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ABSTRACT

This thesis presents the results of computations for four
problems: two in the field of acoustics and two on the collapse of a
cavity in a liquid. The first is an analysis of echoes from a solidhomé—
geneous sphere in water, and demonstrates that the vibrations induced
in the solid material by incident sound waves have animportant effect on
the form of the echo. Various materials are examined and the theory is
shown to provide a satisfactory explanation for echoes observed in sonar
work. The second problem deals with the far-field radiation patterns
formed by different types of source distributions on the surface of a
rigid sphere, and demonstrates the effect of the shape of a transducer
and its housing on such radiation patterns. The problem of the binaural
localization of sound sources is also considered. The third problem is
concerned with the behavior of a thermally conducting gas inside a col-
lapsing cavity in a liquid. It is shown that, for bubblgs of an appropriate
size, thermal conduction in the gas can account for the varying intensi-
tie\s of sonoluminescence which have been observed when different gases
are dissolved in water. In the final problem, the shock waves which
form in the liquid as a result of a cavity collapse are investigated. It
is estimated that such shock waves could be a potent cause of cavitation

damage.
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GENERAL INTRODUCTION

The results presented in this thesis were obtained largely through
the use of a high speed computer. The problems considered come from
two areas of basic engineering interest, namely the radiation and
scattering of acoustic waves, and cavitation in liquids. These problems
have previously been subjected to a certain amount of analytical work.
In the case of cavitation several simplified solutions have been obtained,
although no solutions have been found for the more generalized equa-
tions of rﬁotion, while in the acoustic problems generalized closed
solutions have been derived but these are so complicated that their
implications are clear only in certain simple cases. In essence both
these difficulties amount to the same thing in that although the basic
physical processes are reasonably well understood, the behavior and
interaction of those processes under circumstances of even minor com-
plexity cannot be analyzed in a simple way. This situation is one which
has always confronted the research engineer. If he has a good know-
ledge of basic scientific principles, he can formulate appropriate
hypotheses. However, the complexities involved in most applications
force him to introduce drastic simplifying assumptions which often
reduce his estimates to the level of a well-educated guess. The advent
of high speed computers provides the means of overcoming this difficulty.
Intractable equations can be solved numerically and complicated closed
solutions evaluated for relevant specific examples. This is illustrated
in the work presented here. It is also shown how use of a computer
can aid ink the understanding of a physical process. For example in the
first problem, which deals with the reflection of sound by a solid elastic

sphere in water, the theory predicts quite closely the complicated echo



structures which have been observed in sonar work, Similarly in the
third problem it is shown how thermal conduction in a gas inside a
collapsing cavity can be a significant factor in determining the intensity
of sonoluminescence,

In the numerical solution of a problem there is always concern
with its correctness. A machine program will generally produce some
numerical results and it has to be shown that these are the appropriate
ones. Even if all known relevant numerical techniques and tests are
used, there can often be no absolute assurance in this regard. Itis
necessary therefore to have additional ways of demonstrating the cor-
rectness of the results. It must be shown that the solutions are con-
sistent within theméelves and with any related physical law, no matter
how trivial. It must also be shown that they include special simple
cases and asymptotic solutions. The most satisfactory test will al-
ways be of course to obtain a good consistent agreement with observa-
tion., These procedures are illustrated in the present work,

Finally it is perhaps necessary to comment on the relation be-
tween analytical and numerical work. Numerical solutions can in no
way be envisaged as an alternative or substitute for analysis. Analysis
provides the formulation and the guide-lines while numerical computa-
tion by a high speed computer is the extension of analysis made neces-
sary by the complexity of the problem.

Section A of Part I has been published in the October issue of
the Journal of the Acoustical Society 1962, Section B of Part II will
appear in the Physics of Fluids., It is expected that Section A of Part II

will appear in the Journal of the Acoustical Society.



PART I - ACOUSTIC RADIATION
AND REFLECTION FROM SPHERES

Infroduétion

It is possible to obtain closed solutions in terms of known func-
tions for a large number of problems in acoustics where the symmetry
allows the wave equation to be solved by the method of separation of
variables. These solutions are generally quite complicated and it is
only in the limits, when the wavelength is very large or when it is very
small, that they can be simplified into a readily understandable form.
Some work has been done to obtain higher order approximations in the
neighborhood of these limiting cases, but the problem of understanding
the behavior in the intermediate range of wavelengths has in general
remained unresolved, This is unfortunate because most acoustic phe-
nomena occur ";vithin this range.

There appear to be two possible ways of overcoming the diffi-
culty. The first is to attempt to express the solutions in a more simple
analytic form. The second is to accept the closed solutions as they
stand and to proceed with a direct numerical evaluation in cases of par-
tigular intérest. At present there has not been much success in the
first approach, and it is uncertain whether it is really practicable. On
the other hand not much progress has been made with the second method
because of the labor involved in the calculations. However this can now
be undertaken by high-speed computers and numerical solutions have
therefore become readily obtainable.

The work presented here is concerned with the numerical evalua-

tion of certain closed form solutions involving spherical symmetry.



Section A deals with the scattering of sound waves by a solid elastic
sphere in water, and in Section B, far field radiation patterns are ob-
tained for certain source distributions on the surface of a rigid sphere,
These results are mainly of interest to the sonar engineer. It is dem-
onstrated for instance in Section A that the multiple échoes which have
been observed from a sonar target of regular shape, can be ascribed to
the non-rigidity of the target - - a fact which has not been clearly ap-
preciated by workers in the field., Also, the results of Section B dem-
onstrate the importance of the shape of a transducer and its housing in
determining the form of radiation patterns. Some of the results of
Section B can also be applied to the problem of the binaural localiza-

tion of sound sources.



SECTION A - AN ANALYSIS OF ECHOES
FROM A SOLID ELASTIC SPHERE IN WATER

1. Acoustic Echoes

It is Well—know\;n in sonar work that the pulse form of the direct
echo returned by a stationary insonified target in watﬁer is usually quite
different from that of the original signal sent out by the transducer.
This effect can be observed even when the target has a regular shape as
in the case of a sphere. In the experiments which have been made, the
incident sound has consisted of single frequency, constant amplitude
pulses of various lengths, and the echo pulse generally appears in the
form of multiple echoes of the original pulse; i.e. compared to the
original pulse, the echo is generally longer and subject to amplitude
modulation. Presumably there are also differences in frequency con-
tent, but there does not appear to be any quantitative data available on
the subject.

If the body has an irregular shape it is possible to suppose that
this effect is due to echoes returned by the individual irregularities,.
However in the case of regularly shaped bodies with no abrupt changes
in curvature, such an explanation cannot be used. In this event it
would seem reasonable to suppose that the distortion in the echo is
caused either by diffraction or by vibrations occurring Within the solid
material of the target or by both. The frequencies used in sonar usual-
ly preclude the influence of diffraction, so that the observed effects
would appear to be due mainly to vibrations in the solid, Since the
density of any solid does not differ from that of Wate:t; by much more
than a factor of eight, it seems quite possible for the incident sound to

cause vibrations in the solid material of the target. In air the corre-
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sponding density ratio would be of the order of 104 so that a target would
react more like a rigid body, with a consequent diminution in echo dis-
tortion.

It is the purpoée of this paper to test the validity of this hypo-
thesis in the case of a homogeneous solid sphere supi)orting shear and
compressional waves. Suitable experimental data[ L] has recently be-
come available and this is compared with calculated results based on
known formal solu‘cions[z:E ’ [31 These results were obtained using a

high speed computer. Previous calculations have been made for

fluid[ 4]amd rigid[ 5]sphe res.

2. Formulation of the Problem for the Solid Elastic Sphere in Water

The coordinate system for the sphere is shown in Fig. 1 where
the relationship between the cartesian and spherical polar coordinates
is

x =r sinf cos¢
y =r sin 8 cos ¢ ,

z =1 cos @ . (1)

The sphere is assumed to consist of solid isotropic material support-
ing both compressional and shear waves. The displacement vector e

can be expressed,using the vector and scalar potentials A and U, as

[6]

follows
W =-V§+ VXA (2)
where

V2§ = (1/c12)32¢/at2 , (3)



VZK:(l/c:)azA"/atz , (4)

describe the motion of the compressional and shear waves respectively.

¢ and c_ are the compressional and shear wave velocities defined by
1 2

nof

c = [E(l—()‘)/pl(l+o)(1—20‘)]

c - [E/zpluw)ﬁ , (5)

where E, p1 ,» 0 are the Young's modulus, density and Poisson's ratio
of the solid material of the sphere.

Outside the sphere there is a limitless fluid of density p and
sound velocity ¢ in which there is a continuous train of waves emanat-
ing from a point source situated on the z axis at r = T 6 = m. The
time dependence of these waves is of the form exp(-iwt) from which

the wave number k in the fluid is obtained by means of the relation
k =w/c = 2w/\
where \ is the wave length. Similar relations
k =w/c ; k =w/c
1 1 2 2

hold for the compressional and shear waves in the solid. The waves

[7}

emanating from the point source can be expressed

p; =P_ exp(ik D)/D

=ik P Z (2n+l)(—1)nPn(cos G)jn(kr)hn(kro) 0<r< r (6)
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D=[r?+2rr_ cos@+r?]?
) o

and the Pn are Legendre polynomials, and the jn’ hn are spherical
Bessel functions[8], ‘Plane waves incident on the sphere are obtained

by making r  go to infinity. Using the two limits

exp (ikD)/D — exp (ik ro) exp (ik r cos l?))/rO

B (kr ) — i P exp ik r )/kr, (7)

and removing the common factor exp (ik ro)/rO gives

p; = P, exp(ikr cos 6)

=P

[*0]
o E 2n+1)i p (cos 9)jn(kr) . (8)

n=

e}

The above waves, P;» incident on the sphere result in scatter-

ed waves in the fluid which will be of the form

OC ,

p = O§ cnhn(kr)Pn(cos 6) | (9)

s
n=o0
where the coefficients c, have to be determined from the boundary
conditions atthe surface of the sphere. The appropriate conditions are:
(a’) the pressure in the fluid is equal to the normal
component of stress in the solid,
(b) the normal component of displacement of the
fluid is equal to the normal component of dis-

placement of the solid.



(c) the tangential components of shearing stress in

the solid vanish at the surface.

These conditions can b‘e expressed[9] in the relations
: ou
p.+p +2p c? 2 divu + =] =0 (10)
i S Pl 2 (I—ZO" or |-
u +u =u (11)
i, r S, T r
and
-ou u du
0 6 1 roo_
7 T Trwg O (12)

evaluated on the surface of the sphere at r = a. The displacement of

the fluid in Eq. 11 is obtained from Eqgs. 6 and 9 by using

u. _+u = (l/pwz) a(pi + ps)/ar . (13)

i, r s, T

Because of the symmetry of the incident waves, the component of dis-
placement uq”) is taken to be zero and the ¢ component of the shear-
ing stress can also be neglected. The only non-zero component of the

vector potential will be A‘f) so that the potentials become

o0
$ o= § anjn(k1 r)Pn (cos 6)

[+.¢]
A¢:nZo bnjn(kzr) d_de P (cos §) . e

Using Eq. 2 these expansions can be inserted into the boundary condi-
tions 10 - 12 and the coefficients of each normal mode equated. The
coefficients c. of the scattered waves in the fluid given by Eq. 9 can

then be expressed as follows,

c_ = k(-l)n.(znﬂ)hn(kro) sinn_exp(-in ) (15)



10

where the angle n, is given by

tan m, = - [J,GIF -3 (]/[n ()F -n' (x)] (16)
with
x §,M(x ) _ 2(n* 4n)j, (x )
Lo e % R (o 4n-2)j, (x4 25, "G )
T T T b)) 2t ) 5 )]
leJ ln(XI )_Jn(xl ) (n® +n- Z)jn(xz )+X;jn”(xz)
(17)
and
x=ka ; x =k a ; x =k a
I 1 Z 2

The primes denote the derivative with respect to the argument. This

(2]

result was first derived by Faran However there was an error in
his presentation in which the factor o/(l-20) was misplaced. Finally
it should be noted that the expression on the right hand side of Eq. 15 is
‘of the form f(x)/(f(x) + ig(x) ) where f, g are regular on the real axis.
Hence there are no singularities when the argument is real, and the
function can be integrated numerically in a straightforward manner., It
also follows that the solution as presented is complete for all frequen-
cies, i.e., the boundary conditions are fully satisfied by the shear and
compressional waves postulated in Eq. 14.

Certain limiting cases are of interest. If Fn_ﬁ’ 0, the solution
would then‘apply to scattering by a rigid immovable s'phere[ 10] . This

would be the case for instance when the density of the solid was very

much greater than that of the fluid, If Fn —> o the solution for



11
. . . . [11] .
scattering by a free surface sphere is obtained . This corresponds
to the condition where the normal stress at the surface of the sphere
vanishes, which would “result for example when the density of the mate-
rial inside the spherelwas very much less than that of the fluid.
From the above it follows that the echo returned by the solid

sphere to the source is given by

00
P Y
_ o | _ . s z i
P, = 2_1_'.0[ Zxo E/ (2n+1) sinn_ exp(-i n)h (XO)} exp(-iwt)
‘ n=o
Po
= -2-1—; f(x,xo,x1 ,Xz) exp (-ixT) (18)
where x = kro = xR, and T = ct/a. When the source is a large dis-

tance from the sphere

o0

P a
o 2 . . . »
p, = — = E (-1)(2n+1) sinn _ exp (—1nn) exp [1k(2ro—ct)]
o n=o
P a
= Zroz, fm)(x,x]I ,Xz) exp [ix(2R-7) | . (19)
o

Removal of a factor exp (ik 1'0)/1'O gives the solution for incident plane
waves. Equations 18 and 19 can then be used to construct the echo due
to a pressure pulse emanating from the source. Suppose the source
emits a pulse of form Pi(t). This can be expressed in terms of

Fourier components as

P c on
P.(t) = ___?__ S‘ g(k) exp [ik(D-ct) | dk (20)
(2m*D ~®

where D is as defined previously. The frequency spectrum g(k) is
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found by taking the Fourier transform of the given pulse, i.e.,

1 00
g(k)=

- Pi(t) exp [ ~ik(D-ct)] dt . (21)
(2m? %

With the new variable x =ka, the reflected pulse will be

Pc
P (7)=

e
(2m)

=10

" a0
S g(x) f (x,x ,x ,x ) exp (~-ixT) dx , (22)
-0 o 1 =z

N

‘ar
o

and when the point source moves to a large distance from the sphere

P )
Pn = —2— | g0 [ % % ) exp [ix(2R-7) | dx
2(2m?r ® T @

(23)

In general the echo given by (23) will differ in form from that of
the incident pulse (20). Only for high frequencies in the special cases

of a rigid and a free surface sphere will it be the same. It can be

[12]

shown that in the former case fm-_) exp (-2ix) as x becomes

large while for the free surface sphere fm_» -exp (~2ix). Hence if
the frequencies contained in the pulse are in the high frequency range,

Eq. 23 becomes

P
P (7%=

T

C e
S g(x) exp [ix(2R-2-7) ] dx
Lz —o0

wl- O

2{2m)

which means that the reflected pulse has the same form as the emitted
pulse, but is returned time Z(ro-a)/c later. This travel time indicates
that the sound is reflected from a point source reflector at the point on
the surface of the sphere nearest to the source of incident sound. A

similar result holds for the free surface sphere except that the pulse
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is inverted.

