generally less fit. To identify the equivalent of schema in proteins,

we introduce a computational algorithm, SCHEMA, which can predict fragments that

must be inherited from the same parent. The schemas will therefore be the building

blocks from which novel proteins can be assembled by recombination.

SCHEMA works by calculating the interactions between residues and then

determining the number of interactions that are disrupted in the creation of a hybrid

protein. A disruption occurs when an interaction is broken due to different amino acids

being inherited from each parent (Figure 5-1). In the simplest implementation, two

residues are considered interacting if any of their atoms (excluding hydrogen atoms) are
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within a cutoff distance dc = 4.5 Å, corresponding to 5−8 interactions per residue. Ideally,

an algorithm would search all possible crossover combinations and determine the

associated disruption for each (Appendix E). Analyzing multiple crossovers by this

method leads to combinatorial difficulties, both in the calculation and the visualization of

the data. SCHEMA overcomes this limitation by scanning the protein structure with a

defined window size. Calculating how many interactions are disrupted when a crossover

is made generates a schema profile S; if S is large for residue i, then the residue is

involved in a more compact schema. Crossovers that correspond to minima of the schema

profile preserve the maximum number of internal interactions and are therefore favored.

2.2. Calculating the Schema Profile

The schema disruption of a hybrid protein is the number of interactions that are

broken when a certain pattern of fragments is inherited from each of the parents. If a

hybrid protein is constructed from two parents where fragment(s) α is (are) inherited

from parent A and fragment(s) β is (are) inherited from parent B, then the disruption Eαβ

of this hybrid can be calculated by

∑∑
∈ ∈

=
α β

αβ
i j

ijij PcE , (5-1)

where cij = 1 if residues i and j are within distance dc, otherwise cij = 0. Equation (5-1)

calculates the exact disruption caused by a particular hybrid construction (e.g., Table 5-1

and Figure 5-6). The probabilities Pij account for the fact that there is no disruption if the

amino acid identities of the residue pair i, j in the set of potential hybrids are the same as

in any of the parents (see Section 2.3).
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Equation (5-1) can be used to calculate the disruption of any particular hybrid

construction. However, when analyzing data from in vitro recombination experiments,

the number of possible hybrid combinations prohibits the calculation of the disruption of

all possible hybrids and the condensation of this information into a useful format. In

order to compare recombination results with the schema disruption theory, we have

developed an algorithm that searches for the most likely regions for crossovers to be non-

disruptive.

The inputs into the SCHEMA program are the coordinates of the three-

dimensional structure and an alignment of the parental sequences. The structure of only

one parent is required under the assumption that for in vitro recombination to be

successful the parents must share similar structures. A window of residues w is defined

and the number of internal interactions within this window is counted. In choosing the

window size, the assumption is made that the probability that two or more crossovers

occurring in the window is very small. The window is then slid along the protein

structure and a profile is generated where the schema profile of each residue in the

window is incremented by the amount of disruption created by a crossover in that region.

The numerical value of the schema profile function S at residue i is defined by

∑ ∑ ∑
+−=

−+

=

−+

+=

=
i

wij

wj

jk

wj

kl
klkli Pc

w
S

1

2 1

1

1
. (5-2)

If a residue has a large Si, then it is likely to be participating in a compact schema. A low

Si indicates that a crossover is likely to be tolerated at that position. In other words, the

crossovers at regions of high Si are more likely to create fragments with large Eαβ. For all

of the calculations presented in this chapter, the parameters are dc = 4.5 Å and w = 14
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residues. The topology of the profiles is robust to the specific values of these parameters

(Section 3.3).

2.3. Calculating the Probabilities

Equations (5-1) and (5-2) require the probability Pij that a hybrid protein will have

a combination of amino acids not present in the parents. To calculate this probability, a

list is generated of all possible amino acid combinations that can occur in the hybrids.

From this set, those combinations are removed that are present in the parents. To get the

final probability, the number of unique combinations is divided by the total number of

combinations, p(p-1), where p is the number of parents. An example of this calculation is

shown in Figure 5-2.

2.4. Sequence Alignments

Sequence alignments were performed using the BLAST algorithm with the

BLOSUM 62 similarity matrix and open gap/extension gap penalties of 11/1. For the data

sets in this study, the sequence identity between the parents is greater than 60%, reducing

the ambiguity of the alignment. For the β-lactamase TEM-1/PSE-4 system (40%

identity), the availability of both structures made a structural alignment possible (using

the SwissProt software package).
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2.5. Recombination Data Sets

2.5.1. Cephalosporinase

The schema profile was calculated based on the structure of cephalosporinase

(Figure 5-3A) (Lobkovsky et al., 1993). In a random recombination experiment, several

crossovers led to improved moxalactam antibiotic resistance (Crameri et al., 1998).

Further, an experiment was performed by Levesque and co-workers where a fragment

was taken from the β-lactamase TEM-1 gene and inserted into the PSE-4 gene21. The

resulting hybrid protein was found to have wild-type activity towards various antibiotics.

2.5.2 Subtilisin Families

Minshull and co-workers recombined a set of 26 subtilisin genes by DNA

shuffling and screened the recombinant mutants for improved thermostabilitity, high and

low pH activity, and activity in organic solvent (Ness et al., 1999). When aligned, the 26

genes fall into four well-defined families. Within each family, the genes have

approximately 99% sequence identity. Crossovers between parents that have this high

degree of sequence identity are impossible to analyze by schema disruption. However,

the sequence identity between parents from different families ranged from 76 to 90%. It

is possible, then, to compare the crossovers between families with the schema profile. In

the experiments, crossovers were allowed in the region between residues 60 and 224. The

remaining portions of the sequence (1-60, 224-269) were taken from the Savinase gene.

The structure of Savinase was used to calculate the schema profile (Figure 5-3B) (Betzel

et al., 1992). Nearly all of the sequences of the 26 parental genes are unavailable. To

overcome this, we ran a BLAST search, and selected a Bacillus halodurus serine protease
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(SwissProt P41363), which is 65% identical to the Savinase sequence. The probabilities

required by Equations 5-1 and 5-2 were estimated based on an alignment of these two

sequences.

2.5.3. Cytochromes P450

A recombination experiment was performed on two P450c17 genes (rat and

human), sharing 68% sequence identity, and a variety of functional hybrid proteins were

discovered (Brock and Waterman, 2000). The structure of c17 is unknown, however, a

structure of a homologous mammalian membrane-bound P450 2C5 has been solved

(Williams et al., 2000). The equivalent locations for the crossovers were determined by

aligning the parental sequences used in the experiment with the 2C5 sequence.

2.5.4. Glycinamide Ribonucleotide Transformylase

Benkovic and co-workers recombined PurN and GART glycinamide

ribonucleotide transformylase, and functional hybrid proteins were selected (Ostermeier

et al., 1999; Lutz et al., 2001). In this experiment, recombination was restricted to occur

between amino acid positions 50 and 150. The schema profile was calculated from the

structure of PurN (Almassy et al., 1992).

2.6. Hybrid Gene Construction

The oligonucleotide fragments corresponding to the peptide schemas were made

via PCR amplification, where the primers at either end contain a short piece of DNA that

overlaps with preceding gene fragment (Horton, 1995). This overlap ensures that the
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fragments will re-anneal to produce a full-length gene. The promoter for PSE-4 in the

PMON vector (Sanschagrin et al., 2000) is used for the 'A' fragments and the promoter

for TEM-1 in the PSTBlue-1 vector (Novagen) is used for the 'B' fragments. The PCR

protocol is to initially heat at 95 ºC, then perform 25 cycles of heating at 94 ºC for 45

seconds, cooling at 52 ºC for 45 seconds, and extending at 72 ºC for 1 minute. The

fragment is then gel purified and concentrated either through ethanol precipitation (for

fragments less than 100 bp) or using a Zymoclean-5 gel extraction kit (for fragments >

100 bp). Once the oligonucleotide fragments are isolated, they are re-annealed to create a

complete gene fragment through a second PCR amplification step. The forward and

reverse primers have the sequences for the restriction sites of EcoRI and HindIII,

respectively, so that the complete genes can be inserted into the PMON vector that has

been modified to contain these restriction sites. The times and temperatures are identical

to the previous amplification round. A pre-PCR step can be used to improve the purity of

the amplified genes. This PCR protocol is 25 iterations of 95 ºC for 30 seconds, 5 ºC for

30 seconds, and 72 ºC for 2 minutes. A final extension of 10 minutes at 72 ºC is done

after the cycles are complete. The fragments are purified using the Zymoclean-5 gel

extraction kit. Finally, the fragments are ligated into the PMON vector, which has

kanamycin resistance. The vectors containing the hybrid genes are transformed into XL1-

BLUE super competent (>109) cells and grown on plates that contain 10 µg/ml

kanamycin. Colonies are isolated and the vector is extracted and sequenced. Some of the

recombinant genes contained point mutations after the construction process

(approximately 0.06% nucleotide changes per gene). The PSE-4 gene and the PMON

vector were provided by Roger C. Levesque (Université Laval, Québec, Canada).



5-10

2.7. MIC Screening

Each hybrid β-lactamase is tested for its activity towards the degradation of the

antibiotic ampicillin. To rapidly screen for this property, agar plates are made with

following exponentially increasing concentrations of ampicillin: 10, 20, 40, 80, 160, 320,

640, and 1280 µg/ml. Aliquots of transformed cells are spread on the plates and allowed

to grow at 37 ºC for 24 hours. More active hybrids will grow on plates with greater

concentrations of ampicillin. The activity is measured as the minimum inhibitory

concentration (MIC), in other words, the lowest concentration of ampicillin that kills the

cells. The XL1-BLUE cells naturally have a MIC of 10, so β-lactamase activity cannot be

measured below this point. The wild-type TEM-1 and PSE-4 enzymes have MICs > 2560

µg/ml.

3. Results and Discussion

3.1. Correlation with In Vitro Recombination Experiments

The SCHEMA calculation was tested against five experiments in which the

genetic information from several parents was recombined to create random libraries of

hybrid proteins. In each experiment, a subset of the crossovers survives the screen or

selection by retaining (or improving) function. In Figure 5-3, we compare the locations of

the functional crossovers with the calculated schema profiles for functional hybrids of

cephalosporinases (Crameri et al., 1998; Sanschagrin, et al., 2000), subtilisins (Ness et

al., 1999), cytochrome P450s (Brock and Waterman, 2000), and glycinamide-

ribonucleotide transformylases (Ostermeier et al., 1999; Lutz et al., 2001). Nearly all of

the observed crossovers appear in regions corresponding to minima in the schema
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profiles. The recombination techniques used in these experiments vary significantly,

demonstrating the robustness of the predictions.

We find that the window size that best predicts the locations of crossovers in

selected libraries is fourteen, which results in domain sizes of approximately twenty to

thirty residues. Typically, three types of schema are observed: (i) bundles of alpha-

helixes, (ii) an alpha-helix combined with beta-strands, and (iii) beta-strands connected

by a hairpin turn. While the algorithm finds these schemas relatively often, there are

numerous interesting exceptions. For example, crossovers are frequently predicted to

occur in the center of alpha-helixes. In addition, there are schema that are composed of

complicated topologies with little discernable secondary structure.

The regions where crossovers are predicted to be deleterious are also noteworthy.

For example, crossovers in loops can be highly disruptive if they divide interacting units

of secondary structure. A common motif that demonstrates this effect is a single α-helix

that is connected by a loop to a β-strand. A single crossover in the loop will disrupt

interactions between these secondary structural elements. By the same reasoning,

recombining isolated units of secondary structure can be disruptive.

3.2 Single-crossover Recombination Experiments

Several experimental techniques have been proposed that can recombine two

parents to create a library where each hybrid is restricted to having a single crossover.

This strategy has been applied to recombine P450s (Sieber et al., 2001) and glycinamide-

ribonucleotide transformylases (Ostermeier et al., 1999; Lutz et al., 2001). The

transformylase experiment resulted in many hybrids that have crossovers in the center of
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the sequence, but the P450 experiment resulted in crossovers restricted to the N- and C-

termini. The disruption of all possible single crossovers can be easily calculated and

plotted (Figure 5-4). All of the single crossovers that led to functional hybrids in the

tranformylase experiment are found to occur at points that minimize the disruption. This

profile is unusual because the minima predicted by the single-crossover and schema

disruption profiles are nearly identical (Figure 5-3D). Usually, single crossovers are

highly disruptive in the middle of the primary amino acid sequence. Due to this effect, it

is likely that most functional crossovers discovered by these techniques will occur near

the termini of the sequence.

3.3 Designing ββββ-lactamase Hybrids

Although there is good agreement between the schema profile and the positions of

crossovers found during in vitro recombination experiments, this agreement does not tell

us the degree to which the total amount of schema disruption can be tolerated in a given

hybrid. To test this aspect, we recombined two β-lactamases (TEM-1 and PSE-4) that

share only 40% amino acid sequence identity, but have highly similar structures (Jelsch et

al., 1993; Sanschagrin et al., 2000; Lim et al., 2001). The calculated schema profile of β-

lactamase (Figure 5-5) was used to divide the structure into schemas (Figure 5-6) and

then the degree to which the schemas are interacting was calculated (Figure 5-7). We

then designed hybrids such that they have increasing disruption (Figure 5-8), but there is

no correlation with the size of the recombined fragment or with the number of effective

mutations corresponding with the recombination event (Table 5-1). This series of hybrid

β-lactamases was then experimentally constructed by piecing together DNA fragments of
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TEM-1 and PSE-4 by PCR (Horton, 1995; Sanschagrin et al., 2000) (see Section 2.6). In

addition, we constructed the sequence mirrors of several hybrids. For example, for a two-

crossover hybrid (three fragments), we constructed the hybrid in which the first fragment

is from PSE-4 (labeled ‘A’) as well as that having the first fragment from TEM-1

(labeled ‘B’).

We tested each hybrid protein for activity by measuring the minimum

concentration of ampicillin required to inhibit cell growth (MIC). Wild-type TEM-1 and

PSE-4 are highly active towards ampicillin (MIC > 2560 µg/ml) and have similar

activities towards various β-lactam substrates (Sanschagrin et al., 2000). The MIC value

is a complex combination of various parameters, including expression, stability and

activity (Palzkill and Botstein, 1992; Huang et al., 1996). Here, we are using the

observation of resistance merely as a measure that the hybrid β-lactamase is folded and

functional and not to precisely rank the individual activities of hybrid enzymes.

Measuring the MIC of each hybrid, we found a sharp transition in disruption, beyond

which hybrids are non-functional (Figure 5-9). This transition does not correlate with the

number of mutations that effectively occur when the hybrid is constructed (Table 5-1).

The transition divides the graph into two regions: tolerated (non-disruptive) and “dead”

(highly disruptive). The region just before the transition may be the optimal level of

disruption to target in creating libraries of hybrids. In this way, diversity is maximized

while the fraction of the library that is non-functional or unfolded is minimized.

The eight hybrids that show activity (1A to 5B) have interesting characteristics.

Many have at least one crossover at a buried position. Additionally, a crossover occurs in

the middle of a helix for two hybrids (2A, 2B) and at the end of a β-strand in hybrid 1A.
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Finally, four of the hybrids (2A, 2B, 3A, 3B) have crossovers near the active site.

Notably, several hybrids that were determined to be non-functional (7A, 8A) have

crossovers that occur in a loop on the surface with only a few residues being recombined

at the termini. Crossovers in loops are often considered to be non-disruptive, yet our

algorithm correctly identified them to be strongly disruptive in this context. Finally, we

constructed two hybrids (4A and 7A) that only differ only by twelve residues near the N-

terminus. Hybrid 4A was found to be functional, whereas hybrid 7A was found to be

non-functional. This distinction would be hard to predict based solely on visualizing the

differences mapped onto the three-dimensional structure (Figure 5-7).

3.3 Characteristics of the Schema Profile

3.3.1. Parameter Sensitivity

The form of the schema profile is robust with regard to the model parameters. In

the SCHEMA algorithm, the only model parameters are the size of the window w and the

distance used to determine if residues are interacting dc. For all of the data sets presented

in this chapter, we use the parameters w = 14 residues and dc = 4.5 Å. These parameters

can be varied without losing the general topology of the schema profile. In Figure 5-10,

the schema profile of the β-lactamase TEM-1/PSE-4 system is calculated using various

values of w (6 to 18) and dc (3.5 to 5.5). Within these parameter ranges, the topology of

the schema profile remains remarkably robust.
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3.3.2. The Probability Matrix

The parental sequences are required to calculate the schema disruption. The

probabilities used in Equation (5-1) and described in Section 2.3 are calculated based on

an alignment of these sequences. These probabilities are required to obtain the proper

trend in the schema disruption profile as the sequence identity of the parents goes to

100%. Even if two residues are interacting in the structure, if their amino acid identities

are the same in all of the parents, then it is impossible for recombination to cause a

disruption (Figure 5-2). Therefore, as the identity of the sequences increases, the number

of crossovers that are consistent with maintaining structural integrity will also increase.

As some point, the schema profile will no longer resemble the underlying structural

motifs, but rather will reflect the amino acid differences between the parental sequences.

To demonstrate the effect, the schema disruption profiles with and without the probability

matrix are shown in Figure 5-11. For these examples, there is sufficiently little sequence

identity that the minima of the profiles remain similar.

3.3.3. Correlation with other Domain Algorithms

Many algorithms have been proposed to divide protein structures into domains

(Rossman and Liljas, 1974; Crippen, 1978; Rose, 1979; Go, 1981; Zehfus and Rose,

1986; Holm and Sander, 1994; Panchenko et al., 1996; Tsai et al., 2000). Algorithms

have been developed to identify folding units, intron locations, and evolutionary motifs.

In general, there are several difficulties in using these algorithms to identify schema.

First, they cannot be used to quantitatively assess the ability for a given fragment to be

recombined, as is done in Figures 5-8 and 5-9. In addition, they are unable to scale the
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suitability of a fragment for recombination by the sequence identity shared between the

parents (Sections 2.3 and 3.3.2). In this section, we compare results obtained from two

two widely used domain-finding algorithms with the schema disruption profile.

Gō proposed a domain-finding algorithm based on the contact map for a protein

structure (Gō, 1981; Gō, 1983). Two residues are considered to be in contact if their Cα

atoms are within a cutoff distance. Gō found that plotting the contact map for a protein

structure and visually subdividing the map into regions that preserve the maximum

number of residue contacts could identify domains. This process can be automated by

counting the number of residues that are outside of the cutoff distance for residue i

ij

N

ijj
i cC ∑

≠=

=
,1

, (5-3)

where N is the number of residues and cij is equal to 1 if residues i and j are within a

cutoff distance and is equal to 0 if they are outside this distance. The cutoff distances are

typically large (15 to 30 Å). Residues for which Ci is at a minimum represent domain

boundaries. The profile of C for cephalosporinase is shown in Figure 5-12A and

compared with the schema profile. While the two domain definitions are consistent, the

schema profile fits the recombination data sets more accurately. In addition, Equation (5-

3) cannot be scaled by sequence identity nor be used to determine the disruption caused

by a specific fragment.

