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ABSTRACT

This thesis presents the results of computer simulations of olfactory cor-
tex designed to explore the role of biological mechanisms in the behavior and
function of cerebral cortical networks.

Chapter 1 provides the basic description of the model of piriform cor-
tex including simulation methodology and parameters. The results of network
simulations which reproduce three characteristic macroscopic evoked cortical re-
sponses are described with the suggestion that the simulated temporal dynamics
which underlie these responses may reflect the operation of a fundamental com-
putational strategy used in the storage and retrieval of olfactory information.

Using both single cell and network simulations, chapter 2 looks in detail at
the patterns of synaptic currents produced along the dendritic tree of single cells
and compares simulated results with actual experimental measurements. This
technique provides the means to identify the relative synaptic contributions and
provides an important constraint on the selection of synaptic weight distribution
parameters in the network model. The results identify the sources of synaptic
inputs underlying characteristic macroscopic evoked events and thus provide
additional insights into the results of chapter 1.

Using the basic model outlined in chapter 1, chapter 3 explores the effects

of incorporating a mechanism for activity dependent modification of synaptic
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weights along selected interconnection pathways. This is done in the context of
storage and retrieval of patterned inputs to the model intended to simulate the
patterns of activity which represent actual olfactory input. The results indicate
that the basic model which reproduces known physiological responses can also
be made to store and retrieve patterned input indicating that the dynamics of
the simulated cortex are compatible with a continuous mechanism of Hebbian
synaptic plasticity.

In chapter 4 the structure of the basic piriform cortex model is modified
slightly to reflect more neocortical-like features. The dynamics of this modified
network are compared with experimental observations of coherent oscillatory
behavior in primary visual cortex. These simulations indicate that the observed
behavior are characteristic of the network architecture and do not necessarily
represent the encoding of stimulus specific information.

Chapter 5 provides a general overview of the simulation system used to
implement all of the simulations used in this research.

Appendix 1 examines the effects of critical parameter variations on simu-
lated EEGs.

Appendices 2 and 3 contain the complete GENESIS scripts describing the

network and single cell models used in this work.
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INTRODUCTION

The chemical senses may be thought of as the earliest of all sensory sys-
tems. From bacteria to primates one finds chemosensory systems designed to
gather information about the environment by sampling its molecular compo-
sition (Koshland, 1980). Of the chemical senses, olfaction is one of the most
sophisticated. It is found in organisms ranging from insects to mammals where
it can govern a wide range of complex behaviors.

As a feat of engineering, the olfactory system remains unparalleled in its
ability to detect and identify a broad range of odorants at various concentrations.
While artificial systems have been designed to detect the presence of specific va-
porous substances (Zarcomb and Stetter 1984), and even to discriminate from
a limited number of related odorants (Persaud and Dodd, 1982; Gardner, et al.
1990), none have achieved both the sensitivity or flexibility found in biological
systems. In many species, the olfactory regions of cerebral cortex are the domi-
nant cortical structures and it has been suggested that neocortex represents an
evolutionary elaboration of the basic cortical circuit established in olfactory and
archicortical systems such as the hippocampus (Shepherd, 1987). Additionally,
as a model system for studying sensory cortical processing, olfactory cortex is
particularly attractive due to its relatively simple structure in terms of numbers

of cell types, numbers of layers, and complexity of local circuits. This system is



the basis for the work to be presented in this thesis.

Olfactory overview

The process of olfaction begins with odorant molecules being drawn into
the nasal cavity through inhalations which typically occur in repetitive sniffing
patterns. Within the nasal cavity are a series of convoluted structures known
as the nasal turbinates, which are covered by the olfactory sensory organ — the
olfactory epithelium. The epithelium consists of a thin sheet of sensory cells
which are covered by a mucus layer. These cells have ciliary processes which
interact with odorant molecules absorbed by the mucosa. While the specific
mechanism of transduction is not known, it is thought to involve the binding
of odorant molecules to receptor sites located in the ciliary membrane (Lancet,
1986). This binding is believed to initiate a second messengel; cascade leading
to the opening of ionic channels in the cilia, depolarizing the sensory cell and
producing action potehtials. The responsiveness of individual sensory cells to a
particular odorant is a function of the odorant quality, concentration, and flow
rate, and the sensitivity and selectivity of individual sensory cells is variable.
While a significant amount of current research in the field involves the classi-
fication of receptor cell response characteristics, identification of basi?: receptor
types has been elusive. Instead it is generally observed that most cells respond

to a broad range of odorants and concentrations (Moulton, 1976). Therefore,



while there does exist a small subpopulation of ’specialist’ cells which are nar-
rowly tuned to specific odorant molecules and can transmit this information in
a ’labeled-line’ fashion, the general process of olfactory detection and discrimi-
nation undoubtedly involves the integration of information obtained from large
numbers of broadly-tuned sensory cells.

The first stage of this integration occurs in the olfactory bulb which is the
cortical relay center for receptor cell input. The circuitry of this system is dom-
inated by local excitatory and inhibitory interactions and has been compared
in structure and function to the mammalian retina. Response characteristics
of mitral cells in the olfactory bulb indicate that while some increase in odor
specificity may occur at this level, cells remain broadly tuned to many odorants.

The next stage of integration occurs in the olfactory cortex which receives
projections from the olfactory bulb. The olfactory cortex itself is made up of a
number of distinct cortical areas. Among the most prominent of these areas are
the anterior olfactory nucleus (AON), the olfactory tubercle (OT), amygdala,
and the piriform cortex (PC). Of these areas the piriform cortex is of particular
interest and is the focus of this thesis. This region is believed to be involved
in discrimination of complex odors and occupies a position close to both the
periphery and limbic structures which have been implicated in general memory

processes, such as entorhinal cortex, and hippocampus. This structure is also



accessible for modeling due to its relatively simple structure and the availability
of experimental data describing its behavior under various conditions.

Olfactory research

Research in the area of computational neuroscience can be seen as an
effort, not simply to find solutions to difficult problems which have been solved
by biological systems, but rather to use knowledge regarding the problems that
must be solved and the constraints under which the solution must operate to
understand the mechanisms which realize the desired solution. In the case of
the olfactory system the problem can be initially defined as the necessity to
detect and identify odorants of variable composition and concentration. This
basic problem is further complicated by the need to identify specific odorants
from background compositions based on context dependent saliency and to make
rapid, permanent behavioral associations given brief exposures to odorants.

Efforts to understand the mechanisms of olfaction have involved psy-
chophysical, neurophysiological, and neuroanatomical approaches. The results
of these experiments have provided vast amounts of descriptive data. Inter-
pretation of the functional significance of this data requires a framework which
can consolidate known information while providing the basis for formulation
and testing of new hypotheses. Modeling has been successfully used by many

researchers to provide such a framework (Koch and Segev, 1989).



Models can be broadly grouped into two categories: type 1 approaches
(structural modeling), in which basic function is constrained by known struc-
ture (physiology and anatomy), and type 2 approaches (functional modeling),
in which basic structure is dictated by presumed function. In both cases the
objective is to understand function, and the role of structure in realizing that
function. Type 1 systems take advantage of experimental data but must rely
on structural constraints to provide novel intuitions concerning basic function.
Type 2 systems are effective at testing functional hypotheses but they typically
do not take full advantage of biological systems as a source of intuition for these
hypotheses.

An example of type 1 modeling is work by Traub (1989) in which he has
constructed hippocampal networks, using observable physiological data as a
constraint for parameter selection, in order to explore the dependence of epilep-
tiform activity on network and single cell properties. A type 2 approach has
been taken by Granger et al. (1989) in which a high-level functional hypothesis
is used as a constraint for parameter selection and the resulting system is used
to interpret the role of system features in that function. Poggio et al. (1985)
used the type 2 approach to construct solutions to problems of early vision, and
Freeman (1975) has employed both type 1 and type 2 constraints in his work in

the olfactory system.



In neurobiology, one of the most successful applications of the type 1 mod-
eling framework has been the work of Hodgkin and Huxley (1952) in which they
were able to describe the behavior of excitable membranes using a concise math-
ematical description as manifested in quantitative which reproduced observable
phenomena while capturing the qualitative features of the underlying physical
mechanisms. Subsequent to this initial verification, the model provided a frame-
work around which experiments could be designed to test system behavior based
on basic model assumptions.

The modeling presented in this thesis represents a similar attempt to orga-
nize a framework for describing, not the behavior of single neurons, but rather
the behavior of networks of neurons using basic mathematical descriptions of the
known components of the system. The first objective of this type of modeling is,
therefore, to reproduce observed phenomena and describe these phenomena as a
function of modeled components. This ”curve fitting” phase is greatly enhanced
by the incorporation of multiple response constraints which exercise different as-
pects of model behavior. The olfactory literature contains many types of data
which can be used for this purpose including EEG, evoked potential, intracel-
lular recording, and current source density measurements. This provided the
basis for the work presented in the early chapters. In chapter 1, observable

phenomena in the form of evoked and spontaneous macroscopic field potentials



are related to the synaptic events at single cells and the timings introduced by
network circuitry and interconnection patterns. Complementing these network
simulation results, chapter 2 utilizes current source density data which allows
visualization of current distribution patterns generated by characteristic eyoked
responses. In this case, the model relates the observed current source patterns to
synaptic inputs with particular temporal and spatial characteristics. Together,
these chapters relate a variety of experimental measurements to basic structural
features governing network interactions in a coherent view of the organization
of synaptic events in the olfactory cortex.

Learning

Interest in the application of neural computational principles to the solu-
tion of complex knowledge-bound problems has spawned new research in artifi-
cial neural networks which seek to understand the representation, storage and
retrieval of information in parallel distributed systems such as the brain. In
this abstract approach, vastly simplified networks of interconnected processing
units are used to solve a wide range of pattern recognition problems. While
models in this area are typically of the type 2 variety, the type 1 approach is
also capable of addressing computational issues, particularly those related to
biological systems.

Piriform cortex is of particular interest as a model for associative memory



function in cerebral cortex. The extensive system of association fibers which
serve to interconnect pyramidal cells within the cortex are similar to patterns of
connections within more abstract associative memory networks (Hopfield 1984).
These abstracted systems demonstrate a number of properties which are pre-
sumably essential for any robust distributed memory system. Among these are
the ability to establish multiple stable representations which can be recalled
given degraded or noisy input. Establishing these properties involves proce-
dures in which the weight, or efficacy, of synaptic transmission between units is
altered according to a synaptic modification rule.

Chapter 3 describes simulations using the basic model piriform cortex
which were used to investigate the behavior of the system in the presence of
a postulated mechanism governing synaptic plasticity. The principle objective
of this work was to determine how a system such as the piriform cortex could
perform basic associative memory functions, and whether a simple, biologically
plausible synaptic modification rule would operate properly in the context of ac-
tual cortical dynamics. To explore these questions, the model was presented with
spatially and temporally patterned input intended to represent odor specific ac-
tivity in the olfactory bulb. Sparse synaptic connections were made between
pyramidal cells and from the input onto pyramidal cells and the weight of these

connections was allowed to change based on pre and post synaptic activity. Un-



der these conditions, a stable spatial pattern of pyramidal cell rapidly emerged
in response to patterned stimulation. This pattern could later be recalled using
a partial version of the original input.

A consequence of this work was the prediction of the model that robust
information storage and retrieval required the differentiation of synaptic plastic-
ity between different interconnection pathways. Subsequent work has, in fact,
provided evidence for differential pharmacological effects across these pathways
(Hasselmo and Bower 1990).

This work demonstrates the ability of a continuous Hebbian mechanism
to operate in the context of actual cortical dynamics to successfully store and
retrieve patterned information, thus relating mechanisms of cortical behavior
with properties of cortical function.

Cortical oscillations

Adrian in 1942 was the first to observe the characteristic oscillations
present in the EEG of the olfactory cortex. Since that time, considerable
progress has been made in relating properties of the oscillations to behavioral
variables, yet the role of detailed structural mechanisms has not been demon-
strated. Recent work in visual cortex uncovered similar oscillatory behavior
(Gray and Singer, 1989). In this case, as well, the mechanisms governing the

oscillatory properties were not understood. The model, therefore, provided an
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ideal foundation for exploring the mechanisms underlying oscillations in both
systems. The central question taken up in chapter 4 was the extent to which in-
trinsic mechanisms which result in oscillatory behavior in piriform cortex could
be used to explain the behavior of other cortical systems. To study visual cor-
tical oscillations, the model of piriform cortex was slightly modified to reflect
more neocortical-like structure. Simulations of piriform cortex had revealed the
importance of horizontal excitatory connections in establishing oscillatory phase
relationships in that structure and, therefore, was the focus of attention in the
visual cortical model. Simulations of this basic model reproduced coherent os-
cillatory behavior observed experimentally in visual cortex using a mechanism
dependent on lateral excitatory connections. These results indicated that the
phenomenon may emerge as a property of intrinsic circuitry rather than being
extrinsically imposed as a computational mechanism. Here, as in piriform cor-
tex the model served to clarify the relationship between mechanisms of cortical
behavior, and proposed mechanisms of cortical function.

Summary of thesis contributions

In summary, this research has contributed a number of insights into the
nature of olfactory cortical processing. These contributions are summarized
below.

The network simulations of the piriform cortex revealed novel interac-
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tions which were found to underlie basic cortical responses. These interactions
were a consequence of complementary network and single cell parameters which
resulted in characteristic dynamic behavior. These interactions were demon-
strated to be consistent with known current source density measurements.

Single cell simulations which examined the contribution of specific synap-
tic inputs revealed the generator mechanisms underlying characteristic evoked
field potentials and provided correlation between current source density mea-
surements and synaptic inputs. The simulations also demonstrated that the
known laminar distribution of inputs contributes to a differentiation of influ-
ence on cellular integration. These results suggest unique roles of these inputs
in modulation of unit activity as well as mechanisms of plasticity.

Simulations which incorporated synaptic plasticity demonstrated the first
successful use of a continuous Hebbian algorithm operating in the context of
known cortical dynamics to store and retrieve patterned information.

The results of simulations of visual cortex demonstrated a plausible mech-
anism for establishing observed coherent oscillatory based soley on intrinsic
network structure.

The simulation system developed during the course of this research has
proven to be a valuable tool for simulation of a wide range of neurobiological

systems from single cells to large scale networks and is currently in use at a
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number of academic institutions.

Overall, this work represents an attempt to demonstrate the use of mod-
eling as a tool for testing hypotheses concerning cortical function based on
constraints imposed by known cortical structure.
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Cortical oscillations and temporal interactions
in a computer simulation of piriform cortex
Matthew A. Wilson and James M. Bower !

SUMMARY AND CONCLUSIONS

1. A large-scale computer model of the piriform cortex was constructed
based on the known anatomical and physiological organization of this region.

2. The oscillatory field potential and EEG activity generated by the model
was compared with actual physiological results. The model was able to produce
patterns of activity similar to those recorded physiologically in response to both
weak and strong electrical shocks to the afferent input. The model also generated
activity patterns similar to EEGs recorded in behaving animals.

3. In addition to replicating known physiological responses it has been
possible to use the simulations to explore the interactions of network compo-
nents which might underly these responses. This analysis suggests that the
physiological properties of the cortex are dependent on the complex interaction
of both network and cellular properties. In particular, we have found that the
relationship between conduction velocities in intrinsic cortical fiber systems and
the time constants of excitatory and inhibitory effects are critical for replicating

physiological results.

1The authors are members of the Computation and Neural Systems Program, California
Institute of Technology, Pasadena, CA 91125.



A-2

4. Analysis of the model also suggests a correspondence between the 40
Hz oscillatory patterns of activity induced by low levels of odor-like stimulation
and oscillatory patterns seen in lightly anesthetized cortex in response to weak
electrical shocks to the afferent fiber system.

5. The specific relationships we have found between the different compo-
nents of the model also support several speculations on their functional signif-
icance. The simulations suggest that during each 40 Hz cycle of EEG activity
there is a convergence in rostral cortex of afferent information from the olfactory
bulb and recurrent association fiber information from caudal cortex. This con-
vergence could underly an iterative process central to the recognition of complex

olfactory stimuli.
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INTRODUCTION
The study of the dynamical properties of neural and neural-like systems is
rapidly becoming an important area of research within computational neuro-
biology (46). Recently, this interest has increased with the finding that the
oscillatory properties of groups of neurons in primary visual cortex reflect spe-
cific properties of visual stimuli (9,12). For the last several years we have been
exploring the general oscillatory properties of cerebral cortical networks within
the context of the piriform (olfactory) cortex which is known to produce rapid
periodic variations in electrical activity (5). We have used computer simula-
tions to explore the possible cortical mechanisms responsible for these oscillatory
properties as well as their potential functional significance. The simulations are
based on a large-scale network model containing known features of the anatomy
and physiology of the piriform cortex (50). As reported in this paper, these
simulations suggest specific cellular mechanisms and network properties that
could underlie the oscillatory behavior of this cortex. Further, analysis of the
simulations also suggests possible functional roles for these oscillatory patterns
in olfactory processing which could also be relevent to the function of cerebral

cortical networks in general.

Piriform cortez
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The piriform cortex is the primary olfactory cerebral cortical region in all
mammals, and is believed to be involved in the recognition of complex olfactory
stimuli (14,20,43,45,51). Functionally, piriform cortex is unique for a cerebral
cortical structure in that it is closely tied to both the sensory periphery and
to deeper cortical structures believed to be involved in fundamental aspects of
learning and memory (20). Sensory input comes directly from the olfactory
bulb which itself receives direct projections from olfactory receptors. Cortical
output projects to limbic structures such as entorhinal cortex (23,25,30) which,
in turn, project to areas such as the hippocampus (44). Thalamic pathways have
also been found which directly link olfactory cortex to neocortical regions (6,29).
Structurally, this cortex is also very attractive in that it is highly laminar and has
a relatively small number of different cell types when compared to neocortical
areas (14). These characteristics have considerably simplified the study of its

anatomical and physiological organization (20).

Structure of the model

The model to be described is meant to realistically simulate the behavior

of neurons across the full extent of the actual piriform cortex (approximately
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10 mm x 6 mm) which contains on the order of 107 neurons, with approxi-
mately 5-10 different cell types (14,15). To accomplish this we have simulated
1500 cells (50x30) in each of three principle categories: excitatory pyramidal
cells, feedforward inhibitory neurons, and feedback inhibitory neurons. Given
the limited number of cells which can be simulated, a cell at a given array lo-
cation must be representive of all cells of that type which would occupy that
area in the actual cortex. The relative density of the individual cell types is
reflected in the relative strength of synaptic connection between the cell types.
The current model therefore simplifies the cortex to a total of 4500 cortical cells
with 100 cells representing the input to the cortex from the olfactory bulb. As
in the case of total cell number, the model also greatly simplifies the represen-
tation of the neurons themselves. Pyramidal cells are modeled as five coupled
membrane compartments, while inhibitory neurons are represented as a single
compartment. Connections between modeled cells are made by axons with fi-
nite conduction velocities which simulate the propagation of all or none action
potentials using simple delay lines. No explicit axonal membrane properties
are included. Synaptic activity is produced by simulating the action-potential
triggered release of presynaptic transmitter. The release of transmitter induces
conductance changes in channels contained within the membranes of postsynap-

tic cells allowing the flow of transmembrane current. Each channel is described
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by parameters which govern the time course and amplitude of synaptically acti-
vated conductance changes. The membranes of modeled neurons include Na+,
Cl-, and K+ ionic channels as well as a characteristic membrane capacitance
and resistance. The compartmental models of the cells integrate the transmem-
brane and axial currents to produce transmembrane voltages. Excursions of the
cell body membrane potential above a specified threshold trigger conductances
which produce an action potential waveform. Intrinsic after hyperpolarizing
potentials (AHPs) are not included in the model consistent with observations
of actual piriform cortex layer II pyramidal cells (48).

The simulation has been designed to generate intracellular potentials, ex-
tracellular spike trains, extracellular field potentials, and EEG type record-
ings. The last two measures of model behavior are calculated using the three-

dimensional spatial distribution of pyramidal cell membrane currents (50).

Figure 1 about here

As shown in Fig. 1, the model is based on anatomical and physiological

properties of the piriform cortex itself. Parameter values are based on measure-
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ments taken from the opossum and rat. While the current description of this
anatomy and physiology will be limited to those features essential for under-
standing the model, readers interested in a more complete description of the
cortex are referred to a recent review by Haberly (14). Technical details con-
cerning the model implementation and nominal parameter values used are given
in appendices A and B.

Axonal input from the olfactory bulb is delivered to the cortex via a fiber
bundle known as the lateral olfactory tract (LOT). This tract projects across
the surface of the cortex making sparsely distributed (8), non-topographic (24),
excitatory (21,36), synaptic connections with pyramidal cells and inhibitory in-
terneurons (19) (Fig. 1A). Conduction velocities along these axons vary with the
axonal type (16,18). For example, action potentials travel along the main fiber
tract towards caudal cortex at a speed of 7.0 m/s (18), while collaterals which
leave the main fiber tract at a 45 degree angle (8,41) have a conduction velocity
of 1.6 m/s (18). In the actual cortex there is a diminution of afferent input to
pyramidal cells moving from rostral to caudal that is reflected anatomically in
the number of synaptic terminals (40), and physiologically in the amplitude of
shock evoked potentials mediated by the afferent system (18,36). To simulate
this effect in the model, the number of afferent synaptic contacts is exponentially

attenuated with increased distance from the rostral site of stimulation.
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In addition to the afferent input from the olfactory bulb, a system of
association fibers arising from the principle cortical cells, the pyramidal cells,
also makes sparse, distributed excitatory connections with other pyramidal cells
in both rostral and caudal directions (Fig. 1B) (16,21,22,23). These fibers
spread out radially from the originating cell with a rostrally directed velocity of
1.0 m/s, and caudally directed velocity of 0.5 m/s (16,18). In the model, as in the
cortex, there is no apparent point-to-point topography in this projection (23,33).
The broad organization of association fiber projections along medial/lateral and
rostral/caudal dimensions observed by Haberly, Luskin and Price (23,33) is not
incorporated into the model.

In addition to these excitatory systems, there are also inhibitory feedfor-
ward and feedback circuits associated with intrinsic cortical inhibitory interneu-
rons (Fig. 1C). Both types of inhibition observed physiologically in the pyrami-
dal cells of piriform cortex are incorporated into the model (48). A Cl- mediated
feedback inhibition is generated by local interneurons receiving input primar-
ily from local pyramidal cell association fibers as well as some afferent fibers
(2,3,17,21,22,37,38,48). The outputs of these inhibitory interneurons feed back
to nearby pyramidal cells where significant conductance increases result in a rel-
atively short lasting current shunting inhibitory effect (Fig. 1D) (21,38,39,48).

In addition to this shunting type inhibition, a K+ mediated inhibition is gen-
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erated by local interneurons receiving primarily direct afferent input from the
LOT as well as some associational input from pyramidal cells (38,48). The out-
puts of these interneurons generate a long latency, long duration hyperpolarizing
inhibitory potential in nearby pyramidal cells (Fig. 1D) (21,37,38,48).

As described above, most of the principle parameters of the model are
highly constrained by experimental data. However, a significant parameter
which is only loosely constrained is the actual distribution of synaptic weights.
To compensate for modeling many fewer than the total number of actual neurons
found in this cortex, pyramidal cells are fully interconnected and the strengths
of individual connections are unrealistically strong. This is likely to be particu-
larly true of the caudal to rostral association fiber system which has been clearly
shown to exist (16,21,23,33,34) but which appears to be weaker than its rostral
to caudal counterpart (23,33). Simulations which incorporate this feature, how-

ever, show the same qualitative patterns of activity described below.

Simulation Results

It has been shown experimentally that weak electrical shocks of the LOT

in lightly anesthetized animals produce damped oscillatory evoked potentials

(Fig. 2B) (10). In contrast, strong shocks to the LOT produce a simple biphasic
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response (Fig. 2A) (10). It is also known that under awake behaving conditions,
EEG activity recorded from the surface of piriform cortex is oscillatory with
characteristic frequency components in the 3-10 Hz and 35-85 Hz range (Fig.
2C) (4). As shown in Fig. 2 and described below, our model of piriform cortex
18 capable of reproducing these responses while only varying parameters related

to actual experimental or stimulus conditions.

Figure 2 about here

LOT shock response. Figure 3 shows the principle events underlying the
simulated responses to LOT stimulation shown in Fig. 2A,B. Specifically, Fig.
3 contrasts simulated cortical activity at the same post-stimulus times, for both
strong (upper panels) and weak (lower panels) LOT stimulation. In both weak
and strong shocks all afferent fibers are synchronously activated to produce a
single spike along each fiber. The amplitude of this spike is set to 1.0 for the
strong shock and 0.4 for the weak shock. As described below, the simulation
suggests that essential differences in the responses of the cortex to weak versus

strong shocks result from differences in the relative timing of network events. To
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understand these interactions, it will be necessary to examine these responses
in some detail.

The first two vertical set of panels in Fig. 3 demonstrate that, with both
types of shocks, a sweep of afferent LOT activation into the cortex activates
excitatory conductances in the distal-most apical dendrite of rostral pyramidal
cells (top panel), depolarizing them to threshold and initiating action potentials
(fourth panel from top). The output of these pyramidal cells is distributed in
all directions along the association fiber system (panels 2 and 3) both to other
pyramidal cells as well as to local inhibitory feedback neurons. These inhibitory
neurons, in turn, reciprocally inhibit nearby pyramidal cells (bottom panel).
Inhibition from modeled feedforward inhibitory interneurons is not shown in

this figure.

Figure 3 about here

While the first set of panels look similar for both shock intensities, the
second set of panels show marked differences in the model behavior in each

case. Specifically, at 10 msec following a strong shock, neurons have already
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spiked across a large region of the cortex. With weak shocks, however, spiking
activity at 10 msec is still largely confined to rostral cortex. In the model, this
trend continues so that by 15 msec, afferent activity resulting from the strong
shock has driven cells to spike across the full rostral to caudal extent of the
cortex, while the weak shock does not activate caudal cortex until 25 msec after
the shock is delivered.

