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Abstract, Part I. "Asymptotic Boundary Conditions for

Ordinary Differential Equations"

The numerical solution of two point boundary value problems
on semi-infinite intervals is often obtained by truncating the
interval at some finite point. In this thesis we determine a
hierarchy of increasingly accurate boundary conditions for the
truncated interval problem. Both linear and nonlinear problems
are considered. Numerical techniques for error estimation and

the determination of an appropriate truncation point are discussed.

infinite intervals is developed, and used to prove the stability

of our numerical methods.
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Abstract, Part II. "Numerical Hopf Bifurcation"

Several numerical methods for locating a Hopf bifurcation
point of a system of o.d.e.'s or p.d.e.'s are discussed. A new
technique for computing the Hopf bifurcation parameters is also
presented. Finally, well-known numerical techniques for simple
bifurcation problems are adapted for Hopf bifurcation problems.
This provides numerical techniques for computing the bifurcating
branch of periodic solutions, possibly including turning points
and simple bifurcation points. The stability of the periodic

solutions is also discussed.
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for Ordinary Differential Equations
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INTRODUCTION

We consider numerical techniques for solving two point
boundary value problems (TPBVPs) on semi-infinite intervals.
Several methods have been suggested for reducing these problems
to TPBVPs on finite intervals. One method is to map the
semi-infinite interval [to,m) onto [0,1), and then study the
(irregular) singular point at 1 (see de Hoog and Weiss [2]).
Another common technique is to truncate [to,m) at some tgp > t0
and then consider a suitable regular TPBVP on [ty.tgl. In [8]
M. Lentini and H. B. Keller develop a theory for the proper

asymptotic boundary conditions (ABCs) to be applied at toy-

In this thesis we only consider the truncation technique.
We make several extensions of the Lentini-Keller theory. 1In
particular, the Lentini-Keller ABCs are included in the first
order boundary conditions of our hierarchy of increasingly
accurate ABCs (Chapter I). For linear TPBVPs we estimate the
difference between the solution of the truncated problem using
ABCs and the solution of the full problem (Chapter 1I). Our
results agree with the estimates for the class of first order
boundary conditions obtained by Lentini and Keller. Further-
more, the hierarchy of ABCs leads to new numerical algorithms
for estimating the error due to the approximate boundary

conditions, and for finding a suitable ty.

We also consider first and higher order ABCs for nonlinear

problems, along with some error estimates (Chapter IV). Most of
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our results for nonlinear problems are restricted to problems
that are nearly linear for t sufficiently large. In general,
even our first order ABCs for nonlinear problems are different
from those obtained by Lentini and Keller [8]. The error
estimation and t -prediction procedures for linear problems can
also be used on nonlinear problems that are nearly linear for t

sufficiently large.

Example calculations using these new techniques are in

progress, for both linear and nonlinear problems.

The error estimates obtained in Chapter II depend on the
Fredholm theory for o.d.e's on semi-infinite intervals developed
in Chapter III. The Fredholm theory is an easy application of
the exact boundary conditions for [to'tw] (discussed in Chapter
I). This is a simpler approach than that of F. de Hoog and R.
Weiss [3]. Also, our Fredholm theory allows eigenvalues with

zero real part in a much more general setting.

The stability and convergence of numerical schemes based on
ABCs are briefly considered in Section II.3. Stronger results are
an important area for future research. Also, the methods of this
thesis can be applied to TPBVPs with (irregular) singular end-
points. A careful comparison of mapping procedures with truncation
procedures is another important research topic. Finally, automat-

ic procedures for calculating the ABCs would be very worthwhile.
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CHAPTER I: Asymptotic Boundary Condition Construction

I.1 Exact Boundary Conditions (EBCs) for Linear Homogeneous

TPBPs on [to,w)

Consider the linear homogeneous TPBVP

a) -31;- = fPA({‘)i(t) for t e (%o,m),
1 b) CoF(t) + lim Coi(8)+ X,
L1 e G ) ¢ Caf ()

c) 5;({‘) bounded on [t,, ).

Here y:[to,m)-» Cn, p > -1 is an integer, to > 0, A(t) is a
-
smooth n x n matrix analytic at @, Cor Cp are m x n matrices, Y€

cm

and m < n. We proceed to define boundary conditions for 1l.la
that are equivalent to l.lb,c but that only depend on §(t0) and
?(tm) for some finite t_. Using these boundary conditions we

hope to reduce problem 1.1 to a regular TPBVP on [to'tm] and an

initial value problem for t > tg.

For tle[top) define Y(t,tl) to be the fundamental solution
matrix for l.la that satisfies Y(tl'tl) = I. For tmﬁfto,m)

define the admissible space for 1.1 at tgp, A(tp), to be
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1.2 Q4 (ta") = (f eC’ I v (t) Y(f;fm)? = v (t) Lounded on
[{'0’(1)) and lim C(D?({) eKiS'/‘s}.
t>om

Clearly Q(typ) is a subspace of c” for each tp. Also we will

need

Definition 1.3: Define Q(tgp): ¢n-4»a(tm) to be a projection

onto {(t,) (here and in the sequel we do not distinguish between

a projection operator and its matrix representation). Let

a) P(fw) = I‘Q(fm),
1.3

) C(ky) = lim Cp Y (,¢5) G (4g),

t2 0

Notice that by the definition of Q(typ), the limit in 1.3b

exists.

Using the above definitions we get the required boundary

conditions

Lemma 1.4: With tg, Q(tg), P(ty), C(ty) as above, the TPBVP

1.1 is equivalent to the problem

1.4 a) %% - tTADF ) Ffor te [t,, m),

with the exact boundary conditions (EBCs),
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B) Co 7 (4) + C(¢tx) 7 (tg) = ¥,
l.4

c) P(ty)y (ty) =10.

In particular, the boundary conditions 1l.4b,c depend only on

§(t0) and the value of ; at the internal boundary point t..

Proof of Lemma 1.4: A general solution of 1l.4a, l.la is

s Y (t:3) =T Y(t ¢)F  Fel

h

-
But from Definition 1.3, y (¢,

a) P(%w) ? = 0 ,
1.6

1
=1

) [Co Y (t,,¢5) + C (to)] £

and the lemma follows. i}

We note that the construction of the EBCs for problem 1.1
would require a detailed knowledge of Y(t,tg). In the next
section we consider one class of problems for which Y(t,tp) is
easily calculated. However, for the general problem 1.1 we will
only have an asymptotic expansion for Y(t,tg) at our disposal.
In Section I.3 and in later sections we will use this asymptotic
expansion for Y(t,tp) to approximate C(tygm) and P(tgp). By

substituting these approximations into the EBCs 1.4b,c we will

obtain asymptotic boundary conditions (ABCs) for problem 1.1.
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Properties of the ABCs are discussed in Chapter II.

This principle of defining EBCs for a TPBVP on a semi-

infinite interval, and then constructing asymptotic approxima-

tions for these EBCs, is the fundamental idea behind our ARBRCs.

I.2 Linear Homogeneous Problems with a Constant Tail

In this section we consider an illustrative special case of
l.la for which the EBCs defined in Section I.l are easily

calculated (see also Keller [6, p.55]).

We assume that A(t) in l.la satisfies

2.1 A(t) = Ay for t > t; > tg

(i.e. A(t) has a constant "tail"). Without loss of generality,

assume AO is in Jordan form

A - O
2.2 °,= : . ’ [ ?
O . in;«

with Si = 1 or O.

Example 2.3. Suppose Ao =(

and p = 0. Then
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for t > t,. Note that §l(t) and §3(t) are bounded iff Re(x) <

0 and Re (8) < 0 . However, ?2(1:) is bounded iff Re(«x) < 0.

Suppose = iW, W> 0, 8= 0 and

C. = 0 a o
@ )] o 3
Then from 2.3 we see that as t-»>® , ?l(t) and '§3(t) are bounded,
?2(1:) is not, and 1lim Cmi?l(t) does not exist. Thus we have

t>
for tm > tl

A
/

77
A

oY

(¢ (

= Span { V) -
r L /3)

0
0),
!

c(t) - (823).

-QQ

@®

2.4 b) Q(ty)

[
O
—~
o
~—’
]
N
[eXe N
OO0

c) C (fm)

The EBCs can be given explicitly for tp 2ty using 2.4. 8

For AO given in 2.2, and for ity 2 tl. the fundamental

solution matrix of l1l.la is

2.5 Y (t,ty) = exp {Ao g: SPO(S} :

@

= (jl(t;ta))l ey jn ({';tm))‘

Here for i =1, ..., n:
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t a &
2.6a jt (t,ty) = exp [/“'-: S-{m Srdsj{ei-*k% -‘-:-! [g

to

where e, igs the ith column of I and
2.6b Iisifmax {J'si./SJ.”=O ( here 6050)}.

t
Notice that St sP ds > mw as t »® since p> -1.
o
Using 2.6 we can prove (see Example 2.3):

Lemma 2.7: For tw > tl

2.7 Q (fm) = a(f,) = Span (?L }Li.-l

L
-t
Here {gi]iu is a maximal linearly independent set in €

satisfying

-d
for some kie{l, vy n} such that Re(,u.‘i) = 0 and /u“:C‘DE
L

-l
Furthermore, if we take {?i}iq to be orthonormal and
- 4 Ly
{§i}i_l to be a basis for the null space of Ay (Ly < L),

we have

-2
.= 0.
L

then
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-

ate,) = wut,  U=(E,....5) "

a) Q(tm)

r

b) Clty) = C(t;) = CrU Uy qs(;‘l....,ch),

— -
Proof of Lemma 2.7: From 2.6, §L E a(’tm) if §; satisfies

2.8a. Recall that ?i(t:tm) is bounded for telty,ty] (see [1]).

(8
If fé satisfies 2.8b then

t

Y({',fm)?i = exp {’u‘a g S”ds} . .

ty

- -t
Therefore Y’(t,tm)g. is bounded and lim C_¥Y(t,t,)5 . exists
1 t>m [)e) (52] 1
L] s 3 >
since either «, =0 or CpS; = 0. Thus we have shown that

4 L
span {fi}(-: ca(ty .
The converse:
o AL
Q(tm)c span {gi}in

L
-
follows from the maximal property of {fL }i-l . So we have
proven 2.7. Also Q(tw) = uuT is a projection (matrix) onto a(?ﬁ.),
as required.
P~ 3

Finally 2.9b gives C(tw) cgrrectly since g.;.rg) CwY(t,tm) fi
= 3 for i > Ly- To see this recall that for i > Y Ei satis~-
fies 2.8a or 2.8b with «; # 0. These imply, respectively,

[

=2 A gt Spds 7 -
Yt t) ¥ ;20 or Cu¥(t,ty)E; = e“*i'ty” © Cp¥; =0 for t > ty.M
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Using 2.9 and P(tl) = I—Q(tl), we have the EBCs l.4b,c for
problem 1.1 with A(t) as in 2.1 explicitly in terms of Zﬁf}%:;,
and C,. These EBCs allow us to reduce the singular TPBVP 1.1 to

the regular TPBVP:

a) L tTAMNT @) for te(t, L),

2.10 df
(5@ ()@ ()

and the initial value problem

a) gz‘ <t A ) F (D) for txt,
t
2.11

b) j(f,) given by the TPBYP 2.10.

Numerical procedures for calculating solutions of 2.10 and 2.1l

are well known (see Keller [6]).

I.3 ABCs for Linear Homogeneous TPBVPs, Part I

We will assume that A(t) in l.la satisfies

e} -k

a) A({'):’ I<Z=0 Akt for 1‘.‘2{'0,
3.1

b) Ao"' di03 (M(/i:l,...,n>)/uc4.-.j“_j -Fo,.('_*J')

c) P > 0.

Wasow [12] shows that there exists a smooth n X n matrix;j(t),

nonsingular for t 2 T2 t, s.t.

0
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3.2 W) =T (DFH) for tz T

satisfies

3.3 4w . t" D@ (t) For t>T.
t

Here
a) D(f>=dl03(d‘ (f)/iz/)...)h)) .Eounded For 't'Z’Z':)

3.4 b) D(¢) ~ Y_w D‘.F‘ as t > w,

i=0

0 -l
However éf [%f need not converge for any finite t. Also,
(=0 o
Wasow [12] (see Appendix Al) shows that there exists {7%}k-/ ’

constant n X n matrices such that for each q 2 1
..l-
3.5 Jz(f)a(zw'—vj)... (I+.£7-r,)-—j(f)+o(t *)

as t-2m.

Using 3.2, we write the EBCs for problem 1.1 in the following

useful form.

Lemma 3.6. Let A(t) satisfy 3.1. Using 3.2-3.4 define
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t
a) W (t ty) = exp [gts"D(s) ds| for t, tp = T,
o

I, = {L / ;}: (f) = W(f,’t“)_e‘i is bounded For

tz7 and 'él;mm Cop W () cxis%s},

c) Ios{i/di({)=0(f'z'f") as Jc—aoo}.

3.6 D)

We also define

w
J
bl
"3}
3
i

diag (,XIW(O/L:’)-"»“)>

where ’XI (i) is the characteristic function of IW’ defined by

X, () = {lﬁ‘iel’w;

O otherwise

Finally we define
by Q° = diag ('Xzo (i)/(=l,...,n)

o) W' (tg) = hm W{(t,t,)Q° for t, 2 T.

t>o
Then we have for foo 27
a) Q(tp) = J(tw) Q"7 ' (te),

3.8
By C (fm) = Cp Wo(fa))j-’ (fm)o
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Before we prove Lemma 3.6 we will use 3.8 to construct

asymptotic boundary conditions (ABCs) for problem 1.1. This is

of great practical importance since in general we will not have
J(t) in closed form. Therefore, the EBCs associated with Q(ty)
and C(tgp) in 3.8 cannot, in general, .be used for a numerical

calculation. However, as shown below, we can explicitly calculate

asymptotic approximations to Q(tp) and C(tp).

The reader may find it helpful to compare the statement of

the following theorem with Example 3.12 below.

Theorem 3.9. Let A(t) satisfy 3.1. Using 3.4, 5, 6, 7 and 8

define

a) Q, (fm) = ;7,; (tm) ij‘;-’ (fm),

b) Py (ty) = 1-8Q, (tn),

3.9
0 = | t ) ~h °
c) wq' (fm) = *’;mw {CXP[S{:NSP Iéo Dk S dS} Q } ,
gsg+pt |, ,
Q C, (ty) = Cuw,' (£,)7, (1),

where t, is sufficiently large and q 2 0 (:70 (-é-m) = I)'

Then for Q(tm), C(ty as in 3.8 and P(tw) 2 I-Q(ty) we have
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a) Q‘P ({'m) =Q(ty) + 0 (IL;:H}) )

i

3.10 b) P? (t,) = P(tp)+ 0 (f(;'a’))

) Cq (tp) = C (tp) + O (f,;_a'),

as tm—?a)) 'Forci,ao)/,....

| Notice that we only need {—E%}f:;to be able to calculate IW
and IO and to determine QWAand Qo. Therefore Pq(qn), Cq(tm) are
completely defined by { Dﬁ'}io and {T,}ii . In Appendix Al we
discuss a technique for calculating these D; and Ti' Therefore,

in principle we can calculate Pq(tm) and Cq(tmL_for q=20, 1,2,

Proof of Theorem 3.9. The theorem is an easy consequence of

Lemma 3.6, and of 3.4b, 5, and 9.

Definition 3.11. For Cq,Pq as in 3,9 with g 2 0 define the

o(t™t"9) aBcs for problem 1.1 to be

) Coy () + Cg(tg)F (tg)=7,
3.11
b) P?' ('&m)y (f‘b)z 8)

where t, is sufficiently large (i.e.,j“l(t') exists for t' 2 t_ ).

Properties of the ABCs 3.1l are discussed in Chapter II. We

present an example calculation below.
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Example 3.12. Consider

- . - - - 2
3.12 b) (?53)J('>+f';”’m (449) 3 () - Y ed,
c) j(f) bounded on [/, (D).

Using Lemma Al.3 of Appendix Al,

0O 0 -1
T, o 0 -a ).
0 3 0,

"

N

o = | -1 : :
Then wl(t) = (I + ?’Tl) y(t) satisfies

do . é 0 8 . L /booN 0 3 -2 1V 2 (4
dt {(050 e (838) " w04 2)rowa,

determining DO’Dl' Also, from Lemma Al.3,

2 ¢ 7
D, = diag. part of 0 bt .
2 0 9 -6

Applying Lemma 3.6 and Theorem 3.9 we obtain
Iv = fa.-”} , Lo = {3}>

6+ 8, (ts) = (89 8) ¢, (t)-(339).
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Also,
-
Ql (TI‘-(D) =<I+T::;T:> Qo (I”'tl;T;) + O(fa;"-).
Therefore
00 -4
Q, (fw)=(gé gt"") +0(%);
0 _ @® i 000
W, (t,) = exp {géw = D, ds} (88 ?> )
=(o00 0 )
0o I-GQED

C’I ({'co) = Cm \"/;o (fm> (I"/{-CDT:) t O(f&j))

(8% 2w )+ 0(t2).

o Tt

(1}

From 3.9, we need only compute Qq(tm) and Cq(tm) up to and

including o(t™d) terms. Simplifying 3.11, we get the following
_1 .

O(tw) ABCs :

b0 (209)5(6)+ (88 9) 3 (tw) = ¥,
3.12

ety (100) § (t)=0;

and the O(tzoz) ABCs :
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by (9583 (8)+ (88, 2w )3 () ¥,
3.12 i o
o (10 %) 3 (ta) 0.

In Chapter II we discuss the error produced by using ABCs
3.12b', ¢', or 3.12b'', c¢'' in numerical calculations. If 3.12
has a unique solution ?(t) then we show that for t sufficiently
large the TPBVPs 3.12a with 3.12b', c¢' or 3.12b'', c'' have
unique solutions ﬁl(t) and ﬁz(t) respectively. Furthermore, we

show that there exists constants Ki s.t.

tefht] [y -2 (0] = hidr NMOIRGN

for i =1, 2. 1R

We suggest that on the first reading the reader should either

skim or skip the remainder of this chapter.

Proof of Lemma 3.6. By 3.2, 3, and 4 we can write the

fundamental solution matrix Y(t,tm) of 1l.1a as

313 Y (£, ) = TJ(¥) W(t, ty) T (t,).

. -
Therefore, by the definition of ({(ty) (Section I.1), §ea(fw) iff

’—?s - j-'(ta)) ? satisfies
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a) fs;;z_m/w(f,tm)?( /<oo,
3.14

) lim CoW(t,ty)/ exists.
t>

Here we have used 3.5,]3. But by 3.1, 4, 6 and 7, we see that

-

( satisfies 3.14 iff
2 -
3.1 (T1-@Y)7-0.
) —

And finally from 3.15, § € a(fm) iff

b= W oyl z
3.16 £ - J(ty) Q"7 (ty) §.
Therefore Q(t, defined in 3.8a is consistent with definition 1.1

(i.e.,.j(tw)QW:7-l(tw) is a projection matrix onto Q(typ)).

Finally, by 3.5, 6, 7, 8, 13,

307 Jim O Y(4)8(t6)" lim { CuT (D1 (4,6y) "7 (tn)},
m Cy W ($,tg) QYT (t4),

- |
t>m
] -1 =
cCy WO ()T (1) = C(tg)-
We have used 1lim qDW(t,tw)(QW-QO) = 0 in the last equality

t>m
above (see the definitions of Q", Q0 in 3.7a,b). B
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I.4 ABCs for Linear Homogeneous TPBVPs, Part II

On the first reading we suggest that the reader either skip

or skim this section.

We construct ABCs for the general case of 1.1 using a
procedure very similar to the one in Section I.3. In particular,
we begin by transforming l.la, and the EBCs l.4b, ¢, to a simpler
form. The ABCs are then obtained from the EBCs by using the

known asymptotic behavior of the simplifying transformation.

The following lemma gives the key properties of the

Lemma 4.1. There exists a transformation of y(t) in 1l.la:
4.1 @ (s)=7" (s)y (t) | st=t,
for t 2 tl 2 to, r an integer 2 1, such that
4.2 %Zf - A (s)ir (s)
s

1
ti? . Here ﬁ(s) has the form

il

>
for s 2 s1

a) ﬂ(5)=dia5(/’\‘g(s)/i='»---»’l);
4.3
b) Ai (s) = d; (s) I( +5q’5’£ (s) for 525, ,

with In the n; X n, identity matrix, di(s) a polynomial in s, q

.
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an integer and

0 -k
4.3 o B, (s) k%o Biks

as s>m . Also for each i =1, "‘,1,and for s sufficiently

large, either

0, §%: 0(% " Re[d; (3)] as §>00;

N

4.4 a) Re (d;(s))
or
4.4 b) Re (d‘ (5)‘)50' q' = -1, and B’; (5) = B‘.o.

Where BiO is in Jordan form with no two eigenvalues A0 Ay such

that - A is a nonzero integer, or
4.4 o Re(d;() >0, 3%=0 (37 Re[d, 3*)]) as 5 » .
Furthermore, if 3i(s) ’ 'Z\&j (s) both satisfy 4.4b and i # j then
4.5  d, (s) * d; (s).

Finally, for S > ®

ay J(s)~ X TS,
k=0
4.6

-l IR
b) J (s)“’Eﬁ T/QS
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- for some integer px0 , and some constant n X n matrices
-0 -0

{Th}k o > {:"—k}IUP .

A constructive proof of Lemma 4.1 is discussed in Appendix

Al. We use Lemma 4.1 in proving

Lemma 4.7. Let W(s,sw) be the fundamental solution matrix
of 4.2 with W(sy,syp) = I. Then for t,ty =2 s,r, the fundamental

solution matrix Y(t,ty) (see Section I.l) is given by

0.7 Y (ttg)=T(s(t) W(s(#), 5g) T " (5p)

i

P
where s(t) =t " , sp = sty -

Let P; = diag (5 I, /J‘-/ .,4) for eachi=1,---,1,
where 5ij = 1 if 1 = j,S.--‘-'-'O otherwise. Then §6 a('(‘ )(see I.l)

iff for each i = 1, '-',/[:

-

s 3, (8,5)= T(s®) W(s(®),55) P T (54§

satisfies

4.9
b) lirm Cw Y ('{.’ f) exists,

tvoo

Proof of Lemma 4.7. Equation 4.7 follows from 4.1, 2. Also,

2 -e N — -
from Y(t,tmlg = ‘Z' Y ('l‘,§> we see that 4.8, 9 imply § €a(1‘m).
L=
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—
So we are left with proving that 4.8, 9 imply £ € & (fco)-

Notice that
4.10 w(s,sm) = diag (Wc (s,sm)/ (=1, ...,/),
with Wi(s,qn) a ni>( n, matrix. Coddington and Levinson [1l] show

that Wi satisfies (see also 4.2,3, and 4),

i) 1if ﬁi(s) satisfies 4.4a, then

_./u_. S-S )
e L( [2 2]

4.11 a) [ w; (s,sp) [/ 2 K; for 52 Sy

)

for some &;20 ; or

ii) if ﬁi(s) satisfies 4.4b then
s : |
4.11 b) w‘ (Sjsm)= exp {gswdi (X>Ini.+? B(:O d)(}

for s 2 s;; or

iii) if ﬁi(s) satisfies 4.4c, then

-/ -k -
111 ) [ W, (5,54) )% K & (5=50)  for s2 5,

)

for some &, >0.

—
Using 4.8, let géa&a)and
-

- Y/ >
J(tE)= Y ()5 =23 (t;8).

=



24

For i such that 31(5) satisfies 4.4a,

R YL a
4.12 a) Y, (’c,g)=O(e’“‘(t 5m)/§-/)= o(1)

as t»> o (see 4.1lla). Therefore, 4.9 is satisfied for these 1i.

