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Abstract

Rapid advances in information processing, communication and sensing technologies have enabled

more and more devices to be provided with embedded processors, networking capabilities and sen-

sors. For the field of estimation and control, it is now possible to consider an architecture in which

many simple components communicate and cooperate to achieve a joint team goal. This distributed

(or networked) architecture promises much in terms of performance, reliability and simplicity of

design; however, at the same time, it requires extending the traditional theories of control, commu-

nication and computation and, in fact, looking at a unified picture of the three fields. A systematic

theory of how to design distributed systems is currently lacking.

This dissertation takes the first steps towards understanding the effects of imperfect information

flow in distributed systems from an estimation and control perspective and coming up with new

design principles to counter these effects. Designing networked systems is difficult because such

systems challenge two basic assumptions of traditional control theory - presence of a central node

with access to all the information about the system and perfect transmission of information among

components. We formulate and solve many problems that deal with the removal of one, or both, of

these assumptions. The chief idea explored in this dissertation is the joint design of information flow

and the control law. While traditional control design has concentrated on calculating the optimal

control input by assuming a particular information flow between the components, our approach

seeks to synthesize the optimal information flow along with the optimal control law that satisfies the

constraints of the information flow. Thus besides the question of ‘What should an agent do?’, the

questions of ‘Whom should an agent talk to?’, ‘What should an agent communicate?’, ‘When should

an agent communicate?’ and so on also have to be answered. The design of the information flow

represents an important degree of freedom available to the system designer that has hitherto largely

been ignored. As we demonstrate in the dissertation, the joint design of information flow and the

optimal control input satisfying the constraints of that information flow yields large improvements

in performance over simply trying to fit traditional design theories on distributed systems.

We begin by formulating a distributed control problem in which many agents in a formation need

to cooperate to minimize a joint cost function. We provide numerical algorithms to synthesize the

optimal constrained control law that involve solving linear equations only and hence are free from
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numerical issues plaguing the other approaches proposed in the literature. We then provide and

analyze a model to understand the issue of designing the topology according to which the agents

interact. The results are very surprising since there are cases when allowing communication to

happen between two agents may, in fact, be detrimental to the performance.

We then move on to consider the effects of communication channels on control performance. To

counter such effects, we propose the idea of encoding information for the purpose of estimation and

control prior to transmission. Although information theoretic techniques are not possible in our

problem, we are able to solve for a recursive yet optimal encoder / decoder structure in many cases.

This information flow design oriented approach has unique advantages such as being optimal for any

packet drop pattern, being able to include the effect of known but random delays easily, letting us

escape the limits set by reliability for transmission of data across a network by using intermediate

nodes as ‘repeaters’ similar to a digital communication network and so on.

We finally take a look at combining the effects of multiple sources of information and communi-

cation channels on estimation and control. We look at a distributed estimation problem in which,

at every time step, only a subset out of many sensors can transmit information to the estimator.

This is also a representative resource allocation problem. We propose the idea of stochastic commu-

nication patterns that allows us to include the effects of communication channels explicitly during

system design. Thus, instead of tree-search based algorithms proposed in the literature, we provide

stochastic scheduling algorithms that can take into account the random packet drop effect of the

channels. We also consider a distributed control problem with switching topologies and solve for

the optimal controller. The tools that we develop are applicable to many other scenarios and we

demonstrate some of them in the dissertation.

Along the way, we look at many other related problems in the dissertation. As an example, we

provide initial results about the issue of robustness of a distributed system design to a malfunctioning

agent. This notion is currently lacking in the control and estimation community, but has to be a

part of any effective theory for designing networked or distributed systems.



vii

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Distributed Estimation and Control in Formations of Dynamic Agents 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Mathematical Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Stabilizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Designing the Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The Optimal Constrained Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 A Preliminary Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 The Optimal Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 A Sub-optimal Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Cost Functions and Value of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Efficiency of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Clique Graphs and the Efficient Graph . . . . . . . . . . . . . . . . . . . . . . 39

2.7.2 Pricing Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Appendix A Optimal Constrained Control Law Synthesis for the Infinite Horizon Case 49

Appendix B Distributed Motion Control for Estimation . . . . . . . . . . . . . . . . . . 57



viii

3 Countering Communication Channel Effects in Estimation and Control 67

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 The Packet Erasure Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Problem Formulation and Preliminary Results . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.2 A Separation Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Single Sensor, Single Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.2 Optimal Information Processing Algorithm . . . . . . . . . . . . . . . . . . . 87

3.4.3 Analysis of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.3.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Single Sensor, Network of Arbitrary Topology . . . . . . . . . . . . . . . . . . . . . . 96

3.5.1 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.2 Optimal Encoding and Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.5.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.5.6 Correlated erasure events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.5.7 Synthesis of a Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.5.8 Unicast Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.6 Multiple Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.6.1 Optimal Information Transmission Algorithm . . . . . . . . . . . . . . . . . . 128

3.6.2 Analysis of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 132

3.6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.6.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix A Effect of Quantization on the Performance at High Rates . . . . . . . . . . 135

Appendix B Control of Jump Linear Markov Systems with Markov State Estimation . 147

4 Distributed Estimation and Control in Presence of Stochastically Failing Chan-

nels 159

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2 Estimation in Presence of a Stochastic Sensor Schedule . . . . . . . . . . . . . . . . . 163

4.2.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



ix

4.2.2 Sensors Chosen Independently from one Time Step to the Next . . . . . . . . 166

4.2.2.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.2.2.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.2.3 Sensors Chosen According to a Markov Chain . . . . . . . . . . . . . . . . . . 172

4.2.3.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.2.3.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.3 Stochastic Sensor Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.3.1 Deterministic Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . 175

4.3.1.1 The Sliding Window Algorithm . . . . . . . . . . . . . . . . . . . . 176

4.3.1.2 The Thresholding Algorithm . . . . . . . . . . . . . . . . . . . . . . 177

4.3.2 A Stochastic Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 178

4.3.2.1 Sensors chosen in an i.i.d. manner . . . . . . . . . . . . . . . . . . . 178

4.3.2.2 Sensors chosen according to a Markov chain . . . . . . . . . . . . . 181

4.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.4 Encoding Information at the Sensor End . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.5 Distributed Control with Packet Losses . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.5.2.1 The Markov Chain Model . . . . . . . . . . . . . . . . . . . . . . . . 193

4.5.2.2 A Closer Look at the Cost Function . . . . . . . . . . . . . . . . . . 194

4.5.2.3 Stability and Performance Analysis . . . . . . . . . . . . . . . . . . 198

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Appendix A Dynamic Sensor Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Appendix B Multiple Description Coding for Estimation over Communication Links . . 211

5 Perspectives and Future Directions 219

5.1 Directions Considered in the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 220

5.1.1 Distributed Estimation and Control . . . . . . . . . . . . . . . . . . . . . . . 220

5.1.2 Control in Presence of Communication Channels . . . . . . . . . . . . . . . . 221

5.1.3 Distributed Estimation and Control with Imperfect Links . . . . . . . . . . . 224

5.2 Some More Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.2.1 Asynchronous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.2.2 Robustness to Agent Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Appendix A Robustness in Networked Systems . . . . . . . . . . . . . . . . . . . . . . . 226



x

List of Figures

1.1 A basic control loop architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A possible control architecture for networked / distributed systems. . . . . . . . . . . 3

2.1 Some examples of graphs. All but (ii) are clique graphs. . . . . . . . . . . . . . . . . . 18

2.2 Comparison of the performance of the optimal and of the sub-optimal algorithm. The

loss in performance due to the sub-optimal algorithm is not huge. . . . . . . . . . . . 33

2.3 Variation of the steady state cost as delay is introduced in the system. The sub-optimal

algorithm is robust to delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 As the communication radius is increased, the cost obtained by the finite horizon sub-

optimal control law goes down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 As the communication radius is increased, loss in performance due to the sub-optimal

algorithm decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Comparison of the value of the graphs for the partially ordered set of all graphs on 3

vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 As the communication radius is increased, the cost goes down: the infinite horizon case. 57

2.8 Cost achieved with all the graphs on 5 nodes. Not all topologies with same number of

edges are equally good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 Improvement in performance with our algorithm compared to the one proposed in [146]. 64

2.10 Performance loss if the proposed decentralized method instead of the exhaustive search

optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.11 Sensor maneuvers in the roboflag patrolling problem considered in the text. The dotted

lines represent the tracks made by the sensors. . . . . . . . . . . . . . . . . . . . . . . 66

3.1 The architecture of a packet-based control loop. The links are unreliable and unpre-

dictably drops packets. Most of the works in the literature look at the case of a single

sensor transmitting information over a single channel. . . . . . . . . . . . . . . . . . . 70

3.2 A common design for control over packet-based links. The compensator aims at mit-

igating the effects of packet losses. In most works, the controller-actuator channel is

assumed to be absent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



xi

3.3 The structure of our optimal LQG control solution. . . . . . . . . . . . . . . . . . . . 71

3.4 The structure of our optimal LQG control solution for the multiple-sensor case. . . . . 73

3.5 Structure of the joint estimation problem. . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 The classical Gilbert-Elliot channel model. . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 The set-up of the control across communication networks problem. Later in the chapter

we also look at a channel present between the controller and the actuator. . . . . . . . 79

3.8 Problem setup for Section 3.4: A single sensor transmitting over a single link. . . . . . 86

3.9 Comparison of performance of our algorithm with that obtained if no encoding was

done (Ling and Lemmon algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.10 Comparison of performance for an estimation task when the measurement matrix is

invertible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.11 Problem setup for Section 3.5: Single sensor transmitting over a network of arbitrary

topology. Every node in the network is able to communicate, and usually has similar

memory and processing capabilities as the encoder at the sensor that is generating the

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.12 Example of a network of combination of parallel and serial links . . . . . . . . . . . . 117

3.13 Simulated and theoretical results for a line network. . . . . . . . . . . . . . . . . . . . 120

3.14 Simulated and theoretical results for a parallel network. . . . . . . . . . . . . . . . . . 120

3.15 Bridge network and the networks used for calculating lower and upper bounds. . . . . 121

3.16 Simulated values and theoretical bounds for the bridge network. . . . . . . . . . . . . 122

3.17 Simulated difference in performance of an algorithm in which no encoding is done and

our optimal algorithm for a series connection of n links. . . . . . . . . . . . . . . . . . 122

3.18 Loss in performance as a function of packet drop probability for n links in series. . . . 123

3.19 Estimation using information from multiple sensors. Only one sensor transmits over

an imperfect communication link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.20 Comparison of performance for various algorithms for the two sensor case. . . . . . . . 134

3.21 A system in which a quantizer quantizes the state and transmits it across a digital

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.22 Comparison of performance of approximations for uniform quantizer calculated using

our approach with simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.23 Comparison of performance of approximations presented in the text for logarithmic

quantizer with simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.24 Comparison of the performance of the dynamic quantizer with the lower bound. . . . 146

3.25 Performance of the system with a uniform quantizer across a packet dropping channel. 147

3.26 A general system in which the sensor and the controller utilize an imperfect communi-

cation channel or a network to communicate. . . . . . . . . . . . . . . . . . . . . . . . 148



xii

4.1 Structure of the sensor scheduling problem. . . . . . . . . . . . . . . . . . . . . . . . . 164

4.2 The tree structure defined by the various possible choices of sensor schedules, illustrated

for the case of 2 sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.3 Sensor switching helps to bring the cost down. . . . . . . . . . . . . . . . . . . . . . . 183

4.4 Spread of the error covariance when the optimal probability distribution is used. . . . 184

4.5 Optimal probability of use of sensor 1 as sensor 2 gets noisier. . . . . . . . . . . . . . 185

4.6 Optimal probability of use of sensor 1 varies if the channel is dropping packets. . . . . 186

4.7 The lower bound may not be very tight. . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.8 Minimum number of UAVs required as a function of the number of pursuers. . . . . . 188

4.9 Spread of the steady state expected error covariance. . . . . . . . . . . . . . . . . . . . 210

4.10 Probability of using the sensor at the fourth point as a function of the packet drop

probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

4.11 Lower bound on the number of sensors required. . . . . . . . . . . . . . . . . . . . . . 211

4.12 Mean values of error covariance for various number of descriptions in the MD code but

using the same rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.13 Mean values of error covariance for the bursty error case. . . . . . . . . . . . . . . . . 218



1

Chapter 1

Introduction

In its traditional avatar, control theory deals with the following problem. As shown in Figure 1.1,

consider a dynamical process whose state needs to be controlled; for instance, a mobile robot which

needs to follow a given trajectory. The state of the dynamical process (e.g., the position and velocity

of the robot) is observed by a sensor that generates possibly noisy measurements. The measurements

are processed by an estimator that generates an estimate of the state of the process. This estimate

is fed to a controller that aims at minimizing some cost function. In the mobile robot example,

this can correspond to, say, deviation from a reference trajectory. The controller generates a control

input that is applied to the process through an actuator. Over the last century or so, control theory

has made spectacular advances both in understanding the underlying mathematical tools as well as

in applying this model to many different problems and generating technological advances.

However, the very success of this model has meant that the many assumptions inherent in the

above block-diagram are often forgotten. As an example, one can spell out such assumptions as

• measurements are generated periodically by the sensor and transmitted to the estimator;

• the estimator and controller are able to process all the data that is generated;

• all the components run on the same clock;

and many others. At the heart of most of these features is the implicit assumption that almost

unlimited amounts of information can be communicated and processed by the system components.

In most traditional control systems, this assumption largely held true. However, it is still somewhat

surprising that more efforts have not been made to characterize and counter the effects of limited and

imperfect communication sharing and processing, especially given the fact that, at its heart, control

theory is an information science. The basic motif of feedback loop has as its underlying philosophy

the use of information about the system to counter the effect of uncertainty in the environment1.

1Admittedly, concepts like observability and measurement noises deal with the problem of limited information
about the system. However, the assumptions of perfect information transmission and processing are commonly made.
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Figure 1.1: A basic control loop architecture.

In recent years, a compelling need has arisen to understand the effects of information flow on

estimation and control more fully. Technological advances in hardware and software over the past few

decades have enabled cheap and small, yet powerful, communication and computation devices. This

development, in turn, has made it possible to envisage systems in which multiple simple components

cooperate to achieve a joint team goal. One can imagine three possible design architectures for such

multi-agent systems:

1. Every component may be asked to share all its information with every other component in

a reliable fashion and all agents provided with ample computation power to process all this

information to make (the same) globally optimal decisions. Even though multiple physical

components may be present, this is still an example of a single agent system as far as the

design is concerned. There is a rich theory already available to design such systems (modulo

computational issues). We will refer to this architecture as a centralized system architecture.

A simple example would be a group of aircrafts tasked with flying in a formation while either

being allowed to communicate as much information as they desire with every other aircraft or

communicating this information to a central ground unit that sends back the control inputs

that they need to apply.

2. At the other end of the spectrum, all the components may be asked to depend only on the

information that they possess to make their decisions. Thus, even though the components

may have a joint team goal, they do not share information and instead try to coordinate

their decisions by appealing to some correlated property of the environment that they are all

observing. We will refer to this architecture as a completely decentralized architecture. Design
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Figure 1.2: A possible control architecture for networked / distributed systems.

of such systems reduces to design of multiple single agent systems. An example would be a

group of aircrafts tasked with monitoring a region for threats where every aircraft generates

its trajectory as if it is the only aircraft present.

3. Every component may be allowed to share information with some other components. Thus, the

components try to coordinate their behavior by transmitting some of their information (and

possibly plans) to some other components. We will refer to this approach as a cooperative,

networked or distributed system architecture. An example might be a group of aircrafts asked

to achieve a common heading with every aircraft being allowed to observe the headings of the

aircrafts only in its immediate vicinity2.

The distributed system architecture, were it to work, is very powerful since it allows the design

of the individual units or components to be much simpler, while not compromising too much on

the performance. Additional benefits include increased robustness to component loss, increased

flexibility in that the components can be reconfigured for many different tasks and so on. However,

the design of such systems challenges the assumption of information flow being unrestricted and

reliable, that, as mentioned above, is at the heart of the traditional systems and control theory.

A typical design diagram for a networked system is shown in Figure 1.2. Such systems consist

of the same components as a conventional system — dynamic processes, sensors, controllers etc.

— but there are many of them. Thus, there are many processes that need to be controlled. Their

states are being sensed by many sensors. There is no one-to-one correspondence between processes

and sensors. Many sensors might observe the same process and sensors may even switch from one

2This task is often referred to as a consensus or an agreement task.
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process to another. The sensors may share information among themselves and also transmit it to

the controllers. There might be many controllers with varying information and goals. A simple

example is an air traffic control situation where the controller in the control tower can observe all

the aircrafts but cannot micro-manage each one of them. On the other hand, the controller on-board

the aircraft has limited information but has access to the actuators on-board the aircraft. All the

components need to cooperate to achieve a team goal or to optimize a joint cost function and each

entity can communicate with some other entities. The aspect of information as a central currency

in the system is underlined by many new features that these systems present:

1. Information richness: Because of so many sensors being present and entities transmitting

information to each other, the system as a whole is information rich. At the same time,

however, every component has access to a different information set (or has a different world-

view).

2. Information sharing: Since they need to cooperate, the components have to reach some level

of agreement and hence they need to communicate and share information. Because of the

information-rich aspect, sharing of all the information is not feasible. If indeed all informa-

tion could be shared among all the components, the situation would revert to a centralized

architecture.

3. Presence of imperfect communication links: Information sharing needs to be carried out over

imperfect communication channels that have numerous limitations. As an example, such links

may erase information stochastically, corrupt it, introduce random delays and so on.

4. Limited information processing capability: Components have limited information processing

capabilities. Because of the huge amount of information being generated, components may

need to decide which information to access and process at any time step.

These assumptions introduce information flow as both an enabler and a constraint in the system

design. It is the sharing of information that allows components to cooperate and achieve better

performance than that achieved by completely decentralized systems. However, the information

flow is not perfect. There is too much information being generated so that all of it cannot be

communicated or processed (information overload for the system); at the same time, components

may not have access to the information they need to make globally optimal decisions because of

constraints on the information flow (information paucity for the decision makers). These features

are, by and large, not tackled in traditional systems and control theory and thus the design of such

networked systems is quite different from conventional system design.

To fully exploit the benefits promised by such systems, there is, thus, a need to address the

issues involved in networked system design and come up with a systematic theory for it. The design
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procedures at the moment tend to be ad hoc and do not allow us to make intelligent choices through

an understanding of the inherent trade-offs and capabilities of the system. This dissertation provides

a new approach and new design principles to address some of the issues that are faced while designing

networked systems from an estimation and control perspective.

Besides the motive stated above, studying control and estimation problems in networked systems

is useful for another reason. Since networked systems couple flow and processing of information with

its use to estimate and control dynamic processes, a theory for such systems can be expected to

unify concepts from information and communication theory, distributed and parallel computation

as well as estimation and control theory. In other words, by focusing on areas at the intersection

of traditionally separately studied fields of communication, computation and control, networked

systems can shed additional insight into all these fields.

As an instance, traditionally, information theory has grappled with the problem (as enunciated

by Shannon [176]) of ‘reproducing at one point either exactly or approximately a message selected

at another point.’ While this field has had fascinating success in dealing with that question, it

is also useful to recall a central assumption often made in it. Once again, to quote Shannon,

‘Frequently the messages have meaning ... these semantic aspects of communication are irrelevant

to the engineering problem.’ This divorce of meaning of information from the reward obtained by

transmitting it allows us to treat all information content alike. Furthermore, it allows long periods

of use of a communication channel and renders long delays irrelevant as long as the information is

communicated. If we have to study the complexities that arise because of coupling between the flow

of information and its use to estimate or control dynamical processes, we clearly cannot use results

based on information theory in an off-the-shelf manner. As a simple instance, the same message

may lose its value drastically if it is communicated to the controller with delay. This issue was

eloquently raised by Witsenhausen [203] who used the term ‘information pattern’ to denote the flow

of information between various components3 and pointed out that the minimum cost achievable

in a problem depends upon the prevailing information pattern. Thus, he suggested, information

should be measured by its effect on optimal cost. This idea is a major extension of the traditional

information theory, but is crucial if we want to fully grasp the interplay between information and

dynamical systems. Networked control problems provide a natural source of problems in which such

interplay happens.

Similarly, the fields of parallel processing and distributed computation have made amazing

progress in dealing with problems such as speeding up computation by intelligently dividing it into

operations that can be done concurrently by different processors or in calculation of functions of

data held by many different processors. However, often these theories also make assumptions about

all processors having access to a common memory unit or all processors being connected such that

3We will use either the term ‘information flow’ or ‘information pattern’ to denote this concept.
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every processor can communicate with any other processor. Networked systems not only lack such

features, they also pose problems of dynamics at the component level. Thus, components need to

make decisions given whatever information they have without waiting for the coordination algorithm

to finish. Traditional methods from parallel processing and distributed computation too need to be

extended to fully understand the nexus between computation and control.

Thus, networked systems provide a playground where the traditional assumptions of communi-

cation, computation and control are challenged. Any progress made in understanding the analysis

and synthesis of such systems would then necessarily expand our knowledge about all these fields.

In this dissertation, we take a control and estimation oriented viewpoint and address some of the

problems associated with the information flow.

1.1 Contributions of the Thesis

From the control and estimation perspective that we take in this dissertation, there are two reasons

why including the effects of information flow makes the problem of designing a distributed system

difficult.

1. Information is now diffused throughout the system. Different components have access to

different information sets and must base their decisions on them. There might be heterogeneous

processing capabilities as well. Since the decisions aim at optimizing a joint cost function, they

have to be coordinated. Coordinating decisions when a central authority is lacking and the

various decision makers have access to different information sets is a difficult and open problem.

2. Information flow is also now subject to the vagaries of communication channels. Thus, in-

formation may be lost, delayed or otherwise corrupted. How to use the received information

optimally, as well as how to choose what information to transmit are open problems. These

issues can have an immense effect on the estimation or control performance of the system.

In this dissertation, we take first steps towards attacking both these problems. We give specific

contributions of each chapter in the corresponding introduction section later. Let us, however,

briefly summarize the intellectual thrusts of the dissertation here.

The chief idea presented and explored in this dissertation is the joint design of information flow

and the control law in cooperative multi-agent systems. Traditionally, control design has been limited

to calculating the optimal control input given the dynamics of the agent and the cost function that

needs to be minimized. Thus the focus has been on the question ‘What should an agent do?’. In

systems that involve multiple agents and imperfect information flows, some attempts have also been

made recently to analyze the performance hit incurred by the system. Our approach is fundamentally

different in that it seeks to synthesize the optimal information flow and the control law jointly. Thus
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besides the question of ‘What should an agent do?’, the questions of ‘Whom should an agent talk

to?’, ‘What should an agent communicate?’, ‘When should an agent communicate?’ and so on also

have to be answered. Of course, the information flow has to be designed within the constraints

imposed by the environment, in particular, the effects introduced by the communication channel.

However, the design of the information flow still represents an important degree of freedom available

to the system designer that has hitherto largely been ignored. As we will demonstrate, the joint

design of information flow and the optimal control input satisfying that information flow will yield

large improvements in the system performance.

We begin in Chapter 2 by focussing on the diffuse nature of information in the system. We tackle

two chief problems:

1. Given an information flow that specifies the topology according to which the components

communicate, what is the optimal control / decision policy to be followed by the components?

This is the question of ‘What should an agent do?’

2. How do we design the topology? This is the question of ‘Whom should an agent communicate

with?’

Design of the optimal control law for arbitrary information flows is known to be NP hard [21, 159].

Thus, we are only able to provide numerical algorithms for the first problem. However, our algorithms

involve solving linear equations only and hence avoid the convergence problems associated with other

methods that exist in the literature. To be able to design the topology and the information flow,

we need notions of value of an information flow. Such measures are highly non-additive and yield

counter-intuitive results. We adopt a model where every communication edge that allows information

to be shared between two components comes at an additional cost. While we prove that the recent

results in the literature about loss of stability by adding new edges [59] are outcomes of the particular

control law that those works assume (meaning that if the optimal control law is used, all information

flow patterns have the same stabilizability properties), we also show that under this model, there

are cases when adding edges is harmful for performance for any positive value of edge cost. In some

other cases, we provide conditions on the edge cost that make adding or deleting edges beneficial.

These results suggest that we need to take the folk-lore of ‘cooperation is always better’ with a pinch

of salt.

In Chapter 3, we begin to focus on the malevolent effects of communication channels on the

information flow, and hence, the performance. We apply the idea of encoding the idea prior to

transmission, used in information theory, for estimation and control problems. Thus, moving away

from the viewpoint prevailing in the literature about simply characterizing the performance loss when

a communication channel is imperfect, we pose the question ‘What should an agent communicate?’

to counter the effects introduced by the imperfect communication channel. However, while the idea
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can be borrowed, the techniques from information theory are not applicable directly, because of the

assumptions about delays and multiple uses of the channel mentioned already. For many cases, we

develop encoding and decoding algorithms that satisfy the constraints imposed by networked control

systems and are optimal for the purpose of estimation and control. Our approach differs drastically

from the existing viewpoint of control theory, which assumes fixed and given transmission quantities

and yields huge improvements both in terms of stability margins and performance. It also allows

us to draw an analogy between the problem of transmitting information for control and digital

communication. Thus, we can use any component that is relaying information in a similar manner

as a repeater in digital communication to fight the degradation in the performance due to channels.

In Chapter 4, we begin to bring both the aspects together. We consider systems that involve

both a large number of components as well as communication over imperfect channels. We begin by

focussing on the problem of presence of multiple access channels that allow only one component to

communicate its information at every time step. To answer the question of ‘Which agent communi-

cates when?’, we propose the idea of stochastic communication patterns that allow us to explicitly

include the effect of communication channels during system design. We illustrate the use of such

communication patterns in a distributed estimation problem and in a problem of distributed control

with switching topologies. This approach also allows us to escape the curse of dimensionality, that

will afflict us for systems comprising of multiple components in any resource allocation problem, if

we use optimization procedures (such as tree search) that have been proposed in the literature.

Finally, in Chapter 5, we identify the next set of problems that need to be attacked and present

some initial results on a few of these problems. For instance, we introduce the notion of robustness

for networked systems. The notion is different from the usual concept of robustness in control theory

which deals with imperfect knowledge of the process model. Although some features are common

between the two notions, it is also different from the usual model of agent failure used in distributed

computation. This is on account of the dynamics present in our problem as well as because of

constraints on the information flow that we assume. We analyze some control algorithms proposed

in the literature and show that this concept needs to be considered during the system / algorithm

design.

1.2 Organization of the Thesis

The dissertation has been written so that each chapter can be read and understood in isolation. As

discussed above, control and estimation in networked systems is difficult since such systems challenge

two standard assumptions in estimation and control theory — presence of a central decision making

unit with access to all the information being generated in the system; and ability to communicate

any information reliably with an arbitrarily high degree of accuracy. Accordingly, in the dissertation,
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we attack the problem on both the fronts. The approach we follow is a joint design of the control

law and the information flow.

We begin in Chapter 2 by focusing on the first question. We consider the problem of distributed

control of a formation of several dynamic agents4 that need to cooperate with each other to minimize

a joint cost function. The formation has a specified topology that determines the set of agents with

which an agent can exchange information. Communication effects are largely ignored in this chapter

with a communication link, if present, being modeled as perfect. In Section 2.4, we present a

synthesis algorithm for the control law that minimizes a quadratic cost function for a finite time

horizon case. The problem is known to be NP-hard in general, and hence we are able to present only

a sub-optimal algorithm. However, the algorithm is interesting because it involves solving only a set

of linear equations and hence is free from convergence issues plaguing other numerical approaches

considered in the literature. This takes us to the question of role of the topology in distributed control

in Section 2.6. We pose the question of jointly designing the topology and the control law to be

followed by the agents. Obviously, if edges can be added at no extra cost, the optimal topology would

be one in which every agent can communicate with every other agent. However, adding more edges

may impose an additional cost to the system by, e.g., entailing more communication. We propose

and analyze a new model for determining the influence of interconnection topology in distributed

control. The results are surprising, as there are cases when adding any edge is detrimental for any

link cost that is positive. In some other cases, we have a linear matrix inequality to find the link cost

at which it ceases to be beneficial to add an extra edge. The chapter has two appendices in which

we discuss related problems. In the first appendix, we discuss an alternative synthesis algorithm

for the distributed control problem that is suitable for the infinite horizon version of the problem.

In the second appendix, we discuss a distributed estimation problem. We consider the problem of

active sensing using mobile sensor nodes that are jointly estimating the state of a dynamic target

as a sensor network and provide a gradient search-based distributed algorithm for controlling their

motion.

In Chapter 3, we shift gears to focus on the effects of communication channels on estimation

and control. In most of the work presented in this dissertation, we model a communication channel

using the packet erasure model. This model is discussed briefly at the beginning of the chapter in

Section 3.2. The novelty in our approach is to pose the problem as an information transmission

problem. This perspective of jointly designing the quantity to be transmitted along with the control

law that uses this quantity optimally allows us to solve the Linear Quadratic Gaussian (LQG)

problem in the face of packet drops. As the first step, in Section 3.3.2, we extend the familiar LQG

separation principle to this problem. This principle allows us to solve the LQG control problem

4We refer to a dynamical process with a local sensor and a controller as an agent. A formation is simply a collection
of such agents that are provided with a joint cost function that they need to minimize.
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using a standard LQR state-feedback design along with an algorithm for propagating and using

the information across the unreliable links. For many cases, we then provide such information

processing algorithms that are recursive, yet optimal. Our design has many nice properties such

as not assuming any statistical model of the packet drop events and being able to handle packet

delays among others. Further, the solution is appealing from a practical point of view because it

can be implemented as a small modification of an existing LQG control design. In Section 3.4, we

consider the case of a single sensor transmitting information across a single link. In Section 3.5,

we consider the problem of estimation across an arbitrary network of packet erasure channels. We

propose the optimal information transmission algorithm and analyze its stability and performance.

In Section 3.6, we extend the result to the case of multiple sensors with only one sensor transmitting

over a packet erasure channel. We see that a näıve extension of the algorithm for a single sensor

is not optimal. We provide an alternative algorithm that is optimal and analyze its properties. In

the first appendix of the chapter, we consider quantization as another effect that communication

channels may introduce. While stability of the plant under quantization strategies has been looked

at, the performance of a control loop under quantization is largely ignored in the literature. We

look at the performance aspects under the high rate assumption. In the second appendix, we look

at random delays introduced by the channel.

In Chapter 4, we consider some problems that have aspects of both distributed estimation /

control and communication links present. We begin by considering the situation when only one

(or a subset) out of multiple sensors can take a measurement at every time step and communicate

it over a packet erasure channel to an estimator. In keeping with our philosophy throughout the

dissertation, we not only design the optimal estimator that utilizes the measurements available to it,

but also look at the problem of constructing the optimal schedule for the sensors to communicate. We

propose a stochastic selection strategy that, unlike the standard tree-based methods proposed in the

literature, is explicitly able to take into account the packet dropping nature of the channel. We then

consider a control problem in which the topologies are switching stochastically. This can model, e.g.,

stochastic information loss due to communication links. We solve for the optimal control law and

analyze the performance of the system under it. The tools that we develop in the chapter are useful

in various other problems. As an example, in the first appendix, we apply them to another resource

allocation problem. We show how our algorithm can be used for the problem of sensor coverage in

which multiple mobile sensors need to cover a geographical area. In the second appendix, we apply

the tools to the problem of using Multiple Description (MD) coding to transmit data over a channel

to improve control performance.

In the final Chapter 5 of the dissertation, we outline some directions in which more work is needed

to obtain an effective theory of networked control / estimation systems. We begin by considering

future directions from each of the three previous chapters. Then, we pose and partially analyze
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the problem of robustness of a distributed estimation / control algorithm. This problem has not

been considered in the literature so far. However, we argue that this problem is of fundamental

importance and provide initial steps to tackle it.
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Chapter 2

Distributed Estimation and

Control in Formations of Dynamic

Agents

This chapter deals with the problem of distributed estimation and control when there are many

dynamic agents present. If agents share information among each other according to some topology,

both the questions of optimal control law for a given topology (‘What should an agent do?’) and

how to design the topology (‘Whom should an agent talk to?’) become important. We look at these

questions in this chapter. The work presented in this chapter has partly appeared in [35, 82, 85, 123].

The chapter is organized as follows. We begin by introducing the problem and presenting the

relevant prior work in Section 2.1. In Section 2.2, we present the notation we are going to use.

Then, in Section 2.3, we set up the constrained controller synthesis problem. In Section 2.4, we

present our solution to this problem for the finite horizon case. We present both an optimal but

computationally intensive solution and a simpler sub-optimal solution. Section 2.5 contains some

examples to illustrate the concepts and the algorithm. In Section 2.6, we move on to the problem of

determining the influence of the topology of the graph. We first define the associated notions of value

of a graph and our cost function model. Then, in Section 2.7, we analyze this model and present our

results. Section 2.8 presents a short numerical example to explain our results. The first appendix

presents an algorithm for synthesizing a sub-optimal controller to minimize an infinite-horizon LQ

cost. In Appendix B, we consider the problem of distributed sensor motion control for estimation.

Contributions

The main contributions of the chapter are now summarized.

1. We present two algorithms for the finite-horizon version of the distributed control problem: one

computationally expensive method for synthesizing the optimal controller and another more

tractable method for synthesizing a sub-optimal controller. Both the algorithms rely only on
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solving linear equations and hence are free from the numerical issues about convergence that

afflict other approaches proposed in the literature.

2. We formally pose the problem of evaluating the role of topology in distributed control. We

present a model for the problem and present initial analytic results. For instance, we prove

that under certain assumptions, the optimal control topology according to our criterion is the

fully decentralized one. We also present linear matrix inequalities (LMIs) to calculate the

‘critical prices’ at which it becomes detrimental to add new edges to an existing topology.

3. We present a simple gradient search based algorithm for the infinite-horizon version of the

distributed control problem. Using the special structure of the problem, we are able to get

rid of the problem of choosing the initial guess point prevalent in similar approaches proposed

in the literature. Also, we prove the interesting result that a formation is controllable and/or

stabilizable for any given information topology if and only if all the individual agents are

controllable and/or stabilizable using their own inputs.

4. For the distributed target tracking problem, we propose a simple distributed algorithm for

planning the motion of sensors in a network to achieve significantly better estimates of the

target state.

2.1 Introduction

One of the major challenges in the problem of estimation and control of networked systems is the

absence of a central controller that has access to information from all the agents and uses this

information to compute the control signals that the agents should use. Presence of an information

flow network so that an agent is allowed information only about some other agents to calculate

its control input introduces fundamentally new features into the problem. The topology of the

information flow can have many effects. On one hand, it may introduce instability if the information

being fed through the network adds on constructively to the disturbance at a node [60]; on the other,

for cooperative goals, it leads to a better performance than if agents do not share information.

Understanding and solving this problem is an important step in building a theory for control of

networked systems. As a result, the problem of controlling a formation of dynamic agents where the

information flow is specified by a topology has been garnering increasing attention (e.g., see [3] and

the references therein). A Nyquist-like condition for stability of a formation using the individual

plant transfer function and the Laplacian of the graph describing the topology of the information

flow network was obtained by Fax and Murray in [59, 60]. Coordination of a group of autonomous

agents when the graph topology changes over time was considered in Jadbabaie et al. in [107], who

presented stability results for the case when the switching rule satisfies certain properties. These
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results were expanded by Ren and Beard in [165]. A general framework for analysis of stability of

interconnected systems where the topology can potentially be time-varying was presented in [81].

The effect of changing topology for the special case of consensus problems was also considered

in [157].

However, most of the work in the literature, so far, has centered on stability analysis of the

formation assuming certain control laws in place. A more general question is that of synthesis of

the control law to be used by the agents in such a formation, such that some joint cost function

is optimized. The defining feature of the problem is that while the cost function involves all the

individual agents in the formation, the pre-specified topology of the formation imposes constraints

on the form of the control law by limiting the information available to various agents at any time.

Thus, it is not realistic to assume that an agent would know the state of all the other agents in the

formation at any given time and be able to use it to calculate the control input. These features

make the problem a distributed control problem with arbitrary information flow patterns, which is,

in general, much harder to solve than the traditional optimal control problem.

Research in distributed control has a long history (see, e.g., [53]). Witsenhausen, in his seminal

work [202, 203], showed that under distributed information constraints, a linear controller is not

optimal in general and also that the cost function need not be convex in the controller variables.

A discrete equivalent of Witsenhausen’s counter-example was given in [21, 159] where it was also

shown that the problem of finding a stabilizing controller under information pattern constraints is

NP-complete. For particular information structures, the problem has been solved. Witsenhausen

himself in [203] identified some cases where the standard LQG theory can be applied, and hence,

the optimal controller is linear. Another important early contribution in this direction was the

work of Ho and Chu [99], who looked at this problem in the context of team decision theory. That

work identified a class of information patterns called partially nested structures under which the

optimal controller is linear. Roughly speaking, under a partially nested structure, if the decision

that controller A makes can affect the decision made by another controller B, then the controller B

should have access to all the information that controller A has access to. Another information pattern

for which the optimal controller is known to be linear is the one-step delayed information sharing

pattern in which every controller has, at the current time, access to all the previously implemented

control values and all the observations made by any other agent in the system through and including

the previous time, and its own observations through the current time. Recursive solutions for this

problem were provided for a quadratic cost by Sandell and Athans in [171], for an exponential cost

by Fan et al. in [58] and for H2, H∞ and L1 costs by Voulgaris in [195]. For some other tractable

information patterns, see [8, 197, 206]. Some researchers have also studied this problem under the

assumption of spatial invariance by using a multidimensional approach, e.g., see [7, 42]. Most of

these special tractable information patterns were united by Rotkowitz and Lall in [169], who defined
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a property called quadratic invariance and showed it to be necessary and sufficient for optimal

distributed controllers to be synthesized efficiently via, e.g., convex programming.

Since the problem of synthesizing optimal distributed controllers for arbitrary information pat-

terns is NP-hard, an alternative research thrust has been to synthesize sub-optimal controllers.

Langbort et al. [122] presented sufficient LMI conditions that can be used for synthesizing a sub-

optimal distributed controller. A convex programming approach to develop a sub-optimal controller

for the H2 performance criterion was considered in [45]. Receding horizon control for the problem

has been explored, e.g., by Dunbar and Murray in [52] and by Keviczky in [115]. A different ap-

proach was inspired by the design of reduced-order controllers (see, e.g., [127]). This approach was

used to obtain gradient descent based numerical algorithms for solving the optimal structured linear

controller with an arbitrary number of free parameters for the infinite horizon case in many works,

some examples being [181, 199]. In [82], this algorithm was explored for the case of vehicle forma-

tions and, in particular, it was proven that in this case, it is always possible to choose a feasible

initial point. We will present this algorithm in Appendix A of the chapter. A similar algorithm

can be applied to the finite horizon problem, as described by Anderson and Moore in [2], but the

computational difficulties were pointed out by Kleinman et al. in [116]. Bemporad et al. in [14]

considered the constrained LQR problem and came up with a numerical algorithm for the optimal

piecewise affine controller. The algorithm was extended to the case of infinite-time horizon in [74].

A good survey of the attempts to solve the related fixed order and static output feedback problems

can be found in [20, 44, 184] and the references therein.

As has been pointed out in many of the above mentioned works, the problem of finding the

linear optimal controller that satisfies arbitrary constraints is very difficult. Even the question

of stabilizability through a structured controller has not yet been solved in general [184]. Unless

the problem has some special structure, finding the optimal controller with a prescribed structure

remains open. Even the algorithms for finding sub-optimal controllers tend to involve numerical

optimization and hence face convergence problems. In this chapter, we begin by setting up the finite-

horizon LQR problem for the control of a network of autonomous agents with a given information

flow topology. Even if the dynamics of the agents are not coupled and the only coupling present is

due to the cost function, the optimal control law, in general, requires every agent to use knowledge

about every other agent. We impose the constraint of a linear control law that satisfies a pre-

specified topology in that any agent uses only the information about a pre-specified set of agents

with which it can communicate. We solve for the optimal control law for a finite time horizon

under these constraints. We see that calculation of the optimal control is computationally expensive

and, instead, provide a sub-optimal solution that is computationally more tractable. Since both

the algorithms we present involve solving only linear equations, they do not suffer from convergence

problems encountered in many existing approaches that utilize, e.g., gradient descent algorithms.
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In addition, we prove the interesting result that the information topology can neither help nor

hinder controllability and stabilizability in the sense that a necessary and sufficient condition for

any formation to be stable (controllable) is that each individual agent be stable (re. controllable)

using its own inputs. This puts into perspective the recent results about a formation potentially

being destabilized by addition of edges [59].

Evaluating the optimal controller for a given topology leads us naturally to the following question:

‘Are there topologies that are more ‘efficient’ than others for distributed control?’ The intercon-

nection topology of the agents fixes the form of the control law and hence has a huge effect on the

cost that the system has to suffer. In some applications (e.g., a power distribution network), an

interconnection topology may already exist and the controller has to conform to this topology that

has been decided a priori. However, if decentralization is not viewed as an external constraint, then

both the topology and the controller have to be designed at the same time. For example, when de-

ciding between a leader-follower and a fully decentralized architecture for cooperating multi-vehicle

systems, the choice of the information pattern is an integral part of the control design process. Thus,

it makes sense to find the minimal (with respect to some appropriate cost function) topology needed

to achieve a particular control goal. Obviously, if there is no cost of adding a new communication

link between two agents, the minimum cost will be achieved when the topology entails every agent

communicating with every other agent. We present a model for evaluating the effect of topology in

which we explicitly account for the cost of communication by making one of the weight matrices in

the classical LQR cost function topology-dependent. This allows us to explore the trade-off between

better control performance and higher communication cost incurred.

Similar questions have been asked for static agents in the theory of organizational efficiency and

information cost, e.g., see Marschak and Radner [138]. However, the questions about efficiency of

decision architectures has largely been ignored in the control literature. We are aware only of the

following recent attempt at finding a minimal control interconnection structure. In [180], the authors

show that when constructing a distributed controller from a set of observer-based controllers using

different and parallel observations, the star interconnection topology is minimal, in the sense that

the resulting control design problem has the minimal number of free parameters needed to ensure

closed-loop stability. The model that we present has similarities to ideas in the field of Games over

Networks (see, e.g., [106, 148]) and allows us to make rigorous statements regarding the optimal

topology. For instance, we see that there are cases in which adding edges can actually be harmful

from the view of the optimal cost. We also provide some conditions under which values of two graphs

can be compared.

The appendices present complementary material to the main chapter. In the first appendix, we

present an alternate method for synthesizing the optimal controller for distributed control problems

that is suitable for the infinite horizon case. This algorithm is reminiscent of the method proposed
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in [199]. However, we come up with stronger results by utilizing the structure of the problem. More

importantly, we come up with a way to obtain the initial guess for the numerical algorithm, which

was identified as the major problem in [199].

In the second appendix, we consider a distributed estimation problem. We consider the problem

of controlling the motion of mobile sensor nodes that are jointly estimating the state of a dynamic

target as a sensor network. Attempts have been made over the years to solve the problem of optimal

motion control of sensors in various contexts. However, most of the optimal motion-planning and

control techniques tend to be application-specific, e.g., [96, 151]. Particularly relevant to our area

of interest in estimation/tracking and distributed sensing applications is the work of Mukai and

Ishikawa [146, 147] who proposed a suboptimal centralized algorithm using the determinant of the

estimated error covariance as a cost function. However, most of the approaches proposed in the

literature assume that only one sensor’s motion needs to be controlled. For systems where multiple

sensors are present, a central computation device is assumed to be present that calculates the

optimal trajectories of the sensors. In networked systems, where the number of sensing nodes may

be large, it is obvious that this assumption needs to be relaxed. We propose a gradient search-based

decentralized algorithm that demonstrates the benefits of distributed sensing. We also extend the

algorithm to the task of tracking multiple targets and minimize the estimated error by forming

sub-teams of the sensors appropriately.

2.2 Mathematical Preliminaries and Notation

By a network of interconnected dynamic agents, we mean a system of dynamically uncoupled agents

in which every agent can use the information from a prescribed set of other agents (called its

neighbors) for calculating its control input. The flow of information is thus described by identifying

the set of neighbors for each agent and is referred to as the information flow topology. Consider a

network of N agents. Together with the information flow topology, the network can be represented

by a graph G. Unless stated otherwise, in this chapter, we will be interested only in undirected

graphs. The node set of the graph is denoted by V = {vi}Ni=1 such that each agent i corresponds to

a vertex vi . The link (or edge) set E ⊆ V × V comprises of edges such that the edge e = (vi, vj)

models the communication link between node vi and node vj . The set of neighbors of the node vi is

defined by

Ni = {vj |(vi, vj) ∈ E}.

Thus, it corresponds to the set of all those nodes with which the node vi can communicate. The

degree of a node vi is the cardinality of the set Ni. We refer to the agents variously as vertices or

nodes and the network as a graph or a formation. For graphs with the same vertex set V, there is

a natural partial order. If two graphs g and g′ with the same vertex set are such that E(g) ⊆ E(g′),
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we say that the graph g is a subgraph of g′ and denote it by g � g′. Equivalently we can say that g′

is a supergraph of g and write g′ � g. A clique graph [91] is one each of whose subcomponents is a

complete subgraph. Some examples and counter-examples of clique graphs are given in Figure 2.1.

Figure 2.1: Some examples of graphs. All but (ii) are clique graphs.

Consider a graph with N nodes. The adjacency matrix (see, e.g., [18] for more details) denoted

by A is a square matrix of size N ×N , defined as follows

Aij =







1 (vi, vj) ∈ E

0 otherwise.

If we denote the degree of node vi by Oi, then the degree matrix denoted by D is defined to be a

square matrix of size N ×N , such that

Dij =







Oi i = j

0 otherwise.

We define the Laplacian of a graph by the relation L = D −A.

Consider the system evolving according to

x(k + 1) = Ax(k).

We say that the system is (asymptotically) stable, or that A is (asymptotically) stable, if A has all its

eigenvalues on or inside (strictly inside) the unit circle and all the eigenvalues on the unit circle are

simple. A positive (semi-)definite matrix is a symmetric matrix with all eigenvalues (non-negative)

strictly positive. For two matrices A and B, we write A ≥ B if A−B is positive semi-definite.

We denote the expectation of a random variable X by E[X]. The covariance matrix of a random

variable X with zero mean is defined by E
[
XXT

]
, where XT is the transpose of matrix X. The
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covariance matrix is always a positive semi-definite matrix.

The trace of a square matrix X, denoted by trace(X), is defined as the sum of its diagonal

elements. The trace is also the sum of the eigenvalues of X. The trace operator satisfies the

following properties (assume X, Y and Z to be compatible matrices; v is a column vector).

1. trace(X + Y ) = trace(X) + trace(Y ).

2. trace(XY Z) = trace(ZXY ).

3. E[vTWv] = E[trace(WvvT )].

In the last equation if W is a constant matrix, the right hand side can be further rewritten as

trace(WE[vvT ]).

For an m × n matrix X = [xij ], the operation vec(X) results in an mn × 1 column vector with

elements

vec(X) =




















x11

x21

...

xm1

x12

...

xmn




















.

The operation A ⊗ B denotes the Kronecker product (also called the direct product) between two

matrices A and B (see [121] for details). It can be shown that for suitably dimensioned matrices A,

X and B,

vec(AXB) =
(
BT ⊗A

)
vec(X). (2.1)

Let A, P and Q be real matrices. The equation

P = ATPA+Q,

is called the discrete algebraic Lyapunov equation (DALE) if Q is symmetric. We will refer it as

the Lyapunov equation in the following. We now summarize some results about the solutions of

Lyapunov equation. For more details, see [64]. The Lyapunov equation has a unique solution P if

and only if no eigenvalue of A is the reciprocal of an eigenvalue of AT . If this condition is satisfied,

the unique P is Hermitian. Furthermore, if A is asymptotically stable, then the unique Hermitian

P is given by

P =

∞∑

k=0

AkQ(AT )k.
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If A is stable and Q is positive definite (or semi-definite), then P is unique, symmetric and positive

definite (or semi-definite).

2.3 Problem Formulation

Consider a formation of N agents, in which the i-th agent evolves according to the equation

xi(k + 1) = Āxi(k) + B̄ui(k) + wi(k),

where the control input ui(k) is given by

ui(k) = Fi,1(k)xi(k) +
∑

j∈Ni

Fij,2(k) (xi(k)− xj(k)) .

The state of the i-th agent is given by xi(k) ∈ Rn and ui(k) ∈ Rm denotes its control input. The

form in which the control law is stated depends only on the relative state of the out-neighbors of

agent i. However, because of the presence of the matrix Fi,1(k), it is clear that this is not a limiting

assumption. Assume that the noises wi(k)’s are zero-mean, Gaussian and white. On stacking the

states xi of all the agents, we can obtain the system state vector x, whose evolution is described by

x(k + 1) = (I ⊗ Ā)x(k) + (I ⊗ B̄)u(k) + w(k) (2.2)

u(k) = (diag (Fi,1(k)) + Lgen(k))x(k),

where I is the identity matrix of suitable dimensions and diag (Fi,1(k)) is a block diagonal matrix with

Fi,1(k)’s along the diagonal and zero matrices elsewhere. The vectors u(k) and w(k) are obtained

by stacking the control laws and the noises for the individual agents, respectively. Lgen(k) is a

generalization of the Laplacian matrix of the graph and is formed as follows. Create the adjacency

matrix A for the network. Then, replace each unity element that is at the (i, j)-th place by −Fij,2(k).
Replace the diagonal element in the i-th row by a matrix which is the sum of the matrices Fi1,1(k),

Fi2,1(k), · · · , Fi(i−1)(k), Fi(i+1)(k), · · · , FiN,1(k). The rest of the zero elements are replaced by zero

matrices of appropriate dimensions. Note that the topological constraints on the form of control law

are inherent in the structure of Lgen(k).

In this chapter, we will assume that the topology of the network is known at any time step,

although it may be time-varying. We ignore issues such as quantization error and message loss when

agents communicate over the links. Note that if all the agents are not identical, relations similar to

(2.2) can easily be obtained. The matrices I⊗Ā and I⊗B̄ will be replaced by block diagonal matrices

diag(Āi) and diag(B̄i), but other details remain similar. We begin by discussing the questions of

stabilizability and controllability of the formation under a specified topology constraint.
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2.3.1 Stabilizability

Two questions arise immediately:

• Is it possible to stabilize a formation using information from other vehicles when the vehicles

are individually not stable? In other words, if a vehicle is unstable, can the formation be

stabilized by the exchange of information between different agents?

• Are some topologies inherently unstable in that even if the agents are stable, the information

flow will always make it impossible to stabilize the formation?

We note the following result.

Proposition 2.1 Consider a formation of interconnected dynamic agents as defined in Section 2.2.

1. A formation is controllable if and only if each individual agent is controllable.

2. A formation is stabilizable if and only if each individual agent is stabilizable.

Proof We use the notation introduced above. Let the matrix Ā have dimensions n × n and there

be N agents in the formation. As can be seen from (2.2), for controllability of the formation, we

want the matrix M1 to have rank nN [118], where

M1 =
[

I ⊗ B̄ (I ⊗ Ā)(I ⊗ B̄) (I ⊗ Ā)2(I ⊗ B̄) · · · (I ⊗ Ā)nN−1(I ⊗ B̄)
]

.

Using the standard property of Kronecker product

(a⊗ b)(c⊗ d) = ac⊗ bd,

we can rewrite M1 as

M1 =
[

I ⊗ B̄ (I ⊗ ĀB̄) (I ⊗ Ā2B̄) · · · (I ⊗ ĀnN−1B̄)
]

.

This matrix has rank nN if and only if the following matrix has rank n.

M2 =
[

B̄ ĀB̄ Ā2B̄ · · · ĀnN−1B̄
]

.

Since Ā has dimensions n× n, the equivalent condition is that the matrix

M3 =
[

B̄ ĀB̄ Ā2B̄ · · · Ān−1B̄
]

,

be rank n. But M3 being rank n is simply the condition for the individual agent being controllable.

Thus, the formation is controllable if and only if each individual agent is controllable. This proves
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the first part. The second part also follows from the above proof. The subspace not spanned by the

columns of M1 is stable if and only if the subspace not spanned by the columns of M3 is stable.

Note that although we have proved the theorem for the case of identical agent dynamics, the theorem

holds for the case of agent dynamics being different as well. The terms I ⊗ Φ and I ⊗ Γ would be

replaced by block diagonal matrices but the condition for the controllability matrix of the formation

having rank nN would still reduce to the condition that the controllability matrix of each agent

have rank n.

2.3.2 Designing the Control Law

From (2.2), it can be seen that the problem of designing a control law that satisfies some topological

constraints is equivalent to solving the control design problem for the system

x(k + 1) =
(
I ⊗ Ā

)
x(k) +

(
I ⊗ B̄

)
u(k) + w(k) (2.3)

u(k) = F (k)x(k),

with the additional constraint that F (k) should have those elements as 0 which correspond to zero

entries in the Lgen(k) of the interconnection topology formed as above. F (k) can then readily be

cast in the form diag(Fi,1(k))+Lgen(k) and the matrices Fi,1(k) and Fij,2(k) obtained. Constraining

the control F (k) to have some elements zero forces us to consider only those matrices that live in a

particular sub-space of the vector space of all matrices with the same dimensions as F (k).

2.4 The Optimal Constrained Control Law

Denote A = I ⊗ Ā and B = I ⊗ B̄ and rewrite (2.3) as

x(k + 1) = Ax(k) +Bu(k) + w(k) (2.4)

u(k) = F (k)x(k),

where the initial condition x(0) is random and is Gaussian with zero-mean and covariance R(0).