Other domain algorithms have been developed that split the protein structure into

small building blocks which are subsequently pieced back together to form domains. The

current state-of-the-art version of these methods was developed by Nussinov and co-

workers (Tsai et al., 2000). This algorithm looks for compact units of protein structure

based on a scoring function that includes terms that maximize the amount of buried



5-17

surface area and the degree of isolation for a domain. An advantage of the Nussinov

algorithm is that it can predict non-contiguous domains, created by multiple breaks in the

primary sequence. This algorithm is available for use on the Internet at

http://protein3d.ncicrf.gov/tsai/anatomy.html. The output for the cephalosporinase

structure is shown in Figure 5-12B. While the output is generally consistent with the

schema profile, there are several important differences. First, the Nussinov algorithm

requires that the domain be larger than a minimum size and that it be isolated from the

remainder of the structure. In contrast, we observe that as the fragment size decreases, it

is more likely to be accepted during shuffling. Second, the Nussinov algorithm’s scoring

system is inappropriate for determining regions of acceptable crossovers. These are

typically the areas between compact domains throughout which crossovers can occur.

Finally, the Nussinov algorithm cannot be scaled by the degree of sequence identity that

is shared between the parents.

3.4. The Natural Selection of Intron Locations

Gō discovered a correlation between the location of introns and isolated

geometrical domains, a correlation that has held for a wide range of proteins (Gō, 1981;

Gō, 1983). This correlation has been interpreted as evidence for the “introns-early”

theory of evolution, which states that the first large proteins were constructed from

smaller domains through recombination and gene duplication (De Souza et al., 1996;

Gilbert et al., 1997). The merging of genes resulted in the separation of the coding DNA

by regions of non-coding DNA (introns). Over evolutionary time, the introns disappeared

where they were no longer necessary or were disadvantageous, for example, in the
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restricted genome sizes of prokaryotes. Proponents of this theory have argued that if

introns appeared late in evolution, their locations would appear random with respect to

structural domains (De Souza et al., 1996; Gilbert et al., 1997). Our results indicate that

the correlation between introns and domains could occur as a result of natural selection,

even if the introns appeared late.

Of the many proposed functions of introns, one is that they facilitate the swapping

of exons (De Souza et al., 1996; Gilbert et al., 1997). If the probability of a crossover is

equal across the gene, then a long region of non-coding DNA will bias the crossovers

towards a specific region of the fully spliced gene. Cycles of recombination and selection

can bias the location of introns if the ability of an intron to promote shuffling contributes

to an organism’s fitness. If, in a population of these organisms, introns were randomly

distributed throughout the gene, then there would be a selective advantage to those

individuals whose introns appeared in regions that are the most likely to result in

successful shuffling events. We have observed this directly in in vitro recombination

experiments. When crossovers are randomly distributed throughout the gene, the subset

that preserve the schema is also the most likely to result in folded, functional hybrids.

Therefore, if introns promote recombination, they will most likely reside in low-

disruption regions after selection.

4. Conclusions

We have demonstrated that crossovers that lead to folded and functional hybrid

proteins occur at positions that minimize the number of disrupted interactions. It is

noteworthy that our very simple model of interacting residues can capture this effect. An
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important application of the results presented here will be to accelerate molecular

optimization by laboratory evolution methods through the use of computational tools

(Voigt et al., 2000; Voigt et al., 2001a; Voigt et al., 2001b; Bolon et al., 2002).

Combinatorial libraries with targeted crossovers can dramatically improve an

evolutionary search by significantly reducing the number of mutants that must be

screened to obtain specific functional changes. The elucidation and experimental

verification of evolutionary dynamics will allow the design of a new generation of

evolutionary methods that maximize our ability to discover novel biological molecules.
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Table 5-1. Designed TEM-1/PSE-4 Hybrid ββββ-lactamases

Crossover 1 Crossover 2a

Hybridb # Contextc # Contextc md Eab MIC
1Ae 163 loop, surface 179 strand, core 7 6 2560f

2A 189 helix, core 216 loop, surface, as 18 15 1280
2B 189 helix, core 216 loop, surface, as 18 15 40
3A 130 loop, core, as 163 loop, surface 13 21 20
3B 130 loop, core, as 163 loop, surface 13 21 320
4A 65 loop, surface 42 25 320
5A 70 loop, core, as 216 loop, surface, as 83 26 320
5B 70 loop, core, as 216 loop, surface, as 83 26 20
6A 70 loop, core, as 130 loop, core, as 41 27 10g

6B 70 loop, core, as 130 loop, core, as 41 27 10g

7A 53 loop, surface 42 33 10g

8A 254 loop, surface 23 37 10g

a. This portion is left blank if the hybrid protein only has a single crossover.
b. The letter in the name indicates the parent that composes the first portion of the gene,
where ‘A’ is PSE-4 and ‘B’ is TEM-1. For the double crossover mutants, an ‘A’ indicates a
gene structure of A-B-A and ‘B’ indicates B-A-B.
c. The context of the side chain of the residue where the cut occurs. The notation “as”
indicates that the crossover occurs near the active site.
d. The number of mutations that occur when the smaller fragment of one parent is inserted
into the larger context of the remaining parent.
e. This hybrid has been previously constructed by Levesque and co-workers (Sanshagrin et
al., 2000)
f. Wild-type activity of both PSE-4 and TEM-1
g. The MIC of XL1-BLUE cells. No β-lactamase activity is observed.
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Figure 5-1:

(A) An illustration of schema disruption. Black lines in the structure represent peptide

bonds and the red dots are interactions between amino acid side chains. Two hybrid

proteins are shown. When the last four residues come from one parent and the remaining

residues come from the other parent, three interactions are disrupted. When the last eight

residues come from the same parent, then there is no disruption. According to our schema

theory, achieving folded hybrid proteins is more likely when the fewest interactions are

disrupted. (B) The schema profile of the structure in (A) calculated with a window size w

= 6.
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Figure 5-2:

An example of the calculation of the probabilitities Pij required by Equations (5-1) and

(5-2). In this example, there are three parents with different amino acid combinations at

residues i and j. Pij is the probability that the hybrid proteins will have a combination of

amino acids that is not present in any of the parents. Considering a crossover that divides

these residues (dashed line), there are six possible hybrid proteins. Of this set, two

hybrids have the same pair of amino acids present in the parental set (boxed). The

probability that this crossover will result in a disrupted interaction is then Pij = 4/6.
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Figure 5-3:

The schema disruption profile is compared with various in vitro recombination data sets.

Each hatched line indicates where a recombination event resulted in a functional hybrid

protein. All of the calculations were run using Equation (5-2) with a window size of 14

residues and dc = 4.5 angstroms. (A) The schema profile as determined from the

cephalosporinase structure compared with the experimentally observed crossover points

by DNA shuffling (Crameri et al., 1998) and rational design (Sanschagrin et al., 2000).

(B) A comparison of the schema profile of Savinase with the crossovers that led to the

improvement of the properties of subtilisin (Ness et al., 1999). The crossovers between

subtilisin families that led to improvements in thermostability, activity at high or low pH,

or stability in organic solvent, are indicated. (C) A schema disruption calculation of the

P450 2C5 structure, based on the sequences of rat and bacterial c17 (Brock and

Waterman, 2000). The dashed lines indicate where single crossover recombination events

led to folded hybrids. Note that residues 212-222 are missing from the structure,

represented by a break in the schema profile. (D) The schema profile for the sequence

independent recombination of PurN and GART glycinamide ribonucleotide

transformylase (Ostermeier et al., 1999; Lutz et al., 2000). Recombination was only

allowed to occur between residues 50 and 150. The single crossovers that led to

functional hybrid proteins are indicated.
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Figure 5-4:

The single-crossover schema disruption profile is shown for glycinamide ribonucleotide

transformylase. The stars indicate where single crossovers led to functional hybrid

proteins (Ostermeier et al., 1999; Lutz et al., 2000). Note that the minima correlate with

the schema calculation for this example (Figure 5-3D).
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Figure 5-5:

Schema disruption profile for recombination of β-lactamase TEM-1 and PSE-4. Nearly

identical results are obtained when the calculation is run on the TEM-1 (gray line) and

PSE-4 (black line) structures. The orange and purple regions mark the basins of large

minima. Crossovers are predicted to acceptable throughout these basins.
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Figure 5-6:

The predicted schema mapped onto the three dimensional structure of TEM-1 β-

lactamase. This figure was generated using MolMol (Koradi et al., 1996).



5-32



5-33

Figure 5-7:

The number of interactions between schemas averaged between the PSE-4 and TEM-1

structures. The thickness of each line is proportional to the number of interactions

between two schemas, as calculated using Equation 5-1. The thickest lines represent

highly interacting schemas for which there are greater than eight interactions, the medium

line for between five and eight interactions, and the thin line for between two and four

interactions. Note that the magenta and orange fragments are not true schemas; rather,

they represent extended minima in the schema profile (Figure 5-5). This figure was

generated using MolMol (Koradi et al., 1996).
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Figure 5-8:

The designed hybrids of β-lactamase TEM-1 (red) and PSE-4 (blue) mapped onto the

TEM-1 structure, shown in order of increasing disruption (see Table 5-1).
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Figure 5-9:

The activities of hybrid β-lactamases are shown as a function of their disruption

(Equation 5-1). The lower line marks the point at which the MIC represents the

background antibiotic resistance of the cells. Activity is lost at Eαβ ≈ 27. Below the

transition, the recombination events are non-disruptive. Above the transition, the hybrids

are non-functional. The region just before the transition may be the optimal target for

library creation, where diversity is maximized without disturbing the stability or

enzymatic activity. The color of the points indicates the parent of the first fragment: red is

PSE-4 (‘A’), blue is TEM-1 (‘B’), and purple indicates that the points overlap.
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Figure 5-10:

(A) The sensitivity of the schema profile to variation in dc. The profile for the β-

lactamase TEM-1/PSE-4 system was generated for different values of these parameters.

The curves (from bottom to top) for w = 14 and dc = 3.5, 4.0, 4.5, 5.0, 5.5 angstroms.

The sensitivity of the schema profile to variation in w. (B) The profile for the β-lactamase

TEM-1/PSE-4 system was generated for different values of these parameters. The curves

(from bottom to top) for dc = 4.5 and w = 6, 10, 14, 18 residues.
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Figure 5-11:

The effect of the probability matrix on the schema disruption profile is demonstrated for

(A) cephalosporinase, (B) subtilisin, (C) transformylase, and (D) β-lactamase. Each

profile is shown both with (black line) and without (red line) the identity matrix.

Notably, the minima are similar in the two profiles. As the sequence identity shared

between the parents increases, the similarity between the two curves will diminish.
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Figure 5-12:

Two domain-finding algorithms are compared with the schema disruption profile for the

cephalosporinase structure. (A) The schema profile (black) is compared to a Gō-like

algorithm (red) for discovering domain boundaries. The Gō algorithm tracks the number

of Cα’s that are within a cutoff radius of each residue. Here, the radius is set to be 20 Å.

(B) The schema profile (black) is compared to the Nussinov algorithm (Tsai et al., 2000).

The output of the Nussinov algorithm is a list of optimal protein subunits. To visualize

this, we have incremented the end points of each subunit by one (red spikes). Larger

spikes indicate that that residue is the end point for more than one subunit.
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Chapter 6

Comparing Search Algorithms in Protein Sequence Design

Portions of this chapter are reproduced from:
Voigt, C. A., Gordon, D. B., and Mayo, S. L. (2000). Trading accuracy for speed: A
quantitative comparison of search algorithms in protein sequence design. J. Mol. Biol.
299, 789-803.

Abstract

Finding the minimum energy amino acid side chain conformation is a fundamental

problem in both homology modeling and protein design. To address this issue, numerous

computational algorithms have been proposed. However, there have been few

quantitative comparisons between methods and there is very little general understanding

of the types of problems that are appropriate for each algorithm. Here, we study four

common search techniques - Monte Carlo (MC) and Monte Carlo plus quench (MCQ),

genetic algorithms (GA), self-consistent mean field (SCMF), and dead-end elimination

(DEE). Both SCMF and DEE are deterministic, and if DEE converges, it is guaranteed

that its solution is the global minimum energy conformation (GMEC). This provides a

means to compare the accuracy of SCMF and the stochastic methods. For the side chain

placement calculations, we find that DEE rapidly converges to the GMEC in all the test

cases. The other algorithms converge on significantly incorrect solutions; the average

fraction of incorrect rotamers for SCMF is 0.12, GA 0.09, and MCQ 0.05. For the protein

design calculations, design positions are progressively added to the side chain placement

calculation until the time required for DEE diverges sharply. As the complexity of the

problem increases, the accuracy of each method is determined so that the results can be

extrapolated into the region where DEE is no longer tractable. We find that both SCMF

and MCQ perform reasonably well on core calculations (fraction amino acids incorrect:
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SCMF 0.07, MCQ 0.04), but fail considerably on the boundary (SCMF 0.28, MCQ 0.32)

and surface calculations (SCMF 0.37, MCQ 0.44).

1. Introduction

A goal of computational protein design is to compute an amino acid sequence de

novo that will fold into a defined backbone structure (Street and Mayo, 1999). This is a

difficult task as protein stability results from the sum of many subtle and highly coupled

interactions. By applying a quantitative, generalized approach, computational protein

design has proven successful for cro protein (Desjarlais and Handel, 1995), gcn4

(Dahiyat and Mayo, 1996; Dahiyat et al., 1997a), protein G (Dahiyat and Mayo, 1997b;

Su and Mayo, 1997; Malakaukas and Mayo, 1998), ubiquitin (Lazar et al., 1997), zinc

finger domain (Dahiyat and Mayo, 1997a), and engrailed homeodomain (Marshall et al.,

1999). Protein design has also been successful in designing alpha-helical peptides that

form right-handed supercoils (Harbury et al., 1998). The trend towards designing

sequences for larger and flexible backbones has been facilitated by a greater

understanding of the forces responsible for protein stability as well as improvements in

methods to search for the minimum energy conformation.

A combination of important techniques constitutes the protein design algorithm.

First, the flexibility of each amino acid is course-grained into a discrete set of statistically

significant conformations called rotamers (Ponder and Richards, 1987; Dunbrack and

Karplus, 1993; Dunbrack and Karplus, 1994). While this drastically reduces the search

space and makes the problem computationally tractable, the combinatorial complexity

remains enormous. As an illustration, the number of side chain conformations for a
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protein of n residues, a = 20 amino acids, and r rotamers per amino acid, is (r × a)n. For

even a moderately sized enzyme, n is approximately 200−400, creating an immense set of

possible solutions.

Second, the interactions between amino acids pertinent to stability have to be

identified and their essence captured by a series of equations that together constitute the

force field. This description represents the balance of forces responsible for protein

stability including van der Waals interactions, hydrogen bonds, salt bridges, and

hydrophobic-polar interactions (Gordon et al., 1999). The energy term consists of three

contributions: backbone/backbone, rotamer/backbone, and rotamer/rotamer. Because the

backbone remains fixed in most protein design algorithms, it is not relevant to the

optimization procedure. Therefore, the energy of a sequence folded into a defined

structure can be expressed as

( ) ( )∑∑∑
−

= >=

+=
1

11

,
N

i

N

ij
sr

N

i
r jiEiEE , (6-1)

where E(ir) is the rotamer/backbone energy for rotamer ir of residue i, E(ir, js) is the

rotamer/rotamer energy of rotamers ir and js of residues i and j, respectively, and N is the

total number of residues. By assuming that the energy between rotamers is pairwise as in

Equation (6-1), certain non-additive energy contributions cannot be treated exactly, such

as a surface area based solvation potential (Street and Mayo, 1998).

When the rotamer description is combined with the force field, a discrete

sequence-rotamer energy landscape is created in which each point represents a rotamer

combination and an assigned energy. The final computational task in the protein design

algorithm is to search this space for the global minimum energy conformation (GMEC)

(Desjarlais and Clarke, 1998). Because the number of points in the landscape increases
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exponentially with protein size, the time to find the minimum scales unfavorably. In

addition, the landscape contains a large number of local minima created by the high

degree of side chain coupling in the system. These effects compound, producing a hard

search problem.

As a problem related to protein sequence design, homology modeling aims to

align the sequence of an unknown structure with a sequence where the structure is known

(Schiffer et al., 1990; Lee and Subbiah, 1991; Tuffery et al., 1991; Laughton, 1994; Lee,

1996; Sánchez and Šali, 1997). As the information in the sequence-structure database

grows, it is increasingly observed that newly solved structures share structural motifs

with proteins already in the database. Homology modeling consists of three central steps.

First, a match is found between the sequence of the unknown structure and a sequence in

the database of known structures. Then, the sequence is threaded onto the known

backbone. Finally, the side chains are arranged onto the backbone based on an energy

expression (Lee and Subbiah, 1991; Laughton, 1994). There are two issues in positioning

the side chains correctly: the accuracy of the force field and rotamer descriptions, and the

ability to find the minimum energy arrangement. Finding the GMEC of side-chain

descriptions has led to the proposal of many search algorithms (Desjarlais and Clarke,

1998). Here, we are interested in comparing the different proposed techniques for energy

minimization and are not concerned whether the GMEC of the energy landscape actually

coincides with the proper (experimentally determined) side-chain conformation.

There are two general classes of search algorithms: stochastic and deterministic.

Stochastic algorithms, such as Monte Carlo (MC) (Metropolis et al., 1953) and Genetic

Algorithms (GA) (Holland, 1993), rely on probabilistic trajectories where the outcome is
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determined by the initial conditions as well as the random number generator seed.

Confirming that a solution is the GMEC is impossible, as there is always a degree of

uncertainty. In contrast, deterministic methods will repeat the same solutions given the

set of parameters used. Both dead-end elimination (DEE) (Desmet et al., 1992) and self-

consistent mean-field (SCMF) (Koehl and Delarue, 1994; Lee, 1994) are deterministic;

however, they often do not converge to the same solution. If DEE converges, it is the

GMEC, whereas this is not necessarily true for SCMF. The issues in comparing search

algorithms include weighing the accuracy of the solution with the computational time

required. Recently, the common algorithms used in protein sequence design have been

reviewed (Desjarlais and Clarke, 1998). However, the tradeoffs of choosing one method

over another are not well understood and there have been no comprehensive comparisons

of methodologies. An understanding of the strengths and weaknesses of each algorithm is

required so: (1) the algorithm best suited to the design problem can be utilized and (2) if

an algorithm is chosen that does not give the GMEC, the expected accuracy of the

solution can be estimated. In this paper, we compare four common approaches; MC, GA,

SCMF, and DEE, for both side chain placement and protein design calculations.

