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Abstract

Plexiglas containers with rounded trapezoidal cross sections were designed and built to test
the validity of Concus and Finn’s existence theorem (1974,1983) for a bounded free liquid
surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop
tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed,
were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top
of the smaller end of the containers when the contact angle was small enough, in agreement
with the theory. Liquid interface motion demonstrated a strong dependence on physical

properties, including surface roughness and contamination.
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1 Introduction

For a partially filled container in a zero-gravity environment, the location of the liquid is not
known a priori. This fact poses several practical problems in areas such as the management of
spacecraft fuel and the use of multi-phase heat pipes. Concus and Finn (1974) and Finn (1983)
developed a theorem that addresses the static problem of existence for a bounded liquid free
surface at zero gravity in a cylinder of arbitrary cross section. Given the geometry of the
container and the contact angle between the liquid and solid, the theory, outlined in section 2
below, predicts whether the equilibrium shape of the liquid free surface at zero gravity is
bounded or goes to infinity. Because the behavior of moving coﬁtact lines is not understood,
the solution of the corresponding dynamic problem is still far beyond the reach of theory and
numerical computation. Nevertheless, a valid static theory can be very useful for design of a
dynamic experiment. If the liquid moves as the static theory suggests it should, confidence in
use of the theory to design containers for measurement of dynamic surface behavior would be
increased. To test the static theory in this sense, several experiments were carried out in the
NASA Lewis two-second drop tower. Six mixtures of ethanol and water under air, and three
immiscible liquid pairs, were dropped in plexiglas containers designed according to the static

theory. The experiments are described in sections 3 and 4.

2 Theory

The following description of the theory is a general outline of the theory presented in Finn
(1983); a more detailed analytical and numerical application of this theory to several different
cylinder cross-sections will be reported in another paper. A standard variational technique is
used to minimize an expression for the free energy of a liquid in a container at zero gravity
(Fig. 1). The free energy includes the free surface energy (Es =0S) and the wetting energy
(Es+ =—Ag0S"), where o is the surface tension, S and S* are the free surface area and the
wetted surface area, respectively, and A is a constant of proportionality. The total volume of

the liquid is held constant as a constraint (A;V). Thus
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E(S)=S —A,S” +—’é‘—v ” 0))

Minimization of the free energy (Eq. 1) yields the Laplace-Young equation for a static liquid

free surface in a cylinder of arbitrary cross section at zero gravity;

div T = 2508 @
v - T(h) = cosy=Ag (2b)

where v is the unit outward normal, X and Q2 are the perimeter and area of the cross section; ¥ is

the contact angle, measured in the liquid; h = h(x,y) is the height of the free surface; and

Vh

Th = ———
® (1+ 1Vh %)%

(20)

Consider a cross section of the container, normal to the axis (Fig. 2). The free surface intersects
the cross section along a curve I'. Integration of equation (2a) over this section yields an
energy per unit length (Eq. 3), which is a two-dimensional analog to the three-dimensional
energy (Eq. 1). There is a close analogy between the free surface area (S), the wetted surface
area (S”), and the liquid volume (V) in equation (1) and the length of the curve (I'), the length
of the wetted boundary (T*), and the liquid area (Q") in equation (3).

dT) =T - (cos))T” + [ECS—SY Q° 3)

If ® <0, the free surface appears in the cross section. Thus a configuration of minimum energy

requires the presence of liquid between the container wall and the convex side of the curve T'.

Minimization of equation (3) shows that T is a circular arc of radius R, = . Ifd >0,

Q
Z cosy
however, the free surface does not appear in the cross section. Therefore, the functional ¢
enables us to characterize the expected equilibrium interface in a particular geometry at zero

gravity.



The theory predicts that liquid rises to infinity on some part of the. wall of a two-
dimensional container if @ < (0. However, the theory does not indicate how high the liquid will
rise, if at all, for @ > 0. To determine the height of the equilibrium free surface, in this case, it
is necessary to solve the static problem (2) for the specific cylinder of interest. Such a solution
h(x,y) is available for a particular rounded trapezoid (Bainton, 1986). The shape was chosen,
using the static theory, to have a critical contact angle of 30°. Free-surface solutions along the
longer axis of symmetry of the cross section are shown in Fig. 3 for y=30.6°, 40°, 50°, and
80°. The difference between the maximum and minimum of each curve is extracted as a
function of ¥ in Fig. 4. No solution was possible for y < 30°, as predicted by the theory. The
Newton’s method used for these calculations did not converge for ¥ < 30.6°. There is a smooth
but rapid trend in the rise of the liquid toward infinity as the predicted critical contact angle is
approached.