The noise w(k) is also random white zero-mean Gaussian with covariance Rw. We wish to minimize

the quadratic cost function

JT = E

[
T∑

k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)

]

+ E
[
xT (T + 1)P c(T + 1)x(T + 1)

]
, (2.5)

where Q and R are positive definite. If there were no constraints on the structure of the control law

F (k), this would be the classical LQR design problem. However, in our present problem, we wish
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to additionally constrain the control law to lie within a space spanned by the basis vectors {Θj ,

j = 1, 2, . . . , p}. Thus, the problem is to find a control law of the form

F (k) =

p
∑

j=1

αj(k)Θj , (2.6)

where αj(k)’s are scalars, that minimizes the cost function (2.5).

Remarks

1. The optimal constrained control law would not, in general, be the projection of the optimal

control law on to the sub-space we are interested in. This is reminiscent of the fact that the

optimal causal estimate for a random variable is not the same as the projection of the general

optimal estimate on to the causal sub-space [112].

2. Requiring a priori that the controller be linear might be a non-trivial assumption. However, this

commonly made assumption allows us to derive tractable algorithms for solving the problem

and leads to sharper results.

2.4.1 A Preliminary Result

In this subsection we prove an intermediate result that we will use later. We begin with the following

fact.

Lemma 2.2 Suppose W is a positive semi-definite matrix and P (K) denotes a matrix-valued func-

tion of the matrix argument K. If P (K) > P (K0), then trace (P (K)W ) ≥ trace (P (K0)W ).

Proof Since P (K) > P (K0), we have P (K) − P (K0) > 0. Also W is positive semi-definite, thus

W
1
2 is defined. Hence, we note that

trace
(

W
T
2 (P (K)− P (K0))W

1
2

)

≥ 0

⇒ trace ((P (K)− P (K0))W ) ≥ 0.

But this means trace (P (K)W ) ≥ trace (P (K0)W ), which proves the assertion.

Using this lemma we can prove the following.
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Proposition 2.3 Consider the cost function

C = E






















K1Y1 −X1

K2Y2 −X2

...

KlYl −Xl











T

W











K1Y1 −X1

K2Y2 −X2

...

KlYl −Xl






















,

where Ki’s are arbitrary matrices while Yi’s and Xi’s are vectors of suitable dimensions such that

the cost function C is well-defined. Suppose that W is a symmetric positive-definite matrix that can

be written in the form

W =











W1,1 W1,2 · · · W1,l

W2,1 · · · W2,l

...
. . .

...

Wl,1 Wl,2 . . . Wl,l











,

where the blocks Wi,j are of appropriate sizes so that the product XT
i Wi,jXj is well defined. Finally

assume that all diagonal blocks Wi,i’s are positive definite. Then, the optimal Ki’s minimizing the

cost function C are given by the solution to the coupled matrix equations

Kj = W−1
j,j




∑

i

Wj,iRXiYj
−
∑

i6=j

Wj,iKiRYiYj



R−1
Yj
, ∀j = 1, 2, · · · , l,

where RYiYj
= E

[
YiY

T
j

]
and RXiYj

= E
[
XiY

T
j

]
.

Proof For each j, we can write the terms in the cost function C that depend on the matrix Kj as

Cj = trace
(
KjRYj

KT
j Wj,j −KjΨ−ΨTKT

j

)
,

where

Ψ =




∑

i

RYjXi
Wi,j −

∑

i6=j

RYjYi
KT
i Wi,j



 .

Kj needs to be chosen so as to minimize Cj . The minimization is of the form

min
X

trace
(
XAXTB +XC + CTXT

)
,
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where B is positive definite and hence invertible. This can be rewritten as

min
X

trace
(
XAXTB +XC + CTXT

)

= min
X

trace
(
XAXTB +XCB−1B + CTXTBB−1

)

= min
X

trace
(
XAXTB +XCB−1B +B−1CTXTB

)

= min
X

trace
((
XAXT +XCB−1 +B−1CTXT

)
B
)
.

Now we use lemma 2.2. Thus, our problem reduces to that of determining X such that XAXT +

XCB−1 +B−1CTXT is minimized. We complete the squares to write

XAXT +XCB−1 +B−1CTXT =
(
X +B−1CTA−1

)
A
(
X +B−1CTA−1

)T −B−1CTA−1C.

Thus, the minimizing X is seen to be given by −B−1CTA−1. Applying this fact to our original

problem of determining Kj , we see that

Kj = W−1
j,j




∑

i

Wj,iRXiYj
−
∑

i6=j

Wj,iKiRYiYj



R−1
Yj
.

Note that for calculation of the Kj ’s, we can use the identity (2.1). For each Kj we obtain the

relation

vec(Kj) = vec

(

W−1
j,j

∑

i

Wj,iRXiYj

)

−
∑

i6=j

[(

RYiYj
R−1
Yj

)T

⊗
(
W−1
j,j Wj,i

)
vec(Ki)

]

.

We have one such equation for each Kj , j = 1, . . . , n. These equations can readily be solved to

obtain the values of vec(Kj) and, in turn, the matrices Kj can be determined.

2.4.2 The Optimal Control Law

From (2.5) we see that the cost function to be minimized is

JT = E

[
T∑

k=0

uT (k)Ru(k) +

T∑

k=0

x(k)Qx(k)

]

+ E
[
xT (T + 1)P c(T + 1)x(T + 1)

]
.

Using the equation (obtained from (2.4))

x(k) = Akx(0) +

k−1∑

j=0

AjBu(k − 1− j) +

k−1∑

j=0

Ajw(k − 1− j)
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and the fact that the noise w(k) is white and zero-mean allows us to rewrite the cost function as

JT = E
[
ΓTFΓ + ΓTGΛ + ΛTGTΓ + ΛTHΛ

]
, (2.7)

In the above equation

Γ =
[

x(0)T w(0)T w(1)T · · · w(T )T
]T

is the vector of all the random variables involved. Similarly,

Λ =
[

uT0 uT1 · · · uTT

]T

is the control vector that is the optimization variable. Finally, the matrices F , G and H are functions

of the known matrices A, B, R, Q and P c(T + 1). The control vector Λ is constrained to be of the

form

Λ =











u(0)

u(1)
...

u(T )











=











F (0)x(0)

F (1)x(1)
...

F (T )x(T )











where the matrices F (i)’s have some pre-specified elements zero because of the imposed topology.

In particular, if we write

F (i)x(i) =











F1(i)x(i)

F2(i)x(i)
...

FN (i)x(i)











where Fj(i) is the control law applied by the j-th agent at time step i, then those elements of Fj(i)

that correspond to the elements in the state vector x(i) that the j-th agent does not have access to

are zero. We can pull the constraints into the state vector and write

Fj(i)x(i) = Kj(i)yj(i),

where Kj(i) is now a matrix free of any constraints on its elements. The vector yj(i) is a stacked

vector of the states of the agents that the j-th agent has access to at time i. These agents correspond



27

to the neighbors of the agent i. We can thus write

F (i)x(i) =











K1(i)y1(i)

K2(i)y2(i)
...

KN (i)yN (i)











.

In turn, Λ can be written as

Λ =











F (0)x(0)

F (1)x(1)
...

F (T )x(T )











=

































K1(0)y1(0)

K2(0)y2(0)
...

KN (0)yN (0)

K1(1)y1(1)
...

KN (1)yN (1)
...

K0(T )y0(T )
...

KN (T )yN (T )

































. (2.8)

The NT matrices Kj(i)’s are arbitrary and are now the optimization variables. From (2.7), we see

that the cost function can be written as

JT = E
[
ΓTFΓ + ΓTGΛ + ΛTGTΓ + ΛTHΛ

]

= E
[(

Λ +H−1GTΓ
)T
H
(
Λ +H−1GTΓ

)]

+ E
[
ΓT
(
GH−1GT + F

)
Γ
]
.

The choice of Λ only affects the first term. Thus, the optimization problem is

min
Λ
E
[(

Λ +H−1GTΓ
)T
H
(
Λ +H−1GTΓ

)]

,

where Λ is of the form (2.8). But this optimization problem is exactly in the form of Proposition 2.3.

Thus, we can optimize the value of the cost function. This solves the optimal control law problem.

The solution involves the calculation of second order statistic terms which can be calculated

off-line since the topology of the network is assumed to be known. The procedure holds even for the

case when the topology is time-varying, as long as all the agents know the topology. However, note

that we need to solve a total of NT coupled matrix equations. This is a formidable computational
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burden. We now present a method that is computationally more tractable at the expense of being

sub-optimal.

2.4.3 A Sub-optimal Control Law

Once again, we note from (2.5) that the T -horizon cost function to be minimized is

JT = E

[
T∑

k=0

uT (k)Ru(k) +

T∑

k=0

xT (k)Qx(k)

]

+ E
[
xT (T + 1)P c(T + 1)x(T + 1)

]
.

We need to choose u(0), u(1), · · · , u(T ) that minimize JT . Following [95, Chapter 9], we gather

terms that depend on the choice of u(T ) and x(T ) and write them as

Υ(T ) = E
[
uT (T )Ru(T ) + xT (T )Qx(T )

]
+ E

[
xT (T + 1)P c(T + 1)x(T + 1)

]

= E





[

uT (T ) xT (T )
]

∆




u(T )

x(T )







+ E
[
wT (T )P c(T + 1)w(T )

]

= S(T ) +O(T )

where

∆ =




R+BTP c(T + 1)B BTP c(T + 1)A

ATP c(T + 1)B Q+ATP c(T + 1)A





S(T ) = E





[

uT (T ) xT (T )
]

∆




u(T )

x(T )









O(T ) = E
[
wT (T )P c(T + 1)w(T )

]
.

To obtain the above equation, we have used the system dynamics given in (2.4) and the fact that

the plant noise is zero mean. Thus, we can write

JT = E

[
T−1∑

k=0

uT (k)Ru(k) +

T−1∑

k=0

xT (k)Qx(k)

]

+ S(T ) +O(T ). (2.9)

We aim to choose u(T ) to minimize JT . From (2.9), it is clear that the only term where the choice

of u(T ) can make a difference is S(T ). On completing squares, S(T ) can be written as

S(T ) = E
[

(u(T )− ū(T ))
T
Rce(T ) (u(T )− ū(T ))

]

+ E
[
xT (T )P c(T )x(T )

]
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where

Rce(T ) = R+BTP c(T + 1)B

P c(T ) = Q+ATP c(T + 1)A−ATP c(T + 1)B
(
RBTP c(T + 1)B

)−1
BTP c(T + 1)A

and ū(T ) is the standard optimal LQ control given by

ū(T ) = − (Rce(T ))
−1
BTP c(T + 1)Ax(T ).

If u(T ) could depend arbitrarily on x(T ), its optimal value would have been given by ū(T ). However,

owing to the topological constraints, that is not possible in our problem. Instead, u(T ) needs to

be calculated so as to minimize S(T ) by using the information flow that satisfies the topological

constraints. In other words, we need to find u(T ) = F (T )x(T ) that minimizes Υ(T ) where F (T )

has certain elements zero. The control problem, thus, reduces to an optimal estimation problem.

To solve for u(T ), we rewrite it as

u(T ) =











u1(T )

u2(T )
...

uN (T )











,

where each ui(T ) is the control law that the i-th agent applies and is a linear function of the

measurements the i-th agent has access to. Thus, we can write

ui(T ) = Fi(T )x(T ),

where Fi(T ) has those elements 0 that correspond to the elements in the state vector x(T ) that the

i-th agent does not have access to. Pulling the constraints into the state vector, we can write

ui(T ) = Ki(T )yi(T ),

where Ki(T ) does not have any constraint while the vector yi(T ) is a stacked vector of the states of

the agents that the i-th agent has access to at time T . Thus, the problem of choosing the control

law u(T ) reduces to the problem of choosing Ki(T )’s so as to minimize the criterion

E






















K1(T )y1(T )− ū1(T )

K2(T )y2(T )− ū2(T )
...

KN (T )yN (T )− ūN (T )











T

Rce(T )











K1(T )y1(T )− ū1(T )

K2(T )y2(T )− ū2(T )
...

KN (T )yN (T )− ūN (T )






















.
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This is exactly the optimization problem discussed in Proposition 2.3. Thus, the matrices Ki(T )

can be easily obtained. Note that the solution involves only N coupled matrix equations and

hence is computationally much less expensive than the optimal control law calculation discussed in

section 2.4.2.

Denote the estimation error incurred due to the minimizing choice of u(T ) by Λ(T ). We have

S(T ) = Λ(T ) + E
[
xT (T )P c(T )x(T )

]
.

We can, thus, write the cost function as

JT = E

[
T−1∑

k=0

uT (k)Ru(k) +

T−1∑

k=0

xT (k)Qx(k)

]

+ S(T ) +O(T )

= E

[
T−1∑

k=0

uT (k)Ru(k) +
T−1∑

k=0

xT (k)Qx(k)

]

+ E
[
xT (T )P c(T )x(T )

]
+ Λ(T ) +O(T )

= JT−1 + Λ(T ) +O(T ).

Thus, we now need to choose control inputs for time steps 0 to T − 1 to minimize JT . By scanning

the terms on the right hand side of the equation, we see that O(T ) is independent of the choice

of control laws from time 0 to T − 1. However, unlike the standard case of control with imperfect

observations [95, Chapter 9], we note that apart from JT−1, the estimation error Λ(T ) is also a

function of the state x(T ) and hence of the (unknown) control law u(T − 1). Moreover, it is a non-

linear function of u(T −1). The control u(T −1) should be chosen to minimize the cost JT−1 +Λ(T ).

Thus, the separation principle does not hold in our problem. This is not surprising since the

information pattern in the problem is not classical [203] because the previous control inputs are not

known fully to all the agents. We get across this problem by neglecting the estimation cost Λ(T )

and optimizing only JT−1. For this purpose, we note that our argument, so far, was independent of

time index T . Thus, we can recursively apply the argument for time steps T − 1, T − 2 and so on.

We thus obtain a sub-optimal control law that is computationally more efficient.

Remarks

1. We have artificially enforced a separation principle that says that the controller synthesis

problem can be separated into an estimation problem and the usual LQR control problem.

At every time step, every agent tries to estimate the optimal control input (in the sense of

Proposition 2.3) using the information it has access to and uses this estimate in the optimal

LQR control law.

2. This method is in general sub-optimal since the separation principle does not hold in reality.

However, since it replaces solution of NT coupled matrix equations by solving N coupled
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matrix equations T times, it saves a lot on computational cost.

3. If needed, better performance can be achieved by including the estimation cost Λ(T ) in calcu-

lation of u(T − 1). It can be proven that this inclusion results in a convex problem that can

be solved efficiently. However, this method would still not be optimal since for calculation of

u(T − 2), we need to consider JT−2, Λ(T − 1) and the cost incurred in imperfectly minimizing

Λ(T ). Thus, the problem involves more and more terms to optimize over as we move back-

wards in time. The extent of sub-optimality can be reduced by including more terms in the

optimization.

4. Intuitively, the approximation can be thought of as follows. At any time, the optimal control

input of an agent will depend on the control inputs of all other agents at the previous time

step. However, the agent is not allowed to observe these. We get around this problem by

ignoring the direct dependence of the optimal control input on these terms. Instead, we use

the fact that these terms will soon appear in the values of the states of the neighbors of the

agent that are being observed. Thus, these terms will eventually be used in the calculation of

control inputs.

5. For a fully connected topology, the sub-optimal algorithm yields the same result as the optimal

algorithm since there is no estimation cost Λ(T ). In other words, since the control input of

any agent can be calculated whenever needed, there is no approximation involved in ignoring

its effect on each agent’s control input.

2.5 Examples

We now consider two examples to illustrate the issues involved.

Example 1

Consider a network of four agents, each with single integrator dynamics. This case is of interest

since single integrator dynamics can be used to solve consensus problems [157]. Let the agents be

designated as vi, i = 1, 2, 3, 4. The agent vi has dynamics

xi(k + 1) = xi(k)− 0.2ui(k) + wi(k)

ui(k) = Fi,1xi(k) +
∑

j∈Ni

Fij,2(xj(k)− xi(k)).

As before, denote x(k) to be the state of the whole system and u(k) to be the control vector obtained

by stacking all the xi(k)’s and ui(k)’s respectively. Then, the evolution of the system is described
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as

x(k + 1) = x(k)− 0.2u(k) + w(k)

u(k) = F1x(k) + F2x(k),

where F1 is a diagonal matrix with F1,1, F2,1, F3,1, F4,1 as the diagonal elements; and the (i, j)−th

element of the matrix F2 is given by

[F2]i,j =







Fij,2 i 6= j and j ∈ Ni

0, i 6= j and j /∈ Ni

−∑j Fij,2, i = j.

The initial condition is random with zero mean and covariance as the identity matrix. Similarly the

noise is white Gaussian with mean zero and covariance as the identity matrix. The cost function

specified is

J =

T∑

k=0

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
.

We present results for T = 30. We take the weighting matrices arbitrarily to be as follows:

Q =











1.6158 1.6884 1.2138 0.563

1.6884 2.798 1.2843 1.2528

1.2138 1.2843 0.9645 0.5147

0.563 1.2528 0.5147 0.7501











R =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











.

We consider a constrained topology where we allow limited communication to happen. The vehicle

v1 can talk to v2, the vehicle v2 to v1 and v3, the vehicle v3 to v2 and v4 and v4 can talk to v3.

In this case, the evolution of the cost is as shown in Figure 2.2. The cost plotted in the figure is

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
at every time step k. We can see that the loss in performance from

the sub-optimal algorithm is not huge. The savings in computational time, however, are considerable.

Note that at the intermediate time values, the sub-optimal algorithm may perform better than the

optimal algorithm. However, this can be easily explained by noting that the optimal algorithm is

optimal for a time horizon of 30 steps and there is no guarantee that it is the optimal algorithm for

a smaller time window as well.

In Figure 2.3, we show the steady state cost for the ring topology for a time horizon T of 100

time steps as we introduce delay into the system. The ring topology involves all communication links

being present, except the (v2, v4) and (v1, v3) links. We assume that the state information is passed

with some delay that is a multiple of the sampling time of the system but the agents calculate the
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Figure 2.2: Comparison of the performance of the optimal and of the sub-optimal algorithm. The
loss in performance due to the sub-optimal algorithm is not huge.

control law assuming there is no delay. It can be seen that the cost increases slowly and the system

is reasonably robust to delay uncertainty. It becomes unstable only for a delay equal to or greater

than 5 time steps.

Example 2

In this example, we use the dynamics of each agent as the dynamics of the Caltech Multi Vehicle

Wireless Testbed vehicles, as described in [40, 198]. The non-linear dynamics are given by

mẍ = −µẋ+ (FL + FR) cos(θ)

mÿ = −µẏ + (FL + FR) sin(θ)

Jθ̈ = −ψθ̇ + (FR − FL)rf .

FL and FR are the inputs, m = 0.749 kg is the mass of vehicle, J = 0.0031 kg m2 is the moment of

inertia, µ = 0.15 kg-s is the linear frictional coefficient, ψ = 0.005 kgm2/s is the rotational friction

coefficient and rf = 0.089 m is the distance from the center of mass of the vehicle to the axis of the

fan. On linearizing the dynamics about the straight line y = x at a velocity of 1 ms−1 along the x
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Figure 2.3: Variation of the steady state cost as delay is introduced in the system. The sub-optimal
algorithm is robust to delays.

and y axes, we obtain the equations

Ẋ = AX +BU

U = FX,

where

X =
[

x y θ ẋ ẏ θ̇
]T

A =

















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0
−(Fnom

L +Fnom
R ) sin(θnom)
m

−µ
m 0 0

0 0
(Fnom

L +Fnom
R ) cos(θnom)
m 0 µ

m 0

0 0 0 0 0 −ψ
J
















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B =

















0 0

0 0

0 0

cos(θnom)
m

cos(θnom)
m

sin(θnom)
m

sin(θnom)
m

−rf

J
−rf

J

















θnom =
π

4
FnomL = FnomR =

µ√
2
.

We discretize the above equations with a step size h = 0.2. We consider 8 vehicles starting from

an octagonal formation and consider the topologies possible as the communication radius of each

vehicle is increased. By symmetry, there are 5 distinct topologies possible, with each vehicle talking

to 0, 2, 4, 6 and 7 other vehicles respectively. The initial covariance matrix R(0) is assumed to be

the identity matrix. The cost function matrix R is also identity while the matrix Q is randomly

generated. The cost function horizon is T = 100 time steps. A typical curve for the varying of the

costs provided by the sub-optimal algorithm as the communication radius is increased is given in

Figure 2.4. The cost plotted is the steady state error E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
for k = 100.

Following general conclusions can be drawn for the example from the plot:
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Figure 2.4: As the communication radius is increased, the cost obtained by the finite horizon sub-
optimal control law goes down.
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1. As more and more communication is allowed, the cost goes down.

2. The marginal utility of each communication link decreases as more and more links are added.

The difference in the performance between the sub-optimal and the optimal algorithms increases

as the communication topology becomes sparser. Figure 2.5 shows the comparison of optimal and

sub-optimal algorithms for a different value of the Q matrix. The cost considered is the steady state

cost E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
for k = 100. It can be seen that even for the decentralized case,

the error is of the order of only 30%.
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Figure 2.5: As the communication radius is increased, loss in performance due to the sub-optimal
algorithm decreases.

2.6 Cost Functions and Value of a Graph

An implicit assumption in the method we considered above for distributed control synthesis (or, in

fact, in almost any other method for synthesis proposed in the literature) is that the interaction

topology is fixed a priori and provided to the control designer. In many applications, however, both

the topology and the controller need to be designed simultaneously. Thus, in a multi-vehicle or a

factory floor application, what topology to enforce is a valid design question. In this section, we

propose a model to evaluate the efficiency of various topologies that achieve a particular control

goal. We start with some notation and definitions.
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Assume, once again, that there are N agents present with the i-th agent evolving as

xi(k + 1) = Aixi(k) +Biui(k),

with the state xi(k) ∈ Rni and the control input ui(k) ∈ Rmi . Note that, for simplicity, we have

assumed no noise to be present. Denote

n =

N∑

i=1

ni m =

N∑

i=1

mi.

Further, as before, denote the stacked vector of all the states of the agents xi(k + 1) by x(k) and

the stacked vector of all the control inputs ui(k + 1) by u(k). Thus, the state of the entire system

evolves as

x(k + 1) = Ax(k) +Bu(k),

where the matrices A and B are block diagonal matrices with components Ai’s and Bi’s respectively.

We assume that each pair (Ai, Bi) is controllable, which implies by a proof similar to that of

Proposition 2.1, that the pair (A,B) is controllable.

Let GN denote the set of all undirected graphs over N vertices. Every graph g ∈ GN specifies a

communication topology that defines the structure of specific control laws for the system. Consider

a matrix F of dimensions m×n defined blockwise, each block Fij being a mi×nj matrix such that

Fij is a zero matrix if there is no edge between vertices vi and vj in the graph g, i.e. (vi, vj) /∈ E(g).
Let us denote the set of all the matrices whose structure is described in this way by a graph g as

F(g). For a control law u(k) = Fx(k), if F ∈ F(g), then ui(k) involves the values of xj(k) only if

(vi, vj) is an edge in the graph g. We will denote such a control law as having structure g. We will

assume that the graph g has self-loops at each vertex, so that a node always has access to its own

state value for the purpose of calculating its control input. We will make two assumptions before

proceeding further:

1. We will assume that the control law is static. Thus, the control input at any time k is given

by u(k) = Fx(k).

2. We will consider the infinite horizon version of the cost function with the matrix R in the cost

function as the identity matrix1. Thus, the cost is given by

J =
∞∑

k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)
. (2.10)

We are interested in minimizing the cost function given in (2.10) over the topology and the control

1This assumption allows us to concentrate on the effect of the topology by just changing the weight matrix Q. If
the structure of R also changes suitably along with that of Q in the discussion below, we do not need R to be identity.
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law simultaneously. If there is no restriction on the structure of the control law, this optimization

would typically yield a fully interconnected topology. In practice, however, building and maintaining

each of the graph’s communication edges has a cost which, if taken into account, may make this

control law less attractive. To capture this trade-off between the closed loop performance and the

controller topology, we introduce an information cost associated with each graph g. For a given

matrix Q in the cost function (2.10), denote the cost achievable by the control law u that satisfies

the structure according to the graph g as Jg(Q, u). Further, define the minimal cost achievable this

way as J?g (Q). Thus,

J?g (Q) = min
u
Jg(Q, u).

Now we introduce the control cost of a graph through a mapping

Q : GN → SN ,

where SN is the set of all positive semidefinite matrices of size N ×N . Thus, the cost matrix Q in

the cost function (2.10) is now a function of the graph g that decides the structure of the control

law. Dependence of the cost function to be minimized on the topology that the control law needs

to satisfy captures the information cost of the graph. In particular, our choice of a graph-dependent

weight matrix may be seen as putting a price on the amount of energy used for communication,

that fits naturally in the LQR framework that we are considering. There are, of course, many ways

in which the mapping Q may be chosen. We give some possible ways below along with a physical

interpretation.

1. Edge Separable Without Interference: In the case, the map Q satisfies

Q(g) 7→ Q0 +
∑

(vivj)∈E(g)

i6=j

Pij , (2.11)

where Pij ≥ 0 is partitioned according to the subsystems and has all its blocks zero except

(possibly) the (i, i)-th, (i, j)-th, (j, i)-th and (j, j)-th ones. This models the situation in which

every node pays an energetic price to transmit its state value along every adjacent edge.

2. Edge Separable With Interference: In this case, the mapping Q(g) is still given as in (2.11),

but each matrix Pij merely belongs to the set F(g)2. This corresponds to the case when the

energetic cost paid for communication over each link depends on all the other links present

in the graph. It is to capture this parasitic effect of edges on each other that we say that

interference is present.

2Strictly speaking, any element of the set F(g) was defined to have dimensions m× n while the matrices Pij have
dimensions n×n. However, the basic feature of the matrix being defined componentwise with the (i, j)-th block being
0 if (vivj) /∈ E(g) is still present. Further, in this case, we also impose the additional constraint Pij ≥ 0.
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3. Non-Separable: In this case, there is no edge-by-edge contribution to the information cost of

a graph and Q(g) can be a full matrix for any graph g. This can model a situation in which

all the nodes agree to ‘subsidize’ the cost of any edge by reducing their own energies.

We define two general classes of the mapping Q(g). We say that the mapping Q(g) is

• non-decreasing: if ∀g, g′ ∈ GN , g � g′ ⇒ Q(g) ≤ Q(g′).

• structure-compatible: if3 ∀g ∈ GN , Q(g) ∈ F(g).

Note that edge separability in the mapping Q(g) is not sufficient for structure compatibility, since

the matrix Q0 in (2.11) may not be block diagonal to begin with.

In the next section, we present some results for specific classes of Q regarding the trade-off

between the graph structure and the minimum cost J that is achievable.

2.7 Efficiency of a Graph

We define the value of a graph g as

V (g) = J?g (Q(g)) .

Further, a graph g? is optimal (or in the terminology of [106], efficient), if

∀g ∈ GN , V (g?) ≤ V (g).

The structure imposed by g? corresponds to the minimal (in the sense of the quadratic cost (2.10))

communication requirements needed to control the N agents. Since there are only finitely many

elements in GN , g? always exists. We are interested in seeing if the mapping Q(g) provides us an

indication of what g? is, without having to explicitly calculate the values of all graphs g. Further

we are also interested in seeing if there is any (partial) order imposed by the value function V .

2.7.1 Clique Graphs and the Efficient Graph

We begin with the following proposition that is easily proven.

Proposition 2.4 1. If g � g′, then ∀Q ≥ 0, J?g′(Q) ≤ J?g (Q).

2. If Q ≤ Q′, then ∀g ∈ GN , J?g (Q) ≤ J?g (Q′).

Proof 1. Let the optimizing control law with structure g that achieves J ?g (Q) be given by K(g).

Since g � g′, K(g) satisfies the structure of g′ as well. Thus, using the control law K(g),

the cost J1 = J?g (Q) is achievable on g′. But, by definition, J?g′(Q) ≤ J1. Combining the two

relations, we see that J?g′(Q) ≤ J?g (Q).

3See footnote 2.
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2. If Q ≤ Q′ then Q′ = Q+ Q̄, where Q̄ ≥ 0. Thus, it is obvious that Jg(Q
′, u) = Jg(Q, u) + ∆,

where ∆ ≥ 0. Thus,

J?g (Q′) = min
u
Jg(Q

′, u) ≥ min
u
Jg(Q, u) + min

u
∆

≥ min
u
Jg(Q, u) = J?g (Q).

Corollary 2.5 If the map Q(g) is non-decreasing and g � g′, J?g′ (Q(g)) ≤ V (g′).

Proof Applying the second part of the result in Proposition 2.4 to Q = Q(g) and Q′ = Q(g′) yields

J?g′ (Q(g)) ≤ J?g′ (Q(g′)) .

Since by definition

J?g′ (Q(g′)) = V (g′),

the result holds.

As we saw in the initial sections of the chapter, determining the optimal structured controller for

arbitrary topologies is a hard problem. Thus, determining the value of arbitrary graphs is also hard.

However, we are able to compute the value of special graph classes. In particular, the following

result holds for clique graphs.

Proposition 2.6 Let g ∈ GN be a clique graph and the mapping Q(g) be structure compatible.

Then,

V (g) = min
u
J (Q(g), u) ,

i.e., provided that the cost matrix Q satisfies the structure of the graph g, the optimal unstructured

LQ controller automatically satisfies the structure of g as well. Thus, in particular,

V (g) = xT (0)P (g)x(0),

where P (g) is the unique positive semi-definite solution of the Riccati equation

P (g) = ATP (g)A+Q−ATP (g)B
(
BTP (g)B + I

)−1
BTP (g)A. (2.12)

Proof It is standard that the unstructured control law minimizing J (Q(g), .) and the corresponding

optimal value are given by the Riccati equation (2.12). We need to show that, under our assumptions,

this optimal control law in fact has structure g.

Since g is a clique graph, there exists a permutation matrix π such that
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• π−1 = πT .

• π−1A(g)π is block diagonal. Recall that A(g) is the adjacency matrix of the graph g.

This operation simply amounts to re-numbering the vertices of g so that vertices in the same clique

have consecutive numbers and then partitioning the node set {v1, · · · , vN} as

{v1, · · · , vN} =

c⋃

i=1

Ii,

where c is the number of cliques in g and Ii is the index set corresponding to clique i.

Let us define the n×n matrix Πn by replacing every entry that is equal to ‘1’ in the permutation

matrix π by the identity matrix of proper dimensions. Similarly, define a m×m matrix Πm. Both

Πn and Πm are permutation matrices. Since Q is structure compatible, ΠT
nQΠn is block diagonal.

Let us denote

ΠT
nQΠn = diag1≤i≤c (Qi) .

Since the matrices A and B are block diagonal (and hence structure compatible), we can write

ΠT
nAΠn = diag1≤i≤c (Ai) ΠT

nBΠm = diag1≤i≤c (Bi) ,

where each block Ai and Bi is itself block-diagonal and corresponds to each clique in the graph.

Thus,

Ai = diagj∈Ii
(Aj) Bi = diagj∈Ii

(Bj) .

Since each pair (Ai, Bi) is controllable, so is the pair (Ai,Bi) for each i. Hence, the Riccati equation

P̄ = (ΠT
nAΠn)

T P̄ (ΠT
nAΠn) + ΠT

nQΠn

− (ΠT
nAΠn)

T P̄ (ΠT
nBΠm)

(
(ΠT

nBΠm)T P̄ (ΠT
nBΠm) + I

)−1
(ΠT

nBΠm)T P̄ (ΠT
nAΠn)

can be solved block-by-block and its unique positive semi-definite solution is ΠT
nP (g)Πn. Further,

it also has a block diagonal structure

ΠT
nP (g)Πn = diag1≤i≤c (Pi) .
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Thus, the optimal control law for the original system is given by

F (g) = −
(
BTP (g)B + I

)−1
BTP (g)A

= −
(

(Πndiag1≤i≤c(Bi)Π
T
m)TΠndiag1≤i≤c(Pi)Π

T
n (Πndiag1≤i≤c(Bi)Π

T
m)

+ΠmΠT
m

)−1

(Πndiag1≤i≤c(Bi)Π
T
m)TΠndiag1≤i≤c(Pi)Π

T
nΠndiag1≤i≤c(Ai)Π

T
n

= −ΠT
m

(
(diag1≤i≤c(Bi))

Tdiag1≤i≤c(Pi)diag1≤i≤c(Bi) + I
)−1

(diag1≤i≤c(Bi))
Tdiag1≤i≤c(Pi)diag1≤i≤c(Ai)Πn,

where we have used the fact that both Πn and Πm are orthogonal matrices. Thus, the matrix F (g)

too has structure g.

Proposition 2.6 is reminiscent of the results of [7] where it was proven that for spatially invariant

systems, the optimal controller is itself spatially invariant. In our case, the optimal controller for a

clique graph has the same structure as the graph, provided that the map Q is structure compatible.

We can use this result to obtain the following result.

Proposition 2.7 Let Q be non-decreasing and structure compatible and g be a clique graph. Then,

∀g′ ∈ GN such that g � g′, V (g) ≤ V (g′).

Proof By Proposition 2.6, since g is a clique graph and Q is structure compatible,

V (g) = min
u
J (Q(g), u) .

Since the optimal controller has structure g, constraining the controller to structure g ′ cannot de-

crease the cost. Thus,

min
u
J (Q(g), u) ≤ J?g′(Q(g)).

Finally, since the map Q is non-decreasing, Corollary 2.5 yields

J?g′(Q(g)) ≤ V (g′).

Combining the three inequalities yields V (g) ≤ V (g′).

This result can immediately be used to prove that the minimal control topology for the above

assumptions is, in fact, the decentralized topology.

Corollary 2.8 Let Q be non-decreasing and structure compatible. The graph g? characterized by

E(g?) = Φ, where Φ denotes the empty set, is efficient.

Proof The result is obvious if we note that
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1. g? is a clique graph.

2. g? � g′ for all g′ ∈ GN .

Thus, ∀g′ ∈ GN , V (g) ≤ V (g′).

Informally, this result states that cooperation can be detrimental for performance. Note that we

know from Proposition 2.1 that for the purposes of stabilizability and controllability, all formations

are equivalent. However, different formations will yield different performance levels, and this result

states a model in which formations with more edges (hence more cooperation), in fact, perform worse.

As an instance, consider the case of the mapping Q to be edge separable without interference. In this

case, if the matrix Q0 is block-diagonal, the map is structure-compatible. Then, the above result

says that for any positive communication cost (i.e., no matter how small the matrices Pij are) it is

detrimental to include any edge in the controller’s interconnection topology.

2.7.2 Pricing Edges

The previous section dealt with clique graphs. In this section, we give sufficient conditions for the

addition of edges to any graph to be detrimental.

Proposition 2.9 Sufficiency: Consider two graphs g and g′. If there exist F ∈ F(g′) and P > 0

such that

P = (A+BF )TP (A+BF ) +Q(g′) + FTF (2.13)

Q(g) ≥ Q(g′) +
(
F + S−1BTPA

)T
S
(
F + S−1BTPA

)
(2.14)

S = BTPB + I,

then V (g) ≥ V (g′).

Partial Converse: Let either

• g be a clique graph and Q be structure compatible, or

• g be a complete graph,

then Q(g)−Q(g′) ≤ P ⇒ V (g) ≤ V (g′), where

P =
(
F̄ + S̄−1BT P̄A

)T
S̄
(
F̄ + S̄−1BT P̄A

)
,

S̄ = BT P̄B + I,

F̄ is the optimal structured controller for the graph g′ and P̄ is the solution to (2.13) for F = F̄ .
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Proof Sufficiency: Assume P > 0 satisfies (2.13). Then, since Q(g′) + FTF > 0, the matrix

(A+BF ) has all its eigenvalues inside the unit circle [64]. Thus,

lim
k→∞

x(k) = 0,

for the closed loop system

x(k + 1) = (A+BF )x(k).

Also, from (2.13), we see that for every trajectory x of the closed loop system, we have

xT (k)Px(k)− xT (k + 1)Px(k + 1) = xT (k)Q(g′)x(k) + uT (k)u(k).

Writing one such equation for all k = 0, 1, 2, · · · and summing all these equations yields

xT (0)Px(0) =
∞∑

k=0

(
xT (k)Q(g′)x(k) + uT (k)u(k)

)
= Jg′ (Q(g′), u) , (2.15)

for the structured controller u(k) = Fx(k). Now from (2.13) we see that P satisfies

P = ATPA−ATPBS−1BTPA+Q(g′) +
(
F + S−1BTPA

)T
S
(
F + S−1BTPA

)
,

where S = BTPB + I. This Ricatti equation is identical to the one obtained using LQ control

theory if we were to look for a control law that minimizes a cost function of the form (2.10) with

the cost matrix

Q = Q(g′) +
(
F + S−1BTPA

)T
S
(
F + S−1BTPA

)
.

Thus, we have

xT (0)Px(0) = min
u
J
(

Q(g′) +
(
F + S−1BTPA

)T
S
(
F + S−1BTPA

)
, u
)

.

Comparing this equation with (2.15) yields

Jg′ (Q(g′), u) = min
u
J
(

Q(g′) +
(
F + S−1BTPA

)T
S
(
F + S−1BTPA

)
, u
)

. (2.16)

Now, if inequality (2.14) holds, we have from the second part of Proposition 2.4

min
u
J
(

Q(g′) +
(
F + S−1BTPA

)T
S
(
F + S−1BTPA

)
, u
)

≤ min
u
J (Q(g), u) . (2.17)
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Finally, from the definition of the value function V (g) we obtain

V (g′) ≤ Jg′ (Q(g′), u) (2.18)

min
u
J (Q(g), u) ≤ V (g).

Combining equations (2.16), (2.17) and (2.18) yields that if the conditions given in (2.13) and (2.14)

hold, then

V (g′) ≤ V (g).

Partial Converse: As in the sufficiency proof, first note that for the control law ū = F̄ x, we have

Jg′ (Q(g′), ū) = min
u
J (Q(g′) + P, u) ,

where F̄ and P are as defined in the theorem statement. Since F̄ is the optimal structured controller

for g′, we have

Jg′ (Q(g′), ū) = V (g′)

⇒ min
u
J (Q(g′) + P, u) = V (g′).

Now if Q(g)−Q(g′) ≤ P, this yields

min
u
J (Q(g), u) ≤ V (g′).

But if either g is complete or a clique graph with Q being structure compatible, the left hand side

is simply V (g). Thus, V (g) ≤ V (g′).

Proposition 2.9 can be used to design a map Q to enforce a particular design topology. Suppose

a particular controller topology g′ has been chosen. Then, one can ensure that adding any edge is

unprofitable by choosing a stabilizing control gain F ∈ F(g′), solving the Lyapunov equation (2.13)

and picking the map Q such that (2.14) holds. However, the result is not very useful if given the

map Q and a topology, one wants to see if it is (or not) advantageous to add new edges. In that

case, the equations (2.13) and (2.14) need to be solved for both P and F . Even after using the

Schur complement on (2.14) and rewriting (2.13) as two matrix inequalities, one ends up with a set

of bilinear matrix inequalities, to solve which is, in general, NP-hard. Of course, if we are given a

particular control law F (e.g., the consensus control law [157]) the inequalities can be solved easily.

Similarly if we can find the value of P , a certificate whether or not adding edges is useful can be easily

obtained. For instance, the following sufficient condition allows one, in some cases, to determine P

and hence solve the above problem in a tractable fashion.
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Proposition 2.10 Let either

• g be a clique graph and Q be structure compatible, or

• g be a complete graph,

then V (g) ≥ V (g′) if there exists a matrix F ∈ F(g′) such that the following Linear Matrix Inequality

(LMI) is satisfied







−P (g) +Q(g′)
[

(A+BF )T FT
]




(A+BF )

F



 −




P (g)−1 0

0 I











< 0,

where P (g) is the positive semi-definite solution of the Riccati equation (2.12).

Proof Let F ∈ F(g′) satisfy the given LMI. Then, using Schur complement, it also satisfies

P (g)− (A+BF )TP (g)(A+BF ) > Q(g′) + FTF.

Pre-multiplying both sides by xT (k) and post-multiplying by x(k) yields

xT (k)
(
P (g)− (A+BF )TP (g)(A+BF )

)
x(k) > xT (k)

(
Q+ FTF

)
x(k)

⇒ xT (k)P (g)x(k)− xT (k + 1)P (g)x(k + 1) > xT (k)
(
Q+ FTF

)
x(k).

Adding these inequalities for k = 0, 1, · · · yields

xT (0)P (g)x(0) > Jg′ (Q(g′), u) ,

where u = Fx. Now if g satisfies either of the two assumptions of the theorem statement, the left

hand side is simply V (g). The right hand side, by definition, satisfies

V (g′) ≤ Jg′ (Q(g′), u) .

Combining these facts yields V (g) ≥ V (g′).

2.8 Examples

The results of the previous section allow us to give a complete picture for the case when N = 3. We

consider the case of mapping Q to be edge-separable with no interference with Q0 as the identity

matrix. It is easy to see that Q is non-decreasing as well as structure-compatible. The results

are summarized in Figure 2.6 in the form of a lattice corresponding to the partial order ‘�’. The
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continuous lines indicate that for the map Q mentioned below, the bottom graph has value less than

the top graph. The dashed lines indicate transition with possible ‘critical prices’ at which adding

an edge becomes disadvantageous.

Figure 2.6: Comparison of the value of the graphs for the partially ordered set of all graphs on 3
vertices.

Using Proposition 2.7, we can immediately see that

V (g0) ≤ V (g) ∀g

V (g4) ≥ V (g2), V (g3)

V (g5) ≥ V (g1), V (g3)

V (g6) ≥ V (g1), V (g2)

V (gf ) ≥ V (g0), V (g1), V (g2), V (g3).

However, we cannot a priori compare V (gf ) with V (g4), V (g5) or V (g6). We use a gradient descent

algorithm introduced in [82] to construct the optimal constrained controller for the infinite-horizon

cost and then use Proposition 2.9 to compute the critical prices at which adding edges to obtain

the fully connected graph becomes detrimental. The gradient descent algorithm is also described in

Appendix 1 of the chapter.
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We consider all subsystems to have a single state and the matrix values

A =








1 0 0

0 −2 0

0 0 3








B = I

P12 =








10 20 0

20 50 0

0 0 0








P23 =








0 0 0

0 10 20

0 20 50







.

We can obtain an approximate value for V (g5) and find that

(F (g5)− P (g5))
T

(F (g5)− P (g5)) =








0.0591 0 0

0 0 0

0 0 0.0591







,

after the algorithm in [82] converges. Thus, choosing

P13 =








0.04 0 0.01

0 0 0

0.01 0 0.04







≤ (F (g5)− P (g5))

T
(F (g5)− P (g5))

always yields V (gf ) < V (g5) while

P13 = 2×








0.04 0 0.01

0 0 0

0.01 0 0.04







≤ (F (g5)− P (g5))

T
(F (g5)− P (g5))

yields V (gf ) > V (g5).

2.9 Discussion

We began our discussion of distributed control with the problem of synthesis of a LQR optimal

control law that is constrained to lie in a particular vector space. We saw that the problem was hard

to solve in general. We presented a computationally expensive method for the optimal finite time

horizon control and a computationally easier method to generate a sub-optimal control law. We

presented examples which illustrated that the loss in performance due to the sub-optimal algorithm

is not huge and that communication in general helps to bring down the cost. The methods involve

the solution of linear equations and are thus free from convergence problems.
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Although this work is a significant advance in the field in many respects, more work is needed

to fully understand and solve the problem of optimal control of a network of dynamic agents. The

optimal control law we have presented serves as a good benchmark to evaluate any other control

strategy; however, it is computationally very expensive and good approximations that are more

tractable will be useful in many situations. We have presented one such sub-optimal algorithm.

From numerical examples it seems that the loss in performance is not huge. However, we have not

been able to obtain an analytic expression for the loss in performance or a bound on it. Similarly,

an analytic method for obtaining a relation between topology and optimal cost is needed. Our

experience has been that not all topologies with same number of edges are equally good. The best

topologies given the same number of edges tend to be the ones which are of the leader-follower

type, in which there is one node in contact with all others. More work is needed to obtain analytic

statements along these lines. Finally, work characterizing the effect of topology on the cost will also

help in understanding the robustness of the algorithms to knowledge of the topology. Currently, we

assume that either the control law is calculated off-line by a central processor, or each node knows

the topology and calculates the control law for the entire system. To make this implementation

more scalable, it will be useful to understand the effects of topology changes far from the individual

agent, or equivalently, to imperfect knowledge of the topology far away.

In keeping with our central thesis of designing information flow, in this chapter, we also presented

a model to evaluate the effect of topology on distributed control. The results that we presented

are only a first attempt at quantifying the influence of topology on distributed control problems.

The problem is hard partly because the underlying problem of obtaining the optimal constrained

controller itself is largely unsolved. However, we have still been able to give some rigorous statements

regarding optimal topologies and comparing some topologies to another. The results show that

under some assumptions, any communication cost (no matter how small) can make adding edges

detrimental in terms of performance. Thus, cooperation may not always be useful.

Clearly, there is much left to do in this promising direction. It would be nice to compare the values

of two arbitrary graphs, not necessarily related by the partial order ‘�’. Similarly, the conditions

in Proposition 2.9 are currently tractable only if either the matrix F or P are given. Whether the

conditions can be made tractable for arbitrary graphs is still an open problem. Another important

long-term direction that emanates from this work is seeing if the synthesis process of the controller

can be decentralized. Currently, calculation of the value of a graph (hence the determination whether

or not a topology is to be implemented) is done by a central unit. A truly decentralized framework

should have a mechanism in which the agents decide on the local links that wish to maintain based

on some combination of local and global utility functions [148, 179]. This is similar, in spirit, to

obtaining the optimal controller as a Nash equilibrium of a game. However, much more work is

needed in this direction.
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Appendix A: Optimal Constrained Control Law Synthesis for

the Infinite Horizon Case

In this appendix, we provide an alternative gradient descent based algorithm for the synthesis of

a constrained controller that is suitable when the quadratic cost function is infinite horizon. Consider

once again the system

x(k + 1) = Ax(k) +Bu(k) (2.19)

u(k) = Fx(k),

where the initial condition x(0) is Gaussian with zero-mean and covariance R(0). We wish to

minimize the cost function

J = E

[
∞∑

k=0

{xT (k)Qx(k) + uT (k)Ru(k)}
]

, (2.20)

where Q > 0 and R ≥ 0. In addition, we wish to constrain the control law to lie within a space

spanned by the basis vectors {Θj , j = 1, 2, . . . , p}. Thus, the problem is to find a control law of the

form

F =

p
∑

j=1

αjΘj , (2.21)

where αj ’s are scalars, that minimizes the above cost function. Assume that a F of the form (2.21)

exists, such that A+BF is stable. Then, for that F , we obtain from (2.20)

J = E

[

xT (0)

∞∑

i=0

((A+BF )T )i(Q+ FTRF )(A+BF )ix(0)

]

= E
[
xT (0)Px(0)

]
,

where P is defined by

P =
∞∑

i=0

((A+BF )T )i(Q+ FTRF )(A+BF )i.

It is apparent from the definition of P , that it satisfies the Lyapunov equation

P = (Q+ F TRF ) + (A+BF )TP (A+BF ). (2.22)

Denote the covariance of the state at time step k by R(k). Thus, the cost is given by J =

trace(PR(0)). We wish to find the coefficients α1, α2, . . . , αp such that a control law of the form (2.21)

minimizes the cost J = trace(PR(0)) where P satisfies (2.22) and A+BF is stable. By the properties

of the Lyapunov equation, if (A+BF ) is stable, P is positive-definite.
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The Case where Noise is Present

Suppose that instead of (2.19), the system evolves as

x(k + 1) = Ax(k) +Bu(k) + w(k)

u(k) = Fx(k),

where the additional term w(k) is stationary white Gaussian noise with zero mean and covariance

Rw. Since the random noise goes on till infinity, the cost function considered in equation (2.20)

will diverge. Thus, we need to reconsider what we mean by optimizing the cost function here.

Following [118], we consider the cost function

J = lim
k→∞

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
.

Since (A + BF ) is stable, J does not depend on the initial condition x(0). Then, by a derivation

similar to the one given above, we can write J = trace (PRw), where P satisfies (2.22). So we see

that this problem reduces to the same formulation as above, if we redefine R(0) to be Rw. From now

on, we will study only the original formulation, assuming that such re-definitions have been carried

out.

Algorithm 1

Differentiating (2.22) with respect to αi, we obtain

∂P

∂αi
= (A+BF )T

∂P

∂αi
(A+BF ) + ΦTi [RF +BTP (A+BF )] + [(A+BF )TPB + FTR]Φi, (2.23)

for all i = 1, 2, . . . , p. We wish to find minima of trace(PR(0)). For a critical point,

∂trace(PR(0))

∂αi
= 0 ⇒ trace

(
∂P

∂αi
R(0)

)

= 0, ∀i = 1, 2, . . . , p.

If we define Σ = ΦTi [RF +BTP (A+BF )], we can write

trace

(
∂P

∂αi
R(k)

)

= trace

(

(A+BF )T
∂P

∂αi
(A+BF )R(k)

)

+ trace
(
ΣR(k) +R(k)ΣT

)

= trace

(
∂P

∂αi
(A+BF )R(k)(A+BF )T

)

+ trace
(
ΣR(k) +R(k)ΣT

)

= trace

(
∂P

∂αi
R(k + 1)

)

+ trace
(
ΣR(k) +R(k)ΣT

)
.
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Using the above relation repeatedly, we can write

trace

(
∂P

∂αi
R(0)

)

= trace

(

Σ
(
R(0) + · · ·+R(k)) + ΣT (R(0) + · · ·+R(k)

)
+
∂P

∂αi
R(k + 1)

)

.

Since (A+BF ) is stable, R(k) is approximately a zero matrix for sufficiently large values of k. Thus,

if we define X = R0 +R1 +R2 + . . . , so that X satisfies the Lyapunov equation

X = R0 + (A+BF )X(A+BF )T , (2.24)

we can write the necessary condition for a critical point as

trace
(

ΦTi [BTP (A+BF ) +RF ]X + [(A+BF )TPB + FTR]ΦiX
)

= 0,∀i = 1, . . . , p, (2.25)

where F satisfies (2.21), P satisfies (2.22) and X satisfies (2.24). Note that since we have only p

free variables, we would not be able to satisfy more stringent conditions like

(A+BF )TPB + FTR = 0,

or even the somewhat relaxed condition

ΦTi ((A+BF )TPB + FTR) = 0,∀i = 1, 2, . . . , p.

Also, note that if Φi denotes a matrix with all elements zero except the (ji, ki)th element being

unity; the necessary condition given in (2.25) reduces to

[(
BTP (A+BF ) +RF

)
X
]

ji,ki
= 0,∀i = 1, 2, . . . , p,

where [A]ij denotes the (i, j)-th element of the matrix A. Thus, in the particular case when F has

no restrictions on its structure we get back the usual condition BTP (A+BF ) +RF = 0.

One method to obtain the control law is to solve equation (2.25) iteratively. Alternatively, we

can also use a gradient search algorithm for the minimization problem. The algorithm is given by

1. Initialize:

(a) Start from an initial guess of the set {αi}.

(b) Solve equation (2.22) for P using this value of the control law.

(c) Check if P is positive semi-definite. If yes, proceed to the update step; else repeat

initialization with another guess.

2. Update:
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(a) Solve equation (2.23) for ∂P
∂αi

using the set {αi}.

(b) Calculate the cost trace(PR(0)) and the gradient of the cost ∂P
∂αi

R(0).

(c) Update the guess by changing the current guess {αi} by some constant amount δ times

the gradient of the cost function.

(d) Resolve equation (2.22) for P using this value of the control law.

(e) i. Check if P is positive semi-definite.

ii. Check if the cost is reduced by this value of P .

iii. If both i and ii are true, proceed to the next step. Otherwise, reduce δ by a half and

again try to update. If stuck on this step for a long time, declare minima reached

and terminate.

(f) Adopt the updated value of guess as the current guess and go through the update step

again.

As discussed, e.g., in [199], generating suitable initial guesses for the general case is a non-trivial

task. However, because of Proposition 2.1, for our application there exists a particularly simple way

to generate the initial guess. We find the control law required by each vehicle to stabilize itself while

using only its own information. The initial guess can always be the block diagonal matrix formed by

stacking these laws along the diagonal of a matrix. This will always be a control law which stabilizes

the formation, yet satisfies the topological constraints.

Algorithm 2

We present an alternate iterative algorithm in this sub-section that sheds additional light on the

cost function. If we denote

Y = R1/2(0)PR1/2(0), (2.26)

where R1/2(0) denotes the positive definite square-root of the positive definite matrix R(0), and

scale the matrices as4

A← R−1/2(0)AR1/2(0) B ← R−1/2(0)B

F ← FR1/2(0) Q← R1/2(0)QR1/2(0),

then our problem is to minimize trace(Y ) subject to

Y = (A+BF )TY (A+BF ) + (F TRF +Q), (2.27)

4Note that since we have scaled F , the new basis vectors Φi will themselves be scaled as Φi ← ΦiR
1/2(0).
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and A+BF being stable. Completing the squares in (2.27) and denoting

F =
∑

i

αiΦi, S = R+BTY B, Fc = S−1BTY A,

we obtain the equation for the cost in the form

trace(Y ) = trace

(

(
∑

i

αiΦi + Fc)
TS(

∑

i

αiΦi + Fc) +ATY A+Q−ATY TBS−1BTY A

)

.

(2.28)

Note that Fc is the centralized control law, in the sense that this is the optimal control law when

there is no restriction on the form of F . Thus, we see from (2.28) that the cost function consists of

two parts. There is a cost incurred even when F has no constraints on its structure. It is given by

the second term on the right hand side of (2.28). When we impose constraints on the structure of

F , we incur an additional cost trace(Ydc) given by

trace(Ydc) = trace

(

(
∑

i

αiΦi + Fc)
TS(

∑

i

αiΦi + Fc)

)

. (2.29)

We rewrite (2.29) as

trace(Ydc) =
∑

i

αi
∑

j

αjtrace(Φ
T
i SΦj) + 2

∑

i

αitrace(Φ
T
i SFc) + trace(F Tc SFc)

=
[

α 1
]

M
[

α 1
]T

,

where

α =
[

α1 α2 . . . αp

]

M =




Rd D

DT trace(F Tc SFc)





Rd =











trace(ΦT1 SΦ1) trace(ΦT1 SΦ2) . . . trace(ΦT1 SΦN )

trace(ΦT2 SΦ1)
. . .