Analysis of the behavior of the model shows that these differences in the
spread of activity across the cortex are a direct result of the number of afferent
fibers activated by the two shocks. With strong shocks, the larger number of
active afferent fibers makes total afferent activity strong enough to directly drive
neuronal spiking in most cortical neurons whether they are found in rostral or
caudal cortex. This rapid, afferent driven activation of the cortex generates a
narrow, brief latency peak in overall association fiber activity as well as a large
inhibitory response. The model suggests that this combination is particularly
significant in rostral cortex where the resulting superposition of a large current
shunting inhibition with association fiber inputs greatly reduces the effectiveness
of the excitatory association fiber system. As a consequence, cells in rostral
cortex have only a single phase of increased firing in response to large LOT
shocks and the resulting evoked potential has a simple biphasic waveform (Fig.

24).
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The lower set of panels in Fig. 3 demonstrates that a quite different
pattern of activity results from a low amplitude shock to the LOT. In this case,
afferent activity is only strong enough to produce spiking in rostral neurons.
The spread of activity across the cortex results principally from the delayed
arrival of association fiber activity secondary to afferent activation of rostral
cells. As discussed in the description of the model, this fiber system is known to
have a much lower conduction velocity than the LOT fibers (16,18). In addition,
the dependence of spread on polysynaptic effects further delays caudal spread
of activation. The slow spread of activity across the cortex, and the resulting
delay in spiking of caudal neurons broadens activity in the association fiber
system. Additionally, the smaller number of cells initially activated by low
afferent stimulus intensities results in weaker inhibitory input to pyramidal cells
throughout the cortex. Thus, when delayed association fiber activity reaches
rostral cortex, local inhibition as a result of the initial activation of rostral cells
is greatly diminished. The broadening of association fiber activity coupled with
this reduced inhibition allows rostral cells to repolarize and reactivate. If the
reactivation is strong enough, a new sweep of activity into caudal cortex is
initiated. As a consequence, the cortical evoked potential can have multiple
repeated phases of activity reflecting these additional rostral to caudal sweeps

of cortical activation.
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Additional manipulations were performed to examine the sensitivity of this
response to variation in certain key parameters. Reduction of association fiber
strength resulted in diminished oscillatory response, while increasing association
strength enhanced both amplitude and duration of the response. Similarly,
increasing inhibitory strength produced increased damping of the oscillatory
response. Oscillatory behavior was quite sensitive to variations in association
fiber velocities. Reduction of association fiber velocity reduced the frequency
of and amplitude of oscillation while increasing association velocity altered the
timing of the recurrent reactivation and thus eliminated multiple oscillatory
periods.

In summary, these simulations suggest that the shock strength dependence
of cortical evoked potentials may be related to the interplay of local properties,
such as the time course of local feedback inhibition, with network properties,
such as the conduction velocities of the intrinsic fiber systems mediating intra-

cortical communication.

EEG oscillations
A similar, but more complex sequence of events results when the model is pre-
sented with LOT activity intended to more closely approximate natural patterns

of stimulation. Initially, the model was given inputs with behavior derived from
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the temporal activity patterns recorded in the olfactory bulbs of behaving an-
imals (4). Given that activity in the bulb is characterized by oscillations at
frequencies similar to naturally occurring cortical oscillations (4,5), it was, per-
haps, to be expected that the simulated cortex generated the appropriate EEG
patterns. Of more interest, however, was the behavior of the model when os-
cillatory input patterns were replaced by continuous random input. This input
was constructed by generating independent random spikes for each afferent fiber
with a poisson rate parameter of 0.5/msec. The amplitudes of each spike event
were uniformly distributed over the range of 0.5 to 1. This produced afferent
input with a broad distribution of energy over the range of 0-100 Hz. The EEG
response of the model under these conditions displayed the same basic frequency
components as the actual cortical response to periodic bulbar input (Figs. 2C

and 4).

Figure 4 about here

Figure 4 displays the response of the model to the presentation of contin-

uous random LOT input. The resulting EEG is seen to contain both the low
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frequency (3-10 Hz) theta type activity as well as the higher frequency 40 Hz
activity, characteristic of actual cortical EEGs (Fig. 2C). The arrows indicate
the point in the EEG cycle at which data displayed in each vertical set of three
panels was obtained. Notice that at the beginning of each higher frequency cycle
of EEG oscillation, cells in rostral cortex are firing (second panel in each case).
If the intervening data were displayed (e.g., between 0 and 33 msec), it would
be possible to see that each initiation of firing in rostral cortex was followed
by a sweep of activity to caudal cortex very reminiscent of the response of the
cortex to weak shocks of the LOT (Fig. 3). The bottom panel in Fig. 4 de-
tails the spatial distribution of feedback inhibitory input to pyramidal cells, and
indicates that, as in the case of LOT shock stimulation, feedback inhibition is
also an important component in the regulation of reactivation of rostral cells in
the EEG. In fact, the model suggests that the general characteristics of cortical
behavior underlying the higher frequency component of the EEG are essentially
the same as those seen in response to low amplitude LOT shocks.

In addition to the high frequency component of the EEG, continuous ran-
dom input to the model also produces oscillations in the lower frequency theta
range. The top-most panel in each column of Fig. 4 reveals the mechanism
responsible for this lower frequency EEG activity in the model. These panels

detail the build up of input from the feedforward class of inhibitory neurons
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onto pyramidal cells over the course of the response. As described earlier, this
inhibitory influence has a delayed onset, prolonged hyperpolarizing effect. As
these inhibitory cells are activated by continuous afferent input and pyramidal
cell feedback, their influence on pyramidal cells continues to build up until it
is large enough to shut down activity in these celis. The subsequent reduction
of pyramidal cell input to the feedforward inhibitory neurons over time reduces
the overall level of feedforward inhibition, allowing pyramidal cell activity to
eventually resume. In the model, this produces the 3-10 Hz component of the

EEG response to continuous input.

DISCUSSION

Role of inhibitory neurons

While the behavior of the simulations just described is dependent on many
of its structural components, results from both simulated LOT shock evoked
potentials and EEGs suggest important roles for inhibition in regulating the
temporal dynamics of this network. Further, simulations of the EEG suggest
that the two distinct frequency components of olfactory cortical oscillation may
each be regulated by a different population of inhibitory neurons. Feedforward
interneurons activate a gradual, long duration, K+ mediated IPSP which result

in tuning in the 3-10 Hz theta range. Feedback interneurons which mediate
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a rapid, short duration Cl- based IPSP provide tuning in the 35-85 Hz range.
Thus the time constants associated with the inhibitory effects of these cells are
essential in the model for regulating the oscillatory properties of the network.
The dispersion of frequencies modulated by these inhibitory events over a range
of values despite the uniform time constants associated with the unitary events
is a consequence of the distribution of synaptic strengths and thresholds within
both the inhibitory and excitatory populations.

While our results certainly do not dispute the possible role of inhibitory
neurons in such classic information processing functions as surround inhibition,
they do suggest that the role of these cells in the regulation of cortical dynamics
should also be carefully considered. Work by Freeman in modeling olfactory
oscillations using a control systems approach (11) has also demonstrated the
potential role of multiple inhibitory mechanisms in producing these responses.
In simulations of hippocampal oscillatory behavior, Traub et al. (47) also noted
the importance of inhibitory time constants in shaping periodic activity. More
abstracted models of neural population behavior have also explored the role of

inhibitory mechanisms in network dynamics (26,49).

Interactions among components

While inhibition clearly plays an important role in regulating the oscillatory
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properties of the simulated cortex, these effects are also dependent on interac-
tions with other components of the model. Examples include the conduction
velocities of intrinsic fiber systems, the degree of excitatory coupling, the rel-
ative influence of different fiber systems in different parts of the cortex, and
the spatial extent of the cortex itself. The simulations suggest that these and
other components of this network may be tuned to support the oscillatory be-
havior observed. Recent results, suggesting that cortical neurons may oscillate
intrinsically at 40 Hz (32), are cc..sistent with this idea. Similarly, results in
hippocampus indicating that stimulation at theta rhythms is optimal for gener-
ating long term potentiation (31,42), reinforce the idea that many components

of a given network may be tuned to operate at particular frequencies.

General functional significance for piriform cortez

With respect to the functional significance of oscillations for the processing of
olfactory information, it is important to note that this model does not include
many features known to be involved in the simulated responses. For example,
the olfactory bulb in this simulation is modeled as 100 neurons with no intrinsic
connections and with no feedback from the cortex. However, recent experiments
using current source density measurements have shown a significant periodic

influence of the bulb on patterns of activity evoked in piriform cortex by low
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amplitude shocks of the LOT (27). The cortex is also known to provide feedback
to the bulb (7,23) which may significantly influence the input the cortex itself
receives (13). For these reasons we are in the process of expanding the cortical
model to include a realistic simulation of the olfactory bulb (1).

Even at its current level of detail, however, these simulations have sug-
gested several ideas concerning the possible significance of oscillatory cortical
behavior for the actual processing of olfactory information. First, it is known
that the 3-10 Hz theta frequencies of the EEG oscillations are correlated with
the sniffing cycle of the animal (28,35). The simulations indicate that the cortex
itself may intrinsically gate activity at these behaviorally relevant frequencies.
Perhaps more interesting is the behavior of the simulated network during one
of these sniff related periods of high frequency EEG activity. In Fig. 4 it can
be seen that during these episodes, the system periodically initiates sweeps of
activity across the cortex. As described in the results, the components of the
response for each sweep of activity are very similar to those underlying the
damped oscillatory evoked potentials seen in response to weak shocks (Fig. 3).
Closer examination of this activity pattern within a cycle suggests an interest-
ing interpretation of the significance of the 25 msec time interval representing
the dominant 40 Hz component of the EEG. Specifically, in our model this is

the length of time it takes for association fiber activity arising in rostral cortex
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to sweep to caudal cortex, activate caudal pyramidal cells, and then have the
resulting association fiber activity project back to rostral cortex (Fig. 3). This
suggests that during a burst, each reactivation of rostral cortex takes place only
after adequate time has transpired for information from the rest of the cortex
to converge back on rostral cells (Fig. 4). In this context the high frequency
oscillation can be seen as reflecting the gating of an intrinsic network integration
interval. It is interesting to note that the half-cycle time of the 40 Hz oscillation
(12.5 msec) is also in the range of the estimated integration time constant for
cortical pyramidal cells of 10-15 msec (14,21) suggesting a tuning might exist be-
tween the time constants of single cells and the timing relationships of network
activity.

Figure 4 also demonstrates that, in simulations, the cycle of rostral to cau-
dal activity is repeated multiple times during each EEG burst. One question
raised by the occurence of this repeated activation response is what is gained
by waiting until information from across the cortex has converged on rostral
cells before initiating a subsequent sweep of cell firing. We suggest that by su-
perimposing activity evoked in a previous sweep of cortical firing onto afferent
information arriving from the bulb, the network might facilitate its convergence
to a stable spatial pattern of activity over the course of one sniff. It is also

possible that changes in the spatial pattern of cortical activity over a sniff cycle
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are used to encode information. In either case, the simulations suggest that the
higher frequency oscillations in the EEG could reflect the regulation of an itera-
tive process operating at a fundamental interval of 25 msec. More generally, the
modeling results are consistent with the idea that the cortex is not performing
a passive integration of sensory information over the course of sensory sampling
periods (sniffs), but is dynamically altering the cortical conditions under which

incoming sensory information is processed.
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FIGURE LEGENDS

Fig. 1. Schematic represention of the structural features of piriform cortex
which have served as the basis for the simulations discussed in the text. (A)
The spatial pattern of projection of lateral olfactory tract (LOT) axons into
and across the cortex. Note the decrease in influence of this afferent input as
the LOT courses towards the caudal end of the cortex. (B) The excitatory
connections made by LOT and intrinsic pyramidal cell axons. Note that pyra-
midal cell ”association” connections are both local and distant. The differently
shaded regions of the apical dendrite of the pyramidal cells indicate the vari-
ations in influence of each fiber system at different rostro-caudal positions in
the cortex. (C) The basic pattern of interconnections between pyramidal cells
and inhibitory interneurons. The two classes of inhibitory neurons modeled are
shown. (D) The time course of the conductances induced by the two classes of

inhibitory neurons as discussed in the text. Modified from (51).

Fig. 2. Comparison of experimentally recorded responses with those generated
by our simulation. (A) Field potentials evoked by large amplitude shocks of
the LOT. (B) Field potentials evoked by weak shocks (C) EEG recording from

awake behaving animals is compared with simulated response to continuous
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random input. Actual field potentials in (A) are taken from (18); those in (B)

are taken from (10). EEG recordings shown in (C) are taken from (4).

Fig. 3. Comparison of the effects of weak and strong shock strengths in
simulation at 5 different time steps. At each time step, 5 different features of
the simulation are compared for both the high (upper panels) and low (bottom
panels) shock strength conditions. Each plot represents the acitivy at each time
step across the full two dimensional extent of the cortex with rostral to the left
and caudal to the right. The icons at the left of the figure indicate the feature
being displayed in each row of plots. The first row indicates the conductance
changes due to the afferent input to the cortex. The next two rows represent
conductance changes due to the influence of the rostral to caudal and caudal
to rostral association fiber systems respectively. The fourth row displays the
level of depolarization of the pyramidal cell somas where the size of each box
indicates the level of depolarization. The last row shows conductance changes in
local pyramidal cells due to the feedback inhibitory interneurons. As discussed
in the text, the principal feature of interest in this figure is the reactivation

found in rostral cortex at T = 35 msec in response to a weak shock strength.

Fig. 4. Patterns of pyramidal cell activity found at the beginning of each
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cycle of oscillation in the simulated EEG. The arrows and lines indicate which
column of plots is associated with which cycle of the EEG oscillation. The
icons indicate the feature being displayed in each row of plots. The top and
bottom rows indicate the conductance changes in the local pyramidal cells due
to the feedforward and feedback neurons respectively. The middle row shows the
depolarization of the pyramidal cells across the cortex at each time indicated.
Note the changing pattern of single neuron activity associated with each cycle

of the EEG.
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A Computer Simulation of Piriform Cortex : Synaptic Events
Matthew A. Wilson and James M. Bower !

SUMMARY AND CONCLUSIONS

1. Using a simple compartmental model of a single pyramidal cell, known
current source density profiles from the piriform cortex of the opossum in re-
sponse to shock stimuli were reproduced. Using these simulated current source
profiles, depth-distributed extracellular field potentials were reconstructed and
the contributions of current source components to features of the field potentials
were analyzed.

2. The amplitude of the early Bl component generated by association
input to proximal dendrites was found to be sensitive to the presence of the
Cl- mediated shunting inhibition located near the cell body. Activation of this
inhibition served to increase dipole separation of the B1 currents and therefore
increase amplitude of the field potential. A smaller effect was found on the
earlier Al component due to reduced temporal overlap with the Cl- inhibitory
process.

3. The period 2 component of the evoked response was found to be most
sensitive to the presence of a superficial current source generated by activation of

a hyperpolarizing inhibitory process. While the Cl- mediated current shunting

1The authors are members of the Computation and Neural Systems Program, California
Institute of Technology, Pasadena, CA 91125.
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inhibition located in deeper layers II and IIl was capable of augmenting this
response, activation of the Cl- process in the absence of the superficial K+
process did not produce a significant period 2 component. Conversely, activation
of the K+ process alone was sufficient to generate a significant period 2.

4. The action of shunting Cl- inhibition on dendritic and somatic mem-
brane potential was explored. The simulated action of Cl- inhibition on in-
tracellular membrane potentials was a current shunt which was localized to the
somatic region. Integration in distal dendrites was relatively unaffected suggest-
ing that the specific order of depth distribution and precise laminar organization
of the cortex could reflect the differential action of somatic inhibitory gating.

5. Deep Ib input induced low level depolarization in both Ia dendrites and
somatic regions. This is in contrast to superficial Ib input which had a potent
effect on Ia depolarization. Local association fiber inputs to basal dendrites in
layer 1II had virtually no effect on apical dendritic potentials. The segregation
of inputs into distinct laminar regions may, therefore, also serve to differentiate
depolarizing actions in different dendritic and somatic regions.

6. Network simulations of simple evoked shock responses were performed
to determine the correspondence between the timings found to reproduce exper-
imentally observed CSD profiles in single cell simulations and those produced

by network simulation of the known circuitry. The results of these simulations



matched single cell simulations and experimental CSD profiles.

INTRODUCTION

The piriform cortex is the a primary olfactory cortical structure that has
been implicated in the discrimination of complex odors (Tanabe et al., 1975;
Freeman, 1978; Staubli et al., 1987ab; Boeijinga and Lopes da Silva, 1989). As
a model system for studying cerebral cortex, the piriform cortex is particularly
attractive due to its relatively simple structure, clear segregation of distinct
synaptic pathways into well-defined laminae, the relatively planar geometry,
and the availability of information concerning its anatomy and physiology.

In any cortical system, knowledge concerning the spatial and temporal
structure of the input to cells becomes critical to understanding the computa-
tional properties of the network. Existing evidence suggests that the specific
patterning of synaptic in the dendritic tree could have profound computational
implications (Koch; Shepherd et al., 1989; Walmsley and Stuklis, 1989). The
experimental techniques of intracellular and extracellular recording provide mea-~
sures of state variables which only indirectly reveal the synaptic input structure.
Current source density analysis of depth distributed evoked field poteptials pro-
vides a more powerful tool for examining this structure (Haberly and Shep-
herd, 1973; Rappelsberger et al., 1981; Mitzdorf, 1985; Van Groen et al., 1987;

Ferreyra-Moyano et al., 1988; Barth et al., 1989) yet successful applications of
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this approach have been limited by resolution of the measurement techniques.
Recently, more sophisticated CSD analyses have revealed greater detail concern-
ing the spatial and temporal patterns of current source distribution in piriform
cortex (Rodriguez and Haberly, 1989). Unfortunately, while this analysis reveals
the spatial and temporal distributions of currents which give rise to observed in-
tracellular and extracellular potentials, CSD analysis does not uniquely identify
the sources of synaptic input which produce the observed patterns of current
source activity.

In order to determine the patterns of synaptic inputs whi;h could give rise
to observed CSD distributions, we have used computer simulation techniques,
involving compartmental models of pyramidal cells to reconstruct CSD distri-
butions, as well as intracellular and extracellular evoked potentials in response
to shock stimulation of the cortex.

Piriform cortex

The piriform cortex is a trilaminated structure. The superficial layer I
contains intrinsic and extrinsic fiber pathways (layer I). The deeper layer II
contains principly cell bodies of pyramidal cells. Layer III contains the basal
dendrites of layer II pyramidal cell as well as cell bodies of deep pyramidal
and non-pyramidal cells. Axons from the olfactory bulb travel along a path-

way referred to as the lateral olfactory tract (LOT) making synaptic contact
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with cells throughout the olfactory cortex. In piriform cortex these fibers ter-
minate in a distinct superficial dendritic layer (layer Ia). In addition to the
afferent input from the olfactory bulb, a system of association fibers arising
from the principle cortical cells, the pyramidal cells, also makes sparse, dis-
tributed excitatory connections with other pyramidal cells in both rostral and
caudal directions (fig. 1) (Haberly and Price, 1978; Haberly and Bower 1984;
Haberly and Presto, 1986). These fiber systems terminate in a subregion of
layer I (layer Ib) deep to the region of afferent input, with caudally directed
fibers terminating more superficially in layer Ib than rostrally directed fibers.
In addition to these excitatory systems, there are also inhibitory feedforward
and feedback circuits associated with intrinsic cortical inhibitory interneurons
(fig. 1). A Cl- mediated feedback inhibition is generated by local interneurons
receiving input primarily from local pyramidal cell association fibers as well as
some afferent fibers (Biedenbach 1969ab; Haberly 1973ab; Satou et al. 1982,
1983; Haberly and Bower 1984; Haberly and Presto 1986; Tseng and Haberly,
1988). The outputs of these inhibitory interneurons feed back to nearby pyrami-
dal cells terminating primarily in layer II and superficial layer III (fig. 1) (Satou
et al. 1983; Tseng and Haberly, 1988) where significant conductance increases
result in a relatively short lasting current shunting inhibitory effect (Scholfield

1978; Satou et al. 1982; Haberly and Bower 1984; Tseng and Haberly 1988). In
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addition to this shunting type inhibition, a K+ mediated inhibition is generated
by local interneurons receiving primarily direct afferent input from the LOT as
well as some associational input from pyramidal cells (fig. 1) (Satou et al. 1982;
Tseng and Haberly 1988). The outputs of these interneurons generate a long
latency, long duration hyperpolarizing inhibitory potential in nearby pyramidal
cells (Satou et al. 1982, 1983; Haberly and Bower 1984; Tseng and Haberly
1988). These inputs are believed to terminate primarily in superficial dendrites
(Haberly and Bower, 1984; Haberly et al. 1987; Tseng and Haberly, 1988).

Evoked potential

In response to a moderate strength shock stimulus to the afferent input
tract of the olfactory cortex (LOT) the cortical evoked ﬁeld potential has a
characteristic biphasic form consisting of an initial surface negative peak lasting
approximately 30 msec followed by a longer duration surface positive peak. The
early surface negative peak is referred to as period 1. This peak contains two
characteristic subpeaks, the early A1 component and the later Bl component
(fig. 2). The surface positive peak which follows is referred to as period 2 (fig.
2).

METHODS

Single cell model

In order to systematically explore the effect of particular patterns of synap-
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tic input on current source density distributions and evoked potentials, a com-
partmental model of a pyramidal cell was constructed. Using this model, the
effects of manipulations of specific inputs could be independently observed. In
order to achieve high spatial resolution in the current source density profiles,
the model was divided into 60 compartments each 10 um in length. To facili-
tate comparison of results obtained from these simulations to results obtained
from network level simulations, the model consisted of a single non-branching
cable which was composed of 5 distinct regions - layer Ia receiving afferent in-
put (120 um length), superficial layer Ib receiving caudally directed association
fiber input (130 um length), deep layer Ib (130 um length), layer II containing
cell bodies, and layer ITII (100 um length) containing deep basal dendrites. To
more accurately represent the distribution of current over layer II associated
with the distribution of cell bodies, the layer II component was broken down
into a main cell body (15 um diameter, 20 um length) and upper (10 um diam,
60 um length) and lower (10 um diam, 40 um length) segments. Parameters
associated with the single cell model are given in table 1.

Synaptic input structure

Synaptic inputs were delivered to the cell according to the schedule given
in table 2. Timings were selected to reproduce experimentally observed CSD

events. These values are consistent with data obtained from single cell physiol-
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ogy (Tseng and Haberly 1988; Haberly and Bower 1984).

Field potentials

Experimentally recorded field potentials represent the activity of cell pop-
ulations. In order to reconstruct field potentials based on single cell model data
a two-dimensional concentric distribution of cells (20 um spacing, radius = 2
mm) was defined. Within this population all cell bodies were placed in a single
layer with dendrites perpendicular to the plane. Each cell had identical depth
distributed current profiles taken from single cell simulations (see appendix A).
For field potentials shown, an infinite homogeneous extracellular medium was
assumed. All single cell and network simulations were carried out under the
GENESIS neural simulation system (Wilson et al. 1989b) using an implicit
Crank-Nicholson technique for numerical integration with an integration time
step of 100 usec.

Network model

In order to evaluate results obtained from the single cell model in the
context of network behavior, simulated current source profiles were generated
using a network model of the cortex (Wilson and Bower 1989,1990). This model
represented a 10mm x 6mm cortical area and consisted of three populations of
cells — one pyramidal and two types of inhibitory interneurons (fig. 1). Each

population contained 240 cells (20x12). Each pyramidal cell was modeled as a
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5 compartment cable, which interneurons were represented as single compart-
ments.

Noise

The cortex of an awake behaving animal is characterized by ongoing spon-
taneous activity. It has also been experimentally observed that certain evoked
responses are dependent on the presence of ongoing background activation (Free-
man 1968). In order to simulate the action of this steady background input in
the network simulations, noise was introduced into the system by simulating the
random release of transmitter at afferent and intrinsic association fiber synapses
onto pyramidal cells. Transmitter pulses were of fixed amplitude with event
times governed by independent poisson distributed random variables for each
synaptic input. The parameters used to generate this noise are given in table 3.
Spontaneous activation from inhibitory cells was not included given the purely
intrinsic nature of this inhibitory activity. Instead, inhibitory cells were driven
by excitatory noise input producing spontaneous inhibitory input to pyramidal
cells.

Due to the high frequency of the noise (200 spikes/sec) the effect of the
excitatory noise was to bias the resting potential of pyramidal cells from their
nominal state of -70 mV to an average level of -55 to -60 mV. This level cor-

responded to a level just below the lower side of the threshold distribution for
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pyramidal cells and thus produced spontaneous firing rates of 2-5 Hz. This type
of noise has been examined in the acual cortex through artificial stimulation
(Freeman 1968) of afferent input tracts with similar conclusions.

Noise levels on feedback inhibitory interneurons were set to provide spon-
taneous firing rates of 15 Hz for feedback interneurons and 1-2 Hz for feedfor-
ward interneurons. Using these levels yielded average membrane potentials of
between -55 and -60 mV.

CSD profiles

The current source density (CSD) profiles shown represent the spatial
distribution of transmembrane current along the z or depth axis of the cell.
Membrane currents are described by their direction of flow relative to the ex-
tracellular space. Inward (extracellular to intracellular) currents are referred to
as sinks and correspond to the action of depolarizing synaptic input. A distinc-
tion is made between active and passive sources and sinks. An active source
is produced by the activation of a hyperpolarizing channel while an active sink
corresponds to a depolarizing event. Associated with this active flow of current
is a passive flow of current of equal magnitude but opposite polarity at loca-
tions distant from the site of active current flow. The locus of the active source
or sink corresponds to the location of localized synaptic inputs while passive

sources and sinks are distributed according to the geometry and the resistive
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properties of membrane, although the location and amplitude of passive and
active sources and sinks are subject to interaction.

RESULTS

Basic response

Figure 2 contains a comparison of actual depth distributed evoked field
potentials with potentials produced by single cell simulations. The simulated
potentials show a close correspondence between the waveforms at various record-
ing depths. Note the correspondence of peak latencies and the latencies of zero
crossings as a function of depth. The simulated fields show an Al peak la-
tency of 5 msec and a Bl latency of 15 msec with a period 2 peak latency of
approximately 40 msec.