2. Description of Search Algorithms

2.1. Monte Carlo

As one of the simplest stochastic search techniques, Monte Carlo (Metropolis et

al., 1953) often performs well on difficult energy landscapes. MC has been previously

applied to problems relating to protein sequence design (Holm and Sander, 1992;

Hellinga and Richards, 1994; Godzik, 1995; Sasai, 1995; Dahiyat and Mayo, 1996).
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Initially, the rotamers for a sequence are picked at random. Then, a rotamer substitution

is made at a randomly picked residue in the sequence. Rotamers of different amino acids

are treated equally so a rotamer substitution can be either the same amino acid or a new

one. A new energy Enew is calculated and if this energy is lower than the previous energy

Eold, the move is accepted. If the energy is higher, the move is accepted with the

Boltzman probability p = exp(−β(Enew − Eold)), β=1/kT, where k is Boltzman's constant.

The role of the temperature T is to overcome the multiple local minima in the energy

landscape by allowing the trajectory to surmount energy barriers. To strengthen this

effect, an initial temperature is selected and annealed. The temperature is then cyclically

raised and lowered over the course of a single run between a designated high and low

temperature (for the calculations performed here, the high and low temperatures were set

to 4000 and 150 K, respectively). The optimization can be run for any number of cycles

with each cycle containing a number of substitution attempts. Here, the optimization is

run for 20 cycles of 106 substitution attempts for each test case. The number of cycles is

arbitrarily set at 20 to generate computational times comparable to SCMF and DEE. MC

can be run for longer periods to theoretically produce better solutions. In our hands, the

number of cycles has been typically set at 1000.

At the end of the run, the energy of the stored solutions may be quenched. For

each residue, in random order, all possible rotamers of the amino acid in the solution are

attempted. If a new rotamer is lower in energy, it is kept; if not, it is rejected. The quench

step produces a large improvement in the solution while adding trivially to the time of the

run. This step assures that there are no single-rotamer changes that will improve the
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energy. For the side chain placement calculations, results are presented for both the MC

procedure alone as well as the MC with the quenching step (MCQ).

2.2. Genetic Algorithm

Genetic algorithms seek to optimize a population of solutions using biologically

inspired operators (Holland, 1993). GA’s have been applied to a wide range of problems

including protein structure prediction (Pedersen and Moult, 1996) and design (Jones,

1994; Desjarlais and Handel, 1995; Lazar et al., 1997). The advantages of a GA are that

the population dynamics can overcome energy barriers by making moves in sequence

space that are larger than the moves typically used in MC. In addition, beneficial

mutations can be combined onto a single sequence, increasing the number of paths that

circumvent local minima. As a disadvantage, GA’s tend not to work well on highly

coupled systems where crossover disruption is problematic as is expected for side chain

systems. Further, residues that are close in sequence are not necessarily close structurally

making it difficult for the algorithm to find clean crossover points.

While the specific implementation of GA’s varies tremendously in literature,

there are several common characteristics. In order to study the effectiveness of this

approach on the protein design problem, we tried several different algorithms and chose a

relatively universal description of a GA that produced the best results. The

implementation of our algorithm is slightly different from that described by Desjarlais

and Handel (Desjarlais and Handel, 1995). They include an inversion operator and utilize

a different selection scheme. It is not expected that these differences would significantly

change our results.
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First, a population of M = 50 random sequences is initialized. Then, mutations are

applied at rate pM = 0.016, producing a Poisson distribution of mutations with an average

of one per sequence. The new energies of the mutants are determined and ranked. The top

C of these mutants are chosen for recombination where C represents the recombination

rate. Here, the optimal value is found to be C = 10. For each pair, the strings are

recombined by comparing each residue and if the rotamers differ among the parents, the

offspring will inherit either parent’s rotamer with equal probability. The new population

is generated using the tournament selection technique where S sequences are picked

randomly from the mutant library and their energies compared. The sequence with the

lowest energy is allowed to continue to the next generation. The selection process is

repeated M times to produce the pool of sequences that will continue to the next round of

mutation, recombination, and selection. This algorithm is repeated so the average fitness

of the population improves after each cycle until equilibrium is reached.

The selection strength, represented by the number of sequences S that undergo

competition, is analogous to the temperature in the MC algorithm. By starting at low S

and annealing to a high S, the population distribution in sequence space is first very broad

and then narrows after each generation until the population consists of a single sequence.

This “heating and cooling” process is repeated to improve the probability that the

population will find lower minima. At the beginning of each cycle, S is initialized at 2

and is incrementally increased to 5. The full optimization procedure consists of 10 cycles

of 104 mutation-recombination-selection steps. Due to its size, the number of cycles was

increased to 15 for the 1arb test case. Similar to the Monte Carlo algorithms, the number
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of cycles was arbitrarily set to produce competitive times against the deterministic

algorithms.

2.3. Self-Consistent Mean Field

Unlike the MC or GA algorithms that focus on clever search methods to evade

local minima, SCMF uses a mean-field description of the rotamer interactions to alter the

energy landscape (Lee, 1994; Koehl and Delarue, 1994; Koehl and Delarue, 1995;

Vásquez, 1995; Koehl and Delarue, 1996). SCMF is deterministic in that given a set of

run parameters, the algorithm will always converge to the same solution. Unfortunately,

there is no guarantee that the minimum of the mean-field landscape corresponds with the

true GMEC. The advantage of SCMF is that the computational time scales linearly with

the number of residues making it possible to obtain solutions for proteins currently

unattainable by other methods (Koehl and Delarue, 1996).

As derrived by Koehl and Delarue (Koehl and Delarue, 1994), the mean-field

energy for rotamer ir at residue i is

( ) ( ) ( ) ( )∑∑
= =

+=
N

j

K

s
ssrrrmf

j

jVjiEiEiE
1 1

, , (6-2)

where Kj is the total number of rotamers at residue j. The weight of each rotamer V(js)

(the conformational probability vector) is normalized to unity. The first term in (6-2) is

the contribution due to the interaction between the rotamer and the backbone and the

second term describes all the inter-rotamer pairwise interactions weighted by the

probability of that rotamer existing in the GMEC. The conformational probability vector

can be independently calculated by Gibb’s ensemble
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where qj is the partition function
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The effect of this procedure is to smoothen the landscape and avoid the problem of

multiple local minima making it relatively simple to locate the minimum of the mean-

field energy landscape.

The mean-field energy is minimized using an annealing method as described by

Lee (Lee, 1994). A high initial temperature (often > 20,000 degrees K) is chosen and the

probability vector V(js) is initialized at 1/Kj thereby assigning equal probability to each

rotamer. The purpose of annealing the temperature is to assist the convergence, reducing

the total run time. The solution found by SCMF is not dependent on the specific initial

temperature used.

A pair-energy threshold is applied that implements a ceiling to which higher

energies are set. The success of SCMF is highly dependent on the optimization of this

parameter. The optimal threshold is determined individually for each side chain

placement test case and is found to vary widely between 5 and 500 kcal/mol.

Qualitatively, smaller backbones tended to correspond with a smaller threshold. The time

required for SCMF to converge did not differ significantly with the threshold chosen. For

the sequence design calculations, this parameter was set at 500 kcal/mol due to the

increase in the problem difficulty.

After initialization, the mean-field potential Emf (ir) is calculated from Equation

(6-2) for each residue and rotamer. The energies are converted into probabilities using
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Gibb’s equations. The algorithm iterates between Equations (6-2) and (6-3) until the

energy converges and self-consistency is achieved (Koehl and Delarue, 1994). A

convergence criterion of 0.0001 for V(js) was used to define self-consistency.

Convergence is significantly improved if the probability vector V is updated with a

“memory” of the previous step as expressed by the following

( ) ( ) ( ) ( )soldsnewsnew jVjVjV λλ −+= 1 , (6-5)

where the optimum step size was found to be λ = 0.9 (Koehl and Delarue, 1994). The

temperature is then lowered in linear increments of 100 K and the routine repeated. When

the final temperature is reached (100 K), the conformational vector represents the

probability of finding each rotamer at a given residue position. The best solution is

determined as the collection of rotamers that have the highest probability at each position.

2.4. Dead-End Elimination

As opposed to optimizing a single solution or set of solutions by iterative

improvement as done by the MC procedure or GA, dead-end elimination seeks to

systematically eliminate bad rotamers and combinations of rotamers until a single

solution remains. Unlike SCMF, the theoretical basis for DEE proves that, if DEE

converges, the solution is the GMEC with no uncertainty (Desmet et al., 1992). It is a

necessary criterion for DEE that the energy description is pairwise as described in

equation (6-1) and the effectiveness of the search is, in part, due to the distribution of

interactions that arise in a protein side-chain system (Goldstein, 1994).

DEE is fundamentally based on the following physical concept. Consider two

rotamers, ir and it, at residue i and the set of all other rotamer configurations {S} at all
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residues excluding i of which rotamer js is a member. If the pairwise energy contributed

between ir and js is higher than the pairwise energy between it and js for all {S}, then ir

cannot exist in the GMEC and can be eliminated. This notion is expressed

mathematically by the inequality

( ) ( ) ( ) ( ) }{,, SjiEiEjiEiE
N

ij
stt

N

ij
srr ∑∑

≠≠

∀+>+ . (6-6)

If the above is true, the single rotamer ir can be eliminated (Desmet et al., 1992). In this

form, (6-6) is not computationally tractable because, to make an elimination, it is required

that the entire sequence/rotamer space be enumerated. To simplify the problem, the

bounds implied by (6-6) can be utilized:
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Using an analogous argument, Equation (6-7) can be extended to the elimination of pairs

of rotamers inconsistent with the GMEC. This is done by determining that a pair of

rotamers ir at residue i and js at residue j, always contribute higher energies than rotamers

iu and jv with all possible rotamer combinations {L}. Similar to (6-7), the strict bound of

this statement is given by

( ) ( ) ( ) ( )∑∑
≠≠

+>+
N

jik
tvu

t
vu

N

jik
tsr

t
sr kjijikjiji

,,

,,max,,,min, εεεε , (6-8)

where ε is the combined energies for rotamer pairs

( ) ( ) ( ) ( )srsrsr jiEjEiEji ,, ++=ε (6-9)

and

( ) ( ) ( )tstrtsr kjEkiEkji ,,,, +=ε . (6-10)
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This leads to the doubles elimination of the pair of rotamers ir and js, but does not

eliminate the individual rotamers completely as either could exist independently in the

GMEC. The doubles elimination step reduces the number of possible pairs (reduces S)

that need to be evaluated in the right-hand side of Equation (6-7) henceforth allowing

more rotamers to be individually eliminated.

The singles and doubles criteria presented by Desmet et al. fail to discover special

conditions that lead to the determination of more dead-ending rotamers. For instance, it is

possible that the energy contribution of rotamer it is always lower than ir without the

maximum of it being below the minimum of ir. To address this problem, Goldstein

presented a modification of the criteria that determines if the energy profiles of two

rotamers cross (Goldstein, 1994). If they do not, the higher energy rotamer can be

determined to be dead-ending. The improved criterion for singles is

( ) ( ) ( ) ( )[ ] 0,,min >−+− ∑
≠

stsr

N

ij
s

tr jiEjiEiEiE (6-11)

and likewise for doubles,

( ) ( ) ( ) ( )[ ] 0,,,,min,,
,

>−+− ∑
≠

tvutsr

N

jik
t

vusr kjikjijiji εεεε . (6-12)

In computational time, the doubles calculation is significantly more expensive than the

singles calculation. To accelerate the process, computationally inexpensive methods have

been developed to predict the doubles calculations that will be the most productive

(Gordon and Mayo, 1998). These modifications, collectively referred to as fast doubles,

significantly improved the speed and effectiveness of DEE.

The probability of successfully finding the GMEC has been shown to improve by

utilizing an expanded rotamer library and including an initial energy threshold (De
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Maeyer et al., 1997). For these calculations, we use an energy cutoff of 1000 kcal/mol.

Single or double rotamers that produce energies above this threshold are automatically

flagged as dead-ending. These values are considered conservative and ensure that the

minimum energy found is the GMEC. Parameters that are more aggressive can be used to

improve the speed of DEE, but accuracy is sometimes lost.

Several additional modifications collectively enhance DEE further. Rotamers

from multiple residues can be combined into so-called super-rotamers to prompt further

eliminations (Desmet et al., 1994; Goldstein, 1994). This has the advantage of

eliminating multiple rotamers in a single step. In addition, it was shown that “splitting”

the conformational space between rotamers improves the efficiency of DEE (Pierce et al.,

2000). Splitting handles the following special case. Consider rotamer ir. If a rotamer it1

contributes a lower energy than ir for a portion of the conformational space, and a

rotamer it2 has a lower energy than ir for the remaining fraction, then ir can be eliminated.

This case would not be detected by the less sensitive Desmet or Goldstein criteria. In the

implementation used in this study, all of the enhancements described above were

combined into a single computational approach. Because of these improvements,

convergence to the GMEC in less than 1/2 hour on a single processor can now be

expected for side chain placement calculations on proteins in excess of 300 residues.

3. Materials and Methods

We use a test set of 20 protein structures (Table 6-1) from the Brookhaven Protein

Databank (Bernstein et al., 1977) that was compiled previously by Carrando and co-

workers (Mendes et al., 1999). This set was chosen due to the high resolution of the



6-15

structures and the inclusion of a wide distribution of sizes and structure types (Table 6-1).

For the side chain placement calculations, there are positions in the fixed backbone where

all allowed rotamers cause steric clashes that lead to unrealistically high energies. These

positions were not considered in these calculations. The effective number of residues

shown in Table 6-1 is the total number of residues minus cysteines involved in disulfide

bonds and residues that clash with the backbone. Both alanine and glycine are described

by a single rotamer and are therefore not taken into account when comparing the

accuracy of the search algorithms for the side chain placement calculations. The modeled

number of residues is determined by the effective number of residues minus wild-type

alanine and glycine positions.

We use the DREIDING force field parameters for the atomic radii and internal

coordinate parameters (Mayo et al., 1990). The van der Waals energies are modeled

using a 6-12 Leonard-Jones potential with an additional 0.9 scale factor applied to the

atomic radii to soften the lack of flexibility implied by the fixed backbone and the

rotamer descriptions (Dahiyat and Mayo, 1997b). Solvation terms were not included in

order to accelerate energy matrix calculations. The rotamer library is backbone-

dependent as described by Dunbrack and Karplus (Dunbrack and Karplus, 1993). The

following modifications were included as previously described (Dahiyat et al., 1997a). χ1

and χ2 angle values of rotamers for all aromatic amino acids, and χ1 angle values for all

other hydrophobic amino acids were expanded ±1 standard deviation about the mean

value reported in the Dunbrack and Karplus library. The χ3 angles that were

undetermined from the database statistics were assigned the following values: Arg, −60°,

60°, and 180°; Gln, −120°, −60°, 0°, 60°, 120°, and 180°; Glu, 0°, 60°, and 120°; Lys,
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−60°, 60°, and 180°. The χ4 angles that were undetermined from the database statistics

were assigned the following values: Arg, −120°, −60°, 60°, 120°, and 180°; Lys, −60°,

60°, and 180°. Rotamers with combinations of χ3 and χ4 angles resulting in sequential

g+/g− or g−/g+ angles were eliminated. Uncharged His rotamers were used.

The calculations were performed on a SGI Origin 2000 supercomputer with 32

R10000 processors running at 195 MHz. While the codes for both DEE and SCMF are

written to utilize parallel capabilities, the times presented for all algorithms are based on

a single processor. The complete energy matrices (all pairwise interactions, E(ir,js) in

Equation 6-1) were computed prior to the optimization procedure. The time required for

this step is independent of the search algorithm and was approximately 60 minutes on a

single processor for each test case.

4. Results and Discussion

4.1. Side-Chain Placement

DEE converges to the GMEC rapidly for the entire side chain placement test set

thereby providing the standard to which the solutions found by other methods can be

compared. The results are shown in Table 6-2 and Figures 6-1 and 6-2. We found that

MC and SCMF consistently perform the worst with the average fraction of incorrect

rotamers <f> = 0.23 and 0.12 and the average difference in energy from the GMEC <∆E>

= 5.6 and 5.9 kcal/mol, respectively. It is interesting that SCMF consistently gave

solutions that have fewer incorrect rotamers, but worse energies than MC indicating that

the methods are failing by different mechanisms. We believe MC does poorly because it

becomes easily trapped by rotamer combinations that are relatively low in energy
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whereas SCMF has difficulty converging the probability of a single rotamer to unity at

certain sequence positions. The GA performed better: <f> = 0.09 and <∆E> = 4.3

kcal/mol. The MCQ outperformed the other methods with <f> = 0.05 and <∆E> = 1.3

kcal/mol. The ability for MCQ to give reasonable solutions indicates that there is no

benefit to the more complex GA or SCMF methods. The 2hbg structure was the only case

out of twenty where SCMF outperformed MCQ in both f and ∆E.

The relationship between the size of sequence/rotamer space and the number of

incorrect rotamers predicted by the algorithms was determined (data not shown). As

expected, MC showed the greatest correlation (R2 = 0.81) because it is a sampling

algorithm and as the size of the search space increases and the number of cycles remains

fixed, the fraction of the space searched decreases. Both SCMF and GA do not fit as well

(R2 = 0.27 and 0.20) indicating that there are other aspects of the energy landscape that

impede their search, such as the strength and distribution of coupling interactions. It has

been suggested that the advantage of SCMF is that it provides solutions for problems for

which DEE does not converge (Koehl and Delarue, 1996). As shown in Table 6-3, this is

not necessary for side chain placement calculations as the recent improvements in DEE

have allowed it to converge on solutions in times comparable to SCMF. The times for

both the MC/MCQ and GA runs presented here are arbitrary because the algorithms

could be run indefinitely and better solutions might be obtained. Here, we ran a fixed

number of cycles, making the larger proteins appear to take longer.

The results of the side chain placement calculations strongly suggest that there is

no compelling reason to use an algorithm other than DEE for side chain placement as it

consistently and quickly converges to the GMEC. However, as design calculations
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become more complex, there is a point beyond which DEE will not converge in a

reasonable amount of time. To solve these problems, it is necessary to trade the accuracy

of DEE for the speed of SCMF or MCQ.

