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Abstract

A theory proposed by Concus and Finn in 1974 and recently developed by Finn yields
explicit geometrical criteria for the position of the free surface of a liquid at zero gravity in a
cylindrical container of specified cross section. These criteria were applied by Concus and Finn
to three container geometries; the bathtub, the trapezoid, and the keyhole. It is possible to find
geometrical criteria that promise a liquid interface of finite height, with the base still covered
with liquid, or a liquid interface of infinite height, with the liquid wetting a well defined portion
of the wall. In the present work, calculations are presented for a fourth geometry, the non-
concentric cylinders. In addition, the earlier calculations of Concus and Finn are extended, and
a unified graphical presentation of all four geometries is given that can be used directly for the

design of containments for liquids at zero gravity.
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1 Introduction

The work reported here was carried out in preparation for a proposed space experiment.
The objective was to study the relationship between container geometry and interface geometry
for a free liquid surface in equilibrium at zero gravity. The research has involved an analytical
and numerical study of the four container geometries shown in Fig. 1. The intent was to
determine the shapes of these four geometries for which the liquid location at zero gravity is
qualitatively different from that found at non-zero gravity. Three of these configurations, the
bathtub, the trapezoid, and the keyhole, were studied previously b).f Concus and Finn [1, 2] and
are discussed here in somewhat more detail. The non-concentric-cylinder geometry was
conceived by Coles [3]. Drop-tower experiments conducted to investigate the behavior of
liquids in the bathtub geometry are reported in another paper [4]. The results of the
experiments encouraged continuation of the analytical study. The results from all four
geometries are displayed in a unified graphical representation that indicates different properties

of these geometries in a zero-gravity environment.

The paper should be useful to designers of containers and pipes for use at zero-gravity. If
the four geometries considered here are not adequate for a particular application, the user can
extend the analysis to other geometries of interest. The static theory as developed by Finn [5] is
quite general and applies to cylindrical containers of arbitrary cross-section. However, each
case must be investigated individually. Dynamic liquid behavior caused by accelerating,
emptying, filling, heating, or otherwise disturbing a static situation is not accounted for here.
However, information regarding the static equilibrium position of a liquid at zero gravity

provides a natural starting point for a study of dynamic behavior.

In general, the location of a liquid in a container at zero gravity is dependent upon the shape
of the container and the contact angle y between the chosen liquid and the container walls.
Consider a cylinder of some arbitrary cross section £, partially filled with a liquid and standing

upright in a normal gravity field, as shown in Fig. 2. A striking feature of the Concus-Finn [6]

and Finn [1, 5] theories is the existence of a critical contact angle Yo(£2), with 0 <y, < %, such

that when Y, <y< —g— a large enough volume V of fluid will cover the base and yield an
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interface of bounded height. When 0 < ¥ < 1y,, however, every large enough volume of fluid
will rise to the top of the container along a portion of the boundary walls, regardless of
container height. If the liquid and the shape of the cross section are chosen appropriately, a
liquid that resides on the base of the container in a one-gravity field may reside on a well-
defined portion of the walls at zero gravity. The theory is based on a functional @, which is
derived from the Laplace-Young equation and is described in Section 2. The application of this
functional to the four geometries is described in Section 3. Results and conclusions are given in
Sections 4 and 5. A detailed discussion of the topology of the graphical results is left to the

appendix.

2 Theory

For greater detail on the theoretical background and derivations, the reader is referred to

Finn [S]. The theory stated here is only what is necessary for the present discussion.

Let a standard variational technique be used to minimize an expression for the free energy
of a liquid in a container at zero gravity. The free energy includes the free surface energy
(Es = 0S) and the wetting energy (Eg- =-ky0S"), where o is the surface tension, S and $*
are the free surface area of the interface and the wetted surface area of the container,
respectively, and kg is a constant of proportionality. The total volume of the liquid is held

constant as a constraint, represented by a term k; V. Thus

k
E@S)=S —koS* + ?‘v )

Minimization of the free energy defined by Eqn. (1) yields the Laplace-Young equation for a

static liquid free surface in a cylinder of arbitrary cross section at zero gravity;

Zcos Y

div T(u) = Q 2)
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n - T(w) =cos Y=k, €))

where n is the unit outward normal,  and Q are the perimeter and area of the cross section, 7y

is the contact angle measured in the liquid, u = u(x,y) is the height of the free surface, and

Vu

T = v 127

“@

Consider a cross section of the container, normal to the axis, as sketched in Fig. 3. Assume
that the free surface intersects the cross section along a curve I'. Integration of Eqn. (2) over

this section yields an energy per unit length defined by

OT) =T - (cos P)T" + [z.‘._qgs_y Q )

which is a two-dimensional analog to the three-dimensional energy defined by Eqn. (1) [1].
There is a close analogy between the free surface area S, the wetted surface area S*, and the
liquid volume V in Egn. (1) and the length of the curve T, the length of the wetted boundary
X", and the liquid area Q" in Eqn. (5).