Figure 3 shows raster plots of membrane currents as a function of time
and depth from single cell simulations and actual cortical measurements. The
amplitudes and time courses of the synaptically activated conductances which
produce the simulated CSD profiles and field potentials in the single cell model
are shown in fig 4. The amplitude of the conductance waveforms are directly
propotional to the strength of synaptic input.

Al profile

Figure 5 shows a comparison the the current distribution associated with

the Al peak of period I. In the actual cortex, as well as in our single cell
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simulations, this component consists of a current sink in layer Ia with a current
source which shifts over time from a location in superficial layer Ib to layer II,
extending to a lesser degree into layer III (fig 5). The shift in the current source
to layer II is partially a function of activation of the shunting Cl- mediated
inhibition in layer II as is seen by comparing the shift of current sources with
and without the Cl- inhibitory component (fig 5).

B1 profiles

The simulated current profile associated with superficial layer Ib shows
an initial passive source due to afferent activation of layer Ia. Activation of
synaptic input after 6 msec results in a current sink with passive sources in layers
Ia and II. This component crosses zero at approximately 25 msec latency and
becomes an active source associated with the long duration K+ hyperpolarizing
inhibition. The deep Ib component shows an initial passive source, due to both
Ia and superficial Ib active sinks, which becomes an active sink after 8 msec.
The deep component is of lower amplitude and longer duration, crossing zero
between 30 and 40 msec. The B1 peak of the simulated field potential is a result
of the contribution of these two components. Simulations in which the Ib inputs
were suppressed show that the B1 peak is nearly completely blocked and the
zero crossings to period 2 are distorted (fig 6).

Period 2 profiles
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To explore the contributions of Cl- and K+ inhibitory components to pe-
riod 2, simulations were performed which manipulated the relative contributions
of these two inputs. Figure 7 shows the results of these manipulations. The Cl-
mediated inhibition was found to have a much smaller impact on the period
2 component of the waveform than the K+ component. Supressing the K+
inhibitory input dramatically reduced period 2, while increasing amplitude and
time course of Cl- input did not significantly increase period 2 amplitude (fig
7). Period 2 could be evoked in the absence of Cl- inhibitory input. The activa-
tion of the superficial K+ input alone produced a current source in superficial
dendrites and a current sink distributed along deeper locations of the dendrite
and into the soma.

Comparison of this response with that evoked with both Cl- and K+ com-
ponents shows little difference in the period 2 components. The CSD profile
for the K+ input alone shows a superficial source with the associated sinks dis-
tributed along deeper dendrites with a peak at the level of somata (layer II).
This profile is quite similar to that evoked with the addition of the Cl- compo-
nent. The principal effect of the Cl- inhibition is to increase the amplitude of
the layer II sink.

The general shape of period 2 can be altered by adjusting the time con-

stants of Cl- and K+ mediated inhibitory processes, although increasing the
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duration of the Cl- inhibitory process in the absence of superficial K+ inhibi-
tion did not result in a significant increase in period 2 amplitude.

As in the case of the Ia sink, the Ib components are also sensitive to the
activation of layer II inhibitory processes. Due to the increased temporal overlap
this interaction is more prominent than that observed in layer Ia. This effect
can be clearly seen in simulations in which Cl- mediated layer II inhibition was
blocked showing that the B1 peak is nearly completely eliminated with no effect
on the Al peak.

Layer III profiles

The simulated layer III profile begins as a weak passive source associated
with superficial Ia input which becomes an active sink after 5 msec due to
excitatory input to basal dendrites. This approaches zero after approximately
25 msec and remains near zero over the course of period 2. This behavior is
consistent with actual profiles (see fig. 3 for comparison).

This component has a negligible effect on the field potential as seen in fig
6 which compares simulated evoked responses with and without layer III input.

Intracellular potentials

The primary effect of the Cl- inhibition is as a current shunt which reduces
the influence of excitatory inputs. This is most clearly seen in comparisons of so-

matic membrane potentials in which Cl- inhibition is intact with those in which
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it has been blocked. The somatic membrane potential is severly attenuated in
the presence of Cl- inhibition. The depolarizing potentials associated with as-
sociation fiber inputs (layer Ib) are particularly affected. In contrast, potentials
in distal dentrites are more insensitive to the shunting action (fig. 8). Note that
because the resting potential is -70 mV which is higher than the equilibrium
potential for Cl- which is taken to be -65 mV, the inhibitory influence is slightly
depolarizing (Scholfield 1978).

Ezxcitatory inputs

The contributions of the four basic excitatory inputs were explored by su-
pressing each component and comparing the evoked and intracellular responses
(figs. 6 and 9). Note that all supression effects were evaluated with inhibitory
processes intact. The reduction of somatic membrane potential by suppression
of Ta input lasted 10 msec following stimulation, after which normal integration
of association fiber inputs occured.

Deep Ib supression had a small but long lasting affect on both dendritic
(maximal difference = 5 mV) and somatic potentials (2 mV) which began at
10 msec following stimulation and lasted approximately 30 msec. Superficial Ib
supression induced a pronounced reduction of superficial dendritic membrane
potentials (25 mV) with a small reduction of somatic potential (4 mV). Supres-

sion of layer III input had virtually no affect on superficial dendritic potentials
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( < 1 mV) and only slightly altered somatic potentials slightly (1.5 mV) over
the period from 6 to 20 msec.

Blockage of afferent input completely suppressed the Al peak but had little
effect on B1 or period 2. Supression of superficial Ib input had a significant effect
on the evoked field potential. The change in the evoked waveform was similar to
that produced by supression of Cl- inhibitory input. Blockage of deep Ib input
had very little effect on the simulated field potentials.

Modification of cellular parameters

Given the approximate nature of the geometry of single cell model the
effect of modifying the electrotonic structure of the cell was explored. The
diameters of the dendritic portions of the cable were varied from 2 um to 6 um
and the resulting CSD profiles were compared. The effect of passive electrotonic
properties had little eﬂ’ect on the simulated CSD distributions.

DISCUSSION

Comparison of actual and simulated CSD

The results of simulated CSD profiles indicates that the patterns of synap-
tic input which were selected are capable of reproducing many of the major
components found in actual profiles. Despite the general agreement of results,
discrepencies do arise primarily due to simplifications introduced in the model.

Comparisons of simulated with actual CSD profiles show artificially distinct
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boundaries between simulated sources and sinks. This is due to the complete
segregation of synaptic inputs into non-overlapping dendritic regions. While
introducing slightly overlapping synaptic input regions would produce more re-
alistic profiles, it would not qualitatively change the basic results. Comparison
of actual CSD profiles and simulated profiles also shows that the actual cur-
rent source located in layer II which is associated with the the activation of Cl-
mediated inhibition is more smoothly distributed across layers II and III (fig.
3). This does not necessarily reflect an inadequacy in the single cell model but
rather the distributed nature of cell bodies over layer II in the actual cortex.
The average current sources therefore become distributed over a greater depth
than the space occupied by a single cell body. This could be resolved by the use
of a model containing many independent cells whose cell bodies were distributed
throughout the depth of layer II. While this would more accurately reproduce
the more diffuse distibution of current observed experimentally, it should have
no significant affect on interpretation of our results.

An additional discrepancy is found in the simulated CSD profiles which
show a source appearing in layer Ia beginning at the Bl peak and continuing
through period 2. The early source component observed in the simulations ap-
pears to be absent in experimentally measured CSD profiles (Rodriguez and

Haberly, 1989). This difference could result from the action of several mecha-
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nisms. In our simulations, the presence of the hyperpolarizing K+ inhibitory
input is principly responsible for the appearance of the superficial source; there-
fore, increasing the latency of K+ inhibitory onset reduces the early onset of the
source but also delays onset of period 2 and is not consistent with observations
of intracellular latency for hyperpolarization associated with K+ inhibition. An-
other possible mechanism involves increasing the opening time constant for the
K+ channel which diminishes the early component of the source. Shifting the
distribution of K+ inhibition from layer Ia to superficial layer Ib, selectively
decreasing dendritic diameter of layer Ia dendrites, and increasing overlap of
association fiber inputs to layer Ia, have similar effects.

Ezcitatory effects

The significant variations in depolarizations introduced by different exci-
tatory inputs in these simulations suggests that the segregation of inputs into
distinct laminar regions may serve to differentiate depolarizing actions in dif-
ferent dendritic and somatic regions. This in in addition to its potential role in
restricting pharmacological actions to particular synaptic regions for purposes
of selective synaptic modulation (Hasselmo and Bower, 1990). Of particular
interest was the relatively uniform depolarizing influence of rostrally directed
association fiber input (deep Ib) on both dendritic and somatic areas. This is

in contrast with the action of caudally directed fibers which exerted a more
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powerful influence on superficial regions of afferent dendritic zones. This sug-
gests that these caudally directed inputs may play a more significant role in
modulation of activity dependent changes in afferent synapses. Conversely, the
more uniform effect of deep inputs suggests a more subtle role on modulation
of general activity.

The results of afferent suppression indicate that there is minimal temporal
interaction between afferent and association inputs beyond intervals of 10 msec.
Additionally, inputs to basal dendrites are effectively isolated from apical den-
drites while still providing modest depolarization of the soma, again indicating
differentiation of dendritic interactions and output modulation as a function of
dendritic location.

It is important to note that while these results are suggestive of differ-
ential integrative properties present in olfactory cortical pyramidal cells, more
detailed modeling of dendritic geometry is necessary to make more conclusive
evaluations.

Inhibitory effects

Experimental evidence indicates that during period 2 the CSD profile
shows a current sink in layer II with a corresponding source in superficial layers.
The occurence of period 2 coincides with the activation of a Cl- mediated in-

hibition on the somata (layer II) and initial segments (layer II-II) of pyramidal
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cells. It has also been demonstrated that this inhibitory event is depolarizing
(-65 mV) with respect to the in vitro and suspected in vivo resting potential (-70
mV) of pyramidal cells (Haberly and Bower 1984). It has been suggested that
activation of this input is primarily responsible for the observed CSD profiles
and is the principal event underlying period 2 (Rodriguez and Haberly 1989).
Also occuring during this period is a hyperpolarizing K+ mediated current pro-
duced by synaptic input from inhibitory interneurons. This input is primarily
located on superficial dendrites and thus would produce a superficial current
source which has the characteristics necessary to produce the observed surface
positive period 2 waveform.

It is interesting to note that within the simulations, the principle effect
of increased Cl- mediated inhibition was not on the period 2 component of the
evoked response but rather on the secondary peak of the period I component.
Increased Cl- inhibition increased the amplitude of the Ib peak in both super-
ficial and deep recorded evoked responses. This follows from the shifting of the
location of the current source associated with the Ib peak to layer II from more
superficial locations. This has the effect of increasing the dipole separation of
this component and thus increasing the associated field potential.

The relative ineffectiveness of Cl- inhibition alone in generating the period

2 field component is primarily due to the relative closeness of the Cl- equilib-
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rium potential to the resting potential which accounts for the limited ability to
introduce significant current flows. Additionally, in the absence of an associ-
ated superficial source, the source associated with the Cl- induced sink alone
is distributed across superficial and deep dendrites which further reduces the
effective dipole moment and thus the field potential.

Another consideration in assessing the impact of Cl- inhibition on the pe-
riod 2 waveform is the fact that under normal conditions the cortex is subject
to steady input from the olfactory bulb. This activity has the effect of bias-
ing the membrane potential of pyramidal cells closer to the firing threshold of
the cell. Network simulations have shown that steady state levels of between
-55 and -60 mV are obtained given background activity levels sufficient to re-
produce damped oscillatory responses associated with unanesthetized or lightly
anesthetized states (unpublished observations). At the nominal resting poten-
tial of -70 mV, the Cl- mediated inhibition is slightly depolarizing, while at
the presumed biased level of -60 mV the Cl- inhibitory input is hyperpolarizing
therefore contributing a surface negative rather the surface positive period 2 re-
sponse. Only in the presence of the superficial K+ mediated current source can
the observed period 2 waveform be evoked under these conditions. It is there-
fore likely that the superficial source is the essential component of the period 2

response which can be enhanced by the action of the Cl- inhibitory process.
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The simulated action of Cl- inhibition on intracellular membrane poten-
tials was a current shunt which was localized to the somatic region with integra-
tion in distal dendrites relatively unaffected. The selective effect of inhibition
on somatic integration of association fiber activity could have implications for
the computational action of this process. As an example, dendritic interactions
which govern synaptic plasticity could, in this way, proceed independently of
somatic output. The distinct laminar segregation of synaptic inputs in the den-
dritic tree introduces the possibility of selective modulation of synaptic activity
based on dendritic location. Anatomical (Luskin and Price, 1983; Haberly and
Behan, 1983), physiological (Haberly and Bower, 1984; Hoffman and Haberly,
1989), and pharmacological (Collins and Howlett,1988; Ffrench-Mullen et al.
1986; Hori et al. 1982; Hasselmo and Bower, 1989, 1990) evidence has revealed
differences in the properties of synapses lying within different laminae. Our
results suggest that the specific order of depth distribution and precise laminar
organization of the cortex could be also be based on the differential action of
somatic inhibitory gating.

Network simulations

The results of network simulations show that the timing and amplitude
distributions of synaptic input and depth distributed current generated by this

model are consistent with results from the single cell model designed to re-



B-23

produce experimental CSD profiles. The results obtained by manipulation of
individual synaptic components in the single cell simulation reveal differential
contributions to integration and interactions within the dendrite which could re-
sult in differential modulation of network dynamics and modification of synaptic
efficacy. Earlier network simulations revealed that the timings which produce
the observed CSD profiles reflect the specific coordination of synaptic activ-
ity across the cortex within oscillatory cycles which occur during active odor
discrimination. Simulations which incorporated a Hebbian mechanism for mod-
ification of synaptic efficacy demonstrated that these events were sufficient to
allow storage and retrieval of patterned information encoding specific odors.
The results presented in this paper provide additional insights into the
interactions between single cell biophysics and network dynamics which may
underly the action of activity dependent synaptic modification and sensory dis-
crimination in cerebral cortex. Therefore, this work represents an integral com-
ponent of our efforts to construct realistic models of cortical systems capable of
enabling the study of cortical computation in the context of known biological

constraints.
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Table 1 - pyramidal cell characteristics

Channel characteristics

channel equilibrium
type potential (mV)
Exc 0

Cl -65

K -90

taul tau2
(msec) (msec)
1 3

1 18*

10 100

peak

conductance (mS)

*open time assuming light pentobarbital anesthesia

resting potential =-70 mV

Rm = 2.7e+8 Kohm-um?
Cm = 3.0e-8 uF /um?

Ra = 0.le+4 Kohm-um
Rin = 38 Mohm

tau = 8.2 msec

lambda = 800 um
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Input resistance (Rin) and primary membrane time constant (7) were mea-
sured from the main soma. The space constant (A) was evaluated by injection
of current into superficial Ia and measuring resulting dc potential in the main
soma.

Table 2 - synaptic input schedule

input site channel onset  relative stimulus stimulus stimulus
time stimulus duration interspike  interval
amplitude (msec) decay rate (msec)
(msec)

Ia Exc 1.0 6.0 10 0.1 5

suplb Exc 6.0 1.0 20 0.5 10
deeplb Exc 8.0 0.6 30 1.0 10

III Exc 5.0 0.8 20 0.5 5
uppersoma Cl 5.0 0.3 20 0.5 5

soma Cl 5.0 0.6 20 0.5 5
lowersoma Cl 5.0 3.0 20 0.5 5

Ia K 5.0 0.3 20 0.5 5

Table 3 - Noise parameters
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pathway p(release/msec) pulse amplitude
afferent 2 700
suplb 2 100
deeplb 2 100
III 2 100

Appendix A

Field potentials are generated when membrane currents generated by neurons
pass through the extracellular space. These currents can be set up both by
active output processes such as action potentials, as well as input processes
such as synaptic currents. The field potential at any point will be composed
of the linear superposition of fields generated by current sources (current from
the intracellular space to the extracellular space) and sinks (current from the
extracellular space into the intracellular space) distributed along multiple cells.
In the following discussion the term ’current source’ will be used to refer to both
sources and sinks.

The value of the field potential depends on the extracellular resistivity, the
location and amplitude of the current sources, and the location of the recording
electrode relative to the current sources. For example, when the recording

electrode is approximately equidistant from a large number of current sources
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it will measure the spatially averaged field produced by these sources. This
corresponds to an electrode placed on the cortical surface measuring the fields
generated by a sheet of neurons beneath it (as in the EEG). As a separate
example, an electrode placed very close to a smaller number of current sources
would preferentially record the fields generated by those sources.

The exact contributions to the field potential by neuronal activity depend
largely on the geometry of single cells and network circuitry, as well as the
spatial and temporal patterns of activity both within a cell (e.g., sequence of
dendritic activation), and among groups of cells (e.g., synchrony of firing).

Consider the multi-compartmental model used to generate the spatial dis-
tributions of membrane currents. The model computes a single transmembrane
current I, intended to represent the 'lumped’ current across a section of mem-
brane. If we assign each compartment an x,y,z coordinate, we can treat each
lumped transmembrane current I, as a point current source located at those
coordinates.

For point current sources distributed in a linear non-capacitive medium

we have (Nunez,1981)

Necells Pcompartments

I
ZCESCO RN In)®) &

rjk
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where

i = [(z’-:c,-k)2+(y’—yjk)2+(z'—zjk)2]% (2)

The coordinates (z’,y’,z') give the location of the recording site. The
coordinates (z7*, ¥ 2/¥) give the coordinates of the compartment k in cell j.
rjk is the distance from compartment k in cell j to the recording site. I,(;i) 1s
the transmembrane current in compartment k of cell j. R, gives the extracellu-
lar resistivity per unit distance assuming a homogeneous extracellular medium
(constant resistivity). Vy is an estimate of the extracellular field potential at
(', ¢, 7).

Thus, in order to compute an estimate of the field potential the total
transmembrane current for each compartment in each cell is summed according
to the inverse distance of the current source (compartment) from the simulated
recording site.

To construct the population field potential using data obtained from a
single cell, we assumed a uniform concentric distribution of cells with identical
response profiles. This resulted in a two-dimensional array of depth distributed
current sources from which the population field could be computed using the
above technique.

This research was supported by the NSF (EET-8700064), the ONR (Con-

tract N00014-88-K-0513), and the Lockheed Corporation.
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FIGURE LEGENDS

Fig. 1. Schematic diagram of the circuitry in piriform cortex showing the
laminar organization of afferent, excitatory associational, and local inhibitory
inputs.

Fig. 2. Comparison of actual and simulated evoked potentials measured at
different depths within the cortex in response to electrical stimulation of the
LOT. (Actual measurements modified from Rodriguez and Haberly 1989).
Fig. 3. Comparison of actual and simulated current source density profiles
measured at different depths within the cortex in response to electrical stimu-
lation of the LOT. Inward currents (sinks) are indicated as positive deflections
on the traces. (Actual profiles modified from Rodriguez and Haberly 1989).
Fig. 4. Top: Simulated synaptically activated conductances which produced
the evoked potentials shown in figure 2 and the current source density profiles
shown in figure 3. Bottom: Conductances generated by network simulation of
shock response which produced evoked potentials and CSD profiles shown in
figure 10.

Fig. 5. Top: Current source density profiles as a function of depth at successive
times during the A1 peak showing the shift of the source associated with the Al
peak from superficial layers to layer II during the activation of the Cl- inhibitory

input. Bottom: Equivalent profiles with Cl- inhibitory input blocked.
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Fig. 6. Comparison of simulated evoked potentials in which individual excita-
tory synaptic components have been suppressed.

Fig. 7. Comparison of simulated evoked potentials in which individual in-
hibitory synaptic components have been suppressed.

Fig. 8. Comparison of membrane potentials along different depths of the
dendritic tree in which individual excitatory synaptic components have been
suppressed.

Fig. 9. Comparison of membrane potentials along different depths of the
dendritic tree in which individual inhibitory synaptic components have been
suppressed.

Fig. 10. Evoked potentials and current source density profiles generated by

network simulation of piriform cortex.
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A Computer Simulation of Olfactory Cortex With Functional
Implications for Storage and Retrieval of Olfactory Information

Matthew A. Wilson and James M. Bower
Computation and Neural Systems Program

Division of Biology, California Institute of Technology, Pasadena, CA 91125

ABSTRACT

Based on anatomical and physiological data, we have developed a computer simulation of piri-
form (olfactory) cortex which is capable of reproducing spatial and temporal patterns of actual corti-
cal activity under a variety of conditions. Using a simple Hebb-type learning rule in conjunction
with the cortical dynamics which emerge from the anatomical and physiological organization of the
model, the simulations are capable of establishing cortical representations for different input pat-
terns. The basis of these representations lies in the interaction of sparsely distributed, highly diver-
gent/convergent interconnections between modeled neurons. We have shown that different representa-
tions can be stored with minimal interference, and that following learning these representations are
resistant to input degradation, allowing reconstruction of a representation following only a partial
presentation of an original training stimulus. Further, we have demonstrated that the degree of over-
lap of cortical representations for different stimuli can also be modulated. For instance similar
input patterns can be induced to generate distinct cortical representations (discrimination), while dis-
similar inputs can be induced to generate overlapping representations (accommodation). Both features
are presumably important in classifying olfactory stimuli.

INTRODUCTION

Piriform cortex is a primary olfactory cerebral cortical structure which receives
second order input from the olfactory receptors via the olfactory bulb (Fig. 1). It is
believed to play a significant role in the classification and storage of olfactory informa-
tion!23, For several years we have been using computer simulations as a tool for
studying information processing within this cortex*>. While we are ultimately inter-
ested in higher order functional questions, our first modeling objective was to con-
struct a computer simulation which contained sufficient neurobiological detail to repro-
duce experimentally obtained cortical activity patterns. We believe this first step is
crucial both to establish correspondences between the model and the cortex, and to
assure that the model is capable of generating output that can be compared to data
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Olfactory | | Higher Cortical Areas|« Hippocampus

Receptors
Piriform Cortex Entorhinal
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Bulb Olfactory Structures
” LOT i

Fig. 1. Simplified block diagram of the olfactory system and closely related structures.

from actual physiological experiments. In the current case, having demonstrated that

the behavior of the simulation at least approximates that of the actual cortex* (Fig.
3), we are now using the model to explore the types of processing which could be
carried out by this cortical structure. In particular, in this paper we will describe the
ability of the simulated cortex to store and recall cortical activity patterns generated
by stimulus various conditions. We believe this approach can be used to provide
experimentally testable hypotheses concerning the functional organization of this cor-
tex which would have been difficult to deduce solely from neurophysiological or neu-
roanatomical data.

MODEL DESCRIPTION

This model is largely instructed by the neurobiology of piriform cortex3. Axonal
conduction velocities, time delays, and the general properties of neuronal integration
and the major intrinsic neuronal connections approximate those currently described in
the actual cortex. However, the simulation reduces both the number and complexity of
the simulated neurons (see below). As additional information concerning the these
or other important features of the cortex is obtained it will be incorporated in the mod-
el. Bracketed numbers in the text refer to the relevent mathematical expressions
found in the appendix.

Neurons. The model contains three distinct populations of intrinsic cortical neu-
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Fig. 2. Schematic diagram of piriform cortex showing an excitatory pyramidal cell and two
inhibitory interneurons with their local interactions. Circles indicate sites of synaptic modifiability.

rons, and a fourth set of cells which simulate cortical input from the olfactory bulb

(Fig. 2). The intrinsic neurons consist of an excitatory population of pyramidal neu-

rons (which are the principle neuronal type in this cortex), and two populations of

inhibitory interneurons. In these simulations each population is modeled as 100 neu-

rons arranged in a 10x10 array (the actual piriform cortex of the rat contains on the

order of 10° neurons). The output of each modeled cell type consists of an all-or-none

action potential which is generated when the membrane potential of the cell crosses

a threshold [2.3]. This output reaches other neurons after a delay which is a function

of the velocity of the fiber which connects them and the cortical distance from the origi-

nating neuron to each target neuron [2.0, 2.4]. When an action potential arrives at a

destination cell it triggers a conductance change in a particular ionic channel type in

that cell which has a characteristic time course, amplitude, and waveform [2.0, 2.1].

The effect of this conductance change on the transmembrane potential is to drive it

towards the equilibrium potential of that channel. Na*, Cl', and K* channels are includ-
ed in the model. These channels are differentially activated by activity in synapses
associated with different cell types (see below).
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Connection Patterns. In the olfactory system, olfactory receptors project to the
olfactory bulb which, in turn, projects directly to the piriform cortex and other olfactory
structures (Fig. 1). The input to the piriform cortex from the olfactory bulb is deliv-
ered via a fiber bundle known as the lateral olfactory tract (LOT). This fiber tract
appears to make sparse, non-topographic, excitatory connections with pyramidal and

feedforward inhibitory neurons across the extent of the cortex>®. In the model this
input is simulated as 100 independent cells each of which make random connections
(p=0.05) with pyramidal and feedforward inhibitory neurons (Fig. 1 and 2).

In addition to the input connections from the olfactory bulb, there is also an exten-
sive set of connections between the neurons intrinsic to the cortex (Fig. 2). For
example, the association fiber system arises from pyramidal cells and makes sparse,
distributed excitatory connections with other pyramidal cells all across the cortex’:8?
. In the model these connections are randomly distributed with 0.05 probability. In
the model and in the actual cortex, pyramidal cells also make excitatory connections
with nearby feedforward and feedback inhibitory cells. These interneurons, in turn,
make reciprocal inhibitory connections with the group of nearby pyramidal cells. The
primary effect of the feedback inhibitory neurons is to inhibit pyramidal cell firing

through a ClI' mediated current shunting mechanism!®1112, Feedforward interneurons
inhibit pyramidal cells via a long latency, long duration, K* mediated hyperpolarizing
potential!>13, Pyramidal cell axons also constitute the primary output of both the
model and the actual piriform cortex”-14.