...
...

trace(ΦTNSΦ1) . . . . . . trace(ΦTNSΦN )











D =
[

trace(ΦT1 SFc) trace(ΦT2 SFc) . . . trace(ΦTNSFc)
]T

.

On completion of squares, we obtain that the optimal value of the vector α is given by

α = −DTR−1
d . (2.30)
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Thus, the iterative algorithm is given as follows.

1. Start from an initial guess F0. Use this as the initial guess and solve for P by using (2.22).

Calculate the initial guess for Y from this P by using (2.26) and denote it by Y0.

2. Perform the following iteration

(a) Solve for Yt+1 given the values Yt and Ft, from the equation

Yt+1 = (A+BFt)
TYt(A+BFt) + (FTt RFt +Q).

(b) From Yt+1 solve for St+1 and (SFc)t+1 by using

St+1 = R+BTYt+1B

(SFc)t+1 = BTYt+1A.

(c) Calculate Rd, D and the estimate of the control law as

Ft+1 =
∑

j

αj,t+1Φj

αt+1 =
[

α1,t+1 α2,t+1 . . . αN,t+1

]

αt+1 = −DTR−1
d .

Note that the iteration in the above algorithm should be performed only as long as the cost is

decreasing. Although we have no formal proof for it, numerical evidence suggests that the algorithm

usually converges.

The Completely Decentralized Case

We consider the case where no agent has access to measurements of states of other agents. This

case is interesting since we can analytically calculate the optimal control law and evaluate the

cost. Moreover, a lower bound for the cost for any topology is given by the cost achievable for the

completely decentralized case. For simplicity, we consider the case for the agent dynamics being a

single integrator. We denote the (i, j)-th element of matrix P by [P ]i,j . If we let Φi be the matrix

with zeros everywhere except the (i, i)-th element, we know that the optimal control law is

F =
∑

i

αiΦi,

such that F satisfies
[(
BTP (A+BF ) +RF

)
X
]

i,i
= 0,∀i.
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The matrix X satisfies the Lyapunov equation

X = (I + hF )X(I + hF )T +R(0).

If all the initial states are independent of each other and randomly chosen, R(0) is a diagonal matrix

with all diagonal entries positive. This, in turn, means that X is a diagonal matrix with

[X]i,i =
[R(0)]i,i

1− (1 + h[F ]i,i)2
.

The condition for optimal F reduces to

(

[hP (I + hF )]i,i + [RF ]i,i

)

Xi,i = 0

⇒ h[P ]i,i + h2[P ]i,i[F ]i,i + [R]i,i[F ]i,i = 0.

Since

[P ]i,i =

∞∑

k=0

(1 + h[F ]i,i)
2k[FTRF +Q]i,i =

([F ]i,i)
2[R]i,i + [Q]i,i

1− (1 + h[F ]i,i)2
,

the optimal control law and the resulting cost can be readily calculated. Thus, if we do not allow the

vehicles to talk to each other, the off-diagonal terms of the cost matrices do not matter. Moreover,

in this case, the cost simply turns out to be the sums of the costs incurred in controlling individual

vehicles using their own state measurements with the cost function involving only the diagonal terms

of the cost function matrices. Note that this analysis holds for the cases of all vehicles not being the

same and also for general plant dynamics where we talk about block diagonal matrices. However, it

breaks down if, e.g., the initial conditions are not all independent.

As a simple example, we consider a formation of MVWT vehicles, as described in the Example

2 of Section 2.5. We consider 8 vehicles starting from an octagonal formation and consider the

topologies possible as the communication radius of each vehicle is increased. The initial covariance

matrix R0 is the identity matrix. The cost function matrix R is also identity while the matrix Q

is randomly generated. A typical curve for the varying of the costs as the communication radius

is increased is given in Figure 2.7. Once again we see that as more and more communication is

allowed, the cost goes down. However, the marginal utility of each communication link decreases as

more and more links are added. This may also be due to the fact that the edges added later bring

the data of far-away vehicles which is not so important for stabilization.

To show the effect of the topology, we consider an example using 5 agents with single integrator
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Figure 2.7: As the communication radius is increased, the cost goes down: the infinite horizon case.

dynamics described in Example 1 of Section 2.5. We use the cost function matrix Q as

Q =














4 −1 −1 −1 −1

−1 4 −1 −1 −1

−1 −1 4 −1 −1

−1 −1 −1 4 −1

−1 −1 −1 −1 4














,

while R is taken to be identity matrix. R0 is taken to be 10 times the identity matrix. We calculate

the costs for all the graphs possible. Figure 2.8 shows the costs plotted as a function of the number

of edges. As a general trend, we can see that there is a small variation in the cost for topologies with

the same number of edges. The best topologies within the same equivalent class tended to be the

ones which were of the leader-follower type, in which there was one node in contact with all others.
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Figure 2.8: Cost achieved with all the graphs on 5 nodes. Not all topologies with same number of
edges are equally good.

Appendix B: Distributed Motion Control for Estimation

In this appendix, we present a distributed motion control algorithm for optimal sensing by

multiple mobile agents. Consider m targets doing a random walk in a plane. For simplicity, we

assume that the targets are being modeled by a constant position model. Thus, the motion of the

i-th target evolves according to

xi(k + 1) = xi(k) + wi(k), (2.31)

where xi(k) ∈ R2 is the state of the i-th target at time k consisting of the Cartesian x and y

positions. wi(k) represents the process noise acting on the i-th target assumed zero-mean, Gaussian

and white with covariance matrix Rw,i. Further, the process noises of different targets are assumed

independent of each other.

The targets are tracked by N sensors that are modeled using a sonar sensor model [162, 189]. In

such a model, each target j results in N measurements of the form

yij(k) = xj(k) + T (θij)vij(k), i = 1, 2, · · · , N (2.32)

where T (θij) is the rotation matrix that transforms the noise from the local sensor coordinates to

the global coordinates. The noise vj(k) is again assumed zero-mean, Gaussian and white. The noises

of various sensors and targets are assumed mutually independent. The covariance matrix Rij(k) of
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the noise vij(k) is assumed to be a diagonal matrix of the form

Rij(k) =





(
σrange
ij

)2
0

0
(

σbearing
ij

)2



 .

(
σrange
ij

)2
is the range noise variance and is a function f(rij) of the distance from the target j to the

sensor i. A common model of f(rij) is as a quadratic dependence on range, with the minimum value

being achieved at a particular distance from the target, namely the “sweet spot” of the sensor. The

bearing noise variance
(

σbearing
ij

)2

is often modeled as a fixed multiple α of the range noise variance.

To process the observations and generate an estimate, a Kalman filter (KF) is used. However, a

centralized KF for all the observations would be computationally very expensive. Instead, every node

has a local Kalman filter that produces an estimate based only on local observations. Then, these

estimates are exchanged and combined to yield a global estimate. The estimates are combined by

assuming that there is no cross-covariance between local estimates5 . Thus, we use the relations [11]

P−1
globalx̂global =

N∑

i=1

P−1
localx̂local, P−1

global =

N∑

i=1

P−1
local.

Pglobal refers to the covariance of the error in the global estimate and hence is an indicator of

the quality of the estimate. Since the sensor noise covariance matrix is a function of the distance

between the sensor and the target, the quality of the estimate depends on the distances between

the various sensors and the targets. Thus, by varying the positions of the sensors, we can vary the

error covariance. The problem we pose is how to do so in a distributed way. As a cost function, we

seek to minimize the determinant of the error covariance matrix Pglobal. This is referred to in the

literature [141] as the D-optimal design.

Case I : Single Target

To begin with, assume that only a single target is present and every sensor is observing it. At every

time step k, every sensor takes a measurement, calculates and transmits the local estimate and fuses

information from all the sensors to obtain a global estimate. The task that remains for each sensor is

to identify its optimal location for the next time step. As is discussed in [141], obtaining a policy in

closed form (e.g. using dynamic programming) that minimizes the cost function over a long term is

very difficult. Moreover, in many practical cases, the number of active sensors may keep on changing,

making the problem even harder. Thus, we use a greedy gradient descent algorithm that defines the

optimal control action (i.e., direction of motion) as one that will minimize the determinant of Pglobal

5Note that the assumption of no cross-covariance between the local estimates is not strictly true and hence the
global estimate is sub-optimal. However, this algorithm is much simpler than its alternatives [10, 83] and seems not
to incur huge performance penalties.



60

at the next time step. The algorithm proceeds as follows. Each sensor node, at every time step,

1. calculates the local estimate error covariance for all other nodes at the next time step by

assuming that the nodes remain at their current position;

2. for each control action that it can take, calculates its own error covariance at the next time

step and generates the corresponding global error covariance;

3. chooses the action that minimizes the cost (the determinant of Pglobal) at the next time step.

We assume that the set of possible control actions is finite, thus the gradient descent reduces to a

discrete gradient search.

The algorithm is inherently distributed. Note that if a node transmits its local estimate to other

sensors, it also implicitly transmits its current position. Also, if a node stops functioning, or a new

node enters the field, the other agents can easily adapt to it.

Convergence Issues

Since the sensors use a distributed version of the descent algorithm, under the usual constraints of

observability, the error estimates will reach a steady state and the sensor positions will be such that

the cost function reaches a minimum (provided the step size α is small enough [16]). However, the

minimum might only be local and not global. To take a look at the nature of minima, we need to

take a closer look at the nature of the cost function. We look at a special case in which the local error

covariance matrices are assumed to change only with position of the sensors and not with time. This

can be the case, e.g., when the system has reached a steady state. We can relate changes in error

covariance with changes in measurement noise covariance (hence the sensor positions) for examining

the qualitative behavior of the cost function. Note that there are an infinite number of minima that

are equivalent in the sense that we can generate the positions of sensor in one configuration from

another configuration by simply rotating all the sensors about an axis perpendicular to the plane in

which all the sensors lie. However, all these minima have equal value of the cost function and we

can consider any particular one of them. We choose the one that has the sensor 1 on the x-axis.

The other sensors i = 2, · · · , N are assumed to be at the position (ri cos(θi), ri sin(θi)). The cost

function we are trying to minimize is

det (Pglobal) = det

(
∑

i

P−1
i,local

)−1

.

This is equivalent to maximizing the cost det
(
∑

i P
−1
i,local

)

. For the single target case, the function

fij(.) defined in respect to the measurement noise covariance does not depend on the argument j
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and can be denoted by fi(.). For the i-th sensor, P−1
i,local is given by




αfi sin

2(θi) + fi cos
2(θi) (1− α)fi cos(θi) sin(θi)

(1− α)fi cos(θi) sin(θi) fi sin
2(θi) + αfi cos

2(θi)



 .

Thus, the cost function to be maximized has the form AD −B2, where

A =

[
1

f1
+

1

σ

∑
[
σ

fi
+

(1− σ) sin2(θi)

fi

]]

D =

[
1

f1
+

1

σ

∑
[
σ

fi
+

(1− σ) cos2(θi)

fi

]]

B =
(1− σ)2

σ2

[
∑ cos(θi) sin(θi)

fi

]2

where the summation index i runs from 2 through N . This can be simplified to the cost function

expression

1

σ

[
N∑

i=1

1

fi

]2

+
(1− σ)2

σ2f1

[
N∑

i=2

sin2(θi)

fi

]

+
(1− σ)2

σ2




∑

2≤i<j≤N

sin2(θi − θj)
fifj



 .

The following conclusions can readily be drawn from this form of the expression.

1. There are in general many local maxima.

2. Since all the terms are positive and fi appear only in the denominator, the maxima are achieved

when all the fi are minimized. By assumption, the range noise covariance depends only on

the distance from the sensor to the target. Thus, all the sensors would end up at particular

distances from the target irrespective of the angles θi.

3. For the particular case of only two sensors, the angle θi would either be π/2 or 3π/2 irrespective

of the minimum values of f1 and f2. This agrees with our intuition of having the two sensors

pointing in orthogonal directions.

4. For more than 2 sensors, if we assume that the minimum value of fi are all the same, the

different local maxima are found by solving for the angles θi, i = 2, · · · , N that maximize the

expression
N∑

i=2

sin2(θi) +
∑

2≤i<j≤N

sin2(θi − θj).

Further, in such a case all local maxima have the same value.

Thus, at least in this simplified case, we need not worry about whether we are reaching the local

minima or the global minima of the original cost function. Simulation examples seem to suggest

that even in more general cases, the globally optimal performance is usually obtained.
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Case II : Multiple Targets

The algorithm that we have proposed above can be readily extended to the case where there are

multiple targets to be tracked. This situation arises frequently in surveillance, computer vision,

signal processing etc. where a number of targets appear and disappear from the field. The sensors

need to cooperatively obtain the best possible estimate of all these targets. The cost function to

be minimized in this case can be a weighted sum of the determinants of error covariance matrices

corresponding to the different targets. We assume that the sensors can identify the target from

which the measurements originated. This allows us to bypass the problem of data association [33]

and permits us to concentrate on the distributed active sensing based motion planning aspects.

If the sensors can take measurements related to all the targets at the same time, this case is exactly

the same as the case considered above. We simply redefine the new target state to be a stacked

vector of all the individual target states. The problem is much more interesting (and realistic) if the

sensor can observe only one target at a time, with access to a low resolution observation (e.g. from

overhead UAVs [193]) to indicate the presence of targets in the region. In this case, it is clear that

assignment of sensors to targets that they will observe as sub-teams at each time step also affects

the cost.

To solve this problem, we note that the optimal solution now involves optimization of the cost

function over not only the sensor positions but also the assignments of sensors to targets. However,

the only effect of adding new assignment variables to the optimization problem is to make the set

of possible control actions larger. In other words, we can extend our algorithm in a simple way. In

the optimization step, every sensor assumes that the positions as well as the target assignments of

other nodes remain the same as the previous time step and optimizes its own position and target

assignment to minimize the cost function. The algorithm that each sensor follows can be represented

as below. At every time step k, every sensor does the following steps.

1. Local Observation:

(a) Take local measurement.

(b) Update local estimate x̂local;

2. Sensor Fusion:

(a) Transmit local estimate x̂local and error covariance matrix Plocal and the sensor noise

covariance matrix Rjk to other sensors.

(b) Receive information from other sensors.

(c) Fuse all local estimates to get global estimate x̂global.

3. Optimization of target assignment and sensor position:



63

(a) Assume other sensors do not move.

(b) Assume other sensors do not change the target that they observe.

(c) Propagate Plocal of other sensors by one time step.

(d) For all possible own target assignments and for all possible own allowable motion actions

i. Propagate own Plocal.

ii. Fuse with propagated Plocal of other sensors.

iii. Obtain cost function estimate.

(e) Identify cost-minimizing position and target assignment.

4. Update position and assignment:

(a) Update target assignment for next time step.

(b) Update position.

Examples

Let us illustrate the simple algorithm we have proposed with the help of some examples.

Single Target Tracking Problem

The first example is a comparison of a fully centralized algorithm in which the optimization is done

by a central node with the decentralized method proposed in this paper. We seek to show that

the performance loss from eliminating a central processing station is not substantial and well-worth

the huge computational savings. Further, we contrast the proposed method against the algorithm

proposed by Mukai and Ishikawa in [146] (referred to from now on as the MI algorithm). Work

done in [146] implements the inverse covariance form of the Kalman filter to centrally fuse all of the

measurement information from the individual sensor nodes, and uses the same cost function as this

work. However, it requires communication between the sensors in the optimization step as well.

Our test case is constructed as follows. A single target must be localized and tracked by three

sensing agents, where the target is subject to random walk in a plane, described by equation (2.31)

where the covariance matrix of the noise w(k) is given by

Q =




0.01 0

0 0.01





The j-th sensor observes the target through an equation of the form (2.32) with the j-th sensor’s
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measurement noise covariance matrix Rj(k) being

Rj(k) =




f 0

0 γf



 ,

where γ = 5 and the dependence on the range r of the quadratic function f for this example is

f(r) = 0.0008r2 − 0.0250r + 0.3481.

Comparing the MI algorithm with our decentralized algorithm, we see in Figure 2.9 that, in fact,

the latter method reduces the cost by approximately 34% more than the former at steady state. This

is understandable since the MI algorithm does not take into account the presence of other sensors

at all while trying to optimize the position of higher-ranked sensors. Thus, the three sensors deviate

from the optimal position of being stationed such that any two sensors subtend an angle of 120◦

at the target. The second sensor optimizes its position as if there are only two sensors and tries

to move such that its viewing direction is orthogonal to the direction of the first sensor. The third

sensor then tries to position itself to minimize the cost function given that the first two sensors have

already positioned themselves. In contrast, our algorithm leads to every sensor taking into account

the presence of other sensors while optimizing its position and thus leads to nearly optimal sensor

positions.

Figure 2.9: Improvement in performance with our algorithm compared to the one proposed in [146].

Moreover, even though our decentralized algorithm is sub-optimal, we see (refer to Figure 2.10)

that in comparison to the completely centralized exhaustive search method over all possible control

actions for all sensors, the performance loss is very little. In fact, at steady state, the loss is less than

2%. Thus, we see that the proposed decentralized algorithm offers not only the benefit of distributed-
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ness, but also that of performance in the context of cost minimization as well as computation time.

Figure 2.10: Performance loss if the proposed decentralized method instead of the exhaustive search
optimization.

RoboFlag Patrolling Problem

The second example illustrates the use of our algorithms in a distributed surveillance type application

and demonstrates the assignment methods of matching sensors with targets. We are inspired by the

patrolling drill in RoboFlag. (For a detailed description of RoboFlag, see [43]).

The initial setup is illustrated in Figure 2.11(a). We assume sensors can observe only one target

at a time. Multiple such sensors (depicted by circles) are initially assigned to a target (depicted by

square), corresponding to vehicles patrolling a defense zone. Thus, initially, the sensors maneuver

to maintain optimal observations of the target. Another target (e.g. an opponent vehicle) enters the

playing field (Figure 2.11(b)), and is observed by a UAV or an arbiter [43]. A sub-team of sensors is

automatically formed to track this second target while the remaining sensors maneuver themselves

to optimally cover the first target. When the second target disappears, all the sensors return to the

first target, as shown in Figure 2.11(c). Thus, sub-teams rejoin and all sensors re-position themselves

for best measurements.

Thus, we observe several interesting behaviors exhibited by the system, some surprisingly com-

plex given the simplicity of the algorithm. Firstly, we find that the division of the sensing task

over multiple targets is a consequence of the distributed nature of our algorithm, rather than any

prescribed method or heuristic approach. The sensors are able to optimally split into sub-teams

without needing to explicitly address the issues of consensus, communication (except during the
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(a) (b) (c)

Figure 2.11: Sensor maneuvers in the roboflag patrolling problem considered in the text. The dotted
lines represent the tracks made by the sensors.

data exchange step), and coordination of motion for formation control.

Additionally, each member of a sensor sub-team maneuvers optimally with respect to other

members, modifying the formation dynamically with the addition/removal of sensing agents. For

example, as the sub-team returns to re-join the original team of sensors, we witness the adjustment

of the other sensors’ positions to accommodate the reentering sub-team members. Again, what

makes this behavior interesting is that it is simply due to the decentralized optimization of the cost

function done in our algorithm. In other words, a priori designation of formations types, division

of sensing tasks, and optimal estimation trajectories is not an input to the decentralized algorithm.

Nevertheless, the behaviors and benefits of such a designation emerge.
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Chapter 3

Countering Communication

Channel Effects in Estimation and

Control

We now proceed to model and study the second main source of complication in the design of net-

worked control systems: presence of imperfect communication channels. Since the effects introduced

by communication channels are not well-understood even for systems that require estimation and

control of only one dynamic process (single agent systems), we will consider such systems in this

chapter. We will take an information transmission oriented view (i.e., ask the question ‘What should

an agent communicate?’) that will allow us to concentrate on strategies that lead to optimal per-

formance in spite of the presence of imperfect communication channels. The work presented in this

chapter has partly appeared in [41, 78, 79, 80, 84, 88, 89].

This chapter is organized as follows. After a summary of the relevant literature, we begin in

Section 3.2 by briefly discussing the packet erasure channel model that we use in the dissertation.

In Section 3.3.2, we prove a separation principle between the control design and the optimal encoder

/ decoder. We then provide the optimal encoder / decoder design for the case of a single sensor

transmitting information over a single channel in Section 3.4 and analyze its properties. We move

on to the case of a single sensor transmitting data over an arbitrary network in Section 3.5. In

Section 3.6, we consider the case of multiple sensors, only one of which transmits data over a

communication link. We provide the optimal information transmission algorithm and show how

the same algorithm can be used in some other situations. In the first appendix, we consider the

LQ performance of a system with a digital memoryless channel inside the loop. In Appendix B,

we present results about a jump linear Markov system in which the controller does not know the

Markov system.
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Contributions

The chief contributions of the work presented in this chapter are now summarized.

1. We pose and solve the problem of LQG control across communication links as an information

transmission problem. We show that this viewpoint allows us to achieve the optimal LQG

performance when the channel is dropping packets stochastically. We also prove a separation

principle in the packet loss setting that allows us to solve the LQG problem using a state

feedback controller in conjunction with an encoder and a decoder.

2. We provide optimal yet simple and recursive (Markovian) designs for the optimal encoder

and decoder for many cases: a single sensor transmitting over a single link, a single sensor

transmitting over an arbitrary network, multiple sensors transmitting over a single link and

so on. Apart from yielding optimal performance for arbitrary sequences of packet drops, the

algorithms have many other useful properties as well, such as the ability to handle delays,

packet reordering and so on.

3. We analyze the stability and performance of the optimal algorithm for all these cases. As an

instance, for a single sensor transmitting over a network, we show that the crucial property

of the network that is important for stability is the max-cut probability. The performance

analysis provides a lower bound for the performance of any causal estimation and control

algorithm.

4. We analyze the LQ performance of a scalar system in the presence of a digital memoryless

channel for many different types of quantizers. We also provide entropy based general lower

bounds for the performance achievable by any quantizer.

5. We provide the analysis and synthesis results for a jump linear Markov system in which the

controller is estimating the Markov state of the system as well.

3.1 Introduction

Traditional control theory usually assumes that the various components of the system (sensors,

controllers and actuators) can exchange signals reliably and with an arbitrarily high precision. His-

torically this assumption has made sense since data was typically transmitted over small geographical

distances using dedicated communication links. Thus, effects introduced by the communication me-

dia were minimal and could be ignored. In networked multi-agent systems, components are typically

situated far away from each other and may communicate over wireless links or communication net-

works that are also used for transmitting other unrelated data. Thus, the effect of such imperfect

communication links needs to be considered and accounted for. Communication links introduce
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many phenomena that are potentially detrimental to the estimation / control performance, such as

quantization error, random delays, data corruption and packet drops to name a few. In extreme

cases, poor network performance can even destabilize a nominally stable control loop. Since such

effects are not well-understood even for systems that comprise of a single dynamical process that

needs to be estimated or controlled, we begin our investigations by focusing on such systems in this

chapter.

We begin by considering a dynamic process that is being observed by a single sensor. The sensor

communicates to a controller over a communication link. Recently, much attention has been directed

towards such systems (see, e.g., [3, 119] and the references therein). As an example, quantization

effects have been analyzed with increasing regularity since the seminal paper of Delchamps [46].

The problem of stabilization with finite communication bandwidth was considered by Wong and

Brockett [204, 205]. Baillieul [6] also reported a tight bound on the data rate requirement for

stabilizing a scalar system. Nair et al. [149, 150] considered the stabilization of stochastic linear

systems and Markov jump linear systems with finite data rates. Tatikonda [185] studied stabilization

of finite-dimensional discrete-time noiseless linear processes and also presented results about the

optimal LQG control of linear systems across noisy feedback links (see also [23]). Elia and Mitter [54]

considered the question of the optimal quantizer for stabilization. Various quantization and coding

schemes for stabilization have been proposed in the literature, (see, e.g., [25, 57, 98, 104, 129, 160]).

Similarly, the effects of delayed packet delivery have also been considered in many works, such as

Nilsson [152], Blair and Sworder [19], Luck and Ray [135], Gupta et al. [87], Tsai and Ray [188], and

Zhang et al. [208] to name a few, using various models for the network delay.

In this dissertation, we will mostly be interested in systems communicating over links that can

be modeled as dropping packets randomly. The nominal system is shown in Figure 3.1, where the

channels randomly drop packets being communicated from the plant to the controller and back. Pre-

liminary work in this area has largely focused on the case of a single sensor transmitting information

over a single channel and studied the stability of systems utilizing lossy packet-based communica-

tion, as in [94, 174, 208]. Performance of such systems as a function of packet loss rate was analyzed

by Seiler in [174] and by Ling and Lemmon in [131] assuming certain statistical dropout models.

Various approaches to compensate for the lost data have also been proposed. Nilsson [152] proposed

two approaches for compensation for data loss in the link by the controller, namely keeping the old

control or generating a new control by estimating the lost data, and presented an analysis of the

stability and performance of these approaches. Hadjicostis and Touri [90] analyzed the performance

when lost data is replaced by zeros. Ling and Lemmon [131, 133] proposed compensators for specific

statistical data loss models in the case of single input single output (SISO) systems. In particular,

in [131] they posed the problem of optimal compensator design for the case when data loss is inde-

pendent and identically distributed (i.i.d.) as a nonlinear optimization. Azimi-Sadjadi [5] took an



70

Figure 3.1: The architecture of a packet-based control loop. The links are unreliable and unpre-
dictably drops packets. Most of the works in the literature look at the case of a single sensor
transmitting information over a single channel.

alternative approach and proposed a sub-optimal estimator and regulator to minimize a quadratic

cost. Sinopoli et al. [173] and Imer et al. [103] extended this approach further to obtain optimal

controllers when the packet drops were i.i.d. The related problem of optimal estimation across a

packet-dropping link was considered by Sinopoli et. al in [178] and extended by Gupta et al. in [77].

Most of the designs proposed in these references aim at designing a packet-loss compensator, as

shown in Figure 3.2. The compensator accepts those packets that the link successfully transmits

and comes up with an estimate for the time steps when data is lost. This estimate is then used by

the controller. Our work takes a more general approach by seeking the LQG optimal control for

this packet-based problem. In particular, our architecture is as shown in Figure 3.3. We will jointly

design the controller, the encoder and the decoder to solve the optimal LQG problem. Even though

the terminology reminds one of information theoretic designs, the encoder and the decoder can not

be designed in our problem using information theoretic algorithms since the system has real-time

constraints. The controller needs to generate a control input at every time step and thus, e.g., block

coding based coding strategies cannot be used. We need to identify the optimal coding strategy for

the purpose of estimation and control.

Based on a separation principle that we prove, the control problem is separated into one of de-

signing a state-feedback optimal controller and another of transmitting information across unreliable

links. This allows us to identify the information that needs to be made available to the controller

for optimal performance. We then propose a simple recursive algorithm that ensures that this in-

formation is available to the controller for the case of a single sensor transmitting information over
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Figure 3.2: A common design for control over packet-based links. The compensator aims at miti-
gating the effects of packet losses. In most works, the controller-actuator channel is assumed to be
absent.

Figure 3.3: The structure of our optimal LQG control solution.
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a single link. Even though the algorithm requires a constant amount of memory, transmission and

processing at the sensor node, it is optimal for any packet drop pattern and has many additional

desirable properties that we will illustrate later.

We then extend the optimal coding algorithm to the case of a single sensor transmitting infor-

mation to the controller over a network of communication links that drop packets stochastically.

Transmission of data over networks for the purpose of estimation and control is largely an open

problem. In [186], Tatikonda studied some issues related to the quantization rates required for sta-

bility when data was being transmitted over a network of digital memoryless channels. Also relevant

is the work of Robinson and Kumar [166], who consider the problem of optimal placement of the

controller when the sensor and the actuator are connected via a series of communication links. They

ignore the issue of delays over paths of different lengths (consisting of different number of links)

and under a Long Packet Assumption come up with the optimal controller structure. There are two

main reasons why the problem of encoding data for transmission is much more complicated in the

case of transmission over a network:

1. If the intermediate nodes are allowed to process data, the network cannot be replaced by

an erasure channel with the equivalent drop probability as the reliability of the network.

Processing by intermediate nodes leads to an element of memory.

2. There are potentially multiple paths from the source to any node. These paths may offer data

with varying amounts of delay and the processing algorithm needs to take care of this fact.

We again solve for the optimal encoder and decoder structures that are recursive in nature and hence

require only a constant amount of memory, transmission and processing at every node. The analysis

of the algorithm identifies a property of the network called the max-cut probability that is relevant

for the purpose of stability of the control loop (or equivalently, that of the estimate error). We also

provide a framework to analyze the performance of our algorithm. Our viewpoint allows us to view

the intermediate nodes as repeaters in a digital communication channel that fight the degradation

introduced by the channel.

Having solved the problem for the case of a single sensor, we move on to the case when multiple

sensors are present. We start with the simplest case when only one of the sensors transmits data

over a link that drops packets. This problem is also largely open. We encounter this case in our

work on the multi-vehicle wireless testbed [40, 198]. In the testbed, each vehicle is equipped with an

on-board gyro. In addition, each vehicle also obtains measurements from an overhead camera. While

the gyro-controller link is hard-wired and hence does not drop packets, the camera communicates to

the controller over a wireless link that drops packets randomly. Our solution to this problem again

adopts the philosophy of processing information at the sensor end before transmission to combat

the effects of the channels. Our architecture is as shown in Figure 3.4. We again provide recursive
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yet optimal designs of the encoders, the decoder and the controller.

Figure 3.4: The structure of our optimal LQG control solution for the multiple-sensor case.

As an intermediate step, we also solve the following problem. Suppose, as shown in Figure 3.5, two

sensors are estimating a process jointly while communicating over links that drop packets stochas-

tically. What information should the sensors exchange so to obtain a good estimate? Related work

to this problem has dealt with fusion of data from multiple sensors and track-to-track fusion. The

classical Kalman filter is a centralized filter that assumes all observations coming to a central com-

puting facility. The usual starting point is to come up with techniques to decentralize the filter

computations. An early contribution was [200], where information obtained from the local sensors is

combined to generate the global estimate. However, it required that data about the global estimate

be sent from the fusion node to the local sensors. A similar requirement was imposed in the ‘suc-

cessive orthogonalization of measurement subspaces’ algorithm proposed in [93]. This difficulty was

first overcome in [30, 183], in which each local node sends its own local estimate based on its own

data and communicates this estimate and the error covariance data to the fusion center. Similar

results for continuous time systems were presented by Willsky et al. in [201]. These results were

further extended by Hashemipour et al. in [92], where both the measurement and time update steps

of the Kalman filter were decentralized. An alternative approach for data fusion from many nodes

using the Federated filter was proposed by Carlson in [27]. A Bayesian method was used and some

algorithms presented in [32, 101] which are optimal when there is no process noise. A scattering

framework [128] and algorithms based on decomposition of the information form of the Kalman

filter [15, 163] have also been proposed for data fusion. A scheme based on the concept of dynamic

consensus was proposed in [182], but it assumes multiple communication rounds per time step of
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Figure 3.5: Structure of the joint estimation problem.

the system evolution. For some other approaches proposed in the literature (e.g. those based on

tracklets [49]), see [31, 145].

However, these approaches assume a fixed communication topology among the nodes with a

link, if present, being perfect. In our case, packets of information from one node to another will

be dropped randomly by the communication channel present between them. This random loss of

information reintroduces the problem of correlation between the estimation errors of various nodes [9]

and renders the approaches proposed in the literature as sub-optimal. An approach to solve this

problem was proposed by Bar-Shalom and Campo in [10] in the context of track-to-track fusion

through exchange of state estimates based on each sensor’s own local measurements, but the specific

scheme that was used was not proven to be optimal. Moreover, as was found in [167], the algorithm

for fusing the local state estimates that was proposed is not optimal in the mean square sense. It

was subsequently proven in [28, 145] that the technique was based on an assumption that was not

met in general and, in fact, calculation of global estimate using just the local estimates is possible

only in very specific cases. We wish to address this problem of finding the optimal global estimate

for each node in the case when there are communication channels present between the nodes and

packets of information are being randomly dropped. Once again, we disallow approaches such as

transmitting all the measurements taken by each node every time communication is possible because

that can potentially entail transmitting arbitrarily large amounts of data. Instead, we will propose

a recursive yet optimal strategy.

Our algorithm can also be extended to the case when there are multiple sensors that share

a channel. Thus, at any time step, either all the sensors drop packets or all the transmissions are
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successful. For the case of multiple sensors transmitting over multiple channels that can drop packets

independently of each other, the problem is still open. In Chapter 5, we will discuss some partial

results for the optimal algorithm and analyze some strategies using tools that we develop in the next

chapter.

In the first appendix, we look at another effect that communication channels may introduce:

quantization. As we saw above, many works have looked at the presence of digital memoryless

channels in control loops. However, most of the work reported so far has focused on the effect of

quantization on stability. It is worthwhile to also consider the question of performance of the system

in the presence of quantization. This problem is much less well-studied. The performance of a scalar

statically quantized system with delays was considered in [191]. Lemmon and Ling [126] presented

an upper bound for the quantization noise for the case when dynamic uniform quantization is done

over a channel that drops packets. They defined the performance in terms of signal to quantization

ratio and presented some interesting trade-offs between the number of bits, locations of the system

poles and the performance.

We study the effect of quantization on the LQR performance of the system. We consider a linear

time-invariant scalar system with a control law in place and see how the performance degrades as less

and less data is allowed to pass from the process to the controller. We come up with some interesting

bounds for specific quantizers and some entropy-based general bounds on general centroid-based

quantization and encoding schemes. We also consider extensions to dynamic quantization schemes

and packet-dropping channels.

In the second appendix, we consider a system in which a channel between the sensor and the con-

troller can exist in one of many states. These states can, e.g., correspond to different random delays

applied or different noise powers that corrupt any signal transmitted over the channel. The channel

transitions between the states according to a Markov chain. Thus, the system can be modeled as

a jump linear Markov system. Such systems have been studied and analyzed extensively. As an

example, Ji and Chizeck [108] studied the problem in detail and defined concepts like stability and

controllability. Discrete-time versions of the jump-linear quadratic (JLQ) optimal control problem

were solved for finite-time horizons in Blair and Sworder [19]. Nilsson and Bernhardsson [153] gen-

eralized the results of Ji and Chizeck to the case where the Markov chain determines the probability

density function of the variables rather than the values of the variables themselves.

However, all the above approaches assumed the Markov state to be known. In the context of the

work presented in this dissertation, this assumption means, e.g., that the receiver knows whether

the link has dropped a packet or the delay it has introduced and so on. In the second appendix, we

discuss the case when this assumption does not hold and a Markov state estimation algorithm is used

to estimate the state of the channel as well. We analyze the case where the state estimate update

depends only on the latest observation value. In particular, we consider a suboptimal version of the
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causal Viterbi algorithm and show that a separation property need not hold between the control law

and the state estimation algorithm.

3.2 The Packet Erasure Channel Model

In this dissertation, we are interested in channels that are discrete-time and packet-based in nature.

At every discrete time step, a packet of data is created and transmitted over the channel. The

receiver tries to estimate the data that was transmitted using the information it receives over the

channel. A general model for a communication channel used in, for instance information theory,

is as a probability matrix [39]. If the channel supports m input symbols and n output symbols,

then the channel is completely described by an m × n matrix whose (i, j)-th element denotes the

probability that the channel will output the j-th output symbol given that the i-th symbol was

input1. While this characterization is appropriate for many information-theoretic purposes, for the

purpose of analyzing the effect of communication links on estimation and control, this model can

introduce too many details that can cloud the picture. An alternative is to summarize the effect of

the communication link (and the concomitant physical layer information transmission and reception

mechanism) in terms of various metrics or effects that the communication channels introduce into

the system. Some of these effects are:

1. Time delay: Before data is transmitted over a channel, it is usually buffered, quantized and

coded. All these operations consume some time. After a propagation delay, the data is

decoded at the receiver end. If the data is not received properly, the communication protocol

may specify a re-transmission of the data. Thus, by the time the information is used by

the receiver, a delay has been introduced. Usually this delay is random and the probability

distribution of the delay may change over time.

2. Data loss: In most communication protocols, if the receiver does not receive a data packet

within a specified time limit, the packet is assumed to be lost. This data loss can happen due

to a variety of reasons. For instance, in a shared multiple access medium such as the wireless

channel, simultaneous transmission by two transmitters may lead to loss of data from both

the transmitters. If transmission occurs over a network of communication channels, overflow

of buffers can also lead to packet loss. Finally, if the data is extremely degraded by the time

it reaches the receiver, the communication protocol may call for the packet to be dropped.

3. Quantization: Many communication channels and protocols are digital in nature. Thus, any

data that needs to be transmitted over a channel needs to be quantized. The number of bits

that can be transmitted at every time step is usually upper-bounded.

1In general this probability can be time varying.
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4. Data corruption: The signal that the receiver regenerates may not be identical to the signal that

the transmitter wished to communicate due to noise or attenuation introduced by the channel.

While most communication protocols specify error detection and error correction codes, they

might not be sufficient to provide immunity to particularly bad channel use instances.

Modeling a channel in terms of these metrics rather than in terms of a physical layer model that

specifies the coding, transmission method, channel structure and so on simplifies the analysis and

design of an estimation and control loop. It also separates the communication and control design

parts of the problem, thus leading to a layered design approach. The control engineer can then

demand a certain quality of service from the communication layer in terms of such metrics. In turn,

the communication engineer can specify the range of values that the metrics can assume and the

control goals are then computed based on these values. This notion of a layered architecture, even

though sub-optimal in general, leads to simplicity and tractability in design and is often credited

with the success of the Internet (due to the OSI model), serial computation (due to the von-Neumann

bridge) and so on [72].

In this dissertation, for the most part, we will concentrate on the stochastic packet dropping

effect of the channel. The time line for the operation of such a link is as follows. At every time step

k,

• A packet containing some function of the information that the transmitter has access to is

created at the transmitter side of the link.

• The packet is sent across the link.

• At time step k + 1, the packet is either received without error, or dropped, probabilistically.

The information set that the transmitter has access to may have to satisfy some constraints. As

an example, there is usually a limit on the memory at the transmitter that limits the amount of

data that can be stored. We also impose the constraint that the function communicated over the

link should be a finite vector. The packet dropping is a random process. If the packet drops are

independent from one time step to the next and occur with the same probability at every time step,

they are said to have occurred in an independent and identically distributed (i.i.d.) fashion. In some

channels, drops are correlated from one time step to the next. This correlation can be captured by a

more sophisticated model such as a Markov chain. In the classic Gilbert-Elliot channel model [56, 67]

shown in Figure 3.6, the channel is assumed to exist in two states. The ‘bad’ state corresponds to

the channel dropping packets and the ‘good’ state corresponds to a successful transmission. The

channel switches between the two states according to a Markov chain. This model can capture

the effect displayed, e.g., by a wireless channel in which packet drops occur in a bursty fashion.

More sophisticated models comprising of multiple Markov states, each corresponding to a different
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Figure 3.6: The classical Gilbert-Elliot channel model.

probability of packet drop are also available (see, e.g., [196, 207]). In any case, the packet dropping

is a random process. We refer to individual (i.e. deterministic) realizations of this random process

as packet drop sequences. A packet drop sequence is a binary sequence {λ(k)}∞k=0 in which λ(k)

takes the value “received” if the link delivers the packet at time step k, and “dropped” if the packet

is dropped.

This model is referred to as the packet erasure model of the channel. We assume sufficient bits per

data packet and a high enough data rate so that quantization error is negligible. This assumption

merely means that a sufficient number of bits are available so that the effect of the quantization

error is swamped by the effect of the process and the measurement noises. We do not assume an

infinite number of bits, so that strategies based on interleaving of bits to transmit an infinite amount

of data are not admissible2. We also assume that enough error-correction coding is done within the

packets so that the packets are either dropped or received without error. Finally, we will nominally

consider the delays, if any, introduced by the channel to be less than one time step according to

which the discrete-time dynamical process evolves. We will, however, revisit the issue of delays larger

than one time step later in the chapter. We will, sometimes, also make an assumption of a one bit

acknowledgement being available to the transmitter corresponding to whether or not the packet was

received over the channel at the previous time step. Since the acknowledgement is just one-bit, it

can be transmitted with a much higher reliability. We will assume that when an acknowledgement

mechanism is present, acknowledgements are not dropped. Note that an implicit assumption in the

model is that the receiver knows that a packet has been erased. Thus, it does not come up with a

2Moreover, the optimal encoder / decoder algorithms we present will achieve the same performance as if we were
indeed transmitting an infinite amount of data.
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faulty estimate of the data transmitted over the link.

3.3 Problem Formulation and Preliminary Results

3.3.1 Problem Setup

Figure 3.7: The set-up of the control across communication networks problem. Later in the chapter
we also look at a channel present between the controller and the actuator.

Consider the arrangement in Figure 3.7. Let the discrete-time linear process evolve according to

the equation

x(k + 1) = Ax(k) +Bu(k) + w(k), (3.1)

where x(k) ∈ Rn is the process state, u(k) ∈ Rm is the control input and w(k) is the process noise

assumed to be white, Gaussian, and zero mean with covariance matrix Rw
3. The initial condition

x(0) is assumed to be independent of w(k) and to have mean zero and covariance matrix R(0). The

state of the plant is measured by N sensors with the i-th sensor generating measurements according

to the equation

yi(k) = Cix(k) + vi(k). (3.2)

The measurement noises vi(k)’s are assumed white, zero-mean, Gaussian (with covariance matrix

Rv,i) and independent of the plant noise w(k) and of each other. Every sensor communicates its

own measurements (or some function of the measurements) to the controller. For the moment, we

ignore random delays and packet reordering in the channels and model them solely as packet erasure

3The results we present continue to hold for time-varying systems, but we consider the time-invariant case to
simplify the presentation.
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links with a fixed delay of one time step. For ease of presentation, we will denote the encoder as a

node separate from the sensor and term it the source node.

The controller at every time step calculates a control input u(k) and transmits it to the actuator.

As shown in Figure 3.7, for the time being we ignore the channel between the controller and the

actuator. We will revisit both the issue of delay as well as the presence of a controller-actuator

channel later in the chapter and show how simple modifications to our design can take care of them.

The controller aims at minimizing the quadratic cost function

JT = E

[
T∑

k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)
+ xT (T + 1)P cT+1x(T + 1)

]

, (3.3)

where Q, R and P cT+1 are all positive definite matrices. We make the usual assumptions of the pairs

(A,B) and (A,Q
1
2 ) being stabilizable. The expectation in the cost function is taken over the initial

condition x(0) and the noise processes {w(k)} and {vi(k)}’s. Without the channels being present,

this is the classical LQG control synthesis problem. The presence of communication channels that

erase packets stochastically, however, alters the problem drastically.

The time-line of the operation of the channels is as follows. At every time step k,

1. The source node at each sensor computes a function of all the information it has access to at

that time.

2. The source nodes transmit the functions on the communication links. The controller calculates

the control u(k) based on the information it possesses.

3. The controller observes the messages, if any, received on the links and updates its information

set for the next time step. The source nodes update their information sets with the observations

yi(k)’s.

This time-line means that the there are two sources of delay even if the channel is not dropping any

packets. First, the source nodes at time step k can only transmit a function of measurements till

time step k − 1. Further, there is a delay of one time step for transmission over the link. Thus, at

time step k the controller can, at best, have access to measurements till time step k − 2. Removal

of any of these sources of delay will lead to only minor adjustments in the results given in the rest

of the chapter.

The presence of packet erasure links warrants a discussion on the type of controllers that are

allowed. The absolutely optimal LQG performance achievable is given by the classical LQR con-

troller/Kalman estimator pair. However, this design does not respect the packetized nature of the

communication. Specifically, the controller requires continual access to the Kalman filter output,

which, in turn, requires continual access to the measurements from all the sensors. This access

might not always be possible because of data loss in the communication links. In order to make
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the class of controllers that are allowed more precise, we introduce the following terminology. De-

note by si(k) the finite vector transmitted from the sensor i to the controller at time step k. By

causality, si(k) can depend (possibly in a time-varying manner) on yi(0), yi(1), · · · , yi(k − 1), i.e.,

si(k) = fi(k) (yi(0), yi(1), · · · , yi(k − 1)) . Denote by the variable λi(k) the (random) event whether

or not a transmission was successful on the link i at time step k in the realization of the packet loss

sequence Pi that is occurring in the link i. The information set, I(k) available to the controller at

time k is the union of N sets Ii(k)’s defined by

Ii(k) = {si(j)|λi(j) = ‘received’}.

Also, denote by ti(k) < k the last time-step at which a packet was delivered over link i prior to time

k. That is

ti(k) = max{j < k | λi(j) = ‘received’}.

The maximal information set, Imax(k) at time-step k is then the union of sets Imax
i (k) defined by

Imax
i (k) = {yi(j) | j < ti(k)}.

The maximal information set is the largest set of output measurements from sensor i on which

the control at time-step k can depend. In general, the set of output measurements on which the

control depends will be less than this set, since earlier packets, and hence measurements, may have

been dropped. As stated earlier, we impose the restriction that the vectors si(k) remain finite

and thus, e.g., do not increase in size as k increases. We will call the set of fi(k)’s which fulfill

this requirement as F . Without loss of generality, we will only consider information-set feedback

controllers, i.e., controllers of the form u(k) = u(I(k), k). We denote the set of control laws allowed

by U . We shall assume perfect knowledge of the system parameters A, B, C, Rw and Rv,i’s at

the controller. Moreover, we shall assume that the controller (and the decoder) have access to the

previous control signals u(0), u(1), · · · , u(k − 1) while calculating the control u(k) at time k.

We can thus pose the packetized LQG problem as:

min
u∈U,fi∈F

JT (u, fi,Pi) = E

[
T∑

k=0

(
uT (k)Ru(k) + xT (k)Qx(k)

)
+ xT (T + 1)P c(T + 1)x(T + 1)

]

.

(3.4)

Note that the cost functional JT above depends on the random packet-drop sequences Pi’s. However,

we do not average across packet-drop processes; the solution we will present is optimal for arbitrary

realizations of the packet dropping processes. That is, the controller, encoder and decoder we propose

will minimize JT (u, fi,Pi) over the set of allowable controllers U and allowable functions F for any

given packet-drop sequences Pi’s. Because of this, we will occasionally suppress the packet-drop
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dependence in the cost functional and merely write JT (u, fi) or just JT .

Our goal, then, is to solve the standard LQG problem with the additional complication of the

packet-dropping links. While this may appear a small modification, it is unclear a priori, what the

structure of the optimal control algorithm should be, and in what way the packetized links should

be used through the design of the encoder and the decoder. We begin by presenting a separation

principle.

3.3.2 A Separation Principle

Recall that we wish to construct the optimal control input based on the information set Imax(k), but

we have not yet specified how to design the functions fi(k)’s that will allow the controller to compute

that. If the links do not drop packets, sending the measurements yi(k)’s in every packet is sufficient.

When the links randomly drop packets, a näıve solution would be to send the entire history of

the output variables at each time step. This would certainly be an optimal solution, however, as

mentioned earlier, this is not allowed since it requires increasing data transmission as time evolves.

Surprisingly, in a lot of cases, we can achieve performance equivalent to the näıve solution using a

constant amount of transmission and memory. To this end, we first state the following separation

principle.

Proposition 3.1 Consider the packet-based optimal control problem posed in section 3.3.1. Suppose

that all the sensors transmit all their previous measurements at every time step, so that the decoder

has access to the maximal information set Imax(k) at every time step k. Then, for an optimizing

choice of the control, the control and estimation costs decouple. Specifically, the optimal control

input at time k is calculated by using the relation

u(k) = ˆ̄u(k|Imax(k), {u(t)}k−1
t=0 ),

where ū(k) is the optimal LQ control law while ˆ̄u(k|Imax(k), {u(t)}k−1
t=0 ) denotes the minimum mean

squared error (mmse) estimate of the random variable ū(k) given the information set Imax(k) and

the previous control laws u(0), · · · , u(k − 1).

Proof The proof is along the lines of the standard separation principle (see, e.g., [95, Chapter 9]).

We seek to minimize the T -horizon cost function

JT = E

[
T∑

k=0

(
uT (k)Ru(k) + xT (k)Qx(k)

)
+ xT (T + 1)P c(T + 1)x(T + 1)

]

We need to choose u(0), u(1), · · · , u(T ) that minimize JT . We begin by gathering terms that depend
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on the choice of u(T ) and x(T ) and writing them as

Υ(T ) = E
[
uT (T )Ru(T ) + xT (T )Qx(T )

]
+ E

[
xT (T + 1)P c(T + 1)x(T + 1)

]

= E





[

uT (T ) xT (T )
]

∆




u(T )

x(T )







+ E
[
wT (T )P c(T + 1)w(T )

]

= S(T ) +O(T ),

where

∆ =




R+BTP c(T + 1)B BTP c(T + 1)A

ATP c(T + 1)B Q+ATP c(T + 1)A





S(T ) = E





[

uT (T ) xT (T )
]

∆




u(T )

x(T )









O(T ) = E
[
wT (T )P c(T + 1)w(T )

]
.

In the above equation, we have used the system dynamics given in (3.1) and the fact that the plant

noise w(k) is zero mean. Thus, we can write

JT = E

[
T−1∑

k=0

uT (k)Ru(k) +
T−1∑

k=0

xT (k)Qx(k)

]

+ S(T ) +O(T ). (3.5)

We aim to choose u(T ) to minimize JT . From (3.5), it is clear that the only term where the choice

of u(T ) can make a difference is S(T ). On completing squares, S(T ) can be written as

S(T ) = E
[

(u(T )− ū(T ))
T
Rce(T ) (u(T )− ū(T ))

]

+ E
[
xT (T )P c(T )x(T )

]

where

Rce(T ) = R+BTP c(T + 1)B

P c(T ) = Q+ATP c(T + 1)A−ATP c(T + 1)B
(
RBTP c(T + 1)B

)−1
BTP c(T + 1)A

and ū(T ) is the standard optimal LQ control given by

ū(T ) = − (Rce(T ))
−1
BTP c(T + 1)Ax(T ).

If the controller had access to the entire state, it could simply use the standard optimal control

ū(T ). However, that is not possible now. Instead, the controller needs to calculate u(T ) using the

information it has access to. In other words, we need to find u(T ) = F (T )x(T ) that minimizes
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Υ(T ) where F (T ) has to be a function of the information that the controller has access to. The

control problem, thus, reduces to an optimal (in the sense of minimum mean squared error (mmse))

estimation problem. We can write the optimal control at time step T as

u(T ) = ˆ̄u(T |Imax(T ), {u(t)}T−1
t=0 ) = − (Rce(T ))

−1
BTP c(T + 1)Ax̂(T |Imax(T ), {u(t)}T−1

t=0 ), (3.6)

where x̂(T |Imax(T ), {u(t)}T−1
t=0 ) is the mmse estimate of x(T ) given Imax(T ) and the previous control

inputs u(0), u(1), · · · , u(T − 1). Two things may be noted:

1. Since all the random variables are Gaussian, and the cost function to be optimized is quadratic,

the optimal estimator x̂(T |Imax(T ), {u(t)}T−1
t=0 ) is linear.

2. Suppose that instead of all the previous measurements, the sensors transmitted some other

quantity so that the controller had access to the information set I(T ). Since the information

content in I(T ) is upper bounded by the information contained in Imax(T ), the error covariance

in calculating x̂(T |I(T ), {u(t)}T−1
t=0 ) is lower bounded by the error covariance in calculating

x̂(T |Imax(T ), {u(t)}T−1
t=0 ).

Thus, we only need to find the mmse estimate of x(T ), given the information Imax(T ) and the

previous control inputs {u(t)}T−1
t=0 available to the controller. Denote the estimation error incurred

due to the minimizing choice of u(T ) by Λ(T ). We have

S(T ) = Λ(T ) + E
[
xT (T )P c(T )x(T )

]
.

We can thus write the cost function as

JT = E

[
T−1∑

k=0

uT (k)Ru(k) +

T−1∑

k=0

xT (k)Qx(k)

]

+ S(T ) +O(T )

= E

[
T−1∑

k=0

uT (k)Ru(k) +

T−1∑

k=0

xT (k)Qx(k)

]

+ E
[
xT (T )P c(T )x(T )

]
+ Λ(T ) +O(T )

= JT−1 + Λ(T ) +O(T ).

Thus, we now need to choose control inputs for time steps 0 to T − 1 to minimize JT . By scanning

the terms on the right hand side of the equation, we see that O(T ) is independent of the choice of

control laws from time 0 to T − 1. Similarly, Λ(T ) is also independent of all previous control laws

since the control inputs are known while calculating x̂(T |Imax(T ), {u(t)}T−1
t=0 ). Thus, the only term

that is dependent on the control inputs till time step T − 1 is JT−1. But our argument so far was

independent of time index T . Thus, we can recursively apply the argument above for time steps

T − 1, T − 2 and so on.
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If we have a channel between the controller and the actuator, the separation principle would still

hold, provided there is a provision for acknowledgment from the receiver to the transmitter for any

packet successfully received over the channels. This observation has also been made in [103, 173].

There are two reasons this principle is useful to us:

1. The controller design part of the problem is now solved. The optimal controller is the solution

to the LQ control problem.

2. We recognize that the optimal controller does not need to have access to the information set

Imax(k) at every time step k. The encoders and the decoder only need to ensure that the con-

troller receives the quantity ˆ̄u(k|Imax(k), {u(t)}k−1
t=0 ), or equivalently, x̂(k|Imax(k), {u(t)}k−1

t=0 ).

We now propose algorithms for various cases that require a constant amount of memory and trans-

mission, yet allow the controller to have access to x̂(k|Imax(k), {u(t)}k−1
t=0 ) at every time step.