3. The Steady State Solutions

The steady sta;te solutions given by the functions f in Eqgs. 18,
19 were determined for a certain number of cases, ti'le calculations being
performed on a high speed computer. The results are shown in Figs.

2 - 13,

The first results obtained were for the special cases of the
rigid[lo]and free surface[ll]spheres fo:f a distant point source of con-
tinuous waves. These are shown in Figs. 2(a), (b). The agrument of
the function fm is presented divided by the variable x =ka. The
results for the rigid sphere are in agreement with those of Stenzel[5].

For low frequencies the function is given by the initial terms in the

series expansion which in the limit as x tends to zero are

é_[jO'(X) i 3jll(X)] . 3X2‘(1 ) iX3 >

x ho'(x) hl'(X)J 3
and
21 jo.(X) .
= E;(SZ)’ - 2(l-ix) ,

for the rigid and free surface spheres respectively. For the rigid
sphere this represents the well-known condition of Rayleigh scattering
where the scattered intensity is proportional to the fourth power of the
frequency. For the free surface sphere the results are quite different,
Not only does the scattered intensity reach maximum values at low
frequencies, but the scattering is unifbrm in all directions. For high
frequencies both solutions tend to the form exp(-2ix), the free surface

solution converging more rapidly than that of the rigid sphere. In the
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previous section, it was shown that this indicates that at high fre-
quencies the sound is mainly from a small area on the surface opposite
the source and this would agree with physical intuition. At low fre-
quencies the echo appqears to come from the center of the rigid sphere
and from a half radius position in the free surface séhere. As the fre-
quency increases the apparent origin of the echo moves gradually towards
the region on the surface opposite the source. This is shown in Fig. 2(b),
where the phase of fOO divided by x = ka represents distance along a
radius inside the sphe're. In the case of the rigid sphere these results
can be readily understood by supposing that low frequency waves are
intercepted by the entire cross section whereas high frequency waves
behave as in geometrical optics and form a '"bright spot'' reflector on

the surface oppdsite the source. With the free surface sphere the
results at low frequencies are not so readily explainable except that as
expected they differ from those for the rigid sphere.

The main body of results were derived for solid spheres sup-
porting internal shear and compressional waves. The properties of the
materials considered are given in Table I. The fluid outside the sphere
was assumed to be water of density 1 gm/cc and compressional veloc-
ity 1,410 m/sec.

As an initial test of the programs, the results obfained by
Faran[zlwere recalculated. Since these were for ¢ =% no error could
result from the misplacing of the factor ¢/(l-20) mentioned in the
previous section since this factor is unity. Good agreement was found.

Some of the results for the materials listed in Table I are given

in detail in Figs. 3 - 11. As before these are for a distant source.

Generally the range of frequency was for values of ka up to 30, but for



15

[13]

TABLE I
; Compressional
Density  Poisson's Velocity Shear Velocity
Material {gm/cc) Ratio o CI (m/sec) Cz(m/sec)
Beryllium - 1.87 0.05 12,890 8,880
Fused Silica 2. 20 0.17 5,968 3,764
Heavy Silicate,

Flint Glass 3.88 0,224 3,980 2,380
Armco Iron 7.70 | 0,29 5,960 3, 240
Monel Metal 8.90 0. 327 5,350 2,720
Aluminum 2.70 0. 355 6,420 : 3,040
Yellow Brass 8,60 0,374 4,700 2,110
Lucite 1.18 0.40 2, 680 , 1,100
Lead 11,34 0.43 1,960 690
tcel 14 0.917  0.336 2,743 1,433

Armeco Iron, ice and lucite the range extended to ka = 60, 20, 10 res-
peétively. In addition to the pressure amplitude the phase variation is
given for Armco Iron, and aluminum. In all cases the results begin at
low frequencies as though the solid were a rigid body, changiﬁg in
general into a fairly regular series of peaks and minima as the fre-
quency increases. With a rigid, incompressible material such as
beryllium, the change from the rigid body solution is not very great.
However, as the material becomes more compressible and pliant, the
resonances tend to become more pronounced and more closely spaced.
In the case of lucite and ice the resonances have become quite sharp

and close together. This general trend was investigated by considering
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an average frequency interval between minima or between resonance
peéké for each material. The results are shown in Fig, 12 plotted
against the shear velocity c, - Parameters other than c were also
considered such as Péisson's ratio ¢, but with these the scatter of
points was much greater. It appears therefore that 1':his feature is
most strongly dependent on the behavior of shear waves in the material.
The successive peaks and minima which occur in the direct echo for a

[2]

continuous frequency were shown by Faran™ ~to be due to strong lobes

of backscattered radiation forming and then splitting again into side
lobes scattering in other directions. It seems therefore that shear
waves play an important role in this process. Figs. 3 - 11 are arranged
in order of decreasing shear velocity and a gradual process of transi-
tion seems to bé apparent as this parameter is varied. As an independ-
ent parameter, the density of the material does not seem to have a very
pronounced effect except at very low frequencies where the size of the
first pressure amplitude peak appears to vary in direct relation with it,

- As the frequency increases there appears to be no tendency towards
some constant limit as in the cases of the free surface and rigid spheres.
The peaks seem to recur, but in an increasingly ragged form.

In the phase variations shown in Figs. 6 and 8 jumps in phase
occur at frequencies corresponding to minima in the preésure amplitude.
As with the rigid body the parameter (-arg fw/ka) is zero at the low
frequency limit and varies continuously as the frequency increases. Un-
like the rigid sphere however this variation does not tend towards a
limit where the apparent source of the echo correspoﬁds to physical

reality. The representation should therefore be regarded only as a con-

venient way of presenting the phase as a continuously varying function.
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In order to determine the effect of distance of the sound source
from the center of the sphere the function f in Eq. 18 was evaluated
for a point source at various distances from a rigid, a free surface,
and a brass sphere. The pressure amplitude Hf ] multiplied by R is
shown in Figs. 13 - 15, allowing a ready comparison with the solutions
for a distance source ]fm l . In general it appears that fm represents
a satisfactory solution when the sound source is situated more than 10

radii from the center of the sphere.

4, Echo Pulse Forms

The most obvious general feature in the steady state solution
for ordinary metals is the succession of peaks and minima in the pres-
sure amplitude and it is of interest to determine how this affects the
pulse form of the echo when the steady state solutions are used in the
integral expression 23 for a distant source. The incident pulse form
could be chosen arbitrarily. However in practice the incident sound is
generally produced by making a transducer resonate over several cycles
at a particular frequency. Mathematically the pressure variation which

results at a point in the fluid can be represented as follows,

Pi(t) =0 t< - At
= exp (—iwot) - At <t< At (24)
=0 t> At

where w_ is the angular frequency of the transducer at resonance, and
2 At is the duration of the pulse. The frequency spectrum g(w) is

given by the transform
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3o At
glw) = [_ZET?J y_&t exp [i(w-coo)t] dt

13
=|—|sin [(w-wo)At] / (w-—wo)
which is the non-dimensionalized system of Eq. 23 becomes

g(x) = [E] 2sin [ (x - XO) Ar] [/ (x - XO) (25)

™

where x, = «uoa/c and is referred to as the dominant frequency. By
use of Eq. 25 and the previously derived values of the function fm it is
then possible to obtain the pulse form of the echo by numerically integra-
ting Eq. 23,

The nature of the function g in Eq. 25 is shown in Figs. 16 -

18 for different pulse lengths A 7. The height of the main peak occur-
ring at the dominant frequency is equal to AT and its "'spread'' varies
inversely with AT, If the function Ifm ' is momentarily idealized as
consisting of a series of similar, equally spaced peaks, it would appear
that the form of the echo depends mainly on the pulse length and on the
location of the dominyant frequency relative to the maxima and minima
of the lfm I Two extreme cases would then arise depending on whether
the dominant frequency coincided with a maximum or with a minimum
of ]foo].

Using the data for Armco iron as shown in Figs. 5, 6 several
echo pulse forms were computed for different lengths of the incident
pulse and for dominant frequencies corresponding to values of x or
ka atk 24.5 and 25.5. The former frequency occurs at a peak of the
pressure amplitude and the latter at 2 minimum. The range of integra-

tion over ka for the longer pulses was from 15 to 35, while for the
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short 5 cycle pulse, it extended from 10 to 40, The incident pulse did
not therefore have a perfectly rectangular form. However in compari-
son to experimental pulse forms, it could be considered a satisfactory
approximation. In addition the irregularities introduced by restricting
the range of integration facilitated the recogﬁition of certain features
of the incident pulse in the echo. The calculated echoés are shown in
Figs., 16 - 18, The time scale for the incident pulse is chosen with
rkespect to the time of arrival of the mid-point of the pulse at the center
of the sphere, whereas the scale for the echo is chosen with respect to
the time of arrival back at the source. All pulses are shown travelling
from right to left. It can be seen from these figures that the leading
edge of the echo precedes th'a‘.c of the incident pulse by a time difference
of 2 in each case. In addition the leading edge of the echo is of the
same form as the leading edge of the incident pulse. These features
indicate that the first part of the echo consists of a rigid body reflection
from the region of the surface of tl;e sphere adjacent to the sound source.
The subsequent parts of the echo are affected by the vibrations of the
sphere. In the case of the five cycle pulse, the first echo is of identical
forrﬁ to the incident pulse, while the second echo is also of the same
form, but inverted. Subsequent echoes diminish in amplitude and lose
the characteristic features of the incident pulse. Whether the dominant
frequency occurs at a minimum or a maximum of the function Ifm]
does not appear to make much difference to the form of the echo for the
short five cycle pulse, but obviously it is important when the pulse is
‘longer. The reason can be seen from the frequency épectra shown in
Figs. 16 - 18. A change in ka of the order of 1 in the spectrum for
the short puise will not gfeatly affect the integral (23); however, this

is not the case for the longer pulses. The differences in form of the
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echoes shown in Figs. 17, 18 are in fact quite distinctive. It seems
moreover that the changes which occur when the dominant frequency is
moved from a maximum of Ifml to a minimum, are characteristic of any
ordinary metal, Figure 19 shows the echoes from a sphere of aluminum
for the same type of incident pulse, where these results were obtained
experimentally[”. With allowance for a change of scale and such effects
as the response of the transducer, the differences in the echo resulting
from a change in the dominant frequency are closely related to those
shown in Figs. 16 - 18. The sphere in this case had a diameter of 5
inches and the change in dominant frequency was from 120 kc/sec to
123.5 kc/sec. This is equivalent to a change in ka of about 1, which
according to Fig., 12 is the approximate distance between a peak and a
minimum of the function ]fm ' for most metals including aluminum.
Using the constants given above for water and aluminum, it is found
that 120 kc/sec does not in fact coincide with a peak of the steady state
reflection function 'fw ] . However this is not surprising since the
values used referred to rolled aluminum. In addition if the frequency is
to be expressed in terms of ka with any accuracy, it would be neces-
sary to know the velocity of sound in water under the conditions of the
experiment, and also the diameter of the sphere, to within 1ess than 1%.
Echoes were calculated for rolled aluminum at values of ka equal to
34.6 and 35, 6 corresponding to frequencies of 122, 3 kc/sec and 125, 8
kc/sec, these values occurring at é maximum and a minimum respect-
ively of the reflection function ffm l . The pulse lengths 4T were the
same as those in Figs. 16 - 18, Similarly echoes were calculated for
a brass sphere for frequencies at ka = 20,2 and 21.0. These echoes

were found to have the same features. The leading edge was a rigid

body reflection and the same kind of transition in pulse form occurred
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when the frequency and the pulse length were varied. With yellow brass
the secondary echoes in the multiple echo forms had a bigger amplitude

than the primary echo.

5. Discussion

Although this paper represents only a preliminary study, it may
be worthwhile to consider the significance of the results in relation to
the problem of using sonar echoes to obtain information about a target.

In the first place, it would seem that solid materials could be
divided roughly into two groups, metallic flint-like substances and sub-
stances which are fairly pliant. ’fhis can be seen from the steady state
solutions where the former is characterized by a succession of peaks

and minima roughly the same distance apart, while the latter has sharp

er, stronger peaks more closely spaced. Although all the echo forms
which were calculated belong only to the first type, it is evident from
the steady state solutions that there would be a difference in the general
nature of echoes between the two groups. Hence there would exist the
possiblity of distinguibshing for instance between a bare rock and a large
fish.