Synaptic Properties and Modification Rules. In the model, each synaptic connec-
tion has an associated weight which determines the peak amplitude of the conduc-
tance change induced in the postsynaptic cell following presynaptic activity [2.0]. To
study learning in the model, synaptic weights associated with some of the fiber sys-
tems are modifiable in an activity-dependent fashion (Fig. 2). The basic modification
rule in each case is Hebb-like; i.e. change in synaptic strength is proportional to
presynaptic activity multiplied by the offset of the postsynaptic membrane potential
from a baseline potential. This baseline potential is set slightly more positive than
the Cl° equilibrium potential associated with the shunting feedback inhibition. This
means that synapses activated while a destination cell is in a depolarized or excited
state are strengthened, while those activated during a period of inhibition are weak-
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ened. In the model, synapses which follow this rule include the association fiber con-
nections between excitatory pyramidal neurons as well as the connections between
inhibitory neurons and pyramidal neurons. Whether these synapses are modifiable in
this way in the actual cortex is a subject of active research in our lab. However, the
model does mimic the actual synaptic properties associated with the input pathway
(LOT) which we have shown to undergo a transient increase in synaptic strength fol-
lowing activation which is independent of postsynaptic potential’>. This increase is
not permanent and the synaptic strength subsequently returns to its baseline value.

Generation of Physiological Responses. Neurons in the model are represented as
first-order "leaky" integrators with multiple, time-varying inputs [1.0]. During simu-

lation runs, membrane potentials and currents as well as the time of occurence of
action potentials are stored for comparison with actual data. An explicit compartmen-

Simulated Actual
Npaired

IZ_ 4
Wooov

Fig. 3. Simulated physiological responses of the model compared with actual cortical respons-
es. Upper: Simulated intracellular response of a single cell to paired stimulation of the input sys-
tem (LOT) (left) compared with actual response (right) (Haberly & Bower,’84). Middle: Simulat-
ed extracellular response recorded at the cortical surface to stimulation of the LOT (left), com-
pared with actual response (right) (Haberly,’73b). Lower: Stimulated EEG response recorted at the
cortical surface to odor-like input (left), for actual EEG see Freeman 1978.
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tal model (5 compartments) of the pyramidal cells is used to generate the spatial cur-
rent distributions used for calculation of field potentials (evoked potentials, EEGs)
[3.0, 4.0].

Stimulus Characteristics. To compare the responses of the model to those of the
actual cortex, we mimicked actual experimental stimulation protocols in the simulat-
ed cortex and contrasted the resulting intracellular and extracellular records. For
example, shock stimuli applied to the LOT are often used to elicit characteristic corti-
cal evoked potentials in vivol®1718 In the model we simulated this stimulus
paradigm by simultaneously activating all 100 input fibers. Another measure of corti-
cal activity used most successfully by Freeman and colleagues involves recording

EEG activity from piriform cortex in behaving animals!®20, These odor-like respons-

100
Percent Overlap
with
Final Response
Pattern
805 5

Number of Trials
Fig. 4. Convergence of the cortical response during training with a single stimulus with synaptic
modification.
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Fig. 5. Reconstruction of cortical response patterns with partially degraded stimuli. Left:
Response, before training, to the full stimulus (left) and to the same stimulus with 50% of the
input fibers inactivated (right). There is a 44% degradation in the response. Right: Response after
training, to the full stimulus (left), and to the same stimulus with 50% of the input fibers inactivat-
ed (right). As a result of training, the degradation is now only 20%.
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Fig. 6. Storage of multiple patterns. Left: Response to stimulus A after training. Middle:
Response to stimulus B after training on A followed by training on B. Right: Response to stimulus
A after training on A followed by training on B. When compared with the original response (left)
there is an 85% congruence.

es were generated in the model through steady, random stimulation of the input
fibers.

To study learning in the model, once physiological measures were established, it
was required that we use more refined stimulation procedures. In the absence of any
specific information about actual input activity patterns along the LOT, we construct-
ed each stimulus out of a randomly selected set of 10 out of the 100 input fibers.
Each stimulus episode consisted of a burst of activity in this subset of fibers with a
duration of 10 msec at 25 msec intervals to simulate the 40 Hz periodicity of the actu-
al olfactory bulb input. This pattern of activity was repeated in trials of 200 msec
duration which roughly corresponds to the theta rhythm periodicity of bulbar activity

and respiration?122, Each trial was then presented 5 times for a total exposure time
of 1 second (cortical time). During this period the Hebb-type learning rule could be
used to modify the connection weights in an activity-dependent fashion.

Output Measure for Learning. Given that the sole output of the cortex is in the
form of action potentials generated by the pyramidal cells, the output measure of the
model was taken to be the vector of spike frequency for all pyramidal neurons over a
200 msec trial, with each element of the vector corresponding to the firing frequency
of a single pyramidal cell. Figures 5 through 8 show the 10 by 10 array of pyramidal
cells. The size of the box placed at each cell position represents the magnitude of the
spike frequency for that cell. To evaluate leamning effects, overlap comparisons
between response pairs were made by taking the normalized dot product of their
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Fig. 7. Results of merging cortical response patterns for dissimilar stimuli. Left: Response to
stimulus A and stimulus B before training. Stimuli A and B do not activate any input fibers in com-
mon but still have a 27% overlap in cortical response patterns. Right: Response to stimulus A and
stimulus B after training in the presence of a common modulatory input E1. The overlap in cortical
response patterns is now 46%.

response vectors and expressing that value as a percent overlap (Fig. 4).

‘Computational Requirements. All simulations were carried out on a Sun
Microsystems 3/260 model microcomputer equipped with 8 Mbytes of memory and a
floating point accelerator. Average time for a 200 msec simulation was 3 cpu min-

utes.
RESULTS
Physiological Responses

As described above, our initial modeling objective was to accurately simulate a
wide range of activity patterns recorded, by ourselves and others, in piriform cortex
using various physiological procedures. Comparisons between actual and simulated
records for several types of responses are shown in figure 3. In general, the model
replicated known physiological responses quite well (Wilson et al. in preparation
describes, in detail, the analysis of the physiological results). For example, in
response to shock stimulation of the input pathway (LOT), the model reproduces the
principle characteristics of both the intracellular and location-dependent extracellular
waveforms recorded in the actual cortex®171% (Fig. 3). Further, in response to odor-
like stimulation the model exhibits 40 Hz oscillations which are characteristic of the
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Fig. 8. Results of differentiating cortical response patterns for similar stimuli. Left: Response
to stimulus A and stimulus B before training. Stimuli A and B activate 75% of their input fibers
in common and have a 77% overlap in cortical response patterns. Right: Response to stimulus A
and stimulus B after training A in the presence of modulatory input E1 and training B with a differ-
ent modulatory input E2. The overlap in cortical response patterns is now 45%.

EEG activity in olfactory cortex in awake, behaving animals!®. Although beyond the
scope of the present paper, the simulation also duplicates epileptiform® and damped
oscillatory!® type activity seen in the cortex under special stimulus or pharmacologi-

cal conditions?.
Learning

Having simulated characteristic physiological responses, we wished to explore
the capabilities of the model to store and recall information. Learning in this case is
defined as the development of a consistent representation in the activity of the cortex
for a particular input pattern with repeated stimulation and synaptic modification. Fig-
ure 4 shows how the network converges, with training, on a representation for a stim-
ulus. Having demonstrated that, we studied three properties of learned responses -
the reconstruction of trained cortical response patterns with partially degraded stim-
uli, the simultaneous storage of separate stimulus response patterns, and the modu-
lation of cortical response patterns independent of relative stimulus characteristics.

Reconstruction of Learned Cortical Response Patterns with Partially Degraded
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Stimuli. We were interested in knowing what effect training would have on the sensi-
tivity of cortical responses to fluctuations in the input signal. First we presented the
model with a random stimulus A for one trial (without synaptic modification). On the
next trial the model was presented with a degraded version of A in which half of the
original 10 input fibers were inactivated. Comparison of the responses to these two
stimuli in the naive cortex showed a 44% variation. Next, the model was trained on
the full stimulus A for 1 second (with synaptic modification). Again, half of the input
was removed and the model was presented with the degraded stimulus for 1 trial
(without synaptic modification). In this case the difference between cortical respons-
es was only 20% (Fig. 5) showing that training increased the robustness of the
response to degradation of the stimulus.

Storage of Two Patterns. The model was first trained on a random stimulus A for
1 second. The response vector for this case was saved. Then, continuing with the
weights obtained during this training, the model was trained on a new non-overlap-
ping (i.e. different input fibers activated) stimulus B. Both stimulus A and stimulus B
alone activated roughly 25% of the cortical pyramidal neurons with 25% overlap
between the two responses. Following the second training period we assessed the
amount of interference in recalling A introduced by training with B by presenting stim-
ulus A again for a single trial (without synaptic modification). The variation between
the response to A following additional training with B and the initially saved reponse
to A alone was less than 15% (Fig. 6) demonstrating that learning B did not substan-
tially interfere with the ability to recall A.

Modulation of Cortical Response Patterns. It has been previously demonstrated
that the stimulus evoked response of olfactory cortex can be modulated by factors not
directly tied to stimulus qualities, such as the behavioral state of the animall2023,
Accordingly we were interested in knowing whether the representations stored in
the model could be modulated by the influence of such a "state" input.

One potential role of a "state" input might be to merge the cortical response pat-
terns for dissimilar stimuli; an effect we refer to as accommodation. To test this in the
model, we presented it with a random input stimulus A for 1 trial. It was then present-
ed with a random input stimulus B (non-overlapping input fibers). The amount of
overlap in the cortical responses for these untrained cases was 27%. Next, the model
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was trained for 1 second on stimulus A in the presence of an additional random
"state” stimulus E1 (activity in a set of 10 input fibers distinct from both A and B).
The model was then trained on stimulus B in the presence of the same "state" stimu-
lus E1. After training, the model was presented with stimulus A alone for 1 trial and
stimulus B alone for 1 trial. Results showed that now, even without the coincident E1
input, the amount of overlap between A and B responses was found to have
increased to 46% (Fig 7). The role of El in this case was to provide a common stimu-
lus component during learning which reinforced shared components of the responses
to input stimuli A and B.

To test the ability of a state stimulus to induce differentiation of cortical response
patterns for similar stimuli, we presented the model with a random input stimulus A
for 1 trial, followed by 1 trial of a random input stimulus B (75% of the input fibers
overlapping). The amount of overlap in the cortical responses for these untrained cas-
es was 77%. Next, the model was trained for a period of 1 second on stimulus A in
the presence of an additional random "state" stimulus E1 (a set of 10 input fibers not
overlapping either A or B). It was then trained on input stimulus B in the presence of
a different random "state" stimulus E2 (10 input fibers not overlapping either A, B, or
E1) After this training the model was presented with stimulus A alone for 1 trial and
stimulus B alone for 1 trial. The amount of overlap was found to have decreased to
45% (Fig 8). In this situation E1 and E2 provided a differential signal during learning
which reinforced distinct components of the responses to input stimuli A and B.

DISCUSSION

Physiological Responses. Detailed discussion of the mechanisms underlying the
simulated patterns of physiological activity in the cortex is beyond the scope of the
current paper. However, the model has been of value in suggesting roles for specific
features of the cortex in generating physiologically recorded activity. For example,
while actual input to the cortex from the olfactory bulb is modulated into 40 Hz
bursts?*, continuous stimulation of the model allowed us to demonstrate the model’s
capability for intrinsic periodic activity independent of the complementary pattern of
stimulation from the olfactory bulb. While a similar ability has also been demonstrat-
ed by models of Freeman?, by studying this oscillating property in the model we
were able to associate these oscillatory characteristics with specific interactions of
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local and distant network properties (e.g. inhibitory and excitatory time constants and
trans-cortical axonal conduction velocities). This result Suggests underlying mecha-
nisms for these oscillatory patterns which may be somewhat different than those pre-
viously proposed.

Learning. The main subject of this paper is the examination of the learning capabil-
ities of the cortical model. In this model, the apparently sparse, highly distributed pat-
tern of connectivity characteristic of piriform cortex is fundamental to the way in
which the model learns. Essentially, the highly distributed pattern of connections
allows the model to develop stimulus-specific cortical response patterns by extract-
ing correlations from randomly distributed input and association fiber activity. These
correlations are, in effect, stored in the synaptic weights of the association fiber and
local inhibitory connections.

The model has also demonstrated robustness of a learned cortical response
against degradation of the input signal. A key to this property is the action of sparse-
ly distributed association fibers which provide reinforcment for previously estab-
lished patterns of cortical activity. This property arises from the modification of
synaptic weights due to correlations in activity between intra-cortical association
fibers. As a result of this modification the activity of a subset of pyramidal neurons
driven by a degraded input drives the remaining neurons in the response.

In general, in the model, similar stimuli will map onto similar cortical responses
and dissimilar stimuli will map onto dissimilar cortical responses. However, a pre-
sumably important function of the cortex is not simply to store sensory information,
but to represent incoming stimuli as a function of the absolute stimulus qualities
and the context in which the stimulus occurs. The fact that many of the structures that
piriform cortex projects to (and receives projections from) may be involved in multi-
modal "state" generation!# is circumstantial evidence that such modulation may
occur. We have demonstrated in the model that such a modulatory input can modify
the representations generated by pairs of stimuli so as to push the representations
of like stimuli apart and pull the representations of dissimilar stimuli together. It
should be pointed out that this modulatory input was not an "instructive" signal which
explicitly directed the course of the representation, but rather a "state" signal which
did not require a priori knowledge of the representational structure. In the model, this
modulatory phenomenon is a simple consequence of the degree of overlap in the com-
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bined (odor stimulus + modulator) stimulus. Both cases approached approximately
50% overlap in cortical responses reflecting the approximately 50% overlap in the
combined stimuli for both cases. Of interest was the use of the model’s reconstruc-
tive capabilities to maintain the modulated response to each input stimulus even in
the absence of the modulatory input.

CAVEATS AND CONCLUSIONS

Our approach to studying this system involves using computer simulation to
investigate mechanisms of information processing which could be implemented given
what is known about biological constraints. The significance of results presented
here lies primarily in the finding that the structure of the model and the parameter
settings which were appropriate for the reproduction of physiological responses were
also appropriate for the proper convergence of a simple, biologically plausible learning
rule under various conditions. Of course, the model we have developed is only an
approximation to the actual cortex limited by our knowledge of its organization and
the computing power available. For example, the actual piriform cortex of the rat con-
tains on the order of 10° cells (compared with 10? in the simulations) with a sparsity
of connection on the order of p=0.001 (compared with p=0.05 in the simulations). Our
continuing research effort will include explorations of the scaling properties of the net-
work.

Other assumptions made in the context of the current model include the assump-
tion that the representation of information in piriform cortex is in the form of spatial
distributions of rate-coded outputs. Information contained in the spatio-temporal pat-
terns of activityv was not analyzed, although preliminary observation suggests that
this may be of significance. In fact, the dynamics of the model itself suggest that tem-
porally encoded information in the input at various time scales may be resolvable by
the cortex. Additionally, the output of the cortex was assumed to have spatial unifor-
mity, i.e. no differential weighting of information was made on the basis of spatial
location in the cortex. But again, observation of the dynamics of the model, as well as
the details of known anatomical distribution patterns for axonal connections, indicate
that this is a major oversimplification. Preliminary evidence from the model would
indicate that some form of hierarchical structuring of information along rostral/caudal
lines may occur. For example it may be that cells found in progressively more rostral
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locations would have increasingly non-specific odor responses.

Further investigations of learning within the model will explore each of these
issues more fully, with attempts to correlate simulated findings with actual recordings
from awake, behaving animals. At the same time, new data pertaining to the structure
of the cortex will be incorporated into the model as it emerges.
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Periodic variations in correlated cellular activity have been ob-
served in many regions of the cerebral cortex. The recent discovery of
stimulus dependent, spatially coherent oscillations in primary visual
cortex of the cat, has led to suggestions of neural information en-
coding schemes based on phase and/or frequency variation. In order
to explore the mechanisms underlying this behavior and their pos-
sible functional consequences, we have developed a realistic neural
model, based on structural features of visual cortex, which replicates
observed oscillatory phenomena. In the model, this oscillatory be-
havior emerges directly from the structure of the cortical network
. and the properties of its intrinsic neurons; however, phase coherence
is shown to be an average phenomenon only seen when measurements
are made over multiple trials. Because average coherence does not

insure synchrony of firing over the course of single stimuli, oscillatory
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phase may not be a robust strategy for directly encoding stimulus-
specific information. Instead, the phase and frequency of cortical os-
cillations may reflect the coordination of general computational pro-
cesses within and between cortical areas. Under this interpretation
coherence emerges as a result of horizontal interactions which could

be involved in the formation of receptive field properties.

Introduction

An obvious characteristic of the general behavior of cerebral cortex, as
evident in EEG recordings, is its tendency to oscillate (Bressler and Freeman,
1980). Cortical oscillations have been observed both in the electric fields gen-
erated by populations of cells (Bressler and Freeman, 1980) as well as in the
activity of single cells (Llinas, 1988). Recent observations of oscillations within
visual cortex that are dependent on the nature of the visual stimulus (Gray and
Singer, 1987; Eckhorn et al., 1988; Gray et al., 1989; Gray and Singer, 1989)
have generated increased interest in the role of periodic behavior in cerebral cor-
tical processing in general. These studies have shown that populations of visual
cortical neurons at considerable cortical distances exhibit increased coherence
in neuronal activity when the visual stimulus is a single continuous object as

compared to a discontinuous object. This work represents an extension of ear-
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lier work showing that the reponses of cells can be influenced by stimuli which
are located beyond of the boundaries of the classical receptive field (Allman,
Miezin, McGuinness, 1985), with horizontal interactions implicated in shap-
ing these more complex receptive field properties (Tso, Gilbert, Wiesel, 1986).
These recent results have led to suggestions that differences in oscillatory phase
and/or frequency between cell populations in primary visual cortex could be
used to label different objects in the visual scene for subsequent processing in
higher visual areas (Eckhorn et al., 1988; Gray et al., 1989; Gray and Singer,
1989; Sporns et al., 1989; Kammen, Holmes, and Koch, 1989). It has further
been suggested that these oscillatory patterns may rely on central, extracortical
control in order to assure temporal coherence (Kammen, Holmes, and Koch,
1989).

In this paper we describe the results of simulations of a biologically realistic
model of neocortical networks designed to explore the possible mechanisms un-
derlying oscillations in visual cortex, as well as the functional significance of this
oscillatory behavior. In particular we analyze the role of horizontal interactions
in the establishment of coherent oscillatory behavior.

Cortical Model

The model consists of a network of three basic cell types found through-

out cerebral cortex. The principal excitatory neuron, the pyramidal cell, is
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modeled here as five coupled membrane compartments. In addition there are
two inhibitory neurons, one principally mediating a slow K+ inhibition and one
mediating a fast Cl- inhibition. Both are modeled as a single compartment.
Connections between modeled cells are made by axons with finite conduction
velocities, but no explicit axonal membrane properties other than delay are
included. Synaptic activity is produced by simulating the action-potential trig-
gered release of presynaptic transmitter and the resulting flow of transmem-
brane current through membrane channels. Each of these channels is described
with parameters governing the time course and amplitude of synaptically acti-
vated conductance changes. The compartmental models of the cells integrate
the transmembrane and axial currents to produce transmembrane voltages. Ex-
cursions of the cell body membrane voltage above a specified threshold trigger
action potentials. Additional details of these features of the model are described
in Wilson and Bower (1990).

This model is intended to represent a 10 mm x 6 mm region of visual cortex.
The many millions of actual neurons in this area are represented here by 375 cells
(25x15) of the three types for a total of 1125 cells. Input to the model is provided
by 100 independent fibers, each making contact with a local cortical region (1 sq
mm), and each reflecting the retinotopic organization of many structures in the

visual system (Van Essen, 1979). The model also includes excitatory horizontal
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fiber connections between pyramidal cells (Gilbert, 1983) which extend over a
radius of 3 mm from each pyramidal cell. Inhibitory cells receive input from
pyramidal cells within a 2 mm radius and make connections with pyramidal
cells over a radius of 1 mm. The influence of each of these fiber systems falls off
exponentially with a space constant of 5 mm. No effort was made to reproduce
the periodic structure of actual connections or many other known features of
visual cortex. Instead, our intention was to reproduce oscillations characteristic
of visual cortex using a small but sufficient set of physiological and anatomical
features.

Coherent Oscillations

Figure 1 shows auto and cross correlations of simulated pyramidal cell
spike activity recorded from two sites in visual cortex separated by 6 mm. Total
cross correlations in the modeled data were computed by averaging correlations
from 50 individual 500 msec trials. Within each trial, simulated activity was
generated by providing input representing bars of light at different locations in
the visual field. In these cases, the model produced oscillatory auto and cross
correlations with peak energy in the 30-60 Hz range, consistent with experi-
mental data (Gray et al., 1989). As in the experimental data, the model also
produced nearly synchronous oscillatory activity in groups of neurons separated

by 6 mm when presented with a continuous bar (fig 1a). A broken bar which
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did not stimulate the region between the recording sites produced a weaker re-
sponse (fig 1b), again consistent with experimental evidence (Gray et al., 1989).
Shuffling trials with respect to each other prior to calculating cross correlation
functions greatly diminished or completely eliminated oscillations. The same
technique applied to actual physiological data yields similar results (Gray and
Singer, 1989) indicating that while the oscillations are stimulus dependent they
are not stimulus locked. Simulations run in the absence of stimuli produced low
baseline activity with no oscillations.

Further analysis of the models behavior revealed that the 30-60 Hz os-
cillations are primarily determined by the amplitude and time course of the
fast feedback irhibitory input. Increasing the amplitude of the inhibitory input
to pyramidal cells reduces oscillatory frequency, while reducing inhibition pro-
duces an increase in frequency. Allowing inhibitory cells to inhibit each other
within a local region ﬁnptoved frequency locking and produced auto and cross
correlations with more pronounced oscillatory characteristics.

Dependence on Horizontal Interconnections

While the frequency of oscillations was primarily due to local inhibitory
circuitry, the coherence in correlated cell firing appears to be related primarily
to activity in the horizontal interconnections between pyramidal cells. When all

long-range (> 1 mm) horizontal fibers were eliminated, the auto correlations at
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each recording site continued to show strong oscillatory behavior, but oscilla-
tions in the cross correlation function vanished (fig. 2a). Increasing the range
of horizontal fibers to 2 mm restored coherent oscillatory behavior (fig 2a).

The dependence of phase coherence on horizontal connections immediately
raises a number of interesting questions. First, because horizontal fibers have
finite conductions velocities, it was surprising that they would produce coherence
with zero phase over relatively long distances. If phase coherence was strictly
a consequence of horizontal fiber coupling between the recorded cell groups,
it seems reasonable to expect a phase difference related to the propagation
delay. To explore this further, we reduced the propagation velocity of horizontal
fibers from 0.86+-0.13 m/s to 0.43+-0.13 m/s and examined the response to a
continuous bar. No effect on phase was found in the cross correlation function.
If, however, the degree of horizontal fiber coupling was enhanced by increasing
synaptic weights along horizontal pathways, the cortex displayed a transition
from near-zero phase coherence to a phase shift consistent with the delay along
the shortest horizontal interconnection path (fig. 2b).

To examine this result more closely, we analyzed the time course of phase
coherence at successive time periods following stimulus onset in both the strong
and weakly coupled cases. Initially, in both conditions, the synchronizing ef-

fect of the stimulus onset itself produces a tendency for zero-phase correlations
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during the period from 0-125 msec (fig 2b). However, in the periods following
the onset of the stimulus, when activity is dominated by horizontal fiber effects
(125-500 msec), the response differs in the two cases. With enhanced horizontal
fiber coupling, non-zero phase shifts emerge which reflect the propagation delays
along horizontal fibers (fig. 2b). However, in the weak coupling case, zero-phase
correlations persist, decaying over the entire trial interval (0-500 msec).

Mechanisms Governing Coherence

Analysis of the activity patterns generated in the weak coupling condition
indicates that the mechanism that sustains the zero-phase bias between distant
cell groups after stimulus onset depends on the activation of spatially interme-
diate cells via horizontal fibers. When this intermediate population of cells is
activated by the single stimulus bar, they can activate adjacent cells through
their own horizontal fibers in a phase-symmetric fashion. When these interme-
diate cells are not activated directly by the stimulus, as in the case of the discon-
tinuous bar, their ability to coactivate adjacent cell populations is diminished,
resulting in a reduction in observed long-range phase coherence. Increasing the
strength of horizontal connections establishes a path of direct polysynaptic cou-
pling between distant sites which gives rise to systematic phase shifts related to
propagation delay.

The model’s dependence on horizontal connections for phase coherence



D-9

leads directly to the prediction that the areal extent of strongest correlations
should be related to the spatial spread of the horizontal fibers. This effect was
demonstrated in the model by increasing the size of the stimulus bar from 6 to
12 mm in an enlarged cortical simulation in which the horizontal fibers remained
at a length of 3 mm. Under these conditions, oscillatory correlations were not
found between distant recording sites (1,3 in fig. 3). Interestingly, correlations
were still found between recording points separated by no more than 6 mm (pairs
1,2 and 2,3 in fig. 3). This absence of transitivity demonstrates the presence of
within and between-trial variations in phase relationships and suggests that the
observed zero-phase phenomena may only be present in the average of multiple
trials.

Overall, our simulation results suggest that the oscillatory patterns so far
reported to exist in visual cortex, can be explained by mechanisms that are
entirely intrinsic to the cortical region and do not require an extrinsic driving
mechanism (c.f. Kammen, Holmes, Koch, 1989). In the current simulations of
visual cortex, we have used long bar stimuli to make the additional prediction
that the more restricted extent of horizontal connections should limit coherent
correlated activity to an area twice the radius of the horizontal fibers (4-12
mm in cats and monkeys (Gilbert, 1983)). More extensive correlations within

primary visual cortex would imply either an additional intrinsic mechanism (e.g.,
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long distance inhibitory coupling) or a more global synchronizing mechanism
(Kammen, Holmes, and Koch, 1989). Even if such mechanisms exist, it is likely
that they will be coordinated with intrinsic cortical mechanisms.

Significance of Phase Relationships

Beyond providing a structural explanation for the properties of visual cor-
tical oscillations, our results also have implications for several recently proposed
functional interpretations of the observed stimulus dependent zero-phase coher-
ence. Several researchers have proposed the use of these phase relationships as
a means of cortically segmenting, or labelling, different objects in a visual scene
(Eckhorn et al., 1988; Gray et al., 1989; Gray and Singer, 1989; Sporns et al.,
1989; Kammen, Holmes, and Koch, 1989). Associated with this idea, models
have been generated that produce the instantaneous phase effects presumably
necessary for the visual system to make use of such a coding mechanism on
single stimulus trials (Kammen, Holmes, and Koch, 1989). If our results are
correct, however, zero-phase relationships between particular neurons should
only exist on average, over multiple trials. The absence of consistent within-
trial coherence over long distances would be expected to seriously confound the
interpretation of fine phase differences in higher visual processing areas.