3.4 Single Sensor, Single Channel

We begin with the case depicted in Figure 3.8. A single sensor observes the process state x(k)

through measurements of the form

y(k) = Cx(k) + v(k),

where the noise v(k) has covariance Rv and the pair (A,C) is detectable. The sensor transmits

information over a communication link that erases the information stochastically. If a packet is

received at time step k, the variable λ(k) equals ‘received’; otherwise it equals ‘dropped’. At this

moment, we make no assumption about the statistics of the packet dropping process.

For ease of notation, let x̂(k|l) denote the estimate of x(k) based on all the measurements

generated by the sensor up to time l and all control inputs till time k−1. Denote the corresponding

error covariance by P (k|l) . Also, denote by x̄(k|l) the estimate of x(k) based on all the measurements

up to time l while assuming that no control input was applied as x(k) evolved according to (3.1).

x̄(k|l) can be evaluated through a filter that is identical to a Kalman filter except for the application

of the control input during the time update step. We will call such a filter a modified Kalman filter.

A modified Kalman filter requires the calculation of the quantity P (k|l). Even though it does not

stand for the estimate error covariance in the case of the modified Kalman filter, the calculation of

P (k|l) is identical for both the Kalman filter and the modified Kalman filter.
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Figure 3.8: Problem setup for Section 3.4: A single sensor transmitting over a single link.

3.4.1 The Kalman Filter

For the sake of completeness, the Kalman filter is given below. For details on the derivation and

properties, see, e.g., [112].

Measurement Update for the Kalman filter:

(P (k|k))−1
= (P (k|k − 1))

−1
+ CTR−1C (3.7)

(P (k|k))−1
x̂(k|k) = (P (k|k − 1))

−1
x̂(k|k − 1) + CTR−1y(k).

Time Update for the Kalman filter:

P (k|k − 1) = AP (k − 1|k − 1)AT +Rw (3.8)

x̂(k|k − 1) = Ax̂(k − 1|k − 1) +Bu(k − 1).

If the initial state x(0) of the process is Gaussian with zero mean and variance R(0), the initial

conditions for the Kalman filter are given by x̂(0| − 1) = 0 and P (0| − 1) = R(0). The equations for

the modified Kalman filter are identical except for substituting u(k) = 0 in the time update step.

Thus, while the measurement update step is still given by

(P (k|k))−1
= (P (k|k − 1))

−1
+ CTR−1C (3.9)

(P (k|k))−1
x̄(k|k) = (P (k|k − 1))

−1
x̄(k|k − 1) + CTR−1y(k),
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the time update equations are given by

P (k|k − 1) = AP (k − 1|k − 1)AT +Rw (3.10)

x̄(k|k − 1) = Ax̄(k − 1|k − 1).

Note that calculation of the second order terms P (k|k) and P (k|k−1) does not require knowledge of

either the measurements y(j)’s or the control inputs u(j)’s and these terms can even be calculated

offline. Also, we recognize the following relation between x̂(k|k − 1) and x̄(k|k − 1).

x̂(k|k − 1) = x̄(k|k − 1) + Ψ(k), (3.11)

where the term Ψ(k) calculates the impact of the control input and can be calculated using the

recursion

Ψ(k) = Bu(k − 1) + Γ(k − 1)Ψ(k − 1),

with

Γ(k) = A (P (k − 1|k − 1))
−1
P (k − 1|k − 2)

and the initial condition Ψ(0) = 0. This observation allows us to separate the effect of the measure-

ments and the control inputs.

3.4.2 Optimal Information Processing Algorithm

We propose the following design for the encoder and the decoder. At every time step k

• The encoder (at the sensor end) has access to measurements till time step k−1 in its information

set. It runs the modified Kalman filter according to equations (3.9), (3.10) and transmits the

output x̄(k|k − 1) of this filter across the link.

• The decoder (at the controller end) maintains two variables: a variable ψ(k) that takes into

account the effect of the control inputs, and a local variable x̂dec(k|k−1) (with initial condition

x̂dec(0| − 1) = 0). These variables are updated as follows.

– The decoder can calculate the terms P (k|k−1) and P (k−1|k−1) as in the Kalman filter

equations. It then calculates

ψ(k) = Bu(k − 1) + γ(k − 1)ψ(k − 1),

where

γ(k) = A (P (k − 1|k − 1))
−1
P (k − 1|k − 2)
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and the initial condition is given by ψ(0) = 0.

– If λ(k − 1) = ‘received’, the link successfully transmitted the packet containing the

estimate x̄(k − 1|k − 2) at time step k − 1. The decoder sets

x̂dec(k − 1|k − 2) = x̄(k − 1|k − 2) + ψ(k − 1).

– If λ(k − 1) = ‘dropped’, the packet was dropped. The decoder implements the linear

predictor

x̂dec(k − 1|k − 2) = Ax̂dec(k − 2|k − 3) +Bu(k − 2). (3.12)

– Finally, the decoder outputs the estimate

x̂dec(k|k − 2) = Ax̂dec(k − 1|k − 2) +Bu(k − 1).

The algorithm given above is optimal in the following sense.

Proposition 3.2 In the algorithm described above, x̂dec(k|k − 2) = x̂(k|Imax(k), {u(t)}k−1
t=0 ).

Proof The proof is obvious given the relation (3.11). The information needed from the sensor at

time step k for the calculation of x̂(k−1|k−2) is precisely x̄(k−1|k−2). The impact of the control

input can be taken care of by the term Ψ(k − 1) which is the same as the term ψ(k − 1) calculated

in the algorithm by the decoder. Now, for the case when λ(k − 1) = ‘received’, the decoder in the

algorithm has access to x̄(k − 1|k − 2) and Ψ(k − 1). Thus, it can calculate the centralized Kalman

filter output x̂(k − 1|k − 2). Upon executing the time update step, it calculates x̂(k|k − 2) which

is x̂(k|Imax(k), {u(t)}k−1
t=0 ). For the case when λ(k) = ‘dropped’, the decoder propagates the best

Kalman filter estimate x̂dec(k− 1|k− 2) with the control inputs u(k− 2) and u(k− 1). Thus, in this

case too, x̂dec(k|k − 2) = x̂(Imax(k), {u(t)}k−1
t=0 )

Proposition 3.2 also solves the pure estimation problem in which the state of a dynamic process

needs to be estimated across a packet erasure link. If the decoder sets the term ψ(k) identically

to 0, the optimal encoder and decoder structures are given as above. Moreover, taken together,

Propositions 3.1 and 3.2 solve the packet-based LQG control problem posed in Section 3.3.1 for the

case of a single sensor and a single link.

Proposition 3.3 Consider the packet-based optimal control problem described in Section 3.3.1 for

the case of only one sensor being present, For any packet dropping process P, an LQR state feed-

back design together with the optimal transmission-estimation algorithm described above achieves the

minimum of JT (u, f,P).
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Remarks

1. The information vector x̄(k|k − 1) ‘washes away’ the effect of any previous packet losses. If

λ(k−1) = ‘received’, x̂dec(k|k−2) is identical to the case when all the previous measurements

{y(0), y(1), · · · , y(k − 2)} were available to the controller.

2. We have made no assumption about the packet dropping behavior. The algorithm provides

the optimal estimate for an arbitrary packet drop sequence, irrespective of whether the packet

drop can be modeled as an i.i.d. process (or a more sophisticated model like a Markov chain).

We also have not made any assumption about the statistics of the packet drops being known.

3. We do not assume knowledge of the cost matrices Q and R at the sensor end. Thus, the

cost function (and hence the optimal controller) can be changed at will without affecting the

sensor/encoder operation. This is important, e.g., in our MVWT work where the matrices Q

and R are user-specified while the encoder code is much harder to change.

Presence of delays

If we assume that there is a provision for time-stamping the packets sent by the encoder, the solution

can readily be extended to the case when the channel applies a random delay to the packet so that

packets might arrive at the decoder delayed or even out-of-order. At each time step, the decoder

will face one of four possibilities, and will update its estimate as described below:

• It has access to x̄(k − 1|k − 2). It uses this to calculate the estimate x̂dec(k|k − 2) according

to the algorithm given above.

• It does not receive anything. It uses the predictor equation (3.12) on x̂dec(k − 1|k − 3).

• It receives x̄(m|m− 1) while at a previous time step, it has already received x̄(n|n− 1), where

n > m. It discards x̄(m|m− 1) and uses (3.12) on x̂dec(k − 1|k − 3).

• It receives x̄(m|m− 1) and at no previous time step has it received x̄(n|n− 1), where n > m.

It uses x̄(m|m− 1) to calculate x̂dec(m|m− 2) and obtains x̂dec(k|k− 2) through the repeated

application of (3.12).

Channel between the controller and the actuator

If we look at the proof of the separation principle above, the crucial assumption was that the

controller knows what control input is applied at the plant. Thus, if we have a channel between the

controller and the plant, the separation principle would still hold, provided there is a provision for

an acknowledgment from the receiver to the transmitter for any packet successfully received over

that channel4. Since the decoder can now have access to the control input applied at every time

4Note that we do not require acknowledgements for the sensor-controller channel.
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step, it is apparent that our algorithm is optimal for this case as well. We can also ask the question

of the optimal encoder-decoder design for the controller-actuator channel. The optimal decoding

at the actuator end will depend on the information that is assumed to be known to the actuator

(e.g. the cost matrices Q and R and the measurements from the sensor). Design of the decoder for

various information sets is an interesting open problem.

3.4.3 Analysis of the Proposed Algorithm

In this section, we make some assumptions about the packet dropping random process and provide

stronger results on the stability and performance of our algorithm. We model the channel erasures

as occurring according to a Markov chain as discussed in Section 3.2, which includes the case of

independent packet drops as a special case. Thus, the channel exists in either of two states, state

1 corresponding to a packet drop and state 2 corresponding to no packet drop and it transitions

probabilistically between these states according to the transition probability matrix Q which is of

the form

Q =




q11 q12

q21 q22



 .

The (i, j)-th element of Q represents the probability of the state changing from i at the present time

step to j at the next time step. We present the results for the case when the encoder has access to

measurements till time step k while transmitting information about x(k). The results when it has

access to measurements only till time step k − 1 are similar but more notation intensive.

3.4.3.1 Stability Analysis

We are interested in stability in the sense of bounded second moment. Thus, consider the infinite

horizon cost

J∞ = lim
T→∞

1

T
JT , (3.13)

where the expectation to calculate JT according to (3.4) is taken over the packet dropping process

as well. We call the system stable if J∞ is bounded; otherwise the system is unstable.

Consider the plant evolving as in (3.1). Consider also a Kalman filter that at time step k+1 has

access to all the measurements and control inputs till time step k. Its state x̂(k|k − 1) evolves as

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) +K(k) (y(k)− Cx̂(k|k − 1)) ,

where K(k) is the Kalman gain given by

K(k) = P (k|k − 1)CT
(
CP (k|k − 1)CT +Rv

)−1
.
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Finally, the estimator at the decoder evolves according to the relation

x̂dec(k + 1|k) =







Ax̂dec(k|k − 1) +Bu(k) channel in state 1

x̂(k + 1|k) channel in state 2.

Denote

e(k) = x(k)− x̂(k|k − 1)

t(k) = x̂(k|k − 1)− x̂dec(k|k − 1).

Since u(k) = F (k)x̂dec(k|k − 1), (3.1) can be rewritten as

x(k + 1) = (A+BF (k))x(k) + w(k)−BF (k) (t(k) + e(k)) .

If (A,B) is stabilizable, by construction F (k) is the optimum control law and hence it stabilizes the

system as long as the disturbances w(k), t(k) and e(k) remain bounded in the second moment sense.

We assume the noise w(k) has a bounded covariance. Also, e(k) has a bounded covariance by the

assumption of detectability of (A,C). Finally, for t(k), we see that it evolves according to

t(k + 1) =







At(k) +K(k)v(k)−K(k)Ce(k) channel in state 1

0 channel in state 2.

(3.14)

Again, note that v(k) and e(k) have bounded covariances. For t(k) to be of bounded covariance,

the Markov jump system of (3.14) needs to be stable. Further note that since our controller and

encoder/decoder design is optimal, if the closed loop is unstable with our design, it is not stabilizable

by any other design. We can summarize the above discussion and, following [152], write the stability

condition as follows.

Proposition 3.4 Consider the packet-based control problem defined in Section 3.3.1 for the single

sensor, single link case in which the packet erasure channel is modeled as a Markov chain with

transition probability matrix Q. Let the matrix pair (A,B) be stabilizable and the matrix pair (A,C)

be detectable. The system is stabilizable, in the sense that the covariance of the state is bounded, if

and only if the matrix

(
QT ⊗ I

)




0 0

0 A⊗A



 (3.15)

has eigenvalues strictly less than unity in magnitude, where I is identity matrix and 0 is the zero ma-

trix of suitable dimensions. Further, if the system is stabilizable, one controller and encoder/decoder

design that stabilizes the system is given in Proposition 3.3.
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As a simple example, suppose the channel has two states between which it jumps independently.

With a probability p at each time step, the channel drops the packet. Also, assume that the plant

is scalar with the system matrix given by a. Then, the above condition reduces to the condition

pa2 < 1.

For the case of the channel dropping packets independently from one time step to the next, this

case was also looked at in [178] if the sensor did not do any encoding and transmitted measurements,

while the decoder did the optimal decoding. A condition similar to (3.15) was identified as a neces-

sary condition for stability. In the above analysis, through viewing the problem as an information

transmission problem we have not only obtained the optimal controller structure, but also proven

that the condition is necessary for any algorithm to be stable. Further we have provided a recursive

strategy that allows the condition to be sufficient as well.

3.4.3.2 Performance Analysis

We now calculate the total quadratic cost J∞ incurred by the system for the infinite-horizon case

as defined in (3.13). We will make the additional assumption that the Markov chain is stationary

and regular [55] and that the stationary probability of channel being in state i is given by πi. For a

stable system, in the infinite horizon case, the cost J∞ reduces to

J∞ = lim
T→∞

1

T
JT

= lim
T→∞

E
[
xT (T )Qx(T ) + uT (T )Ru(T )

]

= trace (Px(∞)Q) + trace (Pu(∞)R) , (3.16)

where

Px(∞) = lim
T→∞

E
[
x(T )xT (T )

]

Pu(∞) = lim
T→∞

E
[
u(T )uT (T )

]
.

With the assumptions of stability and detectability, the control law matrix F (k) and the Kalman

gain matrix K(k) can be considered as constant matrices F and K respectively. Similar to the

discussion in the stability analysis above, we can write the evolution of the system in the following

manner. Denote

z(k) =
[

xT (k) uT (k) eT (k) tT (k)
]T

n(k) =
[

wT (k) vT (k)
]T

.
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Then, we have

z(k + 1) =







A1z(k) + B1e(k) channel in state 1 at time k

A2z(k) + B2e(k) channel in state 2 at time k,

where

A1 =











A B 0 0

FA FB −FA −FA
0 0 A−KC 0

0 0 −KC A











A2 =











A B 0 0

FA FB −F (A−KC) 0

0 0 A−KC 0

0 0 0 0











B1 =











I 0

0 0

I −K
0 −K











B2 =











I 0

0 FK

I −K
0 0











,

0 denotes the zero matrix and I the identity matrix of suitable dimensions. Define the stationary

covariance

P (∞) = lim
k→∞

E
[
z(k)zT (k)

]
.

Also, denote

A1 = A1 ⊗A1 A2 = A2 ⊗A2

G1 = B1RBT
1 G2 = B2RBT

2

R = E
[
eke

T
k

]
G =

[

vec(G1)
T vec(G2)

T
]T

.

Finally, define the conditional state covariance as

P̃i = πi lim
k→∞

E
[
z(k)zT (k)| channel in state i at time k

]

so that

P∞ = P̃1 + P̃2.

Then, we can use the results of [152] to obtain the following result.

Proposition 3.5 Define

P̃ =
[

vec(P̃1)
T vec(P̃2)

T
]T

.
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Then, P̃ is the unique solution to the linear equation

P̃ =
(
QT ⊗ I

)




A1 0

0 A2



 P̃ +
(
QT ⊗ I

)








π1 0

0 π2



⊗ I



G,

where I is the identity matrix, 0 is the zero matrix and other quantities have been defined above.

Once we calculate P̃ , we can readily evaluate the cost in (3.16) by using the relations

P∞
x =

[

I 0 0 0
]

P∞
[

I 0 0 0
]T

P∞
u = F

[

0 I 0 0
]

P∞
[

I 0 0 0
]T

FT .

3.4.4 Examples

In this section, we consider some examples to illustrate the performance of our algorithm. We

consider the example system considered by Ling and Lemmon in [132]. The plant transfer function

is

H(z) =
z−1 + 2z−2

1 + z−1 + 2z−2
,

so that the system evolves as

x(k + 1) =




0 −2

1 −1



x(k) +




2

1



u(k) +




2

1



w(k)

y(k) =
[

0 1
]

x(k).

The process noise w(k) is zero mean with unit variance and the packet drop process is i.i.d. The

cost considered is the steady state output error limT→∞ y2(T ). [132] assumes unity feedback when

packets are delivered and gives an optimal compensator design when packets are being lost.

On analyzing the system with our algorithm, we observe that our algorithm allows the system to

be stable up to a packet drop probability of 0.5 while the optimal compensator in [132] is stable only

if the packet drop probability is less than 0.25. Also, if we analyze the performance, we obtain the

plot given in Figure 3.9. The performance is much better throughout the range of operation for our

algorithm. The performance of the two algorithms is not the same even at zero probability of packet

drop since the optimal compensator presented in [132] assumes unity feedback. The performance,

if we assume unity feedback in our algorithm, is also plotted in the figure. It can be seen that the

difference in performance is mainly due to the novel encoding-decoding algorithm proposed.

Note that while the strategy in [132] entails transmitting only one number (the dimension of the

measurement y(k)), our algorithm transmits two numbers (the dimension of the state x(k)). This is

unavoidable since the strategy in [132] works only for single input single output plants. While the
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Figure 3.9: Comparison of performance of our algorithm with that obtained if no encoding was done
(Ling and Lemmon algorithm).

problem of finding the optimal encoding when there is a limit on the dimension of the data vector

that can be transmitted is open5, it is of interest to compare the strategies when data transmission

requirements are the same. Consider a scalar system

x(k + 1) = 1.2x(k) + w(k),

where the noise w(k) has mean zero and variance Rw = 0.01. The process is being observed through

a sensor of the form

y(k) = x(k) + v(k),

where the measurement noise v(k) has variance Rv = 1. We compare the performance obtained by

transmitting measurements and doing the best decoding as suggested by [178] and that obtained by

our algorithm. We do not close the loop and are interested only in the estimate error covariance at

the receiver end of the channel. Since the analysis of [178] holds only for independent and identically

distributed (i.i.d.) packet drops we assume the packet drops in the example to be i.i.d. as well. The

results are depicted in Figure 3.10. The transmission frequency refers to the probability that the

packet is successfully transmitted. We can see that even in this simple example, optimal encoding

5The limit should be less than the dimension of the state vector, otherwise our algorithm solves the problem. Any
additional data transmission is redundant.
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can lead to performance improvements.
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Figure 3.10: Comparison of performance for an estimation task when the measurement matrix is
invertible.

3.5 Single Sensor, Network of Arbitrary Topology

We now move on to the problem setup shown in Figure 3.11. Consider once again a process of the

form

x(k + 1) = Ax(k) +Bu(k) + w(k)

being observed by a single sensor

y(k) = Cx(k) + v(k). (3.17)

However, the sensor has to communicate to the controller or the decoder across a network of commu-

nication links that stochastically drop packets. The results presented in this section are additionally

important since they can also be used for the problems of routing of data and synthesis of networks

for the purpose of estimation and control. An analysis identical to that of Section 3.3.2 and Sec-

tion 3.4.1 shows that a separation principle holds and, further, that the decoder can calculate the

impact of the control input on the optimal estimate. Thus, it is sufficient for the algorithm to be
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Figure 3.11: Problem setup for Section 3.5: Single sensor transmitting over a network of arbitrary
topology. Every node in the network is able to communicate, and usually has similar memory and
processing capabilities as the encoder at the sensor that is generating the measurements.

able to estimate the state of a process that evolves as

x(k + 1) = Ax(k) + w(k). (3.18)

Accordingly, from now on, we will restrict our attention to the task of estimating in the minimum

mean squared error sense the state x(k) of a process evolving as in (3.18) across a network of

communication links.

3.5.1 Mathematical Notation

By an arbitrary network, we mean a network in which communication links are connected in an

arbitrary topology. As before, the source node or the encoder is placed at the sensor end and is

denoted by s. The decoder at the controller end needs to estimate the process state. It is designated

as the sink or the destination node d. The source s and the destination d are connected via a

network of communication links. We can model the communication network as a directed graph G
in a natural way. Denote the node set of G by V. Note that, in particular, V contains s and d.

Also, denote the edge set of G by E ⊆ V × V. The edges of the graph represent the communication

links and are, in general, directed. Specifically, the link e = (u, v) models a communication channel

between node u and node v. We assume there are M edges or links present in the network. For any

node i ∈ V, the set of outgoing edges corresponds to the links along which the node can transmit

messages while the set of incoming edges corresponds to the links along which the node receives
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messages. We denote the set of in-neighbors of node v by Nv. As stated above, the networks that

we consider are arbitrary, so that we make no a priori assumptions on the topology of the graph

depicting the network.

The communication links are once again modeled using a packet erasure model. If the packet

dropping process is independent from one time step to the next (or, in other words, memoryless),

the probability of dropping a packet on link e ∈ E is given by pe independent of time. If the process

is uncorrelated in space, each probability pe is independent of other links as well.

The operation of the different nodes in the network at every time-step k can be described as

follows:

1. Every node computes a function of all the information it has access to at that time.

2. It transmits the function on all the out-going edges. We allow some additional information

in the message that tells us the time step j such that the function that the node transmits

corresponds to the state x(j). The sink node calculates the estimate of the current state x(k)

based on the information it possesses.

3. Every node observes the messages from all the incoming links and updates its information set

for the next time step. For the source node, the message it receives at time step k corresponds

to the observation y(k).

As in the case with a single link, at time step k, the function that the source node transmits depends

on measurements y(0), y(1), · · · , y(k − 1). We can easily adapt the discussion presented below to

the case when measurements till time step y(k) are available. Furthermore, even if there were no

packet drops, if the sink node is d hops away from the source node (i.e., the shortest path from the

source node to the sink node involves d edges), its estimate for the state x(k) at time k can only

depend on measurements y(0), y(1), · · · , y(k − d − 1) till time k − d − 1. Thus, unlike the model

in [166], every communication edge consumes one hop, or in other words, one time step as data is

transmitted over it.

3.5.2 Optimal Encoding and Decoding

For the node i, denote by Ii(k) the information set that it can use to generate the message that it

transmits at time step k. This set contains the aggregate of the information the node has received

on the incoming edges at time steps t = 0, 1, · · · , k − 1. As an example, for the source node s,

Is(k) = {y(0), y(1), · · · , y(k − 1)}.

Based on the information set I i(k), the i-th node can calculate its minimum mean squared error

(mmse) estimate of the state x(k). We denote the estimate calculated by the i-th node at time k as
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x̂i(k|Ii(k)) or more shortly as x̂i(k), where it is understood that the estimate is based on the informa-

tion set Ii(k). We denote the error covariance associated with this estimate by P i(k|Ii(k)) or more

compactly as P i(k). We aim to minimize the error covariance P d(k). Clearly, for two information

sets Ii(k, 1) and Ii(k, 2) related by Ii(k, 1) ⊆ Ii(k, 2), we have P i(k|Ii(k, 1)) ≤ P i(k|Ii(k, 2)).
The packet drops occur according to a random process. Let λuv(k) be the binary random variable

describing the packet drop event on link (u, v) ∈ E at time k. λuv(k) assumes the value ‘dropped’

if the packet is dropped on link (u, v) at time k and ‘received’ otherwise. For a network with

independent and memoryless packet drops, λuv(k) has a Bernoulli distribution with parameter puv.

We define λuu(k) = ‘received’. Once again, we refer to instantiations of the packet drop process as

packet drop sequences. Given a packet drop sequence, at time step k we can define a time stamp

ti(k) for node i such that the packet drops did not allow any information transmitted by the source

after ti(k) to reach the i-th node in time for it to be a part of I i(k).
Now, consider an algorithm A1 as follows. At time step k, every node takes the following actions:

1. Calculate the estimate of state x(k) based on the information set at the node.

2. Transmit its entire information set on the outgoing edges.

3. Receive any data successfully transmitted along the incoming edges.

4. Update its information set and affix a time stamp corresponding to the time of the latest

measurement in it.

When this algorithm is executed for a particular drop sequence, the information set at node i will

be of the form

Ii(k) = {y(0), y(1), · · · , y
(
ti(k)

)
},

where ti(k) < k is the time stamp as defined above. This is the maximal information set I i,max(k)

that the node i can possibly have access to with any algorithm. For any other algorithm, the

information set will be smaller than this since earlier packets, and hence measurements, might have

been dropped. The error covariance at any node when it calculates its estimate of the state x(k)

is the least when the information set it has access to is I i,max(k). The algorithm A1 requires an

increasing amount of memory and transmission as time goes on. We will now describe an algorithm

A2 that achieves the same performance at the expense of constant memory and transmission (modulo

the transmission of the time stamp). The algorithm proceeds as follows. At each time step k, every

node takes the following actions:

1. Calculate its estimate x̂i(k) of the state x(k) based on any data received at the previous time

step k − 1 and its previous estimate. The estimate can be computed using a switched linear

filter, as shown later.



100

2. Affix a time stamp corresponding to the latest measurement used in the calculation of the

estimate in step 1 and transmit the estimate on the outgoing edges.

3. Receive any data on the incoming edges and store it for the next time step.

To prove that algorithm A2 is indeed optimal, we need the following intermediate result.

Lemma 3.6 Consider any edge (i, j) and any packet drop pattern. At time step k, let the node i

transmit the measurement set

Sij = {y(0), y(1), · · · , y(l)}

on the edge (i, j) if algorithm A1 is executed. If, instead, algorithm A2 is executed, the node i

transmits the estimate

x̂
(
k|Sij

)
= x̂(k|{y(0), y(1), · · · , y(l)})

along the edge (i, j) at time step k.

Proof The proof readily follows by induction on the time step k. For time k = 1, the source node

s transmits {y(0)} along all edges of the form (s, .) while following algorithm A1 and the estimate

x̂(1|y(0)) while executing algorithm A2. If any edge is not of the form (s, .), there is no information

transmitted along that edge in either algorithm. Thus, the statement is true for k = 1. Now, assume

that the statement is true for k = n. Consider the node i at time k = n + 1. If the node i is the

source node, the statement is true by an argument similar to that at k = 1. Let us assume that

node i is not the source node. Consider all edges that transmitted data at time step k = n to node

i. If algorithm A1 is being executed, suppose the edge (p, i) transmits the measurement set

Spi = {y(0), y(1), · · · , y(t(p))},

where p ∈ Ni is an in-neighbor of node i. Also, denote the measurement set that the node i has

access to from time step k = n− 1 as

Sii = {y(0), y(1), · · · , y(t(i))}.

Note that at time step k = n, the node i transmitted the set Sii along all outgoing edges. Let v be

the node for which

t(v) = max{t(i) ∪ {t(p)|p ∈ Ni}}.

Then, at time k = n + 1 under algorithm A1, the node i transmits along all outgoing edges the

measurement set

S1 = {y(0), y(1), · · · , y(t(v))}.



101

Now, consider the case when algorithm A2 is being executed. By the assumption of the statement

being true at time step k = n, the edges (p, i) transmit the estimate

x̂(n|Spi) = x̂(n|{y(0), y(1), · · · , y(t(p))}),

for all p ∈ Ni. Also, since at time k = n the node transmitted Sii on any edge (i, .) in algorithm

A1, it has access to the estimate x̂(n|Sii) when algorithm A2 is executed. Clearly, the set Svi is the

superset of all sets Sii and Sji where j ∈ Ni and v have been defined above. Thus, the estimate

that the node i calculates at time k = n+ 1 is x̂(n+ 1|Svi). But the measurement set Svi is simply

the set S1. Hence, at time step k = n+1, the node i transmits along all outgoing edges the estimate

x̂(n + 1|S1). Thus, the statement is true at time step k = n + 1 along all edges of the form (i, .).

Since the node i was arbitrary, the statement is true for all edges in the graph. Thus, we have proven

that if the statement is true at time k = n, it is true at time k = n+ 1. But it is true at time k = 1.

Thus, by the principle of mathematical induction, it is true at all time steps.

Note that we have also shown that if at time step k, the node has access to the measurement set S ii

from time step k− 1 when algorithm A1 is executed; it has access to the estimate x̂(k− 1|Sii) from

time step k − 1 when algorithm A2 is executed. We can now state the following result.

Proposition 3.7 The algorithm A2 is optimal in the sense that it leads to the minimum possible

error covariance at any node at any time step.

Proof Consider a node i. At time k, let j ∈ Ni ∪ {i} such that λji(k− 1) = ‘received’. Denote the

measurement set that is transmitted from node j to node i at time step k under algorithm A1 by

Sji. As in the proof of Lemma 3.6, there is a node v, such that Svi is the superset of all the sets

Sji. Thus, the estimate of node i at time k under algorithm A1 is

x̂A1(k) = x̂(k|Svi).

From Lemma 3.6, when algorithm A2 is executed, at time step k, the node i has access to the

estimates x̂(k− 1|Sji). Once again, since Svi is the superset of all the sets Sji, the estimate of node

i at time step k is simply

x̂A2(k) = Ax̂(k − 1|Svi) = x̂(k|Svi).

Thus, we see that for any node i, the estimates x̂A1(k) and x̂A2(k) are identical for any time step k

for any packet drop pattern. But algorithm A1 leads to the minimum possible error covariance at

each node at each time step. Thus, algorithm A2 is optimal.

Remarks
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1. The step of calculating the estimate at each node in the algorithmA2 can be implemented using

a switched linear filter as follows. The source node implements a Kalman filter and updates

its estimate at every time step with the new measurement received. Every other node i checks

the time-stamps on the data coming on the incoming edges. The time-stamps correspond to

the latest measurement used in the calculation of the estimate being transmitted. Then, node

i updates its time-stamp using the relation

ti(k) = max
j∈Ni∪{i}

λji(k − 1)tj(k − 1). (3.19)

Suppose the maximum of (3.19) is achieved by node v ∈ Ni ∪ {i}. Then, the node i updates

its estimate as

x̂i(k) = Ax̂v(k − 1),

where x̂v(k) denotes the estimate of the state x(k) maintained by the node v.

2. As in the case of a single link, the algorithm is optimal for any packet drop pattern, i.e.,

irrespective of whether the packet drops are occurring in an i.i.d. fashion or are correlated

across time or space or even adversarial in nature. We also do not assume any knowledge

of the statistics of the packet drops at any of the nodes. Finally, if the communication links

introduce finite delays and packet reordering, the algorithm can be modified along the lines of

Section 3.4.2.

3. We have proved that the algorithm is optimal for any node. Thus, we do not need to assume

only one sink. The algorithm is also optimal for multiple sources if all sources have access

to measurements from the same sensor. For multiple sources with each source obtaining

measurements from a different sensor, the problem remains open.

4. A priori we had not made any assumption about a node transmitting the same message along

all the out-going edges. It turned out that in this optimal algorithm, the messages are the

same along all the edges. Thus, the algorithm is suitable for broadcast channels such as the

wireless channel.

5. The communication requirements can be reduced somewhat by adopting an event-based pro-

tocol in which a node transmits only if it updated its estimate based on data arriving on an

incoming edge at the previous time step. This will not degrade the performance but reduce

the number of transmissions, especially if packet drop probabilities are high.

In a sense our algorithm corresponds to communication of information over a digital channel while

the strategy of using no encoding is an analog communication scheme. Our algorithm allows the

intermediate nodes to play the role of repeaters that help to limit the effect of the channel by
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decoding and re-encoding the data along the way. In analog channels, repeaters make no difference

in the received Signal-to-Noise ratio and hence the signal quality. Similarly, in our setting, if raw

measurements are being transmitted, presence of intermediate nodes does not help in improving the

estimation performance.

3.5.3 Stability Analysis

For the rest of the chapter, we will assume that packets are dropped in each link in an i.i.d. fashion

with the loss probability in link e = (u, v) being pe. We also assume packet drop processes in

two different links to be independent of each other. We begin by computing the conditions for the

estimate error at the sink node to be stable under algorithm A2 (or equivalently A1) when the

source and the sink are connected with a network of arbitrary topology. Since the algorithm A2 is

optimal, these form necessary conditions for the estimate error covariance to be stable under any

other algorithm (in particular, for the case when the nodes do not do any processing and simply

transmit measurements).

Once again, we are interested in stability in the bounded second moment sense. Thus, for the

destination node trying to estimate a process of the form (3.18), denote the error at time step k as

ed(k) = x(k)− x̂d(k),

where x̂d(k) is the estimate of the destination node. We can compute the covariance of the error

e(k) at time k as

P d(k) = E
[
ed(k)(ed(k))T

]
,

where the expectation is taken over the initial condition x(0), the process noise w(j), the measure-

ment noise v(j) and the packet dropping processes in the network. We consider the steady-state

error covariance in the limit as k goes to infinity, i.e.,

P d(∞) = lim
k→∞

P d(k). (3.20)

If P d(∞) is bounded, we will say that the estimate error is stable; otherwise it is unstable.

We can isolate the effect of the network by explicitly taking the expectation with respect to the

packet dropping process. For node d and time k, td(k) denotes the time-stamp of the most recent

observation used in estimating x(k) at the destination node d. This time-stamp evolves according
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to (3.19). The expected estimation error covariance at time k at node d can thus be written as

P d(k) = E
[
ed(k)(ed(k))T

]

= E
[(
x(k)− x̂d(k)

) (
x(k)− x̂d(k)

)T
]

=

k∑

l=0

E
[(
x(k)− x̂d(k|td(k) = l)

) (
x(k)− x̂d(k|td(k) = l)

)T
]

Prob
(
td(k) = l

)
,

where, in the final equation, we have explicitly taken the expectation with respect to the packet

dropping process and x̂d(k|td(k) = l) denotes the estimate of x(k) at the destination node given

all the measurements {y(0), y(1), · · · , y(l)}. We see that the effect of the packet dropping process

shows up in the distribution of the time-stamp of the most recent observation used in estimating

x(k)6. For future use, we denote the latency for the the node d at time k as

ld(k) = k − 1− td(k).

Also, denote the mmse estimate of x(k) given all the measurements {y(0), y(1), · · · , y(k − 1)} by

M(k). Clearly M(k) evolves in time according to a Riccati recursion. We can now rewrite the error

covariance P d(k) as

P d(k) =

k−1∑

l=0

E
[(
x(k)− x̂d(k|ld(k) = l)

) (
x(k)− x̂d(k|ld(k) = l)

)T
]

× Prob
(
ld(k) = l

)

=
k−1∑

l=0



AlM(k − l)
(
Al
)T

+
l−1∑

j=0

AjQ
(
Aj
)T



Prob
(
ld(k) = l

)
. (3.21)

The above equation gives the expected estimation error covariance for a general network with any

packet dropping process. The effect of the packet dropping process appears in the distribution of

the latency ld(k). As we can see from (3.21), the stability of the system depends on how fast the

probability distribution of the latency decreases.

To analyze the stability, we use Proposition 3.4, which is restated here for the case of independent

packet drops.

Proposition 3.8 Consider a process of the form (3.18) being estimated using measurements from

a sensor of the form (3.17) over a packet-dropping link that drops packets in an i.i.d. fashion with

probability p. Suppose that the sensor calculates the mmse estimate of the measurements at every

time step and transmits it over the channel. Then, the estimate error at the receiver is stable in the

6Note that Prob
`

td(k) = k
´

= 0.
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bounded second moment sense if and only if

p|ρ(A)|2 < 1,

where ρ(A) is the spectral radius of the matrix A appearing in (3.18).

Network with Links in Parallel

We begin by considering a network consisting only of links in parallel. Consider the source and the

sink node being connected by a network with m links in parallel with the probability of packet drop

in link e being pe. Since the same data is being transmitted over all the links, the distribution of

the latency in (3.21) remains the same if the network is replaced by a single link that drops packets

when all the links in the original network drop packets and transmits the information if even one

link in the original network allows transmission. Thus, the packet drop probability of this equivalent

link is p1p2 · · · pm. The necessary and sufficient condition for the error covariance to diverge thus

becomes

p|ρ(A)|2 < 1,

where

p = p1p2 · · · pm.

Necessary Condition for Stability in Arbitrary Networks

Using the result for parallel networks, we can obtain a necessary condition for stability for general

networks as follows.

Proposition 3.9 Consider a process of the form (3.18) being estimated using measurements from a

sensor of the form (3.17) through an arbitrary network of packet dropping links with drop probabilities

pe’s. Consider every possible division of the nodes of the network into two sets with the source and

the sink node being in different sets (also called a cut-set). For any such division, let p1, p2, · · · , pn
denote the packet erasure probabilities of the edges that connect the two sets (equivalently, the edges

that are in the cut). Define the cut-set erasure probability as

pcut set = p1p2 · · · pn.

Then, a necessary condition for the error covariance to converge is

pnetwork|ρ(A)|2 < 1,
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where pnetwork is the network erasure probability defined as

pnetwork = max
all possible cut-sets

pcut set.

Proof Denote the given network by N1. Consider a cut set C of the network N1, with the source s

being in set A and the destination node d in set B and the links 1, 2, · · · , n joining the sets A and

B. Form another network N2 by replacing all links within the sets A and B by perfect links, i.e.,

links that do not drop packets and further do not introduce any delay as data is transmitted across

them. Now for any packet drop pattern, denote the information sets that the destination node has

access to at any time step k over networks N2 and N1 by Id,N2(k) and Id,N1(k) respectively. It is

obvious that

Id,N1(k) ⊆ Id,N2(k).

Thus, the estimate error covariances at the destination node for the two networks are related by

P d(k|Id,N1(k)) ≥ P d(k|Id,N2(k)).

Hence, by considering the stability of error covariance over network N2, we can obtain a necessary

condition for the stability of error covariance over network N1. Now N2 consists of the source and

the sink joined by edges 1, 2, · · · , n in parallel. The condition for the error covariance across N2 to

converge is thus

pcut set|ρ(A)|2 < 1,

where

pcut set = p1p2 · · · pn.

This is thus a necessary condition for error covariance across N1 to be stable. One such condition

is obtained by considering each cut-set. Thus, a necessary condition for the error covariance to

converge is

pnetwork|ρ(A)|2 < 1,

where

pnetwork = max
all possible cut-sets

pcut set.

Network with Links in Series

Consider now the case where the network consists of two links in series, with probability of packet

drops p1 and p2. Denote the nodes as N1, N2 and N3 with N1 being the source node and N3 the

sink. Denote the estimate at node Ni at time k by x̂i(k). Also, let e1(k) be the error between
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x(k) and x̂2(k). Similarly let e2(k) be the error between x̂2(k) and x̂3(k). We are interested in the

second moment stability of e1(k)+ e2(k). Clearly, a sufficient condition is that both e1(k) and e2(k)

individually be second moment stable. Applying Proposition 3.8, this translates to the condition

p1|ρ(A)|2 < 1

p2|ρ(A)|2 < 1.

If p be the greater of the probabilities p1 and p2, the sufficient condition thus is

p|ρ(A)|2 < 1.

But this is identical to the necessary condition stated in Proposition 3.9. Thus, the condition above

is both necessary and sufficient. Clearly this argument can be extended to any number of links in

series. If there are m links in series with the probability of drop of the i-th link being pi, then a

necessary and sufficient condition for the estimate error to diverge at the sink node is

p|ρ(A)|2 < 1,

where

p = max(p1, p2, · · · , pm).

Sufficient Condition for Arbitrary Networks

We now proceed to prove that the condition stated in Proposition 3.9 is sufficient as well for stability.

We have the following result.

Proposition 3.10 Consider the assumptions of Proposition 3.9 on the process and the network.

Then, the algorithm A2 will stabilize the process in (3.18) given that

pnetwork|ρ(A)|2 < 1

Proof First note that if a packet dropping link between two nodes v and u with probability of drop

pe is replaced by two parallel links with drop probabilities p
(1)
i and p

(2)
i such that pi = p

(1)
i p

(2)
i ,

the average error covariance of the estimation under algorithm A2 does not change at any node.

This is true because the probability distribution of the latency in (3.21) does not change with this

replacement.

Now, consider the set Γ = {γ1, γ2, · · · γm} of all simple directed paths from the source to the

sink in the network graph. An edge i may be in more than one of these paths. If the edge i is in
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path γj , we will denote that as i ∈ γj . Consider the following optimization problem

min
βj

m∏

j=1

βj , (3.22)

subject to the constraints

∏

i∈γj

βj ≥ pi ∀ edges i in the network (3.23)

1 ≥ βj ≥ 0 ∀j = 1, 2, · · · ,m.

A simple change of variables

ψj = − log βj , (3.24)

transforms the above optimization problem into the following linear program in the variables ψj ’s

max
ψj

m∑

j=1

ψj (3.25)

subject to

∑

i∈γj

ψj ≤ − log pi ∀ edges i in the network

ψj ≥ 0 ∀j = 1, 2, · · · ,m.

The solutions of the optimization problems (3.22) and (3.25), denoted by {β?j } and {ψ?j }, are related

through the relation

ψ?j = − log β?j .

The structure of the linear program (3.25) is the same as the one used for finding the maximum flow

possible in a fluid network [36, Page 59] with the same topology as our packet dropping network

and the capacity of the link i being equal to − log pi. The solution to the problem of finding the

maximum flow through a fluid network is well-known to be given by the max-flow min-cut theorem.

Using this fact, we see that the solution to the optimization problem (3.25) is given by

ψ?j = min
all possible cut-sets

(
∑

i∈cut

− log pi

)

.
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Thus, for the optimization problem (3.22), the solution is given by

β?j = max
all possible cut-sets

(
∏

i∈cut

pi

)

(3.26)

= max
all possible cut-sets

pcut set

= pnetwork.

Next, consider the paths in the set Γ. Assign to each path γj the value β?j obtained in (3.26).

Form a new set B of all those paths γj ’s for which the associated optimal variable β?j is strictly

less than one. The remaining paths in Γ have equivalent erasure probability as unity and can be

ignored. Now form a new network N ′ as follows. The node set of N ′ is the union of those nodes of

the original network N that are present on any path in B. Each pair of nodes (u, v) in the node set

of N ′ is connected by (possibly) multiple links. For all paths γj ∈ B, if an edge i is present between

two nodes u and v, we add an edge between nodes u and v in N ′ and associate with it an erasure

probability β?j . The following properties of N ′ are easily verified.

• By construction, N ′ can be presented as union of edge-disjoint paths. Each path in N ′

corresponds to one path in B. Furthermore, for each path, the probabilities of packet drop on

all the links of that path are equal (in fact, equal to β?j ).

• By virtue of (3.26) and the procedure followed to construct N ′, the product of the probabilities

of packet drop of the different paths is equal to the equivalent probability of the network,

pnetwork, for the network N .

• For any pair of nodes that were connected by a link in N , the product of the probabilities of

packet dropping of the links in N ′ connecting these two nodes is greater than or equal to the

drop probability of the link between the same pair of nodes in N . This can be seen from the

first inequality constraint of (3.23).

Therefore, the estimate error covariance at the sink by following algorithm A2 in the original network

N is less than or equal to the error covariance by following A2 in the new network N ′. Thus, to

obtain a sufficient condition on stability, we can analyze the performance of A2 in the network N ′.

For this we consider another algorithm, which we denote as A3. In this algorithm we consider the

disjoint paths in N ′ and assume that estimates on different paths are routed separately. Thus, if a

node lies on many paths, on each path it forwards the packets it received on that path only. Clearly

the performance A3 cannot be better than A2 since in A2 we send the most recent estimate received

from different paths at any node compared to forwarding the estimates on different paths separately

from each other.

Therefore, to prove the theorem we only need to show the stability of estimation using protocol

A3 assuming that the condition of Proposition 3.9 holds. Since we do not mix the estimates obtained
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from different paths in A3, the network can be considered as a collection of parallel paths, with each

path consisting of links with equal drop probability. Therefore using the stability analysis of serial

networks presented earlier, each path (from a stability point of view) can be viewed as an erasure

channel with drop probability equal to the drop probability of one link in that path. Using the

stability analysis of parallel networks, we see that the stability of the new network under protocol

A3 operation is equivalent to the stability of a packet erasure link with probability of erasure equal

to the product of the drop probabilities of different path, which, as mentioned earlier, is equal to

the network erasure probability defined in Proposition 3.9. Therefore, assuming that the network

erasure probability satisfies

pnetwork|ρ(A)|2 < 1, (3.27)

the network N ′ is stable under protocol A3. But the performance of A3 cannot be better than of

A2. Thus, N ′ is stable under A2. Therefore the original network N is stable under protocol A2

assuming (3.27) is satisfied.

Remarks

1. We have provided a necessary and sufficient condition for the expected error covariance to

remain bounded for a network of arbitrary topology. For any other causal data processing

algorithm, it provides a necessary condition for stability. For the special case of the network

consisting of only one link with erasure probability p, pnetwork = p and the condition reduces

to the condition in Proposition 3.8, as it should.

2. We can also compare the stability condition we have derived for our algorithm with our in-

formation processing algorithms. In particular, let us compare this condition to a simpler

algorithm Ā in which the intermediate nodes do not have any memory. At each time step

k, the source node forwards the measurement y(k − 1). The intermediate nodes compare the

time stamps of the measurements they received at the previous time step along different in-

coming edges and forward the most recent one. If they did not receive any measurement on

the last time step, they do not transmit anything. By definition, the probability that the

destination node receives any particular measurement y(k) from the source over the network

is upper-bounded by the reliability of the network (see, e.g., [47]). Let us consider a simple

example of a line network in which n edges each with drop probability p are combined in series.

With our optimal algorithm, the necessary and sufficient condition for expected estimate error

covariance to be stable is

p|ρ(A)|2 < 1.

On the other hand, in algorithm Ā, the probability that any measurement is received by the
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destination node is

q = 1− (1− p)n.

By a method similar to the one used in [77, 178], it can be proven that a necessary condition

for stability is that

q|ρ(A)|2 < 1.

As an example, for n = 5 links and drop probability p = 0.2, q = 0.67. Thus, our algorithm

yields a huge improvement for the stability margin.

3.5.4 Performance Analysis

In this section we calculate the performance of the algorithm A2. We are interested in the steady-

state expected estimate error covariance defined in (3.20). As in the stability analysis, we assume

that the packet drops are memoryless and uncorrelated in space. For each link e and time k, let

Ze(k) be the difference between k and the time at which the most recent successful transmission on

link e before time k happened, i.e.,

Ze(k) = min{j ≥ 1|λuv(k + 1− j) = ‘received’}.

We define Zuu(k) = 1. Using the definition of Ze(k), the last time that any message is received at

node v from link (u, v) is k−Zuv(k)+1 and that message has time-stamp tu(k−Zuv(k)). Then, (3.19)

can be rewritten in terms of Ze(k) as

tv(k) = max
u∈v∪Nv

tv(k − Zuv(k)).

Ze(k) is distributed as a truncated geometric random variable. For 1 ≤ i < k,

Prob (Ze(k) = i) = (1− pe)pi−1
e ,

while for i = k,

Prob (Ze(k) = i) = 1−
k−1∑

i=1

Prob (Ze(k) = i).

We can get rid of the truncation by extending the definition of tu(k) for the case k < 0. We define

tu(k) = 0 ∀k < 0.
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As an example, for the source node s, without extending the definition we have

ts(k) = k − 1 ∀k ≥ 1.

Using the extended definition,

ts(k) = (k − 1)+ ∀k,

where x+ = max{0, x}. In general, using the extended definition of tu(k) for all k and for any node

u, we can easily verify that

tv(k) = max
u∈v∪Nv

tu(k − Zuv(k)), (3.28)

where Ze(k)’s are now independent random variables distributed according to a geometric distribu-

tion. Thus,

Prob (Ze(k) = i) = (1− pe)pi−1
e ∀i ≥ 1,∀k.

Note that Ze(k)’s do not depend on k anymore. Thus, from now on, we will omit the argument

k and just write Ze. We will refer to pe as the parameter of the geometrically distributed random

variable Ze. Solving the recursive equation (3.28), we can write tv(k) in terms of the time-stamp at

the source node (i.e., (k − 1)+) as

tv(k) = max
P :an s-v path

(k − 1−
∑

e∈P

Ze)
+, (3.29)

where the maximum is taken over all paths P in the graph G from source s to the node v. Therefore

the latency at node v can be written as

lv(k) = k − 1− tv(k) = min{k − 1, min
P :an s-v path

(
∑

e∈P

Ze)}.

From the above equation, it can be seen that as k → ∞ the distribution of lv(k) approaches a

constant distribution of lv defined as

lv = min
P :an s-v path

(
∑

e∈P

Ze). (3.30)

For the destination node d, we refer to ld as the steady-state latency of the network. Let us now

concentrate on the destination node7. From (3.21), the steady-state error covariance can now be

rewritten as

P (∞) =
∞∑

l=0

Prob (ld = l)



AlP ?Al +
l−1∑

j=0

AjQAj



 , (3.31)

7If we are interested in the error covariance at some other node v, simply denote v as the destination node.
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where P ? is the steady-state estimation error covariance of x(k) based on the measurements {y(0),
y(1), · · · , y(k − 1)} and is the solution to the Discrete Algebraic Riccati Equation (DARE)

P ? = AP ?AT +Rw −AP ?CT (CP ?CT +Rv)
−1CP ?AT .

Since the pair {A,R
1
2
w} is stabilizable, the rate of convergence of P (0) to P ? is exponential [112] and

the substitution of P ? for P (k − 1) in (3.21) does not change the steady-state error covariance.

Let us define the generating function of the complementary density function G(X) and the

moment generating function F (X) of the steady state latency ld

G(X) =

∞∑

l=0

Prob (ld ≥ l + 1)X l (3.32)

F (X) =

∞∑

l=0

Prob (ld = l)X l,

where X is an arbitrary matrix. It can be readily verified that

F (X) = (X − I)G(X) + I. (3.33)

On vectorizing (3.31) we obtain

vec (P (∞)) = F (A⊗A) vec (P ?) +G (A⊗A) vec (Q)

= ((A⊗A− I)G(A⊗A) + I) vec (P ?) +G(A⊗A)vec (Q) . (3.34)

We can see from (3.34) that the performance of the system depends on the value of G(X) evaluated

at X = A ⊗ A. In particular, the system is stable if and only if G(X) is bounded at A ⊗ A. Since

G(X) is a power series, boundedness of G(x) at A ⊗ A is equivalent to the boundedness of G(x)

(evaluated for a scalar x) at the square of the spectral radius of A. We summarize the result of the

above arguments as follows.

Proposition 3.11 Consider a process of the form (3.18) being observed using a sensor of the form

(3.17) through an arbitrary network of packet dropping links with drop probabilities pe’s. Let the

packet drops be independent from one time step to the next and across links. Then, the minimum

expected steady-state estimation error covariance at the receiver is given by (3.34). Furthermore, the

error covariance is stable, in the sense of bounded expected steady-state error, iff |ρ(A)|2 lies in the

region of convergence of G(x) where ρ(A) is the spectral radius of A.

The above theorem allows us to calculate the steady state expected error covariance for any network

as long as we can evaluate the function G(X) for that network. We now consider some special
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networks and evaluate the performance explicitly. We start with a network consisting of links in

series, or a line network.

Line Networks

In this case, the network consists of only one path from the source to the destination. Thus,

F (X) = E
[

X ld
]

= E
[

X
P

e Ze

]

,

where the summation is taken over all the edges in the path. Since the drops across different links

are uncorrelated, the variables Ze’s are independent. Since Ze is a geometric random variable,

E
[
XZe

]
= (1− pe)X (I − peX)

−1
,

provided that peρ(X) < 1, where ρ(X) is the spectral radius of matrix X. Therefore,

F (X) = E
[

X
P

e Ze

]

=
∏

e

E
[
XZe

]
=
∏

e

[

(1− pe)X (I − peX)
−1
]

.

Using partial fractions and the relation in (3.33), we can thus easily show that G(X) is given by

G(X) =

n−1∑

i=0

Xi +Xn
∑

e

ce
pe

1− pe
(I − peX)−1,

where

ce = (
∏

e′ 6=e

(1− pe
pe′

))−1.

Therefore the cost can be written as

vec (P (∞)) =
∏

e

[

(A⊗A)

(
I − peA⊗A

1− pe

)−1
]

vec (P ?) +G (A⊗A) vec (Q) . (3.35)

Remarks

1. We can see from the above argument that the system is stable if for every link e we have

pe|ρ(A)|2 < 1 or equivalently maxe pe|ρ(A)|2 < 1. This matches with the condition in sec-

tion 3.5.3.

2. For the case that some of pe’s are equal, a different partial fraction expansion applies. In
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particular for the case when there are n links all with the erasure probability p, we obtain

vec (P (∞)) = (A⊗A)n
(
I − pA⊗A

1− p

)−n

vec (P ?)

+

n−1∑

i=0

[

p

1− p (A⊗A)n
(
I − pA⊗A

1− p

)−i−1
]

vec(Q) +

n−1∑

i=0

(A⊗A)ivec(Q). (3.36)

3. When there is only one link between the source and the destination, the cost reduces to a

particularly simple form. In that case, the steady state error covariance will be the solution

to the Lyapunov equation

P (∞) =
√
pAP (∞)

√
pA+ (Q+ (1− p)AP ?A) .

This expression can alternately be derived using Markov jump linear system theory as in

Proposition 3.5.

Network of Parallel Links

Consider a network with one sensor connected to a destination node through n links with probabilities

of packet drop p1, . . . , pn. Since the same data is being transmitted over all the links, using (3.30)

the steady state latency can be written as

ld = min
1≤i≤n

(Zi).