Next, suppose ai(s) satisfies 4.4c. By the definition of

alt,), y(t,§} is bounded. Therefore, by 4.6b,
J7(s8) 3 (4,8) = 0 (%)
as t *® , Hence by 4,7, 8, and 10,
P (s)§(t,8)=a7" (s(t) 3. (¢, &) = 0 (t%)
as t>® . So by 4,llc

Pe 7™ (sg)

P W (s(t), ) T (s(0) §.(,F),

Y

y) -
o(+*] w[,(s(f),sm)/) = o(1)
as t 200 . Therefore
s2m BRI (sg) =0, §J, (¢t,)=73,

so 4.9 is satisfied for these 1i.
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Finally, if ﬁi(s) satisfies 4.4b then Wi(s,sw) is explicitly

given by 4.11lb. Now 4.5, 1l2a, and 12b imply 4.9 for these i also.
-

Lemma 4.7 implies that for tg, 2 tl

.13 Q (ty) = T(5(ty)) Q¥ T (s(ty).

Here QW = diag(Q? i=l,"',1), and Q? is a n, X n, projection

matrix onto
4.14 a.h/____. {;(A( € (L-n[/j({'} 7?()5 7(5(*))\“\/(5({'),5({'“)))[??[‘
satisfies y(f) 7-(2) = O(I) as t 300 and

lim CCD j (‘l’, l—ft) exists} ’

ts 0

T
(o oo I ... O ) °. Furthermore

QW andCl? are independent of tg , as we prove below.

where P,
i

W . .
Lemma 4.15. 4 ; is independent of ty , for t, 2 ty-

Proof. If 3i(s) satisfies 4.4a or 4.4c, then 4.lla,c imply that
n. N

a‘g =¢C* or {0} respectively.

If 31(5) satisfies 4.4b, then 4.6a, 4.4b, (in particular,
‘/uiﬁ/fj#’k a nonzero integer) imply that we can consider the
eigenspaces for each eigenvalue of Bio separately. That is, we

can assume without loss of generality that
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4.15 By = 4, I, . + H,

1 ¢ L
0 &,
With H'. = * ) - O .
O . .éni"’
0 -t W
Then using 4.14, 15, we have 7(6 ai iff

- — _ A s S ng -1 | "5:/ A -
e Fee ) s I@RE] S b w7
satisfies
a) y(zE(s)iT) = 0(1) as S>m,
4.17
b) lim C, y({'(s)‘ ﬁ) exists ,
S>>
Now 4.6a implies that 4.17 is equivalent to
a) ST P‘i = 0(1) ,
A o /?.3 "F |
4.18 b) ~) J(’S) Pi H(,)z =°(I) or A= I)’zl"') h‘-/)

c) £ Im () %+ O t+hen
s ¢y J(s) PR =0()

as s-200 . Notice that 4.18 is independent of S - =
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From 4.6 and the proof of Lemma 4.15 we see that Qw‘is

o
completely determined by {Tk}kal with k, <@ and by di (s),
Bio for i =1, ...,{. A constructive procedure for obtaining

these is included in Appendix Al.

We now turn to C(ta,). Notice that we can define

.19 CU(ty) = lim Cp I(DW(s,s(ty)) QY.

S>>0

And so by 4.7 for Q(ty, ) as in 4.13,

~s
i
3
™
_<
“~
o+
~4—-
~r’
%)
~~
~+

Finally, to construct ABCs for problem 1.1, we first
calculate asymptotic approximations for J(s) and j—l(s) (see 4.6
and Appendix Al). By substituting these approximations into 4.13
and 4.20 we obtain approximations for Q(ty ) and C(t,, ). Suit-
able ABCs for problem 1.1 are then obtained by using these
approximations of Q(ty ) and C(taj) in the EBCs 1l.4b,c (recall
P(ta)) = I—Q(ta,)). Properties of these ABCs will be discussed

in the next chapter.

We conclude this section with the following estimates

obtained from 4.6, 13, 19, 20, and from the proof of Lemma 4.15:
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0 (t,%) as ty » 0,

a) Q(tw>

]

[

b C"(t,,)
4.21

&) C(ty) = 0(1y") as ty» @

D(I> as{'m-aoo ,

&) if Clty) O then [C(ty)] " = 0(1) .

These estimates are sharp for the general case.
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CHAPTER II: Error Estimates

II.1 Existence, Uniqueness and Error Estimates for Solutions of

Linear Homogeneous TPBVPs with ABCs

In this section we will assume that Il.l1 has a unique
Py -t - m
solution _y(f;b’) for each ¥e d . A useful characterization of

this property is given below.

Lemma 1.1l. The TPBVP Il.la,b,c has a unique solution 3’(1‘.‘;?)

for each ¥€ € iff
/e A
a) (Lo Y (%, tm) + C(‘i‘w)) has rank n,
p
1.1 (tm)

b) (Co Y (‘tffw)+C(tm))Q({'m) has rank m .

Furthermore, if 1.1 is satisfied then there exists a constant K

s.t.,

12 W), = s 15 ] 2k /¥

sv

t2t,
2 m

for all Y€ T .

We prove Lemma l.l1 in Appendix A2.

Let ({'m), P( fm) be asymptotic approximations for C(ty ),
P(ty ) respectively (see Chapter I). Also, assume that s(tw) is

a projection matrix. We attempt to approximate y(,t;?), for
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te [to,tm] by solving the following regular TPBVP:

)

a) S’% - tPA R o te(4,,¢,)
1.3 b Cy @ (%) + E({-m)&(fa)),?’
o) P (ty) 2 (t,)- 3,

where me< o. (We call 1.3b,c, ABCs for 1.1.)

In order to investigate the TPBVP 1.3 we will need the

following definitions.

Definition 1.4: For tl? to define:

1.4 &) a, (4)={5e Q)| lm Cop Y (H)E =37,

trm
Let P (t): c"—=a (f,) be a projection (matrix) onto (J (i’, , with
0 0 0

Po(tl) = Y(tl,to) Po(to) Y(to,tl). Define

1.4 b) d' (t) = {fe Ranae {(I*Fo (-L-,>> Q(f.)}} .

Let P, (tl) : Cn—)al(tl) be a projection matrix onto (Zl(tl) with

Py(ty) = ¥(ty,t0) Py(ty) Yy, t).

Finally, define:

1.4 o P (ty; P)= SUf{/CoY(i'o,tw)?/ ?ect",f(’cwﬁ;g,z.
and [§ /-]
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We state our main results on the properties of the TPBVP

1.3 below.

Theorem 1.5. Suppose that the TPBVP Il.l has a unique

solution for each e G:m(see Lemma 1.1). Suppose that C(t), P(t)

are as in definition Il1l.3 and

a) /C(fm) - E(t'oo)/ = 0(’);
1.5

b [P(tg) = Bt = ([1P(E) (146t PN ),

~ - m
as tm'?’w, P(fa;.) a projection matrix. Let ¥edl .

Then for fmi T, T independent of ¥, the TPBVP 1.3 has a
. . Py - - -
unique solution u(t;tm,X) . Furthermore the error e(t;{-m,x)s

Zi(t,fm,?)-j(f; ¥) for fEIto,tm] can be written as
16 B(t;tg,8) Y (4,608 + Y (t,t)(%, +3,),

with §& = R (£)5 [ 5, = B (+)F, and 3, = P(#,)5,.

Py - -

Finally, §, , § §3 satisfy

a?’

1.7 ) 515 Kty D {lctte) - E(tp)] +
Bty s P)| P(ta)-F(t)]7,
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for i = 1,2, and

< K13 (ty;3)) {1 PCte)-F )]},

oyl
W
—

1.7 b) |

where K is a constant independent of tco , and ?

Applying Theorem 1.5 to Example I3.12 we obtain

¢(1Lm; P) = 0 (ﬁ e‘(fm‘fo))

as (ty-t,) >0 - Aand
Ay (tp) = spen {(§) +-L § +o(tm)}
0, (t)+ o {(3)+ 4 (3) 0 (2]
Notice that for §, , §,and §; as in 1.6,

Y (4,408 = 0 [5])

as £t »00, and

Y (titp)E = O(IE)),

1"

Y (¢ {_m)—gl 0 -(t t) > |

as(tp-t) » o .
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Therefore Theorem 1.5 provides a good deal of information
on /3 ('é;'tw ,?)/for te [to,t‘D 1. In particular, we see that the

estimates given at the end of Example I3.12 are valid.

The proof of Theorem 1.5 is in Appendix A2, it can be left

out on the first reading.

IT.2 EBCs and ABCs for Forced Linear TPBVPs on [tO’ )

In this section we will extend the results of Section II.1l

to problems of the form

a) ?_ s tTAMFT () + F(8) For trt, 20,
t

2.1 b CoJ(f)+ fim Cop 3 (t)= ¥ed,

c) ¥ (t) bounded on [ty, ).
- b
Here p,A(t), CO'Ca)’ ¥ are as in Il.1l and f(t) is continuous on

[to,CO).

As in Section I.1l, we wish to write 2.1 as a regular TPBVP
on [to'ta>]' and an initial value problem for t > tp-. Let C(t),
P(t) be as in Definition Il1l.3 for the homogeneous problem related

-

to 2.1 (i.e., £ = 0).

Assume that there exists a ?b(t) satisfying
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dy P 3 F
2 2 e A F (O F () e £ty

2.2 b) :Y‘Pﬁ") is bounded For t 2 two s

c) li C v (t) = Y
t5w @ Je ) e

(i.e., the limit in 2.2c exists).

Definition 2.3: The following are EBCs for problem 2.1:

> F (tw) = T+ [C(t)F, (tw) ~Fp],

2.3

>
where fw = fo'
The following lemma justifies Definition 2.3,

Lemma 2.3. The TPBVP 2.1a,b,c is equivalent to the TPBVP

2.1a, 2.3.
If 1.1 is satisfied then
i) 2.1 has a unique solution;
ii) ?p(t) exists iff 2.1 has a solution.

Proof of Lemma 2.3. Notice that if ?p(t) satisfies 2.2 for

some tm 2 t0 then we can assume it satisfies 2.2 for tm= to.
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Now ¥ (t) is a solution of 2,1 iff W] = ¥(t) - ¥ o (t] satisfies

al dZ - A )R (t) For trt, >0,
d¢

2.4 Db) C, o (to) + lim Coo Z?.(f) = ?‘[Cojp (fo)-’.—ff’])

tvm

-
c) w(t+) bounded for t 2 ty-
Statements i) and ii) follow from 2.4 and Lemma l.l. Further-
more, from Lemma Il.4, TW(t) is a solution of 2.4 iff u(t)

satisfies

a) % = tTA)Z (8)  For t>t,,

2.5 b) Co@ () + C(ty) & (tm)= ¥ - fcoi,, (f,,)’“?,;],
el Pltplu (tp)-0.

Finally, ¥(t) = d(t) + ?P(t) implies that U(t) satisfies 2.5 iff

v(t) satisfies 2.la, 2.3. N

In general, ?p(t), C(typ) and P(ty) will not be available
explicitly. However, we will be able to compute asymptotic
approximations for ?b(t), C(ty) and P(ty). (See Chapter I for

the latter two). Substituting these approximations into the EBCs

2.3a,b gives ABCs for problem 2.1. The following theorem

considers these ABCs.
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Theorem 2.6. Consider the truncated problem

a) _%E-L tTAa ) + Fet) e te(t,, ),

Q

2.6 B) C,ad(t,)+ (1) 2(4y) = T (ty)= {E(fmﬁp(fw*?,,f*?»

) P (ty) T (tp) = ¥al(te) = P, (te),

where 2.6b,c are ABCs for 2.1. That is E(t), P(t) satisfy l.5a,b

and‘§p(t) satisfies

2.7 [3. 0=, &0

as t>® . Also we assume that P(t) is a projection, and C(t) = 0
or s(t) = 0 if C(t) = 0 or P(t) = 0, respectively. Finally, we

assume that 1.1 is satisfied.

. -
Then for t T, T a constant independent of Y and f, the

>
o 2
TPBVP 2.6 has a unique solution alt; t,p). Furthermore, let the

error function be given by

it

2.8 a) @& (t;ty) =a (¢;ty)- (f;?,f).

i

Y(‘é,{'o) g, ({'w) + Y(f:-éw) {g\a(tw)-*ga(tfb)})

with §(t;?,f) the solution of 2.1, and
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2.8 by (I-B (tx) & (tg)= (I-PR (t))E, (¢
=(I-P(tm))§3(i;)=

(see Definition 1.4). Then for some constant K0 independent of

ty s £ and ¥ :
2.9 a) 3 (t)] <K, [ y(tg: T.5)-3, el {18 (t)l + (4, A spit)lf

Ko 15, (b - 55 {1 (t) ] + (1ac(t)]+ 6 (fm;fDIP{QB

for 1 = 1, 2, and

-—

2.9 ) |8 (b K [T (te37.7) -3, (k)] | 2P ()]

-
+K, 3. )T (b ] Pt 2P ()] | < ) 5.

P-P.

Here ¢(‘fw§P) is as in Definition 1.4, and AC=C-C, 4P
See Appendix A2 for the proof of Theorem 2.6

IT.3 Stability and Convergence of Finite Difference Methods

Using ABCs

Using standard finite difference techniques we can compute
the solution of the truncated problem 2.6. 1In this section we
study the stability and convergence of these techniques as {-wam .

We assume that 2.1 also satisfies
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i) condition 1.1 (see Lemma 1.1);

3.1 ii) A(t), E(t) smooth for t 2 ty

iii) J/ S () ?(ﬂ}/m <.

Here S(t) is a smooth, possibly unbounded n X n matrix, as in
Theorem III 4.1. An application of Theorem III 4.1 and Lemma 1.1

proves

Theorem 3.2. Let 2.1 satisfy 3.1. Then there exists a

unique solution ?(t;?,f) of 2.1. Furthermore, there exists a

- e
constant K independent of ¥ ,f such that

3.2 JF& D, < K{gI+swF@), .

Here //57//{D = i-_S;IQ_ lj/

The Difference Scheme. (We follow Keller [6] very closely).

-
We discretize 2.6 on meshes {éj}j=o with fj=fh, and h =

m t.-t. £ 6 mi t.-t. . We ho to approximate
oYY §_J 3-1) mzr:L ;3 J"l)h Pe FO approxim
= h (= . .

{u.(tj)}jw by w'= {L"J}j:o where w 1is a solution of

) - = -
3.3 a) XLJWAEIQZ Cik (k)wj‘ = FJ(;\,WC)

for j=1,--+,3, and
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Here Cjk(h) are n x n matrices, Fj(h,f)e=¢n.

We put the following restrictions on the difference scheme

‘3.3:

I) Accuracy Conditions. For each smooth soluticn.Zi(t;?,f)
of 2.6, there exist constants K,(ty;¥,f) 14>0 ,}H(ém)>osuch that

for all h £ hy(tp), h > 0 :

- = T - - o - $
3.4 a) /IAJ‘ {E(ti;X,¥)}iao‘ Fi (h,F) 2 K (47, F)AT,
for j=1,..., J, and

J- -—d

L= 3 - r,(f) S 9

3.4 b) /B‘{“(ti’x‘”}po <_* {w [ <k (t,. 1.%F)h%.
b’;(m)

That is, the difference scheme 3.3 is accurate of order hw.

II) Stability Condition for the Initial Value Problem

Consider the initial value problem (IVP):

a) 42 L tPA DR () +T @) o tat,

dt
3.5

n

p) & (t)=7, e a”.

Also consider the associated difference scheme for 3.5, in
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particular 3.3a with
—— —
3.6 W, = ¥,

We assume that 3.3a, 3.6 is stable. That is, there exist

constants K, (tgp ), h,(typ) > 0 such that for all meshes {t]}j =0

. . he §327
with h < h,(typ) and for all mesh functions V' = {”ﬁ}j:o .

37 (B %k, () max (I ], mas [ L, 4]

Oll'.l.’JO

li

for j

III) Uniformity Condition. For each t, é(to,tD) there

exists a constant thl;?,f) such that

-t

o 2 ] —-h
3.8 {K,(f;(.{;),‘(a('é),m{))k:({_)}st ({';Y,‘F>.

sup
telty ]

Conditions I, II, and III are very reasonable conditions
for any practical difference scheme. Under these conditions we

have

Theorem 3.9. Suppose 2.1, 2.6 satisfy the hypotheses of

Theorems 2.6 and 3.2, and suppose 3.3 satisfies conditions I, II,

and III above. In addition, suppose

3.9 a) [§, (-3, (0] 0 (e0(ta)),

with
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3.9 b & (ty) = {[clt) [+ (1+ ¢ (ty; P))/P(fm)/}‘l.

Then there exists a constant TO' and smooth functions h(t),

K(t;?,f) for t 2 TO such that for tm 2 'ro

i) 3.3 is stable and consistent with 2.6 for h < hi(tg);
ii) 3.3 has a unique solution wh for h £ h(t

o)

iii) for §(t;?,f) the solution of 2.1:

-l

3.0 a) [@ -F( 58 F)) 5K (s FF)R 4 6 (g 7,F)
for j =0,...,J and h ¢ h(ta)). Here
3.10 b) o’(foa;?,-?)so(l) as t, - .

Furthermore, h(t) > 0 for t 2 T, and #(717:)’ K(f;?j) are

monotone increasing for t 2 T.

Proof of Theorem 3.9. We begin by applying

Keller's Corollary 2.11 [6, p. 23]: If 2.6 has a unique

solution then the difference scheme 3.3a,b is stable and
consistent iff the scheme 3.3a, 3.6 is stable and consistent for

3.5.
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Statements i) and ii) follow from the corollary above, and
its proof. Also, using Theorem 2.6 with 'ﬁ'méT,'ET , the above

corollary provides the estimate

- - —_ 2 - = q
3.1 @y Rty , ¥, F) £ K(te; ¥, F) A
Here & (f;i‘m,?,f) is the unique solution of 2.6. Finally, 3.9

and Theorems 2.6 and 3.1 imply

3.12+si_)§>t ]/ E(tity, T F) -7 (¢ ?,‘F‘)/ < K a (t,) {/%‘/+//s(é>?/ﬁ.
€Lty

«
Here O’O(tm ) = o(l) as ty 200 , and K is a constant. Finally,

statement iii) follows from 3.11 and 3.12., .

The problem with the estimate 3.10a is that K (fm ; Y, F)
grows like /Y(i’m,i‘o)/ as 'é'w ‘7 (4 4] . (This is a consequence
of calculating the stability bound for 3.3 using Keller's Cor.
2.11.) It is very likely that much better bounds can be obtained.
Preliminary results of F. R. deHoog and H. B. Keller indicate
that bounded K(fm;?,f) exist for at least some difference

schemes. This is an important area for future research.
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IT.4 Numerical Techniques for Error Estimation and Choosing t

{(Linear Problems)

Theorem 2.6 can be used to motivate several numerical
techniques for estimating the error dué to the ABCs. Let
j({;?ff) be the solution of 2.1. Under the hypotheses of
Theorem 3.9 let ﬁ(t;fm,?,f) be the solution of 2.6 for some Ta

sufficiently large. Then, using the EBCs 2.3 we see that

e(tity) = B (t;ty, 0, F)-J(t;7.F) satisfies
a) .3_%_ - tP A Bt ty) for te (thitn),

4.1 B) Cu& (t,ty) + € (t,) 8 (tns tn) = ¥ (ta),
o) P(t)8 (Rnity) = T, (to)-

Here

a Y3 (e =Ty 8.9)-3, (0]
EJOINNOR RO

vz w4, (0= (pw- FO)[y3.%) -3,0)]

+ PO LT, (- 3,0].

Notice that 5('&) Y,\ (f) = YA ({') by 4.2b, 2.3b. Also, by

Theorem 1.5, we see that 4.1 has a unique solution for t,,
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sufficiently large and for any ?I(fm),?a({m) with
P(ty) T, (tn) = ¥a (1),

If we can approximate ﬁ (fm),f:(fm) then we can use 4.1
to compute an approximation for E(trtm). It is important in
the applications to notice that the TPBVP 4.1 is of the same
form as 2.6, only with different forcing terms. This means that
if we solve the difference equations 3.3 using a LU decomposition

of the linear system, then the same LU decomposition can be used

to solve the difference equations for 4.1. Therefore, once we

. . - -
have an approximation for X‘(tw),r;(f ), we can compute an

. —~—
on for a({t;:t

L

@

We will only discuss one of the simplest methods to
approximate X}(t){?&(t) for a range of t values. This will
allow us to make an estimate of an appropriate t 5, for a given

error tolerance.

-

7Y, F) - ‘S}p(t) in 4.2a,b by

[}

We can estimate ?H(t)

A

23 5,005 Y6t a0t (B it 1.F) = 3, (1))

where P ), Q (4, \?({',{'w) , §P (t), E(t) are higher order

asymptotic approximations of P,Q, etc. than 5,5; etc. Then set
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o T0=(Ew-20w) §, @+ w5 @ -3, ),
w ¥, B {(Fo-5) §, OFHOIERORACIES

—t

A A -t
Then Y ¥, are estimates for X},B}  for t sufficiently large.

>

We can now estimate E(t;tl) by €(t;t,), defined by

a)

- .tPA(-L)%({;{-.) for te(t,, t),

Q4CL
Py PYRS

4.5 b) C & (t,;4) + C)E(t t)=Y(¢t),

o P)E(t:¢) =T, (4).

A
Without solving 4.5 explicitly, we can bound E(t;tl) using lemma

A2.14

. v 2 ;4) [ ¢ K& (t) .
S SRR R

Finally, we can use 4.6 to provide a reasonable guess of t, for

a given error tolerance.

Example calculations using error estimation and error

prediction techniques are in progress.
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CHAPTER III: A Fredholm Theory for Linear

TPBVPs on Semi-Infinite Interwvals

III.1 Introduction. We consider TPBVPs of the form

a) j{-:‘t’,A(f)j(t) +$({‘> for f>-{_—o>o)

1.1 b) Coj({'o)"' {I:‘m CwY({-) = ?EQM,

<2

c) j(t) is bounded on ft,,m)-
Here A(t) is analytic at @ ; p 2 -1 is an integer; y,f: [to,m)-rcr}
A(t),f(t) are smooth. 1In particular, we are interested in the
existence, uniqueness and bounds for solutions of 1.1l. The
Fredholm theory discussed below provides this information for a

slightly restricted class of g(t)'s.

Recently, F. de Hoog and R. Weiss [3] developed a Fredholm
theory for 1.1 with the additional conditions that lim ¥ (t)
exists, and tPA(t) has several restrictions on any edigen —
values «(t), such that Re(t « (t)) = 0 as t—>< ., Also in [10]
Natterer presents a Fredholm theory for the regular singular case

(i.e., p = -1). Our approach seems to be new.

III.2. Reduction of the Problem

Consider the problem for a particular solution ?p(t) of .

1.1:
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—

a) _j.tle = AT, D + FB fe tot,,

BN TS NORRACH (ie. ¥, (F,) exists),
c) yl’ (f) is bovnded on [{'o,oo).

Let R = {'f(t) I?(t) smooth, and 2.1 has some solution ?p(t)} .
Notice that if 1.1 has a solution then f(t)’ € R. Conversely, if
-f(t) € R then we can use the EBCs defined in Section I.l to reduce
the problem of existence and uniqueness of solutions of 1.1 to
the well-known theory for regular TPBVPs. In this way the
Fredholm theory fo‘r 1.1 is reduced to classifying R, or subspaces

of R, in terms of p,A(t) and Cp (see Section III.3).

The following lemmas give the details of this reduction
procedure (C(tm ), Pltp), Qltgp ), Y(t,ty) are as defined in

Section I.l) :
. - <+ =,
Lemma 2.2. The TPBVP 1.1 has a solution Vy(t;¥,£f) iff

i) there exists ?p(t;f) satisfying 2.1 (i.e. fe R); and

-
for some 1:[‘n = to

ii) there exists U(t) satisfying the regular TPBVP
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a) 5’% = tTAD T @ +FE) For te (t,.1y),
2.2 b)) Coit (t,) + C(t,) @ (¢4) = ¥+ [c(ty) yP(ta,;?)-Z(Z,):{;

) P(t,) 1 (ty) = P(tm>Yp (foo5$>-

Furthermore, for each uU(t) a solution ?(t;?:,f) of 1.1 is given by

'u'l() ‘For'tef'("o.foo),
Z‘r(é) For f>{-oo

N
(¥ ]
i
N
o

A
"\

Where W(t) is given by

a) -3%'= AT @) + TR for oty

b) W (ty) = & (ty).

Proof of Lemma 2.2. The proof is an immediate application of the

properties of the EBCs discussed in Section I.l.