3 Experiment

A cylindrical container with rounded trapezoid cross section was designed using the same
geometry considered by Bainton (Fig. 5). The functional @ (Eq. 3) depends only on the
parameters o, B, and 7y, where o < 90° is the half angle of the extended sides, 0 < B <1 is the
ratio of the radii, and v is the contact angle. One geometry can therefore be used to exhibit
behavior for both ® > 0 and ® < 0 by changing the liquid, thereby changing v. For a liquid
with ¥ > V.5 (supercritical), @ > 0, and the liquid is expected to rise to a finite height in the
narrow end of the container at zero gravity (Fig. 4). For y<v.y (subcritical), ® <O0.
According to Concus and Finn’s static theory, the liquid is expected to rise to an infinite height
(Fig. 4). In a container of finite height, the top of the container (Fig. 4) interferes with the
theoretical behavior. Numerically computed heights greater than 6.25 cannot be discemed from
infinite heights with the containers used in this work.

Three containers were machined from solid blocks of plexiglas using a computer-controlled
milling machine with an accuracy of 0.0002" and a repeatability of 0.0005". The nominal
dimensions of the plexiglas containers are shown in Fig. 6. Two of the containers were

designed for ® =0 at y= 30° (the critical contact angle). One of these (A) was polished using



Im-6

1000-grit grinding polish, the other (B) was polished using 400-grit. The third container (C)
was inadvertently cut oversize with larger radii and was left unpolished, with Y. = 28°. This
container provided some data regarding the effect of roughness on the predictions of the static

theory.

The liquids that were used in the experiments fell into two groups. The first group consisted
of mixtures, in various proportions, of ethanol and water under air. This group allowed us to
vary the contact angle by varying the concentration of ethanol (0% to 50% in steps of 10%) and
thus to determine whether the static theory correctly predicted the critical contact angle for the
geometry in question. The second group of liquids consisted of three immiscible liquid pairs,
intended to show the effects of liquid properties, particularly viscosity, on the time scale of the
liquid motion at zero gravity. Since the dominant factors determining this time scale are not
known, the three liquid pairs were chosen to have very different physical properties to cover a
wide range of behavior (Table 1). The three pairs were: (1) glycerol tributanoate over ethylene
glycol, (2) diethyl diethyl malonate over formamide, and (3) 1-chlorohexane over formamide.
Liquid pairs 1 and 2 were chosen because both had subcritical contact angles with PMMA and
pair 1 was three to five times more viscous than pair 2. Pair 3 was chosen because of its
supercritical contact angle. In addition, liquid pairs have the advantage that the difference in
index of refraction of the liquids is small. The total intemnal reflection that results from a lack
of index match between the gas and the liquid in the ethanol-water samples causes the interface
to appear as a dark band (Fig. 7a-7g), thereby preventing accurate measurement of its position

as a surface in two dimensions.

The experiments were carried out in the two-second drop tower at NASA Lewis Research
Center. Before each drop, the containers were cleaned in an ultrasonic bath of Freon 113
(1,2,2-trifloro-1,1,2-trichloroethane) for about five minutes and allowed to air dry. They were
filled approximately one-third full (20ml) with various mixtures of ethanol and water containing
a small amount of blue vegetable dye. The container lids were sealed quickly to prevent
evaporativelloss of ethanol, which would reduce the ethanol concentration. The vapor/liquid
system was then allowed to come to equilibrium before the drop. Complete filling of containers

with immiscible liquid pairs was achieved by assembling them while fully submerged. In all
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cases, the upper liquid was expected to move down the narrow end of the container because the
smaller contact angle existed between the upper liquid and the container walls. It was therefore
necessary to have the container approximately one-third full of the upper liquid and two-thirds
full of the lower one (Fig. 7h). Dying of the lower liquid was easily achieved, using a blue
vegetable dye that was not soluble in the upper liquid.