Secondly, if the sonar target is known to be a homo‘geneous
metallic sphere, then it is possible to determine its approximate radius
by using data of the type shown in Fig. 19. The features of the transi-
tion between a peak and Va minimum of the steady state reflection func-
tion lfml for the long incident pulses is characteristic of most ordi-
nary metals», as shown in the .previous section, The transition is ac-
complished during a change in ka of the order of 1. Hence given an
actual change in frequency in cycles per second, it is then possible to

determine the radius a of the sphere. For example the transition in
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p'uls‘e form shown in Fig. 19 is achieved through a frequency change of
3.5 k"c/sec corresponding to a change in ka of about 1 which there-
fore makes the radius of the sphefe approximately 2.5 inches. In
general however such an estimate would not be quite so accurate. It
also seems possible to estimate the size of the spheré by varying the
pulse length rather than the frequency, since the individual echoes
occurring in the short pulse become contingent when the incident pulse.
length is approximately equal to the diameter of the sphere, see Fig.19.

Finally, it has been shown[ls]that there are significant differ-
en(.:es'iri the steady state reflection function fm for rigid bodies of
different shaées. Although these effects would be rendered more com-
plicated by allowing for the vibrations of the solid material, it may be
possible to use them to derive some information about the shape of a

sonar target.
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Fig. 8 The phase of the echo from the aluminum sphere as

a function of frequency.
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Fig. 9 The pressure amplitude as a function of frequency of the
echo returnedby a sphere of yellow brass to a distant
source of continuous waves.
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the echo returned by a brass sphere to a point source
of continuous waves distance Ra from the center
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Fig. 19 Experimentally determined echo forms for a 5"
diameter aluminum sphere for various incident
pulse lengths. The sweep is 150 u sec/cm.
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SECTION B - UNIFORM DISTRIBUTIONS OF SOUND SOURCES ON
THE SURFACE OF A RIGID SPHERE AND SOME APPLICATIONS

1. Introduction

Most of the available theoretical information about the acoustic
radiation generated by sources of finite extent concerns pistons set in a
plane infinite baffle. The case of a piston set in a rigid sphere has also
been treated, [lé]but the sound field has not been considered in great
detail,

This section presents results of calculations for certain source
distributions set in the surface of a rigid sphere, namely for uniformly
vibrating si)herical caps (pistons) and rings, and for plane line sources
of constant strength. These elementary distributions can be super-
imposed to give more complicated systems. Radiation impedances are
computed as well as the sound fields in the far zone.

The sphere has often beén used as a model for the human head,
and some of the results presented here can be considered to apply to
hearing. In this regard use is made of the principle of reciprocity
which equates the pressure in the far zone due to a point source set in
the sphere to the pressure distribution over the sphere due to a point
source at infinity. A subject of particular interest to sonar engineers
as well as to psychologists is that of the binaural localization of sound,

and this is discussed at the end of the section.

2. Source Distributions on the Surface of a Rigid Sphere

The spherical polar coordinate system is used which is related to

a Cartesian system having the z-axis as the polar axis, by the relations
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X = r sin¢ sin 6
vy =r cos ¢ sin 8 (1)

z =1 cos b .,

The center of the sphere, which is of radius a, coinpides with the
origin of the coordinate system. The sphere is immersed in a limit-
less fluid and its surface is assumed to vibrate continuously with a -
velocity of the general form U(0, ¢) exp(-iwt), where t is the time,
c is the sound velocity, \ the wavelength, k = 2n/\, and w = kec.

U(6, ¢) can be expressed in terms of spherical ha.rrnonics[1;7J

U(@,@):Z (A Y° (0,9)+B_ Y° (6, ¢)] - (2)

mn~ mn mn_ mn
m, n :

where

2T Ll
_ (2n+1) (n~-m)! ‘ A< € .
Amn T 4w ‘m [n+m)l] 30 dé ‘S; u(e, @})Ymn sin@d@
| (3)

and the expression for B is similar to that for A except that
. mn mn

YO is substituted for Y°© . Ye and YO are defined as follows:
mn mn mn mn

ann = cos (m¢) an(cos 0)
m<n (4)
anh = sin (mi))P:l(cos )

where an is the unnormalized modified Legendre function. € is
unity when m = 0, andis equal to 2 otherwise.
The resulting outgoing pressure waves in the fluid can be ex-

pressed in the form,
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. p = E [Cc_YS (8,¢) +DmnY:nn(9, & ] hn(kr) exp(-iwt) (5)

A mn- mn
m,n

and the corresponding“ radial velocity can be determined by using the
formula

i 9p
r pw dr (6)

p being the density of the fluid. When r = a, u is equal to the

velocity on the surface of the sphere given by Eq. 2, so that it follows

that
c - mnP® b . _mnf | )
mn 1E'nlEa§ ’ mn iEI‘IZEaS :

The h = are the derivatives with respect to the argument of the
spherical Bessel functions of the third kind[g]

The radiation impedance is given by

nZTr T p

= 2 - _ a2 _

/F = 30 d¢ i (E;) a“sin 6d6 = a qapc’(epqxp) (8)
: r=a

where p is obtained by inserting the relations 7 in Eq. 5, and az‘qa
denotes the area of the source distribution,

In the far zone, for a large distance r from the sphere

hn(kr) ~ exp(ikr) i—(n+1’)/r
and hence in this region
p = pcC Uo(a/r)exp [ik(r-ct) & (6, ¢) (9)

where
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(9 cb)

mn mn mn mn

} n+2 hI'll(ka) [A_ YS (6,8)+B__Y° (6, 4)]

m,

(10)

§, 6 ,x_ have then to be determined over a range of ka for
PP
different forms of vibration of the surface of the sphere. If the vibra-
tions are axisymmetric, then the solutions are independent of ¢. m is

then zero, and it follows that

B =0
Tmn
v¢ =P (cos 6)
on " n
g T
Aon = (n+ _z) § U(0) Pn(coé 6) sin 6 46 (11)

]

where Pn is a Legendre polynomial. If the amplitude of the vibrations
has a constant value Uo over a certain axisymmetric region

6 <8< 86 andis zero elsewhere, then
2

A

on

H

2
(n + -12) Uo ‘§6 Pn(cos 0) sin 6 d6
‘ 1

7 U, ([P

n+1

(cos 9E )_Pn~l

(cos 91)]“—{— [Pn_l(cos 92)-Pn+1(cos 92)]}

(12)
where - P 1 is .taken to be unity. This corresponds to a uniformly
vibrating ring set in the surface of a rigid sphere. When 6 =0, the

‘ 1

case of a uniformly vibrating spherical cap or piston is obtained and

1
A =7U0[P

on (cos 92)—P

cos 92)] . (13)

n-1 n+1(

If in addition 9’2 is made to tend to a small quantity, say 4A/a, then
[16]

Eq. 13 tends to the case of a point source set in a rigid sphere s

namely
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A =ru@m+ iy 2y 14
on 2 ,O(n 7)(3‘) ’ (14)

For the above cases 12 - 13, the radiation impedance is determined
from .

: : | )

: 1 ; by (ka) 1| %on
7] -ixy =

P 2(cos & -cos 0) ih' (ka) (Zn+1) T . (15)
’ 1 2 n o)

n

When the surface vibrations are not axisymmetric the problem
becomes more complicated, but certain examples can still be solved
relatively easily. Consider a section of the uniformly vibrating ring

already diScussed, for values of ¢ lying between + ¢1 , with all the

remainder of the surface held rigid. Since

5 sin(my) d¢g = 0
- ¢
1
§ ~ cos (m¢) d¢g = 2 sin(meﬁl)/m ; m >0
-6 =2¢ . m=0

it fpllows that

B =0

0
) . 2 .
A= B g Hoeml g (F B (cos 6) sing ag
mn mT o | (ntm)! 1 0 n
. 1

m >0

6
Y2
on F E;_}H. oqbl g Pp(cos 6) sin6 d6 .,
’ 6

1

A

If 8 =60 + A6 where A0 is small, then
z 1
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. _ {Z2n+1) (n-m)! . m .
Amn = UO A6 Ty sin m¢l Pn (cos 91) sin 91
m >0
_ (2n+1) o :
Aon = UOA 6 &ﬁ] Pn(cos 91 } sin 91 . , (16)

This is the case of a plane line source embedded in the surface of a rigid
Sphere. The radiation impedance cannot be determined as in Eq. 15
because the corresponding s‘eries does not converge.

For easéein calculation the modified Legendre polynomials were

expressed in the semi-normalized form

1

B [M} Ppm | (17)

n (n+m)! n

Since it was necessary to have Pn, and P;n to very high orders (n,
m. about 40), the calculations had to be carried out in double precision.

The Bessel functiqn subroutine which was carried out in single
precision achieved an accuracy of about six figures in the range ﬁp to
n = 35 when compared with standard tables[l81., A check on the deri-
vatives showed a similar accuracy. .

The sound pressure in the far zone given by the function { of
Eq. 10 was obtained for a range of ka from 1 to 25 for the follow-
ing source distribution:

(a) a point source;

(b) uniformly vibrating spherical caps for 6 extending

o

over the regions defined by: 0° - 20 s 0°

- 40°, 0° - 60°,;

2

(c) individual uniformly vibrating rings for 6 in the

regions defined by: 20° - 25°, 40° - 45°, 60° - 65°;
(d) a uniform line source situated along 6 = 450, be -~
1

tween the limits ¢ =+ 10°,
, &
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The results are presented in the form of the argument and modu-
lus of ¥ in Figs‘. 1 - 9. The modulus, of course, is the absolute value
of the sound pressure 1n the far zone. The individual lines in the
figures represent the variation with respect to ka at a particular
 point in the far zone sound field defined by the coordinates (6, ¢). The
sound field for any particular frequency“is thus obtai ned by reading off
the values where the ordinate at that frequency intersects the lines.
The argument of § could not be presented more accurately, since in
géneral it changes quite rapidly over the range of ka considered, How-
ever, it can at least be shown how it changes qualitatively with changes
in source cornfiguration.

The impedan;es Qp, X'p were determined for a variety of rings
and caps using Equr 15 and are presented in Figs, 10.and 11,

The results of supplementary calvculat‘ions are given in Figs,

12 - 17 and are described in the next sections.

3. Discussion of Results

Figure 1 gives the far zone pressure field*’ for a point source
sef in the surface of a rigid sphere. At very low frequencies, the sound
is radiated uniformly in all directions. At very high frequencies, the
sound is radiated mainly into the half space tangential to-the saphere at
the point source. This is presumably because the dimensions of the
point source have been-assumed to be much smaller than any given value
of the Wav;elength. The variation of phase with frequency is linear as

shown in Fig.l(b). At low frequencies, below about ka = 1.5, the lines

The results for the pressure amplitude agree in general with those
given in Fig. 66, ref. 10,
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are not quite straight, but curveto aphase value of 90° at ka = 0. This
is shown in Fig. 14(b). The initial slope for ka < <1 agrees with the

z
relatio'n[lé] 3 cos 8/ [1 + (-?1 ka cos 6) } .

2 2
[16] the pressure field in the

Due to the pririciple of reciprocity
far zone is proportional to the pressure distribution over a rigid sphere
due to a point source at infinity. The factor of proportionality is i/ka,
so that to obtain the solution of this problem from Fig. 1, the modulus
of ¢ is divided by ka as shown in Fig, 14(a). The phase remains the
same except that the coordinate system is shifted vertically so that the
origin coincides with the focus of the straight lines. The application of
these results to binaural localization of sound will be discussed in the
next section.

Figure 2 - 4 show the development of the sound field as the
épherical cap changes size. As usual at the low frequency limit, the
radiation is uniform in all directions. At very high frequencies, the

[19]

situétion is not so definite, It has been shown that the radiation
field at very high fr‘equencieé has the same form as that of the given
velocity distribution over the surface of the sphere. This tendency is
apparent in the figures showing the pressure arriplitude., In the far zone
outside the éone deﬁned by the cap angle, the pressure amplitude lines
can be seen to be going to zéro. For values of 6 lying inside the cone,
the lines were found to be tending to settle around HJ l‘ equal to unity,
except for points directly on the axis 6 = 0. This was investigated as
far out as ka =70 for caps whose half angles went over the range from
10° to 170°. Some of the 6 =0 pressure amplitude curves are shown
in Fig. 12, The number of oscillations about the mean 1 g | =1 in-

creases very rapidly as the cap increases in size, but the amplitude

decreases in size although only slowly at first, In the limit when the cap
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covers the entire surface of the sphere, the expected result of a con-
stant amplitude at all frequencies is attained. For values of 0 near
zero the pressure ampiitude at first follows the 8= 0 curve quite
closely, but at very high frequencies it begins to settle down around
Itﬁ; I = 1, Hence, although according to calculation the oscillatory
nature of the 6= 0 pressure amplitude persists at very high frequen-
cies, it will eventually have no existence in any physical sense,

As the cap decreases in size the radiation field resembles that
of a point source over an increasingly greater part of the frequency
rangey., However the behavior at high frequencies is eventually the same,

because the wavelengths become much smaller than the dimensions of
the cap.