Next we present the well-known Fredholm theory for 2.2

(see [1]1, [5], or [11]).

Lemma 2.5. Suppose f €R and ?p(t) is a solution of 2.1.

> .
For tm 2 'to define
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- . ?-?F (Yr)" Coy(fco) m+n

a) K('F,r)-yr)—:- 3 ed
2.5
C, Y (ty, te) + C(tp)
b) B’(fw) = 0 L) o .
P(ty)

c) é =H_—Renk§8 /{‘ \? 20
i N ( R X 3

. &+m -
d) {/6635-1 fo be a basis of Null (BI ("Lm))‘

Then the TPBVP 2.2 has a k,-dimensional null space (i.e., the soT o F
solutions of 2.2 for ( ?,'F) = (0,0)). Also the TPBVP 2.2 has a

solution TU(t) iff
_\* -t -l .). .
2.6 /g‘ K(‘F,K,jf’)-ﬂ

for i = l,...,k1+m. Furthermore 2.6 does not depend on the

particular 'fr b (t) chosen.

Proof of Lemma 2.5. We seek a solution of 2.2 in the form

2.7 & (£;8) = Y(t, )5 + § (¢).
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' Substituting 2.7 into 2.2 shows that ﬁ(t;g) satisfies 2.2 iff
- - - -
2.8 B, (t,)§ = K(?,b’;yr,) .
The first two statements of Lemma 2.5 now follow from 2.8 and the

Fredholm theory for matrices.

To see that 2.6 is independent of ¥ (t), let ‘y‘;,?; both
satisfy 2.1. Then

- | -2 'y Y
Yo = J. = YAt tg) a(t,) 7, Nec”.
Therefore, using 2.5a,b

B (t,) Q@ (t)T.

]

— o - ol — - - -
2.9 K(X,f;y,ﬂ-K(K.’c;j',)
-t
But by the definition of /4,
- —-—
2.10 ,6‘.* B (t,) = 07

for i =1,“qk1+m. The result follows from 2.9,10. I

Therefore Lemmas 2.2 and 2.5 reduce the problem of exis-
tence and uniqueness of solutions of 1.1 to determining whether

-
f eR, k, > 0, and whether 2.6 is satisfied. We consider R in

1
the next section.
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III.3. Estimates on Particular Solutions

The complete description of R (see Section III.2) in
terms of p,A(t), and Cy is difficult for the general case of 1l.1.
Here we will consider two subspaces of R that can be easily

characterized.

We will need the simplifying transformation (see Lemma I4.1)

3.1 @ (s) =T Ts) F(8) , sT=t,

for t 2 tl' r21 an integer. Here 3.1 is s.t. l.la implies
hy “ - - _ 174
3.2 dw A (s) w(s) + g (s) for s>s5, = f', r,
ds
with A(s) = diag(ﬁk(s)lk=l,"',l), ﬁk(s) a n xn, matrix. Also

for k = l,...,[, and s 2 sl

a) zzxk (s) = T (9 + stk B, (s),

3.3 b 3= I @F ) Fe

o

. !
c) I (3)- {“"A Pe(s) tays _gI"/,’L’gs'/'l'H/a»Hk gy 0-3’3'.'. 0
O .'dk,ﬂh‘l
(o]

where uk,,u.kelR ’5k 2 0 is an integer, spk(s) is a real poly-

J

nomial, and a’k,o’kj =0 or 1. Also
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d) m, =0 ==>O'/;=O,'
e) 0, >0 =6, =0;

3.3
£) B, (s) ~

o -1 .
Bk' SJ is bounded on [S, ,m);
Jz0 J

g) q‘k=6;‘-&.

Furthermore for 1 £ j, k </ , let

. =1

. S -1, . g
3.4 APJh(S)gs{kaPh(s)+/uksk }-s{to.ﬁ.PJ- (s)+/u.j5J }

Then Aij (S)'m;an integer, implies that m’= 0 and j = k.

Finally for some integer m,2 0

a) J(S) ka_m 7;S-k

z _mo

J

3.5

-l o -k
p) J (s5) ~ )2 T;s
h=0

o 0
as s - 00, where {7;‘ }k 3 {7;}“_0 are constant nxn matrices (see

Appendix Al, note that we have multiplied the J(s) in Lemma I4.1l

by sm’).

Using the transformation 3.1, 2.1 becomes
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a) éﬁ'_ﬁ‘ = A(s) LT\fF +§(5) for s,
3.6 b) s’-;'?o Cop T (5) &, (5) =§P (W) exists,”

c) J(s) u’)} (s) is bounded on [s, ) o).

In the following lemma we use 3.6 to obtain useful estimates on
Yo (t5F).

Lemma 3.7. Let & = &,,...,dz)émz satisfy

for 3 = 1,...,4, where EJ->O. Define

diag <t°§/.— I”J' /J.’ lyeens l) J” (é#> rt!""f For 'é-)-fn
3.8 o (4) -
L .Fa"fe[{’o)'é:>'

= -
Define R;. by fe R;z iff £(t) € Clty, ») and

3.0 [ AL @F@ = v [ L HFW] ¢o.
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Then for £>0 sufficiently small there exists K., depending
only oné§, such that for :‘.\eRO, 2.1 has a solution ?p(t;'f) satis-

fying

3.10 /y,, ;%)) =K, //x{_? (f)f(f)'//w f-sn

for t 2 t Notice §p(t;f) = 0(l) as t 2 .

0.

Proof of Lemma 3.7. The stracgh tforward calculation leading to

3.10 is presented in Appendix A3. &

From Lemma 3.7 we see that R&- is a subspace of R, and is
easily characterized by using 3.5,8 and 9. Another subspace of

R sometimes useful in practice is given in the next lemma.

Lemma 3.11. Let 4, (+)be as in 3.7,8. Let F(t)eRy iff

E(t) = £,(8) + T, (t) with
i) 'El(t) such that there exists a ?l(t)‘ satisfying
-t
a) tPAMY, (D= -f (1) for t2t,,
3.11 b) ¥, (t)ec,[{-o,oo),//j(t)//m <0, and
lim Cp 3, (¢) exists,

tH0

o |4 6O L@y ¢o;



55

ii) f2(t) such that there exists a'?z(t) satisfying

®
a) ja“) = —gt :‘;(:.)d.t for 42 %, ,

.12 1) i, (,:_.)//OD <,

o |4 ¢ a5, 0f, <o

Then for ¢ »p sufficiently small there exists a K¢ such
that for E(t) = £, (t) + ,(t) e R;. , 2.1 has a solution ¥ (t;%)

satisfying
3.13 /jr (t;%)-3, (-3, (f)/ < K, t //x{_\, (f)[dg% - t'A ()5, (Q]//m

for t 2 to.

Proof of Lemma 3.11. Let V(t) = ?p(t;f)—'i}l(t)-?z(t) then by 2.1,

3.11,12

A7 1P, gy o Py S () - df
BYN YO IR EYORNO ﬁm}

for £t > t,. The lemma follows by applying Lemma 3.7 to 3.14.

o

III.4. Fredholm Properties of 1.1

Using the results of Section III.2 and III.3 we can easily

prove
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Theorem 4.1. Let A, T\’:.)Jz(é) be as in Section III.3. Let

-

te R;, and i?p(t;f) satisfy 2.1, 3.10.

Then the TPBVP 1.1 has a solution iff

4.1 /§* <?-C°YP (fo‘:c\)) =0

L —

0]

for i = 1,.. .,k1+m. Also l.l)with ¥ = '6, ?:"(t) = 3, has kl linearly
independent solutions. Furthermore if 4.1 is satisfied then

there exists Y(f;?;?> satisfying 1.1 (unique for kl = 0) such that

4.2 //j(t;?.?)//w £ K, (/ Y/ */’J; (f)?(f)//a)
for H& independent of vy,f.

Proof. Write

s GUEBT)= Ve E)E - G sF).

Then using the EBCs Il.4 shows that ¥(t;%,F) satisfies 1.1 iff
Y -C, 7, (%8
N ——\..b_.;‘_; - - L, o | )
e B)E=K(E,%7)= _)ﬁ/’ / )
o ¢

Here we have used 2.5a,b and 3.10. By the Fredholm theory for
matrices, 4.4 has a solution iff 4.1 is satisfied. Furthermore,
there exists a constant Ktaa such that for each ?[?p satisfying
4.1, 4.4 has a solution ‘g‘(?,y‘P) such that
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4.5 /g(?,‘:i?)j £ K{'m {/?}"'/Co//jf (f'(,S?)/}.

Finally, the theorem follows from 3.10, 4.3 and 4.5.

i
Similar results hold for R:. (notice that there will be a
?p(§p) term in 4.1). In applications we often consider the

special case (see Chapter II and Lemma IIl.l)

a) Rank [ B, (ty)} =n,

4.6

b) Rank {,’:Co Y(t,, t,) * Cm] Q ({-w)} =m,
We have

Lemma 4.7. If 4.6 is satisfied then

a) k1 = 0,
4.7

b) 4.1 is identically satisfied.

2 m
Proof. 4.7a follows from 2.5c and 4.6a. Let J¢C, then by 2.5b,

4.6b and Definition Il1.3

4.8 g € Ranjegg,[fmg , heve (5)6 G:»tfn

Now 4.7b follows from 4.8 and 2.5d4. i}

So we have proven
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Theorem 4.9. Let <;,Rx,,4;(0 be as in Section III.3.

Suppose 4.6 is satisfied and FéER: . Then 1.1 has a unique

solution ?(t;?,?). Furthermore ?(t;?,f) satisfies 4.2.

We can also use Theorem 4.1 to write the TPBVPl.l as a
Fredholm operator (see [5], [1l]). To do this we could define a

linear operator L:{) -+ £ by

—

5.0 LY = (VF) iff J =F (¢ 3,F).

Here ?(t;?,f) is a solution of 1.1l. The Banach spaces &, £ must

be chosen appropriately. For example, let < satisfy 3.7 and
B=a™x R. , //( f)// = /X/+//x/;‘ (é)f(é)//m,
A - L-'68 , //_y (é) //] (t)// . We will not pursue

the details here since all the useful results are contained in

Theorem 4.1.
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CHAPTER IV: Nonlinear Problems

IVv.l. An Example Problem

Consider the nonlinear TPBVP
ey ]
a A . (' °)3‘(f) s B > for t> 1,
Y, 8y, (¥

1.1 b) C

| . . - y,(f)
P (}:0 is a 1x2 real matrix and y(t)*® L)

Here ?: [tmoo) - ]R2

The phase plane for 1.1 is sketched in Fig. 1l.1.

ry.
sy mmc‘tn‘c.
~ abou't ‘ya= o

AN
\
\
h

Fig. 1.1
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The trajectories labeled CZO in Fig. 1.1 are analogous to
the admissible space a(ta) ) defined in Section 1.1 for linear

problems. Here, for some tn 2 t0

Note that ao is independent of tp, since the right hand side of

l.la does not depend explicitly on t.

we have the following EBCs for problem 1.1

>
?or tto 2 to

a) Coj(to)=x,
b) § (ty) € do .

It is easily shown that 1l.la,b,c is equivalent to l.la with the

boundary conditions l.3a,b.

In order to get ABCs for 1.1 we construct approximations

of do for /y ('l’m)/«l . Consider the expansion

SE OEPAR NS N (O

)
h=|
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Substituting 1.4 into l.la and then comparing coefficients of

e ™ for n=1,2,..., gives

a) 7y, a.(?> , /a/“-l , a € TR,

2

A JOF

and similarly for §3,§4;--. Now 1.5 suggests approximating 1l.3a

for /j(fm)/<<l by

1.6 a) (1 0) J (ty) = 0;
or

1.6 b §, (ty) + Waz 0 ;

)

or higher order approximations.

It is easy to show that 1.4, 1.5 give a valid asymptotic
expansion for |a| sufficiently small. Therefore, l.6a,b approxi-
- ¢ .
mate 1.3b to (/y({-w),a) and O(/j {-(—w)/ ) respectively. (We
call 1.3a, 1l.6a and l1.3a, 1.6b ABCs for 1.1 of O(/j(too)r\) and
O(/j(‘ém)/") , respectively.)

Using the O(/g‘({-m)}*) ABCs (for example) we can attempt
to approximate a solution of 1.1 by solving the following

truncated problem (a regular TPBVP)
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da . /1 0\ 2 wy (¢
1.7 dt (O “> &)+ <u_, (t))u.,_('t)>

for te(ty,ty ), and W(t) = (u, () ,u, ()7 ;
b C, 2 () -¥,

o, (tg) * [uy (ta)] /s =0 .

We also require |U(ty, )| to be "small."

The boundary conditions given by the procedure of M.

Lentini and H. B. Keller (see [8]) are

a) Co @ (t,)-Y,
1.8
b) w, (t)+ u) (t,) -0 .

This is an O(lj(tm)/l) boundary condition, and is different from

the one we obtain using l.6a.

IV.2. EBCs and ABCs for Nonlinear Problems

Consider
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2.1 b) T;(j(to))jm) =0 €ed )

c) lim j (f) = v lim _é_j_ -f-) - 7.
t>m Jeo t>00 dt (
where f is smooth. Here jao may or may not be given a priori.

Let t,, 2 t Define the admissible space ((tg, ;?w) for some

0.
?m € R" by

2.2 Q4 (‘l-"w ;jao> = {? e " /ﬂefe exists Jit) For T2 1,
Sveh that G(t) safis§ies 2la
Sor tot, and \'7'(19)
satisFies A.lc }.

(Compare ao, equation 1.2). Notice that a(tm ;?m ) may be the

empty set for some ?m .

Directly from 2.2 we see that we can define the following

EBCs for 2.1
a) B(j (t—m)' -jao) =0 )
B) § (ty) € Aty ;7,)-

In particular, the TPBVP 2.1 a,b,c is equivalent to the TPBVP

2.1la, 2.3a,b.
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In general a(tm ;?w) will not be available in closed
form. However, we might attempt to get approximate boundary
conditions by approximating a(t,b ;?m) for t gy large and for
/j (ty) - yw/ <</ (see Section IV.l). 1In order to
) we attempt to find the behaviour of

approximate {{ ( foo'»yco

solutions of the IVP

2 G Lo 508) etz oty o1,

dt )

—

b) j(tw) * VYo * &,

where l§/<<l and 7fh(t,'i'?m) ~> 0 as t>00 . Without loss of

generality we will assume that ?oo = 0.

In the sequel we will assume

a) Y, O,

b F(3) - tTADTO - T+ 3G F0), 500
Where

cy A(t) s analytic at 0, p2 -l is an integer ;
2.5 @) h(t) smooth For t >, :

e) ’3"(1‘:,3) =9 For t20, and

li; e 3) = mewlye/,
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2.5 e) (continued)

for }j(t)/ <'T"y where 'T:y 30 and M(¢) € C[%,, o).

With the assumptions in 2.5 we can use the linear theory
given in Chapter III to investigate some solutions of 2.4 (i.e.,
we can study "nearly linear" solutions of 2.4). The reader may
find it helpful to apply the rather technical conditions of the

following theorem to the example treated in Section 1IV.1,

- - . .
Theorem 2.6. Assume that £(t,y) satisfies 2.5. Let

.J(s),n/p be as given in Lemma I4.1 for the linearized homoge-

neous equation

2.6  a) .31% = tTA L) , Ffor tot, .

Let U(t) = U(tity, JE) satisfy 2.6 and

2.6 b) W(ty,) =35 eda".

-t

n
Suppose §OG¢ is such that

2.7 /E(t;fw,§°>/ = K, |5 ] ¥

for t 2 tg,where Ky <0 , F(t) > 0 for t 2 t ,and F(t) = o(1)

as t->o0 .
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+
In addition, we assume that for some 4> ,ora

-/ and

3 _3(t
¢(t)= t q'e PO , with q_é TRand ©(t) a real polynomial in
l/r

t . We have
a (R@W)| < K, b, for t2t, ;
b % @) (1+ ¢4 ) = o ()

2.8

)t o (Yw)
a T ¥ -0(d(L)

as t >0 . (For example, in Section 4.1 we could take §° = (?) '

hit)y= 0, P(e) =%, Me) = 1, A= 1 and Pe) = e 25).

Then there exist constants T, Kl and € *» 0 such that for

—h
to > T and for /§° /<£ the nonlinear o.d.e. 2.4a has a solution

-l

yp(t ity .Eo) satisfying
2.9 [ Jo (hitn, §,) - L (83 fo)/ <k ¢ %g) /[f +m€§o/?fﬂ¢({‘)
(oo )

>
fort_tw.

The hypotheses of Theorem 2.6 are a setup for Lemma III 3.7
and a contraction technique. The proof of Theorem 2.6 is con-

tained in Appendix A4.
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Theorem 2.6 gives us useful information about a(tm ;'5) .
In particular, from estimate 2.9 we see that y (t; t ?0)-+ 0

as t >0 . Therefore y (ta: it § )ta(tm ,0). Also by 2.9

210 |3, (ty i te, 8) - 5 /< K {/M// /;3{4(@).

In this way we can estimate some of the elements ofa(tm;_(')‘) .
The proof of Theorem 2.6 can also be used to obtain and justify
higher order approximations (including the approximations in

Section 4.1).

Theorem 2.6 has a partial converse of the following form.
Let § >0 be sufficiently small, and ?e C"s.t. U (f,’ éw,g )‘HD
sufficiently quickly. Then foriﬁ(t) sufficiently small the

initial value problem
2.11

has a solution ¥(t;t,, ,8) for te€ [éco'TSY where T¢ 2 t, and
/j(ﬁ;fw,g)/>5 (TS depends on §,t ,E).

We will not pursue these results here. The interested

reader can refer to Coddington and Levinson El;,p; 340].

Note that our results above come from a local analysis

around'?(t)ii 0. As a result we cannot hope to determine d(fb:O)
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in a neighborhood of ¥ = 0 for general systems with‘f(t,§) as in

2.5. To see the problem, consider

2.12 ¥ . F(P) oemwm* -/
dt (j) o yz> ’

where 2.12 has a phase plane as sketched in Fig. 2.1 below.

1Y,

=7

Fig. 2.1

4(53 is the heavy line in Fig. 2.1. Also, our local analysis
depends on 2.la being "nearly linear" for LY/<<./ . For
example, we can obtain a complete local analysis around V= 0 of

problems of the form

3 (i) , fir f‘>'fo

<}
+
L&)

2.13 E’i: A
dt °

. . - - 2
Where A, = diag (u,; [i=1,...,n), Re(u,) # O, [9(¥)| < K|¥|° for

some constant K < @ with §(y) smooth. (Apply Theorem 2.6 above
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and the converse results in [1, p. 340].) The phase portrait of
2.13 in a neighborhood of ¥ = 0 is a slight perturbation of the

phase portrait of the linearized equation

2.14 4% . A 3z
dt °

in the same neighborhood. (Hence the term "nearly linear.") An
example of a problem that is not nearly linear is presented in

the next section

IV.3. A Nonlinear Example Problem

Consider the following example for which Theorem 2.6

does not apply:

di /Y2 (D¢ ay?(@®
3.1 a) ﬁ =(2 3’);({‘) > ‘For ‘i’.’>0,

where j(t) = (J; (€), Y (“)>Tu

3.1 b)) § (&) bourded on [0, »).

In particular, we are interested in the admissible space
3.2 A (t,;8)=a

0"

From 3.la we see that
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=1
c+

-
3.3y, (¥) = where ¢ = ‘[y,_ ()] .

Therefore yz(t) is bounded on [0,00) iff y2(0) < 0.

Substituting 3.3 into the equation for yl(t) gives

dy, 4 - t >
3.4 = = ay, (t) — o Ter 0

Here we take ¢ > 0 (i.e., y2(0) <0).

Now if a £ 0 then 3.4 has no bounded solution on [0,).

For a > 0 we have sketched several solutions of 3.4 in Fiag. 3.5.

-1
“%[0) £a(c+1‘3)3 2
\

'yﬁ . P

- ]'_afc"'ﬂ)] /\/3/ <

7

r
Fig. 3.5

Notice that there exists yI(a,yz(O)) > 0 for a >0 and y,(0) < 0
such that y, (t) is bounded on [0,0) iff y (0) % yf(a,yz(on.
(Furthermore. yy(t) > 0 as t >0 for these yl(O)). Also, from

Fig. 3.1 we see that
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VE‘E— = V"_yz-.o{f). for a,c >0,

From 3.3, 3.5 and Fig. 3.5 we obtain ao for a > 0 as

3.5 0<y (ay, )%

sketched in Fig. 3.6.

T

T
NG s

Fig. 3.6

Therefore, we have the following EBCs for problem 3.1 for

tm > 0:

a) Y, (ty) €0,
3.6

b) Yy, (fco) < -\/:* (a, j,_) .

*
By replacing yl(a,yz) in 3.6b by an asymptotic approximation for
Yoy £ 0, [y2/<< 1, we get ABCs for problem 3.1l. Notice that both

the EBCs and the ABCs for problem 3.1 are inequality constraints

on ¥(tp). This is fundamentally different than the boundary

conditions we have obtained previously.
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A more general analysis of problems of the form 2.1, with
$(t,§) as in 2.4 and 2.5, is an area for future research. 1In
particular, we might consider tPa(t) in 2.4 to have some eigen-
value (s) ’/“'i(t) , with the Regai(t)) = O(l/tz) as t20 . The
procedure outlined in Section IV.2 does not, in general, provide
a reasonable a(ta>7§ﬁ>) in this case (see Section IV.3). The
von Karman swirling flow is an example of an interesting practical
problem with some;ai(t) ® (0 for certain parameter values. (See

[7] and [9]).

IV.4 Existence and Error Estimates for Solutions of the Truncated

Problem

Consider the TPBVP
a B AT 3§, e bt

11 B b (J)) - B edh

Here
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4.2 b) ?(j) Smooth and /3‘ (j)/ = K/y/‘.t for

(&)

€ € sit. /j/ £ Ty  where K ) Ty are

constants , T; > 0.

From Coddington and Levinson (1, p. 330. Thm. 4.1] we see that

there exists a smooth (n-%)-vector valued function ¢(§) such that:?

-’ - n-l . . .
4.3 a) $(y0) =0€&C => there exists a unique solution
-

¥(t:;¥,) of 4.la satisfying V(tyi¥,) = ¥,-

Furthermore, 1lim ?(t;'}}_o) =7.
trm

4.3 b)  Suppose '1706 ¢® is such that '}?(t;?o) - 0 as
t =200 . Then there exists tCD (370) < 00

such that for all t

v

w2t ¢ (J(ty:3))-0.

1.3 o 9(3)-73, . (3)

y (o(n-x)u I(n-l) x (m-l)>.

Using this $(§) we see from 4.3 that the boundary condition

4.1c is equivalent to

4.4 ¢ (§(,) -3

for some tp <0ty sufficiently large.
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o~
Suppose that for |y| sufficiently small we have $(§) an

P d

techniques for constructing $ .) In particular, assume

4.5

4.6

2 3 -F @) - 03

Vaud

b) ¢ Smooth

We wish to consider the following truncated problem

133

a)

A+ 3(2) For te(t,,t,),

2 \n_
+

b b (z(t,)) -3,

C

S
—~
)
A~
8
~./
N~
L1}
]

where t o is sufficiently large. We call 4.6b,c ABCs for

problem 4.1 (see 4.5a).

We have the following theorem on the existence of solutions

of the regular TPBVP 4.6:

Theorem 4.7. Suppose §l(t) is a solution of 4.1 such that

the linearized problem

(See IV.1l and IV.2 for a discussion of
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d 3 (o -
o L2 [A v d, (5.0)]F e te (4,40

4.7  b) {Ey (3, (i—o))} V(t) =D ¢ ¢z ,

n-A

) { $j (3, ()] F(d) - F e €7

has a unique solution for each t,, sufficiently large, and

E & cL" . Furthermore, assume that for te sufficiently large

there exists a constant Ky, independent of teg, s.t.:

. ¥ oest,, B 2 k|2,
4.8 f:ﬂ:.fm]/ ( oogl o//

where V(% {'oo ,?)is the solution of 4.7.