High-speed movies were taken with a 1962 D. B. Milikan camera (DBM 4) set to run at 400
frames per second. The camera was focused on the long side of the containers with the narrow
end of the rounded trapezoid cross section on the left. Back lighting of the containers and
liquids was provided by a diffuse back-lighted screen. A digitai clock display, stated to be

accurate to 0.001 seconds, was also mounted on the test rig and was recorded on the film.

4 Results

The instrumentation supplied for the drop-tower tests was not always adequate. This fact
together with limited time at the facility prevented a full evaluation of the many experimental
questions posed in the preceding sections. As a result, the data obtained represent an
incomplete set. In the following discussion, the results obtained for 50% ethanol and for liquid

pair 1 are emphasized, while the results from the rest of the liquids are briefly mentioned.

Quantitative measurements from the high-speed films required a knowledge of the actual
framing rate of the camera. The first decision to be made was whether to trust the camera
setting (400 fps) or the digital clock, since these did not agree. The camera was started and
allowed to accelerate for two seconds prior to the drop, and the clock was started at the instant
the experimental package was released. Provided that the batteries were in good condition, it
was probably safe to assume that the camera ran at the same equilibrium speed for the full
duration of the two-second drop. Except for the first test, the batteries in the test rig were new
and nearly fully charged, so that the voltage should not have varied much throughout the drop
duration. With this assumption, the clock readout was accepted as accurate, provided that it
could be deciphered. The clock did not hold numbers on its four-digit display until they
changed; instead each of the four numbers was turned on and off in sequence whether it had

changed or not. The clock readout looked reasonable to the unaided eye, but to the high speed
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camera only one or two digits were visible during a single frame. During the worst asynchrony
of clock and camera, particular clock digits would not be seen for four or five consecutive
frames. Although the clock read out to 0.001 second, the accuracy of determining the frame
time was not better than 0.005 second. To determine the framing rate of the camera, film
frames were counted while using the clock as a time reference. The film speed was found to be
fairly constant (278 fps + 2%) for the 50% ethanol case, but differed from the specified 400 fps
by 30%. This measured framing rate was used to interpolate the elapsed time for a given film

frame.

The experiments involved the use of three containers. The results are very scattered and
exhibit a wide range of behavior. Still photographs taken from the high-speed films are shown
in Figs. 7a-7h. The dimensions of the liquid/vapor containment area shown in these figures are
approximately 2.5" by 2.5" (Fig. 6). Water (0% ethanol) in container A and 10% ethanol in
container C were the only liquid mixtures that reached equilibrium and did not reach the roof of
the containers (Fig. 7a,7b). The 10% ethanol mixture started its rise very erratically, with many
notches in the contact line and waves on the surface (Fig 7b). These effects were probably
caused by jerky movement of the contact line due to the roughness of the container walls. The
experiment involving 20% ethanol in container A was very inconclusive. Waves were observed
on the surface of the liquid throughout the entire drop and the liquid did not rise (Fig. 7c),
perhaps indicating that the drop package was bumped as it was dropped. Neither 30% ethanol
in container C nor 40% ethanol in container B (Fig. 7d, 7f) achieved equilibrium during the two
seconds of drop time. The liquid in container C exhibited the same notched contact line that
moved erratically up the walls of the container as in the 10%-ethanol case. The 40% ethanol
moved up the polished walls of container B very smoothly. Measurements were made from
projected film images of the liquid rise (Fig. 8a). Qualitatively, the results obtained compare
quite well with the results obtained for 50% ethanol in the same container (Fig. 8b). There was
one notable difference between the two cases; the 40% ethanol contact line moved
approximately 20% slower (average = 3.07 cm /sec) up the left side and 30% slower
(= 1.41 cm /sec ) across the roof than the 50% ethanol contact line (Fig. 8a, 8b). One or both of
these discrepancies may be caused by some type of contamination that increased the contact

angle (compare photos 7e-7g), thereby slowing the progress of the contact line. This
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observation indicates that the contact angle is an important contributor to the velocity of the
contact line at zero gravity; the larger the angle, the slower the motion, despite the fact that the

surface tension is higher.