The cylinder has a flat bottom £ and a smooth boundary Z, while I is a circular arc of

radius Ry= for the entire range 0<vy< -;3 Under these circumstances, the liquid

Q
Zcosy
surface extends to a finite height inside the cylinder if and only if ® > O for every arc T that
can be drawn in the cross section such that the arc meets the walls at the contact angle y. In
general, there are at most a finite number of these arcs that can be drawn; therefore, it is
sufficient to evaluate @ for only a finite number of cases. For the critical contact angle v,
introduced above, there will be at least one arc I" such that @ = 0, with © = O for all other arcs.
In the present work, the aim is to determine these critical arcs T, since they separate the two

types of behavior described below.

Whenever @ > 0 on all arcs T, the height of the liquid interface is bounded. To be precise,
a solution u(x,y) exists for the Laplace-Young equation (Eqns. (2)-(4)). The surface defined by

u(x,y) minimizes the mechanical energy among all possible surfaces satisfying the prescribed
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volume constraint and meeting the bounding walls of the container at the contact angle .

Whenever @ =0 for some arc T, a bounded solution cannot be found. The mechanical
energy is then formally minimized by a generalized function that is positive infinite in Q* and
finite in the rest of the domain, or finite in Q* and negative infinite in the rest of the domain. In
the real case, this conclusion means infinite liquid rise (or rise to the top of the container) in Q*
and possible uncovering of the base outside Q*, depending upon the volume of available liquid.
It is this behavior that can be inferred from the graphical descriptions for the four cases

discussed here.

3 Application of theory

Application of the @ functional, described in section 2, to a particular geometry requires
that all the terms in the functional be defined for that geometry. A position for the circular arc
TI" must be specified in order to determine X* and Q*. This circular arc represents the position
of the free surface of the liquid in the cross section; therefore, the arc must meet the walls at the
contact angle. Each geometry considered here requires special attention to details to determine
the terms in @, which are listed in Figs. 4a4e. It is useful to refer to the drawings of each

geometry given in Figs. 5-8 for the following discussion.

Finn [1] presented a detailed account of the procedure used to find the location of the
critical circular arc T for the trapezoid cross section. He considered all possible positions of T’
and found that @ > O for all except two of these. Fig. 6 shows that one of these arcs T is
symmetrically located on the long-axis centerline, with the convex side of the arc toward the
narrow end of the trapezoid. The other arc T is located in the comers of the trapezoid, with the
convex side toward the comer, indicating the possibility of liquid rise to infinity there. Critical
behavior of liquids in comers is considered again in the discussion of the bathtub and the

trapezoid in the appendix.

The location of the arc T" for the bathtub cross section shown in Fig. 5 was also determined
by Finn [7]. A general rule appears to be that the liquid tends to rise in regions of higher

curvature or in the narrower end of the container. When applied to the keyhole cross section,
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this rule yields T" as shown in Figs. 7a and 7b [8]. The cross section for the non-concentric
cylinders is rather different from the other three, but application of the rule yields two circular
arcs positioned as shown in Fig. 8a.- Although this general rule is simple, finding critical
solutions with ® =0 is positive proof of correct arc placement. If the arc is not correctly

placed, it is always found that @ > 0 [8].

When a general position for the arc I has been found, the geometric expressions for the
terms of the ¢ functional can be determined. The terms for each geometry include those listed

in Figs. 4a-4e and the following equations, which are common to all four geometries:

Q
Ry= Tcosy ©
T=20R, %

Egn. (6) represents the radius of the circular arc I and Eqn. (7) represents its length. It is
necessary to double the right-hand side of Eqn. (7) for the non-concentric cylinders, because
there are two circular arcs. Each geometry is fully defined by two parameters « and {3, which
are shown in Fig. 1 for each geometry. The parameter o is defined as the half angle of the
extended sides or tangents, with the exception of the non-concentric cylinders. For the latter, o
is the angle between the axis of symmetry of the cross section and the line segment connecting
the tops of the two circles. The parameter B is always defined as the ratio of the radii or sides,
with the larger radius or half height defined to have unit length. These definitions for o and
allow the full range of possible shapes of each geometry to be represented by a finite range for
each parameter, 0 < B<1and 0°<oa<90° The functional ® depends only on geometry and
contact angle. Therefore, ® = ®(c, B, 7).

In addition to choosing uniform geometric parameters to represent each geometry, the
equations in Figs. 4a-4e have been written in a consistent form. For example, the total
perimeter T is always written such that the first term represents the perimeter of the left portion
or narrow end of the cross section. The second term represents the perimeter of the middle

portion, and the last term represents the perimeter of the right portion. In the case of the
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keyhole without parallel sides, pictured in Fig. 7b, and in the case of the non-concentric
cylinders, pictured in Fig. 8a, there is no middle portion, but the left and right portions are
represented in the standard way. The same is true for the organization of the rest of the
expressions. The quantity © always represents the half angle subtended by the arc I. The
quantity ¢ is used for the keyhole with h < 0 in Fig. 7b and for the non-concentric cylinders in
. Fig. 8 to represent the angle of B from the center line to the intersection of the arc T" with the
cross section. The quantity A represents the center-to-center distance in Figs. 5-8. For the
bathtub in Fig. 5 and the trapezoid in Fig. 6, & represents the distance of the circular arc T" from
the small end of the cross-section. The quantity h is introduced with the keyhole geometry in
Figs. 7a and 7b to represent the length of the parallel sides. If no parallel sides are present, h is

considered to be non-positive.