Then for t, sufficiently large the TPBVP 4.6 has a
solution 'ﬁl(t;tm ,?l) satisfying
/ — . — — / Z /_A A
4.9  sup @, (tit,, 3) - .0 ¢k 13, ()] .
te [t t,]

Where Kl is a constant independent of ty -

Proof of Theorem 4.7. Consider the TPBVP

a) ;;{“c =Ao-l:\-‘f' +§(W), ‘For -l-—e (+o|.éoo);
7

4.10 b) b (W (t))=0 €L,

o) O (R(ty) - Eead™
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By the Implicit Function theorem it follows from estimate 4.8
that for tw sufficiently large and for /?/ sufficiently small

4.10 has a solution W(tit, ,3). Also, W(tijty ,0) = ¥, (t) and

4.11

B | % (it ) - (tit, T 2 Ky [3-T)

where ?,ﬁem"'{ /?/ . /7z‘/< § . Furthermore, § >0 and K, are

constants independent of t .

Now consider the iteration scheme

<l
-~

a) w’ (t;ty) = 1),

4.12  b) Ei)(t;tm)s W (tite,, E77)  for V2,
&) Y 5 (@7 (i ty)) - B (L7(4,;ty)).

2 -
Using estimate 4.11 (assuming for the moment that §, ?’) ]

are sufficiently small)

TR R Y Y _ FVA
[ts:;m]}u. u./ A ﬁ-K/E 3 /

However, by 4.3, 4.5, and 4.1l2c
[87 -3 2 K, ([ & ()] + [ & (o, )] &

-
Therefore, if & Q, g ? are sufficiently small, then
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s o SRk ([ ]+ 1 s ) &)

also

&

4.13 b a' 2K /j, (tm)/

Therefore, the theorem follows for /?1(fm)/ sufficiently small,

that is, tg sufficiently large. W

Similar results can be obtained (by similar techniques) for

more general TPBVPs than 4.1. We will not pursue these results

here.
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APPENDIX Al

An Outline of a Constructive Proof of Lemma I4.l: Let A(t)

in l.1la satisfy

-k
a) A({)"Z_wA t for ‘t>T;
k=0 k

Al.1 Db) A°= dfag (,u.i I"',;"'Hi /L‘I,...,l),
A
P ° ' )
O '8
’ S‘("T‘)
A 0
with gij = 0 or 1 and AO in Jordan form. Alsc we assume

Al.l

Definition Al.2. For Ao as above, a nxn matrix B is

7T(AO)—diagonal iff it is block diagonal with

Al.2 B = diag (Bi / i=1,...,4; Bi a n;xn. matrix) .
o
Lemma Al.3. For A(t) as above, there exists {l—k}k ,
w =
a sequence of constant nxn matrices, and {’szh | such that for

q20
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a L = (T+FL) ... (1+3L), L0

Al.3
b) det (X () +0 Ffor £>t, 2T

“l €)Y (t) satisfies (from 1.la)

Furthermore, Wq(t) = azq

Al.4 dw-, . t° =
At Ay (8) Wy (€)

for t 2 tq. Here

o L
=57 R ¢
a) Aq_(f) kf:o Aq.kf h >fq_;
Al.5

b) A‘F° = A

o .
o)
And {L/:}L=, is chosen s.t.
iy if p>-1  then for /v-o,l,...,?_)

Al.5 ¢) Aq,k I's T(Ao) diajonal,‘

ii) 1 £ pP- -l +hen Ffor 9_=’,9~, ...‘,

al.s 4a) A =0,

ok

1]

I
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Proof of Lemma Al.3. We see from Al.3a that

Al.6 (I+—" L ) {{' A ({')(I-l-fq.l. )4- POxd W"q’(f),
fA (t) w- (f)

for t > tq, g 2 1. Left multiplying Al.6 by (I +-_£!:§_ L7_> and

comparing like powers of 1/t gives

Al.7 a) Aik = A(?_‘l)/l

for k = 0,1,...,q-1) and

- _ 2
Al.7 b) Ac"(?‘*‘.) A@--’)@*") * A(q'-/)}! LQ. Li A,‘ * Q’Li SA)F*’

for k =0,1,2,.... Here SJ,J =1 if i = j, = 0 otherwise.

We can use the recursion relations Al.7 to prove the
lemma by induction on g. For each q =2 1, we choose Lq using

(from Al.7)

aLs A, = A(i")‘} toA Ly - L ALY gl &,

We will leave out the straightforward calculation showing that

there exists Lq for g2 1 such that



8l
i) 4if p > =1 then Aqq equals the'WTAo)—diagonal
part of A(q-l)q'
ii) ifp = —l-ml,AAi-/uj & {O,AJ,.;'} for any 1,3

th A = 0.
en A . =0 |

Lemma Al.9. For A(t) as in Al.l, there exists J((t) for

t > T, such that

1

Al.9 x(a:oe; (t) + o(¢+'%)

as t>m , for g = 0,1,2,...; w(t)= X —l(t)‘i?(t) for t > T,

satisfies

ALLL0 a) 9% L tPA () W) | R toT

dt
Here
b) 'A‘ (t) = dlﬂj (/Rl (t) / £= I, o 8y 1, WI*’\ A‘ a n'. an. mafr“‘),
Al.10 .
o A@«I¥ A 7 1o0@"H)
k:0 4
as t 20 , for g 2 0. Furthermore if p = -1 then
) a) X('é) = |im az‘ (1‘:) for t >7-, )
g2 7
Al.1ll

A

b) A(t) = A,.

(L]
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For the proof of Lemma Al.9 we refer the reader to Wasow

[12, p. 55].

We can consider each diagonal block of Al.1l0 a separately,

so without loss of generality we can take 2 = 1. Rewriting Al.10:

a) L;E = {t?(,u.,IfH,) + ¢y (t)} W (8) for +>T,
Al.l12
b A ~ S° At s £
k:o R

If H. 2 0 then we can transform A% to Jordan form and reapply

1

TE 7\]' Tn =
& i

0
and p > 0, then we can apply Lemmas Al.3 and Al.9 once more to get

[o}
emmas Al.3 and Al.9.

[l

dw® . . P2 4 (2) : Y
Al.13 a) —d“{- = diag (d“(t)Im‘_ﬁ»% A (i-)/ L=I,...,i2)w
with
~h
Al.14 D) Aé (t) ~ Zw A‘Tk t as t> 0.
‘ k=0 *

If we never encounter a nontrivial Jordan block, or a case for
which Al.1d is not satisfied, then we see that Lemma I4.l1 follows

from several applications of Lemmas Al.3 and Al.9.

Finally we consider the two cases for which we need to do
something more. First, suppose, that at some stage of the

reduction procedure we have
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2 ffdw T, T T®)F O,

~h
al.15 b) J(t) ~ Zm'.l';‘f as t = 00,
k=0

) T, = diag (I + H [i=t,2,..0,4),

with Hi as in Al.lb. Also, suppose that
d) /Ml ‘/u.l - Ae{/,a,-..},
Al.15
e . .
) A&i # qu' 4%r l.iJ.
Several applications of the transformation given in the following

lemma will transform Al.l5 to a form suitable for Lemma Al.3.

Lemma Al.l16. Consider the transformation

al.16 a) ¥ (t) = ,J,"(t)‘v"(f) for >,
with

b) "f, (-L-): (I-P‘)-r',é'ﬁ' y & mixm matrix
Al.l6

o) P« diag (5i,'I~'¢ [ist,..., 1)

(see Al.15). Then there exists a constant mxm matrix T such that

Al.15a implies that W(t) = T -4 71(t) V(t) satisfies
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Al.17 a) %? - {d(t) I+t 7 (‘f)}"ﬁ‘ (t) For t>t,,

Here

b) T, (4_.) ~ Zw Tt/z'é‘/.»
k=0

Al.17 o T, = dsaj (/“-;e Im., + H,; / cr/,...,»l)a

d) /‘.,‘o ] ﬂ_‘_"' S‘-I .For‘.’,..a,l

(Loewppuypuyy = k-1).

The proof of Lemma Al.16 is an easy calculation, and it is
omitted. Finally, we must consider the trouble noted above for a
nontrivial Jordan block. For a cbmplete treatment of this

problem see Wasow [B8]. Below we present an example to illustrate

. the procedure.

Example Al.18. Consider

Al.18 %={(%§Z)+%<§é§)}j(t) for > 1.

Notice that we cannot reduce Al.l8 any further using Lemma Al.3.

However, suppose we rescale the variables‘yl,yz,yB as follows:

ALl a) W@ A ®F(H), st

for t21, and
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. 0 O
Al.19 b) xf(s) = os I 0 .
0 O %1
Then Al.18 becomes
L
- - )] 4 0 -1 N
atz0 A% L S At (o o 1) A@] - dd w6,
ds d
s ,/f O O S

Simplifying Al.20, we get

- I 0 /I 00
Al.21 _d_"f = 3 go l) +L[oo0 o)}ﬁ“.
s ] o O S \o 0 4

Now the leading order matrix in Al.21 can be diagonalized, with
distinct eigenvalues. After transforming Al.21 to the form in
Al.l1 (a constant transformation) we can put Al.l18 in the desired

form with one application of Lemma Al.3.

The above techniques are not feasible for automatic
o
computation of the {:T;} , etc. The development of an automatic
s )
procedure for calculating the ABCs is an important area for

future research.
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APPENDIX A2

Proof of Lemma l.l. We begin by showing that 1.1 does not

depend on typ » OF the particular P(ta) ), C(tp ) chosen (recall

that Q(tw) is not uniquely defined by definition Il.3).

Notice that C(tm )P(tw) = 0 and P(ty) = I-—Q(tm).

Therefore
Ytk ) Pley)+ [CoVlt, o)t 1) QM)
C,Y(+. .t )+C(t,,) ’ :
Rank ° (o LI (m = Rank /
P(t,) Plty 0

"

Rank (P(ty) + Rank ([CoY (t,,t,) + C(ty)] G(i—m)\),

R dim G (k) + din (Y ()4 C ()] [fea ),

— -
and C(tp)§ is uniquely defined for §€ a({-m). Therefore 1.1 is

independent of the particular P(tp), Clty).

Therefore without loss of generality we can assume that

a) P(H)- Y5 PE)YY (R, 4)  for 3¢,

A2.1
by C()=c(t)Y (. 4) for t>t,.

Using A2.1 we see that 1.1 does not depend on t, .
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Recall from Lemma Il.4 that the EBCs Il.4b,c are equivalent

to Il.lb,c. Substituting the general solution of Il.la

- Y(++,)E  Tec”

)

into Il.4b,c implies

CoY (£,.ty) + Clte)

P(t,)

T -

ol <}

And so l.la and b follow.

Finally, if 1.1 is satisfied then the solution operator
s:c™” > C[to,w ) K—)j(‘t;?) is a well-defined linear operator. By
Il.1lc S is pointwise bounded (i.e., tsug /j(t\,f)/ < ® for

>
= %o

each ?e d'.m).' Som <0 implies 1l.1l. | )

Proof of Theorem 1.5. We will first prove several related

lemmas.

Lemma A2.2. The TPBVPs Il.l and 1.3 are equivalent to the

matrix problems

- Y 4n+m
a) B(t,) % (t,) = (%) ec "

A2.2
‘fn-&-m

Y

o (B(ty) + E(ty)) 7 (ty) - (%) e €

respectively. Where X (‘f‘m), ,2 (‘l’m) € d:an and
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CR ) 1 {C Y b))+ Clefio) G Yk t)Pr)
0

) 0 , ' Plt.
) Bla)\1-pe); o 1o
0 | I- P' (tw) { O
A2.3 0 i 0 1 I—Io/l"w)

ACH Y0 t) B (4)  AC(y)  AC (ty)
b) E(t )7l a P() YR, EIB(E)  AP(ty) 2P (ty)),
0 0 0

where AC (t,) = ¢ (foo) -C (‘fm), A P(‘i‘w> = P ('fm) - P (fm)»

Proof of Lemma A2.2. A general solution of Il.la is

a4 F - Y(EE)X + Y (40X, + K,),
where &, * P (t) 2, , SZA < P (%):;iM = P(t,)Z,.
To see this recall from Definition 1.4 that

A,(ts) = Y (ty,1,) A, (4,) ,

therefore Y(tco ,to);l Gﬂo(fw). S0 we can rewrite A2.4 as

T ) =Y (tt) Y (t,8,) &, + o+ X3 §.
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Finally, notice that Range {Po (faa) + P ({'m)* F({'m)} =c”

Substituting A2.4 into the EBCs Il.4b,c gives

- - — kvl

) ({2 + Yty ty)(2,+2,)} +Cltn)d, - ¥,

A2.5 |
-

b) P(t,)a, = O,

where we have used C(tm) PO_(tw) = C(tw) P(ty) =0 in A2.5a.

¢Tar¢T)T

So A2.2a follows with X(t): (&%

' ) L’o% Similarly, set

a2.6 () YA + Y (tt) (A +4,),

where 3 = B ()3, Bz P(ty) B+ B,: P(tn) B, -

Substituting A2.6 into the boundary conditions Il.4b,c gives

a) C, {;3*, + Y, t)(E Ug;)} iZ(fm){Y(fm,i’o)E-ﬁﬁ;'?%}
=Y

A2.7 y
b Bty {Y (£, 1) 38 + (4 ""/ga)}: 0,

And then A2.2b is obtained by adding

2 C(tn) B, - C(te) { Yty t) B +5,+ 4, ] =8,
A2.8

b Pty B -Pt){ Y (ke t)E + 4.4 5,10,

to the left hand sides of A2.7a,b, respectively. Il
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Note that if 1.1 is satisfied then by Lemma 1.1, A2.2a has
a unique solution 2(ﬁn) for each-?élln. We would like to prove
that A2.2b has a unique solution for t_, sufficiently large. We

begin by rewriting equation A2.2b in a more useful form.

Imlm O O
Lemma A2.9. Let E(typ) = 0  Pltg) O E (%)
0 o0 I

3nx3n

Assume that g(tm ), P(tm) satisfy estimate 1.5b, with 'lg(tw) a

projection matrix.

-
Then there exists T, independent of ¥ s.t. for HD £ To)ﬁ

0
satisfies A2.2b iff

az.o  (B(%,) + E (t—m)>§(fm) =(§>

Proof of Lemma A2.9. Clearly A2.2b = A2.9. Conversely, if ﬁﬁQ

satisfies A2.9 then
az.10 P(tp) P(t,) @ (tp) - 0,

——
where W(tg) = (Y(ty ,ty) Pylty) | I | I, )48 (see A2.3,
A2.6, A2.7b, A2.8b, and the definition of ﬁ(ta,)). Since P = I-Q

and since P is a projection matrix, we see that we can write A2.10

as

n2.11 [ Q (£,)(F(ty)- P(t))] Pty @ (tg) = P(t) T ().
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However, by 1.5b
A2.12 /Q(‘(’m)('ﬁ({'a})‘P('[’m))/ =0 (,/E.,.d)(fm.’Pz) =0(/>

~ -
as £, ¥ 00 . So A2.11, A2.12 ¥ Bty ) Ulty) = 0 for ty

sufficiently large = 4 (fw) satisfies A2.2b. W

We will show below that the columns of ﬁ(tm) are in Range
(B(¢y)) (not necessarily true for E(ty)). This leads us to

consider the following iteration scheme for solving A2.9

a) B(fw) /é; = (;)“g(fm)EQ_, for v=1,2,...;

A2.13

The following lemma gives us the key estimates for A2.13a.

. . s - 4n+m
Lemma A2.l14. Suppose 1.1 is satisfied. Let bEC p

- _ T T T - n -
b = E where B,£¢", b, € ¢” and P(ty)b, = b,. Let
tm to.
. . .30
Then there exists a unique §€C s.t.
a2.14 B(t,) 5= T,
3 “T > n
Furthermore, setting § (§ § ) with §£€¢

there exists K0 a constant independent of b, ty 2 t0 such that
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where ¢(tco7p) is as in Definition 1.4.

Proof of Lemma A2.l14. We can rewrite A2.l14, using A2.3a, as

aae Co P (8)E + (6 Y () #C(8)) B () B,
= -E, - Co Y({'o. {'w) b.l )

-

-— i -— -
with §; = b, and (I-Py(t4))E; = (I-P, (tq ))§2 = 0. Now using

Definition 1.4 we can write A2.16 as follows

a) C, P (£)F, + {(co*c@) RN T, r - GY (B4
A2.17
b) B, = Y (ty . t) 7,

a

-

with §3 = 32,(I—P0(t0))§1 = (I-Pl(to))ﬂ2 = 0. Recall from

Definition 1.4 that
a) Range (I% (t,) + F ('t'o)> =4 (%),
a2.18 b) C (t,) B (t,) =0,

o P () B (%) =0.
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Therefore, we can write A2.17 as follows
a) (G+CENQEF)T] = b - Co Y (b0, ) B,

by, - BT
A2.19
o) B, o= Y(tp t) R (t)]]

L]

a I, - IR

*

—
Now by 1.1 we see that there exists a solution 7l of A2.19a. Notice

that A2.19a does not have a unique solution in general, however

we can assume that ﬁ satisfies
a2.20 /7] = K (/Z;/ + ¢(foo;P>/§2/>

for some constant Kl independent of ta){g. Notice that
¥ (e, eI Py (t) | < Ky|Y(t,tg)Q(ty) | < Ky for t > t, for some
constants KZ'K3‘ Therefore, we see that A2.14 has a solution

that satisfies A2.15.
Finally,'? is unique by Lemmas 1.1 and A2.2. ||
Using Lemma A2.14 we can prove

Lemma A2.20. Suppose l.1 is satisfied. Then there exists

T, s.t. for each ?e ¢m» fma T,

1
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ol x|

a2.9 (B (ty) + E(ty) 7 (tg) =<

)

-
has a unique solution A (t, ). Furthermore, for z(tw) represent-

ing the solution of A2.2a

A2.21 /a’i(tw) - E(fm)/ = 4 (/o?('l-m)/> as t, 7.

Proof of Lemma A2.20. We wish to use the contraction mapping

theorem on the iteration scheme A2.13a. Note that for any initial
- - (0
guess,go, equation A2.13a uniquely defines {A?Q}Q_I(see Lemma

A2.14).

To use the contraction mapping theorem a standard calcula-

tion shows that we only need to show that

- A
a2.22 B(t )%, (t,) = % ({5) = ™ column of E (),
has (unique) solutions with /EL (fm)/ = 0(’) as {'w"a:"
This estimate follows from 1.5, A2.3b, and from Lemma A2.14.

Lemma A2.20 now follows from the contraction mapping theorem. B

Now Lemmas A2.2 and A2.20 show that the TPBVP 1.3 has a
unigque solution ﬁ(t,?) for t o sufficiently large. Therefore, we

are only left with proving 1.7 in Theorem 1.5.

We see from Il.4 and 1.3 that E(t;tm [?) satisfies
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a) %f— - tTAM) () For t e (to,ty),

22.23) b) Co® (1) + ClLIE(R,) = AC(t) T (55 7),
c) P(tp) @ (1,) = AP(ty) & (ty,¥) = P(tp)a(tn:¥)

where A C (3,) * C(tg) - C(ty), 4P (tw) = P(te) - P(tw)-

Using Lemmas A2.2, A2.14 we see that
1.6 2 (tit,,¥) = Y(-.t)E + Y(t t.)(T,+2,),

with (I-5, (¢))3, = (I-B(t))E =(T-P(t,))E, - 3.

and

a) /EL/ £ Koch(fm)E(+m;?>/+
Pltn; P) )AP(%,)J(&,?)/) for i=2

A2.24
b) = AP(E)E (ty;F).
Let €, () = (/AC(tm)/+ ¢ (ty ;P)/ AP(fm)/) K, -
Notice that from 1.6 e(ty; tp,%) ¢ K, 5?3 /?/ for
i 1T

some constant K2 independent of ty .§. Therefore, we can bound

?i in terms of V(t, ;¥) as follows: (from A2.24)
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z < 3 = . .
a) /§C/=’= &'o (fm> {/:\i(fw; b’)/ + Kg ;{_, /E/x/] For é=1,2,

A2.25

o (8] [aPt)] 115 (s 9] + K, }‘Zf/"g‘,‘/}.

It will be useful to write A2.25 in matrix notation. Define

N > - = \T 3
a) .1.5(/5,/,/2_/, /§3/> e TR,
€, (*5) o) )
b) & (¢,) = 0 €, (1) 0 )
0 o [aP(ty)]

A2.26 |

o M(ty) = K, €(4,) (,'/ ;I ;I>,

0 B (4 3¥) = 3050 €EC(1) -
Then A2.25 can be written as
22.27 X ¢ B (t_;¥) + ' (ty) X,

= (,,9,,¥;) iff k; ¢ 9. for i = 1,2,3.

] 24

AN A
where x = (§l,§2,x3) <

From aA2.27:

a2.28 (I-T () =B ($,;7%).
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But F‘(too) > 0as t,, »m , so for tg sufficiently large

(independent of K ):

A2.29 (I-rl(fao)y' =T+ M (k) + P(ty) + - -

/

and (I-l"(tw))-l is positive definite. Therefore, multiplying

1

A2.28 by (I- M(ty)) "~ gives

N

-
X

3t D] € (h) 57 (Pt (1) (s 42.20),

A2.30

N

15 o, ] € 8) K, (1),

for t, 2 T, where T,K, are constants independent of T and ty -

3
Estimate A2.30 implies 1.7. N

Proof of Theorem 2.6. For t, sufficiently large, the existence

and uniqueness of the solution "ﬁ(t;tm) of 2.6 is an easy con-

sequence of Theorem 1.5.

Notice that @(t;t, ) satisfies the homogeneous TPBVP:
a) .j.fi - tPARB (4)  For te(t,, ty),

22.27 b) C,8 () + C(tx)8(te) =% (),
o) P8 (1) = ¥, (t,).

Here
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a) T (tp) = AC(4) Lty ty) + E(tn) Tu () - C(%0)T. (o),

A2.28
D) 7, (£)7 4P (te) (iltn) ta) - F, (6) + P () (Fr-31e)
with  Ac () = Clt)- C(4,) and AP (t,)= P(¢,) - P (t5)-

Notice that since U(t, ity ) satisfies 2.6c
- -
A2.29 P(‘ém) Xl (fm> = b/Z (fm> ’

Therefore we can apply Lemmas A2.2, A2.14 to get

J8] ¢ K (1T k)] + 8 (t3P) |7, (&)

far‘ (;-'—' 1/31)

A2.30
— S
b) §3 = XJ. (%m >‘
As in the proof of Theorem 1.5, notice that
/ (m,w,X)/é K, Z /EA/ (see 2.8), for some
constant K2 :Lndependent of tm and ¥. Let
€, (t)= K (Jac(ty]+ § (43P) [2P(1a)]) . Using

the above, we can rewrite A2.30 as: (using A2.28)
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2 (5] ¢ €170t 5.0 -3, ta)] +[ 2y, () [+ K, 57 2 1]
+ (le)]+ ¢ (kaiP) IPCtn)]) fo3p (ta))

A2.31 for i = 1,2;

o 3] = [ ap )] {17605, a5 ) 0 2 S
* /Ajp (foo)/ (/P({'m>/>7

where A*yP () = jP'(fm) —3}/’ (ty)-

Notice that if P(ty) # 0 then 1 = O(/P(tp )/). (P(ty)
is a projection matrix) therefore /Ap(fm)/=o (/P(fw)/).
Similarly, if C(tg) # O then by I4.21d we know that 1 = O(/C(tm)]l
and therefore /AC(fw)/ = O(/C('l’m)/> . Therefore K, s.t.:
(k-0 + & (taiP) [P(2)]) 2 €. (t) + | 4P () ]
for t, sufficiently large. This will simplify the /AjF (fm)/
terms in the bounds given in A2.31. Using &(ty, ), M(t,), % as

defined in A2.26, we see that A2.31 becomes

(T-T ()3 £ | J(tes . 9)- 30 ) | € 1) (1)

Ject)] + 6 (¢a3P) [Pt
a2.32 v a3, ()| K (Jetin]+ 6 (4 iP) [Pl
|P ()]

As in the proof of Theorem 1.5, for t, sufficiently large



100

-1 o0 A
(I- P({—ao\D : AZ I (fm) is positive definite. So A2.32
:0

implies

e |30, 7.9)-3, ()] € (&) (E”(FT@)/') (,")

[C )| + Plta; P)IPIE,)]
+ /AjP (ch)/ Ks (AZ:: (P(tw)>k><,c(£,))}/4b¢é’f}')la/)IP(#;,))

A2.33

[
But F(fco) ‘-‘E('l'm)Kz (,Il ;) =o(/) as t 2o . Therefore

T
A2.33 implies

2.3 X 27,3, %)-T. (¢ K, £ (&) (',’)

1IN 1€t + Plea; PIP)]
* /Aé(f)/)( I+&E@+)K lll>
I Tl 5 = K (i ICteN] +PLE, P Pl
| P(t)]

for ty 2 T, where T,K4 are constants independent of ?,f(t) .