Figure 7g shows a sequence of frames from a high-speed movie of the experiment using a
mixture of equal parts by volume of water and ethanol under air, for which the contact angle on
plexiglas is about 23°. The smaller radius is at the left, and the two dashed lines in the initial
frame are the projection of the critical arc T" for this geometry. When the body force due to
gravity is first removed, and again when the rising liquid at the left first reaches the top of the
container, rapid dynamic movement of the contact line is manifested mainly by necking; i.e., by
withdrawal of liquid from the near vicinity of the contact region rather than from the distant
bulk of the liquid. Note also that the contact line at the right is advancing during the first half
of the experiment and receding during the second half, with some visual evidence of a

dependence of contact angle on the direction of the velocity.

Measurements of liquid interface positions for 50% ethanol in container B were made
directly from projected film images and non-dimensionalized with the larger radius of the
container cross section. The results are shown in Fig. 8b. The measurements include the height
of the free-surface minimum, the height of the right and left contact lines, and the distance
traveled across the top of the container. Note that initially the liquid moves very quickly at
both ends at about the same rate and the minimum decreases at a comparable rate, as the
interface moves from a nominally plane configuration toward one of much higher curvature.
The presence of free-surface motion during the first half-second of the drop, indicated by the
initial necking down, is accompanied by oscillation in the 'height of the surface minimum. The
advance and retreat of the right contact line are easily seen. Note that the retreat of the right
contact line and the reduction in the surface minimum occur at fairly constant rates after
approximately one second. When the left contact line reaches the top of the container, the
velocity of retreat of the right contact line and the minimum of the free surface change; the
surface minimum decreases more quickly and the right contact line height recedes more slowly.
This behavior seems to indicate a withdrawal of liquid from the bulk rather than from the

vicinity of the contact line, contrary to the condition that existed during the earlier part of the
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drop. Also notice that as the left contact line climbs, its velocity decreases (average
= 3.87 cm/sec). Upon reaching the top, experimental error caused by lack of index match
across the interface introduces an artificial jump in the contact-line position. The liquid then
proceeds across the top of the container at a nearly constant rate (= 2.04 cm /sec). Given more
time, we might have been able to see the bottom of the container become uncovered, since the

surface minimum can be extrapolated to zero after roughly another two seconds.

The three experiments involving liquid pairs exhibited similar behavior on a much longer
time scale. The interface moved very slowly in all three cases. The final state for pair 1 is
shown in Fig. 7h. Corresponding figures for pairs 2 and 3 aré not given since their final
appearance is very similar to Fig. 7h. It was not possible to determine the difference between
supercritical and subcritical behavior with only two seconds of zero gravity. Evidence for
differences in time scale is provided by differences in the advancing velocity of the left contact
line (Table 1). Interfacial tensions and contact angles were found by Smedley and Coles
(1989). Note that the pair 1, with the smallest contact angle, had the highest contact-line
velocity despite the fact that it was the most viscous, again indicating the importance of contact
angle in determining contact-line velocity. A careful study of the table suggests that the relative
magnitudes of the contact line velocities are determined by the product of the surface tension
and the cosine of the contact angle. The data also seem to indicate a dependence on the degree
of criticality of the contact angle; subcritical angles yield higher contact-line velocities than
supercritical angles for similar values of ocosy (compare pair 1 and pair 3 in table 1). Also,
pair 1, which has a more subcritical contact angle than pair 2, moves at a rate three times higher
than pair 2 despite their similar interfacial ténsions. The interfaces of the liquid pairs advanced
at the following average rates: pair 1 = 0.28 cm/sec, pair 2 = 0.09 cm/sec, pair 3 = 0.13 cm/sec.
These velocities of advance were nearly constant over the entire duration of the drop. The

results depicted in Fig. 8c for pair 1 are typical for these three liquid pairs.