The behavior of rings is similar to that of caps at the high and
low ends of the frequency range. At the low frequencies the radia-
tion is uniform and at very high frequencies all the radiation is concen-
trated uniformly in the region defined by the angle subtended by the
thickness of the ring. Figures 5 - 7 show how the sound field varies as
a5° ring is moved backwards over the sphere., These results can also
be used to analyze how the sound fields of the caps are built up as they
are increased in size, For example, if the 40° - 45° ring is added to
the 40° cap to produce a 45° cap, then the phase difference at about
ka = 25 is approximately 180° for the 6 = 0 lines. This means that
the sound intensity at 6 = 0 will be decreased by the addition of the
ring hence assisting in the process of the formation of the rapid fluctua-
tions shown in Fig, 12. The sound field in other directions and for
other combinations of the elementary rings could be analyzed in a simi-

lar way.
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The phase variation with frequency as shown in Figs., 2(b) -

7(b) indicates some general tendencies. As the cap grows larger or as

the ring is moved backwards over the sphere the rate of change of phase
with frequency grows smaller. Also, as might be expected, the abrupt

changes of phase which occur coincide with sharp minima in amplitude,
Other trends can also be observed,

It seems likely that certain desired sound fields which are axi-
symmetric and fziirly simple in form could be approximated by arrays
of rings whose relative phases and amplitudes are chosen specifically
for the purpose. For example the directional beam of Fig. 13 is ob-
tained by combining a 40° cap with a 40° - 45° ring at a frequency cor-
responding to ka = 14.2. The ring is made to vibrate 180° out of phase
with the cap, while the amplitude of the caps vibrations is 3 that of the
ring,

The acoustic impedances of the caps and rings are shown in
Figs. 10 and 11, As the cap increases in size the resistive part of its
impedance approaches the high frequency limit pc more rapidly,
while the reactive part has its maximum af progressively lower fre-
quencies. Rings behave roughly in the same manner as caps which sub-
tend the same angle at the center of the sphere. Thus 5? rings behave
similarly to the 5° cap, and a 40° rings is similar in behavior to the
40° cap. The numbei‘ of oscillations increases as a ring moves back-
wards from its initial position as cap.

| Figures 8 and 9 give the far zone pressure field due to a uniform
plane line source situated on the plane 5‘1 = 45° between the limits
¢ =+ 10°, Figure 8 gives the results in the meridian half plane ¢ = 0

1

directly ahead of the line source and Fig. 9 in the equatorial plane
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0 = 900. For higher frequencies the results in the in the ¢ = 0 plane
resefnble those for a point soui‘ce. The intensity at 8 = 900 is of the
same order as that at & = 0° but has developed oscillations. The
effect of the length of the line soufce on phase shows up at lower fre-
quencies particularly in the equatorial plane 6 = 900, In the region
ahead of the line source approximately ¢ =+ 60°, the phase remains
rouéhly coﬁstant over the range of frequencies from ka =1 to 2, and
linear at higher frequencies. Outside this region the phase variation is
quite disturbed. As the length of the line source is increased the results

tend gradually to those for a thin ring at 8 = 45°,

4, Binaural Localization of Sources of Sound

T

As has been pointed out in the previous section, the far zone
pressure field for the point source is the sarﬁe as the pressure dis-
tribution over the surface of a rigid sphere due to a point source at
infinity, i.e., due to plane waves incident on the sphere. It is possible
therefore to examine mechanisms for localizing a source of sound using
the amplitude and phase observed at two diametrically opposite points
‘on the surface of the sphere. Such mechanisms might then be expected
to be similar to the mechanisms employed by ears set in a human head.
For this purpose it is usually assumed that the head and fhe sphere
correspond rbughly in size so that the radius of the sphere will be taken
to be abouf 3.4 inches. Hence a frequency of approximately 620 cycles
will be represe’nted by a value of ka =1, and proportionately for any
other frequency. It should be pointed out, however, fhat due to the
symmetry of the sphere a sound source can only be located as on the

surface of a cone whose axis is the diameter at the ends of which the
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measurements are made. In actuality sounds are localized a little
moré accurately by making use of the symmetry of the head and body
and the sensations of sound experienced el}sewh‘ere than at the ears, al-
though discrimination is well developed only in the horizontal plane[ 20] .

The current view held by experimenfers in the field is that local-
ization is achieved at low frequencies by making use of the phase dif-
ference between the two ears and at high frequencies by using the in-
tensity difference. This explanation was first proposed by Rayleigh[ 21]
although the emphasis of his conclusions was somewhat modified 1ater[ 22],
The experiments which have been performed use both pulses andvpure
tones, the latter having to be used very carefully in order to exclude
transient effects. The direction of a pulsed sound was found to be quite
- readily distinguished.. The results for pure tones are more conflicting,

[23]

but some of the more successful experiments have been carried out
at frequencies of only a few hundred cycles.

In order to disguss the usefulness of intensity differences, some
results should be quoted. Banister[24]found that in order to achieve a
sensation of deviation from the median plane an intensity difference be—"
tween the ears of more than 4db was necessary. In addition, phase dif-
ferences of pure tones become ambiguous above 1, 200 cycles[zo](alsé
compare Figs. 15(b), 16(b)), so that it would seem that intensity dif-
ferences should be the signi’ficant factor for the higher frequencies.
However, if a direction of 150'to the median plane be accepted[ 20],[25]
as the minimum deviation which can be readiiy perceived (the actual
minimum angvle is probably less than half this amount), then on the basis

of Banister's findings, the results for a sphere show that intensity dif-

ferences can never be of sufficient significance in determining the
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direction of a distant source of sound. For example, in Fig. 16(a)
(which gives the pressure distribution over the sphere when the fre-
quency is about 6, ZOOxc‘ycles) for a source situated 15° from the median
plane at 6 = 900, the ratio of the pressure amplitudes would be
3.95/2.55, an intensity difference somewhat less 'than 4db. Figure 1
does not‘ hold out the possibility of improvement at higher frequencies.
At very high frequencies it is clear that not much discrimination can be
expected when one side of the sphere is illuminated and the other side
in a shadow. For an actual head, it is clear that the pinna must play a
role at higher frequencies, but it also seems apparent that over a wide
section of the audible frequency range, intensity differences will at best
be only marginally significant for a distant source of sound. This con-
clusion appears to be in contradiction to the known fact that intensity
differences produce a sensation of "'sidedness'' or deviation from the
median plane. However, it is apparent that larger intensity differences
_will occur whén the aeviations from the median are more than 15° so
that a less accurate localization of distant sources of éounci is still
pos‘ysib.le by means of intensity differences. Larger intensity differences
are also obtained when the sound source is brought closer to the head.
For example, Figure 17 which is obtained from the general Eq. 5,
shows that for a 15° deviation the intensity difference for a tone of ap-
proximately 6, 200 cycles is increased to a méximum of about 8 db as
the source approaches the head. The distance at which the intensity
difference rises to a sufficient degree above the 4 db threshold is not
very certain, but it seems to be only a few feet at the most. Similar
results ‘hold down to about 2 k/cs. It would seem, therefore, that the

higher frequency pure tones cannot be localized very accurately by means
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of intensity differences unless the source is within a few feet of the
head.

This conclusioh has a bearing on the localization of pulsed sounds.
As has already been stated, a pulsed sound can be localized very readily
at all distances - certainly well within the 15° deviation which has been
set up as a criterion. In view of the apparent inaccuracy in localizing
the constituent tones in the higher frequency range, it might be expected
that additional properties inherent in the nature of a pulse are respon-
sible for this enhanced ability., A pulse can be analysed by using the
results in Fig, 14 which shows how the amplitude and phase of the dif-
ferent constityent tones in the pulse will vary with frequency when the
sound source is more than several feet away. The phase variation with
frequency is closely 1ir‘1e‘er above about 1,500 cycles, each direction
having a certain fixed slope, and this linearity provides a localization
mechanism which has often been suggested for pulses, namely a dif-
ference in arrival time of the pulse at each ear. As i’night be expected,
the differences in arrival time computed from Fig. 1(b) agree very well

[20]

with the results given by Woodworth and Schlosberg , who use a
simple path difference theory valid only for higher frequencies. The
formula, therefore, which would give the phase difference between the

ears in this range is of the form

phase difference =ka (0d + sin 84d) (18)

where 0d is the angle which the incident s‘ound waves make with the
median plane at 8 = 90°. The arrival time differences can be readily
determined from this fofmula. From the results, it appears that the
ears have to distinguish a difference of the order of 1/10 millisecond

and from experiment this appears on the average to be the minimal
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amount required to achieve an effective sensation of ”sidedness”[rzo]’ [26].
Howe{rer there is always the problem of determining the precise arrival
time of a pulse, the ti}'ﬁe differences which are used being at the most
about 1 per cent of pulse 1ength[zo]. In order to obviate this difficulty,
it has been suggested that the time differences which the ears sense are
obtained from a continuous comparison in the arrival time of different
parts of the same pulse at each ear. However it would seem that the
same pulse form will not occur at each ear. As shown in Fig. 14(b)
the change of phase with frequency is not linear over the whole frequency
range. The slope varies at lower frequencies so that the simple path
difference theory breaks down when the sphere is smaller than about
1/3 the wave length of the incident waves. Hence for an actual head it
would be expected that the non-lineérity would persist to much higher
“frequencies, because the i\rregularities of the \head and pinna provide
much greater curvatures for the incident sound to contend with than the
gross effect of the spherical model. Thus it would appear that a pulse
would not only arrive at each ear at a somewhat different time but more
generally in a somewhat different form. Figure 14(a) shows that the
amplitude variation with frequency will also contribute to this effect. It

[23]

is known that the ear is quite sensitive to changes in pulse form and
hence using more general differences of this type would seem a more
sophisticated mechanism for sound localization than using only time and
intensity differences. To reconcile two such sensations into a single
impréssion is not an uncommon feature in nature, so that‘such an idea
is not in such obvious conflict with experience as it might seem. The

diffraction of sound around the head must surely be sufficiently complex

to produce different pulse forms at each ear, thus requiring an automatic
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reconciliation process in the brain, and if such a reconciliation process
exists it must surely be combined with the ability to localize a sound.
The fact that the calculated time and intensity differences are so mini-
~mal for such a large deviation as 15° certainly leaves room for such a
hypothesis. Unfortunately, it cannot be indicated as yet what changes
in pulse form would be significant. The ear has obviously gone through
a learning process of comparable complexity to that of the eye, but as
yet there appears to be no clear insight into the kinds of recognition

patterns which it uses.
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{a) The far zone pressure arnplitude as a function of frequency
due to a point source set in the surface of a rigid sphere.
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{b} The phase of the {ar zone pressure field as a function of fre-
quency due to a point source set in the surface of a rigid sphere.
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(a) The far zone pressure amplitude as a function of frequency
due to a 20° cap set in the surface of a rigid sphere.

{b) The phase of the far zone pressure field as a function of fre-
quency due to a 20° cap set in the surface of a rigid sphere.

Fig. 2
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{a) The far zone pressure amplitude as a function of frequency
due to a 60° cap set in the surface of a rigid sphere.

(b) The phase of the far zone pressure field as a function of fre-
gquency due to & 60° cap set in the surface of a rigid sphere,

Fig. 4
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(a) The far zone pressure amplitude as a function of frequency
' due to a 40° cap set in the surface of a rigid sphere.
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(b) The phase of the far zone pressure field as a function of fre-
quency due to a 40° cap set in the surface of a rigid sphere.

Fig. 3



56

20% - 2%° NG

080 /
ool /o'

Gt
2404 R o10r
o~
’ ///’/ \\\ !
oy ;
R4 /://
o 20 Gepoe
8. 500 8300
§.s0m g a5 g
e S
o % W i % 25
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{b) The phase of the far zone pressure field as a function of fre-
quency due to a 20° - 259 ring set in the surface of a rigid sphere.

Fig. 5
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(a) The far zone pressure amplitude as a function of frequency
due to a 40° - 45° ring set in the surface of a rigid sphere.
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(b) The phase of the far zone pressure field as a function of fre-
quency due to a 40° - 45° ring set in the surface of a rigid sphere.

Fig. 6
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(a) The far zone pressure amplitude as a function of frequency
due to a 60° - 65° ring set in the surface of a rigid sphere.
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{b) The phase of the far zone pressure field as a function of fre-
quency due to a 60° - 65° ring set in the surface of a rigid sphere.

Fig. 7
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(a) The far zone pressure amplitude as a function of frequency due

to a plane line source situated on the plane 0) = 45° between the
limits @y = + 10° in the surface of a rigid sphere. The section
of the far zone field considered is in the meridian half plane

p=0.
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(b) The phase of the far zone pressure field as a function of frequency
due to the plane line source defined by 0; = 459, @y = + 10°, The
section of the far zone field considered is in the meridian half

plane ¢ = 0,

Fig. 8
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The far zone pressure amplitude as a function of frequency due
to the plane line source defined by 6 =459, @, =+ 10°. The

section of the far zone field considered is in the equatorial
plane 0 = 90°.
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The phase of the far zone pressure field as a function of frequency
due to the plane line source defined by 8, = 459, Py = 10°. The
section of the far zone field considered is in the equatorial plane
6= 90°,

Fig. 9
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(a) Resistive part Op of the acoustic impedance of the 59, 10°,
400 caps as a function of frequency.
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{b) Reactive part Xp of the acoustic impedance of the 5©, 10°,
40" caps as a function of frequency.

Fig. 10
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(a) Resistive part Op of the acoustic impedance of the 20°
40° - 45°, 20° - 60° rings as a function of frequency.
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{b) Reactive part Xp of the acoustic impedance of the 20°
40° - 459, 20° - 60° rings as a function of frequency.

Fig. 11

- 259,



63

The far zone pressure amplitude on the axis @=0 as a function
of frequency for caps of increasing size.

Fig. 12
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The far zone directional pattern for a 40° cap combined with a
40° - 45° ring for ka = 14.2. The amplitude of vibration of the cap
is 1/3 that of the ring and the two elements are 180° out of phase.

Fig. 13
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Fig. 14(a) The pressure amplitude on the surface of a rigid bph@re
due to plane waves incident in the direction 6 = 180°, as

a function of frequency.
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Fig. 14(b) The phase of the far zone pressure field of a point source
as a function of frequency in the 1ower frequency range
(or alternatively the phase, with 90° added, of the pressure
distribution over a sphere due to incident plane waves).
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{a} The far zone pressure amplitude as a function of 9 due to
a point source at a frequency corresponding to ka = 1.2.
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(a) The far zone pressure amplitude as a function of ¢ due to a
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(b) The phase of the far zone pressure field as a function of @
due to a point source at a frequency corresponding to ka =10,

Fig. 16
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The phase and intensity difference between the two ears as a
function of distance, for a point source situated 15° from the line
of sight at a frequency corresponding to about 6 k/cs.

Fig. 17
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PART II - SOME EFFECTS OF THERMAL CONDUCTION AND
COMPRESSIBILITY IN THE COLLAPSE OF
A SPHERICAL BUBBLE IN A LIQUID

Introduction .

Cavities or bubbles can occur spontaneously in a liquid either as
the result of a chemical reaction or explosion, or because of temperature
and pressure changes in the liquid. The terms cavitation and boiling are
usually reserved for the latter processes which require the presence of
microscopic nuclei for their inception. In boiling the bubbles contain a
relatively large amount of the liquid vapor, whereas in cavitation, which
is a i'upture of the liquid or of a liquid solid contact, the bubbles contain
small amounts of vapor or permanent gas. Cavitation is usually caused
by subjécting the liquid to tensile forces. This may occur in several
ways, more notably when a liquid flows at high speed past a solid body
or when a liquid is subjected to high intensity sonic or/ultrasdnic sound.