The terms for the bathtub and the trapezoid were determined by straightforward application
of geometrical identities. These terms were given explicitly by Finn [1, 7]. The terms listed in
Figs. 4a and 4b correspond exactly to Finn’s notation; however, they are written in a form

chosen for consistency among the four geometries considered here.

The keyhole geometry has two distinct shapes. Fig. 7a shows the case where the cross
section contains parallel sides and Fig. 7b shows the case without parallel sides. The length of
the parallel sides is defined as h. The keyhole terms for the case h > O are listed in Fig. 4c.
The terms for the keyhole with h < 0, listed in Fig. 4d, are slightly more complicated. For the
case h = 0, either set of equatibns can be used. The loss of the parallel sides requires the
introduction of the point (X,Y), indicated in Fig. 7b, where the large circle intersects the smaller
one. For the keyhole geometry, the arc I' is located at the reentrant comers of the cross section,
and does not change position with contact angle or container shape. However, the radius and
the length of T still vary according to Eqn. (6) and (7). Theorem 1 of Finn [5] states that the
arc T must intersect the reentrant corners and need not meet the walls at the contact angle y; in

fact, the angle between I" and the parallel sides is 2 v.

The terms for the non-concentric cylinders, shown in Fig. 4e, are the most complex among
the four geometries. In this case, the two points of intersection, indicated in Fig. 8b, between I'

and the cross-section had to be numerically determined. X1 and X2 were iterated until the
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circular arc I’ met the inner and outer cylinders at the contact angle y. This additional
complication yields the five-term expression for Q* given in Fig. 4e. The first term, ©, is the
area of the entire sector of the larger cylinder that contains the arcs I' in Fig. 8a. The next four
terms represént areas of the corresponding sections labeled 1 through 4 in Fig. 8b. Note that the
areas in Fig. 8b must all be doubled to represent the areas on both sides of the dashed

centerline.

The terms for @ were inserted into computer programs for each geometry. The critical
values ®(o, B,7) =0 were found by straightforward application of binary search and secant-
method zero-finding algorithms. The location of the arc I" for the bathtub, the trapezoid, and
the keyhole was found by straightforward analytical means once the contact angle y was
specified. The location of the arc I" for the non-concentric cylinders, however, was found by
iterating X1 and X2 (Figs. 4¢, 8a). For all geometries, Y=Y, was chosen, § was fixed, and a
was searched to find ®(c, B,v) = 0; then P was changed, and o was searched again. In every
case, zeros of ® were found to an accuracy of 107! or better using double-precision

calculations.

4 Results

The results for each geometry are given in graphical form in Figs 9-12. The abscissa in
every plot is 0° < <90° and the ordinate is 0 <P <1, where o and B are the geometric
parameters for each cross section. A particular geometry is fully defined by choosing a point
(o, B). The first plot in each case, namely Figs. 9a, 10a, 11a, and 12a, depicts the critical curves
O(a,B,¥) =0 for yp = constant. Any geometric point (o, ) lying on a particular curve
D(ct, B, v0) = 0 is critical for contact angles < yp. That is, liquid rises to infinity on the convex
side of the arc I" at zero gravity. The second plot, namely Figs. 9b, 10b, 11b, and 12b, displays
dotted curves of constant critical area ratio. For all the geometries except the non-concentric

cylinders, the critical area ratio A .y, is defined as the ratio of cross sectional area occupied by
E 3

liquid to the total available cross sectional area; i.e., ?2 .

For the non-concentric-cylinders

%k
case, Ay = —2— where 7t is the area of the larger cylinder. If Q is used rather than =,
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A = 100 percent is found as B — 1, yet almost no liquid is contained in the very small
space between the two cylinders. The third plot, namely Figs. 9¢, 10c, 11c, and 12c, depicts
curves A = constant. The quantity A represents the center-to-center distance or, in the case of
the trapezoid, the end-to-end distance. For all the geometries except the non-concentric
cylinders, A has a full range from zero to infinity. For the non-concentric cylinders case, A is
restricted to 0 < A < 1, otherwise the inner cylinder would protrude beyond the outer one. Note
that all the curves in Figs. 9-12 are labeled from right to left except Fig. 12b, which is labeled

in the reverse order.

For every plot shown, the computed points are connected by straight line segments. No
curve fits were employed to smooth the computed data points; therefore, individual computed
points are not shown. The computations yielded points (a,fB) for a given 7y, such that
®(a., B,¥0) =0. Curves of Ay = constant were determined by interpolating the A results
for each curve ®(o, B,vyp) = 0. For this purpose, various additional curves were computed for
intermediate values of 7y, in order to yield smooth critical area-ratio curves. Curves A =

constant were computed from the geometrical formulas shown in Figs. 4a-4e.