Our simulations suggest that the oscillatory behavior seen in visual cortex

may be dependent on horizontal interactions which are capable of modulating
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the responses of widely separated neurons. While the computational function
of these types of interactions within the actual cortex is not yet understood, the
lateral spread of information could be involved in reinforcing the continuity of
visual objects, in modulating classical receptive field properties (Tso, Gilbert,
Wiesel, 1986; Mitcheson and Crick,1982), or in establishing non-classical recep-
tive field structure (Allman, Miezin, McGuinness, 1985). The stimulus depen-
dence of coherence in the model is observed to result from the modulation of the
magnitude of these interactions as a function of stimulus structure. Under this
interpretation, phase coherence does not in itself encode information necessary
for subsequent processing, but rather, phase relationships emerge as a result of
the horizontal integration of information involved in the shaping of receptive
field properties.

General Cerebral Cortical Processing

For the last several years we have been using biologically realistic com-
puter simulations to study the oscillatory behavior of another primary sensory
region of cerebral cortex, the olfactory, or piriform cortex (Wilson and Bower,
1988;1989; 1990). This structure is also known to generate oscillatory activity
in the 40 Hz range under a variety of experimental conditions (Adrian, 1942;
Freeman, 1968; 1978). It is interesting to note that the neural mechanisms

that generate the oscillatory behavior described here in the visual cortex model
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are also capable of reproducing the basic frequency and phase relationships of
olfactory cortex. In each case inhibitory neurons govern the frequency of the
oscillations while the long range horizontal connections are involved in establish-
ing specific phase relationships. Our work in piriform cortex suggests that the
40 Hz cycle reflects a fundamental cortical processing interval while phase rela-
tionships, as in the model of visual cortex, reflect the structure of inter-cellular
communication within the network (Wilson and Bower, 1990). If true, then
this 40 Hz oscillatory structure may reflect very general properties of cerebral
cortical function.
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Fig. 1. Simulated auto and cross correlations generated by presentation of a
broken bar (A) and a continuous bar (B) over 500 msec. Upper diagrams show
the model with the stimulus region shaded. Grid squares correspond to the
location of modeled cells. The numbers indicate the location of the recording
sites referred to in the auto (1-1,2-2) and cross (1-2) correlations.

METHODS: Multi-neuronal activity used to produce the correlations were summed
from 9 neurons nearest each recording site. The stimulus was generated using
independent poisson processes on individual input fibers. The poisson rate pa-
rameter was increased from a baseline of 20 spikes/sec to 500 spikes/sec over
the onset period from 20-100 msec. The difference in phase between the firing
of cells in these locations was estimated by measuring the offset of the dominant
peak in the cross correlation function. These values were consistent with mea-
surements obtained both through chi-square fitting of a modified cosine function
and measurement of the phase of the peak frequency component in the correla-

tion function power spectra.

Fig. 2. (A) Cross correlations between sites 1-2 (see fig. 1) for a continuous

bar stimulus with radius of horizontal fiber coupling of 2 mm (left) and 1 mm
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(right). (B) Time course of cross correlation functions taken at successive 125
intervals over the 500 msec period for relative horizontal fiber coupling strengths
of 1 (left) and 1.5 (right). The bottom-most correlation function covers the en-

tire 500 msec interval.

Fig. 3. Cross correlations between sites along a 12 mm stimulus bar.
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GENESIS: A SYSTEM FOR SIMULATING NEURAL NETWORKS

Matthew A. Wilson, Upinder S. Bhalla, John D. Uhley, James M. Bower.
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Pasadena, CA 91125

ABSTRACT

We have developed a graphically oriented, general purpose simulation system to facilitate the
modeling of neural networks. The simulator is implemented under UNIX and X-windows and is
designed to support simulations at many levels of detail. Specifically, it is intended for use in both
applied network modeling and in the simulation of detailed, realistic, biologically-based models.
Examples of current models developed under this system include mammalian olfactory bulb and
cortex, invertebrate central pattern generators, as well as more abstract connectionist simulations.

INTRODUCTION

Recently, there has been a dramatic increase in interest in exploring the computational properties of
networks of parallel distributed processing elements (Rumelhart and McClelland, 1986) often
referred to as "neural networks” (Anderson, 1988). Much of the current research involves numerical
simulations of these types of networks (Anderson, 1988; Touretzky, 1989). Over the last several
years, there has also been a significant increase in interest in using similar computer simulation
techniques to study the structure and function of biological neural networks. This effort can be seen
as an attempt to reverse-engineer the brain with the objective of understanding the functional
organization of its very complicated networks (Bower, 1989). Simulations of these systems range
from detailed reconstructions of single neurons, or even components of single neurons, to
simulations of large networks of complex neurons (Koch and Segev, 1989). Modelers associated
with each area of research are likely to benefit from exposure to a large range of neural network
simulations. A simulation package capable of implementing these varied types of network models
would facilitate this interaction.



DESIGN FEATURES OF THE SIMULATOR

We have built GENESIS (GEneral NEtwork SImulation System) and its graphical interface XODUS
(X-based Output and Display Utility for Simulators) to provide a standardized and flexible means
of constructing neural network simulations while making minimal assumptions about the actual
structure of the neural components. The system is capable of growing according to the needs of users
by incorporating user-defined code. We will now describe the specific features of this system.

Device independence.

The entire system has been designed to run under UNIX and X-windows (version 11) for maximum
portability. The code was developed on Sun workstations and has been ported to Sun3’s, Sun4’s, Sun
386i’s, and Masscomp computers. It should be portable to all installations supporting UNIX and X-
11. In addition, we will be developing a parallel implementation of the simulation system (Nelson
etal., 1989).

Modular design.

The design of the simulator and interface is based on a "building-block” approach. Simulations are
constructed of modules which receive inputs, perform calculations on them, and generate outputs
(figs. 2,3). This approach is central to the generality and flexibility of the system as it allows the
user to easily add new features without modification to the base code.

Interactive specification and control.

Network specification and control is done at a high level using graphical tools and a network
specification language (fig. 1). The graphics interface provides the highest and most user friendly
level of interaction. It consists of a number of tools which the user can configure to suit a particular
simulation. Through the graphical interface the user can display, control and adjust the parameters of
simulations. The network specification language we have developed for network modeling represents
a more basic level of interaction. This language consists of a set of simulator and interface functions
that can be executed interactively from the keyboard or from text files storing command sequences
(scripts). The language also provides for arithmetic operations and program control functions such as
looping, conditional statements, and subprograms or macros. Figures 3 and 4 demonstrate how some
of these script functions are used.

Simulator and interface toolkits.

Extendable toolkits which consist of module libraries, graphical tools and the simulator base code
itself (fig. 2) provide the routines and modules used to construct specific simulations. The base code
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Figure 1. Levels Of Interaction With The Simulator
provides the common control and support routines for the entire system.

CONSTRUCTING SIMULATIONS

The first step in using GENESIS involves selecting and linking together those modules from the
toolkits that will be necessary for a particular simulation (fig. 2,3). Additional commands in the
scripting language establish the network and the graphical interface (fig. 4).

Module Classes.

Modules in GENESIS are divided into computational modules, communications modules and
graphical modules. All instances of computational modules are called elements. These are the
central components of simulations, performing all of the numerical calculations. Elements can
communicate in two ways: via links and via connections. Links allow the passing of data between
two elements with no time delay and with no computation being performed on the data. Thus, links
serve to unify a large number of elements into a single computational unit (e.g. they are used to link
elements together to form the neuron in fig. 3C). Connections, on the other hand, interconnect
computational units via simulated communication channels which can incorporate time delays and
perform transformations on data being transmitted (e.g. axons in fig. 3C). Graphical modules called
widgets are used to construct the interface. These modules can issue script commands as well as



respond to them, thus allowing interactive access to simulator structures and functions.

Hierarchical organization.

In order to keep track of the structure of a simulation, elements are organized into a tree hierarchy
similar to the directory structure in UNIX (fig. 3B). The tree structure does not explicitly
represent the pattern of links and connections between elements, it is simply a tool for organizing
complex groups of elements in the simulation.

Simulation example.

As an example of the types of modules available and the process of structuring them into a network
simulation and graphical interface, we will describe the construction of a simple biological neural
simulation (fig. 3). The model consists of two neurons. Each neuron contains a passive dendritic
compartment, an active cell body, an axonal output, and a synaptic input onto the dendrite. The axon

Simulator and interface toolkit

Graphics Modules Communications
T 1 modules '
Ik ICEG A~ |4 1.
HILIE f
| - <
| C Linker
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(PG
7 (7
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i Computational

Figure 2. Stages In Constructing A Simulation.
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Figure 3. Implementation of a two neuron model in GENESIS. (A) Schematic
diagram of compartmentally modeled neurons. Each cell in this simple model has a
passive dendritic compartment, an active cell-body, and an output axon. There is a
synaptic input to the dendrite of one cell and two ionic channels on the cell body.
(B) Hierarchical representation of the components of the simulation as maintained in
GENESIS. The cell-body of neuron 1 is referred to as /network/neuronl/cell-body.
(C) A representation of the functional links between the basic components of one
neuron. (D) Sample interface control and display widgets created using the XODUS
toolkit.
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of one neuron connects to a synaptic input of the other. Figure 3 shows the basic structure of the
model as implemented under GENESIS. In the model, the synapse, channels, dendritic compartments,
cell body and axon are each treated as separate computational elements (fig. 3C). Links allow
elements to share information (e.g. the Na channel needs to have access to the cell-body membrane

Create different types of elements and assign them names.

create neuronl

create  active_compartment cell-body

create  passive_compartment dendrite

create  synapse dendrite/synapse

Establish functional "links" between the elements.
link dendrite to cell-body
link dendrite/synapse  to dendrite

Set parameters associated with the elements.
set dendrite capacitance 1.0e-6

Make copies of entire element subtrees.
copy neuronl to  neuron2

Establish "connections” between two elements.
connect neuronl/axon to  neuron2/dendrite/synapse

Set up a graph to monitor an element variable
graph neuronl/cell-body potential

Make a control panel with several control "widgets”.
xform  control
xdialog nstep  set-nstep -default 200
xdialog dt set-dt -default 0.5
xtoggle Euler set-euler

Figure 4. Sample script commands for constructing a simulation (see fig. 3)

voltage). Figure 4 shows a portion of the script used to construct this simulation.
SIMULATOR SPECIFICATIONS

Memory requirements of GENESIS.

Currently, GENESIS consists of about 20,000 lines of simulator code and a similar amount of
graphics code, all written in C. The executable binaries take up about 1.5 Megabytes. A rough
estimate of the amount of additional memory necessary for a particular simulation can be calculated
from the sizes and number of modules used in a simulation. Typically, elements use around 100
bytes, connections 16 and messages 20. Widgets use 5-20 Kbytes each.



Performance

The overall efficiency of the GENESIS system is highly simulation specific. To consider briefly a
specific case, the most sophisticated biologically based simulation currently implemented under
GENESIS, is a model of piriform (olfactory) cortex (Wilson et al., 1986; Wilson and Bower, 1988;
Wilson and Bower, 1989). This simulation consists of neurons of four different types. Each neuron
contains from one to five compartments. Each compartment can contain several channels. On a SUN
386i with 8 Mbytes of RAM, this simulation with 500 cells runs at 1 second per time step.

Other models that have been implemented under GENESIS

The list of projects currently completed under GENESIS includes approximately ten different
simulations. These include models of the olfactory bulb (Bhalla et al., 1988), the inferior olive (Lee
and Bower, 1988), and a motor circuit in the invertebrate sea slug Tritonia (Ryckebusch et al.,
1989). We have also built several wtorials to allow students to explore compartmental biological
models (Hodgkin and Huxley, 1952), and Hopfield networks (Hopfield, 1982).

Access/use of GENESIS

GENESIS and XODUS will be made available at the cost of distribution to all interested users. As
described above, new user-defined modules can be linked into the simulator to extend the system.
Users are encouraged to support the continuing development of this system by sending modules they
develop to Caltech. These will be reviewed and compiled into the overall system by GENESIS
support staff. We would also hope that users would send completed published simulations to the
GENESIS data base. This will provide others with an opportunity to observe the behavior of a
simulation first hand. A current listing of modules and full simulations will be maintained and
available through an electronic mail newsgroup, Babel. Enquiries about the system should be sent to
GENESIS@caltech.edu or GENESIS@caltech.bitnet.
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Appendix 1: Parameter variations and their effect on simulated EEG

Introduction

This appendix examines the effects of critical parameter variations on the
simulated EEG responses in the network model of piriform cortex.

The model used contained 405 cells (9x15) of the types described in chapter
1. The smaller network size was necessary in order to perform the required
simulations considering computational and data storage overhead which rapidly
becomes prohibitive.

Field potentials were computed using the methods described in chapters
1 and 2. An 8x5 simulated electrode array was placed at the surface of the
cortex. The fields measured from these electrodes were combined to produce
a single average measure of the EEG for the population. Power spectra were
computed from the average EEG using an FFT with Parzen data windowing
(Press et al. 1988). Afferent input was provided through 10 independent fibers
each of which were driven by independent poisson distributed random impulse
generating processes. The average rate of impulse generation along a single fiber
was 200 Hz. The amplitudes of impulses were subject to variation according to

the manipulations described.



Inhibitory effects

Oscillatory frequency is modulated through both local and long range in-
teractions. The local modulatory features include the coupling characteristics
from pyramidal cells to inhibitory cells as well as from afferent input to in-
hibitory cells and from inhibitory cells back to pyramidal cells. The model pa-
rameters which govern these interactions include the strength of coupling along
these pathways as well as the time course of excitatory and inhibitory synaptic
conductances.

In the actual cortex, barbiturates are known to potentiate the time course
of inhibitory conductance changes through Cl- mediated channels. Figure la
demonstrates the effect on oscillatory behavior as the open channel time for the
Cl- mediated inhibitory process is increased from 7 to 18 msec. With an afferent
input level of 0.5 this modification has the effect of reducing peak frequency (fig.
1c) and virtually eliminating structured oscillatory behavior.

Figure 1b demonstrates the effect of increasing feedback inhibition onto
feedback interneurons which has the effect of enhancing oscillatory firing of
interneurons. The result of this modification is the appearance of more robust
EEG oscillations with increased energy in the frequency bands corresponding
to the relative duration of inhibitory conducting times as seen in figure 1c.

As mentioned earlier, parameters involved in modifying the gain of in-
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hibitory feedback to pyramidal cells have a significant impact on oscillatory
behavior. Figure 2a demonstrates the result of changing the relative strength of
synaptic activation from feedback interneurons to pyramidal cells for low level
(A=.1) afferent input with a Cl- channel open time of 18 msec. Under nominal
conditions, the response takes the form of irregular spindles occuring at low fre-
quencies with no significant energy in the 20-80 Hz range (fig. 2b). Reducing the
efficacy of feedback inhibitory to pyramidal cell synapses by 0.75 results in the
appearance of higher frequency oscillatory components. Further reduction to a
level half of the nominal value results in high frequency oscillations reflecting
maximal firing of pyramidal cells. This indicates a fairly narrow operating range
for the coupling strength of feedback to pyramidal cell inhibitory connections.

Excitatory effects

As discussed in chapter 1, system parameters which modulate network
excitability have a significant effect on the generation of oscillatory behavior. In
the model these parameters include level of background activity and strength
of excitatory coupling.

Figure 3 demonstrates the effect of varying the relative strength of ex-
citatory synaptic connections between pyramidal cells along association fiber
pathways. The values shown next to each trace are the factors by which all long

range excitatory synaptic weights were multiplied. In the nominal case (1x),
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oscillations appear relatively unstructured, with energy peaks near 20 and 45
Hz. Attenuation of association fiber weights by a factor of 0.5 from the nomi-
nal value results in a significant reduction in oscillatory behavior. Conversely,
increasing relative efficacy by as little as 20 percent results in an increase in
energy concentrated in the 40-60 Hz range and the emergence of modest os-
cillatory bursts 100-200 msec in duration. Increasing relative association fiber
efficacy by a factor of 5 results in the appearance of fully oscillatory behavior
with enery in the 40-80 Hz range and the appearance of clear burst intervals.
This demonstrates the role of positive feedback on the generation of oscillatory
bursts.

As seen in earlier chapters, the interaction of excitatory events during these
burst cycles is thought to underly the basic computation perfc;rmed by the ol-
factory cortex. Consequently, the enhancement of these oscillatory periods with
increased excitatory coupling is consistent with the activation or amplification
of this computational process.

The enhancement of oscillatory behavior with increases in the strength of
excitatory coupling arises from the increase in excitability of cells induced by
intrinsic positive feedback. This excitability can also be modulated through af-
ferent input. Figure 4 explores the effects of changing levels of afferent input. A

most interesting effect is noted in the case of near baseline input levels. There
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is an abrupt transition from the low spontaneous level seen in figure 3 with
attenuated association fiber gains, to a fully oscillatory state. Further increases
in afferent levels of activation do not significantly alter the oscillatory behavior
with peak energy remaining in the 40-60 Hz range in each case. The reason for
this modest effect is that afferent input targets both excitatory and inhibitory
cells. Thus increasing afferent input increases activity levels on both types re-
sulting in a relatively balanced effect. This result, coupled with the results
obtained through adjustment of association fiber gain suggests that with nom-
inally enhanced synaptic efficacy, the system has a tremendous sensitivity to
the presence of input but the oscillatory gain is relatively insensitive to absolute
input magnitude. Again this is consistent with the idea that the oscillations
reflect the action of a computational process which acts on the input rather
than being explicitly driven by it. Regulation of the oscillatory behavior can
be effectively performed through modulation of intrinsic excitatory pathways
which suggests the presence of pharmacological mechanisms which are specific
to the intrinsic excitatory connections. As discussed in chapter 2, recent work
has uncovered mechanisms which have the requisite specificity (Hasselmo and
Bower 1990).

An additional mechanism which could selectively increase pyramidal cell

excitability would be selective enhancement of afferent synapses onto pyramidal
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cells. This pathway is known to possess physiological and pharmacological prop-
erties that distinguish it from association fiber pathways (Haberly and Bower
1986).

Figure 5 shows the results of simulations in which afferent to pyramidal
cell synapses were increased up to 10 fold. The effect on oscillatory behavior
was modest with little effect on oscillatory frequency or burst production. The
inability of purely afferent driven input to produce oscillatory responses com-
parable to those generated through enhanced association fiber gain is largely a
function of the continous nature of the simulated afferent input. While steady
bulbar input increases excitability of pyramidal cells, the presence of steady
in-phase as well as out of phase activation of pyramidal cells induces an out
of phase bias to fire reducing the modulation of spike activity. In the case
of enhanced excitatory coupling, positive feedback is not distributed uniformly
over time but is modulated at the population frequency. With the appropriate
phase relationships between cells (outlined in chapter 1) this activation remains
in phase with oscillations of distant cells. Thus, intrinsic positive feedback not
only enhances excitability, but does so in a coordinated fashion. The synchro-
nized feedback introduced between cells coupled with the appropriate phase
relationship significantly increases the amplification of pyramidal cell activity.

An interesting feature of the simulated oscillatory behavior is its modu-
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lation into 100-200 msec bursts. Earlier work presented in chapter 1 indicated
that the K+ mediated feedforward inhibitory process was capable of modulat-
ing EEG bursts at comparable frequencies. Due to the relatively attenuated
feedback contribution from pyramidal cells to feedforward interneurons used
in these simulations, K+ mediated inhibition was not responsible for observed
modulation. Consequently, additional intrinsic mechanisms must be in place to
produce equivalent effects.

Examination of the activity patterns underlying the simulated EEG (fig.
6) suggests that a potential mechanism for burst frequency modulation involves
desychronization of pyramidal cell firing leading to disruption of phase rela-
tionships and, therefore, of amplified positive feedback. This mechanism could
operate in the following manner. As pyramidal cell firing increases, positive
feedback initiates burst activity with feedback inhibition modulating the fre-
quency based on the strength and time constants of inhibitory feedback. As
excitation increases, the feedback mechanisms for regulating frequency become
saturated. The loss of uniform frequency regulation across the cortex results
in desynchronized firing which terminates the burst. While this explanation is
suggested by these results, further investigation will be required to establish this
more firmly.

It is quite interesting to note that the apparent frequency of burst modu-
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lation produced through this mechanism is consistent with time contants for the
long-duration hyperpolarizing K+ inhibitory process. This provides another ex-
ample of the tuning of multiple system parameters to single phenomena as was
observed in chapter 1 with regard to the timing of propagated excitatory events.
Taken in the context of periodic desynchronization of pyramidal cell activity,
the K+ inhibition could be seen as explicitly suppressing the desynchronized
interburst period which appears to result in its absence. The advantage of this
is apparent if one assumes that during the desynchronized state, information
is not effectively processed and therefore activity occuring during this period
should be ignored.

The general results of these manipulations indicate that the relative effi-
cacy of excitatory association fiber connections is a significant parameter gov-
erning the appearance of coordinated oscillatory bursts. The use of intrinsic
positive feedback provides an exquisitely high gain amplification mechanism for
establishing burst behavior. Thus, these basic results introduce an additional
aspect to modulation of synaptic efficacy which goes beyond issues of local den-
dritic computation. The switching of dynamic modes may have fundamental
impact on the very nature of computation performed in the cortex (chapters
1-3). Therefore, these results again emphasize the necessity of considering the

structure of computation at all levels of scale and their interactions, a function



ideally suited to simulations of the type described in this work.
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Fig. 1a.

This shows the EEGs produced by continuous afferent stimulation in which the
open time for the Cl- mediated inhibitory channel is varied between 7 msec (top),
10 msec (middle), and 18 msec (bottom). The stimulation amplitude is 0.5 and
the strength of excitatory association fiber coupling is 1.5 times the nominal
level. At 7 msec open time oscillatory behavior is apparent but irregular with
peak energy between 40 and 60 Hz. Increasing the duration of Cl- inhibition
reduces frequency and results in increasingly irregular behavior.

Fig. 1b.

This shows the effect of increasing the strength of connections between feedback
interneurons by a factor of 1.5 on oscillations produced under the same stimulus
conditions as those shown in figure la.

Fig. 1c.

Comparison of power spectra for EEGs shown in figure 1a (left column) and 1b
(right column) showing the enhancement of energy appearing in the 20-60 Hz
range due to increased inhibitory modulation of inhibitory cells.

Fig. 2.

This shows the effect on oscillatory behavior of reducing the relative efficacy of
synapses from feedback interneurons to pyramidal cells. Afferent input level is

0.1 and excitatory association fiber synapses have been enhanced by a factor of
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1.5. The bottom trace shows the nominal response with a relative efficacy of 1.
Reduction of inhibitory input by 0.75 (middle trace) results in the appearance
of more regular oscillations. Further reduction to 0.5 leads to sustained high
frequency oscillations corresponding to uncontrolled pyramidal cell firing.

Fig. 3a.

This shows the effect of increasing efficacy of intrinsic excitatory association
fiber synapses. The multiplier shown next to each trace represents the factor
by which all long-range association fiber synapses were adjusted. The effect of
enhanced excitatory coupling is seen in the uppermost trace as the appearance
of regular oscillations modulated into 100-200 msec bursts.

Fig. 3b.

Power spectra for traces shown in figure 3a showing an upward shift in dominant
frequency with enhanced association fiber coupling.

Fig. 4a.

This shows the effect of changing afferent input levels on oscillatory behavior.
Association fiber coupling gain has been set to 1.2 times the nominal level.
Effect of lowest amplitude input is shown in the bottom trace. After 400 msec an
abrupt transition is made from low level activity to fully oscillatory behavior due
to the effects of intrinsic positive feedback. Further increase in input amplitude

(upper traces) has little effect on oscillatory behavior.
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Fig. 4b.

Power spectra for traces shown in figure 4a showing little effect on frequency
composition with increased input amplitude.

Fig. 5a.

This shows the effect of changing efficacy of synaptic connections from afferent
fibers to pyramidal cells. Amplitude of afferent input is 0.1 and association fiber
coupling gain has been set to the nominal level. The multiplier shown next to
each trace represents the factor by which all afferent to pyramidal cell connec-
tions were adjusted. Response with nominal coupling is shown in the bottom
trace. Increase in coupling (upper traces) produces a modest improvement in
oscillatory behavior which does not improve significantly with further increases.
Fig. 5b.

Power spectra for traces shown in figure 5a showing little effect on frequency
composition with selective increase in afferent to pyramidal cell synaptic efficacy.
Fig. 6a.

Activity patterns underlying oscillatory EEG with association fiber gain of 5
and input level of 0.1. The upper trace is the population average EEG (in-
verted with respect to previous EEGs). Below that are pyramidal population
average conductances contributed by the designated pathways. The lower three

traces represent population averaged spike activity for pyramidal, feedback, and
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feedforward cells. Spike binwidth = 2 msec. Scale factors used in plotting are
given for individual traces. Time is given in msec.
Fig. 6b.

Increased resolution display of activity shown in figure 6a.
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Appendix 2: Genesis scripts implementing the model of piriform cor-

tex

This section contains the complete listing of the Genesis scripts used to
produce the network simulations described in this work. Given the variations
in the configurations of the model used in the different chapters, this appendix
contains the "nominal” representation. All others constitute minor variations
of parameters which are described in the appropriate chapters.