The work presented here is concerned with the collapse of a
cavity. If the interior pressure falls to small values when the bubble
reaches its maximum size, as in the case of a cavitation bubble or a
bubble formea by an explosion, then it is possible for it to collapse
again due to ambient pressures in the ‘liquid. In such a collapse the
main effect is one of the inertial motion of the liquid rushing in to fill a
near vacuum, and high velocities pressures and temperatures will result,
As a consequence, various phenomena may occur. One of fhe best known
is the damage experienced by solid surfaces eprse’d to cavitation. An-
other, called sonoluminescence, occurs when the gas inside the cavity

becomes so highly compressed that it becomes incandescent. Both are
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of major interest here and will be discussed more fully in the appro-
priate sections.

Because of the high pressures generated by a collapsing cavity,
the compressibility of the liquid becomes a significant factor. In par-
ticular it is possible for shock waves to form and radiate outwards after
the cavity has collapsed and rebounded. Also when the gas or vapor in-
side a collapsing bubble is compressed so that it becomes hot, heat con-
duction from the gas into the liquid becomes a significant modifying
factor. The work presented here is mainly an analysis of these two
effects. For simplicity, the bubble or cavity is assumed to be spherical
and to be situated in a limitless liquid. The initial conditions prior to
collapse are also simplified and hence take no particular account of the
origin and previous history of the bubble. Since the effects in question
are being considered largely in a qualitative manner, such simplifica-

tions are not thought to be critical.
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SECTION A - EFFECTS OF THERMAL CONDUCTION
IN SONOLUMINESCENCE

1. In'trbduction

Sonoluminescence isaweak emission of light which occurs when
a liquid with dissolved gas is cavitated by a sound field. It is readily ob-
served that the luminescence comes froin the cavitation bubbles and
also that it occurs in fiashes with the same frequency as that of the
sound. Although this effect has been known since the early 1930's, it
is only recently that quantitative results could be obtained using modern
photomultiplier tubes. These results have been summarized and dis-

[1]

cusswed by Jarman who concludes that they can best be explained on the
assumption that sonoluminescence is largely thermal in origin. The
cavitation bubbles collapse due to a return of positive pressure and com-
press the gas inside so that it becomes momentarily incandescent. Such
high pressures were predicted by Rayleigh[z]a long time ago and arise
because of the large inertial forces which are exerted when the liquid
advances into the rarefied gaseous phase.

The spectra of sonoluminescence support this hypothesis. All

distinctive band and line spectra appear to have been smeared out as

[3]

though by very high pressures to form a continuous distribution

which usually stretches from the infra-red well into the ultra-violet.
For example the spectra of sonluminescence for different gases dis-
solved in water appear to resemble that of a black bo;iy radiating be-

tween 6,000 K, and 11, OOOOK[4]’ [5] Although there seems to be no

distinctive radiation lines or bands, the intensity of the luminescence
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has been found to depend in a striking Way on the nature of the dissolved
gas[é]’ [7} This is shown in Table 1 which lists the relative luminous

[6]

intensities obtained by Prudhomme and Guilmart for water with dif-
ferent dissolved gases. The 1umino$ity with helium was barely pre-
ceptible and with hydrogen could not be observed at all. The cause of
this wide variation in intensity has not been very clearly understood, and
the theory of the thermal origin of sonoluminescence has been thought
to be inadequate because it did not appear to account for it in a straight-
forward manner. However, such criticism is founded on the assumption
that the cavitation bubbles collapse so rapidly that the gés is compressed
adiabatically, and in the following analysis of the experiments of
Prudhomme and Guilmart it will be shown that this is not the case.
Cavitation bubbles are of two main types, namely the vaporous

[8], [9]{‘

and the gaseous The former contain the liquid vapor principal-
ly and have a comparatively short lifetime, while the latter contain a
significant proportion of permanent gas in addition to the vapor and
occur only when there is a sﬁfficient gas content in the liquid. Since
attempts to observe sonoluminescence with vaporous cavities have been

[1]

unsuccessful™ ", it is evident that it occurs preferentially with the gas-
eous type of bubble. Gaseous cavitation bubbles originate as small
nuclei full of gas having radii of the order of 10—5cm[8]’ [9] For pres-
sure amplitudes larger than a certain threshold, such nuclei will ac-
cumulate dissolved gas from the liquid by means of a process described

[10]

as rectified diffusion , in which there is a net inflow into the bubble
during a complete cycle of oscillation of the bubble surface reacting

under the applied sound field. The theory of this process[ 1O]shows

that the rate of growth of such small nuclei will be relatively rapid, so
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that the bubbles quickly become large enough to allow the expansion and
collaf)se typical of cavitation. Whether they grow much beyond thisk
stage is uncertain. It is obvious from observation that they do not con-
tinue to grow indefinitely and must eventually break up into smaller
bubbles which then continue the process.

The size of the cavitation bubbles is actually of critical im-
portance. In their experiments Prudhomme and Guilmart made no
direct observation of bubble size. However they did state that the ex-
citation frvequency was 960 kc/sec and the power of the transducer was
’ 90 watts, and this information can be used as follows to estimate the
“maximum size of the bubbles prior to collapse. The experiments were
conducted under 1 atmosphere pressure and at room temperature, and

[9]

Rosenberg has shown that, for these conditions, the cavitation thresh-
old for water saturated with gas occurs at a pressure amplitude of about
1.5 atmospheres. Once cavitation has started it can easily be main-
tained by amplitudes below this threshold. In the experiments of
Prudhomme and Guilmart the acoustic waves were attenuated by being
passed through a quartz window and it is apparent that, for a power of
90 watts, the pressure amplitude in the test vessel could not have been

‘ [2]

much more than a few atmospheres, Rayleigh's formula for the col-

lapse time of a spherical cavity is

1
T~ 0.9 R (p/p)?

where Ro is the radius of the cavity prior to collapse and p and p
are the ambient pressure and density in the surrounding liquid. For a

pressure of only a few atmospheres in water, this relation becomes

T~ % 107* R secs
o
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where R is in centimeters. Since the acoustic wavelength is obviously
much longer than bubble dimensions, this relation can be applied to the
cavitation bubbles in the experiments. Now it is evident that these
bubbles will only collapse effectively if the collapse time is less than
a half cycle of the excitation, and for this to occur the initial radius RO
would have to be less than 10 * ¢m. Other criteria, from the theory of
oscillating bubbles, can be applied to support this estimate, According
to the theory Ho , the surface of a bubble is an oscillating pressure
field becomes unstable when it exceeds a certain critical radius, which
in the present case can be estimated to be about 10—3cm. Also the radius
at which a bubble resonates under a 960 kc/sec excitation can be shown

to be between 10—4 and 10_3cm. Finally, Rosenberg[9]

has observed
that under a 60 kc/sgc excitation the maximum size of cavitation bubbles
is about lOnzcm. It seems reasonable to expect therefore that, for a
960 kc/sec excitation, the maximum bubble radii should be of the order
of 10—3‘cm.

It is to be expected then that the cavitation bubbles occurring in
the experiments of Prudhomme and Guilmart range in size from about
10_5cm to 10_3cm where the bubbles are evolving from nuclei through
the acquisition of dissolved gas frém the water. No very precise des-
criptibn can be given of this evolution, however. In particular it is
difficult to determine just how much gas and vapor will be present in
the bubble when its surface goes into large scale oscillation. It ob-
viously starts with exceedingly small amounts which increase by means
of rectified diffusion from the dissolved gas in the liquid. In addition

the gas content can be increased by the coalescence of several bubbles,

since there are a very large number situated close together in a typical
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cavitation cloud. Thus it would appear that the gas content of a bubble
could vary over quite a wide range. However it will be shown that the
amount of gas necessary for effective luminescence is moderately small
and restricted between fairly definite limits, so that only a certain pro-
portion of the bubbles will be in the right condition. This agrees with
observation since sonoluminescence would presumably be much brighter
if all the bubbles in a cavitation cloud could radiate.

Radiation in the visible region of the spectrum occurs when a gas
reaches tefnperatures in-excess of about I,OOOOK. Prudhomme and
Guilmart in fact measured their intensities in the ultra violet, with a
photocell operating in the range 190 my to 280 my and having a sharp
maximum sensitivity at 230 mjl. Hence the temperature attained by the
gas would have to be of the order of 10, OOOOK[B]. This estimate is in
agreement with the spectral distributions mentioned earlier[4]’ [5] To
reach such temperatures would require an adiabatic compression caused
by a spherical bubble collapse of the order of 9/10 of the initial radius,
assuming ordinary temperatures initially. If the process is not adia-
batic but involves some loss of heat from the bubble, then the collapse
will have to proceed further before the right temperatures are reached.
In order to obtain such reductions in volume under a constant external
pressure of a few atmospheres, it is necessary to limit the initial
pressure of the gas to less than 0.1 atmospheres at ordinary tempera-
tures. This estimate is obtained by using Gilmore's theory[lllof a
collapsing spherical cavity, in which fairly accurate allowance is made
for the comioressibility of the liquid. This sets an upper limit on the
amount of gas necessary for effective luminescence. A lower limit be-

comes apparent after the collapse process is considered in more detail.



79
The collapse of a bubble is generally considered to be quite rapid.

However, the inertial forces in the liquid require time to build up and
generate high velocities at the cavity wall. The presence of the gas in-
side does not affect the motion of the interface significantly until the
very final stages when it eventually brings it to rest. It is possible to
descri’be this behavior approximately, using Gilmore's theory[ll]. For
illustration a bubble having an initial radius R, = 10" cm under a con-
stant external pressure of 3 atmospheres is used. The collapse time T
is then about 3pusec. Inside the bubble there is assumed to be a uniform
adiabatic gas of initial pressure 5 X 107° atmospheres at ordinary tem-
peratures. Figure 1l shows how the radius R of the bubble will vary
with time t for different vy, the ratio of the specific heats of the gas.
The temperature of the gas goes as (RO/R)3 (y-1) and the pressure as
(RO/R)3Y. The motion is seen to be relatively independent of the pre-
sence of the gas up to R/Ro~ 0.3. At this stage the elapsed time t
is about 0.977 and the velocity has reached a value of about 7 X10° cm/sec.
i.e. it is still distinctly subsonic with respect to a gas at ordinary tem-
peratures. The most significant point to notice from Fig. 1 however,
is that, if some of the energy of the gas molecules is lost, or is absorb-
ed within the molecule because of additional degrees of freedom, then
the bubble attains lower final temperatures and collapses to smaller
radii. This will profoundly affect the intensity of any resulting lumi-
nescence. Now air at ordinary temperatures and at 0.1 atmosphere
pressure has a thermal diffusivity of about 3 cm?/sec. Corresponding
to a time of 3 lsec, the thermal diffusion length is then about 107% cm
i.e. equivalent to the dimensions of the bubbie. Thus, since the sur-
rounding water acts as an effective heat sink, it is obvious that signif-

icant heat losses from the gas inside the bubble can be expected during
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collapse, and that the luminous intensity will be affected correspond-
ingly. If the initial pressure in the gas is much lower than 0.1 atmos-
pheres say about 1077 “atmospheres or less, then the thermal diffusivity
will be larger and the gas can be expected to remain in thermal equili-
brium with the liquid at the bubble wall over most of the motion. This
means that it will remain almost isothermal, and that only during the
final stages will it appi‘oach adiabatic conditions. Hence the final
temperatures will not be so high and the final radius will be smaller, so
that not much luminescence can be expected as a consequence. This
establishes a lower limit on the amount of gas necessary for effective
luminescence., Actually for initial pressures of the order of IO-3 at-
mospheres it is inappropriate to consider thermal diffusion in the gas
from a continuum standpoint, since the mean free paths are somewhat
larger than the dimensions of the bubble. However it can be shown that
there is sufficient time for the gas molecules to experience a large
number of collisions with the bubble wall dﬁring most of the collapse,
so that the conclusion is essentially the same.

Since condensation and evaporation rates are comparatively
slow, water vapor will behave rather like a permanent gas and, since

[3]

it is triatomic, it will effectively quench the luminescence of other

gases if it is present in any quantity. As has been pointed out earlier,

[1]

3

no luminescence could be observed from vaporous cavitation in water

[12]

and it seems apparent from the experiments of Jarman that the
presence of the liquid vapor does indeed diminish sonoluminescence.
Also sonoluminescence appears quite distinctive for each dissolved gas

and does not appear to arise from a mixture in which one constituent is

always the same. For these reasons it is doubtful whether there can be
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a high proporfion of vapor in the luminescing bubbles. As has already
been kpointed out, a typical cavitation cloud will contain bubbles whose
gas and vapor content can be expected to vary over quite a wide range,
‘and the luminescing bubbles will be those with the right amount of gas
combined with only a small amount of vapor.

The fact that loss of heat from the gas inside the bubbles sig-
nificantly affects the intensity of sonoluminescence, can be used to ex-
plain the wide variatiqn in intensity which has been observed for dif-
ferent dissolved gases. This conclusion is supported by Table 1 where
there is shown to be a clear inverse relation between the thermal con-

[13]

ductivities under ordinary conditions and the observed luminous in-
tensities. It has also been suggested[B]that the solubility of the gas is
a contributory factor and that if there is more dissolved gas, then there
will be more luminescence. This contention is only partially supported
by Table 1 which lists the Henry's Law constant[14]at ordinary temp-
eratures. Also it is not in accord with the relative luminescences ob-
served with different 1iquids[12]. The amount of dissolved gas can
affect the number of the bubbles and, more significantly, their gas con-
tent. However these will also depend on the diffusivity of the gas in the

[9]

liquid which appears to exhibit an opposite trend to that of the solubil-
ity, i.e., the smaller molecules are more mobile and accumulate in

the bubbles more readily. Hence, provided there is sufficient gas pre-
sent it is not certain that the luminous intensity should be related to the
solubility. In comparison the modifying effect of heat loss from the
bubbles is much more definite. According to Table 1, it is possible to

obtain a relation between the observed luminous intensities and any

parameter which is dependent on the molecular weight. However the
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thermal conductivity is itself dependent on the molecular weight, so that
it would first be necessary to demonstrate that a parameter relates to
a process which can c~1éar1y affect the luminescence, before attaching
any particular significance to it,

It is evident that the luminous intensity will be dependent on the
behavior of the gas during the final stages of collapse, and on the kinds
of emission which can occur under such conditions. It has been suggest-
ed for instance by Jarman[ ! ]that microshocks may be responsible for
part of the luminescence, and since the motion of the’bubble wall can be
supersonic at this point, this idea would seem to be quite plausible.
However the final stages of the collapse and the resulting emission are
outside the scope of this paper. It is sufficient for present purposes to
point outf that whatever takes place in the gas during these stages, will
be strongly affected by the heat losses which can occur in the earlier
motion.