Each of the following four parts discusses the plots for a particular cross section. A number

of prominent features that warrant close attention are discussed in the appendix.

Bathtub: The graphical results for the bathtub geometry are shown in Figs. 9a-9c. The
design point for the container used in experiments at the NASA Lewis drop-tower facility [4] is
indicated on each plot. As previously stated, the results of these experiments encouraged the

continuation of this work.

Critical curves ® =0 for y=0°(5°)85° are shown in Fig. 9a. A similar plot for this
geometry was presented by Concus and Finn [2], who plotted y versus B with o constant. The
points along each curve in Fig. 9a were found for a particular y= vy, by first fixing B and then
scanning the o range. This procedure yielded more than one zero for ®@; however, inspection
revealed thaf & < 0 for all of these except one. The given formulas for @ in Fig. 4a consider
only the intersection of I' with the non-parallel sides; therefore, & < 0 is not valid in this

context. When the terms of @ were written to include intersection of the curve T with the small



circular end, no zeros were found. The convergence of the curves © =0 to the point o = 0°,

B =1, the o-intercepts, and the curve for ¥ = 0° are discussed in the appendix.

The curves are more easily understood by an application, in this case to the drop-tower
experiments [4]. The plexiglas containers for these experiments were designed to have a critical
contact angle of 30° with f =0.5. Fig. 9a shows that the design point lics on the curve ® =0
for ¥ =30° The design point lies below and to the left of all critical curves for which
Yo < 30°, and lLies to the right and above all critical curves for which v, > 30°. If a liquid
partially filling this container has a contact angle of 30° or less, it will attempt to rise to infinity
in the narrow end of the cross section. This behavior was seen in the experiments when 50%
ethanol in water (Y, = 23°) was used. If the liquid has a contact angle greater than 30°, it rises
to a finite height [6, 9]. This behavior was seen. for water (Y, = 72°) and for 10% ethanol in
water (Yg = 55°).

Plots of A, = constant and A = constant for the bathtub geometry are shown in Figs. 9b
and 9c respectively. The curves in Fig. 9b are bounded above by the curve Yy, = 0°. The curves
A = constant depict how the center-to-center distance changes with the geometric parameters.
The design point for the drop-tower tests had A = 12 percent with A = 5. For the design, it
was important to have a sizeable percentage of the cross section filled with liquid while at the

same time restricting the container to a reasonable length.

Trapezoid: The graphical results for the trapezoid geometry are shown in Figs. 10a-10d.
Unlike the other three geometries, comers are always present in this cross section (Fig. 4b).
The presence of comers complicates the explanation of the results. Basically, critical liquid rise
in the comers is not as large-scale as it is in the narrow end of the container, and both can occur
for the same contact angle and geometry. The curves @ = 0 in Fig. 10a are interpreted in the
same manner as for the bathtub geometry. In this case, each scan of o for fixed B yielded only
one zero for ®. Some prominent physical features, such as the o-intercepts and the
convergence of the curves ® =0 to the point =0, B=1 were also seen for the bathtub
geometry. The dotted and dashed curves in Fig. 10a, along with the fact that some of the
curves @ = 0 end in mid-plot, are discussed in the appendix. The curves of A ;, = constant in

Fig. 10b and A = constant in Fig. 10c are once again easily understood. To obtain a higher



percentage of the cross section filled with liquid, it is necessary to consider longer lengths. The

plot of curves & = 0 shown in Fig. 10d is discussed in the appendix.

Keyhole: The results for the keyhole geometry are shown in Figs. 11a-11c. The curves
@ =0 are interpreted in the same way as the previously discussed geometries. Only one zero
was found for @ for a given scan of o. The dashed curve in Fig. 11a indicates where h=0. A
different set of equations is used for the terms of the ® functional for h > 0 and for h < 0 (Figs.
4c, 4d). The solutions join smoothly. The convergence of the curves ® =0 to the point
o=90° B =0, the B-intercepts, and the curve Yy, =0° are discﬁssed in the appendix. The
interpretation of the curves A = constant in Fig. 11b and the curves A = constant in Fig. 11c
is straightforward. The curves in Fig. 11b are bounded above by the curve for ¥, =0° and
bounded below by the curve for ¥, = 89.9°. Note that critical area ratios larger than 30% are

possible for reasonable values of A and B.

Non-concentric cylinders: The graphical results for the non-concentric cylinders are given
in Figs. 12a-12c. This set of plots differs markedly from the others considered here. The o
range (45° < . <90°) is half of the o range seen for the three previous geometries. This
limitation is a physical consequence of the geometry; at o = 45°, the inner cylinder touches the
wall of the outer cylinder. To allow a to go beyond this value would involve the consideration

of crescent-shaped domains. The other distinguishing features are discussed in the appendix.