Finally, 2.9 follows from A2.34, completing the proof of

Theorem 2,6. .
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APPENDIX A3

Proof of Lemma III3.7. By 3.3, 3.4 and 3.6 we can treat
each diagonal block of A(s) separately. That is, we can assume

without loss of generality that /=1 in 3.2. We can write 3.7a as

A3.1 a) %E ST () = sTRB(S)W(S) +G(s) for s>, ,
S

Here

by JT(s) = {iwp(s) +//.s°"’} I, .n+ _g_H ,
with u,p,/u,o”,S,ﬁ as in 3.3;

A3.2 «c) sszug’ /B(s)/ £ Kg ¢« 0,

- - &
d) sup /5“3(5)/ =/ s 3(5)// <o,
$25 ®.
=3
where o(=/o+’—0’-r €, and 0 < €, </ . (Notice that we can take

€, </ w“..l-a’.j.,) Define

Inun if <0 and 20
a) @, = Loyn if m<=p and 6=0;
0

+ ise 3
nxn © herwise ;

A3.3

. :
b) w(sr‘51> = eXP{S T(‘Y') d'x'} For S, S, 2 S,
Sa
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Notice that if Wb(s;sz) is a solution of
A3.4 w' (s,s.) - W(ss){S Q W(Sz,x)[xd'a‘g(x);}-,’ (.z;s;)*g'(x)]dx
©
_S&<I-Qw) \n/(Sz,x)[lo’-lB(x)ﬁp(.:c,'sz)-fg(xﬂ}
s

for s 2 sl and for some fixed S, = sl then‘ﬁp(s;sz) satisfies

A3.l. We will attempt to solve A3.4 using the iteration scheme
s -3 - -

A3.5  a) Wy (5;5,)=W(s,5,) {SS QW (51,1)[1 B(aw,_ (x;5,)+g (x)] dx
2

-S:o(I-QH)W(s,‘,x)[xf‘aB @, (x;s,) +§(J‘)] d”}

>
for s1 5 2 sl.

To deal with A3-5, we will need estimates for

a) I, (s;s,,h)= /S: W (5,5)Q, W (s, x)h (2 d1/>
A3.6

I (s;5, =] § WEs)(I-a)W (s, 0heodx],



103

where s 25, = s, and //s ;,(5)/. ) < m .
)
Lemma A3-7. Let €, >0 and «= p +/-6+&. Let
h(s) € Cls,m) , and

A R IO) A N EELIC TR

S2 5,

Then Il’IZ defined in A3.6 exist for § 2 §, 2 Sl. Further-

2

more, there exists an Eoe(o y E,), &, independent of 5‘,52 and E‘,

such that for any & > 0, &€ < &€, we have

A3.8 a) ¥ Qw= I +hen for s 25, 25, ¢

- l E,'Eo |
I, (S;sl,k)é /5 A(s)// SP*E,-E {/.,csi ]?

z)

.‘:C //5 I-.(s)// 9 me ;
a3.8 b) if Q, =0 +then for 525,25,
I (s;s,,h) ¢ ¢ | s A(s)// %HE,

% [s, )
Here C£ £ is a constant depending only on n,S,sl and € .

Before proving Lemma A3-7 we will use the estimates A3.8a
and b to prove that for 0 < £ < &, and for s, sufficiently large,

the iteration scheme A3.5 converges.

Let 0<&€< €&, and €£€,> 0. Then by A3.8 and A3.5
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as.9 /w (S;Sz)/ « C_J $“§(s)//m ;;—i;-j-.—e {’*(Si)s'-g"} =+

Y

£ ¢ [ s%5 09 //oo Y pre.

for s 2 52 > sl.
Define -a; (S',S,_) = ﬁ? (s;s,_) - &_;;_, (S;S,_) For
for ¥ = 1,2,.... Then by A3.5
—h s a-1 -
A3.10 a) T, (s;s,)- WCS.SZ){g Q W (s, %)X B(0E, , (x;s,)dx
sl
_SGZI "Q) ) d—-;B - . d
s W w(‘sz\x X (1)59_, (X.,Sz) X

for ¥ = 2,3,..., and s = 51;

— e
A3.10 b) T, (s5;5,) = W, (s5,5,)

o
for s » s,. Notice that 1lim W {s;s.,) = Z e (5;5,) if either
o =

limit exists. We wish to show that 2 3? (s;s,) converges
vzl

uniformly for s 2 52, for some s, sufficiently large.

Lemma A3.11. For 0 < € < 1 and 0 <€ < £, , there exists

'é'e(s;sz) for 9 =1,2,... satisfying A3.10. Furthermore 'é; (s;s,)

satisfies

L a s | STB R (515, | = [t 5@ [, M)

s>s,
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where K(S,_):a?cg KB/S,_ for s, 25, ;

/e)(s S)/a Ce /5 3(5)// K (s,) (’_*(Es:)&,-ao)’

55 sf‘l"é,‘é

£ aC, //Sig(s)//m KP-’CS:.) S PrE)

for s .>.52 2 ’51'

Proof of Lemma A3.ll. By A3.9 we see that A3.1llb is

satisfied for ? = 1. But if A3.1lb is true for some \) 2 1 then

. _ V-
A3.12 sup /s“"‘r > B(s) &, (s;s,)/ £ K, C, //S"j’(s)//m £ (s)
P Pl
21 {5 ()

¢ [ s+ 3(57// K (Sz) Ce Ka Sup -"r-e *55,-,‘5-,,'.‘-51»5&}

5 € S)Sz

and A3.lla follows for this ¢ since /-E& + &, -€ 2> 0.

We have shown that A3.1lla,b holds for ¥ = 1. Suppose
A3.11la,b holds for some ¥ 2 1. (Our induction hypothesis.) Then

by Lemma A3-1 and A3.l10a we see that for s 2 52 = Sl,
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s [, ]« Sl 008, @l (1))

slesf"'én—s—

N

3 O ACY/ N (, ; (g_)e,-sc)

sf s Pre -~
Where we have used the induction hypothesis. Estimate A3.13 is

of the desired form. The lemma now follows by induction. M

By A3.11 we see that for s, sufficiently large s.t. ¥e (S,_)‘l,

. m »
the series Z. ?‘P (S; 5;.) converges uniformly for § 2 Sy- And

b — . —h = g - . .
wp(s;sz) &= Q’:;?n w—p (S’S’) \szl c9 (S, S,_) satisfies
A3.1 for s 2 Sy and by A3.11b

ac [ls*5) ,
(I—K(S;)) s;_zo‘io'* ?P+E° -€ For $25, )

A3.14 /‘Q;(s;s,_)/ <

where S, is sufficiently large.
Finally, since J(s)= O (s*) we see that for s,

sufficiently large, 'i?p(t;sz) defined by

) 3, (t6);s,) = (W (555) For s2s;,
A3.15
b) t=5,

satisfies 2.la for t 2 52'. 7z:md

e e B 14 070,
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/0

v
for t 2 52 (where we have used /:7(5)/ = C_.,s for s 2 sl) .

We can easily extend ?p(t;sz) to a solution of 2.1la for t 2 to,

which finishes the proof of Lemma 3.7. B
We still have to prove Lemma A3-7.

Proof of Lemma A3-7. From A3.3b we see that there exists

a constant, C, such that

A3.17 /W(s,x,)/ < C(I-* 5//03 (f&>/n-l) e,«-é(s,x);

ol
X dx

where §(s,x) = S X . Suppose QW = I, then for

s
X
8 2 s_ 2 s

2 1

A3.18 I, (s;s,_,'l:) = / S: W (s.x)_l-:f.x)dx},

S
P C//S«Z(s) ) §5 (“_ S/lojsi/n-')iacﬁé(ax)dx,

[sz,oo

where we have used A3.17. Also for any &€ >0

a3.19 C sup {(Id-g /loﬂ 5&-/"")(%)‘5} = CE < 0.

52x25,°0
Therefore A3.18 becomes

- - ® eV ud (5.0
A3.20 I. (s;s,, h) £ Ce /s"‘ h (s)//[s ) Ss (‘;) X e dx..
K} 2.

It will be convenient to study the case Qw = 0 now. Let

s 2 sl and Qw = 0, then
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i —. d = ] % .
a3.21 /Sa;nm SS W (s,2) h(x) X-/ I, (s;s,,h)

We need to show that the limit in A3.21 exists. Let 53 25 2 82,

and €>0 then by A3.17 and A3.19

A3.22 /S:'w (s.x)'ﬁ(x)ax/ < C, /S“E(s)// Sjs (5)¢ e m 6y,

[s, o)

Notice that in A3.20 and A3.22 we are only left with

estimating for b > a > 0, and €> 0

b b
A3.23 Sa <P e’“écc’x)dx = SQ %_ (eﬂ@ (e,x)) dx

-de-s" et ]
b b
B+ag=] *
+ X [V, A o

From A3.23 we see

2 Sb 3B g d () (H ‘9"6’—')4;‘ . e"“d’("‘)]a
A3.24 a € ,“x.ao ,U.xz*‘-’ x.__A

j+ B2 s

. L
There exists a constant X = X(A;O';,u-) >0 st e 3

for x 2 X. Then for b2 a2 X we have

b a
-8 «$ (c,%) - [ e ® (c.x)J
A3-28 g"- e dx =3 A B+l J x-h °

Finally, it is easy to show that there exists a constant KO > 0

s.t. for a 2 b 2 s1
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A3.24 S el P Y {e"‘“"“) e"‘“"“}.

S — + R ————
a/3+o“-l b;ad-d’—I

Returning to A3.20 and using A3.326, we see

23.27 [ (s; sz,h) K Ce //5 ;,(5)/ Se{ g4 (5:52) +

52‘*0--’+£ 5“"0—-/"£ )

and from A3.3a (recall Qw = I)

"P*eo
az.2g e#PES) K,(é—) ) for 525, 25,

Where Kl,EO are constants, EO 20 and e tp 2 Eg if &=0

Therefore, using A3.28 in A3.27 (assuming K, 2 1)

. P EatE |
A3.29 Ii (S;S’-' h) 2 Ki Koc /S ;,(s)// a’w) Z(.S R+ O-] +E-pPE o+5‘*6—’}9
and using %X =p+/ - 0T +E,
& -€
& « 7 B s*t -
A3.30 = K: KOCE //S h(s)//[sum) S,a-»s,-s { .Sf""'eo * 5:})

from which estimate A3.8a follows.

Next we consider A3.22. Using A3.26

A3.31 /S:’ W (5,20 h (%) de-/ < KOCEI/S HS)// ){ iis:j)_s‘.e ‘*Sdir-,}

By A3.3 there exists a constant Kl s. T
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az.32 e#20(S) 2 (—§9->/a

for 5 £ s £ Sy (since we are treating the case Q, = 0 (see A3.3)).

Therefore A3.31 becomes (we assume Kl 2 1):

S.
A3.33 /LBN (520 h () dx/ﬁ K, K, Ce //s"‘ ;(S)//sz,m) {Sf"'f 514"45 + SLs}

for s, 2 s 2 s,,where we have used « +g-l = o+ €, . By A3.33
we see that SmW(S.x)-l:(x)dx_ exists since

E,~-€ > &',S—EO >0 . Letting S, —=»co in A3.33 we
obtain

a3.3¢4 I, (s;s,,h) € K, K C, //5“7:(5)//[5

l
Ua)) 5P+£,

for s 2 S, 2 5,, proving A3.8b. [
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APPENDIX A4

Proof of Theorem 2.6. We will construct a sequence

{'j'? ({:)}::o such that

-

a1l 4 tPAWT, (0 - RO+ § (8T,

for t > tw and for ¢ = 1,2,...; wcith

b) §, ()= & (t;t,,5,),

where t o 4 tO is fixed. The sequence {YQ}: o will also
satisfy

[9, () -3, ® 4c¢{/ ‘ A(t)/ } %6 (1),
A4.2 [t m)

by [3,00) € ¥t {Hg)f(a//ﬁ o &, jf’gcb(t),

- =
for t 2 o ¥Y=1,2,.... Where €, "j} Y-y for v 2

and C—‘;, i are constants (independent of t, )s.t.:

a) C ¢ [-%, for 2=1,2,...,

In

A4.3

b) Y ¢ L

t?é )V, ().

We begin with 9 = 1. Let y‘ (1)

Then by A4.la, Tr‘l(t) satisfies
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raos {thae) - & log (t'00) 1,,, ] ¥ (0,

= __t_f [-}:(t)+ ?G. y, (f))]

for t > t, . Now from the form of qS(t) we can easily see that

the transformation

-1
a) w(s) = {S’J(s)} V (%)
A4.5
b) s":=t

for t 2 t, is of the form required by Lemma III3.7. Further-

more, let L = ("‘; yeoo °‘1) with
Ad.6 °¢J=/o+l+2,r' ‘For J'=/,...,j,
- A (,042.)_ } s

and therefore & satisfies the hypotheses of Lemma III3.7 for A4.4.

Also, from the definition of k‘fc(t) in Lemma III3.7
= ; o -1+t
[ Ay 0] = | diog (t%ix Lo xn, it &) s Lt ”/,

= O(f('o“)/'-re's’fspf"“{') =0 (tﬂ) as t 7 .

Therefore we have (assuming //30 (f) /[f ) “ T:Y )
w]
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AL /)zf’_‘ ({:) [h ) +3 (¢, :Io(f)]//

[t @)
',3 1 - 2 L/ s
. //,‘{z @)1 //[fo.w) {//M e e // (é));) ] #So /fo/ja

= 5 {//ﬁﬁ(*)/[fm.m) * /E‘o/;}:

where (see 2.8)

~A 2 c K 2
/X/_;(f)f //[‘l‘ o) {/+ K, ///"(;)(Z; (t) /t‘o,M)} "Ki 0.,

By the preceding paragraph we see that we can apply Lemma
III3.7 to A4.4. This implies that there exists 'f?l(t) satisfying
A4.4 and

+/§/}'é

[%.0) < K, k2 {35 Pef e o

for t 2 t . Here EO > 0 is sufficiently small and Kg is a
0

constant indepeﬁdent from ty . Therefore, A4.1 for »=/ has a

solution 'S{'l(t) satisfying

2 F @ T, @+t PDOF (D),
A4.8

o [3.0) -, @] & K Kty {/M)k(f)[ LR

for t 2 typ - This completes our estimates for y = 1.
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From A4.8b we see that t must satisfy

®
K & )

- ©
(since C, < 'ﬁ). We proceed to construct {_y’) (f)j by

P=0
induction on v. Suppose that for some )2/ , {_‘y‘), ({-)}“:,_l
satisfies Ad4.1, A4.2, A4.3 for o' - 0,1,...,Y. We wish to
construct a suitable '3‘(‘? +l(t) . (We will ignore the condition

/y‘(ﬂ/ <«Ty in 2.5e since this will be satisfied for tg
- | | - : a

sufficiently 1 a +//——h%)// < K _+€

ufficiently large an /EO/ oQ) ( [{_m.m) h

(see estimates Ad.2a and 2.7)).

Notice that 'é:)_'_l(t) satisfies (by 2A4.la)

2 P -
a0 o - tA@E,,, - k@

for £ >t , where /v) (t)
4]

§ ({'0 j‘p (f)) - ? (ti yQ-{ (+)>

for £t 2 t and v = 1,2,. ...

By 2.5e, 2.8b, A4.2, A4.3 (and the induction hypothesis)

M [hof £ r@ (13,0l + 13, 0)) 120,
< { a¥” (K + e t* P e (f)}(//g'g;)ﬁ(ﬂ/f[f*{ﬁo/“ﬁﬂ%

= 0(4’('5)) as t ¥ co.
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By the same analysis using Lemma III3.7 that led to 24.8, we

see that A4.10 has a solution E>+l(t) s.t.
A4.12 /ewu ({.)/_4_ {JH"(KA*EZ) //{zﬂp(f)ﬁt(f)//[top) K£° Ky f-a;io]

(/93&) 'E(t)//[ +[E8) ){ $ .

Therefore, from A4.2b we require t, sufficiently large so that

24.13 -;{- 2 >3(K + £%) /fz"f'(é)// K K: o so(l)

as ta°-+ o0 .

Finally, usingf§)+l = §§+1 + f}, we see that (using 2A4.2)

a1e [, 0] = (c, m’*'){lw,m FLTRYC

for t 2 t,, . By the induction hypothesis C.,= l-£p ana L =L
o v a =

Therefore we can set

vl
CPH ' Cp*«)’{ Yoe I'ﬁ? +-!5?+l = l';") t+1,

as required. This completes the induction step, for t.

sufficiently large such that A4.9, 13 are satisfied and

A4.15 (K,‘-t ,§°Ia> // f‘¢(f)//“ww) + K, /P(f)//[{-mb) “xTy
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(iee, ¥, () <L Ty ¥o=01,..-).

The convergence of 5’; (t) = y ({'S foo ,?c.) as
Y20 follows easily from A4.1,2,3, where ?(t;tm ,fo) is

solution of 2.4a satisfying estimate 2.9. W
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PART II

Numerical Hopf Bifurcation
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INTRODUCTION

onsider the autonomous system of o.d.e's

0.1 27;= ;767,/\),

with ﬁe]Rn,Ae R, and E a smooth function. Let ﬁ'o (/\) be a

smooth steady state branch of 0.1, that is
$(q )
0.2 (d,(L),A)=0.

In this thesis we will be concerned with the Hopf bifurcation

of a periodic solution of 0.1 from the branch ‘ﬁ'o (A).

Hopf bifurcation is an important mechanism for the birth
of a periodic s::lution‘near-a steady state branch. The following
/

example illustrates this process.

Example 0,3. Let G(t) = (uq(t),u,(t))” satisty

0.3 % - (:/\ A’)a’-ﬁﬂg ul+ u_f}ﬁ

for ﬂ<0and /LOK. Phase portraits of 0.3 for /\so and A>aare given

in Fig. 0.4.



120

FM)’O LS 5‘éab/e. Z{:C/{_):O s df)Sélb/c

(74

Fig. 0.4

We see that for A»o equation 0.3 has a pericdic solution, given

by
2 sin T

0.4 szjk)=/$7 cos € .

Ala
Notice that the amplitude of the periodic solution, aﬂ&%=,éj

increases from zero as A increases from zero. The point
(ﬁ,A) = (0,0) is a Hopf bifurcation point for 0.3. (The reader

may find it instructive to consider the cases /B>0, and ﬂ=0.)

Returning to the general system 0.1, we make the following

‘definition:

Definition 0.5. (Hopf Bifurcation Point, HBP). The point

(ﬁc,/\c) is a HBP of 0.1 if there exist p»0,4.>0 such that
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a) there exists Eo(k) satisfying 0.2, ﬁo(i)

a smooth function of A for

Ae B],[Ac)sg/( ) M"‘“"P},

and &, (A)= (,7;)

b) fﬁ(ﬁo(A),A) has smooth, simple eigenvalues

MA) + 1(A) with MA) = 0, and WA) =;

c) g{,/bijé O)

-
d) + in&é are not eigenvalues of §3{aZ)At) for

n=0,2,3 4% ...

With this definition we have the well known result (see

Hopf [13d], Marsden and McCracken [24]):

Theorem 0.6 (The Hopf Bifurcation Theorem.) Let ﬁO(A)

satisfy 0.2 and suppose (ﬁb(Ac),Ab) is a HBP for 0.l. Then there
exists a family, ﬁi(t;s), of real periodic solutions of 0.1 for

O<LELE,. Here ‘ﬁL(t;Q) has the form

2 @¢;8)= dy(Ae)+E JEAE, 1), £),

0.6 b) £+ Te))=G(¢) ,

0 §(0)= o).
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Where ﬁL,A,S, T and y are smooth functions of £ such that as
gJoO:

a A=A+ Ole?) |

0.7 b) [(g)= 3/7/4,)¢ #—O(sa),

—i
X is an eigenvector

- n —
c) for some g, érR ) §(0+)+é f

of Eﬁ(ﬁo(AE)'Ab) with eigenvalue + i“é . Also /f&%ﬂ=/,

Finally, any periodic solution of 0.l near (ﬁb(Ab),Ab) and
having a period near T(0) is given by 0.6 for some £ >0(up to a

phase).
For a proof of Theorem 0.6 see Lemma V 4.15.

Relatively little work has been done on the automatic com-
putation of HBPs and the bifurcating solution branches (see [4],
{81, [9]1, (191, [20]). 1In this thesis we will present algorithms
for locating a HBP, for calculating the Hopf bifurcation param-
eters (see Chapter III), for calculating the birth of a periodic
solution, and for following a branch of periodic solutions.

Many of the methods are new. We also consider similar algorithms

for Hopf bifurcation in p.d.e's of the form
_ N N
0.8 Mé= §(U,az)uzx,-")/( ‘

Reaction diffusion equations are important problems of this form

(see [17], [27], and [28]).
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Example calculations, including applications to p.d.e's,

are in progress.
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CHAPTER I. Detecting a HBP While Continuing Along a’

Steady State Branch

I.1 Introduction

Techniques for the numerical computation of steady state
branches of 0.1 are well known (see [14], [25]). For example,
given a steady state ﬁO(AD) of 0.1, Euler-Newton continuation

calculates ﬁo(Al) as follows. First calculate
- ~l
1.1 &= 4)- /A,-Mfﬁ_‘. (a;ua),/(,)g )CA(W,,),/(,).
This equation is obtained by applying Euler's method (see [3]) to
> o |
1.2 S}a (Z(;(/U)l) lj;/\{i): = §:/L(6(0(K)J)\) ,

Therefore | l:)-,'—&z (A,)/’O((Ar '(0)7 as /(,—D

method to

,, Next we apply Newton's

1.3 §(57',/(-):0)

using ﬁi as the initial guess. For Al-AO sufficiently small,
- >0 . - .
and for fﬁ(uo(AO),Ao) = fﬁ nonsingular, the Newton iterates will

converge to W = EO(Xl)(see¥[24]).

One important property of Euler-Newton continuation is that
singular points in ﬁb(k) are easily detected. A singular point

on the steady state branch bek) is a point (ﬁb(Ac),)b) such
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that fg;; ﬁ(ﬁb(kc),Ac) is singular. In particular

1.4 olet(;;;>=0.

Such points could be regular bifurcation points, or turning
points (see [14]1), and are therefore important points to detect.
Notice that in the Euler Newton step above, the det(f%(ﬁb(ii),Ai))
for i = 0,1 could easily be calculated from the available LU-
factorizations of Eﬁ. Therefore we can check for a singular

Ace (lo,Al) by checking if det(E;) det(fé)'<_0 (we will not

consider multiple zeros here, see [14]).

In this chapter we discuss techniques for detecting a HBP

(ﬁb(Ab)'Ac) with AO<’A¥:< Aﬁf A necessary condition for

(ﬁo(Ac),Ac) to be a HBP is

1.5 alcb‘('g' ¢ W Inxn): O .

Unfortunately, in general we do not know a% a priori, and the
determinant in 1.5 is not easy to obtain. This makes the
detection of a HBP between AO and{)i a much more difficult

problem than the detection of a regular bifurcation point.

-
I.2 Method 1. Calculating the Eigenvalues of fﬁ.

Suppose that we compute ﬁobii) for i = 0,1,2,°"°, with

A0< Alé

.«» .« At each stage of the continuation we are

interested in detecting whether we have passed a HBP. Consider
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the following algorithm to do this.