Although it has been estimated that heat conduction does affect
the behavior of the gas inside the bubble, it would be of some interest to
examine the process in more detail. In particular it would be interest-
ing to determine how the effect of thermal conduction varies with bubble
size, and under what conditions the temperature of neon will bécome
lower than that of nitrogen so as to accord with the relative lumines-
cences given in Table 1. An analysis is therefore presented based on
a simplified model of a collapsing spherical cavity in which the equa-
tions of motion of a thermally conducting ideal gas are solved numerical-
ly up to the stage R/RO = 0.3. During this part of the motion, the
bubble wall has a velocity which is much lower than the velocity of

sound in the gas. Hence the acoustic waves generated by the motion of
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the wall have enough time to be reflected at the center of the cavity,
thus avoiding the development of a pressure front. This makes the

numerical solution relatively straightforward.

2. Déscription of the Analytical Model

A spherical cavity in an incompressible liquid contains a thermal-
ly conducting ideal gas with negligible quantities of the liquid vapor. It
is assumed that both the gas and the liquid are non-viscous, and that
prior to collapse they have the same uniform temperature To' It is also
assumed that during the collapse process, the temperature rise in the
liquid at the cavity wall is negligible in comparison to the rise in tem-
perature of the gas. This can be justified on the basis that the heat
capacity of the liquid is much greater than that of the gas. Although the
thermal conductivity of the liquid is generally about ten times greater
than that of the gas, the thermal diffusivity of the gas will still be much
greater than that of the liquid. Hence the thermal effects due to a trans-
fer of heat out of the cavity will be confined to a comparatively narrow

[15]

region of liquid next to the interface Since the temperature gra-
dient in’th.e liquid has its greatest value at the interface and since it
will be about ten times smaller than the gradient in the gas, it follows
that the temperature rise at the interface is small in comparison to the
temperature rise in the interior of the gas. Hence the condition for the

temperature on the boundary T, can be expressed

B

T, =T : (1)

In order to generate the collapse, the ambient pressure in the

liquid is raised to a uniform value Peo while the gas in the interior has



84
the uniform wvalue P < pé@. Initially the liquid and the gas are at rest.
Allowing the pressure difference to take effect, the subsequent motion
of the cavity wall is go%;erned by the well-known relation for a collaps-
(16]

ing spherical cavity

du Py "Pp

1 3 5
dt R t 5 U (2)

PL
where Py is the pressure exerted by the gas on the cavfty wall, U
and R are the Velocify and radius of the wall and P1, is the density of

the liquid. At the center of the cavity the boundary conditions are

oT

37 =0 (3)

where u is the velocity, T the temperature and r the radial co-
ordinate,

Since there is a moving boundary, it is necessary to express the
equations of motion of the gas in Lagrangian form which for spherically

symmetric motion are,

przg’{; =1, (4)
gg:-rz%%, (5)
u%f{ (7)

and the equation of state

el ice

= RgT/M , (8)
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where p andv p are the density and pressure in the gas and CV and k
are the specific heat at constant volume and thermal conductivity. These
last two quantities are ;ssumed to be constant throughout the motion - -
an assumption vézhich is not valid when the gas reaches higher tempera-
tures. M is the molecular weight of the gas and y is the Lagrangian
independent variable referring to a pa;‘ticle of’ the gas. Rg is the
universal gas constant.

The above set of equations and boundary conditions were ex-
pressed in the form of finite difference relations as outlined in the Ap-
pendix, and solutions obtained by means of a high-speed digital computer.
The initial conditions were chosen in accordance with those discussed in
the previous section. The pressure P, Was made equal to 3 atmos-
i)heres and the initial temperature To was 20°C. The initial pressure
P, inside the cavity was put equal to 0.075 atmospheres. This was
chosen only slightly less than the upper limit mentioned in the intro-
duction in order to keep the time of computation to a minimum. More-
over continuum theory is more certain to be applicablé when the initial
pressure has this value. The calculations were carried out for bubbles

-2 ~3

containing neon and nitrogen of initial radii 107" , 10, 10  cm.

3. Discussion of the Results

It is of interest to non-dimensionalize all the variables in the
equations given in the prévious section. Using the velocity of sound in '
the gas <, under the initial conditions, the initi‘al radius Ro’ the
initial density and temperature of the gas Po and T(-), the dimension-

less variable become

- . - . 1o . - . .
u Ll/Co ;T 3:'/RO ;P p/po ;ot ’tcO/RO ;0 T —T/To . (9)
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Then since coz“ = \(po/po = ngTO/M where Yy is the ratio of the specif-
ic heats, it follows from the equations that
p' =p/p e =p/YP_

[ 2 _ h
cV -CVTO/CO —MCV/ng , (10)

and

VP

1
b1 3 _ B i
k! =kT_/R_p_c’ =K(MT) /Ropov(Rg) (11)

When the variables appear in this form several features become ap-
parent. If the thermal conductivity is negligible, Eq. 6 shows that the
gas will behave in the usual adiabatic manner dependent principally upon
whether the molecules are monatomic or diatomic. In this case the time
will scale with the initial radius Ro, while the relative temperatu}r’e\
pressure and velocity distributions will always be of the same magnitude
regardless of the initial size of the cavity. On the other hand the effects
of thermal conduction are inversely related to scale, When Ro is
large the ’behavior of the gas will be almost adiabatic, and when Ro is
small heat conduction will have a strong effect. The influence of heat
conduction also depends on the initial pressure and to ka lesser degree
on ;che initial tebmperature.

If P, << P it is to be expected that the behavior of the gas
 will have a negligible effect on the inertial force of the liquid through-
out the major part of the collapse. Hence the total collapse time T is
practically independent of the contents of the cavity, and will therefore

be proportional to the initial radius RO. The thermal diffusion length

oy

ED will then be proportional to ROE and the ratio ED/RO will vary as

[N

R

o Thus the smaller bubbles will show increased effects of heat con-
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duction even though their collapse times are smaller.

Another important feature is that thé velocity of sound in the gas
remains much higher than the velocity of the bubble wall throughout most
;Df the motion. Under such conditions the pressure in the gas will re-
main comparatively uniform, because the effects of the disturbance
created by the cavity wall have time to be distributed evénly throughout
the 'gas. |

‘These features are all clearly shown in the numerical solutions.
When Ro is large the solution is the same as for a uniform adiabatic
gas, the differences being found to be within less than 1% at R/RO =0, 3.
Figures 2 - 4 give the solutions for RO = 10"l , 10—2, 10_3 cm. For
R, = 107! the thermal conductivity shows a perceptible effect, partic-

ularly when the temperature gradients become large. This increases

-2

when RO =10 When RO‘ = 10~3 , heat conduction modifies the con-

dition of the gas quite significantly, and it is seen that the temperature
of neon falls slightly below that of nitrogen. As expected the pressure
in the gas remains relatively uniform throughout the rﬁotion for all the
cases considered. Figure 4 shows how this uniform pressure varies as
a function of the bubble radius R, as compared to an adiabatic or an
isothermal gas. For the 10™% cm bubble the slope is seen to be almost
along the isothermal initially but as the collapse accelerates it alters
so-that it parallels the adiabatic.

The solution for the 107> bubble represents the case closest to
the conditions of the experiments of Prudhomme and Guilmart. However
the average size of the cavitation bubble in these experiments is estim-
ated to be somewhat smaller than 10—3 cm, so that the effects of thermal

conduction will be even more pronounced. Hence the temperature in the
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neon bubbles will fall more distinctly below that in the nitrogen bubbles,

thus accounting for the difference in luminous intensity shown in Table 1.
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APPENDIX

Initially the thérmodynamic variables are uniform and have the
values Py To’ P, while the initial velocity in the ga"s is zero. The
variable y defined in Eq. 4 is taken to extend from 0 at the center to
pORO3 at the bubble wall and is divided into n equal intervals Ay. The

value of the radial coordinate r at these intervals is then given by

1
3

rjo = (3jay/p,) 0<jgn (1. 1)

where in the usual notation of a finite difference mesh the superscript i
refers to the number of intervals of time At from the initial time

= 0 and the subscript j to the number of intervals of Ay from the
origin y = 0. The thermodynamic variables were evaluated at the half

intervals p} L1 1 Whereas the velocity u; and the radial
2

i i

T. 1, P
T2 i+ P+ g
coordinate r; were evaluated at the full intervals. In order to pre-

serve accuracy at least in the initial stages, the temperature was div-

ided into two parts so that

1
i+ o i+ 3 (1. 2)

and the T, , 1 kept as the running variable. For the same reason

)tz
Eq. 6 was modified so that the term %% was replaced by its equivalent
-p LZ.E’_ + pr? _g.‘;_) derived from Eq. 4. Equations (4) - (8) were then

'expressed in finite difference form as follows

i+1_3A/(ri+l_ri+l[ i+ 1% 1ri+1+ri+1)2
Pij+3 =715 +1° 5 }rj+1 155 (j ]

(I. 3)
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i+l i iy 2 i i ‘

: - .+(.)‘At(. - )/A ) 1.4
u ws + {r Py 417 Py _3ff Ay (I.4)
i+l i i [(1 i )/‘1 i )

T. =T, - D. 2lu. + . T, + r.

i+37T5+5 7 P43 JU AU T T4

i i i 2p i i ] i
k+Pj+%(rj+rj+1) (“j+1 '“j)/(4AV) [Co; 4 1]

-+
a
¢
—=—
.
+
.5

el ) (s
3 Pty itz j—%)

. X 4 :
i i i i i z
S, [=) (e - 7 )]/ch Ay s
P54 2 5 - 3) 17 (7544775 - 4l 2Cotan {1.5)
r;+1:r%-§fu%&t, (I.6)
4l i+l By 1+1)
ST & T 4 1.7
Pi+3 7P +3 ™ Ti+ (L.7)

Using these equations and the variables on the 'ith row, a first estimate
was obtained for the variables on the (i + 1)th row. In order to improve
the accuracy of the derivatives with respect to the time t, one iteration
was performed using this first estimate averaged with values on the ith
row. These averages were substituted in the appropriate locations with-
in the above finite difference format and the new values which i‘esulted
‘were then carried on to the next stage. It was found necessary to make
one exception in this process however. During the last stages of the cal-
culation ’towards the end of the collapse, the procedure was found to be
unstable unless the e’xpressions in u in Eq. I,5 were replaced by v

u, 1 +u, +1 and (ul 1l u; | in the iteration. This change made

no apparent difference in the accuracy of the results.



91

On the cavity wall, the velocity was found from Eq. 2 using the

form | ;
IA[&% c3) 1.9)
The pressure on the wall p'R ! was obtained by corﬁbining Eq. 2 and

Eqg. 5 to give

3
A A R R % PR FAR byl R }/
A
{5 elav/ (<))

and the derivative 8T 8y on the cavity wall was found using the form

8T i 1 i
o ‘(3Tn_%——§Tn_g)/Ay (1.10)

where the temperature on the cavity wall always has the same constant
value TO. An iteration was also performed on these equations in the
manner already described.

The above procedure was found to be quife stable provided[17]

2 i,44 -
At < @ C,(ay)* /[ 2k p(r )] (I.11)
and
At < (1 - ?)/& 12
azman rJ +1 rJ i+l (I )
where

[T

- 1=ypi /ot
itz i3 Pied

The most satisfactory value for the constants o and « was found to
1

be 0.6. The first criterion was generally the predominant one. The

number of points n was varied from twenty to ﬁft'y_ © The twenty point
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solution showed a reasonable agreement with the fifty point solution,
and the examples were calculated therefore for thirty points. The work

was performed on an IBM 7090 and the longest example took about three

hours,
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nitrogen at different stages of collapse, for different initial
The bubble is subjected to a constant external pressure

radii.

of 3 atmospheres and has an initial internal pressure of 0,075

atmospheres.,
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SECTION B - THE COLLAPSE OF A SPHERICAL CAVITY
IN A COMPRESSIBLE LIQUID

1. Introduction

The effect of compressibility in the collapse of a cavity in a

[2]

liquid has been studied for some years. Rayleigh was the first to
point out that this was necessary when he showed that pressures in the
liquid adjacent to the cavity wall could reach very high values. However

a real interest in the problem originated some time later, out of work

on underwater explosions[ 18] .

[19] [20]

Analytical theories were developed by

Herring and Trilling which were first order approximations

. 2 . . N .
based on Rayleigh's solutlon[ ]for an incompressible liquid. To obtain

higher order approximations the so-called Kirkwood-Bethe

[18], [21]

hypothesis was postulated. The Kirkwood-Bethe hypothesis

forms the basis of a solution by Gilmore[lllwhich has been used in a

[22] [23]

modified form by Mellen This solution has been

and by Flynn
found to be surprisingly accurate when compared to exact solutions ob-

tained numerically, as will be demonstrated in this paper.

With the advent of high-speed computers numerical solutions of

the exact equations of compressible flow became possible, and several

integrations of the characteristic equations have been performed.

[24]

Gilmore obtained some results which he used to compare with his

[25]

approximate theory, while Hunter performed some numerical work

which acted as a basis for a similarity solution valid in the neighborhood



98

of the final collapse point of an empty cavity. Brand[zéqdid some
further computations. ‘So far however, there has been no numerical
solution which describes the rebound of the cavity anq the subsequent
formation of a shock wave traveling outwards into the liquid. The work

of this paper is concerned with such a solution.