It should be emphasized that this section is provided as a reference for
those who are already familiar with the Genesis simulation system and are in-
terested in the details of the model implementation. The Genesis simulation
system used to implement the model was developed during the course of this
research at Caltech and is available at no cost via ftp at the internet site gen-
esis.caltech.edu. Potential users should be warned that at the present time
the simulator remains a research tool with limited documentation and there-
fore requires significant effort to successfully master. Continued support and

development is planned to improve this status.
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piriform.g

//genesis

echo " ”

echo WA A A A XA KA AAA AR AAA A A A A A AR AR A A AR AR A A AR A A Ak khkkkkhxit
echo "* PIRIFORM CORTEX * 0
echo "* * 1
echo "* Written by Matt Wilson * 0
echo "¥ California Institute of Technology *n
echo "* * W
echo "x GENESIS implementation *0
echo "* 8/15/88 *n

echo Mkhkhkkkhkhkhkrkhkkhkhkhkhhkhkhkhkhkhkkhkhkhkhkhkkhkkkkhkkhkhkhkxhkhkall
e ChO woon

// set local variables

// set up some functions

// create some prototype objects
// set up the cells

// create the cell populations

include constants.
include functions.
include protodefs.
include cells.g
include pyramidal.
include fb.g
include ff.g
include bulb.g
include connfuncs.g // set up the connections
include pyrconn.g

include fbconn.g

include ffconn.g

include bulbconn.g

include field.g // place field potential electrodes
include output.g // set up the outputs

/*

include theta.g

Q@

maketheta

*/

include adjustweights.g

echo "w o ou

echo checking and initializing simulation
echo Piriform cortex simulation loaded.
check

reset // get a clean start

Thu Sep 27 11:48:51 1990
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//genesis
adjustspike

scaleweight
scaleweight
scaleweight
scaleweight
scaleweight
scaleweight
scaleweight

Page 1/1
adjustweights.g

// correct the spike output amplitude for
// the time step

/pyr/pyramidal([]/RAaxon 3.5
/pyr/pyramidal([]/CAaxon 3.5
/fb/interneuron[]/axon 15
/ff/interneuron(]/axon 20
/bulb/mitral{]/axon 3.5
/pyr/pyramidal(]/FBaxon 2.25
/pyr/pyramidal(]/FFaxon 1.5
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bulb.g

//genesis
if (BULB)

bulb(/library/mitral)

createmap /library/mitral /bulb {BULB_NX} {BULB_NY
PN -

{BULB_DX} {BULB_DY}

end

Thu Sep 27 11:48:46 1990
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bulbconn.g

//genesis
function bulb_connect (path)
str path

echo

echo AFFERENT INPUT

echo

if (MULTI)

dst = "/pyr/pyramidal(]/soma/Ia_dend/Aff Na channel"

else

dst = "/pyr/pyramidal[]/soma/Aff Na channel"

end

echo afferent connections

region_connect {path} to {dst} \

with synapse -rel \

11 -100 -100 100 100 \ // do this over all the cells

1 1 -100 =100 100 100 \ // connect to all the cells

{PBULB_to_ PYR}

region_connect {path}2 to /ff/interneuron[]/soma/Na_channe
1\

with synapse -rel \

11 -100 -100 100 100 \ // do this over all the cells

11 -100 -100 100 100 \ // connect to all the cells

{PBULB to_ FF}

region connect {path}3 to /fb/interneuron{]/soma/Na_channe
1\

with synapse -rel \

11 -100 -100 100 100 \ // do this over all the cells

11 -100 -100 100 100 \ // connect to all the cells

{PBULB_to_FB}

// AFFERENT DELAYS

echo afferent delays

execute AffDelay {path} 45 -uniformvx {VLOT_MAIN MIN/SCALE}

\
{VLOT_MAIN MAX/SCALE} \
-unlformvy {VLOT COLL MIN/SCALE} \
{VLOT_COLL MAX/SCALE}

execute AffDelay {path}2 45 -uniformvx {VLOT_MAIN_ MIN/SC

ALE} \

{VLOT_MAIN MAX/SCALE} \
-uniformvy {VLOT_ COLL_MIN/SCALE} \

Thu Sep 27 11:48:47 1990



ALE}

end

Page 2/3
bulbconn.g

{VLOT_COLL_MAX/SCALE}
execute AffDelay {path}3 45 -uniformvx {VLOT MAIN MIN/SC
\
{VLOT_MAIN MAX/SCALE} \
-uniformvy {VLOT COLL MIN/SCALE} \
{VLOT_COLL MAX/SCALE}

// AFFERENT WEIGHTS
echo afferent weights
aff weight {path} 45 {WBULB_to_ PYR} \

{LBULB_to_ MAIN} {LBULB to _COLL} {AWBULB_to_ PYR}
aff weight {path}2 45 {WBULB_to FF} \

{LBULB_to MAIN} {LBULB to_COLL} {AWBULB_to_ FF}
aff weight {path}3 45 {WBULB_ to FB} \

{LBULB_to_MAIN} {LBULB to _COLL} {AWBULB_to_FB}

function parallel (path)

str

1\

path

echo

echo AFFERENT INPUT

echo

if (MULTI)

dst = "/pyr/pyramidal([]/soma/Ia_dend/Aff Na_channel"

else

dst = "/pyr/pyramidal[]/soma/Aff Na channel"

end

echo afferent connections

region_connect {path} to {dst} \

with synapse -rel \

11 -100 =100 100 100 \ // do this over all the cells
1 1-1-111 // connect to cells in 2x2mm region

region_connect {path}2 to /ff/interneuron[]/soma/Na_channe
with synapse -rel \

11 -100 =100 100 100 \ // do this over all the cells
1 1-1-111 // connect to cells in 2x2mm region

region_connect {path}3 to /fb/interneuron[]/soma/Na_channe

Thu Sep 27 11:48:47 1990
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bulbconn.g

with synapse =-rel \

11 -100 -100 100 100 \ // do this over all the cells

1 1-1-111 // connect to cells in 2x2mm region

gaussian_weight {path} {WBULB to PYR} 1 0 // lmm sigm
a wmin = 0

gaussian_weight {path}2 {WBULB to FF} 1 0 // lmm sigm
a

gaussian_weight {path}3 {WBULB to FB} 1 0 // lmm sigm
a

set {path}:# delay 0

set {path}2:# delay 0

set {path}3:# delay O
end

// rate is in spikes/sec
function bar(xl,yl,x2,y2,rate)
float x1,yl,x2,y2,rate
set /bulb/mitral[x>={x1}][y>={yl}][x<={x2}][y<={y2}]/input
rate {rate/1000.0}
end

function baseinput (rate)
float rate

set /bulb/mitral[]/input rate {rate/1000.0}
end

bulb_connect /bulb/mitrall]/axon
baseinput 10
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cells.g
//genesis
str string
!/ ===
// PYRAMIDAL CELL
// ==
/*
** this function constructs a pyramidal cell according to the a
rguments
** passed to it
*/

function pyramidal cell (pathname,multi, spike,connect, \
soma_d, soma_l,dend_d,dend 1)

str pathname
int multi

int spike

int connect

float  soma_d // um
float soma_l // um
float dend_d // um
float dend_l // um

PI*soma_d*soma_ 1l // um”2
PI*soma_d*soma_d/4 // um"2
PI*dend_d*dend_1 // um*2
PI*dend d*dend d/4 // um”™2

float soma_a
float soma_xa
float dend a
float dend xa

create neutral {pathname}
ce {pathname}
// passive soma

create compartment soma
set soma \

Em {PYR_EREST} \ // mv

Rm { RM/soma_a } \ // Kohm

Cm { CM*soma_a*SCALE } \ // uF
Ra { RA*soma_l/soma_xa } // Kohm
/*

** add a buffer for generating thresholded spike events

Thu Sep 27 11:48:47 1990
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cells.g

*/

copy /library/spike

set spike abs_refract 10

set spike thresh -40 // mv

/*

** use the soma potential (or state) to drive the threshold

** spike generation buffer
*/

sendmsg soma spike INPUT Vm
/*

** axons

*/

foreach string (RA CA LRA LCA FF FB )
create axon {stringlaxon

set {stringl}axon latency {SYNDELAY}

sendmsg spike {stringlaxon BUFFER name
end
if (multi)
push soma
/*
** add a passive dendritic compartments
*/
create compartment III dend
set III_dend \
Em {PYR _EREST} \ // mv
Rm {RM/ dend _a} \ // Kohms
Cm {CM * dend a*SCALE} \ // uF
Ra {RA * dend l/dend_xa} // Kohm

copy III _dend deepIb_dend
copy III_dend supIb_dend
copy III_dend Ia_dend

/*
** and link them

*/

link_compartment III_dend

link compartment deepIb_dend .
link_compartment supIb_dend deepIb_dend
link_compartment Ia_dend supIb_dend
pop

Thu Sep 27 11:48:47 1990
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end
if (spike)
/*
** add spike producing channels
*/
create channelC SNa_channel

set SNa_channel \

Ek {ENA} \ // mv

taul { 0.2 * SCALE } \ // msec

tau2 { 0.2 * SCALE } \ // msec

gmax {SGMAX_NA*fAC*soma_a} // mS
create channelC SK_channel

set SK channel \

Ek {EK} \ // mv

taul { 1 * SCALE } \ // msec

tau2 { 1 * SCALE } \ // msec

gmax {SGMAX_K*fAC*soma_a} // mS
/ *
** yse the spike output as activation for the channels
*/
sendmsg spike SNa_channel ACTIVATION state
sendmsg spike SK_channel ACTIVATION state
singlelink channel SNa_channel soma
singlelink_channel SK_channel soma

end

if (connect)

o *

** add synaptically activated channels

*/

if (multi)

synapse

push soma/Ia_dend
copy /library/Na_channel
set Aff Na_channel gmax

link_channel Aff Na_channel
pop

push soma/supIb_dend

copy /library/Na_channel
set CA Na_channel gmax
link_channel CA_Na_channel
pop

Aff Na_ channel
{DISTAL GMAX NA} // mS/

CA Na_channel
{DISTAL GMAX NA}
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push soma/deepIb dend

copy /library/Na_channel RA Na_channel
set RA Na_channel gmax {DISTAL GMAX NA}
link_channel RA Na_channel
pop
push soma/III_dend
copy /library/Na_channel Local Na_channel
set Local Na_channel gmax {LOCAL_GMAX NA}
link_channel Local_Na_channel h
pop
push soma/Ia_dend
copy /library/K_channel X channel
set K _channel grax {GMAX K}
link_channel K _channel
pop
push soma
copy /library/Cl_channel Cl_channel
set Cl_channel gmax {GMAX CL}
link_channel Cl_channel
pop

else
push soma
copy /library/Na_channel Aff Na channel
set Aff Na channel gmax {DISTAL_GMAX NA}
link_channel Aff Na channel .
copy /library/Na_channel CA Na_channel
set CA_Na_channel gmax {DISTAL GMAX NA}
link_channel CA Na_channel .
copy /library/Na_channel RA Na_channel
set RA_Na_channel gmax {DISTAL GMAX NA}
link_channel RA Na_channel .
copy /library/Na_channel Local_Na_channel
set Local_Na_channel gmax {LOCAL_ GMAX NA}
link_channel Local Na_channel
copy /library/K_channel K_channel
set K_channel gmax {GMAX K}
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Page 5/7

cells.g
link_channel K_channel
copy /library/Cl_channel Cl_channel
set Cl_channel gmax {GMAX CL}
link_channel Cl _channel .
pop
end // multi
end // connect
if (multi)
push soma
/%
** set dendritic positions relative to the soma
*/
position III dend I I R100e-3 // 100um deep to the soma
position deepIb_dend I I R-100e-3 // 100um super to t
he soma
position supIb dend I I R-200e-3 // 200um super to t
he soma
position Ia_dend I I R-300e-3 // 300um super to the s
oma
pop
end // multi
end // pyramidal cell
/[ =======mmmsmmssss—ssssssssssssssss=sss=s=s====== ============
// INTERNEURON

//= —————

function interneuron(pathname,soma _d,soma 1,Cl,multaxon)
str pathname

float  soma_d // um

float  soma_l // um

int Cl // flag for incorporating a Cl channel
int multaxon // flag for additional axon

PI*soma d*soma 1 // um”2

float soma_a | _
PI*soma_d*soma_d/4 // um”"2

float soma_xa

create neutral {pathname}
ce {pathname}

/*

** goma

Thu Sep 27 11:48:47 1990
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*/
create compartment soma
set soma \

Em {I_EREST} \ // mv

Rm {I_RM / soma_a} \ // Kohms

Cm {I_ CM * soma_a * SCALE} \ // uF

Ra {I_RA * soma_l / soma_xa} // Kohm

/*

** channels

*/

copy /library/Na_channel soma

set soma/Na_channel gmax {I_GMAX NA}

link channel soma/Na_channel soma

1£(Cl1l)

copy /library/Cl_channel soma

set soma/Cl_channel gmax {I_GMAX CL}

link_channel soma/Cl_channel soma

end

copy /library/Cl _channel soma

set soma/Cl_channel gmax {I_GMAX CL*NSYN_FB_from
FB}

link_channel soma/Cl_channel soma

/*

** add spike producing channels

* / _

create channelC SNa_channel
set SNa_channel \

Ek {ENA} \ // mVv

taul { 0.2 * SCALE } \ // msec
tau2 { 0.2 * SCALE }\ // msec
gmax {SGMAX NA*fAC*soma_a} // mS

create channelC SK_channel
set SK_channel \

Ek {EK} \ // mv

taul { 1 * SCALE } \ // msec
tau?2 {1 * SCALE } \ // msec
gmax {SGMAX K*fAC*soma_a} // mS
/%

** use the spike output as activation for the channels
*/

singlelink_ channel SNa_channel soma
singlelink_channel SK_channel soma
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singlelink channel soma/Cl_channel soma

copy /library/spike
set spike thresh -40
set spike abs_refract 10

sendmsg soma spike INPUT Vm
sendmsg spike SNa_channel ACTIVATION state
sendmsg spike SK channel ACTIVATION state
sendmsg spike soma/Cl_channel ACTIVATION state
create axon axon
set axon latency {SYNDELAY}
sendmsg spike axon BUFFER name
if (multaxon)
create axon fbaxon
set fbaxon latency {SYNDELAY}
sendmsg spike fbaxon BUFFER name
end
end // interneuron
// TS sssssssEssssREsSsSEss s
// BULBAR INPUT
//= s========= ==== ==
function bulb(path)
str path
create neutral {path}
ce %

end

create random input
set input min_amp 3
set input max amp 6

set input rate 1 // spikes/msec
create axon axon
sendmsg input axon BUFFER name
create axon axon2
sendmsg input axon2 BUFFER name
create axon axon3
sendmsg input axon3 BUFFER name
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//genesis
function propagation velocity(path,velocity)
str path
float velocity
execute RadialDelay {path} { 1.0/velocity }
end

function gausspropagation velocity(path,min,max,mean, sd)
str path
float min,max
float mean, sd
execute RadialDelay {path} -gaussian {1.0/mean} {1.0/sd} {
1.0/max} {1.0/min}
end

function rangepropagation_velocity(path,min_velocity,max veloci
ty)
str path
float min_velocity
float max_velocity
execute RadialDelay {path} -uniform { 1.0/max_velocity } {
1.0/min_velocity}
end

function exponential weight (path,maxweight,lambda,minval)
str path
float maxweight
float lambda
float minval
execute ExpWeight {path} {-1.0/lambda} {maxweight} {minval}

end

function gaussian_weight (path,maxweight,lambda,minval)
str path
float maxweight
float lambda
float minval
execute GaussianWeight {path} {lambda} {maxweight} {minval}

end

function aff weight (path,angle,max,mlambda, clambda,min)
str path
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float angle
float maxweight
float mlambda
float clambda
float min
execute AffWeight {path} {angle} {max} {-1.0/mlambda} {-1.0
/clambda} {min}
end

Thu Sep 27 11:48:48 1990



Page 1/8
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//genesis

prompt "piriform !" // set the prompt

setclock 0 0.1 // set the basic simulation step size
setclock 1 0.5 // set the output step size

setclock 2 1.0 // set the alternate output step size
randomseed -new

int MULTI = 1

int CONNECT = 1

int INTERNEURON = 1

int SPIKE = 1

int BULB = 1

int FIELD = 1

int T_NOISE = 0

int LOCAL FF = 1

int DISINHIB = 0

// time scale factor

float SCALE = le-3 // convert msec to sec
float SCALE = 1 // no conversions

/ / == === ==
// NETWORK DIMENSIONS

//

// cortical dimensions

float  CORTEX X = 10.0 // mm

float  CORTEX Y = 6.0 // mm

// PYRAMIDAL POPULATION

int PYR NX = 25 // # neurons in x

int PYR NY = 15 // # neurons in y

int PYR NX = 50 // # neurons in x

int PYR NY = 30 // # neurons in y

echo Pyramidal array dimensions {PYR NX} by {PYR _NY}

// cell spacing
float PYR DX

CORTEX X / PYR NX // mm/cell
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float

//

int FB_NX =
int FB_NY =

echo FB interneuron

float
float

/7

int FF_NX
int FF_NY

echo FF interneuron

float
float

//

int BULB_NX
int BULB_NY

PYR DY

FB_DX

[l ol [

FB_DY

o
Sy

FF_DX
FF_DY

|
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constants.g

CORTEX Y / PYR NY // mm/cell
FB INTERNEURON POPULATION

.0*PYR NX // # neurons in x
.0*PYR NY // # neurons in y

array dimensions {FB_NX} by {FB_NY}

CORTEX_X/FB_NX // mm/cell
CORTEX_Y/FB_NY // mm/cell

FE INTERNEURON POPULATION

.0*PYR NX // # neurons in x
.0*PYR _NY // # neurons in y

array dimensions {FF_NX} by {FF_NY}

CORTEX_X/FF_NX // mm/cell
CORTEX_Y/FF_NY // mm/cell

AFFERENT POPULATION

10 // # neurons in x
10 // # neurons in y

echo Bulbar dimensions {BULB_NX} by {BULB_NY}

// shrink the scales to that of the LOT input dimensions

float
float

//

float
float
float
float
float
float
float

BULB_DX
BULB_DY

RPYR_to_LOCAL
RPYR to FB
RPYR_to_FF
RFB_to PYR
RFF_to PYR
RPYR_to_RDIST
RPYR to_ CDIST

Thu

le-3 // mm/fiber
le-3 // mm/fiber

PATHWAY EXTENTS

0.5 // mm

// mm

// mm

// mm

// mm
10.0 // mm
10.0 // mm

|
o unmo

Ihhoronwn|
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// CONNECTION DENSITY

// connection probabilities

float PPYR to_RLOCAL = 0.2
float PPYR to CLOCAL = 0.2
float PPYR to RDIST = 0.02
float PPYR to CDIST = 0.02
float PPYR to FB = 0.2
if (LOCAL_FF)

float PPYR to FF = 0.2
else

float PPYR to_FF = 0.02
end
float PFB_to_PYR = 1.0
float PFF to PYR = 0.2
float PBULB to PYR = 0.1
float PBULB to FF = 0.1
float PBULB _to FB = 0.1
// synaptic target count (synapses/path)
float NSYN_PYR _ from BULB = 1200
float NSYN PYR from CA = 1200
float NSYN PYR from RA = 700
float NSYN PYR from FB = 200
float SDSYN PYR from FB = 20 // standard deviation
float NSYN__ PYR from FF 25

float SDSYN PYR from FF 3 // standard deviation

float NSYN__ PYR from CLOCAL = 30

float NSYN PYR from RLOCAL = 30

float NSYN FB_from PYR = 800

float SDSYN FB from PYR = 80 // standard deviation
float NSYN FB from FB 80

float SDSYN_FB from FB 8 // standard deviation

float  NSYN _FF_from PYR = 200
float  SDSYN FF_from PYR = 20 // standard deviation
float NSYN FB from BULB = 75
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float NSYN FF_from BULB = 200

// source cell count (src_cells)

float NBULB_to_PYR = PBULB_to_ PYR*BULB_NX*BULB_NY
float NBULB_to_FF = PBULB_to__ FF*BULB NX*BULB_NY
float NBULB_to_FB = PBULB to_ FB*BULB NX*BULB NY

// network space constants

float  LPYR to_ RLOCAL = 5.0 // mm

float  LPYR to_CLOCAL = 5.0 // mm

float  LPYR to_CA = 5.0 // mm

float LPYR to RA = 5.0 // mm

float LPYR to FB = 5.0 // mm

float LPYR to_ TFF = 5.0 // mm

float LFB to PYR = 5.0 // mm

float LFB to FB = 5.0 // mm

float LFF_to PYR = 5.0 // mm

float LBULB_to MAIN = 20.0 // mm

float LBULB_to_COLL = 10.0 // mm

// target path target path src

float WBULB_to_FF = NSYN FF_ from BULB/NBULB to_FF
float WBULB_to_ FB = NSYN FB from BULB/NBULB to FB
float WBULB_to_PYR = NSYN PYR from BULB/NBULB to PYR
// asymptotic connection level (fractional synapses/src_ce
11)

float  AWPYR_to_RLOCAL = 0.2

float AWPYR to_CLOCAL = 0.2

float  AWPYR to CA = 0.4

float AWPYR to_RA = 0.4

float AWPYR to FB = 0.2

float AWPYR - to FF = 0.2

float AWFB __ to PYR = 0.2

float AWFB _to_| " FB = 0.2

float AWFF_to_PYR = 0.2

float AWBULB_to_FF = 0. 2*WBULB to FF

float AWBULB _to FB = 0.2*WBULB - _to " FB

float AWBULB to_. "PYR = 0. 2*WBULB to_ " PYR

// velocities (m/s)

float  VPYR CA =  0.37
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SD_VPYR_CA
VPYR_CA_MIN
VPYR_CA_MAX

VPYR RA
SD_VPYR RA
VPYR_RA_MIN
VPYR_RA_MAX

VPYR_FF
SD_VPYR FF
VPYR FF_MIN
VPYR_FF_MAX

VPYR FB
SD_VPYR FB
VPYR_FB_MIN
VPYR_FB_MAX

VLOT_MAIN
SD_VLOT_MAIN
VLOT_MAIN_ MIN
VLOT MAIN MAX

VLOT COLL

SD_VLOT_COLL
VLOT_COLL_MIN
VLOT_COLL_MAX

VFB_PYR
SD_VFB_PYR

VFB_PYR_MIN
VFB_PYR_MAX

VFF_PYR
SD_VFF_PYR

VFF_PYR_MIN
VFF_PYR_MAX
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float

PI =

constants.g

3.14159

// pyramidal cell dimensions

Page 6/8

float PYR SOMA D = 20 // um

float PYR _SOMA L = 70 // um

float PYR SOMA A = PI*PYR SOMA D*PYR SOMA L // um”2
float PYR SOMA XA = PI*PYR SOMA D*PYR SOMA D/4 // um"2
float PYR DEND D = 4 /7 um

float PYR DEND L = 120 // um

float PYR DEND A = PI*PYR DEND D*PYR DEND L // um”2
float PYR_DEND_XA = PI*PYR DEND D*PYR DEND D/4 // um"2
// interneuron dimensions

float GLOB_SOMA D = 10 // um

float GLOB_SOMA L = 10 // um

float FUS_SOMA D = 15 // um

float FUS_SOMA L = 15 // um

// ===s=ssssssssssssssso==== ===
// PHYSIOLOGICAL PARAMETERS

// ====== ======
// IONIC EQUILIBRIUM POTENTIALS

float EKA = 0 // mvV

float ENA = 55 // mv

float ECL = -65 // mv

float EK = -90 // mv

float PYR _EREST = -55 // mv

float  I_EREST = =55 // mv

// UNIT CONDUCTANCES

// (mS/channel)

float  UNIT_GNA = 8e-9

float UNIT_GK = 4e-9

float  UNIT GCL =  20e-9

float SUNIT GNA = 8e-9

float SUNIT_GK = 4e-9
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//
//
float

//

//

float
float
float
float
float
float
float

//
//
float
float
float
float

float
float

//

Page 7/8
constants.g

CHANNEL LIFETIMES

(msec)
TAU_CL = 18
CHANNEL DENSITIES
(channel/um*2)
RHO_NA = 30
RHO_CL = 20
RHO K = 30
SRHO_NA = 330
SRHO_K = 72
IRHO NA = 15
IRHO CL = 7
SYNAPTIC AREA
(um~2/synapse)
ASYN_LOCAL_NA = 0.12 // d=.40
ASYN DISTAL _NA = 0.43 // d=.74
ASYN CL = 0.62 // d=.89
ASYN K = 0.43 // d=.74
IASYN NA = 0.29
IASYN CL = 0.62 // d=.89

ACTIVE AREA

// fraction of somatic area containing active channels

float

//

fAC = 0.04

PEAK CONDUCTANCE

// peak_g = unit_g * channel density * synaptic_area

//

float
float
float
float
float
float

float
float

//

(mS/synapse)
I GMAX NA = UNIT GNA * IRHO NA * TASYN NA
I GMAX CL = UNIT GCL * IRHO_| " CL * IASYN CL
LOCAL GMAX NA = UNIT GNA * RHO NA * ASYN LOCAL_NA
DISTAL_GMAX_NA = UNIT " GNA * RHO NA * ASYN DISTAL NA
GMAX K = UNIT_GK * RHO K * ASYN K
GMAX CL = UNIT GCL * RHO CL * ASYN CL
SGMAX_NA = SUNIT GNA * SRHO_NA // mS/um”2
SGMAX_K = SUNIT GK * SRHO_K // mS/um~2

MEMBRANE PARAMETERS
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float
float
float

float
float
float

float
float

25 R

_RM
_RA
CM

HHH

SYNDELAY
FFDELAY

nmw

constants.g

4e+8 //
0.10e+4 //
2.0e-8 //
= 2.0e+8

= RA //
= CM //
= 0.8 //
= 8.0 //
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Kohm—-um”2
Kohm-um
uF/um”2

// Kohm-um”2
Kohm—-um
uF/um”2

msecC
msec
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fb.g

//genesis
echo creating the fb population
create neutral /fb

if(DISINHIB)
interneuron(/interneuron, {FUS_SOMA D}, {FUS_SOMA L},1,1)
else
interneuron(/interneuron, {FUS_SOMA D}, {FUS_SOMA L},0,0)
end

createmap /interneuron /fb {FB_NX} ({FB_NY} {FB DX} {FB_DY}
delete /interneuron
position /fb I I 800e-3

echo setting fb thresholds
randomfield /fb/interneuron(]/spike thresh -gaussian -35 7

if (T_NOISE)
// S

// TRANSMITTER NOISE
// ————

i
]

create funcgen /fb/Nanoise

set ” mode 3 amplitude 1 x {350*getclock(Q)}
sendmsg ~ /fb/interneuron(]/soma/Na_channel \
RAND ACTIVATION output x // prob amplitude

end
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fbconn.g
//genesis
echo
echo FB INTERNEURONS
echo
// FB to PYR CONNECTIONS

echo fb to pyr connections
region_connect /fb/interneuron(]/axon to /pyr/pyramidal([]/soma/
Cl channel \

with synapse -rel \

11 -100 -100 100 100 \ // do this over all the cells

1 1 {-RFB_to PYR} {-RFB_to PYR} \

{RFB_to_PYR} ({RFB_to_PYR} \ // connect to local area of
cells

{PFB_to_PYR}

// FB to PYR DELAYS

echo fb to pyr delays

gausspropagation_velocity /fb/interneuron[]/axon \
{ VFB_PYR MIN / SCALE } {VFB_PYR MAX/SCALE} \
{VFB__ PYR/SCALE} {SD_VFB PYR/SCALE}