4.2. Sequence Design

For the protein sequence design comparisons, amino acid substitutions are

allowed at the designed positions while the side chains for the remaining residues are

floated as in the side chain placement calculations. By specifying more positions to be

designed, the difficulty of the problem can be tuned from the easier side chain placement

calculation to an intractable full sequence design. Because the GA and MC methods

rarely outperformed MCQ, they are not run on the more difficult design problems. While

DEE performed extraordinarily well on the side chain placement calculations, the time to

convergence explodes as the number of designed residues reached some threshold (Table

6-4 and Figure 6-3). In contrast, the times required by the other algorithms scale linearly

with increasing problem size. This is notably true for SCMF as the time to solve even

large design problems is often less than thirty minutes on a single processor. MCQ is

allowed to run for the same number of cycles as the side chain placement calculations

and requires between 60–120 minutes to complete. However, we observe that it is highly

unlikely that either SCMF or MCQ provides a solution that is the GMEC.

Two important questions arise from this conflict. First, if DEE does not converge,

which alternate method will produce the best results? Second, at the point which DEE

explodes, how incorrect are the solutions given by the less accurate algorithms? Because

DEE gives the GMEC, the accuracy of SCMF and MCQ can be compared as the design
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problem increases in complexity. By extrapolating this result into the region where DEE

explodes, the accuracy of the other algorithms can be reasonably approximated.

To determine the relationship between these questions and the specifics of the

design problem, we ran tests on five structurally different proteins. Cytochrome b562

(256b) and hemoglobin (2hbg) are primarily α-helical proteins, amicyanin (1aac) and

plastocyanin (1plc) are primarily β-sheet proteins, and ribonuclease (9rnt) is a protein

that contains both α-helical and β-sheet structures. To ensure that we studied proteins

where the success of the algorithms varied for the side chain placement calculations, we

included 2hbg in the design test set. This represents one of the few proteins where SCMF

performed better than MCQ for the side chain placement calculations.

The residues of each protein are labeled core, boundary, or surface based on

solvent accessibility (Dahiyat and Mayo, 1997a). From the perspective of protein design,

this partition is motivated by the need for a hydrophobic core and hydrophilic surface for

stable folding. For the design calculations, the hydrophobic amino acids (A, V, L, I, F, Y,

W) are considered in the core, the hydrophilic amino acids (A, S, T, D, N, E, Q, H, K, R)

at the surface and the combination of both sets in the boundary. The remaining four

amino acids (G, C, P, M) are omitted from these calculations. The protein core has been

the target of most design efforts as this region tends to be an easier calculation due the

primary dependence on the sterics of side chain packing (Lee and Levitt, 1991; Desjarlais

and Handel, 1995; Dahiyat and Mayo, 1996; Dahiyat and Mayo, 1997b; Lazar et al.,

1997; Su and Mayo, 1997). More recently, computational protein design has expanded

successfully into the boundary and surface regions (Malakaukas and Mayo, 1998;
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Dahiyat et al., 1997) and to complete sequence design (Dahiyat et al., 1997a; Morgan and

Mayo, unpublished results).

Protein length is not a good indicator of problem difficulty as the number of

rotamers allowed at each residue, the specific conformation of the backbone, and the

particular choice of the force field can make a problem difficult. We have found that

increasing the number of design positions qualitatively makes the search problem more

difficult. For each test protein, we complete three series of runs where design positions

are added in sequence order from the core, boundary, or surface. To address the concern

that the results are dependent on the order in which the design residues are added, we ran

a separate series of runs for the core of 1aac. In these runs, we added design residues in

structural clusters rather than sequence order. We find that the accuracy of SCMF and

MCQ as a function of the number of design positions does not change qualitatively with

the order of addition. This result can be generalized to the boundary and surface as, in

these regions, residues are separated by greater distances and coupling is less likely to

affect the results.

DEE tends to converge on problems containing more design residues for the

surface and boundary than the core with the exception of the surface of 256b, which

diverges after 8 residues are added (Table 6-4). This result is somewhat dependent on the

order in which the design residues are added. There is usually a specific combination of

positions that cause DEE to fail. When these residues are designed, the time explosion is

observed. The apparent ability to design more positions on the surface than in the core is

due to the presence of a higher fraction of deleterious combinations in the core region.

This is an expected result as the core contains more coupled interactions.
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For protein design, the relevant measure of accuracy is not the average fraction of

incorrect rotamers as for the side chain placement comparisons. Because the sequence is

designed as well as the specific rotamer conformation, it is more interesting to know the

fraction of amino acids that are predicted incorrectly a as compared to the GMEC. The

results for intermediate and hard design problems are shown for the core (Table 6-5),

boundary (Table 6-6), and surface (Table 6-7). The hard design problem represents the

case where the time required by DEE diverges. Tables 6-5, 6-6, and 6-7 are

representative of only two test runs; the following averages are calculated from the

complete trajectories (as in Figure 6-4) over the entire sequence design test set. For the

core, a = 0.07 (<∆E> = 14.3 kcal/mol) for SCMF and a = 0.04 (<∆E> = 1.1 kcal/mol) for

MCQ. For the boundary, a = 0.28 (<∆E> = 7.1 kcal/mol) for SCMF and 0.32 (<∆E> =

4.6 kcal/mol) for MCQ. The algorithms performed the worst on surface calculations with

a = 0.37 (<∆E> = 15.1 kcal/mol) for SCMF and a = 0.44 (<∆E> = 8.7 kcal/mol) for

MCQ. Similar to the side chain placement calculations, SCMF obtains a solution that is

more accurate in amino acid sequence, but higher in energy than MCQ. It is unclear

which is the better answer in practice, as a single bad amino acid substitution can

severely disrupt structural integrity whereas combinations of mutations, which together

contribute an energy comparable to the GMEC, may be more acceptable. There is no

observed dependence on the secondary structure of the protein as the results for both the

α-helix and β-sheet dominated backbones are qualitatively similar.

We observe that the accuracy of MCQ and SCMF drops rapidly in boundary and

surface calculations. This is also related to the increase in the number of rotamers

allowed at each position. MCQ fails because the size of the search space rapidly increases
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while the number of cycles remained fixed, thereby allowing less space to be sampled.

One explanation for the failure of SCMF is through the compounding of two

mechanisms. First, the mean-field description of the energy landscape is approximate,

leading to error. Second, SCMF must converge the probability of a single rotamer

existing in the GMEC to close to unity. As the number of rotamers is increased at each

position, the probability that SCMF cannot converge on a single rotamer also increases,

leading to incorrect assignments. It is the second of these effects that causes the loss of

accuracy in the surface and boundary regions due to the increase in the number of

rotamers allowed at each position.

Through these results, we show that the underlying premise of SCMF is

erroneous. The global minimum of the annealed mean-field landscape fails to correspond

to the true global minimum. However, to solve problems in the regime where

conservative DEE fails, it could be argued that this is a necessary trade-off. While our

results demonstrate that mean-field theory does not accurately find the GMEC, this

should not be taken as a blanket disqualification of its utility. For example, the

calculation of rotomer probabilities is useful in determining the entropy (and free energy)

of the sequence (Koehl and Delarue, 1996). However, we have shown it does not

accurately find the GMEC of the system. Accurately finding the GMEC is an essential

step in the protein design algorithm. Because approximate computational results may be

artifacts, it is possible to draw erroneous conclusions about the quality of the design

strategy. This is particularly a problem when the combinatorial complexity is high and

there is a high density of low energy configurations. In such a case, it is possible to be
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close to the true global minimum in energy and have a completely different amino acid

sequence.

In this study, we use extremely conservative DEE parameters (1000 kcal/mol

threshold for automatic determination of dead-ending rotamers and pairs of rotamers).

This was done to ensure that the solution obtained is the GMEC. Most practical design

calculations are performed using more aggressive parameters (20 kcal/mol threshold for

automatic determination of dead-ending rotamers and 1000 kcal/mol threshold for pairs

of rotamers) or highly aggressive parameters (-20 kcal/mol threshold for automatic

determination of dead-ending rotamers and -20 kcal/mol threshold for pairs of rotamers).

A negative value indicates that the threshold is taken from the minimum rotamer energy

at each residue position rather than zero (De Maeyer et al., 1997). To test the accuracy of

DEE with the moderately and highly aggressive parameters, calculations were performed

on the most difficult design problems. In the best case, DEE converged to the same

solution up to 15 times more quickly. However, the effect on convergence time was

generally unpredictable.

As another option, the quality of solution produced by MCQ can theoretically be

improved by running for longer time periods. In our hands, MCQ is typically run for

1000 cycles with each cycle consisting of 106 moves, requiring 3,000 – 10,000 minutes.

We ran MCQ on three difficult design problems: 30 surface design positions of 2hbg, 24

boundary positions of 1plc, and 17 core positions of 256b. For each case, the number of

incorrect amino acids for 20 cycles versus 1000 cycles is 15/10, 8/2, and 2/0. The

additional time clearly improved the results for MCQ. It has been suggested that an

improvement in SCMF can be achieved by initializing the rotamer probability vector



6-24

randomly and running the convergence algorithm for each random initialization (Mendes

et al., 1999). This has the effect of extending the run time of SCMF. We implemented

this algorithm and found that it never improved the solution. Most likely, the

improvement that was observed by Mendes et al. was due to their lack of use of

temperature annealing. Increasing the run length of SCMF was not found to improve the

solution and the aggressiveness had been previously optimized through the energy

threshold. Both aggressive DEE and MCQ comprehensively produce better results on the

more difficult design problems.

Currently, the SCMF and DEE algorithms can only be applied to pairwise energy

functions (Equation 6-1). Higher-order terms may be important in determining the

stabilization energy of a sequence. In particular, buried surface area is a higher-order

contribution to energy. In their present form, the stochastic methods can easily

incorporate higher-order energy terms. If the incorporation of higher than two-body terms

is desired, a new trade-off is created. The reduction of the force field to the pairwise form

that is required for the deterministic methods must be weighed with the inaccuracy of the

stochastic search methods.

Of the four search algorithms we studied, there are extensive variations in

literature. Our lab uses the MC, MCQ, SCMF, and DEE algorithms and the specific

formulations presented in this paper represent the methods that we have found previously

to be the most successful. The exception is the genetic algorithm, which was programmed

solely for this study. We tried many versions and found that the algorithm used here is

the most reliable over the entire test set.
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In this paper, we study each algorithm as a stand-alone search technique. An

alternative is to create hybrid algorithms that combine elements from different

techniques. For instance, the addition of a Monte Carlo quench step to the GA and SCMF

algorithms improves the solution. In the case of the GA, the quench step does not

improve the algorithm beyond what is attainable with MCQ. In addition, the combination

of DEE and MC can potentially improve the search. Finally, a new branch-and-terminate

technique has been proposed which extends the capabilities of DEE (Gorden and Mayo,

1999).

5. Conclusions

We have shown that DEE is the most appropriate search algorithm for side chain

placement as it consistently and rapidly converges to the GMEC for a full range of

structure sizes and types. However, for the design calculations, there is a point beyond

which DEE fails to converge and it becomes necessary to utilize a less accurate method

to obtain a solution. We find that the accuracy and speed of SCMF and MCQ are

comparable for the design calculations. Both methods give reasonable solutions in the

core, but fail considerably in the boundary and surface regions. The advantage of MCQ

relative to SCMF is that, because it is a stochastic method, it can be run for longer

periods of time so better solutions might be obtained. In contrast, the answer provided by

SCMF is the only solution that it will provide and therefore does not take advantage of

the increasing capability of computer hardware and software. Experimentally, the utility

of an imprecise answer is unclear. Because the energy landscape constructed by the force

field is not the actual landscape, an answer that is close to the theoretical GMEC may be
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adequate to provide a folded, stable structure. Nevertheless, it is clearly important to

understand that a solution provided by SCMF or MCQ could be off by more than 20

kcal/mol in computed energy and produces sequences that have 40% disparate amino

acids from the optimum for the given force field.
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Table 6-1. Overview of the 20 protein test set

No. residuesa Secondary structure Solvent accessc

PDB total effect model log cb turn beta alpha core bound surf

1aac 105 104 85 86 46 58 0 30 31 43
1cbn 46 40 31 31 13 6 21
256b 106 106 88 101 16 0 89 28 34 44
1isu 62 62 43 46 45 12 9
5rxn 54 54 48 48 41 13 0
1arb 263 250 191 193 119 98 33
2hbg 147 147 98 110 24 0 123 51 45 51
1bpi 58 52 40 49 25 14 13
1igd 61 61 51 57 14 30 17
1cex 213 186 166 158 55 33 98
1xnb 185 176 144 157 41 125 10
1plc 99 99 83 86 55 44 0 27 27 45
1ptx 64 56 51 50 31 14 11
2erl 40 32 24 31 8 0 24
2end 137 136 118 138 62 4 70
1amm 174 173 157 174 78 81 14
1whi 122 120 99 111 49 57 14
9rnt 104 103 86 87 49 35 19 36 29 38
2ihl 129 119 100 102 42 20 57
1ctj 89 87 63 65 46 0 51

a The effective and modeled residues are as described in Section 3.
b The number of configurations is the total number of points in rotamer space for the homology
calculations. The number of configurations increases dramatically for the design calculations (data not
shown).
c The designation of a residue as core, boundary or surface was done in the following manner. A
solvent-accessible surface was generated using the Connolly algorithm with a probe radius of 8.0 Å, a
dot density of 10 Å−2, and a Cα radius of 1.95 Å. A residue was classified as a core position if the
distance from its Cα, along its Cα-Cβ vector, to the solvent-accessible surface was greater than 5.0 Å,
and if the distance from its Cβ to the nearest surface point was greater than 2.0 Å. The remaining
residues were classified as surface positions if the sum of the distances from their Cα, along their Cα-Cβ

vector, to the solvent-accessible surface plus the distance from their Cβ to the closest surface point was
less than 2.7 Å. All remaining residues were classified as boundary. This classification was only
necessary for the test cases chosen for sequence design calculations.
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Table 6-2. Results of Side Chain Placement Calculations

Number rotamers incorrect a ∆E (kcal/mol) a

SCMF MCQ MC GA SCMF MCQ MC GA
1aac 7 7 26 15 0.6 0.8 6.2 4.6
1cbn 0 0 4 0 0.0 0.0 0.5 0.0
256b 23 9 29 21 14.0 0.4 7.8 8.9
1isu 1 0 5 0 0.2 0.0 0.4 0.0
5rxn 3 0 12 3 0.2 0.0 1.9 0.5
1arb 11 7 34 8 8.4 1.8 10.0 32.0
2hbg 6 10 37 8 0.7 10.8 17.2 1.7
1bpi 10 3 5 5 6.8 0.4 1.0 4.1
1igd 8 3 12 9 1.3 0.5 2.4 2.1
1cex 6 12 38 5 2.2 2.0 10.9 1.4
1xnb 20 4 34 9 37.6 0.7 8.5 0.8
1plc 6 0 21 0 6.8 0.0 3.2 0.0
1ptx 4 0 6 0 0.2 0.0 0.8 0.0
2erl 8 2 6 2 2.3 0.1 0.8 2.8
2end 19 11 28 21 13.7 4.7 12.2 13.9
1amm 20 6 36 9 12.2 1.5 10.4 1.9
1whi 15 10 33 20 3.2 1.9 7.0 8.4
9rnt 13 2 16 10 1.7 0.0 2.1 1.0
2ihl 10 7 24 10 2.2 0.6 5.4 2.3
1ctj 12 0 17 5 3.6 0.0 3.2 0.4

aveb 0.12 0.05 0.23 0.09 5.9 1.3 5.6 4.3

a The solution as compared to the GMEC found by DEE.
b The average fraction of rotamers incorrect and the average energy above the GMEC in
kcal/mol.
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Table 6-3. Times for Side Chain Placement Calculations

Time (min)

DEE SCMF MC/Q a GA

1aac 0.2 0.7 53.9 42.0
1cbn 0.0b 0.0b 7.1 6.1
256b 5.1 0.5 62.8 44.1
1isu 0.0b 0.1 16.5 14.5
5rxn 0.1 0.1 12.9 11.1
1arb 26 10.5 402.7 638.2c

2hbg 1.0 3.0 120.4 83.3
1bpi 0.0b 0.2 12.4 10.6
1igd 0.2 0.3 17.7 14.5
1cex 2.4 6.9 172.9 107.1
1xnb 2.7 3.2 148.9 107.5
1plc 0.2 0.6 48.9 37.3
1ptx 0.0b 1.6 12.1 10.2
2erl 0.0b 0.1 5.0 4.2
2end 13.8 6.2 118.8 74.3
1amm 1.9 9.6 212.7 158.1
1whi 1.0 3.3 81.3 55.6
9rnt 0.1 0.8 50.6 39.6
2ihl 0.1 1.1 74.7 54.0
1ctj 0.1 0.3 33.2 28.8

average 2.7 2.5 83.3 77.1

a The MC quench step requires insignificant additional time.
b Less than 0.05 min was recorded.
c The number of cycles was increased to 15 (see Section 2.2).
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Table 6-4. DEE Explosion Behavior for Protein Sequence Designs

number of design positions before explosion is observeda

core boundary surface

1aac 24 25 34
9rnt 36b 30b 38
256b 17 24 8
2hbg 18 28 27
1plc 18 24 25b

a Defined as the number of design residues at which a time was observed greater
than 500 minutes on a single processor.
b No time explosion was observed. The largest number of attempted design
positions is reported.
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Table 6-5. Core Results for Sequence Design Calculations

# incorrect a time (min)

design b DEE MCQ SCMF DEE MCQ SCMF
1aac 8 0 0 0 5 57 3

24 0 0 4 5382 73 13
9rnt 12 0 0 0 2 55 3

36 0 1 3 71 76 71
256b 10 0 0 1 232 59 4

17 0 2 4 7271 63 7
2hbg 9 0 2 2 6 120 4

18 0 2 2 9999 109 7
1plc 9 0 2 1 15 50 3

18 0 3 3 1704 60 4

avec 52 68 3
4885 76 20

a The solution as compared to the GMEC determined by DEE
b The number of sequence design positions. A representative example is shown for
a medium and hard calculation. The hard calculation corresponds to the point at
which a time explosion was observed for DEE.
c The averages are taken for the medium and hard design problems.