The curves ® =0 in Fig. 12a are interpreted differently from the curves ® =0 for the other
geometries. If a point (o, B) lies to the right and below a particular y =¥, curve, a liquid with a
contact angle Yo would rise to a finite height in the container. However, if (o, B) lies on or
above the curve, a liquid with that contact angle would rise to infinity. The technique used to
find zeros for this geometry did not yield results for yo=0°. The curve for Yy = 1° is plotted,
and overlaps the curve for yo = 5°. It is supposed that the curve for Y, = 0° would also overlap.
The curves Ay = constant in Fig. 12b and the curves A = constant in Fig. 12¢ are easily

understood as before. The curves in Fig. 12b are bounded below by the curves for v, = 1°.
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5 Discussion and Conclusions

In the containers discussed above, the liquid tends toward the narrow ends or areas of high
curvature at zero gravity. In the limit B — O the small end of the bathtub or the trapezoid
becomes a corner of angle 2o and the corner-condition [6] is satisfied by the curves ® = 0 (see
the appendix). In the limit § — 1 the sides of the bathtub and the trapezoid become parallel

and all the curves ® = 0 converge to o = 0°,

All of the plots in Figs. 9a, 10a, 11a, and 12a have empty regions. In Figs. 9a, 10a, and
11a, a geometry (o, B) effects finite liquid rise for a particular contact angle 7, if it is located
above and to the right of the curve y=1Y,. In Fig. 12a, a geometry (¢, ) effects finite rise if it
is located below and to the right of the curve. Therefore, any geometry (ct, B) located in the
blank region of a plot will not effect infinite rise for any contact angle. The results of Bainton
[9] for the bathtub show that the farther the design point is above a curve ®(a, B,Yp) =0, the
smaller the finite rise height. For the keyhole, this blank region encompasses nearly the entire
upper half of the plot. A designer of such a geometric shape for use in zero gravity might be
disappointed with the results if f were chosen to be larger than 0.506 and large liquid rise was

desired.

Another practical consideration for designing containers is the actual value of the contact
angle. The contact angle depends on the liquid and the material chosen for the container. It
also depends upon surface cleanliness, liquid purity, and other properties, such as surface
roughness. Note that all the work presented here also applies to contact angles larger than 90°
by using the supplement of the angle and considering the accompanying fluid as the one that is
producing the movement. Consider vapor over a liquid with a contact angle of 120°. If the
container is designed to have a critical angle of 60° or more, then the vapor would try to occupy
the area of the container on the convex side of the arc I'. In many applications, cleanliness and
purity may not be fully controllable, or the contact angle may not be known. A conservative
designer could choose a container shape that is critical for a large range of contact angles. For
the bathtub, the trapezoid, and the keyhole, the designer might choose to design for a critical
contact angle of 80°. This choice, although yielding a rather long cross section, will effect

infinite liquid rise for liquids with contact angles less than or equal to 80°. For the non-
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concentric cylinders, the designer need not know the contact angle. For example, with B = 0.5
and the inner and outer cylinder concentric (o =90°) small finite rise should occur for any
liquid with ¥ < 90°. As the inner cylinder is moved radially (o0 — 45°), the liquid will rise to
infinity as the appropriate critical curve is crossed. Used this way, the non-concentric cylinders
could conceivably be used for measurement of the contact angle. This geometry also presents a
- means of causing fluid to move on demand, by merely moving the cylinder radially to effect
liquid rise and then back towafd the concentric position to cause the liquid to fall again. This
geometry is the only one of the four considered here for which it is easy to visualize a

continuous variation of the geometric parameters as part of an experiment in space.

If yp = 90°, then the liquid has no component of surface tension along the solid surface of
the container. Thus no liquid motion would be expected. All four geometries considered here
demonstrate this rather vividly. Consider the bathtub. In the limit y, — 90°, Fig. 9a suggests
that the curve @ = 0 approaches the left edge of the plot. In order for a geometry (o, ) to be
critical, for y=1,, it must be located below and to the left of the curve ®(c, B, v =0.
However, this condition becomes increasingly difficult to satisfy as yp = 90°. At ¥, =90°, all

the geometries in the plot are non-critical. This property is also seen in Figs. 10a, 11a, and 12a.

For other applications, the amount of liquid that rises may be important. For this purpose,
the plots of A ;, = constant provide a useful guide. The user should be aware that these critical
area-ratios are for the critical case only, that is to say that if the design point (o, B) is located on
a curve Y= 1Y), then this area ratio is valid for a liquid with contact angle y,. These values of
A o were interpolated from results for @ = 0 for many curves y=1,. If a large region of liquid
rise is desired, the designer should choose (o, ) within the highest A, contour on the curve
Y=o of interest. It is worth noting that both the keyhole and non-concentric cylinders have
finite Ay values along their respective curves Yo = 0°, whereas A_; =0 along the curve
Yo=0° for the bathtub geometry. Each of the containers considered here easily offers
A e = 20 percent for reasonable values of A and B. Higher percentages can be realized with
the keyhole geometry. However, this is simply a matter of making the parallel section longer
so that it comprises a larger percentage of the cross sectional area. The result is a rather long

container that may or may not be convenient for certain applications.