/*
** counts the convergent synapses onto a single ff interneuron
*x/

float pyr_sum = \

expsum(/fb/interneuron[x>= {CORTEX_X/2 - RFB_to_ PYR}] [y>={CORTEX
Y/2 - RFB_to_PYR}] [x<={CORTEX X/2 + RFB_to PYR}][y< {CORTEX Y/
2 + RFB _to PYR}] \

{-1. O/LFB to_PYR},1, {AWFB_to_PYR}, {CORTEX X/2}, {CORTEX _ Y/2})

float wpyr = NSYN PYR from FB/(pyr_ sum*PFB to_ PYR)

// FB to PYR WEIGHTS

echo fb to pyr weights

exponential weight /fb/interneuron(]/axon {wpyr} \
{LFB_to PYR} \
{AWFB_to_PYR*wpyr}

if (DISINHIB)

// FB to FB CONNECTIONS
echo fb to fb connections
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region_connect /fb/interneuron(]/fbaxon to /fb/interneuron|
]/soma/Cl_channel \
with synapse -rel \
11 -100 -100 100 100 \ // do this over all cells
1 1 {-RFB_to PYR} {-RFB_to PYR} \
{RFB_to_PYR} {RFB_to PYR} \ // connect to local are

{PFB_to_PYR}

l/ FB to FB DELAYS

echo fb to pyr delays

gausspropagation velocity /fb/interneuron(]/fbaxon \
{ VFB_PYR MIN / SCALE } {VFB_PYR MAX/SCALE} \
{VFB_PYR/SCALE} {SD_VFB_PYR/SCALE}

// FB to FB WEIGHTS
echo fb to fb weights
exponential weight /fb/interneuron(]/fbaxon 1\
{LFB_to_FB} \
{AWFB_to_FB})
normalize_ synapses /fb/interneuron(]/fbaxon /fb/interneuron
[1/soma/Cl_channel \
-gaussian {NSYN FB from FB} {SDSYN FB from FB}
end

/*
** perform synapse normalization
** this will adjust the number of convergent synapses per targe
t
** to within a given range.
** This will compensate for edge imbalances in synaptic enervat
ion
** generated as a result of synaptic distribution based on numb
ers of
** divergent synapses per source
*/
normalize synapses /fb/interneuron(]/axon /pyr/pyramidal(]/soma
/Cl_channel \

-gaussian {NSYN PYR from FB} {SDSYN PYR from FB}
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//genesis
echo creating ff population
create neutral /Ef

interneuron(/interneuron, {GLOB_SOMA D}, {GLOB_SOMA L},0,0)
set /interneuron/axon latency {FFDELAY}
createmap /interneuron /ff (FF_NX} ({FF_NY} ({FF_DX} ({FF_DY}

delete /interneuron
position /ff I I 200e-3

echo setting ff thresholds
randomfield /ff/interneuron[]/spike thresh -gaussian -35 7

if (T_NOISE)
7/ S — S——

// TRANSMITTER NOISE
/7 - e

il
]

]
]

create funcgen /ff/Nanoise

set ~ mode 3 amplitude 1 x {150*getclock(0)}
sendmsg ~ /ff/interneuron[]/soma/Na_channel \
RAND ACTIVATION output x // prob amplitude

end
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//genesis
echo
echo FF INTERNEURONS
echo
// FF to PYR CONNECTIONS
echo ff to pyr connections
if (MULTI)
dst = "/pyr/pyramidal[]/soma/Ia_dend/K_channel"
else
dst = "/pyr/pyramidal{]/soma/K_channel"
end
region_connect /ff/interneuron(]/axon  to {dst} \
with synapse -rel \
11 -100 -100 100 100 \ // do this over all the cells
1 1 {-RFF_to_ PYR} {-RFF_to PYR} \
{RFF_to_PYR} {RFF_to_PYR} \ // connect to local area of cel
1ls
{PFF_to_PYR}

// FF to PYR DELAYS

echo ff to pyr delays

gausspropagation_velocity /ff/interneuron(]/axon \
{VFF_PYR MIN/SCALE} {VFB_PYR MAX/SCALE} \
{VFF__ PYR/SCALE} {SD_VFF PYR/SCALE}

// FF to PYR WEIGHTS
echo ff to pyr weights

/*
** counts the convergent synapses onto a single ff interneuron

*/

float pyr_sum = \

expsum(/ff/interneuron[x>={CORTEX X/2 - RFF_to_PYR}] [y>={CORTEX
_Y/2 - RFF_to_PYR}] [x<={CORTEX_. X/2 + RFF _to PYR}][Y(-{CORTEX Y/
2 + RFF _to PYR}] \

{-1.0/LFF_to_PYR},1, {AWFF_to_PYR}, {CORTEX_X/2}, {CORTEX_Y/2})

float wpyr = NSYN PYR from FF/(pyr_sum*PFF_to_PYR)

exponential_ weight /ff/interneuron(]/axon {wpyr} \
{LFF_to_PYR} \
{AWFF_to_PYR*wpyr}

normalize synapses /ff/interneuron[]/axon {dst} \
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-gaussian {NSYN_PYR from FF} {SDSYN_PYR from FF}
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//genesis

/7

// link in a new compartment

/ 3 =

function link compartment
sendmsg $1 $2 RAXIAL Ra previous_state
sendmsg $2 $1 AXIAL previous_state

end

[/ mmmmmmmmmm e

// link in a new channel

// =

function link_channel (chan, comp)
sendmsg {chan} {comp} CHANNEL Gk Ek
sendmsg {comp} {chan} VOLTAGE Vm

end

function singlelink_ channel (chan, comp)

sendmsg {chan} {comp} CHANNEL Gk Ek
end
//
// somatic current injection (ul)
// =

function inject (neuron,value)
str neuron
float value
set {neuron}/soma inject value
end

/] == =
// modify spike output based on
// integration step to give constant
// impulse area
/7
function adjustspike

set /##[TYPE=spike] output_amp {1.0/getclock(0)}
end

//
// sets baseline LOT input rates
//

function baseline (min,max,rate)
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float min,max,rate
str path

path = "/bulb/mitral([]/input"
set {path} min_amp {min} max amp {max} rate {rate}
end

/7 === == =

// simulate shock to the LOT

// =

function shock(value)

str path

float value

float oldrate,oldmin, oldmax
baseline {value} {value} 1000 // shock
step
// baseline 0.05 0.1 0.4 // 400 Hz noise
baseline 0 0 0

end

function pcsave (file)
str file
save /##[TYPE=compartment] {file}
save /##[TYPE=channelC] {file} -append
save /##[TYPE=channelC2] {file} -append
end
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//genesis

function field electrode(path,target,x,y,z,r,rz)
str path
str target
float x,y,z,r,rz

create efield {path}

set * scale leb5 x {x} y {y} z {z}

sendmsg \

{target}/## [TYPE=compartment] [x>={x~r}] [y>={y-r}] [x<={x+r}]
[y<={y+r}] \

~ CURRENT Im 0.0

call ~ RECALC
end

function move_electrode (path,x,y, z)
str path
float x,y,z
set {path} x {x} y {y} z {z}
call {path} RECALC
end

function electrode_array(path,xmin,ymin,xmax, ymax,xspacing, yspa
cing, z)

str path

float xmin,ymin

float xmax, ymax

float xspacing,yspacing

float =z

float x,y

int count = 0

for (y=ymin; y<ymax;y=y+yspacing)
for (x=xmin; x<xmax;x=x+xspacing)
field electrode /field[{count}] {path} {x} {y} {z} {abs
(z)+0.5} 1
echo -n
count = count+l
end
end
echo
return (count)
end
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if(FIELD && MULTI)

lies

ay

// construct the electrode array
// arrange the spacing so that each electrode consistently

// at consistent distances between neurons
echo setting up {CORTEX X}x{CORTEX Y}mm field electrode arr

// X dimension

// try for something as close to 1 mm spacing as possible
float dxtrodes = round({1.0/PYR DX})*PYR DX

// figure out how many of these will fit in cortex_x mm
int nxtrodes = trunc({CORTEX_ X/dxtrodes})

// Y dimension

// try for something as close to 1 mm spacing as possible
float dytrodes = round({1.0/PYR_DY})*PYR DY

// figure out how many of these will fit in cortex y mm

int nytrodes = trunc({CORTEX_Y/dytrodes})

echo {nxtrodes} x {nytrodes} electrode array

echo {electrode_array(/pyr, {PYR DX/2.0}, {PYR DY/2.0}, {CORTE

X X}, {CORTEX Y}, {dxtrodes}, {dytrodes},0)} electrodes

end
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//genesis
str name
int clock =1

echo setting up disk outputs

function disk (diskpath, srcpath, field)
create xviewdata /output/{diskpath}
set /output/{diskpath} \
leave _open 1 \
flush 1
sendmsg {srcpath} /output/{diskpath} SAVE {field}
useclock /output/{diskpath} {clock}
echo {diskpath}
end

function disk2 (diskpath,srcpath,field)
create disk_out /output/{diskpath}
set /output/{diskpath} \
leave_open 1 \
flush 1
sendmsg {srcpath} /output/{diskpath} SAVE {field}
useclock /output/{diskpath} 1
echo {diskpath}
end

/*
** DISK OUTPUT

** write out the intracellular membrane potentials to disk
** for all elements in /pyr

*/

disk pyr_vm /pyr/pyramidal([]/soma Vm

disk fb_Vm /fb/interneuron|]/soma Vm

disk ff Vvm /ff/interneuron[]/soma Vm

clock = 2

/*

** CONDUCTANCES

*/

if (MULTI)
str base = "/pyr/pyramidal[]/soma"
disk pyr_gAff {base}/Ia_dend/Aff Na_channel Gk
disk pyr_gRA {base}/deepr dend/RA_. Na_channel Gk
disk pyr_gCA {base}/supIb dend/CA Na channel Gk
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disk pyr_gLocal ({base}/III dend/Local_Na_channel Gk

disk pyr_gFB {base}/Cl_channel Gk
disk pyr_gFF {base}/Ia_dend/K channel Gk
else
disk pyr_gAff /pyr/pyramidal([]/Aff Na channel Gk
disk pyr_gRA /pyr/pyramidal[]/RA Na channel Gk
disk pyr_gCA /pyr/pyramidal[])/CA_Na_channel Gk
disk pyr_glocal /pyr/pyramidal[]/Local Na_ channel Gk
disk pyr_ gFB /pyr/pyramidal[]/Cl_channel Gk
disk pyr_gFF /pyr/pyramidal[]/K_channel Gk
end
/ *
** CURRENTS
*/
if (MULTI)
str base
disk soma_Im /pyr/pyramidal[]/soma Im
foreach base (Ia supIb deepIb III)
disk {base}_Im /pyr/pyramidal(]/soma/{base}_dend Im
end
str base
foreach base (Ia supIb deepIb III)
disk {base}_Vm /pyr/pyramidal[]/soma/{base}_dend vm
end
end
/*
** FIELD POTENTIALS
*/
if(FIELD && MULTI)
disk efield /field[] field
useclock /output/efield 0
end
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//genesis
create neutral /library
disable /library

1/1

// ==== ===
// CHANNELS
[ [=============== ===
create channelC2 /library/Na_channel
set /library/Na_channel \
Ek {EKA} \
taul { 1.0 * SCALE } \ // msec
tau2 { 3.0 * SCALE } // msec
create channelC2 /library/K _channel
set /library/K_channel \
Ek { EK } \
taul { 10.0 * SCALE } \ // msec
tau2 { 100.0 * SCALE } // msec
create channelC2  /library/Cl_channel
set /library/Cl_channel \
Ek {ECL} \
taul { 1.0 * SCALE } \ // msec
tau2 { 7.0 * SCALE } // msec
/7 === Se=sssss=ssssssss=== ====
// SPIKE DETECTOR
// -
create spike /library/spike
set /library/spike \
thresh -40 \ // mv
abs_refract { 10 * SCALE } \ // msec
output amp 1
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//genesis
str dst

echo
echo ® PYRAMIDAL CELLS"™
echo

// CONNECTIONS

// CAUDAL CONNECTIONS
echo caudal connections
if (MULTI)
dst = "/pyr/pyramidal[]/soma/supIb_dend/CA_Na_ channel"
else

dst = "/pyr/pyramidal(]/soma/CA_Na_channel"
end
/*
** spatial units are in mm
*/

region_connect /pyr/pyramidal[]/CAaxon to {dst} \
with synapse -rel \
11 ~100 -100 100 100 \ // do this over all the cells
2 1 0 {-RPYR_to_CDIST} \ // connect to cells caudal to i

{RPYR to_CDIST} {RPYR to _CDIST} \

-1 {- -RPYR _to LOCAL} {—RPYR to_LOCAL} \

{RPYR_to LOCAL} {RPYR_to LOCAL} \ // dont connect to the 1
ocal region

{PPYR_to_CDIST}

// ROSTRAL CONNECTIONS
echo rostral connections
if (MULTI)
dst = “/pyr/pyramidal[]/soma/deepIb_dend/RA_Na_channel"
else
dst = "/pyr/pyramidal[]/soma/RA Na_channel"
end
region_connect /pyr/pyramidal({]/RAaxon to {dst} \
with synapse -rel \
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11 -100 =100 100 100 \ // do this over all the cells

2 1 {-RPYR to RDIST} {-RPYR to RDIST} \

{-PYR_DX} {RPYR _to_ RDIST} \ // connect to cells rostral
to it

-1 {-RPYR_to_LOCAL} {-RPYR to_ LOCAL} \

{RPYR_to_LOCAL} {RPYR _to_LOCAL} \ // dont connect to the 1
ocal region

{PPYR_to_CDIST}

// LOCAL CONNECTIONS
echo local connections
if (MULTI)
dst = "/pyr/pyramidal([]/soma/III_dend/Local Na_ channel"
else
dst = "/pyr/pyramidal(]/soma/Local_Na_channel"
end

region_ connect /pyr/pyramidal(]/LRAaxon to {dst} \
with synapse -rel \

11 -100 =100 100 100 \ // do this over all the cel
1s

2 1 {-RPYR to LOCAL} {-RPYR to LOCAL} \

{-PYR_DX} {RPYR_to_LOCAL} \ // connect to the local re
gion

-10000 \ // dont connect to itself

{PPYR_to_ RLOCAL}

region_connect /pyr/pyramidal[]/LCAaxon to {dst} \

with synapse -rel \

11 -100 -100 100 100 \ // do this over all the cells

2 1 0 {-RPYR to LOCAL} \

{RPYR to_LOCAL} {RPYR_to_LOCAL} \ // connect to the loca
1l region

-1 0000\ // dont connect to itself

{PPYR_to_CLOCAL}

// PYR to FF CONNECTIONS
echo pyr to f££f connection
if (LOCAL_FF)
region_connect /pyr/pyramidal([]/FFaxon to /ff/interneuron(]/so
ma/Na_channel \
with synapse -rel \
11 -100 -100 100 100 \ // do this over all the cells
1 1 {-RPYR to FF} {-RPYR_to_FF} \
{RPYR_to_FF} {RPYR to_FF} \ // connect to a local area of c
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ells
{PPYR_to_FF}
else
region_connect /pyr/pyramidal(]/FFaxon to /ff/interneuron[]/so
ma/Na_channel \
with synapse -rel \

11 -100 ~-100 100 100 \ // do this over all the cells
2 1 -100 -100 \
100 100 \ // connect to all cells

-1 {-RPYR _to_LOCAL} {-RPYR to LOCAL} \

{RPYR_to_LOCAL} {RPYR to LOCAL} \ // dont connect to the 1
ocal region

{PPYR to FF}
end
// PYR to FB CONNECTIONS
echo pyr to fb connection
region_connect /pyr/pyramidal(]/FBaxon to /fb/interneuron(]/so
ma/Na_channel \

with synapse -rel \

11 -100 =100 100 100 \ // do this over all the cells

1 1 {-RPYR to FB} {-RPYR to FB} \

{RPYR_to_FB} {RPYR to FB} \ // connect to a local area
of cells

{PPYR_to_FB}

// - —

// DELAYS

// velocities in m/s or mm/msec

/7 CAUDAL DELAYS

echo caudal delays

gausspropagation_velocity /pyr/pyramidal(]/CAaxon \
{VPYR_CA MIN/SCALE} {VPYR_CA MAX/SCALE} \
{VPYR_| CA/SCALE} {SD_VPYR CA/SCALE}

/7 ROSTRAL DELAYS

echo rostral delays

gausspropagation_velocity /pyr/pyramidal(]/RAaxon \
{VPYR_RA MIN/SCALE} {VPYR_RA MAX/SCALE} \
{VPYR__ _RA/SCALE} {SD_VPYR RA/SCALE}
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// LOCAL DELAYS

echo local delays

gausspropagation velocity /pyr/pyramidal(]/LRAaxon \
{VPYR_RA MIN/SCALE} {VPYR_RA MAX/SCALE} \
{VPYR_RA/SCALE} {SD_VPYR RA/SCALE}

gausspropagation veloc1ty /pyr/pyramidal[]/LCAaxon \
{VPYR_CA MIN/SCALE} {VPYR_CA MAX/SCALE} \
{VPYR _ CA/SCALE} {SD_VPYR CA/SCALE}

// PYR to FF DELAYS

echo pyr to ff delays

gausspropagation velocity /pyr/pyramidal[]/FFaxon \
{VPYR _FF MIN/ SCALE } {VPYR FF MAX/SCALE} \
{VPYR_FF/SCALE} {SD_VPYR FF/SCALE}

// PYR to FB DELAYS

echo pyr to fb delays

gausspropagation velocity /pyr/pyramidal(]/FBaxon \
{VPYR _FB MIN/ SCALE } {VPYR_FB_MAX/SCALE} \
{VPYR__ _FB/SCALE} {SD_VPYR FB/SCALE}

// === = -

// WEIGHTS

** use an exponential distribution with distance for weights
** which represent the number of synaptic contacts

** the arguments are (peakweight spaceconstant minweight)

** The space constant is in mm.

/*
** counts the convergent synapses onto a single pyramidal cell
*/

float cloc_sum = \

expsum(/pyr/pyramidal [x<={CORTEX_X/2}] [y<={CORTEX_Y}],\
{-1.0/LPYR_to_ CLOCAL}, 1, {AWPYR to_CLOCAL}, {CORTEX X/2}, {CORTEX
Y/2})

float cloc_sum = \
expsum(/pyr/pyramidal [x>={CORTEX X/2 - RPYR to_LOCAL}] [y>={CORT
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EX_Y/2 - RPYR_to_ LOCAL}] [x<={CORTEX X/2}] [y<={CORTEX Y/2 + RPYR
_to_LOCAL}],\

{-1.0/LPYR to_CLOCAL},1, {AWPYR_to_CLOCAL}, {CORTEX X/2}, {CORTEX
Y/2})

float rloc_sum = \

expsum(/pyr/pyramidal [x>={CORTEX_X/2}] [y>={CORTEX_Y/2 - RPYR to
_LOCAL}] [x<={CORTEX_ X/2+RPYR to LOCAL}] [y<={CORTEX_Y/2 + RPYR t
o_LOCAL}],\

{-1. O/LPYR_tO_RLOCAL},l,{AWPYR_to~RLOCAL},{CORTEX_X/Z},{CORTEX_
Y/2})

float caloc sum = \

expsum(/pyr/pyramidal [x>={CORTEX X/2 - RPYR to _LOCAL}] [y>={CORT

EX Y/2 - RPYR to LOCAL}] [x<={CORTEX X/2}] [y<={CORTEX Y/2 + RPYR
to _LOCAL}], \

{ -1. O/LPYR to_CA},1, {AWPYR to_CA}, {CORTEX _ X/2}, {CORTEX_Y/2})

float raloc sum = \

expsum(/pyr/pyramldal[x>—{CORTEX X/2}] [y>={CORTEX_Y/2 - RPYR to
_LOCAL}] [x<={CORTEX_X/2+RPYR_to_ LOCAL}) [y<={CORTEX_Y/2 + RPYR_t
o_LOCAL}],\

{=1.0/LPYR to_RA},1, {AWPYR to_RA}, {CORTEX X/2}, {CORTEX_¥/2})

float ca _sum = \

expsum(/pyr/pyramldal[x<—{CORTEX X/2}] [y<={CORTEX_Y/2 + RPYR to
_CDIST}] [x>={CORTEX__ X/2 - RPYR to CDIST}][y>—{CORTEX Y/2 - RPYR
“to CDIST}],\

{-170/LPYR to CA},1, {AWPYR to CA}, {CORTEX X/2}, {CORTEX Y/2}) -

caloc_sum

float ra_sum = \

expsum(/pyr/pyramidal [x>={CORTEX_ X/2}] [y<={CORTEX_Y/2 + RPYR to
_RDIST}] [%x<={CORTEX__ X/2 + RPYR ._to RDIST}][y>—{CORTEX Y/2 - RPYR
to _RDIST}],\

1-1. O/LPYR to_RA},1, {AWPYR_to_RA}, {CORTEX X/2}, {CORTEX Y/2}) -

raloc_sum

/*
** counts the convergent synapses onto a single fb interneuron
*/

float fb_sum = \

expsum(/pyr/pyramldal[x>—{CORTEX X/2 - RPYR to FB}] [y>={CORTEX_
Y/2 - RPYR to_FB}] [x<={CORTEX ! X/2 + RPYR to FB}][y< {CORTEX_Y/2
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+ RPYR_to_FB}],\
{-1.0/LPYR to_FB},1, {AWPYR to_FB}, {CORTEX X/2}, {CORTEX_Y/2})

/*
** counts the convergent synapses onto a single ff interneuron
*/

float ff sum = \

expsum(/pyr/pyramidal [x>={CORTEX X/2 - RPYR to FF}] [y>={CORTEX

Y/2 - RPYR to_FF}] [x<={CORTEX_X/2 + RPYR to FF}][Y< {CORTEX_Y/2
+ RPYR to FF}],\
{—l.O/LPYR_to_FF},l,{AWPYR_toﬂFF},{CORTEX_X/Z},{CORTEX_Y/Z})

float wca NSYN_PYR from CA/(ca_sum*PPYR to CDIST)
float wra NSYN PYR from RA/(ra sum*PPYR to RDIST)
float wrloc = NSYN PYR from RLOCAL/(rloc sum*PPYR to_RLOCAL)
float wcloc = NSYN PYR from CLOCAL/(cloc sum*PPYR to_CLOCAL)

on

float wfb = NSYN | FB from PYR/(fb sum*PPYR to_FB)
float wff = NSYN FF_from PYR/(ff sum*PPYR to FF)
// CAUDAL WEIGHTS

echo caudal weights

exponential weight /pyr/pyramidal(]/CAaxon {wca}l \
{LPYR_to_CA} \
{AWPYR _to_ CA*wca}

// ROSTRAL WEIGHTS

echo rostral weights

exponential weight /pyr/pyramidal(]/RAaxon {wra} \
{LPYR_to_RA} \
{AWPYR_to_RA*wra}

// LOCAL WEIGHTS
echo local weights
exponential_ weight /pyr/pyramidal(]/LRAaxon {wrloc} \

{LPYR_to_RLOCAL} \
{AWPYR_to RLOCAL*wrloc}

exponential_weight /pyr/pyramidal[]/LCAaxon {wcloc} \
{LPYR_to_CLOCAL} \
{AWPYR to_CLOCAL*wcloc}

// PYR to FF WEIGHTS

echo pyr to ff weights
exponential weight /pyr/pyramidal[]/FFaxon {wff} \
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{LPYR_to FF} \
{AWPYR_to FF*wff}

/7 PYR to FB WEIGHTS
echo pyr to fb weights
exponential weight /pyr/pyramidal[]/FBaxon {wfb} \
{LPYR to FB} \
{AWPYR_to FB*wfb}

/*
** normalize local interneuron weights
*/
normalize_ synapses /pyr/pyramidal[]/FBaxon /fb/interneuron(]/so
ma/Na_channel \

-gaussian {NSYN_FB_from PYR} {SDSYN FB from PYR}

normalize synapses /pyr/pyramidal[]/FFaxon /ff/interneuron[]/so

ma/Na_channel \
-gaussian {NSYN_FF_from PYR} {SDSYN FF_from PYR}
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//genesis

echo creating pyramidal cells

/*

** create the pyramidal population element on the root
*/

create neutral /pyr

// = = —

// PYRAMIDAL CELL ARRAY

// === == == ========

pyramidal_cell(/pyramidal, {MULTI}, {SPIKE}, {CONNECT}, \
{PYR_SOMA D}, {PYR_SOMA L}, {PYR DEND D}, {PYR DEND L})

createmap /pyramidal /pyr {PYR NX} {PYR _NY} {PYR DX} {PYR
_DY}

delete /pyramidal

position /pyr I I 350e-3

/] == — —— ———

// PYRAMIDAL CELL THRESHOLDS
/7 B —

randomfield /pyr/pyramidal[]/spike thresh -gaussian -40 3

/7
// TRANSMITTER NOISE
/7 === == ==
if (T_NOISE)
create funcgen /pyr/Affnoise
set ~ mode 3 amplitude le-3 x {100/getclock(0)}
sendmsg ~ /pyr/pyramidal[]/soma/Ia_dend/Aff Na channel \
RAND ACTIVATION output x
end
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//genesis
function maketheta

create funcgen /bulb/theta

push /bulb/theta

set mode 0 // sine wave

set amplitude 0.15 // peak amplitude
set frequency 5e-3 // 5 Hz

set dc_offset .2 // base amplitude

sendmsg . /bulb/mitral(]/input MINMAX output output
baseline 0 0 1 // 1000 Hz firing rate

pop
end
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Appendix 3: Genesis scripts for the CSD model of piriform cortex

This section contains the complete listing of the Genesis scripts used to
produce the current source density simulations described in chapter 2.