6-32

Table 6-6. Boundary Results for Sequence Design Calculations

# incorrect a time (min)

design b DEE MCQ SCMF DEE MCQ SCMF
1aac 15 0 5 6 68 62 13

25 0 7 12 917 79 40
9rnt 5 0 0 0 1 53 3

30 0 11 9 157 84 71
256b 8 0 1 4 51 71 14

24 0 11 11 1855 90 74
2hbg 12 0 3 0 25 130 21

28 0 9 12 1153 168 87
1plc 9 0 3 1 12 50 6

24 0 8 8 599 64 20

avec 31 73 11
936 97 58

a The solution as compared to the GMEC determined by DEE
b The number of sequence design positions. A representative example is shown for
a medium and hard calculation. The hard calculation corresponds to the point at
which a time explosion was observed for DEE.
c The averages are taken for the medium and hard design problems.
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Table 6-7. Surface Results for Sequence Design Calculations

# incorrect a time (min)

design b DEE MCQ SCMF DEE MCQ SCMF
1aac 15 0 8 5 3 61 18

34 0 14 14 918 75 58
9rnt 15 0 8 9 81 58 8

38 0 21 18 870 79 63
256b 3 0 2 2 18 65 4

8 0 5 5 2329 66 10
2hbg 9 0 2 4 47 108 8

30 0 15 15 2006 141 41
1plc 10 0 2 2 13 53 4

25 0 10 9 151 63 19

avec 162 69 8
1255 85 38

a The solution as compared to the GMEC determined by DEE
b The number of sequence design positions. A representative example is shown for
a medium and hard calculation. The hard calculation corresponds to the point at
which a time explosion was observed for DEE.
c The averages are taken for the medium and hard design problems.
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Figure 6.1:

The GMEC was determined by DEE and compared to the result given by the other

algorithms for the side chain placement calculations. The fraction of incorrect rotamers f

predicted by (A) MC, (B) SCMF, (C) GA, and (D) MCQ is shown for each protein in the

test set, as compared to the GMEC found by DEE.
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Figure 6-2:

The difference between the GMEC found by DEE and the energy determined by (A) MC,

(B) SCMF, (C) GA, and (D) MCQ for the side chain placement calculations.
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Figure 6-3:

The time for DEE to converge on the 2hbg test case plotted against the number of design

positions for the core (thick solid), boundary (thin solid), and surface (dotted) regions.

This graph is representative of the time explosion behavior of the remaining four

sequence design test cases. Note that the y-axis is truncated at 2000; the time for the

hardest core calculation continues to 9999 minutes (Table 6-5).
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Figure 6-4:

The results of the sequence design test in the (A) core, (B) boundary, and (C) surface

regions for 2hbg. The number of amino acids incorrect with respect to the GMEC found

by DEE is plotted against the number of design positions in the protein for the SCMF

(solid line) and MCQ (dotted line) calculations. The end of each line either corresponds

with the DEE explosion as shown in Figure 6-4 and Table 6-4 or the point at which all of

the regional positions have been designed. Note that 2hbg is one of the two cases out of

twenty where SCMF outperformed MCQ for the side chain placement tests.
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Chapter 7

Evolvable Systems in Biology

Portions of this chapter are reproduced from:
Voigt, C. A., Mayo, S. L., Wang, Z-G., and Arnold, F. H. (2002). Directing the evolvable:
Utilizing robustness in in vitro evolution, In: Robustness, Ed: Erica Jen, Santa Fe
Institute Press

1. Introduction

The use of directed evolution techniques has greatly accelerated the discovery of

new and useful biological molecules and systems (Arnold, 2001a). Through iterative

cycles of diversity creation (e.g., mutation or recombination) and selection, proteins,

antibodies, pathways, viruses, and organisms have been evolved to perform tasks

optimized for pharmaceutical and industrial applications. Before directed evolution

became established, it was unclear how successful such an approach would be. It was not

obvious that randomized mutagenesis and selection would find improvements, due to

combinatorial explosion in the number of possible offspring and the observation that few

of these are functional, much less have improvements in desired properties.

Directed evolution is successful, in part, because prior to being evolved in vitro

these systems have a long history of evolution in vivo. As a result of this history, they

have properties that make them amenable to both natural and laboratory evolution. This

evolvability represents the ability of a system to produce fit offspring in a dynamic

environment. This paper will review some of the features that make a system evolvable.

A particular emphasis will be made on the contribution of robustness, or the ability for a

system to survive perturbations of its internal parameters. Robustness enhances the ability
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of a population to sample parameter space, thus enabling the discovery of novel

phenotypes.

Understanding the basis for evolvability will aid the design of efficient

evolutionary algorithms that accelerate the in vitro discovery process. Achieving this goal

will require the combination of computational models with data from in vitro evolution

experiments. In this review, we describe the initial steps of this effort. First, we provide a

general definition of robustness and explain its relationship to evolvability. In the

following sections, we apply these ideas: first to the evolution of proteins through

mutagenesis and recombination and then to the evolution of genetic networks.

1.1. Robustness

The behavior of a system can be defined by a set of internal parameters. In the

case of a metabolic network, the parameters are the kinetic constants and concentrations

of the component enzymes, which determine the products and their rates of production.

Similarly, the activity of an enzyme is defined by its amino acid sequence, solvent

conditions, and temperature. A system is robust if it can absorb variations in these

parameters without disrupting its behavior (Savageau, 1971; Savageau, 1972). The

parameters can be perturbed by various insults, for example, kinetic constants can be

altered by mutations, temperature variations, or exposure to different environments.

Because we are describing robustness from the perspective of directed evolution, the

insults for these systems are defined by the experimental technique, such as point

mutagenesis or recombination.
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It is important to contrast parameter robustness with variable stability, which

describes resilience to perturbations in the inputs of a system. Stability implies that the

state of the system before and after the perturbation remains unchanged. As an

illustration, a bridge is stable regarding variables such as car weight. The bridge is

considered stable if it reliably returns to the same state after cars have passed over it. In

contrast, robustness describes the collection of bridge design parameters, such as the

cable strength for a suspension bridge. If the Golden Gate Bridge in San Francisco can be

reproduced in Alaska without disturbing its function, then the design is robust. In this

example, the strength of the materials is the parameter, and this parameter is perturbed by

a change in environment.

In determining the robustness of a system, the behavior and the parameters need

to be defined. A system may be robust with regards to one behavior while being sensitive

with regards to a different behavior (Barkai and Leibler, 1997). There are several

convenient metrics for measuring robustness. For parameters that are continuous, the

sensitivity S is defined as the change in a behavior b with respect to a parameter p,

p

b
pbS

d

d
),( = (7-1)

(Savageau, 1971). When the parameter is discontinuous (e.g., amino acid sequence), then

it is useful to define an entropy which captures the number of states that are consistent

with retaining the system behavior. The entropy of parameter i is defined as

∑
=

=
20

1

)(ln)(
j

iii spsps , (7-2)

where pi(s) is the probability that parameter i in state s does not disrupt the behavior of

the system. These probabilities can be derived from several sources. They can be
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calculated explicitly if the energetic consequence of each state is known. They can also

be obtained from a list of possible states, obtained either through a simulation or by

experimental observation of variation in the system (e.g., examining amino acid

variability through a sequence alignment). A useful application of Equation (7-2) is to

quantify the variability of a protein residue i with respect to amino acid substitutions s

(Saven and Wolynes, 1997; Voigt et al., 2001b)

1.2. Evolvability

Evolvability is the capacity of a system to react at the genetic level to changing

requirements for survival (Kirshner and Gerhart, 1998). Upon environmental change, an

evolvable system will produce offspring whose perturbed parameters improve the new

fitness. Those systems that require the least dramatic parameter changes (e.g., the fewest

mutations) have the smallest entropic barrier to being discovered (Kirshner and Gerhart,

1998; van Nimwegen, 1999). Architectures that minimize the entropic barriers are the

ones that are likely to find improvements first and therefore survive. In directed

evolution, the evolutionary constraints in vitro differ from those properties that were

selected for by nature. With this “environmental change,” an evolvable architecture is

more likely to result in a successful directed evolution experiment.

Robustness can reduce the entropic barrier by separating the parameters that

define the various behaviors of a system. For example, an enzyme may improve the

evolvability of its activity by separating those residues that maintain the stability from

those that tune the activity. If a residue contributes to both properties, then it would be

more difficult to make substitutions to improve one property without degrading the other.
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To further reduce the entropic barrier, it is important that small changes in the evolvable

parameter lead to large changes in the behavior of the system. Evolvability will be

reduced if regions of parameter space that are devoid of any behavior have to be

traversed (Figure 7-1). Robustness can also improve evolvability by facilitating the

exploration of parameter space through neutral drift (Eigen and McCaskill, 1989; Huynen

et al., 1996; Huynen, 1998; Kirshner and Gerhart, 1998; Barkai and Leibler, 1997).

Neutral drift drastically increases the fraction of parameter space that can be sampled,

thus increasing the likelihood of discovering novel behaviors.

Measuring robustness, either by calculating sensitivity or entropy, is fairly

straightforward. In contrast, the various ways in which evolvability can manifest itself

makes its quantification a more challenging task. For example, an evolvable parameter

does not have to be robust. Some measures of evolvability include the number of

behaviors that can be sampled and the nature of the transitions between these behaviors.

A highly cooperative transition and small separations in parameter space are indicators of

evolvability (Figure 7-1).

2. Utilizing Robustness to Optimize Mutant Libraries

In directed evolution, genetic diversity can be tolerated due to the intrinsic

robustness of proteins. The ability to predict how and where a protein is robust has led to

the design of evolutionary algorithms where point mutations or recombination is targeted

(Voigt et al., 2001a, Arnold, 2001b, Voigt et al., 2002). In describing the robustness of a

protein, the behavior describes the combination of properties that needs to be retained for

function. This is mainly the stability of the three-dimensional structure, but can be a more
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complex combination of properties. For example, in evolving an antibody for use as a

pharmaceutical, besides maintaining the stability and affinity for the target, it may also be

important to evade the human immune response. When diversity is generated using

random point mutagenesis, the relevant parameter space is the amino acid state of each

residue. A system that is robust can absorb variation in the parameters (amino acid

substitutions) without altering a defined behavior (e.g., stability). The capacity to

improve existing functions or discover new ones via amino acid substitutions is the

protein’s evolvability. In this section, we describe the realization of robustness and

evolvability in protein structures. This provides a basis for the introduction of strategies

that accelerate evolutionary searches.

2.1. Robust Protein Architectures

The total number and order of interactions between amino acids affect the average

robustness of a protein (Figure 7-2). When there are many interactions, there are more

constraints that need to be satisfied, thus increasing the probability that a mutation is

deleterious. This effect worsens as the order of the interactions increase. For example, a

system that is dominated by 2-body interactions is more robust on average than one that

is dominated by 3-body interactions (Kauffman and Levin, 1987; Kauffman and

Weinberger, 1989). Robustness is also affected by the distribution of interactions in the

protein structure. A scale-free distribution of interactions has been demonstrated to be

particularly robust (Jeong et al., 2000). A property of scale-free distributions is that there

are a few, highly interacting residues and many weakly interacting residues. A protein

can achieve a scale-free-like distribution of interaction by increasing the ratio of surface
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area to volume. Reducing the number of interactions at many residues increases the

average robustness of the protein at the cost of making a few residues highly sensitive to

perturbation. If a mutation occurs at such a residue, this has a catastrophic effect on the

stability. In other words, increasing the sensitivity of a few parameters makes the overall

system robust to random, but not directed perturbation, a scenario described as “Highly

Optimized Tolerance” (Carlson and Doyle, 2000).

Modularity is also important for structural robustness. This effect was

demonstrated using a simple protein lattice model to enumerate the number of sequences

that fold into various two-dimensional structures (Li et al., 1996). Many sequences folded

into a few highly robust structures, whereas most structures were fragile with only a few

or no sequences folding into them. The robust structures were found to be modular, with

a small robust motif copied throughout the larger structure (Figure 5-7) (Wang et al.,

2000). The repetition of modular peptide subunits is a common theme in protein

structures (Orengo et al., 1994).

Another mechanism to improve robustness is to increase the thermal stability of a

structure. Many theoretical models have demonstrated that mutational and thermal

stability are strongly correlated (Broglia et al., 1999; Buchler and Goldstein, 1999;

Bornberg-Bauer and Chan, 1999; Mélin et al., 1999; Ancel and Fontana, 2000). In

understanding this correlation, it is important to note that the adjectives “mutational” and

“thermal” describe insults rather than behaviors. The relevant behavior is existing in the

state of a folded protein. This behavior can be rewritten as maintaining a large energy gap

between the folded ground state and the ensemble of unfolded conformations. The energy
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gap can be perturbed either by increasing temperature or by the disruption amino acid

interactions via a mutation.

2.2. Measuring Robustness

One feature of robustness is that the fitnesses of sequences close in sequence

space are highly correlated so information is retained upon mutation (Weinberger, 1990).

Fitness correlation provides an experimentally attainable measure of robustness. This

information is typically in the form of a plot of the mutation rate versus the percent of

offspring that retain some function (Figure 7-3) (Suzuki et al., 1996; Daugherty et al.,

2000). A small initial slope indicates that more mutations can be accumulated without

degrading the function, indicating that this function is more robust (Wilke and Adami,

2001).

We have developed a computational algorithm that calculates the structural

robustness of a protein (Voigt et al., 2001b). This algorithm calculates the stabilization

energy of all amino acid sequences folded onto a specified three-dimensional structure

using the ORBIT protein design software to calculate the amino acid interactions

(Dahiyat and Mayo, 1997) and mean-field theory to accelerate the calculation (Saven and

Wolynes, 1997). The energetic information is condensed into a residue entropy (Equation

7-2), where a high entropy indicates that a residue is tolerant to amino acid substitution.

Using this algorithm, those residues that can be mutated while preserving the structural

stability can be identified.
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2.3. Robustness Improves Functional Plasticity

Proteins are particularly plastic with regard to tuning function and exploring novel

function space. This is evidenced by the observation that some common structural motifs

are able to perform a wide variety of functions (Orengo et al., 1994; Bolon and Mayo,

2001). Directed evolution experiments have demonstrated that significant functional

variability can be obtained with few mutations (Shao and Arnold, 1996). One way to

achieve functional evolvability is to improve the robustness of the behaviors that are

essential for function but are not being optimized. By improving the robustness of a

structure, mutations are less likely to be destabilizing and sequence space can be more

readily explored for new properties through neutral drift (Aronson et al., 1994;

Govidarajan and Goldstein, 1997). Indeed, mutagenesis experiments have repeatedly

demonstrated that protein structures are amazingly robust regarding mutations (Loeb et

al., 1989; Rennell et al., 1991; Aronsson et al., 1994; Axe et al., 1996; Baase et al., 1996;

Huang et al., 1996). Besides improving the overall robustness of the structure, there are

several additional mechanisms for improving evolvability, including the separation of

parameters and the presence of suppressor mutations.

Evolvability can be improved through the separation of parameters that control

different behaviors (Kirshner and Gerhart, 1998). This allows one behavior to be

optimized without negatively affecting the remaining behaviors. For example, a protein is

more evolvable when those residues that maintain stability are isolated from those that

control activity. This isolation can be observed when independent mutations that improve

different behaviors have additive effects when combined. Additivity has been observed

frequently in mutagenesis data and it has been proposed to take advantage of this
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property in protein engineering (Wells, 1990; Sandberg and Terwilliger, 1993; Skinner

and Terwilliger, 1996).

When several homologous parents have different properties and high sequence

identity, functional additivity can be utilized to produce a library of offspring with

combinations of properties from the parents. In one such study, 26 parental subtilisin

genes were recombined to produce a library of offspring (Ness et al., 1999). The

offspring were screened for activity and stability in various conditions, such as acidic or

basic environments or in organic solvents. The hybrid proteins in the library

demonstrated a broad range of combined properties. Additivity can also be on the level of

parameters that control activity, such as individual components of substrate specificity.

By separating the effects of the parameters that confer specificity from the requirements

imposed by the catalytic mechanism and structural maintenance, these parameters can be

perturbed individually to produce offspring with diverse specificities. Additive

parameters that confer specificity are apparent in the recombination of two triazine

hydrolases (Raillard et al., 2001). These two enzymes only differ at 9 residues out of 475,

but have very different activities. Recombined offspring were found to catalyze reactions

on a variety of triazine compounds with chemically distinct R-groups. Sequence analysis

revealed that different residues were important in controlling different physical

components of specificity. For example, residues 84 and 92 determine the size of the R-

group that could be bound. Mutations at these residues are free to alter aspects of

specificity independently without disturbing the catalytic mechanism or stability.

Separating the residues that control activity and stability can be achieved by

minimizing the number of stabilizing interactions at functionally important residues. One
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way this is manifested is through the prevalence of loops and exposed regions near the

active site. These loops often control substrate specificity and have been the frequent

target of mutagenesis (Hedstrom et al., 1992; Palzkill et al., 1994; El Hawrani et al.,

1994; Burks, et al., 1997; Matsumura and Ellington, 2001). Further, the

complementarity-determining regions (CDRs) of antibodies are composed of loops and

have been shown to be robust (Brown et al., 1996; Burks et al., 1997). Structural

tolerance can be achieved without resorting to loop structures. Patel and Loeb

demonstrated that the active site of DNA polymerase I, an antiparallel β-strand, is very

tolerant to mutagenesis (2000).

Deleterious mutations can sometimes be overcome by additional, compensating

mutations that act to suppress the negative effect (Baase et al., 1999; Jucovic and Poteete,

1999). The appearance of compensating mutations is apparent in diagrams that plot the

percent of a library that is functional versus the mutation rate (Figure 7-3). Typically,

these plots demonstrate an exponential decay proportional to the robustness. However,

some of these curves recover at high mutation rates, implying the existence of

compensating mutations (Suzuki et al., 1996; Daugherty et al., 2000). When a single

mutation compensates for an extraordinary number of deleterious mutations, it is referred

to as a “global suppressor.” An example is the M182T mutation in beta-lactamase, which

was found to generally compensate for locally destabilizing mutations in a loop near the

active site (Huang and Palzkill, 1997; Sideraki et al., 2001; Orencia et al., 2001). When

this mutation is present, it becomes possible to make additional mutations that rearrange

the active site without degrading the stability. The trend of initially accumulating

mutations that improve the evolvability has been observed in directed evolution
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experiments. In the directed evolution of the substrate specificity of beta-glucoronidase,

the intermediate mutants first broadened the substrate specificity (Matsumura and

Ellington, 2001). After the activity was made more plastic, additional synergistic

mutations tuned activity towards the new substrate, and the broad specificity was lost. In

another study, the crystal structures of wild-type and evolved esterases were compared

(Spiller et al., 1999). It was found that several loops that form the entrance to the active

site cavity are ordered into a specific conformation by mutations distant from the active

site. This initial fixation provided the basis for additional mutations in later generations.

2.4. Targeting Diversity

Algorithms that have been proposed to optimize directed evolution can be

separated into two general categories (Voigt et al., 2001a). Several methods have been

proposed that optimize the mutation rate as a function of the number of mutants that can

be screened. In addition, the effectiveness of a screening algorithm, such as pooling, can

be explored. Another approach has been to target specific residues for mutagenesis, either

by comparing sequence alignments or using computational methods to identify those

residues that are structurally tolerant. Each of these methods is fundamentally reliant on

underlying assumptions regarding the robustness and evolvability of the enzyme.