Note that Zi’s are all independent geometrically distributed variables with parameters pi’s respec-

tively. It is an easy excercise to show that their minimum is itself geometrically distributed with

parameter

peq =
∏

i

pi.

Thus, F (X) can be evaluated as

F (X) = (1− peq)X(I − peqX)−1,

and G(X) can thus be written as

G(X) = (I − peqX)−1 = (I −
∏

i

piX)−1.
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Thus, the steady-state error can be evaluated using (3.34). Note that the region of convergence of

G(X) enforces for stability
∏

i

pi|ρ(A)|2 < 1,

which again matches with the condition in Section 3.5.3.

Arbitrary Network of Parallel and Serial Links

Using similar arguments as in previous sections, we can find the steady-state error covariance of

any network of parallel and serial links. These networks are derived from the parallel and serial

concatenations of sub-networks. The following two simple rules can give the generating function of

the steady-state latency for any network of parallel and series links. Let ld(N ) denote the steady-

state latency function of network N . Also, given two subnetworks N1 and N2, denote their series

combination by N1 ⊕N2 and their parallel combination by N1‖N2.

1. Suppose the network N can be decomposed as a series of two subnetworks N1 and N2. Then,

from the definition of the steady-state latency, and the fact that packet erasures in the two

subnetworks are independent of each other, we have

ld(N1 ⊕N2) = ld(N1) + ld(N2).

Thus, we obtain

FN1⊕N2
(X) = E

[

X ld(N1⊕N2)
]

= E
[

X ld(N1)+l
d(N2)

]

= E
[

X ld(N1)
]

E
[

X ld(N2)
]

= FN1
(X)FN2

(X) .

Finally, using (3.33), the complementary density function of the network N is given as

GN1⊕N2
(X) = (X − I)−1

(FN1⊕N2
(X)− I)

= GN1
(X) (X − I)GN2

(X) +GN1
(X) +GN2

(X)

= (X − I)GN1
(X)GN2

(X) +GN1
(X) +GN2

(X) ,

where in the last line we have used the fact that

G(X)(X − I) = (X − I)G(X).
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2. If the network N can be decomposed as parallel combination of two sub-networks N1 and N2,

we have

ld(N1‖N2) = min{ld(N1), l
d(N2)}.

Once again, the erasures in the two subnetworks are independent of each other. Thus,

Prob
(
ld(N1‖N2) ≥ l

)
= Prob

(
ld(N1) ≥ l

)
Prob

(
ld(N2) ≥ l

)
.

Thus, if we denote

GN1
(X) =

∞∑

i=0

aiX
i GN2

(X) =
∞∑

i=0

biX
i,

then

GN1‖N2
(X) =

∞∑

i=0

aibiX
i.

We can now easily derive the steady state error of any network consisting of links in series and

parallel with each other using the above two rules. As an example consider the network depicted in

Fig. 3.12. In this case

ee

s
e

e

e

d
4

3

1

2

0

Figure 3.12: Example of a network of combination of parallel and serial links

N = (((N0 ⊕N1)‖N2)⊕N3)‖N4) ,

where each of the sub-networks Ni is just a link with probability of packet drop p. The generating

function of a link with erasure probability p is given by

G(X) = (I − pX)−1.

Suppose a subnetwork with generating function G(X) is in parallel with a link with erasure prob-

ability p. Then, it is easy to see that the generating function of the entire network is given by

Lp(G)(X), where Lp is an operator such that Lp(G)(X) = G(pX). Thus, the generating function
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of the network can be written as

G(X) = Lp(Lp(G0 ∗G1) ∗G3)(X)

where

Gi(X) = (I − pX)−1, i = 0, 1, 3

is the generating function for the i-th link and Gi ∗Gj denotes the generating function of the series

combination of link i and j. The steady state error covariance can thus be evaluated.

Networks with Arbitrary Topology

In this section, we consider the performance of arbitrary networks. Finding the distribution of the

steady-state latency ld of a general network is not an easy task, because different paths may overlap.

This can introduce dependency in the delays incurred along different paths and the calculation of

the minimum delay and hence the steady-state latency becomes quite involved. However, using a

method similar to the one used in Section 3.5.3, we can provide upper and lower bounds on the

performance. We first mention the following intuitive lemma without proof.

Lemma 3.12 Let P∞(N , {pe, e ∈ E}) denote the expected steady-state error of a system with com-

munication network represented by graph N = (V, E) and probabilities of packet drop pe, e ∈ E.
Then, the expected steady-state error is non-increasing in pe’s, i.e., if pe ≤ qe ∀ e ∈ E

P∞(N , {pe, e ∈ E}) ≤ P∞(N , {qe, e ∈ E}).

Lower Bound Using the above lemma, we can lower bound the steady-state error by making a

subset of links erasure free. This is similar to the method we used to prove the necessity of the

stability condition in section 3.5.3. Consider any cut-set of the network. Setting the probability of

erasure equal to zero for every link except those forming the cut gives a lower bound on the error.

Therefore,

P∞(N , {pe, e ∈ E}) ≥ P∞(N , {qe, e ∈ E}),

where

qe =







pe e is in the cut

0 otherwise.

Now P∞(N , {qe, e ∈ E}) can be evaluated using the results given above for a network of parallel

links. By considering the maximum along all possible cut-sets, we obtain the closest lower bound.
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Upper Bound Once again, we use a method similar to the one used to prove the sufficiency of the

stability condition in Section 3.5.3. In the proof of Proposition 3.10, it is shown that the performance

of the network N is lower bounded by the performance of another network N ′ (in other words, the

error covariance in N is upper bounded by the error covariance in N ′ that has series and parallel

links only and has the following properties:

• N and N ′ have the same node set.

• N ′ is the combination of edge-disjoint paths from the source to destination.

• The value of the max-cut in N ′ is the same as in the original network N .

The performance of N ′ can be computed based on the results given above for arbitrary networks

composed of subnetworks in series and parallel. This provides an upper bound on the steady-state

error covariance of the original network.

3.5.5 Examples

In this section, we illustrate the above results using some simple examples. Consider a scalar process

evolving as

x(k + 1) = 0.8x(k) + w(k),

that is being observed through a sensor of the form

y(k) = x(k) + v(k).

The noises w(k) and v(k) are assumed zero-mean, white, independent and Gaussian with unit

variances. To begin with, suppose that the source and the destination node are connected using

two links in series, each with a probability of packet erasure p. Figure 3.13 shows the performance

of our strategy as the probability p is varied. The simulation results refer to data generated by a

random run averaged over 100000 time steps while the theoretical values refer to the value predicted

by using (3.34). We can see that the two sets of values match quite closely.

We also carried out a similar exercise for the source and destination nodes connected by two

links in parallel, each with packet erasure probability p. The results are plotted in Figure 3.14. We

can once again see that the simulated values match quite closely with the theoretical values.

As the next example, we consider the source and destination nodes connected by a bridge network

shown in Figure 3.15. We assume all the links in the network to have probability of erasure p. This

network cannot be reduced to a series of series and parallel sub-networks. We can however, calculate

the performance analytically in this particular case and compare it to the upper and lower bounds

presented earlier. The networks used for calculating the bounds are also shown in Figure 3.15.
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Figure 3.13: Simulated and theoretical results for a line network.
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Figure 3.14: Simulated and theoretical results for a parallel network.
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Figure 3.15: Bridge network and the networks used for calculating lower and upper bounds.

Figure 3.16 shows a comparison of the analytical and simulated values with the lower and upper

bounds. The simulated values do not fall below the upper bound every-time because of numerical

issues; otherwise the bounds are tight.

We can also compare the performance of our algorithm with that obtained if no encoding were

done and only measurements were transmitted. Consider the process

x(k + 1) =




1.25 0

1 1.1



x(k) + w(k)

being observed by a sensor of the form

y(k) = x(k) + v(k),

where w(k) and v(k) are white independent Gaussian noises with means zero and covariance identity.

We consider transmission of data across a series of n channels. Figure 3.17 shows the difference in

simulated performance of the algorithm in which no encoding is done and for our algorithm for

various values of n. It can be seen that the there is considerable gain in performance even for

moderate packet drop probabilities if the optimal encoding algorithm is followed. For each point we

did 50000 simulations with each simulation being 1000 time steps long.

As a final example, we consider the process

x(k + 1) = 1.2x(k) + u(k) + w(k)
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Figure 3.16: Simulated values and theoretical bounds for the bridge network.
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being observed through a sensor of the form

y(k) = x(k) + v(k),

which communicates with the controller over a series network of n links each with packet drop

probability p. The controller is interested in minimizing the quadratic cost

J = lim
K→∞

1

K
E

[
K∑

k=0

xT (k)Qx(k) + uT (k)Ru(k)

]

.

The cost matrices Q and R as well as the noise variances Rw and Rv are assumed to be unity.

Figure 3.18 shows the variation of the cost with the probability for different number of links n. The

loss in performance is very rapid with the increase in number of links for even moderate values of

drop probability.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700

800

900

1000

Prob. of packet drop p

C
on

tr
ol

 c
os

t

 

 
n=1

n=2

n=3

n=4

n=5

Figure 3.18: Loss in performance as a function of packet drop probability for n links in series.

3.5.6 Correlated erasure events

The analysis so far assumed that the erasure events are memoryless and independent across different

links in the network. We could thus formulate the performance in terms of a generating function of

the steady-state latency distribution as defined in (3.30) and also obtain stability conditions. We
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now look at the effect of dropping these assumptions.

Markov events

If we assume that the drop events on each link are governed by a Markov chain (but are still

independent of other links), we can obtain the performance as follows. Let us assume that the

packet drop event on link (u, v) evolves according to a Markov chain with transition matrix Muv

where Muv is irreducible and reversible. Let us first consider the case where the initial distribution

of packet drop on each link is the stationary distribution of the Markov chain on that link. Then,

we can rewrite (3.19) in a similar fashion as (3.29) where Zl is a geometric random variable with

distribution

Prob (Zuv = l) =







αuvMuv(1, 2)Muv(1, 1)
l−2 ∀ l ≥ 2

1− αuv l = 1

,

with αuv as the probability of packet drop based on the stationary distribution of link (u, v) and

Muv(i, j) as the (i, j)-th element of Muv. Therefore, all the previous analysis goes through. In

particular, the stability condition is

( max
c:s-d cut

∏

e∈c

Me(1, 1))|ρ(A)|2 < 1.

Now, if the initial distribution is not the stationary distribution, the variables Zuv(k) will not be

time-independent and the analysis does not goes through. However, since for large k the Markov

chains will approach their stationary distribution, the stability condition remains unchanged.

Spatially correlated events

Suppose that the packet drop events are correlated across the network but memoryless over time.

Now Ze(k)’s are not independent across the network and hence finding the steady-state error covari-

ance does not seem to be tractable. However, we can find the condition for stability. For this, we

define a generalized notion of equivalent probability of packet drop for correlated events. Consider

a cut-set c, and let B(c) denote the set of edges crossing this cut. Then, the equivalent probability

of packet drop for this cut is defined as

peq(c) = Prob (λuv = ‘dropped’, ∀ (u, v) ∈ B(c)).

The value of the max-cut for the network is the maximum of peq(c) over all the cuts,

pmc(N ) = max
all cut-sets c

peq(c).
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We can then show that the condition for stability of the system is

pmc(N )|ρ(A)|2 < 1.

To see this, consider the scenario when only one packet is to be routed from the source to destination

starting at time t0. For each time-step t ≥ t0 let Vr(t) denote the set of nodes that have received

the packet at time t. Clearly Vr(t0) = {s}. We want to bound the probability that at time t0 + T ,

destination node has not yet received the packet. For every time-step between t0 and t0 + T , Vr(t)
clearly forms a cut-set since it contains s and not d. Now the size of Vr(t+1) does not increase with

respect to time-step t iff all the links that cross the cut generated by Vr(t) drop packets. However,

by the definition of pmc(N ) the probability of this event is at most pmc(N ). Therefore,

|Vr(t+ 1)|







≥ |Vr(t)|+ 1 with prob. at most pmc(N )

= |Vr(t)| with prob. at least 1− pmc(N )

Thus, for large T , the probability that at time t0+T the destination node has not received the packet

is upper bounded by n(1−pmc(N ))nTnpmc(N )T−n, where n is the number of nodes in the network.

In the original scenario, a new packet is generated at the source at each time step. However, since

the importance of the packets used in the estimate is increasing with time, we can upper bound

the error by considering that the network is only routing the packet generated at time k − l. The

probability that the latency is larger than l grows like f(l)pmc(N )l, where f(l) is polynomial in l

with bounded degree and thus the sufficiency of the stability condition follows. The necessity part

involves similar ideas and is omitted.

3.5.7 Synthesis of a Network

One can use the performance results above to design networks for the purpose of estimation and

control. To consider a simple example, consider a scalar system observed by sensor s. Assume that

the destination is located at distance d0 from the sensor. The probability of dropping a packet on a

link depends on its physical length. A reasonable model for probability of dropping packets is given

by8

p(d) = 1− exp(−βdα),

where β and α are positive constants. α denotes the exponent of power decay in the wireless

environment. We are interested in the optimal number n of relay nodes that we should place

between the sensor and the destination so as to minimize the expected steady-state error covariance.

Clearly, there is a trade-off involved since more nodes will reduce the probability of erasure but at

8This expression can be derived by considering the probability of outage in a Rayleigh fading environment.
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the same time lead to a higher delay before the destination receives a packet. Assuming that n

sensors are uniformly placed, there are n+ 1 links each with drop probability q. Thus, from (3.36),

P (∞) can be written as

P (∞) =

(
a2(1− q)
1− qa2

)n+1

(P ? +
Rw
a2 − 1

)− Rw
a2 − 1

.

Thus, assuming that a2 > 1, the optimal number of relay nodes is the solution to the problem

min
n

(
a2(1− p( d0

n+1 ))

1− p( d0
n+1 )a2

)n+1

.

If a2 < 1, then the minimization in the above problem is replaced with maximization. As an example

consider the system considered in Section 3.5.5. Suppose the sensor and the estimator are placed a

distance d0 = 5 units apart. We can calculate the optimal number of nodes to be placed between the

source and the destination node using our synthesis results. The constant values we use are α=2,

β = 1. In this case, the optimal number of relays turns out to be n = 4.

3.5.8 Unicast Networks

So far, we have assumed that the topology of the network, as given by the graph, was fixed. Any

node could transmit a message on all the out-going edges. If there is a restriction on the number of

edges that a node can transmit on, the same algorithm can easily be adapted. As an example, we

can consider networks that are unicast in the sense that each node should choose one out of a set of

possible edges to transmit the message on. Thus, there are two parts of the problem:

1. Choose the optimal path for data to flow from the source node to the sink node.

2. Find the optimal information processing scheme to be followed by each node along that path.

The two parts can clearly be solved separately in the sense that given any path, the optimal pro-

cessing strategy is the algorithm described in Section 3.5.2. To choose the optimal path, we need to

define a metric for the cost of a path. We can consider two choices:

1. If the metric is the condition for stability of the estimate error, then the problem can be recast

as choosing the shortest path in a graph with the length of a path being given by its equivalent

probability of packet drop. Thus, we need to find the path that has the minimum ppath among

all the paths. Since each path is just a line network, this reduces to the problem

min
P :s-d path

max
e∈P

pe.
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The above problem is well studied in the computer science community and can be solved as a

shortest-path problem over a min-max semi-ring in a distributed fashion [143].

2. If the metric is performance and hence the steady-state error then the problem is more com-

plicated in general. We can consider the special case of a scalar system and no process noise.

In this case, from (3.35), we have for path q,

logPq(∞) =
∑

e∈q

log(
(1− pe)a2

1− pea2
)

Now the problem is equivalent to

min
q:s-d path

∑

e∈q

log(
(1− pe)a2

1− pea2
)

This problem can also be solved in a distributed way [37].

3.6 Multiple Sensors

We have completely solved the LQG problem in the presence of packet erasure links for the case

when only a single sensor is present. We now move on to the case of multiple sensors present.

Consider thus a process of the form

x(k + 1) = Ax(k) +Bu(k) + w(k),

being observed via N sensors of the form

yi(k) = Cix(k) + vi(k) ∀i = 1, 2, · · ·N. (3.37)

We assume that the measurement noises vi(k)’s are independent of each other and of the process

noise w(k). Each sensor needs to communicate to the controller over a packet erasure communication

link9. We again provide the optimal information processing strategy that needs to be followed by

each node in the network to allow the controller to calculate the best possible estimate in the

minimum mean square sense. As before, the algorithm is recursive, and thus requires a constant

amount of memory, processing and transmission at every node in the network per time step, yet is

optimal for any packet-dropping process.

An analysis identical to that of Section 3.4.1 shows that it is sufficient for the algorithm to allow

9Even though we present results only for the case when the sensors are communicating over links, it is apparent
from the treatment of the single sensor case that the results extend to the case of sensors communicating over networks.
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an estimator to estimate the state of a process that evolves as

x(k + 1) = Ax(k) + w(k). (3.38)

Accordingly, from now on, we will restrict our attention to the task of estimating in the mini-

mum mean squared error sense the state x(k) of a process evolving as in (3.38) through sensors of

the form (3.37) when the sensors communicate over communication links that stochastically erase

packets.

The problem is much more complicated for the case of multiple sensors than a single sensor.

We start with a simple case depicted in Figure 3.19 in which only one of the N sensors transmits

information over a packet-dropping link; the other sensors are able to communicate with the esti-

mator at every time step. As we shall show later, this problem is related to the problem depicted in

Figure 3.5 in which two sensors aim at obtaining a joint estimate of the state of a dynamic process

while communicating over packet erasure links. While our first impulse would be to transmit state

estimates that each sensor generates using local measurements, as mentioned in Section 3.1, this

approach is sub-optimal. We will provide the optimal algorithm that identifies the correct quantity

to transmit.

Figure 3.19: Estimation using information from multiple sensors. Only one sensor transmits over
an imperfect communication link.

3.6.1 Optimal Information Transmission Algorithm

Let x̂i(k|l) denote the estimate of x(k) evolving as in (3.38) based on all the measurements of sensor

i up to time l. Denote the corresponding error covariance by Pi(k|l). We will refer to these quantities
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as the local estimates and error covariances respectively. We can also define the corresponding global

quantities x̂(k|l) and P (k|l) that depend on measurements from all the N sensors up to time l.

Without loss of generality, denote the sensor that transmits on the packet erasure link as sensor 1.

The optimal information processing algorithm proceeds as follows.

1. Encoder for sensor 1: At each time step k ≥ 1,

• Obtain measurement y1(k − 1) and run a local Kalman filter to obtain x̂1(k − 1|k − 1)

and P1(k − 1|k − 1).

• Calculate

θ1(k− 1) = (P1(k − 1|k − 1))
−1
x̂1(k− 1|k− 1)− (P1(k − 1|k − 2))

−1
x̂1(k− 1|k− 2).

• Calculate the global error covariance matrices P (k − 1|k − 1) and P (k − 1|k − 2) using

(P (k − 1|k − 1))
−1

= (P (k − 1|k − 2))
−1

+

N∑

i=1

(Ci)
T (
R1
v,i

)−1
(Ci)

P (k − 1|k − 2) = AP (k − 2|k − 2)AT +Rw.

• Obtain γ(k − 1) = (P (k − 1|k − 2))
−1
AP (k − 2|k − 2).

• Finally, calculate

i1(k) = θ1(k − 1) + γ(k − 1)i1(k − 2)

with i1(−2) = i1(−1) = 0 and transmit it.

2. Encoder for all other sensors 2, 3, · · · , N : At each time step k ≥ 1, transmit the measurement

yi(k − 1).

3. Decoder: At each time step k ≥ 2,

• For all j = 2, 3, · · · , N , use yj(k−2) to come up with ij(k−2) using an algorithm similar

to the one followed by the encoder for sensor 1.

• Maintain a local variable x̂dec(k|k) which is updated as follows.

(a) If λ1(k − 1) = ‘received′, all links successfully transmitted packets. In that case, set

the estimate through

(P (k − 2|k − 2))
−1
x̂dec(k − 2|k − 2) =

N∑

j=1

ij(k − 2).
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(b) If λ1(k − 1) = ‘dropped′, sensor 1 could not transmit any information. In this case,

propagate the estimate x̂dec(k− 3|k− 3) using the measurements yi(k− 2) for i = 2,

3, · · · , N through a Kalman filter.

• Finally, declare the estimate of the decoder x̂dec(k|k − 2) as

x̂dec(k|k − 2) = A2x̂dec(k − 2|k − 2).

Proposition 3.13 In the above algorithm,

x̂dec(k|k − 2) = x̂ (k|Imax(k)) .

Proof Consider a centralized Kalman filter that has access to measurements from a sensor of the

form

y(k) = Cx(k) + v(k)

where

C =











C1

C2

...

CN











v(k) =











v1(k)

v2(k)
...

vN (k)











. (3.39)

Let R be the covariance matrix of the noise v(k). Since the measurement noises vi(k)’s are indepen-

dent of each other, R is block-diagonal. Thus, the measurement update equations of the Kalman

filter are

(P (k|k))−1
= (P (k|k − 1))

−1
+ CTR−1C

= (P (k|k − 1))
−1

+
∑

i

[

(Pi(k|k))−1 − (Pi(k|k − 1))
−1
]

(P (k|k))−1
x̂(k|k) = (P (k|k − 1))

−1
x̂(k|k − 1) + CTR−1y(k)

= (P (k|k − 1))
−1
x̂(k|k − 1)

+
∑

i

[

(Pi(k|k))−1
x̂i(k|k)− (Pi(k|k − 1))

−1
x̂i(k|k − 1)

]

.

Recognizing that the time update equations are

P (k|k − 1) = AP (k − 1|k − 1)AT +Rw

x̂(k|k − 1) = Ax̂(k − 1|k − 1),



131

we can write

(P (k|k))−1
x̂(k|k) = (P (k|k − 1))

−1
x̂(k|k − 1)

+
∑

i

(

(Pi(k|k))−1
x̂i(k|k)− (Pi(k|k − 1))

−1
x̂i(k|k − 1)

)

=
∑

i

Ii(k),

where the term Ii(k) is the contribution of the measurements of the i-th sensor and is given by

Ii(k) = Θi(k) + Γ(k)Θi(k − 1) + Γ(k)Γ(k − 1)Θi(k − 2) + · · · + (Γ(k)Γ(k − 1) · · ·Γ(1)) Θi(0),

where

Θi(k) = (Pi(k|k))−1
x̂i(k|k)− (Pi(k|k − 1))

−1
x̂i(k|k − 1)

Γ(k) = (P (k|k − 1))
−1
AP (k − 1|k − 1).

The covariance matrices do not involve any measurements and can be calculated off-line.

Note that because of our assumptions about the time-line, even if there were no packet drops,

at time step k, the estimator can only calculate x̂(k|k − 2). Thus, the information needed from

sensor j to calculate the global estimate at time step k is precisely Ij(k − 2). Now for the case

when λ(k − 1) = ‘received’, the decoder in the algorithm has access to ij(k − 2)’s that are the

same as Ij(k − 2)’s. Thus, it can calculate the centralized Kalman filter output x̂(k|k − 2) which

is x̂(k|Imax(k)). For the case when λ(k − 1) = ‘dropped’, the decoder propagates the best Kalman

filter estimate x̂dec(k − 3|k − 3) with measurements from all other sensors except the 1st sensor.

Thus, in this case too, x̂dec(k|k − 2) = x̂(k|Imax(k))

Proposition 3.13 also presents the solution to the estimation problem depicted in Figure 3.5. We

can use an encoder and a decoder described in the algorithm at each sensor. The decoder has access

to local measurements at every time step while the other sensor transmits information over a packet

dropping channel. Thus, the situation is identical to the one considered above for the case N = 2.

Remarks

1. Note that the computation and memory required for calculating Ii(k) does not grow with time

since we can use the recursion

Ii(k) = Θi(k) + Γ(k)Ii(k − 1).

2. Once more, properties like ‘washing away’ of the effect of any previous packet losses, optimality
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for any packet dropping process, ability to include large delays and packet re-ordering etc. hold.

3. The algorithm, as proposed, does not extend to multiple packet dropping channels. The crucial

assumption used in the algorithm that prevents this extension is that the encoder for sensor

1 uses the fact that all other sensors will transmit their information at every time step. For

multiple channels, this assumption will not be satisfied. Extension of the algorithm to such

cases remains an open problem.

3.6.2 Analysis of the Proposed Algorithm

We now model the channel erasures as occurring according to a Markov chain and analyze the

stability and performance of the estimation error covariance using our algorithm. Let the transition

probability matrix of the Markov chain be denoted by Q. We are once again interested in stability

in the sense of bounded second moment, i.e., the system is stable if the error

x(k)− x̂dec(k|k − 2)

have bounded covariance as time k evolves. This is, in turn, equivalent to the condition that the

error

x(k)− x̂dec(k|k − 1)

have bounded covariance as time k evolves. For simplicity, we consider only the case N = 2. The

extension to the general case is straight-forward.

Denote by y(k) the vector formed by stacking y1(k) and y2(k). We have three dynamical systems.

The plant state x(k) evolves as in (3.38). The state x̂(k) of a centralized Kalman filter with access

to measurements from both sensors at every time step would evolve as

x̂(k + 1) = Ax̂(k) +Kc(k) (y(k)− Cx̂(k)) .

Finally, the state x̂dec(k) of the estimator at the decoder evolves according to

x̂dec(k + 1) =







Ax̂dec(k) +Kd(k)
(
y2(k)− C2x̂

dec(k)
)

channel in state 1

x̂(k + 1) otherwise.

Denote e(k) = x(k)− x̂(k) and t(k) = x̂(k)− x̂dec(k). Note that t(k) evolves according to

t(k + 1) =







(
A−Kd(k)C2

)
t(k) + L1(e(k)) + L2(v1(k)) + L3(v2(k)) channel in state 1

0 otherwise,

(3.40)
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where Ln(β) denotes a term linear in β. Now e(k) has bounded covariance matrices by our de-

tectability assumption. Also, the measurement noises vi(k)’s have bounded covariance. For t(k) to

be of bounded variance, the Markov jump system of (3.40) needs to be stable. Further, note that

since our encoder/decoder design is optimal, if the system is unstable with our design, it is not

stabilizable by any other design. We can thus say the following.

Proposition 3.14 Consider the estimation and control problem defined in Section 3.6 for the case of

two sensors. Let the packet erasure channel is modeled as a Markov chain with transition probability

matrix Q = [qij ]. Let the matrix pair (A,B) be stabilizable and the matrix pair (A,C) be detectable.

The system is stabilizable, in the sense that the variance of the state is bounded, if and only if

q22|λmax

(
Ā
)
|2 < 1, where λmax

(
Ā
)

is the maximum magnitude eigenvalue of the unobservable part

of matrix A when (A,C2) is put in the observer canonical form and q22 is the probability that the

channel drops packets at two consecutive time steps. Further, if the system is stabilizable, one

controller and encoder/decoder design that stabilizes the system is given in Proposition 3.13.

We can also carry out a performance analysis along the lines of the single sensor case. We omit

the details here.

3.6.3 Example

We consider a simple example now. Consider the system considered in Section 3.4.4. The system

evolves as

x(k + 1) =




0 −2

1 −1



x(k) +




2

1



u(k) +




2

1



w(k)

y(k) =
[

0 1
]

x(k).

The process noise w(k) is zero mean with unit variance and the packet drop process is i.i.d. The

system is observed through two sensors of the form

y1(k) =
[

1 0
]

x(k) + v1(k)

y2(k) =
[

0 1
]

x(k) + v2(k).

The sensor noises are zero mean with variance 10 and 1 respectively. We consider the cost function

limT→∞

(
y2(T )

)
. Figure 3.20 shows the simulated performance of our algorithm as a function of

the packet loss probability. We also plot the performance for a hypothetical sensor that receives

information from both sensors without any packet drop and for an algorithm in which sensors

exchange only measurements. It can be seen that even in this very simple case, our algorithm can

lead to a performance gain of up to 40% over the strategy of using no encoder. For the purpose of
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the numerical example, we have assumed that the estimate at the controller was calculated causally,

i.e., to calculate an estimate of x(k), measurements y1(k) and y2(k) could be used.
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Figure 3.20: Comparison of performance for various algorithms for the two sensor case.

3.6.4 Extensions

The algorithm we have provided can be easily adapted for any situation in which a sensor that

is communicating over a packet erasure link is able to predict the sensors that would be able to

transmit their data to the estimator. As an example, consider the following situation. The system

evolves according to

x(k + 1) = Ax(k) + w(k).

The system is observed by N sensors with the i-th sensor being of the form

yi(k) = Cix(k) + vi(k).

All the sensors communicate over a multiple access channel to the controller. Nominally, every

sensor is able to transmit its information. However, sometimes the channel is in a deep fade and the

packets from every sensor are dropped. We can adapt the above algorithm to identify the optimal

encoder and decoder for this situation as well. The encoder design remains unchanged and the j-th

sensor transmits the quantity ij(k). If the decoder receives the packets, it calculates its estimate
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through

(P (k − 2|k − 2))
−1
x̂dec(k − 2|k − 2) =

N∑

j=1

ij(k − 2).

If the decoder does not receive anything, it time updates its own estimate from the previous time

step.

3.7 Discussion

In this chapter, we considered the problem of optimal LQG control when sensors and controller are

communicating across a channel or a network. We modeled the links as switches that drop packets

randomly and proved that a separation exists between the optimal estimate and the optimal control

law. For the optimal estimate, we identified the information that the sensors should provide to the

controller in a lot of cases. This can be viewed as constructing an encoder for the channel. We also

designed the decoder that uses the information it receives across the link to construct an estimate of

the state of the plant. The proposed algorithms are recursive yet optimal irrespective of the packet

drop pattern. For the case of packet drops occurring according to a Markov chain, we carried out

stability and performance analysis of our algorithm.

Viewing communication links as a means of transmitting information and constructing encoders

and decoders for the purpose of estimation and control is a very powerful idea. As we have seen,

it leads to huge performance gains. We have identified simple recursive yet optimal structures for

many cases. However, more work is needed. For the case of multiple packet-dropping links, the

optimal design is still unknown. Another intriguing possibility is considering the effect of allowing

only a limited number of bits in the packet. The works of Sahai [170] and Ishwar et al. [105] seem

relevant in this direction. However, from the view of optimal control, this issue has to be examined

in greater detail.
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Appendix A: Effect of Quantization on the Performance at

High Rates

In this appendix, we consider a different effect of the channel: quantization. We study the impact

of quantization on the performance of a scalar dynamical system in the high rate regime.

Figure 3.21: A system in which a quantizer quantizes the state and transmits it across a digital
channel.

Consider the situation described in Figure 3.21. We have a linear time-invariant process evolving

in discrete time according to the relation

x(k + 1) = ax(k) + u(k) + w(k) (3.41)

with x(k) ∈ R as the process state, u(k) as the control input and w(k) as zero-mean white noise10.

The noise w(k) is assumed to be bounded in an interval [−M,M ] with variance σ2. The initial

condition x(0) is assumed to be distributed in the interval [−s, s] and is assumed to be independent

of w(k). The assumption of bounded noise and initial condition uncertainty is essential to prevent

quantizer overflow issues.

The process state is observed in a noiseless fashion by the encoder. The encoder denotes a

mapping from the state x(k) to a stream of bits {b(k)}. The encoder has access to all the previous

states {x(j)}kj=0 and the previous control signals {u(j)}k−1
j=0 when it encodes x(k). For the most part

we will restrict our attention to encoders that merely perform the action of quantization and ignore

the possibility of other source coding.

10To emphasize the point that our results in this appendix hold only for scalar systems, we will use lower case
letters, thus a instead of the system matrix A. The same comment holds for the control law and the cost function
defined later.
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The bit-stream {b(k)} is transmitted over a channel. We will chiefly be concerned with noiseless

digital channels, thus, the decoder receives the bit stream without any erasures or flips. Based on

the bit stream, the decoder outputs an estimate of the state x̂(k). The decoder has access to all the

previous bit streams {b(j)}kj=0, the previous decoded estimates {x̂(j)}k−1
j=0 and the previous control

signals {u(j)}k−1
j=0 when it decodes {b(k)}. We assume a linear control law of the form u(k) = fx̂(k).

This control signal u(k) is then used in the further evolution of the process according to (3.41). We

assume that there is no channel present between the controller and the process. In the absence of

any encoder, channel and decoder, we have x̂(k) = x(k). In general the two quantities would not be

equal.

As discussed in Section 3.1, a lot of works have analyzed the stability of the above design.

However, the performance of the system is less well understood. We consider the finite-time and

infinite time horizon LQ costs given by

JT = E

[
T∑

k=0

x2(k)q + u2(k)r

]

(3.42)

J∞ = lim
T→∞

1

T
JT ,

where, as usual, q is positive and r is non-negative. We assume that system has been sufficiently

well-designed so that it remains stable and inside the range of operation of the quantizer at all times

to avoid quantizer over-flow. We wish to consider the effect of various quantizers on JK and J∞.

We will denote the probability density function of a continuous random variable X by fX(x) and

its expectation by E [X]. The differential entropy of X is denoted by h(X) and defined according

to (see, e.g., [39])

h(X) = −
∫ ∞

−∞

fX(x) log fX(x)dx,

where 0 log 0 is interpreted as 0 and the log is taken to the base 2. A scalar quantizer Q of size N

is a mapping from an interval on the real number line into a finite set C containing N reproduction

points called codewords. The interval is partitioned into N cells where the i-th cell, denoted by Ri,

is an interval for which each point maps to the i-th codeword yi as

Ri = {x ∈ R : Q(x) = yi},

where yi is the i-th codeword. The quantizer is said to be mid-point based if the reconstruction level

yi is the mid-point of the cell Ri. It is said to be centroid-based if yi is the centroid (conditional

expectation of x in region Ri) of region Ri. We call a quantizer static or fixed if the mapping does not

change with time, otherwise we call it dynamic. The rate of the quantizer is defined as r = log2(N).

We will be interested in the mean squared distortion of the quantizer defined as D = E
[

|X − X̂|2
]
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when the scalar random variable X is quantized and reproduced as X̂.

Analysis

We begin by considering the case when the quantizer is fixed. In general, the cost function is not easy

to calculate analytically. This is because the quantization error at time k depends on the probability

density function of x(k) which is not easy to calculate as time k evolves. To obtain a handle on the

performance of different quantizers, we make the high rate approximation, which says that the rate

of the quantizer is high (and hence the distortion is low). The results we obtain can thus be treated

as approximations which become better as the rate of the code increases.

Theorem 3.15 (From [73]) Given a scalar quantizer with a mean square based distortion measure

d(x, y) = ||x− y||2, the expected distortion of the random variable X being quantized can be bounded

as follows

d̄ ≥ d̄L =
1

12N2
E
[
λ(X)−2

]
,

where λ(X) is the asymptotic quantizer density normalized to unit integral, obtained as we keep on

increasing the number of quantization levels while N refers to the total number of quantization cells.

Further, the lower bound becomes tighter as the rate of the code gets high.

Uniform quantizer We first consider a mid-point based uniform quantizer, which is a very simple

and commonly used quantizer. If the region to be quantized is [−t, t], the asymptotic quantizer

density is given by

λ(x) =
1

2t
.

Since N = 2t
δ , the distortion measure evaluates to

d̄ =
δ2

12
.

In addition we note from [137] that at high rates, for a mid-point based uniform quantizer, if we

denote the variable being quantized as xk and the quantization error by δk, then E [xkδk]� E
[
δ2k
]

and thus can be approximated to be zero11. Thus, we can now evaluate the cost function to be

JT = (q+rf2)E[x2
0]

T∑

k=0

(a+f)2k+rf2(T +1)
δ2

12
+

q + rf2

1− (a+ f)2

(
f2δ2

12
+ σ2

) T∑

k=0

(1−(a+f)2k).

For calculation of J∞ we need to find conditions such that limT→∞ JT /T does not diverge. To this

end, we assume that (a+ f)2 < 1 and that E[x2(k + 1)] < E[x2(k)]. The first condition means f is

11The result is true only under some technical conditions listed in [137] that, however, hold in our case.
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stabilizing while the second condition places a limit on the size of the quantization cell. Assuming

that there are N quantization cells, this condition implies that

N2 ≥ f2s2

3 (1− (a+ f)2)E[x2(k)]− 3σ2
.

In particular for k = 0, this condition implies

N2 ≥ f2s2

(1− (a+ f)2) s2 − 3σ2
.

Note that for the case when there is no noise and the control law f = −a, this reduces to the results

derived in, e.g., [185]. With these assumptions, the infinite-horizon cost is

J∞ = rf2 δ
2

12
+

q + rf2

1− (a+ f)2

(
f2δ2

12
+ σ2

)

.

Logarithmic Quantizer We now calculate the cost for a mid-point based logarithmic quantizer

that has been shown to be the most optimal quantizer for stabilization [54]. To apply Theorem 3.15

for a logarithmic quantizer that is operating over the union of the regions [−t,−ε] and [ε, t], we note

that the asymptotic quantizer density is given by

λ(x) =
1

|x| |normalized to unit integral =
1

2|x| ln( tε )
.

Thus, the distortion measure approximately evaluates to

d̄ =
1

3

(
ln( tε )

N

)2

E
[
x2
]
.

Now, consider a logarithmic quantizer with ratio g. Thus, the quantization cells are given for the

positive axis by the intervals [ε, gε], [gε, g2ε], · · · , [gp−1ε, gpε], where p and N are related by 2p = N .

Since gpε = t,

d̄ =
1

3

(
ln(g)

2

)2

E
[
x2(k)

]
=

(ln g)2

12
E
[
x2(k)

]
≈ E

[
∆2(k)

]
.

Using the Cauchy-Schwarz inequality

−
√

E[∆2(k)]E[x2(k)] ≤ E[∆(k)x(k)] ≤
√

E[∆2(k)]E[x2(k)],

we can obtain that

h1E[x2(0)]
1− gT+1

1

1− g1
+
h1σ

2(T − 1 + gT+1
1 )

1− g1
≤ JT ≤ h2E[x2(0)]

1− gT+1
2

1− g2
+
h2σ

2(T − 1 + gT+1
2 )

1− g2
,
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where

g1 = (a+ f)2 + cf2 − 2 | f(a+ f) | √c

g2 = (a+ f)2 + cf2 + 2 | f(a+ f) | √c

h1 = q + rf2 + rcf2 − 2rf2
√
c

h2 = q + rf2 + rcf2 + 2rf2
√
c

and c = (ln g)2

12 . Thus, a necessary condition for J∞ to exist is g1 ≤ 1 and a sufficient condition is

g2 ≤ 1. Assuming these conditions exist, we obtain

h1σ
2

1− g1
≤ J∞ ≤

h2σ
2

1− g2
.

Lower Bound for Centroid-based Quantizers It is well-known that the optimal quantizer

minimizing the mean-square distortion error is a centroid-based quantizer [73]. Since the density

function of x(k) depends on the densities of all previous quantization errors, it is difficult to compute

a priori and the optimal quantizer has to be obtained at every step through an iterative algorithm

such as the Lloyd-Max algorithm [66, 73] or through a dynamic programming based algorithm [26].

We now consider such quantizers. To begin with, we note that for centroid-based quantizers (see,

e.g., [137]) E[∆(k)x̂(k)] = 0 for every time step k. Thus,

E[x2(k + 1)] = (a+ f)2E[x2(k)]− (f2 + 2af)E[∆2(k)] + σ2.

Thus, the cost can be evaluated as

JT =

T∑

k=0

[

−rf2E[∆2
k] + (q + rf2)(a+ f)2kE[x2(0)]+

σ2(q + rf2)
k−1∑

j=0

(a+ f)2j − (f2 + 2af)× (q + rf2)
k−1∑

j=0

(a+ f)2jE[∆2(k − 1− j)]
]

.

The cost can easily be evaluated for specific quantizers such as uniform or logarithmic. Instead, we

lower bound the cost function for any centroid-based quantizer using entropy arguments that do not

require high-rate approximations. We note the following [39]

• Given n bits to describe a random variable X with differential entropy h(X), the error can

have differential entropy no less than h(X)− n.

• Given a random variable X with differential entropy h(X), the lowest possible variance of X

is 1
2πe2

2h(X).
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• The Entropy-Power Inequality: Given two independent random variables X and Y with dif-

ferential entropy h(X) and h(Y ) respectively,

22h(X+Y ) ≥ 22h(X) + 22h(Y ).

• Entropy of a random variable X is no less than the entropy of X given additional information

about another random variable Y .

At time step k = 0, the entropy is simply h(x(0)), thus the entropy of ∆(0) is at least h(x(0))− n.
At time step k = 1, we have

h(x(1)) ≥ h (x(1)|x̂(0)) = h (ax(0) + w(0)|x̂(0)) .

Now, x(0) and w(0) are independent (even given x̂(0)). Denote the entropy of the noise by h(w).

Then,

22h(x(1)) ≥ 22h(ax(0)|x̂(0)) + 22h(w|x̂(0))

= 22 log(a)+2h(x(0)|x̂(0)) + 22h(w)

≥ 22 log(a)22h(x(0))−2n + 22h(w).

Let c = a22−2n. Thus, we obtain

h(x(1)) ≥ 1

2
log
[

c22h(x(0)) + 22h(w)
]

⇒ h(∆(1)) ≥ 1

2
log
[

c22h(x(0)) + 22h(w)
]

− n.

In a similar manner, we can prove in general that

h(∆(k)) ≥ 1

2
log



ck22h(x(0)) +
k−1∑

j=0

cj22h(w)



− n.

Finally, the error variance at time step k is bounded by

E[∆2(k)] ≥ 1

2πe
2−2n



ck22h(x(0)) +

k−1∑

j=0

cj22h(w)



 .
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Thus, we can evaluate the lower bound on cost function as

JT ≥
T∑

k=0

[

−rf2 1

2πe
2−2n



ck22h(x(0)) +

k−1∑

j=0

cj22h(w)



+ (q + rf2)(a+ f)2kE[x2(0)]

− (f2 + 2af)(q + rf2)
1

2πe
2−2n

k−1∑

j=0

(a+ f)2j

(

22h(x(0))ck−j−1 +

k−j−2
∑

i=0

22h(w)ci

)

+ σ2(q + rf2)

k−1∑

j=0

(a+ f)2j
]

.

Further, if we assume

(a+ f)2 ≤ 1, a22−2n ≤ 1, (3.43)

we obtain

J∞ ≥ −rf2 1

2πe
2−2n22h(w) 1

1− c +
σ2(q + rf2)

1− (a+ f)2

− (f2 + 2af)(q + rf2)
1

2πe
22(h(w)−n) 1

1− (a+ f)2
1

1− c .

We do not yet have an analytic expression for the tightness of the bound. Note that the condition

given in (3.43) is similar to the condition obtained for stability of a scalar unstable system in,

e.g., [185]. Also, since we are interested in quantizing the current state only, we escape the complexity

of having to define terms like average conditional entropy power as in [150].

So far, we have assumed that the quantization is not followed by any noiseless coding. Moreover,

we have concentrated on the case of fixed rate quantization. Thus, we defined the rate of the

quantizer as log(N), where N is the number of quantization levels. If we assume that noiseless

coding is permitted, it makes more sense to consider the entropy of the output vector as a measure

of the rate. In such a case, we note the following result.

Theorem 3.16 (From [73]) The constrained entropy high rate quantizer bound is given by

d̄L ≥
1

12
e−2
(
H(q(X))−h(X)

)

,

where h(X) is the differential entropy of the random variable X while H(q(X)) is the entropy of

quantized variable q(X). Furthermore, equality is achieved if and only if the asymptotic quantizer

density λ(x) is a constant, that is, the quantizer reproduction vectors are uniformly distributed over

some set having probability 1. Thus, the bound is achieved by high rate lattice vector quantizers since

they have a uniform density of quantization levels.
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If we define rate as R = H(q(X)) (which gives the average codeword length achievable using noiseless

coding and hence the average rate), we obtain the above bound. For a fixed R, it can be proved that

this distortion is lower than the one achieved for a given code rate. However, actually achieving this

rate might require long codewords and hence might not be practical in a real-time system. There

also have been some works in the information theory literature, e.g. [177], that provide a way to

bound the output entropy of a quantizer given the number of levels of the quantizer. Such works

may provide an interesting way to achieve a trade-off between the two notions of rate.

Dynamic Quantization It is apparent that only the region corresponding to the uncertainty that

the decoder has about x(k) needs to be quantized and the information sent. We now consider this

case of dynamic quantization in which the number of quantization levels N remains fixed; however,

the range over which quantization is being done varies with time. Thus, the meaning of the bits

{b(k)} changes as time index k progresses. This is similar to schemes like prediction based encoding

outlined in [98] and yields better performance, at the cost of added complexity due to a time-varying

quantizer. Moreover, it assumes some level of synchronization between the encoder and the decoder

so that both agree on the specific quantizer to which the bits at time k pertain.

For simplicity, we consider only the infinite-time horizon cost function J∞. For the case of a

uniform quantizer with N levels, the quantization step size at time k is given by

Nδ(k) = l(k) = aδ(k − 1) + 2M.

The variance of the quantization error at time k, E[∆2(k)] can be evaluated as before to be δ2(k)
12 .

Thus,

J∞ =
q + rf2

1− (a+ f)2

(

σ2 +
f2M2

3(N2 − a2)

)

+
rf2M2

3(N2 − a2)
.

The conditions for existence of J∞ are

(a+ f)2 ≤ 1,
a

N
< 1.

Also, note that this cost is equivalent to that of a static uniform quantizer with step size δ = 4M2

N2−a2 .

Since the cost function for a static uniform quantizer is an increasing function in the step size δ, this

gives us a relation between the parameters M , N and a for determining which of the two quantizers,

static or dynamic, is better.

Stochastic Packet Drops So far, we have assumed a perfect noiseless digital channel, in that

the bits {b(k)} were transmitted to the decoder without fail. We can also incorporate the effect of

stochastic data loss. Thus, at any time step, with a probability p the packet containing the bits

{b(k)} is erased. The results we obtain can be extended to packet drops happening according to a
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Markov chain as well. Note that the expectation in the cost function (3.42) is now also over the

probability of packet drops at each time step. For simplicity, we consider only the infinite horizon

cost J∞ for the case of a midpoint-based uniform quantizer. In this case, the state evolves according

to the equation

x(k + 1) =







(a+ f)x(k) + f∆(k) + w(k) with prob 1− p

ax(k) + w(k) with prob p.

(3.44)

For a uniform quantizer, E[∆2(k)] = δ2

12 while ∆(k) and w(k) are independent of each other. Thus,

we can evaluate the steady-state covariance as

P∞ =
(1− p)f2 δ2

12 + σ2

1− (a+ f)2(1− p)− a2p
.

Since the cost function is given by

J∞ = (q + rf2)P∞ + rf2 δ
2

12
,

it can be easily evaluated. For convergence, we have the additional condition

(1− p)(a+ f)2 + pa2 < 1.

Examples We now consider some simple examples to illustrate the above results. We consider

the system parameter a = 2. The initial condition x(0) is assumed to be uniformly distributed in

the range [−20, 20] while the white noise w(k) is assumed to be uniformly distributed in the range

[−1, 1]. The cost function we consider is

J∞ = lim
k→∞

E
[
x2(k) + u2(k)

]
.

For this cost function, the optimal control law without quantization turns out to be f = −1.618. We

use this control law to consider the performance of various quantization schemes considered above.

For the quantizers that operate on a fixed range, the minimum region to be quantized is [−20, 20].

We will assume that the control law does not allow the system to go outside this range, thus avoiding

quantizer overflow.

Figures 3.22 and 3.23 show a comparison of our theoretical approximations with simulation

results for uniform and logarithmic quantizers respectively. The simulation results refer to the cost

in steady state averaged over 10000 runs for a system using the particular quantizer. The initial

condition and the noise driving the system were chosen randomly for each run. It can be seen that
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the approximations are quite good, at least in this example. Also, even for this simple system,

logarithmic quantizer yields much better performance for the same number of bits. However, for

convergence, the uniform quantizer requires 2 or more bits while for ε = 0.1, the necessary and

sufficient conditions for convergence for the logarithmic quantizer require 3 and 4 bits respectively.

Figure 3.24 shows a comparison of the performance achieved by the dynamic uniform quantizer with

the performance bound derived using entropy arguments. We see that the bound is reasonably tight

in this example. Of course, static quantizers perform much worse than the dynamic quantizers,

especially when a small number of bits are used. Figure 3.25 shows the performance of the system

as a function of the packet loss probability across a channel that drops packets in an i.i.d. fashion.

A uniform quantizer with 6 bits is used. The system becomes unstable at the theoretical value of

p = 0.22.
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Figure 3.22: Comparison of performance of approximations for uniform quantizer calculated using
our approach with simulation results.

Thus, we see that quantization can impact the performance of a closed loop system quite a lot.

We have considered the problem of evaluating performance for a given control law under the high

rate regime. Clearly, there are many interesting directions in which this work can be extended. So

far, we have only considered scalar processes. A more general case is when the process state x(k)

and measurement vector y(k) are vectors. Studying quantization issues for such plants takes us

into the realm of vector quantization theory, which is less well-developed than its scalar counterpart

and hence the extension is not trivial. The basic difficulty is that each component of the vector
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Figure 3.23: Comparison of performance of approximations presented in the text for logarithmic
quantizer with simulation results.
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Figure 3.24: Comparison of the performance of the dynamic quantizer with the lower bound.
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Figure 3.25: Performance of the system with a uniform quantizer across a packet dropping channel.

y(k) carries information about other components and hence it is extremely wasteful to do scalar

quantization on each component separately. If the system matrix A is diagonal (or diagonalizable)

and the matrix C is invertible, and hence this dependence is not present, the results from scalar

quantization that we derive above can be used on each component. Another important question is

designing an optimal controller in presence of quantization.
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Appendix B: Control of Jump Linear Markov Systems with

Markov State Estimation

So far in the chapter, we assumed that the receiver knew whether or not the packet was lost and

what the delay value, if any, was. In this appendix, we loosen this assumption. We consider a jump

linear Markov system being stabilized using a linear controller with the Markov state associated

with the probability distribution of a measured variable. We assume that the Markov state is not

known, but is being estimated based on the observations of the variable.

Jump linear Markov systems are of independent interest, e.g., in fault-prone dynamic systems [29],

tracking [154] and so on. We are interested in them primarily because they can be used to model

the presence of a communication channel that exists in many states. We saw some such examples

in the main part of the chapter. To consider another example, consider the system shown in Fig-

ure 3.26. The figure represents a system in which the sensor and the controller communicate over a

medium which introduces random delays. The medium can be a bus shared with other devices, or a

network where routing protocols introduce random delays, or a wireless channel in which protocols

like Bluetooth introduce random latency delays before succesful transmission. If the delays being

introduced can be modeled by a Markov chain [152], analysis techniques for jump linear Markov

systems apply immediately.

Figure 3.26: A general system in which the sensor and the controller utilize an imperfect communi-
cation channel or a network to communicate.

As stated in Section 3.1, most of the analysis techniques proposed in the literature for such

systems assume the Markov state to be known. In a more practical scenario, a Markov state

estimation algorithm would be used. We consider a class of Markov state estimation algorithms in

which the state estimate update depends only on the latest observation value. Consider the system
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described by

x(k + 1) = Ā(r(k))x(k) +B(r(k))u(k) + w(k)

y(k) = C(r(k))x(k)

u(k) = F (r(k))y(k),

where x(k) ∈ Rn is assumed to be the process state, u(k) ∈ Rm is the control input which is a linear

function of the state observation variable y(k), w(k) is white noise with zero mean and covariance Rn

and v(k) is white noise with zero mean and covariance Rv. Let Q denote the transition probability

matrix of the Markov chain whose states are represented by r(k) = i ∈ {1, 2, ..., s}. Such a system

might arise, e.g., from discretization of an underlying continuous-time system, which can possibly

have time-delays less than the sampling time period present in it (see [152] for details). The states

of the Markov chain define the probability distribution of the various variables (e.g., the time delay)

in the system. For simplicity of presentation, we will assume that there is only one variable being

affected by the Markov chain. We denote the observed value of this variable at time step k by o(k) and

its probability density function given that the Markov state at time k is j by fo(k)|r(k)=j(t|r(k) = j).

If the controller has the knowledge of the Markov state, it can vary the control law matrix F

according to the Markov state r(k). However, if the Markov state is not known, it has to depend on

the estimate of the Markov state r̂(k). Thus, F becomes a function of r̂(k). Thus, we see that the

system can be written as

x(k + 1) = A(r(k), r̂(k))x(k) + w(k) (3.45)

where

A(r(k), r̂(k)) = Ā(r(k)) +B(r(k))F (r̂(k))C(r(k)).

One central assumption we make is that the variable value being affected by the Markov chain

is measurable and the value taken by the variable in every time step is available accurately to the

controller. Thus, if the variable is time delay, we use measures such as time stamping of the packets;

if it is the system matrix Ā — which can be used to model, say, the effect of varying SNR in a

communication channel over which y(k) is passed to the controller — then pilot tone measurements

are used, and so on.

Hidden Markov Models and the Viterbi Algorithm

Consider a Markov chain with a finite number of states and given transition probability matrix

Q = [qij ]. Suppose that when a transition occurs, we cannot observe the states corresponding to

the transition directly. Rather we obtain an observation related to the transition. We are given the

probability Prob(o, i) of the observed value of the variable being affected by the Markov state being
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o when the Markov state is i. Such Markov chains are called hidden Markov models and the problem

of estimating the state from the observation sequence is called the state estimation problem.