Classically the problem to be solved is that of the empty cavity.
This is usually quite a-good model since the small amounts of gas or
vapor, which occur in a typical cavitation bubble, have little effect on
the motion of the interface until the final stage of the collapse. How-
ever, the contents of a cavity, even though they may be quite rarified
initially, will have an important effect on the final pressure, since the
further a collapse can proceed before being halted the higher the pressure.
The final stage of the collapse will be affected by the behavior of the gas
inside the cavity as well as by the quantity.r Thus an isothermal gas
can be expected to produce a more violent collapse than an equal amount
of adiabatic gas. However, it is not the purpose of this paper to discuss
the ‘physical behavior at the final collapse point in detail. Such a task
would in fact be quite difficult. The main interest here is in the effect
of the liquid compressibility, so that the behavior of the contents of the
cavity will merely be simulated by a simple gas-like model. The cavity
will be assumed to contain a uniform gas whose pressure varies accord-
ing to the law p « pY, where p is the density. The index ¥ can be
varied so as to simulate the gross behavior of the gas. Thus vy =1

implies that the gas is isothermal while Y > 1 implies that some of the
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heat of compression is being retained in the gas. This model has the
advantage of avoiding the singularities which would occur at the final
collapse point if the ca;vity were empty., The sudden compression of a
gas or vapor inside a cavity can be expected to raise its temperature,
and due to conduction and condensation, there will be a consequent rise
in temperature in the liquid at the interface. However, such effects

[27]

will be confined to a very narrow region , and they will therefore

be neglected. A sudden compression of a liquid does not cause a
[28]

significant increase in temperature , so that it will be assumed to

behave according to the well-known law pn o (p+B) where B and n

are constants., The results presented here are for water with B equal
to 3,000 atmospheres and the index n equal to 7. The validity of

[18], [25]‘

these values has been discussed elsewhere It is also

assumed that the liquid is inviscid and that the motion remains spherical-
ly symmetric at all times. The above description of a collapsing

cavity is of course not completely accurate in detail, but it is considef—
ed to be sufficiently satisfactory for a study of the effects of liquid

compression.

Numerical solutions of the equations of compressiblé flqw for
a collapsing cavity in water were obtained for both the characteristic
and the Lagrangian forms of the equations. A comparison between the
two provided a check on the numerical accuracy. The Lagrangian
solution was carried beyond the final collapse point into the region

where the liquid rebounds and generates a compression wave which
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travels outwards from the collapse center. The solution was termin-
ated when the compression wave had steepened into a shock front., It
could probably have been continued beyond this stage by using techniques

[29] [30]

such as those proposed by von Neumann and Richtmeyer and Lax
where an artificial viscosity is introduced into the equations of motion to

produce a continuous variation through the shock. However, enough

information had already been obtained to estimate the order of
magnitude of peak intensities at é distance from the collapse center so
that no attempt was made to undertake this additional calculation.

One of the principal purposes of this analysis was to determine
whether shocks emanating from the collapse of a cavitation bubble could
provide a mechanism for cavitation damgge. The results given here
indicate that such shocks are in fact strong enough to cause damage to

metals and other solids in the bubble's vicinity.

2. Formulation of the Problem

A spherical cavity containing a uniform gas is assumed to expand
or contract in an infinite volume of liquid. For cavitation bubbles the

effect of gravity is generally quite small, so that it will be neglected
along with other asymmetric effects. Since the motion is spherically

symmetric, it will be irrotational i.e,

—
curlu =0 (1)

—> g :
where u is the velocity vector. If the center of the bubble is chosen as
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the center of a system of spherical polar coordinates, then u will have
only a single component u lying in the radial direction. The equations
of motion expressing the conservation of mass and momentum for a

spherically symmetric system are

Dp _ ou 2u

‘D?'“P[*é?*?] ’ (2)
Du _ op

Bt ~ 7 &r ° )

where p and p are the pressure and density in the liquid, and the

operator

0 o
:-svf-'l‘u—a—; (4:)

g0

is the derivative with respect to time following the motion of the liquid.
It is assumed that the liquid is isentropic[ 18}ancil that the density and
pressure are related by an equation of state of the form

p +B
pw+B

n
f—) (5)

where Py, and Py 2TC the pressure and density in the liquid at infinity.
For water the constant B is given a value of 3,000 atmospheres while

the index n has the value 7. The use of this equation has been justified

2 .
by several authors[lsj’ L S]and is based on the fact that entropy changes

are small even when very large pressure jumps are present. The upper
limit on the accuracy of the formula appears to be for pressures of
about 105 atmospheres. The velocity of sound ¢ in the liquid is de-

fined by

z _dl)‘ fousd _—____n(p+B)

- g -2 (6)
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The velocity of sound at infinity is therefore given by

Cop = [n(pm+B)/pm]§

The equations of motion given above are in the Eulerian form
which describes what is happening at a particular poi;lt in space and how
it varies with time. However, it is preferable here to use the Lagrangian
form where the properties of the fluid are obtained by following the
motion. To do this, it is necessary to ascribe to each particle of fluid

a value of a certain parameter, y, which is defined by the expression

r(y,t)
y zg prz'dr
r(o,t)

Hence

or '
pr¥ 5 =1 . (7)

With this relation, Eq. 4 becomes

(prz %)t -0 (8)

but, since Eq. 7 is a solution of this equation, the two conditions are
equivalent,

On the walls of the cavity the pressure is given by the relation
- 3Y
P =p (R_/R) (9)

Wherg P, is the initial pressure insidé the cavity prior to collapse

and RO is the initial radius of the cavity. Capital 1e_tters are used to
denote the values of variables at the cavity wall. Thus R is the radius
of the cavity and U its velocity. At infinity the liquid is at rest and

the pressure and density have the values p and P o All that now
©
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remains befofe solving the equations is to specify the pressure and
velocity in the liquid at some initial instant. For a cavity in an incom-
pressible 1iquid,r it is.usual to suppose that the liquid is initially at rest
and at a uniform pressure P and that the collapse is generated by a
pressure discontinuity at the cavity wall i.e. Py > Py The instant this
pressure discontinuity is allowed to take effect, it is felt throughout the
entire volume of the liquid because of the incompressibility. The cavity
wall then starts to accelerate inwards from rest. For a cémpressible
liquid there would be an initial jump in velocity during an infinitesimal

[

. . . 1 . .
period of time. Gilmore ! ]has shown that this instantaneous increase

in velocity is given by the relation

UO = '(HZ_;].—) (CO_COO) (10)

where ¢, = [n(po+B)/po]%. The maximum value of p, usedhere is
10 atmospheres, so that for water, such a jump in velocity will always
be quite small compared to sonic velocities. In fact, during the early
stages of the collapse, the solution will be indistinguishable from that
for the incompressible liquid. Because of their simplicity the same
initial conditions will be used in the present analysis and, even though it
is not really necessary, the effect of the initial jump in velocity will be
included. The possibility of the formation of an initial cdmpression
wave in the gas or vapor inside the cavity is neglected. The initial con-
ditions are somewhat artificial and there is not much to be gained here
in following up such an implication.

A method widely used in the solution of the equations of compres-
sible flow is the method of charaéteristics. The characteristic equations

for spherically symmetric flow are
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or _ ot
o = (u+c) Vo (11)
or ot
— = - — 2
and
ou c dp 2cu ot _
Sttt T 8@ 0
Bu ¢ 8 _ Z2cu Ot _ 4
p 9P r ap

The last two equations are not very suitable for finite difference work
since p varies quite slowly in the liquid. Since &p = ép/c*, the

alternative forms

8u+ 1 8p+2cu8t

do pc da T 5a 0 ' : (13)
du 1 op Z2cu ot '

- - =0 14
B " pc B T ¥ BP (e

afe used. Equations 11 and 12 define the system of characteristic lines
a and B where o is the outward-going characteristic and { the in-
ward going. The bubble wall motion is defined by the variable £ and
is determined from the expressions-

OR _ . 8t
of -V o1 (15)

~and

dp _ dp ©OR
31 ° IR B (16)

Related to the method of characteristics is the approximate theory

o 11
of Gilmore [ ]which is based on the so-called Kirkwood-Bethe assump-
[18] u?

tion This states that the quantity r[h(p) + TJ is a constant along

an outward going characteristic, where
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Bp = |0 e L ere ) (17)

is the enthalpy difference between the liquid at pressure p and at pres-
sure p_ under isentropic conditions. This assumption can be expressed
in the form of an equation containing the particle derivative as defined in
Eq. 4. Since the cavity wall moves with the liquid, and since this motion
can be expressed purely as a function of time, such particle derivatives
can be changed into ordinary derivatives with respect to time and the

equation will become

dUu U 3 2
Ra—t-[l—-c-;]+-ZU [1-

&l

|-uhs gz g

governing the motion of the cavity wall. Given initial values on the
boundary, a second ordinary differential equation gives the liquid con-.

ditions along an outward-going characteristic line:

du _ R{H+U?/2)(utc) _ 2c%u - (19)
dt 2 S CEE) A
r* (c-u)

This is solved in conjunction with the Kirkwood-Bethe assumption and
Egs. 11 and 17.
The variables used in the above equations were non-dimensional-

ized with respect to the initial radius Ro’ the density P oo and velocity

of sound € in the following way:

p=plpy 5 P =plpgct s uw=ulc

[ . t o F [
t ”Coot/Ro ; h —h/coo : T -r/RO
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It will be supposed that all the variables and constants used above have
already been non-dimensionalized in this way, and the primes suppres-
sed. The equations of motion will ’remain unaltered by this change, but

the liquid equation of state Eq. 5 becomes

np+B)=p |, (21)
and the pressure at the bubble wall given by Eq. 9 becomes

P=p /R*Y | (22)

Equations 10 and 17 are modified by setting Con = I,

It will be seen from this non-dimensionalization that the solutions
are actually independent of the initial radius Ro’ i.e., that the same
pressures and velocities are obtained regardless of the scale. (The
elapsed time is of course proportional to RO). This is due to the fact
that compressible flow equations contain only first order derivatives.

If effects such as heat-conduction, viscosity and surface tension were
~included, the vsolutions would become dependent on Ro’ the dé'pendence
becoming stronger with a decrease in Ro'

Solutions to the problem of bubble collapse were obtained by
means of a high-speed computer, using the three methods given above.
First of all Gilmore's method was used to establish an approximate
,solution for the motion of the cavity wall. The initial conditions given
above were applied, together with the initial value of the velocity given
by Eq. 10. The validity of this solution was checked in relation to
simple incompressible flow theory[zifor the early stages of the motion,
Some exploratory calculations were then carried out using the method of

characteristics in the region where the Mach number U/C at the cavity
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wall was of the order of 0.1, These results were compared, both on the
wall and in the interior of the liquid, with results obtained by Gilmore's
method, and it was established that the method was quite accurate in
this region. This result was of course to be expected since it can be

[11]

shown that Gilmore's theory is accurate to terms at least of the
order of (U./c)Z . Thereafter, Gilmore's method was used to provide
initial values in the subsonic (U/C ~ 0.1) region for the solution of the
Lagrangian and the cha;acteristic equations. Such a procedure was
necessary because of the large amount of computing time required to
perform an exact solution starting from the initial stages of the motion.
The Lagrangian and the characteristic solutions were carried to the final
collapse point and, since they are both supposed to be exact, they pro-
vided a check on the numerical accuracy up to this stage. Comparisons
were made for points on the cavity wall and in its vicinity, and the
discrepencies which occurred were estimated to be at most about one
percent. The Lagrangian solution was then carried on into the region of
rebound up to the point\where a shock wave formed. Solutions were ob-
tained for a variety of conditions such as might occur in cavitation. The
values used for the ambient pressure P in the liquid were 1 atmosphei‘e,
and 10 atmospheres, The initial pressure Py in the gas was varied
from 10_1 atmospheres to 10_4 atmospheres, while the index vy for the
gas had the values 1 and 1.4. The problems were programmed for an

IBM 7090 and the numerical methods are described in the appendices.

3. Calculated Results

The first set of calculations were concerned with the motion of

the bubble wall and with the gross effect of the gas content of the bubble.
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‘Figures 1-3 show £he variation of the bubble wall Mach number with the
radius under a variety of conditions. The amoun;c of gas is determined
by the initial pressure._ 2 and the behavior of the gas is varied by
changing the index y. Figure 1 shows the collapse of a bubble for
different initial pressures P, with y = 1.4, acting under an external
pressure p_ of 1 atmosphere. Itis seen that as the amount of gas
diminishes, the motion of the bubble wall becomes more and more rapid
during the final stages of the collapse. In the case éf the empty cavity,
the velocity increases without limit as the bubble grows smaller. The
exact solutions are compared with solutions derived from Gilmore's
theory and from the theory of an empty cavity in an incomi)ressible
1iquid[ 2] . ’It is seen that the compressibility becomes very important
during the final stages of the motion. Figure 2 shows the result of in-
creasing the external pressure péo from 1 a‘;mosphere to 10 atnﬁos—
pheres. A comparison with Fig. 3 shows that such an increase does not
affect the collapse so much as a change in y from l1.4to 1. Thus a
 gas which behaves isothermally should in general produce a2 more violent
collapse than an adiabatic gas reacting under a high external pressure.
In all these results, it is evident that the predictions of Gilmore's theory,
based on the Kirkwood-Bethe assumption, continue to be surprisingly
accurate. |

For the empty cavity under 1 atmoséhere external pressure,
the bubble wall velocity tends to infinity as (RO/R)O' 785. The value of
the index was found to be the same when Py Was 10 at(tmospheresv. This
result is in good agreement with a similar estimate by Hunter[ZS]. By
0.5

H

comparison, Gilmore's theory predicts a rate varying as (RO/R)

while the incompressible theory gives (RO/R)1 ) 5.
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The remaining results are concerned with the flow in the liquid
around the collapsing bubble and were obtained for the two cases,
P, = 1073 anda 107% atmospheres, with y = 1.4 and an external pres-
sure of 1 atmosphere. In both these cases the liquid rebounds and
forms a compression wave which moves outwards and steepens into a
shock front. The occurrence of the shock front causes the numerical
solution to become unstable, so that the results are only presented up

[29],

to this point. Methods are available L 3'O]for overcoming this in-
stability, and proceeding with the solution. But this continuation would
have involved an additional program of computation and, since it is not
really necessary for the purposes of this paper, it was not pursued.
Figure 4 - 7 show the distributions of Mach number and pressure in the
liquid. These are given for successive instants in time which is ex-

‘ pressed in terms of T, the time required for the bubble to collapse
from the initial radius RO to the final minimum radius. The formula
used to determine the time scale is (.'T - t)104/'r where t is the time
elapsed from the start of the motion. The collapse tinde T was deter~
mined accurately from the numerical solutions. However if can also be

[2]

estimated approximately, using Rayleigh's theory for an empty cavity

in an incompressible liquid. The approximate formula is
1
~ 2
T~ 0.91 Ro(pm/pm) .