Several theoretical models have been used to study the optimal mutation rate as a

function of the size of the screening library and the ruggedness of the fitness landscape

(Matsuura et al., 1998, Voigt et al., 2001a). As the number of interactions increases, the

probability that a mutation is deleterious also increases. When multiple mutations are

accumulated on a gene, a larger fraction of these mutations will decrease the fitness. This
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effect quickly erodes the beneficial effect of any positive mutations. Therefore, to search

rugged landscapes, a smaller mutation rate is optimal.

We used a computational model to demonstrate that the directed evolution

algorithm preferentially discovers beneficial mutations at structurally tolerant residues

(Voigt et al., 2001b). For a given structure, the energetic effect of each amino acid was

calculated using mean-field theory and condensed into a residue entropy (Equation 7-2).

Seventeen out of the twenty-two mutations found by directed evolution to improve the

activity of subtilisin E and T4 lysozyme were found to occur at structurally robust

residues (Figure 3-5). Targeting those residues that are structurally robust increases the

fraction of the library that is folded and stable. This should also increase the probability

of discovering functional improvements.

There is evidence that the immune system targets the generation of diversity to

structurally tolerant residues during somatic mutagenesis. There are residue hotspots

where mutations are concentrated by various cellular mechanisms during the affinity

maturation process (Berek and Milstein, 1987; Sharon et al., 1989; Betz et al., 1993;

Neuberger and Milstein, 1995; Cowell et al., 1999). Through structural studies of

germline and affinity-matured antibodies, it has been observed that somatic mutations

generally preserve the structure of the binding site and antibody-antigen binding

interactions (Spinelli and Alzari, 1994, Orencia, 2000). The somatic mutations could be

targeted towards structurally robust residues to accelerate the discovery of higher affinity

mutant antibodies. Antibodies are frequently the target of directed evolution, to improve

antigen binding as well as to improve the activity of catalytic antibodies (Schultz and

Lerner, 1995; Low et al., 1996; Xu et al., 1999; Boder et al., 2000). Targeting those
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residues that have been identified as hotspots or those residues that are calculated to be

structurally tolerant may improve the diversity of an in vitro library (Chapter 3).

Additivity is essential in the success of pooling algorithms and recombination

strategies. A pooling algorithm involves the screening of multiple mutations

simultaneously and then recombining the best mutants from each pool. If all of the

mutations are additive, then a pooling strategy drastically reduces the screening

requirements to discover the optimal combination of mutations. As the number of non-

additive mutations increases, then pooling strategies become less reliable (Kauffman and

Macready, 1995). Similarly, the success of recombining several mutations onto a single

offspring is dependent on the strength of interactions between the mutants (Moore et al.,

1997). If the mutations do not interact, then simply combining all of the mutations onto a

single offspring is optimal. A theoretical method to identify the optimal strategy for

combining the mutations has been proposed for the case when the mutants are interacting

and the number of mutant that can be screened is limited (Aita and Husimi, 2000).

Consensus design has been proposed as a method to improve the thermostability

of enzymes (Lehman et al., 2000; Jermutus, et al., 2001). A sequence alignment of

naturally divergent sequences is used to create a consensus sequence that contains the

most common amino acid at each location. This method has been used successfully to

improve the thermostability (and the mutational robustness) of several enzymes (Lehman

et al., 2000). It is unclear why the consensus sequence improves thermostability, rather

than just accumulating neutral mutations. One possibility is that if natural evolution

behaves like a random walk, then it is expected that the time spent in an amino acid state

is proportional to the energy of that state and more stable amino acids will reside longer.



7-15

It is possible that the consensus amino acids reflect large residence times, and therefore

low energies.

The success of each of these optimization strategies depends on the robustness of

the enzyme. These strategies can be improved through the development of algorithms

that can predict the effect of mutations on the structure (Dahiyat and Mayo, 1997; Voigt

et al., 2000b). Those mutations that are additive are more likely to be combined

successfully by pooling, consensus and recombination strategies. Further, the ability to

predict the overall robustness of a system, either computationally or through the analysis

of an experimentally generated knockout graph will be useful. Besides calculating the

additivity of some properties, there are currently no computational methods to can predict

the evolvability of specific residues. Understanding how to identify residues that

contribute to various properties will lead to powerful design tools.

3. Robustness to Recombination

Recombination is a powerful tool in directed evolution as it can combine traits

from multiple parents onto a single offspring (Stemmer, 1994; Crameri et al., 1998).

Recombination plays a key role in the natural evolution of proteins, notably in the

generation of diverse libraries of antibodies, synthases, and proteases (Gō, 1985). These

proteins have well-defined domain boundaries and recombination shuffles domains into

different configurations. The bead-like or loop topologies of these structures make them

robust to recombination events (Campell and Barton, 1991). When there is no obvious

domain topology, mechanisms, such as introns, can focus crossovers towards specific

regions of the protein structure. In terms of in vitro recombination, the ability to focus the
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diversity towards regions that are robust with regards to recombination will improve the

quality of the library and reduce the number of hybrids that need to be screened. In this

section, we first describe the observed correlation between intron locations and protein

structures and then demonstrate how exon shuffling can achieve functional diversity.

Finally, an algorithm based on identifying compact structural units will be used to

demonstrate that successful recombination events occur in regions separating structural

modules.

3.1. Evolution of Intron Locations

Many eukaryotic genes are composed of pieces of coding DNA (exons), separated

in the genome by regions of non-coding DNA (introns). After transcription, introns are

removed from the mRNA through a splicing mechanism. Of the many proposed functions

of introns, one is that they facilitate the swapping of exons (Gilbert, 1978; Blake, 1978;

Gō, 1985). When two genes are recombined, the crossovers in the mature gene will be

biased towards the interface between exons. Longer introns will increase the crossover

probability at that location under the assumption that crossovers can occur at each

nucleotide with equal probability. If exons correspond to structural or functional subunits

of protein structure, then the reconstructed gene would have a higher probability of being

stable and functional. Indeed, this correlation has been demonstrated for a large number

of genes (Gō, 1981; Gō, 1983; Gō, 1985; de Souza et al., 1996; Panchenko et al., 1996).

There are several possible routes by which introns could have emerged in

eukaryotic genes (Gō, 1985; Gilbert et al., 1997; de Souza et al., 1998). The “introns-

early” theory states that exons correspond to structural motifs that were discovered early
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in evolutionary history. These exons were pieced together by recombination and gene

duplication to build the genes that are now observed. This view asserts that prokaryotes

lost their introns due to the strong selection on genome size. In contrast, the “introns-late”

theory states that introns were inserted in genes late in evolutionary history, thus

explaining their existence in eukaryotes. The early versus late debate is ongoing and it is

likely that some introns emerged early and were lost and others emerged late.

If an intron emerged due to the early mechanism, then it is clearly going to

correspond to a structural subunit. Arriving late, it could appear anywhere throughout the

structure equally, without any structural preference. This idea has led to the argument that

the observed correlation between introns and structural units is evidence of an early

mechanism (Gilbert et al., 1997). However, if introns were to appear at random locations

in a population of genes, then selection could drive the introns towards regions separating

structural modules, if the existence of an intron increases an organism’s fitness by

promoting successful recombination events on a reasonably fast time scale. In other

words, selection drives the creation of a robust gene structure.

Theory that has been developed to optimize genetic algorithms provides insight

into the relationship between recombination and protein structure. In this literature, the

concept of a schema, or a cluster of interacting bits, is useful in predicting the success, or

failure, of recombination (Holland, 1975). When crossovers frequently divide a schema,

then these interactions are disrupted and the offspring are more likely to have inferior

fitnesses. When schema disruption is not controlled, genetic algorithms will often fail to

converge on an optimal solution (Mitchell, 1994; Mitchell, 1998). In a particularly

interesting study, the success of a genetic algorithm was improved by recording where
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past crossovers resulted in fit offspring (Schaffer and Morishima, 1987). This information

was used to bias crossovers in future generations. In this way, selection automatically

biased the recombination markers towards regions that separated schemas. Extending

these results to biology, this simulation demonstrates the advantage of shifting introns

towards the regions that separate structural schemas.

3.2. Exons as Functional Switches

Exon swapping can occur on evolutionary timescales or on the timescale of gene

splicing in the cell (Gō, 1985). The ability to swap exons without disrupting the structure

improves the evolvability of the gene by promoting functional switches between different

molecular properties (Gilbert, 1978; Blake, 1979). These switches have been found to

alter the substrate specificity, the tissue distribution, and the association properties of the

translated proteins. It has been suggested that performing exon swapping in vitro will

produce functionally diverse libraries (Fisch et al., 1996; Kolkman and Stemmer, 2001).

There have been several examples of achieving functional diversity through the

in vitro swapping of exons that correspond to structural modules of enzymes. Gō and co-

workers altered the coenzyme specificity of isocitrate dehydrogenase by calculating the

structural module corresponding to the NADP-binding site (Yaoi et al., 1996). When this

module was swapped with a NAD-binding site, the reaction was shown to proceed with

the new coenzyme. In another experiment, a module of the β-subunit of hemoglobin was

swapped with the corresponding module of the α-subunit (Wakasugi et al., 1994; Inaba et

al., 1997). This hybrid protein folded into the correct tertiary structure, but the

association of different subunits was altered, suggesting that the function of the fourth
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module is to regulate subunit association. This substitution did not affect other properties

of hemoglobin, including oxygen binding. In a particularly dramatic experiment, the

catalytic activities of α-lactalbumin and lysozyme were swapped by shuffling the exon

corresponding to the amino acids that surround their active sites (Kumagai et al., 1992).

The success of this experiment hinged on the observation that the two enzymes share the

same structure and distribution of exons. Swapping exons can also alter specificity. For

example, the swapping of alternate exons in a human cytochrome P450 changed its

substrate specificity and tissue distribution (Christmas et al., 2001). This implies that the

gene structure of P450 promotes the swapping of functional modules such that this

enzyme can participate in different biological functions. In the dehydrogenase,

hemoglobin and lysozyme experiments, subportions of the structural module were

swapped as a control. In each case, swapping a portion rather than the whole module

resulted in an unstable or non-functional enzyme.

The immune system effectively uses exon shuffling to create antibody variants

that can bind a broad range of antigens. Mimicking in vivo antibody selection,

Borrebaeck and co-workers used recombination techniques to shuffle the naturally

occurring human exons that encode the CDR regions to generate a large binding

repertoire (Soderlind et al., 2000). The library containing ∼109 antibodies was screened

against a wide array of hapten and protein targets and antibodies with nanomolar binding

affinities were reliably found. This stunning work represents the ability to create a full

antibody repertoire in the test tube. When combined with directed-evolution-like somatic

mutagenesis, a nearly complete artificial immune system will be created.
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3.3. In Vitro Recombination Preserves Structural Schema

The success of in vitro recombination is based on the assumption that the parents

share similar structures. For a hybrid protein to demonstrate new or improved properties,

a prerequisite is that it folds into a well-defined (and presumably similar) structure.

Therefore, crossovers are more likely to be successful when they occur in regions that lie

between schemas (Voigt et al., 2002). In this context, schemas are defined by the pattern

of stabilizing interactions between amino acids and recombination is most successful

when the crossovers break the fewest interactions. The hybrids with the minimum

schema disruption are the most likely to retain the structure of the parents.

Using a computational algorithm that predicts the location of schemas, data were

analyzed from five independent directed evolution experiments where several parents

were shuffled to create random libraries of recombinant offspring (Voigt et al., 2002).

Crossovers in the offspring that survived selection were strongly biased towards regions

that minimize the schema disruption. To further demonstrate the requirement that schema

be preserved, two β-lactamases were recombined that have similar structures, but share

little sequence identity. The three-dimensional structure was divided into schemas and the

interaction strengths between the different schemas were calculated. Experimentally,

hybrid proteins were constructed where the schemas were exchanged between structures

and each hybrid was tested for activity. A sharp transition was found in the activity as the

disruption of the hybrid increased (Figure 5-9). Recombination events that cause

disruption above this threshold resulted in non-functional hybrids. These experiments

demonstrate in real-time how selection for folded, function offspring can bias crossover-

focusing mechanisms towards regions separating structural schemas. In addition, this
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algorithm will improve directed evolution as it enables the design of libraries with an

enriched fraction of properly folded hybrid proteins.

4. Evolution of Genetic Circuits and Metabolic Pathways

Metabolic pathways and genetic circuits have recently become targets for in vitro

evolution (McAdams and Arkin, 2000; Schmidt-Dannert et al., 2000). The robustness of

a network describes the resilience of a behavior to perturbations in parameters. In the

case of a metabolic pathway, the behavior may be the chemicals generated and the rate at

which they are produced. For a genetic circuit, the behavior is the integrity of the

computation, for example, the ability to behave like an oscillator, toggle switch, logic

gate, or memory (Bhalla and Iyengar, 1999; Yuh et al., 2000; Gardner et al., 2000;

Elowitz and Leibler, 2000). A network is evolvable if it can change behaviors through the

perturbation of its internal parameters.

There are several means by which a diverse library of networks can be created.

One method involves the randomization of the component genes through mutagenesis or

recombination. Mutations can change the behavior of a network by altering the kinetic

constants for an activity, the substrate specificity, and the products produced. If the

mutated DNA encodes a repressor or activator protein or a related DNA binding site, then

mutations will vary the strength of repression or activation (Becskei and Serrano, 2000).

Further, mutations can stabilize or destabilize a protein, which affects the dynamics of the

network by changing the protein’s residence time. The library of offspring is more likely

to contain the desired properties if the diversity is applied to those parameters that are
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evolvable or those parameters that are robust regarding properties required for the desired

behavior, but not being explicitly optimized.

A combinatorial library of networks can also be created by randomly combining

modules of pre-constructed combinations of transcription units. For example, the

combination of different genes with different repressor sites can produce a library of

many possible dynamic circuits. In this way, different interaction topologies can be

created and tested for various behaviors. For this combinatorial approach to be

successful, it is necessary that the modules are robust regarding the form of the inputs and

the network and cellular environments in which they are inserted (von Dassow et al.,

2000; Savageau, 2001).

4.1. Robust Network Topologies

The topology of a network describes the architecture of interactions between the

network components. For a metabolic pathway, an interaction may represent the

enzymatic conversion of a substrate into a product or the effect of a species on the control

of a reaction. An interaction may also describe the effect of a repressor or activator on the

expression of another gene. Network topologies can be visualized as a set of nodes and

edges, where a node represents a component and an edge represents an interaction

(Figure 7-1). The topologies of large networks can be very complex, and it is difficult to

predict those features that are robust from those that are fragile (Figure 7-4). Some

topological motifs that confer robustness have been identified, including feedback loops,

a modular architecture, and a scale-free distribution of nodes and edges.
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Feedback control buffers the variables of the system towards external

perturbations; in other words, it improves the stability of the system. Beyond improving

stability, feedback control also improves robustness with respect to internal parameters

(Savageau, 1972). Feedback control can occur with various topologies. The simplest,

autoregulation, where the immediate products inhibit the reaction, has been shown to

improve robustness (Savageau, 1974; Becskei and Serrano, 1998). Larger feedback loops,

when downstream products control the first steps of metabolism, proved to be more

robust (Savageau, 1972). Alternative topologies that contained multiple, small feedback

loops in sequence or nested, proved to be less robust than the systems with larger

feedback loops.

Barkai and Leibler proposed that robustness is manifested in signal transduction

networks through the topology of feedback control (1997). They constructed a model of

bacterial chemotaxis and found a set of parameters that reproduced the desired network

behavior, in this case, to turn the flagella on and off in such a way so the bacteria swims

up an attractant gradient (adaptation). This network turned out to be remarkably robust as

nearly 80% of networks generated by randomly varying all of the parameters 2-fold from

the starting point were found to demonstrate adaptation. When varied individually, each

parameter could be varied by several orders of magnitude. This robustness was later

verified experimentally (Alon et al., 1999) and proved to result from an integral feedback

control loop (Yi et al., 2000). This result supports the concept that robustness is inherent

to the topology of the network and does not emerge through a specific combination of

parameter values.
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The robustness of a network topology towards the removal of nodes or edges, as

the result of knockout or specificity-altering mutations, has been studied using a number

of theoretical models (Albert et al., 2000; Cohen et al., 2000; Jeong et al., 2000; Cohen et

al., 2001). A general result from these studies is that a scale-free topology of interactions

tends to be robust. In a scale-free network, the distribution of nodes and edges follows a

power law, P(k) ~ k-α , where P(k) is the probability of a node having connectivity k, and

α is a power-log exponent. Considering robustness, there is an optimal value of α ≈ 2.5,

which is shared by the structure of the internet (Cohen et al., 2000) and metabolic

networks (Wagner and Fell, 2001). In a comparison across metabolic networks of 43

species, it was found that the most highly connected nodes were the most conserved,

whereas the least connected varied considerably (Jeong et al., 2000). In other words, the

least connected nodes are highly tolerant to changes, similar to what was found for

protein structures (Voigt et al., 2001b).

4.2. Evolvability of Networks

An evolvable network has the ability to sample many behaviors by varying the

internal parameters. To be robust, a network has to retain some behavior under parameter

variation. In contrast, evolvability requires that other behaviors are attainable without

traversing regions of parameter space that are devoid of behavior. Very little is

understood as to how the topology of a network affects evolvability. There is some

evidence that the evolvability of a network can be improved through modularity, switch

points, and broad substrate specificities. Understanding these properties will facilitate the

creation of in vitro strategies to create libraries of networks with diverse properties.
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When shuffling portions of gene networks, it is essential that the subcomponents

are modular. A portion of a genetic network forms a module if it can be substituted in

other environments or other networks and performs the same qualitative behavior. If a

network is modular, evolution can reuse motifs by rewiring the network inputs and

outputs (Hartwell et al., 1999). In terms of the distribution of nodes and edges, a modular

topology can be divided into subsets of nodes, where the nodes are highly interacting

within the subset and not interacting between subsets. In addition, the network should

generate the same behavior for a variety of input stimuli (von Dassow et al., 2000). This

reduces the demands on the form of the inputs, making it easier to combine with other

subnetworks. Using kinetic models, Bhalla and Iyengar found that a wide range of

complex dynamic behaviors was attainable by coupling multiple, independent signaling

pathways (1999). The behaviors that could be obtained included memory, timers,

switching regulatory wiring, and time and concentration thresholds for response.

Stochastic mechanisms can alter the behavior of a network (McAdams and Arkin,

1997; McAdams and Arkin, 1999). The random component can be introduced by low

concentrations of reacting species, slow reaction rates, or limited availability of catalytic

centers. Biological systems exploit this randomness as a switch that can determine the

behavior of an individual cell or create diversity in a population in cells. For a network to

be able to utilize stochastic effects, it is necessary to stabilize the effect of fluctuations on

the remainder of the network through redundancy and feedback loops. In other words,

maintaining the overall robustness of the network promotes evolvability through the

variation of other parameters. Stochastic switches that select between two alternate

pathways can occur (Arkin et al., 1998; McAdams and Arkin, 1999). Identifying a switch



7-26

point and then targeting it using directed evolution could be used to create a diverse

library of network behaviors.