Method 1. Suppose Fﬁb(ki),ii) is given and we have cal-
culated the next steady state ﬁO(A1+1)' To check for a HBP with
A Ay ohi )

n
a) Calculate the eigenvalues g°‘k(Au”{i=’ of

- Ll el -
SJ:ZT = ga- ( Uy (/Léﬁ), /Li-n ) )
i+l

2.1 b) Calculate n,
o, (A ) with Re(o(An))>0

¥ the number of eigenvalues

c) Using ni calculated in the previous continuation

i+l o i+l i

step, calculate An_ n, " - ny .

Py

From Method 1 we know that at least L5n+ } eigenvalues

of £a(d,(4),A) cross the ima inary axis in the interval C& A, )
a' o ¢ g i77i+l’

If lAﬂf”I 2 we should further examine [/\i,/LiH_] for a HBP
n, :

(see Chapter II). If k&n;"'ﬂl , there exists a singular point

. - . A

(see Section 1) of the path uo(k) in [Ai' i+1]'

possibility that Method 1 might fail to detect a HBP if a pair

(There is a

of eigenvalues crosses the imaginary axis an even number of

times in [Ai’Ai+1]’ or if two (2 m) pairs cross in opposite

directions. To detect these we would have to do some more work,
d .

for example, we could check atheﬁﬁk(k)) for eigenvalues Oa(A)

with Re«Xk(A)) small. We will not consider this further.)
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Estimates of the number of operations (i.e., multiplica-
tions and divisions) that Method 1 requires will be useful for
comparisons with other methods. The estimates in Table 2.4 are
based on the following algorithm for calculating the eigenvalues
of a matrix (see Wilkinson [36] for details, or see [3], [34]):

i+l

a) Reduce fﬁ to Hessenberg form using Householder

transformations ;

2.2

b) Apply the QR-algorithm to the reduced matrix.

The estimates are given for f%+l a full, unsymmetric nxn matrix
and for f:+l having band width d = 2m+1 (i.e.,

X, . % <::>

Skl T
2.3 &a = [ we—d > )

where "*" represents a possibly nonzero entry).
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TABLE 2.4

Operation Counts for Method 1

Type of
Matrix Full nxn, banded n:n,band

. unsymmetric width 4 = 29+1)
Operation nonsymmetric
Gaussian Elim.
with partial % n3 % nd2
pivoting
Reduction to 5 n3 _
Hessenberg form 3
QR - Algorithm % nd T O(n3)
Total for 13 3 3
Method 1 30 0(n~)

.1-

-—
require no more than three LU-factorizations of fﬁ (see Perozzi

[2

7
2
Based on ;i{gk , where one QR-iteration on a kxk matrix

takes 4k2 operations, and roughly two iterations are needed

per eigenvalue.

As a rule of thumb,

5}). From Table 2.4 we see that Method 1 is costly compared

an efficient continuation scheme should

-
to continuation, taking roughly four times the work for fﬁ a

full nxn matrix. For banded fﬁ the QR-algorithm fills in the

upper triangular portion of‘the Hessenberg form, leading to an

operation count of O(n3).
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I.3 Method 2. Using the Routh-Hurwitz Theorem.

In this section we will use the Routh-Hurwitz theorem (see
Gantmacher [§], [&]) to calculate ni (see Section I.2). We

outline a special case of the theorem below.

Let

; -3 n-1{ n-3 :
3.1 pilee)= (a,a"-ﬁa,oc" s )+ (het + 5 +...)

be the characteristic polynomial for f% , with 2, # 0 (note
separation of odd and even degree terms in 3.1). Define the

Hurwitz matrix Hl to be

bo blnuonc.ooo bn_l \
ao al &5 e 000 an-l
0 b0 b1 T bn-2

3.2 Hy = 0 a; a """"a , > n rows
0 0 b b _3

\. . L] - J
Here
N 4 F k>0,
3.3

b) b=0 ¥ k>(1-10)/9 .
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Assume bo ¥ 0, and subtract ao/b0 times the (2k-=1l)th row
of H, from the (2k)th row of Hy, for k = 1,2,***, [/al. mnis

leaves the matrix

C ©1 n-2
. bgib; by "7 b1y _[PoP1 b,»
3.4 By =f Ot 2 - b om0 e )
o H ..
)

where H, is (n-l) % (n-1). Assuming o # 0 we can reduce H, as

above. In the regular case we can continue this process, com-

puting n nonzero divisors bo, Cor do, ***. Then we have

Theorem 3.5. (Routh's Theorem (see [5]). For bo,co,do,"‘

all nonzero, ni equals the number of sign changes in the list of

n+l numbers,

3.5 ao' bol co‘ .

From the structure of HO' Hl' etc., we see that in the regular

n(n+1)
b

case it takes only n + (n-1) + **°+ 2 = - 1 operations to

LR N 4

calculate the divisors bo, Cpr .

For irregular cases in which the kth divisor (say) is zero,
we must apply the complete Routh—Hurw1tz theorem. This requlres
computing each principa’ minor of the (n-k+1l) x (n-k+l) matrix
Hk By a similar elimination procedure to that given above we
can calculate all principle minors of Hk in roughly 12—§ill

operations.
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Next we examine the calculation of the coefficients of
pT(X). Krylov's method (see Wilkinson [36]) is based on
iz 2 o
P(ﬁ)-—

nxn (the Cayley-Hamilton theorem). Briefly, it

PEN n A\ =
involves choosing some €.,éR ’ calculating(g;) ‘§, for r = 1,

, n, and then solving the n x n system

5.6 P(5%)5.-3

for the unknowns agr 2y T, bo, bl,”'. This method takes

roughly 5/3 n3 operations for full nxn matrices. Unfortunately,
s

it is ill-conditioned for many matrices f% with n large (even

n< 10) (see [36]).

Wilkinson [36] suggests that a reasonably stable method
for calculating pi@K) is by first reducing fé to tridiagonal
form (taking roughly 5/6 n3 single-precision operations and"

1/6 n3 double-precision operations when fé is a full matrix).
The characteristic polynomial of a tridiagonal matrix can be
obtained using a recursion relation in roughly 3/2 n2 operations

(see [36]).
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TABLE 3.7
Operation Counts for Method 2

Type of nxn
. x 1]

Matzix nsume teic band width d=2m+1,
Operation nonsymmetric
Gaussian
Elimination % n3 % nd2
(partial pivoting]

Char. Poly S n3 1 n3
(Krylov) 3 3
Ch 5 3 .
ar. Poly gn single prec. *%
(via Tridiagonal 1 3 -
form) +zn double prec.*
~ 5 3 _. 2
Total for g single prec. at least n~/2
Method 2 + % n3 double prec.* (for Routh's Thm.
alone)

* 1 double-precision operation * 3 (or 4 ) single prec. ops.
. ** ysing Householder transformations to reduce ?é to upper
Hessenberg form fills up much of the upper triangular portion

of f%. This leads to 0(n3) operations.

We see from Table 3.7 that for full matrices fé, Method 2
is a big improvement over Method 1. However, for large banded
systems with d/n small (arising in p.d.e. applications) both

methods are very expensive.
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I.4 Method 3. Solving the Time-Dependent Problem

In this section wé will assume that (ﬁo (Ac) ,Xc) is a HBP

such that for A< )\c the steady state ﬁo (A) is linearly stable.

n -t
That is, the eigenvalues {“k (A)?k ' of Ea(T, (M) ,A)l satisfy
-

4.1 Re(ock(A))<0 Sor k=l )n; AcA, .

From 0.5¢c, we can assume

e Re(yN)>0 For Rob2 A AcAL.

for some AL>/kc that is, ﬁo (A) is unstable for /(é(.Ac,’AL).

H. B. Keller [17] has proposed that this change of

stability can Ee detected by solving the initial value problem

i-S(a,A) % t>0,

a)

: — —
b) (7(0,/(.:):%(/(‘5)"' “z )

at each continuation point ('\50 (J(i) ,Ai) . Here E’:’ }‘ﬁ and /b;/

is small. .

If the periodic solution, bifurcating from (,Go (/\c),/\c),
2 3
exists for A’A’&)*‘Ac,*/(gﬁ *065) with A,>o (and with &£
as in Theorem 0.6) then it is stable (see Example 0.3, or [21]).

In this case an important by-product of computing 4.3 is that
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for )ﬁ;) and A;’Ac small, the solution of 4.3 converges to
the periodic solution that bifurcates from (ﬁb()b),jc). (The
periodic bifurcating branch for a reaction diffusion equation
has been calculated in this way by Keller, Ferguson, and
Reyna [17].) 1In view of the more general methods described in

the next section, the above case is the only case in which the

solutions of 4.3 should be computed. The problem of choosing

an efficient difference scheme to solve 4.3 is beyond the scope

of this work (see [7]).

I.5 Method 4. Multiply Shifted Power Method

Consider the explicit, one-step difference equation

- 7, = P(hBN) e
: R4/
for k 2 0. Here A(A) = E3(@;(M),A), h >0 and P(2) is a

polynomial,

. m
5.2 P(Z)zjz (2’56)

}

with 5, eC  for A=t ... m,

Notice that 5.1 includes all linear, explicit, one-step
difference schemes for integrating the linearized form of 4.3,

that is,



135

2 U= AN)T@  Sor tso
5.3
p) U(o)= W],

The linear stability of ﬁO(A) can be checked by solving 5.3
using a difference scheme of the form 5.1. Define the stability

domain of 5.1 to be

o BefecclPo<s]

In order for the difference scheme to provide a good check on

the stability of ﬁO(A) we require that for some small £.>c9)
< -
a) (g_zef/ /Z{-I/ Re (=) < Z}C (@5 )
s .
6/ K. > 3=
b) 095 /]fee el(z)>s %{

(see Fig. 5.6).

5.

E‘fﬂbnc—

EXEN
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For a P(z) satisfying 5.5 for some small £29 we can use
5.1 to check the linear stability of u (A) In particular, 1let
h be sufficiently small so that the eigenvalues é}°<092£
ha(\) satisfy lholdl for i = l,"',j. Then P (hA(1)) has
eigenvalues gP(Ae()Z . The iteration 5.1 is just the
power method applied to P(hA(A)) (see [36]). For most initial

guesses w,

il o e | Plhs)|= ] PO

- 4
A
[ | 12 el

as k —>o0. If {P(Ao{,)/> 1 then fRe (605,‘)7"2,. and if
[Pthe)] <1  then Re(hw))<E for i = 1,**,£. For € small,

/F(A / is a sensitive test for the linear stability of ﬁo A .

The advantage of 5.1 over Method 3 applied to 5.3 is that
we can ignore the accuracy of 5.1 for 5.3. The P(z) can be

‘chosen simply to minimize the work involved in 5.1.

Given an £>¢ and an integer m > 0, let @(.EJ m)EgP/Lz)
as in 5.2 such that 5.5 is satisfied?. We want a P/z)&f[z)m)
such that the number of iterations of 5.1 needed to detect the
stability of E‘O (\) is minimized. For example, we could require

that P(z) minimizes the ratio

5.7 ﬁ(g‘)z ma:cg/lofz)// l2(< /, Rc (z)g_gg
min§ | Pr2)) / 121< 1, Relz)> é‘z
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for some 3> & . ﬂ@ can be used as follows:! Let W, = c,d, +
Caaa where ‘a’l ,‘32 are ej.genvectors of A(A) with eigenvalues °<1
and &, respectively. Suppose Re(hO&)S'S, Re(h°‘2) P s , and all

the eigenvalues of hA(l) have moduli 1less than 1. Then

-~ = o~ h
“{'Cma,"’ Cal:aa. where

k C,
5.8 ’E’ﬁlé/@(g)/"‘ .
The calculation of an optimal P(z) is an important area for

future work.

The method can be applied to multistep and/or implicit

schemes. The trapezoidal method
— Pt S
5.9 (z-h )ﬁ)(k))qu;_, = (IT+4 ff)(x))a{

has 095 522&61 Ke (2) < Og (with 95 defined in the
obvious way). The value of h > 0 should be chosen to minimize

the number of iterations needed to detect an eigenvalue with

positive real part. (See Franklin [37]).

If A(A) has eigenvalues in both the left and right half
planes then it ié still possible to use 5.1. The P(z) used
should have a ridge along the imaginary axis (see Fig. 5.10).
However, the number of iterations of 5.1 needed is likely to be

restrictively high.
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Fig. 5.10

I.6 Conclusions

Methods for detecting a HBP while continuing along a steady
state branch are expensive compared to the cost of the continua-
tion alone. For problems with full nxn Jacobians f& and unstable
steady states (unstable for both t-®® and t—>-<®, otherwise
use € = =t) Method 2 is the best. For these problems Method 2
takes roughly twice the work of one continuation step. For
problems with large Jacobians having a narrow bandwidth Methods
1 and 2 are unfeasible, requiring O(n3) operations (compared to
O(ndz) for continuation). Method 3 is useful for bifurcations
from a stable steady state to a stable periodic solution.

Method 4 is an important area for future research, it should be

useful for problems in which the eigenvalues of fﬁ lie in a few

1
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known clusters. Certainly, Method 4 will prove to be more

efficient than Method 3 for detecting a HBP.
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Chapter II. Locating a HBP Accurately

II.1 Introduction

Define a candidate Hopf bifurcation point (CHBP) to be a
steady state (EO(AC),lc) such that for A in a neighborhood of.&c

we have

a) det (:S}(aocx),/t)—[,a{z()nu)(/():{I)==0)

1.1 v Wid)>0, /(L)‘—'O}
d) %(&)#0.

In Chapter I we considered methods for detecting CHBPs. In this
chapter we consider methods for accurately calculating ﬁo(Ac),/Lc

assuming that we are given a good initial guess.

The methods in Chapter I detect two steady states
(ﬁo(ki),Ai) and (ﬁb(Aﬁﬂ)’Ai+1) such that f% has a pair of eigen-
values O¢, (A)L;&CM)IL'LJ(/{) with

1.2 /{(.k‘;)/&{l/{l:?l) 4 O .

For ,Ai"iavl small, a good initial guess for a CHBP is given

by ﬁo(Ai),Ai and ogr(zh), '
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II.2 Inverse Iterations

We attempt to solve

2.1 /{{A):_O

. . P~
using the secant method. The eigenvalues cgtb{)’>4(ﬁi)—'°‘064)
are calculated using inverse iterations. (A similar technique

has been suggested by B. Hassard [9].)

v v-! v o-1
In particular, suppose A )/\ J 0‘_—:(/l )) and O (/\' )
have been calculated. Then applying the secant method to 2.1

we get

Ao X PV

VI Y
2.2 )\ - l- /MZJ))'/&{(A-‘?-')

et —
We approximate o(,,()\ ) by 3(: { /\‘)H = L& s where

2.3 D - w +g)\? N 3( A /LJ)

. L] . -—é .
(i.e., a linear interpolate). We calculate u;(A. ) using a

continuation method (see Chapter I, §1). Next we calculate an
- 1 ) 1 QH
eigenvector a(/\ )4—; 1:(/\')*) of ;J(L(,().}H) )\Pﬂ)
v
with eigenvalue Cx+()~ ) , by inverse iterations. That is, we

solve
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- ~VH
2) )7(\)4-/ slea-l _ ale mﬁf; ;a- w Imm
Ytkw ik ) - oV

pory ¥ _
n¥n “u
2.4
N
‘nk*l - — - §2+I
nkh

V!
/
Yo (A7) thenk =2 or 3

for k = 0,1,2,°°",K (if i
suffices). We solve 2.4a by calculating a LU-factorization of
m%l. The same LU-factorization can be used to calculate a left
eigenvector E{/\.?“) + ¢ J(/\oﬂ) of E\é"'l with eigenvalue

og(zk"*’) .

Finally, we use the generalized Rayleigh gquotient to

calculate /ACCAf»{) + ¢ A)()\¢+f) , that is,

-1
>T > =T L /=2v+!
/“M’M) & d\fa -8\ r& A\ (5 &
2.5 4 2 N F7 27, Lz R o | o
w (A7) w kfbe ad| \-d, T $2 &

I

(see Wilkinson [36]).

Most of the work is spent factoring )n?-"l. For full matrices

fﬁ Gaussian elimination with partial pivoting takes roughly %—'- n3
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v+1

operations (treating M as a banded matrix with band width

2n+l). For banded Eﬁ with band width d we can reorder the rows

V+1 v+1

and columns of M to form a matrix gi with band width 2d4-1

(the diagonal elements 1,2,°°°,2n are rearranged as 1, n+l, 2,
Pl .1 2 __
n+2, » n, 2n). Now M can be factored in 5 2n(2d-1)° =

n(4d % 4d+1) operations.

Another method for solving 2.4a is to calculate an LU-

factorization of

2.6 = (57T ) L)

)

and then solve

,)'l'l-‘-i —= ~ Pt
a A 5,5 % %t by

> -
o -
b) w szﬁ

W

|
=
|
}
N
by
.

This is equivalent to 2.4a (see Wilkinson [36]). Roughly % n3

operations are needed for this method when fﬁ is full, compared
to ll n3 operations for the first method. However, this method

is worse for banded fﬁ, with Snd2 operations compared to

nlyad24d+ 1),

II.3 Kubicek's Method

In this section we will briefly consider an algorithm for

v
solving/xbk) = 0. The method is due to Kubicek [19].
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Kubiéék's Method. Suppose that at the nth iteration
LI 2N ] " " 77 v n
(n = 0,1,""") we have =t (A ), Wp=(X") Uy=2, (L")

and a guess for}c+l. Then we proceed as follows:

1) Calculate U

technique (Euler—-Newton, say).

= U, (A ) using a continuation
0'"'n+l

2) Calculate the characteristic polynomial

3) Calculate,ah+l,aﬂﬁ_ using Bairstow's method

1
(see Wilkinson [36, p. 449]).

4) Use secant method (using/bg+l,/ah,/{n+l,}h)

to determine a new guess,*n+2.

Steps 1 and 2 of Kubigek's method take 0(n3) operations for
for problems with full E&. If Krylov's method is used to obtain
the characteristic polynomial (see Section I.3) then steps 2 and
3 take roughly % n3. This is comparable to the inverse
iteration technique of Section II.2. However, for n ~ 10,
Krylov's method is ill-conditioned for many matrices. As we
discussed in Section I.3, a more stable method for calculating

) takes roughly % n3 single precision operations and

p(e‘"'An+l
1 3

A double precision operations. Since a double precision
operation is roughly equivalent to three or four single
precision operations, the operation count is again comparable

to the inverse iteration method.
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ITI.4 Inflation Method

The HBP (uo(/\c),,(c) satisfies

$@ A
— e s iaa -rt«)_g .
1.1 G (4,a,b,w, \)= g g - = 0.

N(,)

Where ©= “o(’{) A= A<: (W= 03(/{>-0")(’{c), and @ +(b is an

eigenvector of ;a-g (u,l) with eigenvalue J.&)(Ac) . Here N(a,b)-a

represents two normalization conditions on the eigenvector

5‘*‘;E=Pe°e(50+ ‘E;) )y /\7[&:?):5 fixes IPDO and

e [0, 377> . The following lemma provides conditions on N such

that a HBP is an isolated root of 4.1 (i.e., .QQ__.. /
HA,EE, e, L) B

is nonsingular).

Lemma 4.2. Let HO (A) be a steady state branch of 0.1l.

Let otzb\):'/otl/{) z ¢ L()(/U be defined as in Section II.2.
Suppose é:';—:( (,_(;)"a:'éz) L ,L‘_) is a root of 4.1 such
that

a) a:_-‘- (7:,(/(4)) S-.. = “c) /l- ) is nonsingular,

4.2 b) il.:.)c is a simple eigenvalue of %‘-

c the)=0, wil)=a, >0
) ﬁ(&)#o , lhe) =

(Note that if (ﬁ‘c,Ac) is a HBP then 4.2 follows.)



146

——y

(ﬁja)b)%/{) , is non-

Il

G |- Z
Then 53413:5; )

singular iff the 2 2 matrix

4.3 {‘_7&?+ Ng 5-—9/\75{
7 gg- : e )z 0)-a.,5)

=

is nonsingular and'ﬁ?ﬁ,ﬁ) # 0.

An example of a normalization ﬁ(i,ﬁ) that satisfies the
conditions of Lemma 4.2 is

- "Ta" ETE. -1
.4 N (z,5)={ ° 17"2? :

- ) -
Where Ee;ﬂ? R [ is not perpendicular to the plane spanned by
v -, "c - . — 2 - -‘h — _
ays bo, fﬁ(a0+1b0) = 1“E(ao+lbo)' and ag. b0 # 0.

Proof of Lemma 4.2. Let

?a( BN =) L., wih) L.,

ss A(A)=

-

“'“)(A):I;xn 3 a(&;)&)):/“aijj;xo

Since ib@ is a simple eigenvalue of f;,CK+CA) is a simple eigen-
value of -Fa(a;l)t),A) for A in a neighborhood of )‘c' This
implies that Ak(A) has a two-dimensional null space for k = 1,2,

— -
***. Therefore there exist f;(X), ?l(k),‘£.+ck))and,ét(k)

satisfying
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o LNAN=T 5 L=(505); Ed,dDer”,
- . - _ atd) - - Z;.IU ﬂﬂ'
0 QT (M=T N’U‘(z,w)) t‘”"(—a‘w)ém/
) B(A)=T, fli¢)=Z:/-

o(B) (b | F0) - (L)

L. (A) o |

for A in a nbkd.of,*c.

Now by 4.1
{
-}C |“'>C
&£ O 3
I RIS B
ac )

[« ;a"a ! C - 5
.08 | ZTL AT LD
g |Gkl BE

T T T c y -
o . Na Ng v 0

Here the superscript "c" means that the labeled function is

-

evaluated at Z = z,.

Suppose SEE(§J3SE,SE,JQ,SA) is a

. G.C
right null vector of éL:? ‘ Then by 4.7

oz



4.

a) 8= §A SE(? )
da E > T e ca =

8 b) H(/\‘;)( ): + w( ‘)—S‘/Lg ) g‘;_ ffﬁ%gud-%i
- Saah 5% + 574 be

ad

Therefore, from 4.8b and the Fredholm alternative, Sw,éik must

—T i T —_
4.9 Suﬁz (/\c_)Ca:)" SX/Q(/{C)‘;: O .

We simplify 4.9 as follows. By 4.6 we see that

da|— 1 o EZ?A)( :y;-(w),/l) wh )Z{mg /
jfl L A - 5@ ), 1) /(:/[G

AL,
T -:c:. N =T AT
(Su;\. »Oc‘ )/; (/{c ) + -LO. %fl*&) IQ; (}‘c> f. UL‘))

4.9 becomes

Therefore,
o ‘2%[/{4:) SLJ o~
4.11 = O
x YN

2
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at |
for some x€¢IR. However, dA (/c) # 0 by 4.2c, therefore 4.1l1
implies Sw: S/L = O,

Setting 5«): 5:('—‘0 in 4.8b we see

Sa 7 A
4.12 i = CZ+/:L(/(¢,) + oC_ CC/{-G) )
by
for some x , x_ & IR. Substituting 4.12 into 4.8c we obtain
' — . —_—
AC_‘ — R ThE o~ _ C - + —
4.13 (Na.ac-l—f\/ b : Nabo NEQ&)(JC_) .
¢

The lemma follows from 4.13. 1R

Next we examine initial guesses for a root of 4.1.
Suppose Ai'Ai+l are as described in Section II.l (see eqn. 1.2).

~> e .
Let a, + 1b0 satisfy

a) %(ﬂ;(/{yl/h)[@ *‘;Zc’)z D(+</(i> ['ZC +"-Z’:> ’
4,14

o NG B)=3

-
Here 4.14b sets the magnitude and phase of '50 + ibo. Then the

. aas > > =S = . .
initial guess zZg = (uo(ki), ags bO' U)(.Ai),u(i) satisfies

4.15

Gl(zg/:- Lecd)| 2| = O, A )

OL 1O Q)
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as‘Ai—a/Lc- The following lemma now follows easily from the

Kantorovich theorem (Ortega and Rheinboldt [24]).