Estimates from this agree to within less than 1% with values obtained in
the calculated examples.

Figures 5(b) and 7(b) show the pressﬁ.re wave forming and travel-
ing outwards into the liquid. Because of the compressibility, the change

in the direction of motion of the interface is communicated to the liquid
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only by‘the passage of the pressure wave, and hence a reversal of flow
occurs through it, as shown in Figs. 4 and 6. The shock wave forms
quite rapidly when the-initial pressure is 10—4 atmospheres, because the
‘final collapse pressures are high, In‘the case where-the initial pressure
isl 10_3 atmospheres, the pressure front does not steepen so quickly.
When P, = 10_2 atmospheres the final pressure at the cavity wall is
seen, from Fig. 1, to be about 103 atinospheres. For liquid pressures
of this magnitude, the compression wave will steepen only very slowly
and the rate with which it steepens is reduced as it moves outwards, be-
cause of geometric attenuation. For sﬁch cases the compression will
behave rather like an acoustic wave, which does not alter much in form
as it propagates. For larger amounts of gas inside tile bubble, the
intensity of the compression will diminish e\;en further until only a very
weak pulse emanates from the collapse.

Figure 5(b) shows that the acoustic approximation is feasonably
valid even in the case where a shock front develops, The pressure front
~ steepens, but the wave remains of approximately the same thickness and
attenuates as 1/r as it propagates outwards from the collapse center.
The last stage of the calculations shows that the peak pressure in the
wave is about 1,000 atmosphéres at R/RO ~ 0.3, Beyond this point not
much change will occur due to dispersion, and the losses due to entropy
" changes through the shock will be negligible[ 18], Hence the pressure
pulse will propagate outwards like an acoustic wave, and at R/Ro ~ 2
the peak intensity will be of the order of a hqndred atmospheres. For
smaller amounts of gas inside the bubble, it would be expected that the

peak pressures would be somewhat larger even though they are more

likely to be affected by dispersion. In both the calculated examples it
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was verified that the peak moved with the local velocity of sound.

4, Discussion

It is well—knov}n[ 31 ]that cavitation damage is largely due to
mechanical causes. However, the precise méchanisin is as yet undecided,.
It has been suggested that the damage is caused by bubbles collapsing
asymmetrically on to the solid in such a way that jets of liquid form and
strike the surface at high speed. Another me’chanism which has been
proposed is that the damage is caused by shock waves emanating from
bubbles collapsing at a short distance from the solid. The results given
in the previous section showed that it would be possible to obtain a shock
wave, resulting from the collapse of a cavitation bubble with a peak in-
tensity of the order of a hundred atmospheres or more at a distance of
ZRO from the collapse center. A boundary situated at such a distance
would not interfere very significantly with the process of collapse. On
the other hand the solid material would in all probability be seriously
damaged by the pressure pulses resulting from a series of such collapses,
It is possible that the intensity of the radiated pressure pulses
would be somewhat diminished by asymmetric effects occurring during
the final stage of the collapse. It has been shown[ 32]that when its
velocity is high the wall of a collapsing cavity will become unstable.
For an empty cavity this is estimated[ 33]to occur at radii less than
R/Ro ~ 0.1. In all the calculated examples the final collapse radii do
in fact fall into this region. However the instability will be diminished
because of the slowing down of the bubble wall by the internal gas pres-

sure. If the bubble surface does fracture, the collapse will still pro-

ceed, but the core of the collapse would probably consist of some kind
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of two-phase mixture which is somewhat less compressible than the
pure gas phase, Under such conditions shock waves would still emanate,
but possibly with diminished intensity. If it is considered that cavita-
tion damage is a fatigue effect caused by a succession of blows then the
estimated intensity of the shock waves could be reduced by a factor of
ten or so and still remain an effective cause of damage,

The hypothesis that cavitation damage is caused by shock waves
from collapsing cavities is supported indirectly by experimental observa-
tion., It has been found[ 34']’c1r‘1at an increased gas content in the liquid

reduces cavitation damage. This would relate to the fact that weaker

shocks occur when there is a larger amount of gas inside the cavities.
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APPENDIX I - THE KIRKWOOD-BETHE SOLUTION

From the theofy given in Section 2, the governing equation in

non-dimensionalized form for the motion of the 'cavitx} wall are:

= uec + B E (c-u) - £ UBc-m)1/R(C-U) (1. 1)
X -vu (. 2)
_3%1 = - 3yPU/R[n(P+B)]}/® (I. 3)
P = pO/RSY | | (I.4)
C = [n(p+B)]in 1)/ 2 (1.5)
together‘ with the initial conditions at t =0,
R=1 ; P=p_ ; C =Clp,) ;
U= ooy [Cl)-1] i H= i (Sl . (e

These equations were solved at intervals At by a simple step by step
iterative procedure starting from the initial values Eq. 1I.6. A first
estimate of U at t = At was obtained by subbsti‘tuting the initial values
into Eq. I.1. This was averaged with the initial value of U and used
in Eq. I.2 to obtain a first estimate of R at t = At. The values of R
were then averaged in the same way as the values of U and used in
Egs. I.4 and 1.5 to get correspondingly averaged values of P and C.
The averaged values obtained so far were then used in Eq.v I. 3 to obtain
an averaged form of dH/dt and a first estimate of H at t = At. This

procedure was repeated step by step for each interval At., In approaching
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the collapse point; the variation with time becomes quite rapid, and it
is necessary to keep reducing thé int‘erval At in order to preserve ac-
curacy. This was done by repeatedl;? carrying the solution up to the
point where U becomes positive, then returning to a suitable earlier
point and repeating the last stages of the calculation for a new interval
At/5, where At was the previous interval,

The solution for the motion of the cavity wall provides the initial
values for the following set of equations, which can be solved along an

out-going characteristic in the interior of the liquid,

gtﬂ - I:(C;u) Y - ‘Zczu] /r{c-u) | (I.7)
-g—t]‘[-)- = [n(p+B)]1/rl [4(:1112 - E?—)—Z- YJ /r(c-u) (I.8)
-STI‘ = (utc)- ' ‘ (1.9)
C = [n(p+13)](m‘”/23‘1 (I.10)

The constant Y 1is derived from the initial conditions and is given by
Y = R(H+U?/2) (1.11)

where R, H, U are values on the cavity wall. This set of equations was

solved in the manner already described.
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APPENDIX II - THE SOLUTION OF THE
CHARACTERISTIC EQUATIONS

The non-dimensionalized equations for the characteristic solution

are
o
%g{- = (u+c) Ti% (II. 1)
or _ , - ot
3 C (u-c) B (IL. 2)
ou 1 op 2cu Ot _
55 t 5T Ba t 5 T 0 (11. 3)
ou 1 op 2cu ot _
55 ~ ¢ 88 T T B © 0 (I1. 4)
with
" = n(p+B) | (I1. 5)
¢ = [n(p+B)] 2D/ 20 S (I1. 6)
[24]

The method used to solve this system is the one used by Gilmore

[26]

and later by Brand The initial points lie along an out-going char-
acteristic line «, with the analytic continuation being provided at the

intersection with the boundary by the conditions

OR _ ., Ot |

% =V or ‘(11.7)

op _ 3yp OR. ‘

L - R oI (11. 8)
[25]

This is somewhat shorter than the method used by Hunter who took
the initial values to lie along a line t = const. In the present calcula-

tions, the initial values were provided by Gilmore's method,
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The Eqgs. II.1 - II.4 and II.7, II.8 were expressed in finite dif-
ference form and applied acéording to the scheme shown in Fig. 8. The
initial line of points along an out~going characteristic afe designated by
the letter i. The point (i, j) represents the jth point on this line start-
ing from the.point on the boundary. The continuation is provided at the
boundary at the intersection of the inward-going characteristic through
(i, 2) with the boundary. This yields the new point (i +1, 1). The out-
ward-going characteristic through this new point and the inward-going
characterivstig through the point (i, 3) intersect at the next new point
(i +1, 2). Repeating this process all the new points on the line (i + 1)
are obtained. It is seen that the total number of these points is dimin-
ished by 1 compared with the line i. The kind of averaging technique
described in the previous appendix was also used here to improve the
accuracy.

The fact that one point was lost at each step of the solution proved
to be a problem, because it was difficult to decide how many points would
be needed to carry the solution to the final stages of the collapse. This
was rem_eciied by adding one point at each step using Gilmore's method.
This was always done when the Mach number was small so that the new
point could be considered to have an accuracy corresponding to the other
points on the characteristic line. As the solution approached the last
stages of the collapse, the outward-going characteristics began to extend
into the region of rebound i.e. into the region t >T where T is the time
of collapse. The main criterion for this was the time when the velocity
began to turn positive at the end of the line of points. Whenever this
occurred, the affected points were discarded. In this way only the

points needed to give a solution up to the final stages of collapse were
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preserved.

The nuﬁber of points used was also determined by the motion of
the bubble wall. When the collapse becomes more rapid, more points
are needed to ensure the proper accurécy. As a che;k the first and
final estimates of the velocity and pressure were compared at each step
and, if these differed by a certain percentage, then an interpolation auto-
matically occurred which doubled the total number of points. The ad-
ditional points were situated at the half intervals.

The techniques described here were tested for a variety of
examples, and fhe accuracy of the results presented is considered to be
quite satisfactory. The calculations were performed on an IBM 7090

and each example took about ten minutes.
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APPENDIX III - SOLUTION OF THE LAGRANGIAN EQUATIONS

The governing équations for the Lagrangian form of the solution

are,
2 dr
ré . =1 111, 1
P By ( )
ou _ 2 ap
-é—t:—» = - T —8—3—7— (III. 2)
or _
= = u (III. 3)
with
a \
p = n(p+B) (111. 4)
c = [n(p-l—B)](n—l)/Zn (I11. 5)

This set of equations is sufficient to determiﬁe the variables., Equation
III.1 can be used to find p, whence Eq. III. 4 yields p. Howeyer this
is not a very satisfactory process, since p var‘ies’ comparatively slow-
ly and is not ;rery suitable as a running variable. Hence instead of

Eq. III. 1 the followirig relation was used,

op _ 2 Ou .
In addition the pressure on the boundary was given by
P =p /R*Y (I11. 7)

The above set of equations were expressed as finite differences.
The variables were situated at different points in the finite difference

lattice so that the derivatives could be expressed in a difference form
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accurate to second order. The arrangement used is shown.in Fig. 9.
The velocity u was evaluated at the points (i, j + %), the pressure p
at the points r(i + %, j}» and the radial distance r at the points
(i+3, j+3), where i, j are the coordinates of a typical point of the
lattice. At the boundary the velocity increment was found using a th‘ree
point difference formula for the derivative 0p/8y. An iteration scheme
using averaged values was employed, in a manner similar to that des -
cribed in the previous appendices.

The initial points were obtained using Gilmore's théory. Given
a set of points describing the motion of the bubble wall, solutions are
found along the outward-going ’characteristicsr starting fromb each of the
givén points-and finishing on a certain line t = const. The points along
this line then provide the initial points for the calculation. The incre-
fnent in y between each of the points is found from Eq. III.1,

Because of the purposes of the caiculation, the computations had
to be performed over a fairly extensive range of y. However, the need
for accuracy décreases in moving away from the bubble wall, and the
spacing of the points can be redﬁced correspon‘di‘ngly, This is already
achieved to some extent by the initial points since their spacing with
respect to 'y varies roughly as fz. However, finer accuracy is requir-
ed near the boundary when the collapse’becomes more rapid. Hence a
scheme of interpolation was e‘rnbar'ked on, similar to that described in
Appendix II for the rﬁethod of characteristics. When the differences be-
tween first and second estimates at thé boundary become greater than a
certain percentage, interpolations are made between the first twenty-

five points closest to the boundary. Hence the total number of points is

increased with each interpolation. In order to prevent the loss at each
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step in time of the point farthest from the bubble wall, an extrapolation
is made assuming the liquid to be incomp‘ressi’ble. This assumption is
justified because the magnitude of the v.elocity and pressure in this
region is smali. The increment in time was detei‘mined from the well-
known Courant-Levy condition on the relation between sound speed ‘and
mesh speed.

The solutions were carried up to the final collaps‘e point and
beyond into the region of rebound, where a compression wave forms
and moves outwards, eventually turning into a shock front. Beyond this
stage the solution could presumably have been carried on using methods

[29] [30]

or Lax where an

such as those of von Neumann and Richtmeyer
artificial viscosity term is introduced into fhé equations of motion to
éreate a smooth transition in flow through the shock. By this means
the motion of the shock could have been followed as it moved out into the
liquid. This was not attempted here, however, because it was felt that
enough information had already been obtained to make an order of
magnitude estimate of shock strengths at a distance from the center of
collapse, and because to have follgwed the solution to any extent in this
way, would have involved an elaborate reconstruction of the numerical
procedures together with an extensive series of test calculations.

| Up to the final collapske point the Lagrangian solution could be
compared to that obtained from the method of characteristics. Good
agreement was found once both programs had been developed and tested,
For example in the results presented here the final collapse radii agree
to within less than 1%. Other comparisons showed a similar order of

agreement., After the final collapse point, the Lagrangian solution

showed good agreement with physical considerations. The crest of the
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compression wave moved with the local speed of sound, and the attenua-
tion under conditions where dispersive effects were not strong varied
approximately in inverée prol;ortion to the distance from the center of

collapse.

The calculation time for each of the examples given here was

about twenty minutes.
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