Consider the observation sequence OT = {o(1), o(2), · · · , o(T )}. We wish to estimate the state

transition sequence R̂T = {r̂(1), r̂(2), · · · , r̂(T )} that maximizes over all RT={r(1), r(2), · · · ,
r(T )} the conditional probability Prob(RT |OT ) . Let the probability distribution of the states

at time 0 be denoted by πr(0). It is well-established, see e.g. [17], that the optimal estimate is

given by the Viterbi algorithm, which is a solution to the problem of minimizing − ln(πr(0)) −
∑T
k=1 ln(Prob(o(k), r(k)|r(k − 1))) over all possible sequences {r(1), r(2), · · · , r(T )}.
However, the Viterbi algorithm is non-causal in that it requires all the observations before es-

timating the state sequence. In practice, a causal version of the algorithm is used which is based

on forward dynamic programming. If we know the smallest costs D(k, r(k)) from the beginning

to all the states r(k) on the basis of the observation sequence Ok, we compute the smallest costs

D(k + 1, r(k + 1)) by using the recursion

D(k + 1, r(k + 1)) = min[D(k, r(k))− ln(Prob(o(k + 1), r(k + 1)|r(k)))], (3.46)

where the minimization is taken over all r(k) such that qr(k)r(k+1) is non-zero. An advantage of this

procedure is that it can be executed in real time, as soon as each new observation is obtained. An-

other simplification can be made if the state estimate update is made only on the basis of the current

measurement. This amounts to ignoring the first term on the right hand side of equation (3.46) and

minimizing the second term over all transitions from the current state estimate r̂k. This algorithm

is refered to as the one-step Viterbi algorithm.

Stability Results

Once again, we consider the stability in the bounded second order moment sense. Thus, we call a

system stable if the covariance of the system in (3.45) does not diverge. We define the conditional

covariance as

Pjn(k + 1) = E[x(k + 1)xT (k + 1)|r(k + 1) = j, r̂(k + 1) = n]

The expectation is taken over all the uncertainty in the system at time step k, which is due to the

initial state, noise and the Markov states at previous times. We define

P̃jn(k + 1) = Pjn(k + 1)× Prob(r(k + 1) = j, r̂(k + 1) = n). (3.47)
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The state covariance P (k) is then given by

P (k) =

s∑

i=1

s∑

j=1

P̃ij(k). (3.48)

Let Rij denote the matrix {rmn|ij} where rmn|ij refers to the probability that (r̂(k + 1) = n|r̂(k) =

m, r(k) = i, r(k + 1) = j). Finally, let

Ai,m = E[A(r(k), r̂(k))⊗A(r(k), r̂(k))|r(k) = i, r̂(k) = m]. (3.49)

Define the matrix diag(Ai,m) as a block diagonal matrix with the blocks A1,1, A1,2, · · · , A1,s, A2,1,

A2,2, · · · , A2,s, · · · , As,1, · · · , As,s along the diagonal and zeros elsewhere. Denote by Σ the matrix

having the following structure

Σ =











q11R11 q21R21 · · · qs1Rs1

q12R12 q22R22 · · · qs2Rs2
...

...
...

...

q1sR1s q2sR2s · · · qssRss











. (3.50)

We have the following result.

Proposition 3.17 Consider the system given in (3.45) and a one-step Markov state estimation

algorithm. The system is stable, in the bounded covariance sense, iff the matrix (Σ ⊗ I)diag(Aim)

has all its eigenvalues in the unit circle.

Proof We assume that the additive noise term in system of (3.45) is bounded in the mean square

sense. Thus, it would have no effect on stability and we only need to consider an equation of the

form

x(k + 1) = A(r(k), r̂(k))x(k). (3.51)

For this system, from (3.47),

P̃jn(k + 1) = E[A(r(k), r̂(k))x(k)xT (k)A(r(k), r̂(k))|r(k + 1) = j, r̂(k + 1) = n]

× Prob(r(k + 1) = j, r̂(k + 1) = n).

Because of the definition of Markov chain and the assumption that the state estimate update would
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involve only the observations obtained in time step k + 1,

Prob(r(k + 1) = j, r̂(k + 1) = n|f(x(k), r(k), r̂(k)), r(k) = i, r̂(k) = m)

= Prob(r(k + 1) = j, r̂(k + 1) = n|r(k) = i, r̂(k) = m),

where f(.) is any deterministic function of its arguments. Thus, any function involving x(k), r̂(k)

and r(k) only is independent of the event (r(k + 1) = j, r̂(k + 1) = n) given the values of r(k) and

r̂(k). Now we use the fact that if C and A are independent given B,

E[C|A] =
∑

B

Prob(A|B)Prob(B)E[C|B]

Prob(A)
. (3.52)

Thus, in particular, if we define

C = x(k + 1)xT (k + 1)

A = (r(k + 1) = j, r̂(k + 1) = n)

B = (r(k) = i, r̂(k) = m),

we obtain

P̃jn(k + 1) =

s∑

i=1

s∑

m=1

Prob(i→ j,m→ n)× Prob(r(k) = i, r̂(k) = m)

× E[A(r(k), r̂(k))x(k)xT (k)AT (r(k), r̂(k))|r(k) = i, r̂(k) = m]. (3.53)

In the above, Prob(i → j,m → n) represents the probability that the true Markov state goes from

i in step k to j in step k + 1 and the estimated state goes from m to n at the same time. Now we

observe that

E[f(r(k), r̂(k))g(x(k))|r(k) = i, r̂(k) = m] =

E[f(r(k), r̂(k))|r(k) = i, r̂(k) = m]× E[g(x(k))|r(k) = i, r̂(k) = m],

for any functions f(.) and g(.). This can be proved by considering the fact that the variable distri-

bution depends only on the Markov state and from the equivalent condition

Prob(r(k), r̂(k)|x(k), r(k) = i, r̂(k) = m) = Prob(r(k), r̂(k)|r(k) = i, r̂(k) = m).
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Thus, we can vectorize equation(3.53) to obtain

vec(P̃j(k + 1)) =
∑

i,m

Prob(i→ j,m→ n)Ai,mvec(P̃i(k)),

where Ai,m has been defined in (3.49). This in turn yields

P̃ (k + 1) = (Σ⊗ I)diag(Ai,m)P̃ (k), (3.54)

where Σ is defined in (3.50). It is apparent from the above equation that the stability of the system

is given by the stability of the matrix (Σ⊗ I)diag(Ai,m).

To compute rmn|ij , we condition it on the value of the underlying variable varying according to the

Markov chain:

rmn|ij =

∫

Prob(r̂(k + 1) = n|r(k + 1) = j, r̂(k) = m, o(k + 1) = t)×

fo(k+1)|r(k+1)=j(t|r(k + 1) = j)dt. (3.55)

Both the terms in the above expression are computable. The second term is known since we know the

distributions of the variable in each Markov state. The first term is computable for any particular

estimation algorithm satisfying the assumption stated in the theorem. For the one-step Viterbi

algorithm, it computes to the probability that the cost function for state n is least among all

possible states, where the cost function is given by

D(k+1, r̂(k+1) = n|r̂(k) = m, o(k+1) = t) = − ln(qmn)− ln(fo(k+1)|r(k+1)=n(t|r(k+1) = n)).

Examples

We consider a few examples in this subsection to illustrate the result.

Example 1

Consider the case when the estimation algorithm always gives correct results, i.e., the measurement

of the variable tells us the state of the Markov chain. Then, the matrix Σ has the form

[

σ1 σ2 · · · σs
]

,
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where the block σi has dimensions s2 × s and has the structure

σi =
























qi1 qi1 · · ·
0 0 · · ·
... s rows of zeroes

qi2 qi2 · · ·
0 0 · · ·
... s rows of zeroes

...

qis qis · · ·
























.

Thus, the final matrix (Σ ⊗ I)diag(Ai,m) has the same structure, with each element in the above

matrix replaced by a n2 × n2 block. We note that there are a total of s2 row blocks in the matrix,

each consisting of n2 rows. However, only the blocks 1, s + 2, 2s + 3, . . . , s2 are non-zero. Now a

m×m matrix with ith row zero has the same eigenvalues as the (m− 1)× (m− 1) matrix formed

by removing the ith row and ith coloumn from the original matrix, except for an additional zero

eigenvalue. Also, the matrix Ai,m is the same as Ai defined in [152], when i and m are the same.

Thus, the eigenvalues of the matrix (Σ⊗ I)diag(Ai,m) are the same as the eigenvalues of the matrix

(QT ⊗ I)diag(Ai) except for some additional zero eigenvalues. Thus, our results reduce to the the

results of [152] in this case, as they should.

Example 2

It is not necessary that if a process is stable when a controller based on known Markov state is used,

it will be stable when the same controller is instead fed the states estimated by the one-step Viterbi

algorithm. Consider the discrete time version of the system

ẍ(t) = u(t)

u(t) = Fx(t− τ).

Let the time step be h=0.1. Let the Markov states be characterized by different time delays τ in

passing of the sensor signal to the controller, the state 1 having a time delay uniformly distributed

between 0 and 0.7h, while the state 2 having a time delay uniformly distributed between 0.69h and

0.71h. Thus, the equivalent discrete-time system is characterized by the equations

x(k + 1) = φx(k) + γ0u(k) + γ1u(k − 1)

u(k) = Fx(k),
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where

φ = eAh A =




0 1

0 0



 B =




0

1





γ0 =

h−τ∫

0

eAsdsB γ1 =

h∫

h−τ

eAsdsB.

Let the control laws in the two Markov states be given by F1 = [−0.2 − 0.1] in the state 1 and by

F2 = [0.5− 0.2] in state 2. Let the transition probability matrix be

Q =




0.6 0.4

0.8 0.2



 .

Then, the matrix Σ is given by

Σ =











0.5914 0.5914 0.7886 0.7886

0.0086 0.0086 0.0114 0.0114

0 0 0 0

0.4 0.4 0.2 0.2











.

When we obtain the eigenvalues of the 36 × 36 matrix (Σ ⊗ I)diag(Ai,m), we obtain an eigenvalue

outside the unit circle. On the other hand, the eigenvalues of the 18×18 matrix (QT ⊗I)diag(Ai) are

all inside the unit circle, with the highest absolute value being 0.9971. If we simulate the systems,

we indeed find that the system is stable if Markov state is known. However, it goes unstable if the

same controller is used but the one-step Viterbi algorithm is used to estimate the state. Thus, a

separation property does not hold between the Markov state estimate and stability of the system.

Comment We have given necessary and sufficient conditions for stability of a jump linear Markov

state when Markov state is being estimated. Stability considered is the asymptotic stability of the

conditional covariances. However, this might be too strong a condition. “Almost Sure stability”

might provide a better estimate of stability; however, the transient performance of the process might

be unacceptable in this case. The relation between the various forms of stability is discussed in [61].

Also, note that the result can easily be extended to the case of two or more independent Markov

chains modeling many separate communication links.
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Optimal Controller

Consider the quadratic cost function

JT = xT (T + 1)P c(T + 1)x(T + 1) + E(

T∑

k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
, (3.56)

where Q, R and P c(T + 1) are positive-definite matrices.

Optimal State Feedback

We begin by assuming that the full state information about x(k) is available to the controller. Then,

similar to [152], we have the following result.

Proposition 3.18 Consider the problem of minimizing the cost function given by equation (3.56) for

the system given by equation (3.45) with full state information about x(k) available to the controller

and when the one-step Viterbi algorithm is used. Assume that the Markov chain reaches a stationary

state. The optimal control law is given by

u(k)∗ = −L(k, o(k), r̂(k))




x(k)

u(k − 1)∗





where for r̂(k) = i ∈ {1, ..., s}, we have

L(k, o(k), i) = (R+ S̃22
i (k + 1))−1 × S̃21

i (k + 1)S̃23
i (k + 1)

S̃i(k + 1) = GT
s∑

j=1

rijSj(k + 1)G

G =




A(o(k), r(k), r̂(k)) B(o(k), r(k), r̂(k))

0 I





Si(k) = E
[

FT2 (r̂(k)S̃i(k + 1)F2(r̂(k)) + F T1 (r̂(k))ΠF1(r̂(k))| r̂(k) = i
]

F1(r̂k) =




I 0

← −L(k, o(k), r̂(k))→





F2(r̂(k)) =




I 0

← −L(k, o(k), r̂(k))→





Si(N) =




P c(T + 1) 0

0 0





Π =




Q 0

0 R



 .
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The elements rij refer to the probability of the state estimate changing from i in time step k to j in

the time step k+ 1. Note that the elements rij are in general a function of o(k). S̃abi (k) is the block

(a,b) of the symmetric matrix S̃i(k).

Proof The proof is similar to that of the problem treated in [152] and is omitted for the sake of

brevity.

We now give a method to calculate the probability term rij for the case when one-step causal Viterbi

algorithm is being used. We need to compute

Prob(r̂(k + 1) = j|r̂(k) = i, o(k) = t). (3.57)

Note that the information vector available at the time of making the decision includes the estimated

states until that time step as well as all the time delays. Let us condition on the probability of the

actual Markov state at time k being l. Thus, we obtain

Prob(r̂(k + 1) = j|r̂(k) = i, o(k) = t) =

s∑

l=1

P (r̂(k + 1) = j|r̂(k) = i, o(k) = t, r(k) = l)× Prob(r(k) = l|r̂(k) = i, o(k) = t).

To calculate the first term on the right hand side, let us condition it on the probability of the next

Markov state being m.

Prob(r̂(k + 1) = j|r̂(k) = i, o(k) = t, r(k) = l) =

s∑

m=1

Prob(r̂(k + 1) = j|r̂(k) = i, o(k) = t, r(k) = l, r(k + 1) = m)

× Prob(r(k + 1) = m|r̂(k) = i, o(k) = t, r(k) = l).

Now we can evaluate all the terms. The term Prob(r̂(k+1) = j|r̂(k) = i, o(k) = t, r(k) = l, r(k+1) =

m) is simply Prob(r̂(k+ 1) = j|r̂(k) = i, r(k) = l, r(k+ 1) = m) which was evaluated in the proof of

Proposition 3.17. The term Prob(r(k+1) = m|r̂(k) = i, o(k) = t, r(k) = l) is simply Prob(r(k+1) =

m|r(k) = l) by the Markov property. To evaluate the term Prob(r(k) = l|r̂(k) = i, o(k) = t), note

that this is the same as Prob(r(k) = l|o(k) = t). To prove this, consider the equivalent condition

f(o(k) = t|r(k) = l, r̂(k) = i) = f(o(k) = t|r(k) = l).
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In the above equation, f refers to the probability distribution function of o(k). Now Prob(r(k) =

l|o(k) = t) can be evaluated by Baye’s rule

Prob(r(k) = l|o(k) = t) =
f(o(k) = t|r(k) = l)Prob(r(k) = l)

∑

u f(o(k) = t|r(k) = u)Prob(r(k) = u)
.

Finally, Prob(r(k) = u) can be evaluated from the stationary probabilities of the Markov chain.

Thus, we can evaluate the terms rij .

It is obvious from the form of the optimal control law that no separation property holds between

a controller implementing the optimal control law based on known Markov state and a Markov state

estimation algorithm. In particular, even if we use a causal one-step Viterbi algorithm and feed

the state derived from it into the controller which implements the optimal control law based on

known Markov state, we would not obtain the lowest cost achievable with the one-step Viterbi state

estimation algorithm.

Note that the form of the optimal controller derived above is similar to the controller for the

case of Markov state known, as derived in [152], except for the variables on which to condition while

taking the expectation. Thus, we can go ahead and derive the optimal process state estimate and

show that a separation property holds between the optimal controller and the optimal process state

estimate in a manner similar to that given in the above reference.

We have thus considered jump linear Markov systems in which the Markov state is not known

and is being estimated for a class of estimation algorithm. Interesting properties result, e.g., a

control law depending on the knowledge of the exact Markov state may no longer stabilize the

system when we feed in the state estimate instead of the state itself. Future work in this stream

should focus on extending the results to the estimation algorithms which take the full history into

account while updating the state estimate. Such algorithms, e.g, the causal Viterbi algorithm are

optimal Markov state estimators but are more complicated to analyze. Initial results are promising

and point to similar theorems as given in the paper. Another possible direction for future work

might be to jointly optimize the LQR problem with the estimation algorithm to see whether the

Viterbi algorithm is indeed the best state estimation algorithm in this case.
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Chapter 4

Distributed Estimation and

Control in Presence of

Stochastically Failing Channels

In this chapter, we address some problems involving distributed estimation and control when the

components are communicating over communication links. These problems can also be viewed as

task scheduling or resource allocation problems. To be able to explicitly include the stochastic

effects of communication channels in system design, we introduce stochastic schedules to answer the

question ‘Who should talk when?’. In the chapter, we also show how the tools we develop are useful

for many other problems. The work presented here has partly appeared in [34, 75, 76, 77, 109, 110]

The chapter is organized as follows. We begin with a brief literature review. In Section 4.2, we

formulate the problem of estimation for a given stochastic schedule for sensors. We characterize the

expected performance by presenting bounds both for the case of sensors chosen in an independent

fashion as well as for sensors chosen in a Markovian fashion. In Section 4.3, we adapt the performance

analysis to present a method to synthesize the schedule. We present a gradient descent algorithm and

demonstrate it using some examples. In Section 4.4, we discuss the effect of encoding measurements

prior to transmission along the lines of the last chapter. Then, in Section 4.5, we move on to a control

problem in which the topology is switching stochastically. In the appendices, we demonstrate two

applications of the tools we develop in the chapter: dynamic sensor coverage and analysis of the effect

of using multiple description codes to improve the estimation performance across a packet-dropping

link.

Contributions

The main contributions of the work presented in the chapter are now summarized.

1. We analyze the performance of an estimator that is receiving measurements from sensors

according to a stochastic schedule. We consider sensors being chosen independently from one
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time step to the next as well as according to a Markov chain. The tools that we develop are

applicable in many other problems.

2. We formulate and solve the problem of designing an optimal stochastic sensor schedule. Our

strategy has many advantages over traditional deterministic solutions to the problem such as

being able to include the effect of stochastic packet losses by the communication links, being

able to consider sensor costs and so on.

3. We present a framework and initial results on a control problem in which the information

topology is switching stochastically due to communication links. This can be used to charac-

terize the performance of the system as a function of, say, the communication frequency by

the nodes.

4. We consider the problem of dynamic sensor coverage in which a group of mobile sensors have

to cooperatively monitor a geographical area. We provide bounds on the minimum number of

sensors required and a method to generate their trajectories.

5. We analyze the estimation performance when multiple description codes, that are used in

information theory as network source codes, are used for transmitting measurements of a

dynamic system across a packet dropping link. We show that with no increase in the bit rate,

we can obtain improved performance.

4.1 Introduction

In the previous two chapters, we have identified and addressed the two major sources of complexity

in networked estimation and control design:

1. Absence of a single decision making authority with access to all the information.

2. Presence of imperfect communication links that distort any information transmitted across

them.

In this chapter, we take the first steps towards combining both of these issues. We will look at some

problems that have aspects both of multiple sources generating information as well as of information

transmission occurring over imperfect communication channels. In Section 3.6 we already looked at

one such problem in which we identified the optimal information processing algorithms for the case

when many sensors transmit information to an estimator with one sensor communicating over an

imperfect link.

We begin by considering the following problem. Suppose a set of sensors is jointly trying to

estimate a process. Sensors take measurements at every time step and the measurements are then
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exchanged among all the sensors, or equivalently, transmitted to an estimator. However, only one

(or a subset) of the sensors can communicate at any time step. This is a representative resource

allocation problem and this particular situation may arise in many cases:

1. There is one physical sensor but the sensor-estimator communication link stochastically drops

packets. Thus, from the point of view of the estimator, there are two sensors: the first one

corresponding to the physical sensor and the second one to no measurement being taken. Only

one of these is active at any time step. This case has been analyzed in [174, 178]. If partial

observation loss can happen, the case has been looked at in, e.g., [134].

2. There are multiple sensors, some of which communicate over (say) wireless links and hence are

subject to packet losses.

3. Multiple sensors that cannot operate simultaneously are present, e.g. echo based sensors like

sonars in the same frequency band.

4. In tracking and discrimination problems, a sensor (e.g., a radar) can often make different

types of measurements by transmitting a suitable waveform each of which has a different

power requirement. Each of the waveforms corresponds to a different sensor.

5. There might be shared communication resources (e.g., broadcast channels or a shared com-

munication bus) that constrain the usage of many sensors at the same time. Such a situation

arises, e.g., in telemetry-data aerospace systems.

Many other situations can be looked at in a similar framework. We will give two rather non-obvious

examples in the appendices. There are two problems that we will consider:

1. For a given schedule of the sensor usage, what is the performance of the estimator?

2. How do we come up with an optimal sensor schedule? This is often referred to as the sensor

scheduling problem.

Because of the wide range of problems this framework can address, it has received considerable

attention in literature. The seminal work of Meier et al. [102] showed that for linear plants and

quadratic cost functions, a separation property holds between the optimal plant control policy and

the measurement control policy. The measurement control problem, which is the sensor scheduling

problem, was cast as a non-linear deterministic control problem and shown to be solvable by a

tree-search in general. That work proposed forward dynamic programming and a gradient method

for solution. To deal with the complexity of a tree-search, greedy algorithms have been proposed

many times, some examples being the works of [75, 111, 158]. Allied contributions have dealt with

robust sensor scheduling as in Savkin et al. [172], a greedy algorithm with an information based
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cost measure [209], a numerical method for obtaining sub-optimal schedules with error bounds as

in Alriksson and Rantzer [1] and include the works of [117, 142, 161] etc. A different numerical

approach to solve the problem was provided by Athans in [4] who cast the problem as a two-point

boundary value problem. The non-linear matrix differential equations thus obtained were solved

numerically by a min-H technique. These ideas were extended to discrete-time systems by Kerr

in [113] and the two point boundary value problem was converted to an initial value problem by

Kerr and Oshman in [114]. In [97] the technique was generalized to consider multiple devices being

chosen at the same time.

However, all these approaches assumed deterministic sensor schedules. With communication links

dropping packets randomly, stochastic schedules have to be considered. However, apart from some

special cases in [134, 178], stochastic schedules have not been analyzed. We present such an analysis

both for the case when sensors are chosen independently from one time step to the next and when

they are chosen in a Markovian fashion. We then use these results to obtain a stochastic sensor

scheduling algorithm that is based on the idea of letting the sensors switch randomly according

to some optimal probability distribution to obtain the best expected steady-state performance.1

Besides being numerically more tractable than tree-search based and other solutions proposed in the

literature, it does not rely on the sensors having considerable computational power or knowledge

about other sensors. There are numerous other advantages as will be pointed out later.

We then turn our attention to a control problem. Consider N agents that are trying to minimize

a joint cost function. The agents can share information according to some topology. As an instance,

the topology may be a completely decentralized one in which the agents do not share any information

or it may be a completely centralized one in which every agent communicates with all other agents.

If the agents share information over links that stochastically drop packets, it makes sense to look

at stability and performance of the system for topology changes that happen in a random fashion.

Moreover, since communication is usually expensive (e.g., in terms of power) such a topology change

may also be implemented by the sensors themselves and it then becomes important to characterize

the performance as a function of (say) the frequency of communication by each node.

As we saw in Chapter 2, the problem of distributed control even without the presence of com-

munication channels is largely open. Thus, the effects of communication channels on distributed

control have received relatively little attention in the community, apart from notable exceptions

like [168, 194], that included propagation delays in their theory. Seiler and Sengupta [175] posed

the problem of H∞ optimal control of networked systems with stochastic packet-losses (with fail-

ures modeled as time-homogeneous Markovian processes with known transition probability matrix).

While they were able to derive LMI conditions for the existence of a stabilizing controller in this

1As is made clear later, for computational ease, we actually minimize an upper bound on the expected steady-state
performance.
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case, the latter was centralized. Langbort et al. [124] explored the synthesis of distributed controllers

in the presence of stochastically failing channels. Their conditions, however, were only sufficient and

resulted in sub-optimal controllers. We consider a simple model of control in the presence of packet

drop channels and provide some initial results. Even though the topologies switch in an i.i.d. fash-

ion, we do not assume a fixed controller structure. Hence, the problem cannot be analyzed in the

framework of jump linear Markov systems (as outlined in, e.g., [152, 175]). Instead we solve for the

optimal time-varying controller.

The framework and tools that we develop in this chapter are more widely applicable. In the

appendices, we present two such examples. The first appendix deals with dynamic sensor coverage

which is the problem of sensor trajectory generation for optimal coverage of an area. This problem

arises when there are some specified number of mobile sensors that can each sense over a limited

region but together they must monitor a given area. The problem of optimal sensor location in case

there are no bounds on the range over which the sensors can sense leads to the problem of Voronoi

partitioning of the space and has been solved both in a centralized framework [50, 155, 156] and

in a decentralized fashion [38]. The case when sensors are mobile and hence one needs to optimize

their trajectories was considered in Chapter 2, Appendix B. The problem when there are range (or

direction) limitations on the sensors has also been looked at in the literature. However, most of

the approaches that have been proposed are very application specific [96, 144, 151]. Determining

the optimal trajectory is, in general, a tree search problem and greedy approaches have often been

proposed [13, 147]. We can again obtain many advantages over such algorithms by using our method.

In the second appendix, we apply our tools to the problem of network source coding for the

purpose of estimation over a communication link that drops packets randomly. We show how

multiple description (MD) source codes [62] that have been considered in the information theory

literature [65, 69] and used in, e.g., transmission of real-time video over the Internet [70, 125] can

increase the performance of an estimator interested in estimating the state of a dynamical system

across a digital packet dropping link, without increasing the bit rate. This is the first time that

network codes have been utilized for networked estimation and control. We will apply the tools that

we developed in the chapter earlier for analyzing such systems.

4.2 Estimation in Presence of a Stochastic Sensor Schedule

Consider the problem setup shown in Figure 4.1. A process evolves according to the equation

x(k + 1) = Ax(k) + w(k), (4.1)
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Figure 4.1: Structure of the sensor scheduling problem.

where x(k) ∈ Rn is the process state at time step k and w(k) is the process noise assumed white,

Gaussian and zero mean with covariance matrix Rw. The initial state x(0) is assumed to be a

Gaussian zero mean random variable with covariance P (0). The process state is being observed by

N sensors with the measurement equation for the i-th sensor (denoted by Si) being

yi(k) = Cix(k) + vi(k), (4.2)

where yi(k) ∈ Rmi is the measurement. The measurement noises vi(k)’s for the sensors are assumed

independent of each other and of the process noise. Further the noise vi(k) is assumed to be

white, Gaussian and zero mean with covariance matrix Rv,i. At every time step, one sensor takes

a measurement which is then communicated to all the sensors (or a data sink such as a central

estimator) in an error-free manner. Two things may be noted.

1. The assumption of one sensor per time step is without loss of generality.

2. If packets can be dropped, the drop event is equivalent to a sensor with noise covariance

Rv,i →∞ being chosen.

Since all the measurements are being shared, every sensor has the same estimate of the process

state x(k), denoted by x̂(k|k − 1) or x̂(k). Further the optimal estimate is given by a Kalman filter

assuming a time-varying sensor. Assuming that the i-th sensor takes the measurement at time step
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k, the covariance of the estimate error P (k) evolves according to the Riccati recursion

P (k + 1) = AP (k)AT +Rw −AP (k)CTi
(
CiP (k)CTi +Rv,i

)−1
CiP (k)AT , (4.3)

with the initial condition given by P (0). It is obvious from (4.3) that error covariance is a function

of the sensor schedule. For future use, we introduce the following notation. Consider a sensor that

senses a process of form (4.1) according to the relation

y(k) = Cx(k) + v(k),

where the noise v(k) has covariance matrix Rv. Then, we define

fC(P ) = APAT +Rw −APCT
(
CPCT +Rv

)−1
CPAT (4.4)

and further denote

fkC(P ) = fC (fC (· · · (fC(P ))))
︸ ︷︷ ︸

fC applied k times

. (4.5)

Thus, the error covariance of the estimate at time step k + 1 if Kalman filter is being used is given

by fC(P ), where P is the error covariance at time step k.

4.2.1 Preliminary Results

We will need the following properties of the operator fC(.).

Lemma 4.1 fC(P ) is concave in P provided P is positive semi-definite and R is positive definite.

Proof We use the fact [24] that a function f(x) is concave in x if and only if f(x0 + th) is concave

in the scalar t for all x0 and h. Thus, consider

Σ = A(P0 + tZ)AT −A(P0 + tZ)CT
(
R+ C(P0 + tZ)CT

)−1
C(P0 + tZ)AT .

Denoting R+ C(P0 + tZ)CT as X, we obtain

∂Σ

∂t
= AP0A

T−AZCTX−1C(P0+tZ)AT−A(P0+tZ)CTX−1CZ
[
I − CTX−1C(P0 + tZ)

]
AT .

Thus, the second derivative is given by

∂2Σ

∂t2
= −2ΨX−1ΨT ,
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where

Ψ = A
[
(P0 + tZ)CTX−1CZCT − ZCT

]
.

Note that X is positive definite under the stated conditions on P and R, hence X−1 exists and is

positive definite. The second derivative is negative everywhere which proves the assertion.

Lemma 4.2 1. Let X and Y be two positive semi-definite matrices. If X ≤ Y , then fC(X) ≤
fC(Y ).

2. For any C and for any positive semi-definite matrix X, fC(X) ≥ Rw.

Proof Introduce

φ (K,X) = Rw + (A+KC)X (A+KC)
T

+KRKT ,

and note that

K = −AXCT
(
CXCT +R

)−1 ∆
= KX

minimizes φ (K,X). Moreover, φ (KX , X) = fC(X). Finally, note that φ(K,X) is an increasing

function in the second argument. Thus, we see that

fC(X) = φ (KX , X) ≤ φ (KY , X) ≤ φ (KY , Y ) = fC(Y ).

This proves the first part of the lemma. For the second part, note that

fC(X) = φ (KX , X) ≥ φ (KX , 0) = Rw.

Lemma 4.3 (Jensen’s Inequality) If a function g(x) is concave,

g (E[x]) ≥ E [g(x)] .

Proof Proof is standard. See, e.g., [71].

4.2.2 Sensors Chosen Independently from one Time Step to the Next

Consider the time-varying Kalman filter recursion given in (4.3) for the system given by (4.1).

Suppose that at every time step, the probability of Si being chosen as the sensor is pi(k). To begin

with, assume that the choice is done independently at each time step. Suppose that the sensor

chosen at time step k has sensing matrix C(k) and noise covariance matrix R(k). Then the error

covariance evolves as

P (k + 1) = fC(k) (P (k)) ,
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with P (0) as the initial condition. Note that the error covariance P (k+1) is random since it depends

on the particular sequence of chosen Si’s (0 ≤ i ≤ k). To characterize it, we consider its expected

value. Thus, we are interested in

E [P (k + 1)] = E
[
fC(k) (P (k))

]
(4.6)

Explicitly evaluating this expectation appears to be intractable in general. To understand its be-

havior, we look for upper and lower bounds.

4.2.2.1 Upper Bound

For the upper bound, we have the following result.

Proposition 4.4 Let there be N sensors out of which one sensor is randomly chosen per time

step for taking measurements. If the i-th sensor is chosen at time step k with probability pi(k)

independently at each time step, then the expected error covariance of the estimate is upper bounded

by ∆(k + 1) given by the recursion

∆(k + 1) = Rw +A∆(k)AT −
N∑

i=1

pi(k)
[

A∆(k)CTi (Rv,i + Ci∆(k)CTi )−1Ci∆(k)AT
]

, (4.7)

with the initial condition ∆(0) = P (0).

Proof First note that the quantities P (k) and C(k) are independent. This is so since the error

covariance at time step k depends only on the sensor choices till time step k−1 which are independent

of the choice of the sensor at time step k. Thus, we can explicitly take the expectation in (4.6) with

respect to the probability distribution of C(k) and write

E [P (k + 1)] =

N∑

i=1

pi(k)E
[

fCi
(P (k))

]

,

where the expectation on the right hand side is now over C(0), . . . , C(k − 1). Now we use Jensen’s

inequality on account of Lemma 4.1. Thus, we obtain

E [P (k + 1)] =

N∑

i=1

pi(k)E
[

fCi
(P (k))

]

≤
N∑

i=1

pi(k)fCi
(E [P (k)]) (4.8)

Since fCi
(.) is an increasing operator, we obtain the required upper bound.

We need to check for the convergence of (4.8) as time progresses. The convergence of the upper

bound would imply boundedness of the recursion in (4.6). We have the following result.
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Proposition 4.5 In the setting of Proposition 4.4, suppose that the sensor probabilities pi(k) tend

to constants qi as k →∞. If there exist matrices K1, K2, · · · , KN and a positive definite matrix P

such that

P > Rw +

N∑

i=1

qi

(

(A+KiCi)P (A+KiCi)
T

+KiRv,iK
T
i

)

,

then the iteration in (4.7) converges for all initial conditions P (0) ≥ 0 and the limit P̄ is the unique

positive semi-definite solution of the equation

X = Rw +AXAT −
N∑

i=1

qiA
[
XCTi (Rv,i + CiXC

T
i )−1CiX

]
AT . (4.9)

Proof Proof is similar to the one of Theorem 1 in [178]. We redefine the quantities

L(Y ) =

N∑

i=1

qi (A+KiCi)Y (A+KiCi)
T

φ (Ki, P ) = Rw +

N∑

i=1

qi

(

(A+KiCi)P (A+KiCi)
T

+KiRv,iK
T
i

)

and follow the arguments given in that proof.

As an example, if all eigenvalues of A are strictly less than unity in magnitude, we can always find

matrices Ki’s and P satisfying the above conditions by choosing Ki’s as the zero matrices and P as

2P̄ where P̄ is the positive definite solution of the Lyapunov equation

P̄ = AP̄AT +Rw.

Thus, as long as A is stable, the recursion in (4.8) converges. The case when A is stable (and thus the

process to be estimated does not grow unbounded) is very important in a large number of practical

applications.

For the cases when A is not stable, we need to find out if (4.6) diverges. We now obtain a lower

bound for the recursion. If the lower bound does not converge, it will imply the non-convergence of

the expected steady state error covariance.

4.2.2.2 Lower Bound

We have the following result for obtaining a lower bound on E [P (k)].

Proposition 4.6 Suppose there are N sensors out of which one sensor is randomly chosen per

time step for taking measurements and the j-th sensor is chosen with probability pj(k) at time step
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k independently at each time step. Define

p̄j(k − t+ 1, k) = pj(k − t+ 1)pj(k − t+ 2) · · · pj(k).

Then, the expected error covariance of the estimate at time step k is lower bounded by X(k) where

X(k) is obtained from the equation

X(k) = p̄j(0, k − 1)fkCj
(P (0)) + (1− pj(k − 1))Rw + p̄j(k − 1, k − 1) (1− pj(k − 2)) fCj

(Rw)

+ p̄j(k − 2, k − 1) (1− pj(k − 3)) f2
Cj

(Rw) + · · ·+ p̄j(1, k − 1) (1− pj(0)) fk−1
Cj

(Rw) , (4.10)

where P (0) is the initial error covariance. Note that one such lower bound results for each value of

j = 1, · · · , N.

Proof The value of E[P (k)] is determined by the sensor schedule till time step k− 1. Consider any

sensor Sj . The event space for the all these choices can be partitioned into k+ 1 disjoint events Ei:

1. For the value i = k, one event of the form: Sensor Sj was not chosen at time step k − 1.

2. For the values of 1 ≤ i ≤ k − 1, k events of the following form: The sensor Sj was chosen at

all time steps k − i, k − i+ 1, · · · , k − 1. Moreover, at time step k − i− 1, sensor Sj was not

chosen.

3. For the value i = 0, one event of the form: Sensor Sj has been chosen for all time steps 0, 1,

· · · , k − 1.

The expected error covariance E[P (k)] is given by

E [P (k)] =

k∑

i=0

Prob (Ei)V (Ei) ,

where Prob(Ei) refers to the probability of Ei occurring and V (Ei) refers to the value of error

covariance under the event Ei. We note the following facts that we use to lower bound each of the

terms V (Ei).

1. If Σ is the error covariance at any time step m and the sensor Sj is chosen at time step m,

the error covariance at the time step m + 1 is given by fCj
(Σ). This is by definition of the

operator fC(.).

2. If any sensor other than Sj is chosen at any time step m, the error covariance at time step

m+ 1 is lower bounded by Rw. This is using Lemma 4.2.

Using both these facts, if sensor Sj was chosen at time step m+1 but not at time m, then the error

covariance at time step m+ 2 is lower bounded by fCj
(Rw).
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Now consider the event Ei where 1 ≤ i ≤ k − 1. By the argument given above,

V (Ei) ≥ f iCj
(Rw) .

The probability of event Ei happening is just the probability that at time k − 1 − i sensor Sj was

not chosen and that it has been chosen from time k − i to k − 1. Thus,

Prob (Ei) = p̄j(k − i, k − 1) (1− pj(k − i− 1)) .

Thus, we obtain

Prob(Ei)V (Ei) ≥ p̄j(k − i, k − 1) (1− pj(k − i− 1)) f iCj
(Rw) .

A similar argument for the events E0 and Ek shows that

Prob(E0)V (E0) ≥ (1− pj(k − 1))Rw

Prob(Ek)V (Ei) ≥ p̄j(0, k − 1)fkCj
(Rw) .

By adding together the terms Prob(Ei)V (Ei), we obtain that X[k] as given in (4.10) is indeed a

lower bound for the expected error covariance.

We can also obtain a necessary condition for E[P (k)] being bounded as k →∞ by studying the

behavior of X(k) as time k progresses. We have the following result.

Proposition 4.7 Consider the setting of Proposition 4.6. If the sensor probabilities pi(k)’s tend to

constants qi as k → ∞, then a necessary and sufficient condition for X(k) given in (4.10) to stay

bounded as k →∞ is

qj |λmax

(
Āj
)
|2 < 1, (4.11)

where qj is the probability of choosing the j-th sensor while λmax

(
Āj
)

refers to the eigenvalue with

the maximum magnitude of the unobservable part of A when the pair (A,Cj) is put in the observable

canonical form [51].

Proof We can assume without loss of generality that the pair (A,Cj) is in the observer canonical

form2. Denote the matrices in the form

A =




Ā11 0

Ā21 Ā22



 Cj =
[

C̄j,1 0
]

.

2If not, an invertible linear transformation can convert it to the companion form. This transformation will not
affect the boundedness of estimation error.
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Denote by e(k) the error in estimating x(k). We can identify a suitable division of e(k) in accordance

with the observer canonical form so that we can write it as

e(k) =




e1(k)

e2(k)



 ,

where e1(k) corresponds to the observable part of the system and e2(k) to the unobservable part.

The covariance of the error is given as

P (k) =




E
[
e1(k)e

T
1 (k)

]
E
[
e1(k)e

T
2 (k)

]

E
[
e2(k)e

T
1 (k)

]
E
[
e2(k)e

T
2 (k)

]



 =




P11(k) P12(k)

P21(k) P22(k)



 ,

with P (0) = Rw. Since e1(k) corresponds to the observable part of the system, P11(k) is bounded.

P22(k) evolves as

P22(k + 1) = Ā22P22(k)Ā
T
22 + Σ(k),

where Σ(k) is a matrix that depends on Rw, Rv,j , P11(k) and P12(k) but not on P22(k). Thus, Σ(k)

remains bounded as k →∞ if P11(k) and P12(k) remain bounded. X[k] can be obtained through a

summation of the form

X(k) =
k−1∑

i=0

qi−1
j (1− qj)f i−1

Cj
(Rw)

=
k−1∑

i=0

γ(i)P (i− 1)

=





∑k−1
i=0 γ(i)P11(i− 1)

∑k−1
i=0 γ(i)P12(i− 1)

∑k−1
i=0 γ(i)P21(i− 1)

∑k−1
i=0 γ(i)P22(i− 1)



 ,

where γ(i) = qi−1
j (1 − qj). There are four terms here whose boundedness needs to be considered.

Now, as already stated, the (1, 1) term is bounded because of the observability assumption. The

(2, 2) term is bounded if and only if

qj |λmax

(
Ā22

)
|2 < 1.

Also, if both (1, 1) and (2, 2) terms are bounded, the off-diagonal terms of P (k) are bounded by

the Cauchy-Schwarz inequality. But Ā22 is the unobservable part of A when it is observed using

matrix C. Thus, a necessary and sufficient condition for convergence of the lower bound X(k) is

given by (4.11).

Remarks
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1. The condition (4.11) makes intuitive sense. Suppose a sensor Sj cannot observe certain modes

in the system. Then, for the observation error covariance to remain bounded, we depend on

the other sensors to obtain information about those modes. Thus, the more unstable those

modes are (higher the value of |λmax

(
Ā22

)
|2 is), the more should other sensors be used (the

sensor Sj should be used less often) and lower the value of qj should be.

2. The bounds we have obtained can be specialized to cases when one sensor pertains to a data

loss situation similar to that considered in [134, 178].

4.2.3 Sensors Chosen According to a Markov Chain

If the sensors are being chosen according to a Markov chain, we can still obtain upper and lower

bounds in a similar form as the ones discussed above. We present the bounds below. Let Q = [qij ]

be the transition probability matrix of the Markov chain. Also, let pi(k) be the probability of being

in Markov state i at time step k, i.e., the i-th sensor being used at time step k.

4.2.3.1 Upper Bound

The upper bound can be derived as follows.

Proposition 4.8 Suppose a process of the form (4.1) is being observed by a sensor chosen from N

sensors of the form (4.2). If the sensors are chosen according to a Markov chain, then the expected

estimate error covariance E[P (k)] is upper bounded by ∆(k) where

∆(k + 1) =
N∑

j=1

pj(k)∆j(k + 1),

and ∆j(k)’s evolve according to

pj(k)∆j(k + 1) =

N∑

i=1

fCj
(∆i(k)) qijpi(k − 1). (4.12)

Proof Let C(k) = j denote that the j-th sensor was chosen at time step k. Then, by partitioning

the event space at time step k, we see that

E [P (k + 1)] =
∑

pj(k)E [P (k + 1)|C(k) = j] .

Now consider the conditional expected error covariance E [P (k + 1)|C(k) = j]. We can further
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condition it on the sensor choice at time step k − 1 to obtain

pj(k)E [P (k + 1)|C(k) = j]

= pj(k)

N∑

i=1

E [P (k + 1)|C(k) = j, C(k − 1) = i] Prob(C(k − 1) = i|C(k) = j).

But since at time step k, for all the terms in the expectation above, the j-th sensor was used,

E [P (k + 1)|C(k) = j, C(k − 1) = i] = E
[
fCj

(P (k))|C(k − 1) = i, C(k) = j
]
.

Moreover, using Bayes rule,

pj(k)Prob(C(k − 1) = i|C(k) = j) = qijpi(k − 1).

Thus, we have

pj(k)E [P (k + 1)|C(k) = j] =

N∑

i=1

E
[
fCj

(P (k))|C(k − 1) = i, C(k) = j
]
qijpi(k − 1).

But fCj
(Pk) and Ck are conditionally independent given Ck−1. Thus,

pj(k)E [P (k + 1)|C(k) = j] =

N∑

i=1

E
[
fCj

(P (k))|C(k − 1) = i
]
qijpi(k − 1).

Finally, using Jensen’s inequality we obtain

pj(k)E [P (k + 1)|C(k) = j] ≤
N∑

i=1

fCj
(E [P (k)|C(k − 1) = i]) qijpi(k − 1).

Since fCj
(.) is an increasing operator, we obtain the required bound.

We can also look at the convergence conditions for the upper bound. We have the following result.

Proposition 4.9 Consider the setting of Proposition 4.8. Assume that the Markov chain transi-

tion probability matrix Q is such that the states reach a stationary probability distribution with the

probability of the j-th sensor being used as πj > 0. If there exist N positive definite matrices X1,

X2, · · · , XN and N2 matrices K11, K12, · · · , K1N , K2,1, · · · , KN,N such that

πjXj >

N∑

i=1

(

(A+KijCj)Xi(A+KijCj)
T +Rw +KijRv,jK

T
ij

)

qijπi,

then, as k →∞, the upper bound ∆(k) as defined in Proposition 4.8 converges for all initial condi-
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tions ∆(0) > 0. In the limit, the quantities ∆̄j’s are unique positive semi-definite solutions Xj’s of

the equations

πjXj =

N∑

i=1

fj (Xi) qijπi. (4.13)

The upper bound for the error covariance, ∆, is given by

∆ =
N∑

j=1

πj∆̄j .

Proof Proof is along the lines of the proof given for i.i.d. sensor choices given in Section 4.2.2.1.

Redefine the quantities

L (Yj) =
N∑

i=1

qijπi(A+KijCj)Yj(A+KijCj)
T

φj (Kij , Yi) =
(

(A+KijCj)Yi(A+KijCj)
T +Rw +KijRv,jK

T
ij

)

qijπi,

and follow the arguments in that proof.

4.2.3.2 Lower Bound

A lower bound for E[P (k)] can be derived in a similar way as before. We give the result below.

Proposition 4.10 Suppose a process of the form (4.1) is being observed by a sensor chosen from N

sensors of the form (4.2). If the sensors are chosen according to a Markov chain, then the expected

error covariance E[P (k)] is lower-bounded by Y (k) where

Y (k) =

k∑

i=1

qi−1
jj (pj(k + 1− i)− qjjpj(k − i)) f iCj

(Rw) + qk−1
jj pj(0)f

k
C0

(P (0)) .

Proof Proof follows exactly that of the i.i.d. case in Section 4.2.2.2 and is omitted.

A necessary and sufficient condition for convergence of the lower bound can also be derived by

following the derivation in Proposition 4.7. We state the result below without proof.

Proposition 4.11 Consider the setting of Proposition 4.10. A necessary and sufficient condition

for X(k) given in (4.10) to stay bounded as k →∞ is

qjj |λmax

(
Āj
)
|2 ≤ 1, (4.14)

where qjj is the probability of choosing the j-th sensor on two consecutive time steps while λmax

(
Āj
)

refers to the eigenvalue with the maximum magnitude of the unobservable part of A when the pair

(A,Cj) is put in the observable canonical form.
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We have thus characterized the expected error covariance by giving upper and lower bounds when the

sensors are chosen in an i.i.d. or a Markovian fashion. The bounds can also be used for constructing

an optimal sensor schedule as discussed in the next section.

4.3 Stochastic Sensor Scheduling

So far in the chapter, we have assumed that the sensor schedule was given to us a priori. A related

problem is to come up with a sensor schedule that is optimal with respect to some cost function.

Thus, consider once again a system evolving as in (4.1) being observed by N sensors with the i-th

sensor providing an observation yi(k) according to (4.2). Suppose that only one sensor can be used at

any time and the measurements are exchanged among all the sensors (or sent to a central estimator)

in a noise-free manner. The estimator calculates the minimum mean squared error estimate x̂(k|k−1)

(referred to simply as x̂(k)) of the process state x(k). If we denote the estimate error covariance as

P (k), we wish to find the sensor schedule that minimizes some function of P (k) over a given time

horizon. We begin by presenting two simple tree search based deterministic algorithms.

4.3.1 Deterministic Scheduling Algorithms

For simplicity and without loss of generality, we consider only two sensors and define the cost

function, JT , to be the sum of the traces of the error covariance matrices over the running time of

the system:

J =

T∑

k=0

trace(P (k)).

In a more general case, the covariances can be variously weighted to set up the cost function if

getting a good estimate either at some time steps or for some sensors is more important than others.

It is obvious that we can represent all the possible sensor schedule choices by a tree structure,

as shown in Fig. 4.2 for the case of two sensors. Each node on the tree represents a particular time

step, with the root defined to be time zero. The branches from each node correspond to choosing

a particular sensor to be active at the next time instant. Thus, the path from the root to any

node at depth d + 1 represents a particular sensor schedule choice for time steps 0 to d. We can

associate with each node the cost function evaluated using the sensor schedule corresponding to the

path from the root to that node. Obviously, finding the optimal sequence requires traversing all

the paths from the root to the leaves in a binary tree (for the case of two sensors). If the leaves

are at a depth T , a total of 2T schedules need to be compared (NT if N sensors are present).

This procedure might place too high a demand on the computational and memory resources of the

system. Moreover, in practical applications, T might not be fixed a-priori. Hence, we need some

sort of on-line optimization procedure. We now present some approximations that address these
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Figure 4.2: The tree structure defined by the various possible choices of sensor schedules, illustrated
for the case of 2 sensors.

difficulties.

The basic idea behind the two approximations is to prune the tree to a manageable size. However,

the pruning should ensure, with a high probability, that the optimal sequence is not lost. The

algorithms presented involve choosing some arbitrary parameters which depend on the problem and

the computation/memory resources available. Choosing these parameters conservatively will ensure

that the sub-optimal solution achieved will be closer to the optimal solution but it might mean

maintaining a large part of the tree intact. Thus, there is a trade-off involved. However, in the

numerical examples studied, relatively liberal choices keep the tree size fairly small.

4.3.1.1 The Sliding Window Algorithm

This algorithm is similar to a pseudo real-time version of the Viterbi algorithm [63]. We define a

window size d where d < T . The algorithm proceeds as follows:

1. Initialization: Start from root node at time k = 0.

2. Traversal:

(a) Traverse all the possible paths in the tree for the next d levels from the present node.

(b) Identify the sensor sequence Sk,Sk+1,Sk+2,. . . , Sk+d−1 that yields the minimum cost at

the end of this window of size d.

(c) Choose the first sensor Sk from the sequence.

3. Sliding the Window:
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(a) If k = T then quit, else go to the next step.

(b) Designate the sensor Sk as the root.

(c) Update time k = k + 1.

(d) Repeat the traversal step.

The arbitrary parameter for this algorithm, mentioned earlier, is the window size d. If the window

size is large enough, the sequence yielding the lowest cost will resemble the optimal sequence for the

entire time horizon. Also, note that when we slide the window, we already have the error covariances

for the first d − 1 time steps stored; hence they do not need to be recalculated. Consequently, the

method is not very computationally intensive.

4.3.1.2 The Thresholding Algorithm

This algorithm is similar to that presented in [130], in the context of choosing the optimal controller

from a set of many possible choices. We define a factor f where f ≥ 1. The algorithm proceeds as

follows:

1. Initialization : Start from root node with cost J = 0.

2. Pruning:

(a) Extend the tree by one level (i.e. time step) through all possible paths from the current

node.

(b) Calculate the minimum cost up to that time step.

(c) Prune away any branch that yields the cost greater than f times the minimum.

(d) For the remaining branches, denote the cost of the nodes as the cost achieved by moving

down the tree till the node.

3. Update: Consider each node in the next time step as the root node and repeat the pruning

step.

4. After T time steps, declare the optimal sequence to be the one yielding the minimum cost till

that time step.

The intuition behind the method is that any sequence which yields too high a cost at any intermediate

time step would probably not be the one that yields the minimum cost over-all. By playing with

the factor f , we obtain a trade-off between the certainty that we would not prune away the optimal

sequence and the number of branches in the tree that need to be traversed.
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4.3.2 A Stochastic Scheduling Algorithm

The algorithms considered above are both deterministic and are approximations to tree search al-

gorithms. Now we present an algorithm that aims to do away with tree search altogether. The

algorithm is based on the idea of letting the sensors switch randomly according to some optimal

probability distribution to obtain the best expected steady-state performance.3 Besides being nu-

merically more tractable than tree-search based and similar solutions proposed in the literature, it

does not rely on the sensors having considerable computational power or knowledge about other

sensors. However, the chief attraction of the algorithm is that it can easily include the effect of

stochastic packet drops by the communication channels over which the sensors are transmitting

their measurements. Hence, it is suited naturally to the networked estimation situations that we

have been considering in this dissertation.

Since the schedules we consider are stochastic, the error covariance is a random quantity. We will

adopt the trace of the steady state expected error covariance as the metric to be minimized. As we

saw in Section 4.2 exact evaluation of the steady state expected error covariance seems intractable.

Instead, we consider an upper bound on the expected error covariance by using the results we derived

above. We begin with the case when the sensors are being chosen in an independent and identically

distributed (i.i.d.) manner from one time step to the next.

4.3.2.1 Sensors chosen in an i.i.d. manner

Denote the probability of sensor m being chosen at time step k by qi. We know from Propositions 4.4

and 4.5 that the expected error covariance E[P (k)] can be upper bounded by a quantity ∆(k) that

evolves in a recursive fashion and further has a steady state value X under some conditions. We

will adopt trace(X) as the metric to be minimized as an approximation to minimizing the expected

error covariance itself. Divergence of the upper bound is a necessary condition for the divergence

of the expected error covariance; hence the design can be expected to be conservative in this sense.

Let there be N virtual sensors present. The design problem is

min
qi

trace(X) (4.15)

s.t. X = AXAT +Rw −
N∑

i=1

qiAXC
T
i

(
CiXC

T
i +Rv,i

)−1
CiXA

T

∑

qi = 1 0 ≤ qi ≤ 1 X ≥ 0.

For a problem of small size, a brute force search suffices to find the optimal probabilities. However,

we can also use a gradient descent algorithm to solve the problem. For ease of notation, we adopt

3As is made clear later, for computational ease, we actually minimize an upper bound on the expected steady-state
performance.
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the following notation. Define

gq(X) = AXAT +Rw −
N∑

i=1

qiAXC
T
i

(
CiXC

T
i +Rv,i

)−1
CiXA

T ,

where q is the vector of qi’s. The cost function of our problem is trace(X), or equivalently,

trace(gq(X)). We will refer to any vector γ whose components γi’s are non-negative and sum

to 1 as a valid probability vector. The algorithm proceeds as follows:

1. Initialize at step k = 1, with an arbitrary valid probability vector γ(1) and calculate the

positive semi-definite matrix X(1) that satisfies

X(1) = gγ(1) (X(1)) .

2. At every step k, do the following :

(a) Calculate γmin as a valid probability vector that minimizes trace of the quantity gγ(X(k)).

(b) Calculate

γ̄(k) = γ(k) + δ (γmin − γ(k)) ,

where δ is the step size parameter between 0 and 1.

(c) Obtain γ(k + 1) by projecting γ̄(k) on the set of valid probability vectors.

(d) Calculate

X(k + 1) = gγ(k+1) (X(k)) .

(e) If γ(k) = γ(k + 1) (within a prescribed tolerance) then break else repeat the loop.

3. Output γ(k+1) as the minimizing vector and trace (X(k + 1)) as the minimum cost function.

Remarks

1. γmin is obtained through an optimization problem of the form

arg min
γ

trace

(

AXAT +Rw −
N∑

i=1

γiAXC
T
i

(
CiXC

T
i +Rv,i

)−1
CiXA

T

)

∑

γi = 1 0 ≤ γi ≤ 1,

where X is a given positive semi-definite matrix. This is a linear program and can be solved

efficiently.