The results presented above provide a starting point for designers of containments for
liquids at zero gravity. While these results do not settle dynamic questions, they do provide
workable criteria in the four cases discussed, in order that statically stable configurations can be
achieved. The theories of Concus and Finn [6] and of Finn [1, 5], on which the above work is
based, can in principle be applied in analogous ways to cylindrical containers of arbitrary cross

section.

This material is based upon work supported by the U.S. National Aeronautics and Space
Administration and the University of California. I am indebted to D. Coles, P. Concus, and R.
Finn for useful discussions. The opinions, findings, conclusions and recommendations are those
of the authors and not necessarily of the U.S. National Aeronautics and Space Administration or

the University of California.



Anpendix

Some details regarding the topology of the plots in Figs. 9a, 10a, 11a, and 12a are presented
below for each geometry. In addition, a discussion of the curves 8 =0 in Fig. 10d is included

in the trapezoid section.

Bathtub: All the curves Yy =", shown in Fig. 9a intersect o-axis at oo =90° — v,. The case
Yo = 0° is not so obvious and is discussed below. In addition, the slope of the curves ® =0 at
the intercepts is identically zero for all ;.

9B 1-—(sin®y+cos%y)
oo 4cos y (sin y—ycos Y)

()

Explanation requires attention to the shape of the cross section as these intercepts are
approached. In the limit § — O, the small end of the bathtub becomes a comer of angle 2q.
Concus and Finn [6] determined that if o + ¥ < 90° the liquid free surface rises to infinity in the
corner indicated in Fig. 13. Fig. 9a indicates that if =0 and o + Y, < 90° the liquid rises to
infinity in the corner. Concus and Finn [6] also state that I' is coincident with the corner. This

is equivalent to & = 0, Ry = 0 as found numerically.

The curve ¥, = 0° intersects the right side of the plot at a =90°, B =0.5. This result seems
curious when compared to the other curves on the plot. Analytically, setting y=0° in the ®
terms listed in Fig. 4a and substituting them into Eqn. (5) with ® = 0 yields:

a2
o= (T—Tﬂ[(lzc— — @) — cot @] ©)

where

T= =R, 10

since ¥ = 0°. Substitution of Eqn. (10) into Eqn. (9) yields:
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a2
SRy R cota an
RY

® 2

Thus ® = 0 implies cota = (—12E — o) and/or R, = B. The first case yields o.= —;—, or the entire

right side of the plot, since this result is not limited in 8. The second case yields the equation

(1 -2B)
(1-py?

coto = (12‘- —a) - (12)

Note that at = 0.5 this case reduces to the first one. Hence the intercept at o= 90°, B =0.5.
The curve y,=0° shown in Fig. 9a was computed using Eqn. (12). Note that because

T =Ry =P, and § =0, the arc T is coincident with the circular arc of radius B.

All the curves ® =0 converge at the point o =0, B =1. The case B =1 was studied by
Concus and Finn [6] as a possible candidate for an "astronaut’s bathtub". In the limit f — 1, o
necessarily goes to zero, since =1 requires parallel sides. This property was also discussed

by Concus and Finn [2].

Trapezoid: All the curves Yy =¥, shown in Fig. 10a intersect the o-axis at o= 90° —1,, and
at zero slope. This behavior was also exhibited by the curves for the bathtub in Fig. 9a. The
explanation for this behavior is given above in the bathtub section of this appendix. The

analytic expression for the slope at these points is:

9B _ (1 —(sin%y+ cosH))?
da 2sin 2y

(13)

The dotted curve in Fig. 10a indicates the point, along a given curve y = 7y, where the acute
corners become critical. Define oy as the o at which the dotted curve crosses a particular curve
Y=o Infinite liquid rise is expected to occur in the acute corners for o > oy along a particular
curve Y=Y, Therefore, for ¥, < 45° the plot shows that the acute comers are critical for all a,

and for yp > 60° the acute comers are not critical along the y = Y curves.

The dashed curve in Fig. 10a indicates the point, along the curve y =", where the obtuse

comers become critical. Once again define o as the value of o at which the dashed curve
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intersects a particular curve Y=Y, In this case, for all a < 0y along a particular curve y = ¥,,
the liquid rises to infinity in the obtuse comers. For the critical curve y = 30°, for example, this

rise occurs for o < 30°. If y > 45° then the obtuse comers do not become critical.

It is important to note that the dotted and dashed curves described above do not define
regions of the (o, B) plot where the acute and obtuse comers become critical. They only act as
indicators as to where these comers become critical along the curves Y =Y,. General regions of
comer criticality can be defined. However, these regions are bounded by vertical lines on an
(o, B) plot. This corner condition is independent of 8 except for the case B =0, where the two
obtuse comers merge to become one corner of angle 20.. The acute comers are critical if
o 2 (2y-—90°), and the obtuse comers are critical if o < (90° — 2y). Consider the acute comers
first. If y=45° then the acute comers are critical for all a20° If y<45° then
a 2 (negative value ), but 0° < o £ 90°. Therefore, the acute comers are critical for all valid .
For example, if ¥y = 30°, then o = —30°, and the acute comers are critical for —30° < o < 90° and
for 0 < B <1 as shown in Fig. 14a. If y > 45°, then the area of criticality begins to shrink. For
example, Fig 14b shows the critical region for y= 60°. Critical liquid rise occurs in the acute

corners when (2y — 90°) < o0 £ 90° for 0 < B <1.