The measured liquid interface positions for liquid pair (1) (Fig. 8c) changed much less
dramatically than those for 50% ethanol. The interface moves from the top down, and
measurements are given as distances from the top of the container. This liquid pair reacts much

more slowly to the sudden removal of the gravitational body force. A region of very quick
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motion does not exist near the beginning of the drop; however, some necking is still indicated
by the photographs and by the behavior of the minimum height of the interface. The oscillation
in the surface minimum of this liquid pair is smaller by about a factor of two than the
corresponding one for 50% ethanol. The left and right contact lines advance at monotonic rates
that are similar in magnitude, with the left contact line moving slightly faster. According to the
measurements of contact angle, this particular liquid pair was subcritical; therefore, the liquid
interface should go to infinity or to the bottom of the container (Fig. 7h). But, since the
interface minimum was moving approximately seven times slower than for 50% ethanol, and
had farther to go, it would not have reached the bottom until rbughly another sixteen seconds
had elapsed.

5 Discussion and Conclusions

'All nine of the experiments discussed above are compared to the theory in Fig. 4. As
previously mentioned, at the end of section 2 and the beginning of section 3, Fig. 4 contains the
theoretical and numerical results for the case Y. =30° This plot also contains symbols
representing the difference between the measured maximum and minimum heights of the final
state, of each liquid surface or interface, of the nine experiments reported here. The heights are
nondimensionalized with the large radius of the cross section and plotted against the measured

contact angle.

The symbols labeled 1 through 6 are the results for the various ethanol solutions
0%(10%)50% respectively. The symbols labeled 7 through 9 are the results for liquid pairs 1
through 3 respectively. Consider first the ethanol solutions compared to the dotted numerical
curve. There is a substantial scatter; however, the trend is correct: as the contact angle
decreases toward the critical value (30°), the liquid rises to greater heights. Some scatter can be
attributed to the fact that contact angles were measured in the lab rather than on-site, since
appropriate equipment for these measurements was not available on-site. In the lab, contact
angles for the ethanol and water solutions were measured for a sessile drop on plexiglas using a
cathetometer. Contact angles for the three immiscible liquid pairs were measured against a

blade of plexiglas inserted into a test tube containing the liquid pair (Smedley and Coles, 1989).
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The 30%, 40%, and 50% ethanol solutions (symbols 4, 5, and 6) all reached the roof of their
containers (Fig. 7d, 7f, and 7g). The upper limits of the containers are shown as dashed lines
on the plot (Fig. 4). The symbols 5 and 6, however, are not located on the upper dashed line,
since the plotted height is the difference between the maximum and minimum of the liquid
surface. A symbol would only rest on the dashed line if the bottom of the container was bare of
liquid. If less liquid had been used in these cases, this may have happened. Limited time at the
facility did not allow this adjustment of the experiment to be made. The same is true for
symbol 4 (30% ethanol), which does not lie on the lower dashed line. Symbol 3 (20% ethanol)
represents the case that may have been bumped and therefore never realized zero gravity (see
section 4). Symbol 2 (10% ethanol) is a large distance from the numerical results. This might
be accounted for by an error in the contact angle, measured in the lab rather than site, and/or by
the roughness of the wall perhaps wicking the liquid to a higher than expected height. The

location of symbol 1 (0% ethanol) is reasonably close to the numerical results.

The final rise heights for the three liquid pairs (symbols 7, 8, and 9) were small compared to
the results for the ethanol solutions. Note that the upper dashed line represents the bottom of
the container when considering the three liquid pairs, since the upper liquid moved down
toward the bottom of the container (see section 3). Despite the fact that pairs 1 and 2 (symbols
7 and 8) had sub-critical contact angles, symbols 7 and 8 did not come close to the bottom of
the container. These pairs did not reach equilibrium in the two seconds of zero gravity. The
velocities of the moving interfaces were too slow (Table 1). Symbol 9 (liquid pair 3) is
reasonably close to the numerical curve despite the fact that it also had not reached equilibrium

in two seconds.

The theory, combined with numerical solutions, appears to be an adequate tool for the
design of containers that incorporate strong dynamic free-surface behavior when zero gravity is
suddenly imposed. This fact provides support for the use of the static theory as a means to
design containers to study dynamic free surface behavior at zero gravity. The dynamic behavior
of liquid interfaces demonstrates strong dependence on physical properties. However, the data
presented here do not represent a large enough range to support conclusive statements regarding

this dependence. Observations suggest that the dynamics of a liquid free surface or interface do



III- 13

not depend on the contact angle and physical properties in a simple manner.. Wall roughness
appears to cause a notched, erratic motion of the contact line, whereas smooth walls lead to
very smooth motion. Equilibrium states for liquid pairs were not attainable in two seconds of
zero gravity. Further work is needed to determine dynamic time constants based on the

physical properties of single liquids or liquid pairs.