2. The projection step in the algorithm is required since γ̄(k) may have individual components

that are negative or greater than 1, even though they sum up to 1. The optimal projection
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would be to find out the vector that is a valid probability vector and minimizes the Euclidean

distance from the original vector. In practice, however, heuristics such as setting the negative

components to 0 and redistributing their weight to all the other components seem to work

well.

3. There might be additional constraints placed on the probability vector. As an example, con-

sider the situation when there are N physical sensors each of which communicate over a

communication link that drops packets with a probability λ. Then, the situation is the same

as if there were N + 1 sensors, the first sensor corresponding to no measurements being taken

with a fixed probability λ, while the other N sensors correspond to the physical sensors being

used with probabilities q1(1 − λ), q2(1 − λ) and so on, where the qi’s still sum to 1. Such

constraints can be easily considered in the algorithm above.

4. The algorithm assumes some shared randomness and synchronization among the sensors so

that two sensors are not turned on at the same time. This can readily be achieved, e.g.,

through a common seed for a pseudo-random number generator available to all the sensors.

Alternatively a token-based mechanism for the scheme can be implemented.

5. Also, note that the algorithm is run off-line and it has to be re-applied every time the number

of sensors changes. However, if a sensor is stochastically failing with a known probability, we

can model that in the algorithm.

Convergence of the Algorithm Even though simulations indicate that the algorithm usually

converges to the global optimum, we have not been able to obtain analytical results except the

following result for the case when the system being estimated is a scalar system. We first prove a

lemma.

Lemma 4.12 For two arbitrary positive semi-definite matrices X and Y ,

X ≤ Y ⇒ gq(X) ≤ gq(Y ),

for any arbitrary valid probability vector q.

Proof The proof is straightforward.

g(X) =
∑

i

qi min
Ki

((A+KiCi)
TX(A+KiCi) +KT

i Rv,iKi +Rw)

≤
∑

i

qi min
Ki

((A+KiCi)
TY (A+KiCi) +KT

i Rv,iKi +Rw)

= g(Y ).



181

Suppose that we choose an initial guessX(1) for the error covariance that is very small. We disregard

the projection step and assume that at every step k, we do a greedy gradient descent. That is at

every time step k, we calculate the probability vector that results in the minimum X(k + 1) given

the current guess X(k). Then, we can prove the following.

Proposition 4.13 Suppose that the algorithm described in Section 4.3.2.1 (while disregarding the

projection step) is used for calculating the optimal sensor schedule for estimating the state of a scalar

process. If the algorithm converges, it converges to the globally minimum value of X.

Proof Denote X̃ as the global minimum covariance and q̃ as the global optimum probability vector

that achieves X̃. By choice of the initial condition, X(1) ≤ X̃. Now two inequalities hold:

1. If we propagate X(1) for one time step through the probability vector q̃ and obtain X̄, then

X(2) ≤ X̄. This is true because of the definition of q̃.

2. Because of Lemma 4.12, X̄ ≤ X̃.

Combining the two inequalities, we obtain X(2) ≤ X̃. Now we can apply the same argument repeat-

edly to obtain X(k) ≤ X̃, for any time k. But if X(k) converges, this equation means that we have

obtained a cost less than or equal to the global optimum cost. By definition of the global optimum

cost, thus, X(k) = X̃ on convergence.

4.3.2.2 Sensors chosen according to a Markov chain

Denote the probability of sensor i being chosen at time step k by πi(k) and the probability of the

sensor j being chosen at time step k+1 given that sensor i was chosen at time step k by qij . We again

use the upper bound derived in Section 4.2. Similar to the i.i.d. case, if we assume N sensors to be

present, we can pose the following optimization problem to solve for the elements of the transition

probability matrix qij .

min
qij

trace(X) (4.16)

s.t. X =
N∑

j=1

πjXj πjXj =
N∑

i=1

fCj
(Xi) qijπi

∑

j

qij = 1 0 ≤ qij ≤ 1

Xj ≥ 0 πi =

N∑

j=1

qjiπj .

This can again be solved by an algorithm similar to the one proposed above for the i.i.d. case. The

step of finding the minimizing qij ’s remains a linear program.
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4.3.3 Examples

We now apply our algorithm to a few sample problems to illustrate the scheduling algorithms. Since

the main focus of the section is in presenting the stochastic sensor scheduling algorithm, we will

concentrate on that algorithm. Assume a vehicle moving in 2-D space according to the standard

constant acceleration model [12]. This model assumes that the vehicle has a constant acceleration

equal to zero except for a small perturbation. We assume that the vehicle moves in a plane. Denoting

the position of the vehicle in the two dimensions by px and py, the velocities by vx and vy and with

a discretization step size of h, the dynamics of the vehicle are of the form (4.1) where

A =











1 0 h 0

0 1 0 h

0 0 1 0

0 0 0 1











B =











h2/2 0

0 h2/2

h 0

0 h











x =











px

py

vx

vy











.

The term w(k) is the perturbation term in acceleration and is modeled as a zero mean white Gaussian

noise. In the numerical example, h = 0.2. The process noise is considered to have covariance matrix

Rw given by

Rw =




1 0.25

0.25 1



 .

We assume two sensors with the measurements taken by the two sensors, y1 and y2 being described

by

yi(k) =




1 0 0 0

0 1 0 0



x(k) + vi(k). (4.17)

The terms vi(k) model the measurement noise, again assumed white, zero mean and Gaussian and

also independent from each other and from w(k). We consider values of the sensor noise covariances

as

R1 =




2.4 0

0 0.4



 R2 =




0.7 0

0 1.4



 . (4.18)

We assume that only one sensor can take a measurement at any time step and the measurement is

then transmitted in an error-free manner to the other sensor.

The plot given in Figure 4.3 illustrates that choosing any one sensor at all time steps is not

optimal. The figure plots the cost measured as the sum of the traces of the error covariance matrices

of the estimates at the two sensors when they adopt the strategy of choosing only sensor 1 or only

sensor 2 or when they choose an arbitrarily generated schedule over 50 time steps. For comparison,

the cost achievable by the optimal sensor strategy found by a sliding window approach to the tree

search is also given. We see that the even an arbitrary sensor switching strategy can help to bring
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Figure 4.3: Sensor switching helps to bring the cost down.

down the cost.

Next, we apply our stochastic algorithm to find the optimal probability distribution. On opti-

mizing the upper bound in (4.9) over q1 and q2, the optimal probability for sensor 1 turns out to

be q1 = 0.395. Indeed, if we find the optimal sequence by a complete tree search, it turns out that

in the steady state, the percentage of sensor 1 in the sequence is about 37%. For this probability

distribution, the steady state value of the upper bound of the sum of the traces of the expected error

covariance matrices for the two sensors turns out to be 2.3884, which compares well with the value of

about 2.3 obtained by the optimal strategy. Note that our algorithm results in orders of magnitude

less calculation than tree search algorithms and finds a near-optimal schedule in the steady state.

When 1000 test cases of random sensor schedules with q1 = 0.395 were generated and used, the

steady state cost averaged over time for each schedule turned out to be 2.3664. The spread of the

cost is shown in Figure 4.4.

The computational savings can be very significant if we need to study the optimal sensor schedule

as some sensor parameter is varied. As an example, let the measurement noise covariance of the

second sensor be given by

R2 = α




0.7 0

0 1.4



 .

Figure 4.5 plots the optimal percentage of use of sensor 1, as the parameter α is varied. The plot
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Figure 4.4: Spread of the error covariance when the optimal probability distribution is used.

shows that there is a threshold phenomenon such that increasing the noise of one sensor beyond that

level results in that particular sensor never being used. The reduction in the computation needed

makes our algorithm much more scalable in the number of sensors than the tree-based algorithms.

In addition, there are several unique advantages that our algorithm offers over the conventional

algorithms. A very important one is the issue of sensor costs. Frequently, there are other consid-

erations beyond estimation accuracy in using one sensor over another. As an example, it might be

more costly to use a very accurate sensor at every time step. Similarly, we might want some sort of

fairness such that one sensor is not used all the time because that may result in all its power being

drained. Usually, it is not clear how to appropriately weight the sensor costs for a fair comparison

with the estimation costs. Thus, it is not clear how to even generate a tree for the sensor schedule

choices. However, it is easy to take sensor costs into account with our algorithm. As an example we

consider three sensors of the form of (4.17) being present with the measurement noise covariances

being given by

R1 =




3.24 0

0 1.04



 , R2 =




0.25 0

0 1.36



 , R3 =




0.56 0

0 0.56



 .

Suppose that the three sensors are transmitting to a single data sink so that the only energy con-
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Figure 4.5: Optimal probability of use of sensor 1 as sensor 2 gets noisier.

sumption is in taking a measurement and then broadcasting it. If we try to optimize the probability

distribution, we obtain that sensor 2 should be chosen with a probability of 0.2 and sensor 3 with a

probability of 0.8. However, such a strategy would lead to sensor 3 draining away all its power very

quickly and thus we might want to impose an additional constraint that on average, no sensor is used

more than twice as much as any other sensor. It is not even apparent whether such constraints can

be taken into account while using the traditional greedy algorithms or differential equation based

algorithms. For a full tree-search algorithm, the computational burden would be immense. However,

in our algorithm, We restrict our search to the relevant q1− q2 space and come up with the optimal

probabilities satisfying the additional constraint as sensor 1 being used with a probability of 0.2 and

sensors 2 and 3 being used each with a probability of 0.4.

Another situation in which our algorithm is much more easily used is when there is some ran-

domness imposed on the system. As an example, consider the case of two sensors with measurement

noise covariances given by the values in (4.18). Suppose that the sensors are communicating with a

data sink over a communication channel that randomly drops packets with probability λ. Compared

to the conventional methods, it is easy to take the channel into account while using our algorithm.

We set up equation (4.7) assuming that there are three sensors present. The first two sensors have

covariance matrices given above and they are chosen with probabilities q1(1−λ) and q2(1−λ). The

third sensor corresponds to the packet being dropped (and hence no measurement being taken) and

it is chosen with a probability of (q1 + q2)λ. Then, we optimize this bound over the parameters q1

and q2. Figure 4.6 shows the change in the optimal probability of choosing sensor 1 as the packet
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drop probability λ is varied. The plot shows that the packet drop probability plays a big role in

determining the optimal sensor schedule.
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Figure 4.6: Optimal probability of use of sensor 1 varies if the channel is dropping packets.

The lower bound derived in Theorem 4.6 is useful for obtaining the region in the sensor usage

probability space where the expected error covariance diverges. Consider the same system as in (4.1)

being measured by two sensors of the form of (4.17). The measurement noise covariances are given

by the values in (4.18). The upper bound and the lower bounds are plotted in Figure 4.7. We can

see that the lower bound may not be very tight. However, the main utility of the lower bound is in

predicting when the expected error covariance necessarily diverges. We consider the same example

with the second sensor replaced by a sensor of the form

y(k) =




0 0 1 0

0 0 0 1



x(k) + v(k),

with the sensor noise covariances given by (4.18). We see that the plant is unobservable while using

the second sensor alone and hence, as the probability of using the second sensor increases, the error

covariance would diverge. It can be shown that although there is a huge gap between the lower

and upper bounds, both bounds diverge at q1 = 0.56 which is thus the critical probability for error

divergence. This value also matches the value given in Theorem 4.6 since the largest eigenvalue of

the unobservable part of A is 1.5. In general, the probabilities when the bounds diverge will not
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match and they serve as lower and upper bounds on the critical probability. An important special

case is when any one of the matrices Ci is invertible which renders the condition of divergence of

the lower bound both necessary and sufficient for the divergence of the expected error covariance.

Our results can also be used in other problems that have a similarity to the sensor scheduling

problem. While we will consider two such applications in detail in the appendices, let us consider

a simple pursuit-evasion example here. Suppose that there are N pursuers on the ground that are

tracking N targets. We assume that the target assignment problem has been solved. Each pursuer

depends on a UAV to obtain information about its target. Suppose there are n UAVs present. Each

UAV chooses a pursuer at random with equal probability and transmits the corresponding target’s

location. We consider the targets to execute a random walk according to the equation

xi(k + 1) = 1.1xi(k) + wi(k),

where wi(k) is white noise with variance unity. Figure 4.8 shows a lower bound on the number of

UAVs needed as the number of pursuers is increased to keep the expected error covariance (and

hence the cost involved in tracking) bounded for all pursuers. We can also study the performance

of this system using the tools presented above.
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Figure 4.8: Minimum number of UAVs required as a function of the number of pursuers.

4.4 Encoding Information at the Sensor End

As we saw in Chapter 3, encoding information at the sensor end prior to transmission can yield

large performance gains. For the problem considered in this chapter, so far we have assumed that

the sensors were transmitting measurements without any encoding. If there is no packet loss and

the reason the transmissions need to be scheduled is that only one sensor can measure per time

step (e.g., sonars at the same frequency) then this strategy is optimal. However, if every sensor is

observing the process at every time step even though only one sensor can transmit, it is natural to

ask if the sensors can transmit more information than just the latest measurement that they have.

We can look at an algorithm whose performance upper bounds the performance achieved by any

coding scheme. The best a sensor can do with any algorithm is to transmit all the measurements

it has ever taken when it is its turn to transmit. Consider, as before, a process defined as in (4.1)

being observed by N sensors of the form (4.2). We will use the Riccati operator defined in (4.4)

and (4.5). The i-th sensor is used with probability qi in an i.i.d. fashion. Assume, for simplicity,

that there are no packet drops in the channel, although the packet drops can be taken care of by

simply introducing one more sensor. We are interested in the expected error covariance E[P (k)] at

the estimator end.

Consider the set S of all possible combinations of n ≤ N − 1 sensors. For any element s of S,

define Cs to be the corresponding sensing matrix and qs to be the probability that one of the n
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sensors is used. As an example, for the case of 3 sensors,

S = {1, 2, 3, 12, 13, 23}

Cs ∈ {C1, C2, C3,




C1

C2



 ,




C1

C3



 ,




C2

C3



}

qs ∈ {q1, q2, q3, q1 + q2, q1 + q3, q2 + q3}.

We have the following result.

Proposition 4.14 Consider the problem definition given above with each sensor transmitting all its

previous measurements whenever it is its turn to transmit. A necessary and sufficient condition for

E[P (k)] to stay bounded as k →∞ is that the following set of equations hold:

qs | λ̄(As) |2≤ 1 ∀s ∈ S,

where As is the unobservable part of A when the pair (A,Cs) is put in observer canonical form.

Proof For notational ease, we present the proof for N = 2 sensors. The case for general N is

similar. We are interested in the behavior of E[P (k)] for large k. Denote by P ? the steady state

error covariance in estimating x(k) given all measurements from both sensors till time step k − 1.

Since the convergence of the Ricatti recursion is exponential and we will be dealing with geometric

series below, we will substitute P ? for error covariance for a large enough time k.

We can condition the event space for calculating E[P (k)] into events of the form Emn where the

last time sensor 1 transmitted was at time step m and sensor 2 transmitted was at time step n. If

we use the values m = −1 or n = −1 to denote that sensor 1 or sensor 2 have never transmitted,

(m,n) can assume values

(m,n) ∈ {(k, k − 1), (k, k − 2), · · · , (k,−1), (k − 1, k), (k − 2, k), (k − 3, k), · · · , (−1, k)}.

Accordingly, we can write

E[P (∞)] =
∑

(m,n)

E[P (∞)|Emn]Prob (Emn)

= q1q2fC1
(P ?) + q1(1− q2)q2f2

C1
(P ?) + q1(1− q2)2q2f3

C1
(P ?) + · · ·

+q1q2fC2
(P ?) + q2(1− q1)q1f2

C2
(P ?) + q2(1− q1)2q1f3

C2
(P ?) + · · ·

= q1q2

∞∑

j=0

(1− q2)jf j+1
C1

(P ?) + q1q2

∞∑

j=0

(1− q1)jf j+1
C2

(P ?) .

Following the arguments in the proof of Proposition 4.7 for each sum to be bounded, we obtain that
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a necessary and sufficient condition for E[P (∞)] not to diverge is that the following conditions hold.

(1− q2) | λ(Ā1) |2 ≤ 1

(1− q1) | λ(Ā2) |2 ≤ 1.

This completes the proof for N = 2. For general N the proof is similar.

The conditions in the above proposition identify the necessary and sufficient probability region for

the expected error covariance to be stable. These are, in particular, necessary for the case when

only measurements are transmitted, which can be observed easily for the case N = 2 by comparing

with the conditions in Proposition 4.7. The performance in terms of E[P (k)] can also be calculated

by similar conditioning.

Of course, this result is for the optimal algorithm that entails an increasing amount of data trans-

mitted. The problem whether there exists a recursive algorithm that attains the above performance

is still open. The algorithm that we identified in Section 3.6 can be adapted to this case. However,

it no longer remains recursive. The reason is that to calculate the global covariance matrix P in the

algorithm, the sensors need to know which sensors have been used at all times in the past. Every

time a sensor is used, the situation is the same as if it had been used at all previous time steps as

well. Thus, every sensor needs to store all previous global error covariance matrices and re-update

them to obtain the new error covariance. This entails a large amount of memory since a sensor may

not be used for a long time.

4.5 Distributed Control with Packet Losses

In this section, we take another look at the problem of distributed control that we considered in

Chapter 2. Suppose there are N agents that aim at minimizing a joint cost function. In general,

the optimal control law would require a fully connected topology in which every agent knows the

state of all the agents. However, this may entail a lot of communication. An alternative strategy

is for the agents to exchange information only at some time steps, while using this information to

generate the control inputs at the times they are not able to communicate. This can also model a

situation in which the agents are not able to exchange information because of packet losses by the

channel.

Thus, the topology of the network switches between many states. We are interested in finding the

optimal controller that minimizes a quadratic cost. We will assume that that if an agent A is unable

to communicate with any other agent B, then no agent (including A) uses the current state value

of agent A while calculating its control input. While the analysis we give below is generalizable

to consider topologies where any subset of the nodes does not transmit, it is notationally and
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pedagogically much easier to restrict ourselves to the case when the topology switches between two

states: a fully centralized topology in which every agent communicates with everybody else and

a completely disconnected one in which no agent is communicating. As in the sensor scheduling

analysis, we assume that the topologies switch stochastically between each other, so as to be able

to include the effect of switching due to packet loss.

The assumption about the state value of an agent being used in a binary manner (either all

agents use it or none does) needs to be discussed. The assumption is admittedly rather limiting

and the resulting controller would essentially be a centralized one. However, this is a first step

towards building a theory of distributed control with communication losses. While one may view

these results as the LQG counterpart of the H∞ results presented in [175], it may be noted that

the latter assumes that the controller is time-invariant, apart from switching to a different mode

because of the packets being received or not at the current time step. We make no such assumption

and solve for the optimal time-varying controller that takes into account the entire history of the

packet drops.

4.5.1 Problem Formulation

Consider N agents present with the i-th agent having the state space description xi(k) and evolving

as

xi(k + 1) = Āxi(k) + B̄ui(k) + wi(k),

where wi(k) is zero mean white Gaussian noise independent of all other wj(k)’s. Thus, the entire

system evolves as

x(k + 1) = (I ⊗ Ā)x(k) + (I ⊗ B̄)u(k) + w(k),

where x(k), u(k) and w(k) are system state, control input and noise vector obtained by stacking the

individual xi(k)’s, ui(k)’s and wi(k)’s respectively. We will denote

A = I ⊗ Ā B = I ⊗ B̄.

At any time step k, all the agents are able to exchange their state values with probability4 p. Said

another way, every agent knows the entire state vector x(k) with a probability p at any time step

k. With the remaining probability, the agents do not have any knowledge of the value of the state

vector at that time step and they rely on the previous values of the state vector that were received

to generate the control input at that time step. We prescribe an upper limit n such that if no state

value has been received for n time steps, the agents evolve open loop, i.e., they do not apply any

control ui(k). The results can be generalized to any other value of control input as well, that may

4The assumption about the exchange happening with the same probability at every time step is merely for sim-
plicity. The analysis can easily be generalized to, for instance, Markov chain based models.
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correspond to the agents switching to some safe maneuver and waiting for a successful transmission

to restart the joint mission. The agents aim at minimizing a joint cost function

JT =

T∑

k=0

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
+ E

[
xT (T + 1)P c(T + 1)x(T + 1)

]
,

where the expectation is taken over the noises wi(k)’s and the probability of communication p.

The system can thus be described as follows. A process evolves as

x(k + 1) = Ax(k) +Bu(k) + w(k), (4.19)

where x(k) is the process state, u(k) is the control input and w(k) is the process noise assumed

white, Gaussian, zero mean and covariance matrix Rw. The state of the process is observed by a

sensor with observations of the form5

y(k) = Cx(k) + v(k),

where v(k) is the measurement noise again assumed white, Gaussian, zero mean and covariance Rv.

Further, the noises w(k) and v(k) are assumed independent of each other. We assume that the pair

(A,B) is controllable and (A,C) is observable.

The measurements are transmitted over a packet erasure channel to all the agents. At every time

step, the channel erases the measurement with a probability (1 − p) independently of all previous

time steps. Thus, with a probability p at any time, the agents receive a packet containing the current

measurement. There are three possibilities:

1. If the agents receive a packet at time step k, they calculate the control inputs ui(k)’s, or

equivalently the control input u(k) based on all previous measurements that have been received

up to and including the measurement at time k.

2. If the agents do not receive anything at time step k but they did receive a packet at some time

j between k−n and k, u(k) is calculated based on all previous measurements received till and

including time step j.

3. If the agents have not received anything since time k − n− 1, the control input u(k) is set to

zero.

The agents aim at minimizing the finite-horizon cost function

JT =

T∑

k=0

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
+ E

[
xT (T + 1)P c(T + 1)x(T + 1)

]
.

5In Chapter 2, we had assumed C to be identity and noise v(k) not to be present. This discussion is more general.
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Two questions arise:

1. How to design the control inputs {u(k)}?

2. How does the performance of the system vary as a function of the parameters n and p?

4.5.2 Analysis

4.5.2.1 The Markov Chain Model

It is fairly easy to see that the situation can be modeled as a Markov chain with n+ 2 states. The

first n + 1 states correspond to the last packet being received at the actuator t time steps ago, for

the values of t = 0, 1, · · · , n while the n+ 2-th state corresponds to the last packet being received t

time steps ago, where t ≥ n+ 1.

The Markov chain corresponds to the system evolving backwards in time. Thus, the initial

probability of being in the i-th state is the probability that at time step T , the last packet was

received i time steps ago. Since the packet drops are independently and identically distributed, for

the first n+1 states, this probability is p(1−p)i−1 while for the n+2-th state it is 1−∑n
i=0 p(1−p)i−1.

We will refer to this probability distribution set as {πj(T )}, where the superscript j stands for the

state of the Markov chain while the argument T refers to the fact that these probabilities correspond

to the time step T of the system evolution. To calculate the probabilities at time step T −1, we need

the transition probability matrix of the Markov chain. While the probabilities are straight-forward

to compute, they are notationally cumbersome to describe for the general case. We will, instead,

illustrate the probabilities for the cases n = 0 and 1. The general case is similar.6

For n = 0, there are two states in the chain: state 1 corresponds to packet not being lost at

the current time step, while state 2 corresponds to packet being lost. If we denote qij to be the

probability of being in state j at time step k − 1 given that the system was in state i at time step

k, then the transition probabilities are given by

q11 = 1− p q12 = p

q21 = 1− p q22 = p.

For n = 1, the situation is similar. There are three states: state 1 corresponds to the last packet

that arrived being transmitted at the same time step, state 2 to the last packet being transmitted

one time step ago and state 3 to it being transmitted more than 1 time step ago. We can thus

6It should be emphasized that even if the packets are being lost according to, say, a Gilbert-Elliot channel model,
the framework given here applies. The values of the probabilities in the transition probability matrix calculated below
would obviously differ.
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evaluate

q11 = 1− p q12 = p(1− p) q13 = p2

q21 = 1 q22 = 0 q23 = 0

q31 = 0 q32 = 1− p q33 = p.

Having defined the Markov chain model, we now proceed to the analysis of the cost function.

4.5.2.2 A Closer Look at the Cost Function

We begin by extracting the terms dependent on x(T ) and u(T ). We can write them as

Υ(T ) = E
[
xT (T )Qx(T ) + uT (T )Ru(T ) + xT (T + 1)P c(T + 1)x(T + 1)

]
.

We can condition Υ(T ) on the event that the Markov state is in the state i at time step T . Let us

denote this event by m(T ) = i. Thus,

Υ(T ) =
n+2∑

i=1

πi(T )Υi(T ) (4.20)

where

Υi(T ) = E
[
xT (T )Qx(T ) + uT (T )Ru(T ) + xT (T + 1)P c,i(T + 1)x(T + 1)|m(T ) = i

]

and we have denoted the quantity P c(T +1) entering the i-th term in the summation as P c,i(T +1).

The state i fixes the information set available to the controller and hence the control input u(T ).

Let us denote the control input calculated for the time step k given the received measurements till

time j as u(k, j). Then, for i = 1, · · · , n+ 1,

u(T ) = u(T, T − i+ 1),

while for i = n + 2, u(T ) = 0. To see what the terms u(T, T − i + 1) should be, let us isolate the

corresponding term Υi(T ) from the summation. We have

Υi(T ) = E
[

xT (T )Qx(T ) + uT (T )Ru(T ) + (Ax(T ) +Bu(T, T − i+ 1)

+ w(T ))TP c,i(T + 1)(Ax(T ) +Bu(T, T − i+ 1) + w(T ))
]

,
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and finally as

Υi(T ) = E
[(
u(T, T − i+ 1) + (∆i)−1BTP c,i(T + 1)Ax(T )

)T
∆i

(
u(T, T − i+ 1) + (∆i)−1BTP c,i(T + 1)Ax(T )

)
+ wT (T )P c,i(T + 1)w(T )

+ xT (T )
(
Q+ATP c,i(T + 1)A− P c,i(T + 1)B(∆i)−1BTP c,i(T + 1)

)
x(T )

]

,

where we have used the fact that the noise w(T ) is zero mean and have denoted

∆i = R+BTP c,i(T + 1)B.

Thus, it is apparent that u(T, T − i+ 1) should be chosen so as to minimize the mean squared error

E
[(
u(T, T − i+ 1) + (∆i)−1BTP c,i(T + 1)Ax(T )

)T
∆i

(
u(T, T − i+ 1) + (∆i)−1BTP c,i(T + 1)Ax(T )

)]

.

Thus, based on all the measurements received till the time step T − i+1, the agents should calculate

the minimum mean squared estimate of x(T ) and then multiply it by the matrix (∆i)−1BTP c,i(T +

1)A to determine u(T, T − i + 1). Let us denote the corresponding error covariance incurred as

Λi(T ). Note that while calculating u(T, T − i+ 1), every agent knows all the control inputs applied

by the system till time step T − i. Further, if the input u(T, T − i+ 1) is used at time step T , the

agents know that no packet was transferred successfully after time step T − i+ 1. Hence, they can

also determine the control inputs applied from time T − i+ 1 till time T − 1. Thus, they know all

the previous control inputs while estimating x(T ). As a result, Λi(T ) is independent of all previous

control inputs.

With the optimizing choice of u(T, T − i+ 1), the term Υi(T ) becomes

Υi(T ) = Λi(T ) + E
[

wT (T )P c,i(T + 1)w(T )

+ xT (T )
(
Q+ATP c,i(T + 1)A−ATP c,i(T + 1)B(∆i)−1BTP c,i(T + 1)A

)
x(T )

]

.

For ease of notation, for the values of i = 1, · · · , N + 1, let us define an operation f i(.) as

f i(X) = Q+ATXA−ATXB(R+BTXB)−1BTXA.

Thus,

Υi(T ) = Λi(T ) + E
[
wT (T )P c,i(T + 1)w(T ) + xT (T )f i

(
P c,i(T + 1)

)
x(T )

]
.
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This form of Υi(T ) holds for i = 1, · · · , n+ 1. For i = n+ 2, u(T ) = 0 and

Υn+2(T ) = E
[
xT (T )Qx(T ) + (Ax(T ) + w(T ))TP c,i(T + 1)(Ax(T ) + w(T ))

]

= E
[
wT (T )P c,i(T + 1)w(T ) + xT (T )(Q+ATP c,i(T + 1)A)x(T )

]
.

Thus, for the optimizing choice of control inputs at time step T + 1, we can finally write

Υ(T ) =

n+2∑

i=1

πi(T )Υi(T )

=
n+2∑

i=1

πi(T )E
[
wT (T )P c,i(T + 1)w(T )

]
+
n+2∑

i=1

πi(T )Λi(T )

+

n+2∑

i=1

πi(T )E
[
xT (T )f i

(
P c,i(T + 1)

)
x(T )

]
,

where we have defined

Λn+2(T ) = 0

fn+2(X) = Q+ATXA.

The cost function after choosing the control inputs at time K optimally can thus be rewritten as

JT =

T−1∑

k=0

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
+

n+2∑

i=1

πi(T )E
[
wT (T )P c,i(T + 1)w(T )

]

+

n+2∑

i=1

πi(T )Λi(T ) +

n+2∑

i=1

πi(T )E
[
xT (T )f i

(
P c,i(T + 1)

)
x(T )

]
.

The second summation involves only the noise terms and thus cannot be affected by the choice of

the control inputs. The third summation involves the estimation error covariance incurred while

calculating u(T ) and, as explained earlier, this term is also independent of all previous control input

choices. Thus, to optimally choose all the control inputs from time 0 to time T − 1, the agents only

need to consider the terms forming the first and the fourth summations. Let us take a closer look
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at the fourth summation and denote it by Γ(T ). We have

Γ(T ) =

n+2∑

i=1

πi(T )E
[
xT (T )f i

(
P c,i(T + 1)

)
x(T )

]

=

n+2∑

i=1

n+2∑

j=1

πi(T )qijE
[
xT (T )f i

(
P c,i(T + 1)

)
x(T )|m(T − 1) = j

]

=

n+2∑

j=1

n+2∑

i=1

πi(T )qijE
[
xT (T )f i

(
P c,i(T + 1)

)
x(T )|m(T − 1) = j

]

=

n+2∑

j=1

E

[

xT (T )

(
n+2∑

i=1

πi(T )qijf
i
(
P i(T + 1)

)

)

x(T )|m(T − 1) = j

]

.

Let us define

πj(T − 1)P c,j(T ) =

n+2∑

i=1

πi(T )qijf
i
(
P c,i(T + 1)

)
.

Thus,

Γ(T ) =
n+2∑

j=1

E
[
xT (T )

(
πj(T − 1)P c,j(T )

)
x(T )|m(T − 1) = j

]

=
n+2∑

j=1

πj(T − 1)E
[
xT (T )P c,j(T )x(T )|m(T − 1) = j

]
.

Finally, the cost function can be written as

JT =

T−1∑

k=0

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
+

n+2∑

j=1

πj(T − 1)E
[
xT (T )P c,j(T )x(T )|m(T − 1) = j

]

=

n+2∑

j=1

πj(T − 1)

[
T−1∑

k=0

E
[
xT (k)Qx(k) + uT (k)Ru(k) + xT (T )P c,j(T )x(T )|m(T − 1) = j

]

]

,

where we have ignored the second and the third summations that play no role in further minimization.

But now we can again extract the term Υ(T − 1) in a form similar to the one in (4.20) and our

argument from then on did not rely on the time index T . Thus, we can carry out a similar argument

to evaluate the optimal control inputs at all time steps and the resulting cost function. We have, in

effect, proven a separation principle in the problem setting we are considering.

Proposition 4.15 Consider the problem setting described in Section 4.5.1. The optimal value of

control input u(k, j), i.e., the control input to be applied at time k given that the last measurement

was received at time step j ≥ k − n is given by

u(k, j) = F (k)x̂(k|j) =
(
∆i
)−1

BTP c,i(k + 1)Ax̂(k|j),
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where

∆i = R+BTP c,i(k + 1)B

πj(k − 1)P c,j(k) =
n+2∑

i=1

πi(k)qijf
i
(
P c,i(k + 1)

)
,

P c,i(T + 1) = P c(T + 1) and x̂(k|j) is the minimum mean squared error estimate of the state x(k)

of the system given all the received measurements till time step j and control inputs till time step

k − 1.

4.5.2.3 Stability and Performance Analysis

We can consider the optimal cost as the time horizon T becomes larger. For the infinite time horizon

problem, we will consider the cost

J(∞) = lim
T→∞

1

T
J(T ).

As we have assumed in this dissertation, the system is stable if this cost is bounded. Looking at the

analysis in Section 4.5.2.2, there are two reasons that the cost may grow unbounded:

1. The terms Λi(k) grow unbounded. This is a function of how fast does the estimation error

grow.

2. The terms P j,c(0) grow unbounded. This is a function of the how fast does the system grow

if uncontrolled.

We will now consider these two effects.

Let us begin with the terms Λi(k). Λi(k) represents the estimation error covariance incurred when

the control input for time step k is calculated based on measurements received till time k − i + 1.

However, since there is always a measurement received at time k − i + 1, this quantity can never

diverge. Stated another way, even though the estimation error can grow worse as no measurements

are received for a long time, the measurement received at time k− i+1 always keeps it finite. Thus,

the effect of Λi(k) shows up only in the performance analysis and not in the stability of the system.

For the terms P j,c(k), let us first identify the recursions according to which these terms evolve.

These terms evolve backwards in time according to the coupled equations

πi(k − 1)P j,c(k) =

n+2∑

i=1

πi(k)qijf
i
(
P c,i(k + 1)

)
, (4.21)

where πj(k) is the probability of being in state j at time k, qij is the transition probability of being

in state j at time step k − 1 given that the state at time state k was i and the operators f i(.)

have been defined earlier. The initial values are P c,i(T + 1) = P (T + 1) ∀i. The behavior of these
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equations has been analyzed in Section 4.2.3.1. In particular we can prove the following result along

the lines of Proposition 4.9.

Proposition 4.16 Consider the recursion defined in (4.21). Assume that the Markov chain tran-

sition probability matrix is such that the states reach a stationary probability distribution with the

probability of being in the j-th state as πj. Further assume that all πj’s are strictly positive. If there

exist n + 2 positive definite matrices X1, X2, · · · , Xn+2 and (n + 2)2 matrices K1,1, K1,2, · · · ,
K1,n+2, K2,1, · · · , Kn+2,n+2 such that

πjXj >

n+2∑

i=1

(

(AT +KijBT )Xi(AT +KijBT )T +Q+KijR(Kij)T
)

qijπ
i,

then (4.21) converges for all initial conditions X i(T +1) > 0 and the limit X̄j is the unique positive

semi-definite solution of the equation

πjXj =
n+2∑

i=1

f j
(
Xi
)
qijπ

i. (4.22)

Proof Proof is along the lines of the proof given for Proposition 4.9 and is omitted.

This result provides a sufficient condition for stability. For a necessary condition, we can use the

stability of the lower bound treated in Proposition 4.11. Thus, we can immediately prove the

following result.

Proposition 4.17 Let the probability of choosing the n + 2-th state at two consecutive time steps

be qn+2,n+2. Denote ρ(A) as the spectral radius of matrix A. Then, a sufficient condition for the

expected estimate error covariance to diverge from at least one initial value is given by

qn+2,n+2|ρ(A)|2 > 1.

Since we can evaluate the terms P j,c(k) exactly through recursion and obtain bounds on the

terms Λi(k) from our work in Section 4.2.3, we can obtain lower and upper bounds on the cost JT

as well. The details are omitted.

4.6 Discussion

In this chapter, we considered problems that had both the features of multiple components and

imperfect communication links present. We began by analyzing a situation in which sensors were

transmitting information to an estimator according to a stochastic schedule. Then, we used this

analysis to propose a sensor scheduling algorithm that could explicitly include the effects of com-

munication channels. We saw that the algorithm provides a useful tool in many situations and has
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unique advantages over the tree-search based algorithms proposed in the literature. However, there

is more left to do. We do not yet have an understanding of how tight the bounds that we are using

for our algorithm are. Moreover, we are optimizing a steady state criterion and can not yet include

the transient effects. While it seems that a greedy algorithm may alleviate this problem, more work

needs to be done.

We also characterized the behavior of an optimal encoding algorithm in which the sensors trans-

mit all their measurements at every time step. However, the design of a recursive algorithm to

achieve this performance is still open. We also looked at a control problem with stochastically

switching topologies. While the results were interesting, they still assumed that if an agent cannot

communicate, no agent can access its state value. It would be nice to remove this assumption and

consider more general topologies in which an agent may be able to communicate with some, but not

all, other agents at any time step. A step towards that may be to use the sub-optimal distributed

control algorithm described in Chapter 2 and invoke some of the tools introduced above to consider

switching topologies.

The tools that we have developed are more widely applicable than the specific problems consid-

ered so far. We demonstrate two such applications in the appendices.
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Appendix A: Dynamic Sensor Coverage

In this appendix we consider one application of the tools developed in the chapter. Consider a

geographical area in which various regions need to be patrolled. We study the problem of using a

small number of mobile sensors to effectively cover the entire area. Using the results presented in

the main part of the chapter, we propose a stochastic sensor movement strategy. We also present

simple conditions under which it is not possible to maintain a bounded estimate error covariance for

all the threats.

Let the geographical region that needs to be monitored be divided into a grid of N points. There

are dynamical processes occurring at these points whose state we want to estimate. Denote the state

at the i-th point at time k by xi(k). The process at the i-th point is driven by wi(k), assumed to

be zero mean, white and Gaussian with covariance matrix Rw,i. We consider two distinct cases:

1. Coupled processes: The processes at points i and j are coupled. Thus, the process at a point

i evolves as

xi(k + 1) = Aixi(k) +
∑

j 6=i

Ai,jxj(k) + wi(k),

where all the matrices Ai,j are not zero.

2. Uncoupled processes: The processes at distinct points i and j are unaffected by each other.

Thus, all matrices Ai,j are zero.

Denote the state of the entire region obtained by stacking all xi(k)’s as x(k). Then, x(k) evolves

according to the equation

x(k + 1) = Ax(k) + w(k),

where w(k) is the vector formed by stacking wi(k)’s and is assumed to have covariance Rw. If the

processes are uncoupled, A is a (block) diagonal matrix with Ai’s along the diagonal. If the processes

are coupled, A is, in general, a full matrix.

The region is monitored using n sensors. If the m-th sensor is at point i at time k, it generates

the measurement

ym(k) = xi(k) + vm(k), (4.23)

where vm(k) is zero mean white Gaussian noise with covariance Rv,m, assumed independent of all

other noises present. This can be rewritten as an observation of the state x(k) as

ym(k) = Cix(k) + vm(k),

where Ci is a row vector with zeros everywhere except the i-th element which is replaced by 1.7 This

7This description of Ci assumes the states xi(k)’s to be scalars. The extension to the vector case is obvious.
Similarly we can consider a sensing matrix being present in (4.23).
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gives rise to the concept of a virtual sensor. A physical sensor at point i gives rise to a virtual sensor

being used with sensing matrix Ci. This can obviously be generalized to more than one physical

sensor. As an example, if there are physical sensors at points i and j, we will say that a virtual

sensor is being used that has a sensing matrix with rows Ci and Cj .

If there is more than one physical sensor present, we assume that all measurements are exchanged

without delay or distortion. Thus, based on all the measurements, any physical sensor can compute

an estimate of the state x(k).8 Let the estimate be denoted by x̂(k). Also, let P (k) denote the

covariance of the estimate error. It is obvious that the error covariance is a function of the sensor

schedule for the virtual sensor, or the trajectory of the physical sensor. There are two basic problems

that arise.

1. What conditions should the sensor trajectories satisfy to guarantee that P (k) is bounded as

time k increases? Also, how many sensors should be present?

2. What is the optimal trajectory that minimizes the steady-state value of P (k)?

As we discussed in the context of sensor scheduling in the main body of the chapter, we can represent

all the possible sensor schedule choices for the virtual sensor by a tree structure. Finding the optimal

sequence requires traversing all the paths from the root to the leaves in the tree. This procedure

might place too high a demand on the computational and memory resources of the system. We are

instead interested in stochastic trajectories, i.e., the sensors choose their positions at any time step

at random according to a probability distribution. The probability distribution is chosen so as to

minimize the expected steady state error covariance. Note that we cannot calculate the exact value

of the error covariance since that will depend on the specific sensor schedule chosen.

In this appendix, we assume that the sensor trajectories are designed independent of each other.

There are two particular cases of sensor motion that we will study:

1. The choice for the position of the j-th sensor at time step k + 1 is done in an i.i.d. fashion at

each time step with probability qi of being at the i-th point.

2. The choice is done according to a Markov chain with transition probability matrix Q. This

can model physical constraints on the sensor motion, e.g., the probability qij is 0 if i and j are

points that are physically distant from each other.

Note that we have assumed that each sensor chooses its trajectory according to the same parameters

(probabilities qi’s or the transition probability matrix Q). We will say that the coverage problem

can be solved if there exists at least one choice of parameters such that beginning from any initial

condition P (0), the expected error covariance remains bounded as time progresses. If there exists

no such choice of parameters, we say that the problem cannot be solved.

8Since every sensor has access to the same information set, they would have identical estimates.
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In the above description, we have assumed that all the agents are interested in coming up with an

estimate for the processes in the area. If the data was being transmitted to a central data processing

node, we can use the same framework. In fact, in this case, we can also allow for communication

channel imperfections. As an example, if the communication channel loses packets stochastically, we

can model the time instants at which data loss occurs as being used up by a fictitious (as opposed

to physical and virtual) sensor which has sensing matrix 0. The data can be lost in either an i.i.d.

or a Markovian fashion.

Having defined the problem set-up, we now move on to analyze it. We will consider the problem

with various assumptions which will be clear before each result. We begin by presenting a set of

impossibility results, i.e., conditions on the matrix A such that the expected error covariance cannot

be bounded for any probability distribution. These results also present a bound on the minimum

number of sensors that need to be present. Some of the results for uncoupled processes were also

presented in [187].

Motion governed by i.i.d. choices

In this section, we will consider the case when each sensor is choosing the next point to move to in

an i.i.d. fashion. Let the probability of the sensor m being at point i at time k be given by qi. We

begin with the case when the dynamics of the processes at various points are uncoupled.

Uncoupled processes

As defined above, let Ai denote the system evolution matrix of the process at the i-th location. Let

λi refer to the eigenvalue with the maximum magnitude of the matrix Ai. Without loss of generality,

we can assume that

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |. (4.24)

We can prove the following result.

Proposition 4.18 Consider the sensor coverage problem when N physical points are to be patrolled

by one sensor. If the processes at the different points are uncoupled and (4.24) holds, then the

problem cannot be solved if the following condition holds for any 1 ≤ m ≤ N − 1,

(
N−1
m

)

|λ1|2
+

(
N−2
m−1

)

|λ2|2
+ · · ·+

(
N−1−m

0

)

|λm+1|2
<

(
N − 1

m− 1

)

. (4.25)

Proof The m-th sufficient condition is obtained by considering all virtual sensors formed by con-

sidering sets of m points. We say that a virtual sensor is used if the physical sensor is present at any

point in the set of m points that the virtual sensor represents. There are
(
N
m

)
such virtual sensors.

Denote the probability of choosing the j-th virtual sensor by pj . For a virtual sensor with the set of
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m points denoted by M, pj is of the form

pj =
∑

t∈M

qt.

For each virtual sensor, let the lowest i which is not included in its set of m points be imin. Then,

the condition for stability when that virtual sensor is used is (using the condition in Proposition 4.7)

pj |λimin
|2 < 1.

Simple algebra yields that λt occurs in
(
N−t
m−t+1

)
such inequalities. Adding all the inequalities to-

gether, we obtain that at least one inequality will be violated if

(
N−1
m

)

|λ1|2
+

(
N−2
m−1

)

|λ2|2
+ · · ·+

(
N−1−m

0

)

|λm+1|2
<

(
N − 1

m− 1

)

.

Considering different values of m, we obtain the result.

For specific values of m, the condition in equation (4.25) looks as follows. For m = 1, the condition

is
N − 1

|λ1|2
+

1

|λ2|2
< 1. (4.26)

For m = N − 1, the condition is
N∑

i=1

1

|λi|2
< N − 1. (4.27)

Neither of the conditions is more general. As an example, for a system with λ1 = 2, λ2 =
√

3,

λ3 = 1/
√

2 the problem is predicted to be unsolvable by (4.26) but not by (4.27). The opposite is

true for a system with λ1 = λ2 = λ3 =
√

2. Hence, both the conditions are useful.

We now move on to the case when there is more than one physical sensor, i.e., n > 1. To begin

with, consider the case of only two points to be patrolled, i.e., N = 2.

Proposition 4.19 If N = 2 points have to be patrolled by n sensors with the assumptions stated

above, the sensor coverage problem cannot be satisfied if

1

|λ1| 2n
+

1

|λ2| 2n
< 1.

Proof There are 2n virtual sensors in this case, corresponding to the n physical sensors being present

at either of the two points. When both the points are covered by at least one physical sensor, the

entire system matrix A is observed. There are two cases when A is not observed

1. all the physical sensors are located at the first point. This event occurs with a probability

(q1)
n; or
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2. all the physical sensors are located at the second point. This occurs with a probability (q2)
n

or (1− q1)n.

Thus, the conditions for covariance of the error to diverge are for any one of the following inequalities

to be true,

(q1)
n|λ2|2 > 1

(1− q1)n|λ1|2 > 1.

Adding the inequalities completes the proof.

Combining the proof technique of Propositions 4.18 and 4.19 immediately leads to the generalization

stated below.

Proposition 4.20 The sensor coverage problem when N physical points are to be patrolled using n

sensors, but otherwise the same assumptions hold as above, cannot be solved if the following sufficient

condition holds for any 1 ≤ m ≤ N − 1,

(
N−1
m

)

|λ1| 2n
+

(
N−2
m−1

)

|λ2| 2n
+ · · ·+

(
N−1−m

0

)

|λm+1| 2n
<

(
N − 1

m− 1

)

. (4.28)

Proof Proof follows that of the proposition 4.18. The m-th sufficient condition is obtained by

considering all virtual sensors formed by considering sets of m points. We say that a virtual sensor

is used if no physical sensor is present outside the set of m points the virtual sensor represents.

There are
(
N
m

)
such virtual sensors. Denote the probability of choosing the j-th virtual sensor by pj .

For a virtual sensor with the set of m points denoted by M, pj is of the form

pj =

(
∑

t∈M

qt

)n

.

For each virtual sensor, let the lowest i which is not included in its set of m points be imin. Then,

the condition for stability when that virtual sensor is used is pj |λimin
|2 < 1. Simple algebra yields

that λt occurs in
(
N−t
m−t+1

)
such inequalities. Adding all the inequalities together, we obtain that at

least one inequality will be violated if (4.28) holds. Considering various values of m, we obtain the

result.

Note that we recover the results of previous propositions for the special cases when N = 2 and

when n = 1. We now consider the case of coupled processes.
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Coupled processes

Let the process at the i-th point evolve as

xi(k + 1) = Aixi(k) +
∑

j 6=i

Ai,jxj(k) + wi(k).

As long as all Ai,j ’s are not zero, it is possible to obtain information about xj(k) even though

the sensor is at point i. Moreover, the eigenvalues of the unobservable modes when considering

two physical sensors located at points i and j may have no relation to the eigenvalues when the

sensors are at points i and k. These facts make the analysis a bit more involved in this case. We

give a general result below and then consider some special cases. As defined earlier, let A be the

system evolution matrix for the vector x(k) formed by stacking all xi(k)’s. Similarly, let Ci be the

observation matrix relating to the observation from a sensor at point i to x(k). We will consider

virtual sensors formed by sets of m physical points and say that a virtual sensor is used if none of the

physical sensors are located outside the specified m points. Denote the set of all such virtual sensors

by Sm. For any member M of this set, consider the sensing matrix CM formed by stacking all the

Ci’s such that i belongs to the set of m points corresponding to M . Denote by αM the eigenvalue

with the maximum magnitude of the unobservable part of A when the pair (A,CM ) is put in the

observer canonical form.

Proposition 4.21 The sensor coverage problem for N physical points and n sensors with the above

assumptions cannot be satisfied if for any m such that 1 ≤ m ≤ N − 1,

∑

M∈Sm

1

|αM | 2n
<

(
N − 1

m− 1

)

.

Proof Proof follows exactly along the lines of that of Proposition 4.20. The difference is that

for every virtual sensor, we have to consider the eigenvalue with the maximum magnitude of the

unobservable part of the system matrix A when that virtual sensor is used. In Proposition 4.20, this

was related to the eigenvalues of A, because A was (block) diagonal. However, in the present case,

this relation is lost and we have to calculate the values of αM for every virtual sensor. However,

other details of the proof are identical.

Perhaps the easiest version of the result is obtained by considering m = 1. If we define βi as the

eigenvalue with the maximum magnitude of the unobservable part of A when (A,Ci) is put in the

observable canonical form, the condition reduces to

N∑

i=1

1

|βi| 2n
< 1.
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For the case when the systems at various points are uncoupled, A becomes (block) diagonal and

Proposition 4.21 reduces to Proposition 4.20.

Motion governed by a Markov chain

We now consider the more general case where each sensor decides its position at time step k + 1

according to its position at time step k by using a transition probability matrix Q. This can also

model the case when data loss due to the communication channels is occurring according to a Markov

chain. We still assume that the various sensors act independently. We assume that the Markov chain

is positive recurrent and irreducible, thus there exists a unique stationary distribution [48]. Let πi

denote the stationary probability of being in the i-th state. The general result statement along the

lines of Proposition 4.21 is now presented. Define αM as before.

Proposition 4.22 The sensor coverage problem for N physical points and n sensors with the above

assumptions cannot be satisfied if for any m such that 1 ≤ m ≤ N − 1, any of the following
(
N
m

)

conditions are satisfied

1
∑

j∈M πj




∑

i∈M

∑

j∈M

qijπi



 >
1

|αM | 2n
.

Proof Proof is along the lines of Proposition 4.21. The only trick is in the calculation of the

probability qii for the i-th virtual sensor. For a Markov chain with transition probability matrix Q

and a set of states S, the probability that the state at time k + 1 belongs to S given that the state

at time k belonged to S is given by the expression

1
∑

j∈S πj(k)




∑

t∈S

∑

j∈S

qtjπt(k)



 ,

where πt(k) is the probability of being in state t at time k. If the Markov chain reaches a unique

stationary distribution, πt(k) → πt for large enough k. Thus, the terms qii can be evaluated. The

rest of the proof is along similar lines as of proposition 4.21 and is omitted.

Remarks

1. One special case is when the sensors are chosen in an i.i.d. fashion. This case requires a

transition probability matrix with the property that qij = qj for all pairs (i, j). In this case,

the conditions in proposition 4.22 reduce to

∑

j∈M

qj >
1

|αM | 2n
.
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Summing all
(
N
m

)
inequalities obtained by the various choices of M yields the condition in

proposition 4.21.

2. As in the case of sensors being chosen in an i.i.d. fashion, when the processes at various points

are uncoupled, the terms αM are expressible in terms of the eigenvalues with the maximum

magnitude λi of the processes at the various points. Let the points be numbered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |.

Let M̄ be the set of points i ∈ {1, 2, · · · , N} that are not contained in M . Then, αM = λi,

where i = minj∈M̄ (j).

3. The choice m = 1 yields the N conditions

qii >
1

|βi| 2n
,

where βi is the eigenvalue with the maximum magnitude of the unobservable part of A when

the pair (A,Ci) is put in the observable canonical form.

So far, we have dealt with obtaining conditions on the processes so that sensor coverage is not possi-

ble. We can also design the optimal sensor trajectory using the algorithms presented in Section 4.3.2.

We omit the details.

Examples

We now illustrate our results with the help of some simple examples. As the first example, consider

a grid of 6 points such that the value at each point represents a flow traveling from the first node

towards the sixth node. Thus, the dynamic equation at points 2 through 6 is given by

xi(k + 1) = xi−1(k) + wi(k),

while for point 1 it is given by

x1(k + 1) = w1(k).

We assume that the covariance matrix of the noise wi(k) is Ri = 0.5. Consider only one sensor of

the form (4.23) with the measurement noise covariance matrix Rm = 0.1 that chooses its position

independently from one time step to the next. There are 6 virtual sensors with the sensing matrix

of the i-th sensor, Ci, being a row vector with all zeros except a 1 at the i-th place. The noise

covariance matrix for all the sensors is Rm. The process matrix A is a 6 × 6 identity matrix. Let

qi denote the probability of its being at the i-th point. Näıvely, we may assume that the optimal
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probability distribution would be either to spend a lot of time at the source, i.e., the first node or

equally among all the nodes. However, if we optimize the probability distribution, it turns out that

for the optimal distribution, q3 = 1. The optimal cost is 6.28. If the sensor spends all its time at

the source node, the cost is 8.42 while for a strategy of spending time with the same probability at

all the points, it is 8.23. If we use a greedy strategy in which the sensor moves to minimize the cost

at every time-step, it leads to the sensor spending all its time at the fourth point, leading to a cost

of 6.69. Thus, our algorithm performs better than heuristic or greedy strategies.

As our second example we choose a ring network of 4 agents in which each agent is trying to

calculate the average of the values of all the agents. Thus, for the i-th agent

xi(k + 1) = xi(k)− h(2xi(k)− xi+1(k)− xi−1(k)) + wi(k), (4.29)

where the addition in the agent number i is done modulo 4 and h is a positive constant. For a small

enough value of h, the agents will calculate the average if no noise were present. We assume the

noises wi(k) to be independent of each other and with variance R1 = R4 = 1 and R2 = R3 = 0.8.

We again assume that there is only one sensor that is choosing its position in an i.i.d. fashion.