Infinite liquid rise occurs in the obtuse corners when 0° < o < (90° —2%) for 0 < B <1, as
shown in Fig. 14c. Immediately noticeable is the fact that for y = 45° the obtuse corners are
never critical. At f =0 the obtuse comers no longer exist, and are replaced by one comer of
angle 2o. If o+ < 90° then infinite rise occurs in this comer. The region of the (a, 8) plot
that has infinite rise in the obtuse comers, and also in the comer 2q, is 0 < a < (90° — 2y) for
0<PB<1land 0<o<(90°-7) for B =0 as shown in Fig. 14c. Fig. 14d demonstrates that all

corners can be critical for some contact angles.

Some of the curves Y=, end in mid plot in Fig. 10a. Calculation of ® =0 was stopped
when 8 =0. This is the point at which the circular arc I'" makes contact with the small side of
the trapezoid (2B). Note that this endpoint always occurs at an « that is less than the critical oy
for obtuse corners for that particular curve Y=, As o decreases and 8 increases along a curve
Y = Yo, the circular arc I" moves closer to the small end of the trapezoid (§ — 0). At some point
(0p) the obtuse corners, which are already filled with the liquid on the convex side of T, become



critical. Presumably nothing spectacular happens as o is crossed. However, as o reaches
Olendpoint » the arc I' touches the small end and it is no longer possible to draw this particular
circular arc. This solution must therefore collapse and the liquid would remain trapped in the
obtuse comers for any O < Cepapoiny for 0 < B < 1. If B is decreased, as shown in Fig. 15, with

O = Olendpoint » the arc I' may reappear.

The plot of curves 6 = 0 is shown in Fig. 10d. These curves represent values of & and B, for
a given y =", for which the arc T" touches the smaller end (2[) of the trapezoid. The curve
8 =0, for a specific vy, intersects the curve @ =0 for the same ¥, at o = Olendpoint - 1NOte that

Clendpoint = 90° and B = 0 for y, = 0°.

Keyhole: In the limit oo — 0°, the curves ® =0 in Fig. 11a meet the B-axis at well defined
points. In the limit as a — 0° h — =, Therefore, a perturbation expansion of the @ terms

shown in Fig. 4c for large h yields (to leading Och 2)):

@ = 4B%® + sinycos ) + 4cosZy[(n — ©)(2B — 1) - Bcos O] (14)
0= (g —y) ; ©=arcsin(p) (15)

This set of equations was used to determine the values shown in Table 1 for the B-intercepts.
Finn {8] reported a critical radius ratio for y=0° of pg= % = 1,974 that is in agreement with

the result quoted in Table 1.

All of the curves @ = 0 converge to a=90° in the limit  — 0. Unlike the two previous
geometries, no corer is formed when B — 0; therefore, no corﬁer-condiﬁon a-intercepts are
found. In the limit & — 90°, the cross-section becomes a circle; h — 0 and f — 0. The curve
for y= 0° intersects the right side of the plot at B = 0.5. Unlike the other cases, the functional
o) -did not cross zero for the case v=0°, instead ® reached a maximum at ¢ = 0. The curve
shown is flat from the B-intercept (& = 0°), to the dashed h = 0 curve. From there, it drops off
monotonically to the intercept on the right side of the plot. In the limit o0 — 90° for y =0°, the

shape of the cross section approaches a circle; therefore, Eqn. (6) yields R, = 0.5. In the limit
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Ry — 0.5, with y=0°. B — 0.5 so that the circular arc of radius P is coincident with the arc T..

Non-concentric cylinders: All the curves @ =0 in Fig. 12a converge to =90 at =1
and to 0.=45° at B=0. As the inner cylinder radius approaches the outer one (§ — 1), no
room is left to move the inner cylinder. Hence o must go to 90°. In the limit as o — 45°, the

inner cylinder shrinks to zero radius at the wall of the outer cylinder.
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Figure Captions

Figure 1:  Four container cross sections

Figure 2: Generic cylinder

Figure 3: Cross section of generic cylinder

Figure 4a: @ terms: bathtub

Figure 4b: @ terms: trapezoid

Figure 4c: @ terms: keyhole, h > 0 |

Figure 4d: @ terms: keyhole, h <0

Figure 4¢: @ terms: non-concentric cylinders

Figure 5. Bathtub

Figure 6: Trapezoid

Figure 7a:  Keyhole,h >0

Figure 7b:  Keyhole, h <0

Figure 8a:  Non-concentric cylinders

Figure 8b:  Non-concentric cylinders: detail of Q*

Figure 9a:  Critical curves: bathtub [y = 0°(5°)85°]

Figure 9b:  Critical area-ratio curves: bathtub [A . = .01, .05(.05).30]
Figure 9c:  Curves of A = constant: bathtub [A = .1, .5, 1(1)10]