- . - >
Lemma 4.16. Suppose uOCkc).Xc is a HBP and N(3,Db)

satisfies the conditions of Lemma 4.2. Consider Newton's
method applied to 4.1 with the initial gquess Z ='?0 given above.
Then for ui-ibl sufficiently small, the Newton iterates con-

verge to Z = Z_ = (G, (A)).3_.b U \A,) -

Finally, we should examine the amount of work it takes to
do one Newton step on 4.1. From 4.7 we see that the Jacobian
depends on -F;aa‘ , ‘E‘_ag , %‘a\i , ;::TL‘E,‘ These quantities will be
costly to obtain exactly for many practical problems. We might
get around this by using difference approximations for f%ﬁ EP
etc. Another costly operation is calculating a factorization of

oF bYe .
33 - Actually 52 can be factored in roughly the same number

of operations as one step of the inverse iteration method given

in Section II.2 (see Chapter III).

In the next chapter we consider a very useful generaliza-

tion of the method given above.



151

CHAPTER III. Continuation Methods for Locating a HBP

IITI.1 Introduction

In this chapter we consider an alternative method for

locating HBPs. We suppose that 0.1 is imbedded in the system
— ).,_..h- .

1.1 =
27 3(0’,1/0”).

Here 3(W,A;0) = E(@,A), and for ¥'= 1 a mBP, (Wr,Al), of 1.1 is
known. We consider continuation techniques for following a path

of candidate HBPs (Vv‘c(b*),/{c )) from Y= 1 to (hopefully) Y=o,

Any of the local HBP finding methods given in Chapter II
can be used in a suitable continuation method. Kubidek [19] has
used the method given in Section II.3. Here we will only

consider the method given in Section II.A4.

In particular, we consider
—>_> S
1.2 G‘(Z)f)’:-'o:

where
92«75’/)&) )
G (T A )+ 0T

— _a —
1.3 a)  G(E,0) = 9*“_}(5?/&;{‘)6 -va |
NE, D)
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Also, we know'?l = (Wl,'al, El,a)l;/Ll) a root of 1.2 for )4=/,
Many continuation methods can be applied to 1.2 (see Perozzi
[25]) in an attempt to find a root for ¥= 0. wWe will only

consider Euler-Newton or Euler-Chord methods here.

III.2 Examples of Continuation Imbeddings

In this section we will consider several example

imbeddings of the form 1l.1.

Example 2.l. Consider 0.1 with a steady state branch

—EO (A). Suppose Oti-(i)i«éffi)ré“)/’\) are eigenvalues of
?ﬁ(ﬁOLA),A) such that for some Acﬁ/a(lc)

i

0. Suppose that

ﬁb(kl),04+(A1), and the associated eigenvectors 51 + i 31 of

Eé are known, with/acil) # 0. Then consider

2P r)= e M) T ) (=B cN) -

2.1 g )

Wwith § as in 2.1, G(z,Y) becomes
Tia ) -duch) (T - ZZ;(/B)
(;:——)-,(E)b} A)"’ J/‘“ (/L:)l;xn ﬁ'f' 179, b
(§ (@X)- yuld )T, b~ w7
N(z5)

2.2 GEy)=
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So Z = (GO(/\), 3,?,1«),1) is a solution of 1,2 if 3",“(}'0)3‘:")
is an eigenvalue of F_ﬁ (ﬁ'od) ,A) with eigenvectors @ + ig (here
we are assuming N(Z,b) is suitable, see Section II.4). Con-
tinuing the solution of 1.2 from ¥=1 to DA= 0 is therefore

equivalent to following the eigenvalues O(+ (./b ’ attempting to

drive /t(l) to zero.

This illustrates the main difficulty with the imbedding
2.1, the pair of eigenvalues O(+ (/\) that eventually cross the
imaginary axis must be known at /(= Al The o (J\) could be

calculated using the detection methods of Chapter I.

ous steady state branches bifurcating from l'fo (/\) . (Note that
?;a,(a'?,)k;f) is singular if ;‘3(5?,’)\) has the real eigenvalue
b’)a(i.),) This ‘difficulty is easily avoided by taking care at
the bifurcation points of stéady state branches of 1.l (see

Keller [14]).

Example 2.3. Many physical problems contain auxiliary
parameters that can serve as a suitable continuation parameter
X\. For example, the equations of motion of Watts' centrifugal

governor are (see Pontryagin [26], or Hassard [9])

X, Z‘z R
2.3 jlt 2, | = | o2 sinbe)cos (o) = sin () = VX |= ;lﬁ;a
%3 X cos (=) */0)
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—A—- 3 .
where J'= (Q}P)Jp)eﬂ? . In example computations we used
continuation on 1.2 with A-‘-/’ and ¥=V or # (with X or V fixed,
respectively). (B. Hassard [9] has also done similar computa-

tions using the inverse iteration method outlined in Section II.2.)

To start the continuation we need to know a HBP for 2.3.
These can be obtained analytically for 2.3 (see [9]), however,
we used an imbedding of the form described in Example 2.1.
(Notice that f%-has at most one complex conjugate pair of eigen-

values, so there was no problem with choosing G;(Al).)

Example 2.4. It is often the case that asymptotic

solutions can be obtained for 1.1 as some auxiliary parameter
goes to zero. For example, consider the following reaction-
diffusion equations modeling a simple, first order, exothermic
reaction in a nonadiabatic tubular reactor (see A.B. Poore [27],

[28], also see H. Hlavacek and H. Hofmann [11]):

i

T T T AT 080T

R =)

c) 7;(01'5)'—‘57—(6 ¢) ) Colot)= 5C(0/t)/
T.(,¢) =0 | Cx(t) =0,
D T(x,0)= ) | Clzo) = Viz).

Here t 2 0 and x&€[0,1]. Poore [27], [28] has calculated the

location of a HBP for 2.4 with 0<&<«4|, Numerical calculations
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using 1.2 and 1.3 with X'=¢ are now in progress. The contin-
uation procedure will provide HBPs of 2.4 for £ large, presum-

ably up to £€=0(1).

Example 2.5. We seek a root of

2.5 G(#%3,b,w,A)=©

where G0 is defined by II 4.1. The method of global homotopies
(see H. B. Keller [16]) can be applied to imbed 2.5 in a system
of the form 1.3. Smale's Boundary Conditions (see [16], Smale
[32]) provide criteria on f(ﬁ,K) such that the continuétion
method is almost guaranteed to find a root of 2.5. (Unfortu-
nately, Smale's Boundary Conditions are not easily verified for
many practical F's. But this is an important and useful area

for further work.)

The above examples show the versatility of continuation
methods using 1.3. In the following sections we consider some

of the details of this technique.

III.3 Singularities in the Continuation Path

Singular points (EO'JB) on a solution path of 1.2 are
defined by



3.
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=
- O —~0
1 5&7’ o o ‘7/\
- —_— — O o =

= j.; — Ce.a 5“—)-, Ugl:u‘” Aa ‘—7—;}/\ Cta
Aﬁﬁ" ba "),-I:\M \_7?5‘:} 2 \-9‘5;./( e’

—_—c "\74 O _0_\

o b N

We call (56,33) a normal limit point if in addition to 3.1 we

have
2 A V(&)= cotinR(GG)=1

3.2

b) 5;¢0?(§>.

Also, necessary conditions for (ib,%) to be a simple bifurcation

point ¢f a solution branch of 1.2 are

a) (%,Y,) satisfies 3.1 and 32a |,

b) ng < d?(rzgf)

3.3

(see Keller [14]).
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Keller [14] has developed powerful numerical techniques
for dealing with singular points. The key idea is to param-
eterize the solution branch by an approximation to arclength

along the branch. This is done by solving
- i
a) ?[Zja"):aj

) L(Z ¥ s) =0,

where s € IR is the independent parameter on the solution branch.

Keller [14] suggests the following choice of L for so_é_ s < Syt

3.5 L(Z,0s)= eé‘*(s,)g?cs)—ifs;)f

+(1-©) 3‘(50)5&"/5)- D('/Sa)/?—— (s-%),

were  (3(5),705)) =GBV E) ;.. 0ele)) and Fa)

e ok ‘1:*‘“LT
is the dual element to z(so) (i.e., 3(so) = [Z()] for
= N . ‘g .
Z(%) & (l: with the Euclidian norm). Notice that
. —_
— P
Z(5) o )

o (s) yis)) % )

3.6
b (Pls)=| 92 o ,
L JL
pE or

( Zis), ¥ls),s)
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Therefore, for L as in 3.5, (?(.sa), X'(s,)) is uniquely defined at
regular points (5% nonsingular} and at normal limit points. The
normalization 3.5 is called pseudo-arclength (see Keller [14]

for details).

The advantage of using 3.4 is that at both regular points
and normal limit points of 1.2,CI(s) is nonsingular. That is,
(Z(s), S(s),s) is a regular point of

R - (Z,7)
(2,9, 8) = = = )
3.7 P ) 9, L (2; b/\}\S)

Q)

using s as the parameter. Using 3.4 also makes it relatively
easy to switch branches at simple bifurcation points (see Keller

[(14]1).

III.4 LU-Factorization of G, and d(s)

The matrices’aé and (J(s) (see Section 3) have the general

form
n n n k
;; 8« 6“ ;; }n
1 )71\ ) By B, wI B, } n
C, -wuI B, C, } n
\ Dl D2 D3 D4 } } k

with k = 2 forlaé, k = 3 for C&s). In order to do a continuation

step we will need to solve
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——
4.2 m5c> =d
for ¥. In this section we consider two techniques for block

LU-factoring the matrix 77(.

Notice that 1l.3a and 3.1b imply
4.3 dim Y[

along the continuation path. Also, it is possible for A and/or
Kn_ to be singular. The factorization schemes discussed below

are designed to handle these singularities.

We begin by considering an algorithm for the case in which
Al, Bl’ BZ' Cl are full nxn matrices. From the estimates in

Section II.2 we are led to consider

In 0 0 0
0 I, O 0 )
0 0 0 Ik
4,4

S A W

_ Bl B2 0 B, In
Bl Bz wI 34 In .
D1 D2 D3 D4 In
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For some £>0) let Al’ B2

be partially LU-factored in the following

form
L Y U
. F)r—'(, O(/ 2))//5‘//”46.)
' L,, L\ O —
4.5 4 £,
S A ("2 2\ ) g, <,
L'a:z I,Za O Ea N
where Ei is [,_-x,a_- for i =1,2 Then we factor m in the
following form
Ly, 0 o o I,.,0 © G
~ B O I ,0 C’ A~
dMN=P| G bLua o0 o g & o 2
B, B; «I o 0 0 I C, !
B‘f B G Lyy/\O O © l;,t/,ﬂe
Iree O O O O o\
0 O gy © ©O O
7.6 ~ @) o (o o© I" o
b)f): O IZ, o O O O )
O © o I, 0 O
O o o o o I
E O Ay
<) LqU—"—"E?E v 2a o ’3;2 "‘g@gﬂ.é i
Dlg Oga Oy
, n-£, /bf-:
W},c,‘e_ 5?, .y, /::/’) ~ ﬂ—‘f,
)q - ”4,,)317-,2, g_: 9’)5 2 g" (g/u lglla)
7 Byg)30 0 7 (Byl34 A )
A/é d) ‘:‘_2_2‘;3 2 72 = 3[9/ 5123 ;’Z/
A
Di=(o, B,) fr c=,2 .



161l
Here the Q and C; satisfy relations easily obtained from 4.4 and

4.6a,b.

In the above factorization we avoid small pivots by inter-
changing the diagonal elements of Al' E} so that small elements
end up in El’ E2 respectively. Then El'EZ'DZ are combined in E4
(see 4.6¢) and E4 is factored using full pivoting
@%_+.Z% + k% 5o0r 6 usually). Note that most of the computations
are involved in calculating E; and in factoring Al and ”E, i.e.,

0(% n3) operations (see Section II.2).

~

Next we will consider factoring ¥ for cases in which Aq,
By, By, C, are nxn matrices with band width d = 2m+l. Aas in
Section II.2, we permute the rows and columns of Y| so that the
diagonal elements 1,2,3,°°°, 3n+k are permuted to n+l, 1, 2n+l,
n+2, 2, 2n+2, *°°, 2n, n, 3n, 3n+l, °°°, 3n+k. This permutation

puts ﬂn into the form

A N
N gfgzn
Mg B3

where B has bandwidth 3d. We can factor §'using partial pivoting
with an &-cutoff (i.e., we never use a pivot less than € in
magnitude. Then we combine the rows and columns of B having
small pivots with ﬁ; and factor the resulting small matrix (see

4.6c). The operation count is O(% ndz).
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IITI.5 Nonlinear Modification

For many problems the computation of @WWE,'§#*§, etc., in
EE (see 3.1b) is expensive. We could avoid the direct computa-
tion by using difference approximations in 65 (i.e., in place of
§#ﬁ(ﬁ,&,b,UhAv55a we could use % [§§(ﬁ+55,5,b,“‘,f)
- §W(ﬁ,§,"',F) Alternatively, we can use the difference

approximations in the definition of E(f,&). That is, define

ali,f) Sor E=o,
5.1 FCZ,U'J'5,>E éL§(§+£glx)r),§(ﬁr//\/'@+ub _S
L] G@-eT A 1) -5 L 5]]-w7 or

NEE)

Then we attempt to use a continuation method to solve

5.2 E(Z v e)=23

J "/
for some &£>¢. The Jacobian Fg does not require Gex= OF Jga
Therefore, we can use Euler-Newton continuation and recover
quadratic convergence to the continuation path without computing
— e - - . .

I - gWAa, etc. Also, in using 5.1 we do not have to be con-

cerned about choosing an £ such that the difference approxima-
- -~ - - [

tions é[ﬁa}c“’* €a, ) "j;;(“); .o ‘)')j , etc., are good approxi-

mations.
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The following lemma proves the existence of a solution of

5.2 for a regular point of 3.la and for some £~>o.

Lemma 5.3. Suppose Eo,g‘o satisfy

— =
a) G'('é:‘) b/;) :ﬁ J
5.3
-—:& A I3 0
b) @5 = g-g:(i’a) Yfg) is nonsingular.

Then there exists &, such that 5.1 has a solution é(s.), o

for o©o<«& 55,/ -2>CE) a smooth function of &£. Also, the root

(2"{5))3/“,) of 5.1 is unique in a nbhd. of (;—«5)5;)

Proof. Apply the Implicit Function Theorem (see Spivak

[331). W

Example computations using 5.1 are in progress.
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CHAPTER IV. The Hopf Bifurcation Parameters

IV.l Introduction

The Hopf Bifurcation Theorem (Thm. 0.6) shows that a

periodic solution of the form

D T (t5)= Tl M £ 52 Nie), Fix) ),
1.1

0 Gt AT e)=GlerTierdsc), 15706, )= 29)

/

-

bifurcates from a HBP (GO(AC),AC). Also 1,T,§,§'are smooth, with

) Ace)= A, + 22/{3 # 0(59/1

l.l
=7 ri7
o 1e)= T+ & vOGY), T =97,

as £20 . The constants A?'TZ are called Hopf bifu;cation param-
eters. There is a third parameter,)ﬂz, giving the O(a?)

behavior of a Floquet exponent (characteristic exponent) of the
periodic solution 1l.la,b. The Flogquet multiplier related toﬁ2
gives the stability of the periodic solution with respect to
perturbations within the center manifold (see [21], or Section

IV.2 for a further discussion of ﬁz).

Recently B. Hassard and Y. H. Wan [8] have suggested
automatic techniques for calculating 2,T2”52 (and also the

related A4,T4,/g4). This technique requires the evaluation of
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derivatives fﬁﬁﬁ ’ fﬁﬁ , etc. A much simpler technique for

determining/\z,T2 and/gz is presented in Section 1IV.3.

IVv.2 Two-Timing

Our method for determining the Hopf bifurcation parameters
is based on the well-known two-timing perturbation method (see

Nayfeh [22], or O'Malley ([d3]). We review this method below for

a HRP (ﬁO(AO),AO) (see Defn. 0.5).

It is convenient to write 0.1 as

o di- mEah) % Telo),
AT

2.1
b) Ulo)= (1),

Here T= t/T, T is the period of the bifurcating solution of 0.1.

Let T* =‘EZZ’be the "slow time." Consider the ansatz:

—

. }
w GUZ, %)= GAe)+ eV (577 + £ U5 )¢
U (0,2)= 0} (1,2*) $or T30, k-
o) U, (0,7%)=(; (1,2 or 20, f=1,2,...
o T=T+&Ty +- | =27y

a A=A+ e dyr ...,
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The two-timing method is now specified by rewriting 2.la as

-
=T (8 A) - €794,

N
N

Here Z,7* are treated as independent variables.

Substituting 2.2 into 2.3, 2.1b and collecting terms of
O(Ek) together we get
_ ——
Fa(A)) , Alo)) =B

for k 0. Also

> > —

17

= —
k[ /%1"')%-1) for o<72],

g
F_

R\
m

P

20,
T
") =

In order for ﬁl-&é const we set A(O) = AO' Then
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2.6 DT(Z',Z"): Kic*) g’c‘? cos (27T ) — Zf.s;n[zn't)}

FB(T")S T coslanz) + T sinlarz)s.

Here To(&+ib) = iw,(3+ib) with w)|3+ib| > 0 (see Defn. 0.5).

Substituting 2.6 into 2.5b we get

> - - -
2.7 R,z:%()?/l?)*é(%g)c@@f/‘ﬁ“) # gﬁa(ﬁ;\/,é’)szn(qﬂff).
Then from 2.4 we get

2.8 a) ()= 732(,4/5’)+ )77(4[:’) cos/4TE) + )7;(»‘},/3)54%9/72“),

where
o -
o TS =4,
2.8 ' - S
c) ‘7342- "VZfz:“ ﬁ: _ %%

— —

697:[; 7: Sz; ﬁ; 42

Notice that from the properties of fg (see Defn. 0.5), equations
-—
2.8b,c uniquely determine ﬂi. By scaling £ appropriately we do

not need to include a homogeneous solution of 2.4 in ﬁé.

Using 2.6, 8a in 2.5c we find
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— s

— —_—
2.9 R, = ~Upw + K (BB A T) cos (6772)+ (88, 4T )sin (472)

-+2§.Ca5(27'2j/.sané?ZfZV Zvaug;?.

For T, = Z%ZJO, T0 fg has eigenvalues i:iQZT , therefore the

0
general solution of 2.4 for k = 3 is given by

_— — —

Y = 3”, (T”) ’c“cm(z/‘iz*) + gaCT") T sen (amrT)

+ g?bounded l-periodic termei? .

For ﬁ} to be l-periodic we require that
—
»
2.10 T (th)=0 $or =1 2.

Using 2.4, 6 and 9, a short calculation shows that 2.10 is

satisfied iff

2.11 =

Here



(see Defn. 0.5).

In radial coordinates, that is (r,¢) with

os &
(1) (20
8 ~Sen &

the "secular equations” 2.1l become (after a lengthy calculation)

e\ _ é(/(:z')’o?/j}'/\“" °("\3

2 »
77,42 71 o<
O é?/ka h;‘%&'* /a-&%;? t &g r
Here o, o, are real constants depending on E? and 70 The
1% P g utd ad”

parameters AZ'TZ are determined by 2.14 with

a) /\Z/J' = 62,35 = 0)

2.15

Here 2.15b sets the scale for & .

Writing r = 1+% and linearizing 2.14 gives
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2.16 ?\;‘::[*2'7;/6(: +3°‘JFE/% .

That is, we define

217 B=2,=-2 A, ’7;’/,?-"-—9/7/(2/% )

where we have used the defn. of /\2. Notice that the solution of

2.16 is
>

L A
?\”(z*")=eﬁ" ~lo),

Therefore, the periodic solution for grosufficiently small is

stable if /3240 and unstable if %23’0.

IVv.3 Averaging Method

The two-timing method suggests the following numerical
algorithm for determining AZ’TZ and ﬁz. We assume that "u"o (/\o) ’

AO"JO' ‘5,3,&' and d are known where
a) (i?:(/{o)/ /L) ¢cs a HEFP -¥ ol
o - - N
3.1 b) ;a’ /&‘+éb)=é%[a‘¢gé)) >0 [d"’“'é,/-_—/}.

c) 2:0( :a‘f,‘s& 214 .
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Define

a) D:(f) = (5 cos (aTrT) — Z.sc'n(a”Z"))

3.2
o) T, = 27/,
—
Using 2.5b, 2.6, 2.7 and 3.2, we approximate fk(l,O) in
2.7 by
= - €/ =
0§ )= § Sy +efez), k) dz |
~ I
3.3 b) ¢ &llggw(qm') ;((.(,(/( )+£U(‘Z’)/L )o(N
E
A 7 PN R
o ¢ (e) - 2% g sin(972) $ @AY+ (T A) AT
a ” :

-
for some £>. Then approximations for Ylk (see 2.8a) can be

obtained by solving (see 2.8b,c)

o TS ()=~ ¢,

3.4 =0 ~ -
AR, -7 L, N\ _ (}:(51
wI,  T5)\ 1) o))
Define

P d

3.5 (7;5[)5)=?Ii,(5)+ ﬁ,(é) coa (477T) + ﬁoli) sin (477).
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Finally, we define

3.6 %(Z’/' A,_/’T;)z)=£'73+ 297;] ;(d(,(o)ﬂs (7;(2”1-522(;5)
Ao+ 52)&;&).

We approximate the secular equations 2.11 with A_, = B,,= 0

by
S)(/.\"/ 'T;U 2) =
(esT —=T = |
s g §&antars) o sintame) SR (T4, T, £) AT

3.7

jzo{ e (anT) + < sm(:ﬂ?)}/?/c 5)0/’5‘./. i//

—
=0,

The following two lemmas provide some important estimates for

Slh,m, 2).

-
Lemma 3.8. For f smooth

. 7
$a,7,;6) = £ P AN EP AN,
TH (o h72) #0047

+ Ole?)

as & —2>0.
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Proof. An easy calculation using 3.3 shows that

—

&) = ta(l,o)+0(52)

w

©

]
=

for k = 0,1,2. Using 2.8b,c, 3.4, 3.9a we find

3.9b ﬁ; (g)= M, (1,0) +OCE?)

for k = 0,1,2. Also we see by 3.6 that

e i
3 (2‘//(2,'7;’,5)0/2’
,03172’ r_’__a__, 3 lfr’¥° oy - — U(j:
=) e (RS U@+ E L 0 52z UGG T T 3225
o

T + Aﬂ oy &,‘ w;jﬁzz» + O,

The lemma follows from 3.7, 3.10, 2.5¢, 2.9 and 2.11. W

P d P d
Lemma 3.l1l. Suppose /{3(5),‘7;12) satisfy

AL

3.11 S(A, T, ;€)=79

for £>0 sufficiently small. Then
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S~

a) 4k26£)1= ,X2-+ Ols?)

3.12 b) 'i'(é)= T+ Oce?)

c) /3:(5) = —9/7/{,-155)/&(4%% ;é +Ole?) P

as g->0.

Proof. Notice that in the radial coordinates 2.13, we have

r. = L (AR, + B’BZ.,)/

6 = La (BAe — PB..).

(4

Thus for (A,B) = (1,0) we have

f}m = Hy» 6%; ="'£%;¥

Therefore by 2.11, 2.14 we see that 3.8 becomes

N 7wl o
3 S(AT 1 ¢ - o A + O(fn) .
. I3 3(Aaj’7_5_) __17’1 &); )
B -

[

The lemma follows from 2.17, 3.8, 3.13 and from

T, i, # O
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by applying the implicit function theorem. IR

In the numerical computation of the averages in 3.3 and
3.7 cancellation errors must be kept small. This means either
using a fairly large & ( £21/10, say), or calculating the
averages in double precision. Example calculations using the

averaging method are proposed for the near future.
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CHAPTER V. Computing Branches of Periodic Solutions

V.1l Basic Continuation

In this chapter we consider continuation schemes for
calculating branches of periodic solutions of 0.1. The methods

are based on solving

&, - TS (da), )
1.1 Gla,m\)= ) — U (o)

;T( }\) [ no)— Zj'(o)j

1
Q

where ©0<T <1 . Here 7,T are as in Chapter IV, and W(t) is

a T,-periocdic solution of 0.1 for A= *1' Also ’5'(/() eR" is

1l
T bl -
such that ?()\) [W(0) - W(0)] = 0 sets the phase of the periodic

solution T(z) (see below).