Gene duplication creates functional redundancy. The robustness conferred by a

duplication event is likely to deteriorate rapidly as there is no disadvantage for the

function of one of the copied genes to be destroyed (Nowak et al., 1997; Wagner, 2000;

Wagner, 2001). However, the evolutionary stability of the duplication can be ensured

initially by increasing regulatory reliability or by changing the function of the duplicated

gene. This creates the opportunity for the duplicated gene to add or optimize functions,

possibly in unrelated pathways (McAdams and Arkin, 1999). An ancestral gene with

broad substrate specificity can potentially participate in more pathways and is therefore

more evolvable. This mechanism has been duplicated in vitro by demonstrating that a

metabolic enzyme with broad substrate specificity could be evolved to specifically

participate in two different metabolic pathways (Jürgens et al., 2000).

Secondary metabolites are produced by various organisms and are typically not

essential for survival. These chemicals may confer properties, such as the color or

fragrance, or they may have therapeutic properties, such as antibiotic or tumor-

suppressing activities, or serve in biological warfare or defense. While many of the

chemicals produced by an organism may not confer a selective advantage, the existence

of a secondary metabolism is advantageous because it gives the organism the potential to

discover a few potent chemicals (Firn and Jones, 2000). To optimize the discovery

process, secondary metabolisms appear to have evolved to maximize the diversity of

chemicals that are attainable when the components of the pathway are perturbed. The

evolvability of secondary metabolic enzymes is enhanced by low substrate specificities,
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thus increasing the number of potential downstream products. These specificities can be

tuned and fixed by evolution as beneficial metabolites are discovered. The components of

secondary metabolism have been observed to be robust to environmental changes. This

facilitates the transfer of a network from one organism to another.

The robustness and evolvability of secondary pathways make them particularly

well-suited targets for in vitro evolution to tune the production of desired chemicals. New

biosynthetic pathways can be created by combining genes from different sources and

subjecting these genes to mutagenesis and recombination (Figure 7-5). Selection is then

applied for the production of specific compounds or for the generation of diverse

chemicals. Directed evolution has been applied to the carotenoid biosynthetic pathway to

alter the diversity of the chemicals produced (Schmidt-Dannert et al., 2000). Four genes

that encode different component enzymes were combined. The basic C40 carotenoid

building block is constructed by two synthases. The inclusion of a phytoene desaturase

(crtI) and lycopene cyclase (crtY) allowed the C40 backbone to be modified to produce

distinct carotenoids. These two modifying enzymes control the number of double bonds

and the formation of cyclic rings, respectively. Libraries of crtI and crtY genes were

created through the recombination of homologous genes. The production of different

carotenoids could be visualized by the change in color caused by these modifications.

Mutants were found that produced carotenoids with different degrees of desaturation

(fewer double bonds results in a yellowish color, more double bonds results in a pinkish

color) and different degrees of cyclization (resulting in a orange-red to purple-red color).

One clone produced torulene, a carotenoid that had not been previously observed in

organisms that contain these parental biosynthetic genes. Organisms that produce
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torulene in nature do so by a different metabolic route. These experiments demonstrate

that applying directed evolution to a secondary metabolic pathway can alter the range of

chemicals produced by the network and extend the product diversity beyond what is

produced by the parents.

5. Conclusions

Understanding the robustness and evolvability of biological systems is essential

for constructing algorithms that guide evolutionary design strategies. To quantify the

potential for evolutionary improvement, stability theory is useless as it is concerned with

the resilience of a single state of a system when variables are perturbed. In contrast,

evolution samples many states by perturbing the system’s internal parameters, such as

kinetic constants, interaction topologies, and component stabilities. A robust system has

the ability to sample many of these states while preserving the fundamental behaviors of

the system. During this process of drifting through parameter space, new behaviors can

be sampled. Some systems have a higher capacity for such change and are therefore

evolvable.

The robust and evolvable properties of three hierarchies in biology have been

reviewed: the mutation of individual genes, the recombination of clusters of amino acids

from different genes, and the evolution of biological networks. While these systems have

some fundamental differences, there are many common motifs that confer robustness and

evolvability. In all of these systems, there are similar motifs that improve robustness,

such as the distribution of interactions, modularity, the separation of parameters

(additivity), and redundancy. These themes are common to biological systems not
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reviewed here, such as RNA structures, viruses, genomes, and whole ecologies. An

understanding of the basis for robust and evolvable systems in biology will facilitate the

design of a new generation of techniques in directed evolution.



7-30

Figure 7-1:

The behavior of a biological system is plotted as the function of some internal parameter.

When the behavior is robust, it is insensitive to large variation in parameter space (A). It

is possible that variation in a parameter can sample new behaviors (B). If this behavior is

attainable without having to go through dead parameter space, the behavior is evolvable

(C).
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Figure 7-2:

Some examples of robust and fragile architectures for a system of nodes and edges. If the

system is a protein structure, the nodes represent residues and the edges are amino acid

interactions. If the system is a protein network, then the nodes can be component proteins

and the edges represent protein-protein interactions. More robust structures have fewer

interactions (A – left), a scale-free-like distribution of interactions (B-left), and a modular

structure (C – left). Modularity does not necessarily have to be on the level of

interactions. The most robust two-dimensional protein structure, as determined by

Wingreen and co-workers, is shown on the left, where gray lines mark the progression of

the carbon backbone (Li et al., 1996). This structure represents the repetition of a smaller,

robust motif that is not ascertainable from the interaction topology (black lines, right).
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Figure 7-3:

The knockout graphs of HIV RT ( ), T4 Polymerase (∆), and an antibody ( ) are shown

(Suzuki et al., 1996; Daugherty et al., 2000). A steeper initial slope indicates the behavior

is more sensitive to mutations. Note that the same protein could have different slopes if

different behaviors (or different stringencies) were measured. At high mutation rates,

there is a transition in the slope, implying the emergence of compensating mutations.
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Figure 7-4:

The segment polarization network of Drosophila, as modeled by Odell and co-workers

(von Dassow et al., 2000). (A) The topology of the network showing the interactions

between proteins, including intercellular interactions. The behavior of this network is to

produce a specific pattern of expression for a group of cells (B). The wild-type behavior

was found to be remarkably robust. Often, the parameters controlling the network could

be varied by several orders of magnitude (C). In addition to the robustness, it was found

that varying some parameters could change the behavior of the network (different

expression patterns), indicating that the network is evolvable.
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Figure 7-5:

The range of carotenoids (A) and their colors (B) that can be created through directed

evolution (Schmidt-Dannert et al., 2000). The crtE and crtB enzymes create the initial

C40 backbone (top, left). This can then be transformed into different carotenoids by

desaturating bonds with crtI and cyclizing the ends with crtY. By evolving the properties

or crtI and crtY, the production of a variety of carotenoids was possible.
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Appendix A

Higher-Order Moments of the Mutant Distribution

The nth-moment of the mutant fitness distribution is calculated from

( )n
n ww ><−=µ , (A-1)

giving the familiar equation, µ2 = <w2> − <w>2, for the second moment. The more

familiar standard deviation is simply σ = √µ2. Note that there is a difference in the

naming convention between Chapter 2 and this appendix. Here, amino acid a at residue is

indicated by ai, not ia. First, we square Equation (2-24),
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Then, w is squared such that
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and expanded to
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and averaged over all amino acid sequences
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Finally, subtracting A.3 from A.6 gives the second moment,

∑∑∑∑

∑∑∑ ∑ ∑

∑∑∑ ∑ ∑

∑∑∑∑∑∑∑









−∆+







 −∆∆+









−∆∆+







 −∆∆+






 −∆=

≠′

′
′′

≠′

′
′′

′ ′

′ ′

N

i

N

j aa bb

jiji
ij

i
N

i

N

j

N

jj aaa bbb

jji
jiij

j
N

i

N

ii

N

j aaa bbb

jii
jiij

i
N

i

N

j aa bb

ji
iji

N

i a b

ii
i

ji ji

jji jji

jii jii

ji ji

C

PP

C

PPb

C

P

C

PPPb

C

P

C

PPPb

C

P

C

PP
b

C

P

C

P

, ,

2
2

,, ,,

2

,, ,,

2

, ,

2
2

1
4

1
4

1
4

11

γ

γγ

γγ

γγγµ

. (A-7)



B-1

Appendix B

Dead-end Elimination and Monte Carlo Entropy Calculations

Mean-field theory is an approximate method and is expected to worsen as the

coupling in the system increases. To overcome this problem, we have developed two

algorithms that calculate the entropy based on a series of minimizations performed by the

dead-end elimination (DEE) algorithm or a Monte Carlo (MC) simulation.

The DEE-entropy algorithm calculates the substitution energy of all amino acids

at all positions in the wild-type amino acid background (Figure B-1). First, a residue is

chosen (residue i) and the remaining residues in the structure are held in their wild-type

amino acid identity. Then, residue i is assigned an amino acid identity a. The flexibility

of all the amino acid side chains are discretized into rotamers and the global minimum

energy conformation is found using the DEE algorithm. This minimum energy is then

assigned to that amino acid at that residue. This procedure is used to find the energy of all

twenty amino acid substitutions at residue i. This process is repeated for all residues in

the protein so the outcome of the algorithm is the energy for all single-mutant amino acid

substitutions at every position.

The probability of each amino acid at each residue is calculated from the energies

using a Boltzmann weighting,

∑ −
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, (B-1)

where A = 20 is the total number of amino acids, p(ia) is the probability of amino acid a

existing at residue i, and E(ia) is the energy of amino acid a at residue i. The entropy si is

then calculated using Equation (3-2). The temperature in (B-1) is similar in interpretation
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to the mean-field temperature in that it represents a threshold energy, above which

sequences are unstable (Figure 3-1). When the entropies calculated by the mean-field

algorithm and DEE-algorithm are compared, both algorithms agree on the assignment of

the high entropy positions (Figure B-2). The disagreement increases for the low entropy

residues. This is, in part, due to the mean-field assumption. As the coupling between

residues increases, this assumption becomes less valid (see Chapter 6). Also, the

restriction that the DEE algorithm must calculate the substitution energies based on the

wild-type amino acid background leads to disagreement between the methods.

Monte Carlo methods can also be used to calculate a sequence entropy (Figure

B-3). First, the rotamer conformation is minimized for a structure. From the global

minimum energy conformation (GMEC), a Monte Carlo algorithm is run where rotamer

substitutions are made at random and accepted with a weighted probability if the mutant

sequence is higher in energy than the previous rotamer sequence. During the Monte Carlo

run, the rotamer sequences that are within a cutoff energy from the GMEC sequence are

recorded (Figure B-3). At the end of a defined number of Monte Carlo steps, the set of

low-energy sequences is used to calculate the sequence entropy. The probabilities that

each amino acid exists at a residue are calculated by counting by the number of times that

amino acid appears in the low-energy list and dividing by the total number of low-energy

sequences. The sequence entropies can then be calculated using Equation (3-2) (Figure

B-4). While the high entropy residues remain approximately the same, many mean-field

low-entropy positions are predicted by Monte Carlo to have zero entropy. This could be

due to the limited sampling of the Monte Carlo algorithm.
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Figure B-1:

A schematic is shown for the DEE-entropy algorithm. First, a residue is chosen and all

twenty amino acids are substituted at that residue. For each substitution, the minimum

energy conformation is obtained using dead-end elimination. After all substitutions are

made at all residues, the resulting list of energies is used to produce the entropy profile.

This is a more exact method than the mean-field algorithm, but is limited to making point

substitutions in the wild-type amino acid background.
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Figure B-2:

A comparison of the entropy calculated by the mean-field algorithm and the DEE

algorithm for the T4 lysozyme structure. Both algorithms identify find the same high-

entropy positions, but differ in their rank ordering of low-entropy positions. This is a

demonstration of the fact that the mean-field approximation is less accurate at highly

coupled positions.
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Figure B-3:

An example of the sequence list obtained by a Monte Carlo sampling from the GMEC.

The structure used is antibody D1.3 (from Chapter 4) and only residues 24−34 are shown.

The GMEC is the first sequence in the list and the other sequences are ranked according

to energy. If the amino acid of a mutant sequence is the same as the GMEC, this is

marked with a ‘|’. Only forty sequences are shown here; typically, over 10000 are

recorded in order to calculate the sequence entropies of each residue.
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24A 25A 26A 28A 29A 30A 31A 32A 33A 34A
-485.4186 GLU ALA THR ASP VAL TYR PHE PHE ILE ALA
-484.9586 | | | | | | | | | |
-484.7058 | | | | | | | | | |
-484.6677 | | | | | | | | | |
-484.6606 | | | | | | | | | |
-484.6336 | | | | | | | | | |

-484.627 | | | | | | | | | |
-484.572 | | | | | | | | | |

-484.5691 | | | | | | | | | |
-484.4584 | | | | | | | | | |
-484.4427 | | | | | | LEU | | |
-484.4276 | | | | | | | | | |
-484.4043 | | | | | | LEU | | |
-484.3664 | | | | | | LEU | | |
-484.3235 | | | | | | | | LEU |
-484.2793 | | | | | | | | | |
-484.2761 | | SER | | | | | | |
-484.2675 | | | | | | | | | |
-484.2586 | | | | | | | | | |
-484.2077 | | | | | | | | | |
-484.2007 | | | | | | | | | |
-484.1314 | | | | | | | | | |
-484.1204 | | | | | | | | | |
-484.1074 | | | | | | | | | |
-484.0949 | | | | | | | | | |
-484.0793 | | | | | | LEU | | |
-484.0732 | | GLN | | | | | | |

-484.048 | | | | | | | | | |
-484.0299 | | | | | | | | | |
-483.9904 | | | | | | LEU | | |
-483.9867 | | | | | | | | | |
-483.9828 | | | | | | LEU | | |
-483.9718 | | | | | | | | | |

-483.971 | | | | | | | | | |
-483.9572 | | | | | | LEU | | |
-483.9508 | | | | | VAL | | | |

-483.95 | | | | | | | | | |
-483.9265 | | | | | | | | | |
-483.9246 | | | | | | | | | |

-483.924 | | | | | | LYS | | |
-483.894 ASP | | | | | | | | |
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Figure B-4:

The entropies that are calculated by the mean-field and Monte Carlo algorithms are

compared. The data was obtained for the CDR residues of antibody D1.3. Many

residues are predicted by Monte Carlo to have zero entropy. This is due to the sampling

limitations of that algorithm.
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Appendix C

Adding Ambient Temperature to the Sequence Entropy

In the protein design model, the mean-field calculation is done on the rotamer

level. However, it is necessary to translate the rotamer probabilities into the amino acid

probabilities required to calculate the site entropies (Equation 3-2). In doing this

translation, it is necessary to include an additional temperature-the physical temperature

of the system-as well as the simulation temperature that arises from the variational

treatment. The physical temperature alters the importance that multiple rotamers of an

amino acid have acceptable energies at a given residue. A high temperature biases the

amino acid probabilities to be high when multiple rotamers of that amino acid have low

energies. Conversely, a low temperature indicates that is more important for an amino

acid to have a single, acceptable rotamer. Conceptually, this is similar to the flexible

rotamer model where rotamers and sub-rotamers were considered (Mendes et al., 1999).

In the flexible rotamer model, the rotamer temperature and sub-rotamer temperature are

equal.

The two temperatures can be included into the mean-field derivation by

introducing a new free energy to be minimized is

SSA
STFE −= , (C-1)

where E is the variational free energy, <F>A indicates the free energy averaged over all

sequences, TS is the sequence temperature, and the sequence entropy is

)(ln)( apapkS i

N

i a
iSS ∑∑−= . (C-2)
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The probability that amino acid a exists at position i is the sum of the rotamer

probabilities

∑
∈

=
ar

ii rpap )()( (C-3)

where r∈ a indicates the set of all the rotamers for amino acid a,

The free energy is

ARRAA
STUF −= , (C-4)

where TR is the rotamer (physical) temperature. The internal energy averaged over all

sequences is
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and the rotamer entropy is
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The total free energy can then be written as
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where βR and βS are the inverse sequence and rotamer temperatures, and µ are the

lagrange multipliers such that the rotamer probabilities sum to unity at each position. The

derivative of the free energy for all pi(r) is set to zero so
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Solving for µi, and rearranging gives
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Equations (C-9) and (C-11) demonstrate that the entropy contribution can be neglected

when βR ≅ β S.
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Appendix D

Calculating a Joint Entropy for Two Structures

This work was done in collaboration with Deepshika Datta in the Mayo group, who has
run the DEE calculations and is making and testing the protein G and engrailed
homeodomain variants.

Protein evolution can be described as a random walk in sequence space. This

space consists of all combinations of amino acids, connected through single mutational

moves. Through rounds of mutagenesis and selections, a sequence or population of

sequences drifts can drift through this space (Eigen and McCaskill, 1989). During this

process, not all of sequence space is accessible. Most amino acid combinations are either

unfolded or non-functional. The fraction of sequence space that retains structure or

function defines the topology of the space that can be reached via evolution (Taverna and

Goldstein, 2000).

It is particularly interesting to understand the relationship between sequence space

and the space of all possible three-dimensional structures (Figure D-1). There are far

fewer structures than sequences, so the mapping of structure space onto sequence space is

highly degenerate (Chothia and Lesk, 1986; Aronson et al., 1994; Cordes et al., 1996). In

addition, diffusion through sequence space is much faster than diffusion through structure

space (Govindarajan and Goldstein, 1997). This is determined by the connectivity of the

space. If more than a few mutations separate the portions of sequence space

corresponding to different structures, then it is unlikely that evolution will be able to

discover the new structure (Blanco et al., 1999). However, if the spaces corresponding to

different structures are interwoven, as is the case with RNA secondary structures, then
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evolution can rapidly discover new structural topologies through diffusion (Fontana and

Schuster, 1998).

It is desirable to characterize sequence-structure map from two perspectives. First,

the problem of understanding the minimal number of amino acid substitutions to convert

one structure to another has been defined as the “Paracelsus Challenge” (Rose and

Creamer, 1996). Using sequence comparison and rational substitutions, the closest two

sequences have converged is 50% identity, which is a huge separation in sequence space

(Blanco et al., 1999). Second, it is useful to understand the energetics of converting one

structure into another (Glykos et al., 1999; Cordes et al., 1999). A switch could be

achieved through some external perturbation, such as through the addition of a metal

ligand that stabilizes one of the structures. The computational tools used to study inverse

folding have the potential of making progress towards understanding both of these goals

(Babajide et al., 2001; Koehl and Levitt, 2002). There is theoretical evidence that

designing a sequence to be close in sequence space for two structures is equivalent to

designing a sequence to be close in energy to two structures (Bornberg-Bauer and Chan,

1999; Wang et al., 2000)

Measuring the sequence entropy effectively provides a set of amino acid

sequences that are consistent with a structure (Chapter 3, Appendix B). By comparing the

entropy profiles for two structures, those residues can be identified that are important

contributions to each structure (Figure B-2). For example, if a residue has a high entropy

in protein G, but a low entropy in engrailed homeodomain, this indicates that the protein

G sequence can traverse towards engrailed in sequence space, but not vise versa.