We will consider the value h = 0.2. We use the gradient descent algorithm with initial probability

distribution q1 = q2 = 0.5 and a step size of 0.01. On optimizing the distribution, the values turn

out to q1 = q4 = 0.3 and q2 = q3 = 0.2 with an optimal cost (upper bound) of 5.81. Indeed if we

run 10000 random runs of the system generating sensor switching with this probability, we obtain

a mean steady state error covariance trace of 5.8. Hence, the upper bound is pretty tight at least

in this example. If we plot a histogram of the steady state costs along different runs, we obtain

the figure shown in Figure 4.9. We can see that the spread of the mean costs is not huge either.

Our algorithm is also useful if there is some stochasticity already present in the system. Let the

sensor transmit measurements to a central data processing station. However, the measurements are

dropped with probability λ. Figure 4.10 shows the optimal probability of using the sensor at the

fourth point as a function of λ. It can be seen that the value of λ has a huge effect.

We can also impose the restriction that the sensor can only move from one physical point to its

neighbors. Thus, the sensor positions are chosen according to a Markov chain. Let us assume no

packet loss for simplicity. Because of the symmetry of the system, we look for transition probability

matrices of the form 









1− 2λ1 λ1 0 λ1

λ2 1− 2λ2 λ2 0

0 λ2 1− 2λ2 λ2

λ1 0 λ1 1− 2λ1











.

Then, the optimal parameters turn out to be λ1 = λ2 = 0.5. As we vary the value of h in (4.29),
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the stability properties of the system change. Thus, to keep the error covariance bounded, we need

different number of sensors. Figure 4.11 shows a bound on the number of sensors required, as

predicted by Proposition 4.21.
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Figure 4.11: Lower bound on the number of sensors required.



212

Appendix B: Multiple Description Coding for Estimation over

Communication Links

In this appendix, we use the tools presented in the chapter to analyze the performance when

a form of network source code - Multiple Description (MD) code - is applied to the problem of

estimation over a communication link. Consider the process

x(k + 1) = Ax(k) + w(k)

being observed by a sensor of the form

y(k) = Cx(k) + v(k).

The state vector x(k) ∈ Rn and measurement vector y(k) ∈ Rm. The noises w(k) and v(k) are

assumed zero mean, white, Gaussian, independent of each other and with covariances Rw and Rv

respectively. The measurements are put into bit packets9 and transmitted over a communication

channel. The bit packet is either received successfully at the receiver or erased. We assume that

the channel does not provide preferential treatment to any packet. Thus, e.g., a multiple resolution

source code is not a good choice for us. An estimator receives the measurement packets that are

successfully transmitted by the channel and comes up with an estimate x̂(k|k − 1) (referred from

now on as x̂(k)) of the state x(k).

We know that if measurement packets are being dropped, the performance of the estimator wors-

ens. One device to improve the performance is to transmit every data packet multiple times. How-

ever, this strategy leads to high bit rates being transmitted and can actually be counter-productive

by increasing the congestion in the channel and hence the packet erasure probability. Instead, we

use the idea of Multiple Description source coding to transmit multiple packets of information while

keeping the bit rate low.

MD codes have been considered for long in the information theory literature. According to

results in traditional quantization theory [73], the distortion of a given source distribution when it

is represented by a quantizer with rate R typically decays as D(R) ∝ 2−2R. Multiple description

codes are designed specifically to achieve good rate-distortion performance over lossy communication

links. The unique feature of MD codes is that instead of using one single description to represent one

source sample, MD codes use two or more descriptions that are transmitted in separate packets. So

at the end of the link, the decoder has much less chance of losing all the descriptions. The distortion

at the decoder depends on how many descriptions it receives and could be at various quality levels.

Also, unlike the strategy of transmitting a packet multiple times, the total rate is also kept small.

9In Chapter 3 we had assumed that there were enough bits available in a packet so that effectively we were
transmitting real numbers. In this work, we are interested in packets with finite (and limited) number of bits.
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Thus, the design of a MD code is a problem of minimizing the size of the code over the redundancy

between the descriptions. MD codes are non-hierarchical so that the receiving order of descriptions

is not important.

For the design procedure and theoretical limits of performance of MD codes, we refer the reader

to [65, 190]. In this discussion, we will concentrate mostly on the case of 2-description MD codes.

Thus, for our purposes, it is sufficient to note that for a 2-description MD code it is possible to

achieve the distortions

Dc ≈ C02
−2R(1+α)

Di ≈ C12
−2R(1−α),

where Dc refers to the distortion if both the descriptions (or packets) of the data reach the decoder,

Di refers to the distortion if only one description reaches the decoder, C0 and C1 are constants, R

is the rate and α ∈ [0, 1] is a parameter used to trade-off between the decay speeds of Dc and Di.

If we assume that the measurements are being quantized by a uniform quantizer prior to being MD

coded, the case when both the descriptions are received achieves the same distortion as due to a

uniform quantizer. For a quantizer of step size ∆, thus10

Dc ≈
∆2

12
.

At high data rates, this yields

Di ≈ C1

(
1

12C0

) 1−α
1+α

(∆)
2 1−α

1+α .

We will model this quantization noise as additive white Gaussian noise with variance given by Dc for

both descriptions being received and Di for only one description being received. This approximation

becomes better as the rate of the code increases. This discussion can be generalized for the case of

more number of descriptions being used. In the sequel, we will assume that 2-description MD codes

are being used. The analysis for higher number of descriptions is similar.

I.I.D. Packet Drops

Suppose, first, that the packets are dropped by the channel in an independent and identically

distributed (i.i.d.) fashion with drop probability λ for every packet. Thus, there are three scenarios.

1. The estimator receives both the descriptions. This occurs with probability (1 − λ)2. In this

10The approximation becomes tighter as the step size ∆ decreases.



214

case the estimator has access to a measurement of the form

z(k) = Cx(k) + n(k), (4.30)

where n(k) has covariance G0 = Rv +Dc.

2. The estimator receives only one of the descriptions. This occurs with probability 2λ(1 − λ).

In this case, the estimator has access to measurements of the form (4.30) where n(k) has

covariance G1 = Rv +Di.

3. The estimator does not receive any description. This occurs with probability λ2. In this

case, the estimator has access to measurements of the form (4.30) where n(k) has covariance

G2 = σ2I where σ2 →∞.

We can obtain bounds on the expected error covariance and find conditions for stability by using

the analysis in Section 4.2. Denote the Riccati update operators in the three cases mentioned above

by

f0(P ) = APAT +Rw −APCT
(
CPCT +G0

)−1
CPAT

f1(P ) = APAT +Rw −APCT
(
CPCT +G1

)−1
CPAT

f2(P ) = APAT +Rw.

Proposition 4.23 Consider the setting described above with a 2-description MD code being used

and the channel dropping packets in an i.i.d. fashion. Then, the expected error covariance E[P (k)]

at the estimator is upper bounded by ∆(k) where ∆(k) evolves as

∆(k + 1) = APAT +Rw − 2λ(1− λ)f1 (∆(k))− (1− λ)2f0 (∆(k)) .

Further E[P (k)] is lower bounded by Y (k) where Y (k) satisfies

Y (k + 1) = λ2AY (k)AT +Rw.

Proof Upper bound follows from Proposition 4.4. For the lower bound, apply (4.10) for the sensor

corresponding to case 3, i.e., no packet reaching the estimator. The lower bound at time k can be

written as

Y (k) = λ2kfk2 (P (0)) + (1− λ2)Rw +

k−1∑

i=1

λ2i(1− λ2)f i2(Rw).
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Thus

λ2AY (k)AT +Rw = λ2A

(

λ2kfk2 (P (0)) + (1− λ2)Rw +

k−1∑

i=1

λ2i(1− λ2)f i2(Rw)

)

AT +Rw

= λ2k+2
(
Afk2 (P (0))AT +Rw

)
+ λ2(1− λ2)ARwA

T + (1− λ2)Rw

+A
k−1∑

i=1

λ2i+2(1− λ2)f i2(Rw)AT +
k∑

i=1

λ2i(1− λ2)Rw

= λ2k+2fk+1
2 (P (0)) + λ2(1− λ2)ARwA

T +
k∑

i=2

λ2i(1− λ2)f i2(Rw)

+(1− λ2)Rw +
k∑

i=1

λ2i(1− λ2)Rw −
k∑

i=2

λ2i(1− λ2)Rw

= Y (k + 1).

We can also obtain conditions for the expected error covariance to converge. As an example a

necessary condition for the expected error covariance to converge when 2-description MD coding is

being used is that

λ2 (ρ(A))
2
< 1⇒ λ <

1

ρ(A)
,

where ρ(A) is the spectral radius of matrix A. Comparing the condition for stability when no source

coding is done (as presented, e.g., in [178]) which is

λ (ρ(A))
2
< 1⇒ λ <

1

(ρ(A))
2 ,

we see that the requirements on the maximum drop probability allowable are indeed loosened. We

have, in fact, gained exactly the advantages (in terms of stability) as of transmitting the packet

twice, but while keeping the bit rate low. As can be seen by comparing the upper bound relations,

the performance is also improved by using MD coding.

The results above can be generalized for l-description coding where l ≥ 2. As an example, the

necessary stability condition becomes

λl (ρ(A))
2
< 1⇒ λ <

1

(ρ(A))
2
l

.

Unfortunately finding the optimal l-description MD code for an arbitrary l is still an open problem

in information theory.

Markovian Packet Drops

If the packet drops are occurring according to a Markov chain, we can apply the results of the

chapter to obtain similar bounds. Suppose the channel can be modeled as a 2-state Markov chain
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with transition probability matrix Q given by

Q =




q00 q01

q10 q11



 ,

where 0 is the good state (corresponding to a packet being received) and 1 is the bad state (corre-

sponding to a packet loss). For the case of 2-MD code, we are thus interested in a 4-state Markov

chain where the states correspond to both packets lost, only the 1st packet lost, only the 2nd packet

lost and no packet lost. The transition probability matrix of this chain is given by

Q̄ =











q200 q00q01 q01q10 q01q11

q10q00 q10q01 q11q10 q211

q200 q00q01 q01q10 q01q11

q10q00 q10q01 q11q10 q211











. (4.31)

Note that the state in which both packets are lost is equivalent to no observation coming through,

while all the rest of the states correspond to the system being observed. We can calculate the

probability pi(k) of being in the i-th state at time k and thus obtain results analogous to the i.i.d.

case. Define the Riccati update operators in the four cases needed for the bigger Markov chain with

a transition probability matrix Q̄ by

f0(P ) = APAT +Rw −APCT
(
CPCT +G0

)−1
CPAT

f1(P ) = f2(P ) = APAT +Rw −APCT
(
CPCT +G1

)−1
CPAT

f3(P ) = APAT +Rw.

The following result is easily proven.

Proposition 4.24 Consider the same setting as in Proposition 4.23 but with the packet drops oc-

curring according to a Markov chain with transition probability matrix Q as described above. If a

2-description MD code is being used, the expected error covariance E[P (k)] is upper bounded by ∆(k)

where

∆(k) =
3∑

j=0

pj(k)∆j(k),

where

pj(k)∆j(k + 1) =

3∑

i=0

fi (∆i(k)) qijpi(k − 1).
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Similarly the expected error covariance is lower bounded by Y (k) where

Y (k) = q2k33p3(0)f
k
3 (P (0)) +

k−1∑

i=1

q2i33
(
p3(k + 1− i)− q233p3(k − i)

)
f i3(Rw) +

2∑

j=0

pj(k)fj(Rw).

Conditions for convergence can also be derived. As an example, a necessary condition for the

expected error covariance to be bounded is

ql33 (ρ(A))
2
< 1⇒ q33 <

1

(ρ(A))
2
l

.

Example

We illustrate the performance improvement obtained by using MD codes by a simple example. We

consider the system

x(k + 1) = −1.25x(k) + w(k),

being observed by a sensor of the form

y(k) = x(k) + v(k).

The noises w(k) and v(k) have zero means and variances Rw = 1 and Rv = 2.5 respectively. We

design a balanced 2-description MD code such that the distortion when both descriptions are received

is D0 ≈ 8.33× 10−6 and when only one description is received is D1 ≈ 1.56. The rate demanded by

the code is 12 bits per sample. For no MD code being used (also called the single-description code),

the same distortion of 8.33× 10−6 can be achieved at a rate of 10 bits per sample.

Figure 4.12 plots the simulated performance achieved for different number of descriptions used in

the MD code. Each system is run 1000 times and each simulation is run for 2000 time steps. We can

see that even for the same rate, the performance improves with higher number of descriptions being

used. Also, there is a trend of diminishing returns when the number of descriptions is increased

more and more. The stability conditions are seen to be loosened as well.

Figure 4.13 shows the same system but with the channel dropping packets in a bursty fashion ac-

cording to a Markov chain. We can once again see the benefits of using a MD code. The probabilities

at which the expected error covariance diverges match with the ones predicted by theory.
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Chapter 5

Perspectives and Future Directions

In this dissertation, we have been interested in distributed estimation and control of cooperative

networked systems. Such problems are important both because they show up in new engineering

systems being envisaged today as well as because they provide an interesting setting where tradi-

tionally separate theories of control, communication and computation have to be integrated. From

the viewpoint of estimation and control that we took in this dissertation, such problems are difficult

because they challenge two standard assumptions:

1. There is no longer a central node that has access to all the information being generated. Agents

have to make local decisions based on locally available information.

2. Information flow is no longer perfect. Any data that needs to be shared has to be transmitted

over communication channels which introduce effects like random delay, stochastic information

loss, data corruption and so on.

The approach that we proposed was a joint design of the information flow and the control laws

to be followed by the agents. Within the constraints imposed by the communication channels, the

design of the information flow provided an important degree of freedom and allowed us to benefit both

in terms of stability as well as performance of the system. We formulated several problems within

the framework of networked cooperative systems and obtained some very interesting and promising

results. Obviously, however, there is more work that needs to be done to come up with a complete

theory of estimation and control of cooperative networked systems. We have been mentioning some

of the open directions of research in each chapter. In this chapter, we step back and identify the

next set of major problems that needs to be attacked. The work presented in this chapter has partly

appeared in [86].

The chapter is organized as follows. We begin with a brief summary of each chapter and identify

a couple of major open problems in each area. In Section 5.2, we then consider some other areas

in which work needs to be done. In the appendix, we provide some initial results on the issue of

robustness in such networked systems which is identified as one of the major open problems.
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5.1 Directions Considered in the Dissertation

We begin by summarizing the major research areas addressed in this dissertation and identify some

of the open problems in each area.

5.1.1 Distributed Estimation and Control

In Chapter 2, we dealt with the problem of information being diffused through out the system. The

problem setup that we considered was a formation of N dynamic agents each with a local controller.

The N agents need to minimize a joint cost function; however, each agent can obtain information

only about a subset of other agents. This information flow is given by a graph topology. Traditional

control theory requires the controller at each agent to have access to the state (or measurement)

value from every other agent. The presence of a topology does not allow this and requires the

controller to satisfy structural constraints. We posed two problems in the chapter.

1. Given a topology, what is the optimal control law to be followed by the agents? (What should

the agents do?)

2. How do we design the optimal topology? (Whom should the agents communicate with?)

We saw that the problem of designing an optimal structured controller is NP-hard in general, but

we designed several numerical algorithms for solving the problem. The algorithms involve solving

linear equations only and hence are free from convergence issues plaguing other algorithms proposed

in the literature. To design the topology and the control law jointly, we provided a model for the

added cost of every new communication edge and considered the problem of determining when such

edges should be added. The results are very interesting since there are cases when it is more cost

beneficial for agents not to cooperate. We finished by considering a problem of distributed motion

control for estimation by N mobile sensors.

The major direction for future research in this area is a more thorough understanding of the role

of topology in distributed control. Choosing a topology or rules according to which topologies are

formed (say the communication radius) for each agent is an integral part of design. Our results are

only a first step towards it. The problem is involved because of the following factors:

1. Finding an analytic expression for the optimal performance achievable with a given topology

is an open problem.

2. We are often interested in additional properties that a topology needs to satisfy. Thus, for

instance, there should not be a central node for robustness purposes.

3. Topology design may affect other properties of the system. Thus, if the topology involves large

amounts of data being communicated through the system, congestion may result in high data
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loss rates.

4. Topologies may be time-varying. Thus, for a group of mobile agents, motion control has to tie

in with the topology design.

Even though we have presented some interesting results in this direction, incorporating all these

effects and coming up with a systematic way to synthesize topologies is required. Thus, we pose the

following open research problem in this direction.

Problem 5.1 To design a topology for distributed control that achieves a desired control performance

while considering the various effects that topologies can have on the system properties.

5.1.2 Control in Presence of Communication Channels

In Chapter 3, we considered the problem of controlling a dynamical system when information from

the sensors was transmitted to the controller over a network of communication links. To design the

control law and the information flow jointly, we answered two questions in the chapter.

1. Can we identify simple algorithms to preprocess information prior to transmission to combat

the distortion of data by the communication channels? (What should the agents communicate?)

2. What is the optimal control law to be followed by the agent given whatever information it has

access to? (What should the agents do?)

We first proved a separation principle that allowed us to solve the two questions independently.

We were able in many cases to obtain simple information encoding strategies that are recursive,

yet optimal for estimation and control. Benefits both in terms of stability and performance were

demonstrated. This viewpoint also allowed us to move beyond treating the network simply as a

collection of links with reliability providing the bottleneck for transmission of data across it for

estimation. Instead, we used the intermediate nodes to provide a similar function as repeaters

in a digital communication system. While most of the work we presented was done when the

communication links were modeled as packet erasure links, we also briefly considered other effects

of communication links.

The idea of encoding for estimation and control is very powerful. However, the applicability of

this idea depends on the ability to identify simple algorithms that are optimal (or at least close to

optimal). We provided such algorithms for a few cases. However, determining the optimal algorithms

for other cases is still open. As a representative problem consider the system

x(k + 1) = Ax(k) + w(k) (5.1)
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being observed by 2 sensors of the form

yi(k) = Cix(k) + vi(k), i = 1, 2. (5.2)

Sensors 1 and 2 communicate their information over packet erasure communication links L1 and

L2 respectively to an estimator. In Chapter 3, we solved for the optimal estimation algorithm

when either both L1 and L2 were the same link L (in other words, they transmitted or dropped

packets simultaneously) or if only one of the links L1 and L2 dropped packets. However, the optimal

algorithm when both the links drop packets independently is still unknown1. If we are not interested

in the algorithm being recursive, the optimal strategy is obviously for each sensor to transmit all its

previous measurements at every time step. For this optimal strategy, we can identify the stability

region as follows.

Proposition 5.1 Consider the process (5.1) being observed by sensors of the form (5.2) which

transmit all their previous measurements at each time step to a minimum mean squared error (mmse)

estimator over communication links that erase packets with a probability p1 and p2 respectively. A

necessary and sufficient condition for the expected error covariance to converge is that the following

equations all be satisfied

p1 | λmax

(
Ā2

)
|2 < 1 (5.3)

p2 | λmax

(
Ā1

)
|2 < 1

p1p2 | ρ(A) |2 < 1,

where λmax

(
Āj
)

is the eigenvalue with the maximum magnitude of the unobservable part of matrix

A when the pair (A,Cj) is put in the observer canonical form and ρ(A) is the spectral radius of A.

Proof Following the terminology in the previous chapter, denote by fCi
(.) the Riccati operator

fCi
(X) = AXAT +Rw −AXCTi

(
CiXC

T
i +Rv

)−1
CiXA

T ,

and

fkCi
(X) = fCi

(fCi
(· · · (fCi

(X))))
︸ ︷︷ ︸

applied k times

.

Also, let C3 denote the sensor corresponding to no measurement being taken. Now, consider the

error covariance at time step k, denoted by P (k+1). We can partition the event space into (k+2)2

1Obviously the problem is solved if the two sensors can cooperate over a perfect channel. The two sensors then
effectively form one big sensor.
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events of the form

Emn :







no transmission received on L1 after time m

no transmission received on L2 after time n,

where m ∈ {−1, 0, 1, 2, · · · , k} and n ∈ {−1, 0, 1, 2, · · · , k} and the event m = −1 or n = −1 denotes

that no transmission was ever received on the relevant link. Under the event Emn, let us denote the

conditional error covariance as Pmn(k+1). For considering the convergence of E[P (k+1)], we need

to consider the limit k →∞. Thus, similar to the arguments in Section 3.5.4, we can assume for a

large enough j,

Pjj(j + 1) = P ?,

the steady-state estimate error covariance given all measurements from both sensors at every time

step. Now,

P (∞) =

∞∑

m=0

∞∑

n=0

Prob (Emn)Pmn(∞)

= (1− p2)
(
(1− p1)P

? + (1− p1)p1fC2
(P ?) + (1− p1)p

2
1f

2
C2

(P ?) + · · ·
)

+(1− p2)p2

(

(1− p1)fC1
(P ?) + p1(1− p1)fC3

(P ?) + (1− p1)p
2
1fC3

(fC2
(P ?)) + · · ·

)

+(1− p2)p
2
2

(

(1− p1)f
2
C1

(P ?) + p1(1− p1)fC3
(fC1

(P ?)) + (1− p1)p
2
1f

2
C3

(P ?) + · · ·
)

+ · · ·

= (1− p2)
(
(1− p1)P

? + (1− p1)p1fC2
(P ?) + (1− p1)p

2
1f

2
C2

(P ?) + · · ·
)

+(1− p2)p2

(

p1Q+ (1− p1)
(

fC1
(P ?) + p1AP

?AT + p2
1AfC2

(P ?)AT + · · ·
))

+(1− p2)p
2
2

(

p1Q+ p2
1AQA

T + (1− p1)f
2
C1

(P ?) + p1(1− p1)AfC1
(P ?)AT + · · ·

)

+ · · ·

= p1p2Q+ p2
1p

2
2AQA

T + p3
1p

3
2A

2Q(AT )2 + · · ·

+(1− p1)(1− p2)
(
P ? + p2fC1

(P ?) + p2
2f

2
C1

(P ?) + · · ·
)

+p1p2(1− p1)(1− p2)A
(
P ? + p2fC1

(P ?) + p2
2f

2
C1

(P ?) + · · ·
)
AT

+p2
1p

2
2(1− p1)(1− p2)A

2
(
P ? + p2fC1

(P ?) + p2
2f

2
C1

(P ?) + · · ·
)
(AT )2 + · · ·

+(1− p1)(1− p2)p1

(
fC2

(P ?) + p1f
2
C2

(P ?) + · · ·
)

+(1− p1)(1− p2)p
2
1p2A

(
fC2

(P ?) + p1f
2
C2

(P ?) + · · ·
)
AT + · · · .
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Denote, if they exist, the quantities

S1 = p1p2Q+ p2
1p

2
2AQA

T + p3
1p

3
2A

2Q(AT )2 + · · ·

S2 = P ? + p2fC1
(P ?) + p2

2f
2
C1

(P ?) + · · ·

S3 = fC2
(P ?) + p1f

2
C2

(P ?) + · · · .

Note that since all the terms in the expression for P (∞) are positive, a necessary condition for

it to converge is that each of the terms S1, S2 and S3 converge. Along the lines of the proof of

Proposition 4.7 we can prove that these terms will converge only if (5.3) hold.

Now, to prove that the conditions in (5.3) are sufficient for P (∞) to converge, suppose that the

conditions are true. Then, S1, S2 and S3 are finite. Thus,

P (∞) = S1 + (1− p1)(1− p2)
(
S1 + p1p2S1 + p2

1p
2
2S1 + · · ·

)

+ (1− p1)(1− p2)p1

(
S2 + p1p2S2 + p2

1p2S2 + · · ·
)
,

which is bounded.

The performance of the optimal algorithm can also be obtained by using tools from Markov jump

linear systems as in Chapter 3. This result thus provides necessary conditions for stability and

lower bounds for performance for any other algorithm. However, whether there exists a recursive

algorithm for which these conditions are sufficient as well is still unknown. Providing the best

recursive algorithm for multi-sensor multi-channel problems such as this is an important direction of

future research. There are many variations of the problem we can consider. As an example, what are

optimal coding strategies for channels that have additional effects like quantization, data corruption

and so on? So far, in all the algorithms that we considered, acknowledgements about whether or not

the receiver received a packet were not being used at the transmitter. Is this a general property?

Answering similar questions such as these would likely draw on tools from information theory as

well. We can thus identify the major next challenge in this direction as

Problem 5.2 To come up with simple encoding and decoding strategies for information flow to

counter the effects of communication channels in distributed control and estimation.

5.1.3 Distributed Estimation and Control with Imperfect Links

In Chapter 4, we considered problems which had both the aspects - multiple sources of information

and imperfect communication links - present. In the sensor scheduling problem, e.g., a subset of N

sensors could be used at any time step and the information was transmitted over a communication

link to the estimator. To begin with, we obtained the structure of the optimal estimator. Because
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of the stochastic packet erasures imposed by the link, the performance of the estimator is not well-

understood. We characterized the expected error covariance of the estimator and provided conditions

for it to be bounded. We then moved on to the problem of designing a sensor schedule (i.e., the

problem of Who should communicate when?). The basic idea we used was coming up with stochastic

schedules to escape the exponential complexity of a tree search as well as to be able to include the

effects of communication links such as stochastic packet loss. The tools that we developed are widely

applicable and we demonstrated that through a couple of examples - dynamic sensor coverage and

network source coding for estimation across communication links. We also considered the problem of

distributed control with switching topologies. We identified the optimal control input and provided

conditions for stability of the system.

Even though the algorithm we proposed has several nice features, there is much left to be done

in the area. Our algorithm is an offline algorithm. The schedule is computed prior to the system

operation and the cost optimized is the steady-state cost. The next major step would be to come up

with an adaptive algorithm. One desirbale feature of networked systems is the ability to ‘plug-and-

play’. As an example, in the sensor scheduling problem it would be useful not to be forced to cease

the system operation and re-optimize the schedule whenever a new sensor is added or an existing

sensor is taken out. In general, resource allocation algorithms that adapt to the available resources

or constraints automatically are desirable. We pose the major research challenge in this area as

Problem 5.3 Identify a computationally feasible adaptive method for resource allocation in net-

worked systems that takes into account the presence of communication links.

5.2 Some More Open Problems

This dissertation is only a first attempt towards solving the complicated problem of distributed

estimation and control in networked systems. We made several assumptions in this dissertation

that made the problem tractable and allowed us to get some initial results. We mention two such

assumptions, removal of which will be required in the next step towards obtaining a more general

and effective theory.

5.2.1 Asynchronous Systems

We have assumed throughout the dissertation that there is a global system clock available to all

agents. In general, this will not be true. Each component will have access to a local clock which

will drift with time. Since communication links introduce random delays, synchronization cannot

be possible by näıvely transmitting the local times periodically and calculating offsets. Algorithms

in networked systems need to be robust to some level of asynchrony. There are two main ways how

one may move towards ensuring that:
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1. Coming up with ways to synchronize the local clocks periodically by transmitting data. This

approach, e.g., has been proposed in [68].

2. Designing algorithms that can tolerate some level of asynchrony. At present, not many such

algorithms are known.

Both these approaches need to be explored. This is an important area where much more research

needs to be undertaken.

Problem 5.4 Identify algorithms that are robust to different agents having access to local clocks

that may drift apart.

5.2.2 Robustness to Agent Loss

We have, so far, assumed that no agent malfunctions during the course of operation. For any

networked system to be practical, we need to ensure that the failure of one agent to perform its

designated duties does not imperil the joint task. Thus, there is need for some notion of robustness

to agent failure. This has, so far, been largely ignored in the control community. In any application

involving huge numbers of sensors/agents, a typical component will be cheap and off-the-shelf. It is

reasonable to assume that such components will have high failure rates and the algorithm should be

able to deal with such failures.

One possible definition of this concept can be based on a similar concept studied in the distributed

computation literature for consensus algorithms (see, e.g., [136] for a good overview). It has long been

realized in that community that distributedness in algorithms does not inherently lead to robustness.

In general, we need to ensure that agents receive enough information from their neighbors to be able

to detect and isolate faulty agents. This point is of interest while designing multi-agent systems and

evaluating their performance.

We present some initial work on defining this concept in the appendix. We can pose the problem

on which more attention needs to be focussed.

Problem 5.5 Come up with a general theory to analyze and synthesize distributed systems that are

robust to (possibly temporary) agent failures.

This problem would likely tie in with concepts from fault detection and isolation as well.
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Appendix A: Robustness in Networked Systems

We first set up a basic framework for defining and analyzing distributed algorithms. We will

concentrate only on discrete-time algorithms and synchronous networks. We begin by defining a

physical agent.

Definition 5.1 (A Controlled Agent:) We define an agent as a collection of 4 quantities (X, U ,

X0, f).

1. x(k) ∈ X is the state; X represents the state space.

2. u(k) ∈ U is the control input; U is the input space.

3. x(0) ∈ X(0) is the initial condition, where X(0) ⊂ X is the set of allowable initial states.

4. f : X × U → X is a map that defines the dynamics of the agent.

In words, each agent has a state x(k) at time k. Given a control input u(k), the state evolves

according to the dynamics f , i.e., x(k + 1) = f (x(k), u(k)) . As an example, the agent has linear

dynamics if f (x(k), u(k)) is of the form A(k)x(k) +B(k)u(k) where A(k) and B(k) are given. The

state space X can in general be a continuous space (such as Rn) or a discrete space (such as nodes

of a graph). We have not yet discussed how the control input u(k) is calculated.

Definition 5.2 (Network of Controlled Agents) (following [139]): We define a network of N agents

using three quantities (I,A,Gcomm).

1. I = {1, · · · , N} is the set of unique identifiers for each of the N agents.

2. A = {Ai}i∈I is the set of controlled agents. Each agent Ai is in turn defined as in definition 5.1.

We will refer to the state of the i-th agent at time k as xi(k), the control input as ui(k) and

the corresponding sets of allowed values as Xi and Ui respectively.

3. Gcomm is the set of allowed communication graphs. At each time step k, the communica-

tion graph Ecomm(k) over N nodes is an element of Gcomm. Every node is identified with the

identifier i corresponding to a unique physical agent. The edges in the graph represent com-

munication edges in the network. Thus, if the pair (i, j) is an edge in Ecomm(k), the agents

with identifier j can communicate with the agent with identifier i at time step k .

We will assume undirected graphs. Agent i is a neighbor of agent j if the two can communicate.

Note that the word communication is used in a loose sense here and essentially includes any means of

gathering information about the state of another agent. This may be, e.g., through sensing without

explicit physical communication occurring. To fully characterize a networked system, we need to

also define communication and control laws according to which the agents choose the messages
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transmitted to the neighbors and the control inputs for their own dynamics. However, for our

present purpose the two definitions given above suffice. For more details, see [86].

There might be additional variables involved in the problem specification, which we refer to

collectively as environmental variables and denote by the set V . For example, these can pertain to

the locations of obstacles when the agents are robots moving in an area. Similarly for algorithms

which assume a fixed and given communication graph, the graph is an environmental variable.

We now define a cooperative task that needs to be carried out by the agents. We will define a

task in terms of a cost function.

Definition 5.3 (Cooperative Task) A cooperative task is defined by a cost function C which is a

function of the state trajectories of all the agents, the control inputs applied by them, their initial

conditions and possibly some environmental variables.

C :
∏

i

{xi(k)}∞k=0 ×
∏

i

{ui(k)}∞k=0 ×
∏

i

xi(0)× V 7→ R+.

The aim of any algorithm that carries out the task is to minimize the cost function. Note that for

a task that is informally described in words, say ‘rendezvous’, there might exist many choices of

possible cost functions. We will associate a separate task with each cost function.

Definition 5.4 (Cooperative Algorithm) A cooperative algorithm is a choice of communication and

control laws for every agent. It usually aims at minimizing the cost function associated with a

particular cooperative task.

Note that by defining the algorithm in this way, we are making a distinction between the cost of the

underlying cooperative task the algorithm is trying to solve and the cost function that the algorithm

is actually minimizing. The two costs may be different. Also, note that there can be constraints

on the form of control and communication laws that an algorithm must satisfy. As an example, for

robotic agents moving in physical space, it might be the case that only a specific function of the

state of the neighbors can be sensed (output-measurable). Hence, the messages have to depend on

that function and not on the state.

Examples

1. Average Consensus [157]: This task, in its basic form, considers N agents, each of which is

provided a scalar value. The arithmetic mean of the values across the agents is m. The task is

to ensure that on termination, each agent has the value m. The i-th agent has scalar dynamics

of the form

xi(k + 1) = xi(k) + ui(k),
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with xi(0) given. There are many cost functions that are possible for posing the task. One

such possible cost function is

C = lim
k→∞

(
∑

all nodes i

(

xi(k)−
1

N

∑

xi(0)

)2
)

.

This is clearly a function of the state values of the agents and their initial conditions and thus

fits in our framework. The network consists of N such agents. The communication graph is

fixed and given. The only requirement on the edge set is that the graph be connected. Let h

be a small positive number. Then, the control input applied by the i-th agent is

ui(k) = −h
∑

j:j is a neighbor of i

(xi(k)− xj(k)) .

Note that the algorithm minimizes C by minimizing the cost function

Calgo = lim
k→∞




∑

(i,j) being neighbors

(xi(k)− xj(k))2


 ,

with the constraint
∑

i

xi(k) =
∑

i

xi(0).

This separation of the task from the solution is an important feature. If all the agents are

functional, it can be proven that minimizing the algorithm cost Calgo yields the solution that

minimizes the task cost as well.

This algorithm is similar to the rendezvous algorithm without connectivity constraint proposed

in [140] and is related to Vicsek’s model discussed in [107, 192, 164].

2. Sensor Deployment: This problem and its solution have been widely studied [155]. We adopt

the algorithm that is described in [38]. The basic problem is forN agents to position themselves

in a convex region Q such that the total distance from each point in the region to the nearest

agent (possibly weighted by a non-negative density function) is minimized. The agents once

again have first order dynamics. They are assumed to move in the convex region Q. Thus,

Xi = Q for every agent i. The cost function is defined in terms of a density function φ(x) that

has a non-negative value at all points x in a region. The cost function then is

C = lim
k→∞

∫

Q

min
i
|q − xi(k)|22φ(q)dq.

In addition to the state values, the cost also depends on the region Q and the function φ(x),

which are given environmental variables. The network considered in [140] is the Delaunay
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graph. Construct the Voronoi partition of the region Q as generated by the positions of the N

agents at time k. Then, two nodes i and j share an edge if their Voronoi cells share an edge.

The control input is designed so that each agent moves towards the centroid of its Voronoi

cell. The details are given in section III-B of [38].

Failure Modes and Robustness

One way to characterize an algorithm is through the value of the problem cost function C that it

achieves. We will denote the performance cost achieved by the algorithm by PC. Since the cost

function C can be a function of the initial conditions xi(0) and the values of the environmental

variables, so can be PC. To characterize the algorithm itself, we can get rid of this dependence in

two ways.

1. We can consider the average cost, PCavg obtained by averaging PC across many runs as the

initial conditions and values of the environmental variables are chosen randomly from a given

set S using a given probability distribution function.

2. We can consider the worst case cost PCwc which is obtained by computing the supremum of

the PC as the initial conditions and values of the environmental variables are varied across a

set S.

In general, the performance cost will also depend on the number of agents. To show this dependence

explicitly, we will sometimes denote the performance cost by PCavg(N) or PCwc(N) if N agents are

present.

Before defining the key property of robustness, we need to define an agent failure. During the

execution of an algorithm, an agent may stop functioning in many ways. When an agent fails, it

alters the control law and the communication law that it follows. We can define some failure modes

as follows:

1. Failure mode 1: An agent may fail by simply ceasing to communicate with other agents. This

is the most popular agent failure model considered in the literature. In the language of [136],

this is similar to saying that the process suffers from a stopping failure.

2. Failure mode 2: An agent fails by setting its state value xi(k) to a constant. Thus, the control

input ui(k) that ensures xi(k + 1) = xi(k) is used at every time step k. The constant state

value can be any value that the state xi(k) is allowed to take, i.e., in the set Xi. Moreover,

any communication from a failed agent is also affected accordingly. Thus, the messages it

transmits to its neighbors also assume constant values for all time k.

3. Failure mode 3: The agent alters the control input to set its state at every time step k to an

arbitrary value in the set Xi. The sequence of the values can be chosen maliciously so that
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the other agents are hindered in the pursuit of the cooperative task. Moreover, the messages

a failed agent transmits are also chosen arbitrarily. This is akin to the way agents fail as

described in [120] and is referred to as the Byzantine failure mode in [136].

In the language of [120], the assumption that any communication from a failed agent is also affected

according to the failure mode means that agents communicate “orally” and not through “signed

messages”. Note that this list is not exhaustive and other modes of failure can readily be thought

of.

When a given number p out of a total of N agents executing a certain algorithm fail according

to a certain mode, the situation is as if the p agents follow a new control and communication law

while the remaining N − p agents follow the original laws. We can calculate the performance of this

new algorithm. We now define robustness of an algorithm with respect to a particular agent failure

model.

Definition 5.5 (Robustness of an Algorithm): Consider an algorithm being executed on a system of

N agents out of which p agents fail according to a particular failure model. Denote the performance

cost achieved through the remaining N − p agents as PCwc(N, p) where the supremum is also taken

over all groups of p agents that can fail. An algorithm is said to be worst-case robust to a particular

failure mode up to p agents if

PCwc(N, p) = O (PCwc(N − p)) .

If PCwc(N, p) = Ω (PCwc(N − p)) but PCwc(N, p) 6= Θ(PCwc(N − p)) , the algorithm is said to be

worst-case non-robust2.

• If instead of the worst case performance costs, we consider the average performance costs

PCave(.) (however, while still taking the supremum over the p agents that fail), we obtain the

definition of average case robustness. While the worst case robustness tells us if the algorithm

will perform correctly for any set of initial conditions (similar to the case in robust control),

average case robustness guarantees that the algorithm will perform correctly on an average.

We can also talk about almost sure (a.s.) robustness when the algorithm is worst case robust

as the initial conditions and values of the environmental variables are varied across a set S,

except on a region with measure zero.

• Strictly speaking, the definitions given above pertain to the robustness over the set S over

which the initial values and the environmental variables are allowed to vary.

2We say f(x) = O(g(x)) iff ∃ numbers x0 and M > 0 such that |f(x)| ≤ M |g(x)| for x > x0. f(x) = Ω(g(x)) iff
∃ numbers x0 and M > 0 such that |f(x)| ≥ M |g(x)| for x > x0. Finally, iff ∃ x0, M0 > 0 and M1 > 0 such that
M1g(x) ≥ f(x) ≥M0g(x) for x > x0 then f(x) = Θ(g(x))
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• The basic intuition behind the definition is that a distributed algorithm should lead to better

performance as the number of agents increases. We can expect a hit in the performance if a

subset of the agents fail. However, if we calculate the performance loss in two situations:

– N agents were present to begin with but p of them failed, and

– Only N − p agents were present to begin with, (Equivalently, N agents were present and

p failed but they were detected and removed)

then the rate at which adding functional agents decreases the cost should not be adversely

affected. In other words, the impact due to agents failing should not increase as more functional

agents are added.

We note the following properties that follow from the definitions. We present the proofs for worst-

case robustness. The proofs for average-case robustness are similar.

Proposition 5.2 If an algorithm is non-robust for p failed agents to failure mode 2, it is non-robust

to p failed agents to failure mode 3. Similarly if an algorithm is robust for p failed agents to failure

mode 3, it is robust to p failed agents to failure mode 2.

Proof Let the control inputs used in the calculation of the performance cost for failure mode 3 be

given by {ui(k)}3 for agent i and the messages sent be given by {mi(k)}3. Similarly, let the control

inputs used in the calculation of the performance cost for failure mode 2 be given by {ui(k)}2 for

agent i and the messages sent by {mi(k)}2. Consider the choice of the control inputs. The set

in which the control inputs are allowed to vary for mode 3 also contains as a particular element

{ui(k)}2. Since, by definition, the cost in mode 3 is maximized by {ui(k)}3; in particular, the cost

achieved by using {ui(k)}2 is not more than when {ui(k)}3 is used. But the cost achieved when

{ui(k)}2 is used is the cost in failure mode 2. Thus,

PCwc(N, p) failure mode 3 ≥ PCwc(N, p) failure mode 2.

If the algorithm is non-robust to failure mode 2, there exists a constant c such that

PCwc(N, p) failure mode 2 ≥ cPCwc(N).

The above two equations together prove that the algorithm is non-robust to failure mode 3 as well.

The second part can be proved similarly.

However, a similar statement cannot be said for failure modes 1 and 2. Even if an algorithm is

non-robust to failure mode 1, it can be robust to failure mode 2.
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Proposition 5.3 If an algorithm is non-robust to failure of p agents in failure mode 3, it is also

non-robust to failure of t agents in failure mode 3 where t ≥ p. Similarly if the algorithm is robust

to failure of t agents in failure mode 3, it is also robust to p failures where p ≤ t.

Proof Consider the case when p agents fail. Consider the choice of initial conditions, control inputs

and messages for the failed agents that corresponds to the worst case of the performance cost.

Choose an arbitrary set S of t − p functional agents. For this choice denote the control input that

the agent i in the set S of t− p functional agents applies by {ui(k)} and the messages it transmits

by {mi(k)}. Now, consider the case when t agents can fail. Choose the same initial conditions as

the previous case. Let the t agents that fail be chosen such that they consist of the p agents that

failed in the previous case and the t− p agents in the set S. Also, let the p agents apply the same

control inputs and transmit the same messages as the previous case. Let the i-th agent in set S

apply control input {ui(k)} and transmit messages {mi(k)}. Thus, the evolution of the system will

be identical to the case when only p agents failed. Hence, PCwc(N, t) ≥ PCwc(N, p) and the result

follows. The second part can be proved along the same lines.

Proposition 5.4 Suppose PCwc(N) = Θ(PCave(N)). Then, if the algorithm is worst-case robust

to failure of p agents to a particular failure mode, it is also average-case robust to failure of p agents

to that failure mode. Similarly of the algorithm is average-case non-robust to failure of p agents to

a particular failure mode, it is also worst-case non-robust to failure of p agents to that mode.

Proof Proof follows from the definitions once we note that

PCwc(N, p) ≥ PCave(N, p).

A similar statement can also be made about the relation between worst-case robustness and a.s.

robustness.

Examples

We now illustrate the above definitions using specific algorithms. For the case where the algorithms

involve agents moving in physical space, we will model the agents as point masses and ignore issues

such as collision avoidance.

Average Consensus [157] Since the algorithm minimizes the given task cost function only for

fully connected graphs, we will assume that to be the case as long as no agents fail. For average-case

robustness, we will consider the initial conditions to be chosen uniformly over the set [−1, 1].

• Assume that the p agents that fail are allowed to be chosen so that the graph of the remaining

N − p agents is disconnected. Then, the algorithm is worst-case non-robust to failure mode 1.
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If the graph remains connected, then the algorithm is worst-case, average-case and a.s. robust

to failure mode 1.

Proof First consider the case when we allow the graph of the remaining agents to be poten-

tially disconnected. Consider the case when p = 1 and let N = 2m+1. Choose the graph of N

agents as a line. Let the agent i fail such that two distinct connected sub-groups of agents are

formed, each with m agents. Also, suppose the initial conditions are chosen such that every

agent in the first sub-group has value 1 and every agent in the second sub-group has value −1.

Thus, the algorithm will converge with each agent retaining its value, as against converging to

the correct mean for the N − 1 agents, which is 0. Thus,

PCwc(N, 1) ≥
m∑

i=1

(1)
2

+

m∑

i=1

(−1)
2

= N − 1.

If N agents were present, they would have all converged to the mean as long as the graph was

connected. Thus, PCwc(N) = 0. Thus, the algorithm is worst-case non-robust. If the graph

remains connected, PCwc(N, p) = PCwc(N) = 0. Hence, the algorithm is worst-case robust.

A similar argument shows that the algorithm is average-case robust.

In a similar manner, it can be proven that the algorithm, if it runs on a l-connected graph, is

robust to the failure of l−1 agents. A random G(n, p) graph is almost surely (a.s.) l-connected

for p ≥ pl = (log(n) + (l − 1) log log(n))/n, and a.s. not l-connected otherwise [22]. Thus, if

the set over which the graph (which is an environmental variable) is allowed to vary is the set

of random graphs, the algorithm is average case robust to l failures in failure mode 1 for p ≥ pl
and non-robust otherwise.

• The algorithm is worst-case, average-case and a.s. non-robust to failure mode 2.

Proof Consider the case when p = 1. Let the initial conditions be such that the non-faulty

N−1 agents have values 0 while the faulty agent has value 1. Thus, the algorithm will converge

with each agent achieving the value 1, as against converging to the correct mean for the N − 1

agents, which is 0. Thus,

PCwc(N, 1) ≤
N∑

i=1

(1− 0)
2

= N.

Since PCwc(N) = 0, the algorithm is non-robust. A similar argument holds for average case

robustness.

Sensor Deployment [38] We will assume below the density function φ(x) to be a constant. For

the statements below, we consider the case when the communication graph is fully connected.
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• The algorithm is worst-case robust to failure mode 1 but not to mode 2.

Proof Clearly, if p agents fail according to mode 1, the remaining N − p agents will perform

exactly as if there were only N − p agents to begin with. Robustness to failure mode 1 is thus

obvious. For failure mode 2, let the agents move in the set Q which is a line segment of unit

length. Let all the agents be stationed at one of the ends and the agent closest to the other

end fail. Thus, PCwc(N, 1) ≥
∫ 1

x=0
x2dx = 1

3 . When we have N agents present, the cost is

obtained by a Voronoi partition of a unit length segment by N agents. This can be shown to

be PCwc(N) = 1
12N2 . Thus, the algorithm is non-robust.

• The algorithm is a.s. robust to failure modes 1 and 2 for p agents failing, where p is any

constant.

Proof Robustness to failure mode 1 follows from the worst-case robustness. For failure mode

2, consider the case when the agents are deployed along a straight line of unit length. Consider

also the case when only one agent fails. Suppose that the failing agent is at the position

x and there are N1 agents in the region [0, x) and N − N1 − 1 in the region (x, 1]. Easy

algebra shows that given x and N1 PC(N, 1) ≈ x3

12N2
1

+ (1−x)3

3(2N−2N1−2)2 . Thus, if the agents

are deployed according to a uniform distribution, we can show that each typical event will

have PC(N, 1) = 1
12N2 . When N is large, PCwc(N, 1) ≈ 1

12N2 with high probability. Since

PCave(N) = 1
12N2 as well, the robustness is obvious. For general sets Q, the proof is similar.

Multi-Sensor Fusion through a Central Node Let us now consider an example in which there

is a central data processing node. Suppose N nodes measure the value of a random variable v with

some additive measurement noise. To obtain the global estimate, every node i transmits its local

estimate x̂i with error covariance Pi to a central node. The central node fuses the estimates to

obtain the global estimate x̂ with the error covariance P given by P−1 =
∑

i(Pi)
−1 and transmits

it back to every node. The cost function we consider is
∑

i trace(Pf,i) where Pf,i is the final error

covariance of the i-th node. For testing the robustness we assume a star topology with node 1 being

the central node. We can prove that the algorithm is not worst-case, average-case or a.s. robust to

either failure mode 1 or to mode 2.

Proof We give the proof for failure mode 1 for worst-case robustness. The proof for other cases is

similar. First we note that if the error covariance for the local estimate is given by Pi = P , then the

error covariance for the global estimate will be given by P
N if N agents are present. Thus,

PCwc(N) = (N)× trace

(
P

N

)

= trace(P ).
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Now, consider the case when the agent 1 fails. Then, Pf,i = Pi. Thus, PCwc(N, 1) ≤
∑

i trace (Pi) =

(N − 1)trace (P )and the algorithm is non-robust.

This is a sanity check since the algorithm is intuitively non-robust to failure of the central node.

Our analysis confirms this fact.

Discussion: How to make Algorithms Robust

In this section, we give some ideas about how to make algorithms robust. As a case study, we will

consider the classical Byzantine Generals problem in which a General needs to transmit a value v

to N commanders such that when the algorithm terminates

1. All the functional (or loyal) commanders make the same decision about the value. We are not

concerned with the final values of the non-loyal commanders.

2. If the General is functional, all functional commanders receive the correct value.

For ease of exposition, we will also assume that the General is functional. We will consider the cost

C = limk→∞
∑N
i=1 (xi(k)− v)2 , where xi is the final decision of the i-th loyal commander and N

is the number of loyal commanders. We will study the robustness properties of three algorithms

that solve the problem. The first algorithm is similar to the average consensus algorithm discussed

above. The general is assumed to be node 1. Its state remains at a constant value v that it needs

to communicate to others. Every other agent updates its state according to the relation

xi(k + 1) = xi(k)− h
∑

j 6=i

(xi(k)− xj(k)) ,

where h is a positive constant designed to make the algorithm converge. It can be easily shown that

any initial condition for the agent states is driven to a consensus vector in which every node has the

value v. Thus, the algorithm solves the problem provided all the agents are functional. However,

let us consider the case when p agents fail according to failure mode 2. In that case it can be

shown [100] that, in general, as long as a node has a path from the failed agent that does not include

the general, it does not converge to the value v. Thus, the algorithm is seen to be both worst-case

and average-case non-robust for any non-zero value of p. Since the algorithm is non-robust to failure

mode 2, it is also non-robust to failure mode 3.

The second algorithm was proposed by Lamport et al [120]. They demonstrated that if one-third

or more agents fail according to the failure model 3, then no algorithm that solves the above problem

exists. For the case of less than one-third agents failing, they give an algorithm which successfully

solves the problem. In the simplest version of the algorithm, the communication graph is assumed

to be fully connected. We will also make that assumption. We illustrate Lamport’s algorithm with

a simple example of one General and three commanders. The algorithm proceeds as:
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1. At time step 1, the General transmits its value v to all the commanders.

2. At time step 2, every commander transmits its estimate of what the General transmitted to

every other commander.

3. At time step 3, every commander calculates a majority of the messages it has heard, so far,

and outputs its estimate of the decision. The majority function takes in as input an n × 1

vector of real numbers. If there is a number x such that x occurs more times than any other

number in the vector, the function outputs x. Otherwise there are at least two numbers x and

y that occur the same number of times. The function outputs either x or y randomly.

If at most one commander can fail, it can be proven that the cost C is still 0. The algorithm can

be extended to N commanders and can be studied under slightly less restricted communication

requirements than a fully connected graph, e.g., a 3-regular graph. We note that the algorithm fits

in our framework and that it is both worst-case and average-case robust to failure mode 3.

The third algorithm involves including a fault-detection step in algorithm 1. For node i, let Ni
be the neighbor set of i and Ni be its cardinality. In this algorithm, when agent i communicates

with agent j at time k, it transmits four quantities: xi(k) (denoted by ai(k)), xi(k − 1) (denoted

by bi(k)),
∑

l∈Ni
xl(k− 1) (denoted by di(k)) and Ni. Given these quantities, each node carries out

the following checks:

1. It checks if ai(k − 1) = bi(k).

2. It checks if ai(k) = (1− hNi)bi(k) + hNidi(k).

If both these checks are successful, it carries out the same step as the average consensus algorithm,

otherwise it identifies the node i as faulty and disregards it from that time on. We will consider the

case of one agent failing in failure mode 2. Again we note that if the failing node disconnects the

network into 2 parts, there is no hope for an algorithm to be robust. We will assume the network

is at least 2-connected. The general is again node 1. Without loss of generality, let node 2 fail. The

following can easily be proved.

1. If ∀k, node 2 transmits ai(k) = a, bi(k) = b, di(k) = d, and Ni = N then to avoid detection,

a = b.

2. Moreover, to avoid detection by some node j0, xj0(k) = Nia− d. Thus, unless two non-faulty

nodes have the same state value at all times, at least one will be able to detect the fault in

node 2.

3. To ensure that xj0(k) remains constant, it must be true that
∑

l∈Nj0
,l 6=i xl(k) = Nj0(Na−d)−a.
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Note that the last two conditions define two surfaces parameterized by the values of {xl(k)}l 6=i in

the (a, d,N) space where the faulty values transmitted must lie for the failing agent to go detected.

Similarly the condition that the sum of the state values of all neighbors of j0 remains constant

places an algebraic condition on the state values of all other nodes of the network and defines

another surface. Now, it is certainly possible to come up with initial conditions that satisfy the

above constraints. As an example consider the topology in which the edges (1,2), (1,5), (2,4), (3,4),

(3,5) and (4,5) are present. Node 5 is the general with value 4m − n + 1 while node 1 fails by

transmitting values a = m, d = n and N1 = 2. The initial values of nodes 2, 3 and 4 are 3m − 1,

2m − 3n + 1 and 2m − n respectively. Then, the nodes 3 and 5 will be able to detect that node 1

is faulty but not node 4. Also, the nodes will never agree on the value of node 1. We can add any

number of nodes such that they transmit only to nodes 3 and 5 with the same initial conditions as

node 3. Thus, they too will never reach node 1’s value and the algorithm is worst-case non-robust.

On the other hand, if we choose the initial conditions randomly from a uniform distribution over

the interval (0, 1), the probability that the three surfaces will intersect is very small. Thus, the

probability that valid values of a, d and Ni will exist is also small. Hence, with high probability,

all nodes will be able to detect that node 1 is faulty and disregard it. Once the nodes disregard it,

the algorithm will run on a connected graph of N − 1 functional agents and hence will terminate

successfully. The algorithm is thus a.s. robust.

The common feature of the two robust algorithms is that every node received enough information

to be able to recover from the effects of the faulty agents. In the second algorithm, enough number of

edges were present for every node to obtain multiple copies of the same value. Thus, it could apply

majority rule and obtain the correct value. In the third algorithm, information was being transmitted

with sufficient redundancy that each node could check if its neighbor was transmitting inconsistently

and hence was faulty. This robustness through information redundancy is different in nature from

the robustness through cost function that was exhibited by the sensor coverage algorithm. Whether

any algorithm can be made robust through such information redundancy is an open question.

This work is but a first step towards a theory of robust distributed algorithms. More work is

needed to identify the properties that the cost function must satisfy for (say a gradient descent type)

algorithm to be inherently robust. It will also be nice to have an analytic tool to determine the

robustness properties of algorithms and to synthesize robust algorithms systematically.
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