In practice the o.d.e. in 1.1 can be approximated using a
finite difference scheme. Well-known continuation techniques
(see Keller [l4], or Perozzi [25]) can be applied to the result-
ing system of algebraic equations. In this way both stable and
unstable periodic solutions of 0.1 can be calculated. Further-
more, the powerful techniques due to H. B. Keller [14] for
handling turning points and simple bifurcation points can be
directly applied to the algebraic system. E. Doedel [4] has

independently proposed this approach.

For theoretical purposes only, it is convenient to define
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aol; zA) -dlo; Z,A)

1.2a F(z,A)= ( HOSIRILIENS, ~J (o)

Here

5- (%)
) Z=(q)

c) (7(7}'}‘ 'Zh//t.) satisfies Z(;.:: "7'7;/&;/() For

1.2

037T< ] and UT(UJZ/L): f.

The equation
—
1.3 /:(5/(()=—O}

is equivalent to 1l.1. Using W(t) as above, we see that

'515 (’W(O),Tl) is a solution of 1.3 for l‘-‘/(, .

— o |°
Suppose (O O(Z’)j T ; *) is a solution of 1.1 Let

o
Y (Z;d) be the fundamental solution matrix of

)

1.4 7 = ’7"°§5(&'°52'),/(°)le) or T3> o

o
with Y (0, O)EI . Then using 1.2 we can write
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=0 " QX1 TN L) A3 (15w
1.5 OF - 2F 1z ))- (5515224 ] Z
Y / 3—;7’(1,) ;
Ny -z] T,
— o Y

—
Here ﬂoz% (1) 5’1/\4) . Using wWAT7) = U(T) and t =Tr

we see that from 1.2

2 (737 U0) = dt 4F7= v (@ re), N

/ J

Therefore
~ N
1.6 YZ0= j;(&’o(l)//(a) ,

- o
The following theorem gives conditions for (a ’(2')1 '7-’0, /t)
to be a regular point of l.1. For regular points the implicit

function theorem gives the existence of a smooth branch

(a(T; A), rl_’[.*)/ A) of solutions of 1.1, with

(@ez; 1) 749, A°) = (@), T7° L°) |
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This result is due to Poincaré (see [1]).

- O . —
Theorem 1.7. Suppose é—,’;—‘ #0 (i.e., @’ is a nontrivial

periodic solution). Then the following three statements are

equivalent:
i) (&"(r‘),’T”/A ) is a regular point of 1.1;

ii) ('Z”,Ao) is a regular point of 1.3, with
— a’(O) .
2 fT-,O /

iii) ;(Ao), r(o , YO(IJO) satisfy:

1

=T —_
a) j’ (/Lo) YL #O)
b) YO( l, 0) has 1 as a simple eigenvalue.

Proof. From the definitions of F,G and their Frechét

derivatives it is easily shown that i) and ii) are equivalent.

Notice that 37(2.‘)2 Q!E(f) satisfies 1.4. Therefore
— art

=L ;7° - 0
'70 ’T’u’l‘(l) ’m'f'%(o) and

1.8 Ya(/,o)?[: - Y 0) 4 0) "k )=y .

tvad S o
But na# o , so U (’,0) has the eigenvalue 1. The proof
that ii) and iii) are equivalent now follows from 1.5, 1.8 and

the following lemma.l
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Lemma 1.9 (see H. B. Keller [14]). Let B be a Banach
v
space and consider a linear operator a 1 IBx1R "93)‘/??

of the form

A:B>B , B:R~>8,
1.9 a= % O w/.ere,
: CB~>R’, DR =R’

i) If A is nonsingular then a is nonsingular iff

~/
1.10 D“C*p 6’ is nonsingular.

ii) If A is singular and dim)’l(A) = codim®(a) =v then

is nonsingular iff

. | .

a)a’im &CB)""Q) / b) &(3)(70?('4)*0/
1.11 ‘

*xY) _ x\ -

c)o/im@(c )"‘7, d))’l(ﬁ)n (C)"’o.
(Here a(n)i range of n, andd ,1(4"’ nell space o ”.)

In practice we will use the solution of 1.1 calculated by
the previous continuation step to define (W(0),T, A¢). Then we
set F(h =f(A) = £@(0),A). setting & (),10,00) =

-—; = £(w(0),A;). Setting (u (#),T ,A")
(W(o), T_t,)\,_) , then Theorem 1.7 gives necessary and sufficient

conditions for (W(0), T ,)\1_) to be a regular point of 1l.1.

Singular points on solution paths of 1.1 are considered in
the following sections. We also consider the linear stability

of the periodic solution near the singular point. Recall that
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ﬁo(t) is linearly stable iff the eigenvalues Ef*;};f, of
[-4
Y (’, o) satisfy

1.12
b) if |«;)=1 for some i then the eigenspace

associated with¢><i is nondegenerate

(see [11).

V.2 Turning Points. The solution (ﬁo,To,lo) of 1.1 is called

a normal limit point (for a branch of solutions parameterized by

Ay if
a) Aim n(‘gg),‘i’;‘)’)z cd/(imﬂ( (g-;m))::
% ¢ R( %)

Here the superscript 0 denotes evaluation at (GO,TO,AO). A

straightforward calculation shows that 2.1 is equivalent to

a) dim a_,__—a) 1,

5*{"% R(%E")

Here the superscript denotes evaluation at 4 J/(. )
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Lemma 2.3. Suppose gc*p) satisfies 1.7a. Then 2.1, 2.2

are satisfied iff either
D N (Y 1.0)~T)=5pan ST, T3, dhim | (Y0,00-T)=2,
23 w7 ¢ R(YC0-I) S ko,
&) S’Y’(:,z)go(z)/x,é R(A) (scc 2.6 4alu);
o N(Y,0)-T)=span§ T, 3
20w (Y)-IT =0 |
) s: Y(1,%) ;C:f(x)azx ¢ R(F) (cce2s) .
Here
2.5 ?;(u)sg(‘d"(xj,/\"}/ 7= ([Y’(w)—l?j )7;) j

A a Nx(n+l) matrix.

Proof. Using 1.6, 1.7a, and 1.8 we can show that 2.2a is

satisfied iff either 2.3a,b or 2.4a,b are satisfied.

From 1.2
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~0 9_> , =< /a
. IE°_ g%(ljzj()
AT giTnlEeE 0-FAl])

Using 1l.2c, 1.4 we have
- Gfa 59 o ~°
a) U 2) =T 3 Buz) + T3 () Ser Zeto, )
b) U (0)=2 | T (T)= ;%Q:'( ‘—%//(’).
Therefore
T - }
=0
e A1) =\ YU w) G () ol
(#]

Also, notice that

o AE(T)-( 2 Sui)?

Finally, from 2.6, 2.8 and 2.9 we see that 2.2b is satisfied iff

2.3c is satisfied.

In order to compute the solution art through a normal
limit point we can apply pseudo-arclength continuation (see
Section III.3, or [14]). Using the pseudo-arclength s as a
parameter, the normal limit point (ﬁO,TO,AO) = (ﬁ(t;so),T(so),

A(S?) is a regular point of the branch (E(f;s),T(s),l(s)) (see
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Section III.3). The following theorem shows that the linear

stability of the periodic solution changes at turning points

(i.e., Als%+¢) /kfso—&) > O for £>0 sufficiently small),

but does not change at inflection points (i.e.,

Als?+e) Also-2) < o for £>0 sufficiently small).

Theorem 2.10. Let (.3_5(6'), A(s)) be a solution arc of

1.3, where s is arclength and (53/(°)=(—2)(5‘),/([5’))

satisfies 2.2. Suppose

a) Za_il:(s) = g—é‘-‘:( 5?(5)/ /US)) is non-

singular for ©0<I[s-5%°/<& | for some £>0;

- —
2.10 b) there exist smooth <(s), C}Sf‘) SV(")
such that {5) E(-‘) = o<(s) ?(s)
g;(,)] 57\/5)-— o’s) 59(-5) and % (s) qb/s) =

c) x(s°)=

Let k<@ be such that

[}
\\
N
x~
I

a) ;T——;e(s) = For /[

b) %(sa

Then g\t(s) = 1+ &K(s) is an eigenvalue of Y(l,O;’z’(s),/\(s))

2.11

and
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’(z(f) =0 Sor A=12,... k-2
2.12

2[.Ie-r .
by &, , o (s )F O.

Notice that for k even, (Z ,}P) is a turning point and
ex (s) changes sign as s passes through so. Also for k odd,
(EO 0) is an inflection point and «(s) does not change sign

0
near s = s .

Proof of Theorem 2.10. R. Szeto [35] has proved that 2.11

implies 2.12 under the conditions of Theorem 2.10. We present

a shorter proof here.

By differentiating 1.3 w.r.t. s and using 2.10b we get

2.13 X m,gcs)zu) = -gfls)%(é/:) + 515[5)5/%{:) 7;;5) - és'z“/s);_

Here po(s) is any smooth real function. Evaluating 2.13 at

s = so, premultiplying by 5V {5_) , and using 2.2b we obtain

2.14 f%{s") = o,

Substituting into 2.13 for s = s0

Q—F 549 (s°) — 0(2(:’);-‘—‘-'5

, and using p(s) = 1 we get

Therefore
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$,(s°) - {7(5(5") =, §ls°),
Define pl(s) =1-1x,,s0
2.15 p, (s°) ¢(;) 0/ (s°) .

Also pl(so) # 0 by 2.14, 2.15 and the definition of arclength s.

Induction Hypothesis. For some V4 with /£ A< k-1 we

have
J
2.16 Q[_"_‘(s") O Sor J=oO, /,...,/.”'/.
aAsY
Also there exists a polynomial &{s), ﬁe/‘) nonzero for s near
so, and
. N N
J 0(..:- j _
~ o2 = O
2.17 j/?[ﬂ““#(‘) Z;(.s) /

S=5°
for § = 0,1, "",A-1.

We have proved that we can satisfy the induction hypothesis
forx£= 1. Assume that 2.16, 17 are satisfied for some ,[lefﬁkd.

Then differentiating 2.13 w.r.t. s, with p(s) = pg(s) we find

2.18 0(°< (5),0(50)$(S “‘9F00/ /((50)4-()/: Z [f;’e?g’ o /—;

.&* .
Premultiplying 2.18 by %'CS) we find that
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¥ 7, =0 £41 0
o g = (P ) 4

. L
1f {<k-/ then 2.19 implies oot (s°)=¢c and from 2.18
;?sl

Y -~ . -
%z[@/s)ck(;)—gl_f(;ﬂ/ =%, CA[S/

$=5°

we obtain

for some constant Xy Let

£
Poy ()2 Pr(s) + %’7 (5s-5°) .

Then the induction hypothesis is satisfied for J?+ 1.

If A?= k-1, 2.12b follows from 2.1llb and 2.2b. This

completes the proof of 2.12.

We must show that &(s) = 1 + o(s) is an eigenvalue of

¥(1,0;s) = Y(1,0; Z(s), /((s)). Let

2.20 %(5): (%:“)) ; %T[s)efn) x(s)e k.

x(s)

Then by 1.6, 2.10b

- N

a) Y(I,o/’s) glsu(s) = & (s) 925”(5) -—z(s))’(a(s) ,
2.2]

b) ?T(A’S))%/S) = od(s) x(s) .
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Here M, ()= TUs)F( a0 ; Bie), A)), Ats)) . For

s # so we see by the proof of Theorem 1.7 that
— —
2.22 Y(IIOJ'S))YO(S)= 7[0 (s)

Using 2.20 define 45(5) &H( ) - :{‘{‘)) o(s)

for s near so. Then by 2.21 we have

A A
a) Y(/,Oj'_s) 5515) = o/éfs) Sb[s)

?

2.23
- o(s)

f—(/((s))c;(s) = ol(s) 2x(s) — [??A(s))ﬁ:[s)]gm

4
Finally ¢(S')=O implies by 2.23b) that x(s%) = 0, and
;(5‘) (}),[5‘) = . From 1.6 and 2.10b, ;[S") =
implies Y( (s‘)-o which contradicts l.7a. Therefore 5(5")1:0)
and the theorem follows by 2.23a and the continuity of (s)

near s=s%, B

Degree theory can be used to prove the results of Theorem
2.10 in greater generality. We will not pursue this here (see

Sattinger [30]).

V.3 Simple Bifurcation Points

The point (&A°T), 7°, A)=(a(z;s°), Ts°), Ase) )

is a simple bifurcation point iff (see Keller [14]):
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—
a) é!g has zero as a simple eigenvalue,
2

+ ;Eiil .
- o s —X-X 36—
Here %é}?[%’: )) ,e)?@—g )) f ff’:l ) and
2 ;zz?a_;» _ ;lF?a }
gz To A

3.2

The conditions 3.1 can also be written in terms of G simply by

. - - -
replacing F by G, and Z by (Q,T).

The bifurcation conditions guarantee the existence of a
nontangential second branch bifurcating at (GO,TO,)P) (see
Keller ([14], ([15]1). The algorithms given by Keller [14] for
numerically computing both branches can be applied directly to

a difference approximation for G.

il
Let ou/s), %:/5), %[5) be as in Theorem 2.10. If

é—f((.s“) # o then by 2.10b,c and 3.lc we see that
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3.3 Z_{%(;") _ {71,/*‘{5")%[ g_;,_:(s) E(s)j /S:S’ )
% £° 1= o 2Ee 0 'y o
- W(Jo)[% ;_'_(l_f(s)d-%_gl é.;—((s]ﬁ(s) ,
7 0.

Exactly as is the proof of Theorem 2.10 we can show that Y(1,0;s)

&
' ds

the periodic solution 4(T;s) has a change in linear stability

has an eigenvalue &(s‘) with g\t(so) =1 (so) # 0. That is,
(or in the dimension of the space of linearly stable perturba-

tions of @(0;s)).

Let &(s) be the eigenvalue corresponding to o(s) for the

other branch passing through ("z'o 'AO) . From topological degree
o]

theory (see [30]) the signs of ols) and 0{s) behave as in Fig.

3.4.
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The plus and minus signs in Fig. 3.4 give the signs of &(s) and
3((5), or the signs of -ols) and —aﬁs). As in Theorem 2.10,
¥Y(1,0; ?(s),A&s)) and Y(1,0; ?(s),:x(s)) have eigenvalues 1+X(s)
and l+gas) respectively. Therefore Fig. 3.4 also represents

changes in the stability of the periodic solutions.

V.4 Start Up at Hopf Bifurcation Points

We consider the problem of starting along the branch of
periodic solutions bifurcating from a known HBP, (ﬁb(*o),Ao),
of 0.1. The nature of the singularity at (ﬁO(AO),AD) is dis-

cussed in

Lemma 4.1. Define

0G° D6z = 37  (sec 0.5)
) Sy SFRANTA) TR D (e 08

4.1
JE°. oF (3 3 = (a
> 5—2—. - 2—2.(201/(0>} 2, = (u"(&)lT)'

_.0 - ‘.> o — L - -)0 - — -~
Let fﬁ (a+(b) = 1ub(a+cb), where fﬁ = fﬁ(uo(ko),xn) and

|3+ib| # 0 (see 0.5). Then

a) ¢{:"'4 ( ) olivm q (
o dm (257 )22 5 TUA)(7 F)#(00)

J

‘Q)
T,

) 22

4.2

Proof. From 0.2, 1.4, 1.5 and 1.6 we have



= 0 Y°C(,o0)-T o
4.3 a) _D__t: = [ j
oz g,T(V\a) o
where,
'7".§°'z'

o . _ o T
4.3 b) Y('QO)EY(Z,a/' b)), As)=e 4 |
Therefore from 0.5, 4.3b we see that

o S - ‘_b

Y(/,a)fa‘né}: o +c b

and 1 is an eigenvalue of Yo(l,O) with geometric and algebraic

multiplicity two. Therefore

o (7)eN(F)

o (FTEE )N (F) fe = (Tla) 5[50

4.4

o

d =0
The lemma follows from 4.4 and the definitions of ;ﬁéﬁv, ég;.
J

The methods discussed in Section V.1l can be expected to
have difficulty near the singular point (ﬁb(ko),io). W.
Langford [20] has suggested an algorithm for calculating the
bifurcating periodic solution near the\bifurcation point. The
method is based on singular perturbation techniques, and its
accuracy improves as (ﬁo(Ao),AD) is approached. The method

requires Yo(l,O) explicitly, which can be costly to compute.
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Also the method requires an entirely different program than the

arclength continuation methods described previously.

E. Doedel {[4] has suggested that arclength continuation

can be used directly. That is, we attempt to solve
4.5  a) Gla, T A)=0

with §(A)= f//(a), TU)(& &)# (0,0) and
s v L(@,7, K s)= g law) -l 61T
+§3 i/(-/(a/z-— 52=0} with 8,20,

Note that 4.5 has a trivial solution

(a’/'T’J/() = Cﬁ;[/(,)/ T +Jé—2;5,/(a)
for @, # 0. Also for 3(%(/{,)_1_ ?d.,) the steady state branch
(ﬁb(AJ,A) is nearly a solution of 4.5 for (/L'Xa) small. This
suggests that we should require

a) 6& = 00

4.6

b) fT(«(o) %(L)#d

Finally, 4.5b should be replaced by pseudo-arclength normaliza-

tion, that is
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J

4.7 E(alrr ;;5);.5;éés"(x)gﬁt%)-&:(/(o)}ﬂ(%-s =0
Here
a) 2{?&‘%)5 [, &+ 2y b |cos(ame) + [p@~m & | sin(a7T)
co o P ) ] T ] L FIE] - o
o 1§1xdvmal]+ lma-mT]] = 1.

P d
Equations 4.8a,b,c determine é‘f )9‘,) and X, uniquely. Notice
that the parameter s in 4.7 is closely related to the amplitude

parameter £ of the periodic solution (see 0.6).

For an initial guess of a solution of 4.5a, 4.7 we can

take (I1,T,A) = (W}TO,AO) where

) - O

— — U -
4.9 w(‘q_q)-zua(/(o + 550(5 (6)} (see 4.8).
It is easy to show that

2 G(F, T A)=0s?)

AN
by | (&, T

4.10

/{a/'s)z @

/

as s — 0. Higher order initial guesses can be obtained using
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the Hopf bifurcation parameters Az,Tz (see Chapter III).

Next we present an algorithm based on a method for simple
bifurcation due to H. B. Keller (see Method IV in [14]). Let

(@.,A) be a HBP of 0.1 with
0’0

[~

=> s - _:-T'Q . - ’.... T
a) -g..o(&‘+db)= o'a),(&‘»«;b)) (2-id) §_ —MJO(C-‘,O()}
u

[7A
4.11
T, o > { ©
b) W,>0 | (’5 ;’) (a b)‘-‘(a /)'
Consider
%w) - T 3T/, A e)
. Tw) -7 (o)
4.12 HT,T Ae)=| . = O, 0<%+,
}; Uo)
¢ -—
S;"(x) Fx)dz - 8,
Here
L5grevm), L) $or c#o,
- -
a) (7, Lrs)= = N
VAR éé.(cgl,{)br(rj Fo E=o
) & (T) =2 cos(2mz) - of sen (277T) ,
4.13
._}7-) =T >
c) j: a =9 , ’ é’—— i y
a s, > o,

Notice that if (?[Z‘,’g),q"(g)l /\[s)) satisfies 4.12 for some
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E # 0 then

-~ . —_—
4.14 @) U I(T]e) =T, +£TCT &)
satisfies

—

—
b @)= Tle) $(dce), Ne))  Yor Telod),
) AW)-&le) =5,

Lemma 4.15. For €= 0 equation 4.12 has a solution

P d
= [
for T0 2'/,,.)0 and

—— — >
4.15 b) U, (T) = Soz & cos(a2rzT) - b 56’0(377'5’)},

The solution given above is a regular point of 4.12.

Proof. A straightforward calculation shows that 4.15

gives a solution of 4.12. Let 3 =(§,T,A), ib = (ﬁb,To,Ao), and
]
% = %(’g’;/- 0) . Without loss of generality we take s =l.
e . e -~
Assume (AU"/ 27, oA) is a null vector of g-éi’( , that is

i‘.lé 32#5 (6(7:} 'A'T-’/ A/\):
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@Z" cont.)

[;%‘ 'T’;JAU'(‘E') + AlTlg U‘(Z‘)-rrT' —-* ,,(Z'}Al

_ AT(1) — AT (o)
=T -~
}; AU ¢ o)

!
S BTz) &F () oloc
[~

I
O

Then by 4.16

- O Ao
4.17 a) AT (T) = Y/‘Z:o)ﬂo + Arr'g 7T, = % G, () oA
+A/\8 Y(T,=)T] i‘k 0 () o=
o
with
p YT, z)= ex,vg'T: -Sf;(z“-ac)g ,
4.17

> n
c) rz 6 ﬁ?.
0
We can write

1s Gx)= Reds(drs 5)es =3

Substituting 4.17b and 4.18 into 4.17a we get
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/
! ""_‘ édoq;'(l-x) 2o
4.19 S Y(I)x)S&.U;(x)o{x =§chc 5‘;64)0(5+6U)eﬂ Az
0

o

=-u)s5b.

0

Also

{ =,
4.20 (g-;J)TS Yey,x) T %7.{ 0 () Ax

(C -

( o
cawli- 7 -
= 'C'Sc a7 i-x) z 27) 3%*9,[2? cos(2i7x) —bsc'n(aﬂ‘:c))a(x)
(7]

{ , ' .
=s, X é “ ﬂxg);,«j cos(s7r2x) = W sin (z;rx)] +¢ [uf (a7) + /(/fsz,,(gm)
=,

o

=5, To (alrie).

) -0 jT""O b._\. o
Here we have used ZT*;;;,L a = GA 2 = 44 and
T=*0 T
¥ a= =7 b =} e
77 Sl GA A (see 0.5 for the definition of

/'((i) ’ LJ(/() and see the proof of Theorem V 2.10 for the above

relation).
Then from 4.17. 4.19 the boundary conditions

- —
LUCl) = BUe) =5 become

t -
4.21 [Y[/,O)-'Ij)‘?::‘é'_/—’ S%é ’A/LS;Y[IJX)T%ZLU;C%)dJC,

The Fredholm theory for matrices and 4.11 (and 0.5 imply that
4.21 has a solution iff c® and d' postmultiplied by the right
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hand side of 4.21 equal zero. Using 4.20 this becomes

4.22 - .
Sowa S '7-2 U,C A/L Q

Finally, 4.22 and 0.5 imply that

4.23 AT =2 sl =0

From 4.17a,b, 4.21, 4.22 we have

4.24 ATHT) = Y(Z;o);x,a’+ = Zg

T
From 4.12 we require §}i?(o)==c> , which by 4.13c implies that

-

o= éf. (:C,Z?v* JQ,Z:)-==<aaz<Ei?réi)

and therefore Xy = 0. Finally from 4.12, 4.17b, 4.24, we have

! !
~=T -— — -
o == So w(=x) Y(R.'Jo)a A = X, ), iw?X)sin@ﬁ’x)Mz.

-—
- ;{9%¢“£

-

So we have shown x, = x, = 0, therefore s7=0.10
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Lemma 4.15 justifies using a standard continuation scheme
to compute solutions of 4.12 for &> sufficiently small. For

Euler-Newton continuation we will need

-_—
ri7 = T~
R YIS "‘é‘ [ 5:;‘;5 U;(C)U;((')
4.25 a) <L (Z '0)-: R .
2E 7 o

This can be approximated by

-~ N "‘*o) j
L] S @+ e, A)-e% )
—

~
4.25 b) %(;—2"}-0):—
o ,

Once we have computed a solution of 4.12 for &£# 0, the trans-
formation 4.l4a provides a nontrivial periodic solution 0.1l.
For &€ sufficiently small this solution must lie on the bifurcat-

ing periodic solution branch.

Note that Lemma 4.15 and the implicit function theorem

prove the Hopf bifurcation theorem (see [2]).

.Other choices of §(V,A;£) might prove to be useful for
some problems. For example, if I;:a T [ >=>1 then the
first continuation step using the above method will require
lag| <L . If |osw)|<< (7] then large calculation
errors will occur in calculating ‘1'1’0 +as J(T) for 3’(57//(/‘05)_

This problem can be avoided by using
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4.26 j;(&;’//(.)g) -—-(/—z)*%-(z/()?+£§'(&’-j/().

(We are only computing solutions of 0.1 when &= 1!)

Example calculations are proposed for the near future.
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