It should be emphasized that this section is provided as a reference for
those who are already familiar with the Genesis simulation system and are

interested in the details of the model implementation.
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//genesis

clean -£f

echo "

eChO Mok kA Ak A A AR A A A A AT AR A A A A A A AR A A A A A A A A A A A Ak Kk hk kW0
echo "* PIRIFORM PYRAMIDAL CSD PROFILE *n
echo "* xn
echo "* Written by Matt Wilson xn
echo "=* California Institute of Technology xn
echo "% * "
echo "“* GENESIS implementation N
echo "* 9/15/89 *n
echo UR S S S S RS RS EE SR LT LR SR E R E R R R R B R R B I I B I 3 I S SR ]
echo "

int MATRIX = 1

include constants.g // set local variables
include functions.g // set up some functions
include cells.g // set up the cell generation
include pyramidal.g // create a pyramidal cell
include file.g

include stimulate.g

if (MATRIX)

end

include matrix.g

echo checking and initializing simulation

check
reset

echo

echo CSD simulation loaded.
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//genesis

function multiple link(src,target,n)

int i

int n
for(i=1l;i<n;i=i+1)
link_ compartment {src}[{i-1}] {src}[{i}]
end
if({target} != "NONE")
link_compartment {src}[{n-11}] {target}
end

end

function make compartment (path,1l,d,n)

float 1,d

int i,n

float a = PI*d*1l/n // um”2
float xa = PI*d*d/4 // um”2

for (i=0;i<n;i=1i+1)
create compartment {path}[{i}]

set ~ \
Em {PYR_EREST} \ // mv
Rm {RM/ a} \ // Kohms
Cm {CM * a*SCALE} \ // uF
Ra {RA * 1/(n*xa)} // Kohm
end
end
str s

function presynaptic(comp,channel)
foreach s ({EL({comp}[])})
create playback {s}/{channel}/pre

Page 1/6

sendmsg {s}/{channel}/pre {s}/{channel} ACTIVATION state

end
end

str cname
function createNa (channel,gmax, compartment)

str channel,compartment
float gmax
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foreach cname ({EL({compartment}([])})
create channelC2 {cname}/{channel}
set ~ \

Ek {EKA} \ // mvV

taul {1.0*SCALE} \ // msec

tau2 {3.0*SCALE } \ // msec

gmax {gmax} // mS
link_channel {cname}/{channel} {cname}
end

end

function createK(channel, gmax,compartment)
str channel,compartment
float gmax

foreach cname ({EL({compartment}([])})
create channelC2 {cname}/{channel}
set ~ \
Ek {EK} \ // mv
taul {10.0*SCALE} \ // msec
tau2 {100.0*SCALE } \ // msec
gmax {gmax} // mS
link_channel {cname}/{channel} {cname}
end
end

!/ CHANNEL LIFETIMES

// mouse spinal neurone - Study and Barker PNAS USA, 1981,78:11
, 7180-7184

// GABA tau Cl = 18.3 msec

// GABA+PB tau_Cl = 30-130 msec

function createCl (channel, gmax,compartment)
str channel, compartment
float gmax

foreach cname ({EL({compartment}[])})
create channelC2 {cname}/{channel}
set ~ \
Ek {ECL} \ // mv
taul {1.0*SCALE} \ // msec
tau2 {7.0* (PENTOBARB +1)*SCALE } \ // msec
gmax {gmax} // mS
link_channel {cname}/{channel} {cname}
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str

cells.g

end

string
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PYRAMIDAL CELL

/*

** this function constructs a pyramidal cell according to the a
rguments
** passed to it

*/

function pyramidal cell (pathname)

str
int

pathname

i

float soma_a = PI*soma_D*soma_L // um”2
create neutral {pathname}

ce {pathname}

// soma

make compartment (soma, {soma_L}, {soma_D}, {soma_L/cpt_size})

// upper soma

make_compartment (uppersoma, {uppersoma_ L}, {uppersoma_ D}, {upp
ersoma_L/cpt_size})

// lower soma

make_compartment (lowersoma, {lowersoma_ L}, {lowersoma D}, {low
ersoma_L/cpt_size})

if (ACTIVE)

// add two voltage dependent conductances
copy /library/HH_Na_channel soma

copy /library/HH_K_channel soma
link_hhchannel HH Na_channel soma
link_hhchannel HH K channel soma

else

/*
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** add a buffer for generating thresholded spike events
*/

create spike spike

set spike abs_refract 10 output_amp 1

set spike thresh 100 // mv
sendmsg lowersoma spike INPUT Vm

end

/*

** add a passive dendritic compartments

*/

make_compartment (III, {III_L}, {III D}, {III_L/cpt_size})

make_compartment (deepIb, {deepIb L}, {deepIb D}, {deepIb L/cpt
_size})

make_compartment (supIb, {supIb L}, {supIb D}, {supIb_ L/cpt_siz
e})

make_ compartment (Ia,{Ia_L},{Ia_D},{Ia_L/cpt_size})

/ *

** and link them

*/

multiple link(Ia,supIb,{Ia_L/cpt_size})
multiple_link (supIb,deepIb, {supIb_ L/cpt_size})
multiple link(deepIb,uppersoma, {deepIb L/cpt size})
multiple link (uppersoma, soma,{uppersoma_L/cpt_SLZe})
multiple_ link (soma, lowersoma, {soma_L/cpt size})
multiple link (lowersoma,III, {lowersoma L/cpt size})
multiple link (III,NONE, {III _L/cpt_size})

/*
** add synaptically activated channels
*/

if (EXTRA)

createCl(Cl, {GMAX CL},Ia)

end

createNa (Na, {DISTAL GMAX NA}, Ia)
createNa (Na, {DISTAL_GMAX NA}, suplb)
createNa (Na, {DISTAL_ GMAX . NA}, deepIb)
createNa (Na, {LOCAL _ GMAX NA} III)

createK (K, {GMAX K}, Ia)
createK(K, {GMAX K}, suplb)
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createK(K, {GMAX K},deepIb)

createCl(Cl, {GMAX CL},Ia)
createCl(Cl, {GMAX CL},suplb)
createCl(Cl, {GMAX CL},deepIb)

createCl(Cl, {GMAX CL},soma)
createCl(Cl, {GMAX CL},lowersoma)
createCl(Cl, {GMAX CL},uppersoma)

if (!ACTIVE)
/*
** add spike producing channels
*/
create channelC SNa_channel
set SNa_channel \
Ek {ENA} \ // mv
taul { 0.2 * SCALE } \ // msec
tau? { 0.2 * SCALE } \ // msec
gmax {SGMAX_NA*fAC*soma_a} // mS
create channelC SK_channel
set SK_channel \
Ek {EK} \ // mv
taul { 1 * SCALE } \ // msec
tau2 { 1 * SCALE } \ // msec
gmax {SGMAX_K*fAC*soma_a} // mS
/*

** use the spike output as activation for the channels

*/

sendmsg spike SNa_channel ACTIVATION state
sendmsg spike SK_channel ACTIVATION state
singlelink_channel SNa_channel lowersoma
singlelink_channel SK_channel lowersoma
end

/*

* create the simulated presynaptic inputs

*/

presynaptic (Ia,Na)
presynaptic (supIb,Na)
presynaptic (deepIb,Na)
presynaptic(III,Na)
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presynaptic (Ia,K)
presynaptic (supIb,K)
presynaptic (deepIb, K)

presynaptic(Ia,Cl)
presynaptic (supIb,Cl)
presynaptic (deepIb,Cl)

presynaptic (soma,Cl)

presynaptic (lowersoma,Cl)

presynaptic (uppersoma,Cl)
end // pyramidal cell
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//genesis
prompt "CSD I // set the prompt
if (MATRIX)
setclock 0 0.1 // set the basic simulation step si
ze
else
setclock 0 0.005 // set the basic simulation ste
p size
end
setclock 1 0.5 // set the output step size
randomseed -new
float PI = 3.14159
int ACTIVE = 0
int EXTRA = 0
float PENTOBARB = 2
// time scale factor
float  SCALE = le-3 // convert msec to sec
float SCALE = 1 // no conversions
// _==
// CELL DIMENSIONS
// == =
float cpt size = 10 // um
float Ia_D = 4 // um
float Ia_L = 120 // um
float  supIb D = 4 // um
float supIb L = 130 // um
float  deepIb D = 4 // um
float  deepIb L = 130 // um
float  uppersoma D = 10 // um
float uppersoma L = 60 // um
float  soma_D = 15 // um
float  soma_L = 20 // um

Thu
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float  lowersoma D = 10 // um
float lowersoma L = 40 // um
float III_D = 4 // um
float III_L = 100 // um
int ntotal = (Ia_L + supIb_L + deepIb L + uppersoma_L + soma_L

+ lowersoma_L \
+ III_L)/cpt_size

// e

// PHYSIOLOGICAL PARAMETERS

/] == == ===
// IONIC EQUILIBRIUM POTENTIALS
float EKA = 0 // mv

float ENA = 55 // mv

float ECL = -65 // mvV

float EK = -90 // mv .

float EREST = =70 // mv

float PYR EREST = =70 // mv

// Kandel,Schwartz, Principles of Neuroscience, 2nd ed. pg 83
// gNa 8-18 pS, gK 4-12 pS

// squid giant axon - Conti et al.(1975),J.Physiol(Lond), 248,45
-82

// gNa = 4pS

// squid giant axon - Conti and Neher (1980),Nature(Lond), 285,14
0-143

// gK = 18pS

// mouse spinal neurone - Study and Barker(1981),PNAS USA,78:11
,7180-7184

// GABA gCl = 18pS +- 5

// mouse spinal neurone - Mathers and Barker(1982),Int.Rev.Neur
obiol,23,1-34

// gCl = 18pS

// rat hippocampal neurone - Segal and Barker (1984),J.Neurophys
.,51:3,500-515

// gCl = 20pS response to GABA, muscimol, and glycine

// UNIT CONDUCTANCES

// (mS/channel)
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float UNIT_GNA = 8e-9
float UNIT_ GK = 4e-9
float UNIT_GCL = 20e-9
float SUNIT_GNA = 8e-9
float SUNIT GK = 4e-9

// squid giant axon
-82

// rhoNa = 330 channels/um”2

// squid giant axon - Conti and Neher (1980),Nature(Lond), 285,14
0-143

// rhoK = 72 channels/um”2

Conti et al.(1975),J.Physiol(Lond), 248,45

// CHANNEL DENSITIES
// (channel/um”*2)

float RHO_NA = 30

float RHO_CL = 15

float RHO K = 30

float SRHO_NA = 330

float SRHO K = 72

// SYNAPTIC AREA

// Haberly and Presto(1986),J.Comp.Neurol,248,464-474
// basal spine d = .40um

// distal spine d = .74um

// presynaptic to dendritic spines d = .6lum

// presynaptic to dendritic shafts d = .89%um

// presynaptic to initial segment d = .89%um

//

// using synaptic contact area A = pi*d~2/4

// (um”~2/synapse)

float  ASYN_LOCAL NA = 0.12 // d=.40
float  ASYN DISTAL NA =  0.43 // d=.74
float  ASYN CL = 0.62 // d=.89
float  ASYN K = 0.43 // d=.74

// ACTIVE AREA

// fraction of somatic area containing active channels
float fAC = 0.1

// muse spinal neurone - Study and Barker PNAS USA, 1981,78:11,
7180-7184

// GABA gCl_peak = 112nS

// PEAK CONDUCTANCE
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// peak_g = unit_g * channel _density * synaptic_area

// (mS/synapse)
float LOCAL_GMAX NA = UNIT_GNA * RHO _NA * ASYN LOCAL NA
float DISTAL GMAX NA = UNIT GNA * RHO NA * ASYN DISTAL ~NA

UNIT_GK * RHO_K * ASYN K
UNIT GCL * RHO CL * ASYN CL

float GMAX K
float GMAX CL

float  SGMAX NA =  SUNIT_GNA * SRHO_NA // mS/um”2
float SGMAX_K = SUNIT GK * SRHO_ 3 // mS/um”2
// MEMBRANE PARAMETERS

float RM . 2.7e+8 // Kohm-um”2

float RA = 0.10e+4 // Kohm-um

float CM = 3.0e-8 // uF/um”2
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//genesis

function field electrode(path,target,x,y,z,r,rz)
str path
str target
float x,y,z,xr,rz

create efield {path}

set " scale le5 x {x} y {y} z {z}

sendmsg \

{target}/## [TYPE=compartment] [x>={x-r}] [y>={y-r}] [x<={x+r}]
[y<={y+r}]l \

~ CURRENT Im 0.0

call ~ RECALC
end

function move_electrode (path, x,y, z)
str path
float x,y,z
set {path} x {x} y {y} z {z}
call {path} RECALC
end

function electrode_array(path,xmin, ymin, xmax, ymax, xspacing, yspa
cing, z)

str path

float xmin,ymin

float xmax, ymax

float xspacing,yspacing

float z

float x,y

int count = 0

for (y=ymin; y<ymax;y=y+yspacing)
for (x=xmin; x<xmax;x=x+xspacing)
field electrode /field[{count}] {path} {x} {y} {z} {abs

(z)+0.5} 1
echo -n
count = count+l
end
end
echo
return (count)
end
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if (FIELD && MULTI)

// construct a 10x6mm electrode array

echo setting up 10x6mm field electrode array

echo {electrode_array(/pyr, {PYR DX/2.0},{PYR DY/2.0},10,6,1
+1,0)} electrodes
end
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//genesis
/7
// link in a new compartment
/] ==
function link compartment (compl,comp2)
if (MATRIX)
sendmsg $§1 $2 RAXIAL Ra Vm
sendmsg $2 $1 AXIAL vm
else
if (get ({compl},cbject->name) == "symcompartment")
sendmsg $1 $2 RAXIAL Ra previous_state
sendmsg  $2 $1 RAXIAL2 Ra previous_state
else
sendmsg $1 $2 RAXTIAL Ra previous_state
sendmsg  $2 $1 AXIAL previous_state
end
end
end
/] ==
// link in a new channel
//
function link_channel (chan, comp)
sendmsg {chan} {comp} CHANNEL Gk Ek
sendmsg {comp} {chan} VOLTAGE vm
end ‘

function singlelink_channel (chan, comp)
sendmsg {chan} {comp} CHANNEL Gk Ek
end

function link_hhchannel (chan, comp)

sendmsg {chan} {comp} CHANNEL Gk Ek
sendmsg {comp} {chan} VOLTAGE vm
sendmsg {comp} {chan} EREST Erest

end

//

// somatic current injection (uA)

//

function inject (neuron,value)
str neuron
float value
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set {neuron}/soma inject value
end

//
//  modify spike output based on
// integration step to give constant
// impulse area
// s=smmaT
function adjustspike
set /##[TYPE=spike] output amp {1.0/getclock(0)}
end

][] - — -

// sets baseline LOT input rates
// == S
function baseline {(min,max,rate)
float min,max,rate
str path

path = "/bulb/mitral([]/input"
set {path} min_amp {min} max_amp {max} rate {rate}
end

//

// simulate shock to the LOT
//

function shock(value)

str path

float value
float oldrate,oldmin,oldmax
baseline {value} {value} 1000 // shock
step
// baseline 0.05 0.1 0.4 // 400 Hz noise
baseline 0 0 0
end

function timestamp(file)
sh "date > RUNID"
cat {file} > RUNFILE
echo -n "// run date : " >> RUNFILE
cat RUNID >> RUNFILE
end
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//genesis

if (exists(/pyramidal/vVm))

delete /pyramidal/Vm
end
create xviewdata /pyramidal/Vm
set ~ leave_open 1\

flush 1
useclock * 1
sendmsg /pyramidal/Ia[] ~ SAVE Vm
sendmsg /pyramidal/supIb[] ~ SAVE Vm
sendmsg /pyramidal/deepIb[] ~ SAVE Vm
sendmsg /pyramidal/uppersoma[] ~ SAVE Vm
sendmsg /pyramidal/soma[] ~ SAVE Vm
sendmsg /pyramidal/lowersoma|] ~ SAVE Vm
sendmsg /pyramidal/III[] ~ SAVE Vm

if (exists(/pyramidal/Im))

delete /pyramidal/Im
end
create xviewdata /pyramidal/Im
set ~ leave_open 1\

flush 1
useclock ~ 1
sendmsg /pyramidal/Ia[] ~ SAVE Im
sendmsg /pyramidal/supIb([] ~ SAVE Im
sendmsg /pyramidal/deepIb[] ~ SAVE Im
sendmsg /pyramidal/uppersoma{] ~ SAVE Im
sendmsg /pyramidal/soma[] ~ SAVE Im
sendmsg /pyramidal/lowersoma[] ~ SAVE Im
sendmsg /pyramidal/III[] ~ SAVE Im

if (exists(/pyramidal/GEX))

delete /pyramidal/GEX
end
create xviewdata /pyramidal/GEX
set ~ leave_open 1\

flush 1
useclock * 1
sendmsg /pyramidal/Ia[]/Na ~ SAVE Gk
sendmsg /pyramidal/supIb[]/Na ~ SAVE Gk
sendmsg /pyramidal/deepIb(]/Na *~ SAVE Gk
sendmsg /pyramidal/uppersoma[] ~ SAVE x
sendmsg /pyramidal/soma[] ~ SAVE x // placeholder
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sendmsg
sendmsg

file.g

/pyramidal/lowersoma[] ~ SAVE x
/pyramidal/III[]/Na ~ SAVE Gk

if (exists(/pyramidal/GINH))
delete /pyramidal/GINH

end

create xviewdata /pyramidal/GINH
set ~ leave open 1\

flush 1
useclock ~ 1

sendmsg
sendmsg
sendmsg
sendmsg
sendmsg
sendmsg
sendmsg

/pyramidal/Ia[]/K ~ SAVE Gk
/pyramidal/supIb[]/K ~ SAVE Gk
/pyramidal/deepIb[]/K ~ SAVE Gk
/pyramidal/uppersoma[]/Cl ~ SAVE Gk
/pyramidal/soma[]/Cl ~ SAVE Gk
/pyramidal/lowersoma{]/Cl ~ SAVE Gk
/pyramidal/III[] ~ SAVE x // placeholder
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plot.g

openfile RUNID r
str runid = readfile(-1,RUNID)

closefile

RUNID

// singleep Im -d -o defield
// singleep Im -d -z 500 -o sefield

radialep
radialep

Im ~-d -r 2000 -z 500 -o defield
Im -d -r 2000 -z 0 -o sefield

echo /plotname deep_efield > tmp

Page 1/2

echo /yscale 50e-4 >> tmp
echo /xaxisoffset 2e-4 >> tmp
echo /xrastaxis 1 >> tmp
xy defield -dx .5 >> tmp

echo /plotname surface efield > tmp2

echo /yscale 50e-4 >> tmp2
echo /xaxisoffset 2e-4 >> tmp2
echo /xrastaxis 1 >> tmp2

xy sefield -dx .5 >> tmp2

echo fields written

str s

int 1 = 0

int depth

str Imtitle = "tplot"
str Vmtitle = "vtplot™"

echo /graphtitle {chr(34)} Im vs t

le}

echo /graphtitle {chr(34)} Vm vs t

le}

{runid} {chr(34)} > {Imtit

{runid} {chr(34)} > {Vmtit

for (depth=0;depth<ntotal;depth=depth+2)

echo /newplot >> {Imtitle}

echo /plotname {depth} >> {Imtitle}

echo
echo
echo

asciidata Im -c {depth} -old -xy >> {Imtitle}

/yscale -1 >> {Imtitle}

/xaxisoffset {-7e-5*i} >> {Imtitle}

/xrastaxis 1 >> {Imtitle}

i=1i+1

end
int 1 =0
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for (depth=0;depth<ntotal;depth=depth+8)
echo /newplot >> {Vmtitle}
echo /plotname {depth} >> {Vmtitle}
echo /xaxisoffset {-30*i} >> {Vmtitle}
echo /xrastaxis 1 >> {Vmtitle}
asciidata Vm -c {depth} -old -xy >> {Vmtitle}
i = i+l
end
echo {Imtitle} and {Vmtitle} written

Imtitle = "zplot"
Vmtitle = "vzplot" 4
echo /graphtitle {chr(34)} Im vs z : {runid} {chr(34)} > {Imtit
le}
echo /graphtitle {chr(34)} Vm vs z : {runid} {chr(34)} > {Vmtit
le}
for(i=3;i<60;i=1i+3)
echo /newplot >> {Imtitle}
echo /plotname {i} >> {Imtitle}
echo /yscale -5e4 >> {Imtitle}
echo /xaxisoffset {-i} >> {Imtitle}
echo /xrastaxis 1 >> {Imtitle}
asciidata Im -t {i} -old -xy >> {Imtitle}

echo /newplot >> {Vmtitle}

echo /plotname {i} >> {Vmtitle}

echo /xaxisoffset {-i*10} >> {Vmtitle}

echo /xrastaxis 1 >> {Vmtitle}

asciidata Vm -t {i} -old -xy >> {Vmtitle}
end

echo {Imtitle} and {Vmtitle} written
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//genesis
schedule
addschedule Simulate /##[CLASS=matrix] -action PROCESS
addschedule Simulate /##[] -action RESULTS
create matrixsolver /mat
set /##([TYPE=compartment] method 10 // backward euler
// register state vars with solver
setupmatrix /pyramidal/##[TYPE=compartment] /mat
call /mat SETUP // construct the matric
es
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//genesis

echo creating a pyramidal cell

Page 1/1

// —_—
// PYRAMIDAL CELL ARRAY

/1 NSNS e

pyramidal cell(/pyramidal)

position /pyramidal I I 350e-3
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//genesis
if (argc < 1)
echo usage: savedata directory
return
end
echo saving data to directory $1
mkdir $1
cp Im Vm GEX GINH RUNID RUNFILE $1
touch LOGFILE
echo -n $1 "™ : " >> LOGFILE
cat RUNID >> LOGFILE

echo done
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// genesis

int MULTIPLE = 0
int SUPERCL = 0

clearstim

float amp = 10.0
float amp2 = 0.0
float amp3 = 0.0
float iamp = amp*2
float iamp2 = amp2*2
float iamp3 = amp3*2

set /pyramidal/Ia[]/K taul 10

set /pyramidal/supIb[]/K taul 10

set /pyramidal/deepIb[]/K taul 10

oOU;mo
w
wm

(6]
(&)

w

o O
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//compartment  channel time amplitude reps
/] === ————————
expstim Ia Na 1.0 {1.0*amp} 10 0.1 5
expstim supIb Na 6.0 {1.0*amp} 20 0.5
expstim deepIb Na 8.0 {0.6*amp} 30 1.0
expstim III Na 5.0 {0.8*amp} 20 0.5 5
expstim uppersoma Cl 5.0 {0.3*iamp} 20
expstim soma Cl 5.0 {0.6*iamp} 20 0.5
expstim lowersoma Cl 5.0 {3.0*iamp} 20
expstim Ia K 5.0 {0.3*amp} 20 0.5 5
expstim supIb K 5.0 {0.3*amp} 20 0.5
if (SUPERCL)

expstim Ia Cl 5.0 {0.0*iamp} 20 0.5 5
expstim supIb Cl 5.0 {0.2*iamp} 20 0.5
expstim deepIb C1 5.0 {0.2*iamp} 20 0.5
end

if (MULTIPLE)

expstim suplb Na 31.0 {1.0*amp2} 20 0.5
expstim deepIb Na 33.0 {0.6*amp2} 30 1.0
expstim III Na 30.0 {0.8%amp2} 20 0.5 5
expstim uppersoma C1l 30.0 {0.3*iamp2} 20
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expstim soma Cl 30.0 {0.6*iamp2} 20 0.5 5
expstim lowersoma Cl 30.0 {3.0*iamp2} 20 0.5 5
expstim Ia K 30.0 {0.2*%amp2} 20 0.5 5
expstim supIb K 30.0 {0.2%amp2} 20 0.5 5
expstim deepIb K 30.0 {0.2%amp2} 20 0.5 5
expstim supIb Na 56.0 {1.0*amp3} 20 0.5 10
expstim deepIb Na 58.0 {0.6*amp3} 30 1.0 10
expstim III Na 55.0 {0.8%amp3} 20 0.5 5
expstim uppersoma Cl 55.0 {0.3*iamp3} 20 0.5 5
expstim soma Cl 55.0 {0.6*iamp3} 20 0.5 5
expstim lowersoma Cl 55.0 {3.0*iamp3} 20 0.5 5
expstim Ia K 55.0 {0.2*amp3} 20 0.5 5
expstim supIb K 55.0 {0.2*amp3} 20 0.5 5
expstim deepIb K 55.0 {0.2*%amp3} 20 0.5 5
end

timestamp stimb.g
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// genesis

function clearstim
set /##[TYPE=playback] start 0 end 0 current 0
end

str s
function stim(path,channel,t,amp,reps,intvl)
float t,amp
int reps
float intvl
int 1
// deliver a pulse
for(i=0;i<reps;i=i+1)
foreach s ({EL(/pyramidal/{path}[]/{channel}/pre)})
putevent {s} {t+i*intvl} {amp/getclock{(0)}
putevent {s} {t+getclock(0)+i*intvl} O
end
end
end

function expstim(path,channel,t,amp,reps,intvl, tau)
float t,amp

int reps

float intvl

float tau

int i

// deliver a pulse
for (i=0;i<reps;i=i+1)
foreach s ({EL(/pyramidal/{path}[]/{channel}/pre)})
putevent {s} {t+i*intvl} {exp({-i*intvl/tau})*amp/getcl
ock (0)}
putevent {s} {t+getclock(0)+i*intvl} O
end
end
end
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//genesis

float wval

float logval
float maxval=0
float minval=-999
int count=0

touch nul.log nul.val
rm nul.log nul.val

// extract the data from the Vm file
simdump Vm -c 0 > vm0

openfile Vm0 r

// read in 100 msec

// find the maxval

for (count=0;count<200; count=count+1)
val = readfile (Vvm0)
if(val < maxval)
maxval = val

end

if(val > minval)
minval = val
end

end

openfile Vm0 r
for (count=0;count<200; count=count+1)
val = 1.0 - ((readfile(Vm0) - minval)/(maxval -minval))
logval = log({val})
echo {val} >> nul.val
echo {logval}l >> nul.log
end
closefile Vvm0
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