Figure 10a: Critical curves: trapezoid [y = 0°(5°)85°]

Figure 10b: Critical area-ratio curves: trapezoid [A o, = .01, .05(.05).30]
Figure 10c: Curves of A = constant: trapezoid [A = .1, .5, 1(1)10]

Figure 10d: Curves of 8 = 0: trapezoid [y = 0°(5°)85°]

Figure 11a: Critical curves: keyhole [y = 0°(5°)85°]

Figure 11b: Critical area-ratio curves: keyhole [A .4, = .01, .05(.05).30]
Figure 11c: Curves of A = constant: keyhole [A = .1, .5, 1(1)10]

Figure 12a: Critical curves: non-concentric cylinders [y = 1°, 5°(5°)85°]
Figure 12b: Critical area-ratio curves: non-concentric cylinders [A ., = .01, .05(.05).20]
Figure 12c: Curves of A = constant: non-concentric cylinders [A = .1(.1).9]

Figure 13: ©  Generic comer.



Figure 14a:
Figure 14b:
Figure 14c:
Figure 14d:

Figure 15:

IV -23

Y= 30°: acute comers critical.

¥ = 60°: acute comers critical.

Y= 30°: obtuse comers critical.

v = 30°: all comers considered.

Decreasing f with o fixed: trapezoid.



SUOI109S SSOIO JOUrRIu0d Mo, | 2m3Ly

SIIPUI[AD ILIJUIIUOI-UON a[oyLay

N

/ "

prozadeug, qmuyjyeq

IV-24

N | N

\ N\
R T

/ /

A




.
oo

-
+2
L = A
. PR
[T FIFFPIFY S

At TE Iy,
- b
-

Figure 2 Generic cylinder
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Figure 3 Cross section of generic cylinder
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5= 2[¢B+ B) + S+ o]

P =2[¢B+u_]

tan o

— 682+ a-p»
Q=0p"+ tanoc (2+00

_ a2, (T2-B) 2 -
(2% —¢ﬁ +——t—a—1;—oc_—(eR7 —TRYSIH’Y)

T T
9—2—oc—y ; ¢—2—oc

)\'__: (I_B)
s O

6= (T _B)
tan o

T - Rysine
COS O

Figure 4a @ terms: bathtub



IV-28

z=2(p+ LB,
sm o
6
> =2[ B+ (RYSI,H B)]
s o
2
o_ 4-8%
tan o

(R sin?6 - B?)

¥ — — (0 — 2
Q* = — (0 sm@cosO)Ry
9=—7-2t——oc—y
;\‘z (I—B)
tan o

R.sin 6 —
§=—1 B—(l—cosO)R
tan o ¥

Figure 4b @ terms: trapezoid
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Z=2[—72£B+h + (1 — ©)]
= =2[7B+h]
Q:%BZ+2Bh +(ﬂ:-—®)+[3.cos®

Q* = —’23[32+2[3h ~ (0R2 — BRcos 6)

0= arcsin(—E—
Ry

© = arcsin ()

h =A—-cos ©

Figure 4c @ terms: keyhole, h> 0



2=2[¢B+(n-9)]
X* =20P
Q=6¢p2+m-©)+AY

Q* = pPp? - YBcos ¢—(6R% —Y R,cos 6)

0 = arcsin (TRY_) ; ¢ = arcsin (%)
Y

® = arcsin (Y)

(1 +A-B?
B 2A

Y=01-X»" ; X

(X,Y) = intersection of two circles: r= B; r=1

Forh>0and h<0

Figure 4d @ terms: keyhole, h< 0
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Z=2[nB + =]
T* =2[0B + 9]
Q=-np’+x

Q% =0 - (X0) Y1 - (A —X0) Y2 - ¢p* - 2(BR; — DR,cos 6)

0 = arcsin (—%Zf—) ; ¢ = arcsin (—YX%)

. Y1
® = arcsin ( X1 )

b Y1-Y2
X0=2 : b=Yl-mXl : m=——12
m m M= -x

(X1, Y1) = intersection of I" and outer circle of radius 1

(X2, Y2) = intersection of I" and inner circle of radius B

= % (X1 - X2)% + (Y1 - Y2)12

;\'= (1—'3)
tan o

Figure 4¢ P terms: non-concentric cylinders
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X, Y

Figure 7b Keyhole, h<0
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Figure 8a Non-concentric cylinders



(X1, Y1)
4 (X2,Y2)

Figure 8b Non-concentric cylinders: detail of Q*
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20,

Figure 13 Generic corner
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obtuse corners become
a single cormer (200)
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Table 1: Values of B-intercepts for various ¥y

Y B

0 | 0.50647
5 | 0.50599
10 | 0.50462
15 | 0.50241
20 | 049940
25 | 0.49556
30 | 0.49089
35 | 048529
40 | 047867
45 | 0.47085
50 | 0.46159
55 | 0.45053
60 | 043715
65 | 0.42060
70 | 0.39954
75 | 037150
80 | 0.33137
85 | 0.26480
90 | 0.00000