This material is based upon work supported by the U.S. National Aeronautics and 'Space
Administration and the University of California. The opinions, findings, conclusions and
recommendations are those of the authors and not necessarily of the U.S. National Aeronautics

and Space Administration or the University of California.
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Figure Captions

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Figure 5:

Figure 6:

Figure 7a:
Figure 7b:
Figure 7c:
Figure 7d:
Figure 7e:
Figure 71
Figure 7g:
Figure 7h:
Figure 8a:
Figure 8b:
Figure 8c:

Generic cylinder partially filled with liquid.

Cross section of generic cylinder.

Computed equilibrium free surfaces for y = 30.6°, 40°, 50°, and 80°.

Liquid height (max - min) in rounded trapezoid. Symbols: (1)-(6) ethanol and
water mixtures tabulated below, (7) glycerol tributanoate over ethylene glycol, (8)
diethyl diethyl malonate over formamide, (9) 1-chlorohexane over formamide.

Symbol#]1|2|3|4|5|6|7‘8|9|

Container | A | C A C B B|A|B|B
Ethanol% | O | 10 | 20 | 30 | 40 | 50 | -- | - | --

Rounded trapezoid cross section.

a = half angle of extended sides.

B= —2— = radius parameter.

Nominal dimensions of constructed containers.

Containers A and B: a = 6.16°% B = %i— = 0.5; Yere = 30°.

o cmepL 0227
Container C: a=6.73% B = 0aa = 0.5; Yori = 28°.

Water (0% ethanol) in container A at final time.

10% ethanol solution in container C at final time.

20% ethanol solution in container A at final time.

30% ethanol solution in container C at final time.

40% ethanol solution in container B at T = 0.5 seconds.

40% ethanol solution in container B at final time,

50% ethanol solution in container A at times shown.

Glycerol tributanoate over ethylene glycol in container A at final time.
Position of free surface of 40% ethanol solution at zero gravity.
Position of free surface of 50% ethanol solution at zero gravity.
Position of interface of glycerol tributanoate over ethylene glycol at zero gravity.
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Figure 1 Generic cylinder partially filled with liquid
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Figure 2 Cross section of generic cylinder



IIT-1¢%




ITI-18

uotideo aJdnbBiy 89S P aJnBTH

(Spuooas) awT)
06 08 0L 09 0S ov 1012 oc )% 4]

................... T "L T Y T al_

NO

.......................................................................................................................................................................................................

cemevnvenrertddiiilliececanan

O JBUTIRIUOD 0 dOf «reeereencnn
8'V SJautejuod 30 dol —————
soaubop O = (3Tu0) K o
soaubep gz = (31Tuo) L o

] paindyo) * | ) i I L

1yBToy TEUOTSUSWIP—UON




III - 20

uon03s $s0I10 prozodeny papunoy ¢ aInSny

Iowered snper =e/q = ¢
SOPIS pPapudIX9 Jo J[3ue Jjey =0




x 10-32 CLR
11/2': —G——€ ——————— —_—$ 1_(@
3/a"
Y - 2
fe—1 1/4">l— 1.864" ——3»] - 3/
< 4 1/2v >

N

2.1/2¢

~ Containers A and B: 00=6.16 degrees; B =0.2"/0.4" = 0.5; y= 30 degrees
Container C: o = 6.73 degrees; B =.22"/.44" = 0.5; y = 28 degrees

Figure 6 Nominal dimensions of constructed containers



a7 -2 2

Figure 7a




Figure 7b
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Table 1: Liquid Pair Properties

Liquid Left Contact-Line c p 13 Y o CcosY
. . cm dynes
Vel —_— — P
Pair elocity ( Sec) [ o } (cP)
1.035 11.6 o
1 0.28 8.2 1109 199 18 7.80
0.988 3.8 o
2 0.09 7.1 1133 45 29 6.21
3 0.13 20.9 03879 08 68° 7.83

1.133 45