Similarly, when a residue has a high entropy in for both structures, this means the amino
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acid identity at this position is not important in either structure and this dimension in

sequence space can be traversed by both.

There is a limitation to simply comparing the sequence entropy for two structures.

If at residue i, amino acids 1-10 are allowed with equal probability in protein G and

amino acids 11-20 are allowed in engrailed with equal probability, then the entropy at

this position would be high. However, there is no single amino acid that can adopt both

structures. This is a particular problem when considering binary patterning as one

structure may allow all hydrophobic amino acids and the other all hydrophilic amino

acids. This motivates the calculation of a joint probability that amino acid a exists at

residue i of both structure α and structure β,

)()()(, aaaa ipipip ββα = , (D-1)

where the individual probabilities represent the ability for amino acid a to exist in each

structure. If a probability is high for one structure, but low for the other, then this will

result in a low joint probability. If the two probabilities are high, then this means that the

amino acid can be substituted at that position for both. These probabilities can be

calculated by mean-field theory and then used to calculate the corresponding entropies

from Equation (3-2). The joint entropy for the protein G / engrailed comparison is shown

in Figure D-2. The specific amino acids that are allowed in both structures are shown in

Figure D-3.

The joint entropy profile provides guidance when trying to design a sequence that

is close to two structures in sequence space (or energy). Deepshika Datta is testing this

hypothesis by using the entropy profile to determine those residues that should be

mutated to produce a sequence that has very low energies in both the protein G and
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engrailed topologies. DEE was used to design these positions from two starting

sequences to test how close the two structures can come together in sequence space.

Further, several positions have been mutated to histidine that will collectively coordinate

a Ni ligand in the engrailed structure, but not the protein G structure. If a sequence that

spontaneously folds into protein G is close in energy to the engrailed structure, then the

addition of this metal could facilitate a structural switch. These ideas are currently being

tested in the Mayo lab.
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Figure D-1:

A cartoon is shown demonstrating the mapping between sequence and structure space.

Sequence space is the set of all possible amino acid sequences for a given protein length

and structure space is the set of all possible structures. These structures are somehow

distributed in sequence space, although the properties of this distribution remain unclear.

The goal of the joint entropy algorithm is to identify those directions in sequence space

that will lead to the conversion of one structure into another (black arrows).
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Sequence Space Structure Space
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Figure D-2:

(A) The sequence entropies are compared for protein G (blue) and engrailed

homeodomain (green) for T = 400 K. The numbering convention is for engrailed, so the

first residue is residue six of protein G. Regions of high entropy in both profiles indicate

that the amino acid identity is unconstrained for both structures, whereas a dual low

entropy means the wild-type amino acid is fixed in both structures. A residue that has a

high entropy for structure A and a low entropy for structure B indicates that a mutation

can be made to convert the sequence from A to B, but not vise versa. (B) The joint

entropy of the two structures as calculated from Equations (D-2) and (3-2).
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Figure D-3:

The amino acids are listed that are predicted to be acceptable in both the protein G (blue

sequence) and engrailed homeodomain (green sequence) structural contexts. The amino

acids for which p(ia) > 0.1 for both structures are shown in red and p(ia) > 0.01 are shown

in black. The numbering convention is for engrailed, so the first residue is residue six of

protein G. Residues for which the amino acid identity is identical in the parents are

indicated.
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Appendix E

Combinatorial Libraries Based on Schema Disruption

These calculations were inspired by experiments being performed by Jonathan Silberg
and Michelle Meyer in the Arnold group. They performed all of the experiments
described in this appendix.

The schema profile described in Chapter 5 provides a method to visualize where

crossovers are likely to disrupt the three-dimensional structure. The profile condenses

higher-dimensional information in a way that can be rapidly calculated and visualized.

The difficulty with the profile is that nearly every position in the protein structure could

be an acceptable crossover if a proper set of additional compensating crossovers is made.

A minimum in the profile predicts that this is unlikely when the average fragments size is

large (the number of crossovers is small). This appendix aims to test this assumption and

to introduce new computational tools for visualizing disruption for constructing and

analyzing libraries for which the number and location of crossovers are fixed. A

motivation for this work is to develop computational methods to complement

experimental strategies for analyzing the quality of shuffled libraries (Joern et al., 2002).

A library that is constructed with a fixed set of defined crossovers can be

computationally analyzed by creating all possible hybrids and testing the disruption of

each. It is desirable to find a set of crossovers that enriches the fraction of the library that

is predicted to be functional. If two parents are being shuffled, a library of c defined

crossovers produces 2c+1 hybrids, half of which have to be computationally analyzed.

This is because the schema theory predicts that the disruption caused by a hybrid

sequence and the inverse parental heredity is identical.
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Three libraries of hybrid TEM-1/PSE-4 β-lactamases are studied (Figure E-1).

The MIN library corresponds to a crossover at every minimum in the schema disruption

profile. The MAX library corresponds to a crossover at every maximum in the library.

Both of these libraries have seven crossovers, corresponding to 256 possible hybrids. In

addition, a library corresponding to crossovers at both the minima and maxima (MIN-

MAX) is analyzed. This library has thirteen crossovers, corresponding to 16384 hybrids.

For the TEM-1/PSE-4 system, it was experimentally found that there is a

transition in disruption at ~ 28 before function is lost (Figure 5-9). After calculating the

disruption of each library, the fraction that is below this transition is determined (Figure

E-2). The MIN library is the most enriched, with nine (7%) low disruption hybrids and

the MAX library has four (3%) low disruption hybrids (Figure E-3). When the locations

for acceptable crossovers are compared with the schema disruption profile, the minima in

the profile tend to have more crossovers. However, it is not impossible for crossovers to

occur near maxima, only less likely. An exception to the inverse correlation is the region

around residue 105, which is a minimum in the profile, but few crossovers occur in the

designed libraries. The MIN-MAX library has the most low-disruption hybrids (54), but

this is a small fraction of the entire library (0.5%) (Figure E-4). When compared to the

schema disruption profile, an inverse correlation exists, but is not as strong as was

observed for the MIN and MAX libraries. This is due to the smaller fragment size (14

residues) in the MIN-MAX library as compared to the MIN and MAX libraries (33

residues). The assumptions behind the construction of the schema disruption profile are

not valid for small fragment sizes.
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The MIN-MAX library was constructed experimentally by synthesizing

oligonucleotides to correspond to each of the fourteen fragments. Each fragment had

sufficient DNA overlap so that the hybrid library could be combinatorially constructed

via PCR techniques. Members of the naive library were sequenced to confirm that the

fragments were incorporated without bias. The library was then screened for activity

towards the degradation of ampicillin. The hybrids that survive this selection are strongly

biased towards having a low disruption (Figure E-5). It is found that the low-disruption

hybrids are over 200-fold enriched in the selected library. Based on this library analysis,

it is found that the transition is slightly higher than observed in the smaller two-cut

library presented in Chapter 5. Based on the MIN-MAX library, the transition is around

35. These results demonstrate the importance of considering the disruption in designing

targeted libraries. Further, by analyzing the small number of high-disruption hybrids that

survive selection, the parameters used to calculate the disruption can be more finely

tuned.

The optimal set of seven crossovers to produce a library should satisfy two

constrains: a large fraction of the library should be folded, and the folded hybrids should

be diverse. Diversity can be measured as the number of effective mutations that occur for

a hybrid. The three libraries that have been studied were constructed using the schema

profile as a guide, but there are many possible sets of crossovers that satisfy the profile. It

unclear as to whether the MIN library, where a single crossover is placed at each

minimum, is truly the optimal seven-crossover library. Libraries were constructed from

sets of seven randomly assigned crossovers to examine the limits of optimizing the

crossover locations. A minimum fragment size of ten residues is enforced. For each
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library, the schema disruption was computationally determined for all possible

combinations of fragments. Then, the fraction of the library that has a disruption below

28 and the average diversity in the low-disruption portion of the library is recorded. This

process is repeated for 100,000 libraries of randomly chosen crossovers and some of

these libraries are highly enriched in diverse, low-disruption hybrids (Figure E-6). When

the crossovers that occur on the low-disruption hybrids are compared with the schema

disruption profile, an inverse correlation is observed (Figure E-7). Optimal sets of

crossovers can also be identified that produce 40% low disruption hybrids with an

average of 40 mutations per sequence. The best set of crossovers found in the 100,000

random libraries is shown in Figure E-7B.
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Figure E-1:

The three TEM-1/PSE-4 β-lactamase libraries referred to in this Appendix are shown.

The MIN library has crossovers at each minimum of the schema profile. The MAX

library has crossovers at each maximum of the schema profile. Both the MAX and MIN

libraries have seven crossovers, corresponding to eight fragments. The MIN-MAX library

has thirteen crossovers (fourteen fragments), where each fragment corresponds to a

maximum and minimum of the schema profile. The average fragment in the MIN and

MAX libraries is 33 and the MIN-MAX library is 14.
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Figure E-2:

The fraction of each targeted library that has a crossover disruption less than the

threshold beyond which function is lost. The MIN library is enriched with 7% functional

hybrids whereas the MAX library has 3% functional hybrids. The MIN-MAX library has

the most functional hybrids, but the fraction is on 0.5% because the size of the library is

much larger than the MIN or MAX libraries.
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Figure E-3:

(A) The hybrids that are predicted to be functional in the MIN and MAX libraries are

shown with the predicted disruption. The average number of fragments that are shuffled

in the MIN library is 2.11 and the MAX library is 1.75. (B) The number of crossovers in

the MIN and MAX libraries is compared with the schema profile. There is an inverse

correlation: more crossovers occur at minima in the profile. The exception is at residue

105, which is a minimum, but very few crossovers occur at this residue.
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Figure E-4:

(A) The hybrids that have a calculated disruption below 28 are shown for the MIN-MAX

library. There are more viable hybrids than the MIN or MAX libraries, but the fraction of

low-disruption hybrids is less because the MIN-MAX library has many more possible

hybrids. (B) The results in (A) are compared with the schema disruption profile. There is

still an anti-correlation between the number of crossovers and the schema disruption, but

the relationship is less strong than in the seven crossover libraries. This is due to the

smaller average fragment size (14 versus 33 for the MIN and MAX libraries).
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Figure E-5:

The experimental results from the selection experiment with the MIN-MAX library are

shown. (A) The blue line represents the distribution of disruption that is contained in the

entire unselected library. The red line shows the distribution of the hybrids that survive

selection on ampicillin with a MIC > 20 µg/ml. The selected distribution is significantly

shifted towards low-disruption hybrids. (B) The enrichment of the selected library is

plotted as a function of the disruption. Here, the enrichment is defined as the ratio of the

probability of a hybrid being found in the selected library to the probability of being

found in the unselected library. The low-disruption hybrids have over 200-fold

enrichment in the selected library.
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Figure E-6:

The properties of 10,000 libraries with random sets of seven crossovers are shown. The

minimum fragment size was restricted to be 10 residues. For each library, the fraction of

the library with a disruption below 28 (Eαβ ≤ 28) was calculated as well as the average

diversity in the low-disruption hybrids. The diversity was calculated by counting the

average number of effective mutations that occur for each hybrid with a schema

disruption below 28. The optimal libraries are in the upper right portion of the graph.

These sets of crossovers correspond to the largest and most diverse libraries. While the

MIN library (red point) is better than the MAX library (blue point), there are more

optimal libraries.
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Figure E-7:

The properties of 100,000 randomly generated libraries of seven crossovers are shown.

(A) All of the crossovers that lead to hybrids with disruption below 28 are shown. For

these data, there are no fragment size or diversity restrictions. With the exception of the

region around residue 105, crossovers are less likely to occur at maxima in the schema

disruption profile. (B) The properties of 100,000 libraries of seven randomly generated

crossovers with the additional restriction that crossovers cannot occur within 10 residues

of each other. The subset of libraries that have greater than 25% of hybrids with

disruption less than 28 and an average diversity greater than 35 (Figure E-6) are shown.

The best set of crossovers found is marked above the graph (40% of the library is low-

disruption and the average diversity is 40.4 effective mutations per low-disruption

hybrid).
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Appendix F

Non-homologous Recombination

It has been observed that certain structural motifs are ubiquitous in proteins

(Orengo et al., 1994; Orengo et al., 1997). The underlying cause of this observation is

unclear. It is possible that motifs exist because they represent topologies that fold rapidly,

they are robust to mutagenesis, they are functionally important, they represent biases in

structure-determining experiments, or they are the result of evolutionary accident. It is

intriguing to think that motifs could have emerged early in evolution and then were

combined by recombination to create more complicated topologies. In Chapter 5, it was

demonstrated that recombination tends to preserve clusters of interacting amino acids

when parents sharing homologous structures are recombined. When the structures of

these clusters, or schema, are compared between non-homologous proteins, common

subunits are detected. In this appendix, we study the prevalence of β-lactamase schema in

the protein structure database (PDB) and experimentally swap a schema from MADS box

into β-lactamase.

The sequence identity between schemas from two non-homologous parents is

expected to be low, so the schema profile is calculated from the TEM-1 structure with no

probability matrix (Figure F-1). This divides the protein structure into schema that are

similar to those presented in Chapter 5. The PDB is then searched using the

combinatorial extension of the optimal path (CE) algorithm (Shindyalov, and Bourne,

1998). The CE program is particularly useful because it can compare smaller fragments

than competing search algorithms. Still, several of the schema are too small to record

matches in the database. To overcome this problem, schema 1 and 2 and schema 8 and 9
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are combined to create a larger subunit. Even though schemas 4 and 6 are also small,

combining them with adjacent schema does not increase the total number of structures

discovered.

The results of the PDB search are shown in Figure F-2. Of the matches that are

found, the homologous proteins (such as β-lactamase variants) are removed. In addition,

multiple matches for a single protein (such as a set of HIV RT variants) are counted only

once. Of the positive matches, most correspond with schema 1+2, 3, and 8+9. These

schema participate in a larger, non-contiguous domain that has been identified previously

to commonly occur in proteins (Orengo et al., 1994; Orengo et al., 1997). Despite this,

there are examples where each of these schema occur independently (Figure F-3). It is

interesting that while these matches correspond with a schema in β-lactamase, they are

not necessarily complete schema in the non-homologous structure.

Schema 1+2 is found in many non-homologous structures. In addition, it was

successfully swapped between the PSE-4 and TEM-1 sequences (Chapter 5 – hybrid 4A).

For these reasons, it is chosen as a good candidate to test recombination between non-

homologous structures. When the best matches to schema 1+2 are compared, their rms is

nearly identical (Figure F-4). However, there are several problems in predicting whether

they can be swapped between structures. One problem is the variability in the connection

point between the schemas. It may impossible to twist a non-homologous schema 1+2

into the background of the β-lactamase structure. This may be overcome by introducing a

variable peptide sequence to connect the schema when they are recombined (O’Maille et

al., 2002). Another problem is the disparity between the properties of the amino acids

when compared in a sequence alignment. The most striking problem is the lack of a
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common binary pattern. Some of the non-homologous matches to schema 1+2 are

completely buried in their wild-type structural context and are therefore entirely

composed of hydrophobic amino acids. In contrast schema 1+2 is relatively exposed in β-

lactamase and has a distinct binary pattern. The non-homologous schema 1+2 that is the

closest in rms and amino acid properties is from a transcription factor, MADS box

protein (Figure F-5). The binary pattern is fairly conserved despite sharing only 11%

amino acid identity with TEM-1 and 6% identity with PSE-4. However, there are some

notable amino acid substitutions at residues that are conserved.

The DNA fragment corresponding to the MADS box protein was constructed via

recursive PCR from oligos that contain the codons optimized for expression in E. coli.

The DNA fragments corresponding to the remaining portions of TEM-1 and PSE-4 were

then generated via PCR as described in Chapter 5. The entire gene was then constructed

using the SOEing procedure and was then inserted into the PMON vector. The

reconstructed gene was sequenced to confirm that no mutations had been made. The

vector was then transformed into XL1-Blue cells and plated on increasing concentrations

of ampicillin. No cells grew on plates with 10 µg/ml ampicillin, indicating a complete

loss of β-lactamase activity.

While this experiment represents a single unsuccessful recombination attempt, it

does expose some of the difficulties underlying the swapping of non-homologous

schema. Most importantly, the structural context may dominate the ability for one subunit

to be inserted into a different structure. Interesting future experiments include the attempt

to evolve the TEM/MADS hybrid to regain stability or activity, the development of
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selections for stability, and the testing of adding connecting peptides between schema

when recombining very divergent sequences.
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Figure F-1:

The schema profile is shown for β-lactamase TEM-1 without any parental sequence

identity. The minima of the profile are marked by the dotted lines and the structures of

the schema are shown above the graph. The first two and last two schema are combined

because the CE search algorithm poorly scores small fragments. The active site residues

are S70, E73 (schema 3), and K166 (schema 5).
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Figure F-2:

The number of unique matches found in the protein databank, as discovered by the CE

algorithm (Shindyalov and Bourne, 1998). All of the β-lactamase variants and redundant

structures were removed from this list. Schemas 1+2 and 8+9 are participating in a non-

contiguous domain that has been identified previously as a motif in protein structures

(Orengo et al., 1994; Orengo et al., 1997).
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Figure F-3:

Six representative structures found in the protein databank that contain schema 1+2. The

structural context of the schema differs greatly between the structures. For example, in β-

lactamase, this schema is largely exposed whereas in myosin it is entirely buried. The

transcription factor shown is MADS box.
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Figure F-4:

The twelve structures of schema 1+2 with the closest rms to β-lactamase are overlaid.

While the backbones of the schema are very similar, the amino acid content of the

sequences varies significantly. A concern in shuffling non-homologous schema is

whether the end points of the divergent schema will properly connect (dotted circle).

Allowing for insertions at the connection points may overcome this problem (O’Maille et

al., 2002).
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Figure F-5:

(A) The sequence for schema 1+2 of TEM-1 and PSE-4 is compared with the MADS box

protein sequence. There is very little amino acid sequence identity shared between

MADS box and the β-lactamases (11% with TEM-1 and 6% with PSE-4). To illustrate

differences in the binary pattern, the hydrophobic amino acids are shown in blue and the

polar residues are shown in red. Each disagreement in the binary pattern is highlighted in

yellow. A conserved glycine residue is also shown. (B) The binary pattern of TEM-1 and

MADS box are compared in the context of the three-dimensional structure.
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